
Computer Structures:
Principles and Examples

Daniel P. Siewiorek
Carnegie-Mellon University

C. Gordon Bell
Digital Equipment Corporation

Allen Newell
Carnegie-Mellon University

McGraw-Hill Book Company
New YorkoSt. LouiscSan FranciscoClAucklandoBogotaHamburgO
JohannesburgoLondonOMadridoMexicooMontrealnNewDelhin
PanamaDParisOSBo F’auIoOSingaporecSydneyDTokyoOToronto

This book w a s set in Cakdonia by Black Dot, Inc.

The editors were Charles E. Stewart and James E. Vastyan;

the production supervisor was Joe Campanella.

New drawings were done by Fine Line Illustrations, 1%

Von Hoftinann Press, lnc., was printer and binder.

Library of Congress Cataloging in Publication Data

Main entry under title:

Computer structures.
(McGraw-Hill computer science series)
Bibliography: p.
Includes index.
1. Computer architecture-Addresses, essays, lectures.

I. Siewiorek, Daniel P. 11. Bell,
C. Gordon. 111. Newell, Allen. .
QA76.9.A73C65 621.3819’5 80-27926
ISBN 0-07-057302-6 AACR 1

Computer Structures: Principles and Examples
Copyright 0 1982 by McGraw-Hill, Inc. All rights reserved. Chapters 9, 10, 11,
40, 43, and 48 are from Computer Structures: Readings and Examph by
C. Gordon Bell and Allen Newell, copyright 0 1971 by McGraw-Hill, Inc. All
rights reserved. Printed in the United States of America. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 V H V H 8 9 8 7 6 3 4 3 2 1

See Acknowledgments on pages 91S-9m.
Copyrights included on this page by reference

Computer Structures:
Principles and Examples

McGraw-Hill Computer Science Series

Allen ANATOMY OF LISP
Bell and Newell COMPUTER STRUCTURES: READINGS AND EXAMPLES
Donovan SYSTEMS PROGRAMMING
Feigenbaum and Feldman COMPUTERS AND THOUGHT
Gear COMPUTER ORGANIZATION AND PROGRAMMING
Givone INTRODUCTION TO SWITCHING CIRCUIT THEORY
Goodman and Hedetniemi INTRODUCTION TO THE DESIGN AND ANALYSIS OF ALGORITHMS
Hamacher, Vranesic, and Zaky COMPUTER ORGANIZATION
Hamming INTRODUCTION TO APPLIED NUMERICAL ANALYSIS
Hayes COMPUTER ARCHITECTURE AND ORGANIZATION
Hellerman DIGITAL COMPUTER SYSTEM PRINCIPLES
Hellerman and Conroy COMPUTER SYSTEM PERFORMANCE
G i n AUTOMATA THEORY: MACHINES AND LANGUAGES
Katzan MICROPROGRAMMING PRIMER
Kohavi SWITCHING AND FINITE AUTOMATE THEORY
Liu ELEMENTS OF DISCRETE MATHEMATICS
Liu INTRODUCTION TO COMBINATOW MATHEMATICS
MacEwen INTRODUCTION TO COMPUTER SYSTEMS: USING THE PDP-11 AND PASCAL
Madnick and Donovan OPERATING SYSTEMS
Manna MATHEMATICAL THEORY OF COMPUTATION
Newman and Sproull PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
Nilsson PROBLEM-SOLVING METHODS IN ARTIFICIAL INTELLIGENCE
Rice MATRIXCOMPUTATIONS AND MATHEMATICALSOFTWARE
Rosen PROGRAMMING SYSTEMS AND LANGUAGES
Salton AUTOMATIC INFORMATION ORGANIZATION AND RETRIEVAL
Siewiorek, Bell, and Newell COMPUTER STRUCTURES: PRINCIPLES AND EXAMPLES
Stone INTRODUCTION TO COMPUTER ORGANIZATION AND DATA STRUCTURES
Stone and Siewiorek INTRODUCTION TO COMPUTER ORGANIZATION AND DATA STRUCTURES: PDP-11 EDITION
Tonge and Feldman COMPUTING: AN INTRODUCTION TO PROCEDURES AND PROCEDURE-FOLLOWERS
Tremblay and Bunt AN INTRODUCTION TO COMPUTER SCIENCE: .w ALGORITHMIC APPROACH
Tremblay and Bunt AN INTRODUCTION TO COMPUTER SCIENCE: AN ALGORITHMIC APPROACH, Short Edition
Tremblay and Manohar DISCRETE MATHEMATICALSTRUCTURES WITH APPLICATIONS TO COMPUTER SCIENCE
Tremblay and Sorenson AN INTRODUCTION TO DATA STRUCTURES WITH APPLICATIONS
Tucker PROGRAMMING LANGUAGES
Watson TIMESHARING SYSTEM DESIGN CONCEFTS
Wiederhold DATABASE DESIGN
Winston THE PSYCHOLOGY OF COMPUTER VISION

McGraw-Hill Advanced Computer Science Series

Dalds and h n a t KNOWLEDGE-BASED SYSTEMS IN ARTIFICIAL INTELLIGENCE
Feigenbaum and Feldman COMPUTERS AND THOUGHT
Kogge THE ARCHITECTURE OF PIPELINED COMPUTERS
Lindsay, Buchanan, Feigenbaum, and Lederberg APPLICATIONS OF ARTIFICIAL INTELLIGENCE

FOR ORGANIC CHEMISTRY: THE DENDRAL PROJECT
Nilsson PROBLEM-SOLVING METHODS IN ARTIFICIAL INTELLIGENCE
Watson TIMESHARING SYSTEMS DESIGN CONCEPTS
Winston THE PSYCHOLOGY OF COMPUTER VISION
Wulf, Levin, and Harbison HYDRA/C.MMP: AN EXPERIMENTAL COMPUTER SYSTEM

To Brigham, Laura,
Nora, and Paul

Contents in Brief

Preface

Part 1
FUNDAMENTALS

Section 1
ABSTRACTION AND NOTATION

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1
2
3
4

Computer Classes and Evolution
Levels and Abstractions
PMS Notation
An Introduction to ISPS

Section 2
THE COMPUTER SPACE

CHAPTER

CHAPTER

5
6

Function and Performance
Structure

Section 3
COMPUTERS OF HISTORICAL SIGNIFICANCE

CHAPTER 7 The Manchester Mark 1
CHAPTER 8 Structural Levels of the PDP-8
CHAPTER 9 Design of the B 5000 System
CHAPTER 10 One-Level Storage System

Part 2
REGIONS OF COMPUTER SPACE

Section 1
MICROPROGRAM-BASED PROCESSORS

CHAPTER 11 	 Microprogramming and the Design of the
Control Circuits in an Electronic Digital
Computer

CHAPTER 12 Microprogramming the IBM Systed360
Model 30

CHAPTER 13 Bit-Sliced Microprocessor of the Am2900
Family: The Am2901/2909

CHAPTER 14 The Am2903/2910
CHAPTER 15 A PDP-8 Implemented from AMD

Bit-Sliced Microprocessors

xiii

Section 2
MEMORY HIERARCHIES AND MULTIPLE PROCESSES 227

CHAPTER 16 Burroughs’ B6500/B7500 Stack Mechanism 244
CHAPTER 17 An Outline of the ICL 2900 Series System

Architecture 251
3

Section 3
4 CONCURRENCY: SINGLE-PROCESSOR SYSTEMS 260
9

17 CHAPTER 18 The IBM System/360 Model 91: Machine

23 Philosophy and Instruction-Handling 300
CHAPTER 19 An Efficient Algorithm for Exploiting

Multiple Arithmetic Units 293
33 CHAPTER 20 The Illiac IV System 306

39 CHAPTER 21 A Productive Implementation of an

62 Associative Array Processor: STARAN 317

Section 4
MULTIPLE-PROCESSOR SYSTEMS 33296

107 CHAPTER 22 The C.mmp/Hydra Project: An

110 Architectural Overview 350
129 CHAPTER 23 Pluribus: An Operational Fault-Tolerant

135 Multiprocessor 371

Section 5
NETWORKS 387

CHAPTER 24 	 The Interfice Message Processor for the
ARPA Computer Network 402

CHAPTER 25 ALOHA Packet Broadcasting: A Retrospect 416
CHAPTER 26 Ethernet: Distributed Packet Switching for

Local Computer Networks 	 429
151

Section 6
FAULT-TOLERANT SYSTEMS 439

158 CHAPTER 27 The STAR (Self-Testing And Repairing)
Computer: An Investigation of the Theory

164 and Practice of Fault-Tolerant Computer
Design 448

168 CHAPTER 28 Fault-Tolerant Design of Local ESS
186 Processors 459

CHAPTER 29 The Tandem 16: A Fault-Tolerant
219 Computing System 470

viii I Contents

Section 7

LANGUAGE-BASED COMPUTERS 486

CHAPTER 30 The SYMBOL Computer 489

CHAPTER 31 A Dual-Processor Desk-Top Computer:

The HP 9845A 508

CHAPTER 32 The IBM System138 533

Section 8

PERSONAL COMPUTING SYSTEMS 547

CHAPTER 33 Alto: A Personal Computer 549

Part 3
COMPUTER CLASSES

Section 1

MONOLITHIC MICROCOMPUTERS 581

CHAPTER 34 TMS1000/1200: Chip Architecture and

Operation 587

CHAPTER 35 PIC1650: Chip Architecture and Operation 602

Section 2

MICROCOMPUTERS 610

CHAPTER^^ Trends in Microcomputers 612

CHAPTER 37 Intel Microprocessors: 8008 to 8086 615

Section 3

MINICOMPUTERS 647

CHAPTER 38 A New Architecture for Mini-Computers:

The DEC PDP-11 649

CHAPTER 39 Implementation and Performance

Evaluation of the PDP-11 Family 666

Section 4

MAXICOMPUTERS 680

CHAPTER 40 The Structure of System/360, Part I:

Outline of the Logical Structure 695

CHAPTER 41 The Structure of System/360, Part 11:

System Implementations 711

CHAPTER 42 VAX-111780: A Virtual Address Extension to

the DEC PDP-11 Family 716

CHAPTER 43 Parallel Operation in the Control Data 6600 730

CHAPTER 44 The CRAY-1 Computer System 743

CHAPTER 45 The TI ASC: A Highly Modular and

Flexible Super Computer Architecture 753

Part 4

FAMILY RANGE, COMPATIBILITY, AND

EVOLUTION

Section 1

MICROCOMPUTER FAMILIES 765

Section 2

MINICOMPUTER FAMILIES 766

CHAPTER 46 The PDP-8 Family 767

CHAPTER 47 The Evolution of the PDP-11 776

Section 3

EVOLUTION OF HP CALCULATORS 785

CHAPTER 48 The HP Model 9100A Computing
Calculator 787

CHAPTER 49 The HP 9810/20/30 Series 801

CHAPTER 50 Hewlett-Packard Calculator Architectures 824

Section 4

EVOLUTION OF BURROUGHS COMPUTERS 828

Section 5

THE SYSTEM/360 AND SYSTEM/370 FAMILY 829

CHAPTER 51 Architecture of the IBM System/370 830

CHAPTER 52 The IBM Systeml360, System/370, 3030,

That Span a Wide Performance Range 856

and 4300: A Series of Planned Machines

Section 6

EVOLUTION OF CDC/CRAY COMPUTERS 893

Bibliography 894

Acknowledgments 915

Index 921

Contents1

Preface xiii

Part 1 Part 2
FUNDAMENTALS REGIONS OF COMPUTER SPACE

Section 1 Section 1
ABSTRACTION AND NOTATION 3 MICROPROGRAM-BASED PROCESSORS 151

CHAPTER 1 Computer Classes and Evolution 4 CHAPTER 11 Microprogramming and the Design of the
2 Levels and Abstractions 9 Control Circuits in an Electronic Digital
3 PMS Notation 17 Computer
4 An Introduction to ISPS M. V. Wilkes and] . B. Stringer 158

Mario R Barbacci 23 12 Microprogramming the IBM System/360
Model 30

Section 2 Helmut Weber 164
THE COMPUTER SPACE 33 13 Bit-Sliced Microprocessor of the Am2900 -

CHAPTER 5 Function and Performance 39 Family: The Am290112909
6 Structure 62 Advanced Micro Devices, Inc. 168

14 The Am2903/2910
Section 3 Advanced Micro Deoices, Inc. 186

COMPUTERS OF HISTORICAL SIGNIFICANCE 96 15 A PDP-8 Implemented from AMD
CHAPTER 7 The Manchester Mark 1 Bit-Sliced Microprocessors

S . H. Lavington Michael Tsao 219
8 Structural Levels of the PDP-8 Implementation and Performance

C. Gordon Bell, Allen Newell, and Evaluation of the PDP-11 Family
Daniel P. Siewiorek 110 Edward A. Snow and Daniel P. Siewiorek 666

9 Design of the B 5000 System 34 TMS1oo0/1200: Chip Architecture and
William Lonergan and Paul King 129 Operation

10 One-Level Storage System Texas Instruments, Inc. 581
T. Kilburn, D. B. G. Edwards, M. j . Lunigan, 48 The H P Model 91OOA Computing Calculator
andF. H. Sumner 135 Richard E . Monnier, Thomas E. Osborne, and

David S. Cochran 787
49 The H P 9810/20l30 Series 801

’This is a “virtual” contents, which means that because many of the computers are relevant to more than one part and
section, we have used italic type for chapter numbers and titles to indicate a nonsequential mapping for computers placed
out of “physical” order. The reader might read (reference) the book according to the virtual order. See the preface for
further discussion.

ix

31 A Dual-Processor Desk-Top Computer: The 23 Pluribus: An Operational Fault-Tolerant
H P 9845A Multiprocessor

William D. Eads, Jack M. Walden, and
Edward L. Miller 508

David Katsuki, Eric S. Ebam,
William F. Mann, Eric S. Roberts,

Section 2
MEMORY HIERARCHIES AND MULTIPLE PROCESSES 227

43

John G. Robinson, F. Stanley Skowronski,
and Eric W. Wolf

Parallel Operation in the Control Data 6600
371

CHAPTER 10 One-Level Storage System James E. Thornton 730

9

16

T. Kilburn, D. B. G. Edwards, M. J . Lanigan,
and F. H. Sumner

William b n e r g a n and Paul King

E. A. Hauck and B. A. Dent

Design of the B 5000 System

Burroughs’ B6500fB7500 Stack Mechanism

135

129

244

21 A Productive Implementation of an
Associative Array Processor: STARAN

Jack A. Rudolph and Kenneth E. Batcher

Section 5
NETWORKS

317

387

17 An Outline of the ICL 2900 Series System
Architecture

J. L.Keedy 251

CHAPTER 24 The Interface Message Processor for the
ARPA Computer Network

F. E. Heart, R E. Kahn, S. M . Omstein,
42 VAX-111780: A Virtual Address Extension to W. R Crowther, and D. C. Walden 402

32

the DEC PDP-11 Family
W. D. Strecker

The IBMISystem 38
716
533

25 ALOHA Packet Broadcasting: A Retrospect
R Binder, N . Abramson, F. Kuo, A. Okinaka,
and D. Wax 416

Section 3
CONCURRENCY: SINGLE-PROCESSOR SYSTEMS 260

26 Ethernet: Distributed Packet Switching for
Local Computer Networks

CHAPTER 18 The IBM System/360 Model 91: Machine
Philosophy and Instruction-Handling

29 The Tandem 16
Robert M . Metcalfe and David R Boggs 429

470

D. W. Anderson, F. J. Sparacw, and
R M . Tomasulo 300

Section 6
FAULT-TOLERANT. SYSTEMS 439

-
19

20

21

43

44

45

An Efficient Algorithm for Exploiting
Multiple Arithmetic Units

R M. T o w l o

W. J . Bouknight, Stewart A. Denenberg,
David E. Mclntyre, J . M. Randall,
Amed H. Sameh, and Daniel L Slotnick

A Productive Implementation of an
Associative Array Processor: STARAN

Parallel Operation in the Control Data 6600

The Illiac IV System

Jack A. Rudolph and Kenneth E. Batcher

James E. Thornton

The CRAy-1 Computer System
Richard M. Russell

The TI ASC: A Highly Modular and

293

306

317

730

743

CH.4PTER 27

23

28

The STAR (Self-Testing And Repairing)
Computer: An Investigation of the Theory
and Practice of Fault-Tolerant Computer
Design

Algirdus Avizienis, George C. Gilby,
Francis P. Mathur, David A. Rennek,
John A. Rohr, and Dazjid K Rubin

Pluribus: An Operational Fault-Tolerant
Multiprocessor

Daivd Katsuki, Eric S. Elsam,
William F. Mann, Eric S. Roberts,
John G. Robinson, F. Stanley Skuwronski, and
Eric W. Wolf

Fault-Tolerant Design of Local ESS
Processors

448

371

Flexible Super Computer Architecture
W.J.Watson and L. C. Dean 753 29 The Tandem 16: A Fault-Tolerant

W. N . Toy 459

Section 4
MULTIPLE-PROCE SSOR SYSTEMS 332

Computing System
James A. Katzman 470

CHAPTER 22 The C.mmp/Hydra Project: An
Architectural Overview

A “NonStop” Operating System
Joel F. Barlett 480

Henry H. Mashburn 350

Section 7
LANGUAGE-BASED COMPUTERS 486 Part 3

COMPUTER CLASSES
CHAPTER 30 The SYMBOL Computer:

SYMBOL: A Large Experimental System
Exploring Major Hardware Replacement
of Software

William R Smith, Rex Rice, Gilman D.
Chesley, Theodore A. Laliotis, Stephen F.
Lundstrom, Myron A. Calhoun, Lawrence D.
Gerould, and Thomas G. Cook

SYMBOL: A Major Departure from Classic
Software Dominated von Neumann
Computing Systems

R Rice and W. R Smith
49 The H P 9810120130 Series
31 A Dual-Processor Desk-Top Computer: The

HP 9845A
William D. Eads, Jack M. Walden, and
Edward L Miller

32 The IBM Systeml38:
A High-Level Machine

S. H. Dahlby, G. G. Henry, D. N. Reynolds,
and P. T. Taylor

Object-Oriented Architecture
K W. Pinnow, J. G. Ranweiler, and
J. F. Miller

Addressing and Authorization
V. Berstis, C. D. Truxal, and J. G. Ranweiler

Hardware Organization of the System/38
R L H o f f m n and F. G. Soltis

Section 8
PERSONAL COMPUTING SYSTEMS

CHAFTER 34 TMS1ooo/1200: Chip Architecture and
Operation

Texas Instruments, Inc.
48 The HP Model 91OOA Computing Calculator

Richard E. Monnier, Thomas E. Osborw, and
David S. Cochran

49 The H P 9810l20130 Series
31 A Dual-Processor Desk-Top Computer: The

HP 9845A
William D. Eads, Jack M. Walden,
and Edward L Miller

33 Alto: A Personal Computer
C. P. Thacker, E. M. McCreight,
B. W. Lampson, R F. Sproull, and
D. R Boggs

Section 1
MONOLITHIC MICROCOMPUTERS 581

CHAPTER 34 TMS100011200: Chip Architecture and
Operation

489 35 PIC1650: Chip Architecture and Operation
Texas Instruments, Inc. 587

Frank M. Gruppuso 602

Section 2
502 MICROCOMPUTERS 610
801

CHAPTER 36 Trends in Microcomputers
F. Faggin 612

37 Intel Microprocessors: 8008 to 8086

508 Stephen P. Morse, Bruce W. Ravenel,
Stanley Mazor, and William B. Pohlman 615

49 The H P 9810120/30 Series 801
31 A Dual-Processor Desk-Top Computer: The

533 H P 9845A
William D. Eads, Jack M. Walden, and
Edward L Miller 508

537 Section 3

540
MINICOMPUTERS 647-

CHAPTER 8 Structural Levels of the PDP-8
544 C. Gordon Bell, Allen Newell, and

Daniel P. Siewiorek 110

547
15 A PDP-8 Implemented from AMD Bit-Sliced

Microprocessors
Michael Tsao 219

46 The PDP-8 Family
587 C. G. Bell and]. E. McNamara 767

38 A New Architecture for Mini-Computers:
The DEC PDP-11

787 G. Bell, R Cady, H. McFarland, B. Delagi,

801
39

J. OLaughlin, R Noonan, and W. Wulf
Implementation and Performance

649

Evaluation of the PDP-11 Family
Edward A. Snow and Daniel P. Siewiorek 666

508 47 The Evolution of the PDP-11
C. G. Bell and J. C. Mudge 776

49 The HP 9810120130 Series 801
31 A DuaLProcessor Desk-Top Computer: The

549 HP 9845A
William D. Eads, Jack M. Walden, and
Edward L Miller 508

32 The ZBM System138 533

Section 4
MAXICOMPUTERS 680

CHAPTER 40

41

42

43

The Structure of System/360, Part I:
Outline of the Logical Structure

G. A. Blaauw and F. P. Brooks, Jr.
The Structure of System/360, Part 11:
System Implementations

VAX-11/780: A Virtual Address Extension to
the DEC PDP-11 Family

Parallel Operation in the Control Data 6600

W. Y, Stevens

W. D. Strecker

James E. Thornton

695

711

716

730
44

Richard M. Russell
The CRAY-1 Computer System

743
45 The TI ASC: A Highly Modular and

Flexible Super Computer Architecture
W. J. Watson and L C. Dean 753

Part 4
FAMILY RANGE, COMPATIBILITY, AND
EVOLUTION

Section 1
MICROCOMPUTER FAMILIES 765

CHAPTER 37 Intel Microprocessors: 8088 to 8086
Stephen P. Morse, Bruce W. Ravenel,
Stanley Mazor, and William B. Pehlman 615

Section 2
MINICOMPUTER FAMILIES 766

CHAPTER 46

47

The PDP-8 Family
C. G. Bell and J. E. McNamara

The Evolution of the PDP-11
C. G. Bell and J. C. Mudge

767

776

Section 3
EVOLUTION OF HP CALCULATORS 785

CHAPTER 48 The HP Model 9100A Computing
Calculator

Richard E. Monnier, Thomas E. Osborne,
and David S. Cochran 787

49 The HP 9810/20/30 Series:
A New Series of Programmable Calculators

Richard M. Spangler 801

Model 10 Maintains Compatibility, Expands
Capability

Curtis D. Brown and Jack M. Walden 803
Interactive Model 20 Speaks Algebraic
Language

Rex L. James and Francis J. Yockey 805
BASIC-Language Model 30 Can Be
Calculator, Computer, or Terminal

Richard M. Spangler 810
9800 Processor Incorporates 8-MHz
Microprocessor

Henry J. Kohoutek 814
Versatile Input/Output Structure Welcomes
Peripheral Variety

Gary L Egan 817
31 A Dual-Processor Desk-Top Computer:

The H P 9845A
William D. Eads, Jack M. Walden, and
Edward L. Miller 508

50 Hewlett-Packard Calculator Architectures
Thomas E. Osborne 824

Section 4
EVOLUTION OF BURROUGHS COMPUTERS 828

CHAPTER 9 Design of the B SO00 System
William Lonergan and Paul King 129

16 Burroughs' B6500/B7500 Stack Mechanism
E. A. Hauck and B. A. Dent 244

Section 5
THE SYSTEM1360 AND SYSTEM1370 FAMILY 829

Architecture of the IBM System/370 CHAPTER 51
Richard P. Case and Andris Padegs 830

The IBM System/360, System/370, 3030, 52
and 4300: A Series of Planned Machines
That Span a Wide Performance Range

C. G. Bell, A. Newell, M. Reich, and
D. Sieuiorek 856

Section 6
EVOLUTION OF CDC/CRAY COMPUTERS 893

CHAPTER 43 Parallel Operation in the Control Data 6600
James E. Thornton 730

Richard M . Russell
44 The CRAY-1 Computer System

743

Bibliography 894
Acknowledgments 915
Index - 921

When Computer Structures: Readings and Examples was original-
ly published by Gordon Bell and Allen Newel1 in 1971, the
concept of computer structures was just emerging. The book
focused on the historical evolution of technology, instruction sets,
and uniprocessors. Two new notations were introduced to provide
more concise descriptions of instruction sets (ISP, for instruction-
set processor) and uniprocessor structures (PMS, for processor-
memory-switch).

In the last decade, the scene has changed dramatically.
Technological advances have led to a virtual explosion in the
number of computer types and installations. Minicomputers and
calculators, still relatively new computer applications in 1971, are
the basis of industries today. Entirely new types, such as micro-
processors and maxicomputers with vector data-types, now com-
mand sizable markets of their own. Techniques such as micropro-
gramming, networks, multiprocessors, and fault tolerance were
infrequently applied in 1971; a decade later, these concepts are
essential in almost all the new systems.

The 1971 edition of Computer Structures introduced the
concept of a design space, with each computer structure repre-
senting a point in that space. This edition embraces and expands
the computer space concept and reflects changes in several
dimensions which have since either received common acceptance
or been replaced by other dimensions with significantly more
impact on the structure’s performance.

The number of addresses per instruction is an example of a
dimension where common acceptance has developed. Contempo-
rary instruction sets are based on general-register organizations
with multiple-byte or -word instructions. The variable-length
instruction format enables the computer to assign the largest
number of op codes and address bits into a 1-word instruction.
Early instruction-set design often meant wasted memory if the
instructions were too wide. Too short an instruction could require
excess instructions to perform an otherwise simple task. A good
instruction-set encoding can increase program density by over 50
percent. With the creation of a large number of instruction sets,
designers of new instruction sets have been able to integrate the
best features of their predecessors.

Networks are an example of where new dimensions are
emerging. Variations in network performance due to instruction-
set design are negligible compared to variations in network
performance due to operating systems, network topology, net-
work protocol, media bandwidth, etc.

This book emphasizes computer space dimensions with numer-
ous and quantitative subdimensions. Each alternative value for a
dimension represents a design alternative. These values and their

interactions with other dimensions are illustrated by real ma-
chines.

All the machines discussed in this book have actually been
constructed and evaluated. The papers, wherever possible, are
written by the specific machine architects or people closely
associated with the architectures. Several of the machines are
presented in elaborate detail, enabling the reader to appreciate
the design complexities encountered and design methodologies
employed by the architects. Many of these papers have been
written specifically for this book. In favoring depth over breadth,
the book is not able to discuss all important architectures (nor
even all major manufacturers). However, the architectures that
are included were carefully selected to uniformly cover the major
design principles of computer structures.

The proliferation of computer structures and the emergence of
computer families have provided quantitative as well as descrip-
tive data for the book. Wherever possible, data, models, and/or
trends are derived from the actual computer structures.

Three notations help to summarize information about the
computer structures: ISP, PMS, and Kiviat graphs. An updated
version of the original ISP language--ISPS-has been used to
formally describe a growing number of major computer architec-
tures. A simulator has been utilized for debugging (e.g., running
diagnostic programs written for the hardware implementations of
the machines) and data collection (e.g., implementation-
independent measures of benchmarks). ISPL, a predecessor of
ISPS, was used in the Army-Navy Military Computer Family
(MCF) project to evaluate alternative architectures. Several
research projects based on formal machine descriptions have also
developed, including the generation of microcode, assemblers,
diagnostics, and compilers. Since a complete ISPS description of a
contemporary machine can be over 50 pages long, we have chosen
to provide subsets of the full ISPS descriptions for all but the very
simple architectures. These ISPS descriptions are complete ex-
cept that only a subset of each machine’s instruction set is
described. All the ISPS descriptions that appear in this book have
been compiled and simulated.

The PMS notation for describing the information flow rate of
computer structures has been simplified and made more readable.
System performance is provided by Kiviat graphs, which display
six major system parameters.

It is hoped that this book will serve as an educational resource
for three professional groups: the computer engineer, who de-

‘“Military Computer Architectures: A Look at the Alternatives,” special
issue of Computer, vol. 10, no. 10, October 1977.

xiii

signs physical computer systems; the computer scientist, who is
concerned primarily with the programming level and with various
abstract views of information processing; and the electrical
engineer, who sees computer systems as part of a larger tech-
nology.

This book presents design choices, structural variations, and
systematic analysis, which can be especially useful for the comput-
er engineer charged with designing a new computer system or
subsystem. The student of computer engineering who approaches
this book with a working knowledge of logic design should find it
possible to realize many of the systems described at the next lower
levels of logic structure.

For the computer scientist, the levels of computer structure
discussed in this book offer significant insight into the physical
devices that underlie computer science. Even if the computer
scientist does not carry through the design in terms of the lower
logic levels, it will still be possible to incorporate the upper levels
of computer structure.

The electrical engineer need not study every example in this
book. A sampling, plus the overview presented in the first three
chapters, is appropriate to give insight into the elaborate growth
accompanying the basic digital technology created within electri-
cal engineering.

The book is divided into four parts:

1. Fundamentals
2. Regions of Computer Space
3. Computer Classes
4. Family Range, Compatibility, and Evolution

Part 1provides an introduction to ISP, PMS, and Kiviat graph
notation, sketches the dimensions of the computer space, and
provides a discussion of several historically significant machines.
Part 2 examines several of the computer space dimensions,
contrasting the alternative values for each dimension. Examples of
actual computer structures provide a comparative taxonomy of
design choices.

Part 3 contains detailed descriptions of computer structures
organized by size: monolithic microcomputer, microcomputer,
minicomputer, and maxicomputer. Each class has a common set of
applications and goals. On the basis of ISP, PMS, and Kiviat graph
notations, the structures are compared and contrasted and trends
are described.

Part 4 deals with computer families, which comprise several
structures implementing a common design goal and frequently
employing a common ISP. Extensive data are provided for the
comparison of closely related systems, and several alternative
analyses are presented, including a discussion of the impact on the
system of individual design tradeoffs, such as those presented in
Part 2.

This book has both a physical and a “virtual” table of contents.
The physical order of the chapters presents the material in a

logical progression. If covered in a sequential fashion, the material
in this book would span three one-semester courses. Therefore, a
“virtual” table of contents, relating chapters by topic, has been
provided. The instructor or student can utilize the virtual table of
contents to focus on particular subsets of the material and
formulate logically independent courses.

This book can be used either as a primary text or as a reference
text in a computer architecture course beyond the elementary
level. It can also support digital-system design courses ranging
from the register-transfer level through the system organization
level. Each of the sections of Part 2 given in the virtual table of
contents, suitably augmented by selected introductory material
from Part 1, would be sufficient for a quarter-length course on
individual topics (e. g., microprogramming, memory hierarchies,
concurrency, multiple-processors, networks, fault tolerance,
language-based computers, and personal computing). Each sec-
tion also provides sufficient detail to assign programming and/or
design projects based on the principles discussed. Semester-
length courses can be developed by combining related sections
(e.g., multiple-processors and networks, or language-based com-
puters and personal computing systems). A subset of Part 3 on
computer classes could form the basis of a course on instruction-
set design and evolution. Part 4 provides source material for an
advanced course on computer families, including evolution and
computer family planning for range andlor compatibility. The
h i l y evaluation methodology presented in Part 4 could be
extended to other computer families. The January 1978 special
issue on computer architecture of the Communications of the
Associationfor Computing Machinery is an excellent supplement
to Part 4.

This book can be used in both the curriculum for undergradu-
ate programs in computer science prepared by the ACM Commit-
tee on Curriculum in Computer Science (C3S) and the IEEE’s
Curriculum in Computer Science and Engineering (CSE). This
book provides material for the hardware portions of the ACM/C3S
courses as illustrated in Table 1. [Austing et al. 19791.

For the extensive IEEE/CSE curriculum, with its emphasis on
hardware, this book can be used for all computer organization
courses, as well as for actual design examples for the digital logic
courses. Table 2 on page xvi illustrates how portions of this text
support the various topics included in IEEE/CSE courses.

The authors of this book wish to acknowledge a deep debt of
gratitude to our many colleagues in the computing profession.
Without their contributions and assistance this book could not
have been written. We are especially grateful to the authors of
papers who shared their design insights with us and to those
authors who took time from busy schedules to write chapters
specifically for this book. Our thanks also to individuals in various
organizations who kindly responded to our numerous requests for
information. A special debt is owed Digital Press for providing
extensive excerpts from Computer Engineering: A DEC View of

Table 1 ACM Committee on Curriculum in Computer Science

Specific topics
covered by

Level Course “Computer Structures” Example chapters

Elementary level CS-4 Introduction to Computer Basic logic design examples Chap. 2; Chap. 8; Chap. 15
Organization

Hardware implementation of Chap. 8
instruction fetch, execute

Data flow and block diagram Chap. 8
of simple processor

Microprogramming Part 2, Sec. 1
I/O, interrupts Part 1, Sec. 2

Intermediate level CS-6 Operating Systems and I/O, interrupts, addressing, Part 1, Sec. 2; Part 2, Sec. 1
Computer Architecture I microprograming

Stacks, displays, reentrant Part 1, Sec. 2; Chap. 16;
programs Chap. 17

Memory management, Part 2, Sec. 2
paging, segmentation,
virtual memory

Process management Part 2, Sec. 2
Advanced level CS-10 Operating Systems and

Computer Architecture I I I/O, interrupts, addressing Part 1, Sec. 2
Concurrent processes Part 2, Sec. 2
Protection Part 2, Sec. 2
Pipelining, parallelism Part 2, Sec. 3
Networks Part 2, Sec. 5
Distributed systems Part 2, Sec. 4

Special topics TelecommunicationslNetworks, Networks Part 2, Sec. 5
Distributed Systems

Distributed systems Part 2, Sec. 4

Hardware Design, by C. G. Bell, J. C. Mudge, and J. E. In addition we would like to thank those we wprked with at
McNamara. McGraw-Hill, particularly Richard Mickey, the copy editor, who

We are deeply indebted to Gary h i v e for his many hours of worked long hours carefully preparing the manuscript for produc-
writing, compiling, simulating, debugging, and formatting the tion. The patience and diligence of Mrs. Dorothy Josephson, who
many ISPs in the book. Over 9,400 lines of ISP were produced, typed and retyped the many manuscript drafts and letters is
of which only about a third appear here. A similar debt is owed worthy of special note. Finally, the support and understanding of
Vittal Kini, who assembled the PMS diagrams and checked them our families and wives-Karon, Gwen, and Noel-were an essen-
for consistency. Jin Kim and Michael Tsao spent many hours tial ingredient in the completion of this book.
assembling the artwork that had to be photographed.

Comments from several reviewers were particularly helpful. Daniel P. Siewiorek
Lloyd Dickman provided a comprehensive review of the manu- C. Gordon Bell
script. Robert Sproull and John Wakerly offered substantial Allen Newel1
comments, as did Robert Stanton of IBM on the S/360-S/370
material. A careful editing of Part 1 was done by Eleanor
Dickman.

The patience and encouragement of colleagues and students Reference
alike---especially Angel Jordan and Joe Traub-were deeply ap-
preciated. Austing et al. [1979].

Table 2 A Curriculum in Computer Science and Engineering?
IEEE Computer Society’s Model Curriculum Subcommittee

Course

Switching Theory and Digital Logic:

DL-1 and DL-2

Microprocessor Systems: DL-3

Introduction to Computer

Organization: CO-1

I/O and Memory Systems: CO-2

Computer Architecture: CO-3

Microprogramming: CO-4

Distributed Processing and

Networks: CO-5

Topics covered by
“Computer Structures”

Programmable controllers; use of PLAs,
ROMs

Developments in LSI
Microprocessor architecture
Common microprocessors:

Calculator chips, bit slices,
and monolithic microprocessors

Computer units
Microprogramming
Memory hierarchy
Inpuffoutput

System structure
Single-processor
Multiprocessor
Networks
Evaluation

System examples
Intel 8080
PDP-8
PDP-11
IBM S/360 and S/370
CDC-6600
Mac IV

Hardware desciption methodologies
ISP/PMS

I/O structures
Memory hierarchies
Instruction sets
Main-line computers
Examples

ILLIAC IV
TI ASC
STARAN

Character machines
Stack
Parallelism
Protection
Multiprocessors
Networks

Example chapters

Part 3, Sec. 1

Part 3, Secs. 1 and 2; Part 2, Sec. 1

Part 2, Sec. 1

Part 2, Sec. 2

Part 1, Sec. 2

Part 3

Part 2, Sec. 4

Part 2, Sec. 5

Chap. 5

Chap. 37

Chap. 8

Chap. 38

Chaps. 40, 41,51, 52

Chap. 43

Chap. 20

Chaps. 3, 4

Part 1, Sec. 2

Part 2, Sec. 2

Part 1, Sec. 2

Part 3,Sec. 4

Chap. 20

Chap. 45

Chap. 21

Part 2, Secs. 7, 8

Part 1, Sec. 2

Part 2, Sec. 3

Part 2, Sec. 2

Part 2, Sec. 4

Part 2, Sec. 5

Part 2, Sec. 1

Part 2, Secs. 4, 5

?“A Curriculum in Computer Science and Engineering Committee Report,” IEEE, EH 0119-8, November 1976. Reported on in “Computer
Science and Engineering Education,” special supplement, Computer, vol. 10, no. 12, December 1977, pp. 70-123.

Part 1

Fundamentals

Section 1

Abstraction and Notation

Computer Classes and Evolution

A computer is a complex system incorporating diverse technolo-
gies. Typically, electronic technology is used for computation,
magnetic for long-term storage, and electromechanical for input/
output. The evolution of computer structures usually correlates
with that of the available technology. On occasion sometimes
other technologies, such as magnetic core memory and Freon
cooling of electronics (see Chap. 44),are developed specifically for
use in computer systems. Computer engineers are also adept at
applying existing technologies in new ways-for example, cath-
ode-ray tubes as memories (e.g., Williams tubes, ca. 1947),
character display terminals, and graphic display terminals; mag-
netic recording technology for tapes, disks, and drums; and
vacuum tubes and transistors for processors.

During the 1960s and 1970s, integrated-circuit semiconductor
technology entered a revolutionary phase. The density of individ-
ual integrated-circuit chips, measured by the number of logic
devices per chip, doubled every 1 or 2 years. In 1972, a
single-chip processor was introduced. Prior to that time, a
successful computer, such as the first model of the PDP-8 family
(the first mass-produced minicomputer), might enjoy a sales
volume of 50,000 units over its 5-year life. Contemporary
single-chip processors (called microprocessors') may exceed that
volume in only 10 days! Computers now come into contact with
our everyday lives, in the form of hand calculators, electronic
games, computer-controlled appliances, and the like.

Coupled with the vast increase in the numbers of computers is
an appreciable increase in the number of computer types. Each
type represents a set of design decisions that can be represented
as a point in design space. The density of designs in the space
allows us to observe commonalities, trends, and the consequence
of various design decisions. Over the last three decades, the
design of computer structures has evolved from an art to an
engineering discipline. The purpose of this book is to discuss
these topics through an exploration of the design principles used
in contemporary computer structures.

Each system included in this book is a real system that has been
implemented. The systems are described by taxonomies, illustra-
tions of existing systems, and comments by the systems' archi-
tects. Systems are represented by three consistent sets of

'Not to be confused with the term microprogrammed processor. In
microprocessors micro- means physically small and is usually synonymous
with a processor-on-a-chip (of silicon), whereas microprogramming is an
implementation technique. Note that a microprocessor may or may not be
microprogrhmmed. See Sec. 1 of Part 2 for a detailed discussion of
microprogramming.

notation: structural (PMS), performance (Kiviat graphs), and
behavioral (ISP). Significant details are given so that the reader
can understand how the system meets its design goals. Each
system has been carefully selected to illustrate a point in the
design space as well as to complement the other systems.

This study begins with a presentation of the concepts of
computer classes and evolution. Understanding and applying
these concepts, which appear frequently throughout the book,
will enable the reader to organize the myriad details presented.

Computer Classes

The concept of a computer class attempts to integrate many
computer-system details into an overall evaluation, grouping
similarly evaluated systems together. Computer systems can be
graphically classified according to different metrics, each of which
incorporates several complex design details.

One metric of classification is price. Figure 1 plots the price
(including processor, memory, and input/output) of the computer
systems described in this book relative to year of introduction.
Four classes have been identified: maxicomputers, minicomput-
ers, microcomputers, and monolithic microcomputers. Each class
spans roughly 1%orders of magnitude in price. Initially, because
of the high cost of technology, all systems were maxicomputers.
As semiconductor technology increased and costs decreased, new
classes of computer systems evolved. Minicomputers appeared
around 1965, followed by microcomputers in 1972 and monolithic
microcomputers in 1976.

In some cases, a computer system, such as the IBM System/360
or System/370, spans more than one class and actually represents
a family of implementations with a wide range in price and
performance. Each member of the family is capable of executing
programs written for other family members. Thus, while the
manufacturer develops software for one machine, the user can
move to a compatible higher-performance system whenever it is
required. The concept of computer families continues to grow in
importance. (See Part 4 for a study of several types of computer
families.)

A metric closely related to price is the size of the computer
system. Maxicomputers typically occupy several large cabinets
and require a room to house them. A minicomputer usually
occupies one or two cabinets of 10 to 30 ff? each. Micro-
computers-consisting of microprocessor chips, a memory, and
inputioutput interfaces-can be mounted on a single board
the size of this book page. Finally, monolithic microcomputers
have the entire system (processors, memory, and input'output)
integrated into a single chip measuring 2 in x 0.6 in x 0.2 in.

Another general metric is capacity and functionality. Section 2
of Part 1 contends that the single most important structural
parameter in comparing computer systems is the number of bytes

4

Chapter 1 I Computer Classes and Evolution 5

10'

10'

1OE

1OF

S lo4

1o3

I

"3

m--

a
.-
L
n

102

101

'0°1945 1i50
I

1955
I

1960
I

1965
1

1970
I

1975
1

1980

Fig. 1. Computer classes as a function of price.

systems

6 Part 1 Fundamentals1

of virtual address. Virtual address refers to the number of bytes
independently addressable by the instruction set of the processor
(ISP) (i.e., having unique names). (See Part 2, Sec. 2, for a more
detailed discussion of virtual addresses.) Figure 2 plots the
computers described in this book by bytes of virtual address
according to date of introduction. The same four classes emerge:
maxicomputers, minicomputers, microcomputers, and monolithic
microcomputers. The number of bytes of virtual address doubles
approximately every year (i. e., a byte-addressable ISP increases
its address size by 1bit per year). Thus, as each class evolves, new
members of the class are expected to have increased capacity and
functionality. Since, according to this metric, classes represent
approximately constant price bands, the technology cost reduc-
tions serve to increase the capacity and functionality of a class.

On the other hand, technology cost reductions can be used to
initiate new, less expensive classes with the same functionality
offered by the next higher class several years before. For example,
consider the early versions of the minicomputer (PDP-8), the
microcomputer (Intel 4004),and the monolithic microcomputer
(MCS-48). From Fig. 2 we would expect all three to have roughly
similar capacity and functionality, though 5 and 10 years apart in
time. It is extremely important to remember that all classes of
computers have followed approximately the same evolutionary
path as their capacity and functionality have increased. Thus,
minicomputers began- to include what had been maxicomputer
concepts (e.g., caches, pipelining, and floating-point data-types)
as soon as the economics of technology allowed (i.e., when the
technology could support the added complexity without driving
the system cost into another class). Microcomputers and mono-
lithic microcomputers are evolving along similar paths, reflecting
a similar time lag.

Not all concepts pass unchanged from one class to the next. For
example, timesharing operating systems were developed to
provide access to a costly, centralized maxicomputer system for
many users, even at diverse locales. Timesharing systems were
later applied to minicomputers. Because of their relatively low
cost, microcomputers have not yet adopted timesharing facilities,
even though several important concepts developed for time-
sharing, such as online file systems, have already been incorporat-
ed into the microcomputer class.

Newer computer classes benefit from the evolutionary process
of older classes, adapting to proven concepts quickly where the
older classes required a trial-and-error process. Despite the
usefulness of understanding computers according to class, it is
essential to remember that the principles of computer structures
apply to all types of computer systems. Any principle or technique
presented in this book can be used to describe any computer class,
no matter when it evolved. Part 2 of the book systematically
presents the general principles of computer structures, while Part
3 examines detailed variations as functions of constraints of the
specific computer classes.

Section 1 1 Abstraction and Notation

A few anomalies in Fig. 2 are worthy of comment. Several
computers of the early maxicomputer class had a large number of
addressable bytes. The Atlas and B 5000 heavily utilized less
costly secondary storage to give the appearance of a large primary
memory. Computers such as the IBM System1360 (a maxicom-
puter) and the VAX-111780 (which bridged the gap between
high-end minicomputers and low-end maxicomputers) provided
an extra large virtual address to allow room for capacity expansion
in future family members. The CRAY-1, although considered a
maxicomputer, has addressability usually associated with a mini-
computer. Thus the CRAY can be regarded either as under
addressed for a stand-alone maxicomputer or as a specialized
computer (e.g., a vector processor) to be used in conjunction with
other, more general-purpose machines.

Another view of capacity and functionality is provided by
plotting the number of bytes of physical address by year of
introduction, as shown in Fig. 3. This figure illustrates the
maximum size of physical memory able to be implemented by the
1SP-defined machine. The implemented memory may be substan-
tially less than the virtual memory size on account of physical
limitations andlor cost constraints. Figure 3 reinforces the concept
of family, showing a slope that approximately doubles every 2
years (W bit of addressability per year). The maxicomputers and
the VAX-111780 show reasonable alignment with their respective
classes. The CRAY-1, however, still falls below the maxicomputer
line.

Both Figs. 2 and 3 speculate on the next evolutionary class-
monolithic systems. As semiconductor technology densities in-
crease, the contents of a single semiconductor chip will push out
onto the nondigital system's functions. Monolithic systems will
contain not only the computer and its memory but also inputiout-
put devices such as AID and DIA converters, sensors, actuators,
and other specialized analog circuits. The trend towards monolith-
ic systems has already begun with the integration of AID
converters into monolithic microcomputers (e.g., the Intel 8022).

Evolutionof Computer Structures

As each computer class evolves, it frequently follows the exact
sequence of events found in other computer classes. Part 1, Sec.
2 , and Part 3 delineate the evolutionary stages.

The evolutionary process can also occur for subsystems within a
single computer class. Myer and Sutherland [1968]recognized the
phenomenon for the graphics output function (see Chap. 6).
Figure 4 depicts the "wheel of reincarnation" for inpub'output
controllers. The various positions of the wheel can be summarized
as:

Position 1 	The central processor (P) directly controls the 110
transducer (T) by issuing timed sequences of

Chapter 1 I Computer Classes and Evolution 7

Year

Fig. 3. Computer classes as a function of Dhvsical address snace.

110 Processor with
same instruction
set as P

I10 Processor wi th onlv /

local memory
 d m

I10 processor

mith special-

110 device

with processor
polling

Fig. 4. The wheel of reincarnation for input/output.

Position 2

Position 3

Position 4

Position 5

Position 6

control pulses (example: direct I/O control by a
microcomputer).
A simple controller (K) takes over the generation
of the control pulse sequences upon central
processor command. The central processor must
periodically examine (poll) the controller to see
when it has completed a command. The central
processor and controller operate in parallel, allow-
ing overlap between computations and I/O (exam-
ple: Intel 4004).
Interrupts are added to the simple controller so
that it can signal the central processor upon
completion of a command. The central processor
need not spend time polling the controller (exam-
ple: most contemporary minicomputers and mi-
crocomputers).
Direct memory access (DMA) is added to the
controller, so that the controller can move a block
of data to or from memory without bothering the
central processor. The central processor is inter-
rupted only after the controller has completed the
block move, not after each datum, as in position 3
(example: PDP-11).
An instruction buffer is added to the controller so
that the central processor can set up a sequence of
110 activities. The controller interrupts only after
the entire sequence has been executed.
The controller is enhanced to contain a complete
instruction set, including instructions for program
control, looping, and testing. The central proces-
sor creates an 110 program in memory that the

8 Part 1 Fundamentals1

controller can fetch and execute. The central
processor is interrupted only after the entire
program of IiO events has been completed (exam-
ple: IBM System1360 and System/370 channel
processors).

Position 7 	 The 110 processor has a local memory of its own,
becoming a computer, and forms a network with
the central processor (example: CDC-6600).

Position 8 The I/O processor has a general computer instruc-
tion set and may undergo an evolution of its own
by being assisted by more and more sophistii?ated
controllers (positions 1to 7).

A study of the evolutionary chains outlined as parts of the
computer space in Part 1,Sec. 2, and Part 2 will enable the reader
to recognize the current evolutionary position of a particular
computer system and to predict the next phase. The reader is also
encouraged to identify wheels of reincarnation (evolutionary
chains spiraling around themselves).

Plan of the Book

The book is divided into four parts. The introductory Part 1 is
subdivided into three sections. Section 1presents the hierarchical
nature of computer structures as well as the PMS and ISP
notations. Section 2 provides a cursory description of the space of
computer systems. All computer systems can be viewed as
occupying a space whose dimensions are the system’s important
features. Many features of the actual systems are locked together,
as, for example, the relationship between word size and number
of instructions in the repertoire: no 12-bit machine has 200
instructions, but several with 32 bits have this capacity. The
number of significant variables is much less than the total number
of features of computer systems. Such a space provides a basic
frame in which to choose representative computer systems for
inclusion in the book. Section 3 presents several historically
significant computers illustrating the various computer classes.
These chapters also serve to fimiliarize the reader with the
notations and abstractions presented in Sec. 1.

Section 1 Abstraction and Notation I

Part 2 is a detailed look at eight regions of computer space. Each
section in this part illustrates by examples the taxonomy and
evolution of design dimensions and contains a series of papers
describing computer structures in which these dimensions are
prominent. This format enables the reader to focus on variations
within a single dimension.

Part 3organizes computers into classes. The rationale for classes
and the properties of each class are explored. Examples of the
computer structures allow the reader to observe variations in
computer space dimensions for a set of comparable machines. The
computers in the smaller classes are described down to the
register-transfer level. Larger computers are, by necessity,
abstracted to higher levels in the hierarchy. However, the details
in the smaller classes should provide the reader with enough
experience to extrapolate larger designs through at least the
register-transfer level.

Part 4 focuses on series of computers constrained by a common
ISP so that they can all execute the same code. These families
provide a unique opportunity to study the impact of implementa-
tion variations, since several major computer space dimensions
are held constant within the family. A simple performance model
is used to predict these variations.

A word needs to be said about the “virtual” table of contents.
Many of the computer structures are relevant to more than one
part and section. Physically, each chapter has to be located at one
place in the book. But we have made multiple entries in the Table
of Contents, so that, for instance, Chap. 43, on the CDC 6600,
physically appears in Part 3, Sec. 4, on maxicomputers, but also
forms a significant entry in Part 2, Sec. 3, on concurrency. The
book may be read according to the physical table of contents. If it
is desired to treat a single topic in depth without reading the
entire book, the virtual table of contents should be used as a
guide.

References

Myer and Sutherland [19681.

Chapter 2

Levels and Abstractions

The complexity of computer systems is better understood when
such systems are organized into different levels. Analysis of each
individual level facilitates the orderly understanding of the
system’s functions. Progression from the most primitive level of
the hierarchy to higher levels is accomplished by creating a series
of abstractions. By suppressing unnecessary details, each abstrac-
tion contains only that information relevant at the higher level.
Abstractions provide conceptual paths along which only a small
amount of information passes. Abstractions frequently coincide
with actual boundaries in the physical systems, since abstractions
were initially introduced by the designers as a means of managing
the complexity of the system.

Figure 1 illustrates four levels at which a computer can be
described. Each system (at any level) is characterized by a set of
components and a set of ways to combine those components into
structures. The behavior of the systems i s formally described
according to the behavior of the components and their specific
combinations. Elementary circuit theory is an almost prototypic
example. The components are R’s, L’s, C’s, and voltage sources.
The mode of combination is wiring between the terminals of
components, which corresponds to an identification of current and
voltage at these terminals. The algebraic and differential equa-
tions of circuit theory provide the means whereby the behavior of
a circuit can be computed from the properties of its components
and the way the circuit is constructed.

There is a recursive feature to most system descriptions. A
system, composed of components structured in a given way, may
be considered a component in the construction of yet other
systems. There are, of course, some primitive components whose
properties are not explicable as the resultant of a system of the
same type. For example, a resistor is not to be explained by a
subcircuit but is taken as a primitive. Sometimes there are no
absolute primitives, it being a matter of convention what basis is
taken. For example, one can build logic design systems from many
different sets of primitive logic operations (AND, NOT, NAND,
OR, NOT, etc.).

Each system level, as we have used the term in Fig. 1, is
characterized by a distinct language for representing the system
(i.e., the components, modes of combination, and laws of
behavior). These distinct languages reflect special properties of
the types of components and of the way they combine. Otherwise,
there would be no point in adopting a special representation.
Nevertheless, these levels exist in the system analyst’s way of
describing the same physical system. The fact that the languages
are highly distinct makes it possible to be confident about the

Structures: 	 Networks. multiple processor
iyrtemr. computers

Components. Procerrors,memories, switche$.
controllers, transducers. data

PMS level operators. links

Program itgh level APPlication structurer 	 Statistical Package for the

level anguage sublevel systems 	 Social Sciences (SPSS),partial
d8lferential equation solver.
povver system simulatw, airline
reiervatm system

Components: 	 Mathematical library routines.
formatting routines

Application Structures: Mathematical functions,
routines plotting packages

Components. 	 Subroutines,memory
allocation

Run time system Structures: 	 Memory allocation. input1
output, file system

Componentr. Operating system calls

Operating system Structures: 	 Schedulers. allocators.
Communication

Components: Subroutines. coroutlnes,
programs

Structures: Instruction sets
ublevel

Components’ 	 Memory state. processor state,
effectwe address calcularion,
tnstruction decode, lnstructlon
executton

~

Structures 	 Microprograms, mvwxoutines

Control Components Microsequencer. Micrortore

R&ister Hardwired Structures Sequencer
trander

Logic derlgn sublevel Components 	 Sequential niachlneslevel

StruCturer: Atrlhmetic unrts, regllter f,les

Components 	 Regirterr. data operators

Sequential structures: cwnterr. functional
generators, regtsterr

Switching
Cl,C“lt Components Flip-flops, latches. delays

Combinational Structures: 	 Encoderr. decoders.
data operators

Componentr: Gates

Clrcult Structures Amplilierr,delayr.

level clock$.gates

Componentr: 	 Tranristorr. relays.
reststors. capaaton

Fig. 1. Levels in the digital system hierarchy.

existence of different system levels. Where we are fuzzy, as in the
existence of an additional intermediate level, it is because new
representations have not yet congealed into distinct formal
languages. As we noted, within each level there exists a whole
hierarchy of systems and subsystems. However, as long as these
are all described in the same language, e.g., a subroutine
hierarchy, all given in machine-assembly language, they do not
constitute separate system levels.

With this general view, let us work through the levels of
computer systems, starting at the bottom. Each level in Fig. 1
actually has two languages or representations associated with it: an
algebraic one and a graphical one. These are isomorphic to each

10 Part 1 FundamentalsI

other, the same entities, properties, and relations being given in
both.

The lowest level in Fig. 1 is the circuit level. Here the
components are R’s, L‘s, C’s, voltage sources, and nonlinear
devices. The behavior of the system is measured in terms of
voltage, current, and magnetic flux. These are continuously
varying quantities associated with various components, and so
there is continuous behavior through time. The components have
a discrete number of terminals, whereby they can be connected to
other components. Figure 2 shows both an algebraic and a
graphical description of an inverter circuit, as well as an algebraic
and a graphical description of its behavior. We note that its
structure is specified first as a circuit (a directed graph), with
symbols for the arcs and nodes. The particular circuit still is an
abstraction because the transistor Q1, the resistor R, and the stray
capacitances C, are given only token values. The structure can be
described symbolically by first writing the relationship describing
each of the components (Ohm’s law, Faraday’s law, etc.) and then
the equation which describes the interconnection of the compo-
nents (i.e., Kirchoff s laws). We observe the behavior of the circuit
(probably using an oscilloscope) by applying an input el(t) and
observing an output e,(t).Alternatively, if we solve the equations
which specify the structure, we obtain expressions which describe
the behavior explicitly.

The circuit level is not in fact the lowest level that might be
used in describing a computer system. The devices themselves
require a different langauge, either that of electromagnetic theory
or that of quantum mechanics (for the solid-state devices). It is
usually an exercise in a course on Maxwell’s equations to show that
circuit theory can be derived as a specialization under appropri-

&+&- is= 0 ~t t’=O$ e, = o for
3-volt step, input
(e, (t’I=-15(t -e-f’Rcs
where eo b- 3.0 volts1

Fig. 2. Electronic-circuit level: inverter circuit.

Section 1 Abstraction and Notation 1

ately restricted boundary conditions. Actually, even at its level of
abstraction, circuit theory is not quite adequate to describe
computer technology, since there are a number of mechanical
devices which must be represented. Magnetic tapes and disks are
most likely to come to mind first, but card readers, card punches,
line printers, and terminals are other examples. These devices
obey laws of motion and are analyzed in units of mass, length, and
time.

The next level is the logic leuel. It is unique to digital
technology, whereas the circuit level (and below) is what digital
technology shares with the rest of electrical engineering. The
behavior of a system is now described by discrete variables which
take on only two values, called 0 and 1(or + and -, true and false,
high and low). The components perform logic functions: AND,
OR, NOT, NAND, etc. Systems are constructed in the same way
as at the circuit level, by connecting the terminals of components,
which thereby identify their behavioral values. The laws of
boolean algebra are used to compute the behavior of a system
from the behavior and properties of its components.

The previous paragraph described combinational circuits whose
outputs are directly related to the inputs at any instant of time. If
the circuit has the ability to hold values over time (store
information), we get sequential circuits. The problem that the
combinational-level analysis solves is the production of a set of
outputs at time t as a function of a number of inputs at the same
time t. As described in textbooks, the analysis abstracts from any
transport delays between input and output; however, in engineer-
ing practice the analysis of delays is usually considered to be still
part of the combinational level. In Fig. 3 we show a combinational
network formed from combinational elements which realize three
boolean output expressions, 01, 0 2 , and 0 3 , as a function of the
input boolean variables A and B . Note that in the symbolic
representation of the structure we can write an expression that
reflects the structure of the combinational network, but, on
reduction, the boolean equations no longer reflect the actual
structure of the combinational circuit but become a model to
predict its behavior.

The representation of a sequential switching circuit is basically
the same as that of a combinational switching circuit, although one
needs to add memory components, such as a delay element (which
produces as output at time t the input at time t - 7).Thus the
equations that specify structure must be difference equations
involving time. Again, there is a distinction (even in representa-
tion) between synchronous circuits and asynchronous circuits,
namely, whether behavior can be represented by a sequence of
values at integral time points (t = 1, 2, 3, . . .) or must deal in
continuous time. But this is a minor variation. Figure 4 givts a
sequential logic circuit in both an algebraic and a graphical form
and shows also the representation of the behavior of the system.

Now it is clear that logic circuits are simply a subspecies of
general circuits. Indeed, to design the logic components one

, ,

Structure Behavior

a
e

Woz
O3 b--- Time, t

or. olternatively,

Fig. 3. Combinational-switching-circuit sublevel of the logic level:
realization of three logic expressions.

Sum fl 0 0 0 I 1 1 1 I I 0
Time.f

X r , X inputs

Sum (output) toble

1 1 0 1 0

Fig. 4. Sequential-switching-circuitsublevel of the logic level: of
x + 1 from serial input string x.

Chapter 2 1 Levels and Abstractions 11

constructs circuit-level descriptions of them. For instance, Fig. 5
shows a circuit for a NAND (or NOR) gate plus a table of its
behavior. It is evident that its behavior corresponds to that of the
NAND gate only if certain restrictions hold; namely, that one does
not look at the voltage (which is identified as the behavior variable
in the logic circuit) during certain periods when it is transient
("settling down," to use the common phrase). Thus the logic level
is an instance of the circuit level only in the same sense that the
circuit level is an instance of Maxwell's equations-as a limiting
case in which certain features are deliberately ignored.

One buys a great deal from the specialization to logic circuits,
since one can compute the behavior of circuits at the logic level
that are extremely complex at the circuit level. The techniques for
doing so use an entirely different mathematical apparatus. In
general, we cross into another level when the representation at
the previous level provides information that is no longer relevant.
A lower level is concerned with explaining the behavior of a
certain structure, whereas the next higher level takes the lower
level as given (a primitive). The higher level is concerned not
about internal behavior but only how primitives are combined.

A glance at Fig. 1shows that we have described only the lower

c

Inputs Table of NOR Inputs - Table of NAND
behovior behavior:wt istPutInputs Output Inputs I Output

-3-L0

NOR logic element O
O 0 NAND logic element 0 0

O

(Structure) 0 ' (Structure) 0

0 0 1 1
0 1 0 07

1 0 11 1 0 ~11
1: /

1 1 1 0

(Behc or) / (Behoviorl

level -15volts Table of circuit

behavior

-3 VOIt 5

-15volts

Output

0-3 0
Inputs 0 -3 -3

-3 0 0
-3 0 -3 -3
-3 -3 0 -31

Node -3 -3 -3 0

Multiple input inverter circuit

(Structure) (Behavior)

Fig. 5. Change of representationat the circuit level combinational-
switching sublevel boundary.

12 Part 1 Fundamentals1

part of the logic level. There is another part, called the register-
transfer level (or RT level). The components of an RT system are
registers and functional transfers between registers. A register is a
device that holds a set of bits.’ The behavior of the system is given
by the time course of values of these registers, i.e.,their bit sets.

The system undergoes discrete operations, whereby the values
of various registers are combined according to some rule and then
are stored in another register (thus transferred). The law of
combination may be almost anything, from the simple unmodified
transfer (A = B) to logic combination (A = B A C) to arithmetic
(A = B + C). Thus a specification of the behavior, equivalent to
the boolean equations of sequential circuits or the differential
equations of the circuit level, is a set of expressions (often
called productions) which give the conditions under which such
transfers will be made. In Fig. 6 we give a picture of an RT system
to compute the sum of integers. The figure includes the specifica-
tion of its behavior and a table that shows the resulting behavior
over time. Here the graphical structure of the system includes
registers (N , I, S) , transfers (S = S + I), data operators (S + I,
I >N,etc.). The flowchart shows the behavior of the control with
time.

Register-transfer level systems are usually visualized as having
two components: data and control. The data part is composed of
registers, operators, and data paths. The control part provides the
time sequence of signals that evoke activities in the data part.
Control parts were initially implemented as hardwired state
machines (see Chap. 8 for an example). However, the advent of
low-cost read-only memories (ROMs) has made micropro-
gramming the prevalent technique for implementing control
sequencers. Figure 7 depicts a typical microprogrammed se-
quencer. The microprogram sequencer has many of the same
properties found in the next higher level, the program level.
Microinstructions, contained in the microstore, go through an
interpretation cycle: the microinstmction is fetched, the next
microaddress calculated, the microinstruction decoded, and
signals generated to evoke data-path operations I

There is another representation used at the logic level, the
state-system representation. The state system is the most general
representation of a discrete system available.’ A system is
represented as capable of being in one of n abstract states at any
instant of time. (For digital systems, n is finite or enumerable.) Its
behavior is specified by a transition function that takes as
arguments the current state and the current input and determines

’This assumes that the elementary state variable of the system holds a bit
(i.e., one of two values, such as 0 or 1).This need not be; sometimes the
elementary variable holds a decimal digit (one of 10 values) or a character
(one of, say, 48 values). For present purposes we can talk in terms of bits
without losing anything thereby.
*Therehave been energetic attempts to apply the state-system approach to
control systems of a more general nature [Zadeh and Desoer, 19631,
although they do not concern us here.

Section 1 Abstraction and NotationI

Structure Behavior

I-TI 4 network3, L . I

1 s=o; S (o:K-~> registerS=StI
t

commands -(S=O;.--S=S +I;network3 1
1 StI network3(odder) I

t L

5’ r 2 I S
0 O Q Q
1 O @ Q
0 1 0 0
0 1 4 0
0 1 2 1
0 1 3 3
0 1 4 6
0 1 Nt1 A 5
0 0 Nt1 A
0 0 N+1 A

.-V

E t A start n -run=(S=O; I=o; stort=O; run.=l);

a f A r u n = ((I S N) = (I = Z t 1; S=S + I);
L (I > N) = (r u n = O)) ;
(0

1 s is abbreviation for start

2 r I S abbreviation far run

3 combinational network

clock event time, t

5 A = $ X (N + O

Fig. 6. Register-transfersublevel of the logic level: computationof
the sum of integers.

the next state (and the concomitant output). A digital computer is,
in principle, representable as a state system, but the number of
states is far too large to make it useful to do so. Instead, the state
system becomes a useful representation in dealing with various
subparts of the total machine, such as the sequential circuit that
controls a magnetic tape. Here the number of states is small
enough to be tractable.

In Fig. 8 we give the common representations of the state
system. Coincidently, we use the representations of Fig. 8 for the
sequential switching circuit of Fig. 4.That is, Fig. 8 may be
viewed as an abstraction of the physical system in Fig. 4.To the
logic designer the state system is a useful abstraction of a logic
design. A design usually passes through the following problem
representations:

1 The problem exists in a natural langauge.

..

Chapter 2 I Levelsand Abstractions 13

Microaddress
register Microstore-
4 Read-only memory

(ROMI -
.c

Microinstruction register

I
I 	 I .I,

Data
microaddress path

control

Fig. 7. A typical microprogrammed sequencer.

2 	 The problem is converted to a state diagram (output as a
fknction of state, and input).

3 	 The state diagram is represented as a state table and output
table.

4 	States are assigned (physical memory elements are used).

Structure 	 Behavior

0

za
(30

C Present XcXinputs:

state 00 101119

N 0 1 1 1 4 ,

c I (O (Q

Fig. 8. State-system representation of the logic level: computation
of x + 1 from serial input string x.

5 	 The excitation table and output tables are formed.
6 	 The excitation and output logic equations are written

(constrained by the actual logic elements).
7 	 The sequential circuit is drawn.

Let us go to the next higher level, the program level This not
only is a unique level of description for digital technology (as was
the logic level) but is uniquely associated with computers, namely,
with those digital devices that have a central component that
interprets a programming language. There are many uses of
digital technology, especially in instrumentation and digital
controls, that do not require such an interpretation device and
hence have a logic level but no program level.

The components of the program level are a set of memories and
a set of operations. The memories hold data structures, which
represent things both inside and outside the memory, e.g.,
numbers, payrolls, molecules, and other data structures. The
operations take various data structures as inputs and produce new
data structures, which again reside in memories. Thus the
behavior of the system is the time pattern of data structures held
in its memories. The unique feature of the program level is the
representation it provides for combining components, that is, for
specifying what operations are to be executed on what data
structures. This is the program, which consists of a sequence of
instructions. Each instruction specifies that a given operation (or
operations) be executed on specified data structures. Superim-
posed on this is a control structure that specifies which instruction
is to be interpreted next. Normally this is done in the order in
which the instructions are given, with jumps out of sequence
specified by branch instructions. Again, Fig. 9 shows a simple
program, the data structures, and the behavior.

Two things separate the logic level from the program level.
First, computer systems at the logic level are parallel devices,
with all components active at the same time. At the program
level, computers are represented essentially as serial devices,
executing one instruction after another. Second, the program
level is essentially linguistic in nature; the logic level is not. At the
program level things can be named, abbreviations used, decisions
made, instructions interpreted-all concepts that are absent from
physical systems. Ofcourse, they are not really absent, since afull
description of the operation of a program is possible at the logic
level. This is done by applying the set of physical behaviors that
makes computers show the appropriate linguistic behavior at the
program level. Thus, instead of the instruction “go to ALPHA if
register zero is negative,” there is a logic circuit that transfers the
contents of the address field of the instruction register to the
program counter, .ANDing that transfer with the sign of register
zero so that it takes place only if‘ the register is negative. This
example reveals the distinct system boundary between the
register-transfer level and the program level. The gap between

14 Part 1 Fundamentals 	 Section 1 Abstraction and Notation 1 	 I

Structure
I S ta r t

1 s = o,/ = 0, 1

I [-I

PDP-8 symbolic machine language program

LOC. Oper. Action Comments
Start cla clear AC

dca S S = 0; deposit AC in M,cleor AC
d c a I I = O ;

Loop tod S twos complement add
t o d I)S=S+I;-b dca S3
n

+ 11-N; negate AC(in twos complement1
v t a d I
0 sma cIa I = N ? skip if-AC,clear AC

2 Stop h l t hal t

* isz I I = I+!; index (byl),skip If0
E
2. jmp loop jump
v)

s - sum =O,O +1,..., O+l+.. .+N
I - integers 0.1 ,....,N
N N value of N where:

o<s<2'1

ALGOL program
Start 	S = 0;

f z r I = O ; s t e p l u r n N S S = S + I ;

Fig. 9. Programminglevel: computation of the sum of integers.

these levels is also revealed in the ability of programmers to
become expert without knowing anything about representations
below the programming level.

The program level constitutes an entire technology in its own
right, carrying within it most of the characteristics of computer
systems. The ISP (instruction-set processor) sublevel specifies the
machine's instruction interpretation cycle: instruction fetch,
instruction decode, program counter update, operand address
calculation, operand fetch, and instruction execution.

The ISP description system is meant to provide a uniform way
of describing instruction sets, i.e., of giving the information
contained in a programming manual. I t must provide the instruc-
tion format, the registers referenced by the instructions, the rules
of interpretation of the instructions, and the semantics of each
instruction in the processor's repertoire. It must be able to do this
for any existing computer and for any anticipated future computer.
(See Chap. 4 for a discussion of the ISP notation.)

Behavior
I

Time, t

Time/l 5 p s 	 Progrom AC I S

counter

0 stort 0 @ @

1 s t a r t + l 0 @ @

3 stort + 2 0 @ 0

5 loop 0 0 0

7 loop+? 0 0 0

9 lOOP+2 0 0 0

1 1 loop+3 0 0 0

13 loop+4 N 0 0

1 4 h p + 5 -N 0 0

16 loop t 6 -N 0 0

17 l00p+8 0 0 0

19 l00p+9 0 1 0

20 loop. 0 1 0
.

15x(N+1)+1 lOOp+6 -NtN N 1+2+ ...+ N
15X(N+11+2 stop 0 N 1+2+...+N
15X(N+11+3 s top+(0 N 1+2+ ...+N

(halted I

A number of sophisticated language levels are built upon the
ISP sublevel. Operating systems manage system resources (e.g.,
memory space, CPU time) and provide commonly used functions
for use at higher levels. The high-level-language run-time system
provides an interface between potentially different operating
systems and a high-level language (e.g., FORTRAN, COBOL,
ALGOL, or PASCAL). More complex functions, such as a
mathematical library, can be performed by routines invoked by
user programs. FinaIly, application systems provide a totally
integrated environment where the user need interact only by
entering data and reading results. Examples of these integrated
environments (e.g., hand-held calculators, personal computers,
and video games) are proliferating as computing technology is
packaged for less sophisticated users.

We now move to the fourth and last level. In Fig. 1it is called
the processor-memory-switch level, or PhlS level for short. It is
the view one takes of a computer system when one considers only

Chapter 2 1 Levels and Abstractions 15

its most aggregate behavior. It then consists of central processors,
core memories, tapes, disks, input/output processors, communi-
cation lines, printers, tape controllers, buses, Teletypes, graphics
terminals, etc. The system is viewed as processing a medium-
information-which can be measured in bits (or digits, characters,
words, or the like). Thus the components have capacities and flow
rates as their operating characteristics. All details of the program
are suppressed, although many gross distinctions of encoding and
information type remain, depending on the analysis. Thus one
may distinguish program from data, or file space from resident
monitor. One may remain concerned with the fact that input data
are in alphameric and must be converted into binary, or are
bit-serial and must be converted to bit-parallel.

We might characterize this level as the “chemical engineering
view of a digital computer,” which likens it more to a continuous-
process petroleum-distilling plant than to a place where complex
FORTRAN programs are applied to matrices of data. Indeed, this
system level is more nearly an abstraction from the logic level
than from the program level, since it returns to a simultaneously

Mp[aO:7; core;

32768 words1

T[consoleI

operating flow system. Figure 10 illustrates a PMS diagram for a
dual-processor UNIVAC 1108.

The PMS descriptive system is meant to provide a notation for
the top level of computer systems. Figure 10 is given in this
notation. On the surface it is largely self-explanatory, given the
mnemonics of P for processor, M for memory, S for switch, T for
transducer (hence also terminal), and K for control (since C is for
computer). There is also L for link, but in most computer
structures it is unnecessary to distinguish a separate link compo-
nent, except to show connectivity. (It does become appropriate if
communication delays exist.)

There is an issue about whether this small set of components is
an appropriate set of primitives, but the issue is not of major
proportions. The real issues in the development of the notation
come from the stress of two opposite forces. On the one hand, one
wants extremely compact notations for expressing computer
systems. The systems are large in any event, and if there is much
extra notational freight in the way of fixed formats or forced
writing of what is already known and assumed, then the notation

-

Kio[F1: 161

Notes

MP primary memory

Ms secondary memory

Pc central processor

T terminal

L link

S switch

K control

Kio control for I/O equipment

Fig. 10. PMS level: UNIVAC 1108.

-S K T[line printer]

SK Tlcards]

T[cards, line printer,
paper tape1

Ms[moving head drum]

Msrmagnetic tapel

T[telephonel

16 Part 1 Fundamentals1

will be neither useful nor used. On the other hand, there is a
tremendous variety and quantity of information that potentially
must be capable of being written into a description: word size,
capacity, flow, operation rate, data-types, variations of operation
rate for different classes of instructions, parity checking, technolo-
gy, and on and on. Thus one needs a notation that responds to
both these demands-and without being hopelessly complex and
difficult to learn. Our attempt at a solution involves a basically
simple language with comprehensive (and we think natural) ways
of systematic abbreviation and abstraction. The PMS notation will
be discussed in Chap. 3.

One advantage to viewing a computer system as a hierarchy of
levels is that standard interfaces can be established. If the
information flow across the interface is carefully specified, then
interchangeable systems can be built on both sides of the
interface. One classical standardized interface has been the ISP
IeveI. With the machine language precisely defined, hardware
implementors have been able to produce machines with a
marketable price and performance range while assuring program
implementors that their software would execute correctly on any
hardware implementation without modification. Thus the soft-
ware effort can be limited to producing one system. The ISP-level
interface also allows hardware designers to incorporate the
instruction set in newer, more cost-effective technology without
invalidating existing software.

In their paper announcing the IBM Systemi36O computer,
Amdahl, Blaauw, and Brooks [19641 identified three interfaces:
architecture, implementation, and realization. They defined
computer architecture as the attributes of a computer as seen by a
machine language programmer. This definition includes the
instruction set, instruction format, operation codes, addressing
modes, and all registers and memory locations that may be
directly manipulated or tested by a machine language program.
Implementation is defined as the actual hardware structure, logic
design, and data-path organization. Realization encompasses the
logic technologies, packaging, and interconnection.

The terms architecture (when used to connote function),
implementation, and realization can also be used at the program

Section 1 Abstraction and Notation I

level in Fig. 1. Several standard architectures (interfices) may
be enforced at one time. Typical examples include the ISP,
operating-system, high-level-language, and application-system
levels. As hardware becomes less expensive, it is used to provide
more functions. A prime example is the migration of operating-
system primitjves from software into microcode. Eliminating
standard interfaces and bypassing levels of abstraction usually
leads to improved system performance by eliminating the inter-
vening levels of interpretation of information. (A decrease in
performance may result if the higher-level functionality does not
match its application. In such a case, the user has to generate
lower-level primitives by applying more costly, functionally
complex primitives. Consequently, incorporating new functions
into hardware is carefully evaluated and adopted only after a
standardized software interface has become stabilized through
exposure to many diverse application environments.)

The concepts of hierarchical levels and levels of abstraction will
appear repeatedly throughout the book. Chapter 8 illustrates
these levels with respect to a simple computer, the PDP-8.
Several systems are described at the register-transfer level (e.g.,
in Part 2, Sec. 1,on microprogrammed processors; Chaps. 18 and
19, on parallelism in the IBM System/360 Model 91; Chap. 33, on
the Alto; Chap. 34,on the TMS1000; Chap. 35, on the PIC1650;
Chap. 38, on the PDP-11; and Chaps. 48 and 49, on the evolution
of HP calculators) in order to give the reader a firm understanding
of design at this level. Because of a lack of space, more complex
systems cannot be described in as much detail. The ISP and PMS
levels are extensively used for these other systems. It is hoped
that with the background gained from the register-transfer-level
designs the reader can extrapolate such designs for these more
complex systems.

References

Amdahl, Blaauw, and Brooks [1964].

Chapter 3

PMS Notation
At the PMS level, a system is described as an interconnected set
of components, or individual devices, associated with a set of
operations that work on a medium of information measured in bits
(or some other base). Such a description is complicated by the
amount of detail involved. It takes a whole manual, for instance, to
describe the operations of a major computer, such as the IBM
Systemi370. Thus the descriptive system must permit very
compressed descriptions. It must also permit description of only
those aspects of the components that are of interest, ignoring the
rest. And what is of interest at the PMS level? Besides a
description of the gross structure of a computer system, it is
primarily the analysis of the amounts of information held in
various components, the flows of information between compo-
nents, and the distribution of the control that accomplishes these
flows.

Thus a PMS-level description is analogous to the chemical
engineer’s diagram of a refinery in which the interest is in various
kinds of liquid and gas flow. The engineer has to account for
matter and energy loss with the system at various stages involving
the transduction of materials from one form to another. A specific
chemical plant’s external performance is measured in terms of its
production flow rate for a given cost. With computers, external
performance is concerned with the economical accomplishment of
discrete tasks, but at the PMS level this translates into operation
rates and cost of operations.

For the PMS level we ignore all the fine structure of informa-
tion processing and consider a system consisting of components
that work on a homogeneous medium called infomation. Infor-
mation comes in packets, called “i-units” (for i n f o m t i o n units),
and is measured in bits (or equivalent units, such as characters).
I-units have the sort of hierarchical structure indicated by the
statement, A record consists of 300 words; a word consists of
4bytes; a byte consists of 8 bits. A record, then, contains 300 x
4 x 8 = 9,600 bits. Each of these numbers-300, 4, 8-is
called a length, since one often thinks of an i-unit as a spatial
sequence of the next lower i-units of which it is composed. For
example, one speaks of “word length,” and of a record as “300
words long. ”

Other than being decomposable into a hierarchy of factors,
i-units have no other structure at the PMS level. They do have a
referent, i.e., a meaning. Thus it is possible to say of an i-unit that
it refers to an employer‘s payroll, to the pressure of a boiler, or to
a prime number satisfying certain conditions. To do so, of course,
the i-units encode the information necessary to make the refer-

ence. At the PMS level we are not concerned with what is
referred to, but only with the fact that certain components
transform i-units but do not modify their meaning. In fact, these
meaning-preserving operations are the most basic information-
processing operations of all, and they provide the basic classifica-
tion of computer components.

PMS Primitives

In PMS there are seven basic component types, each distin-
guished by the kinds of operations it performs:

Memory, M . A component that holds or stores information
(i.e., i-units) over time. Its operations are reading i-units out of
the memory and writing i-units into the memory. Each
memory that holds more than a single i-unit has associated with
it an addressing system by means of which particular i-units can
be designated or selected. A memory can also be considered as
a switch to a number of submemories. The i-units are not
changed in any way by being stored in a memory.

Link, L. A component that transfers information (i.e., i-units)
from one place to another in a computer system. It has fixed
ports. The operation is that of transmitting an i-unit (or a
sequence of them) from the component at one port to the
component at the other. Again, except for the change in spatial
position, there is no change of any sort in the i-units.

Control, K A component that evokes the Operations of other
components in the system. All other components are taken to
consist of a set of discrete operations, each of which, when
evoked, accomplishes some discrete transformation of state.
With the exception of a processor, P, all other components are
essentially passive and require some other active agent (a K) to
set them into small episodes of activity.

Switch, S . A component that constructs a link between other
components. Each switch has associated with it a set of possible
links, and its operations consist of setting some of these links
and breaking others.
Transducer, T. A component that changes the i-unit used to
encode a given meaning (i.e., a given referent). The change
may involve the medium used to encode the basic bits (e.g.,
voltage levels to magnetic flux, or voltage levels to holes in a
paper card), or it may involve the structure of the i-unit (e.g.,
bit-serial to bit-parallel). Note that T’s are meaning-preserving
but not necessarily information-preserving (in number of bits),
since the encodings of the (invariant) meaning need not be
equally optimal.

Data-operation, D. A component that produces i-units with
new meanings. It is this component that accomplishes all the
data-operations, e. g., arithmetic, logic, and shifting.

17

18 Part 1 1 Fundamentals

Processor, P. A component that is capable of interpreting a
program in order to execute a sequence of operations. It
consists of a set of operations of the types already
mentioned-M, L, K, S, T, and D-plus the control necessary
to obtain instructions from a memory and interpret them as
operations to be carried out.

Computer Model (in PMS)

Components of the seven types can be connected to make
stored-program digital computers, abbreviated by C. For in-
stance, the classical configuration for a computer is

Here Pc indicates a central processor and Mp a primary memory,
namely, one which is directly accessible from a P and holds the
program for it. T is a transducer connected to the external
environment, represented by X. (The colon-equals (:=) indicates
that C is the name ofwhat follows to the right.)Thus a computer is
a central processor connected to its primary memory on the one
hand and to a transducer on the other, which is what an
inputloutput device is.

Actually the classic diagram had four components, since it
decomposed the Pc into a control (K) and an arithmetic unit or
data-operation (D):

where the solid information-carrying lines are for instructions and
their data and the dotted lines signify control.

Often logic operations were lumped with control, instead of

‘The vertical bar expresses mutually exclusive alternatives. Here, a T or
M s exists at the periphery.

Section 1 1 Abstraction and Notation

with data operations, but this no longer seems to be the
appropriate way to decompose the system functionally.

If we associate local control of each Component with the
appropriate component, we get

[processor

I

MM[processorstate]state]

I
I
I

Kmemory ------ Kprocessor - - - - - - - Ktransducerr-t-r-1
where the solid lines carry the information in which we are
interested and the dotted lines carry information about when to
evoke operations on the respective components. The solid
information-carrying lines between K and Mp are instructions.
Now, suppressing the K’s, then lumping the processor state
memory, the data operators, and the control of the data-
operations to form a central processor, we again get

Computer systems can be described in PMS at varying levels of
detail. For instance, in the diagrams above we did not write in the
links (L’s) as separate components. These would be of interest
only if the delays in transmission were significant to the discussion
at hand or if the i-units transmitted by the L were different from
those available at its terminals. Since this is not usually the case in
current computers, one indicates simply that two components
(e.g.; an Mp and a Pc) are connected together. Similarly, often the
encoding of information into i-units is unimportant; then there is
no reason to show the T’s. The same statement holds for K’s.
Sometimes one wants to show the locus of control, say when there
is one control for many components, as in a tape controller, but
often this is not of interest. Then there is no reason to show K’s in
a PMS diagram.

As a somewhat different case, D’s never occur in PMS diagrams
of computers, since in the present design technology D’s occur
only as subcomponents of P’s. If we were to make PMS-type
diagrams of analog computers, D’s would show extensively
as multipliers, summers, integrators, etc. There would
be few memories and variable switches. The rather large
patchboard would be represented as a very elaborate, manually
fixed switch.

Components are often decomposable into arvangements of
other components. Thus, most memories are composed of a

Chapter 3 1 PYS Notation 19

switch-the addressing switch-and a number of submemories.
Thus a memory is recursively defined. The decomposition stops
with the unit memory, which is one that stores only a single i-unit
and hence requires no addressing. Likewise, a switch is often
composed of a cascade of 1-way to n-way switches. For example,
the switch that addresses a word on a multiple-headed disk might
look like

\

The first S[random] selects a specific Ms.disk,drive.unit; the
second S[random] is a switch with random addressing that selects
the head (hence the platter and side); $linear] is a switch with
linear accessing that selects the track; and S[cyclic] is a switch with
cyclic addressing that finally selects the M[word] along the
circular track. Note that the switches are realized by differing
technologies. The first two S[random]s are generally electronic
(AND-OR gates) with selection times of 10 - 100 ps, or perhaps
electromechanical (relays). The $linear] is the electromechan-
ical action of a stepping motor or a pneumatic-driven,
servomechanism-controlled arm that holds the read/write heads;
the selection time for a new track is 20 - 500 ms. Finally, the
S[cyclic] is determined by the rotation time of the disk and
requires from 16 - 60 ms, depending on the speed (3,600 - 1,000
r/min).

We can write such decompositions of a component into
subcomponents either when we actually know the structure of the
component or even when we know only the behavior. For
example, we could write a memory as random access (M.random)
even if it was, in fact, cyclic, as long as its behavior as far as the
larger system was concerned took no account of its cyclic
character, accepting the average access time as the random-access
time.

When people speak of the control element of a computer, they
often refer mainly to the processors-not to the control of a disk or
magnetic tape, which, however, can often be more complex.
When we suppress detail, the control often disappears from a
PMS diagram. Similarly, when we agglomerate primitive compo-
nents (as we did above when combining Mp and Kmemory to be
just Mp) into the physically distinct subparts of a computer
system, a separate control, K, often occurs. The functionally and
physically separate control’ has evolved. These controls, often as
big as a Pc, can be computers with stored control programs. When
we decompose a compound control, we find data-operations (D)
for calculating addresses or for error-detection and error-

‘A variety of names for K’s are used: controller: adapter, channel, buffer,
interface, etc.

correction data; transducers (T) for changing logic signal levels and
information flow widths; memory (M) as it is used in D, T, K, and
for buffering; and finally a large control (K) which coordinates the
activities of all the other primitives.

It should be clear from the above discussion that components
are named according to the function they perform and that they
can be composed of many different types of components. Thus, a
control (K) may have memory (M) as a subcomponent, and a
memory (M) may have a transducer (T) as well as a switch (S) as
subcomponents. All these subcomponents exist to accomplish the
total function of the component and do not make the component
also some other type. For instance, the M that does a transduction
(T)from voltages on its input wires to magnetism in its cores and a
second transduction from magnetism to voltages on its output
wires does not thereby become a transducer as far as the total
system functioning is concerned. To the rest of the system all the
M can do is to remember i-units, accepting and delivering them in
the same form (voltages).

PMS Notation

In the above discussions we used various notations to designate
additional specifications for a component, Mp for a functional
classification and S[cyclic] for a type of access function. There are
many additional specifications one wants to give-so many that it
makes no sense to enumerate them all in advance. A fixed position
notation, such as standard function notation, F[r, y, z], where the
first, second, and third argument places have fixed interpretation,
is not suitable. Instead we agree on a single general way of
providing additional specifications. If X is a component, we can
write

X[al:vl;az:vz; . . .]

to indicate that X is further specified by attribute al having value
v1, attribute az having value vz, etc. Each parameter (aswe call the
pair a:v) is well defined independently of whatever other parame-
ters are given; hence there is no significance to the order in which
they are written or the number which have to be written.

According to this notation we should have written M[func-
tion:primary] or S[access-function:random] rather than Mp or
.$[random]. This shows immediately the price paid for the general
convention: it requires an excessive amount of writing (which
would be even more apparent if a large number of parame-
ters were given), and the extra information seems to be redun-
dant in some cases. We compensate for these disadvantages
by several conventions for abbreviating and abstracting pa-
rameters. Let us illustrate them by showing some alternative
ways of writing Mp:

- -

20 Part 1 Fundamentals~

M [function: primary] Complete specification.
M[primary] Drop the attribute “function,” since it

can be inferred from the value.
M.primary Use the value outside the brackets,

concatenated with a dot.
M.P 	 Use an explicitly given abbreviation,

namely, primary\p (only if it is not
ambiguous).

MP 	 Drop the concatenation marker (the
dot) if it is not needed to recover the
two parts (all components are given by a
single capital letter-here M).

Each of these rules corresponds to a natural tendency to abbre-
viate when redundant information is given; each has as its
condition that recovery must be possible.

A PMS Example Using the DEC PDP-8

Let us now describe the PMS structure of an actual, though small,
general-purpose computer, the DEC LINC-8, which is a PDP-8
with a LINC processor. Figure 1gives the detailed PMS diagram.
In explaining it, we will concentrate on making the notation clear
rather than on discussing substantive features of the system
(which are described in Chap. 8).A simplified PMS diagram of the
system shows its essential structure:

T.console1 	 I

I

-
P display ---

Pc [‘LINC] Ms
1

This shows the basic Mp-Pc-T-X structure of a C with the addition
of a secondary memory (Ms) and two processors, one of which,
Pc[’LINC], has its own Ms. Two switches are used: the l /O Bus,
which permits access to all the devices, and the Data Break to
Mp via Pc, for high-data-rate devices. There are many other
switches in the actual system, as one can see from Fig. 1; for
example, Mp is really one to eight separate modules connected
by a switch S to Pc. Also there are many T’s connected to the
inputloutput switch, So , which we collapsed as a single T, and
similarly for S [’ Data Break].

Consider the Mp module. The specifications assert that it is

Section 1 I Abstraction and Notation

made with core technology, that its size is 4,096 words; that its
operation time is 1.5 IJ.S and that its word size is 13 bits (12 data
bits plus one other with a different function). We could have
written the same information as

M[function:primary; techno1ogy:core; operation-time; 1.5 ks;
size: 4096 w; word: (12 + I) b]

In Fig. 1we wrote only the values, suppressing the attributes,
since moderate familiarity with memories permits an immediate
inference about what attributes are involved. For example, it is
common knowledge that computer memories store information in
words; therefore 4,096 w must be the number of words in the
memory. As another example, we did not specify the function of
the additional bit in the word when we wrote (1.2 + 1)b. An
informed reader will assume this to be a parity bit, since this is the
common reason for having an extra bit in a word. If the extra bit
had some unusual function, we would have needed to define it.
That is, in the absence of additional information, the most
common interpretation is to be assumed.

In fact, we could have been even more cryptic and still
communicated with most readers:

M.core[l.5 pis; 4 Kw; 12 b]

This corresponds to the phrase, “a 12-bit, 1.5-ps, 4K core store,”
which is intelligible to any computer engineer. The 4 Kw stands
for 4 x 1,024 = 4,096, which again is known to computer
engineers; however, if someone less informed took it to be 4 x
1,000 = 4,000, no real harm would be done.

Consider the magnetic tapes for Pc. Since there are eight
possible tapes that make use of the same controller K through a
switch S, we label them #O through #7. Actually, # is an
abbreviation for index, which is an attribute like any other, whose
values are integers. Since the attribute is a unique character, we
do not have to write #:3 (although we could). The additional
parameters give information about the physical attributes of the
encoding. These are alternative values, and any tape has only one
of them. We use a vertical bar (I) to indicate this (as in BNF
notation for grammars). Thus, 451112 ink says that one can have a
tape with a speed of 45 inches per second or one with 112 inches
per second, but not a tape which can be switched dynamically to
run at either speed.

For many of the components no further information is given.
Thus, knowing that M.magnetic. tape is connected to a control
and from there to the Pc tells generally what that K does. It is a
tape controller, which evokes all the actions of the tape, such as
read, write, rewind; therefore these actions do not have to be
done by Pc. The fact that there is only one K for many Ms’s
implies that only one tape can be accessed at a time. Other
information could be given, although that just provided is all that

Chapter 3 1 PMS Notation 21

T[consolel I
T[teletype: lochar is; 8 blchar; 64 char set1

S[’DMOl Data Multiplexer;
f rom: 7 P,K; to: Mpl

Trpaper tape; [reader: 300 charts; punch. 100 charlsl ; 8 blcharl

T [incremental point p lot : 300 pointslsl

T[card reader: 200 I 800 card/minl

TIcard punch 100 cardlminl

Tl l lne printer: 300 Iinelmln; 120 coilline; 64 charlcoll

slpoint; 0.01 10.05 inlpoint; area: 10x10 in2 I 5 x 5 in2] I

M s [a : 3 ; fixed head disk;
t.ave access: 8.5 msec; transfer rate: 15.2 I 62.5 Kwisec:
capacity: 32 I 256 Kw;l2+1 b /w

h P [‘ 3 3 8 D ~ s p l a y l M TI=0,3. CRT. area
I

10x10 in2]]

Notes

1 Mp[core;1.5~s/w;4096 w; (12+1) b / w l

2 SI’Memory Bus1

- Ms[itO:l: ‘LINCtape: addressible
magnetictape:6.25 Kw/sec; 128 K w l

- T[=0:15; knobs, analog input1

-3 Pc[’PDP-8; 121 24 b/instruction: Data: TICRT; area: 5 x 5 in2]
[word; integer; byte1 ; 12 b/w;
technology: transistors1

4 S[’I/O Bus; from Pc; to: 64K1

5 Kfbuffer: 1 - 2 w l

Fig. 1. DEC LINC-8-PDP-8 PMS diagram.

22 Part 1 Fundamentals1

is usual in specifying a controller in an overall description of a
system. (The next level of detail goes to the structure of the actual
operations and instructions and belongs to the ISP level, not the
PMS level.)

As noted earlier, there is significant advantage to defining a
PMS diagram at a more detailed level. Thus the notation provides
for recursive definition, as in the case of the paper-tape transducer
in Fig. 1.There is both a 300 char/s tape reader and a 100 char/s
tape punch.

For the Pc in Fig. 1, the manufacturer’s name is capitalized and
preceded by a single vertical prime or quotation mark: ‘PDP-8. By
convention, generic names and abbreviations always appear
lowercase and proper names always begin uppercase. We have
given a few parameters: the data-types, the technology, etc.

We have used several different ways of saying the same thing in
Fig. 1in order to show the range of descriptive notations. Thus
the 64 Teletypes are shown by describing a single connection
through a switch and putting the number of links in the switch
above the connecting line.

Consider, finally, the Pc in Fig. 1. We have given a few param-
eters: the data-types, the processor state, the word length, etc.
These few parameters are easily inferred from the Mp. The basic
operation time in a processor is a small multiple of the read time of
its Mp. Thus it is predictable that the Pc stores and reads
information in 2 x 1.5p,s (one for instruction fetch, one for data
fetch). Again, where this is not the case (as in the CDC 6600) it is
necessary to say so. Similarly, the word size in the Pc is the same
as the word size of the Mp: 12 data bits. More generally, the Pc
must have instructions that take care of evoking all the compo-
nents of the PMS structure. These instructions do not see the
switches and controls as distinct entities; rather, they speak
directly to the operation of the M’s and T’s connected via these
switches and controls.

Other summary parameters could have been given for the Pc.
None of them would come dose to specifying its behavior
uniquely, although to those knowledgeable in computers still

Section 1 Abstraction and Notation I

more can be inferred from the parameters given. For instance,
knowing both the data-types available in a Pc and the number of
instructions, one can come very close to predicting exactly what
the instructions are. Nevertheless, the way to describe a Pc in full
detail is not to add larger and larger numbers of summary
parameters. It is more direct and more revealing to develop a
description at the level of instructions, which is the ISP descrip-
tion.

Because of the evolution of technology, PMS components
continue to decrease in physical size. Consider the PDP-5, the
immediate predecessor of the PDP-8. When introduced in 1963,
the PDP-5 processor logic required 100 boards and occupied
2,100 in2 of board space. By 1971, the PDP-8IE required only
three boards and 240 in’. In 1976 the Intersil6100 implemented
the PDP-8 ISP on a single silicon chip approximately ?4 in on a
side. If the PDP-8 ISP were reimplemented today, the processor
would occupy a small fraction of the chip area. The next decade
will be one of design at the PMS level with many PMS
components being integrated into individual semiconductor
chips.

Let us end this introduction to the PMS descriptive system by
returning to a critical item in its design philosophy. A descriptive
scheme for systems as complex and detailed as digital computers
must have the ability to range from extremely complete to highly
simplified descriptions. It must permit highly compressed de-
scriptions as well as extensive ones and must permit the selective
suppression or amplification of whatever aspects of the computer
system are of interest to the user. PMS attempts to fulfill these
criteria by providing simple conventions for detailed description
with additional conventions that permit abbreviation and abstrac-
tions, almost without limit. The result is a notation that may seem
somewhat fluid, especially on first contact in such a brief intro-
duction as this. But once assimilated, PMS seems to allow
some of the flexibility of natural language within enough nota-
tional controls to enhance communication considerably.

Chapter 4

An Introduction to ISPS

Mario R. Barbacci

introduction

This chapter introduces the reader to the ISPS notation. Although
some details have been excluded, it covers enough of the language
to provide a reading capability. Thus while this chapter in itself
might not be sufficient to allow writing ISPS descriptions, it
should be detailed enough to permit the reading and study of
complex descriptions.

Instruction-Set Processor Descriptions

To describe the instruction-set processor (ISP) of a computer, or
any machine, the operations, instructions, data-types, and
interpretation rules used in the machine need to be defined.
These are introduced gradually as the primary memory state, the
processor state, and the interpretation cycle are described.
Primary memory is not, in a strict sense, part of the instruction-set
processor, but it plays such an important role in its operation that
it is typically included in the description. In general, data-types
(for example, integers, floating-point numbers, characters, and
addresses) are abstractions of the contents of the machine registers
and memories. One data-type that requires explicit treatment is
the instruction, and the interpretation of instructions is explored
in detail.

The PDP-8 ISPS description is a source of examples. In the
presentation of the PDP-8 registers and data-types the following
conventions will be used: (1) names in uppercase correspond to
physical components on the PDP-8 (e.g., program counter and
interrupt lines); (2) names in lowercase do not have corresponding
physical components (e.g., implementation variables and instruc-
tion fields).

Memory State

The description of the PDP-8 begins by specifying the primary
memory that is used to store data and instructions:

The primary memory is declared here as an array of 4,096 words,
each 12 bits wide. The memory has a name, MP, and an alias,

Memory.Primary. Such aliases are a special form of comment and
are useful for indicating the meaning or usage ofa register’s name.
As in most programming languages, ISPS identifiers consist of
letters and digits and begin with a letter. A period with no space
following is also used to increase readability. The expression
[0:4095] describes the structure of the array. It declares the size
(4,096 words) and the names of the words (O, l , . . . , 4094,4095).
The expression < O : l l > describes the structure of each individual
word. It declares the size (12 bits) and the names of the bits
(O , l , . . . , lO,ll).

It should be noted that bit and word names are precisely that:
identifiers for the subcomponents of a memory structure. These
names do not necessarily indicate the absolute position of the
subcomponents. Thus, R<7:3> is a valid definition of a 5-bit
register. The fact that the five bits are named 7, 6, 5, 4, and 3
should not lead to confusion with the seventh, sixth, etc.,
positions inside the register. Thus, bit 7 is the leftmost bit, bit 6 is
located in the next position to its right, etc., while bit 3 is the
rightmost bit.

Memory is divided into 128-word pages. Page zero is used for
holding global variables and can be accessed directly by each
instruction. Locations 8 through 15 of page zero have the special
property called auto indexing, whereby when a location is
accessed indirectly, the contents of the location are incremented
by 1. These regions of memory can be described as part of M as
follows:

p a g e . z e r o [0 : 1 2 7] < 0 : 1 1 > := MP[O:127]<0: l l>,
auto.indsx[0:7]<0:11> : = M P [8 : 1 5] < 0 : l l > ,

The word-naming (and bit-naming) conventions on the left-hand
side of a field declaration are independent of the word (bit) names
used on the right-hand side: auto. index[O] corresponds to MP[8],
auto.index[l] corresponds to MP[9], etc.

Processor State

The processor state is defined by a collection of registers used to
store data, instructions, condition codes, etc., during the instruc-
tion interpretation cycle.

The PDP-8 has a 1-bit register L, which contains the overflow
or carry generated by the arithmetic operations, and a 12-bit
register AC, which contains the result of the arithmetic and logic
operations. The concatenation of L and AC constitutes an
extended accumulator LAC. The structure of the extended
accumulator is shown below:

LAC<O:12>,
L\Li n k o . _- LAC<O>,
AC\Accumulator<O :11> := LAC<1:12>,

23

24 Part 1 1 Fundamentals

The expression<> indicates a single, unnamed bit (L is only 1bit
long and there is no need to specify a name for it).

The program counter is used to store the address of the
instruction currently being executed as the machine steps through
a program:

PC\Program.Counter<O:ll>,

Twelve bits are needed in the PC to address all 4,096 locations of
MP.

In the PDP-8 I/O devices are allowed to “interrupt” the central
processor. When a device requires service from the central
processor, it emulates a subroutine call, forcing the processor to
execute an appropriate I/O subroutine. The presence of an
interrupt request is indicated by setting the interrupt. request
flag. The processor can honor these requests or not, depending on
the setting of the interrupt.enable bit:

i n t e r r u p t . e n a b l e < > ,
i n t e r r u p t . r e q u e s t < > ,

There are 12 console switches which can be read by the
processor. These switches are treated as a 12-bit register by the
central processor:

switches<O :11>,

Instruction Format

Like most data-types and registers on the PDP-8, instructions are
12 bits long:

i \ i n s t r u c t i o n < O : l l > ,

An instruction is a special kind of data-type. It is really an
aggregate of smaller information units (operation codes, address
modes, operand addresses, etc.). The structure of the instructions
must be exposed by describing the format. Most PDP-8 instruc-
tions contain an operation code and an operand address:

op\operat ion.code<O:Z> := i < 0 : 2 > ,

i b \ i n d i re c t .b i t < > := i<3> ,

pb\page . b i t < > : = i<4> ,

pa\page .address<O :6> := i < 5 : l b ,

The abstractions op, ib, pb, and pa allow the treatment of selected
fields of the PDP-8 instructions as individual entities.

Partitioning the Description

In ISPS, a description can be divided into sections of the form:

Section 1 1 Abstraction and Notation

* * s e c t i o n .name**
< d e c l a r a t i o n > ,
< d e c l a r a t i o n > ,
.

sect ion.name
< d e c l a r a t i o n > ,
< d e c l a r a t i o n > ,
.

Each section begins with a header, an identifier enclosed between
double asterisks. A section consists of a list of declarations
separated by commas. Section names are not reserved keywords
in the language but are used to convey some information about the
entities declared inside the section. The register and memory
declarations presented so far can be grouped into sections as
shown at the top of page 25,

A few more field declarations have been added. These are used
to interpret the I/O and operate instructions. The PDP-8 I/O
instruction uses the nine bits of addressing information to specify
operations for the I/O devices. These nine bits are divided into a
device selector field (six bits, io.select<0:5>) and a device
operation field (three bits, io.pulse<0:2>). Note that several
alternate field declarations may be associated with the same
portion of a register or data-type, thus adding flexibility to the
description. A comment is indicated by an introductory exclama-
tion point, and all characters following the exclamation point to
the end of the line are treated as commentary and not as part of
the description. The PDP-8 Operate instruction’s address field is
not interpreted as an address but as a list of suboperations. The
DEC PDP-8 processor manuals provide additional details.

Effective Address

The effective address computation is an algorithm which computes
addresses of data and instructions:

Ef fec t ive .Addres s

l a s t . p c < O : l l > ,

MA\effective.memory.address<O:ll>:=

b e g i n
DECODE pb =>

b e g i n
0 := MA =‘OOOOO 62 pa, ! p a g e z e r o
1 : = M A = l a s t . p c < O : 4 > @ p a ! c u r r e n t page
end n e x t

I F n o t i b = > L E A V E M A n e x t

IFMA<O:8> e q v # 0 0 1 = >

MP[MA]=MP[MA]+lnext ! a u t o i n d e x
MA = MP[MA]
e n d ,

**Memory.Stat em*
MPUvlemory.Primary[O:4095~<0:11>,

Processor.State
LAC<O:12>,

LLi n k o
AC\Accumulator<O :11>

PC\Program.Counter<O:ll>,

go<>,

interrupt.enable<>,

interrupt.requesto,

switchesc0:lb.

Instruction .Format

i\instruction<O:ll>,

op\operation.code<0:2>

ib\indirect .bit<>

pb\page. bit<>

pa\page.address<0:6>

io.selectcr0:5>

io.pulse<0:2>

io.pulse.lo

io .pulse. 2 0

io.pulse.4<>

:= i<3>,
:= i<4>,
:= i<5>,
:= i<6>,
:= i c P ,
:= i<8>,
. _. - i<9>,
:= i<lO>,
: = i<ll>,
:= i<5>,
:= i<5>,
:= i<6>,
:= i<6>,
:= i<7>,
:= i<7>,
:= i<8>,
. _.- i<9>,
:= i<lO>.

Chapter 4 I An Introduction to ISPS 25

:=MP[O:127]<0:11>,

:=MP[8:15]<0:11>,

:= LAC<O>.
:= LAC<1:12>,

:= i<0:2>,

:= i<3>,

:= i<4>,

:= i<5:ll>,

:= i<3:8>, ! device select
:= i<9:ll>, ! device operation

:= io.pulse<O>,
:= io.pulse<l>,
:= io.pulse<2>,

! microinstruction group
! clear AC
! clear L
! complement AC
! complement L
! rotate right
! rotate left
! rotate twice
! increment AC
! skip on minus AC
! skip on positive AC
! skip on zero AC
! skip on AC not zero
! skip on L not zero
! skip on L zero
! invert skip sense
! logical o r AC with SWITCHES
! halt the processor

26 Part 1 FundamentalsI

Since the memory of the machine is 4,096 words long,
addresses have to be 12 bits long. Of the 12 bits in an instruction,
3bits have been allocated for the operation code (op) and there are
only 9 bits (ib, pb, and pa) in the instruction register left for
addressing information. These hits, together with some other
portions of the processor state, are interpreted by the algorithm to
yield the necessary 12 bits of addressing.

Address Computation

Instructions and data tend to be accessed sequentially or within
address clusters. This property is called locality. The PDP-8
memory is logically divided into 32 pages of 128 words each. The
concept of locality of memory references is used to reduce the
addressing information by assuming that data are usually in the
same page as the instructions that reference them. The pa portion
ofan instruction is that “address within the current page.” The pb
portion of an instruction is used as an escape mechanism to
indicate when pa is to be used as an address within page 0
(MP[0:127]) instead of the current page.

The address of the current instruction is contained in last.pc
and is used to compute the current page number.

The first step of the algorithm,

DECODE pb =>
b e g i n
0 := MA = ‘OOOOO @ pa,
1 : = MA = last.pc<0:4> @ pa
end n e x t

indicates a group of alternative actions, to be selected according to
the value of the expression following the DECODE operator. The
alternatives appear enclosed between begin and end and separat-
ed by a comma. The expressions 0 := and 1 := are used to label
the statements with the corresponding value of pb. The alterna-
tive statements can be left unnumbered, in which case they are
treated as if they were labeled 0:=, 1:=,2:=, etc.

The effective address (MA) is built by concatenating a page
number with the page address (pa). The @ operator is used to
indicate concatenation of operands. If pb is equal to 0, the
effective address lies in page 0. If pb is equal to 1, the current
page number is used instead.

Constants prefixed with the single quote represent binary
numbers. ‘00000 represents a 5-bit string, which is concatenated
with the 7 bits of pa to yield the 12 bits needed.

The transfer operator = modifies the memory or register
specified on its left-hand side. If the right-hand side has more bits
than the left-hand side, the right-hand side is truncated to the
proper size by dropping the leftmost extra bits. If the right-hand
side is shorter, enough 0 bits are added on its left until the length
of the left-hand side is matched. Thus, the first conditional
statement can be written as 0 := MA = pa.

Section 1 Abstraction and Notation I

The expression <0:4> is used to select bits 0, . . . ,4of 1ast.pc.
These 5 bits contain the current page number and, together with
the 7 bits of pa, yield the necessary 12 bits.

Indirect Addresses

A full 12-bit target address can be stored in a memory location
used as a pointer. The instruction needs only to specify the
address of this pointer location. Indirect addresses are specified
via a bit in the instruction register (ib) which indicates whether we
have a direct (ib=O) or an indirect (ib= 1)address.

The second step of the algorithm,

IF not ib => LEAVE M A

is separated from the previous by the operator “next.” The
statement(s) preceding “next” must be completed before the
statement following it can be executed. The first step computes a
preliminary effective address. The second step tests the value of
ib, and if it is equal to 0, then the preliminary effective address is
used as the real effective address. If ib is equal to 1, the
preliminary effective address is used to access a memory location
containing the real effective address. In the former case, the
expression “LEAVE MA” is used to indicate the termination of the
procedure (this is similar to a RETURN statement in many
programming languages).

Auto Indexing

Constants prefixed with the character # represent octal numbers.
Thus #001 is equal to ’000000001. The procedure treats indirect
addresses as special cases. If a preliminary effective address in the
range #0010:#0017 (8to 15) is used as an indirect address (ib=l),
the memory location is first incremented and the new value used
as the indirect address:

IF MA<O:8> eqv # O O l =>
MP[MA] = MP[MA] + 1 n e x t

M A = MP[MA]

By comparing the high-order bits of MA with #001 and ignor-
ing the lower three bits we are in fact specifying a range of ad-
dresses (#0010, #0011, #0012, . . . ,#0017). Memory locations
#0010:#0017 constitute the autoindexing registers.

Regardless of whether autoindexing has taken place, the last
step of the algorithm uses the preliminary effective address (which
may have been modified by autoindexing) as the address of a
memory location which contains the real effective address:

MA=MP [MA]

http:1ast.pc

Instruction Interpretation

The instruction interpretation section describes the instruction
cycle, i.e., the fetching, decoding, and executing of instruc-
tions.

Instruction.Interpretation

i n t e r p r e t :=
begin
REPEAT b e g i n

i = MP[PC]; 1as t .pc = PC next
PC = PC + 1 n e x t
e x e c u t e () n e x t
I F i n t e r r u p t . e n a b l e a n d

i n t e r r u p t . s e q u e s t =>
b e g i n
MP[O] = PC n e x t
PC = 1
e n d

end

e n d ,

The instruction cycle is described by a loop. The REPEAT
operator precedes a block of statements that are to be continuous-
ly executed. The instruction cycle of the machine consists of four
steps:

1 	 A new instruction is fetched (i = MP[PC]).

2 	 The program counter is incremented (PC = PC + 1).It
now points to the next instruction. Under normal circum-
stances (i.e., unless a Jump takes place) this will be the
instruction to be executed next.

3 	 The instruction is executed (execute()).

4 	Interrupt requests, if allowed are honored. The cycle is
then repeated.

The semicolon separator is used to indicate concurrency (i.e.,

two statements separated by a semicolon are executed concur-

rently):

i = MP[PC]; 1 a s t . p ~= PC n e x t

Notice how the value of the program counter is saved in 1ast.p~
before it is incremented. The effective address procedure relies
on the fact that last.pc contains the address of the current
instruction.

The execute procedure describes the individual instructions:

Chapter 4 1 An Introductionto ISPS 27

e x e c u t e :=
b e g i n
DECODE o p =>

b e g i n

#OLAND := AC = AC a n d MP[MA()],

#1\TAD := LAC = LAC + MP[MA()],

#2\ISZ : = b e g i n

MP[MA] = MP[MA() 3 + 1 next
I F MP[MA] e q l 0 => PC = PC + 1
e n d ,

#3\DCA : = b e g i n

MP[MA()] = AC n e x t

AC = 0

e n d ,

#4UMS := b e g i n

MP[MA()] = PC next

PC = MA + 1

e n d ,

#5WMP := PC = M A () ,

#6\IOT := i n p u t . o u t p u t () ,

#nOPR := o p e r a t e ()

end

e n d ,

Instruction mnemonics can be indicated as aliases for the
constants used to specify the operation codes:

#3\DCA := . . .

Operation Code OMND:
Logic AND
If the operation code is equal to 0, the contents of the accumulator
(excluding the L bit) are replaced by the logical product of the
accumulator and a memory location. MA() is used to indicate that
the effective address computation must be executed in order to
obtain the memory address.

Operation Code ATAD:

2’s Complement Add

The TAD instruction follows the pattern of the previous instruc-
tion. Notice, however, that the complete accumulator (including
the L bit) is involved in the operation. L will contain the overflow
or carry out of the sign position of AC.

Opera tion Code 2vSZ:

Increment and Skip ifZero

This instruction is described in two consecutive steps. The first
step indicates that some memory location, specified by the

28 Part 1 FundamentalsI

effective address computation, will be incremented by 1. Notice
the different uses of MA in the statement:

MP[MA] = MP[MA()] + 1

The effective address is computed once, MA(), and is used to fetch
the memory location, MP[MAO]. The result of the addition must
be stored back in the same memory location. This is indicated by
using the effective address register, MA, on the left-hand side,
MP[MA]. MA already contains the correct address and there is no
need to recompute it. In fact, because of the autoindexing
operations performed during the effective address computation,
the effective address must be computed precisely once.

The second step of the instruction,

I F MP[MA] e q l 0 => PC = PC + 1

tests the result of the addition. If the result is equal to 0 the
program counter is incremented by 1, thus, in effect, skipping
over the next instruction in sequence. Once again, MP[MA()] is
used instead of MA0 to avoid undesirable side effects.

Operation Code ADCA:

Deposit and Clear Accumulator

This instruction deposits the accumulator in a memory location
and then clears the accumulator (excluding the L bit).

Operation Code 4\ JMS:

Jump to Subroutine

This instruction alters the normal sequence of instructions by
modifying the program counter so that the next instruction will be
not the one following the current instruction, but the one located
at a memory location specified by the effective address. The
program counter is stored into the location preceding the
subroutine code (the result of MA()). The program counter is then
modified to point to the first instruction ofthe subroutine (MA + 1).

Operation Code s\JMP:

Jump

This instruction also modifies the normal sequence of instructions.
It can be used to jump to disjoint pieces of code. If we use ib=l
and specify the address of the location preceding the subroutine,
the result of the effective address computation will yield the
return address that was stored by the subroutine call.

Operation Code MOT:

InpuVOutput

The input.output procedure describes two specific cases of IiO
instruction, namely those used to control the interrupt mecha-
nism:

Section 1 Abstraction and Notation I

i n p u t . o u t p u t :=
b e g i n
DECODE i < 3 : l l > =>

b e g i n .
#001\ION : =

b e g i n
! t u r n I n t e r r u p t O N

i n t e r r u p t . e n a b l e = 1 n e x t
RESTART i n t e r p r e t
e n d ,

#002\IOF :=
b e g i n

! t u r n I n t e r r u p t OFF
i n % e r r u p t . e n a b l e = 0
e n d ,

! n o t implemented
o t h e r w i s e := n o . o p ()
end

e n d ,

The “otherwise” operation can be specified in a DECODE
operation to indicate a default action to be executed if none of the
explicitly named cases (#001 or #002) applies. All other I/O
operations default to a predefined ISPS procedure no.op(); this is
done simply to keep the examples short.

I/O operation #002 disables interrupts. It typically occurs as
the first instruction of an interrupt handling routine. I/O operation
#001 enables interrupts. It typically occurs at the end of an
interrupt handling subroutine. Its effect is delayed for one
instruction (the return from the subroutine) to avoid losing the
return address should an interrupt occur immediately. This is
achieved by skipping over the last portion of the instruction
interpretation cycle:

I F interrupt.enab1e.and.inter-
rupt . request => . . .

The “RESTART interpret” operation is used to indicate that the
input.output procedure returns, not to the place from which it was
invoked (inside execute), but to the beginning of the interpret
procedure, thus bypassing interrupt trapping for one instruction.

Operation Code ROPR:
Operate

The Operate instruction encodes a large number of primitive
“microoperations” in the address bits of an instruction. Some bits
(e.g., CLA) represent a microoperation by themselves. Others
(e.g., RT and RAL) jointly represent a microoperation. There are
several conditional skip microoperations. These are grouped in a
separate procedure for readability, as shown on pages 29 and 30.

Several microoperations can appear in the same instruction;
however, not all combinations are legal or useful. Microoperations

Chapter 4 1 An Introduction to ISPS 29

o p e r a t e :=
begin
DECODE group=>

begin
0 := begin ! Group

1 m i c r o i n s t r .
I F CLA => AC = 0

! Clear accumulator
I F CLL => L = 0 next

! Clear l i n k
I F CMA => AC = not AC;

! Complement accumulator
I F CML => L = no t L next

! Complement l i n k
I F I A C => LAC = LAC + 1 next

! Increment accumurator
DECODE RT => ! r o t a t e once o r twice

begin
0 := begin ! once

I F RAL => LAC = LAC slr 1;
I F RAR => LAC = LAC srr 1
end,

1 := 	 begin ! twice
I F RAL => LAC = LAC slr 2;
I F RAR => LAC = LAC s r r 2
end

end
end,

1 := begin ! groups 2 and 3.
DECODE i < l b =>

beg in
0 := begin ! group 2

s k i p . g r o u p () next
I F CLA -> AC = 0 next
I F OSR => AC = AC o r swi t ches ;
I F HLT => RUN = 0
end,

1 := 	 begin ! group 3
I F CLA => AC = 0 next
n o . o p () ! eae group
end

end

end

end

end

(Continued on next page)-

30 Part 1 Fundamentals 	 Section 1 Abstraction and Notation I 	 1

s k i p < > ,

s k i p . g r o u p :=
b e g i n
s k i p = 0 n e x t
DECODE i s => ! i n v e r t s k i p c o n d i t i o n

b e g i n
0 := 	 b e g i n

IF SNL and (L e q l 1) => s k i p = 1;

IF SZA and (A C e q l 0) => s k i p = 1;

IF S M A and (A C lss 0) => s k i p = 1

e n d ,

1 : = 	 b e g i n

IF SZL@SNA@SPA e q l 0 => s k i p = 1;

I F SZL and (L e q l 0) => s k i p = 1;

IF SNA a n d (A C neq 0) => s k i p = 1;

IF SPA a n d (A C geq 0) => s k i p = 1

end

end n e x t

IF s k i p => PC = PC + 1 ! S k i p

e n d ,

are executed at different points in time, thus allowing sequences The length of a constant is measured in bits. A decimal constant
of transformations to be applied to the accumulator and/or link bit. is one bit longer than the smallest number of bits needed to
For instance, in the group 1 microoperations, clearing AC/L is represent its value to allow representation of negative numbers
done before complementing them, this is done before incre- (don’t care decimal digits result in constants of unspecified
menting the combined L@AC (LAC) register, and this in turn length). Binary constants have one bit for each digit explicitly
precedes the rotation of L@AC. written. Octal constants have three bits for each digit explicitly

written. Hexadecimal constants have four bits for each digit
explicitly written.

Other Features of ISPS
Example Length Bit pattern

Not all the features of the notation have been presented in the “1000 16 0001000000000000
examples. This section will attempt to provide a list of the missing 15 5 01111
operations to help readers follow larger descriptions. #17 6 001111

0 2 00
Constants 0 2 00

‘0?101 5 0?101
In general, a constant is a sequence of characters drawn from #?2 6 ???010
some alphabet determined by the base of the constant. The base
of a nondecimal constant is given by a prefix character. The Arithmetic Representation
alphabets for the predefined bases in ISPS are:

ISPS allows the user to specify arithmetic operations in four
Base Prefix Alphabet different representations: 2’s complement, 1’s complement, sign
2 0,1,? magnitude, and unsigned magnitude (the default is 2’s comple-
8 # 0,1,2,3,4,5,6,7,? ment). To specify a different representation, the following modifi-
10 0,1,2,3,4,5,6,7,8,9,? ers can be used.
16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,?

Modqier Arithmetic representation
The question mark can be used to specify a “don’t care” digit. Ctc> 2’s complepent

Its presence stands for any digit in the corresponding alphabet. {oc) 1’s complement

{sm> Signlmagnitude
{us} Unsigned magnitude

In all the signed representations, the sign bit is the leftmost
position of the operand (1 for negative numbers, 0 for positive
numbers). The above modifiers can be attached to any arithmetic
or relational operator to override a default. They can also be
attached to a procedure declaration to set a default throughout the
body. When attached to a section name the default applies to all
the declarations in the section:

t e s t :=
b e g i n {oc} ! D e f a u l t f o r t h e body
. . .
end,

Sect ion . 1 {tc} ! D e f a u l t f o r t h e s e c t i o n
. . .

X = Y + {sm} Z ! I n s t a n c e

Arithmetic representation is a property of the operator, not the
operand. Thus, the same bit pattern can be treated as a 2’s
complement or an unsigned integer, depending on the arithmetic
context in which it is used.

Sign Extension

All ISPS data operators define results whose length is determined
both by the lengths of the operands and the specific operator.
Some operations require that their operands be of the same
length. This is usually accomplished by “sign-extending” the
operands. In the context of unsigned magnitude arithmetic, sign
extension is interpreted as zero-extension (i.e., padding with 0s on
the left). In 1’s and 2’s complement arithmetic the expansion is
done by replication of the sign bit. In sign magnitude arithmetic
the expansion is done by inserting 0s between the sign bit and the
most significant bit of the operand.

Data Operators (in Order of Precedence)

Negation and Complement: -, not. Unary - generates the
arithmetic complement of the operand (the operation is invalid in
unsigned arithmetic.) The result is one bit longer than the
operand. The not operator generates the logical complement of
the operand. The result has the same length as the operand.

Concatenation: @. The @ operator concatenates the two
operands. The length of the result is the sum of the lengths of the
operands.

Shift and Rotate: s10,sll,sld,slr,sr0,srl,srd,srr. These operators
shift or rotate the left operand the number of places specified by

Chapter 4 I An Introduction to ISPS 31

the right operand. The result has the same length as the left
operand. The operators have the format “sxy,” where “x” is either
l(eft) or r(ight) to indicate the direction of movement. The “y” is
either 0, 1, d(uplicate), or r(otate) to indicate the source of bits to
be shifted in. sxl shifts its left operand, inserting Is in the vacant
positions. sx0 is similar to sx1 but inserting 0s. sxd inserts copies
of the bit, leaving the position to be vacated (not the bit being
shifted out). sxr inserts copies of the bit being shifted out (i.e.,
rotates the left operand).

Multiplication, Division, and Remainder: *,/,mod. These ope-
rators compute the arithmetic product, quotient, and remainder
of the two operands, repectively. The lengths of the results are:

Operation Length of result
* Sum of lengths
I Left operand (dividend)

mod Right operand (divisor)

Addition and Subtraction: +, -. The + and - operators
compute the arithmetic sum and difference of the two operands,
respectively. The shortest operand is sign-extended, and the
result is one bit longer than the largest operand.

Relational Operations: eql,neq,lss,leq,gtr,geq,tst. These oper-
ations perform an arithmetic comparison b&ween the two
operands. The shortest operand is sign-extended, and the result is
either one or two bits long. The first six operators (i.e.,all except
tst) produce a one-bit result indicating whether the relation is
True (1) or False (0).The tst operator produces a two-bit result
indicating whether the relation between the left and right
operands is lss (O), eql (I),or gtr (2).

Conjunction and Equivalence: and, eqv. These operators pro-
duce the logical product and coincidence operations of the two
operands. The shortest operand is zero-extended, and the result is
as long as the largest operand.

Disjunction and Nonequivalence: or, xor. These operators
produce the logical sum and difference operations of the two
operands. The shortest operand is zero-extended, and the result is
as long as the largest operand.

Logical and Arithmetic Assignment: =, <=. The logical assign-
ment operator = truncates or zero-extends the source’s (right
operand’s) most significant bits to match the length of the
destination (the left operand). The arithmetic assignment operator
<= truncates or sign-extends the source to match the length of
the destination.

32 Part 1 Fundamentals1

Summary

The foregoing examples should allow the reader to understand all
the ISPS descriptions in the book. All the descriptions follow a
standard format:

Memory declarations 	 MP state
PC state
External state
Implementation declarations

Formats and operations 	 Instruction format
Address calculation
Service facilities

Interpreter 	 Instruction interpretation
Instruction set

The implementation declarations are required for temporary
storage in complex expression evaluations. These variables proba-
bly have similar, if not identical, counterparts in the actual
machine implementation. However, these variables are invisible

Section 1 Abstraction and Notation I

to the programmer and hence are not mentioned in the program-
mer’s manual.

The following conventions for capitalization have been adopted.
Architectural features, instruction mnemonics, and other names
that are capitalized in the manufacturer’s literature are in
uppercase in the ISPS descriptions to aid recognizability. To aid
readability, all ISPS operators that affect control flow are in
uppercase. These include: DECODE, IF, RESTART, LEAVE,
REPEAT, RESUME, STOP, and WAIT. Everything else is
lowercase, including operators (e.g., eql, eqv, leq, lss, mod, neq,
no.op, not, or, s10, sll, sld, slr, srO, srl, srd, srr, tst, and xor),
ISPS implementation variable, and the remaining ISPS reserve
words (e.g., begin, end, next).

All the ISPS descriptions that appear in this book have been
compiled and simulated. The descriptions are complete, except
for the instruction-set portion in large machines. In order to keep
the size of the descriptions in bounds, we have deleted all but a
representative instruction of each op code decoding group for
these large machines. Nevertheless, these partial ISPS descrip-
tions have been compiled and simulated.

Section 2

The Computer Space
The preceding chapters have provided a view of a computer
system as an organized hierarchy of many levels: physical devices,
electronic circuits, logic circuits, register-transfer systems, pro-
grams, and PMS systems. We must remember that these are
levels of description for what, after all, remains the same physical
system. Each higher level describes more of the total system, but
with a loss of detail. As this is an engineered system, great care is
taken that each level represent adequately all the behavior
necessary to determine the performance of the system. In natural
systems too there are often many levels of description (e.g., in
biological systems, from the molecule to the organelle to the cell
to the tissue to the organ to the organism).

However, in natural systems we usually depend on statistics to
eliminate the details of lower levels and permit aggregation, and
they always do so imperfectly. In computer systems, on the other
hand, the aggregation is intended to be perfect. It fails, ofcourse,
and so both error detection and error correction exist as funda-
mental activities in computer systems. But these imperfections are
ascribed to the system itself and not to our description of it, which
is just the opposite from how we treat natural systems. Only the
PMS level of description is natural, in the sense of not being the
intended result of the design. This is because performance is
defined ultimately at the programming level. The aggregations
and simplifications that go into a PMS description (e.g., measur-
ing power by bits per second) are approximations, just as they are
for any natural system (e.g., measuring the productivity of the
economy by gross national product).

We have provided descriptive systems for the top levels of the
hierarchy: the PMS level and the ISP level, the latter defining the
basic components of the programming level in terms of the RT
level just below. These are the two descriptions that are of most
concern in the overall design of a computer system. We did not
define the lower levels, because they go beyond the focus of this
book. Neither did we define the program level, partly because
there exists no uniform description (no common programming
language) and partly because the computer designer works mostly
at the interface, defining the instruction set. This latter is what the
ISP provides.'

PMS and ISP permit the description of an indefinite number of
computer systems-indeed, all that come within the scope of the

'An increasingly popular view is that the program and RT levels (with ISP
in between) are one, thus erasing the difference between hardware and
software. The boundary appears to us not quite so invisible. We take the
important task to be drawing the boundary in the right place for any
specific design.

current design art. (They might even be taken as a definition of
what that current art is.) Over lo7 individual computer systems
have in fact come into existence, each ofwhich can be described in
PMS and ISP. They are not all radically individual. There are
about 10' types of computer systems represented, ifwe define two
systems with the same Pc to be of the same type. (By exercising
various options, a single computer type could take on 105different
forms.)

Of these thousand-odd types, we present in this book about 30.
What sort of total population do we have here? What does our
minuscule sample look like when compared with the whole? More
fundamentally, what are the significant aspects of the computer
systems that should be used in a comparison or classification?
These are the questions we will try to deal with in this section and
subsequently in Part 2.

For any system, either an entire computer C or a component,
such as P, M, or S, it is convenient to distinguish its function, its
performance, and its structure. The system is designed to operate
in some task environment; to accomplish such tasks is its function.
How well it does these tasks is its performance. Evaluation of
performance is normally restricted to these tasks. Although it is
always noteworthy when a system can perform adequately outside
its specified domain (e.g., when a business computer is also a good
control computer), it is rarely worth noting when a system cannot
perform those tasks it was not built to perform. Thus, function
denotes scope, and performance denotes an evaluation within that
scope.

Structure denotes those aspects of the system that allow it to
perform. This includes descriptions of its subcomponents and how
they are organized. Performance of subcomponents often may be
considered structure as far as the whole system is concerned,
especially if the performance can be taken as given. For example,
early digital transmission-oriented telephone lines came in two
capacities, -200 bit/sec and -2,000 bitisec. From the viewpoint
of the telephone system, these are performance measures; from
the viewpoint of a computer system with remote terminals,
these are structural parameters. The smaller capacity attaches
a single 20-chariterminal to a telephone line, while the larger
one requires a structure to multiplex traffic from 10 terminals
onto one line.

Typically, design proceeds in a context in which the function of
the system to be developed is taken as given and certain
structures are available; the problem is to construct a structure
that achieves adequate performance.

These terms apply to any designed system. For example,
consider automotive vehicles. Function is a classification by use:
cars to carry people, trucks to carry goods, racers to win
competitions, antiques to satisfy nostalgia and collectors' pride.
Performance is those aspects of behavior relevant to function:
maximum speed, power-to-weight ratio, cargo capacity, run

33

34 Part 1 FundamentalsI

versus non run for an antique, and so on. Structure is such things
as number of wheels, shape of the vehicle, stroke volume, and
gear ratios. Structure determines performance, although from the
standpoint of design, of course, causality runs the other way: from
function to performance to structure. Design also includes an
aesthetic component. Just as the shape of a car is not solely
determined by function and performance, so, too, the shape of an
instruction set reflects aesthetic considerations.

There are, then, three main ways to classify or describe a
computer system: according to its function, its performance, or its
structure. Each consists in turn of a number of dimensions. It is
useful to think of all these dimensions as making up a large space
in which any computer system can be located as a point. In such a
space all the thousand computer types built to date constitute a
sparse scatter, clustering (it is to be hoped) in various regions that
make sense functionally and economically. The 30 computer types
in this book sample this larger scatter in some way, to give a
picture both of the entire space and of the part already explored.

How many dimensions are there in this computer space?
Indefinitely many, ifone wants to locate a computer with ultimate
precision. In fact, ifone wants to go all the way, one might as well
give the PMS and ISP descriptions (and down through the RT,
logic, circuit, and device levels). The virtue of thinking of such a
space is to abstract to a small number of dimensions, and to select
those that are most relevant. Of the functions, one wants those
that most influence the design; of the performance, one wants
those that make the largest difference; of structure those that not
only affect performance but represent possible design choices by
the computer engineer. In addition, one wants dimensions along
which there is significant variation. Those aspects of computer
systems which are common to all, such as the use of binary
devices, though of supreme interest, are not part of the computer
space.

No theory of computer systems is sufficiently comprehensive to
define completely the dimensions of computer space. Guidelines
have sprung from past experience in designing machines, but at
some point the architect must simply propose a set of dimensions
which are justified later, in performance. Table 1 abstracts a set of
dimensions for function and structure. Chapter 5 gives a set for
performance. The performance dimensions can be summarized in
terms of a Kiviat graph, defined in Chap. 5. Together with ISP
and PMS, Kiviat graphs will be used throughout the book to
characterize the computer structures under study.

Table 1 gives 2 dimensions for computer system function and 25
for computer structure. However, the dimensions are not all
independent. Many of the structure dimensions correlate highly
(though not perfectly). Thus, in Table 1 we have put the structure
dimensions in seven horizontal groups, with the most relevant at
the left in each group. (In the first structure group, we have also
added two temporal dimensions, since a strong correlation with
time exists.) We have omitted two important dimensions for

Section 2 1 The Computer Space

which we do not have values: reliability (mean time between
failures per operation) and physical size density (e.g., bits per
cubic foot), both of which increase with generation.

With each dimension we have indicated the range of possible
values. For some (Pc.speed, for example) this is a numerical
quantity. However, for most, the range is a discrete set of design
choices, which may or may not have a simple ordering. Clearly,
these discrete values are selections from a meaningful subspace of
design choices, but mostly we do not know how to construct that
subspace. The values given are those that have arisen in practice,
and they serve to classify the computers in the book. Typically,
the discrete sets of design choices are ordered in terms of
increasing hardware complexity and increasing system perform-
ance. Frequently the set of design choices, having evolved over
time, represents a developmental chain, as discussed in Chap. 1.
As the structure of a system evolves along a chain, a specialized
subsystem may emerge, with the most primitive dimensional
values, and then evolve in the same manner as the original
system. This phenomenon, illustrated in Chap. 1, has been
termed the wheel of reincarnation and will be discussed further in
Chap. 6.

This section of the book is devoted to a discussion of each of the
computer space dimensions. Each dimension will be defined, its
basis for selection discussed, and its ordering in Table 1explained.
Chapter 5 presents the computer function and performance
dimensions, while Chap. 6 (and Part’2) discusses the structural
dimensions. We give the entire set of dimensions here at the
beginning, both for later reference and to reinforce the concept of
a single computer space in which computer systems can be
located. Each dimension in Table 1has a reference to the part,
section, and/or chapters in the book that contain a discussion of
that dimension.

A detailed discussion of several structural dimensions has been
placed in Part 2, where several real computer systems are used to
illustrate the variations across a dimension. The introductions to
each section in Part 2 present further refinements to the design
choices for the dimension under consideration. Because of the
length of these taxonomies, only the major design areas of choice
(not the full list of alternative choices) are reproduced in Table 1.

We will refer to the set of dimensions in Table 1from now on
simply as “the computer space.”

History

Like all systems subject to variation and selection, computers
have evolved through time. So striking and rapid has been this
evolution that the concept of “generation” has become firmly
embedded in the computer engineering culture (to say nothing of
the marketing culture and the view of the lay public). It is at best
an ambiguous term, having none of the sharpness of its root term

Section 2 I The Computer Space 35

in biological evolution, where it is possible to draw a strict
genealogical tree. Nevertheless, the term is useful in stressing
that the history of computer systems is not just a story of particular
scientists discovering or building particular things, but of a
somewhat more impersonal and widespread series of advances
that have changed computer systems radically.

The generations are best defined solely in terms of logic
technology (see Table 1):the first generation is that of vacuum
tubes (1945-1958); the second generation is that of discrete
transistors (1958-1966); the third, small- and medium-scale
integrated circuits (1966-1972); the fourth, large-scale integration
with 100 - 10,000 gates per chip (1972-1978); and the fifth,
very-large-scale integration (197%). Chip complexities in the
fourth generation were large enough to allow the integration of a
processor on a single chip.

........................
..........................

I(E1

g
RcIa" a110 I lC<h~ , , ,C f i l

Pa,.lln

...

It is a measure of American industry's generally ahistorical view
of things that the title of "first" generation has been allowed to be
attached to a collection of machines that were some generations
removed from the beginnings by any reasonable accounting.
Mechanical and electromechanical computers existed prior to
electronic ones. Furthermore, they were the functional equiva-
lents of electronic computers and were realized to be such. They
were also separated by a wide gap in performance and structure,
both from each other and from vacuum-tube machines. Thus, by
reasonable reckoning, we are currently in the seventh generation
of computers, not the fifth. But usage is now too well established
to change. The concept of precomputer generation handles this
anomaly.

Actually, it was not always viewed thus. Figure 1reproduces a
genealogical tree of the early computers prepared by the National

Present
generation

F i rs t

generation

Predecessors

' Roots

Fig. 1.The "family tree" of computer design. The remarkable growth of electronic computing systems in the Western world began primarily
through government support of research and development in the universities. The need for data-processing facilities of increased
capacity inspired further support for their development in both educational instututions and private industry. The current generation of
computers is predominantly the result of development by private industry. The tree lists many of the machines developed inthese ways. At
the roots are the contributions of many existing technologies to the rapid growth from electromechanical to electronic systems. Some of
the milestones are ENIAC (Electronic Numerical Integrator and Computer), the first electronic computer; EDVAC (Electronic Discrete
Variable Automatic Computer), the first internally stored-program computer and first acoustic delay-line storage; MADM (Manchester
Automatic Digital Machine), the first index registers (B lines) and first cathode-ray-tube electrostatic storage; MTC (Memory Test
Computer), the first core-storage computer. (Courtesy of National Science Foundation.)

36 Part 1 I Fundamentals Section 2 1 The Computer Space

Table 1 The Computer Space Dimensions

Computer function

Computer function (Chap. 5) Computer class (Chap. 1; Part 3)

Scientific Maxicomputer
Commercial
Manufacturing Minicomputer
Communications
Transportat ion Microcomputer
Education Monolithic microcomputer
Home

Computer structure

Logic Component Historical Costloperation
technology (Chap. 6) Generation complexity date Pcspeed (s) ($lbitls)

Mechanical
Electromechanical 1930 lo-’ 1000
Vacuum tube First 1945 10-3 10
Transistor Second 1 transistor 1958 10-5 1
Hybrid
Small- and medium-
scale integrated

Third 1 - 10 gates, SSI;
10 - 100gates, MSI

1964
1966

10-6
10-7 0.1

Large-scale integrated
(SSI, MSI)

Fourth 10 - 10,000gates 1972 10-8 0.01

Very-large-scale
(LSI)

Fifth 10.000- 100,000 gates 1978 10-8 0.0001
integrated (VLSI)

UItra-large-scale Sixth 100,000gates
integrated (ULSI)

Log bytes of
virtual Word
address size Base Data-types

1-12 8b Binary Word
12 b Decimal Integerladdress [integer]

12-20 16 b Bitlbit vector
18 b Instruction

20-24 24 b Floating point
24-32 32 b Character
32-48 48 b Character [6b] Character string

64b Character [8b] Word vector
Vector
Matrix
Array
Lists, stacks

Addresseslinstruction (Chap. 6) M.processor state (excluding program counter) (Chap. 6)

0 address [stack] Stack
1 address 1 accumulator
1 + x [index] address
1 + g [general register] address

Accumulator and index registers
General-register array

2address
3 address
n + 1 address

No explicit state

Section 2 1 The Computer Space 37

Table 1 (Continued)

Processor function
PMS structure (Chap. 6; (Chap. 6; Part 2,
Part 2, Sec. 3 , 4 , 5) Secs. 1 , 6, 7,8)

Switching (Chap. 6;
Part 2, Secs. 4 , 5)

1Pc 1:n[duplex] P.microprogram
1Pc[interrupt] Pc
1Pc-nPio n:m[time-multiplex] Pc[no io]
1Pc-nPio-P[displayl Pi0
2C[duplex] 2:n[dual-duplex] Pdisplay
n Pc[mu Itiprocessing] n:m[cross-point] P.language
nPc-P[arraylspecial algorithm] P.array
nPc[parallel processing] P.vector move
C[network] P.algorithm
Network n/2:n/2[non-hierarchy] P.fauIt.tolerant

Accessing algorithm
(Chav. 6) Mp.size (Chap. 6) Ms.size (Chap.6)

Mp.speed (bis) Ms.speed (bls)
(Chap. 6) (Chap. 6)

Linear [stack]
Linear [queue]
Bilinear Tape [large] > l o 5

@clic-random Disk [medium] magnetic card [large]
Cyclic Drum [large] Drum [small] photostore [large] >lo6

Random Core [medium] Core [smaller1 > l o 7 >lo7

Content Film [small] >lo8
Associative Integrated circuit >lo9

Interprocess communication Storage hierarchy
(Part 2, Sec. 2)Multiprocess environment (Part 2 , Sec. 2) (Part 2, Sec. 2)

1 process
1 process with interrupt-evoked processes

Subroutines and traps
Interrupts from 1/0

1 process with multiple concurrent subprocesses lnterprocessor interrupts
(for example, 1Pc.nPio)

Monitor or fixed process (M) + one-at-a-time Extracodes (programmed opera-
(variable) process tors for monitor calls)

M + n swapped foreground/background process Mapping function
M + n processes (multiprogramming) with swapping Synchronization Number of maps

No relocation producerlconsumer Allocation
1 segment P and V strategies
2 segments (pure, impure) Mailboxes Protection
>2 segments
Pages

M + n segments with shared processes Interprocess communication
Fixed-length paged segments
Multiple-length paged segments
Variable-lenath segments

Parallelism (Chap. 6; Part 2 , Sec. 3) Overlap (Part 2, Sec. 3)

Serial by bit Processor-1/0
Serial by character Processor-memory
Parallel by word Processor units
Parallel by bit slice Memory units
Parallel by vector
Parallel by array
Multiple control units
Multiple functional units
Replication of processors, memory, 1/0

38 Part 1 I Fundamentals Section 2 1 The Computer Space

Generation 1960 - -

Atlas
6 5000 Precomputer

(electromechanical\I

S/360

1 9 4 5 - -i:::'
I

S/360-91

HP 9 1 0 0 a Mark I
Third

small- and rnedlum-
scale Intearai lon) A R P A N E T

1950 -

PDP.1 1
S i370
HP 9810/9820/9830
TI-ASC
l l l iac I V F
Intel 8080 (vacuc. ubes)
Plur ibus
A L O H A N E T
TMS 1000
I C L 2900
S T A R A N
A L T O
C.mmn

Fourth
(large-scale 1975 1955 -

Tandem

Erhernel

HP 9 8 4 5 A

-vax 1 i / m o

(very large scale
integration) t$. 1 9 8 0 1960 -

Fig. 2. Time chart of computers covered in this book organized by
date of introduction.

Science Foundation in 1959. Notice that the Harvard Mark
machines, which were constructed from relays (hence electrome-
chanical) are accorded the place of honor as first-generation (but
Babbage is nowhere to be seen).

It is not appropriate to provide here an adequate history of
computer technology. The early story has often been told, starting
with Babbage and early mechanical calculators, through Hollerith
punched cards, on to the relay calculators at Bell Laboratories and
Harvard, up to the birth of electronic machines with ENIAC, and
finally to the stored-program concept with the von Neumann
machine at the Institute for Advanced Studies (IAS), EDSAC at
Cambridge University, and EDVAC at the University of Pennsyl-
vania (with the contemporary developments by ZUSE in Germany
often left out). The reader is referred to Rosen [1969] and
Lavington [1974 for example histories of computers.

Our' purpose here is to explore the fundamental principles in
computer engineering that have evolved and multiplied. The
computer space, for example, has a sufficient population density
that significant trends can be noted and illustrated by actual
machine example. The population density is also large enough to
support several families of related' computer structures. These
families offer a unique opportunity to observe trends and project
models in portions of the computer space where the values for
major dimensions are held constant.

Figure 2 lists the computers covered in this book. The
computer space in Table 1and the time chart in Fig. 2 provide an
overall framework for the book. We are now ready to consider
each of the dimensions individually.

References

hvington [19751; Rosen [19691.

'Usually via a compatible ISP.

Chapter 5

Function and Performance

Function

The most striking fact about function is the existence of only a
single major dimension, and with only a few values. Perhaps we
have taken a simplistic view of the functions that computers
perform, but we think our computer space represents reality: to
wit, there is remarkably little shaping of computer structure to fit
the function to be performed.

At the root of this lies the general-purpose nature of computers,
in which all the functional specialization occurs at the time of
programming and not at the time of design. However, it might
seem that specialized environments would not require all the
generality, so that functional adaptation would still be possible.
But this appears not to be so for two reasons. First, the level of
operations of the Pc (as defined in the ISP) is too basic to reflect
the kind of specialization offered by the environment (think of
information-transfer or conditional-transfer operations). Second,
all environments ultimately require a variety of tasks in addition to
the main specialized task. These include at least language
compilation or assembly, readable formatted output, debugging
aids, and other utility routines. By the time these have been
added, a substantial requirement for generality has been generat-
ed.

However, this is not the whole story. A second part is the
difference between the computer type and the specific configura-
tion assembled for a task. The latter is often carefully specialized
to the function to be performed. But this is mostly the amount of
Mp, the amount of types of Ms, and the number and types of T’s.
Within limits, these are all items that can be attached to any type
of computer (i.e., to any Pc) and are handled in an environment-
independent way. Thus there is little specialization of computer
types, but great specialization of particular configurations. That
this should be the case indicates something about the nature of the
functional specialization-that it can be expressed adequately in
gross PMS terms, as more bits of storage and more data rate.

There is still more to the story. Some functional specialization
exists, as indicated in the dimension. This depends primarily on
two kinds of things beyond the reach of the configurational
adaptation described above. The first consists of demands for low
power consumption, ruggedness, small size, etc. These have
strong effects on design, but below the ISP and PMS levels. The
second consists of demands for large amounts of processing power.
One response to this again affects design at the lower levels of
logic, devices, and circuitry and has little impact on design at the

ISP and PMS level. But response is also possible in terms of the
data-types that are built into the ISP. Large machines have
data-types that are appropriate to their tasks (with operations to
match), and these affect the design. In fact, this effect is the
substance of the functional specialization shown in the computer
space dimension.

Finally, there is one last part of the story, and it is the most
interesting of all. Various groups of computer engineers have felt
strongly from time to time that functional specialization should
exist, and they have set out to create such machines. These efforts
have often produced machines that were different ,from the
existing main line of computers, i.e., were appropriately special-
ized. But the net effect of almost all such attempts has been that
the new idea was seen to be good in general for all computers and
was taken back into the main line of computers. Thus, what
started out to be a functional separation turned out to be simply a
way to produce rapid development of a more universally applica-
ble computer. A classic example is the expansion of inputloutput
facilities in creating a functionally specialized business machine,
which simply led to better I/O facilities for all computers. We will
have more to say about such examples as we discuss the values
along the dimension.

The functional dimensions can be based on the environment of
the user’s intended application. The following discussion has
evolved from Bell and Newel1 [1971] and Bell, Mudge, and
McNamara [1978].

Table 1 elaborates the seven subdimensions by listing typical
functions for each. The functionality for each subdimension is
arranged in increasing order of complexity. The tabulation
illustrates that, for each discipline or environment, functionality
evolves to a form of direct, interactive use with multiprogram-
ming.

Scientific

The first machines were clearly designed for scientific calcula-
tions. For example, Aberdeen Proving Grounds funded the early
work on the ENIAC for the computation of ballistic firing tables.
The image used frequently by the early computer designers was
the computer as a statistical clerk, the arithmetic unit being the
desk calculator, the memory the work sheet, and the program the
instructions that the mathematician gave to the clerk.

From a design standpoint, scientific computation has posed two
striking requirements. The first is the great accuracy of the
numbers, which has led to word lengths of 36 to 64 bits (11to 19
decimal digits of significance) and arises from the discrete
representation of continuous functions, the propagation of round-
off error during arithmetic operations, etc. The second is the
emphasis on fast arithmetic operations, i.e., on arithmetic power.
In the early machines the standard rule for estimating computa-

39

40 Part 1 FundamentalsI

Table 1 DiscipIinelEnvironment-Based Functional Segmentation

Scientific?, engineering, and design
Numbers, algorithms, symbols, text, graphs: storage and

processing

Traditional batch cornputation?

Data acquisition?

Interactive problem solving?

Real time (includes calculators and text processing)

Signal and image processing?

Data base (notebooks and records)

Com mercial envi ron ment
Financial control industry, retaillwholesale, and distribution
Billing, inventory, payroll, accounts receivableipayable
Records storage and processing

Traditional batch data entry

Transaction processing against data base

Business analysis (includes calculators)?

Manufacturing control environment

Records storage and processing

Batch?

Data logging and alarm checking

Continuous real time control
Discrete real time control

Machine-based
People/parts flow

Communications, office, and publishing
Message switching
Front-end processing
Store and forward networks
Speech inputloutput
Terminals and systems
Word processing, including computer conferencing and
publishing

Transportation systems
Network flow control
On-board control

Education
Computer-assisted instruction
Algorithms, symbols, test: storage and processing
Drill and practice
Library storage

Home (using TV set)
Entertainment, record keeping, instruction, data base
access

tlmplies continuous program development.
Adapted from Bell. Mudge, and McNamara [I9781

tion times was to count the number of multiplications in a
program; all %else could he neglected. The arithmetic unit has
developed to where the floating-point multiply is hardly more
expensive than the floating-point add. This requirement for fast

Section 2 I The Computer Space

arithmetic, however, has really been directed at the logic design
level, not at the ISP or PMS level. Thus, the main effect at the ISP
is the adoption of long word lengths, floating-point data-types (in
addition to integers), and an extensive repertoire of arithmetic
operations in the ISP. The main PMS effect is the emphasis on the
classic “statistical clerk” PMS design.

The press for increased arithmetic processing has led in recent
times to the development of various forms of Pc concurrency, as in
the look-ahead of the IBM System/360 Model 91 (Chap. 18) and
the n-instruction buffer of the CDC 6600 (Chap. 43). This might
be considered a unique hnctional specialization for scientific
computation. Although the needs for scientific computation
initiated the exploration of concurrency and parallelism, these
hnctions are applicable in all computers above a certain pow-
er, whatever the task domain. Indeed, even microcomputers
prefetch instructions. Physical limits on component speed
and signal propagation will make these techniques universally
attractive.

A better case for permanent specialization can be made in the
special-algorithm computers, which compute the fast Fourier
transform or do vector operations. Here we finally have systems
whose whole design is responsive to a narrow class of problems.
This may extend to the very special kinds of Pc parallelism
exhibited by the ILLIAC IV (Chap. 20), although there is
substantial attempt at generality in such systems.

Whereas early scientific computers dealt mainly with numerical
data-types, their use has grown to include text and graphics. In
engineering applications, the scientific computer has evolved to a
sophisticated notebook for keeping specifications, designs, and
scientific records.

Commercial

In the early days of electronic computing it was felt by many that
there was a major functional separation between business comput-
ing and scientific computing. Scientific problems were “large
computing-small input/output”; business problems were “small
computing-large input/output.” Historically, the IBM 701 scientif-
ic computer, for example, used the Pc to control everything
dynamically, actually catching the bits from running tapes on the
fly (by executing well-timed small loops). These design efforts for
business computers resulted in the IBM 702 (and subsequently
the IBM 705, 708, and 7080). This machine had two major
innovations for IBM: it used characters, and it had a PMS
structure that permitted more flexible and voluminous input/
output. The latter feature was immediately incorporated into
scientific computers, e.g., into the 709, and then into all large

‘Such feelings are still extant. Whatever the validity of such feelings, the
important consideration is their effect on a particular period of computer
development.

scientific computers as separate input/output control (either Kio or
Pio), for it was realized that there were also demands on
input/output for scientific calculation. Thus the bifurcation was
temporarily halted.

The specialization to characters as a basic type (as opposed to
long words) was already present in the IBM 702 but did not have
its effect until 5 years later with the development of the IBM
1401. The latter machine was adapted to business, both in being
character-based and in being small enough that small businesses
could afford it. It was extremely successful (many thousands were
produced) and certainly represents a successful functional specia-
lization for business. However, it is interesting that the specializa-
tion has not been maintained, for the IBM System1360 (Chaps. 40,
41, 51, and 52) is againla single machine, although it has in essence
two internal ISPs, one centered around characters and the other
around floating-point data-types, that is, a business and a scientific
specialization residing side by side.‘

Manufacturing Control
The function of computers in both the manufacturing and the
commercial environments has evolved from simple record keep-
ing to direct online human control. Process-control, aerospace,
and laboratory instrument-control computers have evolved from
their initial use in assisting human operators (controllers) with
data logging and alarm condition monitoring to full control of
processes with either human or second-computer backup. The
structure of the computer and the control task varies widely
depending on whether it is a continuous process (e.g., refinery,
rolling mill) or a discrete process (e.g., warehouse, automotive,
appliance manufacturing). The role of the computer is to act as
a sophisticated control (K) in some larger physical process, and
thus it plays a subordinate role. The computers’ relatively late
arrival in this role was due to the high cost and unreli-
ability of early computers, as well as to the lack of necessary
interface equipment.

The functional specialization is seen most strongly in the word
size, which reflects the appropriate numerical data-type. The
numbers used in control processes are generated by physical
devices and are rarely better than 0.1 percent accurate. Since
elaborate arithmetic calculations are not called for, the numbers,
and hence the word size, can be around 12 bits. Most control
computers have been 8 to 18bits per word. A second specializa-
tion, again reflecting appropriate data-types, is that all control

‘The story above has been told exclusively in terms of IBM machines.
Although this does not distort the picture too strongly in terms of total
movements of the field, since IBM dominated the market, concurrent
developments were taking place throughout the field. UNIVAC I was the
first computer built by a manufacturer and did not have the idiosyncrasies
we ascribe to IBM; on the other hand, the marketing effort for it was less.

Chapter 5 I Function and Performance 4 1

computers are binary and have boolean operations. This arises
because many of the external conditions to be sensed and effected
are binary in nature.

About the only other functional specialization of control com-
puters is the interrupt capability to allow them to respond to
many potentially concurrent external conditions in real time. This
provides overlap of internal and external processing. This is
another possible example of functional specialization leading to
reunification rather than divergence, for it has again been widely
accepted that all general-purpose computers must have good
interrupt capabilities. However, in actuality, interrupts, though
not existing in early computers, were developed to obtain good
input/output facilities, not for control computers.

Communications, Office, and Publication
The functional specialization of communication could be taken as a
subfunction of a control computer. The function is mainly to
behave as a switch. In a message-switching application the
computer transfers messages from terminals (and links) into
primary (and sometimes secondary) memories and then transfers
them to other terminals (and links). In message switching,
messages are first stored and then forwarded. The computer in a
telephone exchange functions as a very sophisticated switch
control. Here the computer reads the off-the-hook signal, detects
the dialed numbers, rings the dialed parties, and finally sets the
switches to connect the telephones together. In some instances,
when it answers information inquiries about new telephone
numbers or reroutes calls to other phones, it hnctions as a
memory. Thus a communications computer is functionally a
switch or a control for a switch.

The main distinction between control computers and communi-
cations computers is that the task environment of the latter, since
it consists of digitally encoded messages (even in the case of the
voice telephone exchange), can be handled directly by the
communications computer. That is, the communications comput-
er can do the work of transshipment and storage as well as control.

Communications- and message-based computers have evolved
from telephone switching control, message switching, and front
ends to become dominant parts of communications systems. With
these evolving systems, the communications links have changed
from analog-based /transmission to sampled-data digital transmis-
sion. With all-digital transmission, data, voice, and video can
ultimately be used in the same system. Voice transducers enable
speech communications with the computer.

The Electronic Switching System (ESS) processors of Bell
Laboratories (Chap. 28) and BBN’s Pluribus (Chap. 23) are two
examples of communications computers.

Word processing (i. e., text creation, editing, and reproduction),

%Apparently introduced in the UNIVAC 1103.

42 	 Part 1 1 Fundamentals

together with long-term storage and retrieval, the transmission to
other sites (e.g., electronic mail), has evolved from several
systems:

1 	 Conventional torn-tape message switching (e.g., TWX,
Western Union, Telex).

2 	 Terminals with local storage and editing (e.g., Flexo-
writers, Teletype AS&, magnetic card/magnetic tape
automatic typewriters, and the evolving stand-alone word
processing terminals).

3 	 Large, shared text-preparation systems for centralized
document preparation, newspaper publication, etc.

4 	 Large systems with central filing and transmission (distri-
bution). These negate the need for substantial hard copy.
With these systems, text can be prepared either centrally
with the system or with local intelligent word processing
systems.

5 	 Computer conferencing. With this, people can sit at
terminals and converse with others without leaving their
office.

Transportation

Aircraft and trains (and probably, in the future, automotive
vehicles) require real time operation of both discrete and continu-
ous control systems. Control is carried out in two parts: on board
the vehicle and through the network (airspace, highway) that
carries the vehicle. The transportation control function dictates
three unique characteristics for the computer structure:

1 	Very high reliability to keep to a minimum the likelihood of
fatal mishaps

2 	 Very small size for on-board computers

3 	 Extreme operating and storage temperature range for
on-board computers, especially for automotive vehicles.

Education
The education environment uses systems that are a combination of
transaction processing (for the human interaction part), scientific
computation to simulate real-world conditions (i.e., physical or
natural phenomena), and information retrieval from a data base.
These systems are evolving from the drill-and-practice systems-
which use a small, simple algorithm-through simulation of
particular real-world phenomena, to knowledge-based systems
that have a limited, but useful, natural-language-communications
capability.

Home

Home computers are beginning to emerge. The dominant use to
date is in providing entertainment in the form of games that model

Section 2 1 The Computer Space

simple, real-world phenomena, such as Ping-Pong. Appliances are
beginning to have embedded computers that have particular
knowledge of their environments. For example, computer-
controlled ranges can cook food in standard ways. Alternatively,
cooking can be controlled by embedded temperature sensors.
Simple calculators to assist checkbook balancing have existed for
quite some time. These will soon evolve to provide written
transactions for recording and control purposes. Many domestic
activities are essentially scaled-down versions of commercial,
scientific, education, and message environments.

Another dimension correlated to function is class. (See Table 1
in the introduction to this section.) The class to which a computer
system belongs determines'its relative capabilities with respect to
computers in other classes (see Chap. 1).Thus the computer class
roughly determines the price and level of functionality achieved
(in Table 1)for hardwarehoftware system tailored to one of the
seven application environments.

Performance

Performance is measured in functions per unit of time or,
conversely, the time needed to complete a specific function. The
concept of performance exists all through the digital design
hierarchy (Table 2). At the semiconductor physics level, for
example, the time to drain the charge at a PN junction would
relate to the transistor turnoff time at the circuit level, which, in
turn, would determine gate propagation delay at the switching-
circuit level. Gate delays, along with the topological interconnec-
tion of the gates, determine the time to execute a register-transfer
operation. The sequence of register transfers, along with their
execution times, determines the time required to execute an
instruction. Finally, the system performance is determined by the
mix of instructions required for a particular application.

There are at least two types of performance measures: probabi-
listic and deterministic. Probabilistic measures take into account
statistical variations in the manufacturing process (e.g., transistors
will actually have a range of turnoff times), concurrent activity in
the system (e.g., gate propagation delay varies as a function of the
number of other gates it must switch, and the states of these other
gates vary with their inputs), and the system design (e.g.,
hardware and software). Deterministic measures attempt to
remove the variations by assuming worst-case, average-case, or
weighted-average statistics.

For the purposes of this discussion, statistical variations in the
first four levels (i.e., semiconductor physics, circuit, gate, and
register-transfer) will be ignored. These variations normally stem
from the processes of design and manufacturing (e.g., transistors
on different semiconductor chips will have slightly different
characteristics). Since the hardware must work under all condi-

Chapter 5 1 Function and Performance 43

Table 2 Performance

Factors at this level
Level Typical performance measure affecting performance

Semiconductor Time to drain charge from Junction dimensions
physics PN junction Doping concentration

Doping profile

Circuit Transistor turnoff time Transistor gain
Operating point of transistor as
determined by its interconnection
with other circuit elements (e.g.,
resistors or voltage supplies)

Stray capacitance, inductance

Gate Gate propagation delay Gate fan-in/fan-out

Register- Time to perform a register Data-path configuration (e.g.,
transfer transfer number of gates in data path)

Control organization

ISP Time to perform an Sequence of register-transfer

instruction operations

System Time to perform an Instruction mix in application
application 	 System software

System configuration

Variations in input to the

application

tions, conservative worst-case design practices usually eliminate increased performance (e.g., transfer rate from a disk) can be
the statistical variations.' absorbed in an existing system or what the most cost-effective

One of the primary uses of performance measures is in the component might be.
comparison of systems. The performance measure selected then Occasionally hardware performance parameters are used to
depends on the level of comparison to be used. Table 3 illustrates predict system performance. Frequently, manuhcturers will list a
some of these levels and some of the measures to be discussed in
the following subsections. 	 Table 3 Various Performance Measures as a Function of Level

Hardware Performance Measures Deterministic Probabilistic
Level measures measures

Because they directly reflect the state of technology, hardware
performance measures are the easiest to determine or derive. Hardware Single parameters Average instruction

Typical instruction execution time These measures are usually used in individual component selec-
tion (e.g., Mp, Ms, T). They can be used to determine whether time Information rate

Mp size

'Note that there are some design practices that can pass these variations 	 Multiple parameters Weighted average
Kiviat graph instruction execution up to the ISP level. For example, before the use of crystal clocks became

widespread, RC oscillators were widely used. Variations in R and C values time

could result in a -+ 10 percent variation in instruction timings. Asynchro- ISP CFA absolute and Benchmarks
nous protocols for communication between subsystems also introduce quantitative criteria
performance variations. Such subsystems respond only upon completion
of an activity. This allows the mixing of subsystems with different response System Instruction mixes Synthetic benchmarks

times (e.g., mixing of core and semiconductor memory) and thus makes Processor model Queuing models

performance dependent on the relative usage of each subsystem type. Knight's model

44 Part 1 1 Fundamentals Section 2 I The Computer Space

series of deterministic parameters to give a “feel” for the system
performance. Such a list might include:

Time to execute a register-register ADD instruction,
instruction-set size

Mp access time, cycle time, size

Cache access time, cycle time, size

Ms access time, transfer rate, size

Figure 1gives a PMS diagram of a basic computer that lists a set of
six primary parameters that could be used to specify system
performance.

Pc. Perhaps the single most important parameter is the perform-
ance of the processor. Historically, processor performance has
been measured in instructions per second (Us). The number of
instructions per second can be estimated by using the time of a
single representative instruction or by the average instruction

Mp (size: (byte);
speed”. (byte/s l)

Links for
informat ion flow

* Secondary measures

Pc (speed: (accessls);
data-types’: (=I;
context-sw.-rate”

(P

Ms IsIze: (byte);
speed: (bytels);
packing*. Ibvtelrecord)I

T.hu man
(speed: (bytels):
media”: (name)
direction: (half duplex I

T.communications
(speed: (bvteis l l

1 T.exteinalT.exteinalI
(speed: (bytels l .
media” ’ (name))

execution time (assuming all instructions equally likely). A more
accurate measure is a weighted average of instruction execution
time using weights derived from a general instruction mix or from
the intended application (see the ISP Performance Measures
section of this chapter for details).

However, because of variations in instruction semantics, the i/s
measure is not always accurate. Consider the following example,
which shows three different architectures with two implementa-
tions of a stack architecture (one has the stack in the primary
memory Mp and the other assumes the stack is implemented in
the processor Pc using fast registers). The hardware implementa-
tions are held roughly constant (the Pc-Mp data rate), and the
architecture is varied in order to compare the effect on perform-
ance. Note the difference in the various measures in what should
hndamentally be the same performance for a given problem.

A benchmark program will be used to illustrate the various
measures. The benchmark program is the simple expression A :=
B + C, composed of one statement and two operations (:=, +).
The statement execution rate (the actual performance) reflects the

removable1

not removable

Communication
wi th

Humans

Computers
Externalvia
communicationcommunication

links

External
electromechanical
orocesses

I i’r:

Fig. 1. Basic PMS computer structure model with six relevant performance/structuredimensions.

Chapter 5 1 Function and Performance 45

Stack Stack 1-address or
(top in M p) (top in Pc) general-reg. 3-address

Program push B
push C

push B
push C

load B
add C

Add B, C, A

add add store A
POP A POP A

No. of instructions 4 4 3 1

Accessest 4op' + 3a + 6d 40p' + 3a + 3d Sop + 3a + 3d lop" + 3a + 3d

Program size 64 64 72 60
bits$

Bits accessed 16 + 48 i192 16 + 48 + 96 24 + 48 + 96 12 + 48 + 96
= 256 = 160 = 168 = 156

Time to execute 0.5 + 1.5 + 6 0.5 + 1.5 + 3 0.75 + 1.5 + 3 0.37 + 1.5 + 3
(@)§ = 8 = 5 = 5.25 = 4.87

Statement execution 118 = 0.125 M 115 = 0.2 M 115.25 = 0.19 M 114.87 = 0.21 M
rate (actual
performance)

Operand rate 218 = 0.25 M 215 = 0.4 M 215.25 = 0.38 M 214.87 = 0.42 M

Instruction rate 418 = 0.5 M 415 = 0.8 M 315.25 = 0.57 M 114.87 = 0.21 M

Pc (accessesls) 1 M 1 M 1 M 1 M

top = operand, a = address, d = data

Sassumes addressla = 16 b; dataid = 32 b; op = 8 b; op' = 4 b; op" = 12 b

$Assumes a memory-limited processor which can access 32 b/ps

highest pe'rformance for the 3-address machine, whereas the language. In the case of multiprogramming systems (e.g., real
conventional instructions per second measure shows the &address time, transaction, and time sharing), the time to switch from job
machine to have the lowest performance (by a factor of 4 in to job is critical. Thus the process context-switching rate is also an
relation to the fastest machine). A more subtle m e a s u r e important attribute, since most large computer systems operate
operation-rate-is correlated with the true benchmark statement with some form of multiprogramming.
execution rate. It should be noted that, except for the first
machine, a stack machine with stack in Mp, the information rate Mp, Ms. The memory sizes (in bytes) for both primary and
(word accesses per second) is a better performance indicator than secondary memory give memory capability. The memory transfer
the conventional instruction rate measure. For more unconven- rates are needed as secondary measures, especially to compute
tional machines, instructions per second tends to become a memory interference when multiple processors are used. The Mp
significantly poorer measure. For various vectodarray machines transfer rate also tracks the access rate available to the Pc for
(e.g., ILLIAC IV, CDC STAR, CMY-1) which have to operate on secondary memory transfers and external interface transfers. For
at least 64 operands per single instruction, instructions per second file systems, which require multiple accesses to secondary
would be a poor measure. Hand-held calculators have single, memory for single items, the probabilistic measure of file access
complex instructions, such as sine and polar-to-Cartesian coordi- rate is needed for a more accurate performance estimate.
nate conversion. In this case using anything but a final benchmark Similarly, for multiprogrammed systems, which use secondary
problem would be misleading, and accesses per second is best as a memory to hold programs, the probabilistic measure of program
Pc performance measure. swapping rate is required.

The secondary Pc parameters include the number of data-types
and the context-switching rate. The number of data-types (e.g., T. human, T.communications, T.externa1. Communications ca-
scientific, string, character, lists, vectors) in the Pc gives an pabilities with humans, other computers, and other electronic-
indication of performance when it is operated with a particular ally encoded processes are equally important structure and

46 Part 1 Fundamentals1

performance attributes. Each channel (e.g., a typewriter) has a
certain data rate and direction (half-duplex for two-way communi-
cation but in only one direction at a time, full-duplex for
simultaneous two-way communication). Collectively, the data
rates and the number of channels connected to each of the three
different environments (people, computers, other electronically
encoded processes) signify quite different styles of computing
capability, structure, and function. For example, the absence of
any communications connection to other computers implies a
stand-alone system. Interconnection only to mechanical processes
via electronically encoded links implies a real time structure.
Similarly, only human intercommunication with multiple termi-
nals denotes a timesharing or transaction-processing orientation.

Kiviat Graphs

Figure 2 uses a Kiviat graph’ to display the six main
dimensions-processing, primary and secondary memory capaci-

’Kiviat graphs were first used to summarize work load-specific perform-
ance with dimensions such as Pc, Ms, P, busy, and relative amount of
time the Pc or Ms or Pi, is the only active subsystem [Ferrari, 19781.The
Kiviat graph concept has been adopted and modified in this text as a
means for summarizing hardware performance.

Fig. 2. A representative Kiviat graph.

Section 2 I The Computer Space

ty, and the three communication channels-in a single six-
dimensional graph, with three secondary dimensions. Each
dimension is shown on a logarithmic scale up to a factor of 1
million, with the value 1denoting the absence of an attribute
(e.g., where there is no communication with external systems
beyond human interaction). Various secondary measures are also
represented. In the case that a dimension takes on values greater
than 1million, all axes are multipled by a scale factor such that the
largest value will fit. The scale factor, if other than 1, is noted at
the top of each Kiviat graph. When a scale factor is used, the value
for some dimensions (e.g., communications with humans) may not
be large enough to plot. Rather than erroneously indicate the
absence of a dimension, the global scale factor is negated by
dividing by a local scale factor denoted by the divide sign (/). All
values are for the aggregated system. For example, the Ms
dimension represents the total number of bytes on secondary
storage (usually assumed to be disk unless otherwise noted).
Parameters of individual components can be plotted with a
multiplication factor (denoted by X) indicating the number of
identical components in the system. Multiplication factors, usual-
ly found on the Ms and T. human dimensions, are applied when
there is one dominant component type dictating the value of a
dimension. Occasionally dimensions are further specified (e.g.,
audio, video). The graph conventions include subtleties of
showing fixed points (i.e., ROM, or hardwired), averages, and
range. The arrangement of the six dimensions allows easy
recognition of a structure in terms of the relative mix of the
resource and performance attributes. Figure 3 gives a diagram of a
computer system in the same order as the graphs dimensions.

While designing the IBM System/360, Gene Amdahl postulat-
ed two rules of thumb for a balanced system. The first rule related
Pc speed with Mp size, stating that 1byte of Mp was required to
support each instruction per second. The second rule related Pc
speed with I/O bandwidth, stating that one bit of I/Owas required
to support each instruction per second. Note that if the Pc speed
is “balanced with Mp size according to Amdahl’s constant (1byte
of Mp per ips), then the value of the two dimensions should be
about the same. (In Fig. 2 Pc is accessing 2 million byte/s,
corresponding to, say, 600,000 Us, with Mp of 8 million bytes.)

Thus the Kiviat graph not only summarizes major performance
parameters but also graphically depicts the balance of a system.
The relative capacity of processor, memory, and I/O is immediate-
ly discernible from the Kiviat graphs.

Figure 4 shows how the six-dimensional plot can be used to
represent and differentiate various computing structures in which
we are interested. The first two structures are keyboard I/O; i.e.,
they use a single information transducer we know as the typewrit-
e r that has half-duplex I/O at 10 characters (or bytes) per second.
A IO-char/s teletypewriter is formed by adding a line interface.

The simple, early, fixed-function hand-held calculator, e.g., the
HP 35, had a fixed processing/memory structure with about 4 x

measures other computers

Fig. 3. Basic PMS computer structure diagram redrawn.

10 digits (or 20 bytes, to be more precise) of primary memory and
store, limited keyboard input, and a 10-LED (light-emitting
diode) output at about 10 charls. The internal fixed program was
stored in about 2,000 ROM bytes; hence there is a single, fixed
point on the graph, and the operation rate of the unit is fixed at
about 100 accesseds of the HP 35’s powerful data-types. The HP
65 programmable calculator is shown next, with various fixed
functions being replaced by programs; Mp and Ms are each 500
bytes. The functions in ROM, though still present, are not
apparent to the user and are therefore absent from the graph.

Figures 4e and f give graphs of various terminal structures,
beginning with a fixed-function terminal operating at 10,000
accessesis (or 100 pdaccess), with about 1,OOO bytes of local
memory and 2,400 bit/s, or 300 byte/s, access to a computer. The
intelligent terminal shown is programmable, with 20,000 Pc
accessesis operating on a 4,000-byte primary memory. Mass
storage, here a floppy disk, is also provided. Communication to
the external world is at 2,400 baud, or 300 byteis. Output to the
terminal screen is at 2,400 byte/s, or 19,200 bit/s, with input at 10
charis.

The next two systems (Fig. 4g and h) are remote job entry
stations, the first fixed-function and the second programmable.
The fixed-function station has two I/O channels, one of 2,400baud
(i.e., three hundred 8-bit bytes per second) for the card reader
and one of 4,800 baud (or 300 lineslmin or 5 line& at 120 bytes
per line = 600 byte/s) for the line printer. The second RJE
(remote job entry) terminal includes a Pc at 50,000 accesseds and
an Mp of 16 Kbyte. A tape unit of 50 Kbyte/s holds 300 Mbyte.

Chapter 5 I Function and Performance 47

Figure 4i is a programmable store-and-forward system with 16
Kbyte of Mp, a rate of 100,000 accessesis Pc, and a context-
switching time of 1ms. There are 32 lines of 10 to 150 bytels. The
four communication links to other computers operate at 600 or
1,200 byte/s (or 4,800 or 9,600 baud).

Figure 4j is a fixed-function remote full-duplex analog multi-
plexor with 16 channels operating at 16 x 100 byte/s and
multiplexed into a 1,200-byteis (9,600-baud) line; hence the line
limits the maximum sampling rate.

Figure 4k is a programmable remote stand-alone process-
control system. Note the absence of any lines to communicate
with other machines. A secondary memory system of 10 Mbyte is
used for communication with other computers. Net Pc (2,000
accessesis) and Mp (2,000 bytes) resources are given. Net
capabilities are those left after the other resources are managed.
One hundred transducers are sampled each 10 ms with three
transducers connected to humans at a data rate of 30 byteis.

The last series of systems (Fig. 4E, m, and n) are general-
purpose, multiprogrammed computers. The first is a batch system
with card and line printer. The next is a PDP-11/70 with 100 real
time inputs, 60 terminals, and 2 connections to other computers.
Finally, the PDP-lO/KLlO is a large, multiuser (100)timesharing
system.

Kiviat graphs will be used in conjunction with PMS diagrams
and ISP descriptions to characterize the computer systems
presented in Part 3.

ISP Performance Measures

We are more often concerned with characterizing the perform-
ance of an ISP than a particular implementation of that ISP. With
rapid changes in the performance of circuit technology, a comput-
er user may wish to estimate performance over a range of
implementations. Furthermore, the introduction of implementa-
tions at different times can reflect sufficiently different underlying
technologies, causing performance measures to be biased toward
the newer system. Thus, performance measures independent of
technology are helpful in making a long-term commitment to an
ISP with the intention of upgrading to new implementations.

An example of a performance measure depending solely on the
ISP is the number of bits per instruction. A larger bits per
instruction rating requires a higher memory-to-processor band-
width to support a given instructions per second rate. On the
other hand, a smaller number of bits per instruction may imply a
weak semantic content per instruction, thus requiring more
instructions to accomplish a given task. Clearly a number of
metrics are required, as well as methodology for establishing their
relative importance.

The following subsection describes the initial screening phase of
the Army-Navy Computer Family Architecture (CFA) Project
[Fuller, Stone, and Burr, 19771. In addition to several absolute

~48 Part 1 Fundamentals Section 2 I The Computer Space

Mp (byte1

PC iaccerrls) Ms lbytel

T external T humar
(bvteisl @T communication Ibvtelr l

ibytelr)

(a) Typewriter
~ ~_____

MP (byte1

PC Iaccesriri Mr Ibvte)

T external T. humar
ibvtelsl @T. communication ibvteisl

(e) Terminal with fixed function and local M

Iby telsl

Mu (byte)

Pc iaccerslsl@ibvtel

MP Ibytel

T communication
Ibvrelsl

(b) Teletype

MP Ibytei

Pc laccerr/ri MS(byte1

T external T human
ibvtelr l @T communication (bytelr l

video

ibytelr l

(f) T.intelligent, Ms. floppy, T.comm (2400
baud), MP (4 Kbv)

M u (byte)

' c (accerrlr)

Mp (byte)

P C laccerrlsl

T external
ibvtelr l (bvtelsl

TT communicationcommunication
IbytelslIbytelsl

(c) HP35 calculator (note fixed program)

Mu lbytel

P C Iaccesrlr)

T external
Ibvtelr l Ibvtelr l

T communication
ibvteir l

(9) Remote job entry terrnlnal

MpMp (byte)(byte) AllAll axes.axes. XX lo3lo3

P CP C laccessirllaccessirl MIMI lbyleilbylei

-

MUMU (byte1(byte1

'C'C laccessis1laccessis1 MsMs (byte)(byte)

T.T. externalexternal T.T. humanhuman
(bytein1(bytein1 @@TT communicationcommunication ibvtels)ibvtels)

(bVtelPl(bVtelPl

-
(d) HP65 program calculator

Mp (byte1 All axes X 10:

' C iaccesslsl Mr lbytei

T external@03 card printT. human

Ibvtelr) (bytelsl

T communication
(byteid

(hl RJE front end

~

MP (byte] AII axes x l o 3 -
' C Laccerr/rl Mr (byte)

T external
Ibytel i t

T human
(bytelr l

T human
(byteis)

T.T. externalexternal
iibybyteltel I)I)

TT humanhuman
lbytels)lbytels) bytelrl Ibyteis)

(1 1

T communication
i b y t d d

Store and forward switch wI32T's

Mp (byte) All axes. x lo3

(1)

T communication
ibytelL1

Remote AIDIA rnultiplexoi

MU (byte) All axes' X lo3

T communication
lbytelr l

(k) Remote, standalone process control

T CommUnication
ibytelr l

(I) PDP- 11/70

Pc iaccersld Mr ibvtel

T external
lbvtels) ibytelrl

T externa l
ibytels)

T human
Ibytelr l

T communication
(bytelrl

(m) PDP-11/34 Batch

T communication
Ibvtelsl

(nl KLlO

Fig. 4. Examplesof Kiviat graphs for various computing systems.

Chapter 5 I Function and Performance 49

criteria representing the minimum state of the art in ISP design,
17 quantitative criteria were selected to differentiate between
IS%. In order to reduce these measures to a single metric for
comparison, a weighting scheme was utilized. Potential users
weighted each parameter according to their subjective estimate of
the importance of the parameter to their application. These
quantitative measures (with their relative weights given in
parentheses) fell into four general areas:

Measures of ISP growth or stretch potential. Examples
include virtual and physical address space size and op code
density (weight .273).
Measures of responsiveness to I/O. Examples include size
of Pc state, I/O initiation, and maximum interrupt latency
(weight .404).
Measures of ease of programmability, including subroutine
linkage, virtualizability, and direct addressability (weight
.269).

Measures of software capture, including estimates of the
usage base (weight .057).

It is interesting to note that the weighting factors were relatively
constant, with a slight skew toward I/O responsiveness (e.g.,
average weight was .059, while I/O initiation had a weight of. 1238
and maximum interrupt latency had a weight of .0917).

Ultimately, the accuracy of the quantitative criteria depends on
the accuracy of the weights assigned to the parameters and, to
some extent, on the machines involved in the sample. The
derivation of the weighted, normalized averages approximates a
point-accumulation game. A certain number of points are collect-
ed per parameter. Several computers with similar values for a
given parameter divide the points for that parameter among them.
If an unusual ISP excels in one attribute, it might gather the vast
majority of points for that parameter.* For example, when the
PDP-8 was added to the list of nine computers in the CFA study,
the PDP-8 finished a strong second to the Interdata 8/32. The
PDP-8, with a 12-bit word, accumulated many points in the I/O
area while losing only a little ground in areas where the other nine
computers were competing with each other.

Thus, before using the CFA quantitative criteria, the user
should test the limitations of the weighting mechanism by trying
different weights and different mixes of computers. Easy to gather
data for and easy to apply, the quantitative criterion is a good
exercise for the student.

‘Consider nine ISPs. Eight require 16 bits to initiate 110, one requires 12
bits. Assuming that smaller is better, the normalized weights become ,972
for each 16-bit machine and 1.296 for the %bit machine. The 12-bit
machine will gamer 33 percent more points in this category.

Initial Screening2

Absolute Criteria. The CFA selection committee specified nine
absolute criteria that it felt a candidate computer architecture
needs to satsify if it is going to meet the requirements of future
military computer systems. All the absolute criteria (with the
exception of the subsetability criterion) had to be satisfied by an
implementation of the architecture which was operational by 1
January 1976. This eliminated speculative decisions based on
promises or potential solutions that looked inviting, but might not
come to fruition. Failure to satisfy any absolute criterion resulted
in the elimination of the architecture from hrther consideration.
The nine absolute criteria are given below.

Virtual memory support The architecture must support a virtual
to physical address translation mechanism.

Protection The architecture must have the capability to add
new, experimental [i. e., not fulEy debugged) programs that may
include 110 without endangering reliable operation of existing
programs.

Floating-point support The architecture must explicitly support
one or more jloating-point data types with at least one of the
formats yielding more than 10 decimal digits of sign$cance in the
mantissa.

Interrupts and traps It must be possible to write a trap handler
that is capable of executing a procedure to respond to any trap
condition and then resume operation of the program. The
architecture must be dejined such that it is capable of resuming
execution following any interrupt (e.g., power failure, disk read
error, console halt).

Subsetability At least the following components of an architec-
ture must be able to be factored out of the full architscture:

a. Virtual-to-Physical Address Translation Mechanism

b. Floating Point Instructions and Registers (ifseparate from
general purpose registers)

c. Decimal Instructions Set (if present in full architecture)
d. Protection Mechanism

In order to retain program compatibility across the implemen-
tations of the architecture, this criterion was extended to include
the following requirement: The trap mechanism of the architec-

*Abstracted from S. H. Fuller, H. S. Stone, and W. E. Burr, “Initial
Selection and Screening of the CFA Candidate Computer Architectures,”
AFlPS Con$ Proc., vol. 46, June 1977, pp. 139-146.

50 Part 1 I Fundamentals Section 2 I The Computer Space

ture must be defined such that instructions in the full architec- reasonably successful architectures, but is partly the result of not
ture, but not implemented in the subset machine, trap on the defining these criteria precisely enough prior to applying them to
subset machine and that it be possible to write trap routines for the candidate architectures. For example, by not clearly defining
the subset machine that allow it to interpretively execute those how to test for the practical subsetability of an architecture, we
instructions not implemented directly in hardware (or firmware) made it virtually impossible for an architecture to fail this
and then resume execution. (This is an elaboration of the criterion. Subsequent studies would be well advised to consider
interruptltraps absolute criterion.) more precise definitions of these (and any additional) absolute

criteria before evaluating alternative architectures against them.
Multiprocessor support The architecture must support some
form of “test-and-set’’ instruction to allow for the communication Quantitative Criteria. In addition to the absolute criteria, the
and synchronization of multiple processors. CFA committee specified seventeen quantitative criteria that it

felt would be helpful in the initial screening process. A number of
Inpudoutput controllability A processor must be able to exercise these quantitative criteria measure attributes of a computer
absolute control over any I10 processor andlor I t 0 controller. architecture better measured by benchmarks, or test programs

[Fuller et al., 1977133. However, the CFA committee recognized
Extensibility The architecture must have some method for that it did not have the resources to run benchmarks on all nine
adding instructions to the architecture consistent with existing candidate architectures and therefore proceeded with the use of
formats. There must be at least one undefined code point in the these quantitative criteria to help select three or four candidate
existing opcode space of the instruction formats. architectures, out of the original nine candidate architectures, for

more intensive study via test programs.
Read-only code I t must be possible to execute programs from The quantitative criteria are described below and the score of
read-only storage. each architecture on the quantitative criteria is given in Table 5.

Table 4 shows the score of each candidate architecture on each
of the absolute criteria. Note that none of the nine architectures Virtual address space
failed to meet the last five criteria: subsetability, multiprocessor
support, IIO controllability, extensibility, and read-only code. Vl: The size of the virtual address space in bits.
This is in part the case because we limited our evaluation to Vp: Number of addressable units in the virtual address space.

Table 4 Candidate Architecture Value for Absolute Criteria

Candidate computer architectures
~~~ ~ 

Rolm 
Inter- ANIUYK- DEC. Univac Burroughs Univac Litton 

Absolute criterion I B M  ,51370 Data 8132 287 PDP-11 ANIW K-7 SEL 32 B6700 ANIW K-20 ANIGY K-12 

1 Virtual memory Y Y N Y Y N Y N Y 
2 Protection Y Y Y Y Y Y? N N Y? 
3 Floating point Y Y Y Y N Y Y Y N 
4 lnterruptsltraps Y ? Y Y Y Y Y Y Y 
5 Subsetability Y Y Y Y Y ?  Y Y? Y Y? 
6 Multi processor Y Y Y Y Y Y Y Y Y 
7 l/O controllability Y Y Y Y Y Y Y Y Y 
8 Extensibility Y Y Y Y Y Y Y Y Y 
9 Read-only code 

summary 
Y 
Y 

Y 
? 

Y 
N 

Y 
Y 

Y 
N 

Y 
N 

Y 
N 

Y 
N 

Y 
N 

Y Yes, meets criteria 

N No, fails criteria 

Y? Yes (but with some reservations) 

? Unresolved 

tThe AN/UYK-28 is instruction-set upward-compatible with the Data General NOVA computer archltecture. Other ROLM computers that are also compatible 
with the NOVA architecture are the ANIUYK-19 and AN/UYK-27. The AN/UYK-28 is incompatible with the Data General ECLIPSE computer architecture, Data 
General’s upward-compatible extension of the NOVA. 



Chapter 5 I Function and Performance 51 

Table 5 Candidate CFA Values for Quantitative Criteria 

Candidate CFA’s 

Quantitative Inter- Rolm DEC Univac Burroughs Unizjac Litton 

# criteria I B M  S1370 Data 8132 A N I W  K-28 PDP-11 A N I W  K-7 SEL  32 B6700 A N I W  K-20 ANIGY K-12 


1 V i t  27 27 20 20 24 22 24 20 20 

2 V2t 27 27 20 19 24 22 20 17 20 

3 P,t 27 27 228 25 23 26$ 24 20 29 


4 P2t 27 27 22t 24 23 26% 20 17 29 
5 U ,371 .355 ,039 .043 .15 ,450 .019 ,125 ,219 
6 csi 1344 1632 1008 1168 992 304 306 1328 1008 
7 CS2 576 576 112 144 448 288 204 336 752 
8 c m i  31 68 1120 1882 736 1472 768 408 2256 1344 
9 c m 2  1312 32 544 430 1472 704 408 720 1088 

10 K 1 0 0 1 0 0 0 0 0 
11 B, 17,300 185 13,8001 14,700 346 75 90 400 30 
12 B2ll 16,000 14 169 31 1 147 23 207 8 6 
13 I 64 16 48 16 128 64 169 80 32 
14 D 15 27 20 19 18 22 18 20 20 
15 L 61 92 560 114 112 2112 288 255 - 1376 
16 J, 1904 2368 1360 1040 1280 960 459 1408 1344 
17 J2 1136 1280 320 400 1280 960 459 640 1088 

?These values are of the form 2” where x = indicated data except for B6700 which IS of the form 3(2”). 
:With memory bank switching. 

§Includes Novas. 

TMillions of dollars. 

Physical address space the processor and primary memo% to Jirst save the 
processor state of thefull architecture upon interrup- 

PI: The size ofthe physical address space in bits. tion and then restore the processor state prior to 
Pz: The number of addressable units in the physical address resumption. This measure differs from Csl, above in 

space. that “register bank switching,” where provided for in 
the candidate architectures, may eliminate the need to 

Fraction ofinstruction space unassigned Let it be defined as the save some registers in primary memory, while the 
instruction fetches required to save the state arefraction of the instruction space in the architecture that is 	 included in C,1 but not in C,].unassigned. Specifically: C,e: 	 The measure analogous to C,, for the minimum subset 
of the architecture. 

Usage base 

where ui is the number of unassigned instructions of length i. B1:  Number of computers delivered as of the latest date for 
which data exist prior to 1 June 1976. 

Size of central processor state Bz: Total dollar value of the installed computer base as of the 
latest date for which data exist prior to 1 June 1976. 

CS1: The number of bits in the processor state of the full 
architecture. VO initiation 

Cs2: 

Cml: 

The number of bits in the processor state of the 
minimum subset of the architecture (i.e., without 
Floating Point, Decimal, Protection, or Address Trans- 
lation Registers). 
The number of bits that must be transferred between 

I: The minimum number of bits which must be transferred 
between main memory and any processor (central, or IIO) 
in order to output one 8-bit byte to a standard peripheral 
device. 



52 	 Part 1 1 Fundamentals 

Virtualiza bility 

K: 	 is unity if the architecture is virtualizable as dejned in 
Popek and Goldberg 119741; otherwise, K is zero. 

Direct instruction addressability 

D: The maximum number of bits of primary memory which 
one instruction can directly address given a single base 
register, which may be used but not modified. 

Maximum interrupt latency Let L be the maximum number of 
bits which may need to be transferred between memory and any 
processor (central processor, 110 controller, etc. ) between the 
time an interrupt is requested and the time that the computer 
starts processing that interrupt (given that interrupts are ena- 
bled). 

Subroutine linkage 

The number of bits which must be transferred between 
the processor and memory to save the user state, transfer 
to the called routine, restore the user state, and return to 
the calling routine, for the full architecture. No parame-
ters are passed 

JI: 	 The analogous measure to J I  above for the minimum 
architecture (e.g. ,without Floating Point registers). 

J I :  

Composite Score of the Quantitative Criteria. After applying 
the quantitative criteria just discussed, the CFA committee had to 
determine how the performance of the candidate architectures on 
these criteria would be used to screen out all but three or four of 
the architectures for further consideration in the test program and 
software evaluation phases of the study. Clearly, the candidate 
architectures should be ordered relative to each of the seventeen 
quantitative criteria and these independent orderings studied to 
detect weaknesses and strengths of the competing architectures. 
However, some summary measure was ultimately needed to assist 
the committee in its selection of the final architectures to undergo 
more intensive study. A variety of thresholding and weighing 
schemes were proposed, but the particular scheme that follows 
was the scheme chosen by the CFA committee. 

Relative weighing of criteria Each voting organization of the 
CFA committee was given 100 points to distribute among the 
various measures to indicate their relative importance to 
the organization. The weight for criterion x, W[x], was defined 
as the total number of points given criterion x by all the voting 
CFA organizations, divided by the total number of points handed 
out. The weights for the quantitative criteria based on responses 
from 24 voting CFA committee members is given in Table 6. 

Section 2 I The Computer Space 

Table 6 Quantitative Criteria Composite Weights 

Full CFA 
Committee 

Criterion Army weights 

~~~ ~ 

Navy weights weights

Vl .0412 ,0444 ,0433
v2 . o a a .0575 ,0529
P, .0425 ,0706 .0612
P2 ,0387 ,0637 .0554
U .0513 ,0644 ,0600
CSl ,0587 ,0375 .0466
c s 2 ,0675 ,0219 .0371
Cm, ,0700 .0544 ,0596
C m z .0713 ,0319 ,0450
K ,0500 .05a7 .055a
B, ,0450 .0244 .0313
9, ,0200 .02a1 .0254
I ,0875 ,1419 . i m a
D .0912 ,1081 .lo25
L .oa12 .0969 ,0917
Ji .0637 .0626 .0629
J2 ,0762 ,0331 ,0475

Normalization When attempting to combine these quantitative
measures into a composite measure we faced two problems:

a 	 The measures are defined such that good computer archi-
tectures maximize some measures and minimize others.
Specifically, the measures that a computer architecture
should maximize are: V1, VZ, PI, Pz, U, K, BI, Bt, and D;
while the measures that should be minimized are: C,1, C,z,
C m l , Cm2, 1, L, J1, and Jz.

Let our composite measure be a maximal measure and trans-
form all minimal measures to maximal measures by taking the
reciprocal: X’= 1/X.

b 	 Measures that inherently involve large magnitudes are not
necessarily more important than smaller measures. For
example, V1 is on the order of lo4to lo9while K is either 0
or 1.

To resolve this problem of differing scale, the values for the
quantitative criteria were normalized by dividing each value by
the average value of the criterion over the set of nine architec-
tures. For example, the nine measures for criteria I are (64,16,48,
16, 128, 64, 169, 80, 32), the average value is 68.6, and the
normalized measures are (0.93, 0.23, 0.70, 0.23, 1.87, 0.93, 2.47,
1.17, 0.47).

Normalized measur.es have the attractive properties that they
all lie in the range (0,M); have a mean across the set of M
architectures of unity; and the standard deviation of the set of

Chapter 5 I Function and Performance 53

normalized measures is in the interval (0, M0.5). We could have
taken the normalization process a step further and adjusted the
spread of each measure so that the measure gave a standard
deviation of unity (or some other constant) across the set of
architectures being evaluated. We did not do this for all measures.
Some measures were better “discrimination functions” than
others and we did not want in general to lose this information by
further normalization. However, the committee agreed that it is
important to normalize the standard deviation of some of the
measures; specifically, V1, Vz, PI, Pz, and D were normalized to
have a mean and standard deviation of unity. These measures may
differ by several orders of magnitude between candidate architec-
tures, but the CFA Committee did not feel that the utilities, as
expressed by the measures, differ by orders of magnitude.

Scalingand composition ofthe quantitative measures In order to
combine the individual measures the committee used a simple,
linear sum of each normalized measure X scaled by its corre-
sponding weighing coefficient W[X]. The weighing coefficients
have been defined so that they sum to unity and hence the
composite measure A is in fact a normalized measure with a mean
of 1. Using the weights given in Table 6 and the values of the
quantitative criteria given in Table 5 we get the composite
measures for the candidate architectures shown in Table 7.

System Performance Measures

In order to measure the performance of a specific computer (e.g.,
a PDP-11) it is necessary to know the ISP, the hardware
performance, and the frequency of use for the various instruc-
tions. The execution time T is the dot product of the fractional
utilization of each instruction Ui and the time Ti to execute each
instruction.

There are three ways to estimate the instruction utilization U
and hence obtain T; each provides increasingly better answers.
The first simply defines either a typical or average instruction.
The second uses “standard’ benchmarks to characterize precisely

Table 7 	 Ranking Based
on the Quan-
titative Criteria

~

Architecture Score

lnterdata8/32 1.68
PDP-11 1.43
IBM S/370 1.36
AN/GYK-12 0.94
ROLM 0.92
B6700 0.91
SEL-32 0.86
AN/UYK-7 0.46
AN/UYK-20 0.44

a machine’s performance. In this way machines can be compared
according to an absolute measure. The third would be the use of a
specific, unique benchmark when the actual use has not been
characterized in terms of the standard benchmark (and may even
not be easily characterized in terms of it). This last alternative is
needed for real time and transaction processing, where computer
selection and installation is predicated on doing the job exactly.

Typical Instructions

The simplest single parameter of performance-instruction time
for a simple operation (e.g., ADDkwas used in the first two
computer generations, especially since high-level languages were
less frequently used. Such a metric is an approximation of the
average instruction time. It assumes (I) that all machines have
about the same ISP (hence there is little difference among
instructions); or (2) that a specific data-type will be used more
heavily than another; or (3) that a typical add time will be given
(e.g., the operand is in a random location in primary memory cell
rather than being cached or in a fast register).

It is possible to determine the average instruction time by
executing one of every possible instruction. However, since the
instruction use depends so much on the program data they
interpret, this metric is poor. A better measure is to keep statistics
about the use of all programs and to give the average instruction
time based on use of all programs. “he usefulness of such a
measure is for the comparison of two different implementations of
the same architecture. It is inadequate when applied to specific
usage.

Early attempts to make more accurate characterizations were
based on weighting the instruction use (i.e., forming a typical U)
according to task (e.g., floating-point versus indexing and cha7ac-
ter handling) to give a better performance measure. Instruction
mixes were developed which better evaluated performance (see
Table 8).

Studies of frequency counts of instruction executions have been
described by several authors. The best known is the Gibson mix,
developed by Jack C . Gibson at IBM in 1959. Gibson divided the
instructions of the IBM 704 and 650 into 13 classes and counted
how many instructions of each class were executed. His sample
size was 17 programs, approximately 9 million instructions. The
results are described in Gibson [1970]; we tabulate them in
Table 8.

Gonter [1969]has compared the Gibson mix and the University
of Massachusetts mix, using essentially the same classification and
tracing 15 million instructions on the CDC 3600. His results
correlate well with Gibson’s; they are tabulated in Table 8.

The Carnegie-Mellon data are based on a dynamic trace of 5.3
million instructions on a PDP-10 over six programs written in five
languages (ALGOL, BASIC, BLISS, and two variations of FOR-
TRAN), one algorithm written by four different programmers, the
five compilers, and a large scientific program [Lunde, 19771.

54 Part 1 Fundamentals Section 2 1 The Computer Space

Table 8

Class

Percentageof Executed Instructions

I B M
6501704,Gibson’s

results

CDC
3600, U . Mass.?

results

Machine

PDP-10, C M U $
results

PDP-11, DEC
results

S/360, U. of
Toronto
results

H P 3000,
HP results

Load, store 31.2 30.0 42.4 22.4 48.1 34.O
Branches 16.6 38.3 28.2 33.7 17.7 16.0
Fixpoint add, subtract 6.1 1.2 12.4 19.0 10.2
Compares 3.8 1.2 12.5
Floating add, subtract 6.9 0.5 4.9 0.0
Floating multiply 3.8 0.5 2.6 0.0 33.0
Floating divide 1.5 0.2 1.1 0.0 0.0
Fixpoint multiply 0.6 0.1 1.1 0.0 0.0
Fixpoint divide 0.2 0.1 0.5 0.0 0.3 I
Shifting 4.4 2.2 3.9 4.6 4.4 1.o
Logical 1.6 0.5 1.o 4.3 4.9 5.0
Miscellaneous 5.3 0.0 1.5 3.3 7.0 11.0
Indexing 18.0 13.4 0.0
Fullword 6.9 0.0
1/0control 0.o 0.1 0.0
lnterregister transfer 5.0 0.0 0.0
Monitor communication 0.o 0.2 0.0
User UUOs 0.3 0.0

The classes are not equally applicable to all ISPs, as indicated by leaders. This applies in particular to index register instructions.

In Gibson’s original classification, use of indexing was counted as an extra instruction in the “Indexing” class; the “Compare“ class
consisted of the 3-way skips in the 704.
In the U. Mass. version of the Gibson classification, the “Compares” class consists of all the vector search operations, “Indexing” is all the
index-register instructions, “Fullword” is all the 48-bit instructions. The “lnterregister transfer” class also includes other instructions that
manipulate only the processor state.
Gibson’s results were obained by using mostly scientific programs, but also some business data processing programs, coded in un-
specified languages.
The U. Mass. results were obtained by using assembly- and FORTRAN-coded programs, including the FORTRAN compiler and the
assembler.

tU. Mass. = University of Massachusetts.

K M U = Carnegie-Mellon University.

The DEC results were obtained from tracing 7.6 million structured system programming language (SPL). The benchmark
instructions of an assembler, editor, various compilers (DIBOL, included 14 interactive sessions of making inquiries to a data base
FORTRAN, BASIC, PASCAL), and four application programs [Blake, 19771. The inquiry programs were written in COBOL and
[Strecker, 1976al. used the HP 3000’s Image data base facility. Three other sessions

The University of Toronto mix [Alexander, Gregg, and Wort- engaged the BASIC interpreter in interactive program develop-
man, 19751 traced almost 9 million instructions from 19 XPL ment. There were five more sessions using the Editor to
programs consisting of student-written compilers and the XPL manipulate COBOL source statements. In addition, three jobs
system.. The Rx (register-indexed storage) instruction load (L) were running in batch. One was a COBOL compilation, another
represented over 27 percent of the instructions executed. an RPG COMPILE AND GO, and the third an SPL COMPILE
BRANCH ON CONDITION and STORE added a further 14 AND GO, including a SORT. Blake does not give sufficient detail
percent and 10 percent respectively. to break down the stack and immediate operations into the

The HP 3000 is a stack-based machine supporting a block- individual categories in Table 8 (e.g., compares and fixpoint add

Chapter 5 1 Function and Performance 55

and subtract). However, Blake indicates that LOAD TO TOP OF of the techniques that appear in Part 2 of this book are listed in the
STACK (18 percent), BRANCH ON CONDITION (10 percent), table. This model will be illustrated on actual systems in Chap. 39
and STORE FROM TOP OF STACK (7 percent) are the most and in Sec. 5of Part 4.Table 9 represents yet another organization
frequently executed instructions. of the computer space dimensions.

Other, similar mixes and experiments are reported by Arbuckle Knight [1966] (Fig. 5) extends the concept of a typical instruc-
[1966], Connors, Mercer, and Sorlini [1970], Raichelson and tion model to the system level by introducing I/O. Rather than an
Collins [1966], and the early study done by Herbst, Metropolis, absolute measure of performance, Knight's model is the product
and Wells [1955]. of three factors: processing time, memory size (in words), and

word length.
The formula was derived (roughly) to measure power so that

Typical Lnnstruction Models technological change could be modeled. Applying the formula is
It is possible to predict performance on the basis of a small like measuring automotive vehicle power as a product of speed,
number of fundamental deterministic measures. Such a model is weight, and the number of wheels. (Such an indicator is roughly
illustrated in Table 9. Performance is related to terms for the proportional to a car's momentum.) Thus, although it is a
processor and memory. Each parameter is affected by various reasonable single-number indication for power, a computer buyer
implementation techniques as well as by basic technology. Several could not use it directly.

Table 9 A SimDle Model of Processor Performance

1
= K,t, + K2tZPerformance

processor memory read pause

logic

Number of microcycles per machine instruction: Memory used per operation:

K, (microcycles/operation) K, (bitdoperation)
Ways to decrease K,: Ways to decrease K,:

Multiple registers or register sets Increase operand bits/instruction
Multiple data paths (e.g., scalar vs. serial data-
Multiple function units types, vector vs. scalar data-
Processodrnemory overlap types)
Fewer microsteps (microinstruction More efficient ISP
decoding, more parallelism, etc.)

Multiplexing processor logic (e.g.,

CDC 6600 barrel)

More efficient ISP

Tailor microcode flow according to rnacro-

instruction usage frequency

Data-path cycle time: Memory access time:

t, (seconddmicrocycle) t2 (seconddbit)
Ways to decrease t,: Ways to decrease t,:

Faster technology (e.g., for whole Faster technology

data path or only critical Apparent speedup (e.g., l/O

components) spaces, caches)

Shorter microcycles (e.g., multiple- Widening word access (e.g., mak-

length microcycles) ing data path wider, multiple

More efficient microinstruction fetch fetches on a multiplexed bus)

(microcoded machines only) (e.g., More efficient utilization of

interleaved control stores, multiple bandwidth (e.g., instruction

microword fetch, pipeline microword prefetch, processor/memory

fetchiexecution) overlap)

1 	 Section 2 1 The Computer Space56 Part 1 Fundamentals

Variables-attributes of each computing system

p - = the computing power of the nth computing system

L = the word lengths (in bits)

T = the total number of words in memory

t,. = the time for the Central Processing Unit to perform 1million operations

tl,o = the time the Central Processing Unit stands idle waiting for 1/0 to take

place WI1km = the time for the Central Processing Unit to perform 1fixed point addition
A, = the time for thecentral Processing Unit to perform 1floating point addition
M = the time for the Central Processing Unit to perform 1multiply
D = the time for the Central Processing Unit to perform 1divide
L = the time for the Central Processing Unit to perform 1logic operation
B = the number of characters of 1/0 in each word WOl
KIT = the Input transfer rate (characters per second) of the primary 1/0 system
Kol = the Output transfer rate (characters per second) of the primary 1/0system
KIz = the Input transfer rate (characters per second) of the secondary 1/0system
Koz= the Output transfer rate (characters per second) of the secondary 1/0

system

S1 = the start time of the primary 1/0 system not overlapped with compute

HI = the stop time of the primary I/O system not overlapped with compute

Sz = the start time of the secondary 1/0 system not overlapped with compute

HZ = the stop time of the secondary 1/0 system not overlapped with compute

R1 = 1 + the fraction of the useful primary 1/0 time that is required for non-

overlap rewind time

Semi-constant factors 	 Values

Scienti$c commercial

Symbol Description computation computation

WF the word factor
a. 	 fixed word length memory 1 1
b. variable word length

memory 2 2
c1 	 weighting factor representing

the percentage of the

fixed add operations

a. 	 computers without index

registers or indirect
addressing 10 25

b. 	 computers with index
registers or indirect
addressing 25 45

I

-
Fig. 5. Knight's functional model algorithm to calculate P for any

computer system. (Courtesyof Datamation, vol. 72, no. 9, Septem-

ber 1966, p. 42.)

weighting factor that indicates
the percentage of
floating additions

weighting factor that indicates
the percentage of
multiply operations

weighting factor that indicates
the percentage of
divide operations

weighting factor that indicates
' the percentage of
logic operations

percentage of the 1/0 that
uses the primary 1/0 system
a. 	 systems with only a

primary 1/0system

b. systems with a primary and

secondary 1/0 system
number of input words per

million internal operations
using the primary
1/0system
a. magnetic tape 1/0 system
b. other I/O systems

number of output words per
million internal operations
using the primary
1/0 system

number of input/output words
per million internal
operations using the
secondary I/O system

number of times separate data
is read into or out of the
computer per million operations

overlap factor 1-the 	 fraction
of the primary 1/0 system's
time not overlapped with
compute
a. 	 no overlap-no buffer
b. read or write with com-

pute-single buffer
c. 	 read, write and com-

pute-single buffer

d. 	 multiple read, write and

compute-several buffers
e. 	 multiple read, write

and compute with

program interrupt-

several buffers

overlap factor 2-the 	 fraction
of the secondary I/O
system's time not over-
lapped with compute

the exponential memory
weighting factor

10. 0

6 1

2 0

72 74

1.0 1.o

variable variable

20,000 100,000
2,000 10,000

the values are the
same as those given
above for Wrl

the values are the
same as those given
above for WI1

4 20

1 1

.85 .85

.7 .7

.60 .60

.25 .55

values are the same
as those given above
for OL1, a through e

.5 ,333

Benchmarks

A carefully designed standard benchmark gives the best estimate
of real use, because the benchmark is totally understood and can
be run on several different machines. Several organizations,
especially those that purchase or use many machines extensively,
have one or more programs characteristic of their own particular
work load. Whether a standard benchmark is of value in char-
acterizing performance depends on the degree to which it is
typical of the actual computer’s use. A further advantage of
standard benchmarks is that they are written in the higher-level
language to be used by the computer; hence they reflect the
application as well as characterizing the language machine
architecture.

The strongest advantage of the benchmark scheme is that it can
handle a total problem and integrate all features of the computer.
But there is a difficulty. The result depends not only on the type of
computer (e.g., an IBM System/370 Model 165), but on the exact
configuration (e.g., the number of words of Mp), and even on the
operating system and the software (e.g., the specific version of
FORTRAN). Thus, although the benchmark performance number
perhaps comes closest to serving as an adequate single perform-
ance figure, it is weaker as a parameter characterizing the
structure of the computer than one characterizing a contingent
total system.

Two scientific benchmarks of the National Physical Laboratory
in the United Kingdom are useful because of the extensive effort
in designing them to be typical (e.g., frequencies of the trigono-
metric functions, subroutine calls, and I/O were considered).
Although these benchmarks characterize a scientific mix by using
FORTRAN, they can be used when comparing various languages.

Similar benchmarks for commercial processing generally use
the COBOL language. The U.S. Steel COBOL data [U.S. Steel,
19781, Table 10, consist of timings from a common synthetic
benchmark run on 125 different hardware/software environments
representing 13major manufacturers. The tests are run voluntari-
ly by users. Each test is executed 100,000 times. These timings
allow relative comparisons between hardware/compiler/operating
system environments on a uniform, compute-bound task.

The CFA [Computer,October 19771 study attempted to modify
the traditional benchmarking methodology in order to eliminate
contributions due to technology, system configuration, and sys-
tem software. The following subsection summarizes the approach
and results. The test program methodology as described is very
labor-intensive in that several programmers have to write several
benchmarks for several computers. The programmers are as-
signed programs on specific machines according to a statistically
designed experiment. The statistical design attempts to minimize
the variation due to different programmers and maximize varia-
tion due to the ISP. Substantial data collection on the dynamics of
test program execution was made possible by an ISP simulator

Chapter 5 1 Function and Performance 57

instrumented with counters. The results of the study are not
expandable to other architectures, since the statistical design
depends on the assignment of programmers to test programs and
computers. To evaluate another set of ISPs (or even add one to the
set used in CFA) would require designing another statistical
experiment from scratch.

Evaluation of Computer Architectures via Test Programs‘
The concept of writing benchmarks, or test programs, is not a new
idea in the field of computer performance evaluation and is
generally considered the best test of a computer system [Lucas,
1971; Bernwell, 1975; Wichmann, 19731. For the purpose of the
CFA committee, we define a test program to be a relatively small
program (100 to 500 machine instructions) that was selected as
representative of a class of programs. The CFA committee’s test
program evaluation study described here had to address the
central problems facing conventional benchmarking studies:

a 	 How is a representative set of test programs selected?

b 	 Given limited manpower, how are programmers assigned
to writing test programs in order to maximize the informa-
tion that can be gained?

We faced an additional problem because we evaluated comput-
er architectures, independent of any of their specific implementa-
tions. In other words, when evaluating particular computers, time
is the natural measure of how fast a test program can be executed.
However, a computer architecture does not specify the execution
time of any instructions and so an alternative to time must be
chosen as a metric of execution speed.

Guidelines for Test Programs Specification. The Test Program
Subcommittee attempted to establish a strategy for defining and
coding the test programs that would minimize the variability due
to differences in programmer skill. The strategy devised was as
follows:

The test programs would be small “kernel” type programs,
of not more than 200 machine instructions. (In the end, a
few test programs required more than 200 instructions.) It
was felt that only small programs could be specified and
controlled with sufficient precision to minimize the effects
of programmer variability. Moreover, resources were not
available to define, code, test, and measure a significant set
of larger programs.
The programs were defined as structured programs, using

’Abstracted from S. H. Fuller, P. Shaman, D. h m b , and W. Burr,
“Evaluation of Computer Architectures via Test Programs,” AFIPS Con.
Proc. vol. 46, June 1977, pp. 147-160.

58 Part 1 I Fundamentals 	 Section 2 1 The Computer Space

Table 10 US. Steel COBOL Benchmarks as of 1978

Total time Speed relative Total time Speed relative
(S to I B M 1460 (4 to IBM 1460

Burroughs Corporation I BM
B 1700 563 372 IBM 1460 209,176 1
B 2500 4,785 44 IBM 7010 11,524 18
B 3500 2,408 87 S/360 Model 50 emulating IBM 7010 12,187 17

B 3700 1,596 131 IBM 7074 4,618 45

B 4700 1,032 203 Sl360 Model 65 emulating IBM 7074 3,069 68

B 4800 572 366 IBM 7094 5,423 39

B 5500 9,295 23

B 6700 901 232 Sl360 Model 30 6,064 34

S/360 Model 40 2,999 70
B 7700 316 662 S/360 Model 50 1,344 156

Control Data Corporation Sl360 Model 65 529 395
CDC 3300 4,550 46 S/360 Model 75 31 3 668
CDC 6500 1,434 146 S1360 Model 195 151 1,385
Cyber 72 1,093 191 S/370 Model 125 4,462 47
Cyber 73 836 250 Sl370 Model 135 3,426 61

Data General Corporation Sl370 Model 145 1,490 140
C/300 Eclipse 3,497 60 51370 Model 155 601 348

Sl370 Model 158 256 81 7
Digital Equipment Corporation

PDP-11145 70,172 3 	 S/370 Model 158 (multiprocessor) 284 737

S/370 Model 165 191 1,095

General Electric Corporation S/370 Model 168-3 120 1,743
GE-415 5,163 41 S/370 Model 168-3 (multiprocessor) 107 1,955
GE-425 3,691 57

2,903 62 NCR
GE-435 Century 100 15,382 14

GE-615 5,642 37 Century 200 3,880 54

GE-635 2,006 104

RCA
Hewlett-Packard Spectra 70135 6,576 32

HP 3000-11 4,298 19 Spectra 70/45 3,494 60

Honeywell Information Systems Spectra 70155 1,309 160

H-110 17,371 12 Sperry-Univac

H-120 13,007 16 UNIVAC 1108 481 435

H-125 10,718 20

H-2200 18,740 11 Texas Instruments

H-6060 1,179 177 TI 960A 44,407 5

H-6080 756 277
 Xerox Data Systems

Sigma 7 3,101 67

a PL/I-like Program Definition Language (PDL) and then d All test programs except the I/O Interrupt test programs
“hand translated into the assembly languages of the were coded as reentrant, position-independent (or self-
respective architectures. relocating) subroutines. This was believed to be consistent

with the best contemporary programming practice and
c 	 Programmers were not permitted to make algorithmic provides a good test of an architecture’s subroutine and

improvements or modifications, but rather were required addressing capabilities.
to translate the PDL descriptions into assembly language. Selection of the Twelve Test Programs. The CFA committeeProgrammers were free to optimize their test programs to
the extent possible with highly optimizing compilers. This appointed a subcommittee responsible for developing a set of test
“hand translation” of strictly defined algorithms was expect- program sepcifications consistent with the guidelines just dis-
ed to reduce variations due to programmer skill. cussed. This subcommittee defined a set of 21 test programs that

were intended to be broadly representative of the basic types of
operations performed by military computer systems. The CFA
committee reviewed these 21 test programs, committee members
were asked to rank the relevance of these test programs to the
applications of their particular organization, and it was agreed that
the top 12 programs would be the basis of the test program study.
The full specification of the 12 selected test programs is given in
Fuller et al. [1976a] and a brief description of these test programs
is given below.

A. 	 I10 kernel four priority levels requires the processor to
field interrupts from four devices, each of which has its
own priority level. While one device is being processed,
interrupts from higher priority devices are allowed.

B. 	 110 kernel, FIFO processing, also fields interrupts from
four devices, but without consideration of priority level.
Instead, each interrupt causes a request for processing to
be queued; requests are processed in FIFO order. While
a request is being processed, interrupts from other
devices are allowed.

C. 	 110 device handler processes application programs’ re-
quests for I/O block transfers on a typical tape drive, and
returns the status of the transfer upon completion.

D. 	 Large FFT computes the fast Fourier transform of a large
vector of 32-bit floating point complex numbers. This
benchmark does exercise the machine’s floating point
instructions, but principally tests its ability to manage a
large address space. (Up to one-half of a million bytes may
be required for the vector.)

E. 	 Character search searches a long character string for the
first occurrence of a potentially large argument string. It
exercises the ability to move through character strings
sequentially.

F. 	 Bit test, set, or reset tests the initial value of a bit within a
bit string, then optionally sets or resets the bit. It tests one
kind of bit manipulation.

G . 	 Runge-Kutta integration numerically integrates a simple
differential equation using third-order Runge-Kutta inte-
gration. It is primarily a test of floating-point arithmetic
and iteration mechanisms.

H. 	 Linked list insertion inserts a new entry in a doubly linked
list. It tests pointer manipulation.

I. 	 Quicksort sorts a potentially large vector of fixed-length
strings using the Quicksort algorithm. Like FFT, it tests
the ability to manipulate a large address space, but it also
tests the ability of the machine to support recursive
routines.

I. 	 ASCII to $outing point converts an ASCII string to a
floating point number. It exercises character-to-numeric
conversion.

Chapter 5 Function and Performance 59

K. 	 Boolean matrix transpose transposes a square, tightly-
packed bit matrix. It tests the ability to sequence through
bit vectors by arbitrary increments.

L. 	 Virtual memory space exchange changes the virtual
memory mapping context of the processor.

S, M and R: Measures of an Architecture’s Performance

Very little has been done in the past to quantify the relative (or
absolute) performance of computer architectures, independent of
specific implementations. Hence, like it or not, we had little
choice but to define measures of architecture performance for
ourselves.

Fundamentally, performance of computers is measured in units
of space and time. The measures that were used by the CFA
Committee to measure a computer architecture’s performance on
the test programs were:

Measure of Space

S: Number of bytes used to represent a test program.

Measure of Execution Time

M: 	 Number of bytes transferred between primary memory
and the processor during the execution of the test
program.

R: 	 Number of bytes transferred among internal registers of
the processor during execution of the test program.

All of the measures described in this section are measured in
units of 8-bit bytes. A more fundamental unit of measure might be
bits, but we faced a number of annoying problems with respect to
carry propagation and field alignment that make the measurement
of S, M, and R in bits unduly complex. Fortunately, all the
computer architectures under consideration by this committee are
based on 8-bit bytes (rather than 6, 7, or %bit bytes) and hence
the byte unit of measurement can be conveniently applied to all
these machines.

Summary

The test programs were assigned to programmers based on a
statistical design involving three phases, denoted as I, 11, and 111.
In Phase I eight programmers were assigned two test programs to
implement on each of the three machines. Phase I11was a smaller
version of Phase I, involving only four programmers. Phase I1was
a somewhat more complex design that involved each of three
programmers writing nine different test programs, three on each
machine. Phase 11was intended to give some information on the
interaction between particular test programs and machines that
was not available with much precision from Phases I and 111.

60 Part 1 	 FundamentalsI

The principal result of the test program study that were passed
along to the life-cycle cost models [Cornyn et al., 19771 was the
composite performance of the candidate architectures for Phases I
and 111 on the set of 12 test programs. An analysis of Variance
(ANOVA) procedure was used to determine the overall relative
performance of the three candidate machines (Table 11).Unity
indicates average performance and the lower the score on any of
the measures, the better the machine handled the set of test
programs.

In other words, the test program results indicate that the IBM
S/370 needs 46 percent more memory than the Interdata 8/32 to
represent the set of test programs (or 21 percent more than the
average of the three architectures) and the PDP-11 is essentially
average in its use of memory.

Considering the test program results in a little more detail, in
Phase I the data revealed the IBM 9370 to be significantly worse
than the other two machines on S, M, and R measures at a
significance level of 0.05(i.e., the 95 percent confidence intervals
all failed to include the point where the IBM 9370 equals the
performance of the other machines). Moreover, the overall
performance of the PDP-11 was virtually identical to that of the
Interdata 8/32. Some part of the poor performance of the IBM
9370 can be traced to test program A (the priority I/O kernel). In
Phase I11 alone, none of the comparisons among the three
machines was significant at the 0.05 level because of the small
number of data points (24).However, the PDP-11 was noticeably
the worst of the three machines on all three measures. The IBM
S/370 dominated the Interdata 8/32 with regard to the M measure,
the Interdata was better for the S measure, and there was little
difference between the two for the R measure. The relatively poor
performance of the PDP-11 appeared to be due to the quicksort
test program, test program I, which worked with a list much
larger than the 64K byte virtual address space of the PDP-11.

Statistical results from Phases I and 111were combined. In this
analysis the ranking of the three machines from best to worst on
the three measures was: Interdata 8/32, PDP-11, and IBM S/370.
The average performance of the three architectures in Phases I
and I11 is given in Table 11.

The outcome of Phase I1largely corroborates the results of the
other two experiments. The ranking of the three machines, from
best to worst, is: PDP-11, Interdata 8/32, IBM S/370. This ranking
prevails for all three measures, S, M, and R. It is important to
recall that Phase I1 included test program A, for which the IBM

Table 11 	 Average Performance of the Architectures
on the 12 Test Programs

Architecture S M R

PDP-11 1 .oo 0.93 0.94
IBM S/370
Interdata 8/32

1.21
0.83

1.27
0.85

1.29
0.83

Section 2 I The Computer Space

S/370 performs relatively poorly, and does not include test
programs D and I, which are relatively dficult to implement on
the PDP-11, because they have large data structures. Because of
the magnitude of the experimental error in these test programs
and the relatively small number of data points in Phase I1(27), we
were not able to detect any test program/architecture interactions
that were statistically significant.

Queuing Models
System performance is also a function of configuration (e.g.,
amount of Mp or Ms; data transfer rates; latency; seek time). A
large body of work exists in applying queuing models to total
systems (hardware, OS, 110, and configuration) in order to predict
system performance bottlenecks and to suggest remedies. A
discussion of queuing models is beyond the scope of this text. The
reader is referred to the September 1978 issue of the ACM's
Computer Surveys, or to the numerous performance evaluation
textbooks, for an introduction to queuing models.

Economies of Scale
To evaluate the performance of machines, it is necessary to
consider economies of scale. For nearly all manufactured objects
(e.g., transportation vehicles, electricity generators, buildings)
some economy of scale exists because of high fixed costs that do
not increase as rapidly as the output increases.

Factors leading to economies of scale for computers often
include several dimensions. The same software can be used on
many models. Sales and maintenance personnel can service a
wide range of equipment. Manufacturing facilities can be adapted
to produce different models.

Grosch [1953] suggested that there was an economy of scale for
computers according to the performance/price relationship:

Performance = constant x price'

Several studies [Sec. 5 of Part 4;Knight, 1966; Solomon, 1966;
Phister, 1979; Sharpe, 1969; Turn, 19741 have examined the
validity of this formula for various machines. On the other hand, it
is possible to price machines using this relationship. Clearly,
performance must increase more rapidly than price for improved
operating economy.

Because the studies do not cover wide price ranges, there is
some doubt that the square law holds. Indeed, over a narrow
range (a factor of 4), a linear approximation to the data would
appear to fit as well as the square law does.' See Fig. 6.

One computer component that could be predicated on a
square-law relationship is core memory. There is an overhead cost
'In Chap. 52 the exponentis found to range from 1.0 for the S/360family
to 1.6 for the 5/370family.

--

Fig. 6. A comparison of linear and square law relationships
between price and performance.

associated with the base packaging, power, and interface. The
electronic selection follows a square law; a doubling of the
selection circuitry provides access to a core stack that is 4 times
larger. All other costs are roughly linear, although the manufac-
turing cost for larger stacks would probably follow some economy
of scale due to the high setup cost of threading core memories.

Another point is that Grosch‘s law, derived from the definition
of performance, is itself a definition. Consider Knight’s model:

Performance = processing rate x memory size x word length

If we ignore word length (assuming word length is constant for
members of a computer class or .family), then performance does
increase as the square of memory price, since the factors of rate
and size are each a function of memory price. To derive this result
we proceed as follows.

Let P equal the price of the memory on the system. Assume the
use of a Zk x 1memory chip and a memory system n bits wide,
and further assume that the processor can use 100 percent of the
memory data rate. To supply concrete cost and performance
parameters we will use a 4-kilobit chip, which in 1978 cost about
$25and had a cycle time (at the processor) of about 500 ns. Then,

Chapter 5 1 Function and Performance 61

Processing rate = memory data rate

= 2 x 106(n+ m)

where m = number of chips in the processor

= 2 x 10yn + kn)

since m is linearly related to n

= 2 x 106Kln

since n is proportional to P/(price per chip), and

Memory size =
P

price per bit

- 4,096p
25

since the price per bit is 2514,096.
Substituting in Knight’s model, we get

42096p x Kz-PPerformance = -25 25

Thus, according to this performance model, Groschs law holds
by definition because

1 	Memory price and processor price are linearly related
(predictably, since they use the same semiconductor
technology).

2 	 Processor performance is usually matched to memory size,
as suggested by Amdahl (see page 46).

References

Alexander, Gregg, and Wortman [1975]; Arbuckle [1966]; Bell,
Mudge, and McNamara [19781; Bell and Newel1 [19711; Bernwell
[1975]; Blake [1977]; Connors, Mercer, and Sorlini [1970];
Cornyn, Smith, Svirsky, and Coleman [1977]; Ferrari [1978];
Fuller, Burr, Shaman, and Lamb [1976]; Fuller, Burr, Shaman,
and Lamb [1977]; filler, Stone, and Burr [1977]; Gibson [1970];
GML [1977]; Gonter [1969]; Grosch [1953]; Herbst, Metropolis,
and Wells [1955]; Knight [1966]; Lucas [1971]; Phister [1979];
Popek and Goldberg, [1974]; Raichelson and Collins [1966];
Sharpe [1969]; Smith, Cornyn, Coleman, Estell, and Sabin
[1977]; Solomon 119661; Strecker [1976a]; Turn [1974]; U.S. Steel
[19781; Wagner, Lieblein, Rodriguez, and Sabin [19771; Wich-
mann [19731.

Chapter 6

Structure

We now turn from function and performance, which provide
design constraints and objectives, to the dimensions of structure,
which provide the space in which the design is actually cast. A
structural dimension is one in which the designer can attain any of
the values along the dimension by relatively direct means. Thus a
machine is completely specified by listing all its values along the
structural dimensions. From this, the system’s function and its
performance within that function can be determined.

What dimensions should be selected for structure? The view-
point is distinctly different from that of performance, where one
averages and combines many features to summarize effective
output. This tends to obscure structure. For structure, one wants
maximally independent aspects which are easily obtained if
selected as a design choice. For example, a computer designer
who had only a single dimension to describe a computer would
undoubtedly select the logic technology used in the Pc and K’s;
this tells a good deal about many aspects of the computer’s
structure. In fact, the technology and the average number of bits
processed per second by the Pc are correlated, and so each can be
used to predict the other, though only imperfectly. If one is
interested in performance, the effective number of bits per second
is preferred; if one is interested in design, technology is pre-
ferred.

The computer space in Table 1 in the introduction to this
section presents our choice of the major structure dimensions.
There are fewer rationales to validate the choice of dimensions
here than there are for performance. Nevertheless, there are a
few hallmarks. Perhaps the most important is redundancy (the
opposite side of the coin from independence, mentioned above).
Several dimensions of structure may covary, so that giving any one
of them is tantamount to giving the others. This covariation need
not come from physical dependence; it may arise from the nature
of an appropriate design and good engineering practice. Such a
cluster of covarying dimensions is likely to indicate an important
dimension (which one among the correlates is to be used is a
secondary matter.) Table 1 in the introduction to this section is
organized in terms of such clusters, with one of each selected as
the main representative and placed at the left. The following
subsections discuss each of the seven clusters of covarying
dimensions in turn.

Technology

Among the technology dimensions are generation, component
complexity, and date. These dimensions, which were briefly

mentioned in the introduction to Sec. 2, will be explored in more
detail below. Also listed are Pc speed (operations per second) and
cost (dollars per million operations), both of which vary directly
(or inversely) with logic technology. The Pc operation rate is
strongly correlated with logic technology, as we have indicated in
the computer space. Our discussion about technology and genera-
tions is also about operation rate. The principal reason for the
higher operation rate is faster logic technology. Technology also
has a secondary effect on increasing speed. More reliable devices
allow large computers to be built. Smaller devices allow higher
device densities, thus decreasing stray capacitance and inductance
and shortening transmission delays. Smaller components also
allow increased interconnection density.

Operation rate is relatively highly correlated with total per-
formance. If we hold the structure and parallelism constant, the
simplest way to increase performance is by increasing the clock
rate. The increase in the performanceicost ratio over the past
three decades of computers’ evolution has made their primary
gains through higher operation rates.

We have indicated only a few of the dimensions that are
correlated with technology. In fact, the only dimensions in Table 1
of the section introduction that are independent of technology are
the word length and the Pc addresses per instruction. All the rest
show dependence on technology. For some, such as memory
speed and size, there is a direct correlation. For others, such as
PMS structure and parallelism, the development of more complex
versions-the leading edge, so to speak4epends on technology,
but there is free use of all versions that are in existence at any
given time. There are still other dimensions of importance, not
shown in Table 1 of the section introduction, that have also
changed with technology, e. g., electric power consumption.

A comparison of the machines in a common computer family
will reveal both variations and factors independent of technology.
The simple two-parameter model involving Pc microcycle time (a
function of technology) and Mp memory pause time (a function
both of technology and system design) in Chap. 5 is applied to the
System/360, System 370 (see Chap. 52), and PDP-11 (see Chap.
39) computer families. The model is able to explain most of the
variation between the family members. And in the case of the
Systemi360 and PDP-11 families, the dominant term is Pc
microcycle time, which is almost wholly determined by technolo-
gy.

Throughout this section we have referred to technology as the
dominant factor in the computer. Does this mean that computer
development waits upon new fundamental windfalls? We have
been lucky in getting the transistor and, to a lesser degree, the
integrated circuit from external efforts. However, core memories
were invented for the computer and resulted because of need.
Read-only memories have also resulted both from development at

62

Chapter 6 1 Structure 63

the circuit level and from pressure above, requiring the memories
to be developed. All the electromechanical secondary memories
(e.g. magnetic tape, drums, disks, and photostores) have resulted
from the computer's needs. Special packaging (e.g., the dual
inline package, or DIP) and interconnect (e.g., printed circuit
boards, chip carriers) technologies were also developed for
computers. Thus, despite the dominant technology, the computer
often shapes development.

The transistor and integrated circuit have had a profound
impact on the structure of computers. Further, the proliferation
of computer structures built from these technologies has pro-
vided enough data points that several interesting trends can be
seen.

Figure 1 shows a family tree (taxonomy) of the most common
digital integrated circuits.' The least complex functions are in the
upper portion of the figure, and the most complex are at the
bottom. In addition, the circuits are ordered by generation,
starting with the second generation on the left side of the figure
and progressing to the fifth generation on the right side. The
circuits are clustered roughly by the regularity of the function and
whether memory is associated with the function. Circuit regulari-
ty is important in large-scale integrated circuits because it is
desirable to implement regular structures to minimize area-
consuming interconnections and, thus, to simplify layout and
understanding and to aid testing.

As indicated in Fig. 1, the branching of the integrated circuit
family tree began in earnest at the beginning of the third
generation. At that time, advances in integrated-circuit technolo-
gy permitted collections of basic logic primitives (AND, NAND,
etc.) and sequential circuit components (flip-flops, registers, etc.)
to occupy a single integrated circuit rather than an entire module.
This had the benefit of providing a drastic reduction in size
between the second and third generation computer designs. But it
also had the drawback that modules contained a wide variety of
functions and were thus specialized.

As the densities began to approach 100 gates, the construction
of complete arithmetic units on a single chip became possible. The
earliest and most famous chip, the 74181 arithmetic logic unit
(AW), provided up to 32 functions of two 4-bit variables. By the
fourth generation, it became possible to construct on a single chip
very large combinational circuits, such as a complete 16-by 16-bit
multiplication circuit (e.g., the TRW Corp. multiplier) requiring
about 5,000 gates.

Progress during the fourth and fifth generations has not been
without its problems, however. Without well defined functions
such as addition and multiplication, semiconductor suppliers

'Figure 1and the discussion surrounding it are adapted from Bell, Mudge,
and McNamara [19781.

Second Third Fourth Fifth
generation generation generation generation

I I I I I

MUX
A L U

1 (S - c rfunctions

LPC encryption

4-bi t slice

16-bit

Second Third Fourth Fifth
generation generation generation generation

Fig. 1. Family tree of digital integrated circuit functions. (From
G. G. Bell,J. C. Mudge, and J. E. McNamara, Computer Engineering:
A DEC View of Hardware Systems Design, Digital Press, 1978,
p. 29.)

cannot provide high density products in high volume because
there are few large-scale, general purpose universal functions.

To address these problems, two methods of effectively custom-
izing large-scale integrated circuit logic are included in Fig. 1.
These are the programmable logic array (PLA) and the gate array
(also called master slice.) The programmable logic array (PLA) is
an array of AND-OR gates that can be interconnected to form the
sum-of-products terms in a combinational logic design. Gate
arrays are simply a large number of gates placed on the chip in

64 Part 1 Fundamentals1

fixed locations where they can be interconnected during the final
metalization stages of semiconductor manufacture.

There is a special branch of the tree shown in Fig. 1purely for
memory functions. Memory is used in the processor as conven-
tional memory, but it can also be used as an alternative to
conventional logic for performing combinational logic functions.
For example, the inputs to a combinational function can be used as
an address, and the output can be obtained by reading the
contents of that address. Memory can also be used to implement
sequential logic functions. For example, it can be used to hold
state information for a microprogram. (See Sec. 1of Part 2 .)

There is a special branch for bit-slice components that can be
combined to form data paths of arbitrary widths. These are being
used to construct most of today's high-speed digital systems,
mid-range computers, and computer peripherals. Although there
have been several bit-slice families, the AMD Corp. 2900-series
has become the most widely used (see Chaps. 13, 14, and 15).

The final branch of the tree in Fig. 1is the most complex and is
used to mark the fourth (microprocessor-on-a-chip) generation of
technology and the beginning of the fifth (computer-on-a-chip)
generation. The fourth generation is marked by the packaging of a
complete processor on a single silicon die. Using this standard, the
fifth generation has already begun, since a complete computer
(processor with memory), called a monolithic microcomputer in
our computer classification of Chap. 1,now occupies a single die.
The evolution in complexity during each generation simply
permits larger-word-length processors or computers to be placed
on one chip. At the beginning of the fourth generation, a 4-bit
processor was the benchmark; toward the end of the fourth
generation, a complete 16-bit processor could be placed on a
single chip.

Figure 2 plots the increase in IC complexity as a function of
time, a graph known as the Moore plot. In 1964, Gorden E.
Moore, then director of research at Fairchild Semiconductor,
predicted that the component count per IC chip would double
every year. Indeed, since the introduction of the planar transistor
(1959), with a component density of 1, this essential doubling has
occurred each year up to the present. According to the Moore
plot, integrated-circuit chips composed of 1 million components
are predicted for the early 1980s. AS pointed out by Moore, three
factors must be considered to contribute equally to the doubling of
component count per year: (1)an increase in chip area, (2) a
decrease in minimum physical dimensions of components, and (3)
the contributions made by the invention of new structures and/or
circuit cleverness.

The result given in Fig. 2 is exponential and indicates that the
number of bits per chip for a metal oxide semiconductor (MOS)
memory doubles every two years according to the relationship:

Number of bits per chip = 2"lg6'

Section 2 1 The Computer Space

1M

260K 1 65K RAM
/

65K - RAM
,,

01 6 ~ SDLC
/.516K - 4K RAM =--/c-.-. Y

'ij 4K 1K RAM
L

l K , 8-b'tw

1
1960 1965 1970 1975 1980

Fig. 2. The increase in an integrated circuit density as a function of
calendar year.

There are separate curves, each following this relationship, for
bipolar read-write memories, bipolar read-only memories, and
MOS read-only memories. Thus products lead or lag behind the
above state-of-the art time line by one to three years according to
the following rules:

Bipolar read-write memories lag by two to three years.

Bipolar-read-only memories lag by about one year.

MOS read-only memories lead by one year

Random logic, as represented by the 8-bit microprocessor and
SDLC chip in Fig. 2 , actually lies on a different exponential
curve. Chapter 36 discusses the trends in microprocessor densi-
ties.

After density, the most important characteristic of integrated
circuits is price. The price of integrated circuits is probably the
hardest of all the parameters to identify and predict because it is
set by a complex marketplace.

The priceihistory of integrated circuits is reflected very dramat-
ically in the price history of a special class of integrated circuits,
semiconductor memory. The semiconductor memory price
curves, given in Fig. 3, are also interesting because of the im-
portant role of memory in past and future computer structures.'

'Discussion of Fig. 3 adapted from Bell, Mudge, and McNamara
[1978].

0.5

0.2

-
f
8- 0.1

4-.-
P
5
m

2
.- 0.05

0.02

0.01 1 1 1 1 1 1 I I

As shown in the figure, the 1978 price per bit was roughly 0 . 0 8 ~
and 0 . 0 7 ~ per bit for the 4-K bit and 16-K bit integrated circuit
chips, respectively, giving prices of $3.30 and $11.50.

Two factors influence the price of integrated circuits: density in
bits per integrated circuit and price per bit. The two factors have
not had equal influence in reducing costs because, while chip
density has improved by a factor of 2 each year (Fig. 2), the price
per bit (at the integrated circuit level) has not declined by a
factor of 2 every two years. The equation for the line drawn in
Fig. 3 is:

Pricehit (G) = 0.3 X 0.72t1w4

Large-scale integration (LSI) has two strong advantages: both
the cost per function and the failure rate per function decrease
exponentially. As semiconductor components get larger they also
become more reliable per function. Figure 4 depicts the failure
rate per million hours per gate for bipolar technology as a function
of the number of gates on a chip. The curve marked “Mil 2l7A”

Chapter 6 1 Structure 65

was derived from data from about 1965 [Mil 217A, 19651. The
curve marked “Mil Model 217B (1974)” was generated from a
reliability predictive model ca. 1974 [Mil 217B, 19741. In order to
calibrate the Mil Model 217B, actual failure data are also plotted.
The curve marked “Field Data” was derived from a reliability
study of a population of video terminals over a period of a year
[Harrahy, 19771. The curve marked “Life Cycle Data” was
derived from elevated-temperature testing of chips followed by
translation by a mathematical model from failure rates at elevated
temperature to rates at ambient temperature [Siewiorek, 1978bl.
Finally, the improvement in the 3,000-gate Motorola Mc 6800 was
plotted [Queyssac, 19791.

It has been demonstrated that the failure rate per function has
decreased by more than an order of magnitude. Plots offailure per
bit of bipolar random-access memory (RAM) indicate that the
failure rate per gate and per bit are comparable for comparable
levels of integration. Obviously the chip failure rate is a function
of chip complexity (i.e., failure rate per function decreases by an
order of magnitude over two orders of gate complexity and two to
three orders of memory complexity) and is not a constant (i.e.,
failure rate would decrease by the same order of magnitude as
complexity increased.) The Mil Model 217B predicted an upturn
in reliability per function beyond a complexity of about 200 gates,
presumably because of the immaturity of the fabrication process at
that scale of integration. It is more likely to assume a decreasing
function as long as the complexity is within the state of the art, as
illustrated by the Mc 6800 curve.

Another assumption deals with the relative position of the
curves with respect to the axis. One study (curve 1965~) showed
that a failure rate of 0.4 failures per 106 hours was a good
approximation for state-of-the-art ICs at that time (one to four
gates per IC). Another study examined small functional units
composed of discrete components and ICs. Various 10-element
units showed failure rates of 0.83 to 1.8 per lo6 hours (curve
196527). While the data are incomplete (having been based on a
study in 1965, when integrated circuits had just been introduced),
it is reasonable to assume that reliability per function for a given
chip complexity improves with time, as illustrated by the Mc 6800
curve.

Bytes of Virtual Address
and Information Structure:
Information Base, Word Length,
and Data-Types

All computers structure their information in a hierarchy of units,
which we defined as an i-unit. For example, the IBM System1360
starts with the bit; then thd byte, which is 8 bits; then the word,
which is 4 bytes; then the record, which is a variable number of

66 Part 1 I Fundamentals Section 2 1 The Computer Space

1.o

Mil

0.1

(D

2
X
0,u

k?
e,
0

-.-
I2

.01

.001

.0001 I I I

(elevated temperature
and temperature translated)

model 2178
(1974) ,Motorola Mc6800

;;;;;'"'I

(1975)

(1976)

I I (1977)
1

10 100 1,000 10,000

Number of gates

Fig. 4. Failure rate per gate as a function of chip complexity for bipolar technology.

words. In between, playing minor roles, are decimal digits (4
bits), the halfword, and the double word. The single most
important structural dimension after technology is bytes of virtual
address, from which, at a given point in time, the class to which
the computer belongs can be inferred (see Chap. 1).Subsequent-
ly, the attributes of the information organization can be inferred
from the computer class.

A number of features of the design are related to this
hierarchical organization of data. Before considering them, how-
ever, it is important to characterize the organization itself,
beginning at the bottom of the information hierarchy.

At the bottom there is the bit, encoded in two-state devices.
Although other numbers of states are possible, and ternary

(three-state) machines have been proposed occasionally, digital
technology has developed exclusively to handle binary informa-
tion. There are several reasons for this. The first is the require-
ment for high reliability and high signal-to-noise ratios in the basic
devices. Generally a basic n-state device (i.e., one not built up
from other k-state devices) is realized by breaking a continuous
physical dimension, such as voltage, current, or magnetic flux,
into n discrete levels of regions. Reliability and signal-to-noise
ratio then depend on keeping adequate separation. This is easiest
to do with two states (in their limiting form they are on-off
devices) and becomes progressively more difficult as n increases.
The second reason is the simplicity of the logic design for binary
representations. A basic device for combining two ternary digits

must deal with 3 x 3 = 9 configurations, rather than 2 x 2 = 4
configurations for the binary case. This also gets worse as n
increases.

A final reason-the coup de grace, so to speak-is that no one
has ever found striking advantages for the resulting processing
structure in having more than two states. Thus there are no
compelling reasons to suffer the first two disadvantages. In short,
what might have been an important dimension on which to
distinguish computers, namely, the number of states in the basic
encoding, turns out instead to be one of the great uniformities in
digital technology.

Informa tion Base

That the physical devices deal ultimately in bits does not imply
that the information processing must be organized in terms of bits.
It is possible to select an arbitrary base (one with any number of
states) and construct the entire ISP in its terms. A base unit is
represented physically, of course, as a set of bits. If one wanted a
base 13 machine, for example, one would have to use at least 4bits
(with 16 states) to encode it. But no operations at the ISP level
would refer to anything but base units and data structures built up
from sets of base units, and there would be no way to manipulate
directly the bits that represented the base. Thus, using a base
other than binary obtains whatever advantages might accrue to
n-state units, without any of the disadvantages at the device level.

Computers have been built with a variety of different bases, the
main ones being binary, decimal, and character. The character has
shifted between a 6-bit character and an 8-bit character (byte).l
The arguments for bases other than binary (which represents the
natural base of the computer) all hinge on the alphabets used
externally by human beings and the desire to avoid conversions
into a different representation inside the computer. With univer-
sal acceptance of higher languages, such as FORTRAN and
ALGOL, this argument has also lost much of its force. In fact, all
third-generation machines are binary. Nevertheless, in the fifties
there was much controversy over which base to use. Third- and
fourth-generation machines provide at least partial support for
decimal and character data-types. Support for these alternate
bases can even be found in single-chip processors (see Chap. 37)

There is little difference between binary and decimal comput-
ers in their ISP organization. However, there is a great diakrence
between these two and character machines. The latter are
designed for handling text and are constructed to deal with
variable-length strings of characters. Correspondingly, they de-
emphasize numerical computation. Both these decisions affect the

‘Seven bits have been used for communication purposes but have never
been made the basis of a machine, as far as we know.

Chapter 6 1 Structure 67

ISP considerably. Thus, in the computer space we indicate the
base dimension along with the word-length dimension. The two
together make up a single dimension.

Word Length

Let us now examine the role of word length. The word is the first
major information unit above the base. It is defined as nbits for a
binary computer or n digits for a decimal computer (character
machines being excluded as not having a fixed word length).
Sometimes there are intermediate units, but they always play a
minor role and we can disregard them at this stage. As we noted
earlier, the main determinant of word length has been the
function of the total system: large word lengths for arithmetic
systems, small word lengths for control systems (and character
strings for business). Thus, only within narrow limits is the word
length a free design choice.

However, the interesting thing about word length is not so
much its determinant as the way it affects other aspects of the total
system design. This starts with a design decision that the unit of
information transfer between components will be a word. As soon
as this becomes the case, then registers in various components
must hold a word, since that is what arrives or is to be transmitted.
Thus the word becomes the information unit of the Mp, and most
of the registers of the Pc hold one word. The instruction is
designed to fit into a submultiple or multiple of one word, since
that is the number of bits that is obtained “at once” and hence can
be used to effect the next time increment of processing.

Once these basic features are set, others follow. An integral
number of any smaller units, such as characters, should fit into a
word, since otherwise a set of words will not provide a homoge-
neous sequence of subunits. (That is, only five 6-bit characters fit
into 32 bits, so that a set of 32-bit words filled with 6-bit characters
has a number of 2-bit holes in it. This can complicate algorithms
that deal with long character strings.) The constraint of compati-
bility is not so strong with Ms, since speeds are slow enough to
permit conversion algorithms (either hardware or software). Still,
the system is simpler (and therefore usually will work better) if
incommensurabilities of information units do not exist. Thus, to
pick an example, the number of parallel tracks on magnetic tapes
tends to divide evenly into the word length. IBM tapes for the 700
series of 36-bit machines have six data tracks; for the System/360,
which has a 32-bit word, the tapes have eight data tracks.

There is an interesting correlation between the word length of a
computer and the number of data-types that it makes available.
The operations in a computer can be classified according to the
type of data they operate upon. Each data-type tends to have a
certain set of operations appropriate to it (for example, +, -, x ,
and / for numbers), and the decision to include a data-type carries

68 Part 1 Fundamentals1

with it the decision to include its operations. Thus the number of
operations tends to grow with the number of data-types. The total
amount of hardware in a computer grows as the word size (because
data paths are word-parallell) and also as the number of opera-
tions. Thus machines with large word size tend to be large
machines (i.e., in a larger computer class) and have many
data-types and many operations.

There are three additional, somewhat independent features
that support the relationship between word size, number of
data-types, and size of computer. First, with a large system there
will already be available many of the pieces necessary to add
additional operations. That is, the marginal cost of a new operation
goes down as the system grows. Therefore, given a large system,
there is a tendency to add more operations. The number of
operations per data-type is not easy to increase; rather, one adds
new data-types.

Second, with small word lengths, one cannot define many
worthwhile data-types that will fit into a word, and multiple-word
data-types are left to the programmer to define with software.
With large word lengths there are many different worthwhile
data-types that fit into the word, for instance, decompositions of
the word into partial words or into character strings. Each of these
requires additional operations, since the initial data-types involve
the entire word or some large part of it (i.e., the word, address,
and integer operations).

Third, since memory addresses are usually 1word in length,
the word size determines the size of the immediately addressable
memory space. The most serious mistake that a computer
architect can make is not providing enough address bits in the
instruction (see Chap. 47).With semiconductor memory densities
doubling every 1to 2 years, the address size needs enough room
to support a 1h- to 1-bit growth in memory size per year over the
life of the architecture.’ Short addresses can be expanded into
larger, virtual addresses by linking the contents of a register to the
processor-produced address or by adding the contents of a larger
base register (see Sec. 2 of Part 2). However, the program will still
have only a small immediately accessible address space and will
have to manipulate the address expansion registers explicitly
(potentially through operating-system calls). This explicit address
management both complicates program writing and degrades
program performance (see Chap. 22). Wide word sizes are good
for providing wide addresses; however, they are a source of
substantial overhead in instructions that do not reference memo-
ry. Hence instruction sets have shifted either from 1-word

‘The issue of bit-serial versus bit-parallel is discussed subsequently.
%deed, Chap. 1 indicated that the number of bytes of virtual address is
growing, over all ISPs in the book, at 1 bit per year, while the number of
bytes of physical address is growing at l/z bit per year.

Section 2 1 The Computer Space

instructions to multiple words per instruction (as in the PDP-ll),
or to composing instructions of a variable number of bytes, as in
the VAX-11/780 and Intel 8086.

In sum, the word length stands as an indicator of many aspects
of the machine. It not only tells something about the basic
organization of many components but also indicates how big the
computer is (i.e., the computer class), both in number of
data-types and number of operations.

The one design choice that makes word lengths have few of the
consequences just described is making a computer bit-serial
rather than bit-parallel. In many machines information transfers
are conducted on a single bit stream (especially Pc-Mp transfers).
Coincident with this is the constiction of operations on a
bit-by-bit basis. This works well for arithmetic and logic opera-
tions. Time is traded for hardware. The cost of the system
becomes independent of word length, but the processing rates go
down correspondingly. This design decision was an extremely
important one when logic was expensive and unreliable. It has
become less so in the current era, where processors and transfer
paths are relatively few in number while both the cost and the
reliability of components have improved. However, as large
parallel processors are considered (- 103P’s), bit-serial processors
again become a serious design alternative. (See Chap. 21.)

In summary, word length is an important dimension, and we
find many characteristics either proportional to or inversely
proportional to it. To be sure, these relations hold only for current
design practice, as we have seen with the bit-serial designs.

Data-Types

We have presented the number of data-types as being correlated
with word length and also with computer size through the effect
on number of operations. In essence, a data-type is made up
recursively of a concatenation of subparts, which themselves are
data-types. This concatenation may be an iteration of a data-type
to form an array. Fig. 5 shows the structure of various data-types
and how each is built from more primitive data-types.

If required, an operation can be defined in terms of other
(presumably more primitive) operations. It is necessary first to
define the data format explicitly (including perhaps some addi-
tional memory).

Three additional aspects need to be noted with respect to
data-types: two substantive and one notational. First, not every-
thing one does with an item of data makes use of all the properties
of its data-type. For example, numbers have to be moved from
place to place. This operation is not a numerical operation and
does not depend on the item’s being a number. In fact, for the
purpose of data transmission, the item is only a word (assuming it
fits into a single word) and can be treated as such. Second, one can
often embed one kind of operation in another, so as to coalesce

t'
R l t

Bit vector/bv Digit vector), Byte ;,,tor) Character vector) \
I I I

/ \ Digit string Byte string Charocter s t r ing ,/]I::;

~~~ Sca/ar (or string) - 9 element 

Stacks Linked Vector n elements (linear Itst, 

Matrix - n x m elements ( 2 dimen 

n dimensional array 
Real/ f looting /f dl xd2x  xdn elements 
un-normal f ba t ing /uf Simple multiple type structures 

/
Complex Double floating 


I 

Double h & x  


' t a r e  normally considered 

non -decompasoble 

primitives 


Fig. 5. Common data-types recognized by processor hardware. 

data-types. An example is encoding the Mp addresses into the 
same integer data-type as is used for regular arithmetic. Then 
there need be no separate data-type for addresses.' The upshot of 
both these aspects can be seen in the following table, where we 
present an outline structure of data-types that shows how one 
data-type can be embedded in another for various purposes. 

'However logical a course may seem, it is not always done this way. For 
example, the IBM 7090 (and other members of that family) have a 18bi t  
address data-type and a 36-bit integer data-type, with separate operations 
for each. 

Chapter 6 1 Structure 60 

Data-Types Embedded in Other Data-Types for Common Opera- 
tions 

word 
integer 

fraction 
mixed 
unsigned integer 
address integer 

boolean vector 
boolean (single bit) 
integer sign (divide or multiply by two operations) 
field 

single-precision floating 
single-precision unnormalized floating 

double word 
doubleprecision integer 

fraction 
mixed 

double-precision floating-point 
double-precision unnormalized floating-point 

character string 
digit string 

The notational aspect is the use in PMS of a mnemonic 
abbreviation scheme for data-types. Table 1 shows how an 
abbreviation is made up of a letter giving the precision, a letter 
giving the name, and a letter giving the length. 

The simple naming convention does not take into account all 
that is known about a data-type. The information carrier for the 
data is only partially included in the length characteristic. Thus 
the carrier should also include the data base and the sign 
convention for representing negative numbers. The common sign 
conventions are sign magnitude (sm), true complement (i.e., tc, 
2's complement for base 2), and radix-1 complement (i.e., oc, 1's 
complement for base 2). 

For each of the data-types the processor must have the implied 
operators. In fact, being able to represent a particular entity is 
useful only if particular transformations can be carried out on the 
entity. The most primitive operation is data movement (i.e., 
transmission.) Data movement can be thought of as a complex 
operation consisting of accessing (locating), reading, and writing. 
Data-types which represent numbers require the ability to 
perform the arithmetic operations +, -, x, /, ABS ( ), SQRT, 
MAX, MIN, etc. The address integer is a special case of an 
arithmetic quantity, and often only addictive arithmetic opera- 
tions (+ and -) are available for it. Boolean scalars (or vectors) 
require some subset of the 16 logic operations (sufficient subsets 
are NOT, AND/NOT, OR). When character strings are represent- 
ed, the concatenation, deletion, and transmission operations are 



70 Part 1 Fundamentals1 

Table 1 Abbreviations Used to Name Data-Types 

Precision Data-type name Length-type 

f ractionalif booleanib scalar? 
quarterlq sign vectoriv 
half/h decimal digitldigitid matrix 
singleis octal digit/octal/o array 
doubleid characterlcharlchlcS stringkt 
tripleit byteiby 
quadruplelq syllable 
multipleim wordiw 
integerli signed integer/i 

unsigned integeriui 
f ractionifr 
fixed/mixed/mx 
floatinglrealif 
unnormalized floatingiuf 
complex real/complex/cx 

Examples: 
W word 
bv boolean vector 
i integer 
sfr  single-precision fraction 
mx mixed 
di double integer 
1Od 10 decimal digit (scalar) 
ch.st character string 
sf single-precision floating 
suf single-precision unnormalized floating 
df double-precision floating 
duf double-precision unnormalized floating 

~~ 

?May be optionally omitted from name. 

$The most common character size is 8 bits and IS called a byte. Hence 
byte = &bit character. 

required. Alternatively, we can look to string-processing languag- 
es like SNOBOL to see the operations they require. If the strings 
also represent numeric quantities, then the arithmetic operations 
are necessary. Almost all arithmetic and symbolic data require 
relational operations between two quantities, yielding a boolean 
result (true or false). These relational operators are eq l  and neq, 
but for arithmetic quantities include gtr, geq, lss, leq. The more 
complex structured data-types (e.g., vectors and arrays) also have 
a range of certain primitive operations such as scalar accessing and 
transmission. Typical operations of vectors are search and 
element-by-element compare operations. 

Although far from perfect, there is a rough order in which 
specific data-types are included in a computer (see Fig. 5).To be 
located at a point on the data-type dimension of the computer 
space (say at floating point) means to have all the data-types below 
on the dimension (i.e., integer, address, bit vector). Occasionally 
machines which violate this rule have arisen. Decimal machines 

Section 2 1 The Computer Space 

do not generally have boolean data-types, and there has been 
some attempt at machines with only floating point, i.e., without a 
separate integer type (see Chap. 9). 

The reason behind this cumulation of data-types in a fixed order 
is that certain general tasks must be performed by any computer. 
It must transmit data between the Pc and Mp, and this transmis- 
sion has nothing to do with the meaning or content of the data; 
thus there is always the “unit of transmission,” which is the word 
(except on character machines). Next, all computers manipulate 
addresses to achieve generality (e. g., to compile), providing for a 
second data-type. Next come integers-since almost all algo- 
rithms make use of arithmetic-and on up to floating-point 
numbers, multiple-precision, and vector and string operations. At 
each stage the uses are more specialized so that lower ones cannot 
be eliminated, except for a few cases such as handling addresses as 
regular integers. 

Bytes ofVirtual Address 
As we saw in Chap. 1, the number of bytes of virtual address 
strongly correlates with computer class. From the computer class 
we can infer (at a given point in time) computer size, data-types, 
and word length. Thus the number of bytes of virtual address 
follows technology as the most important structural dimension of 
computer space. 

The virtual address is the address produced by the processor 
and presented to the memory subsystem. This address is the 
result of an effective address calculation that may involve address 
displacements from the instruction and baseiindedmemory man- 
agement registers from the processor state. The latter registers 
frequently expand the length of the address beyond the address 
displacement contained in the instruction. It is not surprising that 
the number of bytes of virtual address correlates with word length 
and data-types. 

Since the Pc must manipulate virtual addresses as the most 
fundamental data-type, path width and word width are highly 
correlated with the number of bytes of virtual address. Internal Pc 
data-path width can be reduced either by time-multiplexing 
portions of the virtual address through the Pc data paths or by 
providing separate hardware, with wider data paths, for virtual 
address calculations. The first approach suffers a costly perform- 
ance penalty, while the second approach is costly in terms of 
duplicate hardware functionality. Note, however, that the second 
approach has been used to retrofit an existing ISP with a larger 
virtual address in order to extend the useful life of the ISP (e.g., 
see Chap. 47). 

Addresses per Instruction and Processor State 

The number of addresses in an instruction has been a traditional 
way of describing processors (i.e., their ISPs) and hence the 



Chapter 6 j Structure 71 

computer systems containing these processors. This dimension 
has become less significant with the increased complexity of 
computer systems and the generally wide acceptance of the 
general-register structure. 

Originally the dimension was simple: I-, 2-, 3-, and 4-address 
machines were constructed. It has become somewhat more 
complex. A “one plus one” machine has one address for data and 
one for determining the next instruction and is to be distinguished 
from a 2-address machine, which uses both addresses for data. 
Index registers and so-called general registers provide instruction 
schemes that lie somewhere between 1-and 2-address organiza- 
tions. When processors admit several instruction formats or 
variable-length instructions, matters become even more compli- 
cated. 

A correlated dimension in the computer space is the amount of 
processor state, that is, the number of bits that exist in the 
processor, as described in the ISP (i.e., PC state described in 
Chap. 4).This is the amount of information that can be held at the 
end of one instruction to provide the processing context for the 
next instruction. It consists of a number of status and mode bits (in 
modern machines packaged into registers, but in earlier machines 
simply scattered around in the processor), the next instruction 
address, the accumulator and other arithmetic registers, the index 
registers, and other general registers making up a “scratchpad 
memory. It is a simpler descriptor of the ISP than addresses per 
instruction, since it is independent of the number and variety of 
instruction formats. It is easy to define processor state generally 
for any ISP, but diacult to define addresses per instruction. 

The processor state is not the total number of bits in the 
processor, since there may be registers in the physical system that 
are used within the interpretation of one instruction but which 
carry no information between instructions. Address registers for 
obtaining operands from Mp are the most common such “under- 
ground’ or “temporary” registers, but there can be others. We 
implied this distinction by defining processor state in terms of the 
ISP rather than the physical processor (i.e., Implementation 
Declarations described in Chap. 4). 

The correlation between the processor state and the number of 
addresses per instruction is not simple, since it rests on two 
separate issues. For the first, note that larger programs perform 
transformations on the state of Mp (or even Ms or Tio’s and are not 
concerned with the state of the processor. Processor state enters 
only because, in decomposing the total algorithm into a series of 
small steps, it is not possible (or efficient) to make each step a 
transformation from Mp to Mp. Basically, this happens because 
the instruction does not hold enough information to specify the 
Mp-to-Mp transformations. For example, ifone wants to add two 
numbers, two operands are required, and an instruction must 

’Although used mostly to describe Pc’s, the description applies to any 
processor. 

contain at least two addresses; ifit does not, then an intermediate 
state (i.e,, processor state) must be created to hold the information 
while the additional instructions are fetched. Thus, 1-address 
organizations require the most processor state, with less for 2- and 
3-address organizations. This consideration stops at 3 (two oper- 
ands and a result) because only a few elementary operations are 
more than binary. The processor state cannot be eliminated 
entirely, however, since there must be at least an instruction 
address (a Program Counter\PC register) to maintain continuity of 
the program. 

The second source of correlation between processor state and 
instructions per address comes from differential access time to 
processor registers and to Mp. As long as there is an appreciable 
differential, substantial gains in processing power can be obtained 
from increasing processor state. This derives, again, from the 
structure of algorithms that generate intermediate results that are 
used almost immediately afterward and then are of no further 
interest. Rapid temporary storage and retrieval are beneficial 
under these conditions. Thus, working against higher address 
organization is the extra time to store in Mp results that need only 
temporary storage. Thus, also, index registers and general 
registers almost always imply increased processor state, although 
they need not do so logically (that is, the registers could exist in 
Mp and still have their effect on the instruction format). 

With interrupts and multiprogramming the processor state 
gains additional significance, since it is the amount of information 
that has to be saved and restored in switching programs. For 
example, in the Honeywell H-800, an early 3-address computer, 
the processor state per program consisted only of the program 
counter and index registers, and when I/O halts occurred during 
processing, the Pc was switched immediately to another program. 
Eight programs could run concurrently (by having a total proces- 
sor state of 64 program registers). In present computers with 
general-register state, often 25 - 100 words must be stored, 
which implies an appreciable time for switching contexts.’ 

We can now consider briefly the different organizations accord- 
ing to addresses per instruction. To show the common similarities, 
we give in Fig. 6 a state diagram that can be used for all 
processors. In common is the basic idea of the stored program: 
fetch an instruction, determine what the instruction is to do, then 
execute it (the fetch-execute cycle). Other than this, only a part of 
the state diagram will be applicable to a given processor type. 

As shown in the computer space, the addresses-per-instruction 
dimension starts with zero addresses, then one address, then one 
plus indexing, one plus general registers, and on up to two, three, 
and variable addresses. However, from an expository viewpoint 

‘Members of the microcomputer class (or larger) frequently have several 
sets of Pc state registers for use by users and operating systems. 
Context-switching time then becomes only the time to specify the new 
register set to use. 



72 Part I1 Fundamentals Section 2 1 The Computer Space 

'Mp controlled state (access) 

'PC controlled state (compute) 
Note: Any state may be null 

State name Time in state Meaning 

iac instruction.address.calculation tiac Compute the instruction address 

if instruction.fetch t i f  Access ( to  Mp) for the instruction i 

iod instruct ion .operation.decoding tiod Decode the operation o f  instruction i 

doac data.operand.address.calculation tdoac Compute the address o f  variable v 

dof data.operand.fetch tdof Access ( to Mp) t o  read variable v 

do data.operation tdo Execute the operation specified by i 

dos data.operand.store tdos Access ( to  Mp) t o  write variable v 

Fig. 6. ISP interpretation state diagram. 

one should follow a different course, starting with single-address A significant change to the 1-address machine was the addition 
machines, then indexing, then 2- and %address machines, then of the index register (called B-tubes) in the Manchester University 
general registers, and finally the zero-address and variable- machine in the early 1950s. Index registers are motivated by the 
address organizations. This not only puts the more common frequent occurrence, in 1-address systems, of circuitous address 
organizations first but makes it easy to relate the organizations to calculations that involve first computing the address (e.g., the 
each other. index of an array in Mp) and then planting it just ahead in the 

instruction stream in order to make use of it as an address. 
P(l address) and P(l  + index address) Providing a set of index registers introduces a second address into 
These Pc's constitute most first-, second-, and simple third- the instruction, even though of extremely limited function. Thus 
generation computers. we classify processors with indexing as having (1 + x) addresses 



per instruction. An alternative view of index registers suggests 
that they double the number of data-types by allowing operations 
on vector data elements rather than just scalars. 

For the 1-address processor, the processor state (Mps) typically 
consists of the program counter (instruction location counter), an 
accumulator AC, a multiplier-quotient register MQ (the extension 
of AC), and one or more index registers X or XR. 

With only one address in the instruction, the one arithmetic 
register, AC, must be used for temporary results. Thus an 
effective-address integer (z) is computed as a function of the 
address part (part a) of the instruction i and the index registers. 
This process is typically 

z:= a + Xb] 

where Xb] is the jth index register as specified in the instruction. 
There are several forms for the transmission operators between 

AC and Mp. 

AC = z load immediate 
AC = Mp[z] load direct 
AC = Mp[Mp[zIl load indirect 
Mp[z] = AC store direct 
Mp[Mp[zIl = AC store indirect 

In indirect operations a convention may be required to determine 
what address in Mp[z] is to be used. 

Similarly, the binary operations (+, -, *, I ,  AND, OR, XOR, 
@, etc.) are generally of the form' 

AC = AC b Mp[z] 

Rarely do we find the symmetrical operation form 

Mp[z] = AC b Mp[z] 

For unary operations (NOT, -, etc.), the most common forms 
are 

AC = u AC 
AC = u Mp[z] 

Rarely do we find 

Mp[zI = u Mptzl 
Mp[z] = u AC 

'Indirect addressing, on the other hand, does not add to the addresses per 
instruction; rather, it introduces a second operation per instruction. 
'Any of the addressing modes suggested above can be used for an operand: 
that is, z immediate, Mp[z] direct, and Mp[Mp[z]] indirect. 

Chapter 6 1 Structure 73 

In both the above cases, the operations that place results in 
Mp[z] are excluded because of the added cost of including the 
symmetrical function and the marginal utility of such a function, 
since u is no longer available for further processing. 

The transmission, unary, and binary operators account for 
almost all operations in P(l address) computers (see Chap. 8). If 
we allow AC to stand for any part of the M.processor.state\Mps, 
rather than just the accumulator, then additional instructions 
would involve input/output data transmission, e.g., 

M p = T  and T =  Mp 

and conditional execution 

branch.if .zero.AC := IF(AC eql0) + (PC = z), 

Having index registers requires operations to process them. At 
a minimum they must be loaded and stored (usually from and to 
Mp); i.e., 

Mp[z] = X store index 
X = Mp[z] load index register 

But simple operations on an X are also desirable; for example, 

X = X + l  

Here X is used to point to (access) the next element in a vector. 
More complex operations can be carried out by placing X in the 
AC register, via the program steps: 

AC = X load AC with X 

AC = f(AC) manipulate AC 


X = AC load X with AC 


An operation to add k to X would then be 

AC = X next 

AC = AC + k next 


X = AC 


instead of 

Mp[z] = X next 
AC = Mp[z] next 
AC = AC + k next 

Mp[z] = AC next 
X = Mp[z] 

which assumes no transmission paths between X and AC. 



74 Part 1 FundamentalsI 

Ideally we would like to perform any operation directly on X as 
simply 

X = X + k  

From this begins the idea that X should look like the main 
arithmetic register AC. This is, no doubt, one evolutionary path to 
general-register processors. 

P(2 address) and P(3 address) 
The addresses (a) specify operands in Mp (Fig. 6). The Mps 
decreases as the number of addresses per instruction increases, 
since the operands need not be held temporarily between 
instructions (i.e., each instruction performs a complete opera- 
tion). 

The instruction form for the 3-address computer is 

where b is a binary operator and al, a2, and a3 are the addresses 
specifying the operands. In the case of unary operations (u), a2 is 
usually blank. In the case of a binary operation and a 3-address 
computer, the states are iac, if, iod, doac, dof, doac, dof, do, doac, 
das (Fig. 6). 

A 2-address computer does not necessarily require more 
processor state than a %address computer, since the operations 
can correspond to 

and 

Mp[azl = u Mp[al] 

However, sometimes extra Mps is useful. The BRANCH ON 
ACCUMULATOR instruction allows results to be checked direct- 
ly without referring to Mp. An especially useful instruction in 
%address computers is the transmission instruction (a special-case 
unary operation): Mp[aJ = Mp[all. 

The IBM 1401 has two registers, A.address and B.address, 
which hold al and a2 and can be loaded by the al and a2 parts of 
the instruction. These registers point to (address) operands and 
do not contain data. The remaining processor state is the 
1nstruction.address. The 1401 has instructions with no address 
parts, and these instructions take as operand addresses the values 
of A.address and B.address as of. the previous instruction. The 
state-diagram specialization (Fig. 6) is roughly 

iac, if, iod[doacl,dofldoac~,dof~,do,doac~,dos~]. . . 
[doacl,dofi, doacz ,dofz, do, doacz, doszl 

Section 2 1 The Computer Space 

where the sequence delimited by the brackets is the operation on 
a character; because the 1401 operates on variable-length strings, 
it is repeated until the end of the string. 

P(n + 1 address) 
Processors with n + 1 addresses deviate only slightly from the 
n-address processors above. The final, or +1, address explicitly 
specifies the address of the next instruction. Therefore, it can be 
used with any instruction set. There are two reasons why +1 
addressing is used. First, freedom is provided in the placement of 
each instruction within the program address space. Second, the 
next instruction address can be calculated in parallel with the 
execution of the current instruction. 

For computers with cyclic memories, the +1address allows 
both data and the next instruction to be specified independently, 
providing the opportunity to arrange the program and data in an 
optimum fashion. Since each instruction completion time depends 
on the location of data, it is desirable that the next instruction 
location be variable rather than the implicit next address used for 
most processors. This is almost universal practice in computers 
with Mp.cyclic. 

Microprogrammed processors may use the +1 address to locate 
the next instruction, and there may be several such next addresses 
(see Sec. 1in Part 2). Microprogram subroutines tend to be short 
(intrinsic to interpreting an instruction set), and there are many 
jump addresses. The increased speed from not having to compute 
the next instruction address is worth the added space cost. The 
IBM System/360 Model 30 (Chap. 12) shows the use of multiple 
+1addresses and if' classified according to our scheme would be at 
least a P(micro-program; 3 + 1address). 

€'(general register) 
The general-register processor has a small array of registers that 
can be used for multiple functions. These have fast access 
compared with the Mp, so that it pays to do as much processing as 
possible within them. Since the general register array is small, it 
requires only a small address (3 to 8 bits). Thus the instruction 
format contains fields for one (or more) general registers. There 
must still exist addressing for Mp, though this never exceeds a 
single address. Thus we classify general-register machines as (1+ 
g) addresses per instruction. 

The organization of a (1 + g) system can vary from something 
very close to a (1 + x) organization, in which essentially every 
instruction involves some Mp information, to an organization in 
which the only Mp instructions are transfers between Mp and 
Mps (the processor state holding the general registers) and there 
is a 2- or 3-address instruction set involving only Mps (see the 
CDC 6600 in Chap. 43 and the CRAY-1 in Chap. 44). That is, from 
a data point of view the Mps acts like a directly addressable Mp. 

The processor state of a general-register processor is invariably 



held entirely within the general-register array (rather than having 
additional independent registers). This is due in part to an already 
available mechanism (the array) and in part to the need for 
program switching, which is somewhat simplified by having all 
the Mps held in a single homogeneous memory. 

The general registers typically perform a variety of functions: 

Arithmetic registers (accumulator and the accumulator 
extension for the multiplier-quotient). 

Index registers. 

A second index register or base register. If the program 
addresses (a) are short, a base register is needed to address 
any area of Mp. 

Subroutine linkage registers. 

Program flag (sense) registers for boolean variables. 

Stack pointer (P may have multiple simultaneously active 
stacks). 

Address pointers to data arrays and lists. 

Temporary data storage for intermediate results. 

Temporary program storage for short program loops. 

The power of a general-register processor is obtained because 
the registers can serve many functions. Thus the operations on 
these registers can be extensive, because the operations need not 
be duplicated in other parts of the structure. For example, special 
operations for index registers are not necessary, because the 
operations for integers apply universally to both the accumulator 
and index registers. Of course, such generality requires compro- 
mises. The stack computer is faster for problems that can utilize 
stacks, whereas the general-register Pc must utilize Mp for the 
stack(s) and does not have the encoding efficiency of a pure stack 
processor (see below). In addition, the assignment (and reassign- 
ment) of general registers is most crucial, since they are a scarce 
resource with many uses. A general-register organization allows 
processors with a high degree of parallelism to be constructed, 
since several instruction subsequences can be executed concur- 
rently. 

The actual number of registers is rather critical and depends not 
only on the algorithms of tasks coded but also on the technology. 
In multiprogramming and interrupt computers, the program 
switching time increases with the number of registers.‘ Thus the 

’With decreased hardware costs, many Pc’s are implemented with several 
different register sets. A portion of Mps determines which register set is 
part of the currently executing Mps. At program-switching time, only the 
portion of the Mps needs to be changed to point to an unused or 
previously specified register set. Thus context-switching time can be made 
essentially independent of Mps size. 

Chapter 6 I Structure 75 

upper bound on the number of registers is both cost and program 
switching time. 

We would expect to find instructions that produce the following 
effects: 

Format Addresseslinstruction 

where 

u are unary operators [NOTI- I etc. 

bare binary operators (+/-I/I*IANDIORIXORI etc.) 

G is the general-register array 

g, g,, g2, g3 are instruction parts specifying a general register, G 

a, a,, a2. a3are Mp addresses specified as a function of instruc- 

tion general registers (for example, a := (address + G[g]) 

or a := (address + G[g,l + G[g,l) in the IBM System/SBO) 


General registers can be thought of as an outgrowth (generaliza- 
tion) of the (1 + x) processors, as we have already suggested. 
Alternatively, they can be thought of as evolving from a 2- or 
3-address structure. The UNIVAC 1103A, a 2-address processor, 
was no doubt a forerunner of the general-register UNIVAC 1107 
and 1108. 

P.stack (0 addresses per instruction) 

From a PMS viewpoint the P,stack is built around having a 
first-in-last-out memory (M.stack) as part of the processor state. 
Conceptually, it is built around the fact that computations can 
often be sequenced so that no explicit names (i.e., addresses) are 
required for temporary results. All operations are performed on 
the top of the stack. As each partial result is computed, it is 
pushed down in the stack and appears again to participate as an 
operand at exactly the appropriate point in later calculation. Thus 
the stack operates as an implicit memory for all intermediate 
products, and not only are transfers between P and Mp avoided 
but space in the instruction for Mp addresses is also eliminated. 

Instructions in such a system consist only of operations, since all 
their operands are in the stack. Thus the instruction format is that 
of zero addresses per instruction. There must, of course, be some 
addressing of Mp (just as in a general-register organization). The 



76 Part 1 1 Fundamentals Section 2 I The Computer Space 

addresses for Mp may themselves sit in the stack so that the 
instruction contains only the transfer (load or store) operation, not 
the address. It is necessary to have some way of getting fresh data 
into the stack, and all P.stacks have at least one operation that 
loads an address written in the program stream onto the top of the 
stack. On the other hand, there may be loadhtore instructions 
with explicit Mp addressing information. 

Why there should be this happy correspondence between 
calculations and memory to be performed and stack memories 
requires a little explication. It rests fundamentally on the phrase 
structuring of calculation in which each partial result is required at 
one and only one point, so that each subcomputation can be 
nested in the program (and hence its result nested in the stack) in 
the same order in which it will occur as operand to the one 
operation that uses it. 

There are several arguments against a P.stack. Multiple stacks 
are often required. Part of the power of a P,stack is derived from 
having higher-speed Mps for the stack. Yet only the top few (2 -

8) registers of the stack can be in Mps. When M.stack overflows 
into Mp, the speed of operations can become much slower than if 
there were no stack at all. A simpler implementation, for example, 
P.general,registers, is as fast and perhaps more flexible. Tempo- 
rary results that may be used frequently, such as common 
subexpressions, can be stored in a general register. Another 
difficulty with the stack is the difficulty in accessing other than the 
top. If full addressing is provided, then the organization has 
become almost general-register. Yet another difficulty arises from 
inhomogeneity of data-types, especially if several of them are 
packed into a single word (the width of the stack). Thus, for 
instance, in one stack machine (the Burroughs B 5000 in Chap. 9) 
there is a completely separate nonstack ISP for string manipula- 
tion. 

A simple numerical computation is given in Table 2 as a 
comparison of the P.stack, P. Laddress, and P. general. register. 
Here, the P,stack is probably shown at its best, as there are no 
array-index calculations or program-flow manipulations involving 

Table 2 Comparison of Stack, General-Register, and Accumulator Pc for Evaluating the Expression: 
f = (a -b) / (c - d x e) 

Pc.stack [stack contents] 

Push a [a] 
Push b [a, b] 
Subtract [a - bl 
Push c [a - b, cl 
Push d [a - b, c, dl 
Push e [a - b, c, d, el 
Multiply [a - b, c, d x el 
Subtract [a - b, c - d x el 
Divide [(a - b)/(c - d x e)] 
Pop f [ I - stores stack at 

location, f 

Program size: 
Address integerlai 6 ai 
Pcodeslo 4 o t  
Program size for 6 x (10 + 2) 


hypothetical example + 4 x 6  

machines 96 


Program size in bits B 5000: 144 

for real C’s 


Number of Mp references 
for data 6 

tNot an instruction in the specific example machines 
$Assumes a special short form encoding for pushes and pops. 

§Assumes 16 general registers. 

Pc.genera1 register 

Load G[l] ,  a 
Subtract G[lI, b 
Load G[2], d 
Multiply G[21, e 
Inverse subtract G[21, c t  
Divide G[11, G[21 
Store G [lI, f 

6 ai + 8 ai (gr) 
7 0  


6 x (10 + 6 + 4)s 
+ 1  x ( 6  + 2 +4)§  

134 

IBM Sl360: 208 (above)? 
: 224 (actual) 

plus base register 
overhead (0 - 192)ll 

6 

PcJaddress 

Load d 
Multiply e 
Inverse subtract c t  
Store temporary 
Load a 
Subtract b 
Divide temporary 
Store f 

8 ai 
8 0  

8 x (10 + 6) 

128 

PDP-8: 96 (above)?’ 
: 180 (actual) 

a 

VNot completelytrue,  since System/360 has only a 12-bit address and uses base registers. Some overhead should be assumed. Worst case 
(but  not unreasonable) is 6 x 32 or 192-bit overhead. 



testing, etc. The criteria we measure are the algorithm encoding 
space and the problem running time. The hypothetical machines 
are all assumed to have 10-bit addresses and 6-bit opcodes. The 
stack machine is further assumed to have a special %bit opcode for 
specifying push and pop instructions. 

The typical kinds of instructions interpreted by a P.stack are: 

Interpreter state 
Operation sequence Example 

Load iac, if, iod, doac, dos M.stack.top = Mp[vl 
Store iac, if, iod, doac, dos Mp[vl = M.stack.top 
Unary 
operation iac, if, iod, do M.stack.top = u M.stack.top 

Binary M.stack.top = M.stack.top 
operation iac, if, iod, do b M.stack.top-1 

The comparison of a stack and a general-register machine has to 
be done on the basis of a total environment. Table 2 indicates the 
superiority of stacks in program density (as measured in number 
of bits) for numeric computation. Generally, stack computers are 
designed to execute efficiently block-structured higher-level 
languages. The nesting of temporary variables on block entry and 
their subsequent release on block exit matches the last-in-first-out 
discipline provided by a stack. Likewise subroutines and inter- 
rupts also exhibit a last-in-first-out execution order. Machines 
such as the Burroughs B 5000 and Hewlett-Packard HP 3000 
effectively have two stack pointers (see Sec. 2 in Part 2). The first 
points to global variables accessible from all blocks; the second 
identifies temporary variables used in the currently executing 
block. All variable accesses occur with relative offset to the 
current values of the stack pointers. The value of the temporary 
stack pointer is automatically adjusted by hardware upon block 
entry and exit. Variables at other block levels (so-called lexical 
levels) must be set up in software by remembering their positions 
relative to software stack (or frame) pointers. To make these other 
variables more accessible, sufficient hardware stack pointers must 
be added to accommodate each block level. (See the B 6700 
discussion in Part 2, Sec. 2. The B 6700 has stack pointers called 
display registers.) These extra stack pointers are akin to the 
special-purpose index registers in P(l + x) machines. 

One method of comparing stack and general-register organiza- 
tions is via a technology-independent benchmark. Wichmann 
[19763 compared some 40 hardwareisoftware systems on the 
recursively defined Ackermann’s function. Measuring the calling 
performance of a recursively defined function is important for two 
reasons: 

Procedure calls are significant resource consumers. Lunde 
[1977] showed that, on average, a procedure call occurs 
every 40 assembly language instructions. 

Chapter 6 I Structure 77 

Recursion is the most general form of procedure call. 

Table 3 depicts a subset of the data presented in Wichmann 
[1976]. The last line was supplied [Blake, 19771. Although there 
are many sources for variations (including language, compiler, and 
hardware), Table 3 indicates that minimal variation exists between 
stack machines (e.g., B 5500, B 6700, and HP 3000) and 
general-register machines (e.g., PDP-10, PDP-11) in the number 
of instructions executed per call or the number ofwords of storage 
used per call. 

Two other interesting points of comparison can be made 
between stacks and general-register machines. Blake [19771 
indicates that the average number of memory references per 
HP 3000 instruction was 2.2 for the data processing benchmark 
described in Chap. 5. The number of memory references per 
PDP-11 instruction for the DEC benchmarks in Chap. 5 was 2.16. 
The PDP-11 and the HP 3000 are contemporary 16-bit minicom- 
puters. Second, Blake indicated that the four top-of-stack registers 
in the HP 3000 were sufficient for the vast majority of computa- 
tions. Extra memory traffic generated by insufficient stack re- 
gisters was only 0.085 memory references per instruction, 
or 4 percent of Pc-Mp traffic. Lunde [1977] indicated that 
eight general registers were sufficient for the benchmarks he mea-
sured. 

Thus, there seems to be little difference in performance 
between stack and general-purpose computers. Software, particu- 
larly compilers, may be easier to write for stack machines because 
of the hardware support for block-structured higher-level lan- 
guages. Whether stack machines would be applicable to other 
computing environments that do not use block-structured lan- 
guages is still an open question. Table 4 summarizes the stack and 
general-register comparison. 

Table 3 Ackermann’s Function 

Time per lnstruction per Words per 
Languagelcomputer call ( p s j  call call 

ALGOL 60 
B 5500 135 19.5 7 
B 6700 41.2 16 13 

BLISS 10 
PDP-10 53.1 5 1.5 5 

PASCAL 
IBM Si370 39 42.5 30 
Model 158 

PALGOL 
PDP-11/20 46 1.3 3 

BLISS 11 
PDP-11120 31 8 2 

SPL 
HP 3000 24 ? 7 



78 Part I FundamentalsI 

Table 4 Comparison of Stack and General-Register Architectures 

Stack General-Register 

Number of registers Approximately the same 
Register use Dedicated Arbitrary 
Control of registers Hardwired Explicit in program when 

used as stack 
Access to local Top of stack Full set in general reg- 
variables isters 

Compiler Easy Resource allocation 
problem 

Program encoding Fewer bits Bits for register speci- 
fication 

Variable Numbers of Addresses per Instruction 

Although there are a few operations that require the specification 
of three or more addresses, these are of such low frequency that 
only a few machines have been built (e.g., theVAX-lll78O) that 
have more than three data addresses and one next-instruction 
address. (Some of the microprogrammed processors have more 
than one next-instruction address, and they often do several 
operations in parallel in one instruction.) 

However, processors that can have a variable number of 
operands have been developed. Most of these involve the use of 
an instruction that is larger than a single Mp word. Thus, bringing 
in the first word of an instruction, which contains the operation 
code, determines how many additional operands are needed and 
hence how many additional operands are needed and hence how 
many additional words to obtain from Mp. (In a character-based 
system this may require several reads per operand; in a word- 
based system this may be one or two operands per read.) The gain 
in such a system is the higher average density of operations per 
instruction, bought at the price of extra Mp accesses. 

Most such variable-address processors have a mixture of one, 
two, and three addresses per instruction-simply a mix of the 
types already considered. Chapter 42 on the DEC VAX-11 shows 
the architecture of such a system with instructions encoded into a 
byte string. Each instruction can have any number of addresses, 
and each address can be calculated in a variety of ways: address 
memory, a general register, or a stack. Some instructions that 
operate on strings do, in fact, require more than three addresses 
per instruction. 

The fundamental limit to such variability is the processor state 
(plus the additional within-instruction temporary state). This, of 
physical necessity, must be finite, and the number of addresses 
must yield an amount of information that is less than this total 
state. Otherwise the processor cannot hold on to it to process it.’ 

’If it processes a large amount of information, but in pieces (i.e., 
sequentially in real time), it is not really executing a single instruction 
based on all the addresses but has decomposed the total computation, just 
as a single-address organization has. 

Section 2 I The Computer Space 

Thus the various processors that claim to operate from a higher 
language (see the P.languages of Part 2, Sec. 7) must in fact either 
translate into another, simpler programming language, as does 
the SYMBOL (Chap. 30), or become an interpreter that processes 
a small amount of a language statement before the rest. 

PMS Structure 

Spurred by cheaper components with higher density and greater 
reliability, the PMS structure of computers has become the most 
rapidly evolving dimension in the computer space. Historically 
computers were modeled as an arithmetic section, inputloutput 
devices, a memory for holding instructions and data, and a single 
control to force the other components to interact. (Fig. 7). Figure 
8 depicts the addition of Ms. 

If we separate each component according to its function, assign 
control (K) to each element, and then introduce the processor (P), 
we get the structure depicted in Fig. 9. Of course, a large part of P 
is a data operator (D).The processor has the behavioral properties 
attributed to the structure of Fig. 7. If we include the control 
within each component, we get Fig. 10 from Fig. 9. 

For a consideration of larger structures, consisting of several 
Mp’s, P’s, Ms’s, and T’s, it would seem logical to expand the 
system as shown in Fig. 11, in which everything is connected 
through a single switch. If the central S has sufficient power for 
multiple conversations, this indeed provides maximum generali- 
ty. However, although designs have been proposed for such 

m 

- PMS1
7.  Early model of a stored program digital computer 

diagram. 

Fig. 8. Early computer model (with Ms and S) PMS diagram. 



Fig. 9. General computer model (with distributed control) PMS 
diagram. 

P 

Fig. 10. General computer model (without K)PMS diagram. 

El 
Fig. 11. General computer model (with multiple components) PMS 
diagrpm. 

Chapter 6 I Structure 79 

systems, technology and economics have so far prohibited their 
actual realization. Instead, there has developed the general 
latticelike structure shown in Fig. 12. Each switch in this 
structure connects components on one side with components on 
the opposite side (the S interconnecting the P’s being the 
exception). 

The lattice structure of Fig. 12 is hierarchical in the sense that 
the Mp’s form the inner core and one travels out toward the 
periphery in moving from left to right. With this movement there 
is a general decrease in data rate, it being highest through the 
Mp-P switch and lower as one moves to the right. 

The model has five switches (S). One switch connects the 
computer’s peripheral devices with the external environment 
(human beings, other processes, etc.). Three switches appear 
alike in the way they interconnect Mp with P, P with K, and K 
with (TIMs), respectively. However, they are usually quite 
different. We would expect any P to connect with any Mp. We 
probably would expect to have only one or two Pio’s connected to 
a given set of K’s. Most certainly one or two K’s would manage a 
given set of Ms’s or T’s. Thus the structure nearest the periphery 
becomes more like a tree than a lattice (examples are provided in 
Figs. 13 and 14).The last switch in Fig. 12, unlike the above four, 
provides intercommunication among the processors. In any 
multiple-processor structure (even 1Pc-nPio) there must be 
communication among the processors. A switch of this type is 
organized as a nonhierarchy and appears like a conventional 
telephone exchange, since any P can call any other. On the other 
hand, the amount of communication (measured in bits) is rather 
low. 

The P’s and (usually) Mp’s have their controls associated with 
them, and we have not bothered to show such K’s in the diagram. 
The K’s that are shown provide control for the T’s and Ms’s. These 
are separated in the figure because they are separated in current 
computer systems and made into identifiable physical compo- 
nents. Under current technology they are expensive devices, so 
that one K per T or Ms is not always economical.’ Therefore, each 
K needs to be shared among a set of T’s and Ms’s. (That is, one 
purchases a single magnetic-tape controller for, say, four magnet- 
ic tapes.) The shared K also explains why only one of a given class 
of devices (e.g., magnetic tapes) can operate at a time. As 
technology changes (especially costs), these separate K’s are 
disappearing. 

Nearly all the computers discussed in this book fit the lattice 
model of Fig. 12. However, it is not unlikely that structures will 
be or have been built that do not conveniently fit it. 

The values along the PMS structure dimension of the computer 
space have been generated from the general model and laid out in 
the order of their evolution. This evolution is strictly from less 

’This situation is changing as inexpensive microcomputers are dedicated to 
the controller task. 



- - 

80 Part 1 1 Fundamentals Section 2 1 The Computer Space 

Notes 

~ - l m - - I *  
n u l l  I 

El -m-l-lEl-m-
l g  -1- 'm(human I computer 

Fig. 12. General computer model (multiprocessors) PMS diagram. 

complex to more. The seemingly more complex network struc- 
tures, such as the duplexed computers, are not necessarily as 
complex as a single-multiprocessor computer. Duplex computers 
have been used for some time. 

The evolution of multiple-computer structures has been 

Mp - Pc Stm ---Ms---Ms 
/ 

Fig. 13. Tree-structured computer (1-Pc) PMS diagram. 

+ 
periphery 

1 network 1 mechanical process) 

spurred by the availability of cheap miniprocessors and micro- 
processors. The subdimensions of the nPc and nC (network) space 
have become sufficiently rich to warrant a more detailed discus- 
sion in Secs. 4 and 5 of Part 2. The proponents of multiple- 
processor systems believe that the addition of several large 
processors to a structure will always increase the performance of a 
one-processor structure. The costiperformance debate of a single 
processor versus a multiprocessor has generally been resolved in 
favor of the single, large processor. However, advances in 
multiprogramming software and the demand for attributes other 
than costiperformance (e.g., availability, reliability, and signifi- 
cant applications requiring raw performance beyond that of a 
uniprocessor) have led to a proliferation of multiple Pc and C 
structures. 

The simple 1-Pc structure shown in Fig. 13is a tree. Although 
there are no values on the information rates, the nature of the 
fixed' and time-multiplexed switches indicates that perhaps the 
top two T's, one Ms, and one of the bottom T's can all be active at 
a given time. In Fig. 14 a 1-Pc, 2-Pi0 computer is given. Here we 
note that the control of one secondary memory is by a Kio rather 
than the Pio. (The Kio cannot fetch its next instruction from Mp 
and must rely on Pc for control.) Note that there is necessarily a 
lattice connection between the 2 Mp and the Pc, 2 Pio, and Kio. 

'A relative value for the attribute that denotes the time a switch is closed. 
Fixed usually denotes a time duration such that more than 1 i-unit is 
transmitted. 



Chapter 6 I Structure 81 

I 

Kio 
- -Ms 

I 
I 
I 

= I 
I -

P I 0  
I -

- 1 

T 
lattice memory-processor 

switching : I 
* I I 

computer boundary 
(periphery) 

Fig. 14. Tree-structured computer (1Pc-2Pio and lattice Mp-P switch) PMS diagram. 

The special cases of P.displays, multiprocessors, P(array1wired 
algorithm), and parallel processing are all realized from the 
general model of Fig. 12. 

As was pointed out in Chap. 1, evolutionary chains in the 
computer space which wrap back upon themselves follow a 
pattern called the wheel of reincarnation [Myer and Sutherland, 
19681. Figure 15 depicts another evolution, this time for the 
graphics output function. The trajectory around the wheel follows: 

Position 1: Point plotting. The computer includes a single- 
instruction display controller that can plot a picture on a 
point-by-point basis under command of the central processor. 
For most displays, except storage scopes, the processor can 
barely calculate the next point fast enough to keep the display 
refreshed. Hence, the system is processor-bound, and the 
display may be idle. 

Position 2: Vector plotting. By adding the ability to plot lines 
(i.e., vectors), a single instruction to the display processor will 
free some of the processor and begin to keep all but the fastest 
display busy. 

Position 3: Character plotting and alphanumeric plotting. 
With the realization that characters are a major part of what is 
displayed, commands to display a character are added, further 
freeing the processor. Many of the point-plotting displays were 
extended to have character-generation capability. 

Position 4:General figure and character display. In reality, a 
picture does not consist of just characters and vectors; each 
element of the picture is actually a string of characters and a set 
of closed or open polygons to be displayed starting at a 
particular point. By providing the control display with a direct 
memory access channel, the display can fetch each string of 
text and generate polygons without involving the central 
processor. 

Position 5: Display processors. With the ability to put up 
subpictures with no processor intervention, it is easy for the 
whole picture to be displayed by linking the elements together 
in some fashion. This merely requires JUMP and SUBROU- 
TINE call instructions so that common picture elements do not 
have to be redefined. 

Position 6: Integrated display and central processor. Now, all 



88 Part 1 1 Fundamentals Section 2 I The Computer Space 

plotting 

With 

vectors 


Character 

Arithmetic 

instructions t o  Pd 

characters ,With inKl
With direct of display pictures 


Branching and loop taken from memory via DMA 


control instructions. by controller 


The controller 

becomes a processor. Note: 


'Kd performance i s  maximum. 

U Pc may be busy polling (unless a 


block transfer is used). 
 -
Fig. 15. The wheel of reincarnation. (From C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer 
Engineering: A DEC View of Hardware Systems Design, Digital Press, 1978, p. 202.) 

the data paths and states are present for a fully general-purpose position 1. Such a structure is just a basic computer with the 

processor so that the central processor need never be called on addition of a general figure and character display (position 4).

again. This requires a slightly more general-purpose interpret- 

er. By minor perturbations, the processor design can be Position 8: A separate computer. A separate computer is 

refined in such a way as to execute the same instruction set as formed solely for display, and the options available for picture 

the original host computer because the cost of incompatibility processing can be decided again from the wheel of reincarna-


is too great. Two processors require two compilers, diagnos- tion. 


tics, manuals, and support for use. This state provides the same 
Wheels of reincarnation usually occur when enhanced function- 
capability as that shown in position 1.The original processor is 


completely free, and there is a display processor with the ality causes a specialized function to evolve. The specialized 

capability of executing both the original instruction set and the function evolves through the following stages: 

display instruction set. 
- .  

Simple, dedicated hardware executes primitive commands Position 7:Two computer structures. Alternatively, the proces- 
sor can be isolated as a separate computer and reconnected in under control of a Pc. 
some fashion to the central processor-primary memory pair in More complex hardware becomes able to execute several 



primitive commands for each Pc command. Thus, a special- 
ized instruction set is developing. 

The specialized hardware can fetch and sequence through 
command lists in a shared memory. The K is now a P. 

The special P becomes more general in order to offload 
housekeeping hnctions from Pc. At this point P.special is a 
primitive Pc, and subject to all the evolutionary pressures of 
Pc’s that are members of a given computer class. 

Other examples of systems on the wheel of reincarnation include: 

Ms controllers for disks and tapes 
0 	 Terminal controllers, multiplexers, and concentrators 

Communication-line controllers 
0 	 Processors to support a particular high-level language (e.g., 

ALGOL, LISP, PASCAL) 

Switching 

A principal issue of computer design at the PMS level is 
switching. The switching dimension of the computer space is 
correlated with PMS structure, as we have just seen. To have a 
more complex structure, more complex intercommunication 
(switching) is required. 

Figure 16 illustrates the eight forms of communication between 
the major PMS component types. The various switches’ in Fig. 12 
implement one or more of these communication functions. Each 
form of communication, with its impact on the switching struc- 
ture, will be discussed in turn. 

Pc-Mp Communication. Pc-Mp communication is the primary 
performance determiner of a computer structure. The Pc 
fetches instructions from and manipulates data in Mp. Thus 
the Pc-Mp bandwidth (e.g., in words per second) potentially 
limits the Pc’s execution rate. Various techniques have been 
developed to reduce the Pc’s request rate to memory (e.g., 
caches, as described in Part 2, Sec. 2). 

Pc-K Communication. The Pc initializes and issues commands 
to the K’s. The K performs the requested action. 
K-Pc Communication. The K informs the Pc (i.e., ONLINE, 
READY) of its status and the status of the I/O command (i.e., 
DONE, ERROR, etc.). The availability of new status informa- 
tion can be signified to the Pc by means of a special signal 
called an interrupt (see Part 2, Sec. 2). 
Ks-Pc Communication. Simple controllers return data to or 

‘A bus is a special form of a switch. Buses are actually the dominant way of 
realizing switches in contemporary computer structures. For the current 
discussion we will use the more general term switch. 

Chapter 6 1 Structure 83 

communication instruction fetch, data manipulation 

communication control information 

communication status information 

communication data 

communication data 

Communication control information 

communication control, data, and status information 

communication control information 

Fig. 16. Various forms of communication in a computer system. 

take data from the Pc. Usually Ks is an inexpensive controller 
for low-data-rate devices. 

K f - M p  Communication. Sophisticated controllers do not re- 
quire the Pc to intervene in fetching or storing data to Mp. 
Rather, these controllers of high-data-rate devices access Mp 
directly. 

K f K s  Communication. A sophisticated controller (e.g., a Pio) 
may issue commands to a simple controller, which returns data 
directly to the Kf. 

K-Ms IT Communication. Controllers issue commands to 
andlreceive data or status information from individual Ms’s and 
T’s. Depending on the data transfer rate of the devices, this 
communication may require high-speed communication tech- 
niques as used in Pc-Mp communication. 
Pc-Pc Communication. Multiple Pc’s in the computer structure 
have to exchange information in order to cooperate. The 
various types of Pc-Pc communication are listed in Part 2, 
Sec. 2. 

The switching problem then is to provide a physical structure 
that supports various forms of communication. One technique 
would be to set up a switching structure for each separate type of 

Notes 

1 Pc-Mp 

2 Pc-K 

3 K-Pc 

4 KPPC 

5 Kf-Mp 

6 Kf-Ks 

7 K-MslT 

8 Pc-Pc 



I 

84 Part 1 1 Fundamentals 	 Section 2 i The Computer Space 

OMA link 	 PDP-11 Unibus. While the Unibus is more economical than radial 
bus structures, the single bus limits the overall bandwidth 
available to the system, thus limiting the system processing rate. OMA link 
For a further evaluation of the evolution of the PDP-8 and PDP-11 

1/0link bus structure, see Chaps. 46 and 47. 
Figure 19 illustrates the hierarchical nature of switches: more 

complex switches are formed by cascading (connecting) the 
primitive switches together. Figure 19 divides switches into two 

T. console groups and ten categories: 

Group 1. Connecting dissimilar components 

Fig. 17. Examples of a radial bus structure. (a) A radial link 
structure. (b)PMS structure of the PDP-8. 

communication and derive a PMS structure similar to Fig. 16. 
Such PMS structures, common in the early days of computers, are 
termed radial buses (see Fig. 17), since their communication 
paths diverge radially from the Pc. Figure 17 illustrates the PMS 
structure of the early members of the PDP-8 family. The PDP-8 
put control/status/data information for similar devices into three 
major buses: memory (Pc-Mp), I/O (Pc-K, K-Pc, Ks-Pc), and 
DMA (Pc-K, K-Pc, with some processor logic to handle the 
Kf-Pc-Mp communication). Kf could also be controlled via the 110 
bus. With multiple devices on a bus, each bus also needs 
arbitration logic to determine successive control of the bus next 
(e.g., to initiate a conversation), as well as addressing information 
to determine the receptor of the information. 

In contrast to the specialized link bus for each communication 
type is a single bus for all communications. Figure 18depicts the 

Txonsole. TTY 

Fig. 18. The PDP-11 unibus. 

Simple. Communication between (connec- 
tion to) one component of type a and one 
component of type b. 
Duplex, Communication between one com- 
ponent of type a and several components of 
type b. This is the bus structure found in most 
computers where the a component is a pro- 
cessor and the b components are MplMslT. 
See Chap. 8 and Chap. 38 for a discussion of 
typical bus structures. 
Dual-duplex. Communication between two 
components of type a and several (n)compo-
nents of type b. Up to min(2,n) conversations 
at a time. This switch is often found in 
dual-processor systems. 
Time-multiplexed cross-point, concurrency 1, 
Any component of type a can communicate 
with any component of type b with only one 
conversation at a time. This is a generalization 
of switch 2, the duplex switch. 
Cross-point, concurrency, min(m,n). Any 
component of type a can communicate with 
any component of type b with up to min(m,n) 
conversations at a time. This is a general-
ization of switch 3, the dual-duplex. This 
switch is used in the C. mmp multiprocessor 
(Chap. 22)and the Burroughs multiprocessors 
(Chap. 9). 

I I 

Ks Ks Kf 

I I 
S S S 

I 


I 





86 Part 1 1 Fundamentals Section 2 The Computer Space 

5 s  [cross-point; m a;  n b. concurrency: min (m,n); mxn S.gate1 

3c S [dual-duplex; budchain; 'duplex version of2cll8j-Ecross-point1 

am 

4 S [time-multiplex, cross-point; m a: n b. concurrency: 1; 

m + n S.gate; lcascade o f a  duplex!] 


...8 
5a SLcross-point: radial: !Linksfoa o r b  may be null!]  

4a S [time-multiplex; cross-point; radial; central; concurrency: 1I 

5b S[cross-poinr buslchainl used for Mc-P mterconnectionl] 

4b S [time-multiplex. cross-point buslchain] 

Fig. 19. (Continued) 



S [dual-duplex cross- Group II. Nonhierarchical switching for lnterconnectmg am point1 
components for 2-way conversations. 

g S [ d u p l e x ;  nonhierarchical] 

6 Sldual-duplex cross-point, m a ;  n b. concurrency 
min (m, n), 2 x m x n S gate1 

6a Sldual-duplex; cross-point; radial1 


S [k-trunk1 


. 
7 S[k-trunk; hierarchical. r n  a; n b: concurrency. k, (mtn)  x k %gate] 

7a S[k-trunk; central; hierarchlcall 

Fig. 19. (Continued) 

r n  

8 S[duplex; nonhierarchical; concurrency 1I3am 

8a S[duplex nonhierarchical central] 

Iredundanr, used ro keep 
L inrerconnectjon flme~-~
0 L constantl 

a rn 

8b S[duplex. nonhberarchical. busicha~nl 9 

9 S[cross-potnt, nonhierarchical, m a, concurrency mi2 

r n  x (rn-1 I12 S.gate1 

9a S[crosr-point; nonhierarchical; centrall 



88 Part 1 1 Fundamentals 	 Section 2 1 The Computer Space 

Fig. 19. (Continued) 

6 	 Dual-duplex cross-point, concurrency min 
(m,n). This structure can be regarded either 
as a generalization of switch 3 or a distributed 
form of switch 5.  The dual-duplex cross-point 
was used in the Pluribus multiprocessor 
(Chap. 23) for improved reliability over a 
centralized cross-point switch. 

7 	 K-trunk, concurrency K. The trunk structure 
can be viewed as a higher-concurrency ver- 
sion of switch 4 or a reduced-cost version of 
switch 5.  A noncomputer example of a trunk 
switch is the telephone exchange. 

Group 11. Connecting similar components 
8 	 Duplex. This corresponds to switch 2. Any 

component can communicate with any other 
component, one conversation at a time. The 
Cm* multiprocessor cluster uses this form of 
switch (see Part 2, Sec. 4). 

9 Cross-point. Analogous to switch 5. 
10 K-trunk. Analogous to switch 7 .  

With this preliminary introduction to the switching problem, it 
is now possible to trace the evolution of switching structures in the 
major areas of Pc-Mp, Pc-K, and K-Ms communications. A more 

detailed discussion and taxonomy of switching structures can be 
found in Sec. 4 of Part 2. 

Processor-Memory Switching 
With the advent of multiple processors, memory-processor 
switching became an important problem. The Mp-P switch is 
what makes multiple processors possible, and it is a determining 
factor in both performance and reliability. 

The structure of the processor-memory switch for computers 
that have multiple memories and multiple processors is a lattice if 
simultaneous memory-processor dialogues are allowed. A cross- 
point switch provides redundancy and is used to form the lattice 
structure. To vary from the full-dupledduplex switch (for rn 
memories and one processor, or p processors and one memory) 
requires more components to be devoted to the switching, to 
buffering, and to arbitration control (see Chap. 22). Hence duplex 
switches are used on most multiprocessor computers. The 
processor-memory switching possibilities can be seen nicely in 
Fig. 19. The important switch parameters are the number of 
memories, the number of processors, and the number of simulta- 
neous processor-memory dialogues. In current designs P always 
originates the dialogue, which is generally taken to mean the 



reading or writing of a given word in Mp. The range of complexity 
is roughly 

S[null; 1M; 1P; concurrency: 111 

S [simplex’Ihalf-duplex’ Ifull-duple$; 


(mM;1P) I (1M; pP); concurrency: 11 
S[time-multiplex cross-point; mM; pP; concurrency:l] I 
S[cross-point; mM; pP; concurrency: min(m,p)] 

An S,duplex can be used to increase the number of processors 
that can be connected to the memory system while not having to 
provide additional switch points on each memory. For example, in 
the CDC 3600 [Casale, 19621 a basic S[8M; 4P; concurrency:4] is 
expanded by placing another S[lM; 6P; concurrency: 11in series 
to give a possible overall S[8M; 2AP; concurrency: 41. This scheme 
was used to provide multiple processor accesses to the memories. 

Processor-Control Swiching 
The first switching problem developed with the need to commu- 
nicate with several inputloutput devices. This switching is hierar- 
chical in nature; one (or two) processors maintain control of many 
K’s by issuing K a primitive task. At the completion of the task the 
K signals the processor that the task has been completed. 

The switch provides a link between processor and controls for 
the secondary memory or the terminals and is parameterized by 
the number of processors, the number of controls, the number of 
simultaneous conversations, and the component that originates 
the dialogue. In these switches the control of information 
transmission is always by the processor. The evolution has been 
approximately as follows: 

S[null; lP ,  1K; concurrency: 1;initiator: P] 
P and K are connected during data transfers. 

S[simplexlhalf-duplexlhll-dupledduplex:1P; 1K; concur-
rency: 1;initiator: P,K] 
Each IS operates independently because it can return or 
request communication with P when the control task is 
completed. 

S[dual-duplex: 2P; 1K; concurrency: 2; initiator: P, K] 
Duplex paths from dual P’s to each K for reliability. 

S[cross-point; pP; kK; concurrency: min (p,k) initiator: 
P>Kl 
General case of multiple P’s and K’s with communication 
among the components. 

‘A switch that allows communication in one direction between two ports. 

*A switch that allows communication in either direction but only one 

direction at a time. 

3A switch that allows concurrent communication between two ports. 


Chapter 6 I Structure 89 

The early machines used the first structure, and concurrent 
operation of controls was possible only by starting several controls 
and by very carefully programming the timing for the data 
transfers. Two conditions occurred to cause this: The buffering for 
a T or an Ms was associated with the processor, and the control 
could not signal the processor. Although rather trivial to imple- 
ment, the idea of allowing a K to signal the processor (item 2 
above) did not occur until after the idea of arithmetic processor 
traps was incorporated into processors. The interrupt was used as 
the method by which a K communicated its desire to converse 
with a P. The early IBM 709 provided a separate, independent 
processor for handling the communication with input/output 
equipment. Simultaneous processor-to-inputloutput or second-
ary-memory dialogues could take place (provided the devices 
were connected to the right processor). In most of the early 
computers, part of the control function (data buffering) was 
associated with the Pc, and thus only one device could operate at a 
time. This stemmed from the comparatively high cost of registers, 
so that links were established for a fixed period of time during a 
complete block transfer of data. 

In some of the military computers a duplicate set of K’s is 
provided for reliability. The more elaborate switching structures 
(types 3 and 4 above) are rarely used between Pio’s and K’s; thus 
to work on a peripheral requires the use of the rest of the 
computer. The S.dual-duplex is becoming more common; it 
provides a method of offline operation for maintaining better 
component utilization and a more reliable structure. 

Control- Terminal and Control-Secondary-Memory Switching 
The switches that link a control with a particular terminal or 
secondary memory are generally fairly straightforward. Normally, 
a fixed-duplex switch is used. However, a dual-duplex switch is 
used if multiple access paths to the component are required. The 
switch links a secondary memory to a control during the transmis- 
sion of relatively long information units (e.g., records). A typical 
example of such a switch is the bus structure used when magnetic 
tape units connect to a common control. Only one of the units 
operates at a time (although all can be rewinding simultaneously). 
The switches are far less interesting than those above. Because 
they are nearer the periphery, failure in them does not imply a 
failure in the complete system. 

Processor Function 

The emergence of complex PMS structures is coincident with the 
development of functionally specialized processors. In the simple 
computers of Figs. 7 to 11there is place only for Pc. In the general 
lattice there can be a Pc specialized to perform no inputloutput 
operations; one or more Pio’s specialized to communicate with the 



90 Part 1 1 Fundamentals 

T’s, and Ms’s and even to organize information in Mp for 
transshipment; additional Pio’s specialized to handle graphic 
displays (hence P.display); a Pc specialized to tolerate failure; and 
even P’s specialized to work on specific data-types (for example, 
P.array) or specific algorithms (e.g., the fast Fourier transform). In 
addition, any of these processors may be realized by micropro- 
gramming which is to say, by having its ISP interpreted by a 
specialized P. microprogram. 

Although the existence of various functionally specialized 
processors is coupled most closely with the PMS structure 
dimension, the processors themselves are defined primarily by 
the data-types they can process. On the other hand, the inclusion 
of microprogrammed processors really extends the PMS structure 
dimension to where a P can be seen as a cascade of two P’s. 

The processor-function dimension in the computer space is laid 
out in an evolutionary way, so that its correspondence with PMS 
structure is clear. P.microprogram is put at the beginning of the 
dimension ahead of Pc, not because it occurs earlier in evolution- 
ary development, but because it extends the PMS dimension 
down into the processor. Any of the P’s along the dimension can 
be attained by a P.microprogram. 

As an actual dimension characterizing a total computer it must 
be viewed cumulatively (similarly to the data-type dimension). 
Thus, if a computer has a Pio, it also has a Pc, and if it has a P.array 
it also has the prior ones. There are numerous exceptions to this, 
such as small Pc’s with P.displays (hence with no Pio’s). This 
evolutionary ordering does not correspond to complexity or 
number of data-types in the P. Pc and €’.array are the most 
complex; Pi0 and P.vector.move are least. 

We will make a few brief comments on each functional type, 
taking them in the order of the dimension. 

Microprogram Processor (P.microprogram) 

The term microprogramming was introduced initially in “The 
Best Way to Design an Automatic Calculating Machine” [Wilkes, 
19511. We use microprogrammed to mean that an ISP is defined 
by an interpreter program residing in an internal Mp, processed 
by an internal processor (the P. microprogram). Thus the structure 
is really an external processor (ISP) being defined by the 
computer formed as 

c] := i l - / P m i c r o p r o g r a m lP Mp(interna1; read-only)’ 

The operations that microprogram processors perform are 
primitive in comparison with other processors. The task of the 
microprocessor is to interpret the instructions of the ISP it is 
realizing. This involves mostly data transfers among the registers 
of the processor state (Mps) plus simple boolean tests. Although it 

‘Many contemporary microprogrammed processors have readiwrite mem- 
ory to allow changes in the microprogram. 

Section 2 I The Computer Space 

must handle all the data-types of the larger ISP, it does so only as 
bit fields to be extracted and transferred from one register to 
another. The complex data operations (e.g., multiplication) are 
carried out by other units (D’s). In fact, ifa complex instruction set 
were to be used for the P.microprogram, the external processor 
might as well be implemented directly in hardware. In very 
minimal P’s, for example, C(PDP-8) in Chap. 8, the ISP is 
essentially already at the level of a microprogram ISP, as shown 
by the inclusion of instructions that can be microcoded. 

The long lag between the idea of microprogramming and its 
more widespread adoption is due to several ieasons. Early ISPs 
were comparatively straightfonvard, so that a microprogram 
approach was not economically justified. The interpretation 
overhead time is higher than with the hardwired approach, and 
unless complex functions are realized this time becomes objec- 
tionable. In addition, suitable read-only memories were not 
developed until the mid-1960s (though it is unclear whether this is 
cause or effect). An additional feature of using a P.microprogram 
is the ability to realize several ISPs within a single physical 
processor. IBM has exploited this feature extensively in the 
System/360 and Systeml370 (Chap. 40, 41, and 51), by far the 
most ambitious use of microprogramming. One can argue that 
without the additional payoff, which was used to ease the 
transition to a new, incompatible computer system by providing 
emulation of the old system, the microprogramming would be 
marginal. 

Microprogramming is now so popular that all but the very 
largest or very smallest machines are being microprogrammed. 
The microprogramming dimension is explored in detail in Sec. 1 
of Part 2. 

Central Processors (Pc) 

Central processors interpret an instruction set for manipulating 
arithmetic, logic, and symbolic data-types. In all simple systems it 
is the only processor and thus does all tasks. The growth of 
processor specialization can be described in terms of relieving the 
Pc of simpler functions that require substantial processing time 
but do not make full use of the devices within the Pc, such as the 
arithmetic units. Crucial to this issue is the time it takes the Pc to 
switch from one task to another (recall the discussion on Mps, the 
processor state), since many of the jobs that are removed to 
specialized processors are demand jobs, such as input/output. 

With the removal of tasks from the Pc, it becomes more 
Specialized. A very pure example of this is the Pc of the CDC 6600 
(Chap. 43), which has no input/output instructions of any kind in 
the Pc. That is, not only has the control and management of 
communication and transmission with the T’s and Ms’s been 
removed from the Pc, but the act of initiation has been removed as 
well and placed in the Pio’s. Thus, the 6600 Pc is just an engine for 
working on the arithmetic, logic, and symbolic (address) data- 
types. 



The mixture of operations to be performed in most complex 
algorithms prevents specialization of the Pc from going very far, 
e.g., from there being a P.arithmetic, for with every switch 
between capabilities distributed in distinct P’s there must be 
intercommunication of the components, which introduces com- 
munication delays. 

InpuVOutput Processors (Pio) 
The Pi0 specializes in the management of peripherals (secondary 
memories and terminals). It is also called a peripheral processor, a 
data channel, and a channel. The tasks a Pi0 and its subordinate 
peripherals perform are the transmission of information between 
Ms and Mp; the transmission of information between the comput- 
er and some real time system outside the computer (e.g., human); 
and the transmission of information outside the C, via a T to other 
information media (e.g., a card reader, a card punch, or a line 
printer). All these tasks are similar and often are considered the 
same, though in principle they can be quite different. A task in 
this environment is the management of some quantum of 
information, whether it be one bit or character, a voice message, 
or a record or file from magnetic disk or magnetic tape. Thus a Pi0 
does not usually change any information; it is merely an interpret- 
e r  for moving information. There are three exceptions: computa- 
tion is required for error correction and/or detection; computation 
is required if recoding and reformatting are done; and computa- 
tion is required when search operations are carried out on Ms 
without Pc intervention. 

These computing tasks require only a fairly simple instruction 
set. Typically it contains jumping (branching); data transmission 
with Mp to initialize process variables; simple counting ability, 
e.g., to control error retries; subroutine calling; interrupt process 
handling; initializing KMs or KT; testing the state of KMs or KT; 
and sometimes code conversion (data in one code format are 
converted to another code). Thus substantial arithmetic and logic 
facility is not needed. 

Display Processors (P. display) 

The P.display is a complex Pi0 that processes information for 
display terminals. The data-type is a representation of a complex 
graphic object, usually made up of curves, and spatially localized 
text. The representations vary considerably from system to 
system, using various list pointers and vector encodings. The 
operations on the data-types include refreshing the display (due to 
the short-term persistence of the CRT); the selective modification 
of the representation under commands from the T.display or the 

‘These terms are usually used without distinguishing between a Pi0 and a 
Kio, that is, whether the device interprets a sequential program (and thus 
is capable of sustained independent activity) or only decodes a single 
instruction. 

Chapter 6 I Structure 91 

Pc, such as adding or deleting a line, or inserting text; the control 
of T.inputs such as keyboards, light pens, or joysticks; and the 
performance of more complex geometric transformations, such as 
translation, rotation, scale change, and determination of hidden 
lines. 

Language Processors @.language) 

Language P’s interpret a high-level language that has been 
designed to some external criterion, such as a procedure-oriented 
language (ALGOL or FORTRAN) or a list language (LISP). Thus 
complexity takes the form of a complex data-type for the 
instruction, rather than a complex data-type for processing (e.g., 
floating complex numbers). When such processors are extended to 
do all the things a Pc also does, they become more complex than a 
Pc. 

Language-based machines are discussed in greater depth in 
Sec. 7 of Part 2. 

Array Processors (P.array) 

The array processor might be considered a more general Pc. It has 
been proposed or discussed in the literature for some time. The 
information unit processed is an array of one (vector) or two 
(matrix) dimensions. Instructions are provided to operate on these 
data. The specification of algorithms for a P.array is based on the 
assumption that an operation can be carried out in parallel for all 
array elements. Actually, both serial (sequential) and parallel 
(concurrent) execution can be implemented. Both structures have 
the same logical characteristics, from an ISP viewpoint, and may 
differ only in execution rate. 

Section 3 of Part 2 categorizes array processors and presents 
several examples, including STARAN, TI ASC, and Illiac IV. 

Vector-Move Processors 
The vector-move processor is a special-case P.array. It is capable 
only of moving a vector of words at some location in Mp to some 
other location within Mp. Because of its limited instruction set, 
such a P is found only in computers that require constant Mp 
shuffling. This condition arises either because of a hierarchy of Mp 
speeds or because the programs must have a particular structure 
before they can be interpreted by the processor. A time-shared 
computer might require such a processor for multiprogram 
memory management. It is therefore common to find block 
(vector) transmission instructions in a Pc. The IBM System/360 
has Pio[Storage channel] for this function. 

Special Algorithm Processors (P. algorithm) 
Only a small number of special algorithm processors have been 
specified or implemented. High performance is almost guaran- 
teed by hardwiring and specialization. The time to fetch the 

mailto:@.language)


92 Part 1 FundamentalsI 

algorithm (instruction fetch time) and many of the references to Mp 
for temporary data are eliminated by hardwiring. A hardwired 
algorithm can easily outperform a stored program by a factor of 10 - 100. The lack of these processors in systems stems mainly from 
lack of market demand. 

It is not clear that the special algorithm processors meet our 
criteria for being a processor, because of the rather limited 
functions they perform. In fact, some so-called processors are just 
K’s, or D’s, since they have no instruction location counter and 
interpret only a single instruction at a time, requesting each new 
instruction from a superior component. 

Algorithms that have been hardwired (or proposed) include the 
fast Fourier transform using the Cooley-Tukey algorithm; cross- 
correlation, autocorrelation, and convolution processing; polyno- 
mial and power-series evaluation; floating-point array processing; 
and neural network simulation.’ Programmable processors with 
specialized data paths to support these algorithms have also been 
constructed (e.g., Floating Point Systems’ AP-12OB Array Proces- 
sor with pipelined 38-bit floating-point add, and floating-point 
multiply units that can produce a result every 167 ns). 

Fault- Tolerant Processors 

Gaining wide acceptance are processors constructed primarily to 
tolerate failures. Initially these processors were devoted to 
special-purpose aerospace control (e.g., the JPL Self-Test and 
Repair Computer, Chap. 27). Fault tolerance is now being applied 
to such commercial activities as communications (e.g., telephone 
switching, Chap. 28, data switching, Chap. 23) and transaction 
processing (Chap. 29). The PMS structure, ISP, and implementa- 
tion details of these processors depend strongly on such specifica- 
tions as assumed fault type, assumed fault extent (e.g., local or 
global), and specified system goal (e.g., availability, reliability, or 
data integrity). The basic concepts of fault tolerance as well as 
several example systems are presented in Sec. 6 of Part 2. 

Memory Access 

The most useful classification of memories is according to their 
accessing algorithm.2 These are queue (access according to first- 
in-first-out discipline); stack (access according to first-in-last-out 
discipline); linear (e.g., a tape with forward read and rewind); 
bilinear (e.g., a tape with forward and backward read); cyclic (e.g., 

‘Chasm: A Macromodular Computer for Analog Neuron Models [Molnar, 
19671. 
ZAccess for writing should be distinguished from access for reading. 
Memories are conceivable with arbitrarily different read and write access 
algorithms (e.g., random read and cyclic write.) However, in general, the 
two access algorithms are tightly coupled, and normally only the read 
access algorithm is given. 

Section 2 I The Computer Space 

a drum); random (e.g., core); and content and associative. All 
these memories are explicitly addressed except the stack and 
queue, which deliver an implicitly specified i-unit on each read. 

Memory size and basic operation times (i.e., the time constants 
in the access algorithm) are important too, of course. But once a 
distinction is made between Mp and Ms, then for any given 
technological era there have existed characteristic sizes and 
speeds for memories of a specified access algorithm. Where there 
has been variation, either it has been linear with size (e.g., buying 
two boxes of magnetic core Mp versus buying one) or there has 
been a narrow range of cost/performance tradeoff (as in data rate 
for magnetic tapes, in which modest increases in density and tape 
speed can be bought for substantially increased price). Table 5 
shows the relative price, size, and performance of various 
memories. The memory-size versus information-rate plot (Fig. 20) 
shows the clustering of memories and their suitability for a 
particular function. 

From a technology standpoint, Mp’s have been constrained to 
either cyclic- or random-access memories (although one can easily 
construct any type from random-access memories). Similarly, 
Ms’s have been constrained to be cyclic or linear, although 
quasi-random access has been achieved with some disks and 
magnetic-card memories (random by block and linear or cyclic 
within a block). Any Ms’s  can be part of almost any computer 
structure. Thus there is no large effect of Ms structure on the main 
design features of computer systems, and they are not discussed to 
any extent in the remainder of the book. Our discussion of 
memory type here deals exclusively with Mp and Mps. 

Stack and Queue Memories (M.stack, M.queue) 

Data elements in a stack and queue are not accessed explicitly, as 
we have noted. The stack has some unique properties that aid in 
the compilation and evaluation of nested arithmetic expressions. 
Although there are no machines employing stacks exclusively for 
primary memory, there are stacks in some arithmetic processors. 
Chapter 9 presents a processor with a stack memory (i.e., with 
stacks in the processor state). Several other processors provide 
support for stacks through stack manipulation instructions (e.g., 
the PDP-11 and VAX-11). 

cyclic-Access Memories (Mp. cyclic) 

Nearly all the first-generation (vacuum-tube) computers had 
Mpcyclic. The Mp.cyclic acoustic, magnetostrictive delay line, 
and magnetic drum provided an inexpensive, simple, producible 
memory. By the second generation the cost of Mprandom 
(though still more expensive than an Mp.cyclic) was about equal to 
the processor logic. The incremental cost for an Mp,random in a 
large system was then small, whereas the performance gain could 
be a factor of up to 3,000 (access time of 10 ps versus 30 - 30,000 
~ s ) .Some of the first-generation machines were reimplemented 



Chapter 6 1 Structure 93 

Table 5 Memory Characteristics 

Memory size Memory performance 

Module Access Data 
Access size Modules1 time rate 

Memory module Function method (bits) computer (s) (bitsls) Costlbit($)t 
Punched paper card Permanent, Random + (500- l,OOO)/ 1-2 100 - 103 lG4 2 x 10-6 + 

archival linear card; -1,000 2 x lo-’ 
cardlunit 

Magnetic card Secondary, Linear + 3 x 109 1-4 lo-’ - loo 0.4 x lo6 1.5x lo-” + 
archival constant + 5 x 10-5 

cyclic 
Magnetic tape Secondary, Linear 7 x 108 1-16 100 - 102 0.4 -4 x lo6 2 x lo-’+ 

archival 4 x 10-5 
Moving-head, Secondary Cyclic 106 - 107 1-2 10-1 - 10’ 105 10-5 + 10-3 
floppy disk 

Moving-head disk pack Secondary, Linear + 4 x 109 1-16 10-2 - 100 106 - 107 3 x 10-6 + 
files swapping cyclic 3 x 10-5 

Fixed-head disk Secondary, Cyclic 107 - 108 1-40 10-3 - 10-2 106 - 107 1 0-3 - 10-4 
files swapping 

Drum Secondary, Cyclic (1 - 5) x 107 1-10 10-1 - 10-3 106 - 107 10-3 
swapping 

Magnetic bubbles Secondary, Cyclic (1 - 5) x 106 1-10 10-2 - 10-3 105 - 106 102 - 10-4 
swapping 

Charge-coupled Secondary, Cyclic 106 - 107 1-10 10-3 - 10-4 106 - 107 10-2 - 10-4 
devices swapping 

Video disk Secondary Cyclic 10’0- 1012 1-10 10-1 - loo 106 - 107 5 x 10-8 + 
(write once) 5 x 10-7 

Bulk core memory Primary and/or Random 1 07 1 - a  (2 - 10)x 10-6 106 - 108 0.02 - 0.05 
secondary, 
swapping 

High-speed core or Primary Random 105 - 106 1-16 (0.2- 2) x 10-6 107 - 108 10-2 - 10-1 
thin-film memory 

Integrated circuit Primary Random 104 - 106 1-20 10-7 - 10-6 108 - 109 10 - 10-3 
(MOS memory) 

Integrated circuit Primary, Random 104 - 106 1-20 10-8 - 10-7 1010 - 109 10-3 - 10-2 

(bipolar memory) processor 
state 

Integrated circuit Primary, cache Content, 2 x 105 1-2 -1 0-7 109 1-3 
(content addressable) random 

Read only Processor Random (1 - 5) x 105 1 10-7 109 10-2 
instruction-set 
definition 

tThe first component is the memory medium (e.g., a disk pack), and the second component is the transducer (e.g., a disk drive). 

using transistors. Only a few new cyclic-access machines were entire word by iterating over all digits in time; thus the cost of a 
introduced in the second generation. Most notable was the serial computer is nearly independent of its word length. 
low-cost Packard-Bell PB-250using transistor logic and magneto- Because of the cyclic and synchronous nature of these Mp’s, it is 
strictive delay lines. difficult to synchronize them with secondary memories and 

Nearly all these computers used some form of n + 1 addressing. terminals (which are also synchronous). The very early machines 
The memory is organized on a digit-by-digit serial basis for a had no large secondary memories. In some cases, where magnetic 
word. Hence, the arithmetic or logic function hardware is tape was used, it was added at very low performance (low density, 
implemented for only a single digit. An operation is done for the low speed, and, therefore, low data rates) so that synchronization 



94 Part 1 1 Fundamentals Section 2 I The Computer Space 

TVideo dirk 

1o3 

102 

101 

100 
10-1 100 101 102 103 104 105 106 107 108 109 toio 10'' 

Effective lnforrnatoon rate'. in b8rrlsec. 

( X I  indicates width of information, in bits 

2The Josephson junction is a superconducting device that requires liquid-helium cooling to 40° K to operate. Anacker "l9791 
estimated that a 70 MIPS Pc with 32-Kbyte cache and 16-Mbyte Mp built from Josephson technology would occupy a 15cm 
x 15 cm x 15 cm cube and dissipate 7 W. A 15 KW compressor for the liquid-helium refrigerator would be required. Gate 
delays of 0.06 ns and memory access time of 20 ns were envisioned. 

Fig. 20. Memory size versus effective information rate. 

was not a problem. In other cases a small random-access core be constructed sufficiently cheaply (if then). The earliest first- 
memory was added to provide synchronization between the two generation random-access memories were electrostatic and de- 
memories. pended on maintaining a charge on plates of an array of capacitors. 

The major application of M.cychc is now for Ms, where the The most common was the Williams tube (invented by F. H. 
price per bit of disk memory has been decreasing at a rate of 22 Williams at the University of Manchester), which works iri essence 
percent per year and the price per bit of magnetic tape has been like a CRT, with the beam used to charge a capacitor array at the 
decreasing at 10 percent per year over the last 25 years. tube face [Williams and Kilburn, 19491. Other schemes included 

an array of capacitors that could be selected by digital logic. 
Random-Access Memories (Mp. random) Late in the first generation Forrester [1951] invented the core 
Random-access memories were used late in the first generation, memory, which rapidly became the predominant primary-
and they have remained the predominant memory during the memory component. In the fourth generation (1972)semiconduc-
second, third, and fourth generations. It is unlikely that their tor memory (bipolar for speed, MOS for bulk) has become the 
popularity will decline unless content-addressable memories can dominant memory technology. 



The random-access memory seems nearly perfect for the Mp’s 
of present computers. Of course, enthusiasm for this memory may 
be based on not knowing how computers would have developed if 
we had not had it. However, with little or no effort an M.random 
can be a stack, a queue, a linear, a cyclic, and even (within limits) 
a content or associative memory. It is an organization very hard to 
beat. 

Content-Addressable and Associative Memories 

It is possible to conceive of many exotic accessing capabilities, and 
numerous proposals have been made involving either theoretical 
structures or experimental prototypes. Since no particular varie- 
ties have become widespread, terminology is still variable. 
Content-addressable memories are usually taken to mean a 
collection of cells of predetermined size (i.e., a fixed i-unit) such 
that ifone presents as the address the contents of a predetermined 
part of the cell (the tag or content address) then the contents of the 
entire cell will be retrieved. An associative memory is usually 
taken to mean a system that, when presented with an item of 
information, delivers one or more “associated items of informa- 
tion. The principle of association is variable, yielding different 
kinds of associative memories. Content-addressable memories 
provide a form of association, as do all memories, in fact. Thus the 
term associative memory tends to denote forms of association 
different from familiar ones-forms that presumably have less 
sharp constraints imposed by the structure of memory (as opposed 
to the structure of the information in the memory). 

STARAN implements an associative memory from random- 
access memories under the control of special bit-serial processors. 
Variations of associative memories have been used to increase 
performance in the form of caches and instruction buffers (see 
Secs. 2 and 3 in Part 2). In the latter two cases there is a large but 
slower Mp. random behind the content-addressable memory. The 
purpose of the fast, small content-addressable memory is to hold 
local, current data so that an access will not have to be made to the 
random-access memory. 

There are immediate uses for content-addressable memories 
with a large information-content address. For example, the 
read-only memories for microprogram processors use long words 
principally because content-addressable memories are not availa- 
ble. Ideally a microprogrammed processor would like to look at a 

Chapter 6 1 Structure 95 

fairly large processor state to determine what action is to be taken 
in the microprogram. 

It is interesting to speculate about the evolution of computers if 
a content-addressable memory had been developed in place of the 
random-access memory. 

Multiprocess Environment and Storage Hierarchies 

The multiprocess environment region of computer space has 
become so important that even single-chip microprocessors (e. g., 
Zilog 28000, Intel 8086) have added memory management units. 
Memory management allows multiple processes to be resident in 
Mp, all in various stages of execution, and for these processes to 
intercommunicate. A closely related topic is storage hierarchy, 
whereby several different types of memory technology (from 
small, fast, and expensive to large, slow, and low-cost) are 
integrated into the system to appear as one large, fast, and 
economical memory. The purpose of multiprocess environment 
and storage hierarchies is to improve not only individual program 
performance but also system throughput. Section 2 in Part 2 is 
devoted to these important, interlaced dimensions. 

Parallelism and Overlap 
Several techniques have evolved to increase system performance 
via overlap and parallelism. Section 3 of Part 2 presents a detailed 
discussion of these various techniques. 

References 

Anacker [1979];Bell, Mudge, and McNamara [1978];Bhandarkar 
and Juliussen [1978]; Blake [1977]; Bloch and Galage [1978]; 
Casale [1962];Forrester [19511;Harrahy [1977];Hoagland [1979]; 
Kenney, Lou, McFarlane, Chan, Nadan, Kohler, Wagner, and 
Zernike [1979]; Lunde [1977]; Military Handbook 217A [1965]; 
Military Handbook 217B [19741; Molnar [19671;Myer and Suther- 
land [19681; Noyce [19771; Queyssac [19791; Siewiorek, Kini, 
Mashburn, and Joobbani [1978];Wichmann [1976]; Wilkes [1951]; 
Williams and Kilburn [19491. 



Section 3 

Computers of Historical Significance 

This section features a discussion of four computers whose impact 
on computer structures is still being felt today: the Manchester 
Mark 1, the PDP-8, the B 5000, and the Atlas. It also provides 
detailed examples of the concepts already introduced, including 
ISP, PMS, and Kiviat graph notations and the concepts of digital 
system hierarchy and computer classes. 

The four computers are arranged in order of size. The Mark 1, if 
constructed with contemporary technology, would be a monolith- 
ic microcomputer. The PDP-8, fabricated on a single CMOS chip 
(Intersil 6100), is a contemporary microcomputer. The B 5000 
would be considered a contemporary minicomputer. (The discus- 
sion of the B 5000, supported by PMS diagrams and Kiviat 
graphs, traces the evaluation of a computer family. Computer 
families will be discussed more extensively in Part 4.) Finally, the 
Atlas pioneered many of the concepts implemented in maxicom- 
puters. 

This section encapsulates Parts 3 and 4 of the book. As is the 
convention throughout Parts 3 and 4, it begins with critiques of 
each computer. 

The Manchester Mark 1 

The Mark 1 was the worlds first stored-program computer. It 
executed its first program on June 21, 1948, ushering in a new 
technological revolution of major impact for the next three 
decades. Chapter 7 describes the organization and ISP of the 
Mark 1, the simplest ISP in this book. 

The PDP-8 

The 12-bit PDP-8 was the first mass-produced minicomputer, 
setting the standard for its class. The PDP-8 is considered in 
depth because: 

1 	It has a simple but nontrivial ISP, whose influence still 
affects such contemporary architectures as the Hewlett- 
Packard HP 2100 series and the Data Gmeral NOVA series. 
Study of this ISP will help the reader understand the 
general ISP concept. The same is true for its simple but 
nontrivial PMS structure. 

2 	 The implementation is simple enough to illustrate clearly 
the complete set of levels in the digital design hierarchy: 
PMS, programming, logic, and circuit. Only a few other 
single examples in this book will be able to illustrate several 
levels in the hierarchy (e.g., the HP 9845, Chap. 31; the 

TMS1000, Chap. 34; the PIC1650, Chap. 35; the PDP-11, 
Chap. 38; and the HP 9810/20/30, Chap. 49). 

A discussion of the entire PDP-8 family can be found in Chap. 46. 
Figure 1is the Kiviat graph for the PDP-8. 

The B 5000, a Stack Machine 

The B 5000 is an outstanding example of stack organization and 
memory segmentation. (The following comments concern the 
P.stack computers manufactured by both English Electric and 
Burroughs; a discussion of memory segmentation is postponed 
until Part 2. ) There are four basic P.stack computer families: B 
5000 -+ B 5500 + B 6500/B 7500; D825 -+ D830 -+ B 8500; 
KDF 9; and B 67001B 7700. Root members of the first three 
families were made available at about the same time by Burroughs 
of Pasadena, California, Burroughs of Paoli, Pennsylvania, and 
English Electric. The IBM Corporation later responded with a 
proposed Pc.stack, but the machine never entered the production 
phase. The Hewlett-Packard HP 3000 is a stack-based minicom- 
puter. 

Mp (byte) -

Dataphone 

1.comrnunication 
(byte/s) 

Fig. 1. Kiviat graph for the PDP-8. 

96 



The Pc.stack is a major alternative to the main-line organiza- 
tion of 1address per instruction (augmented with index registers 
or general registers). It tries to capitalize on the hierarchical 
character of computation to avoid having to give memory shuffling 
instructions explicitly. In Chap. 6, we gave a comparison of a 
trivial computation using a stack and a general-register organiza- 
tion, in order to make clear the case for stacks. However, we did 
not there attempt any definitive analysis. It has been asserted 
[Amdahl et al., 1964~1that the Pc.stack derives its power only 
from its having some fast-working memory in the Pc, thus that it is 
dominated by the general-register organization. Our own feeling 
is  that the compile and compiled program execution times for the 
Pc. stack are indeed impressive. However, no definitive analysis 
has been published, as far as we know. Pc.stack is certainly an 
organization that rates serious study by any computer designer. 

B 5000, B 65W.B 7500, 0825, and KDF 9 

The PMS structure diagram of the B 5000 and B 6500/B 7500 (Figs 
2 to 6) should be compared with Burroughs’ own structure 
representation. The D825 structure is similar. All the Burroughs 
computers in Table 1have the multiprocessor structure. 

Burroughs was probably the first computer company to take 
matters of the structure and organization seriously. The D825 
hardware and software were designed for military command and 
control applications, which demand very high uptime and availa- 
bility. As various computer components in the structures fail, 

~~ ~~~~ 

1 

MP [#0:71 

Notes 

1 Mp[Core; 4 pslw; 4096 w; 48,3 blwl 

2 S[from: 2 Pc,4K; to: 8 Mp; concurrency: 41 

3 Pcrstack; 12 b/syllable; 1-2 syllable/instruction; 
6bjchar; technology: - 1962 transistorl 

4 S[frorn: 4KiO; to: KT, KMs; concurrency: 41 

Fig. 2. Burroughs B 5000 PMS diagram. 

Section 3 I Computers of Historical Significance 97 

continuous operation is possible at a reduced level through the 
fail-soft design. However, to our knowledge, no published 
account exists on how well this design works in practice from a 
performance and reliability viewpoint. 

The structures in the B 6500, especially, allow Kio’s to be freely 
assigned to any T or Ms, thereby achieving better equipment 
utilization. The S(16 Mp; 16P) is probably overdesigned in the 
Burroughs B 6500 computers. These structures generally have a 
maximum 4(P + Kio), although the design is based on 16(P + 
Kio). The Kio’s (Chap. 9) may be overdesigned, as well, since a 
K capable of controlling a simple T.card.reader can also control 
a complex Ms.disk or Ms.magnetic.tape. The comparison of 
Pc,stack, Pc. Laddress, and Pc.general.register makes the as-
sumption that an unlimited hardware stack resides in Pc. The 
B 5500 has a local M.stack in Pc of 4 words. The size and number of 
stacks, and their use by software, are most important. The KDF9 
has two independent stacks: one for arithmetic expression evalua- 
tion and one for holding subroutine return addresses. 

Multiprocessing in the B 6500 is facilitated by the hardware 
stack features of the architecture. The stack mechanism allows 
efficient implementation of temporary storage and reentrant 
software, such as block-structured languages similar to ALGOL. 
The Segment Dictionary, or Program Reference Table, which was 
the basis for the Burroughs descriptor method of segmenting in 
the B 5000, has been moved to the bottom of the tree-structured 
hardware stack. This allows processes and instantiations of the 
same program (using different branches of the stack tree) to share 

~~~~~ 

T[console; typewriter] 1
T[#l:2; card reader] I
T[#l:2; paper tape reader]

T[card punch]

T[#l:2; line printer1
J

T[Ms[#l:2; drum11 I
T[Ms[#I :16; magnetic tape]]

Tconsole[#A : 81a

S['Data K[#l:201Channel Switching]

Kio['Real Time Adapter] K==l
Notes

1 Mp[core; 1.2 ps/w) I (thin film; 6 ps/wl; 16 Kw; 51 b/wl

2 S[from: 2 Pc, 2 S;to: 32 Mp; concurrency: 41

3 Pc[stack; technology: - 1969 integrated circuits]

Fig. 3. B 6500, B 7500 PMS diagram.

1 2

K ['Disk Peripheral Controller]

(a) 1 K fo r 1 Ms[diskl 	 1 2

Kl'Peripheral Controller] MsI#0:71

X [f l 21
(a) 1 K for 8 MsIMagnetic Tapel

(b) 1 K for 2 Ms [disk]

s = H = l 	 ==HZ SI2K; IOMsl Ms[#O:91S[2K; 5x1 X [# l 51

(c) 2 K for 5 Ms[diskI 	 16) 2 K for 10 MsrMagnetic Tapel B=-S[4K; 10x1 x [#I :101

K

(d) 4 K for 10 Ms[diskl

Notes

1 	 L[to: Kiol'lnput Output Multipiexorl I Ic) 4 K for 16 Ms[Magnetic Tapel

Notes
2 x : = [M I]Ms[#1:51131
3 - Ms[fixed head disk; t,ave.access- 23 ms; 2161395 Kbyte/s;

1 L[to: Kio['lnput Output Multiplexer1 I

7
8 bitslbyte; capacity: 2x10 bytes] 	 556180011600charlinl

Fig. 4. Burroughs B 6500, B 7500 Ms[disk] PMS diagrams. Fig. 5. Burroughs B 6500, B 7500 Ms[magnetic tape] PMS diagrams.

2001b/char;8144 Kchark; 61 ...9MsL'Magnetic Tap* 2

98

Section3 I Computers of Historical Significance 99

T[consolel 	 I
T[card reader] I
T[paper tape reader]

TIcard punch] I
T[paper tape punch]

n n 1 I
T[line printer] I
T[CRT display]

Note

1 	 L[to: Kio[’Small Peripheral Control] 1

Fig. 6. Burroughs B 6500, B 7500 peripheral transducer PMS
diagrams.

reentrant code through a shared Segment Dictionary. The
operating-system global information that resides at the base of
the trunk of the tree may also be similarly shared. This flexible,
tree-structured hardware stack mechanism (the “cactus stack) is
discussed in Chap. 16.

The D825 ISP differs from other Pc. stack computers in that the
data, d, for operations can be in either of two places-the stack or
Mp: Consider the unary or binary operations:

In either of these cases dl, dz, or d3 can be the top of StacWS; or
Mp[Address + Base Address + [Zindex registers [A,B,C]]]. This
flexibility allows the Pc to behave as a 0-, 1-,2-, or %addresses per
instruction processor.

The B 5000 is more conventional than the D825 in its use of
stacks (see references in Table 1).There are only load and store
(that is, push and pop instructions) to transfer data between Mp

and one stack. Actually, the B 5000 has several important features
that make it worthy of study:

1 	 The stacks

2 	 Data-type specification. A data-type is declared by placing
a type identifier with the data. Thus, for example, there is
one add operation for both fixed and floating-point, the data
telling which addition is to take place.

3 	 Multiprogram mapping. Descriptors are used to access
variables (scalars, vectors, and arrays). This indirect ad-
dressing technique allows multiprogramming; however,
the reader should note that the data are not protected
against other accesses (corrected in the B 6500).

4 	 Failure of the Pc. stack for character processing. The B 5000
has a character mode to allow processing of string data, and
the stack is not used in this mode. In effect, a separate
string-processing ISP is incorporated in the Pc.

5 	 Multiprocessing. A B 5000 can have two Pc’s.

B 6700/B 7700

The B 6700 and B 7700 series extended the concepts of the B 5000
and B 6500/7500 series. Like the latter, they are zero-address
(stack) machines with enhanced versions of the Burroughs des-
criptor method of segmentation to achieve virtual memory (see
Sec. 2 of Part 2 for a comparison of the B 5000 and B 6700
segmentation schemes). The hardware and the operating-system
software, known as the Master Control Program (MCP), likewise
exhibit a strong interdependence as a result of a conscious effort to
develop a unified hardware-software system. The B 7700 system is
strictly upward-compatible with the B 6700 but uses more
sophisticated hardware techniques to achieve greater speed and
Aexibility.

The B 6700 was issued ca. 1969 and is a direct descendant of the
B 6500. Designed as a medium to large high-speed information
processing system, it is capable of addressing a core memory of up
to 1Mw with a cycle time of 500 ns, 1.2 k s , or 1.5JLS (options are
shown in Table 2). Its configuration of peripherals is expandable to
a maximum of 256 units. These may be controlled by up to three
Pio’s sharing access to Mp with the Pc’s through a cross-point
switch. Since as many as three Pc’s may be configured into a
B 6700 system, multiprocessing is possible. To aid in multipro-
cessing, each Pc has two interrupt networks: one to respond to
interrupts generated within the processor (exception conditions,
etc.) and the other to respond to externally generated interrupts
(I/O interrupts, interprocessor interrupts, etc.). The processors
share in the handling of external interrupts on an equal basis and
under control of the MCP.

The B 6700 uses a 51-bit word plus an additional 52nd bit for

100 Part 1 1 Fundamentals Section 3 1 Computers of Historical Significance

Table 1 Pc.stack Computers

Company or basis Disclosure Delivery Relative
computer name date" date Ancestry power References

English Electric KDF 9 160 4/63 GeorgeC . . . Allmark and Lucking [19621,
Davis 119601,
Hamblin 119621

Burroughs (Paoli, Pa.)
D825d 16 1 Anderson et al. 119621
D830d Extended-performance

D825
B 8500' 4/66b 1/67' Developed at labora- 20-30

tory producing D825,
D830

Burroughs (Pasadena, Calif.)
B 5000 162 2/63

'I2
Allmark and Lucking [1962],
Barton [1961],
Bock 119631,
Carlson 119631

B 5500 11164 Successor to B 5000 1-1 .7g-1 .gg Lonergan and King 119611
Hauck and Dent [19681

B 6500 1/68f B 5500 based with 5-6
improved multi- and
shared-prog rammed
mapping

B 7500 Extended-performance 10
B 6500

B 6700 I69 B 6500 25
B 7700 Extended-performance 80

B 6700
Theory or language-

based:
IPL-VI /58 Language:IPL-IV, V Shaw et al. [19581
EULER 167 167 Language:EULER(ALGOL+) Weber [1967],

Wirth and Weber [1966a, b]
ALGOL Lang uage:ALG OL Anderson 119611

Argonne Laboratory
IPL-VC Language:IPL-V Hodges [1964]

aFirst edition of manual, or a paper, or the appearance inAdams Computing Characteristics Quarterly.

*Still evolving. B 8501 was discontinued in 1968.

"George, University of New South Wales, interpreter using Polish notation and a stack. Circa 1957 [Hamblin, 19621.

dProduced for command and control (military) applications.

eB 8500 is a system name; the Pc is a B 8501.

'Reported. Actual delivery unknown.

gDual processor.

word parity that is generated and checked during processor- vidual words. The remaining 48 bits in the word form a single
memory transfers. Of the 51 bits, three are control or tag bits precision operand or a sequence of %bit, 6-bit, or $-bit characters.
inaccessible to programs running in user state. The control bits A machine language program consists of a sequence of "syllables"
allow division of labor between hardware and software to make each of 8-bit length and occurring 6 to a word. An operation may
efficient use of both. These tag bits are also used as part of the be defined by from 1 to 7 syllables. The 5i-bit words may also
memory-protection scheme to provide read-only access to indi- contain segment descriptors of various kinds. Such descriptors

Section 3 1 Computersof ~iatorica~Significance 101

Table 2 B 6700 Central Units Chart

Style
71.0. Description

B 6711 One processor

B 6721 One processor (can have a B6721-1 second
processor)

B 6712 One processor

B 6722 Two processors

B 6714 One processor

B 6724 Two processors

B 6734 Three processors

B 6780 Input/output processor
B 6780-1 Data switching channel, up to 12 per input/

output processor
B 6790 Maintenance-diagnostic-logic processor for

B 6722, B 6724, & B 6734 systems (second
i n p u tlou tpu t processor required)

B 6004-1 98,304-byte (16,384-word) 1.2-ps memory module
B 6005-1 393,216-byte (65,536-word) 1.5-ps memory module
B 6006-1 98,304-bvte (16,384-word) 500-ns memow module

have fields that hold the memory or disk address of the base of a
segment, the length of the segment, a bit to indicate whether the
segment is resident or nonresident, etc. The length field of the
descriptor is used by the hardware to establish whether an access
is being made to a forbidden area of memory, thus providing
further memory protection.

The machine language operations are divided into three classes:
Primary, Variant, and Edit. The Primary operators, which use 1
syllable, are the most frequently executed and include the
Arithmetic, String, and Logic operations. The Variant class of
operators uses 2 syllables to extend the operation-code space.
These include such less often executed operations as I/O instruc-
tions. The third set of operators allows extensive editing of strings.
In one instance, the TABLE ENTER EDIT instruction allows the
editing of strings to be driven by a table of microoperations on
strings residing in memory. These Edit class instructions may
consume up to 7 syllables, with the first of these indicating how
many syllables make up the instruction.

The I/O in the B 6700 is handled totally asynchronously by Pio’s

No. of Additional
Proces- inputl inputl

S O f output output
speed proces- proces-
(M H z) sors sors Notes

2.512.5 0 Used only with 65K memory
modules

2.5/2.5 1 Used only with 65K memory
modules

2.5i5.0 or 2 Used with any of the available
memory modules

2.5l5.0 or 2 Used with any of the available
memory modules

5.015.0 1 1 o r 2 Used with any of the available
memory modules

5.015.0 1 1 o r 2 Used with any of the available
memory modules

5.015.0 2 1 Usedwith any of the available
memory modules

. Optional

. Optional

.

.

.

known as IlO modules (IOMs, see Fig. 7) . Under control of the
MCP the Pc constructs list instructions to be performed by the
IOMs in shared memory. It then inserts a processing request in a
predefined I/O request queue buffer area in shared memory. The
request may be handled by any of the IOMs and is routed to the
relevant I/O controller and its device. When the request is
processed, an exception condition occurs, and the IOM inserts a
reply in a predefined queue, which is scanned by the Pc’s for
evidence either of I/O completion or of error. By means of
“exchanges” (i.e., cross-point switches) the peripherals may be
multiported to more than one Kio and Pi0 to provide redundant
paths of access for higher availability. Separate Pdcp’s (Data
Communication Processors) are used to provide control over
terminals and data communication networks.

The B 7700, which is a successor to the B 6700, is strictly
upward-compatible with the latter to the extent that the B 6700’s
programs need not be recompiled to run on the B 7700. The ISP
was extended to include vector data-types by adding vector mode
operations to the Primary mode operator class. However, the

8

102 Part 1 I Fundamentals Section 3 1 Computers of Historical Significance

6 7

.PI'Data Communications LI'Data
Kt'Adapter - Communications -

Processor;#1 I Cluster; #1 I
Nethork]

I

I
-... F...
-...

Pc[#l:31

Fig. 7. Burroughs B 6700l7700 system PMS diagram.

B 7700 implementation allows greater processing speeds and
flexibility (see Table 3). The maturing of integrated-circuit
technology is reflected in the B 7700 hardware design by the
exclusive use of semiconductor memory with 88 nsibyte read-
access time. The standard memory module has evolved from the
B 6700 to contain 1.5 Mbyte. In addition, the cross-point switch
allowing sharing of Mp by the Pc's has expanded to allow a total of
eight requesters of memory (Pc's and IOMs). The maximum
transfer rate of an IOM has increased from 1.6 Mbyteis to 6.75
Mbyteis. The Pc speed has also risen from the 2.5- and 5-MHz
options in the B 6700 to 16 MHz in the B 7700.

Internal parallelism, as well as faster logic, allows the B 7700 to
achieve high operating speeds. The instruction-execution unit has

a pipeline organization, and instructions are prefetched in the
processor. Thirty-two words of fast local memory (Program Buffer)
in the processor allow tight inner loops of program instruction
syllables to reside in the processor, thus speeding up execution.
In addition to the Program Buffer, another 32-word fast Stack
Buffer is provided for the 32 locations immediately below the top
of the stack for faster access to the stack. Finally, a fast Associative
Memory (ASM, i ,e., a cache), is implemented to provide fast
access to general data and descriptors residing outside the stack.
The Pc consists of three main sections: the Program Section, the
Storage Section, and the Execution Section. A simplified block
diagram of the Pc is shown in Fig. 8.

The hardware implementation of the B 7700 shows an increased

Section 3 1 Computers of Historical Slgnificance 103

Notes

1. 	 Mp[48b data + 3b control + l b odd parityllw; address: 20-bit;

Max size: 1 Mw;

system options:

('86700:
[32 modules max.; module options: (165 Kw;

t C = 1.5 r s l I
[16Kw;tc = 1.2rsl I
[16Kw;tc = 500 nsl 11

)I
('8 7700:

18 modules max.; module options: [I .5 Mbyte; t[readl = 88 nsl
1

2. S[crosspoint; system options =
('8 6700 = [from: I3 Pc; 3 Pi01 ;

to: 32 M;

concurrency: 6

1

)I
('8 7700: [from: 8 'Requestors total;

to:8M;
concurrency: 8

! 'Requestors are either Pc or Pio!

)

1
3. 	 Pc[clock frequency: (2.5 MHz 15 MHz); 3 Pc maxlsystem ('8 6700 only); modes: (word lvector (B 7700 only)lstring:

[Cbit; 6-bit; &bit characters] 1; states: ('Master Control Program ('MCP)! 'Normal (user)); stack architecture; addressing
methods: ('Data Descriptor\DD/'Segment Descriptor\SDI 'Indirect Reference Word\lRWI 'Stuffed Indirect Reference
Word\SIRW)I
1

4. 	 Pio[controlled by Pc; 3 Pi0 maxlsystem ('6 6700 only) systems; functions: [data switching (20 channels max.); Data
Communication Processor interface (4dcp.MaxJ; Real Time Adapter Interface: maintain peripheral system
configuration table for software use] I

5. 	 Spcb['Peripheral Control Bus; from: Pio; to: 20 Kpc; transfer rate:
[('B 6700: (1 2)b:.l:.Zps) I'B 7700: 6.75 Mbytesls)] I

6. 	 PdcpI'Data Communications Processor; max 4 PdcplPio; functions: data communication for (real-time operation I remote
computing I remote inquiry I on-line Programming); !In a threePio 8 6700 system a Maintenance Diagnostic Logic
Processor (Pmdl) preempts Pdcp's from one Pio-Pdcp interface!

1
7. KacE'Adapter Cluster; (#I :161'Data Communications Adapter YDCA; 'DCA options:

I
I'B 6650-1; asynchronous; (direct I modem); 600 bls max; (2-wire I '100 series) modem; bit-serial transmission;
half-duplexll

" 8 6650-2;asynchronous; ldirect 1 modem); 1800 b/s max; 12-wire I '202 series1 data set; bit-serial transmission;
half-duplexll

"8 6650-3; modem; synchronous; 2400bls max; '201 series data set; bit-serial transmission; halfduplexl

['B 66504; same as '6650-3 except 4800 bls maxll
" 8 6650-5; same as '6650-3 except 9600 bls maxll

" 8 66506;'Touch Tone@ telephone input11
" 8 6650-7; 'audio responsell

"8 6650-8;'automatic dial out1

);

16 Kac max/Piol

8. Ldcnf'Data Communications Network; 16 Ldcn maxlKac1

9. 	 KpcI'Peripheral Controller; options: ('Large controller I 'Small controller);
Functions: ('Large controller: [high speed devices; (T.mag.vape IT.disk.file/

Tdisplay)l
'Small controller: [low speed devices; (Tprinter I T.card.reader1

Tcardwnch I---)]
(5 'large controller + 5 'small controller) maxhabinet; 2 cabinets maxlPio; !A m a l l controller may occupy a large
controller slot!

1

Fig. 7. (Continued)

104 Part 1 I Fundamentals 	 Section 3 1 Computers of Historlcal Significance

Table 3 Central Components of the B 7700 System

Style no. Description

B 7750 System includes one central processor (16
MHz with vectors), one inputioutput
processor with 24 data-switching channels,
one maintenance diagnostic unit, one
operator console with dual displays and
control.

B 7760 System includes two central processors (16
MHz with vectors, two inputioutput
processors with 24 data-switching channels
each, one maintenance diagnostic unit, one
operator console with dual displays and
co nt ro I.

B 7770 System includes three central processors
(16 MHz with vectors), two inputioutput
processors with 24 data switching channels
each, one maintenance diagnostic unit, one
operator console with dual displays and
control.

B 7780 System includes four central processors (16
MHz with vectors), two input/output
processors with 24 data-switching channels
each, one maintenance diagnostic unit, one
operator console with dual displays and
control.

B 7001-4 Basic memory module-1.5 megabytes of 88
nslbyte read access, error-correcting
memory, four-way interleaving that permits
four-word transfers to and from memory.

B 7702 Additional central processor.

B 7785 Additional inputioutput processor.

concern for high reliability, high availability, and fault tolerance.
We see the incorporation of high-reliability components, error-
detection circuits on data paths throughout the machine, instruc-
tion retry procedures, single-bit error correction in memory, and
modular design. In addition, separate power supplies, redundant
regulators for each module, and redundant buses are used. The
MCP dynamically reconfigures system modules to exclude failed
modules temporarily. A special-purpose Maintenance and Diag-
nostic Processor (MDP) is used to locate faults to the single clock
period and flip-flop, thus indentifying the faulty IC chip. Disk files
may be physically allocated in specific disk areas to facilitate
maintenance and reconstruction in the event of failure. Protected
and duplicated disk files are additional features allowing users to
perform their own data recovery. Finally, some degree of control
with respect to dynamic error recovery is provided to the user in
the form of fault-conditional statements in high-level languages.

Execution section Program section 	 - - - - - - - - - ---- --.
I
I
I

buffer 	 Stack
buffer

I

I

Storage section

Main memory

Fig. 8. Simplified block diagram of central processor module.
(Copyright 0 1976 Burroughs Corporation. Reproduced with per-
mission.)

Figures 9 to 11depict the relative performance of the B 5000,
B 6500iB 7500. and B 6?00/B 7700 families.

The Atlas

The Atlas is one of the most important machines described in this
book. The prototype was originally designed and constructed at
Manchester University. The Atlas 1and Atlas 2 were produced by
Ferranti Corp. (prior to its becoming part of I.C.T.'). Atlas 1is the
most interesting; it incorporates most of the features of the Atlas
prototype. The Lincoln Laboratory TX-2 [Clark, 19571influenced
some Atlas features: multiple index registers and interrupt
processing of inputioutput devices. Atlas' detailed internal struc-
ture is described in Sumner et al. [19621.

'International Computers and Tabulators, U. K.

Section 3 1 Computers of Historical Significance 105

Mp (byte) AII axes: x lo3 	 Mp (byte) All axes: x 103

T. communication
(byte/s)

Fig. 9. Kiviat graph for the B 5000.

Two original features, one-level storage and extracodes, have
been copied in many other machines. A one-level store is common
to most new time-shared or multiprogrammed computers

The extracode feature allows ordinary machine operation codes
to be used to call subroutines. Commonly used complex instruc-
tions (such as sin, cos, and monitor calls) can be written in a
common operating system accessible to all users. Initially these
subroutines were stored in a read-only memory.

The ISP is straightforward and extremely nice. The extracode
idea appears in the SDS 900 series and was used in the SDS 940
system for defining common-user instructions. The IBM System/
360 SVC (supervisor call) instruction is an adaptation of the
extracode.

Atlas was about the earliest computer to be designed with a
software operating system and the idea of user machine in mind.
The operating system has been nicely described [Kilburn e t al.,
19611 and evaluated [Morris et al., 19671.

In a letter to the authors of this book, F. H. Sumner makes the
following comments on Atlas.

The initial ideas and the preliminary research on the Atlas computer

T. external

I byteIs) Ibyte/s)
dT’human

T. communication
(bytels)

Fig. 10. Kiviat graph for the B 6500lB 7500.

system started in the Department of Computer Science of the

University of Manchester in 1956. The team, under the direction of

Professor T. Kilburn, was later supplemented by several members of

the I.C.T. Computer Research Department, and the prototype

machine was working in the department by the Autumn of 1961. The

first production model became operational in January 1963.

The significant features of the system can be summarised as:

1 	The provision of a virtual address field greater than the real address

space.

2 	 The implementation of a “one-level” store using a mixture of core

store and drum store.

3 	The interrupt system and the method of peripheral control.

4 	The realisation at the design stage that there would be a complex

operating system and the provision in the hardware of specific

features to assist such an operating system.

The method of peripheral control permitted the attachment of a

large number of on-line peripherals with rapid responses and entry

into the operating system for a peripheral requiring attention. This,

together with the multiprogramming features, makes the design

ideal for the attachment of keyboards for the provision of multi-

106 Part 1 FundamentalsI

MD (byte) All axes: x 103

I / A Mncneeri \

u2/
T. external T. human
(byte/s) (by tels)

T. communication
(byte/s)

Fig. 11. Kiviat graph for the B 6700lB 7700.

Section 3 I Computers of Historical Significance

access operation. In the original design, provision for several such
on-line typewriters was made, but at the production stage it was
decided to remove these as an economy measure. In view of the
subsequent development of on-line operation, this was rather an
unfortunate decision.

The Atlas computer at the University has now been in continuous
operation for four years and it is expected to provide for the major
part of the University’s computing needs until 1971.

During the period of its operation the provision of extensive
monitoring and logging information has permitted the behaviour of
the system to be studied in detail. The results of these studies have
been extremely valuable in the design of a successor to the Atlas.

References

Allmark and Lucking [1962]; Amdahl e t al. [1964u]; Anderson
[1961]; Anderson, Hoffman, Shifman, and Williams [19621; Barton
[19611; Bock [19631; Carlson [19631; Clark [19571; Davis [19601;
Hamblin [19621; Hauck and Dent [19681; Hodges [19641; Kilburn,
Howarth, Payne, and Sumner [19611; Lonergan and King [1961];
Morris, Sumner, and Wyld [1967]; Shaw [1958]; Sumner, Hdey,
and Chen [19621; Weber [1967]; Wirth and Weber [1966u].

Chapter 7

The Manchester Mark l1
S. H. Lavington

Upon arrival at Manchester in December 1946, Williams and
Kilburn set about perfecting a digital store, at first using the
commercially available type CV1131 12-inch diameter cathode ray
tubes [Kilburn, 1948; Williams and Kilburn, 19491. The principle
of a two-state electrostatic store can be visualised from the
following simple experiment. Start with a focussed CRT beam and
turn the beam current on (thus producing a charged “dot”) and off
again repeatedly. Negative voltage pulses will be induced by
capacitive coupling in a pick-up plate placed close to the outer
surface of the CRT screen. Now move the beam whilst it is on so
as to write a “dash” on the screen, then move the beam back
whilst the current is off, and then switch on the current again.
This time a positive voltage pulse is induced. With dots and
dashes representing logical 0’s and l’s, readable as negative and
positive voltage signals, a binary storage system is available.
Other representations such as a “focusidefocus” system were also
used. Now although the electrostatic charge leaks away in about
0.2 seconds, automatic refreshing (re-writing) of the information
in less than 0.2 seconds is a simple matter electronically. (cf a
modern MOS solid-state store.) Since the refresh rate is rapid,
long term drifts in electrode supply voltage, etc are not critical
and a robust store can be made from standard components. In
contrast, the mercury acoustic delay-line stores chosen by other
workers had to be constructed to close physical tolerences. The
biggest advantage of the CRT store was that it allowed random
access whereas other contemporary systems were sequential.

By the Autum of 1947 the Manchester group had successfully
stored 2048 digits for a period of hours [Kilburn, 19481 and the
way was clear for the construction of a prototype computer “to
subject the system to the most searching tests possible” [Williams
et al., 19513. Kilburn took the initiative with the logical design.
The “baby machine,” as it was called, had a specification which
may be expressed in modern terminology as follows:

32-bit word length

Serial binary arithmetic using two’s complement integers

Single-address format order code

Main store: 32 words, extendable to 8192 words, random
access

‘Excerpted from S. H. Lavington, A History of Manchester Computers,

NCC Publications, Manchester, England, 1975, pp. 7-10.

Editor’s note: Further discussion of the Mark 1can be found in the above

publication.

Computing speed: 1.2 milliseconds per instruction.

The instruction format had three bits assigned to the function
field, 13bits to the address field and the remaining 16 bits were
unused. The main store consisted of a single CV 1131Williams
Tube, with each 32-digit line occupying about 10 cms on the
screen and being scanned in 272 microseconds. A complete “beat”
of 306 microseconds consisted of 32 x 8.5 microsecond digit
periods plus a four digit fly-back time. The rhythm of the whole
processor was synchronised to this store beat. There was notional
provision for extending up to 256 Williams tubes to yield a total
storage capacity of 8192 words. The arithmetic unit was based on a
serial subtractor and the logic employed EF50 pentode tubes,
used widely for wartime applications. Using this technology,
flip-flops (bistable circuits) were extremely costly and temporary
storage throughout the central machine was implemented with
Williams Tubes wherever possible. Thus the accumulator and
control register (instruction counter) were Williams Tubes. One
incidental advantage of the use of CRT’s was that the contents of
main store, accumulator and control register could be viewed on a
monitor CRT during or after a computation-so providing a
simple output mechanism. Input for the prototype was via a
32-position keyboard and operators control switches.

The machine first ran a program in June 1948 [Williams and
Kilburn, 19481 and as far as can be ascertained it was therefore the
world’s first stored-program computer. A complete diagram of the
prototype Mark 1is given in Williams et al. [1951] and Fig. 1is a
simplified version showing the main flow of information. The
Williams Tube which implemented the control register was also
used to hold the present instruction (PI) itself subsequent to its
being read out of main store. Either the value of control or the
value of this PI could be fed from the “control” Williams Tube to

Fig. 1. A simplified diagram of the prototype Mark 1 showing the
main information paths.

107

108 Part 1 I Fundamentals Section 3 I Computers of Historical Significance

Table 1

Decimal value of Modern
function bits A n early notation mnemonic Explanation of operation

0 s, c JMP S Absolute indirect unconditional jump: set the control
register equal to the contents of address S.t

1 c+s, c JRP S Relative indirect unconditional jump: add the contents
of address S to the control register.?

2 -s , A LDN S Load negative: set the accumulator equal to the neg-
ated contents of address S.

3 a, S STO S Store: copy the contents of the accumulator to address
S.

4 or 5$ a-s, A SUB S Subtract: set the new value of the accumulator equal
to the former contents minus the contents of address S.

6 Test CMP Compare against zero: the value in the accumulator is
tested. If it is less than zero, one is added to the
control register thus causing the next sequential
instruction to be skipped.

7 stop STP Stop: cease automatic mode, and await manual com-
mands from the operator’s keyboard.

tNote that + I was always added to the control register at the end of every order, so the programmer used JMP and JRP to point to

an instruction one before the line he intended to jump .to.

$To economise on logic elements only partial decoding of the function bits was carried out.

an 8-bit (extendable to 16-bit) flip-flop register known as the store the resulting (-p -9)
staticisor. This staticised function bits (F)and operand addresses load negative to achieve (+p +q)
(S) during the execution of an order, and then staticised the
address of the next order during the instruction-fetch phase. An The order code of the the prototype had provision for eight
interesting anomaly was that numbers were stored with the least functions, specified as in Table 1.
significant digit on the left-a system which makes sense to Three demonstration programs were run on the prototype
engineers if not to mathematicians! machine, the first one involving determination of the highest

As has been noted, two’s complement was used to represent factor of an integer by a method which would give a long run, the
negative numbers, though the now familiar rules for addition/ result of which could be easily checked. To quote [Williams and
subtraction and the formation of the complement of a number Kilburn 19481, “the highest proper factor of 218 was found by
were not implemented in the usual way. The main emphasis of the trying in a single routine every integer from 218-1 downward, the
project at this time was to prove the practicability of the Williams necessary divisions being done not by long division, but by the
Tube for realising the stored-program concept and so the arithme- primitive process of repeated subtraction of the divisor. Thus
tic logic was kept as simple as possible. The subtractor was the about 130,000 numbers were tested, involving some 3.5 million
onZy arithmetic facility provided, it being preferred to an adder operations. The correct answer was obtained in a 52-minute run.
because a subtractor can be used without alteration to form The instruction table in the machine contained 17 entries.”
complements and to perform additions whereas the converse is The original program was written by Tom Kilbum. G C Tootill,
not true. As may be seen from Fig. 1 an operand entered the an engineer on loan to Manchester from TRE from mid-1947 to
accumulator by being fed through the subtractor; this “subtract mid-1949, also wrote programs for the prototype and a notebook
from zero” thus complemented the operand before it reached the kept by him over the period 4th June to 28th November 1948 has
accumulator. The effect of a positive load could be programmed in survived. From entries in this notebook it seems that Kilbum’s
two orders by performing a negative load and then subtracting the program was first run on Monday 21st June.
contents of the accumulator from a zero operand. An addition of
two quantities p, q was programmed by a four-order sequence as
follows: References

load negative p Kilburn [19481; Williams and Kilburn [19481; Williams and
subtract q Kilburn [1949]; Williams, Kilburn, and Tootill [1951].

I

Chapter 7 I The Manchester Mark 1 109

APPENDIX 1 MARK 1 1SP DESCRIPTION

M A R K 1 : =

b e g i n

! The Manchester M a r k - I a r c h i t e c t u r e i s d e s c r i b e d .

The M a r k - I was an e a r l y (c i r c a 1948) computer .

MP.State

M[O:8191]<0:31>,

* *PC .S t a t e * *

PI\Present.Instruction<O:l5>,

f \ f u n c t i o n < 0 : 2 > : = PI<O:2>,

s<O:12> : = P I<3 :15> .

CR\Control.Register<O:l2>,

ACC\Accumulator<O:31>,

Instruction.Execution{tc}

ic y c l e \ ii i s t r u c t i o n . c y c l e{mai n} :=
b e g i n
REPEAT

b e g i n
P I + M[CR]<O:15> n e x t
DECODE f =>

b e g i n

#O : = CR +- M[s],

#1 : = CR + CR + M[s].

#2 : = A C C + - M I S] .

#3 : = M[s] * ACC,

4 : # 5 : z ACC + ACC - M[s].
116 : = IF ACC l s s 0 = > CR +- CR + 1,
#7 : = S T O P ()
end n e x t

CR + C R + 1

end

end

end

Chapter 8

Structural Levels of the PDP-8I

C. Gordon Bell / Allen Newel1 /
Daniel P. Siewiorek

A map of the PDP-8 design hierarchy, based on the Structural
Levels View of Chap. 2, is given in Fig. 1,starting from the PMS
structure, to the ISP, and down through logic design to circuit
electronics. These description levels are subdivided to provide
more organizational details such as registers, data operators, and
functional units at the register transfer level.

The relationship of the various description levels constitutes a
tree structure, where the organizationally complex computer is
the top node and each descending description level represents
increasing detail (or smaller component size) until the final circuit
element level is reached. For simplicity, only a few of the many
possible paths through the structural description tree are illustrat-

'Originally printed in C. G. Bell, J. C. Mudge, and J . E. McKamara,
Computer Engineering: A DEC Mew of Hardware System Design, Digital
Press, 1978, pp. 209-228.

PMS

PROGRAMMING

ELECTRICAL
CIRCUIT 5

1x1mdicates figure number of ~nsta.ncs

Fig. 1. PDP-8 hierarchyof descriptions.

ed. For example, the path showing mechanical parts is missing.
The descriptive path shown proceeds from the PDP-8 computer
to the processor and from there to the arithmetic unit, or more
specifically, to the Accumulator (AC) register of the arithmetic
unit. Next, the logic implementing the register transfer operations
and functions for the j th bit of the Accumulator is given, followed
by the flip-flops and gates needed for this particular implementa-
tion. Finally, on the last segment of the path, there are the
electronic circuits and components from which flip-flops and gates
are constructed.

Abstract Representations

Figure 1 also lists some of the methods used to represent the
physical computer abstractly at the different description levels. As
mentioned previously, only a small part of the PDP-8 description
tree is represented here. The many documents which constitute
the complete representation of even this small computer include
logic diagrams, wiring lists, circuit schematics, printed circuit
board photo etching masks, production description diagrams,
production parts lists, testing specifications, programs for testing
and diagnosing faults, and manuals for modification, production,
maintenance, and use. As the discussion continues down the
abstract description tree, the reader will observe that the tree

MULTIVISRATOR 1101
IACTIVE COMPONENT1

R IPASSIYE COMPONENT,

110

Chapter 8 j Structural Levels of the P D M 111

conveniently represents the constitutent objects of each level and
their interconnection at the next highest level.

The PMS Level

The PDP - 8 computer in PMS notation is:

C[PDP-8 techno1ogy:transistors: 12 b/w:
descendants: I PDP-8/S, I PDP-8I1, I PDP-S/L,
' 8/E, ' 8/F, 8/M, 8/A, CMOS-8;
antecedents: I PDP-5;
Mp[core; #0:7; 4096 words; tc:1.5 pdword];]
Pc(Mps(2 to 4 words);

instruction length:1(2 words;
addressiinstruction: 1;
operations on data:(=, +, Not, And, Minus
(negate), Srr 1(/2),Slr 1(~ 2) ,+)
optional operations:(x ,/,normalize);
data-types:word,integer,Boolean vector;
operations for data access&

P(disp1ay; '338);
P(c; LINC);
S(I IiO BUS; 1 Pc; 64K);
Ms(disk, DECtape, magnetic tape);'
T(paper tape, card, analog, cathode-ray tube)

As an example of PMS structure, the LINC-S-338 is shown in
Fig. 2; it consists of three processors (designated P): Pc(I LINC),
Pc(PDP-8), and P.display(' 338). The LINC processor is a very
capable processor with more instructions than the PDP-8 and is
available in the structure to interpret programs written for the
LINC. Because of the rather limited instruction set being
interpreted, one would hardly expect to find all the components
present in Fig. 2 in an actual configuration.

The switches (S) between the memory and the processor allow
eight primary memories (Mp) to be connected. This switch, in
PMS called S('memory Bus; 8 Mp; 1 Pc; time-multiplexed; 1.5
psiword), is actually a bus with a transfer rate of 1.5microseconds
per word. The switch makes the eight memory modules logically
equivalent to a single 32,768-word memory module. There are
two other connections (a switch and a link) to the processor
excluding the console. They are the S(I/O Bus) and L(I Data
Break; Direct Memory Access) for interconnection with peripher-
al devices. Associated with each device is a switch, and the I/O
Bus links all the devices. A simplified PMS diagram (Fig. 3)shows
the structure and the logical-physical transformation for the I/O
Bus, hdemory Bus, and Direct h4emory Access link. Thus, the IIO
Bus is:

S(I/O Bus duplex; time-multiplexed; 1Pc; 64K;Pc controlled,
K requests; t:4.5 pdw)

The I/O Bus is nearly the same for the PDP-5, 8, 8/S, 84, and
81L. Hence, any controller can be used on any of the above
computers provided there is an appropriate logic level converter
(PDP-5, 8, and 81s use negative polarity logic; the 8/I and 8/L,
positive logic). The I/O Bus is the link to the controllers for
processor-controlled data transfers. Each word transferred is
designated by a processor in-out transfer (IOT) instruction. Due
to the high cost of hardware in 1965, the PDP-8 110 BUS protocol
was designed to minimize the amount of hardware to interface a
peripheral device. As a result, only a minimal number of control
signals were defined with the largest portion of I/O control
performed by software.

A detailed structure of the processor and memory (Fig. 4)shows
the IiO Bus and Data Break connections to the registers and
control in the notation used in the initial PDP-8 reference manual.
This diagram is essentially a functional block diagram. The
corresponding logic for a controller is given in Fig. 3 in terms of
logic design elements (ANDs and ORs). The operation of the I/O
Bus starts when the processor sends a control signal an4 sets the
six I/O selection lines (10.SELECT <0:5>) to specify a particular
controller. Each controller is hardwired to respond to its unique
6-bit code. The local control, K[k], select signal is then used to
form three local commands when ANDed with the three IOT
command lines from the processor. These command lines are
called IO.PULSE.l, X0.PULSE.2, and I0.PULSE.4. Twelve data
bits are transmitted either to or from the processor, indirectly
under the controller's control. This is accomplished by using the
AND/OR gates in the controller for data input to the processor,
and the AND gate for data input to the controller. A single skip
input is used so that the processor can test a status bit in the
controller. A controller communicates back to the processor via
the interrupt request line. Any controller wanting attention
simply ORs its request signal into the interrupt request signal.
Normally, the controller signal causing an interrupt is also
connected to the skip input, and skip instructions are used in the
software polling that determines the specific interrupting device.

The Data Break input for Direct Memory Access provides a
direct access path for a processor or a controller to memory via the
processor. The number of access ports to memory can be
expanded to eight by using the DMOl Data Multiplexer, a
syitch. The DMOl port is requested from a processor (e.g., LINC
or Model 338 Display Processor) or a controller (e.g.', magnetic
tape). A processor or controller supplies a memory address, a read
or write access request, and then accepts or supplies data for the
accessed word. In the configuration (Fig. l), Pc['LINC] and
P[' 3381 are connected to the multiplexer and make requests to
memory for both their instructions and data in the same way as the
PDPS processor. The global control of these processor programs
is via the processor over the I/O Bus. The processor issues start
and stop commands, initializes their state, and examines their

112 Part 1 1 Fundamentals Section 3 1 Computers of Historical Significance

l l
I Mrl#O 3 fired head disk t delay 0 - 17 ms

6 6 r d w 32768 w) / 116 u d w 262144 wl
(12 1 pantv)b/w)

T M O 3 CRT display area 10X101n2 .
TI0 3 light pen)

TMO 3 puIh buttons consolel

Computer/LINC) . T C.",O* 1
Msl l iO 1 LlNCtape addressable magnatis tape

6 2 5 k w / s 2-7,)

NOTES

1 Mp (core 1 5 ~ s l w4096 w 112 + l lb l

2 Sl Memory Burl

3 P d l .2 wlmstruction data w r by 12 b lw
M proces50r state (2 112 .3 1/21 w

technology frans1s10cs
antecedents POP 5 descendants
POP 8/S, PDP 811 POP 8IL. Ornnlbur farnllv

4 SI l/O Bu9 from Pc to 64 KI *
5 K (1 ~ 4 Instrust8onr M bulfer I1 char .2 WIl

TIKO 15 knobs analog Input)

TICRT display 5 X 5 in2)

Tldigital input output) t

Fig. 2. LINC-8-338 PMS diagram.

INTERRUPT REOUEST

IOPVLSEPl Fl Pa r-IOSELECTCO 6>

to PuLSf P1 And u 1eIec1
lured lor 10 SKIP(k1 PC PC + 11

I 0 VULSE P4 And K select
(used lor OUTPUT DATAIkl ACI

f-
INPUT R E G l S l f R

[-l
110 BUS

Fig. 3. PDP-8 S('l/O Bus) logic and PMS diagrams.

Chapter 8 1 StructuralLevels of the PDP-8 113

final state when a program in the other processor halts or requires
assistance.

When a controller is connected to the Data Break or to the
DMOl Data Multiplexer, it only accesses memory for data. The
most complex function these controllers carry out is the transfer of
a complete block of data between the memory and a high speed
transducer or a secondary memory (e.g., DECtape or disk). A
special mode, the Three Cycle Data Break, allows a controller to
request the next word from a block in memory.

The DECtape was derived from M.I.T.'s Lincoln Laboratory
LINCtape unit. Data were explicitly addressed by blocks (variable
but by convention 128 words). Thus, information in a block could
be replaced or rewritten at random. This operation was unlike the
early standard IBM format magnetic tape in which data could be
appended only to the end of a file.

Programming Level (ISP)
The ISP of the PDP-8 processor is probably the simplest for a
general purpose stored program computer. It operates on 12-bit
words, 12-bit integers, and 12-bit Boolean vectors. It has only a
few data operators, namely, =, +, minus (negative of), not, and
slr 1(rotate bits left), srr 1(rotate bits right), (optional) X, i, and
normalize. However, there are microcoded instructions, which
allow compound instructions to be formed in a single instruction.

The ISP of the basic PDP-8 is presented in Appendix 1. The
Z1'-word memory (declared MP[O:4095]<0:ll>) is divided into 32
fixed-length pages of 128 words each (not shown in the ISPS
description). Address calculation is based on references to the first
page, page.zero, or to the current page of the Program Counter
(PCU'rogram. Counter). The effective address calculation proce-
dure, called MA in Appendix 1, provides for both direct and
indirect reference to either the current page or the first page. This
scheme allows a 7-bit address to specify a local page address.

A 215-word memory is available on the PDP-8, but addressing
more than 2'' words is comparatively inefficient. In the extended
range, two 3-bit registers, the Program Field and Data Field
registers, select which of the eight 2"-word blocks are being
actively addressed as program and data. These are not given in the
ISPS description.

There is an array of eight 12-bit registers, called the auto.index
registers, which resides in page.zero. This array (autosindex
[0:7]<0:ll>:=MP[#lO: #17]<0:1l>) possesses a useful proper-
ty: whenever an indirect reference is made to it, a 1is first added
to its contents. (That is, there is a side effect to referencing.) Thus,
address integers in the register can select the next member of a
vector or string for accessing.

The processor state is minimal, consisting of a 12-bit accumula-
tor (ACUccumulator<O:ll>), an accumulator extension bit called
the Link &\Link), the 12-bit Program Counter, the GO Aip-flop,

1 Section 3 1 Computers of Historical Significance 114 Part 1 Fundamentals

SKIP PROGRAM

PERIPHERAL
EQUIPMENT

COUNTER
CONTROL

I/O BUS

- SWITCHES

I/O BUS AC U
PERIPHERAL DATA 1121
EQUIPMENT

USING
PROGRAMMED

TRANSFERS
SELECT

OUTPUT LINK
BUS - 1

DRIVERS

MODEL 33 	 -m

TELETYPE 	 ACCUMULATOR

PERIPHERAL
EOUIPMENT

I/O

PERIPHERAL
EQUIPMENT
USING THE
DATA BREAK
FACILITIES

PERIPHERAL
EQUIPMENT
110BUS

* 1 1

DATA (12)

0

DATA 1121

INCREMENTMB

INHlBlT CURRENT ADDRESS COUNT

TRANSFER DIRECTION INOTE 11

WORD COUNT OVERFLOW

BREAK REQUEST

CYCLESELECT [NOTE 21

+BREAK STATE

ADDRESS1121
~~

ADDRESS ACCEPTED

Pert Of ISP

NOTES

1 Transfer direction 8s lntO PDP.8

when -3 volts out of PDP 8 when ground

2 	 Data break request for 1hrW

cycle brsah when ground or one-

cycle break when - 3 volts

L PR00RAM
COUNTER . 12

L

BUFFER

REGISTER

12

REGISTER

MEMORY
0 MB IOORESS

* CONTROL 	 REGISTER
1 2

MAJOR
0 STATE

--GENERATOR

<
M A

CONTROL

OEC STANOARD POSITIVE PULSE 1-3 VOLTS TO GROUND)

DEC STANDARD NEGATIVE PULSE [GROUND TO -3VOLT-I

4OEC STANDARD GROUND LEVEL SIGNAL

4 OEC STANDARD -3VOLT LEVEL SIGNAL

NUMBERS IN REGISTERS SIGNIFY WORD LENGTH

Fig. 4. PDP-8 processor block diagram.

Chapter 8 1 Structural Levels of the PDP-8 115

and the INTERRUPT. ENABLE bit. The external processor state the instruction.register, that is, IR<O:2>. Each of the first
is composed of console switches and an interrupt request. memory reference six instructions, where the opcode is less than

The instruction format can also be presented as a decoding or equal to 5 , has four addressing modes (direct page.zero, direct
diagram or tree (Fig. 5) . Here, each block represents an encoding current.page, indirect page. zero, and indirect current. page). The
of bits in the instruction word. A decoding diagram allows one first six instructions in the following four categories are:
more descriptive dimension than the conventional, linear ISPS
description, revealing the assignment of bits to the instruction.
Figure 5 still requires ISPS descriptions for the memory, the 1 Data transmission
processor state, the effective address calculation, the instruction “deposit and clear Accumulator” (DCA). (Kote that the add

instruction, TAD, is used for both data transmission and interpreter, and the execution for each instruction. Diagrams such arithmetic.)
as Fig. 5 are useful in the ISP design to determine which
instruction operation codes are to be assigned to names and 2 Binary arithmetic
operations, and which instructions are free to be assigned (or “two’s complement add to the Accumulator” (TAD).
encoded). 3 Binary Boolean

There are eight basic instructions encoded by 3 opcode bits of “and to the Accumulator” (AND).

OPERATE GROUPS MICROCODED INSTRUCTIONS
‘ < I >

\
= coup 1 And t < I > And time [1. 2. 3 4 1

(i 7 n 9 10 11

TIME
EXTENDED

PRINCIPAL ARITHMETIC
ADDRESSABLE ELEMENT, EAE.
INSTRUCTIONS INSTRUCTIONS

me And lime I31
\

\
TIME

- 1

NEXT

2

NEXT

3

\ 4 5

m e And * < I > and time I1 2 31

6 7 n 9 10

#2\ muv a

#3\ dui 3t

Fig. 5. PDP-8 instruction decoding diagram.

116 Part 1 I Fundamentals

4 	 Program control
“jump/set Program Counter” (JMP); “jump to subroutine”
(JMS); “index memory and skip if results are zero” (ISZ).

The subroutine calling instruction, JMS, provides a method for
transferring a link to the beginning (or head) of the suiroutine. In
this way arguments can be accessed indirectly, and a return is
executed by a “jump indirect” instruction to the location storing
the returned address. This straightforward subroutine call mecha-
nism, although inexpensive to implement, requires reentrant and
recursive subroutine calls to be interpreted by software rather
than by hardware. A stack for subroutine linkage, as in the
PDP-11, would allow the use of read-only memory program
segments consisting of pure code. This scheme was adopted in the
CMOS-8.

The “in-out transfer” instruction, opcode 6, IOT uses the
remaining nine bits of the instruction to specify instructions to
input/output devices. The six io.select bits select 1of 64 devices.
Three conditional pulse commands to the selected device,
io.pulse.l, io.pulse.2, and io.pulse.4, are controlled by the IOT,
io.control<O:Z> operation code bits. The instructions to a typical
I/O device are:

1 	Testing a Boolean Condition of an I 0 device.
1F io.pulse. 13
(IF io. skip. flag[io. select]+
PC = PC + 1)

2 	 Output data to a device from Accumulator.

I F io.pulse.43

(output. register[io. select] =

AC)

3 Input data from a device to Accumulator.

I F io.pulse.23

(AC = input. register[io. select])

There are three microcoded instruction groups selected by
(IR<0:2> eqv #7), called the operate instructions. The instruc-
tion decoding diagram (Fig. 5)and the ISP description show the
microinstructions which can be combined in a single instruction.
These instructions are: operate group 1((IR<O:2> eqv #7) and
not ib) for operating on the processor state; operate group 2
((IR<O:Z> eqv #7) and NOT ib<> and M B < l l >) for testing the
processor state; and the Extended Arithmetic Element group (not
included in the ISP description) (IR<0:2> eqv #7 and ib< > and
MB<11>) for multiply, divide, etc. Within each instruction the
remaining bits, <4:10> or <4:11>, are extended instruction (or
opcode) bits: that is, the bits are microcoded to select additional
instructions. In this way, an instrxtion is actually programmed
(or microcoded, as it was originally named before “microprogram-
ming” was used extensively). For example, the instruction, “set

Section 3 1 Computersof Historical Signlficance

link to 1,”is formed by coding the two microinstructions, “clear
l i nk following by “complement link. ”

If (IR <0:2> eqv #7) and (group eqv 0))3

If MB<5> jL = 0; next

If MB<7> jL = not L)

Thus, in operate group 1, the instructions “clear link, comple-
ment link, and set link” are formed by coding MB<5,7> = 10,01,
and 11, respectively. The operate group 2 instructions are used
for testing the condition of the processor state. These instructions
use bits 5, 6, and 8 to code tests for the Accumulator. The AC skip
conditions are coded as never, always, AC eql 0, AC neg 0,
AC lss 0, AC leq 0, AC geq 0 and AC gtr 0. The optional Extend-
ed Arithmetic Element (EAE) includes additional Multiplier Quo-

Table 1 PDP-8 Register Transfer Control Signals and Data Break
Interface

AC/Accumulator, L/Link and combined L, AC LAC
AC = 0; AC = #7777;AC = not AC; LAC = LAC + 1
L = 0; L = 1; L = not L;
LAC = LAC srr 1 ; LAC = LAC srr 2; !rotates right
LAC = LAC slr 1; LAC = LAC slr 2; !rotates left
AC = AC or SWITCHES; AC = AC and MB; AC = IO.BUS
AC = AC xor MB; LAC = carry (AC.MB);
(note that previous two commands form: LAC = AC + MB).

MB/Memory.Buffer
MB = MB + 1; !Increment
MB = PC; MB = AC; MB = M[MA]; MB = DB.DATA. !Set
MB = 0;

MA/Memory.Address
MA<O:4> = 0; MA = PC; MA = MB; MA<5:11> = MA<5:11>;
MA = DB.ADDRESS.

PC/Program.Counter
PC = 0; PC<0:4> = 0; !Clear
PC = MB; PC<5:11> = MB<5:11> !Set
PC = PC + 1 !Increment

IR/lnstruction.Register
IR = 0; 	 !Clear
IR = M[MA]<0:2> !Load

M/Memory[0:40951<0:11>
M[MA] = MB !write
MB = M[MA] !read

DB/DATA.BREAK interface
DB.DATA<O:ll> 	 ! Input to MB
DB.ADDRESS<O:ll> ! Input to MA
MB<O:i 1>
DB.REQUEST 	 ! Control inputs to Pc
DB.DIRECTION
DB.CYCLE.SELECT<O:l 1 >
ADDRESS.ACCEPTED ! Control outputs from Pc
WORD.COUNT.OK
BREAK. STATE

Chapter 8 I StructuralLevels of the PDP-8 117

I 1” mu* stgn.,,

A C < o I l > L (mput. WlP”1.)

LAC A C I N < O I l > A C < O l l >

MPS.0

t
---I--+d-- I

I0 SELECT<O 5’ =
M B < 3 B)J-&T*1

Inhibit Drivers

<o 1 1 >

\
V

M E M O R Y BUS ~nferfacs D B DATA BREAK

110 1 7 M p modules) l”1eltaCB

TO REGISTERS CONSOLE
A N 0 CONTROL U

KIMPSI conrams STATE REGISTER3 RUN INTERRUPT ENABLE

- DATA TRANSMISSION FULL DUPLEX . DIRECTED DATA TRANSMISSIONS

--- CONTROL SIGNALS

Fig. 6. PDP-8 register transfer level PMS diagram.

tient (MQ) and Shift Counter (SC) registers and provides the
hardwired operations, “multiply,” “divide,” “logical shift left,”
“arithmetic shift,” and “normalize.” If all the nonredundant and
useful variations in the two operate groups were available as
separate instructions in the manner of the first seven (DCA, TAD,
etc.), there would be approximately 7 + 12 (group 1)+ 10 (group
2) + 6 (EAE) = 35 instructions in the PDP-8.

The Interrupt Scheme

External conditions in the inpub‘output devices can request that
the processor be interrupted. Interrupts are allowed if the
processor’s interrupt enable flip-flop is set (if INTERRUPT.
ENABLE eqv 1). A request to interrupt (i.e., INTERRUPT.
REQUEST = 1) clears the interrupt enable bit (INTERRUPT.
ENABLE = 0), and the processor behaves as though a “jump to
subroutine” 0 instruction (JMS 0) has been executed. A special
IOT instruction (MB<O:11> eql #6001) followed by a ‘j‘ump to
subroutine indirect” to 0, and instruction (MB<O:11> eql#5220)
returns to the processor to the interruptable state with INTER-
RUPT.ENABLE a 1. The program time to save the processor state
is six memory accesses (9 microseconds), and the time to restore
the state is nine memory accesses (13.5microseconds).

Only one interrupt level is provided in the hardware. If
multiple priority levels are desired, programmed polling is

required. Most I/O devices have to interrupt because they do not
have a program-controlled device interrupt-enable switch. For
multiple devices, approximately three cycles (4.5 microseconds)
are required to poll each interrupter.

Register Transfer Level

More detail is required than is provided by either the PMS or ISP
levels to describe the internal structure and behavior of the
processor and memory. Figure 4 shows the registers and control-
lers at a block diagram level, and Fig. 6 gives a more detailed
version using PMS notation. Table 1gives the permissible register
transfer operations that the processor’s sequential control circuit
can give to the PDP-8 registers.

Although electrical pulse voltages and polarities are not shown
in Table 1, the operations are presented in considerably more
detail than shown in Fig. 4. As Fig. 6 shows, the registers in the
processor cannot be uniquely assigned to a single function. In a
minimal machine such as the PDP-8, functional separation is not
economical. Thus, there are not completely distinct registers and
transfer paths for memory, arithmetic, program, and instruction
flow. (This sharing complicates understanding of the machine.)
However, Fig. 6 clarifies the structure considerably by defining all
the registers in the processor (including temporaries and controls).
For example, the Memory Buffer (MB\Memory. Buffer<O: 11>)

118 Part 1 I Fundamentals 	 Section 3 I Computersof Historical Significance

"Fetch" instruction memory cycle

Wait (tms) next
MB = M[MAl :
IR = IRor M[MAI<O:2> next

6Wait (tml) next

IF not (opr or iot) =PFopr3 PC = PC + 1 next
I F n o t MB <3> = I F MB <3> and not MB <11> =) IF iot =
begin begin begin
PC = PC+ 1; 	 IF skio conditions xor MB <8> * PC = PC + 1 next

IFMB<4>=AC=0; 	 PC = Pc + 2 IF MB<11>-

I F MB <5> =L = 0 next 	 I F skip conditions eqv MB <8> * io.pulse.1 = 1next

PC = PC + 1 next IF MB <lo> =

io.pulse.2 = 1 next
I F MB <6> =AC = no t AC;

I F MB <7> L = not L I F MB <4> =AC=O IF MB <9> =.

end next io.pulse.4 = 1
end next
end next

$. Wait (tmd) next
Wait (tmd) next Wait (tmd) next M[MAl = MB next
M[MAl = MB next 	 w MA<5:11>=MB <5:11>;
MB = PC next 	 MA = PC next I F not MB <4> *MA <04> = 0 next

Wait (t2) next

' I F MB <3>and not MB <ll>* F not ME <3> and (not JUMP) -
begin I F MB <9> =. 3nd JMP =
MB<11>= AC = AC or switches; PC = MA;

IF no t ME <3> =

IF MB <lo> -RUN = 0 next

I F MB <8> and not MB <lo>=

L @ AC = L @AC srr 1

IF ME <8> and MB <lo> =.

L @ A C = L @ A C s r r 2

I F MB <9> and no t MB <lo>=

L @ AC = L @ AC slr 1.

I F MB <9> and MB <lo> =

L @ AC = L @ ACslr 2

end next 	 I R = 0; IR =O;

MB =O; MB = 0; MB = 0; MB =O;
State = 0 next State = o next State =1ne, State = 2 next

L @ AC = L @ AC + 1 next

. 	 I
Fig. 7. PDP-8 Pc state diagram.

is used to hold the word being read from or written to memory. Holds the value of current instruction being performed.

The Memory Buffer also holds one of the operands for binary state. register<O: 1>

operations (for example, AC = AC and MB). The Memory Buffer A ternary state register holding the major state of memory

is also used as an extension of the Instruction. Register during the cycle being performed-declared as 2 bits.

instruction interpretation. The additional physical registers, not F\Fetch:=(IF state.register eqv 0)

part of the ISP, are: Memory cycle to fetch instruction.

MB\Mempry. Buffer<O:ll> D\Deferred:=(IF state.register eqv 1)
Holds memory data, instruction, and operands. Memory cycle to get address of operand.

MA\Memory. Address<O:ll> E\Execute:=(IF state.register eqv 2)
Holds address of word in memory being accessed. Memory cycle to fetch (store) operand and execute the

IR\Instruction. Register<O:2> instruction.

Chapter 8 1 Structural Levels of the PDP-8 119

"Defer" (indirect) "Execution" memory cycle
address memory cycle

W a i t h s) next
W a i t h s h e x t MB = M I M A l next
M B = M I M A l next

Wait (t l) next

IF M A <0:8>eql #GO1 -

M B = M B + 1 next

end next

I
Wait(tmd1 next

Waitkmd) next

M A = MB next IF JMS - M A = M A + 1 next

b Wait(t2) next

IF A N D - IF T A D * IF ISZ - IF DCA s
IF JMS - PC = MA;

PC = M B next AC = AC and MB next AC = carry(AC,MB) next AC = 0;

V V V Y
IR = 0;

IR = 0; MB = 0; MB = 0;
M B = O ; IState = 2 next State = 0 next
State = 0 next

f Fo'
k-1

'ig. 7. (Continued)

The emphasis in Fig. 6 is on the static definition (or declaration) within a single ISPS language statement because ISPS defines
of the information paths, the operations, and state. The ISP only the nondestructive transfer; however, it can be considered as
interpretation (Appendix 1)is the specification for the machine's the two parallel operations MB = MP[MA]; MP[MA] = 0. The
behavior as seen by a program. explanation of the physical machine, including the rewriting of

As the temporary hardware registers are added, a more detailed core using ISPS, is somewhat more tedious than the highest level
ISPS definition must be given in terms of time and in terms of description shown in Appendix 1. For this reason, the state
temporary and control registers. Instead, a state of diagram (Fig. diagram is used (Fig. 7) , and the description of the physical
7)is given to define the actual processor which is constrained by machine (in ISPS) is left as an exercise for the reader.
both the ISP registers, the temporary registers implied by the The state diagram (Fig. 7) is fundamentally driven by minor
implementation, and time. The relationship among the state clock cycles as seen from both the state diagram and the times
diagram, the ISP description, and the logic is shown in the when the four clock signals are generated. Thus, there are 3
hierarchy of Fig. 1. In the relationships shown in the figures, one (state.register eqv #0,#1,#2) x 4 (clock) or 12 major states in
can observe that the ISP definition does not have all the necessary the implementation. The Instruction. Register is used to obtain
detail for fully defining a physical processor. The physical two more F2b and F3b, for the description. The state.register
processor is constrained by actual hardware logic and lower level values 0, 1, and 2 correspond to fetching, deferred or indirect
details even at the circuit level. For example, a core memory is addressing (i. e., fetching an operand address), and executing. The
read by a destructive process and requires a temporary register state diagram does not describe the Extended Arithmetic Ele-
(MB) to hold the value being rewritten. This is not represented ment operation, the interrupt state, or the data break states

120 Part 1 FundamentalsI

(which add 12 more states). The initialization procedure, includ-
ing the console state diagram, is also not given. One should
observe that, at the beginning of the memory cycle, a new
state.register value is selected. The state.register value is
always held for the remainder of the cycle; i.e., only the
sequences FO, F1, F2, F3, or DO, D1, D2, D3, or EO, E l , E2, E3
are permitted.

Logic Design Level (Registers and Data Operations)

Proceeding from the register transfer and ISP descriptions, the
next level of detail is the logic module. Typical of the level is the
1-bit logic module for an accumulator bit, AC <j>, illustrated in
Fig. 8. The horizontal data inputs in the figure are to the logic
module from AC<j>, MB<j>, AC<j> input from the I0.Bus.
In, and switches <j>. The control signal inputs whose names are
identified using the vertical bar (e.g., I AC = O I) command the
register operations (i.e., the transfers). They are labeled by their
respective ISP operations (for example, AC = AC and MB, AC =

Bus to each b i t of AC

AC <j>
carry

output

not

AC <j> -

ME <j> -

not MB<i>-
AC <j> -

b

ME <i> - a-

Section 3 I Computers of Historical Significance

AC slr 1, for rotate once left). The sequential state machine, for
the processor Pc(K), generates these control signal inputs using a
combinational circuit as the one shown in Fig. 9.

Logic Design Level (Pc Control, Pc(K) Sequential
State Machine Network)

The output signals from the processor sequential machine (Fig. 9)
can be generated in a straightforward fashion by formulating the
Boolean expressions directly from the state diagram in Fig. 7. For
example, the AC = 0 control signal is expressed algebraically and
with a combinational network in Fig. 9. Obviously, these Boolean
output control signals are functions which include the clock, the
state.register, and the states of the arithmetic registers (for
example, AC = 0, L = 0, etc.). The expressions should be factored
and minimized so as to reduce the hardware cost of the control for
the interpreter. Although the sequential controller for the
processor is mentioned here only briefly, it constitutes about half
the logic within the processor.

not AC <j+ l>

not AC<j-1:

AC <i-l>

AC <j+ l>

0 Bus in <j>.

switches <i>

I LAC = ci..

carry
input

, (AC, MBI I I A C = A I

A
(SEE

I AC= not AC I

or MB 1 I A C = A

NOTE: A C = A C + 1 isforrned byAC< l l>ca r ry inpu t

I AC = AC or switches I

mdMB I

- l A C = 1 I I

I LAC =

A C = O I

LAC srr 1
LAC sir I

AC
register
transfer
control
signals

Fig. 8. PDP-8 AC<j> bit logic diagram.

-4

fln o t IR <0> 	 IAC'O;

I R <I> 	 register
transfer
control
signal

Chapter 8 I Structural Levels of the PDP-8 121

Circuit Level
The final level of description is the circuits that form the logic
hnctions of storage (flip-flops) and gating (NAND gates). Figures
10and 11illustrate some of these logic devices in detail. In Fig. 10
a direct setidirect clear flip-flop (a sequential logic element) is
described in terms of circuit implementation, combinational logic
equivalent, a state table, and its algebraic behavior. Note that this

I R <0> 	 -J is not a conventional textbook circuit because it has no output
I R <1> 	 I AC = 0 i := (t l and (delay and responds directly and immediately to an input. Some

(IR eqv '01 11 and IR <2> 	
(state register eqv 2)) conventional sequential logic elements are used in the PDP-8,

(state register eqv 01 And including RS(Reset-Set), T(Trigger), D(Delay), and JK. A delay in or
((I R e q v ' l l l I a n d the flip-flops makes them behave in the same way as theMB <4>
(state register eqv 01

"textbook" primitives in sequential circuit theory. The outputs
require a series delay, At, such that, if the inputs change at time,
t, the outputs will not change until t + At. In actuality, the PDP-8

MB<3> and MB<14>and
IMB<3>ornotMB<6>1

I)
not M B <6>

)
Logic diagram for I AC = 0 I uses capacitor-diode gates at the flip-flop inputs so that input

Fig. 9. PDP-8 Pc(K) AC=O signal logic equation and diagram.

DIRECT DIRECT
CLEAR SET OUTPUT

DIRECT
CLEAR OUTPUT

DIRECT

SET CLEAR

FLlP.FLW

OUTPUT DIRECT
DIRECT SET

SET

t + r o v

(a) 	 Flip-flop circuit. (b) Combinational logic (c) Direct set-clear
equivalent of flip-flop
flip-flop. sequential logic

element.

Table of Circuit Input-Output 	 Table of Flip-Flop Input-Output

Inputs
Inputs Output8 (At t+) outputs (at t+)

Outputs (At t) Direct Direct (See Note) Outputs (At t) Direct Direct (See Note)
1 0 Set Clear 1 0 1 0 Set Clear 1 0

0 -3 -3 -3 0 -3 1 0 0 0 1 0
-3 0 -3 -3 -3 0 0 1 0 0 0 1
-3 0 -3 0 -3 0 0 1 0 1 0 1
0 -3 -3 0 -3 0 1 0 0 1 0 1

-3 0 0 -3 0 -3 0 1 1 0 1 0
0 -3 0 -3 0 -3 1 0 1 0 1 0

Note this is not an "ideal" sequential circuit element because there IS no delay in the output

Fig. 10. PDP-8 direct-coupled flip-flop and logic diagram.

122 Part 1 I Fundamentals Section 3 1 Computers of Historical Significance

-1s Volt.

-3 "011. I

-1 5 "all*
OUTPUT

INPUTS

&
NODE

(a) Multiple input inverter circuit. (b) NAND logic element. (c) NOR logic element.

Table of Circuit Table of NAND
Behavior Behavior

Input Input

1 2 3 output 1 2 3 output

0 0 0 -3

0 0 -3 -3

0 -3 0 -3

0 -3 -3 -3

-3 0 0 -3
-3 0 -3 -3
-3 -3 0 -3
-3 -3 -3 0

Table of NOR
Behavior

Input

1 2 3 output

1 1
1 0
0 1

0 0
1 1
1 0
0 1
0 0

Fig. 11. PDP-8 combinational circuit and logic diagram.

Chapter 8 1 Structural Levels of the PDP-8 123

changes will not be noticed until after the clock passes. This
achieves the same effect.

Figure 11illustrates the combinational logic elements used in
the PDPS. The circuit selection is limited to the inverter circuit
with single or multiple inputs. These are more familiarly called
NAND gates or NOR gates, depending on whether one uses
positive and/or negative logic level definitions.

The core memory structure is given in Fig. 6. A more detailed
block diagram showing the core stack with its twelve 64 x 64 1-bit
core planes is needed. Such a diagram, though still a functional
block diagram, takes on some of the aspects of a circuit diagram
because a core memory is largely circuit level details. The
memory (Fig. 12) consists ofthe component units: the two address
decoders (which select 1 each of 64 outputs in the X and Y axis
directions of the coincident current memory); selection switches

CONTROL

SIGNALS

I 4 MEMORVSTROBE I I 	 I

'

(which transform a coincident logic address into a high current
path to switch the magnetic cores); the 12 inhibit drivers (which
switch a high current or no current into a plane when either a 1 or
0 is rewritten); 12 sense amplifiers (which take the induced low
sense voltage from a selected core from a plane being switched or
not switched and transform it into a 1or 0);and the core stack, an
array M[#0:#7777]<0:ll>. Figure 12 also includes the associat-
ed circuit level hardware needed in the core memory operation
(e.g., power supplies, timing, and logic signal level conversion
amplifiers).

The timing signals are generated within the control portion of
the processor and are shown together with processor clock in Fig.
13. The process of reading a word from memory is:

1 	A 12-bit selection address is established on the MA<O:11>
address lines, which is 1 of #10000 (or 4096) unique

ONIOCF
C0NTR0L

I CURRENT IPOWER
su PPLY

TO
M B DATA
INPUTS<O 11>

LOW LEVEL WINDING
(SENSE SIGNALS1 FOUR WIRES T H R O U G H A CORE C U R R E N T DIRECTLON CONTROLS '7'

L---d

Fig. 12. PDP-8 four-wire coincident current (three dimensions) core memory logic diagram.

124 Part 1 Fundamentals1

Ilmst ltmdl

CLOCK
PULSES

It21
(NOTE 1)

It11
1 1 I I I l l I I I 1

(NOTE 21
1121I I I

0 0 5 1 0 1 5

MEMORY
STROBE I'M8 = MIMA11

F-Msmory cycle

NOTES
1 tms memory-strobe
2 lmd msmory4ons(determined by memory)

Fig. 13. PDP-8 clock and memory timing diagram.

numbers. The upper 6 bits <0:5> select 1of 64groups ofY
addresses, and the lower 6 bits <6:11> select 1 of 64
groups of X addresses.

2 	 The read logic signal is made a 1at time t2.

3 	 A high current path flows via the X and Y selection
switches. In each of the X and Y directions, 64 x 12 cores
have selection current (Ix and Iy). Only one core in each
plane is selected since Ix = Iy = Iswitchin& and the
current at the selected intersection = Ix + Iy = Iswitching.

4 If a core is switched to 0 (by having Iswitching amperes
through it), then a 1is present and is read at the output of
the plane bit sense amplifiers. A sense amplifier receives an
input from a winding that threads every core of every bit
within a core plane [#0:#7777]. All 12 cores of the selected
word are reset to 0. The time at which the sense amplifier is
observed is tms (the memory strobe), which also causes the
transfer MB = M[MA].

Section 3 1 Computers of Historical Significance

The read current is turned off by timing in the memory
module.

The inhibit and write (slightly delayed) logic signals are
turned on at time t l . The bit inhibit signal is present or not,
depending on whether a 0 or 1,respectively, is written into
a bit.

A high current path flows via the X and Y selection
switches, but in an opposite direction to the read case (see
item 2). If a 1is written, no inhibit current is present and
the net current in the selected core is -1switching. If a 0 is
written, the current is -1switching +(Iswitching/Z) and the
core remains reset.

The inhibit and write logic signals are turned off at time
tmd specified by timing in the memory module, and the
memory cycle is completed.

Device Level

For a discussion of the behavior of the transistor as it is used in
these switching circuit primitives, the reader should consult
semiconductor electronics and physics textbooks. It is hoped that
the reader has gained a sense of how to think about the
hierarchical decomposition of computers into particular levels of
analysis (and synthesis) and that the hierarchical approach will be
of aid in the reading of Parts 2, 3, and 4.

References

Bell, Mudge, and McNamara [1978].

I

Chapter 8 I Structural Levelsof the PDP-8 125

APPENDIX 1 PDP-8 ISP DESCRIPTION

PDPB : =

beg i n

The b a s i c PDP-8 i n s t r u c t i o n s e t (w i t h o u t ex tended a r i t h m e t i c e lemen t)
! i s implemented. No 1/0 dev ices a r e i n c l u d e d i n t h e d e s c r i p t i o n .
! 1 / 0 i n s t r u c t i o n e x e c u t i o n i s l i m i t e d t o t h e i n s t r u c t i o n s t h a t
! dea l w i t h t h e i n t e r n a l i n t e r r u p t enab le f l a g s and s t a t u s .

! Reference: "The DIGITAL Smal l Computer Handbook", 1967 E d i t i o n ,

! D i g i t a l Equipment C o r p o r a t i o n .

**MP.State+*

MP[# 0 : #7777]<0: 11>, ! Main memory (4k words)
p a g e . z e r 0 [# 0 : # 1 7 7] < 0 : 1 1 > : = MP[#0:#177]<0: l l> ,
auto. index[#O:#7]<0:11> : = MP[#10:#17]<0:11>,

MB<O: 11> ! Memory b u f f e r

* *PC.Sta te*+

L < > , ! L i n k b i t

A C < O : 1 1 > , ! Accumula tor

PC<O:11> ! Program c o u n t e r

* + E x t e r n a l . S t a t e * *

s w i t c h e s < O : l l > , ! Console d a t a s w i t c h e s
i n t e r r u p t . reques t<> ! Any d e v i c e r e q u e s t i n g . . i t e r r u p t

*+Implementation.Declarations**

go<> 9 ! 1 when r u n n i n g
i n t e r r u p t .enab le<> , ! 1 when Pc can be i n t e r r u p t e d
l a s t .pc<O: 11>,
s k i p < > ! S k i p f l a g

* * I n s t r u c t i o n . Format*+

IR\instruction.register<O:Z>, ! O p e r a t i o n code
i b \ i n d i r e c t . b i t < > : = MB<3>. ! Memory r e f e r e n c e :

! 0 = d i r e c t : 1 = i n d i r e c t
p b \ p a g e . b i t < > : = MB<4>. ! 0 = ze ro page: 1 c u r r e n t page
pa\page.address<0:6> : = M B < 5 : l l > .
i o . s e l e c t < 0 : 5 > : = MB<3:8>. ! I10 d e v i c e s e l e c t
io .pu lse<O:Z> : = MB<9 : l l > , ! I10 p u l s e c o n t r o l b i t s

i o . p u l s e . 1<> : = i o .pu l se<O>,

i o .pu l se .Z<> : = i o . p u l s e < l > .

i o .pu l se .4<> : = i o .pu l se<Z> ,

126 Part 1 I Fundamentals Section 3 1 Computers of Historical Significance

,PPENDIX I (conrd.)

I I n s t r u c t i o n f o r m a t (c o n t i n u e d)

g roup<> : = MB<3>, ! M i c r o i n s t r u c t i o n g r o u p

CLA<> : = MB<4>. ! C l e a r A C

CLL<> : = MB<5>. ! C l e a r L i n k

CMA<> : = MB<6>, I Complement AC

CML<> : = MB<7>. ! Complement L i n k

RAR<> : = MB<8>, ! R o t a t e r i g h t

RAL<> : = MB<9>, ! R o t a t e l e f t

RTx<> : = MB<10>, ! R o t a t e t w i c e

I A C < > : = M B < l l > , ! I n c r e m e n t AC

SMA<> : = MB<5>, ! S k i p on minus AC

SPA<> : = MB<5>. ! S k i p on p o s i t i v e A C

SZA<> : = MB<6>, ! S k i p on z e r o AC

SNA<> : = MB<6>, ! S k i p on AC n o t z e r o

SNL<> : = MB<7>. ! S k i p on L i n k n o t z e r o

SZL<> : = MB<7>. ! S k i p on L i n k z e r o

i s < > : = MB<O>, I I n v e r t s k i p sense

OSR<> : = M B < 9 > , I L o g i c a l o r AC w i t h s w i t c h e s

HLT<> : = MB<10> I H a l t t h e p r o c e s s o r

**Address . C a l c u l a t i o n * *

MA\effective.memory.address<O:ll> : =

b e g i n

MA = ' 0 0 0 0 0 @ pa n e x t ! Zero page

I F pb = > MA<O:4> = l a s t . p c < 0 : 4 > n e x t ! C u r r e n t page

I F i b = > ! I n d i r e c t b i t

b e g i n

I F MA<O:8> e q l # 0 0 1 = > ! A u t o i n d e x

MP[MA] = MP[MA] + 1 n e x t
MA = MP[MA] ! I n d i r e c t a d d r e s s
end

end

Instruction.Interpretation

s t a r t { m a i n } : =

b e g i n

go = 1 n e x t

r u n (1

end,

r u n \ i n s t r u c t i o n . i n t e r p r e t a t i o n : =

b e g i n

I F go = >

b e g i n

MB = MP[PC]; 1 a s t . p ~= PC n e x t

PC = PC + 1 n e x t

e x e c () n e x t

I F i n t e r r u p t . e n a b l e and i n t e r r u p t . r e q u e s t = >

b e g i n

MPCO] = PC n e x t

PC = 1

end n e x t

R E S T A R T r u n

end

end

Chapter 8 1 Structural Levelsof the PDP-8 127

APPENDIX 1 (Cont'd.)

*+ Ins t ruc t ion .Execut ion . * (us)

e x e c \ i n s t r u c t i o n . e x e c u t i o n :=
b e g i n
I R = MB<O:2> n e x t
I F (I R geq #3) and (I R l e q #5j => M A ()
I F I R l e q #2 => MB = MP[MA()] n e x t
DECODE I R =>

n e x t

b e g i n
#O : =
#1 : =
#2 : =

AND.:=
TAD :=
ISZ : =

AC = AC and MB,
L@AC = L@AC + MB,
b e g i n

1 And
I Two's complement
I I n c r e m e n t and
I s k i p i f z e r o

add

M0 = M0 + 1 n e x t
I F MB e q l 0 => PC = PC + 1

#3 := DCA
end,

MB = AC
:= b e g i n

n e x t
I
1

D e p o s i t and
c l e a r accumu la to r

AC = 0

#4 : = JMS :=
end,

MB = PC
b e g i n

n e x t
I Jump t o s u b r o u t i n e

PC = MA + 1
end,

#5 :=
#6 :=
#7 : =

JMP : =
I O T () ,
OPR()

PC = MA, I Jump
I 110 e x e c u t i o n
1 Opera te
I m i c r o i n s t r u c t i o n s

end n e x t
I F (I R
end,

geq # 2) and (I R l e q #4) = > MP[MA] = MB

I O T
b e g i n
DECODE M B < 3 : l l > =>

: = ! 1/0 Transmiss ion

begin
#001 := I O N := b e g i n

i n t e r r u p t . e n a b l e = 1 n e x t
I Turn i n - t e r r u p t on

RESTART r u n

#002 : = I O F : =
o t h e r w i s e : =

end,
i n t e r r u p t . e n a b 1 e
no.op()

0. ! Turn i n t e r r u p t o f f
t N o t implemented

end
end,

128 Part 1 1 Fundamentals 	 Section 3 I Computersof Historical Significance

APPENDIX 1 (Cont'd.)

s k i p . g r o u p : =

b e g i n

s k i p = 0 n e x t

DECODE i s = >

b e g i n
0 : = 	b e g i n

I F SNL and (L eqv 1) => s k i p = 1 ;

I F SZA and (AC e q l 0) = > s k i p = 1:

I F SMA and (A C LSS 0) => s k i p = 1

end,

1 : = 	b e g i n

I F SZLBSNAeSPA eqv 0 => s k i p = 1;

I F SZL and (L eqv 0) => s k i p = 1;

I F SNA and (AC neq 0) = > s k i p = 1:

I F SPA and (AC geq 0) = > s k i p = 1

end

end n e x t

I F s k i p = > PC = PC + 1 ! S k i p

end,

o p r 	: = ! Opera te I n s t r u c t i o n s

beg i n

DECODE g roup = >

beg i n
0 : = 	b e g i n ! Group 1 m i c r o i n s t r u c t i o n s

I F CLA = > AC = 0 ; ! C l e a r accumu la to r
I F CLL => L = 0 n e x t ! C l e a r l i n k
I F CMA => AC = n o t A C : ! Coinp 1 enien t accumul a t o r
I F CML = > L = n o t L n e x t ! Complement l i n k
I F I A C = > LBAC = LBAC + 1 n e x t ! Inc remen t accumu la to r
DECODE RTx = >

beg i n

0 : = b e g i n I R o t a t e

I F RAL = > LBAC = AC@L:
I F RAR => ACBL = L@AC
end,

1 : = 	b e g i n ! R o t a t e two p l a c e s
I F RAL = > LBAC = LBAC s l r 2 :
I F RAR = > LBAC LBAC s r r 2

end

end

end,

1 : = DECODE MB<11> => ! Group 2 and 3

b e g i n

0 : = 	 b e g i n ! Group 2 m i c r o i n s t r u c t i o n s

I F HLT = > go = 0:
s k i p . g r o u p () n e x t
I F CLA => AC = 0 n e x t
I F OSR = > AC = AC o r s w i t c h e s
end,

1 : = no .op () I E A E g roup

end

end

end

end ! End o f d e s c r i p t i o n

Chapter 9
L

Design of the B 5000 System1

William Lonergan 1 Paul King

Computing systems have conventionally been designed via the
“hardware” route. Subsequent to design, these systems have been
handed over to programming systems people for the development
of a programming package to facilitate the use of the hardware. In
contrast to this, the B 5000 system was designed from the start as
a total hardware-software system. The assumption was made that
higher level programming languages, such as ALGOL, should be
used to the virtual exclusion of machine language programming,
and that the system should largely be used to control its own
operation. A hardware-free notation was utilized to design a
processor with the desired word and symbol manipulative capabil-
ities. Subsequently this model was translated into hardware
specifications at which time cost constraints were considered.

Design Objectives

The fundamental design objective of the B 5000 system was the
reduction of total problem through-put time. A second major
objective was facilitation of changes both in programs and system
configurations. Toward these objectives the following aspects of
the total computer utilization problem were considered:

Statement of problems in higher-level machine-independent
languages; efficiency of compilation of machine language; speed of
compilation of machine language; program debugging in higher-
level languages; problem set-up and load time; efficiency of
system operation; ease of maintaining and making changes in
existing programs, and ease of reprogramming when changes are
made in a system configuration.

Design Criteria

Early in the design phase of the B 5000 system the following
principles were established and adopted:

Program should be independent of its location and unmodified
as stored at object time; data should be independent of its
location; addressing of memory within a program should take
advantage of contextual addressing schemes to reduce redundan-
cy; provisions should be made for the generalized handling of

’Datamation, vol. 7, no. 5 , May 1961, pp. 28-32,

indexing and subroutines; a full complement of logical, relational
and control operators should be provided to enable efficient
translation of higher-level source languages such as ALGOL and
COBOL; program syntax should permit an almost mechanical
translation from source languages into efficient machine code;
facilities should be provided to permit the system to largely
control its own operation; input-output operations should be
divorced from processing and should be handled by an operating
system; multi-programming and true parallel processing (requires
multiple processors) should be facilitated, and changes in system
configuration (within certain broad limitations) should not require
reprogramming.

System Organization

The B 5000 system achieves its unique physical and operational
modularity through the use of electronic switches which function
logically like telephone crossbar switches. Figure 1 depicts the
basic organization of the system as well as showing a maximum
system.

Master Control Program

A master control program will be provided with the B 5000
system. It will be stored on a portion of the magnetic drum.
During normal operations, a small portion of the MCP will be
contained in core memory. This portion will handle a large
percentage of recurrent system operations. Other segments of the
MCP will be called in from the magnetic drum, from time to time,
as they are required to handle less frequently-occurring events, or
system situations. Whenever the system is executing the master
control program, it is said to be in the Control State. All entries to
the Control State are made via “interrupts.” A special operation is
provided, which can only be executed when the system is in the
Control State, to permit control to return to the object program it
was executing at the time the “interrupt” occurred.

The following are a few typical occurrences which cause an
automatic “interrupt” in the system: An input-output channel is
available, an input-output operation has been completed or an
indexing operation was attempted which violated the storage
protection features built into the system.

In addition to processing interrupt conditions, the master
control program handles fundamental parts of the total system
operation such as the initiation of all input-output operations,
linking of input-output areas when required, file control, alloca-
tion of memory, scheduling of jobs (priority ratings, system
requirements of each object program, and the present system
configuration are considered), maintenance of an operations log
and maintenance of a system description.

129

130 Part 1 1 Fundamentals Section 3 I Computers of Historical Significance

Mognetic
module ' O r 2 / drums If i,Processor

pr in ters

ou tpu t
channel 4

Fig. 1. Organization of the B 5000 system.

Operating Modes

The B 5000 can either operate with fixed-length words or with
variable-length fields. These two modes of operation are called
the word mode and the character mode. For certain operations, a
processor operating on words is most desirable, and for other
operations, a variable field length mode of operation is most
desirable. By combining both abilities in one processor, a
processor can operate in the mode most desirable for the
operation at hand. In a B 5000 system, it is even possible for one
processor to be operating in the word mode and the other in the
character mode.

When operating in the word mode, a standard format for the
data word is used as illustrated in Fig. 2.

Note that the standard word is an octal floating point word.
However, the mantissa is treated as an integer rather than as a
fraction (heretofore the reverse has been common practice). This
provides two benefits: first, an integer has the same internal

moduleYzl

representation as its unnormalized floating point correspondent;
and, second, the range of numbers that can be expressed, rather
than being from 8+64to 8*, is 8+i6to S51. The first feature
eliminates the need for fixed-to-floating point conversion; integers
and floating point numbers can be mixed in arithmetic calcula-
tions. The second expands the range where trouble with range is
most often encountered, namely, in numbers with extremely
large magnitude.

The flag serves a dual purpose. The function of the flag depends

Integer Part
I

F-Flag (1 bit) SO-Sign of Operand (1 bit)
SE-Sign of Exponent (1bit) Integer Part (39 bits)
Exponent (6 bits)

Fig. 2. Data word-word mode.

Chapter 9 1 Design of the B 5000 System 131

on how the program references the data word. If the data word is a
single variable and not an element of an array, the flag identifies
the word as being operand, that is, a data word. If the word is an
element of an array, the flag may be used to identify this particular
element as an element of data which is not to be processed by the
normal program (for example, a boundary point in mesh calcula-
tions).

When operating in the character mode, each data word consists
of eight alphanumeric characters as illustrated in Fig. 3. Programs
in the character mode can address any character in a word. Fields
can start at any position in a word. A processor in a single
operation can operate on fields of any length up to 63 characters
long; operations on fields of greater length can easily be pro-
grammed. For example, two 57 character fields could be com-
pared in a single operation.

There are two instances when the character mode operates with
words of the type used in the word mode. Operations are
provided in the character mode for converting numeric informa-
tion in the alphanumeric representation to the standard word type
of the word mode and vice versa. In both of these instances, the
length of the alphanumeric fields being converted to or from the
word mode type of word can be no greater than eight characters
long. Again, conversion of fields of greater length can easily be
programmed.

The purpose of the word mode is to provide the advantages of
high-speed parallel operations, floating-point abilities and the
inherent information density possible in a binary machine. In the
first case, it is economically feasible to provide parallel operations
in a word machine; the cost of parallel operations on variable
length fields would be prohibitive. In the last case, a given size
memory can contain over twenty percent more numeric informa-
tion if that information is expressed in binary rather than
binary-coded decimal, and over eighty percent more information
than can be expressed in six-bit alphanumeric representation.

The purpose of the character mode is to provide editing,
scanning, comparison and data manipulative abilities (although
addition and subtraction are also provided). The type of editing
facilities provided obviate the need for the artificial “add-shift-
extract-store” type of editing. For example, operations are
provided for generalized insertion of editing symbols (such as
blanks, decimal points, floating dollar signs, etc.) and for the
substitution or suppression of any unwanted characters. For those
interested in the new area of Information Processing Languages,
the character mode is particularly well suited to list structures.

First
Char

Second
Char

Thlrd
Char

Fourth
Char

Fifth
Char

Sixth
Char

Seventh
Char

Elghth
Char

acter acter acter acter acter acter acter acter

Program Organization

Programs in the B 5000 are composed of strings of syllables. A
syllable is the basic unit of the program and is twelve bits in
length. The term “syllable” is used rather than instruction to
distinguish it from conventional single-address or multi-address
instructions. Each program word contains four syllables and they
are executed sequentially in a left-to-right order within the
program word, and sequentially by word. Branching is allowed to
any syllable within a word. Before delving into some of the details
of the internal operation of the B 5000 processor, it is necessary to
discuss stacks, Polish notation, and the Program Reference Table.

The Stack

The internal organization of single-address computers forces the
wasting of both programming and running time for the storage
and recall of the intermediate results in the sequence of computa-
tion. The data must be placed into the proper registers and
memory cells before the operation can be executed, and their
contents must often be completely rearranged before the next
operation can be performed. Multi-address computers are con-
structed to make the execution of a few selected operations more
efficient, but at the expense of building inefficiencies into all the
rest. Automatic programming aids attack this problem indirectly:
they relieve the programmer of the need to laboriously code his
way around machine design, but they still must provide object
coding to accomplish the storage and recall functions. In brief,
conventionally designed computers, with or without automatic
programming aids, require the wasteful expenditure of program-
ming effort, memory capacity, and running time to overcome the
limitations of their internal organization.

The problem is attacked directly in the B 5000 by incorporation
of a “pushdown” stack, which completely eliminates the need for
instructions (coded or compiled) to store or recall intermediate
results.

In a B 5000 processor, the stack is composed of a pair of
registers, the A and B registers, and a memory area. As operands
are picked up by the programs, they are placed in the A register.
If the A register already contains a word of information, that word
is transferred to the B register prior to loading the operand into
the A register. If the B register is also occupied by information,
then the word in B is stored in a memory area defined by an
address register S. Then the word A can be transferred to B and
the operand brought into the A register. The new word coming
into the stack has pushed down the information previously held in
the registers. As each pushdown occurs, the address in the S
register is automatically increased by one. The information
contained in the registers is the last information entered into the
stack; the stack operates on a “last in-first out” principle. As

132 Part 1 I Fundamentals

information is operated on in the stack, operands are eliminated
from the stack and results of operations are returned to the stack.
As information in the stack is used up by operations being
performed, it is possible to cause “pushups,” i.e., a word is
brought from the memory area addressed by the S register, and
the address in the S register is decreased by one.

To eliminate unnecessary pushdowns and pushups, the A and B
registers both have indicators used for remembering whether the
registers contain information or are empty. When an operand is to
be placed in the stack and either of the registers is empty, no
pushdown into memory occurs. Also, when an operation leaves
one or both of the registers empty, no automatic pushup occurs.

Polish Notation

The Polish logician, J . Lukasiewicz, developed a notation which
allows the writing of algebraic or logical expressions which do not
require grouping symbols and operator precedence conventions.
For example, parentheses are necessary as grouping symbols in
the expression A(B + C) to convey the desired interpretation of
the expression. In the expression A + BIC, the normal interpreta-
tion is A+(B/C), rather than (A+B)/C, because of the convention
that the / operator is of higher precedence than the + operator.
The right-hand Polish notation used in the B 5000 is based on
placing the operators to the right of their operands: A + B
becomes AB + in Polish notation. A+B+C can be written either
as AB+C+, or as ABC++. In the expression ABC+ +, the first
+ operator says to add the operands B and C. The second +
operator says to add A to the sum of B and C. Returning to the first
examples above, A(B+C) can be written as BC+Ax or ABC+x
in Polish. The second example is written as BC/A+ or ABC/+.
The extension of Polish notation to handle equations is shown in
the following example:

Conventional notation Z=A(B-C)/(D+E)
Polish notation ABC- XDE+/Z=

The Stack in Use

To illustrate the functioning of the stack, two simple examples are
shown in Figs. 4 and 5. In the examples, the letters P, Q, and R
represent syllables in the program that cause the operands P, Q,
and R to be picked up and placed in the stack. The symbols + and
x represent syllables that cause the add and multiply operations
to occur. The two examples represent different ways of writing
P(Q+R) in Polish notation. The first example in Fig. 4 does not
require pushdowns or pushups. The second example, shown in
Fig. 5 , requires a pushdown in the execution of the syllable R, and
a pushup in the execution of the syllable x . The columns in the

Section 3 I Computers of Historical Significance

Polish Notation QR+ P x

Syllable Contents of

Executed Register A Register B

Q
R
+

Q
R

Empty

Empty
Q

R+Q
P
X

P
Empty

R+Q
P(R +Q)

table represent the contents of the various registers after execu-
tion of the syllable listed in the first column.

Independence of Addressing

One of the goals set in the design of the B 5000 was to make the
programs independent of the actual memory locations of both the
program itself and the data, in order to provide really automatic
program segmentation. Through automatic program segmenta-
tion, it is possible to have program size practically independent of
the size of core memory. The systems analyst or programmer
intending to do multi-processing is then no Ionger faced with the
difficult task of planning what jobs are to be run together in order
that system storage capacities are not exceeded.

In achieving independence of addressing, a solution requiring
large contiguous areas of memory was not deemed satisfactory.
Each segment of the program and each data area should be
completely relocatable without modification to the program. It is

Polish Notation PQR +x

Fig. 5

Chapter 9 I Design of the B 5000 System 133

then possible to load all the segments of a program or programs
onto the drum at load time and call in the segments to any
available space in core memory as needed during run time. If
some segment of a program is overlaid by a subsequent segment
of a program, the segment of the program destroyed in core
memory is still available on the drum to be called in again if
needed.

Due to the very high program densities in the B 5000, the
availability of high capacity drum storage on every system and
automatic segmentation, a minimum B 5000 system has the
capacity for a program or programs equivalent to approximately
40,000 to 60,000 single address instructions. Of course, if an
installation normally ran such large programs, the system would
very likely not be a minimum system. However, the installation
having an occasional need to run very large programs is not
prevented from doing so by storage capacity.

Processing speed now becomes a function of the size of core
memory. If large programs are run in a system with small core
memory, time will be consumed in recalling program segments
from drum to core. If the core memory is expanded, less time will
be spent in such activity and the program or programs will be
speeded up, and no reprogramming is required.

Program Reference Table

The means of achieving independence of addressing in the B 5000
is called a Program Reference Table (PRT). The PRT is a 1,024
word relocatable area in memory used primarily for storing
control words that locate data areas or program segments. There
are also control words for describing input-output operations.
These control words, called descriptors, contain the base address
and size of data areas, program segments and input-output
operation areas. A descriptor specifying an input-output operation
also contains the designation of the unit to be used and the type of
operation to be performed. Operands may also be stored in the
PRT, providing direct access to single values such as indices,
counts, control totals, etc.

In the word mode of the B 5000, every item of data is
considered to be either a single value or an element of an array of
data. If it is a single value, it will be obtained directly by indexing
a descriptor contained in the PRT.

Program segments are described by program descriptors. In
addition to core base address, the program descriptor contains the
location in drum storage of the program segment and an indication
if the program segment is currently in core memory starting at the
address specified in the descriptor. Entry to a program segment is
made via its program descriptor contained in the PRT. If the pro-
gram segment is in core memory, entry will be made to the program
segment. However, when entry is attempted to a program seg-
ment whose descriptor indicates that the segment is not in core

memory, automatic entry to the Master Control Program
will occur and the desired segment will then be brought in
from the drum, Notice that in moving from one segment to
another, it is not necessary to know whether the segment to be
entered is currently in core memory. Branching within a program
segment is self-relative, i.e., the distance to jump either forward
or backward is specified, not the address to be jumped to.

As a result of keeping all actual addresses of data and program in
the PRT, the program itself does not contain any addresses, but
only references to the PRT. To specify one of the 1,024 positions
in the PRT requires only 10bits which contributes greatly to the
high program density achieved in the B 5000. Since the PRT is
relocatable, references to the PRT contained in the program are to
relative locations, thus completely freeing the program from any
dependence whatsoever on actual memory locations.

The Word Mode Program

The word mode of the B 5000 processor has four types of syllables.
The syllable type is distinguished by the two high-order bits of
each 12-bit syllable. The types of syllable and the identification
bits are:

OGOperator Syllable
01-Literal Syllable
10-Operand Call Syllable
11-Descriptor Call syllable

The first of these, the operator syllable, causes operations to be
performed. The remaining ten bits of the operator syllable are the
operation codes. There are approximately sixty different opera-
tions in the word mode. For those operations requiring an
operand or operands, the processor checks for sufficient operands
in the registers; if they are not there, pushups from the stack in
memory occur automatically.

The literal syllable is used for placing constants in the stack to
be used as operands. The ten bits of the literal syllable are
transferred to the stack. This allows the program to contain
integers less than 1,024 as constants.

The operand call syllable, and the descriptor call syllable
address locations in the program reference table. The purpose of
the operand call syllable is to place an operand in the stack; the
purpose of the descriptor call syllable is to place the address of an
operand, a descriptor, in the stack. There are four situations that
arise, depending on the word read from the program reference
table.

1 	The word is an operand.

2 	 The word is a descriptor containing the address of the
operand.

134 Part 1 1 Fundamentals

3 	 The word is a descriptor containing the base address of the
data area in which the operand resides.

4 	 The word is a program descriptor containing the base
address of a subroutine.

For (I), the operand call syllable has completed its action by
placing an operand in the stack. The descriptor call syllable will
cause the construction of a descriptor of the operand, replacing
the operand by the constructed descriptor.

For (2), the operand call syllable then reads the operand from
the cell addressed. The descriptor call syllable has completed its
action.

For (3), indexing of the descriptor by the item that is now the
second item in the stack occurs. For an operand call syllable, the
operand is obtained from the indexed address; for the descriptor
call syllable, action is complete after the indexing.

In the case of (4), subroutine entry occurs to the subroutine
addressed. A word of the three previous types may be left in the
registers upon return from the subroutine, in which instance the
actions described above will take place, depending upon the type
of syllable which initiated the subroutine.

Essentially, the four types of action that occur for an operand
call syllable are obtaining an operand directly, indirectly, from an
array, or by computation. Sometimes in the use of the call
syllables, it is not known which type of action will occur for a
particular syllable when the program is created. This is particular-
ly true for call syllables in subroutines.

Programs in the word mode consist of strings of syllables which
follow the rules of Polish notation. 'Ikriable length strings of call
syllables and literal syllables, which place items of information in
the stack, are followed by operator syllables which perform their
operations on information in the stack.

The indexing features of the B 5000 allow generalized indexing
and at the same time provide complete storage protection. Data
areas and program segments of different programs may be
intermingled, but a program is prevented from storing outside of
its data areas. The method of indexing allows any of the 1,024
words of the program reference table to be considered index
registers. Multilevel indexing is provided, i.e., indices of arrays
can themselves be elements of arrays.

The subroutine control provided in the B 5000 allows nesting of
subroutines-ven recursive nesting (a subroutine is a subroutine
of itself) arbitrarily deep. Dynamic allocation of storage for

Section 3 I Computersof Historical Significance

parameter lists and temporary working storage simplify the use of
subroutines. Storage is automatically allocated and deallocated as
required.

Character Mode Program

In the character mode of the B 5000 Processor, there is only one
type of syllable, called the operator syllable. Program segments in
the character mode are constructed of strings of these syllables.
The character mode is designed to provide editing, formatting,
comparison, and other forms of data manipulation. In doing so,
the processor uses two areas of memory-the source and destina-
tion areas. When a program switches from word mode to
character mode, two descriptors containing the base addresses of
these areas are supplied. The source area or destination area may
be changed at any time during character mode so that the
program may act on several areas.

The character mode operator syllable is split into two 6-bit
parts; the last part specifies the operation to be performed and the
first part specifies the number of times the operation is to be
performed. Operations are provided for the transferring, deletion,
comparison, and insertion of characters or bits. Also, there are
operations which allow the repetition of syllable strings. This is
quite useful for complex table look-up operations and for editing
information which contains repeated patterns.

Conclusion

The Burroughs B 5000 system has been designed as an integrated
hardware-software package which offers such benefits as savings
in the memory space required to store equivalent object pro-
grams; multi-processing and parallel processing; and running
identical programs on systems with different size memories and
different system configurations with no loss in individual system
efficiency.

References

Lonergan and King [196 1; Barton [196 1; Bock [1963]; Carlson
[1963]; Maher [1961].

Chapter 10

One-Level Storage System’

T. Kilburn / D. B. G. Edwards / M . J. Lanigan /
F. H . Sumner

Surnrnaly After a brief survey of the basic Atlas machine, the paper
describes an automatic system which in principle can be applied to any
combination of two storage systems so that the combination can be
regarded by the machine user as a single level. The actual system
described relates to a fast core store-drum Combination. The effect of the
system on instruction times is illustrated, and the tape transfer system is
also introduced since it fits basically in through the same hardware. The
scheme incorporates a “learning” program, a technique which can be of
greater importance in future computers.

1. Introduction

In a universal high-speed digital computer it is necessary to have a
large-capacity fast-access main store. While more efficient opera-
tion of the computer can be achieved by making this store all of
one type, this step is scarcely practical for the storage capacities
now being considered. For example, on Atlas it is possible to
address lo6 words in the main store. In practice on the first
installation at Manchester University a total of lo5 words are
provided, but though it is just technically feasible to make this in
one level it is much more economical to provide a core store
(16,000 words) and drum (96,000 words) combination.

Atlas is a machine which operates its peripheral equipment on a
time division basis, the equipment “interrupting’ the normal
main program when it requires attention. Organization of the
peripheral equipment is also done by program so that many
programs can be contained in the store of the machine at the same
time. This technique can also be extended to include several main
programs as well as the smaller subroutines used for controlling
peripherals. For these reasons as well as the fact that some orders
take a variable time depending on the exact numbers involved, it
is not really feasible to “optimum” program transfers of informa-
tion between the two levels ofstore, i.e., core store and drum, in
order to eliminate the long drum access time of 6 msec. Hence a
system has been devised to make the core drum store combination
appear to the programmer as a single level of storage, the
requisite transfers of information taking place automatically.
There are a number of additional benefits derived from the
scheme adopted, which include relative addressing so that

’ I R E Trans., EC-11, vol. 2, April 1962, pp. 223-235

routines can operate anywhere in the store, and a “lock out”
facility to prevent interference between different programs
simultaneously held in the store.

2. The Basic Machine

The arrangement of the basic machine is shown in Fig. 1. The
available storage space is split into three sections; the private store
which is used solely for internal machine organization, the central
store which includes both core and drum store, in which all words
are addressed and is the store available to the normal user, and
finally the tape store, which is the conventional backing-up large
capacity store of the machine. Both the private store and the main
core store are linked with the main accumulator, the B-store, and
the B-arithmetic unit. However the drum and tape stores only
have access to these latter sections of the machine via the main
core store.

The machine order code is of the single address type, and a
comprehensive range of basic functions are provided by normal
engineering methods. Also available to the programmer are a
number of extra functions termed “extracodes” which give
automatic access to and subsequent return from a large number of
built-in subroutines. These routines provide

1 	A number of orders which would be expensive to provide in
the machine both in terms of equipment and also time
because of the extra loading on certain circuits. An example
of this is the order:
Shift accumulator contents cn places where n is an integer.

I 	 ‘ - - - - - - - - I

Peripherol

Subsidiary store u n i t
oddrerr

‘ ’ -Address chonnels1 I 14
D ~ ~ r ~ ~+--~ e Information channels
l 4 i24.576 words , l+uo woyl

~

Fig. 1. Layout of basic machine.

135

136 Part 1 Fundamentals1

2 	 The more complex mathematical operations, e.g., sin x, log
I,etc.

3 	 Control orders for peripheral equipments, card readers,
parallel printers, etc.

4 	 Input-output conversion routines.

5 	 Special programs concerned with storage allocation to
different programs being run simultaneously, monitoring
routines for fault finding and costing purposes, and the
detailed organization of drum and tape transfers.

All this information is permanently required and hence is kept
in part of the private store termed the “fixed store” [Kilburn and
Grimsdale, 19601 which operates on a “read only” basis. This
store consists of a woven wire mesh into which a pattern of small
“linear” ferrite slugs are inserted to represent digital information.
The information content can only be changed manually and will
tend to differ only in detail between the different versions of the
Atlas computer. In Muse this store is arranged in two units each of
4096 words, a unit consisting of 16 columns of 256 words, each
word being 50 bits. The access time to a word in any one column is
about 0.4 psec. If a change of column address is required, this
figure increases by about 1psec due to switching transients in the
read amplifiers. Subsequent accesses in the new column revert to
0.9 psec. The store operates in conjunction with a subsidiary core
store of 10% words which provides working space for the fixed
store programs, and has a cycle time of about 1.8 psec. There are
certain safeguards against a normal machine user gaining access to
addresses in either part of the private store, though in effect he
makes use of this store through the extracode facility.

The central store of the machine consists of a drum and core
store combination, which has a maximum addressable capacity of
about lo6 words. In Muse the central store capacity is about
96,000 words contained on 4 drums. Any part of this store can be
transferred in blocks of 512 words toifrom the main core store,
which consists of four separate stacks, each stack having a capacity
of 4096 words.

The tape system provides a very large capacity backing store for
the machine. The user can effect transfers of variable amounts of
information between this store and the central store. In actual fact
such transfers are organized by a fixed store program which
initiates automatic transfers of blocks of 512 words between the
tape store and the main core store. The system can handle eight
tape decks running simultaneously, each producing or demanding
a word on average every 88 psec.

The main core store address can thus be provided from either
the central machine, the drum, or the tape system. Since there is
no synchronization between these addresses, there has to be a
priority system to allocate addresses to the core store. The drum
has top priority since it delivers a word every 4 psec, the tape next

Section 3 1 Computers of Historical Significance

priority since words can arise every 11psec from 8 decks and the
machine uses the core store for the rest of the available time. A
priority system necessarily takes time to establish its priority, and
so it has been arranged that it comes into effect only at each drum
or tape request. Thus the machine is not slowed down in any way
when no drum or tape transfers take place. The effect of drum and
tape transfers on machine speed is given in Appendix 1.

To simplify the control commands given to the drum, tape, and
peripheral equipment in the machine, the orders all take the form
b + S or s -+ B and the identification of the required command
register is provided by the address S. This type of storage is
clearly widely scattered in the machine but is termed collectively
the V-store.

In the central machine the main accumulator contains a fast
adder [Kilburn, et al., 1960bl and has built-in multiplication and
division facilities. It can deal with fixed or floating point numbers
and its operation is completely independent of the B-store and
B-arithmetic unit. The B-store is a fast core store (cycle time 0.7
psec) of 120 twenty-four bit words operating in a word selected
partial flux switching mode [Edwards et al., 19601. Eight “fast” B
lines are also provided in the form of flip-flop registers. Of these,
three are used as control lines, termed main, extracode, and
interrupt controls respectively. The arrangement has the advan-
tage that the control numbers can be manipulated by the normal
B-type orders, and the existence of three controls permits the
machine to switch rapidly from one to another without having to
transfer control numbers to the core store. Main control is used
when the central machine is obeying the current program, while
the extracode control is concerned with the fixed store subrou-
tines. The interrupt control provides the means for handling
numerous peripheral equipments which “interrupt” the machine
when they either require or are providing information. The
remaining “fast” B lines are mainly used for organizational
procedures, though B124 is the floating point accumulator
exponent.

The operating speed of the machine is of the order of 0.5 x lo6
instructions per second. This is achieved by the use of fast
transistor logic circuitry, rapid access to storage locations, and an
extensive overlapping technique. The latter procedure is made
possible by the provision of a number of intermediate buffer
storage registers, separate access mechanisms to the individual
units of core store and parallel operation of the main accumulator
and B-arithmetic units. The word length throughout the machine
is 48 bits which may be considered as two half-words of 24 bits
each. All store transfers between the central machine, the drum
and tape stores are parity checked, there being a parity digit
associated with each half-word. In the case of transfers within the
central store (i,e . , between main core store and drum) the parity
digits associated with a given word are retained throughout the
system. Tape transfers are parity checked when information is

transferred to and from the main core store, and on the tape itself
a check sum technique involving the use of two closely spaced
heads is used.

The form of the instruction, which allows for two B-
modifications, and the allocation of the address digits is shown in
Fig. 2a. Half of the addressable store locations are allocated to the
central store which is identified by a zero in the most significant
digit of the address. (See Fig. 2b.) This address can be further
subdivided into block address and line address in a block of 512
words. The least significant digits, 0 and 1, make it possible to
address 6 bit characters in a halfword and digit 2 specifies the half
word.

The function number is split into several sections, each section
relating to a particular set of operations, and these are listed in
Fig. 2c. The machine orders fall into two broad classes, and these
are:

1 	B codes: These involve operations between a B line
specified by the BA digits in the instruction and a core store
line whose address can be modified by the contents of a B
line determined by the B, digits. There are a total of 128B
lines, one of which, Bo, always contains zero. Of the other
lines 90 are available to the machine user, 7 are special
registers previousIy mentioned, and a further 30 are used
by extracode orders.

2 	 A Codes:These involve operations between the Accumula-
tor and a core store line whose address can now be doubly
modified first by contents of B , and then by the contents of
BA. Both fixed and floating point orders are provided, and
in the latter case numbers take the form of XSy , the digit
allocation of X and Y being shown in Fig. 2d. When fixed
point working occurs, use is made only of the X digits.

3. One-Level Store Concept

The choice of system for the fast access store in a large scale
computer is governed by a number of conflicting factors which
include speed and size requirements, economic and technical
difliculties. Previously the problem has been resolved in two
extreme cases either by the provision of a very large core store,
e.g., the 2.5 megabit [Papian, 19571 store at M.I.T., or by the use
of a small core store (40,000 bits) expanded to 640,000 bits by a
drum store as in the Ferranti Mercury [Lonsdale and Warburton,
1956; Kilburn et al., 19561 computer. Each of these methods has
its disadvantages, in the first case, that of expense, and in the
second case, that of inconvenience to the user, who is obliged to
program transfers of information between the two types of store
and this can be time consuming. In some instances it is possible
for an expert machine user to arrange his program so that the
amount of time lost by the transfers in the two-level storage

Chapter 10 1 OneLevel Storage System 137

5, Function & Address
10bits 7 bits 7 bits 24 b i ts

I
23 22 21120 19 18 17 46 15 14 13 12 / (1 10 9 8 7 6 5 4 3 2 1

0 d B l o c k address L ine address

!Address incentra l store (cord store and d rum)

I
4 0 01 0 0 0 0 O - C o h m m ~ L i n e address

I Merhd address

I Mesh8 Address in fixed store

I

1 0 1 i 0 0 0 0 0 0 0 0-Line address

I Address in subsidiary store

I
I

1 1 01 0 0 0 O-.fL;;;t;;ri!z Line address- 00 0

I Address i n Vs to re

47 46 45 44 43 42 41 40 39 38

0 0 0 0 3 8 8 8 6 8 -

0 0 0 1 	 B codes

0 0 4 0 	 B t e s t codes
0 0 1 1 A codes

o i o o __

0 1 0 1 B codes and extracode return

0 1 4 0

0 1 i t A codes and extracode re tu rn

0 0 8 8 B type extracode

i 1 3 8 	 A type extracode

Exponent Mantissa
U;8 bits X ;includingsign 40 bits including sign

Fig. 2. Interpretation of a word. (a) Form of instruction. (b)
Allocation of address digits. (c) Function of decoding. (d)
Floating-point number XW.

arrangement is not significant, but this sort of “optimum”
programming is not very desirable. Suitable interpretative coding
[Brooker, 19601 can permit the two-level system to appear as one
level. The effect is, however, accompanied by an effective loss of
machine speed which, in some programs and depending on

138 Part 1 Fundamentals1

details of machine design, can be quite severe, varying typically,
for example, between one and three.

The two-level storage scheme has obvious economic advantag-
es, and inconvenience to the machine user can be eliminated by
making the transfer arrangements completely automatic. In Atlas
a completely automatic system has been provided with techniques
for minimizing the transfer times. In this way the core and drum
are merged into an apparent single level of storage with good
performance and at moderate cost. Some details of this arrange-
ment on the Muse are now provided.

The central store is subdivided into blocks of 512 words as
shown by the address arrangements in Fig. 2b. The main core
store is also partitioned into blocks of this size which for
identification purposes are called pages. Associated with each of
these core store page positions is a “page address register”
(P.A.R.) which contains the address of the block of information at
present occupying that page position. When access to any word in
the central store is required, the digits of the demanded block
address are compared with the contents of all the page address
registers. If an “equivalence” indication is obtained, then access to
that particular page position is permitted. Since a block ban
occupy any one of the 32 page positions in the core store, it is
necessary to modify some digits of the demanded block address to
conform with the page positions in which an equivalence was
obtained.

These processes are necessarily time consuming but by provid-
ing a by-pass of this procedure for instruction accesses (since, in
general, instruction loops are all contained in the same block) then
most of this time can be overlapped with a useful portion of the
machine or core store rhythm. In this way information in the core
store is available to the machine at the full speed of the core store
and only rarely is the over-all machine speed affected by delays in
the equivalence circuitry.

If a “not equivalence” indication is obtained when the demand-
ed block address is compared with the contents of the P.A.R.’s,
then that address, which may have been B-modified, is first stored
in a register which can be accessed as a line of the V-store. This
permits the central machine easy access to this address. An
“interrupt” also occurs which switches operation of the machine
over to the interrupt control, which first determines the cause of
the interrupt and then, in this instance, enters a fixed store
routine to organize the necessary transfers of information between
drum and core store.

A. Drum Transfers

On each drum, one track is used to identify absolute block
positions around the drum periphery. The records on these tracks
are read into the 8 registers which can be accessed as lines of the
V-store and this permits the present angular drum position to be
determined, though only in units of one block. In this way the
time needed to transfer any block while reading from the drums

Section 3 1 Computersof Historlcal Significance

can be assessed. This time varies between 2 and 14msec since the
drum revolution time is 12 msec and the actual transfer time 2
msec.

The time of a writing transfer to the drums has been reduced by
writing the block of information to the first available empty block
position on any drum. Thus the access time of the drum can be
eliminated provided there are a reasonable number of empty
blocks on the drum. This means, however, that transfers to/from
the drum have to be carried out by reference to a directory and
this is stored in the subsidiary store and up-dated whenever a
transfer occurs.

When the drum transfer routine is entered the first action is to
determine the absolute position on a drum of the required block.
The order is then given to carry out the transfer to an empty page
position in the core store. The transfer occurs automatically as
soon as the drum reaches the correct angular position. The page
address register in the vacant position in the core store is set to a
specific block number for drum transfers. This technique simpli-
fies the engineering with regard to the provision of this number
from the drum and also provides a safeguard against transferring
to the wrong block.

As soon as the order asking for a read transfer from the drum
has been given, the machine continues with the drum transfer
program. It is now concerned with determining a block to be
transferred back from the core store to the drum. This is necessary
to ensure an empty core store page position when the next read
transfer is required. The block in the core store to be transferred
has to be carefully chosen to minimize the number of transfers in
the program and this optimization process is carried out by a
learning program, details of which are given in Sec. 5. The
operation of this program is assisted by the provision of the “use”
digits which are associated with each page position of the core
store.

To interchange information between the core store and drums,
two transfers, a read from and a write to the drum, are necessary.
These have to be done sequentially but could occur in either
order. The technique of having a vacant page position in the core
store permits a read transfer to occur first and thus allows the time
for the learning program to be overlapped either into the waiting
period for the read transfer or into the transfer time itself. In the
time remaining after completion of the learning program an entry
is made into the over-all supervisor program for the machine, and
a decision is taken concerning what the machine is to do until the
drum transfer is completed. This might involve a change to a
different main program.

A program could ask for access to information in a page position
while a drum or tape transfer is taking place to that page. This is
prevented in Atlas by the use of a “lock out” (L.O.)digit which is
provided with each Page Address Register. When a lock out digit
is set at 1,access to that page is permitted only when the address
has been provided either by the drum system, the tape system, or

Chapter 10 1 One-Level Storage System 139

the interrupt control. The last case permits all transfers from
paper tape, punched card, and other peripheral equipments, to
be handled without interference from the main program. When
the transfer of a block has been completed, the organizing program
resets the L.O. digit to zero and access to that page position can
then be made from the central machine. It is clear that the L.O.
digit can also be used to prevent interference between programs
when several different ones are being held in the machine at the
same time.

In Sec. 3 it was stated that addresses demanding access to the
core store could arise from three distinct sources, the central
machine, the drum, and the tape. These accesses are complicated
because of (1)the equivalence technique, and (2) the lock out
digit. The various cases and the action that takes place are
summarized in Table 1.

The provision of the Page Address Registers, the equivalence
circuitry, and the learning program have permitted the core store
and drum to be regarded by the ordinary machine user as a
one-level store, and the systkm has the additional feature of
“floating address” operation, i.e., any block of information can be
stored in any absolute position in either core or drum store. The
minimum access time to information in this store is obviously
limited by the core store and its arrangement, and this is now
discussed.

8.Core Store Arrangement

The core store is split into four stacks, each with individual
address decoding and read and write mechanisms. The stacks are
then combined in such a way that common channels into the
machine for the address, read and write digits, are time shared
between the various stacks. Sequential address positions occur in
two stacks alternately and a page position which contains a block
of 512 sequential addresses is thus arranged across two stacks. In
this way it is possible to read a pair of instructions from
consecutive addresses in parallel by increasing the size of the read
channel. This permits two instructions to be completely obeyed in
three store “accesses.” The choice of this particular storage
arrangement is discussed in Appendix 2.

The coordination of these four stacks is done by the “core stack
coordinator” and some features of this are now discussed, starting
with the operation of a single stack.

C. Operation of a Single Stack of Core Store
The storage system employed is a coincident current M.I.T.
system arranged to give parallel read out of 50 digits. The reading
operation is destructive and each read phase of the stack cycle is
followed by a write phase during which the information read out
may be rewritten. This is achieved by a set of digit staticizors
which are loaded during the read phase and are used to control
the inhibit current drivers during the write phase. When new
information is to be written into the store, a similar sequence is
followed, except that the digit staticizors are loaded with the new
information during the read phase. A diagram indicating the
different types of stack cycle is shown in Fig. 3.

There is a small delay WD (=I00 nsec) between the “stack
request” signal, SR, and the start of the read phase to allow for
setting of the address state and the address decoding. The output
information from the store appears in the read strobe period,
which is towards the end of the read phase. In general, the write
phase starts as soon as the read phase ends. However, the start of
the write phase may be held up until the new information is
available from the central machine. This delay is shown as W, in
Fig. 3c. The interval TAbetween the stack request and the read
strobe is termed the stack access time, and in practice this is
approximately one-third of the cycle time Tc. Both TAand Tc are
functions of the storage system and assuming that W, is zero have
typical values of 0.7 ysec and 1.9psec respectively. A holdup gate
in the request channel prevents the next stack request occurring
before the end of the preceding write phase.

D. Operation of the Main Core Store
with the Central Machine

A schematic diagram of the essentials of the main core store
control system is shown in Fig. 4.The control signals SA, and SAB
indicate whether the address presented is that of a single word or
a pair of sequentially addressed instructions. Assuming that the
flip-flop F is in the reset condition, either of these signals results
in the loading of the buffer address register (B.A.R.).This loading
is done by the signal B.A. B.A. which also indicates that the buffer
register in the central machine has become free.

In dealing with the first request the block address digits in the
B.A.R. are compared with the contents of all the page address
registers. Then one of the indications summarized in Table 1and

Table 1 Comparison of Demanded Block Address with Contents of the P.A.R.’s Resultant State of Equivalenceand Lock
Out Circuits

Equivalence
Lock out = 0

Source of address tE.Q.1

1. Central Machine Access to required page position
2. Drum System Access to required page position
3. Tape System Access to required page position

Not equivalence
W.E.Q. 1
Enter drum transfer routine
Fault condition indicated
Fault condition indicated

Equivalence
Lock out = 1

[E.Q.G L.O.]

Not available to this program
Fault condition indicated
Fault condition indicated

140 Part 1 FundamentalsI

R e a d
phase ’ I

phase 1 I
I

Fig. 3. Basic types of stack cycle (a)Read order (s--+A). (b)Write
order (a+s). (c) Read-write order (b + ~ 4 3) .

indicated in Fig. 4 is obtained. Assuming access to the required
store stack is permitted, then a set C.S.F. signal is given which
resets the flip-flop F. If this occurs before the next access request
arises, then the speed of the system is not store-limited. In most
cases SET CSF is generated when the equivalence operation on
the demanded block address is complete, and the read phase of
the appropriate stack (or stacks) has started. Until this time the
information held in the B.A.R. must not be allowed to change. In
Fig. 5 a flow diagram is shown for the various cases which can
arise in practice.

\&‘hen a single address request is accepted, it is necessary to
obtain an “equivalence” indication and form the page location
digits before the stack request can be generated. The SET CSF
signal then occurs as soon as the read phase starts. If a “not
equivalent” or “equivalent and locked out” indication is obtained, a

Section 3 1 Computers of Historical Significance

stack request is not generated and the contents of the B.A.R.
are copied in to a line of the V-store before SET CSF is gener-
ated.

When access to a pair of addresses is requested (i.e., an
instruction pair), the stack requests are generated on the assump-
tion that these instructions are located in the same page position
as the last pair requested, i.e., the page position digits are taken
from the page digit register. (See Fig. 4.) In this way the time
required to obtain the equivalent indication and form the page
location digits is not included in the over-all access time of the

B u f f e r address register
I

Block address lLine address

Page address r e g 0 1
i Not instruction

i

t t t
E Q NEQ EQBLO

.-
t i

u-.

Cont ro l c i r c u i t r y

I

Stack k
request ad 5s

S t a c k 0 S t a c k 1p&

Fig. 4. Main core store control.

SAl OR SA2

4

Wait for
care store
f ree

Single Address
address pair 7I

Wait for 	 wait for
equivalence Woit (see text) equivalence

and formation and formation

of page digi ts o f page digits

I	 I I 1
Equivalence 	 Equivalence) 1~

Stack

Not equivalent

or equivalent

and locked

Page digit out
Woit (see text) register

t o V,ne requ,est Right WrongCopy B.AR Stack

Start read page page

phose 	 Stop read Stop read
ta mochine to machine

SET CSF

Star t read

phase

+
SET CSF

Copy pade digi ts
lo page digi t 1
 reg is te r ,

i 1 i
SET CSF SET CSF SET CSF

Fig. 5. Flow diagram of main core store control.

system. The assumption will normally be true, except when
crossing block boundaries. The latter cases are detected and
corrected by comparing the true position page digits obtained as a
result of the equivalence operation with the contents of the page
digit register, and a “right page” or “wrong page” indication is
obtained.(See Fig. 4.) If a wrong page is accessed this is indicated
to the central machine and the read out is inhibited. The true page
location digits are copied into the page digit register, so that the
required instruction pair will be obtained when next requested.
The read out to the central machine is also inhibited for “not
equivalent” or “equivalent and locked out” indications.

In Fig. 5 the waiting time indicated immediately before the
stack request is generated can arise for a number of reasons:

1 	 The preceding write phase of that stack has not yet
finished.

Chapter 10 I One-Level Storage System 141

2 	 The central machine is not yet ready either to accept
information from the store or to supply information to it.

3 	 It is necessary to ensure a certain minimum time between
successive read strobes from the core stacks to allow
satisfactory operation of the parity circuits, which take
about 0.4 psec to check the information. This time could be
reduced, but as it is only possible to get such a condition for
a small part of the normal instruction timing cycle it was not
thought to be an economical proposition.

The basic machine timing is now discussed.

4. instruction Times

In high-speed computers, one of the main factors limiting speed of
operation is the store cycle time. Here a number of techniques,
e.g., splitting the core store into four separate stacks and
extracting two instructions in a single cycle, have been adopted
despite a fast basic cycle time of 2 psec in order to alleviate this
situation. The time taken to complete an instruction is dependent
upon

1 	The type of instruction (which is defined by the function
digits)

2 	 The exact location of the instruction and operand in the
core or fixed store since this can affect the access time

3 	 Whether or not the operand address is to be modified

4 	 In the case of floating point accumulator orders, the actual
numbers themselves

5 	 Whether drum andior tape transfers are taking place

The approximate times for various instructions are given in
Table 2. These figures relate to the times between completing
instructions when a long sequence of the same type of instruction
is obeyed. While this method is not ideal, it is necessary because
in practice obeying one instruction is overlapped in time with
some part of three other instructions. This makes the detailed
timing complicated, and so the timing sequence is developed
slowly by first considering instructions obeyed one after another.
It is convenient to make these instructions a sequence of floating
point additions with both instruction and operand in the core store
and with the operand address single B-modified.

To obey this instruction the central machine makes two
requests to the core store, one for the instruction and the second
for the operand. Mter the instruction is received in the machine
the function part has to be decoded and the operand address
modified by the contents of one of the B registers before the
operand request can be made. Finally, after the operand has been
obtained the actual accumulator addition takes place to complete

142 	 Part 1 Fundamentals1

Table 2 Approximate Instruction Times

Number of
modi6cations of

Type 0.f instruction address

Floating Point Addition 	 0
1
2

Floating Point Multiplication 0, 1 or 2
Floating Point Division 0, 1 or 2
Add Store Line to an Index Register 0

1
Add Index Register to Store Line and Rewrite to 0

Store Line 1

the instruction. The time from beginning to end of one instruction
is 6.05 psec and an approximate timing schedule is as follows in
Table 3.

If no other action is permitted in the time required to complete
the instruction (steps 1to 8 in Table 3), then the different sections
of the machine are being used very inefficiently, e.g., the
accumulator adder is used only for less than 1.1psec. However,
the organization of the computer is such that the different sections,

Table 3t Timing Sequence for Floating Point Addition (Instructions
and Operands in the Core Store)

Time interval Total
between steps time

Seauence (met) (w e d

1. Add 1 to Main Control 0
(Addition time) 0.3

2. 	Make Instruction Request 0.3
(Transfer times, equivalence time
and 'stack access time) 1.75

3. 	Receive Instruction in Central Machine 2.05
(Load register and decode) 0.2

4. 	Function decoding complete 2.25
(Single address modification) 0.85

5. 	Request Operand 3.10
(Transfer times, equivalence time
and stack access time) 1.75

6. 	 Receive Operand in Central Machine 4.85
(Load register) 0.1

7. 	Start Addition in Accumulator 4.95
(Average floating point addition,
including shift round and stand-
ardise) 1.1

8. Instruction complete 	 6.05

tln step 4, time is for single address modification. Times for no modification
and two modifications are 0.25 psec and 1.55 psec respectively.

Section 3 1 Computers of Historical Significance

Instruction in core Instructions in fixed Instructions in fixed
store. Operands in store. Operands in store. Operands in

core store. Time core store. Time fixed store. Time
(w c i (wed (wet)

1.4 1.65 1.2
1.6 1.65 1.2
2.03 1.9 1.9
4.7 4.7 4.7

13.6 13.6 13.6
1.53 1.65 1.15
1.85 1.85 1.85
1.63 1.65
1.8 1.7

such as store stacks, accumulator and B-arithmetic unit, can
operate at the same time. In this way several instructions can be
started before the first has finished, and then the effective
instruction time is considerably reduced. There have, of course,
to be certain safeguards when, for example, an instruction is
dependent in any way on the completion of a preceding instruc-
tion.

In the time sequence previously tabulated, by ,far the longest
time was that between a request in the central machine for the
core store and the receipt in the central machine of the informa-
tion from that store. This effective access time of 1.75 Ksec is
made up as shown in Table 4.It has been reduced in practice by
the provision of two buffer registers, one in the central machine
and the other in the core stack coordinator. These allow the
equivalence and transfer times to be overlapped with the
organization of requests in the central machine.

In this way, provided the machine can arrange to make requests
fast enough, then the effective access time is reduced to 0.8 Ksec.
Further, since three accesses are needed to complete two
instructions (one for an instruction pair and one for each of the two
operands) the theoretical minimum time of an instruction is 1.2
psec 3X0.8/2 and it then becomes store limited. Reference to
Table 3 shows that the arithmetic operation takes 1.2 Ksec to

Table 4 Effective Store Access Time

Total time
Sequence (wet)

1. Request in Central Machine 	 0
2. Request in Core Stack Coordinator 	 0.25
3. 	Equivalence complete and request made

to selected stack 0.95
4. Information in Core Stack Coordinator 1.65
5. Information in Central Machine 	 1.75

Chapter 10 I One-Level Storage System 143

complete so that, on the average, the capabilities of the store and formation of the scalar product of two vectors, this requires a loop
the accumulator are well matched. of five instructions:

Another technique for reducing store access time for instruc-
tions has also been adopted. This permits the read cycles of the 1 Element of first vector into accumulator. (Operand B-
two stacks to start assuming that the same page will be referred to modified.)
as in the previous instruction pair. This, of course, will normally 2 Multiply accumulator by element of second vector. (Oper-
be true and there is sufficient time to take corrective procedures and B-modified.)
should the page have been changed. The limit of 1.2 psec per
instruction is not reduced by this technique, but the possibility of 3 Add partial product to accumulator.

reaching this limit under other conditions is enhanced. 4 Copy accumulator to store line containing partial product.
A schematic diagram of the practical timing of a sequence of 5 Alter count to select next elements and repeat.

floating point addition orders is shown in Fig. 6. The overlapping
is not perfect and in the time between successive instruction pairs The time for this loop with instructions and operands on the
the computer is obeying four instructions for 25 per cent of the core store is 12.2 psec. The value of the overlapping technique is
time, three for 56 per cent and two for 19 per cent. It is therefore shown by the fact that the time from starting the first instruction
to be expected that the practical time for the complete order is to finishing the second is approximately 10 psec.
greater than the theoretical minimum time; it is in fact approxi- When the drum or tape systems are transferring information to
mately 1.6psec. or from the core store, then the rate of obeying instructions which

For certain types of hnctions the reading of the next pair of also use the core store will be affected. The affect is discussed in
instructions before completing both instructions of the first pair more detail in Appendix 1. The degree of slowing down is
would be incorrect, e.g., functions causing transfer of control. dependent upon the time at which a drum or tape request occurs
Such situations are recognized during the function decoding, and relative to machine requests. It also depends on the stacks used by
the request for the next instruction pair is held up until a suitable the drum or tape and those being used by the central machine.
time. The approximate slowing down is by a factor of 25 per cent during

In a sequence of floating point addition orders with the operand a drum transfer and by 2 per cent for each active tape channel.
addresses unmodified the limit is again 1.2 psec while the time (See Appendix 1.)
obtained is 1.4 psec. For accumulator orders in which the actual
accumulator operation imposes a limit in excess of 2 psec then the
actual time is equal to this limit. 5. The Drum Transfer Learning Program

Perhaps a more realistic way of defining the speed of the
computer is to give the time for a typical inner loop of instruc- The organization of drum transfers has been described in Sec. 2A.
tions. A frequently occurring operation in matrix work in the After the transfer of the required block from the drum to the core

COPY
1 I to 1 Accumulator busy-

acc
StackOperand request

request I Equivalence I Read f?fyl Accumulator busy I2 1
Star t second of pair Operand OCc Stack

8modification reI F ~ ~ ~ ~ ~ ' l qrtj
request

Equivalence I Read Acumulator busy l
3

4

Star t
next pair

1
Instruction

request I$.I
I

Stack
request

Equivalence
I

Read

ace
Operand Stack

Function request requestI decode 1 Bmodification I I Equivalence I
Star t second

of pair

5 ly:$z 1 8modificotion

S ta r t Instruct ion

6

next pair
I

request
1 1'il Equivaience

Fig. 6. liming diagram for a sequence of floating point addition orders. (Single-address modification.)

144 Part 1 FundamentalsI

store has been initiated, the organizing program examines the
state of the core store, and if empty pages still exist, no further
action is taken. However, if the core store is full, it is necessary to
arrange for an empty page to be made available for use at the next
nonequivalence. The selection of the page to be transferred could
be made at random; this could easily result in many additional
transfers occuring, as the page selected could be one of those in
current use or one required in the near future. The ideal
selection, which would minimize the total number of transfers,
could only be made by the programmer. To make this ideal
selection the programmer would have to know (1)precisely how
his program operated, which is not always the case, and (2) the
precise amount of core store available to his program at any
instant. This latter information is not generally available as the
core store could be shared by other central machine programs,
and almost certainly by some fixed store program organizing the
input and output of information from slow peripheral equipments.
The amount of core store required by this fixed store program is
continuously varying [Kilburn et al., 19611.The only way the ideal
pattern of transfers can be approached is for the transfer program
to monitor the behavior of the main program and in so doing
attempt to select the correct pages to be transferred to the drum.
The techniques used for monitoring are subject to the condition
that they must not slow down the operation of the program to such
an extent that they offset any reduction in the number of transfers
required. The method described occupies less than 1 percent of
the operating time, and the reduction in the number of transfers is
more than sufficient to cover this.

That part of the transfer program which organizes the selection
of the page to be transferred has been called the “learning”
program. In order for this program to have some data on which to
operate, the machine has been designed to supply information
about the use made of the different pages of the core store by the
program being monitored.

With each page of the core store there is associated a “use” digit
which is set to “1”whenever any line in that page is accessed. The
32 “use” digits exist in two lines of the V-store and can be read by
the learning program, the reading automatically resetting them to
zero. The frequency with which these digits are read is governed
by a clock which measures not real time but the number of
instructions obeyed in the operation of the main program. This
clock causes the learning program to copy the “use” digits to a list
in the subsidiary store every 1024 instructions. The use of an
instruction counter rather than a normal clock to measure “time”
for the learning program is due to the fact that the operations of
the main program may be interrupted at random for random
lengths of time by- the operation of peripheral equipments. M‘ith
an instruction counter the temporal pattern of the blocks used will
be the same on successive runs through the same part of the
program. This is essential if the learning program is to make use of
this pattern to minimize the number of transfers.

Section 3 1 Computersof Historical Significance

When a nonequivalence occurs and after the transfer of the
required block has been arranged, the learning program again
adds the current values of the “use” digits to the list and then uses
this list to bring up to date two sets of times also kept in the
subsidiary store. These sets consist of 32 values o f t and T , one of
each for each page of the core store. The value of t is the length of
time since the block in that page has been used. The value of T is
the length of the last period of inactivity of this block. The
accuracy of the values oft and T is governed by the frequency with
which the “use” digits are inspected.

The page to be written to the drum is selected by the
application in turn of three simple tests to the values o f t and T :

1 Any page for which t > T + 1, or

2 That page with t # 0 and (T - t) max, or

3 That page with T,,, (a11 t = 0).

The first rule selects any page which has been currently out of
use for longer than its last period of inactivity. Such a page has
probably ceased to be used by the program and is therefore an
ideal one to be transferred to the drum. The second rule ignores
all pages with t = 0 as they are in current use, and then selects the
one which, if the pattern of use is maintained, will not be required
by the program for the longest time. If the first two rules fail to
select a page, the third ensures that if the page finally selected is
wrong, in that it is immediately required again; then, as in this
case, T will become zero and the same mistake will not be
repeated.

For all the blocks on the drum a list of values of P is kept. The
values of T are set when the block is transferred to the drum:

T = time of transfer - value o f t for transferred page

When a block is transferred to the core store, the value of P is used
to set the value of T.

T 	= time of transfer - value of P for this block

= length of last period of inactivity

for the block transferred from the drum t is set to 0.
In order to make its decision the learning program has only to

update two short lists and apply at the most three simple rules;
this can easily be done during the 2 msec transfer time of the block
required as a result of the nonequivalence. As the learning
program uses only fixed and subsidiary store addresses, it is not
slowed down during the period of the drum transfer.

The over-all efficiency of the learning program cannot be known
until the complete Atlas system is working. However, the value of
the method used has been investigated by simulating the behavior
of the one-level store and learning program on the Mercury
computer at Manchester University. This has been done for

Chapter 10 1 Onelevel Storage System 145

several problems using varying amounts of store in excess of the
core store available. One of these was the problem of forming the
product A of two 80th order matrices B and C . The three matrices
were stored row by row, each one extending over 14 blocks; only
14 pages of core store were assumed to be available. The method
of multiplication was

bn x 1st row of C = partial answer to 1st row of A

blz x 2nd row of C + partial answer = second partial answer,

etc.

Thus matrix B was scanned once, matrix C 80 times and each row
of matrix A 80 times.

Several machine users were asked to spend a short time writing
a program to organize the transfers for a general matrix multiplica-
tion problem. In no case when the method was applied to the
above problem were fewer than 357 transfers required. A
program written specifically for this problem which paid great
attention to the distribution of the rows of the matrices relative to
block divisions required 234 transfers. The learning program
required 274 transfers; the gain over the human programmer was
chiefly due to the fact that the learning program could take full
advantage of the occasions when the rows of A existed entirely
within one block.

Many other problems involving cyclic running of single or
multiple sets of data were simulated, and in no case did the
learning program require more transfers than an experienced
human programmer.

A. Prediction ofDrum Transfers

Although the learning program tends to reduce the number of
transfers required to a minimum, the transfers which do occur still
interrupt the operation of the program for from 2 to 14 msec as
they are initiated by nonequivalence interrupts. Some or all of this
time loss could be avoided by organizing the transfers in advance.
A very experienced programmer having sole use of the core store
could arrange his own transfers in such a way that no unnecessary
ones ever occurred and no time was ever wasted waiting for
transfers to be completed. This would require a great deal of effort
and would only be worthwhile for a program that was going to
occupy the machine for a long time. By using the data accumulat-
ed by the learning program it is possible to recognize simple
patterns in the use made by a program of the various blocks of the
one-level store. In this way a prediction program could forecast
the blocks required in the near future and organize the transfers.
By recording the success or failure of these forecasts the program
could be made self-improving. For the matrix multiplication
problem discussed above the pattern of use of the blocks
containing matrix C is repeated 80 times, and a considerable
degree of success could be obtained with a simple prediction
program.

6. Conclusions

A specific system for making a core-drum store combination
appear as a single level store has been described. While this is the
actual system being built for the Atlas machine the principles
involved are applicable to combinations of other types of store,
for example, a tunnel diode-fast core store combination for an
even faster machine. An alternative which was considered for
Atlas, but which was not as attractive economically, was a fast
core-slow core store combination. The system too can be
extended to three levels of storage, and indeed if 106words of total
storage had to be provided then it would be most economical to
provide it on a third level of store such as a file drum.

The automatic system does require additional equipment and
introduces some complexity, since it is necessary to overlap the
time taken for address comparison into the store and machine
operating time if it is not to introduce any extra time delays.
Simulated tests have shown that the organization of drum
transfers are reasonably efficient and other advantages which
accrue, such as efficient allocation of core storage between
different programs and store lock out facilities, are also invaluable.
No matter how intelligent a programmer may be, he can never
know how many programs or peripheral equipments are in
operation when his program is running. The advantage of the
automatic system is that it takes into account the state of the
machine as it exists at any particular time. Furthermore if as in
normal use there is some sort of regular machine rhythm even
through several programs, there is the possibility of making some
sort of prediction with regard to the transfers necessary. This
involves no more hardware and will be done by program.
However, this stage will probably be left until results on the actual
system are obtained.

It can be seen that the system is both useful and flexible in that
it 	 can be modified or extended in the manner previously
indicated. Thus despite the increase in equipment, the advantag-
es which are derived completely justify the building of this
automatic system.

APPENDIX 1 ORGANIZATION OF THE ACCESS
REQUESTS TO THE CORE STORE

There are three sources of access requests to the core store,
namely the central machine, the drum, and the tape systems. In
deciding how the sequence of requests from all three sources are
to be serialized and placed in some sort of order, a number of facts
have to be considered. These are

1 	All three sources are asynchronous in nature,

2 	 The drum and tape systems can make requests at a fairly
high rate compared with the store cycle time of approxi-

146 Part 1 1 Fundamentals 	 Section 3 I Computers of Historical Significance

mately 2 psec. For example, the drum provides a request
every 4 psec and the tape system every 11psec when all 8
channels are operative.

3 	 The drum and tape systems can be stopped only in
multiples ofa block length, i.e., 512 words. This means that
any system devised for accessing the core store must deal
with both the average rates of drum and tape requests
specified in 2. Only the central machine can tolerate
requests being stopped at any time and for any length of
time. From these facts a request priority can be stated
which is

a 	 Drum request.

b 	 Tape request.

c 	 Central machine request.

4 	A machine request can be accepted by the core store, but
because there is no place available to accept the core store
information, its cycle is inhibited and further requests held
up. In the case of successive division orders this time can
be as long as 20 psec, in which case 5 drum requests could
be made. To avoid having an excessive amount of buffer
storage for the druni two techniques are possible:

a 	 When drums or tapes are operative do not permit
machine requests to be accepted until there is a place
available to put the information.

b 	 Store the machine request and then permit a drum or
tape request.
The latter scheme has been adopted because it can be
accommodated more conveniently and it saves a small
amount of time.

5 	 If the central machine is using the private store then it is
desirable for drum and tape transfers to the core store not
to interfere with or slow down the central machine in any
way.

6 	 When the central machine, drum and tape are sharing the
core store, then the loss ofcentral machine speed should be
roughly proportional to the activity of the drum or tape
systems. This means that drum or tape requests must
“break” into the normal machine request channel as and
when required.

The system which accommodates all these points is now
discussed. Whenever a drum or tape request occurs, inhibit
signals are applied to request channel into the cox& stack
coordinator. This results in a “freezing” of the state of flip-flop F
(Fig. 5) and this state is then inspected (Fig. 7, point X) . If the
state is “busy” this means that a machine order has been stopped
somewhere between the loading of the buffer address register
(B.A.R.) and the stack request. Normally this time interval can
vary from about 0.5 psec if there are no stack request holdups to
20 wsec in the case of certain accumulator holdups. In either case

I

F flip-flop f rozen

1x---t Inspect slate of
F f l i p - f lop

I

t
Drum tope accessto -Drum/lape 	 priority

I

Remove stack request
Inhibit signals t-	 1

+
I

Stack request
for drum /tape

Drum/tape request 4 	 IPerpi t stack r e q u e s 4
inhibits to reapply

I s there b stored \ 	 1 Imachine order 9 	 Apply inhibits t o
slack request chonnels
and to machinethese arechannels (i f request

No Yes 	 not already applied)

1 	 iAllow to p roceed
(if possible) 	 Has the stock request

of 0 stored machine
order been stopped? I
S t o c k request o f F---c-7stared machine order Yes

I N,”
I U

Remove inhibits

an machine request

channels

Fig. 7. Drum and tape break in systems.

sufficient time is allowed after the inspection to ensure that the
equivalence operation has been completed. If an equivalence
indication is obtained, all the information relevant to this machine
order (i.e., the line address, page digits, stack(s) required and type
of stack order) are stored for future reference. Use is made here of
the page digit register provided to allow the by-pass on the
equivalence circuitry for instruction accesses. The core store is
then made free for access by the drum or the tape. If the core
store is found to be free on inspection, the above procedure is
omitted.

A drum or tape access (as decided by the priority circuit) to the

Chapter 10 1 One-Level Storage System 147

core store then occurs, which removes the inhibits on the stack
request channels. When the stack request for the drum or tape
cycle is initiated, these inhibits are allowed to reapply. At this
stage (Fig. 7 , point Y), if there is a stored machine order it is
allowed to proceed if possible. The inhibits on the machine
request channels are removed when the stack request for the
stored machine order occurs. If there is no stored machine order,
this is done immediately, and the central machine is again allowed
access to the core store. However, another drum or tape request
can arise before the stack request of the stored machine order
occurs, in particular because this latter order may still be held up
by the central machine. If this is the case the drum or tape is
allowed immediate access and a further attempt is made to
complete the stored machine order when this drum or tape stack
request occurs.

If the stored machine order is for an operand, the content of
the page digit register will correspond to the location of this
operand. The next machine request for an instruction pair will
then almost certainly result in a “wrong page” indication. This is
prevented by arranging that the next instruction pair access does
not by-pass the equivalence circuitry.

The effect on the machine speed when the drum or tapes are
transferring information to or from the core store is dependent
upon two factors. First, upon the proportion of time during which
the buffer register in the core coordinator is busy dealing with
machine requests, and second, upon the particular stacks being
used by the central machine and the drum or tape. If the
computer is obeying a program with instructions and operands on
the fixed or subsidiary store, then the rate of obeying instructions
is unaffected by drum or tape transfers. A drum or tape interrupt
occurring when the B.A.R. is free prevents any machine address
being accepted onto this buffer for 1.0 psec. However, if the
B.A.R. is busy then the next machine request to the core store is
delayed until 1.8 psec after the interrupt if different stacks are
being used, or until 3.4psec after the interrupt if the stacks are
the same.

When the machine is obeying a program with instructions and
operands on the core store, the slowing down during drum
transfers can be by a factor of two if instructions, operands, and
drum requests use the same stacks. It is also possible for the
machine to be unaffected. The effect on a particular sequence of
orders can be seen by considering the one discussed in Sec. 4 and
illustrated in Fig. 6. In this sequence the instructions are on stacks
0 and 1while the operands are on stacks 2 and 3. If the drum or
tape is transferring alternately to stacks 0 and 1then the effect of
any interrupt within the 3.2 psec of an instruction pair is to
increase this time by between 0.5 and 3.4psec depending upon
where the interrupt occurred. The average increase is 1.8 psec
and for a tape transfer with interrupts every 88 psec the computer
can obey instructions at 98 percent of the normal rate. During
drum transfers the interrupts occur every 4 psec, which would

suggest a slowing down to 60per cent of normal. However, for any
regular sequence of orders the requests to the core store by the
machine and by the drum rapidly become synchronized with the
result in this particular case that the machine can still operate at
80 percent of its normal speed.

APPENDIX 2 METHODS OF DIVISION OF
THE MAIN CORE STORE

The maximum frequency with which requests can be dealt by
a single stack core store is governed by the cycle time of the
store. If the store is divided into several stacks which can be
cycled independently, then the limit imposed on the speed of the
machine by the core store is reduced. The degree of division
which is chosen is dependent upon the ratio of core store cycle
time to other machine operations and also upon the cost of the
multiple selection mechanisms required.

Considering a sequence of orders in which both the instruction
and operand are in the core store, then for a single stack store the
limit imposed on the operating speed by the store is two cycle
times per order, i.e., 4 psec is Atlas. This is significantly larger
than the limits imposed by other sections of the computer (Sec, 4).
If the store is divided into two stacks and instructions and
operands are separated, then the limit is reduced to 2 psec which
is still rather high. The provision of two stacks permits the
addressing of the store to be arranged so that successive addresses
are in alternate stacks. It is therefore possible by making requests
to both stacks at the same time to read two instructions together,
so reducing the number of access times to three per instruction
pair. Unfortunately such an arrangement of the store means that
operands are always on the same stacks as instruction pairs, and
the limit imposed by the cycle time is still 2 psec per order even if
the two operand requests in the instruction pair are to different
stacks and occur at the same time.

Division into any number of stacks with the addressing system
working through each stack in turn cannot reduce the limit below
2 psec since successive instructions normally occur in successive
addresses and are therefore in the same stack. However, four
stacks arranged in two pairs reduces the limit to 1 psec as the
operands can always be arranged to be on different stacks from the
instruction pairs. In order to reduce the limit to 0.5 psec it is
necessary to have eight stacks arranged in two sets of four and to
read four instructions at once, which would increase the complexi-
ty of the central machine.

The limit of 1psec is quite sufficient and further division with
the stacks arranged in pairs only enables the limit to be more
easily obtained by suitable location of the instructions and
operands.

The location of instructions and operands within the core store
is under the control of the drum transfer program, thus when

i i

148 Part 1 1 Fundamentals Section 3 I Computers of Historical Significance

in Fig. 8; for stacks arranged in pairs instructions are read in pairs
and in all cases both instructions and operands are assumed to be

-:m 4 ~4 0 One stock ~

3 1 I2i l l
2 5 Two stacks !;pair)

y) 2 0 Two stacks (single) 2 0

g 15 Four stacks (pair) 156
117 Eight stacks (pair)c

, I

- 1 I I

,

I

0 8 16 24 32
Number of pages of operands

Fig. 8. Limit imposed by cycle time on operating speed for different
divisions of the core store.

there are several stacks instructions and operands are separated
wherever possible. Under these conditions it is possible to
calculate the limit imposed on the operating speed by the cycle
time for different divisions of the core store. The results are shown

on the core store. Operands are assumed to be selected at random
~from the operand space; for instance, in the case of two stacks

arranged as a pair, successive operand requests have equal
probability of belonging to the same stack or to alternate stacks.

The limit imposed by a four stack store is never severe
compared with other limitations; for example, the sequence of
floating point addition orders discussed in Sec. 4 required 1.6
psec per order with ideal distribution of instructions and oper-
ands. Division into eight stacks, although it reduces the limit, will
not have an equivalent effect on the over-all operating speed, and
such a division was not considered to be justified.

References

Kilburn, Edwards, Lanigan, and Sumner [1962]; Brooker [19601;
Edwards, Lanigan, and Kilburn [1960]; Kilbum, Edwards, and
Thomas [1956]; Kilburn, Edwards, and Aspinall [1960]; Kilburn
and Grimsdale [1960]; Kilburn, Howarth, Payne, and Sumner
[1961]; Lonsdale and Warburton [19561; Papian [1957]; Fothering-
ham [1961]; Hartley [1968]; Howarth [1963]; Howarth, Jones, and
Wyld [1962]; Howarth, Payne, and Sumner [1961); Morris,
Sumner, and Wyld [1967]; Sumner, Haley, and Chen [1962].

Regions of Computer Space
Part 2 continues the development of the computer space by delving into details in
eight regions of the computer space. Each section opens with a tabulation and
discussion of the major subdimensions. The subdimension values are illustrated by
actual computer systems, many of which are described in this book. The sections
conclude with a series of chapters meant to illustrate various values of the
subdimensions and how they correlate with values for other computer space
dimensions in actual machines.

The chapters in Part 2 have been selected for their primary emphasis on a single
region of computer space. Subsequently, Parts 3 and 4 will examine complete
computer systems and treat all computer space dimensions equally.

Section 1 discusses the current major computer implementation technique:
microprogramming. While the computer space region should properly be labeled
“Implementation Techniques,” microprogramming’s popularity and richness deserve
a separate treatment.

Section 2 examines the region of memory hierarchies and support of multiple
processes. The concern for effective utilization of memory has impacted even the
smallest microcomputers.

Concurrency to achieve high performance in single-processor systems is the
subject of Sec. 3.

The advent of low-cost microcomputers has ignited substantial interest in multiple-
processor systems. Section 4 discusses the various ways multiple processors can be
interconnected and the important parameters for evaluating the effectiveness of the
PMS structure. Three major categories of multiple-processor structures are identified
and illustrated: tightly coupled multiprocessors communicating via address space;
loosely coupled distributed multiprocessors communicating via messages, all Pc’s
working on one task; and networks communicating via messages, each Pc working
on different tasks. Section 4 gives examples of the first two types of multiple-
processor systems.

Network technology has advanced so significantly in the last decade that one
section, Sec. 5, is devoted solely to the network region of the computer space.

The concern for reliable computing has been with us from the earliest days. The
need for reliable computers continues as our dependency on computers grows. Now
all but the smallest computers have introduced redundancy to improve system
reliability and/or maintainability. The fault-tolerant region of computer space in Sec. 6
is one of the least well-formed of any treated in the book. However, this will change as
more fault-tolerant systems are built and experience accumulates.

The final two sections of Part 2 discuss related regions of computer space. Section
7 examines computers intended to execute a single higher-level programming
language. Since the programming environment is completely specified (in contrast
with the open-ended environments found in general-purpose systems), design
decisions can be made to favor specialization. Section 8 looks at another constrained
environment, that of personal computers. Personal computing systems are dedicated
to providing a rich, responsive programming environment to a single user.

149

Section 1

Microprogram-Based Processors

Microprogramming

Microprogramming is a form of emulation wherein one ISP is
used to interpret a target ISP. The microprogramming ISP is
usually kept more primitive than the target ISP in order to
maintain an acceptable level of performance. Microprogramming
can also be viewed as a technique that imposes an interpreter
between the hardware and the target ISP. Since a microprogram-
med ISP is similar to a conventional ISP that interprets macro-
level programs, all the principles and techniques of ISP design
apply. Increased performance, for example, is brought about by
adding to the number of data-types (via hardwiring).

Conceptually, a computer can be divided into a data part and a
control part. The data part is composed of registers, functional
units, and interconnecting paths. The control part translates
machine language instructions into an ordered sequence of control
signals that manipulate the data part in order to realize the
machine language instruction. A microprogrammed control part
uses a stored program to generate the necessary control signals.

Figure 1depicts a canonical microsequencer. Microinstructions
are fetched from a microstore. Each microinstruction contains a
set of bits for controlling the data path as well as information about
where the next microinstruction is stored, which may vary
according to the status of a portion of the data part. This
sequencing of microinstructions provides the required sequencing
of data-path functions. Microprogramming has many of the
essential ingredients of programming, including branching, loops,
and subroutines. However, microprogramming makes several
concessions to hardware in order to achieve high performance.
These concessions tie the microcode very closely to the hardware,
thus increasing the complexity of microcoding over regular
programming.

There are several advantages to using microprogramming to
implement an ISP.

Regularity. Microprogramming permits an orderly ap-
proach to control design. The microprogram is easy to
debug and maintain. It makes the control easy to check via
coding techniques (e. g., parity and Hamming code).

Flexibility and tailorability. Microprogramming makes it
possible to postpone detailed design decisions. New fea-
tures can be added easily.

Emulation. It allows interpreting other ISPs.
* Extensibility. An implementation can have its useful life

Microstore
Microaddress

register 7 1 6 - 1 0 0 bits--r

Branching Control

Instructions specifications signalsI I INext

II I Microinstruct ion
register

I

Microsequencing logic I I
Status

selection

m I I

Status information
to sense

Fig. 1. A canonical microsequencer.
extended by the addition of new features (e.g., new
instructions to increase functionality, portions of
operating-system code to increase performance).

Cost-effectiveness. Microprogramming can implement
complex ISPs.

All these advantages do not come free. There are some disadvan-
tages:

Cost. There is a fixed overhead for microcoded control,
which consists of the microsequencer and minimum micro-
store. Very simple ISPs are best implemented directly in
hardware, since their complexity does not warrant the cost
overhead of a microsequencer. The actual breakpoint
between hardwired and microprogrammed control de-
pends on the semantic content of the ISP and the relative
technology cost of the two implementation approaches.

Performance. A hardwired design will be faster than a
microprogrammed design built from the same technology,
since the former does not have the overhead of fetching and
decoding of microinstructions.

With the current state of technology providing dense (i.e., with

151

153 Part 2 i Regions of Computer Space Section 1 1 Microprogram-Based Processors

small package count) and low-cost ROM and RAM, the advantages
of microprogramming far outweigh the disadvantages. Micropro-
gramming is found in several significant computer families (IBM
System/360 and System/370, Chaps. 40, 41, 51, and 52; PDP-11,
Chap. 47), as well as in other diverse areas (e.g., hand calculators,
Chap. 34; personal computers, Part 4, Sec. 3, and Chap. 33; and
telephone switching computers, Chap. 28). It is interesting to
note that the IBM System/360 family was planned around
microprogramming at a time when ROM technology was not a
cost-effective competitor with hardwired logic. But given the rate
of technological change and the projected life of the Systemi360
family, the decision to use microprogramming was the correct one
and acted as a pull to develop cost-effective read-only memory
technology.

Dimensions of Microprogram Space
Table 1depicts the dimensions of the microprogram space. Each
dimension will be briefly discussed.

Microword Format. The single most important dimension is the
form of the microword. If the word is fully encoded, so that each
possible hit pattern specifies a single sequence of data-path
operations (instructions), the microword format is called vertical.
Vertical microwords tend to be short (i.e., 16 to 40 bits). Vertical
microprogramming is very similar to regular programming be-
cause of its sequential nature.

Horizontal microwords are wide (i.e., 40 to 100 or more bits).
Each subfield controls a data function directly, and all the
operations specified by the various subfields can be executed in
parallel. Horizontal microword subfields require little (if partially
encoded) or no decoding, thus saving the time required by a
decoding circuit. Note that even a 10-ns decoding circuit repre-
sents a significant overhead for a machine that executes micro-
words in 100 ns. Since horizontal microwords can also trigger
several concurrent actions (if the data part supports concurrency),
high-performance implementations almost always use a horizontal
microword format.

Whereas vertical microprograms are characterized by long
sequences of narrow microwords, horizontal microprograms are
characterized by short, intertwined sequences of wide micro-
words. In either case, designers attempt to decrease the length of
sequences (i.e., by the use of microsubroutines) and/or the width
of microwords (i.e.,by encoding mutually exclusive operations) in
order to minimize the microstore size. There is some evidence
that, for a given ISP, the microstore size measured in bits,
regardless of implementation, is relatively constant when com-
pared to variations in microstore size between different ISPs.'

'The 9370 inicrostore sizes range froin 380 to 560 Kbit for implementa-
tions without operating-system support (Chap. 52). PDP-11 microstore
sizes range froin 10 to 23 Kbit (Chap. 39).

Table 1 Dimensions of the Microprogram Space

Microword format
Vertical

Completely encoded
Horizontal

Partially encoded

No encoding

Microword decoding
Static
Dynamic

Escape modes

Residual control

Microword sequencing
Microprogram counter
Next microinstruction address field

Microword sequence alteration
Mi c roadd ress alterat ion

OR
Add (relative branch offset)

Jump

Repeat until condition

Return from subroutine

M icroword constants
ROM
Emit field

Data-path concurrency
Pipelining
Multiple functional elements
Multiple data paths
Explicit bus control

Clocks
One
Multiple

Target instruction decoding
Programmed
Op code used as microroutine address
ROMiPLA Branch Table

Modifications in microinstruction semantics
Fields from instruction register modify data-path functions
and/or choose general register.

Microword Decoding. In static decoding the subfields in a
microword have only one meaning for each decoding. Dynamic
decoding, in which a single subfield has multiple meanings, is one
way to shrink the length of a microword. The different meanings
can be triggered by the escape mode, a special decoding of some
other field, or in residual control they can be determined by state
in the micromachine set by the execution of a previous instruc-
tion.

Microword Sequencing. Microword sequencing can be provid-
ed by a microprogram counter that is analogous to the program
counter at the programming level. Higher-performance ma-

Section 1 1 Microprogram-Based Processors 153

chines, however, usually embed the address of the next microin-
struction in the current microinstruction. This increases the size
of the microword but also increases performance, since fetching of
the next microinstruction does not have to wait for the update o f a
counter.'
Microword Sequence Alteration. Fast changes in microword
sequencing are an absolute necessity, since they happen SO

frequently. The most prevalent method is to alter the next
microinstruction address field by ORing in status bits left as the
result of a previous operation. Other possibilities include adding,
repeating a microword until a condition is met, jumping or
branching, and fetching a previously stored address (e.g., return
from microsubroutine).

Any conditioned sequence changing will introduce some pro-
gramming complexity, as depicted in Fig. 2. In order to execute
microinstructions as fast as possible, the fetch of the next micro-
instruction is overlapped with the execution of the current mi-
croinstruction (see Part 2, Sec. 3). Thus the condition code-
setting information from the ALU operation of microinstruction 1
is available only after the fetch of microinstruction 2 has begun.
Thus the first time the operation of microinstruction sequencing
can be altered is in the fetch of microinstruction 3. Microprogram-

'There are mechanisms of comhinatorially implementing a counter so that
the extra performance degradation is only that of a 6 to 10-gate delay
rather than a ripple carry delay of 70 to 100 gates. It is also possible to
overlap microprogram-counter update with microword fetch if the micro-
program counter is double-buffered. In this case the only performance
degradation is the execution ofa branch instruction for nonsequential flow.
Microcode sequences tend to he short; hence one out of every three or
four instructions could be a branch, still severely impacting performance.

ming could be simplified (at the cost of performance) if micro-
instruction 2 were a null operation. Rather than lose the per-
formance, microprogrammers attempt to set up the branch
status at least one full microinstruction before the conditional
branch.

Microword Constants. Another tradeoff between flexibility,
speed, and microword width is the provision for constants. When
emulating a target ISP, there wlll be key constants (e.g., the
address of the program counter in a register file, masks for
decoding, the number of a special memory location, and incre-
ments to a program counter) that have to be provided. These
constants can be stored in a ROM addressed by a microword
subfield (thereby incurring the delay of a ROM access) or by an
immediate operand in a microword subfield called emit. The emit
subfield is as wide as the widest desired constant and hence
requires many more bits than are required to encode the number
of different constants. If infrequently used, the emit field is a
prime candidate for multiple-subfield definition via dynamic
decoding.

Data-Path Concurrency. Performance can be increased via
increased concurrency. In general the techniques discussed in
Sec. 3, while targeted for the ISP level, can also be used at the
microprogramming level. Figure 2 has already illustrated the
overlap (pipelining) of microinstruction fetch and execution.
Multiple operations can be triggered by the same microinstruc-
tion (e.g., an ALU function and program-counter update) if there
are sufficient functional elements and data paths to support the
concurrency. Overlap is also possible between the microprogram-
med processor and Mp if the processor is given sufficient control
over the bus (as opposed to the IBM System/360 Model 30, Chap.

Microstore cycle number
1 2 3 4

dicroinstruction
lumber -Branch

logic Access microstore Gate ALU Other Gate
 I
1 1 I

Branch 1, ! ,Ilogic Access microstore Gate ALU, Other Gate

2 I 1 I 1 I I

BranchI logic , Access microstore ! Gate ,ALU , Other , Gate
3 1 I I I I

Fig. 2. Timing of a typical microsequence.

154 Part 2 I Regions of Computer Space

12, for example, which has only the primitives READ and
WRITE).

Clocks. In the case of complex data paths there will be
microoperations that do not require the worst-case time (usually
defined by the time to transit the data-path loop completely) to
execute. By having multiple-microcycle clocks selectable by the
microinstruction, each microinstruction need only specify the
minimum time required to complete rather than the worst-case
time. (See Chap. 39 for an example of the use of multiple clocks.)

Target-Instruction Decoding. The primary use of micropro-
gramming is to emulate a target ISP. One of the most important
aspects of emulation is quickly arriving at the unique microcode
sequence required to emulate the target instruction. The se-
quence can be arrived at by sequentially testing bits of the op code
(see Chap. 12), by using the op code as a unique microroutine
address, or by using the op code to index a ROM or PLA
containing the microroutine address (see Chapter 39).

Modification of Microinstruction Semantics. In order to mini-
mize the number of microinstructions it is desirable to have the
same microsequence perform operations parameterized by fields
in the macroinstruction word. Prime macroinstruction candidates
would be fields that specify an ALU function and fields that
specify a register (see Sec. 3 in Part 3).

Examples of Microprogrammed Processors in This Book

Microprogramming and the Design of the Control Circuits
in an Electronic Computer

Chapter 11 is an extension of an earlier paper by Wilkes. It
includes an example of a microprogrammed processor. In the
earlier paper, “The Best Way to Design an Automatic Computing
Machine” [Wilkes, 19511, the essential ideas of microprogram-
ming were first outlined.

The observation that an instruction set, or ISP, should be
looked at as a program to be interpreted is the basis of micropro-
gramming. The idea of an ISP is our acknowledgment that we,
too, view a processor as a program.

There is little to say about this chapter; it is historical, yet
timely and well written. Microprogramming, like others of
Wilkes’ ideas, is present in many of our computers.

IBM System/360 Model 30

Chapter 12 presents an example of an early microprogrammed
implementation and should be contrasted with some of the later
designs.

Section 1 I Microprogram-Based Processors

Bit-Sliced Microprogrammable Chip Sets

Bit-slice families usually have two major chip types: those dealing
with data and those with control. Data chips contain ALUs,
register files, and condition sensing. Control chips are usually
microprogram sequencers that manipulate addresses (i. e., incre-
ment, select alternate source, and stack) rather than data. Bit
slices are aimed at replacement of MSI implementations of
existing ISPs and at application areas requiring large computation-
al power (e. g., signal processing). Bit slices have some advantages
over single-chip processors:

Flexibility. Bit-sliced chips are cascadable, allowing the
user to select the length of data and/or control fields. Bit
slices may take n chips to realize the data-path width of a
single processor. Thus there are n times as many pins
available as in a single-chip processor (assuming the same
packaging technology). These extra pins can be translated
into more user visibility and control of the inside of each
chip.

Speed. Chip dices usually have smaller logic density per
chip, which allows more power dissipation (hence speed)
per function than a single-chip processor. Of course, the
extra delay of off-chip signals and their frequency of use
may negate some of this advantage.

Table 2 sketches the characteristics of some bit-slice processors.
Chapters 13 and 14 discuss the Am2900 bit-sliced processor

family. The first-generation data (Am2901) and control (Am2909)
chips can be contrasted against the second-generation chips
(Am2903 and Am2910). The chips may be studied as computer
structures in their own right. However, these chips are frequently
used to emulate other ISPs. An example implementation of a
PDP-8 using the Am2903/2910 is given in Chap. 15.

Am2901/2909. Although bit-sliced processors predated the
Am2901/2909 series (Intel 3000; see Adams [1978]), the AMD
chips have quickly become the industrial standard for medium-
performance computers. Figure 3 illustrates how bit slices might
be interconnected to emulate another ISP.

Chapter 13 gives a thorough introduction to the Am2901
microprocessor slice and the Am2909 bit-sliced microprogram
sequencer. The information is sufficiently detailed that the chip
data paths can be studied as an implementation of a computer.
Also, the reader is encouraged to attempt a design of ISPs in this
book using the bit slices.

Am2903/2910. The 2 years between the introduction of the
2901l2909 and the 2903/2910 produced significant advances in
bit-sliced architecture. The reader is encouraged to compare and
contrast the chips while asking, Why was this feature added?

Table 2 Bit Slices

Intel
300213001 Am2901 I2909

Tech nology
Number of pins per packag

Data part
Controller

e:
Schottky TTL

28
40

Schottky TTL

40
28

Cycle time (ps)
Slice width (bits)
Maximum microstore size

0.1-0.2
2

51 2

0.1-0.2
4

able in 4-bit slices
Address expand-

Register file size
Stack size ...

11
.........

16
4

Basic instruction-set size 50 168
Year introduced 1975 1976

Inevitably the answer will be, To speed up the emulation of a
particular function found in another ISP. By studying these added
features, the reader should develop an awareness of the level of
complexity required in contemporary computer design. Table 3
summarizes the major differences between the 2901/2909 and
2903/2910 chip sets. Some points to observe are listed below.

The 2901 comes in a 40-pin package, whereas the 2903
employs a 48-pin package. The extra pins are used for a

r
I M.instruction.reqister 1

I
K r o m

M.bus.address

Mdara

Notes

1 . DarniIcascadable data b i t slice 1 1

2. Kamjlcascadable control b i t slice 11

3. Mrorn[’rorn containing target machine‘s m ic rop rog ram~ l

Fig. 3. PMS figure of a typical Pc constructed from bit slices.

Section 1 1 Microprogram-Based Processors 155

Am290312910
TI
SN74S481 I482

Motorola
Mc 10800110801

Schottky TTL Schottky TTL ECL

48
40

0.1-0.2
4

4K

16
5

265
1977

48
20

0.1 -0.1 4
4

able in 4-bit slices
Address expand-

external
4 (in controller)

93
1976

48
48

0.01-0.05
4

able in 4-bit slices

4
78

1977

Address expand-

external

second direct ALU input, increased ALU destination and
functions, and chip programmability. In addition, some
pins on the 2903 have time-multiplexed functions, thus
increasing the functionality of the pins in common between
the 2901 and 2903.

The 2901 has a 9-bit microinstruction field: 3 bits for ALU
source, 3 bits for ALU destination, and 3 bits for ALU
function. The 2903 uses 9 bits plus 2 special bits for an
11-bit microinstruction field: 3 bits for ALU source, 4 bits
for ALU destination, and 4 bits for ALU function (more
extensive logic operations, arithmetic operations involving
the carry bit, and 3-address microinstructions).

Pins are set aside on the 2903 for chip position programma-
bility. Whereas the 2901 deals primarily with boolean and
2’s complement data-types, the position of the bit slice in a
data word is immaterial. The added functions on the 2903
such as NORMALIZE and SIGNED MULTIPLY require
that a bit slice be identified as a least significant, middle-
significant, or most significant slice. The function per-
formed in a single operation may differ according to the
slice’s relative position. (Note that the 2901 can perform all
the functions of the 2903 by utilizing more microcode
and/or more external hardware. For example, the 2’s
complement multiplication in Chap. 13 takes five 2901
microinstructions, whereas only three microinstructions are
required for the 2903 in Chap. 14.)

There are additional functions on the 2903 to handle more
extended data-types and operators. In particular, normali-
zation (for floating-point mantissa operation), data-
representation conversion between 2’s complement and
sigdmagnitude (again for floating-point mantissa manipula-
tion), unsignedMs complement multiplication, 2’s comple-
ment division, byte swapping, parity generation, and
incrementation by 1or 2 are functions more representative

156 Part 2 1 Regions of Computer Space Section 1 I Microprogram-Based Processors

Table 3 Comparison of Am2901IAm2901 and Am2909IAm2910 Chips

Tech nology
Minimum clock period
Organization
Pins
Microinstruction field length
Number of working registers

Data-types supported

Operators

Status

Tech nology
Typical delay
Organization
Pins
Address sources

Number of instructions

Am2901

Low-power Schottky
105 ns
4-bit cascadable slice
40
9
16

Boolean
2’s complement integer

3 arithmetic
Add
Subtract (2)

5 logic
OR
AND (2)
XOR
XNOR

Logic shifts

Overflow
Zero
Carry-out

DatalMemory

Am2903

Low-power Schottky
80 ns
4-bit cascadable slice
48
11
16
Expandable
Boolean
2’s complement integer
Unsigned integer
Signimagnitude
7 arithmetic

Add

Add carry (4)

Subtract (2)

9 logic
OR
AND (2)
XOR
XNOR
NOR
NAND
Constant (2)

Logic shifts
Arithmetic shifts
Sign extend
Special functions

Increment by 1 or 2
Unsigned multiply
2’s complement multiply
2’s complement divide
Single/double-length normalize
Sigmimagnitude conversion toifrom 2’s complement

Overflow
Zero
Carry-out
Sign

Control
Am2909

Low-power Schottky
55 ns
4-bit cascadable slice
28
External
4-deep stack
Microprogram counter
Register
24

Am2910

Low-power Schottky
35 ns
12-bit, noncascadable
40
External
5-deep stack
Microprogram counter
Register
16

of minicomputer/maxicomputer ISPs (e. g., the System/370
and the PDP-11). The 2901 data-types are sufficient for
microcoded controller applications and emulation of simple
ISPs (e.g., the PDP-8 and the HP-2116).

The 2903 allows for expansion of the number of working
registers beyond 16. Thus the hardware register-bank
switching (used in fast-context swap situations such as
interrupt processing and operating-system calls) defined in
contemporary ISPs can be implemented with 2903s but not
2901s.
The 2909 microsequencer is bit-sliced so that the user can
choose microaddresses whose lengths are a multiple of 4.
The 2910 is a single, noncascadable chip with a fixed
microaddress width of 12 bits.
The microsequencers deal with one data-type: addresses (or
unsigned integers). Thus only simple-integer operations are
supported (e.g., increment, stack PUSH/POP, and external
ORing for microbranches). The 40-pin 2910 offers a more
extensive set of operations than the 28-pin 2909. The 2910
has a loop counter that can be used in microinstruction
loops (e.g., multiplication or division routines and block-
transfer control). In addition, the 2910 has 16 sequence-
control instructions, most conditioned by external inputs,
including a three-way BMYCH.

Am2903/2910 ISP. The ISPs of the 2903 and 2910 are provided
as an appendix to Chap. 14. The reader is encouraged to use the
ISP in implementation exercises, such as the one in Chap. 15.

PDP-8 Implementation with the Am2903/2910. Chapter 15
provides the Am2903/2910 microcode for a basic PDP-8. This

Section 1 1 Microprogram-Based Processors 157

design should be contrasted to the SSI PDP-8 implementation in
Chap. 8.

Other Microprogramming Examples in This Book

PDP-11. Chapter 39 traces the microcoded implementation of
an entire minicomputer family that encompasses both vertical and
horizontal microword formats.

TMS 1000. Chapter 34 discusses a single-chip micropro-
grammed implementation extensively used in hand-held calcula-
toss.

The Hewlett-Packard HP 9100A Computing Calculator. The
microprogrammed implementation of an early calculator is given
in Chap. 48.

The Hewlett-Packard HP 9810/20/30 Calculators. The evolu-
tion from horizontally encoded to vertically encoded micropro-
gram instruction format based on a minicomputer ISP is evident
in the second-generation HP calculators in Chap. 49.

The Hewlett-Packard HP 9845 Desk-Top Computer. The third
generation of desk-top computers is also vertically micropro-
grammed, as detailed in Chap. 31.

The three chapters on HP calculators illustrate the evolution of
a concept and its microprogrammed implementation.

References
Adams [1978]; Davies [1972]; Tucker [1967]; Wilkes [1951].

Chapter 11

Microprogramming and the Design of
the Control Circuits in an Electronic
Digital Computer1

M. V. Wilkes / J. B. Stringer

1. Introduction

Experience has shown that the sections of an electronic digital
computer which are easiest to maintain are those which have a
simple logical structure. Not only can this structure be readily
borne in mind by a maintenance engineer when looking for a fault,
but it makes it possible to use fault-locating programmes and to
test the equipment without the use of elaborate test gear. It is in
the control section of electronic computers that the greatest
degree of complexity generally arises. This is particularly so if the
machine has a comprehensive order code designed to make it
simple and fast in operation. In general, for each different order in
the code some special equipment must be provided, and the more
complicated the funetion of the order the more complex this
equipment. In the past, fear of complicating unduly the control
circuits of the machines has prevented the designers of electronic
machines from providing such facilities as orders for floating-point
operations, although experience with relay machines and with
interpretive subroutines has shown how valuable such orders are.
This paper describes a method of designing the control circuits of
a machine which is wholly logical and which enables alterations or
additions to the order code to be made without ad hoc alterations
to the circuits. An outline of this method was given by one of us
[Wilkes, 19511 at the Conference on Automatic Calculating
Machines at the University of Manchester in July 1951.

The operation called for by a single machine order can be
broken down into a sequence of more elementary operations; for
example, shifting a number in the accumulator one place to the
right may involve, first, a transfer of the number to an auxiliary
shifting register, and secondly, the transfer of the number back to
the accumulator along an oblique path. These elementary opera-
tions will be referred to as micro-operations. Basic machine
operations, such as addition, subtraction, multiplication, etc., are
thought of as being made up of a micro-programme of micro-
operations, each micro-operation being called for by a micro-
order. The process of writing a micro-programme for a machine
order is very similar to that of writing a programme for the whole
calculation in terms of machine orders.

‘Proc. Cambridge Phil. Soc., pt. 2, vol. 49, April 1953,pp. 230-238.

For the method to be applicable it is necessary that the machine
should contain a suitable permanent rapid-access storage device in
which the micro-programme can be held-a diode matrix is
proposed in the case of the machine discussed as an example
below-and that means should be provided for executing the
micro-orders one after the other. It is also necessary that provision
should be made for conditional micro-orders which play a role in
micro-programming similar to that played by conditional orders in
ordinary programming.

Since the only feature of the machine which has to be designed
specially for any particular set of machine orders is the configura-
tion of diodes in the matrix, or the corresponding configuration in
whatever equivalent device is used, there is no difl6culty in
making changes to the order code of the machine if experience
shows them to be desirable; in fact, the design of the machine in
the first place can be carried out completely without a firm
decision on the details of the order code being taken, as long as
care is taken to provide accommodation for the greatest number of
micro-orders that are likely to be required. It would even be
possible to have a number of interchangeable matrices providing
for different order codes, so that the user could choose the one
most suited to his particular requirements.

2. Description of the Proposed System

The system will be described in relation to a parallel machine
having an arithmetical unit designed along conventional lines.
This will contain a set of registers and an adder together with a
switching system which enables the micro-operations in the
various machine orders to be performed. Some of the micro-
operations will bv imple transfers of a number from one register
to another with or without shifting of the number one place to the
left or the right, while others will also involve the use of the adder.
Any particular micro-operation can be performed by applying
pulses simultaneously to the appropriate gates of the switching
system. In certain cases it may be possible for two or more
micro-operations to take place at the same time.

It will be convenient to regard the control system as consisting
of two parts. A register is needed to hold the address of the next
order due to be executed, and another to hold the current order
while it is being executed, or at any rate during part of that time.
Some means of counting the number of steps in a shifting
operation or a multiplication must also be provided. One method
of meeting these requirements is to provide a group of registers
and an adder together with a switching system which enables
transfers of numbers, with or without addition, to be made. This
part of the control system will be called the control register unit.
In any case the operations which need to be performed on the
numbers standing in the control register unit during the execution
of an order are, like the operations performed in the arithmetical

158

Chapter 11 I Microprogramming and the Design of the Control Circuits in a Electronic Digital Computer 159

unit, regarded as being made up of a sequence of micro-
operations, each of which is performed by the application of pulses
to appropriate gates.

The other part of the control system is concerned with control of
the sequence of micro-orders required to carry out each machine
order, and with the operation of the gates required for the
execution of each micro-order. This will be called the micro-
control unit; it consists of a decoding tree, two rectifier matrices
and two registers (additional to those of the control register unit)
connected as indicated in Fig. 1,which shows how the pulses used
to operate the gates in the arithmetical unit and control register
unit are generated. A series of control pulses from a pulse
generator are applied to the input of the decoding tree. Each
pulse is routed to one of the output lines of the tree, according to
the number standing in register I. The output lines all pass into a
rectifier matrix A and the outputs of this matrix are the pulses
which operate the various gates associated with micro-operations.
Thus one input line of the matrix corresponds to one micro-order.
The address of the micro-order is the number which must be
placed in register I to cause the control pulse to be routed to the
corresponding line. The output lines from the tree also pass into a
second matrix B, which has its outputs connected to register 11.
This matrix has wired on it the address of the micro-order to be
performed next in time so that the address of this micro-order is
placed in register 11. Just before the next control pulse is applied

order i-1
. .

register , ,A

I
Matrix B

Control
pulses *

-
To arithmetical IFrom

unit. control conditional
registers, etc. fllp-flop

Fig. 1. Micro-control unit.

to the input of the tree a connexion is established between register
I1 and register I, and the address of the micro-order due to be
executed next is transferred into register I. In this way the
decoding tree is prepared to route the next incoming control pulse
to the correct output line. Thus application of pulses alternately to
the input of the tree and to the gate connecting registers I and I1
causes a predetermined sequence of micro-orders to be executed.

It is necessary to have means whereby the course of the
micro-programme can be made conditional on whether a given
digit in one of the registers of the arithmetical unit or control
register unit is a 1or a 0. The means of doing this is shown at X in
Fig. 1.A two-way switch, controlled by a special fip-flop called a
conditionalflip-flop, is inserted between matrix A and matrix B.
The conditional flip-flop can be set by an earlier micro-order with
any digit from any one of the registers. Two separate addresses are
wired into matrix B, and the one which passes into register I, and
thus becomes the address of the next micro-order, is determined
by the setting of the conditional flip-flop.

Conditional micro-orders play the same part in the construction
of micro-programmes as conditional orders play in the construc-
tion of ordinary programmes; apart from their obvious uses in
micro-programmes for such operations as multiplication and
division, they enable repetitive loops of micro-orders to be used.

If desired, two branchings may be inserted in the connexions
between matrix A and matrix B, so that any one of four alternative
addresses for the next micro-order may be selected according to
the settings of two conditional flip-flops. Another possibility is to
make the output from the decoding tree branch before it enters
matrix A so that the nature of the micro-operation that is
performed depends on the setting of the conditional flip-flop.

The micro-programme wired on to the matrices contains
sections for performing the operations required by each order in
the basic order code of the machine. To initiate the operation it is
only necessary that control in the micro-programme should be
sent to the correct entry point. This is done by placing the
function digits of the order in the least significant part of register
11, the other digits in this register being made zero. The
micro-programme is constructed so that when this number passes
into register I, control in the micro-programme is sent to the
correct entry point.

The switching system in the arithmetical unit may either be
designed to permit a large variety of micro-operations to be
performed, or it may be restricted so as to allow only a small
number of such operations. In a machine with a comprehensive
order code there is much to be said for having the more flexible
switching system since this will enable an economy to be made in
the number of micro-orders needed in the micro-programme.

A similar remark applies in connexion with the degree of
flexibility to be provided when designing the switching system for
the control register unit. If the specification of the machine allows
the same number of registers to be used in the arithmetical and

160 Part 2 1 Regions of Computer Space

control sections, the construction of these two sections may be
identical except as far as the number of digits is concerned. In a
new machine under construction in the Mathematical Laboratory,
Cambridge, the registers are being constructed in basic units each
containing five registers and an adder-subtractor together with the
associated switching system. It is hoped that it will be possible to
use identical units in the arithmetical unit and in the control
register unit.

3. Example

An example will now be given to show the way in which a
micro-programme can be drawn up for a machine with a
single-address order code covering the usual operations. It is
supposed that the arithmetical unit contains the following regis-
ters:

A Multiplicand register.

B Accumulator (least significant half).
C Accumulator (most significant half).

D Shift register.

The registers in the control register unit are as follows:

Register connected to the access circuits of the store; the
address of a storage location to which access is required is
placed here.

Sequence control register; contains address of next order
due to be executed.

Register used for counting.

It was assumed when drawing up the micro-programme that there
was an adder-subtractor in the arithmetical unit with one input
permanently connected to register D, and a similar adder-
subtractor in the control register unit with one input permanently
connected to register G. For convenience it was assumed that the
switching systems in each case were comprehensive enough to
provide any micro-operation required. It was further supposed
that the arithmetical unit provided for 20 digits and that the
numbers 0, 1and 18 could be introduced at will into one of the
registers or the adder of the control register unit. Two conditional
flip-flops are used. All micro-operations including those involving
access to the store are supposed to take the same amount of time.
Reference will be made to this point in §4.

Table 1gives the order code of the machine, and Table 2 the
micro-programme. Each line of Table 2 refers to one micro-order;
the first column gives the address of the micro-order, the second

Section 1 1 Microprogram-Based Processors

Table 1

Notation: Acc = accumulator
Accl = most significant half of accumulator
Acc, = most significant half of accumulator

n = storage location n
C(X) = contents of X (X = register or storage location)

Order Effect of order

A n C(Acc) + C(n) to Acc
S n C(Acc) - C(n) to Acc
H n C(n) to Acc,
V n C(Acc4 .C(n) to Acc, where C(n) 2 0
T n C(Acc,) to n, 0 to Acc
U n C(Acc,) t o n
R n C(ACC) . 2-'"+" to ACC
L n ~ (A c c). 2"+' to ACC
G n If C(Acc) < 0, transfer control to n; if C(Acc) 2 0, ignore

(i.e., proceed serially)
I n Read next character on input mechanism into n
O n Send C(n) to output mechanism

column specifies the micro-operations called for in the arithmeti-
cal unit of the machine, and the third column specifies the
micro-operations called for in the control register unit. The fourth
column shows which conditional flip-flop, if any, is to be set and
the digit which is to be used to set it; for example, (1)C,means that
flip-flop number 1is set by the sign digit of the number in register
C, while (2)Gl means that flip-flop number 2 is set by the least
significant digit of the number in register G. In the case of
unconditional micro-orders columns 5 and 7 are blank and column
6 contains the address of the next micro-order to be executed.
In the case of conditional micro-orders column 5 shows
which flip-flop is used to operate the conditional switch and
columns 6 and 7 give the alternative addresses to which control
is to be sent when the conditional flip-flop contains a 0 or
a 1respectively.

Micro-orders 0 to 4 are concerned with the extraction of orders
from the store. They serve to bring about the transfer of the order
from the store to register E and then cause the five most
significant digits of the order to be placed in register 11with the
result that control is transferred to one of the micro-orders 5 to 15,
each of which corresponds to a distinct order in the machine order
code. In this way the sequence of micro-orders needed to perform
the particular operation called for is begun.

The way in which the various operations are performed can be
followed from Table 2. In the section dealing with multiplication,
it is assumed that numbers lie in the range -1 5 x < 1and that
negative numbers are represented in the machine by their
complements with respect to 2. It will be noted that the process of
drawing up a micro-programme is very similar to that of drawing

Chapter 11 1 Microprogramming and the Design of the Control Circuits in a Electronic Digital Computer 161

Table 2

Notation: A, B , C, . . . stand for the various registers in the arithmetical and control
register units (see $3of the text). “Cto D” indicates that the switching circuits connect
the output of register C to the input of register D ; “(D + A) to C” indicates that the
output of register A is connected to the one input of the adding unit (the output of D is
permanently connected to the other input), and the output of the adder to register C.

A numerical symbol n in quotes (e.g., “n”) stands for the source whose output is the
number n in units of the least significant digit.

Coizditional Next

Arithmetical Control flip-flop micro-order

unit register unit Set Use 0 1

0 F to G and E 1

4 E to decoder . . .

H 7 Store to B 0

u 10 C to Store 0

I 14 Input to Store 0

1 (G+“l”) to F 2

2 Store to G 3

3 G t o € 4

A 5 C to D 16

S 6 C to D 17

V 8 Store to A 27

T 9 C to Store 25

R 11 B to D E to G 19

L 12 C to D E to G 22

G 13 E to G 18

0 15 Store to Output 0

16 (D+Store) to C 0

17 (D-Store) to C 0

18 1 0 1

19 D to B (R)t (G-”1”) to E 20

20 C to D 21

21 D to C (R) 11 0

22 D to C (L)$ (G-“1”) to E 23

23 B to D 24

24 D to B (L) 12 0

25 “ O >to B 26

26 B t o C 0

27 “0” to c “18” to E 28

28 B t o D E to G 29

29 D to B (R) (G-”1”) to E 30

30 C to D (R) 31 32

31 D t o C 28 33

32 (D+A) to C 28 33

33 B to D 34

34 D to B (R) 35

35 C to D (R) 1 36 37

36 D toC 0

37 (D -A) to C 0

Wight shift. The switching circuits in the arithmetic unit are arranged so that the least significant
digit of register C is placed in the most significant place of register B during right shift micro-
operations, and the most significant digit of register C (sign digit) is repeated (thus making the
correction for negative numbers).
$Left shift. The switching circuits are similarly arranged to pass the most significant digit of register
B to the least significant place of register C during left shift micro-operations.

162 Part 2 1 Regions of Computer Space

up an ordinary programme for an automatic computing machine
and the problems involved are very much alike.

4. The Timing of Micro-Operations

The assumption that all micro-operations take the same length of
time to perform is not likely to be borne out in practice. In
particular in a parallel machine it may not be possible to design an
adder in which the carry propagation time is sufficiently short to
enable an addition to be performed in substantially the same
length of time as that taken for a simple transfer. It will be
necessary, therefore, to arrange that the wave-form generator
feeding the decoding tree should, when suitably stimulated by a
pulse from one of the outputs from matrix A, supply a somewhat
longer pulse than that normally required. Other operations may
take many times as long to perform as an ordinary micro-order; for
example, access to and from the store (particularly ifa delay store
is used) and operation of the input and output devices of the
machine. The sequence of operations in the micro-programme
must therefore be interrupted. One way of doing this is to prevent
pulses from the wave-form generator reaching the decoding tree
during the waiting period. This method, although quite feasible,
appears to involve just the kind of complication which the present
system is designed to avoid. A more attractive system is to make
the machine wait on a conditional micro-order which transfers
control back to itself unless the associated conditional flip-flop is
set. Setting of this flip-flop takes place when the operation is
completed, and control then goes to the next micro-order in the
sequence. The machine is thus in a condition of “dynamic stop”
while waiting for the operation to be completed. This system has
the advantage that no complication is introduced into the units
supplying the wave-forms to the decoding tree and that the
control equipment required is similar to that already provided for
other purposes.

5. Discussion

It will be seen that the equipment needed to execute a complicat-
ed order in the machine order code is of the same form as that
required for a simple one, namely outlets from the decoding tree
and diodes in the matrices. Quite complicated orders can,
therefore, be built into the machine without difficulty. In
particular, arithmetical operations on numbers expressed in
floating binary form and other similar operations can be micro-
programmed and it is found that they do not involve very large
numbers of micro-orders. For example, a micro-programme
providing for the floating-point operations of addition, subtrac-

Section 1 I Microprogram-Based Processors

tion, and multiplication needs about 70 micro-orders. The switch-
ing system in the arithmetical unit must, of course, be designed
with these operations in view. The decoding tree and matrices of a
parallel machine with 40 digits in the arithmetical unit and
provision for 256 micro-orders would only amount to about 15%of
the total equipment in the machine, so that it appears that such a
machine can well be provided with built-in facilities of consider-
able complexity.

The number of micro-orders needed in a complicated micro-
programme can sometimes be reduced by making use of what
might be called micro-subroutines. For example, when two
numbers have to be added together in a floating binary machine,
some shifting of one of them is usually necessary before the
addition can take place. By making the micro-orders for this
shifting operation serve also when a multiplication is called for,
considerable saving is effected.

Four registers is the bare minimum needed in the arithmetical
unit in order to enable the basic arithmetical operations to be
performed. If any extension or refinement of the facilities
provided is required, it may be necessary to increase the number
of registers. For example, four registers are not sufficient to enable
a succession of products to be accumulated without the transfer of
intermediate results to the store, since the accumulator must be
clear at the beginning of a multiplication. The addition of one
register enables the accumulation of products to be provided for in
the micro-programme, If this register is associated with the outlet
from the store, it also enables some of the waiting time for storage
access to be eliminated. To do this the micro-programme is
arranged to call for a number from the store as soon as it is known
that the number will be required and to continue with other
necessary micro-operations before finally proceeding to use the
number. The “dynamic stop” would occur just before the number
is required for use. Another way of saving time is to arrange, in
the case of those orders which permit it, for the next order to be
extracted from the store before the operation currently being
performed has been completed.

The minimum number of registers required in the control
register unit of the machine for the simplest mode of operation is
three. If extra registers are provided facilities similar to those
provided by the B-lines in the machine at Manchester University
could be included in the micro-programme.

6. Microprogramming Applied to Serial Machines

All the discussion so far as been with reference to parallel
machines because the technique described in this paper is most
adapted to that type of machine. It is, however, possible to design
a serial machine along the same lines. In a parallel computer with

Chapter 11 I Microprogrammingand the Design of the Control Circuits in a Electronic Digital Computer 163

an asynchronous arithmetical unit every gate requires only one
kind of wave-form to operate it and the timing of that wave-form is
not critical. In a serial machine, on the other hand, different gates
require different wave-forms and the same gate may require
different wave-forms at different times; further, all these wave-
forms must be critically timed. These complications may be
handled by including in the micro-control unit a third matrix, c,
for selecting the appropriate wave-form for each micro-order. The
main wave-form, routed by the decoding tree and matrix A, opens
a gate which is fed by a wave-form selected by matrix C. This
enables a wave-form of correct duration to be applied to any

selected gate in the arithmetical or control sections of the
machine.

References

Wilkes and Stringer [1953]; Boutwell and Hoskinson [1963];
~l~~~and M ~ ~ L[1966]; creene,~ D ~~ ~ ~[1967]; creen ~ and ~ ,
Updike [19641; Mercer [1957]; Patzer and Vandling [1967];Rosin
[1969]; Tucker [1967]; Weber [1967]; Wilkes [1951]; Wilkes
[1958].

Chapter 12

Microprogramming the IBM

System/360 Model 301

Helmut Weber

Microprograms are sequences of microprogram words. A micro-
program word is composed of 60 bits and contains various fields
which control the basic functions in the IBM Systemi360 Model
30 CPU. These basic functions are storage control, control of the
data flow registers and the Arithmetic-Logic-Unit (ALU), micro-
program sequencing and branching control, and status bit-setting
control. Microprogram words are stored in a Card Capacitor
Read-only Storage (CCROS). Fetching one microprogram word
and executing it takes 750 nsec, the basic machine cycle.

Figure 1 shows in simplified form the data flow of the IBM
Systemi360 (IBM 2030 CPU). It consists of a core storage with up
to 65,536 8-bit bytes and a local storage (accessible by the
microprogrammer but not explicitly by the 360 language program-
mer), a 16-bit storage address register (M, N), a set of ten 8-bit
data registers (I, J, . . . , R), an arithmetic-logic-unit (ALU),
connecting 8-bit wide buses (Z, A, B, M , N-bus), temporary
registers (A, B), switches and gates.

Figure 2 shows the more important fields of a microprogram
word. Only 47 bits are shown. Other fields contain various parity
bits and special control bits. The field interpretation given in Fig.
2 is as for microprogram words in the second Read-only Storage
unit (Compatibility ROS) if the machine is equipped with the 1620
Compatibility Feature. The meaning of the microprogram word
fields is explained in connection with Fig. 3 which shows the
symbolic representation of a microprogram word together with an
example as it appears on a microprogram documentation sheet.

The fields of the microprogram word can be grouped in five
categories :

1 	ALU control fields: CA, CF, CB, CG, CV, CD, CC
2 	 Storage control fields: CM, CU
3 	 Microprogram sequencing and branching fields: CN, CH,

CL
4 	 Status bit setting field: CS
5 	 Constant field: CK

ALLr control fields. On the line designated “ALU” in Fig. 3 an

‘Abstracted from Helmut U‘eber, “A Microprogrammed Implementation
of EULER on IBM Systemi360 Model 30,” Comm. ACM, vol. 10, no. 9,
September 1967, pp. 549-558; material based on Fag et al. “641, pp.
205-231. Figure 4 and related text by Siewiorek, Bell, and Newell.

ALU statement can appear. It will specify an A-source and a
B-source, possibly an A-source modifier and a B-source modifier,
an operator, a destination, and possibly a carry-in control and a
carry-out control.

CA is the A-source field. It controls which one of the 10 8-bit
data registers is connected to the transient A-register and
therefore to the A-input of the ALU.

CB is the B-source field. It controls whether the R, L, or
D-register or the CK-field is connected to the transient B-register
and therefore to the B-input of the ALU. If “K” (CB = 3) is
specified in this field, the 4-bit constant field CK is doubled up;
i .e. , the same four bits are used as the high digit and the low digit.

Between the A-register and the ALU input is a straighticross
switch and a highilow gate. Its function is controlled by the
CF-field. Depending on the value of this field, no input is gated
into the ALU (8)or only the low (L) or high digit (H) is admitted.
C F = 3 gates all eight bits straight through, whereas the codes
C F = 5, 6, and 7 cross over the two digits of the byte before
admitting the low (XL) or high digit (XH) or both digits (X).

Between the B-register and the ALU input is a highilow gate
and a trueicomplement control. The highilow gate is controlled by
the CG-field in the same manner as the highilow gate in the
A-input. The trueicomplement control is operated by the CV-
field. It admits the true byte to the ALU (+) of the inverted byte
(-) or controls a six-correct mechanism for decimal addition (a).

The operator and carry controls are given by the CC-field. This
field specifies binary addition without carry handling (+O),
addition with injection of a 1 (+I) (for instance, to stimulate
subtraction in connection with the B-input inverter), addition
with saving the carry in bit 3 of register S (+O,Save C, and
+1,Save C), and addition using an old carry stored in bit 3 of
register S and saving the new carry in this same bit (+C,Save C).
Other codes specify logical operations (AND, OR, XOR).

The CD-field specifies into which register the result of the ALU
operation is gated. Any one of the 10 data registers can be
specified. Z means that the ALU output is gated nowhere and will
be lost.

Storage control fields. On the line designated “storage” in
Figure 3, a storage statement can appear. It will specify whether
this microcycle is a ready cycle, a write cycle, a store cycle or a
no-storage access cycle, and from where the storage address is
supplied (CM-field) and whether storage access is to main storage
or local storage (CU-field). Note that a full storage cycle (1.5Fsec)
corresponds to two read-only storage cycles (730 nsec).

The codes CM = 3, 4, or 5 specify read cycles. The addresses
are supplied from the register pairs IJ, UV, and LT, respectively.
A read cycle reads 1 byte of data from core storage into the
storage data register R.

A write cycle regenerates the data from the storage data register
R at the address supplied in the last read cycle.

164

I-

' CARRY

Fig. 1. Simplified data flow of the IBM Systemi360 Model 30.

I C N I CH I CL C M 1 CU 1 CA 1 CB 1 CK I CO I CF I CG 1 CV I CC I cs I

0000 t NOstatus
R O 0 0 + +o setting

000 1 L l * L L - +I i t - 5 5

0010 Stare D 2 * H H Y And tit's4

001 1 SI K 3 * Through Thr. @ Or HiLcS4,LZ-$5

4 * n r0,saveC O-S4.O-S5
5 * X L +l,sd"e c 1-s 1
6 S XH +c,sauec 0-so
7 R X XOR 1-SO

1000 8 D 0-s2

1 OOf ANSNZ-cS2

1010 ! x% z I 0-S6

1011 X'B' T I I+S6_ _ _ _ _ _ _ _ _ _ -
1100 GO R 3 X' c' v 0-S7
1 t o 1 G 3 X'D: U ' 1-s7

~1 1 10 G5 X'E J I *

1 1 1 1 X'F' I 0-SL
~

'X'A' means hexadecimal digit A=1010

Fig. 2. IBM Systemif60 Model 30 microprogram word. (Detailed explanation is provided in text.) The field
interpretation is given for microprogram words incompatability ROS if the machine is equipped with the
1620 compatibility feature. Fields marked "*" contain designators not explained here in order not to
confuse the basic principles.

165

166 Part 2 1 Regions of Computer Space

X 6 X 7 ROS ADDR

CONSTANT

ALU

STORAGE

STATUS SETTING

BRANCHING SEQUENCE

COORD- -COORD

Forrnot of symbol ic representotion

01 1150

1101

R KH -DC

WRITE 6

HZ -S4, LZ-S5

G4,G5 c4

c 4 CD~ ~

Example

Fig. 3. Symbolic representation of a Systeml360 Model 30
microprogram word.

A store cycle acts exactly as a write cycle except that it inhibits
in the read cycle immediately preceding it the insertion of the
data byte from storage into the R-register.

The CU-field specifies whether storage access should be to
main storage (MS) or to a local storage of 256 bytes not explicitly
addressable by the 360 language programmer.

Microprogram sequencing and branching. Each microprogram
word is stored at a unique address in ROS. A 13-bit ROS address
register (W3 . . . W7, XO . . . X7) holds the address of the word
being executed. For the symbolic representation of a micropro-
gram (Fig. 3) the ROS address is given in hexadecimal in the
upper right corner, and the last two bits of this address are
repeated in binary on the upper margin.

After execution of a microprogram step, the next sequential
word will not be executed. Instead the address of the next word to
be executed is derived as follows. The high five bits (W) remain
the same, unless they are changed by a special command in the
microword, not explained here (so-called module switching). The
next six bits (XO . . , X5) are supplied from the CN-field (written
in hexadecimal in the symbolic representation of Fig. 3).The low

Section 1 1 Microprogram-Based Processors

two bits are set according to conditions specified in the CH and
CL fields. X6 is set according to the condition specified by CH.
For instance, if CH = 8, then the bit R2 is transferred to X6; if CH
= 6, then X6 is set to one if in the last ALU operation a carry had
occurred. It is set to zero ifno carry had occurred. X7 is controlled
by CL. If, for instance, CL = 0, then X7 is set to zero; ifX7 = 5,
then X7 is set to one if both digits in R are valid decimal digits
(i.e., RO . . . R3 5 9 and R4 . . . R7 5 9), X7 is set to zero if
either digit in R is not a valid decimal digit (i.e., RO . . . R3 > 9
or R4 . , . R7 > 9).This microprogram sequencing scheme allows
a four-way branch after the execution of each microprogram word.

Status bit setting. The CS-field allows the unconditional or
conditional setting of certain status bits to be specified, combined
in register S . If, for instance, CS = 3, then S4 is set to one if the
result of the ALU operations performed in this microprogram
cycle shows a zero in the high digit (i.e., ZO = Z1 = 22 = 23 = 0);
S4 is set to zero otherwise. At the same time, S5 is set to one if the
result of the ALU operation shows a zero in the low digit (i.e., 24
= 25 = Z6 = 27 = 0);55 is set to zero otherwise. If CS = 9, then
S2 is set to one if the result of the ALU operation is not zero (i.e.,
at least one of the bits ZO . . . 27 is equal to 1).If the result of the
ALU operation is zero, then S2'is not changed.

Constantfield. The 4-bit CK-field is used for various purposes.
One instance explained in the ALU statement is to supply a
constant B-source for an ALU operation. Other examples not
explained here any further are the addressing of a few specific
scratchpad local storage locations, module switching (replacement
of the high part W of the ROS address), and the control of certain
special functions.

Symbolic representation of microprograms. Microprograms are
symbolically represented as a network of boxes (Fig. 3) each
representing a microword, connected by nets indicating the
possible branching ways. Figure 4gives an example of a micropro-
gram (to be explained in the next section). There exist program-
ming systems to aid in the development of microprograms. They
contain symbolic translators to translate the contents m of a box
according to Fig. 3 into the contents of the actual fields of the
microprogram word according to Fig. 2. A drawing program
generates documentation. These systems usually also contain
programs for simulation and generation of the actual ROS cards.

Example Microprogram

Figure 4 contains a possible microprogram for decoding and
executing the S/360 logic OR instruction: OR Rl,R5, which is
encoded as ' ' 1615. (The accompanying table annotates the OR
instruction microprogram depicted in Fig. 4.)The associated

Chapter 12 1 Microprogramming the IBM SystemWBO Model 30 167

1 2 3 4 5 6 7 a 9

r- r- r-- r-

Fig. 4. A sample microprogram for the Sl360 OR instruction.

register pair I and J is assumed to hold the program counter. The
register pairs UV and LT are used to formulate the storage
addresses of the two operands. In this case the operands are
registers assumed to be in local memory.

References

Weber [1967]; Fagg, Brown, Hipp, Doody, Fairclough, and
Greene [1964];Green [1966].

Location
Address in figure

"1161 c1

"1117 c 2

"1171 c3

"115C c 4

"11 C5 c 5

" l lCA, "11DO C6, C7

"1 1 D5, "1 1 DA C8, C9

"11E1, "11E4 E l , E2

"11 E5 E3

"11E6, " l l E 7 E4, E5

"1 1 E8, "1 1E9, E6, E7
"1 1 EA, "1 1 EB E8, E9

Description

The program counter IJaddresses main storage. The addressed byte in main storage is read out into the
storage data register R. The program counter is updated by adding 1 to register J. A possible carry is
saved to be added to I .

The op code has been read from main storage into R. It is also transferred (through the ALU) to register
G. A four-way branch occurs on the two highest bits RO and R1 of the op code. For the RR op codes (i.e.,
Branch, Status Setting, Fixed- Point Fullword, Logical, Floating-point Long, and Floating-point Short),
this branch goes to ROS word "1171. Other instruction formats branch to "1170, "1172, or "1173,
indicated by the three lines not continued.

To complete the updating of the program counter, the carry from "1117 is added into I. Op code
decoding continues on the next two bits of the op code. RR format Fixed-Point Fullword and Logical
instructions branch to ROS address "115C.

The second byte of the instruction is read from main store into register R. The program counter IJ is
again incremented. Decoding of the op code continues. The RR format instructions AND, Compare
Logical, OR, and XOR branch to ROS address "11C5.

Update of the program counter is completed. The RR format instruction OR branches to ROS address
"1lCA.

Decoding of register operand R1.

Fetch of the first byte of R1 from Local Store; decoding of register operand R2.

Fetch of the first byte of R2 from Local Store.

The OR of the first bytes of R1 and R2 is formed.

The results of the first byte are stored back into R l . The pointer to R2 is incremented in preparation for
fetching the second byte of R2.

The second byte of R2 is fetch from Local Store, the pointer to R1 is incremented, and the second
byte of R2 is fetched from Local Store. To complete the OR instruction, the cvcle from ROS address
"11 E5 through "11 E8 would have to be repeated until all four bytes of the final operand were computed.

Chapter 13

Bit-Sliced Microprocessor of the
Am2900 Family: The Am2901/2909l

Introduction

The Am2900 Family
The Am2900 Family consists of a series of LSI building blocks
designed for use in microprogrammed computers and controllers.
Each device is designed to be expandable and sufficiently flexible
to be suitable for emulation of many existing machines.

Figure 1illustrates a typical system architecture. There are two
“sides” to the system. At the left is the control circuitry and on the
right is the data manipulation circuitry. The block labeled “2901
array” consists of the ALU, scratchpad registers, and data steering
logic (all internal to the Am2901’s), plus leftiright shift control and
carry lookahead circuit. Data is processed by moving it from main
memory (not shown) into the 2901 registers, performing the
required operations on it, and returning the result to main
memory. Memory addresses may also be generated in the 2901’s
and sent out to the memory address register (MAR). The four
status bits from the 2901’s ALU are captured in the status register
after each operation.

The logic on the left side is the control section of the computer.
This is where the Am2909 is used. The entire system is controlled
by a memory, usually PROM, which contains long words called
microinstructions. Each microinstruction contains bits to control
each of the data manipulation elements in the system. There are,
for example, 9 bits for the 2901 instruction lines, 8 bits for the A
and B register addresses, 2 or 3 bits to control the shifting
multiplexers at the ends of the 2901 array, and bits to control the
register enables on the MAR, instruction register, and various bus
transceivers. When the bits in a microinstruction are applied to all
the data elements and everything is clocked, then one small
operation (such as a data transfer or a register-to-register add) will
occur.

Each microinstruction contains not only bits to control the data
hardware, but also bits to define the location in PROM of the next
microinstruction to be executed. The fields are labeled in Fig. 1as
I, CC, and BA. The I field controls the sequencer. It indicates
where the next address is located-the pPC, the stack, or the
direct inputs-and whether the stack is to be pushed or popped.

‘Abstracted from The Am2900 Family Data Book, Advanced Micro
Devices, Inc., 1976.

The CC field contains bits indicating the conditions under
which the I field applies. These are compared with the condition
codes in the status register and may cause modification to the I
field. The comparing and modification occurs in the block labeled
“control logic.” Frequently this is just a PROM. The BA field is a
branch address or the address of a subroutine.

Pipelining
The address for the microinstructions is generated by the
sequencer, starting from a clock edge. The address goes from the
sequencer to the ROM, and an access time later, the microinstruc-
tion is at the ROM outputs.

A pipeline register is a register placed on the output of the
microprogram memory to essentially split the system in two. The
pipeline register contains the microinstruction currently being
executed 0.(Refer to the circled numbers in Fig. 1.)The data
manipulation control bits go out to the system elements and a
portion of the microinstruction is returned to the sequencer @ to
determine the address of the next microinstruction to be execut-
ed. That address @is sent to the ROM, and the next microinstruc-
tion @ sits at the input of the pipeline register. So while the 2901’s
are executing one instruction, the next instruction is being fetched
from ROM. Note that there is no sequential logic in the sequencer
between the select lines and the output. This is important because
the loop 0to @ to @ to @ must occur during a single clock cycle.
During the same time, the loop from @ to @ must occur in the
2901’s. These two paths are roughly the same (around 200 ns
worst case for a 16-bit system). The presence of the pipeline
register allows the microinstruction fetch to occur in parallel with
the data operation rather than serially, allowing the clock
frequency to be doubled.

The emulation of an existing machine by Fig. 1works as follows.
A sequence of microinstructions in the PROM is executed to fetch
an instruction from main memory. This requires that the program
counter, often in a 2901 working register, be sent to the memory
address register and incremented. The data returned from
memory is loaded into the instruction register. The contents ofthe
instruction register are passed through a PROM or PLA to
generate the address of the first microinstruction which must be
executed to perform the required function. A branch to this
address occurs through the sequencer. Several microinstructions
may be executed to fetch data from memory, perform ALU
operations, test for overflow, and so forth. Then a branch will be
made back to the instruction fetch cycle. At this point, there may
be branches to other sections of microcode. For example, the
machine might test for an interrupt here and obtain an interrupt
service routine address from another mapping ROM rather than
start on the next machine instruction.

Chapter 13 I Bit-Sliced Microprocessor of the Am2900 Family: The Am2901/2909 169

FROM DATA BUS

(PROM OR PLAI $1
OTHER

ADDRESS

SOURCES

12 -3 Am2903S

OR Am29llsi

Fig. 1

Am2901:Four-Bit Bipolar Microprocessor Slice

The device, as shown in Fig. 2, consists of a 16-word by 4-bit
two-port RAM, a high-speed ALU, and the associated shifting,
decoding, and multiplexing circuitry. The %bit microinstruction
word is organized into three groups of 3 bits each and selects the
ALU source operands, the ALU function, and the ALU destination
register. The microprocessor is cascadable with full lookahead or
with ripple carry, has three-state outputs, and provides various
status flag outputs from the ALU. Advanced low-power Schottky
processing is used to fabricate this 40-lead LSI chip.

I I I1

Architecture

A detailed block diagram of the bipolar microprogrammable
microprocessor structure is shown in Fig. 3. The circuit is a 4-bit
slice cascadable to any number of bits. Therefore, all data paths
within the circuit are 4 bits wide. The two key elements in the
Fig. 3 block diagram are the 16-word by 4-bit two-port RAM and
the high-speed ALU.

Data in any of the 16 words of the random-access memory
(RAM) can be read from the A port of the RAM as controlled by
the 4-bit A address field input. Likewise, data in any of the 16
words of the RAM as defined by the B address field input canbe

170 Part 2 1 Regions of Computer Space Section 1 I Microprogram-Based Processors

MICROPROCESSOR SLICE BLOCK DIAGRAM

I '
I I

Fig. 2. Microprocessor slice block diagram.

simultaneously read from the B port of the RAM. The same code
can be applied to the A select field and B select field, in which
case the identical file data will appear at both the RAM A port and
B port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data
is always written into the field (word) defined by the B address
field of the RAM. The RAM data-input field is driven by a
three-input multiplexer. This configuration is used to shift the
ALU output data (F) if desired. This three-input multiplexer
scheme allows the data to be shifted up one bit position, shifted
down one bit position, or not shifted in either direction.

The RAM A port data outputs and RAM B port data outputs
drive separate 4-bit latches. These latches hold the RAM data
while the clock input is LOW. This eliminates any possible race
conditions that could occur while new data is being written into
the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three
binary arithmetic and five logic operations on the two 4-bit words
R and S. The R input field is driven from a two-input multiplexer,

while the S input field is driven from a three-input multiplexer.
Both multiplexers also have an inhibit capability; that is, no data is
passed. This is equivalent to a zero source operand.

In Fig. 3, the ALU R-input multiplexer has the RAM A port and
the direct data inputs (D) connected as inputs. Likewise, the ALU
S-input multiplexer has the RAM A port, the RAM B port, and the
Q register connected as inputs.

The two source operands not fully described as yet are the D
input and Q input. The D input is the 4-bit-wide direct data-field
input. This port is used to insert all data into the working registers
inside the device. Likewise, this input can be used in the ALU to
modify any of the internal data files. The Q register is a separate
4-bit file intended primarily for multiplication and division
routines, but it can also be used as an accumulator or holding
register for some applications.

This multiplexer scheme gives the capability of selecting
various pairs of the A, B, D, Q, and 0 inputs as source operands to
the ALU. These five inputs, when taken two at a time, result in
ten possible combinations of source operand pairs. These combi-
nations include AB, AD, AQ, AO, BD, BQ, BO, DQ. DO, and
QO. It is apparent that AD, AQ, and A0 are somewhat redundant
with BD, BQ, and BO in that if the A address and B address are
the same, the identical function results. Thus, there are only
seven completely non-redundant source operand pairs for the
ALU. The Am2901 microprocessor implements eight of these
pairs. The microinstruction inputs used to select the ALU source
operands are the 10, 11, and 1 2 inputs. The definitions of 10,11, and
Iz for the eight source operand combinations are as shown in Table
1. Also shown is the octal code for each selection.

The 13, 14, and I5 microinstruction inputs are used to select the
ALU function. The definition of these inputs is shown in Table 2.
The octal code is also shown for reference. The normal technique
for cascading the ALU of several devices is in a lookahead carry
mode. Carry generate, ??,and carry propagate, p,are outputs of
the device for use with a carry-lookahead generator such as the

Table 1 ALU Source Operand Control

ALU source
Microcode operands

Octal
1, I, lo code R S

L L L 0 A Q
L L H 1 A B
L H L 2 O Q
L H H 3 O B
H L L 4 O A
H L H 5 D A
H H L 6 D Q
H H H 7 D O

I I

I

I

d, E
E

.-P
-0
Y u

E - =0

172 Part 2 I Regions of Computer Space

Microcode

Octal
I , I , I , code

L L L 0
L L H 1
L H L 2
L H H 3
H L L 4
H L H 5
H H L 6
H H H 7

Am2902 (' 182). A carry-out,

ALU
function Symbol

R plus s R + S
S minus R S - R
R minus S R - S
R O R S R V S
R AND S- R A S
R AND S R A S
R EX-OR S X S
R EX-NOR S R V S

Cn+4, is also generated and is

Section 1 I Microprogram-Based Processors

(OVR) is used to flag arithmetic operations that exceed the
available 2's complement number range. The overflow output
(OVR) is HIGH when overflow exists; that is, when Cn+3and Cn+4
are not the same polarity.

The ALU data output is routed to several destinations. It can be
a data output of the device and it can also be stored in the RAM or
the Q register. Eight possible combinations of ALU destination
functions are available as defined by the 16, 17, and Is microinstruc-
tion inputs. These combinations are shown in Table 3.

The 4-bit data output field (Y) features three-state outputs and
can be directly bus-organized. An output control (m)is used to
enable the three-state outputs. When is HIGH, the Y outputs
are in the high-impedance state.

A two-input multiplexer is also used at the data output such that
either the A port of the RAM or the ALU outputs (F)are selected
at the device Y outputs. This selection is controlled by the Is, 17,
and Is microinstruction inputs. Refer to Table 3 for the selected
output for each microinstruction code combination.

As was discussed previously, the RAM inputs are driven from a
three-input multiplexer. This allows the ALU outputs to be
entered non-shifted, shifted up one position (multiplied by 2), or
shifted down one position (divided by 2). The shifter has two
ports; one is labeled RAM0 and the other is labeled RAM3. Both of
these ports consist of a buffer-driver with a three-state output and
an input to the multiplexer. Thus, in the shift-up mode, the
RAh& buffer is enabled and the RAM0 multiplexer input is

R A M Q
shifter shifter

Y

available as an output for use as the carry flag in a status register.
Both carry-in (C,) and carry-out (Cn+4)are active HIGH.

The ALU has three other status-oriented outputs. These are
Fa, F = 0, and overflow (OVR). The F3 output is the most
significant (sign) bit of the ALU and can be used to determine
positive or negative results without enabling the three-state data
outputs. F3 is non-inverted with respect to the sign bit output Ya.
The F = 0 output is used for zero detect. It is an open-collector
output and can be wire ORed between microprocessor slices. F =
0 is HIGH when all F outputs are LOW. The overflow output

R A M Q-regis ter
Microcode function function

Octal
I , I , I , Code Shift Load Shift Load output RAM, , RAM, Q,, Q.?

L L L I O I X None I None F + Q I F 1 X I X 1 X X

L L H 1 X None X None F X X x x

L H L 2 None F- B X None A X X x x

L H H I 3 I None F A B I X None I F 1 X I X I X X

H L L 1 4 I Down F /2+B I Down Q/2-+Q I F I F, I IN, I Q, IN,

H L H I 5 I Down F/2-+B I X None I F I F, I IN3 I Q, X

H H L 6 Up 2F-B Up 2 Q - Q F IN0 F, IN, Q 3

H H H 7 Up 2F-B X None F IN, F, X Qa

X-Don't care. Electrically, the shift pin is a TTL input internally connected to a three-state output which is in the high impedance state

8-Register Addressed by B inputs.

Up is toward MSB. Down is toward LSB.

Chapter 13 1 Bit-Sliced Microprocessor of the Am2900 Family: The Am2901/2909 173

enabled. Likewise, in the shift-down mode, the RAM0 buffer and
RAM3 input are enabled. In the no-shift mode, both buffers are in
the high-impedance state and the multiplexer inputs are not
selected. This shifter is controlled from the IS, I,, and 18

microinstruction inputs as defined in Table 3.
Similarly, the Q register is driven from a three-input multiplex-

er. In the no-shdt mode, the multiplexer enters the ALU data into
the Q register. In either the shift-up or shift-down mode, the
multiplexer selects the Q register data appropriately shifted up or
down. The Q shdter also has two ports; one is labeled QOand the
other is 43.The operation of these two ports is similar to the RAM
shifter and is also controlled from Ig,I7, and Is as shown in Table 3.

The clock input to the Am2901 controls the RAM, the Q
register, and the A and B data latches. When enabled, data is
clocked into the Q register on the LOW-to-HIGH transition of the
clock. When the clock input is HIGH, the A and B latches are
open and will pass whatever data is present at the RAM outputs.
When the clock input is LOW, the latches are closed and will
retain the last data entered. If the RAM E N is enabled, new data
will be written into the RAM file (word) defined by the B address
field when the clock input is LOW.

There are eight source operand pairs available to the ALU as
selected by the 10,11, and 1 2 instruction input;. The ALU can

Table 4 Source Operand and ALU Function Matrix

perform eight functions-five logic and three arithmetic. The Is,
14, and I5 instruction inputs control this function selection. The
carry input, C,, also affects the ALU results when in the arithmetic
mode. The C, input has no effect in the logic mode. When I0
through 1 5 and C, are viewed together, the matrix of Table 4
results. This matrix fully defines the ALUhource operand function
for each state.

The ALU functions can also be examined on a "task" basis, i.e.,
add, subtract, AND, OR, etc. In the arithmetic mode, the carry
will affect the function performed; while in the logic mode, the
carry will have no bearing on the ALU output. Table 5 defines the
various logic operations that the Am2901 can perform, and Table 6
shows the arithmetic functions of the device. Both carry-in LOW
(C, = 0) and carry-in HIGH (C, = 1) are defined in these
operations.

Logic Functions for G, P,G+*,and OVR
The four signals, G, P, Cn+4,and OVR are designed to indicate
carry and overflow conditions when the Am2901 is in the add or
subtract mode. Table 7 indicates the logic equations for these four
signals for each of the eight ALU functions. The R and S inputs are
the two inputs selected according to Table 1.

0

1

C"= L
R plus S1 C , = H

c, = L
S minus R

I C . = H

1
I

A + Q

A + Q + 1

Q - A - 1

Q - A

1
I

A + B

A + B + l

B - A - 1

B - A

1 Q

Q + l

Q - 1

Q

I
1

B

B + l

B - 1

B

1
I

A

A + l

A - 1

A

1
I

D + A

D + A + 1

A - D - 1

A - D

1
1

D + Q

D + Q + l

Q - D - 1

Q - D

1
1

D

D + l

- D - 1

-D

4

5

6

7

R AND S

R AND S

R EX-OR S

R EX-NOR S

-
A A Q

A A Q

A V Q

Alf-Q

A A B
-
A A B

A$ iB

A Y B
--

0

Q

Q

CT

0

B

B

0
-

0

A

A

A

D A A
-D A A

D ++A

D +A

D A Q
-D A Q

D W Q

D+Q

0

0

D

D
-

174 Part 2 I Regions of Computer Space 	 Section 1 1 Microprogram-Based Processors

Table 5 ALU Logic Mode Functions (C, 	 through the B port and into which new data can be
Irrelevant) written when the clock goes LOW.

I04 The nine instruction control lines to the Am2901,
Octal used to determine what data sources will be applied

I 5 A . b 1* ,1,0 Group Function to the ALU (Io,I,~),what functions the ALU will
4 0 A A Q perform (Is,d,s), and what data is to be deposited in
4 1 A A B the Q register or the register stack (16,7,8).

4 5 AND D A A A shift line at the MSB of the Q register (Q3) and the
4 6 D A Q register stack (RAMS). Electrically these lines are

three-state outputs connected to TTL inputs internal
3 0 A v Q to the Am2901. When the destination code on Ic,7,8
3 1 A ~ B indicates an up shift (octal 6 or 7) , the three-state
3 5 OR

D V A outputs are enabled and the MSB of the Q register is
3 6 D v Q available on the Q3 pin and the MSB of the ALU

output is available on the RAM3 pin. Otherwise, the
6 0 A lh iQ three-state outputs are OFF (high-impedance) and
6 1

EX-OR
A y B the pins are electrically LS-TTL inputs. When the

6 5 DHA destination code calls for a down shift, the pins are
6 6 D& used as the data inputs to the MSB of the Q register
7 0 AMQ (octal 4)and RAM (octal 4 or 5).
7 1 A- 0 0 , Shift lines like Q 3 and M M 3 , but at the LSB of the Q
7 5 EX-NOR

D w A RAM0 register and RAM. These pins are tied to the Q3 and
7 6 D+Q RAM3 pins of the adjacent device to transfer data

between devices for up and down shifts of the Q
7 2 a- register and ALU data.
7 3 INVERT B Direct data inputs. A 4-bit data field which may be -
7 4 A selected as one of the ALU data sources for entering -
7 7 D data into the Am2901. Do is the LSB.

The four data outputs of the Am2901. These are
6 2 	 Q
6 3 B three-state output lines. When enabled, they display

PASS either the four outputs of the ALU or the data on the 6 4 	 A A port of the register stack, as determined by the 6 7 	 D
- destination code I6,7,8. -

3 2 Q OE Output enable.When OE is HIGH, the Y outputs
3 3 B are OFF; when OE is LOW, the Y outputs are active
3 4 PASS A (HIGH or LOW). -
3 7 D 	 P, E The carry generate and propagate outputs of the

Am2901’s ALU. These signals are used with the
4 2 0 Am2902 for carry-lookahead. See Table 7 for the
4 3 “ZERO” 0 logic equations.
4 4 0 OVR Overflow. This pin is logically the Exclusive-OR of
4 7 0 the carry-in and carry-out of the MSB of the ALU. At
5 0

-
A A Q the most significant end of the word, this pin
-

5 1 A A B-
indicates that the result of an arithmetic 2’s comple-

5 5 MASK D A A ment operation has overflowed into the sign bit. See
5 6 B A Q Table 7 for logic equation.

F = O 	 This is an open-collector output which goes HIGH
(OFF) if the four ALU outputs FMare all LOW. In
positive logic, it indicates the result of an ALUPin Definitions 	 operation is 0.

AM 	 The four address inputs to the register stack used to Cn The carry-in to the Am2901’s ALU.
select one register whose contents are displayed Cn+4 The carry-out of the Am2901’s ALU. See Table 7 for
through the A port. equations.

B a 	 The four address inputs to the register stack used to CP The clock to the Am2901. The Q register and
select one register whose contents are displayed register stack outputs change on the clock LOW-to-

1

2

3

4

5

6

Table 6 ALU Arithmetic Mode Functions

cn= 0 (LOW) C , = 1 (HIGH)
Octal

I, “,I, Group Function Group Function

0 0 A + Q A + Q + 1

0 1 ADD A + B ADD plus A + B + 1

0 5 D + A one D + A + 1

0 6 D + Q D + Q + 1

0 2 Q Q + l

0 3 PASS B increment B + l

0 4 A A + l

0 7 D D + 1


~~~ 

1 2  Q - 1  Q 

1 3  Decrement B - 1  PASS B 

1 4  A - 1  A 

2 7  D - 1  D 


2 2  -Q - 1 -Q 

2 3  1’s complement -B - 1 2’s complement -B 

2 4  -A - 1 (negate) -A 

1 7  -D - 1 -D 


1 0  Q - A - 1  Q - A  

1 1  Subtract B - A - 1  Subtract B - A  

1 5  (l’scomplement) A - D - 1 (2’scomplement) A - D 

1 6  Q - D - 1  Q - D  

2 0  A - Q - 1  A - Q  

2 1  A - B - 1  A - B  

2 5  D - A - 1  D - A  

2 6  D - Q - 1  D - Q  


Table 7 

~~~ - -
15,4,3 Function P G Cn+, OVR

0 R + S P3PzPiPa G3 + P3G2 +P,PzGi + PJ’zPiGo C4 c3 v c4
S - R Same as R + S equations, but substitute %for R, in definitions f z

R - S Same as R + S equations, but substitute s f o r S, in definitions >

R V S LOW p3pZp1p0 P3PzPiPa + Cn p3p’2p1p0 + cn

R A S LOW G, + G, + G, + Go G3 + G, + Gj + Go + C, , G3 + Gz + Gi + Go + Cn
-
R A S LOW t Same as R A S equations, but substitute K for Ri in definitions -
R - H S Same as R v S, but substitute K f o r Ri in definitions z

176 Part 2 I Regions of Computer Space

HIGH transition. The clock LOW time is internally
the write enable to the 16 x 4 RAM which comprises
the “master” latches of the register stack. While the
clock is LOW, the “slave” latches on the RAM
outputs are closed, storing the data previously on the
RAM outputs. This allows synchronous master-slave
operation of the register stack.

Expansion of the Am2901

Any number ofAm2901’s can be interconnected to form CPU’s of
12, 16, 24, 38, or more bits, in 4-bit increments. Figure 4
illustrates the interconnection of three Am2901’s to form a 12-bit
CPU, using ripple carry. Figure 5 illustrates a 16-bit CPU using
carry lookahead, and Fig. 6 is the general carry lookahead scheme
for long words.

With the exception of the carry interconnection, all expansion
schemes are the same. The 43 and RAMS pins are bidirectional
leftiright shift lines at the MSB of the device. For all devices
except the most significant, these lines are connected to the Qo
and RAM0 pins of the adjacent more significant device. These
connections allow the Q registers of all Am2901’s to be shifted left
or right as a contiguous n-bit register, and also allow the ALU
output data to be shifted left or right as a contiguous n-bit word
prior to storage in the RAM. At the LSB and MSB of the CPU, the
shift pins should be connected to three-state multiplexers which
can be controlled by the microcode to select the appropriate input
signals to the shift inputs. (See Fig. 7 .)

The open-collector F = 0 outputs of all the Am2901’s are
connected together and to a pull-up resistor. This line will go
HIGH if and only if the output of the ALU contains all zeros. Most
systems will use this line as the Z (zero) bit of the processor status
word.

The overflow and F3 pins are generally used only at the most
significant end of the array, and are meaningful only when 2’s
complement signed arithmetic is used. The overflow pin is the
Exclusive-OR of the carry-in and carry-out of the sign bit (MSB).
It will go HIGH when the result of an arithmetic operation is a

04-7

Section 1 1 Microprogram-Based Processors

number requiring more bits than are available, causing the sign
bit to be erroneous. This is the overflow (V) bit of the processor
status word. The FBpin is the MSB of the ALU output. It is the
sign of the result in 2’s complement notation, and should be used
as the negative (N) bit of the processor status word.

The carry-out from the most significant Am2901 (C,,, pin) is the
carry-out from the array, and is used as the carry (C) bit of the
processor status word.

Carry interconnections between devices may use either ripple
carry or carry lookahead. For ripple carry, the carry-out (C,+,) of
each device is connected to the carry-in (C,) of the next more
significant device. Carry lookahead uses the Am2901 lookahead
carry generator. The scheme is identical with that used with the
74181174182. Figures 5 and 6 illustrate single- and multiple-level
lookahead.

Shift VO Lines at the End of the Array

The Q-register and RAM left/right shift data transfers occur
between devices over bidirectional lines. At the ends of the array,
three-state multiplexers are used to select what the new inputs to
the registers should be during shifting. Figure 7 shows two
Am25LS253 dual four-input multiplexers connected to provide
four shift modes. Instruction bit 1 7 (from the Am2901) is used to
select whether the left-shift multiplexer or the right-shift multi-
plexer is active. (See Table 8.) The four shift modes in this
example are:

Zero 	 A LOW is shifted into the MSB of the RAM on a
down shift. If the Q register is also shifted, then a
LOW is deposited in the Q-register MSB. If the
RAM or both registers are shifted up, LOWS are
placed in the LSBs.

One 	 Same as zero, but a HIGH level is deposited in
the LSB or MSB.

Rotate 	 A single-precision rotate. The RAM MSB shifts
into the LSB on a right shift and the LSB shifts
into the MSB on a left shift. The Q register, if
shifted, will rotate in the same manner.

08-11

r
0, D 4 - 0 , D a, -a,1i/o
RAM0 R U 5 RAM0 RAM3 -RAM11 110

Am2801 h 2 8 0 1
C” cW4 C” C W 4 - C- OVR - OVR -v

F3 -	 - - F3 -N
F3 - F-0

OVR 	 -2F-0- c 6E V F-0 - OE V

RL
’0-3 y4-7 vs-11 4 m

2 	 M V C C

WTPUT --
CONTROL

Fig. 4. Three Am2901’s used to construct 12-bit CPU with ripple carry. Corresponding A, B, and 1 pins on all devices are connected
together.

Chapter 13 I Bit-Sliced Microprocessor of the Am2900 Family: The Am2901/2909 177

00 110- a, 0 3 00 O1 QO
RAMO110- RAM0 R*M3 R&M, RAM3 RAMD RAM3 - RAMO

G + G- G-

c" Am2001 c, AmZ901CARRY IN -C C, c.*. C"*.

PO--

- C"+4

P + - - C" Amno' c"+4
P

E lc
OVR -- OVR - OVR - OVR -V

5 5 - '1 - -N
1 0 7 F O F-0 1 0--. Z

v U U U

'0-3 '8-11 '12-15

47011
IIvcc
c

Fig. 5. Four Am2901's in a 16-bit CPU using the Am2902 for carry lookahead.

~~

Am 2901 I

I
/ \

I I I -
T O C ~ ~ T O C ~ ~

I

-C48

I

Fig.6. Carry lookahead scheme for 48-bit CPU using 12 Am2901's. The carry-out flag (C48) should be taken from the
lower Am2902 rather than the fight-most Am2901 for higher speed.

178 Part 2 1 Regions of Computer Space 	 Section 1 1 Microprogram-BasedProcessors

LSB
MSB

h l I dP% 	 23

10 	 A B 2G 1C A B 2G

I;
1co

- "0 0" :

- RAM0 RAM" i

zc3 --
Am290f

ARRAY
 --

MSB Fn
(SIGN BIT)

Fig. 7. Three-state multiplexers-usedon shift 110 lines.

Arithmetic 	 A double-length arithmetic shift if Q is also
shifted. On an up shift a zero is loaded into the
Q-register LSB and the Q-register MSB is loaded
into the RAM LSB. On a down shift, the RAM
LSB is loaded into the Q-register MSB and the
ALU output MSB (Fn,the sign bit) is loaded into
the RAM MSB. (This same bit will also be in the
next less significant RAM bit.)

Hardware Multip1ication
Figure 8 illustrates the interconnections for a hardware multipli-
cation using the Am2901. The system shown uses two devices for
8 x 8 multiplication, but the expansion to more bits is simple-
the significant connections are at the LSB and MSB only.

The basic technique used is the "add and shift" algorithm. One
clock cycle is required for each bit of the multiplier. On each
cycle, the LSB of the multiplier is examined; if it is a 1, then the
multiplicand is added to the partial product to generate a new
partial product. The partial product is then shifted one place
toward the LSB, and the multiplier is also shifted one place
toward the LSB. The old LSB of the multiplier is discarded. The

Table 8

Code 	 Source of new data.I

1, S i S o Q o Q n RAM0 R A M ,

H L L 0 Qn-I 0 F"-1
H L H 1 Qn-1 1 F"-l
H H L Qn Q,-7 F" F"-l
H H H 0 Qn-i Q" F n - I

L L L Q, 0 F, 0

L L H Q, 1 F, 1

L H L Qi Qo Fi Fo

cycle is then repeated on the new LSB of the multiplier available
at Qo.

The multiplier is in the Am2901 Q register. The multiplicand is
in one of the registers in the register stack, %. The product will be
developed in another of the registers in the stack, %.

The A address inputs are used to address the multiplicand in %,
and the B address inputs are used to address the partial product in
Rb. On each cycle, R, is conditionally added to &, depending on
the LSB of Q as read from the Qooutput, and both the Q and the
ALU output are shifted left one place. The instruction lines to the
Am2901 on every cycle will be:

I8,7,6= 4 (shift register stack input and Q register left)
I5,4,3 = 0 (Add)
IZ , , ,~= 1or 3 (select A, B or 0, B as ALU sources)

Figure 8 shows the connections for multiplication. The circled
numbers refer to the paragraphs below.

1 	The adjacent pins of the Q register and RAM shifters are
connected together so that the Q registers of both (or all)
Am2901's shift left or right as a unit. Similarly, the entire

I

shift T y p e

UP Zero
[Right) One

Rotate
Arithmetic

Down Zero
(Left) One

Rotate
L H H Ql Fo Fl RAM, = RAM,-, = F, 	 Arithmetic

Chapter 13 I Bit-Sliced Microprocessor of the Am2900 Family: The Am290112909 179

flow occurs during an addition or subtraction, the O\'R flag
will go HIGH and F3 is not the sign of the result. The sign
of the result must then be the complement of FB. The
correct sign bit to shift into the MSB of the partial product
is therefore & @ OVR; that is, FB if overflow has not
occurred and FA if overflow has occurred. On the last cycle,
when the MSB of the multiplier is examined, a conditional
subtraction rather than addition should be performed,
because the sign bit of the multiplier carries negative
rather than positive arithmetic weight.

Fig. 8. Interconnection for dedicated multiplication (8 by 8 bit)

(corresponding A, B, and I connected together). y = -y.p + yi&-l + ... + y02. o

8-bit (or more) ALU output can be shifted as a unit prior to This scheme will produce a correct 2's complement
storage in the register stack. product for all multiplicands and multipliers in 2's comple-

ment notation.
2 	 The shift output at the LSB of the Q register determines

whether the ALU source operands will be -4and B (add

multiplicand to partial product) or 0 and B (add nothing to

Figure 9 is a table showing the input states of the Am2901's for

partial product). Instruction bit 11 can select between A, B each step of a signed 2's complement multiplication.

or 0, B as the source operands; it can be driven directly

from the complement of the LSB of the multiplier. Am2909 Microprogram Sequencer

3 	As the new partial product appears at the input to the

register stack, it is shifted left by the RAM shifter. The new General Description

LSB of the partial product, which is complete and will not

be affected by future operations, is available on the RAM0 The -4m2909 is a 4-bit-wide address controller intended for
pin. This signal is returned to the MSB of the Q register. sequencing through a series of microinstructions contained in a
On each cycle then, the just-completed LSB of the product ROM or PROM. Two Am2909's may be interconnected to
is deposited in the MSB of the Q register; the Q register generate an 8-bit address (256 words), and three may be used to
fills with the least significant half of the product. generate a 12-bit address (4096 words). Figure 10 is a block

4 	 As the ALU output is shifted down on each cycle, the sign diagram of the Am2909.
bit of the new partial product should be inserted in the The Am2909 can select an address from any of four sources.
RAM MSB shift input. The F3 flag will be the correct sign of They are: (1)a set of external direct inputs (D); (2) external data
the partial product unless overflow has occurred. If over- from the R inputs, stored in an internal register; (3)a 4-word-deep

Initial Register States Am2901 Microcode Final Register States
R R

Pin States (Octal) 	 I Jump
S.F- D Description Repeat

A I 6 [l8761 1543 I 1210 1 C, I 0, 1 Q3 I R A M , 1 RAM3 1 To I It

O V A Q M o v e Multiplier to Q - 0 X 0 3 4 x x x X X
1O A 6 B Clear R 3 - x 3 2 4 3 x x x X X

~

(o+B)'2 R Cond. Add & Shlft n-1 1 3 4 1 o r 3 0 - RAM0 - F3VOVR
IA+E)/2 	 I,. =QnLO-
(B-o'/2 B Cond. Subt. &Shift - 1 3 4 1 lac1 - RAM0 - FJWOVR
(E-AI/2 	 I, =%Lo
O V Q B M o v e LSH Prod. t o R 2 - X 2 2 3 2 X X x X X

X = Don't Care S Source F = Funcrcon 0 = Destination

Fig. 9

180 Part 2 1 Regions of Computer Space

pushipop stack; or (4)a program counter register (which usually
contains the last address plus one). The pushipop stack includes
certain control lines so that it can efficiently execute nested
subroutine linkages. Each of the four outputs can be ORed with an
external input for conditional skip or branch instructions, and a
separate line forces the outputs to all zeros. The outputs are
three-state.

Architecture of theAm2909

A detailed logic diagram is shown in Fig. 11.The device contains a
four-input multiplexer that is used to select either the address
register, direct inputs, microprogram counter, or file as the source
of the next microinstruction address. This multiplexer is con-
trolled by the So and S1 inputs.

The address register consists of four D-type, edge-triggered
flip-flops with a common clock enable. When the address register
enable is LOW, new data is entered into the register on the clock
LOW-to-HIGH transition. The address register is available at the
multiplexer as a source for the next microinstruction address. The
direct input is a 4-bit field of inputs to the multiplexer and can be
selected as the next microinstruction address.

The Am2909 contains a microprogram counter (pPC) that is
composed of a 4-bit incrementer followed by a 4-bit register. The

MICROPROGRAM SEQUENCER
BLOCK DIAGRAM

Fig. 10. Microprogram sequencer block diagram.

Section 1 I Microprogram-Based Processors

incrementer has carry-in (C,) and carry-out (C,+3 such that
cascading to larger word lengths is straightforward. The @C can
be used in either of two ways. When the least significant
carry-in to the increment is HIGH, the microprogram register is
loaded on the next clock cycle with the current Y output word
plus one (Y + 1 + pPC). Thus sequential microinstructions
can be executed. If this least significant Co is LOW, the
incrementer passes the Y output word unmodified and the micro-
program register is loaded with the same Y word on the next
cycle (Y --+ pPC). Thus, the same microinstruction can be
executed any number of times by using the least significant
C, as the control.

The last source available at the multiplexer input is the 4 x 4
file (stack). The file is used to provide return address linkage when
executing microsubroutines. The file contains a built-in stack
pointer (SP) which always points to the last file word written. This
allows stack reference operations (looping) to be performed
without a push or pop.

The stack pointer operates as an upidown counter with separate
pushipop and file enable inputs. When the file enable input is
LOW and the push/pop input is HIGH, the PLJSH operation is
enabled. This causes the stack pointer to increment and the file to
be written with the required return linkage-the next microin-
struction address following the subroutine jump which initiated
the PUSH.

If the file enable input is LOW and the pushipop control is
LOW, a POP operation occurs. This implies the usage of the
return linkage during this cycle and thus a return from subrou-
tine. The next LOW-to-HIGH clock transition causes the stack
pointer to decrement. If the file enable is HIGH, no action is
taken by the stack pointer regardless of any other input.

The stack pointer linkage is such that any combination of
pushes, pops, and stack references can be achieved. One microin-
struction subroutines can be performed. Since the stack is 4words
deep, up to four microsubroutines can be nested.

The ZERO input is used to force the four outputs to the binary
zero state. When the ZERO input is LOW, all Y outputs are LOW
regardless of any other inputs (except @). Each Y output bit also
has a separate OR input such that a conditional logic 1 can be
forced at each Y output. This allows jumping to different
microinstructions on programmed conditions.

The Am2909 features three-state Y outputs. These can be
particularly useful in military designs requiring external ground
support equipment (GSE) to provide automatic checkout of the
microprocessor. The internal control can be placed in the
high-impedance state, and preprogrammed sequences of micro-
instructions can be executed via external access to the control
ROM/PROM.

Definition of Terms

A set of symbols is used to represent various internal and external
registers and signals used with the Am2909. Since its principal

I I I

PI

2

182 Part 2 1 Regions of Computer Space

application is as a controller for a microprogram store, it is
necessary to define some signals associated with the microcode
itself. Figure 12 illustrates the basic interconnection of Am2909,
memory, and microinstruction register. The definitions here
apply to this architecture.

Inputs to Am8909

-s1, so Control lines for address source selection.
-FE, PUP Control lines for pushipop stack.
RE Enable line for internal address register.
OR, Logic OR inputs on each address output line.
-ZERO Logic AND input on t h e s t p u t lines.
OE Output enable. When OE is HIGH, the Y

outputs are OFF (high impedance).
Cn Carry-in to the incrementer.
R, Inputs to the internal address register.
Di Direct inputs to the multiplexer.
CP Clock input to the AR and kPC register and

push-pop stack.

Outputs from the Am2909

Yi Address outputs from Am2909 (address inputs
to control memory).

Cnt4 Carry-out from the incrementer.

Internal Signals

FPC Contents of the microprogram counter.

REG Contents of the register.

STKO-STK3 Contents of the pushipop stack. By defini-

tion, the word in the 4 x 4 file addressed by
the stack pointer is STKO. Conceptually data
is pushed into the stack at STKO; a subse-
quent push moves STKO to STK1; a pop implies
STK3 3 STKP + STKl + STKO. Physically,
only the stack pointer changes when a push
or pop is performed. The data does not move.
110 occurs at STKO.

SP Contents of the stack pointer.

External to the Am2909

A Address to the control memory.

I@) Instruction in control memory at address A.

pWR Contents of the microword register (at output of

control memory). The microword register con-
tains the instruction currently being executed.

TI1 Time period (cycle) n.

Operation of the Am2909

Figure 13 lists the select codes for the multiplexer. The two bits
applied from the microword register (and additional combination-
al logic for branching) determine which data source contains the

Section 1 1 Microprogram-Based Processors

K

+S,. FE. PUP,

SEOUENCE LOGIC MICROWORDI

TO ArnZgOl

Fig. 12. Microprogram sequencer control.

address for the next microinstruction. The contents of the selected
source will appear on the Y outputs. Figure 13also shows the truth
table for the output control and for the control of the pushipop
stack. Table 9 shows in detail the effect of So, S1, %%,and PUP on
the ,4m2909. These four signals define what address appears on
the Y outputs and what the state of all the internal registers will be
following the clock LOW-to-HIGH edge. In this illustration, the
microprogram counter is assumed to contain initially some word J,
the address register some word K, and the four words in the
push/pop stack R,through &.

Figure 14 illustrates the execution of a subroutine using the
Am2909. The configuration of Fig. 11 is assumed. The instruc-
tion being executed at any given time is the one contained in the
microword register (pWR). The contents of the pWR also control
(indirectly, perhaps) the four signals So, S1, E,and PUP. The
starting address of the subroutine is applied to the D inputs of the
Am2909 at the appropriate time.

In the columns on the left is the sequence of microinstructions
to be executed. At address J + 2, the sequence control portion of
the microinstruction contains the command “Jump to subroutine
at A.” At the time TZ, this is in the kWR, and the Am2909 inputs
are set up to execute the jump and save the return address. The
subroutine address A is applied to the D inputs from the yWR and
appears on the Y outputs. The first instruction of the subroutine,
I@), is accessed and is at the inputs ofthe pWR. On the next clock
transition, I(A) is loaded into the k\J’R for execution, and the
return address J + 3 is pushed onto the stack. The return
instruction is executed at Tj.

Address Selection Output Control

SOURCE FOR Y OUTPUTS SYMBOL

H
H

L
H

Microprogram Counter
Register
Push-Pop stack
Direct inputs

PPC
REG

STKO
Di

-

H
L

H
H

L
L

H
Source selected by SO S1

I PUP I PUSH-POPSTACKCHANGE I

I
H = High

L = LOW

X = Don’t Care

H
L

L

X
H

L

No change
Increment stack pointer, then
push current PC onto STKO

Pop stack (decrement stack pointer)

Fig. 13

Cycle

N
N + l

Table 9

S , S,FE, PUP @C REG S T K O S T K 1 S T B

0 0 0 0 J K Ra Rb Rc
. J + l K Rb Rc Rd

Output and Internal Next-Cycle Register States for Am2909

STK3

Rd
Ra

YooT

. . .

Comment

Popstack

Principal

End
loop

Use

N
N + l

N + l

0 0 0 1
.

. 1
J

J + l

J:l I
K
K

K
K 1

Ra
J

:: 1
Rb
Ra

Rb
Rb I

Rc
Rb

Rc
RC 1

Rd
Rc

Rd
Rd

. . .

J . . . 1
Push pPC

Continue

Set up
loop

Continue

N
N + 1

0 1 0 0
.

J
K + l

K
K

Ra
Rb

Rb
Rc

Rc
Rd

Rd
Ra

K
. . .

Pop stack;
Use AR for address

End
loop

N
N + I

0 1 0 1
.

J
K + l

K
K

Ra
J

Rb
Ra

Rc
Rb

Rd
Rc

K
. . .

Push pPC;
Jump to address in AR

JSR AR

N
N + l

0 1 1 x
.

J
K + l

K
K

Ra
Ra

Rb
Rb

Rc
Rc

Rd
Rd . . . Jump to address in AR JMP AR

N
N + l

N
N + l

N
N + l

N + l
I

1 0 0 0
.

1 0 0 1
.

1 1 0 0
.

l 0 l X
. 1

J
Ra + 1

J
Ra + 1

J
D + l

J
R a + 1 I

K
K

K
K

K
K

K
K I

Ra
Rb

Ra
J

Ra
Rb

Ra
Ra 1

Rb
Rc

Rb
Ra

Rb
Rc

Rb
Rb I

Rc
Rd

Rc
Rb

Rc
Rd

Rc
Rc I

Rd
Ra

Rd
RC

Rd
Ra

Rd
Rd

Ra
. . .

Ra
. . .

D
. . .

Ra . . . 1

Jump to address in STKO;
Pop stack

Jump to address in STKO;
Push pPC

Pop stack;
Jump to address on D

Jump to address in STKO

RTS

End
loop

Stack ref

N
N + l

N + l

1 1 0 1
.
l l l X
.

J
D + l

1 D ; l I

K
K

K
K

Ra
J

Ra
I R a

Rb
Ra

Rb
1 R b

Rc
Rb

Rc
I R c

Rd
Rc

Rd
I R d

D
. . .

. . . 1
Jump to address on 0;
Push pPC

Jump to address on D 1
JSR

JMPD

X = Don’t care, 0 = LOW, 1 = HIGH, Assume C. = HIGH

Note: STKO is the location addressed by the stack pointer.

183

184 Part 2 1 Regions of Computer Space 	 Section 1 I Microprogram-Based Processors

CON 30L MEMORY
Execute Cvcle T5 T6

Execute
Microprogram Clock

Cycle
4ddress Signals -	 i

-
7,
-

J-1 	 0 0 3 2 0

J H H L L H

J+ 1 X X H L X

J+2 X X A X X

J+3
J+4 PPC A+3
- STKO 	 J+3
-	 Internal STK, -
-	 Registers -STK2

-STK3
-	 I
A 	 Am2909 J+3 J+4

-	 !-A+ 1 	 output

A+2
-	 I(J+3l I(J+4)
-
-
-	 Contents

of pWR

- RTS
-	 being
-	 executed)

-

Fig. 14. Subroutine execution.

APPENDIX 1 AM2909 ISP DESCRIPTION

nM2909 :=
b e g i n

s t a r t (i a a i n) : = ! i n i t i a l i z a t i o n
! ISPS d e s c r i p t i o n O f AM0 AM2909 b i t S l i c e m ~ c r o p r o g r a ms e q u e n c e r . b e g i n

01: = F E 0:i

! l h e AM2909 i s ?. 4 b i t S l i c e (e x p a n d a b l e t o 4.n b i t s) a d d r e s s C O n t r O l l e r llr 2 LCR0 = 1 n e x t
! The c o n t r o l l e p i s d e s i g n e d t o be u s e d w i t h t h e AM2901 m i C r o p r o C e S S O r
! s l i c e a n d e x t e r n a l memory. run : = ! B a s i c o p e r a t i o n l o o p

b e g i n
! S i m u l a t i o n O f t h e AMP909 a l o n e i s p o s s i b l e . b u t e m u l a t i o n o f a n y IF n o t F E = > ! PePfor'm a n y s t a c k o p e r a t i o n

Y () n e x t 	 I P u t O u t S e l e c t e d a d d r e s s

! c o m p u t e r s y s t e m s requ11'es t l i a t t h i s d i r i p t i o n b e j o i n e d w i t h
b a n i "! t h e r(M2901 d e s c r i p t i o n . 	 ""I...
IJCC0I)E PUP = >

.*PC .State.. 	 b e g i n
' o \ p o p . = (S P = SP - 1) .

ul'C(3: 0) := i t ,c r<3:0>, M i c rop r o g r'am c o u n t e I ' l \ p u s h . = (S P = SP + 1 n e x t

Rl :G<3:0>. Ad(1ress r e g i s t e r S l n c K j s P J = "PC)

S I ' < i :0). St.aCk p o i n t e r end

STACK[O:3]<3:0>. S t a c k r e g i s t e r f i l e e n d n e x t

I f inat RE = > R E G + R : ! L o a d r e g i s t e r if e n a b l e d
* * E x t e r n a l . S t a t e * * i n c ~= uPc + Cn n e x t I I n c r e m e n t p c

IRKS TAR^ run

C I I O . C a r r y i n e n d

C n 4 0 : = i n c r < 4 > C a v r y o u t e n d .

D < 3 : 0 > . 	 01 r e c t i n p u t s * * A d d r e s s .Source . S e l e c t i o n * * { u s)
F C O . S t a c k r e g i s t e r f ? l e e n a b l e

O E O . O u t p u t e n a b l e c o n t r o l l i n 0

OR.<3:0>. L o g i c a l OH i n p u t s

I 'UPO, P u s h / p o p c o i i t r o l I i n e

H<3:0). A d d r e s s i e g i s t e r i n p u t s

H E O . R e g i s t e r e n a b l e c o n t r o l l i n e

s<1 :a>, n d d w s s s e l e c t c o n t r o l l i n e s

Z E I X < > . Z e ~ oo u t c o n t r o l l i n e

..lmplementation.Variables** 	 b e g i n
' 0 0 : = Y = uPC = uPC O P O R . .
' 0 1 : = Y = uPC = REG o r OR, .i n c r < 4 : 0 > . ' 1 0 : = Y = uPC = S I A C K l S P l o r OR

m a c r o 2 : = ~ ' l l l l l , ! H i g h in lpedence c u l l s t a n t 	 ' 11 : = Y = UPC = D o r ?JR.-
end

e n d
e l i d .

e n $! End o f AM2909 d e s c r i p t i o n

Chapter 13 1 Bit-Sliced Microprocessor of the Am2900 Family: The Am2901/2909 185

APPENDIX 2 AM2901 ISP DESCRIPTION

A M 2 9 0 1 := d e s t i n a t i o n : = I D e s t i n a t i o n c a l c u l a t i o n

beg in b e g i n

UECODE deSt = >

! ISPS d e s c r i p t i o n o f t h e AM0 2 9 0 1 4 b i t s l i c e m ic rop rocesso r . b e g i n

U O := (Q = F; v = F) .

I Page 1 Con ta ins t h e d e c l a r a t i o n o f a l l a c t u a l and imp lemen ta t i on n i : = I V = F I

I v a r i a b l e s . 12 :: (Y = f) .

I Page 2 d e s c r i b e s t h e b a s i c i n s t r u c t i o n c y c l e and t h e source and #3 .: (Y =

I d e s t i n a t i o n access compu ta t i ons . n 4 (Y s r : RAM[B] B RAMO = RAM3 B F ;
: S

1 Page 3 d e f i n e s the a c t u a l i n s t r u c t i o n e x e c u t i o n p rocess . n5 := (Y = F ; RAM[B] B RAMO = RAM3 B f)

I Page 4 Conta ins r o u t i n e s t h a t a i d i n compu ta t i on o f t h e c a r r y genera te X6 : = (Y F F : RAM3 B RAM[B] = F @ RAMO:

! (G) . o ~ e r r l o ~ and c a r r y p ropoga te (P) . #7 :i(Y i F ; RAM3 I RAM[B] = F B RAMO)
(O V R) .

OUtPUtS. end

end.

* *PC.S ta te * *

Instruction.Execution(us)

R<3:0>. I R i n p u t s t o A L U

S<3:0). ! S i n p u t s t o A L U exec : =

F<3:0> := ALU<I:O>. I Ou tpu t f rom A L U b e g i n

Q<3:0), I Outpu t f r o m Q r e g i s t e r DECODE op =>

b e g i n

* *MP.S ta te * * no := (A L U R .t S: I R + S

P ((R o r S) neq(us) '1111);

R A M [0 : 1 5] < 3 : 0 > . I 16 X 4 b i t 2 p o r t RAM G g.compute(R. S):

A . L A T C H < J : O > . I A RAM p o r t l a t c h OVR A L U < 4 > xor A L U < I >) .

#1 : = (A L U . _
B . L A T C H < 3 : 0 > . ! B RAM p o r t l a t c h C - R . 1 9 - I)

P i:(n6i R) o r S) neq(us) ,1111):

G g ,co rnpu te ((no t R). S) :

DVR A L U < 4 > xor A L U < J > I .

A<3:0>. I A RAM p o r t i n p u t address 112 : = (A L U R - S: I R - S

8<3:0>. I B RAM p o r t i n p u t address P (R o r (n o t S) neq(us) '1111):

D<3:0) . I D i r e c t d a t a i n p u t s 	 G
Y (3 : 0) , 	 g.compute(R. (n o t s)) :

OVR A L U < 4 ? xor A L U < 3 >) .

OEO. c o n t r o l) #3 := (A L U R o r S: I R o r S
P O . P 0 :
G O .

OVR< > . Cn4 = OVR = (n o t G) o r C n) .

F E Q L O O , # 4 := (ALU = R and S: 1 R and S
C n O , I caPry i n P = n.

C n 4 0 : = A L U < 4 > . E = i i R and s) e q l j u s) * o o o o) n e x t

R A M O O . I L a w o r d e r s h i f t i n p u t l o u t p u t C n 4 = OVR = (n o t G) or Cn),

R A M S O . 1 Nigh o r d e r 5 h i f t i n p u t l o u t p u t 15 : = (A L U = ((n o t R) and S):

000. ! L o w o r d e r 0 s h i f t inoUt/OUtoUt 	 - n.D r 	 - u ,
0 3 0 . 	 ! High o r d e r - Q s h i f t i ; i p ~ t / o u i p u t G = (((n o t A) and 5) eq l {us) ' 0 0 0 a) next

Cn4 = OVR = (n o t GI o r Cnl.

* * l nS t ruc t i on .FoPmat * * # 6 : = (A L U = R x o r S; I R xor S

P = (((n o t R) and s) neq(us) ' 0 0 0 0) :
I c e : 0). I ! n r t r u c t i o n i n p u t s G = n o t g . compu te ((no t R) . S) :

s rc<2 :0> := I<2:0>. I Source operand f i e l d C n 4 = c 6 7 l n o t R . S I :
op<2:0> : = 1 < 5 : 3 > . I O p e r a t i o n f i e l d OVR = Ovr67(noC.R.'S)).
des t<2 :0> := i < 6 : 6 > . I D e s t i n a t i o n operand f i e l d #7 : = (A L U = R eqv S: I R sqv S

P = ((R and 5) neq(us) ' 0 0 0 0) ;..Implementation.Variables.. 	 G = n o t g.compute(R. S) :

Cn4 = c67(R, S) :

A L U < 4 : 0 > . ! A L U + c a r r y o u t p u t O V R = o v r 6 l (R . S))

end n e x t

cternp<3:0>. I Temporary f o r g e n e r a t i n g c a r r y FEQLO = (F eqv ' o o a o)

end,

macro z := 1'1111(I T r i s t a t e c o n s t a n t

** S e r v i c e . F a c i l i t i e s **(US)
.'Instruction.Cycle..(us)

g.cornpute(r .<3:0), s.<3:0>)0 : =

s ta r t (ma in) := I I n i t i a l i z a t i o n beg in

b e g i n g.compute = (((r . and s.) and (' I@(r .OR s.)<3:1>)

iOE OVR = FEQLO = Cn4 = 0 ; and ('llB(r. o r s.)<3:2>)
P = G = 1 n e x t and ('lllB(r. or s.)<3>))

r u n 	:= I Main i n s t r u c t i o n c y c l e end.
eq l (us } '0000)

b e g i n

soiree() n e x t 	 c 6 7 (r . < 3 : 0 > . s.<3:0>)<> : = I C a r r y f o r OP 6 and 7e x e c () n e x t beg in

d e s t i n a t i o n () n e x t c67 = n o t (((r . o r s.) eq l (us) '1111) and ((r . aod ?..)<3:1? neq(us) '000)

R E S l A R T r u n and ((r . and s .) < O > o r (n o t C n)))
end end,
end.

o v r 6 7 (r . < 3 : 0 > . s.<3:0))0 : = ! O v e r f l o w f o r OP 6 and 7* - A c c e ~ ~ . C o r n p u ? a t ~ a n * . (u s) 	 h a n i n- -= ..
sou rce : = I Source c a l c u l a t i o n ctemp = (r . o r s .) and (r , and s .) o r ('000 IC n)

b e g i n and ('11 B (r . O P s.)<Z:I>) and ('111 13 (r . o r s.)<2>) n e x t
A . L A T C H = RAMCA]: ov r67 = l l f c t e m o < 2 : 0 ? e o l r u s l '000) and ctemo<3>)
B . L A l C H = RAM[B] n e x t

DECODE S P C = >

b e g i n 	 end I End o f AM2901 d e s c r i p t i o nno := (R = A . L A T C H : s = Q),

n i : = (R = A . L A T C H : s = B.LATCH).

nz := (R = o : s = Q 1 -

n3 := (R = o : S = B . L A T C H) .

4 := (R = 0 : S = A . L A T C H) ,

#5 : = (R = 0 ; S = A . L A T C H) .

#6 : = (R = 0 : S = Q) ,

x i := (R = u ; s = o)
end

Chapter 14

The Am2903/291O1

General Description of the Am2903

The Am2903 is a 4-bit expandable bipolar microprocessor slice.
The Am2903 performs all functions performed by the industry
standard Am2901A and, in addition, provides a number of
significant enhancements that are especially useful in arithmetic-
oriented processors. Infinitely expandable memory and three-
port, three-address architecture are provided by the Am2903. In
addition to its complete arithmetic and logic instruction set, the
Am2903 provides a special set of instructions which facilitate the
implementation of multiplication, division, normalization, and
other previously time-consuming operations. The Am2903 is
supplied in a 48-pin dual in-line package.

Architecture of the Am2903

The Am2903 is a high-performance cascadable 4-bit bipolar
microprocessor slice designed for use in CPU’s, peripheral
controllers, microprogrammable machines, and numerous other
applications. The %bit microinstruction selects the ALU sources,
function, and destination. The Am2903 is cascadable with full
lookahead or ripple carry, has three-state outputs, and provides
various ALU status flag outputs. Advanced low-power Schottky
processing is used to fabricate this 48-pin LSI circuit.

All data paths within the device are 4 bits wide. As shown in
Fig. 1, the device consists of a 16-word by 4-bit two-port RAM
with latches on both output ports, a high-performance ALU and
shifter, a multi-purpose Q register with shifter input, and a 9-bit
instruction decoder.

Tu.o-PortRAM
Any two RAM words addressed at the A and B address ports can
be read simultaneously at the respective RAM A and B output
ports. Identical data appears at the two output ports when the
same address is applied to both address ports. The latches at the
RAM output ports are transparent when the clock input, CP, is
HIGH, and they hold the RAM output data when CP is LOW.
Under control of the r n ~three-state output enable, RAM data
can be read directly at the Am2903 DB I/O port.

External data at the Am2903 Y I/O port can be written directly

‘Abstracted from “Am2903, The Superslice” and “Am2910 Microprogram
Controller” specification sheets, Advanced Micro Devices, Inc., 1978.

into the RAM, or ALU shifter output data can be enabled onto the
Y I/O port and entered into the RAM. Data is written into the
RAM at the B address when the write enable input, WE,is LOW
and the clock input, CP, is LOW.

Arithmetic Logic Unit

The Am2903 high-performance ALU can perform seven arithme-
tic and nine logic operations on two 4-bit operands. Multiplexers
at the ALU inputs provide the capability to select various pairs of
ALU source operands. The & input selects either the DA external
data input or RAM output port A for use as one ALU operand, and
the OEBand 10 inputs select RAM output port B, DB external data
input, or the Q-register content for use as the second ALU
operand. Also, during some ALU operations, zeros are forced at
the ALU operand inputs. Thus, the Am2903 ALU can operate on
data from two external sources, from an internal and external
source, or from two internal sources. Table 1shows all possible
pairs of ALU source operands as a function of the EA,?%B, and 10

inputs.
When instruction bits 14, IS, 12, 11, and 10 are LOW, the Am2903

executes special functions. Table 4 defines these special functions
and the operation which the ALU performs for each. When the
2903 executes instructions other than the nine special functions,
the ALU operation is determined by instruction bits 14, IS,12, and
I1.Table 2 defines the ALU operation as a function of these four
instruction bits.

Am2903’s may be cascaded in either a ripple carry or lookahead
carry fashion. When a number of Am2903’s are cascaded, each
slice must be programmed to be a most significant slice (MSS),
intermediate slice (IS), or least significant slice (LSS) of the array.
The carry generate, c,and carry propagate, p,signals required
for a lookahead carry scheme are generated by the An12903 and
are available as outputs of the least significant and intermediate
slices.

The Am2903 also generates a carry-out signal, Cn+4,which is
generally available as an output of each slice. Both the carry-in,
C,, and carry-out, Cn+4,signals are active HIGH. The ALU
generates two other status outputs. These are negative, N, and
overflow, OVR. The N output is generally the most significant
(sign) bit of the ALU output and can be used to determine positive
or negative results. The OVR output indicates that the arithmetic
operation being performed exceeds the available 2’s complement
number range. The N and OVR signals are available as outputs
of the most significant slice. Thus the multi-purpose /N and-
P /OVR outputs indicate and at the least significant and
intermediate slices, and sign and overflow at the mcst significant
-slice. To some extent, the meanings of the Cn+4, P /OVR, and
G /N signals vary with the ALU function being performed. Refer
to Table 5 for an exact definition of these four signals as a function
of the Am2903 instruction.

186

Chapter 14 1 The Am2903/2910 187

AO-3 D
4 ,
/

4

BLOCK DIAGRAM

I
DATA IN

A B 4
ADDRESS ADDRESS ---f--a '0-3

RAM WRITE -w?
ENABLE

A 6
DATA OUT DATA OUT

4

DA0-3 D

-
'A D

4
/

I
I

-
IEN

' 0 - ' 8

-
LSS

WRITE/MSS
-_

'0-3i
I

z

Fig. 1. Block diagram.

188 Part 2 I Regionsof Computer Space

Table 1 ALU Operand Sources

E A I , m, ALUoperand R ALUoperand S

L L L RAM output A RAM output B
L L H RAM output A 	 0-3

L H X RAM output A Q Register
H L L DA0-3 RAM output B
H L H DA0-3 DBO-3

H H X DAO-3 Q Register
L = LOW H = HIGH X = don't care

ALU Shifter

Under instruction control, the ALU shifter passes the ALU output
(F)non-shifted, shifts it up one bit position (2F), or shifts it down
one bit position (F/2).Both arithmetic and logical shift operations
are possible. An arithmetic shift operation shifts data around the
most significant (sign) bit position of the most significant slice, and
a logical shift operation shifts data through this bit position (see
Fig. 2). SIOO and sIo3 are bidirectional serial shift inputdoutputs.
During a shift-up operation, SIOO is generally a serial shift input

Table 2 ALU Functions

I , I 3 I , I, Hexcode ALUfunctions

I, = L Special functions

L L L L 0

l o = H Fi = HIGH

L L L H 1 1 1 F = S Minus R M i n u s 1 PlusC,
~~

L L H L 2 F = R M i n u s S M i n u s 1 Plus C,

L L H H 3 F = R Plus S PIUS C,

L H L L I 4 I F = S P l u s C ,

L H L H 5 F = s Plus C,

L H H L 6 F = R Plus C,

L H H H 7 F = R Plus C,

H L L L 1 8 I F j = L O W

H L L H I 9 I F j = E i A N D S i

H L H L I A I Fi = Ri Exclusive- NOR Si

~

H L H H B F, = R , Exclusive - OR S,

H H L L C F, = R , AND S,

H H L H D F, = R, NOR S,

H H H L 1 E I F i = RjNANDSi

H H H H F Fi = Ri OR Sj

Section 1 1 Microprogram-Based Processors

SPECIAL

FUNCTION

A O R C

-
IEN 	 SIGN

COMPARE

I I 	 I

The sign compare signal appears at the 2 output of the most significant slice
during special functions C.D and E, F. Refer t o Table 5.

Fig. 2

and SIO3 a serial shift output. During a shift down operation, sIo3
is generally a serial shift input and SIOO a serial shift output.

To some extent, the meaning of the SIOo and SI03 signals is
instruction-dependent. Refer to Tables 3 and 4 for an exact
definition of these pins.

The ALU shifter also provides the capability to sign-extend at
slice boundaries. Under instruction control, the SIOO (sign) input
can be extended through Yo, Y1,Yz,and Ya and propagated to the
SI03 output.

A cascadable 5-bit parity generatodchecker is designed into the
Am2903 ALU shifter and provides ALU error detection capability.
Parity for the Fo, F1, Fz, and F3 ALU outputs and sIo3 input is
generated and, under instruction control, is made available at the
SIOO output.

The instruction inputs determine the ALU shifter operation.
Table 4 defines the special functions and the operation the ALU
shifter performs for each. When the Am2903 executes instructions
other than the nine special functions, the ALU shifter operation is
determined by instruction bits I&I,jIb. Table 3 defines the ALU
shifter operation as a function of these four bits.

Q Register

The Q register is an auxiliary 4-bit register. It is intended
primarily for use in multiplication and division operations;
however, it can also be used as an accumulator or holding register
for some applications. The ALU output, F, can be loaded into the
Q register, and/or the Q register can be selected as the source
for the ALU S operand. The shifter at the input to the Q reg-
ister provides the capability to shift the Q-register contents up
one bit position (ZQ) or down one bit position (Q/2). Only logical
shifts are performed. QIOO and QIO, are bidirectional shift serial
inputs/outputs. During a Q-register shift-up operation, QIOo
is a serial shift input and QI03 is a serial shift output. During a
shift-down operation, QIO, is a serial shift input and QIOo is a
serial shift output.

--

Chapter 14 1 The Am2903/2910 189

Double-length arithmetic and logical shlfting capability is
provided by the Am2903. The double-length shift is performed by
connection QIO3 of the most significant slice to SIOoof the least
significant slice, and executing an instruction which shifts both the
ALU output and the Q register.

The Q register and shifter are controlled by the instruction
inputs. Table 4 defines the Am2903 special functions and the
operations which the Q register and shifter perform for each.
When the Am2903 executes instructions other than the nine
special functions, the Q register and shifter operation is con-
trolled by instruction bits I&&. Table 3 defines the Q register
and shifter operation as a function of these four bits.

Output Buffers
The DB and Y ports are bidirectional IiO ports driven by
three-state output buffers with external output enable controls.
The Y output buffers are enabled when the my input is LOW and
are in the high-impedance state when my is HIGH. Likewise,
the DB output buffers are enabled when the ?%B is LOW and in
the high-impedance state when OEBis HIGH.

The zero, Z, pin is an open-collector input/output that can be
wired ORed between slices. As an output it can be used as a zero
detect status flag and generally indicates that the Yo-3 pins are all
LOW, whether they are driven from the Y output buffers or from
an external source connected to the Yes pins. To some extent the
meaning of this signal varies with the instruction being per-
formed. Refer to Table 5 for an exact definition of this signal as a
function of the Am2903 instruction.

Instruction Decoder

The Instruction Decoder generates required internal control
signals as a function of the nine instruction inputs, IM; the
Instruction Enable input, m:the Lss input; and the WRITE/ -
MSS input/output.

The WRITE output is LOW when an instruction which writes
data into the RAM is being executed. Refer to Tables 3 and 4 for a
definition of the WRITE output as a function of the Am2903
instruction inputs.

When IEN is HIGH, the WRITE output is forced HIGH and
the Q register and Sign Compare Flip-Flop contents are pre-
served. __

When IEN is LOW, the WRITE output is enabled and the Q
register and Sign Compare Flip-Flop can be written according to
the Am2903 instruction. The Sign Compare Flip-Flop is an
on-chip flip-flop which is used during an Am2903 divide operation
(see Fig. 3).

Programming the Am2903 Slice Position
Tying the Lssinput LOW programs the slice to operate as a least
significant slice (LSS) and enables the WRITE output signal onto

the WRITEiMSS bidirectional I/O pin. When E S is tied HIGH,
-the WRITEiMSS pin becomes an input pin. Tying the WRITE/
MSS pin HIGH programs the slice to operate as an intermediate
slice (IS), and tying it LOW programs the slice to operate as a
most significant slice (MSS).

Am2903 Special Functions

The Am2903 provides nine special functions which facilitate the
implementation of the following operations:

Single- and double-length normalization
2’s complement division
Conversion between 2’s complement and sign magnitude
representation
Incrementation by 1or 2

Table 4defines these special functions.
The single-length and double-length normalization functions

can be used to adjust a single-precision or double-precision
floating-point number in order to bring its mantissa within a
specified range.

Three special functions which can be used to perform a 2’s
complement, non-restoring divide operation are provided by the
Am2903. These functions provide both single- and double-
precision divide operations and can be performed in n clock
cycles, where n is the number of bits in the quotient.

The unsigned multiply special function and the two 2’s
complement multiply special functions can be used to multiply
two n-bit unsigned or 2’s complement numbers in n clock cycles.
These functions utilize the conditional add and shift algorithm.
During the last cycle of the 2’s complement multiplication, a
conditional subtraction, rather than addition, is performed be-
cause the sign bit of the multiplier carries negative weight.

The signimagnitude-2’s complement special function can be
used to convert number representation systems. A number
expressed in sigdmagnitude representation can be converted to
the 2’s complement representation, and vice-versa, in one clock
cycle.

The increment by 1and increment by 2 special functions can be
used to increment an unsigned or 2’s complement number by 1or
2. This is useful in 16-bit-word, byte-addressable machines,
where the word addresses are multiples of 2.

Pin Definitions

Ao-3 Four RAM address inputs which contain the ad-
dress of the RAM word appearing at the RAM A
output port.

Bas Four RAM address inputs which contain the ad-
dress of the RAM word appearing at the RAM B

190 Part 2 1 Regions of Computer Space Section 1 i Microprogram-Based Processors

SIO, Y3

Hex ALU shifter Most sig. Other Most sig. Other
I , I, Is I, code function slice dices slice slices

L L L L 0 Arith. F/2 +Y Input Input F3 S103

L L L H 1 Log. F]2+ Y Input Input SIO, SIO,

L L H L 2 Arith. F/2 +Y Input Input F, SIO,

L L H H I 3 1 Log. F / 2 + Y 1 Input 1 Input 1 SIO, 1 SIO,

L H L L 4 F - Y Input Input F3 F3

L H L H 5 F - Y Input Input F, F3

L H H L 6 F - Y Input Input F, F3

L H H H 1 7) F - Y 1 Input 1 Input I F, I F3

H L L L 8 Arith. 2F+ Y F2 F3 F3 F2

H L L H 9 Log. 2 F - Y F3 F3 F2 F2

H L H L A Arith. 2F+ Y F2 F3 F3 F2

H L H H I B I Log.2F-Y I F3 I F3 I F2 I F2

H H L L C F - t Y F3 F3 F3 F3

H H L H D F+Y F3 F3 F, F,

H H H L E SIO, +Yo, Y,, Y,, Y3 SlOo SIO, SIO, SIO,

H H H H F F + Y I F3 1 F3 I F3 1 F3

output portand into which new data is written C, The carry-in input to the Am2903 ALU.
- when the WE input and the C P W u t are LOW. 1 0 4 The nine instruction inputs used to select the
WE The RAM write enable input. If WE is LOW, data - Am2903 operation to be performed.

at the Y I/O port is written intothe RAM when the IEN The Instruction enable input which, when LOW,
CP input is LOW. When WE is HIGH, writing enables the WRITE output and allows the Q
data into the RAM is inhibited. register and t h d g n Compare Flip-Flop to be

D& A 4-bit externa1 data input which can be selected as written. When IEN is HIGH, the WRITE output
one of the Am2903 ALU operand sources; D& is is forced HIGH and the Q register and Sign

- the least significant bit. Compare Flip-Flop are in the hold mode.
EA A control input which, when HIGH, selects D& c n - 4 This output generally indicates the carry-out of the

and, when LOW, selects RAM output A as the Am2903 ALU. Refer to Table 5 for an exact
ALU R operand. - definition of this pin.

DBo3 A 4-Mexternal data inputioutput. Under control of G /N A multi-plirpose pin which indicates the carry
the OEB input, RAM output port B can be directly generate, G, function at the least significant and
read on these lines, or input data on these lines can intermediate slices, and generally indicates the

- be selected as the ALU S operand. sign, N , of the ALU result at the most significant
OEB A control input which, when LOW, enables RAM slice. Refer to Table 5 for an exact definition of this

output B onto the DBM lines and, when HIGH, - pin.
disables the RAM output B tri-state buffers. P iOVR A multi-purpose pin which indicates the carry

Chapter 14 1 The Am2903/2910 191

F,

F2

F2
SIO,

F2
L = LOW

H = HIGH

{

F,

F2

F2

SIO,

F2 }

Fo

Fl

F,
SIO,

Fl

SIO,

FO

F,
SIO,

I F o I

Input

Hi-Z

Hi-Z

Input

Hi-Z

L

H

H

L

L

Log.2Q-+Q

Hold

Log.29-Q

Hold

Hold

Q3 Input

Hi-Z Hi-Z

Q3 Input

Hi-2 Hi-Z

Hi-Z Hi-Z

Hi-Z = high-impedance

2

SIOo,
SIO3

QIO,,
QI03

propagate, P, function at the least significant and
intermediate slices, and indicates the conventional
2’s complement overflow, OVR, signal at the most
significant slice. Refer to Table 5 for an exact
definition of this pin.
An open-collector inputloutput pin which, when
HIGH, generally indicates the Yo-3 outputs are all
LOW. For some special functions, Z is used as an
input pin. Refer to Table 5 for an exact definition of
this pin.
Bidirectional serial shdt inputsioutputs for the ALU
shifter. During a shift-up operation, SIOO is an
input and SIO3 an output. During a shift-down
operation, SIOs is an input and SIOO is an output.
Refer to Tables 3 and 4 for an exact definition of
these pins.
Bidirectional serial shift inputs/outputs for the Q
shifter which operate like SIOo and SIO2. Refer to
Tables 3 and 4 for an exact definition of these pins.

zss

WRITE/
MSS
-

yo3

An input pin which, when tied LOW, programs the
chip to act as the least significant slice (LSS) of an
-4m2903 array and enables the WRITE output onto
the WRITE/MSS pin. When LSS is tied HIGH,
the chip is programmed to operate as either an
intermediate or most significant slice and the
WRITE output buffer is disabled.
When LSS is tied LOW, the WRITE output signal
appears at this pin; the WRITE signal is LOW
when an instruction which writes data into the
RAM is being executed. When LSS is tied HIGH,
WRITEiMSS is an input pin; tying it HIGH
programs the chip to operate as an intermediate
slice (IS) and tying it LOW programs the chip to
operate as the most significant slice (MSS).
Four data inputs/outputs of the Am2903. Under
control of the OEY input, the ALU shifter output
data can be enabled onto these lines, or these lines
can be used as data inputs when external data is
written directly into the RAM.

Table 4

IR I , I , I ,

I
Hex
code

I

I

Special
function

I

I

ALU function

I
ALU shifter
fUTkcNOI,

SIO,

Other
slices

Most sig.
slice SIO,

Q Reg. dr
shifter
fiinction QlO, QlO,

I I

Two's Complement
Multiply

F = S + C, if Z = L
F = R + S + C, if Z = H

I

I

Log. F/2 -'Y
(Note 2)

I

Hi-Z

L

H

H

L

L

L X

6' '
1 8 . 9 I

Increment by
One or Two

SigniMagnitude-
Two's Complement

Two's Complement
Multiply, Correction

Single Length
Normalize

I

F = S + I + C ,

F = S + C. if Z = L
F = ??+ C, if Z = H

F = S + C, if Z = L
F = S - R - 1 + C, i f 2 = H

F = S + C ,

I

1

F +'Y

F + Y
(Note3)

Log. Fi2 +Y
(Note 2)

F + Y

Input

I Input

Hi-Z

I F3

H L H X

I

A, B

c,

I

Double Length
Normalizeand
First Divide Op.

Two'sComplement
Divide

I

F = S + C ,

F = S - R - I + C , i f Z = H
F = S + R + C,ifZ = L

I

Log. 2F +Y

Log. 2F --f Y

R3 y F,

I

R3$L F,

H H H X E, F
Two's Complement

and Remainder
Divide, Correction

F = S + R + C, i f Z = L
F = S - R ~ 1 + C,if Z = H F +Y F3

NOTES 1. At the most significant slice only, the Cn+4signal is internally gated to the Y, output.
2. At the most significant slice only, F,+OVR is internally gated to the Y, output.
3. At the most significant slice only, S,+F, is generated at the Y, output

L = LOW
H = HIGH
X = don't care

Hi-2 = higi
y= Exciu!
Parity = Si

194 Part 2 1 Regions of Computer Space

Mort LBatf
Slg”,flW”t S,g”lflEa.Int 0.

Sllce Int”rned,a,e SIU.

Am2903 Arithmetic Shift Path

slog *-SlO0

A11
Shre PDI!,,O“.

Am2903 Logical Shift Path

Fig. 3. Sign compare flip-flop.

OEY 	 A control input which, when LOW, enables the
ALU shifter output data onto the Yw lines and,
when HIGH, disables the Yw three-state output
buffers.

SP 	 The clock inhut to the Am2903. The Q Register
and Sign Compare Flip-Flop are clocked on the
LOW-to-HIE transition of the CP signal. When
enabled by WE, data is written in the RAM when
CP is LOW.

Using the Am2903

Am2903 Applications

The Am2903 is designed to be used in microprogrammed
systems. Figure 4 illustrates a recommended architecture. The
control and data inputs to the Am2903 normally will all come from
registers clocked at the same time as the Am2903. The register
inputs come from a ROM or PROM-the “microprogram store.”
This memory contains sequences of microinstructions which apply
the proper control signals to the Am2903’s and other circuits to
execute the desired operation.

The address lines of the microprogram store are driven from
the Am2910 Microprogram Sequencer. This device has facilities
for storing an address, incrementing an address, jumping to any
address, and linking subroutines. The Am2910 is controlled by
some of the bits coming from the microprogram store. Essential-
ly, these bits are the “next instruction” control.

Note that with the microprogram register in between the
microprogram memory store and the Am2903’s, a microinstruc-
tion accessed on one cycle is executed on the next cycle. As one
microinstruction is executed, the next microinstruction is being
read from microprogram memory. In this configuration, system
speed is improved because the execution time in the Am2903’s
occurs in parallel with the access time of the microprogram store.
Without the “pipeline register,” these two functions must occur
serially.

Section 1 I Microprogram-Based Processors

One Level Pipeline Based System
MAP

cc
CLOCK

PlPELlYE

REGISTER

Fig. 4. Typical microprogram architecture.

Expansion of the Am2903
The Am2903 is a 4-bit CPU slice. Any number of Am2903’s can be
interconnected to form CPU’s of 8, 16, 32, or more bits, in 4-bit
increments. Figure 5 illustrates the interconnection of four
Am2903’s to form a 16-bit CPU, using ripple carry.

With the exception of the carry interconnection, all expansion
schemes are the same. The QIO, and SIO3 pins are bidirectional
left/right shift lines at the MSB of the device. For all devices
except the most significant, these lines are connected to the Q100
and 900pins of the adjacent more significant device. These
connections allow the Q registers of all Am2903’s to be shifted left
or right as a contiguous n-bit register, and also allow the ALU
output data to be shifted left or right as a contiguous n-bit word
prior to storage in the RAM.At the LSB and MSB ofthe CPU, the
shift pins should be connected to a shift multiplexer which can be
controlled by the microcode to select the appropriate input signals
to the shift inputs.

Device 1has been defined as the least significant slice (LSS)
and its Lsspin has --accordingly been grounded. The WriteIMost
Significant Slice (WRITEIMSS) pin of device 1is now defined as
being the Write output, which may now be used to drive the write
enable (WE)signal common to the four devices. Devices 2 and 3
are designated as intermediate slices and hence the Lss and___-
WRITEiMSS pins are tied HIGH. Device 4 is designated the

-
-

-
- -

Chapter 14 I The Am2903/2910 195

DA DB DA DB DA DB

aio15 -o i o 3 o1o0 - 0103 oloo 01D3 OIO,, -QIOO

S O l 5 -5103 SIOo - - s103 SlOo - s103 SlO0 -SlO0

CARRY _. c,,~ CARRY
OUT C" - ' c,, 4 4 c,, C"+4 C" IN -

16

NEGATIVE - Am2903 Am2903 Am2903

OVERFLOW -OVR W I ~ S _ _ --

- -h. - W MSS W'MSS-1 -ZERO C 2 Lss - + 5 LSS 2 LSS

Y WE Y WF V G

1 t 4f t41
% 4

MSS LSS
DEVICE 4 DEVICE 3 DEVICE 2 DEVICE 1

I,. %4

DA DB

Z",Y sloe'Io 15 3:;:
C"

YECATIVE Am2903

OVERFLOW OVR W M X

Fig. 6. 16-bit CPU with carry look ahead.

196 Part 2 1 Regions of Computer Space

Implementation of a three-address architecture is made possible
by varying the timing of IEN in relationship to the external clock
and changing the B address. This technique is discussed in more
detail under Memory Expansion.

Parity

The Am2903 computes parity on a chosen word when the
instruction bits 1 s have the values 0f4~6to 716as shown in Table 3.
The computed parity is the result of the Exclusive-OR of the
individual ALU outputs and SIO3. Parity output is found on SIOo.
Parity between devices may be cascaded by the interconnection of
the SIOO and SI03 ports of the devices as shown in Fig. 6. The
equation for the parity output at the SIOO port of device 1is given
by SIOo = Fij+f Fi4 ++ F13 v ... +Fi Fo ++ SIO15.

Sign Extend

Sign extend across any number of Am2903 devices can be done in
one microcycle. Referring again to the table of instructions (Table
3), the sign extend instruction (Hex instruction E) on 15-8causes
the sign present at the SIOo port of a device to be extended across
the device and appear at the SI03port and at the Y outputs. If the
least significant bit of the instruction (bit 15) is HIGH, Hex
instruction F is present on I s , conmianding a shifter pass
instruction. At this time, F3 of the ALU is present on the SI03
output pin. It is then possible to control the extension of the sign
across chip boundaries by controlling the state of 15 when IM are
HIGH. Figure 7 outlines the Am2903 in sign extend mode. With
16-8 held HIGH, the individual chip sign extend is controlled by
I~A-D.If, for example, 15.4 and 1 5 ~are HIGH while I ~ c and 1 5 ~ are
LOW, the signal present at the boundaries of devices 2 and 3 (F3

of device 2) will be extended across devices 3 and 4 at the S103 pin
of device 4. The outputs of the four devices will be available at

CHIP

SIGN

EXTEND

Fig. 7. Sign extend.

Section 1 1 Microprogram-Based Processors

their respective Y data ports. The next positive edge of the clock
will load the Y outputs into the address selected by the B port.
Hence, the results of the sign extension are stored in the RAM.

Special Functions

When 1 0 4 = 0, the Am2903 is in the special function mode. In this
mode, both the source and destination are controlled by I s , The
special functions are in essence special microinstructions that are
used to reduce the number of microcycles needed to execute
certain functions in the Am2903.

Normalization, Single- and Double-Length

Normalization is used as a means of referencing a number to a
fixed radix point. Normalization strips out all leading sign bits
such that the two bits immediately adjacent to the radix point are
of opposite polarity.

Normalization is commonly used in such operations as fixed-to-
floating point conversion and division. The Am2903 provides for
normaIization by using the Single-Length and Double-Length
Normalize commands. Figure 8a represents the Q register of a
16-bit processor which contains a positive number. When the
Single-Length Normalize command is applied, each positive edge
of the clock will cause the bits to shift toward the most significant
bit (bit 15)of the Q register. Zeros are shifted in via the QIOo
port. When the bits on either side of the radix point (bits 14 and
15) are of opposite value, the number is considered to be
normalized, as shown in Fig. 8b. The event of normalization is
externally indicated by a HIGH level on the Cn+4pin of the most
significant slice (Cna4MSS = Q3 MSS Qz MSS).

There are also provisions made for a normalization indication
via the OVR pin one microcycle before the same indication is

SlGlv
IN

I

Chapter 14 j The Am2903/2910 197

outlined in Fig. 10. During single-length normalization, theR A D I X
I number of shifts performed to achieve normalization can be

1 5 t 1 4 13 12 11 10 9 8 7 6 5 4 3 2 1 0
counted and stored in one of the working registers. This can be

OREGISTER 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 achieved by forcing a HIGH at the C, input of the least significant
MSS I I I LSS slice, since during this special function the ALU performs the

D E V I C E 4 D E V I C E 3 D E V I C E 2 DEVICE 1 function [B] + C, and the result is stored in B.
Normalizing a double-length word can be done with the

Double-Length Normalize command, which assumes that a
user-selected RAM register contains the most significant portion
of the word to be normalized while the Q register holds the least

1 5 4 1 4 13 12 11 10 9 8 7 G 5 4 3 2 1 0
significant half (Fig. 11). The device interconnection for double-

OREGISTER 0 1 1 1 I 1 0 0 1 0 0 1 1 0 0 0 length normalization is shown in Fig. 12. The Cn+4,O\'R, ir;, and Z
MSS Lss outputs of the most significant slice perform the same functions in

double-length normalization as they did in single-length normali-
zation except that Cnt4,OVR, and N are derived from the output
of the ALU of the most significant slice in the case of double-

Fig. 8 length normalization, instead of the Q register of the most

available on the Cn+4pin (OVR = Qz MSS +Qi MSS). This is for significant slice as in single-length normalization. A high-level Z
use in applications that require a stage of register buffering of the line in double-length normalization reveals that the outputs of the

normalization indication, ALU and Q register are both zero, hence indicating that the

Since a number consisting of all zeros is not considered for double-length word is zero.

normalization, the Am2903 indicates when such a condition When double-length normalization is being performed, shift

arises. If the Q register is zero and the Single-Length Normaliza- counting is done either with an extra microcycle or with an

tion command is given, a HIGH level will be present on the Z external counter.

line. The sign output, N, indicates the sign of the number stored
in the Q register, Qs MSS. An unnormalized negative number Sigd1%fagnitude-2's Complement Conversion

(Fig. 9a) is normalized in the same manner as a positive number. As part of the special instruction set, the Am2903 can convert
The results of single-length normalization are shown in Fig. 9b. between 2's complement and signimagnitude representations.
The device interconnection for single-length normalization is Figure 13 illustrates the interconnection needed for signimag-

1 s t ~1 3 12 11 10 9 a 7 6 5 4 3 2 I o i ~ i 4 1 3 i z i i i 0 9 a i 6 5 4 3 2 1 o

OREGISTER 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 OREGISTER 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0

MSS LSS
DEVICE 4 DEVICE 3 DEVICE 2 DEVICE 1

F = ' B I t C n , F , Y . B 2 0 .o -t I
Q3MSS Q103 Q1O0 0 I O 3 0lOO Q103 Q1O0 . RID3 Q1O0 -0

03v02MSS -C n * 4

Q 2 f O i MSS -OVR Am2903 Am2903 Am2903 Am2903 cn -1

03MSS -N -s103 SlO0 - s103 SlO0 ___ s103 SlO0 s103 SlO0 -z z z z +5

Fig. 10. Single-length normalize.

198 Part 2 1 Regions of Computer Space

R A O l X

3 1 t 3 0 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RAM REGISTER m h
Q REGISTER 1 5 1 4 1 3 1 2 1 1 1 0 9 8 I 6 5 4 3 2 1 0

~ ~ ~

Fig. 11. Double-length word.

nitude-2's complement conversion. The C, input of device 1 is
connected to the Z pin. The sign bit (Sa MSS) is brought out on the
Z line and informs the other ALU's whether the conversion is
being performed on a negative or a positive number. If the
number attempted to be converted is the most negative number
in 2's complement [i.e., 100 . . . O O (- 2)] , an overflow indication
will occur. This is because -2" is 1greater than any number that
can be represented in sign magnitude notation and hence an
attempted conversion to sign magnitude from -2" will cause an

Q3MSS ' - Q103 aio,, - . 0103 oloo

I F ~ V F Z L M S S-c.+4

(F2VFlI MSS -OVR Am2903 Am2903

F3 MSS --s103

N

SlO0 -so3 SlO0
z z

Fo. F, ..F". %. ti, ..ii"

Fig. 12. Double-length normalize.

-0103 QIOo a o 3 oloo-C " + 4

(61- 1000.. .o -OVR Am2903 Am2903

- N

~ -s103 SlO0 s103 SlO0 .
z 2

t t
Fig. 13. 2's complement++sign/magnitude.

Section 1 1 Microprogram-Based Processors

overflow. When minus zero in signlmagnitude notation
(100 . . . 0) is converted to 2's complement notation, the correct
result is obtained (0 . . . 0).

Increment b y 1 or 2

Incrementation by 1or 2 is made possible by the special function
of the same name. This command is quite useful in the case of
byte-addressable words. A word may be incremented by 1if C, is
LOW or incremented by 2 if C, is HIGH.

Unsigned Multiply

This special function allows for easy implementation of unsigned
multiplication. Figure 14 is the multiply flow chart. The algorithm
dictates that initially the RAM word addressed by address port B
be zero, the multiplier be in the Q register, and the multiplicand
be in the register addressed by address port A. The initial
conditions for the execution of the algorithm are that (1)register
J& be reset to zero; (2) the multiplicand be in R1; and (3) the
multiplier be in Rz. The first operation transfers the multiplier Rz
to the Q register. The Unsigned Multiply (2's complement

7 - E :Am2903

DEVICE 2 DEVICE 1

---I--- -7

Am2903 Am2903 C, -

-s103 S O o
2 +5

L4-

Chapter 14 1 The Arn2903/2910 199

Z output of device 1 informs the Am’s of all the slices, via their Z
START n
0 in RO 	 pins, to output the sum of the partial product (referenced by the B

address port) plus the multiplicand (referenced by the A addressMultiplier in R p
port) if Z = 1.If Z = 0, the output of the ALU is simply the partial
product (referenced by the B address port). Since C, is held
LOW, it is not a factor in the computation. Each positive-going
edge of the clock will internally shift the ALU outputs toward the 16-CTR
least significant bit and simultaneously store the shifted results in
the register selected by the B address port, thus becoming the IN
new partial sum. During the down-shifting process, the Cn+4

UNSIGNED
MULTIPLY

END

Product (MS) in Ro

Rodun (LSI in D

Multiplicand in R1

Multiplier in R2

Fig. 14. 16x16 multiply flowchart.

multiply) instruction is then executed 16 (15) times. During the
Multiply instruction, & is addressed by RAM address port B and
the multiplicand is addressed by RAM address port A.

When the Unsigned Multiply command is given, the Z pin of
device 1 becomes an output while the Z pins of the remaining
devices are specified as inputs as shown in Fig. 15. The Z output of
device 1 is the same state as the least significant bit of the Q
register during the Unsigned Multiply instruction; therefore, the

F s l B] +C.I fZ=O
F = [BI + IA l +Cn tf Z = 1 Log. F/2 - Y. B W 2 - Q
I

DEVICE 3

-0103 0100

C ” i 4-OVR Am2903 	 Am2903

X (Note)

- N-s103 SlOO .

t 	 I
1 	 1
a,LSS

generated in device 4 is internally shifted into the Y3 position of
device 4.At this time, one bit of the multiplier will down-shift out .
of the QIO, ports of each device into the QIO, port of the next
least significant slice. The partial product is shifted down between
chips in a like manner, between the SIOO and SI03 ports, with
SIOo of device 1being connected to QIO, of device 4 for purposes
of constructing a 32-bit-long register to hold the 32-bit product. At
the finish of the 16 x 16 multiply, the most significant 16 bits of
the product will be found in the registers referenced by the B
address lines while the least significant 16 bits are stored in the Q
register. Using a typical computer control unit (CCU). as shown
in Fig. 16, the unsigned multiply operation requires only two
lines of microcode, as shown in Fig. 17, and is executed in 17
microcycles .

2’s Complement Multiplication

The algorithm for 2’s complement multiplication is illustrated by
Fig. 14. The initial conditions for 2’s complement multiplication
are the same as for the unsigned multiply operation. The 2’s
Complement Multiply command is applied for 15 clock cycles in
the case of 16 x 16 multiply. During the down-shifting process
the term N-OVR generated in device 4 is internally shifted
into the Y3 position of device 4. The data flow shown in Fig. 16 is

1
DEVICE 2 	 DEVICE 1-yY

Am2903 	 Am2903 C, 0 I

FOLSS 1
s103 sloo

+5

I I

t 	 t $

1 	 1 I

Note: For unsigned multiply, Cn + 4 MSS is internally shifted into position Y3 MSS; 2’scomplement multiply NVOVR
is internally shifted into position Y3 MSS.

Fig. 15. Multiply.

200 Part 2 1 Regionsof Computer Space Section 1 1 Microprogram-Based Processors

MACRO INSTRUCTION

I r
Am2910 -l - f L r 1

MAPPING ''1

ROM
 '

'0 - 3

w 12

" 0 - 1 1 / I -

A

5v- CI -

PL MICRO-
- PROGRAh tI- - 0 E

VECT
-
FULL

- MEMORY

---z MAP 12 2918 12 OTHEF
1 CP / - DATA f-/'

I ' .1

-
PIPELINE

12REGISTER
I I I I

I I CP GFpMAPPING

Am2922

I
V 4

I- c p STATUS M U X
/

INTERRUPT Do D i Dz D3 D4 "5 Dfi 0 7

I ' 0 0 2 '3 '4 ' 5 I
CLK-4 CP STATUS REG EN 1-

Fig. 16. Typical computer control unit (CCU).

still valid. After 15cycles, the sign bit of the multiplier is present only three lines of microcode, as shown in Fig. 19, and is executed
at the Z output of device 1.At this time, the user must place the in 17 microcycles.
2's Complement Multiply Last Cycle command on the instruction
lines. The interconnection for this instruction is shown in Fig. 18.
On the next positive edge of the clock, the Am2903 will adjust the 2's Complement Division

partial product, if the sign of the multiplier is negative, by The division process is accomplished by using a four-quadrant
subtracting out the 2's complement representation of the multipli- non-restoring algorithm which yields an algebraically correct
cand. If the sign bit is positive, the partial product is not adjusted. answer such that the divisor times the quotient plus the remain-
At this point, 2's complement multiplication is complete. Using a der equals the dividend. The algorithm works for both single-
typical CCU, the 2's complement multiply operation requires precision and multi-precision divide operations. The only condi-

Micro Data
Memory Am2910 Pipeline - -
Address lnst Reg. 10 1 4 - 1 , 18-15 OEB OEY A3-A0 Bg-Bo C, Comment

n I LDCT 1 OOF,6 1 X I 6 1 6 I X I X I R2 I X 1 0 ILoadCounter & R 2 - , Q
n+l I RPCT I n + l 1 0 I 0 1 0 I 0 1 0 I R, 1 Ro 1 O I U n s i g n e d Multiply

Fig. 17. Microcode for unsigned 16x16 multiply.

Chapter 14 1 The Arn2903/2910 201

-
4 LSS

0103 oloo 0103 oloo . 0103 oloo 0103 oloo ---OVR

cn.4

Am2903 Am2903 Am2903 Am2903 cn -
- N

X INOIPI-s103 SlO0 -$lo3 slog -s103 SlO0 --- slop SlO0 '
Fo
-

LSS

z z +5- b 2

Note N Y OVR IS Internally shifted into posttlon Y3 MSS

Fig. 18. 2's complement multiply, correction.

n LDCT O O E , ~ X 6 6 X X R 2 X 0 Load Counter & R 2 + Q

n + l RPCT n + l 0 0 2 0 0 A, Ro 0 2's Complement Multiply

2'sComplement
n+z X R, Bo MUIIIDIV (Last Cvcle)

Fig. 19. Microcode for 2's complement 16x16 multiply.

tion that needs to be met is that the absolute magnitude of the
divisor be greater than the absolute magnitude of the dividend.
For multi-precision divide operations the least significant bit of
the dividend is truncated. This is necessary if the answer is to be
algebraically correct. Bias correction is automatically provided by
forcing the least significant bit of the quotient to a 1, yet an
algebraically correct answer is still maintained. Once the algo-
rithm is completed, the answer may be modified to meet the
user's formal requirements, such as rounding off or converting the
remainder so that its sign is the same as the dividends. These
format modifications are accomplished using the standard Am2903
instructions.

The true value of the remainder is equal to the value stored in
the working register 2*' when n is the number of quotient digits.

The following paragraphs describe a double-precision divide
operation. The double-precision flow chart is based upon the use
of the architecture detailed in Fig. 18.

Referring to the flow chart outlined in Fig. 20, we begin the
algorithm with the assumption that the divisor is contained in &,
while the most significant and least significant halves of the
dividend reside in R1and &, respectively. The first step is to
duplicate the divisor by copying the contents of & into &. Next

the most significant half of the dividend is copied by transferring
the contents of R1 into RZ while simultaneously checking to
ascertain if the divisor (&) is zero. If the divisor is zero then
division is aborted. If the divisor is not zero, the copy of the most
significant half of the dividend in Rz is converted from its 2's
complement to its signlmagnitude representation. The divisor in
& is converted in like manner in the next step, while a test is done
to see if the results of the dividend conversion yielded an
indication on the overflow pin of the Am2903. If the output of the
overflow pin is a 1 then the dividend is -2" and hence is the
largest possible number, meaning that it cannot be less than the
divisor. What must be done in this case is to scale the dividend by
down-shifting the upper and lower halves stored in R1 and
respectively. After scaling, the routine requires that the algorithm
be reinitiated at the beginning.

Conversely, if the output of the overflow pin is not a 1, the sign
magnitude representation of the divisor (RJ is shifted up in the
Am2903, removing the sign while at the same time testing the
results of 2's complement to sigdmagnitude conversion of the
divisor in the Am2910. If the results of the test indicate that the
divisor is -2', i.e., overflow equals 1, then the lower half of the
dividend is placed in the Q register and division may proceed.

202 Part 2 Regions of Computer Space 	 Section 1 I Microprogram-Based Processors

START
Diviwr in Rg QDividend IMS) in R 1
Dividend ILSI tn R4 ,

CORRICTIW

END TI
Quotient in Q

Remainder in R1

Fig. 20. Division flow chart-double precision divide.

This is possible because the divisor is now guaranteed to be
greater than the dividend. If overflow is not a 1 then we must
proceed by shifting out the sign of the signimagnitude representa-
tion of the dividend stored in Rz. At this point we are able to check
whether the divisor is greater than the dividend by subtracting
the absolute value of the divisor (&) from the absolute value of the
upper half of the dividend (Rz)and storing the results in &. Next,
the least significant half of the dividend is transferred from & to
the Q register while simultaneously the carry from the result of
the divisor-dividend subtraction is tested. If the carry (C,S is 1,
indicating the divisor is not greater than the dividend, then a
scaling operation must occur. This involves either shifting up the
divisor or shifting down the dividend. If the carry is not 1then the
divisor is greater than the dividend and division may now begin.

The first divide operation is used to ascertain the sign bit of the
quotient. The 2’s Complement Divide instruction is then execut-
ed 14 times in the case of a 16-bit divisor and a X-bit dividend.
The final step is the 2’s Complement Correction command, which
adjusts the quotient by allowing the least significant bit of the
quotient to be set to a 1.At the end of the division algorithm the
16-bit quotient is found in the Q register while the remainder
now replaces the most significant half of the dividend in RI. It
should be noted that the remainder must be shifted down 15
places to represent its true value. The interconnections for these
instructions are shown in Figs. 21, 22, 23. Using a typical CCU as
shown in Fig. 15, the double-precision divide operation requires
only 11lines of microcode, as shown in Fig. 24.

For those applications that require truncation instead of bias
correction, the same algorithm as above should be implemented
except one additional 2’s Complement Divide instruction should
be used in lieu of the 2’s Complement Divide Correction and
Remainder instruction. However, this technique results in an
invalid remainder.

It is possible to do multiple-precision divide operations beyond
the double-precision divide shown above. For example, to do a
triple-precision divide for a 16-bit CPU, the upper two-thirds of
the dividend are stored in R1 and Q as in the case for double-
precision divide. The lower third of the dividend is stored in a
scratch register, Rg. After checking that the magnitude of the
divisor is greater than the magnitude of the dividend, using the
same tests as defined in Fig. 20, the procedure is as follows:

1 	 Execute a Double-Length Normalize/First Divide Opera-
tion instruction.

2 	 Execute the 2’s Complement Divide instruction 15 times.
3 	 Transfer the contents of Q, the most significant half of the

quotient, to &.
4 	Transfer & to Q.

3 	 Execute the 2’s Complement Divide instruction 15 times.

Chapter 14 1 The Am2903/2910 203

F = I61 + Cn Lag 2F - Y. 6 2cl .a

0 3 MSS
a103

C " t 4P j V F2 MSS c_

F z V F l MSS -OVR

F3 MSS -N

s103

Am2903

z

a100 .

SlOO

a103

s103

Am2903

I

0100

5100 -

a103

s103

Am2903

I

a100

SlOO

Q103

Am2903

a100

C,

I I

Fig. 21. Double-length normalize/first divide operation.

I

F = I61 + I A I + C. I f 2 = 0
F - I 6 1 - 1 A l - l + C n t f 2 = 1

I SIGN COMPARE FF tAI *

Log 2F - Y E 2 0 - Qz #Am2903

I

Am2903. z r
I

~

a103

s103

Am2903

2

a100

C,

SlOo

-
*

-
15

Fig. 22. 2's complement divide.

-
0 3 MSS -Q103 oloo .-C"+4

c_ OVR Am2903

- N

-SIO3 SlO0
2

-

-

01o3

s103

Am2903

2

oloo

SlO0

u103

Am2903

- s103
z

aloo

SlO0 ~

- . a103

s103

Am2903

2

QIOO - 1

c, -
sloo -

Fig. 23. 2's complement divide correction.

20.1 Part 2 I Regions of Computer Space

Micro Data
Memory Am2910 Pipeline ii Am2903
Address Inst. Reg.

n I CONT I X

Dividend

n+4 n+7 4

n+5 CONT 	 4

n+6 CONT 0 2
Scale

orDivisor 0 6 6 0 R4

n+8 I PUSH I O O D ~ ~0 0 A 0 Ro

0 0 C O Rg

0 0 E O Ro

Fig. 24. Microcode for double precision divide.

6 	 Execute the 2’s Complement Divide Correction and Re-
mainder instruction.

The upper half of the quotient is then in Rz, the lower half of the
quotient is in Q, and the remainder is in R1. This technique can be
expanded for any precision which is required.

Byte Swap

The multi-port architecture of the Am2903 allows for easy im-
plementation of high- and low-order byte swapping. Figure 25
outlines a byte-swap implementation utilizing two data ports.
Initially, the lower-order 8-bit byte is stored in devices 1and 2
while the high-order byte is in devices 3 and 4. When the user
wishes to exchange the two bytes, the register location of the
desired word is placed on the B address port. When the byte-swap
line is brought LOW, the bytes to be swapped will be flowing
from the DB ports of the Am2903 through the Am25LS240/244
three-state buffers. The outputs of the three-state buffers are
permuted so that the byte swap is achieved. The resultant
permuted data is presented to the DA ports of the Am2903, where
it is reloaded into the memories of the Am2903 on the next
positive edge of CP using the permuted data source and hnction

Section 1 1 Microprogram-Based Processors

Am29LS18
E

I Am2922 I

R1

,

O ‘n+4 O

’
R4+Q, if

Loop set up &
Carry = I , scale

First Divide Operation

R t Z X X
Test Loop Count &

R1 Z X X X 2’s C Divide Correction

commands of F = plus C,(C, = 0)for the Am25LS240 or F = A
plus C,(C, = 0) for the Am25LS244 and the destination command
F-+ Y, B.

A higher-speed technique for achieving the byte-swap opera-
tion uses the Y inputioutput ports with m y held HIGH rather
than the DA port inputs. This technique bypasses the ALU, thus
allowing faster operation. The Am2903 destination command
F + Y,B should be used.

Memory Expansion

The Am2903 allows for a theoretically infinite memory expansion.
Figure 26 pictures a 4-bit slice of a system which has 48 words of
RAM and 16 words of ROM. RAM storage is provided by the
Am2903 and the Am29705’s. The 29705 RAM is functionally
identical to the Am2903 RAM. The Am29751 is used to store
constants and masks and is addressable from address port A only.
The system is organized around five data buses. Inter-bus
communication may be done through the Am29705’s or the
Am2903. The memory addressing scheme specifies the data
source for the R input of the ALU emanating from the register
locations specified by address field A. address 16 memory
locations in each chip while address bits Ap6 are decoded and used

Chapter 14 1 The Am2903/2910 205

MSS LSS

DEVICE 4 DEVICE 3 DEVICE 2 DEVICE 1

4

Am25LS2401244l--+4
/4
/4

Fig. 25. Byte swap.

for the output enable for the desired chip. The B address field is
used both to select the S input of the ALU and to specify the
register location where the result of the ALU operation is to be
stored.

Bits BM are for source register addressing in each chip. Bits B d

and Bj are used for chip output enable selection. B69 access the 16
destination addresses on each chip, while bits Blo and B11 control
the Write Enable of the desired chip. The source and destination
register address are multplexed so that when the clock is HIGH,
the source register address is presented to the B address ports of
the RAM'S. The Instruction Enable (m)is HIGH at this time.
The data flows from the Y port or the internal B port, as selected
by the decoder whose inputs are B d and Bg. When the clock goes
LOW, the data emanating from the selected Y outputs of the
Am29705's and the RAM outputs of the Am2903 are latched and
the destination address is now selected for use by the RAM
address lines. When the destination address stabilizes on the
address lines, the T N pin is brought LOW. The WRITE output
of the Am2903 will now go LOW, enabling the decoder sourced
by address bits Bio and BI1. The selected decoder line will go
LOW, allowing the desired memory location to be written into. To
switch between two- and three-address architecture, the user

t t

- E Am25LS2401244

/ /
/ 4 / 4

A

1

simply makes the source and destination addresses the same, i.e.,
B03 = Bg9. For two-address architecture, the MUX is removed
from the circuit.

General Description of the Am2910

The Am2910 microprogram controller is an address sequencer
intended for controlling the sequence of execution of microin-
structions stored in microprogram memory. Besides the capability
of sequential access, it provides conditional branching to any
microinstruction within its 4096-microword range. A last-in,
first-out stack provides microsubroutine return linkage and loop-
ing capability; there are five levels of nesting of microsubroutines.
Microinstruction loop-count control is provided with a count
capacity of 4096.

During each microinstruction, the microprogram controller
provides a 12-bit address from one of four sources: (1) the
microprogram address register (pPC), which usually contains an
address 1 greater than the previous address; (2) an external
(direct) input (D); (3) a register/counter (R) retaining data loaded
during a previous microinstruction; or (4)a five-deep last-in,
first-out stack (F).

,Chapter 14 I The Am290312910 207

-1

'-
> - +1: k

Am2910 BLOCK DIAGRAM

0, CP

I

a12-BIT DATA PATH

-CONTROL PATH

composed of a 12-bit incrementer followed by a 12-bit register.
The pPC can be used in either of two ways: When the carry-in
to the incrementer is HIGH, the microprogram register is loaded
on the next clock cycle with the current Y output word plus one
(Y+ 1+ pPC). Sequential microinstructions are thus executed.
When the carry-in is LOW, the incrementer passes the Y output
word unmodified so that pPC is reloaded with the same Y word on
the next clock cycle (Y +FPC). The same microinstruction is thus
executed any number of times.

The third source for the multiplexer is the direct (D) input. This
source is used for branching.

The fourth source available at the multiplexer input is a 5-word
by 12-bit stack (file). The stack is used to provide return address
linkage when executing microsubroutines or loops. The stack
contains a built-in stack pointer (SP) which always points to the
last file word written. This allows stack reference operations
(looping) to be performed without a pop.

The stack pointer operates as an upidown counter. During
microinstructions 1,4,and 5, the PUSH operation is performed.
This causes the stack pointer to increment and the file to be
written with the required return linkage. On the cycle following
the PUSH, the return data is at the new location pointed to by the
stack pointer.

During five microinstructions, a POP operation may occur. The
stack pointer decrements at the next rising clock edge following a
POP, effectively removing old information from the top of the

Fig.27. Am2910 block diagram.

Architecture of the Am2910

The Am2910 is a bipolar microprogram controller intended for use
in high-speed microprocessor applications. It allows addressing of
up to 4096 words of microprogram. A block diagram of the
Am2910 is shown in Fig. 27, and its application in a microcomput-
er is depicted in Fig. 28.

The controller contains a four-input multiplexer that is used to
select either the registericounter, direct input, microprogram
counter, or stack as the source of the next microinstruction
address.

The register/counter consists of 12 D-type, edge-triggered
-flip-flops, with a common clock enable. When its load control,
RLD, is LOW, new data is loaded on a positive clock transition. A
few instructions include load; in most systems, these instructions
will be sufficient, simplifying the microcode. The output of the
register/counter is available to the multiplexer as a source for the
next microinstruction address. The direct input furnishes a source
of data for loading the register/counter.

The Am2910 contains a microprogram counter (pPC) that is

stack.
The stack pointer linkage is such that any sequence of pushes,

pops, or stack references can be achieved. At RESET (instruction
O), the depth of nesting becomes 0. For each PUSH, the nesting
depth increases by 1;for each POP, the depth increases by 1.The
depth can grow to 5. After a depth of 5 is reached, FULL goes
LOW. Any further PUSHes onto a full stack overwrite information
at the top of the stack but leave the stack pointer unchanged. This
operation will usually destroy useful information and is normally
avoided. A POP from an empty stack may place non-meaningful
data on the Y outputs but is otherwise safe. The stack pointer
remains at 0 whenever a POP is attempted from a stack already
empty.

The registericounter is operated during three microinstructions
(8, 9, and 15) as a 12-bit down-counter, with result = zero
available as a microinstruction branch test criterion. This provides
efficient iteration of microinstructions. The registericounter is
arranged so that S i t is preloaded with a number n and then used
as a loop termination counter, the sequence will be executed
exactly n + 1 times. During instruction 15, a three-way branch
under combined control of the loop counter and the condition
code is available.

The device provides three-state Y outputs. These can be
particularly useful in designs requiring automatic checkout of the

I

E
Y -

1
208

--

processor. The microprogram controller outputs can be forced
into the high-impedance state, and pre-programmed sequences of
microinstructions can be executed via external access to the
address lines.

Operation

Table 6 shows the result of each instruction in controlling the
multiplexer which determines the Y outputs, and in controlling
the three enable signals PL, MAP, and VECT. The effect on the
registericounter and the stack after the next positive-going clock
edge is also shown. The multiplexer determines which internal
source drives the Y outputs. The value loaded into pPC is either
identical to the Y output or else 1greater, as determined by CI.
For each instruction, one and only one of the three outputs PL,
MAP, and VECT is LOW. If these outputs control three-state
enables for the primary source of microprogram jumps (usually
part of a pipeline register), a PROM which maps the instruction to
a microinstruction starting location, and an optional third source
(often a vector from a DMA or interrupt source), respectively, the
three-state sources can drive the D inputs without further logic.

Several inputs, as shown in Table 7, can modify instruction
execution. The combination CC HIGH and CCEN LOW is used -
as a test in 10of the 16 instructions. RLD, when LOW, causes the
D input to be loaded into the registerhounter, overriding any
HOLD or DEC operation specified in the instruction. OE,
normally LOW, may be forced HIGH to remove the Am2910 Y
outputs from a three-state bus.

The Am2910 Instruction Set

The Am2910 provides 16 instructions which select the address of
the next microinstruction to be executed. Four of the instructions
are unconditional-their effect depends only on the instruction.
Ten of the instructions have an effect which is partially controlled
by an external, data-dependent condition. Three of the instruc-
tions have an effect which is partially controlled by the contents of
the internal registericounter. The instruction set is shown in Table
6. In this discussion it is assumed that C, is tied HIGH.

In the 10 conditional instructions, the result of the data-
dependent test is applied to E.If the cc input is LOW, the test
is considered to have been passed, and the action specified in the
name occurs; otherwise, the test has failed and an alternate (often
simply the execution of the next sequential microinstruction)
occurs. Testing of ccmay be disabled for a specific microinstruc-
tion by setting CCEN HIGH, which unconditionally forces the
action specified in the name; that is, it forces a pass. Other ways of
using CCEN include (1)tying it HIGH, which is useful if no
microinstruction is data-dependent; (2) tying it LOW if data-

Chapter 14 I The Am2903/2910 209

dependent instructions are never forced unconditionally; or (3)
tying it to the source of Am2910 instruction bit b, which leaves
instructions 4, 6, and 10 as data-dependent but makes others
unconditional. All of these tricks save one bit of microcode width.

The effect of three instructions depends on the contents of the
register/counter. Unless the counter holds a value of zero, it is
decremented; if it does hold zero, it is held and a different
microprogram next address is selected. These instructions are
useful for executing a microinstruction loop a known number of
times. Instruction 15 is affected both by the external condition
code and the internal registericounter.

Perhaps the best technique for understanding the Am2910 is to
simply take each instruction and review its operation. In order to
provide some feel for the actual execution of these instructions,
Fig. 29 is included and depicts examples of all 16 instructions.

The examples given in Fig. 29 should be interpreted in the
following manner: The intent is to show microprogram flow as
various microprogram memory words are executed. For example,
the CONTINUE instruction, instruction 14,as shown in Fig. 29,
simply means that the contents of microprogram memory word 50
are executed and then the contents of word 51 are executed. This
is followed by the contents of microprogram memory word 52 and
the contents of microprogram memory word 53. The micropro-
gram addresses used in the examples were arbitrarily chosen and
have no meaning other than to show instruction flow. The
exception to this is the first example, JUMP ZERO, which forces
the microprogram location counter to address ZERO. Each dot
refers to the time that the contents of the microprogram memory
word is in the pipeline register. While no special symbology is
used for the conditional instructions, the test to follow will explain
what the conditional choices are in each example.

It might be appropriate at this time to mention that AMD has a
microprogram assembler called AMDASM, which has the capabil-
ity of using the Am2910 instructions in symbolic representation.
AMDASM’s Am2910 instruction symbolics (or mnemonics) are
given in Fig. 29 for each instruction and are also shown in Table 6.

Instruction 0.JZ (JUMP and ZERO, or RESET) unconditional-
ly specifies that the address of the next microinstruction is zero.
Many designs use this feature for power-up sequences and
provide the power-up firmware beginning at microprogram
memory word location 0.

Instruction 1 is a CONDITIONAL JUMP-TO-SUBROUTINE
via the address provided in the pipeline register. As shown in Fig.
29, the machine might have executed words at addresses 50, 51,
and 52. When the contents of address 52 are in the pipeline
register, the next address control function is the CONDITIONAL
JUMP-TO-SUBROUTINE. Here, if the test is passed, the next
instruction executed will be the contents of microprogram
memory location 90. If the test has &led, the JUMP-TO-

__

__

Table 7 Pin Functions
~~~~ ~ 

Abbreviation Name 

D, Direct Input Bit i 

-1, Instruction Bit i 

cc Condition Code 

CCEN Condition Code Enable 


CI Carry-I n 
RLD Register Load 

OF Output Enable 
CP Clock Pulse 
vCG +5 Volts 
GND Ground 

y, Microprogram Address Bit i 
FULL FULL-
PL Pipeline Address Enable 

-
MAP Map Address Enable 

VECT Vector Address Enable 

Chapter 14 I 


Function 

Direct input to register/counter and multiplexer. Do is LSB. 
Selects one-of-sixteen instructions for the AM 2910. 
Used as test criterion. Pass test is a LOW on m. 
Whenever the signal is HIGH, cc is ignored and the part operates 
as though ccwere true (LOW). 

Low order carry input to incrementer for microprogram counter. 
When LOW forces loading of register/counter regardless of 

instruction or condition. 
Three-state control of Yi outputs. 
Triggers all internal state changes at LOW-to-HIGH edge. 

Address to microprogram memory. Yo is LSB, Y,, is MSB. 
Indicates that five items are on the stack. 
Can select #1 source (usually Pipeline Register) as direct 

input source. 
Can select #2 source (usually Mapping PROM or PLA) as 

direct input source. 
Can select #3 source (for example, Interrupt Starting Address) 
as direct input source. 

The Am290312910 211 

SUBROUTINE will not be executed; the contents of micropro- 
gram memory location 53 will be executed instead. Thus, the 
CONDITIONAL JUMP-TO-SUBROUTINE instruction at location 
52 will cause the instruction either in location 90 or in location 53 
to be executed next. If the TEST input is such that location 90 is 
selected, value 53 will be pushed onto the internal stack. This 
provides the return linkage for the machine when the subroutine 
beginning at location 90 is completed. In this example, the 
subroutine was completed at location 93 and a RETURN-FROM- 
SUBROUTINE was found at location 93. 

Instruction 2 is the JUMP MAP instruction.- This is an 
unconditional instruction which causes the MAP output to be 
enabled so that the next microinstruction location is determined 
by the address supplied via the mapping PROMS. Normally, the 
JUMP MAP instruction is used at the end of the instruction fetch 
sequence for the machine. In the example of Fig. 29, microin-
structions at locations 50,51,52, and 53 might have been the fetch 
sequence, and at its completion at location 53, the jump map 
function would be contained in the pipeline register. This 
example shows the mapping PROM outputs to be 90; therefore, an 
unconditional jump to microprogram memory address 90 is 
performed. 

Instruction 3, CONDITIONAL JUMP PIPELINE, derives its 
branch address from the pipeline register branch address value 
(B&-BRII in Fig. 28). This instruction provides a technique for 

branching to various microprogram sequences depending upon 
the test condition inputs. Quite often, state machines are de- 
signed which simply execute tests on various inputs waiting for 
the condition to come true. When the true condition is reached, 
the machine then branches and executes a set of microinstructions 
to perform some function. This usually has the effect of resetting 
the input being tested until some point in the future. Figure 29 
shows the conditional jump via the pipeline register address at 
location 52. When the contents of microprogram memory word 52 
are in the pipeline register, the next address will be either 
location 53 or location 30 in this example. If the test is passed, the 
value currently in the pipeline register (3)will be selected. If the 
test fails, the next address selected will be contained in the 
microprogram counter, which in this example is 53. 

Instruction 4 is the PUSH/CONDITIONAL LOAD COUNTER 
instruction and is used primarily for setting up loops in micropro- 
gram firmware. In Figure 29, when instruction 52 is in the 
pipeline register, a PUSH will be made onto the stack and the 
counter will be loaded on the ba+s of the condition. When a 
PUSH occurs, the value pushed is always the next sequential 
instruction address. In this case, the address is 53. If the test fails, 
the counter is not loaded; if it is passed, the counter is loaded with 
the value contained in the pipeline register branch address field. 
Thus, a single microinstruction can be used to set up a loop to be 
executed a specific number of times. Instruction 8 will describe 
how to use the pushed value and the registerhounter for looping. 



~ 

0 JUMP ZERO (JZ) 	 1 COND JSB PL (CJS) 2 JUMP MAP IJMAP) 

3 COND JUMP P L  (CJP) 

53 
54 30 

31 

6 COND JUMP VECTOR (CJV) 

5051 f 
:: 20 
54 21 

:i52 
53 53 	 90 

91
54 

55 

4 PUSH/COND L D  CNTR (PUSH) 

STACK 

50 + 
52 	 REGISTER' STACK 

COUNTER 
53 

90 

7 COND JUMP WPL (JRP) 	 91 

92 

94 

5051$-ii 	
93 

7o71 	 8081 

10 COND RETURN (CRTN) 
8 REPEAT LOOP, CNTR # 0 (RFCT) 9 REPEAT PL. CNTR # 0 (RPCTI 

/@ :pTuAscH: 
REGISTER/ 

52 51 

53 52 91 
:FCouNTER
54 	 92 

55 t 
11 COND JUMP PL &POP (CJPP) 

'f&$fqq
92 12;y
5455 
56 82 

14 CONTINUE ICONT) 

52 
53 

93 

94 

12 L D  CNTR & CONTINUE (LDCT) 95 
96 

97 

COUNTER 
13 TEST END LOOP (LOOP) 

51 

52 

53 t 

15 THREE-WAY BRANCH (TWB) 

STACK 

54 

63 55 


64 56 


5 1  


Fig. 29. Am2910 execution examples. 

212 



Instruction 5 is a CONDITIONAL JUMP-TO-SUBROUTINE 
via the registerkounter or the contents of the Pipeline register. As 
shown in Fig. 29, a PUSH is always performed and one of two 
subroutines executed. In this example, either the subroutine 
beginning at address 80 or the subroutine beginning at address 90 
will be performed. A return-from subroutine (instruction 10) 
returns the microprogram flom7 to address 55. In order for this 
microinstruction control sequence to operate correctly, both the 
next-address fields of instruction 53 and the next-address fields of 
instruction 54 have to contain the proper value. Let us assume 
that the branch address fields of instruction 53 contain the value 
90 so that it will be in the Am2910 registericounter when the 
contents of address 54 are in the pipeline register. This requires 
that the instruction at address 53 load the registericounter. Now, 
during the execution of instruction 5 (at address 54), if the test 
fails, the contents of the register (value = 90) will select the 
address of the next microinstruction. If the test input passes, the 
pipeline register contents (value = 80)will determine the address 
of the next microinstruction. Therefore, this instruction provides 
the ability to select one of two subroutines to be executed based 
on a test condition. 

Instruction 6 is a CONDITIONAL JUMP VECTOR instruction 
which provides the capability to take the branch address from a 
third source heretofore not discussed. In order for this instruction 
to be useful, the Am2910 output, VECT, is used to control a 
three-state control input of a register, buffer, or PROM containing 
the next microprogram address. This instruction provides one 
technique for performing interrupt-type branching at the micro- 
program level. Since this instruction is conditional, a pass causes 
the next address to be taken from the vector source, while failure 
causes the next address to be taken from the microprogram 
counter. In the example of Fig. 29, if the CONDITIONAL JUMP 
VECTOR instruction is contained at location 52, execution will 
continue at vector address 20 if the TEST input is HIGH and the 
microinstruction at address 53 will be executed if the TEST input 
is LOW. 

Instruction 7 is a CONDITIONAL JUMP via the contents of the 
Am2910 registerhounter or the contents of the pipeline register. 
This instruction is very similar to instruction 5 ,  the CONDITION- 
AL JUMP-TO-SUBROUTINE via R or PL. The major difference 
between instruction 5 and instruction 7 is that no push onto the 
stack is performed with 7. Figure 29 depicts this instruction as a 
branch to one of two locations depending on the test condition. 
The example assumes the pipeline register contains the value 70 
when the contents of address 52 are being executed. As the 
contents of address 53 are clocked into the pipeline register, 
the value 70 is loaded into the registedcounter in the Am2910. 
The value 80 is available when the contents of address 53 are in 

Chapter 14 1 The Am2903/2910 213 

the pipeline register. Thus, control is transferred to either address 
70 or address 80, depending on the test condition. 

Instruction 8 is the REPEAT LOOP, COUNTER # ZERO 
instruction. This microinstruction makes use of the decrementing 
capability of the registerhounter. To be useful, some previous 
instruction, such as 4,must have loaded a count value into the 
registericounter. This instruction checks to see whether the 
registerhounter contains a non-zero value. If so, the register/ 
counter is decremented, and the address of the next microinstruc- 
tion is taken from the top of the stack. If the registerlcounter 
contains zero, the loop exit condition is occurring; control falls 
through to the next sequential microinstruction by selecting pPC; 
the stack is POPped by decrementing the stack pointer, but the 
contents of the top of the stack are thrown away. 

An example of the REPEAT LOOP, COUNTER # ZERO 
instruction is shown in Fig. 29. In this example, location 50 most 
likely would contain a PUSHEONDITIONAL LOAD COUNTER 
instruction which would have caused address 51 to be PUSHed 
onto the stack and the counter to be loaded with the proper value 
for looping the desired number of times. 

In this example, since the loop test is made at the end of the 
instructions to be repeated (microaddress 54,  the proper value to 
be loaded by the instructions at address 50 is one less than the 
desired number of passes through the loop. This method allows a 
loop to be executed 1to 4096 times. If it is desired to execute the 
loop from 0 to 4095 times, the firmware should be written to make 
the loop exit test immediately after loop entry. 

Single-microinstruction loops provide a highly efficient capabil- 
ity for executing a specific microinstruction a fixed number of 
times. Examples include fixed rotates, byte swap, fixed-point 
multiply, and fixed-point divide. 

Instruction 9 is the REPEAT PIPELINE REGISTER, COUNT- 
ER # ZERO instruction. This instruction is similar to instruction 
8 except that the branch address now comes from the pipeline 
register rather than the file. In some cases, this instruction may be 
thought of as a one-word file extension; that is, by using this 
instruction, a loop with the counter can still be performed when 
subroutines are nested five deep. This instruction’s operation is 
very similar to that of instruction 8. The differences are that on 
this instruction, a failed test condition causes the source of the 
next microinstruction address to be the D inputs; and, when the 
test condition is passed, this instruction does not perform a POP 
because the stack is not being used. 

In the example of Fig. 29, the REPEAT PIPELINE, COUNT- 
ER # ZERO instruction is instruction 52 and is shown as a single 
microinstruction loop. The address in the pipeline register would 
be 52. Instruction 51 in this example could be the LOAD 
COUNTER AND CONTINUE instruction (instruction 12). While 



214 Part 2 I Regions of Computer Space 

the example shows a single microinstruction loop, by simply 
changing the address in a pipeline register, multi-instruction 
loops can be performed in this manner for a fixed number of times 
as determined by the counter. 

Instruction 10 is the conditional RETURN-FROM-
SUBROUTINE instruction. As the name implies, this instruction 
is used to branch from the subroutine back to the next microin- 
struction address following the subroutine call. Since this instruc- 
tion is conditional, the return is performed only if the test is 
passed. If the test is failed, the next sequential microinstruction is 
performed. The example in Fig. 29 depicts the use of the 
conditional RETURN-FROM-SUBROUTINE instruction in both 
the conditional and the unconditional modes. This example first 
shows a JUMP-TO-SUBROUTINE at instruction location 52, 
where control is transferred to location 90. At location 93, a 
Conditional RETURN-FROM-SUBROUTINE instruction is per- 
formed. If the test is passed, the stack is accessed and the program 
will transfer to the next instruction at address 53. If the test is 
failed, the next microinstruction at address 94 will be executed. 
The program will continue to address 97, where the subroutine is 
complete. To perform an unconditional RETURN-FROM-
SUBROUTINE, the conditional RETURN-FROM-SUBROUTINE 
instruction is executed unconditionally; the microinstruction at 
address 97 is programmed to force CCEN HIGH, disabling the 
test, and the forced PASS causes an unconditional return. 

Instruction 11 is the CONDITIONAL JUMP PIPELINE regis- 
ter address and POP stack instruction. This instruction provides 
another technique for loop termination and stack maintenance. 
The example in Fig. 29 shows a loop being performed from 
address 55 back to address 51. The instructions at locations 52, 53, 
and 54 are all conditional JUMP and POP instructions. At address 
52, if the TEST input is passed, a branch will be made to address 
70 and the stack will be properly maintained via a POP. Should 
the test fail, the instruction at location 53 (the next sequential 
instruction) will be executed. Likewise, at address 53, either the 
instruction at 90 or 54 will be subsequently executed, depending 
on whether the test has been passed or failed. The instruction at 
54 follows the same rules, going to either 80 or 55. An instruction 
sequence as described here, using the CONDITIONAL JUMP 
PIPELINE and POP instruction, is very useful when several 
inputs are being tested and the microprogram is looping waiting 
for any of the inputs being tested to occur before proceeding to 
another sequence of instructions. This provides the powerful 
jump-table programming technique at the firmware level. 

Instruction 12 is the LOAD COUNTER AND CONTINUE 
instruction, which simply enables the counter to be loaded with 
the value at its parallel inputs. These inputs are normally 

Section 1 1 Microprogram-Based Processors 

connected to the p ipehe  branch address field which (in the 
architecture being described here) serves to supply either a 
branch address or a counter value, depending upon whether the 
microinstruction has been executed. There are altogether three 
ways of loading the counter: the explicit load by this instruction 
12, the conditional load included as part of instruction 4, and the __ -
use of the RLD input along with any instruction. The use of RLD 
with any instruction overrides any counting or decrementation 
specified in the instruction, calling for a load instead. Its use 
provides additional microinstruction power, at the expense of one 
bit of microinstruction width. This instruction 12 is exactly -
equivalent to the combination of instruction 14 and RLD LOW. 
Its purpose is to provide a simple capability to load the register/ 
counter in those implementations which do not provide micropro- -
grammed control for RLD. 

Instruction 13 is the TEST END-OF-LOOP instruction, which 
provides the capability of conditionally exiting a loop at the 
bottom; that is, this is a conditional instruction that will cause the 
microprogram to loop, via the file, if the test is failed or else to 
continue to the next sequential instruction. The example in Fig. 
29 shows the TEST END-OF-LOOP microinstruction at address 
56. If the test fails, the microprogram will br+nch to address 52. 
Address 52 is on the stack because a PUSH instruction has been 
executed at address 51. If the test is passed at instruction 56, the 
loop is terminated and the next sequential microinstruction at 
address 57 is executed, which also causes the stack to be POPped, 
thus accomplishing the required stack maintenance. 

Instruction 14 is the CONTINUE instruction, which simply 
causes the microprogram counter to increment so that the next 
sequential microinstruction is executed. This is the simplest 
microinstruction of all and should be the default instruction which 
the firmware requests whenever there is nothing better to do. 

Instruction 15, THREE-WAY BRAXCH, is the most complex. 
It provides for testing of both a data-dependent condition and the 
counter during one microinstruction and provides for selecting 
among one of three microinstruction addresses as the next 
microinstruction to be performed. Like instruction 8, a previous 
instruction will have loaded a count into the registerhounter 
while pushing a microbranch address onto the stack. Instruction 
15 performs a decrement-and-branch-until-zero function similar 
to instruction 8. The next address is taken from the top ofthe stack 
until the count reaches zero; then the next address comes from 
the pipeline register. The above action continues as long as the 
test condition fails. If at any execution of instruction 15 the test 
condition is passed, no branch is taken; the microprogram counter 
register furnishes the next address. When the loop is ended, 
either because the count has become zero or because the 



conditional test has been passed, the stack is Popped by 
decrementing the stack pointer, since interest in the value 
contained at the top of the stack is then complete. 

The application of instruction 15can enhance performance of a 
variety of machine-level instructions, for instance: (1)a memory 
search instruction to be terminated either by finding a desired 
memory content or by reaching the search limit, (2) variable-
field-length arithmetic terminated early upon finding that the 
content of the portion of the field still unprocessed is all zeros, (3) 
key search in a disc controller processing variable-length records, 
and (4)normalization of a floating-point number. 

As one example, consider the case of a memory search 
instruction. As shown in Fig. 29, the instruction at microprogram 
address 63 can be instruction 4 (PUSH), which will push the value 
64 onto the microprogram stack and load the number n, which is 

Chapter 14 I The Am29032910 215 

one less than the number of memory locations to be searched 
before giving up. Location 64 contains a microinstruction which 
fetches the next operand from the memory area to be searched 
and compares it with the search key. Location 65 contains a 
microinstruction which tests the result of the comparison and also 
is a THREE-WAY BRANCH for microprogram control. If no 
match is found, the test fails and the microprogram goes back to 
location 64 for the next operand address. When the count 
becomes zero, the microprogram branches to location 72, which 
does whatever is necessary if no match is found. If a match occurs 
on any execution of the THREE-WAY BRANCH at location 65, 
control falls through to location 66, which handles this case. 
Whether the instruction ends by finding a match or not, the stack 
will have been POPped once, removing the value 64from the top 
of the stack. 



APPENDIX 1 AM2903 ISP DESCRIPTION 

ASHTI @ S l O O  = S103 @ F l leX1
~ ~ 2 9 0 3:= I F  mss and ( n o t  1<5>) =)  ASHFT<3)@ASHFT<2)  = ASHFT<Z>RASI iF I (3 ) ;

b e g i n  WnirE = 0 :  
I ISPS d e s c r i p t i o n  o f  t h e  AM2903 4 b i t  s l i c e  m i c r o p r o c e s s o r .  	

OECOOE 1 < 6 )  =) 
b e g i n 

0 q i 0 3  = qioO = h i z . 
:i

1 Page 1 o f  t h e  clescl',Plion Con ta ins  d e c l a r a t i o n s  o f  s i m p l e  c a r r i e r s  I := q R qioO = q i 0 3  8 q
I *.PC.State.* and * * M P . S T A l l * *  S e c t i o n s  d e s c r i b e  t h e  a c t u a l  end

c a r r i e r s  c o n t a i n e d  w l t h i u  the  AM2903 c h i p .  end.. - f r t e r n a l . S t a t e * *  d e s c r i b e s  t h e  s imp le  c a r r i e r s  t h a t  b e g i n  I ASHFT= F 
t ~ ~ r n ~ n a t e_ _  . . .~qn o i n s .  	 1 :  

nswT = F :  5 1 0 0  = p a r i t y :  W R I T E  = I < B )  a o r  1<6>:
~ ~ l ~ ~ p l e ~ ~ ~ ~ ~ t a t i o i i . D e c l a r a t ~ o t ~ s ~ ~d e s c r i b e  c a r r i e r s  necesary  DlCDnE I < 6 : 5 >  =>

f o r  t h e  IS I '  d e s c r i p t i o n  

.. 
b e g i n 

0 : =  0103 = QlOO = h i z .  


page 2 	 descl ' ibes t h e  access compu ta t l ons  used  t o  SnUrCe and s i n k  I : =  0 D 0100 = 9103 B 9. 

compu ta t i on  d a t a .  2 : 3  : =  ( 0 1 0 3  = 0100 = h i z ;  Q = F )  


Page 3 c o n t a i n s  d e s c r i p t i o n s  o f  the  h a s i c  ope, i o n  c y c l e  and end. 
end 


t he  a c t u a l  Inst l .UcLion e x e c u t i o n .  2 : =  b e g i n  I ASHFT = ZF 

s103 Q nsnfi = F o SIOO n e x t  


page 5 	 - 0 c o n t a i n  d e s c r i p t i o n s  o f  compu ta t i ons  f o r  t he  2 .  G.N. i f  n i s i  and (not  1 < 5 > )=> s 1 0 3  @ A S I I F ~ < ~ )= A S I ( F T < ~ )  I ~ 1 0 3 ;
P.ovR. and C n 4  o u t p u t  p i n s  p l u s  t h e  " g , "  and " p i "  WI111i = 0:
i n t e r m e d i a t e  CarI'y genera te  and c a r r y  p ropoga te  compu ta t i ons .  i)ICOUl I < 6 )  = >  

beg i n  
**PC.State** 0 : =  0103 = QIOO = h i r .  

1 : =  0 1 0 3  @ 0 = 0 (P PI00 
A S H F I < 3 : 0 > .  ALU S l i i f t e r  end

R<3:0>. R i n p u t s  t o  ALu end.

S<3:0). s i n p u t s  t o  n L u  3 : =  beg in  I nsnfT= < F ) .  (SIOO) 


OtCOOE 1 < 6 : 5 >  e q l  ' 10  = >  

*.MP.State** 	 b e g i n 


0 : =  (ASI IFT  = F ;  S I 0 3  = F < 3 ) ;  5100 = h i z ) . 

RAM[O:15]<3:0> 16 X 4 b i t  2 p o r t  RAM 	 1 : =  A S l l f l  < =  SlOO 

end:
..External.Stale.* 	 W R l l f  = not 1<6); 

A RAM p o r t  i n p u t  addross ULCOOt 1<6:5) eal ' 0 1  => 


0 < 3 : 0 > .  0 RAM p o r t  i n p u t  address 0 : =  0103 = QIOO = h i z .  

CnO.  Car ry  i n  

0 ~ ~ 3 :  	 end 

A(3:O) .  	 b e g i n  

0). IUiPect d a t a  i n p u t  ( R  i n p u t )  1 : =  0 1 0 3  B 0 = Q B QIOO 


0 0 < 3 :  0). I l ~ r e c td a t a  i n p u t  (S input )  
end
i n o .  ! I l l G l l  = >  I?= I I A .  LOW =)  R = A 


! Sign o f  A l U  (MSS) end 


f<3:0), I o ~ t l m trrom ALU end. 


I L N O .  ! l n s t r u c t i c m  enab le  ( l o w  t r u e )  

L S S L O .  ! low = >  l e a s t  S i g n i f i c a n t  S l i c e  * * Ins t ruc t i on .Cyc le . '  

OEO<) .  ! low enab les  IlAM p o r t  0 

O E Y O .  ! IOU enab les  ALU S h i f t  t o  Y run := ! Ma in  i n s t r u c t i o n  c y c l e  

Q < 3 : 0 > .  ! Ou tpu t  from 0 r e g i s t e r  b e g i n  

Q 1 0 3 0 .  I Q register s h i f t  MSB W I l I T f  = 1 n e x t  

Q I O O O .  ! 0 r e g i s t e r  s h i f t  LSO DECOOE IEN =) 

S I 0 3 0 .  ! A l U  s h i f t  MSU b e a i n 
~~ 

S I O O O .  ! Alu S h i f t  LSO 0 : =  b s g i n  

W . M S S 0  I I.SS=I.OY = >  NOT wnI f f  o u t p u t  s o u r c e ( )  n e x t  


! I S S = I I I G I I  = >  i n p u t  p i n :  exec( ) . n e a t 
exec( ) . n e a t
! HIGII = >  I S .  LOW => MSS I r  1 < 4 : 0 )  NEOHE0 0 =)0 d e s t i n a t i o n 0 
=) d e s t i n a t i o n 0i r  1 ~ 4 : ~ )  n e x t 
n e x t  

W E < > .  ! W r i t e  Enab le :  LOW =)  RAM = Y I r  "ot 1 . s ~= >  u.MSS = Y l l I l E  n e x t 
I r  "ot 1 . s ~= >  u.MSS = Y l l I l E  n e x t  
Y <3:0>, I U a l a  IFIF not otYotv  = )  Y = m i r r  n e x t 
= )  Y = m i r r  n e x ti n p u l l o u t p u t  DO* 


I fI F  not WE = >  RAM[O] = Y n e x t  

I < B : O ) .  I I n s t r u c t i o n  i n p u t s  Z ( )  n e x t 
Z ( )  n e x t  

p i ( )  

* * l m p l e i n e i i t a t i o n . f l e c l a r a t i o n s . .  C Y 4 ( ) :C Y 4 ( ) :  P.OVH(): G . N ( )G . N O  


9 3 0 :g i ( ) ;  p i 0  nextnext 
P.OVH(); 

end.end. 
AcCUmulatOr f o r  computed P I :=  W R I T E  =W R I T E  I= I 
Acctlsi t lato#'  f o r  computed C end n e x t  

. ~ c c m w l a t o r f o r  computed Cn+3 RESTART run  
! In tar i ta l  w r t l e  f l a g  end. 

des t<3 :0>  : =  I < 8 : 5 > .  ! D e s t i n a t i o n  s e l e c t  *~lnstruction.ixecution~~(us) 


op<3:0> : =  1 < 4 : 1 > .  ! F u n c t i o n  OP code 

i O < >  : =  I < O > .  ! I < O )  ( p a r t  o f  sou rce  s e l e c t )  B X B C  := 


b e g i n  

macro h i z  ' =  1'11111 ! T r i s t a t e  c o n s t a n t  ~LCOOE1<4:1> => 


macro p a r j t y  :: I f ( 3 )  xo; F < 2 >  xo r  f < l )  x o r  f < O >  x o r  S I 0 3 1 ,  

macro mss : =  I L S S L  Bod ( n o t  W . M S S ) I .  


..Access.Cosputation..(us) 	 end) ,  
F =  ( ( S  - n) - 1) + Cn. 

b e g i n  F =  


UiCOOC E A  Q I < O )  Q Of0 = >  F =  ( n  + s) + Cn. 

source 	 : =  ! Source c a l c u l a t i o n  ( ( R  - S )  - 1) + Cn . 

F =  

# O  	 : =  ( R  = R A M [ A ] :  S = RAM[R]). F =  


: =  F = 

# I  ( P  = r a a [ a ] :  s = db ) .  	

F =  

#2:#3 : =  111 : R A M I A I :  S = 0 1 .  F =  -.
# 4  : =  i n  = UA : s = r i ~ ~ l ~ l j . 

# 5  : =  ( R  = UA ; S = UU I '  F =  ( n o t  R )  and S .  


F =  n eqv s .X 6 . # 7  : =  ( R  i OA , S = 0 	 F =  R xo r  S .end r =  It and S.
end. r =  not ( R  ar S ) .  

F =  not ( R  and 5).
d e s t i n a t i o n  : =  ! Ues t iinat  Ion c a l c u l a t i o n  	 6 ;

b e g i n  	 n o r  s. 
IILCOUF 1 < 8 : 7 >  = >  


beg in  end  


0 : =  b e g i n  ! A S I I f T =  F12 


216 



LIZ 


i:4 . : 3 . .  
=. a.:e.. 

S JO ( M  

J Q  

Sll <= 0 = < 5 > I  I 



AM2910 := 
end, 

1 := p i  = '1111 
end. 

[ " l . " D ] : =  p i  = ( n o t  R )  o r  S. 
" 2  :=  p i  = R o r  ( n o t  S). 

[ " 3 . " A ] : =  p i  = R or S. 
" 4  : =  p i  = 5 ,  
"5 :i p i  = not S .  
"6  : =  p i  = R. 
" 7  :ip i  = n o t  R. 

e n d  
[ -8 : "g . "C : "F ] :=  p i  = '1111 

beg in  

! I S P S  d e s c r i p t i o n  o f  AMD AM2910 microprogram sequencer. 

I The AM2910 i s  a I2 b i t  micFoprogram addPeSS COntPOllBr. 
! The c o n t r o l l e r  i s  designed t o  be used w i t h  the  AM2901 o r  t he  AM2903 
! microprocessor  S l i c e  and e x t e r n a l  memory. 

! S i m u l a t i o n  o f  t he  AM2910 a lone  i s  pOsSible. b u t  emu la t i on  O f  any 
! computer systems requ i res  t h a t  t h i s  deSCPipt ion be j o i n e d  w i t h  
! the AM2901 o r  AM2903 d e s c r i p t i o n .  

'*PC.StBt.3*' 

Cn4( )<>  := 
b e g i n  
DECODE I<4 :1>  => 

end.  
! C a r r y  Out 

"Pc<I l :o>.  
R < 1 1: O > ,
Sp<Z:O>,
STACK[O:En]<ll:O>. 

Microprogram Counter  
Address r e g i s t e r  
Stack p o i n t e r  
S t i c k  r e g i s t e r  f i l e  

b e g i n  
' 0  :=  DECODE I<O> = >  

b e g i n
0 : =  DECODE 1<8:5> => 

b e g i n  
[ " o : " ~ . " c : " F ] : =  cn4  = g o r  ( p  and  Cn). 

"8:"Q :=  DECODE mss = >  
b e g i n  
0 : =  Cn4 = g o r  ( p  a n d  Cn) .  
1 :iCn4 = 0<3> X O P  0<2> 
end,  

" A : " B  : =  DCCODC mss = >  
b e g i n  
0 :=  Cn4 = g o r  ( p  and  Cn) .  
1 := Cn4 = F < 3 >  x o r  F < 2 >  
end  

end.  

" I C P O  P l .  :=  1 '0111.  
macw map. := I ' I O l l ,  
macro vec t .  := 1'1101. 

C I O  

OEO. 
RLOO. 
MAP<> := enab le< l> .  
P L O  :=  enable<2>. 
VECTO :=  enable<O>. 

P i p e l i n e  addPe6s enable 
Map addPeSS enable 
v e c t o r  address enable 

Car ry  i n  
Cond i t i on  code i n p u t  b i t  
Cond i t i on  code enable i n p u t  b i t  
O i r e c t  i n p u t s  
S t a c k  f u l l  f l a g  
I n s t w c t i o n  r e g i s t e r  
I n s t r u c t i o n  w c t w  a f f e c t i n g  2910 
Output  enable c o n t r o l  l i n e  
Reg is te r  l oad  
Map address enable f l a g  
P i n e l i n e  address enable f l a g  
Ve'ctor addl'ess enable f l a g  

1 :=  C"4 = 0 
end. ' .Implemehtatian.Variables.. 

" 1 : " l  :=  
" 8 : " f  :=  

end  
end.  

Cn4 = g o r  ( p  and  Cn) 
Cn4 = 0 

*"able<2:0>, 
f a i l < > .  
p a s s o ,  
macro h i z  : =  1"FFFFI. 

Enable c o n d i t i o n s  
CC f a i l  f l a g  
cc pass f l a g  
High inipedence Constant 

P.OVR()<> :=  I ( n o t  P)/OVR p i n  "Operat ion.Cycle**(us)  
b e g i n  
p i p i ( j  eqv  ' 1 1 1 1  n e x t  run(nain}  := I Bas ic  ope ra t i on  l oop  

DECODE mss => 
b e g i n
0 : =  DECODE 1<4:1> = >  

beg  i n  
-0  :=  P.OVR = ( n o t  p )  

" 1 : " l  : =  P.OVR = n o t  p. 
-8 :"F  := P.OVR = 0 

end.  

a n d  (not  I<O>). 

beg inI F  n o t  RLO = >  R = D n e x t  
Y ( )  n e x t  
"PC = Y + C I  n e x t  
RESTART run 
end. 

..nddress.source.Selection..(us} 

! Forced ( e x t e r n a l )  l oad  O f  
! Pu t  o u t  s e l e c t e d  address 
! InCPBment pc  

reg .  

1 : =  

end  

DECODE 1<4:1> => 
b e g i n
- 0  : =  DECODE 1<0> = >  

b e g i n
0 :=  DCCODE 1<8:5> => 

b e g i n
[ - o : - 7 ; ~ c : - r ] : - ~ . o v n= cn3  xor c n 4 .  

"8 : "g := 1~.0v l l= Q<2> x o r  Q < l > .  
. - A : " B  := P.OVR = F < 2 >  aor  F < l >  

end.  
1 := P.OVR = 0 
end.  

" I : - ?  :=  P.OVR = Cn3 ror  Cn4. 
" 8 : " F  :=  P.OVR = 0 

e n d  

Y ( )<11 :  0) :=  
beg in  
IF i e q i  "2 = )  enable = nap.: 
I F  i e q l  " 6  = >  enable = Vect.: 
IF (ineq "2 )  and  ( i  neq " 8 )  => enable = P l . :  
f a l l  = ( n o t  CCEN) and CC n e x t  
pass = n o t  f a i l  next  
DECODE i => 

beg in
"0 : =  J Z  
' ' I  := CJS 

"2 : =  JMAP 
"3 : =  CJP 

" 4  : =  PUSH 
"5 : =  JSRP 

: =  ( Y  = SP = 0: FULL = 1). 
: =  ( I F  f a i l  =>  ( Y  = uPC): 

:=  ( U  = 0). 
: =  ( I F  f a i l  = >  ( Y  = uPC): 

: =  ( Y  = UPC: push . ( ) :  IF pass = jR = 0 ) .  

I F  pass = >  ( Y  = 0: p u s h . ( ) ) ) .  

I F  pass => ( Y  = 0 ) ) .  

end. 

b e g i n  
DECODE mSS => 

G . N ( ) < >  :=  

b e g i n  
0 : =  G.N = not g .  
1 : =  DECODE 1<4:1> 

! ( n o t  G ) / N  

=> 

p in  
'"6 :=  CJV 

" 7  := JRP 

"8 : =  RFCT 

"9 : =  RPCT 

beg  i n  
"0 :=  DECODE I<O> => 

" A  _ =. CRTN 

b e g i n  
0 : =  DECODE [ < 0 : 5 >  = >  

"B := CJPP 

b e g i n  
["0:"4:'6:"7.''A:''F]:= G.N = F<3> .  

"5  : =  DECODE 2 = >  
beg  i n  
0 : =  G.N = 
1 : =  G.N = 
end.  

'"8:"Q : =  G.N = Q<3>  
end. 

1 := G.N = F<3> 

F<3>.  
F<3> x o r  s<3> 

" C  := LDCT 
" D  :,= LOOP 

"E := CONT 
"F : =  TWB 

: =  
: =  

( Y  = "PC). 
(DECOOE R eql 0 => 

beg in
0 : =  ( I F  f a i l  

I F  pass 
1 : =  ( I F  f a i l  

IF pass 
end) 

sTACK[SP]): 
uPC: p a p ( ) ) :  R = R - 11. 
0): 
U P C ) :  P a P o )  

end.  end n e x t  
" 1 : " F  :=  G.N = F<3> I F  OE = >  Y = h i r  

e n d  end. 
e n d  

end ,  pop : =  ( I F  SP neq 0 => SP = SP - 1: FULL = 1) 

e n d  I End of  AM2903 d e s c r i p t i o n  

push. := 
beg in
DECODE SP B q l  1 4  = >  

beg in
0 :i(FULL i 1: SP = SP + I ) .  

and nex t  
1 := (FULL = 0)  

APPENDIX 2 (right) AM2910 ISP DESCRIPTION sTACK[SPI = uPC 
~~ 

end 

end I End O f  AM2910 d e s c r i p t i o n  

218 



Chapter 15 

A PDP-8 Implementedfrom AMD 
Bit-Sliced Microprocessors 

Michael Tsao 

An example of a microprogrammable system based on the 
Am2910 sequencer and the Am2901 ALU will illustrate design 
with bit slices. The target machine is the PDP-8 ISP (see 
Appendix 1of Chap. 8). This register-transfer (RT) level design of 
the micromachine is thus optimized toward the basic PDP-8. 
However, the general principles involved in microprogramming 
bit slices are illustrated by this example. A major goal of this 
design is the clarity of implementation, rather than the economy 
of design. 

Overview 

The basic implementation is a one-stagepipeline as shown in Fig. 
1in Chap. 13. In this micromachine, the pipeline register stores 
the current microinstruction, which is being executed by the 
Am2910 Sequencer and the Am2901 ALU. The status information 
(zero, overflow, etc.) of the ALU operations is stored in the Status 
Register. In a one-stage pipeline design, conditional branches can 
be executed only by the microinstruction following the microcycle 
that has generated the branching status. The Am2910 sequencer is 
used instead of the Am2909 to simplify the design and to aid 
understandability. A more cost-effective design might actually 
result from using the Am2909 sequencer, since the number of 
microinstruction types used to emulate the PDP-8 is small. The 
Am2901 ALU is used because it more closely reflects the ISP of 
the PDP-8. 

A timing diagram for a typical microcycle is shown in Fig. 1. 
The indicated delays are typical values, illustrating the timing 
requirements rather than actual component performances. On the 
rising edge of the system clock, the Pipeline Register latches the 
microinstruction to be executed during this microcycle. The 
output of the Pipeline Register is valid 15ns later. After another 
15-nsdelay, the Condition Code input to the Am2910 is valid. The 
microsequencer generates the next microaddress based on the 
current microinstruction and the Condition Code input. When 
the microprogram memory output is valid (approximately 130 ns 
after the rising clock edge), the microcycle can be restarted. 
Concurrently with the sequencer operation and microword fetch, 
the Am2901 ALU executes the operations specified by the 
microword in the Pipeline Register. The output of the ALU is 

System c lock \ 
115qi 


Pipel ine Register 

M u x  t o  
I 11517; I next

\ micro-
Condition Code I cvcle 

Sequencer address 

pstore ROM output )I 

I 
I I I 

_ .  

ALU outputALU output 
. . - ,I 

MiscellaneousMiscelk 
Register I 

Fig. 1. One-stage pipeline microcycle timing waveform. 

valid prior to the falling edge of the system clock. External 
registers, such as the Memory Address Register (MAR) and the 
Status Register, use the falling clock edge to latch results from the 
ALU output port. In this design, the duty cycle of the system clock 
does not need to be symmetrical at 50 percent. 

RT-Level Implementationand the Microword Format 

The RT-level implementation of the Am2900/PDP-8 is shown in 
Fig. 2 for the control part, and in Fig. 3 for the data part. The 
design can best be explained in conjunction with the microword 
format shown in Table 1. The ISPS description of the RT-level 
design is listed in Appendix 2. The following subsections discuss 
the meaning of each microword field and the associated RT-level 
components. For each microword field, there are three possible 
bit sizes: the number of bits normally required for the associated 
components, the minimum required for this PDP-8 application, 
and the actual field size used. The position of each field in the 
microword is defined in the ISPS description. The reason for 
inserting extra bits is to align the fields on octal boundaries, thus 
aiding the reading of the encoded microprogram. 

Sequencer Instruction and Address Field 

The Am2910 sequencer normally requires a 4-bit-wide instruction 
and a 12-bit-wide “next address” direct input. The microprogram 
occupies less than 128words, requiring only 7 bits ofaddress. Two 
extra instruction bits and two extra address bits are inserted as 0s 
in this design example for octal boundary alignment. 

219 



-- 

220 Part 2 1 Regions of Computer Space Section 1 1 Microprogram-Based Processors 

Condition Code 
calculationand 

Am2910 microsequencer input MUX 

microprogram 

store ROM 


ALU D input select & MASK 
ROM Eelect 

ALU RAMport~elect 

ALU instruction I 
IFig. 2. Micrornachine-control and sequencer. 

Out of sixteen Am2910 instructions, only 4 are used in this 
example: Conditional Jump Subroutine (C JS, #01), Conditional 
Jump (CJP, #03), Conditional Return from Subroutine (CRTN, 
#12), and Continue (CONT, #16). Therefore, it is theoretically 
possible to use only 2 bits of information to specify these four 
actions. 

Din select 

7k MASK 
ROM 

Stat"$ Y 0"t IY
Memory Address 

Register 
ALU mzwt 

Fig. 3. Micromachine-ALU and data. 

Table 1 The Microword Format and Required Bits per Field 
~~ - ~ 

Bits per field Normal Minimum Actual (ISP) 

Micro sequencer control 
Microinstruction 4 2 6 
Next microaddress 12 7 9 
Condition code select (6) 6 6 

ALU control 
ALU instruction 

Source 3 3 3 
Function 3 3 3 
Destination 3 3 3 

RAM A port select 4 3 3 
RAM €3 port select 4 3 3 
Direct input select (2) 2 3 
Constant mask select (3) 3 3 

Miscellaneous control signals 
Control signal select (4) 4 6 

Total 48 39 48 

Condition Code Input Selection 

There is only one condition code (CC) input for the Am2910. The 
status conditions have to be multiplexed into this input. The 
assignments for the multiplexer input lines can be found in the 
ISP description in Appendix 1(ISPS procedure Condition.Code). 
Five bits are used to select one out of 32 different input signals. 
The sixth bit in this field is used to select between the original 
signal and the complement of the signal. In this manner, the 
micromachine can branch when the signal is either high or low. 
When an unconditional microprogram branch is required, a logic 
0 can be selected for the CC input. 

Each bit from the Instruction Register (IR, 5 bits) or from the 
Memory Buffer Register (MBR, 12 bits) can be selected individu- 
ally. This capability is used for the basic PDP-8 instruction 
decode, effective address calculation, and the Group 7 microin-
struction decode. Random combinational logic is used to generate 
a single skip.enable signal for the portion of the microprogram 
that decodes the PDP-8 skip conditions. Interrupt requests are 
also handled by using combinational logic in a similar manner. 

ALU Operations and the Link Bit 

Three Am2901 ALU chips are cascaded to form the PDP-8 ALU 
section. The ALU requires a %bit opcode: source, function, and 
destination. Six bits are used to encode the A port (3 bits) and B 
port (3 bits) select, since only a subset of the sixteen ALU RAM 
registers is used in this implementation. 

The PDP-8 Link bit is constructed from random logic con- 
trolled by a set of signals. For economic reasons, random logic is 
used rather than adding another Am2901 chip. The Link bit does 
not correspond to any Am2901 function, and its control would 



Chapter 15 1 A PDP-8 implemented from AMD Bt-Sliced Microprocessors 221 

have to be separately microprogrammed. Another alternative for 
the PDP-8 Link bit is to use one of the Am2901 RAM registers for 
storing the value. In this case, additional Link-handling micro- 
code would have to be inserted after each PDP-8 ALU operation, 
increasing the target instruction execution time. 

Data Input to the ALU 
There is only one method ofwriting external data into the Am2901 
ALU. It is through the Direct (D) input. In this PDP-8 design, 
three sources are connected to share the D input: data from the 
main memory (MBR), constants for ALU operations (the Mask 
ROM), and data in the switch register (SWITCHES). These three 
sources are connected by an input bus to the D input port on the 
ALU. The microword selects which one of the three will be the 
source during any given microcycle. 

The use of a separate ROM to store the constants can be 
debated. An alternative is to store the constants in the microword. 
It is wasteful to dedicate a microword bit field to this purpose, 
since the width of this field must be the same as the ALU width 
and constants are used infrequently. If the microword fields are 
multiplexed, we violate the design goal of clarity. Hence, a 
constant ROM is a good compromise between the two conflicting 
objectives. One need only store the address of the constant in the 
microprogram. 

Miscellaneous Control Signals 

The data part of this design requires many miscellaneous control 
signals. For example, the Link bit uses seven different signals to 
control its operation. Analysis indicates that only one of these 
signals needs to be asserted during any given microcycle. The 
Miscellaneous Control Select field in the microword selects one 
and only one signal during each microcycle. The selection code is 
decoded and directed to the associated destinations. The assign- 
ments of the signals can be found in the ISPS description. 

The PDP-8 Primary Memory 

The primary memory (MP) for the PDP-8 target machine is 
assumed to be constructed from “static” semiconductor memory 
chips. In this type of memory, the output constantly displays the 
content of the location selected by the address input, unless a 
write operation is in progress. In this PDP-8 design, the ALU 
output is connected with the Memory Address Register (MAR) 
and with the data input port of the MP. When the write enable 
line of the MP is asserted, the content of the ALU output port is 
latched into the location selected by the MAR. The Memory 
Buffer Register (MBR), an ISP implementation pseudoregister, is 
constantly displaying the content of the location selected by the 
MAR. For the ISPS simulation, the memory access speed is 
assumed to be less than one microcycle. One can read the value of 

MBR (containing data from MP) two microcycles after a “write” 
into the MAR. 

The Microprogram 

The encoded microprogram that emulates the PDP-8 basic 
instruction set is listed in Appendix 2. This program listing is 
extracted from an ISPS simulator command file used to simulate 
this microprogrammable machine. The content of the constant 
ROM (Mask) is defined using the ISPS simulator “set” command, 
e.g., “set Mask[4]=#0177.” The content of the microprogram 
store is also defined in this manner. As an example, the instruction 
fetch cycle is now described. (For readability, the encoded 
microword is broken into seven fields separated by dashes.) 

set uMP[000] = #03-010-10-403-12-00-10 

!RUN: MAR +- LastPCtPC, IF  PDP8.go = 0 goto HALT: 


If the PDP-8.go bit is off (Condition code select lo), the 
microprogram jumps to Halt: (location 010). The content of PC 
(ALU RAM[l]) is pushed to the ALU output. The value is also 
latched into LastPC (ALU RAM[P]). Concurrently, the value is 
latched into the Memory Address Register (MAR) using the 
control code 10. 

set uMP[001] = # 16--000-00-503-11-21-00 !PC+-PC+l 

The value #0001 is selected from the constant Mask ROM (21). 
The PC value is selected at the ALU A port, added to the 
constant, and then latched back into PC. 

set uMP[002] = #03-040-41-703-05-1015 

!IR+-ALU.Mb+-MBR, goto Exec: 


The content of the Memory Buffer Register (obtained by 
the MP[MAR] operation) is latched into the ALU.Mb 
(ALU RAM[5]). In this cycle, the MBR is also latched into the 
Instruction Register (IR) by the control signal 15. The micro- 
program jumps to the instruction execution section (location 
040, Exec:) by forcing a pass-test condition (41) into the 
Am2910 sequencer Condition Code input. 

set uMP[004] = #03-000-03-741-00-20--10 

!ENDex: MARcO, IF no interrupt goto RUN: 


When the instruction execution is finished, the microprogram 
returns to this point. The MAR is set to zero in anticipation of 
interrupt servicing. The MAR will be reset to the correct PC 
value by microinstruction uMP[001] later on. If the interrupt 
request is not granted (condition code 03), the microprogram 
jumps back to RUN: (location 000). Otherwise, the program 
continues to location uMP[OO5] to handle the interrupt. 



222 Part 2 1 Regionsof Computer Space 	 Section 1 I Microprogram-Based Processors 

Implementation and Simulation Results 	 For each target PDP-8 instruction, the microprogram must 
execute the following number of microinstructions (Table 3). 

The micromachine and the microcode were simulated and tested On the average, 18 microwords (4 + 3 + 6 +5 or 4 + 3 + 11) 
by the ISPS simulator. The results are presented here. are needed to do one PDP-8 target instruction. At the 

manufacturer-recommended microcycle time of 150 ns, and not 
Chip Count counting the PDP-8 Mp access time, the microprogram execution 
Since the micromachine was not actually built, the chip count is speed is 2.7 p.s per target instruction (150ns x 18). The Mp access 
an estimate of the required hardware parts. The goal of this time is usually quoted at 1.3 k s  for PDP-8IE and /M [Bell, 
exercise is to identify the inefficient area in terms of the parts Mudge, and McNamara, 19781. For an average instruction (i.e., 
count, and to suggest alternative IC chip types that may reduce indirect memory reference), three memory accesses are required: 
the parts count. (See Table 2.) 	 instruction fetch, pointer to data (one level of indirection), and the 

The parts count for this microprogrammed PDP-8 implementa- actual data fetch. When these are added to the 2.7-p.s micropro-
tion is 35 chips. Of these IC parts, over two-thirds (25 chips) are gram execution time, the projected maximum average instruction 
SSI or MSI types. If IC custom-made parts are available for the time is 6.6 ps.  

Link bit, the Skip-condition generate, and the Pipeline Register, Another method of comparison involves the ISPS simulator. 
the design can be reduced to 22 chips. 	 Several PDP-8 benchmark and diagnostic programs were simula- 

ted. The CPU times used by each simulator were compared. The 
Target- Machine Instruction Execution Speed microcoded PDP-8 uses approximately 20 times the CPU time 

Two methods of comparing this microprogrammed PDP-8 and a used by the basic PDP-8 ISP. Translated into simulation CPU 

basic PDP-8 are discussed here. By counting the average number time, the ISP simulator of the micromachine executes approxi- 


of microinstructions executed for a target instruction, one can mately 1.5 PDP-8 target instructions for every CPU second on a 


estimate the execution speed of the emulated PDP-8. Or one can DEC KL-10 processor. 


compare the execution speed of the two ISPS simulators. 


Table 2 Chip Count for a Microprogrammed PDP-8 

Chiv count 	 Descriation 
-~~~~ ~ 

6 	 Microstore. The microword width is between 39 bits and 48 bits (see Table 1). In using 8-bit-wide ROM or EPROM parts, 
six such chips are required. Since the microprogram is less than 128 words (7 address bits), many commercially 
available memory chips can be used here. 

6 	 Pipeline Register (Pipe). Eight-bit-wide D flip-flops are assumed here. This register is very expansive in terms of chip 
count. An alternative would be having a special ROM type that can latch the data in the output buffer. Another 
alternative is to latch the microaddress instead of the microword. In this second design, the microword fetch and 
ALU-Sequencer operations are in series rather then in parallel as in the original design. This is a classical cost-
performance tradeoff. 

1 	 Am2910 microsequencer. The advantage of using the Am2910 instead of the Am2909 Sequencer is evident here. The 
Am2909 requires two chips instead of one Am2910 for this example. 

3 	 Am2901 ALU bit slices. Three slices are used to provide the 12-bit-wide PDP-8 data path 

5 (estimated) 	 Link bit and associated hardware. The link bit in this design is constructed of a D flip-flop, some tristate drivers, and 
input multiplexers. SSI implementation of the Link bit requires 14 percent (5 out of 35) of the total chip count. An 
alternative is to use a custom-made MSI chip for the Link bit. A second alternative is to implement the Link bit in the ALU 
RAM registers. In this second design, additional microcode will have to be inserted to handle the special cases, 
degrading the overall performance. 

3 	 Condition Code input multiplexer. Two 16-to-1 MUXs and two 2-to-1 MUXs. 

4 	 PDP-8 Skip condition generate. The argument for a custom MSI chip can also be made here. 

3 	 Constant Mask ROM and associated ALU D input selection control. The Constant Mask uses two ROM chips. The D 
input control uses one 2-to-4 decoder. The source registers for the ALU D input bus are assumed to have build-in 
tristate drivers. 

4 (estimated) 	 Other miscellaneous parts. 



Chapter 15 1 A PDP-8 Implemented from AMD Bit-Sliced Microprocessors 223 

Table 3 Average Number of Microinstructions Executed for a Target Instruction 

Words 	 Descriptioii 
~ _ _ ~ ~~~ ~ 

4 	 PDP-8 instruction fetch cycle. Check PDP-8.go, fetch target instruction, increment PC, check interrupt conditions. 

3 	 Instruction decodes. A straightforward binary decision decode tree is implemented in microcode. An alternative is to use 
the Instruction Decode Mapping ROM capability of the Am2910. The advantage of this alternative is not clear in view of 
the simple PDP-8 ISP. 

6 Effective Address Calculation. Depending on the addressing mode, there are five possibilities 
2 words PDP-8 Page 0 address 
4 words current page 
6 words indirect address, Page 0 
8 words indirect address, current page 
9 words auto index 

On the average, approximately six microinstructions are needed to calculate the PDP-8 effective address (equivalent to 
the Page 0 indirect address). 

5 	 Memory Reference Instructions. For each target instruction, the microcode fetches data from primary memory, executes 
the operation, and deposits the result in memory. Depending on the particular target instruction, anywhere between two 
microinstructions (JMP) and eight microinstructions ( 6 2 )  are needed. On the average, five microinstructions are 
assumed. 

(11) PDP-8 OPR group microinstructions. The decoding and execution of the PDP-8 OPR instructions are highly sequential in 
nature. Therefore, 11 microinstructions executed is taken as the average. 

Summary 	 of the ISP descriptive language as a design tool was also 
demonstrated. 

In this chapter, the design of a microprogrammed PDP-8 was 
presented. The central component of this micromachine was the 
AMD bit-sliced microprocessor. Although the design was opti- 
mized toward the basic PDP-8 configuration, many issues com- 	 References 
mon to all microprogramming and RT-level hardware designs 
were illustrated. In simulating the micromachine, the usefulness 	 Bell, Mudge, and McNamara [19781. 

http:PDP-8.go


APPENDIX 1 ISP OF A PDP-8 EMULATOR USING THE AM2901 

AND AM2910 


AMDB := *.AMDB.Execution** 

b e g i n  


start .AMD8 {main) : =  

! ISP of  a POP8 emu la to r  u s i n g  the  AM2901 and AM2910 b i t  s l i c e  UPC c h i p s  beg in  


The AM2901 d e s c r i p t i o n  i s  expanded t o  f i t  t h e  12 b i t s  wide PDPB d a t a  p a t h  I i n i t i a l i z e  t h e  m i c r o  machine 
The AM2910 sequencer uses 7 address b i t s  t o  address 128 in icrowords. AMOB.go = 1; g e t  t h e  "Machine g o i n g  

uMP.out = uMP[O]; . s t a p t  a t  uAddr 0 
T h i s  AMDB d e s c r i p t i o n  c o n t a i n s  t h e  f o l l o w i n g  m a j o r  s e c t i o n s .  
( 1 )  d e c l a r a t i o n s  f o r  t h e  PDPB t a r g e t  machine. t h e  sequencer.  and t h e  RLU. I i n i t i a l i z e  t h e  t a r g e t  machine 

1;; implemantat5on pseudo r e g i s t e r s  f o r  t h e  ISPS d e s c r i p t i o n .  I f o r c e  i o t e r w p t  h a n d l i n g  which beg 
t h e  main n i i c r o c y c l e  e x e c u t i o n  loop.  PoP8.go = I S  a t the  ta rge t -mach ine  go ing1: ge t  PDPB PC=1 

( 4 )  the sequencer CDnd l t i on  Code (CC) i n p u t  m u t i p l e x e r .  i n t e r r u p t . e n a b l e  = 1: enable i n t e r r u p t  

(5) t h e  g e n e r a t o r  f o r  t h e  PDPB s k i p  c o n d i t i o n  and m isce l l aneous  C o n t r o l  S i g n a l s .  i n t e r r u p t . r e q u e s t  = 1 n e x t  cequest i n t e r r u p t  

'PDPB. S Lat e * *  run.AMD8 : =  one u c y c l e  
beg in  


MP[O:4095]<11:01. ! Bas ic  PDPB 4k !memory 

s w i t c h e s < l l : O > .  I Switch R e g i s t e r  I F i r s t  h a l f  o f  t h e  c y c l e  


L O ,  I L i n k  R e g i s t e r  PIPL = uMP.Out n e x t  l a t c h  uWord 
i n t e r r u p t . e n a b l e 0 .  I I n t e r r u p t  Enable 
PnP8 .goo .  I RUN b i t  f o r  t h e  POP8 t a r g e t  machine uALU.opr :=  ! ALU o p e r a t i o n s  

beg in  
IR<O:4>, I I n s t r u c t i o n  r e g i s t e r  & pb & i b  OECOOE O i r c S e l  => ! s e l e c t  D i r e c t  i n p u t  t o  ALU 

pb<> := IR<4>. I Page b i t  beg in  
i b<>  :=  I R < 3 > .  ! i n d i r e c t  b i t  #O := D i n  = 0. 

MAR<ll:O>. I Memory Address R e g i s t e r  #1 :=  D i n  = MER. 
#2 : =  Din = mask[MaskSel]. 

**Sequencer.State** #3 : =  Din = sw i t ches  
end: 

~MP[O:127]<47:Q>. I Mic rop rog ram memory DECODE MiSCntr  => I s e t  ALU c a r r y  i n  b i t  
PIPE<47:0>. I P i p e l i n e  R e g i s t e r  beg in  

I sequencer c o n t r o l s  #14 : =  ALU.Cin = 1. 
u I  R<5:0) :=  PIPE<47:42). AM2910 i n s t r u c t i o n .  padded t o  6 b i t s  OTHERWISL : =  ALU.Cin = 0 
nrtAddr<B:O> : =  PIPE<41:33>. n e x t  m ic ro -address  f i e l d  end n e x t  
CCsel<S:O> := PIPE<32:27>. S e l e c t  c o n d i t i o n  code i n p u t  

! Do ALU compu ta t i on ,  i n p u t  i n s t w c t i o n .  Apor t .  B p o r t .  
! ALU C O " t P 0 l S  I Direct , "pu t .  c a r r y  in. MSB. LSB. and enable Ou tpu t  
ALUir<B:O> : =  PIPE(26:18>. ALU I n S t r U c t i o n  Temp.Am2901 = AM29Ol(ALUir. ('0 B ALUpor t t5 :3> ) .  

src<2:0> : =  ALUir<B:6>. source ('0B AlUJport<2:0>). D i n .  ALU.Cin. L.  L. '0 )  
fnc<Z:O> := ALU i r<5 :3> .  f u n c t i o n  end; I end O f  uALU.opr 
d s t < l : O >  := ALUir<Z:O>. d e s t i n a t i o n  

ALUport<B:O> : =  PIPE<l7:12> ALU RAM p o r t  S e l e c t  uSeq. opr := I sequencer o p e r a t i o n  
D i r cSe l<L :O>  : =  PIPE <11:9> ALL1 d i r e c t  i n o u t  S e l e c t  beg in  

MaskSel<P:O> := PIPE <8:6>. c o o s t a n t  mas^' i e l s c t  Cond i t l an .Code( )  n e x t  


MisCntr<S:O> : =  PIPE C5:O). M isce l l aneous  C o n t r o l  s i g n a l s  I 00 sequncer compu ta t i on .  i n p u t  i n s t r c u t i o n .  n e x t  address.  
I c o n d i t i o n  code. e t c .  

'*ALU.State** Temp.AM2910 = ( ' 0 0 0AMZQ~O(UIR<~ :O>.  B nxtRddr<8:0>).  
CCode. * O l l O )  nea t  

mask[Q:15] < l l : O ) .  I c o n s t a n t  mask ROM ~ M P . o u t= !! uS to re  ROM accessuMP[uMP,addr] end of uSE0.opr 
s ta tus<3 :0> .  1 ALU P e s u l t  S ta tus  end n e x t  

SEQ.ovr<> :=  s ta tus<B>.  I SEQ s t a c k  o v e r f l o w  
A L U . a v r 0  := s t a t u s < 2 > .  I ALU r e s u l t  o v e r f l o w  ! Second h a l f  O f  the c y c l e  
ALU.nO := S t a t U s < I > ,  I ALU r e s u l t  i s  n e g a t i v b  s t a t u s <3 :0)  = Temp. Am29 1 0< 15 )  [P Temp. An12901<14) 
ALU.zO :=  s ta tus<O>.  I ALU r e s u l t  i s  ze ro  B Temo .Rm2901<13> I3 Tem~.AmZ901<12); 

D o . C o n t r o l ( )  n e x t  

**Implementation.Registers** I F  AMDB.90 => RESTART run.AMD8 
end I end o f  run.AMD8 

AMDB.go0. I go b i t  f o r  t h e  m i c r o  machine 
end, ! end o f  s ta r t .AhD8 

i n t e r r u p t .  request<>, I I n t e r r u p t  r e q u e s t  
MBR<Il:O). I Memory B u f f e r  R e g i s t e r ,  o u t p u t  o f  MP[MAR] 
MB<O:11> := MBR<ll:O>. I POP8 b i t  assignments **Condi t ioil.Cods** 
g r o u p 0  :=  M8<3>. I M i c r o i n s t r u c t i o n  g roup  
CLAO : =  MB<4>. I C l e a r  AC Condi t ion.Code := I c a l c u l a t e  c o n d i t i o n  code 
CLLO ;= MB<5>. I C l e a r  L i n k  beg in  
C M A O  := MB<6>. I Complement AC Decode ( ' 0  I3 CCsel(4:0>) => I l ook  a t  l ower  5 b i t s  
CMLO :=  M8<7>. I Comolement L i n k  b e g i n  
RAR<> := MB<8>, I K o t i t e  r i g h t  # O O  : =  CCode = 0, I # O O  = >  always pass t e s t  
RALO := MB<9>. I Ro ta te  l e f t  I #40 => always f a i l  t e s t  
R T X < >  : =  MB<10>. I Ro ta te  t w i c e  #01 : =  CCode 2 1. I #01 = >  always f a i l  t e s t  
I A C < >  :=  M O < l l > .  1 I nc remen t  AC I U41 => a lways  pass t e s t  
SMAO : =  M0<5>. i skip 0" m i n u s  AC #02 : =  CCode = Skip.Cond() .  I c a l c u l a t e  S k i p  c o n d i t i o n  
SPA0 := M0<5>. I Sk lp  on p o s i t i v e  A C  #a3 :=  CCode = ? n t e r r u p t . r e q u e s t  AN0 i n t e r r u p t . e n a b l e .  
S L A O  := M8<6>.  I Sk Ip  on z e r o  A C  I check f o r  i n t e r r u p t  h a n d l i n g  
SNAO := MB<6>. ! S k i p  on AC n o t  z e r o  
SNLO := MB<7>. ! S k i p  on L I n k  n o t  z e r o  #04 :=  CCade = s ta tus<O>,  I ALU.2. ALU o u t p u t  e q l  0 
SZLO :=  M8<7>. I Sk ip  on L i n k  ze ro  #05 : =  CCOde = s t a t u S < l > .  I ALU.n. ALU MSB 
i s 0  := Mi3<8>, I I n v e r t  s k i p  sense no6 : =  CCode = s ta tuS<Z> .  I ALU.ovr. ALU o p e r a t i o n  Over f l ow  
O S R O  := MB<9>, I L o g i c a l  o r  AC w i t h  sw i t ches  #07 : =  CCode = s t a t u s < I > ,  I SEQ.ovr. sequncer s tack  o v e r f l o w  
HLTO :=  MB<10>. I H a l t  t h e  p rocesso r  

#to : =  CCOde = ~ O p 8 . g o .  ! t a r g e t  machine RUN b i t  
UMP.Out <47:0>, I "S to re  Ou tpu t  # I 1  :=  CCode = IR(Z>. I LSB o f  t h e  3 b i t s  IR 
CCode<>. I C o n d i t i o n  code i n p u t  #12 : =  N o d e  = I R < l > .  

U13 CCode = I R < O > .  ! MSB o f  t h e  3 b i t s  IR: j  

D i n < l l : O > .  I d i r e c t  i n p u t  t o  ALU #14 : =  CCode = p b .  I page b i t  
ALU.C in0 .  I ALU c a r r y  i n  # I5  :iCCode = I b ,  I i n d i r e c t  b i t  

Temp.AM29lO<l5:O>. 

uMP.addr<G:O> :=  lemp.AM2910<6:0>. I e f f e c t l u e  "S to re  address 


Temp. AMZ901<17: 0). 

ALU.out<l l :O> : =  TemL?.AMZ901<11:0>. I ALU r e s u l t  Y Outpu t  

ALU.Cout<> : =  l e m ~ . A M 2 9 0 1 ~ 1 5 > .  I ALU c a r r y  Out 

ALU.1SbO := Ternp.Rm2901<16>. I ALU LSB o u t p u t  f rom RAM s h i f t e r  

ALU.msb0 := lemp.A1n2901<17>. I ALU MSB o u t p u t  f rom RAM S h i f t e r  


224 

http:~Op8.go


#20 : =  CCode = MB(11). I I A C .  MBR(O>, LSE 
#21 :=  CCode = MB(1O). I R T x .  tILT 
#22 : =  CCade = MB(09). I HAL. OSA 
#23 := CCode = MB(08). ! R A R .  i s  
#24 : =  CCode = MB(07). ! C M I ,  SNL. SZL 
U 2 5  := CCode = M O ( 0 6 ) .  ! CMA. S Z A .  SNA 
u26 : =  CCode = MO(05). ! CU. SMA. SPA 
127 :iCCode = M B ( 0 4 ) .  I CLA 

#30 = CCode = MD(03). I group 

# 3 1  : =  CCade = MB(OZ>, 

I432 : =  CCode = MB(O1). 

U 3 3  : =  CCode = MB(O0). I MBR(11>. MSB 

U 3 4  :=  CCode = L. I L i n k  b i t  


OTllERWiSC : =  CCode = 0 

end inext ! end o f  decode 


I when CCsel(B>=O w i l l  pass t e s t  if t h e  s e l e c t e d  s i g n a l  i s  low. " 0 "  
! wllen CCse!(b>=l  w i l l  p a s s  t e s t  i f  t h e  s e l e c t e d  s i g n a l  i s  h i g h .  " I "  
I t  CCsel(5, = >  CCode = n o t  CCode 

end. 	 1 end o f  Cand i t i on .Code  

'.Skip.Conditions.for.POPa** 


S k i p  . C o n d o  := I c a l c u l a t e  PDPS s k i p  c o n d i t i o n  

beg in  

DECODE i s  =>  


b e g i n  
'0 : =  Skip.Cond = I normal s k i p  sensa 

(SNL and L )  o r  
( S Z A  and A L U t r )  o r  
(SMA and ALU.n). 

' 1  :=  Skip.Cond = I i n v e r t  s k i p  sense 
( N O T  (SZ! O T  SNA OP SPA) )  or 
(SZ!. and NOT L )  o r  
(stin and Ma1 A L U . ~ )o r  
i s ~ nand N O T  A L U . ~ ~  

end 

end. I end 01 SkiD.Cond 


"MiScellaneouS.Controls** 


Uo.Contro1 : =  ! do t h e  m l s c s l l a r l e o ~ s  c o n t r o l  f u n c t i o n s  
bag in 
DECODE MisCn t r  => ! 6 b i t s  

b e g i n 

#OO : =  NO.DP().

#01 := IF RLU.Cout => 


L = n o t  L .  

U 0 2  : =  L = ALU.1sb. L = o l d  LSB 

U 0 3  : =  ! = ALU.msb, L = o l d  MSB 


#04 :=  L = 0 .  c l e a r  L i n k  
#05.:= I F  CLL = )  L = 0. c o n d i t i o n a l  c l e a r  

#06 : =  ! = n o t  L.  negate L i n k  
#07 := IF CML = >  L = no t  L .  c o n d i t i o n a l  negate 

#10 : =  (MAR = A l U . o u t  n e x t  s e t  MAR 
MU11 = Mi'[MAR]). read PDI'8 m a , "  memory 

# I 1  := (MP[MAIII :AIU.out ne 
MBR = bll'[MAR]). I w r i t e  i n t o  POP0 MP 

# I 2  : =  i n l (? l ' l . t i l ~ t .enab le= O , !  c l e a r  I n t ~ r u p teiiable 
1113 :=  Intel ' l 'Upt.enable = 1.1 s e t  I n t e l ' r u p t  e l l ab le  

P I 4  : =  ALU.Cin = 1. I s e t  ALU c a r r y  i n  
#15 : =  I R  MB(O:4). I g e t  i n S t r u c t i o n  

#16 := vDpa.go = Q. I Stop the  t a r g e t  machine 
#17 : =  AMD8.ga = 0. I s t o p  the m i c r o  inachine 

OTtlERWlSE . =  N O . O P ( )  

en6 


end. I end o f  Uo.Contro1 


I l o g i c a l  end O f  Che AMDO d e s c r , p t i o n  

! I S P S  o f  t h e  AM2910 and &M2901 d e s c r i p t i o n s .  
! On ly  the key p a r t s  o r  t h e  d e s c r i p t i o n  a r e  l i s t e d  he re .  
! l h e  intension i s  t o  show t l l e  necessary m o d i f i c a t i o n s  
I on t l l e  o8' igrnal  ISI'. inaklng the  d e s c r i p t i o n  c a l l a b l e  
I froi i i  the AMDD d e s c r i p t i o n .  
! 
I 

, ..I . . * . . * . . . * . . . . * . . . * . . . . . * * . . ~ . * . * . * ~ * . . * . . * . . . * . * ~ ~ . . . . . * . . * * . * * . * .  

! !  AMli 2010 microsequencer d e s c r i p t i o n  i n  p rocedurea l  f o r m  
! 
!AM2910 ( 1 < 3 : 0 > ~D < l l : O > ,  CCO,  M isc . i n<3 :0 ) )  <15:0) := 
I b e g i n  

!**nM2910,ExLernal  . S t a t e * '  
I 
I C C E N O  : =  M i s c . i n < 3 > .  ! enable CC i n p u t  
! C I O  :=  M i s c . i n < Z > ,  I c a r r y  i n  t o  increament uPC 
! RLDO : =  M i S c . i n < l > .  ! l o a d  R r e g i s t e r  w i t h  0 i n p u t  
I OEO : =  M i s c . i n ( 0 ) .  ! enable o u t p u t  
I 
I FULL<>. Stack full f l a g  
! MAP0 : =  e n a b l e < l > .  Map address e l l ab le  f l a g  
! P L O  : =  enable(2).  1'1081108 addi'esr enah le  f l a a  
I VECTO : =  enable<O>. Vec to r  address enab le  f l a g  
I 
! 

~**AMZ010.0pe1'atioi1 .Cyc le * * {us }  
I 
! r ~ n . A M 2 9 1 0 ( m a t n )  :=  Bas ic  o p e r a t i o n  loop 
! beg in

I F  n o t  RLD =)  R = U n e x t  Forced ( e x t e r n a l )  l o a d  o f  reg  
Put o u t  s e l e c t e d  address 

! d e s c r i p t i o n  of Y ( )  

! end. 	 I end o f  AM2901 d e s c r i p t i o n  

! *...r.*....l.*....*.**.~*...~**.~...*,**...*.**.~~..*...**~**...*...*, 

! I  AM2901 A L U  d e s c r i p t i o n  i n  p r o c e d u r a l  f o r m  
I 
!AM2901 ( 1 < 8 : 0 > ,  A<3:0> .  5 ( 3 : 0 > .  D<ll:O>, CnO.  R S i n O .  R O i n O .  OEO) (17 :0>  : =  
I beg in  
I 
!*.AM2901.External.State** 

I 
! o ~ t ( l 7 : O ) .  ! Output c a r r i e r  

R 3 0 u t O  : =  0 u t < t 7 ) .  ! RAM3 o u t p u t  
I 	 ROout<> : =  o u t < l G > .  ! RAM0 o u t p u t  

C n 4 0  : =  out(15>. ! Car ry  ou t  
OVRO : =  a u t ( l 4 ) .  ! Overflou 
F 3 0  :=  0ut<13).  I Sign  b i t  out 

I 	 FEQ!.O<> ' =  o u t < l 2 > .  ! N igh  I f  ALU o u t p u t  = o 
Y < l I : O >  : =  o"t<ll:o>. ! Da ta  O U t O U t S  

I C . O " t 0  : *  a1u<12>. I c a r r y  ou t  
I 
! * 'AM290! .  Ins t r u c t i o n . C y c l e * *  

! run.AMEQOl(main) : =  I n i t i a l i z a t i o n  
beg in  
OVR = f e o 1 0  = c .ou t  = 0 n e x t  i n i t  f l a g s  
sou rce ( )  'next  

I e x e c ( ) . n e x t  
I d e s t i n a t i o n ( )  n e x t  
! F3 = f t l l > ; Cn4 = c . o u t  n e x t  s e t  f i n a l  f l a g s  
I AM2901 = out push o u t  ALU r e s u l t  
I end. 

! 	 . . .  d e s c r i p t i o n  o f  s o u r c e ( ) .  e t c  
I 
! end end o f  AM2901 d e s c r i p t i o n  
I 

! end 	 end o f  AMDB d e s c r i p t i o n  

225 



APPENDIX 2 SIMULATOR COMMAND FILE FOR AM2900 

IMPLEMENTATIONOF THE PDP-8 


S i m u l a t o r  calmnand f i l e  f o r  t h e  AMZPOC i m p l e m e n t a t i o n  o f  t h e  POP0 

i d i x  o c t a l  

c o n s t a n t  Mask ROM , u s e d  a s  i n p u t  t o  t h e  ALU D i r e c t  i n p u t  p o r t  

Mask10 J=#0000 

M a s k [ l ] = # 0 0 0 1  

Mask[Z]=#0002 1 1 M I ~ ~ 0 ( 1 6 ] ~ H C 1 0 2 0 4 1 4 3 1 0 0 0 0 0 0  IOCR: c j s .  c a l l  s u b l a :  
MaskL31=1/0010 I uHI'I 06G)=/11~C0000403C50000 I iiLU.ii ib c AC 
M a s k ~ 4 ] = # 0 1 1 7  s u~11~[057]=#030344144300C000 I A C I - 0 .  g o t o  MpMalh:  
Maskl5]=H7G00 

M a s k r 6 ] = # 7 7 7 0  I! t h e  o t h e r  4 i n s t r u c t i o n s  

Mask[7]=#0777 


a l l  l i n  H H " M. . . . . . . . . . . . .  

t h e  m i c r o  p r o g r a m  s u M P r 0 6 ~ ] = # 0 3 C 7 7 5 2 4 3 1 @ 0 O O O 0  11114BGl: I r  I R < 1 > = 1  g o t 0  IRG7: 

m1cl-0 w o r d  f o r m a t  s uMI'I 0 ~ 7 ~ = 1 1 0 1 0 2 0 4 1 4 3 1 0 0 0 0 0 0  I c j s .  c a l l  suhMa: 
# I /  S e q u e n c e r  i n s t r u c t i o n  s uMPI O7O)=llO3C7351431OCOCOO I I f  1R<2>=1 g o t 0  JMP: 

0 1  CJS. c O n d 1 t i o n a l  lump t o  s u b r o u t i n e  IJMS: ALU.III~+I'C, , ~ ~ ~ ~ o ~ ~ ~ = ~ ~ ~ o o o o n ~ o ~ i ~ c o o o  
I 
I 

03 CJP, C o n d i t i o n a l  jump t o  pl.ogram s i i M l ' ~ 0 7 2 / = 1 1 0 3 0 3 4 4 1 6 0 2 4 1 2 1 0 0  I P C ~ A L Umail. g o t o  MpMaMb: 

I 12 CRTN, c o i i d i t 7 o n a l  r e t u r n  from s u b r o u t i n e  s "MI'[ 073 J =h0300 4 4 14 0 3 4 10000 1JMP : P C  + n ~ u . s a . g o t o  ENDex: 

I 16 CONT. c o n t i n u e  I 
I

#II [  n e x t  m i c r o  a d d r e s s  II OI'OUII G I n S t r U c t i O n .  I O T S  

s e l e c t  c o n d i t i o n a l  i n p u t  s i g n a l s  ! i u r n ' o n  aod t u r n  o f f  i n t e r' u p 1  e n a b l e  
* I \  ( s e e  ISPS Cood.Code f o r  s i g n a l  a s s i g n m e n t s )  I # #  # #  # # # #  

s u M l ~ ~ 0 7 7 ] = # 0 3 1 2 0 5 1 4 3 1 0 0 0 0 0 0  11R67: I F  1 n < 2 ) = 1  g o t o  OPR:  
#II (  ALU i n s t r u c t i o n s  ( s e e  AM2001 d e s c r i p t i o n s )  s u M P ~ ! 0 0 ] = # 1 6 0 0 0 0 0 5 4 0 5 0 Z 7 0 ~  110T: Q-ALU.mb & n o 7 7 7  

I 4 3 1  u s e d  a s  NO.OP s u M P ~ l O l J = # l G 0 0 ~ O O G G l 0 O ~ l O O  I Al.U.out+Q xo r  # 0 0 0 1  
s ~ ~ M l ~ ~ 1 0 2 j = H O 3 l C 4 0 4 4 3 l O O C O O ~I s k i p  I F  A L U . r = O  

#II A p o P t .  R p o r t  (ALU RAM r e g i s t e r  a s s i g l l m e n t s )  s uMPI 103]=#030CC41431000013 I !  e n a b l e  i n t e r r u p t .  g o t o  RUN: 
0 AC s u M 1 ~ [ 1 C 4 ] = # 1 G 0 ~ 0 0 0 6 G l 0 0 2 2 0 0  1 ALU ou t+Q xor 600021 I . -p r  s uhli'( 1fl~~=K030C4044310COOQO ! I f  ALU.r=O g o t 0  ENDex: 
2 Last .PC 	 uMl~[106J=#0300441431000012 I d i s a b l e  i n t e r ? .  p o t 0  LNflex:s 
4 A l u . m a .  f o r  e f f e c t i v e  a d d r  C a l c  
5 ALU.mh, c o p y  o f  Mp O u t p u t  
o t h e r s  - n o t  u s e d  	 I! Group 7 o p e r a t i n g  i n s t r u c t i o n s  

#I1 D i n p u t  s o u r c e  s e l e c t .  c o n s t a n t  Mask S e l e c t  
IOPR:  I F  GRP.1 g o t o  mCRP2:

#I1 M i s c e l l a n e o u s  co1111'oIs I m G R P l : s k i p  IF CLA=O, c o n d  c l e a r  L i n k  
( S e e  I S P  d e s c v i p t i o n  flo.Contro1 f o r  d e t a i l )  I AC-0 

I AC+ IF ACsk ,pi l o t  C M A = C .  Q d 7 7 7 7 ,  c o n d  comp L i d  
I 

i n s t r u c t i o n  f e t c h  a n d  i n t e r r u p t  h a n d l i s g  c y c l e  s k i p  I F  IAC=O . . . . . . . . . . . . . . . .  I L A C t L h C + l .  c a r r y - o u t  cond comp L i n k+ A d  d l l t  ryfls!l  
u M P [ O C O ~ = U O 3 O l O l O 4 C 3 l Z O ~ l O  I R U N :  MAWLastPCcPC. I F  PDI%.go=O g o t o  HALT: 

uMi~[001]=111600000503l1210~ I PC+PC+l 

~M1~[002J=H03040417030510~5 I II!-Mb+MDR, g o t o  E x e c :  


I I F  RAR=l  g o t o  R i g h t :
u M P ~ 0 0 4 ] = # 0 3 0 0 0 0 3 7 4 1 0 0 2 0 1 0  IENOex: MARcO.  IF ! n O - I n t r  g o t o  RUN: I F  IRAL=O go to  ENDex: 
"MI'[ 0 0 5 ] = 1 1 G 0 0 0 0 0 3 C 1 0 1 ~ 0 1 1  I MP[C]cPC I L e f t :  LRC+LAC*Z.  I F  rt=O g o t o  ENDer: 
uMPL 00 G]-#O30 0C 4 17030 12100 1 P C c l .  g o t o  RUN: I LAC-LRC'~.  g o t o  ENDex:I R i g h t .  

LAC+LAC/2. I f  r t iO got0 FNDex: 
u M r j o l 0 ] = # 0 3 0 1 o 4 1 2 3 ! 0 0 ~ ~ 1 7  IHALT: s t o p  " M a c h i n e .  g o t o  t o  H a l t :  I LAC*l.AC/Z. g a t 0  ENDex: 

e f f e c t i v e  a d d v e s s  C c l c u l a t i o n  

u s e  ~ L u . m h . a n d  L a s t . P C ,  r e t u r n  ALU.ma ImGRI'2: I F  M b < l l > = l  g o t o  ENDex: 


s k i p  If  P a l t = O .  Y e A C; PDI'O. ga*O. Y+ACMARcmacU0177 & mb. I F  pb=O g o t o  MAa: 
I s k i p  I F  S k i p . C o n d = OQ+LastPC 8 #7GOO I g e t  c u r r e n t  p a g e  # I'CCPC'lMAKWa+Q o r  ma I fo rm l 2 h i t s  a d d r  I 

s k i p  l r  c l a = n:Ptn.  	 Q+ma & # 7 7 7 0 .  I f  I b = O  RETURN I 
Q + Q xor #OOlO I c h e c k  a u t o  i n d e x  I i l c - 0  

1nia+Ml'[MA17], I F  n o - A u t o - I n d e x  y o t o  MAD: I I b  u s r = 0  g o t 0  tNDex:
uMP[ 026 1=1/0302 7 0 4 70304 I0 00 I I ACrAC 01-SWR. g a t 0  ENDex!
u M l ~ ~ O 2 t i ] = # l G Q O O O O 6 O 3 ~ 4 Z l l l  I M P [ M A n ] t m a w a + l  I i t i c r ,  A u t o - i n d e x  Reg 

uMP[027]=#1G0CC00401400010 IMAb: MAiIema ! l a t c h  n e w  a d d r  

~MP[Q30]~#1Z00041403000000 I c r t n .  RETURN I e x t r a  c y c l e  f o r  Mp a c c e s s  


d o  MB=MP[ma()]. f e t c h  d a t a  i n  Mp p o i n t e d  by ALU.ma 

# #  n u  # # # #  


uMP~O32]=uC~CZO4l431oOoOOO !MpMa: c j s .  c a l l  SUDma: 

u M r ~ 0 3 3 ] = # 1 2 O 0 0 4 1 7 0 3 0 5 1 0 0 0  I c p t n .  ALU.mh-MP[MAR]. REIURN 


d o  MP[lna]=MO. d e p p o s l t  ALU.rnh 7 "  POP8 Mp 

u M I ~ [ O 3 4 ] ~ # l ~ O O 0 0 0 4 ~ 1 4 U 0 C l C  fMpMaMb: MARcALU.ma 

uMP[035]=#~30044140160001l I MP[ma]cmh. g o t o  ENDex: 


i n s t w c t i o n  e x e c u t i o n  
a l l  " "  * * U U. . . . . . . . . . . . . .  


uMP[O40]=~030665343IoOOOOOO I E x e c :  I F  I R < O > = l  g o t o  I R 4 5 6 7 :  

uM1'1041 ~=#0305C524310COCOO I i r  I R C I ) . ~ g o l o  I R 2 3 :  

uMI'r 0.12 J =/ID1 0324 1431000000 I c j s .  c a l l  MpMa:

uM1'[043~=10304561431000000 I IF I I W > = ~g o t o  r m :  

uMI'1 0 4 4  ]=KO300441 l ~ 3 6 O O O O O  IAND: nccnc 8. Al.U.~nh. g o t o  ENDex: 

u M l ~ ~ 0 4 6 J = # 0 3 ~ C 4 4 1 1 0 3 8 0 ( 1 0 0 1  I T A D :  LAC+LAC+RLII.mb. g o t o  ENflex: 


226 

http:Last.PC
http:LAC+LAC+RLII.mb


Section 2 

Memory Hierarchies and 
MuItiple Processes 
During the 1950s, computers were used primarily in a single- 
user, stand-alone environment. Starting in the late 1950s, a 
number of parallel developments in computer architecture and 
software evolved, all seeking to make more efficient use of 
expensive hardware installations. These developments sought not 
only to increase the number of tasks completed per unit of time 
but also to increase the efficiency of hardware usage on single 
tasks. An equally significant motivation for these developments 
was to make computers easier to use. 

At least four major system-level concepts served as a focal point 
for these developments: multiprogramming, timesharing, virtual 
memory, and virtual machines. 

Multiprogramming 

In multiprogramming, portions of digerent programs concurrent- 
ly reside in memory. A program is run either to completion or to a 
natural breakpoint, such as a request for I/O. A software monitor 
then switches control to another program. Switching to another 
program instead of idling the Pc while waiting for an YO request 
allows for concurrent operation of Pc and 110 hardware, thus 
increasing the efficiency of the Pc. The software monitor, 
however, represents a source of overhead, since it requires Pc and 
Mp resources to execute. 

Timesharing 

Timesharing systems allow multiple users to simultaneously 
interact with the hardware. In addition to the capabilities of a 
multiprogramming system, other functionalities must be added to 
the software for sharing programs, sharing facilities, and protect- 
ing users from each other, including command language inter- 
preters for terminal inputs, editors for program preparation, and a 
scheduler that assures each user of periodically receiving the 
attention of the Pc. 

Virtual Memory 

Early computer users had to explicitly handle storage allocation if 
their program was larger than Mp. The user had to divide the 

program into modules, specify what modules were to be initially 
loaded, and dynamically specify what module was to replace (or 
overlay) which Mp resident module. Virtual memory provides the 
user with a memory that can be larger than physical Mp. The 
virtual memory system handles overlays in a user-transparent 
manner by deferring the binding between user and physical 
addresses until instruction execution time. 

Virtual Machines 

Multiprogramming and timesharing systems provide an “abstract” 
machine to the user. This “machine” has to be different from the 
actual hardware, since certain shared activities, such as IIO, and 
certain functions, such as execution of a Halt instruction, can 
af€ect other users. Thus the concept of a virtual machine was 
evolved (see Buzen and Gagliardi [1973] for a historical treatment 
of virtual machines). A virtual machine is an abstract machine that 
responds exactly as does the physical machine (see Fig. 1).Hence 
each user has what appears to be a separate “copy” of the physical 
machine. Protection is provided by a virtual machine monitor. 
With a virtual machine, users can coexist running under different 
operating systems. Programs executing under different run-time 
systems interfaced to different operating systems can co-operate. 
Functions that previously required a dedicated machine (e.g., 
operating system modification, 110, and diagnostics) can execute 
on their own virtual machine. 

Rather than attempt to trace the intertwined development of 
each of these four concepts, we will discuss the regions of memory 

I I
Hardware 

Virtual machine Virtual machine ... Operating
Operating 

system system 

Fig. 1. Implementationof a virtual machine. 



_*-

228 Part 2 Regions of Computer Space ~ 

hierarchy management and multiprocessing in separate subsec- 
tions and then illustrate their combination and interaction via 
examples from existing computers. 

Memory Hierarchy Management 

Because of the variations in cost and performance of various 
memory technologies, contemporary memory systems are com- 
posed of a number of memory technologies. Figure 2 depicts the 
physical structure of contemporary memory systems. Usually the 
fastest, and most expensive, technology is used in the registers in 
the Pc. Ideally one would like to execute programs as if all data 
existed in Pc registers. When more data are required, slower, 
larger, and Iower-cost storage, such as Mp, is added. Larger 
program and data storage and medium-term storage can be 
provided by Ms. Finally, Mt provides archival or long-term 
storage. Other forms of memory, such as caches and extended 
bulk storage, have been added between the previously discussed 
levels in the storage hierarchy in an attempt to bridge the gap 
between larger, slower storage at higher levels and smaller, faster 
storage at the next lower level. Typical access time, transfer time, 
size, and technology for each level in the hierarchy are also shown 
in Fig. 2. It should be noted that random-access memories are 
usually employed through the M. extended level, thus making 
access and transfer time identical. At the Ms and Mt levels there is 
an access delay, usually due to physical motion that is several 
orders of magnitude larger than the information transfer time. 
Hence these devices tend to be block-oriented so that multiple 
data are transferred for each access. 

An important breakpoint in the memory hierarchy occurs when 
the number of available addressable units exceeds the number of 
unique addresses producible by the processor. Prior to that 

_-r Mcache 1MD 

PC 

Access time 
11111 

10-l 10.’ 112 1 lo4 lo5 

Transfer 
t ime (@I)  

Addressable 

10-l 

Zo.Z5 

10-1 

25.212 

1I2  

216-z20 

1 

220.z26 

10 

225.230 

. 100 

225.240 

u n m  

Technology Semiconductor Semiconductor 	 Semiconductor Semiconductor Magnetic Magnetic 
magnetic rnagnetlc (drum. (taDel 
(core) (core) dirk, Optical 

tape) 
Range of unique Minicomputerst 	 I 
procerror-generated Maxicornputerr 
addresser I I 

Fig. 2. Characteristics of levels in the memory hierarchy. 

Section 2 I Memory Hierarchies and Multiple Processes 

point there are automatic techniques that can be used to make the 
multiple levels in the hierarchy appear as one, the so-called 
one-level store. Beyond that point the meaning of an address has 
to be changed and the programmer has to modify the address 
space in an overt action such as a call to an operating system. 

Table 1 lists the dimensions of the memory hierarchy region of 
computer space. The first dimension is that of mapping functions. 
Figure 3 graphically depicts the translation from processor- 
generated addresses (usually called the address space or name 
space) to physical memory (usually called the memory space or 
physical space). Consider a particular program, PROGRAM-1, 
one of many that might wish to reside in the Mp. PROGRAM-I 
assumes a set of addresses, some explicitly and some implicitly, in 
the addressing algorithm it uses. PROGRAM-1 requires a memo- 
ry space that has addresses that satisfy all these requirements, the 
implicit and explicit ones (explicit addresses present in the 
program and data and implicit relations between addresses due to 
addressing algorithms+. g., that programs are laid sequentially 
in Mp, or that the elements of an array are to be accessed by 
indexing and hence must occupy consecutive addresses). Once 
the address requirements are met, the program does not “care” 
how these addresses are realized. Let us call this address space 
required by PROGRAM-1 its virtual memory, Mv. Thus, each 
program has its own virtual memory. (You might say each program 
has its own Mp, except, as we shall see, this Mp may be many 
times bigger than any actual Mp and still be entirely feasible.) 

Actually, to run PROGRAM-1 requires that it be placed in the 
real Mp in such a way that the real addresses of Mp containing it 
satisfy all the requirements, that is, that it be a faithful image of 
the virtual memory. Thus there must be some memory mapping 
that maps the actual addresses into the actual memory. Once 
PROGRAM-1 is placed in Mp there must be some process that 
takes each virtual address (as it occurs to be processed in an 
instruction) and finds the actual address in Mp, so that the correct 
contents can be obtained. 

This might seem simply a complicated and abstract way to view 
matters, but it becomes essential as soon as we realize that the 
computer can have hardware memory mappings other than the 
familiar direct-addressing structure of Mp. What we have really 
done is to divorce the addressing required by the programs from 
that provided by the physical computer, so that we can redesign 
the addressing (via the memory mapping) to meet new design 
requirements that were not apparent when the original random- 
addressing schemes were created. 

Let us make the notion of memory mapping more precise. The 
program contains virtual addresses, z (that is, symbols in the 
program that denote addresses are taken to denote addresses in 
Mv). During the execution of the program, whenever there is a 
reference to an address z (either explicitly via an address 
calculation or implicitly via, say, getting the next instruction), a 



Table 1 Storage Hierarchy Dimensions 
~~~~~ ~ 

Mapping function
Identity
Linear

Concatenation

Addition

Segmented

Linear

Sym bol ic

Number of maps
1
2
n

Mapping function implementation
Table lookup
Associative lookup
Set-associative

Size of allocated unit
Uniform
Set of uniform
Variable

Static
Dynamic

Allocation strategies
Fetch

Demand

Prefetch

Placement (variablesize allocation unit only)
First fit
Best fit

Replacement

Optimal

FIFO

Least recently used

Random

Periodic

Usage data
Modified
Used
Reference count

Protection
Basis

Word

Pagelsegment

Page lock

Capability

Number of objects
1
2
n

Access control (mapping only)

No restrictions

Read only as data

Read only as program

Nonexisting memory

Nonresident

Section 2 1 Memory Hierarchies and Multiple Processes 229

Processor-generated Physical memory
addresses (Memory space or physical
(Name space or address space) space)

Fig. 3. The address translation process.

computation occurs on z to obtain the actual address in Mp. This
computation is part of the Pc, just as is an automatic indexing or
indirect-addressing calculation. It takes as input not just the
virtual address z but information on where the program is located
in Mp. The latter information is called the m a p , and a program’s
map information is determined when it is placed into Mp on a
given run. Thus, using ISP notation, and calling the address
calculation f, we get

Mv[z] := Mp[f(z,map)]

That is, the information in virtual memory at virtual address z is
the same as the information in actual memory at address f(z,map).

This whole scheme is built to permit programs to be placed in
Mp’s in various ways, e.g., relocated or scattered around, and still
make it possible to run the program. Any such scheme brings a
solution to the protection problem, namely, that for some values
of z the above calculation cannot take place or is invalid (i.e., there
is no mapping for 2). This can correspond to a violation of
protection, which can then be prevented. All calculations may
even be permissible, but f is usually arranged so that it never
produces an address in anyone else’s part of Mp.

The memory map is part of each user’s program. With many

230 Part 2 1 Regions of Computer Space

users, it must reside in Mp, since there will not be enough space
in Mps (processor state) to hold a large amount of mapping
information. However, when a program is being executed, some
part of the mapping information becomes part of the Mps (i.e., at
least the Mp address of the rest of the map).

Random-access memories for Mp constrain the mapping by
requiring linear addresses of the form Mp[O:p], since the mapping
calculation must be economical (as it is performed with very high
frequency). We would not consider a map structure which
provides every word in Mv to be mapped into an arbitrary word in
Mp, for this would require a map exactly the same size as Mv.
With many programs in Mp, there would be little room for
anything but maps. Similarly, the amount of processing in the
calculation must be minimal. These two aspects highly constrain
the mapping scheme.

Three major types of mapping functions have been used. In the
first, the identity function, there is no map. The processor virtual
address space is identical to the physical memory space. This
mapping function is used primarily on stand-alone, dedicated
computers.

The second type is frequently referred to as paging and is
depicted in Fig. 4. In paging, the processor-generated address is
divided into two fields, a page number and a displacement within
page. The page number is used to index into a page table, from
which the physical page number is retrieved. The physical page
number can be either concatenated or added to the displacement
to create the final physical address. This form of address map is
called a linear m a p , since manipulation of the virtual address,
such as adding an index, can cause the page number in the virtual
address to increase, thus accessing a different physical page
potentially without warning to the user. Note that p’ may contain
more than, fewer than, or exactly as many bits as p.

The third type of mapping bnction is two-dimensional and is
termed segmentation. Two major forms of segmentation have
been used: linear and symbolic. Figure 5 illustrates the linear
mapping. The processor-generated virtual address is composed of
three fields: the segment number, the page number, and the

Processor
address

(page number,

~ ~

Page table

Physical
memory

Fig. 4. The address translation process for paging.

Section 2 1 Memory Hierarchies and Multiple Processes

Processor address
(segment number, Page number, d i s~ lacemen t l Page table

Physical
memory
address

Segment table

S , P @ D S

Page
table Limit
base Page table

@-- Violat ion

Fig. 5. The address translation process for linear segmentation.

displacement. The segment number is used to index into a
segment table. The starting address (base) of the page table is
coupled with the virtual page number as an index to retrieve the
physical page number. The physical page number is then
concatenated or added to the displacement to generate the final
physical address. The virtual page number is compared to a limit
field in the selected segment table entry as a check on whetherZhe
page number is within bounds for this segment. This provides
some measure of protection so that virtual address manipulations
do not cross segment boundaries without warning the user. (Note
that a similar bounds check could have been made on the
displacement field in the paging function outlined in Fig. 4.)

However, it is still possible in linear segmentation to inadver-
tently cross a segment boundary ifthe proper value is added to the
virtual address. Symbolic segmentation prevents segmentation
boundary crossing by computations on the virtual address. Figure
6 depicts symbolic segmentation. The virtual address is a duple: a
segment number and a displacement. The main difference
between symbolic segmentation and the prior schemes is that the
hardware enforces a boundary between the segment and displace-
ment virtual address fields. Adding a number to the displacement
in a virtual address calculation cannot modify the segment field.

Figure 7 illustrates one implementation of symbolic segmenta-
tion used on the Burroughs B5000. The instruction pointer

Section 2 1 Memory Hierarchies and Multiple Processes 231

Processor address Physical memory

Segment
segment number, displacement) table-r

S,
S I .

Base Limit

Fig. 6. The address translation process for symbolic segmenta-
tion.

consists of a duple: instruction word pointer and syllable within
word. The instruction consists of operations or data fetches to the
stack. All data fetches are indirect through a user-unique Program
Reference Table (PRT). The PRT can contain the operand, the
address of an operand, or a descriptor. The descriptor is used to
address arrays of data. The array base is contained in the
descriptor and the index is contained in the machine stack. Thus
there is no way a user, by modifying the operand index on the
stack, can access a different array (e.g., a different segment). The
segment base and displacement are physically disjoint.

It is interesting to observe that the symbolic segmentation is
carried even further in more recent Burroughs machines. Figure
8 illustrates the segmentation used in the B 6700. The instruction
pointer now consists of a triple: stack number, displacement, and
instruction in segment. Each user has a different stack number.
The displacement in stack specifies which code segment is
currently executing, while the instruction within segment speci-
fies the actual instruction. The PRT is replaced by a set of program
stacks. The currently active program stack is pointed to by the
Environment Pointer.

The second major dimension in Table 1is the number of maps.
If there is only one map, then the map’s contents have to be
changed when program execution is switched. Since operating-
system calls occur frequently, there usually are two maps, one for
the supervisor and one for users. A generalization would be to
have n maps split among programs with different privileges.
These maps can provide for sharing a block of Mp among several
users. This block of Mp would not have to be duplicated, so that
operating-system software, including compilers, assemblers, load-
ers, and editors, could be usefully shared.

The third dimension deals with the implementation of the

Physical
memory

nstruction pomter

Instruction

Program Reference

0
0I I

Fig. 7. Symbolic segmentation on the 85000.

mapping function. The simplest form is table lookup, using a
portion of the address to index into a table. The table can reside in
fast registers or in memory. If the sum of map entries is larger
than the set of available fast registers, an associative lookup
scheme can be used. In an associative memory, each entry is
stored along with an identifying key. The key, in this case, is the
page or segment number. Thus, when presented with the
address, the associative memory simultaneously searches all
locations for a match on the key. If a match is found, the
address-mapping data are made available from the high-speed
associative memory. If the key is not found, the required mapping
information must be retrieved from memory. Associative memo-
ries are costly to implement and hence small.

A scheme which combines the ease of table lookup with the
power of associativity is depicted in Fig. 9. Set-associative

232 Part 2 Regions of Computer Space Section 2 I Memory Hierarchiesand Multiple Processes
~

InStruCtio"pointer Environment pointer
a match, a hit occurs and the displacement is used to index into

(stack number, displacement.instruction in segment) (Dwlay register1 the data block to select the address-mapping information. If there
N, D. I E

I

IfL I
StackStack Stack

I-1
Segment

...... ..

User stack
(variables
and descriptors)

Fig. 8. Symbolic segmentation in the 66700.

addressing divides an address into three fields: tag, index, and
displacement. The index field is used to simultaneously access a
sets of tables. Each of the n tables simultaneously compares its tag
field contents with the tag field specified by the address. If there is

Address (tag. index, displacement)

1
T. I. D

is no match, the address-mapping information must be retrieved
from memory. Note that both the associative Lookup and the
set-associative implementations for mapping functions larger than
fast storage can also be used for buffering instructions and data
from a larger memory. In the latter case the memory is referred to
as a cache (because frequently used data ai-e cached away) or a
look-aside memory (because there is an auxiliary memory that can
be "looked into) [Liptay, 1968; Katzan, 19711. More will be said
about data caches later.

The fourth major dimension is the size of the allocated unit. We
have observed that the mapping function has to refer to blocks of
virtual addresses rather than individual addresses to keep the map
size manageable. The units most frequently are of one size. This
not only makes for simpler address-mapping hardware, but it also
makes it easier to overlay one unit with another when information
has to be brought in from higher up in the hierarchy. A potential
problem with uniform size is that large, IogicaIly connected
information (e.g., a large array or matrix) will require many units if

I

Set 0 Set 1 Set n-I

0 Tag Data block Data block Data blockm- ... r-
I I

No match Match No match

Cache parameters

Cache capacity 2'*n

Fig. 9. Set associative addressing.

Section 2 1 Memory Hierarchies and Multiple Processes 233

the units are too small. On the other hand, if the units are too
large, a significant amount of memory may be wasted, since not all
the locations in a unit are being utilized (i.e., there is internaE
fragmentation). One way to relieve the multiple-unit or fragmen-
tation problem is to have a small number of uniform sizes. The
MULTICS system has two different page sizes (64 and 1,024
words). The actual size of pages is a strong function of the ratio of
access time to transfer time of block-oriented storage. See
Denning [1970] for a detailed discussion.

The approaches of one or a small set of uniform allocation sizes
apply to linear (e.g., paged) mapping functions. Segmented
mapping functions can have variable-sized units selected at
program load (e.g., static) or program run (e.g., dynamic) time.
Variable-size allocation units face the problem of external frag-
mentation, wherein the total amount of unused memory, called
holes, is substantially larger than the size requested for a new
segment yet no hole is large enough to wholly contain the
segment. At this point the allocated segments in memory have to
be consolidated and the holes compacted. See Denning 1119701 for
an extensive comparison of paging and segmentation schemes.

When the virtual address space is larger than physical memory
at any stage in the memory hierarchy, allocation strategies have to
be used in order to manage the current content of physical
memory. Typically storage devices are organized into blocks. The
first reference to a particular block requires that the entire block
be fetched from the next higher level in the memory hierarchy.
Subsequent accesses to the block require only that fast storage be
accessed. The faster storage is capable of storing several blocks,
which are replaced on a dynamic basis. This allocation strategy
includes fetch, placement, and replacement. These strategies
have been extensively surveyed in the literature [Belady, 1966;
Randell and Kuehner, 1968; Denning, 1970; Katzan, 1971; Kuck,
19781 and will be only briefly discussed here.

The first strategy is deciding when to fetch a new unit. Demand
fetching (e. g., demand paging) fetches a new unit only when it is
referenced. Prefetch is an anticipatory scheme whereby units are
fetched prior to their actual reference. Prefetching is used
primarily in association with instructions, since there is a high
probability that the next instruction to be executed is the next one
in sequence. See Part 2, Sec. 3, for a more complete discussion of
instruction prefetching.

The second strategy applies only to variable-sized allocation
units. In what hole should the new segment be placed-the first
one found, or the one nearest in size?

Finally, when storage on the existing memory level is exhausted
and new information is referenced, some old information must be
replaced. If the total reference pattern is known beforehand, it
will be possible to find an optimal sequence which replaces the
smallest number of units [Belady, 19661. In a multiprogramming
environment it is not possible to predetermine usage patterns.

Hence replacement algorithms are sought that attempt to approxi-
mate usage patterns. FIFO (first in, first out), LRU (least recently
used), random, and periodic (see Chap. 10)have all been used.

Given that there is a mapping function, other functions can be
performed during the address translation. One function is unit
usage data concerned with such questions as: Has the unit been
modified or written into? (if not, the unit can be replaced without
copying to a higher level in the memory hierarchy); Has the unit
been used? (if not, it should not be replaced, since some program
segment is waiting for it); and, How many times has the unit been
referenced since the last unit was replaced? (Less frequently
referenced or nonreferenced units may not be referenced for a
long time in the future). These usage data are often used in
deciding which unit should be replaced.

Another important function that goes along with address
mapping is protection. The requirement for protection in a
multiprogramming environment is obvious. If two independent
programs are to be resident in Mp at the same time, they must not
have access to each other’s physical memory space. Not only
would such access (especially for writing) have disastrous conse-
quences when the programs were running, but they would also be
entirely unpredictable and undebuggable from the viewpoint of
the individual programmers. Protection can be on the basis of
individual words (i.e., tags), or it can be on the basis of a whole
page or segment. Protection can also be provided if each page has
a lock which the user program must match. These three protec-
tion bases are “object-oriented in that they deal with physical
portions of memory. Capability addressing, an alternative mecha-
nism based on the access path to an object, has been used. It offers
more flexibility than object-based protection, since different users
can be given different privileges instead of being given the same
identical privilege as in object-based protection.

Another important aspect of protection is the number of objects
that the hardware can concurrently provide protection checks on
at run time. If only one or two objects are supported by hardware,
substantial software overhead must be expended for dynamically
managing the hardware.

Finally, the type of access to objects can be limited to (1)no
restrictions, (2) read-only as data, (3)read-only as program, and (4)
no access. One final bit of information is that the object is
addressable but not currently resident in this level of the memory
hierarchy.

Let us return to Fig. 2 and consider each level in the memory
hierarchy. The Pc generates virtual addresses that are mapped.
Mcache is a high-speed register file that automatically attempts to
capture the locality of the program. It is well known that
executing programs exhibit locality, i.e., the next address gener-
ated is, with a high probability, the next sequential address, an
address recently referenced, or an address very near a recentIy
referenced address. If the cache fetch and replacement algorithm

234 Part 2 I Regionsof Computer Space

is efficie’nt, then there is a high probability that the next
referenced address will be in the cache (ie., there is a high hit
ratio),and the performance of the memory system will asymptoti-
cally approach the performance of the cache. Note that caches can
also be used to store address-mapping information for complex
mapping functions (see Chap. 42).

The next level in the hierarchy is Mp, which is followed by
Mextended. In cases where the virtual address space is larger than
Mp, Mextended is lower-performance memory that can be used
for less frequently accessed units. In STARAN (Chap. 21) the user
explicitly manages the placement of pages into Mp and Mextend-
ed to maximize performance. In the case where the virtual
address space is smaller than Mp or Mp plus Mextended (e.g.,
minicomputers), the extra memory is used either for anticipatory
prefetching or as a fast paging device (new pages are made
resident by a change of the memory-mapping tables rather than
after the lengthy wait for Ms to access a block).

Finally, both Ms and Mt are characterized by a high t,access/
t.transfer ratio and hence are block-oriented; i.e., a block of
information is transferred for each access in order to cut down the
accessing overhead per unit.

At each level in the memory hierarchy we could have a mapping
function with associated values for all ofthe parameters in Table 1.
Generally there is only one map, associated with Mp. However,
the cheap yet effective cache has become more and more
common. It usually appears between the Pc and Mp, but it can
appear between any two levels in the memory hierarchy. Caches,
and their cousins, instruction prefetch buffers, usually employ an
identity mapping function. Caches have nontrivial values for the
other dimensions in Table 1that usually are not as well known as
those for the Mp map, since the cache algorithms are locked in
hardware and are invisible even to systems programs.

Multiprocess Environment

Table 2 lists the range of software structures built upon the
dimensions in Table 1and the range of interprocess communica-
tions. At the simplest level there is only a single program and
there is no need for interprocess communication. Variables of the
program are completely accessible to the whole program, and the
address space is essentially uniform. The single program can be
extended with subroutine calling, which produces a hierarchy of
communication contexts. There is not a fixed number of levels to
the hierarchy, since each subroutine may call others ad nauseum.
When subroutines are present, address names and values within
the subroutine become addresses which are local to that part of
the subprogram. Such a structuring is apparent when we look at
the higher-level languages, such as FORTRAN, ALGOL, PAS-
CAL, and PL/I, where there are explicit statements for controlling
the names (addresses) that are available to each of the parts of the

Section 2 I Memory Hierarchies and Multiple Processes

Table 2 Mp Concurrency

Multivrocess environment lntemrocess communication

1 process Subroutines and traps
1 process with interrupt-evoked Interrupts from I/O
processes

1 process with multiple concur- lnterprocessor interrupts
rent subprocesses
(for example, 1Pc.nPio)

Monitor or fixed process (M)+ Extracodes (programmed
one-at-a-time (variable) process operators for monitor

M + n swapped foreground/
calls)

background process
M + n processes (multipro-
gramming) with swapping
No relocation Synchronization
1 segment Producer/consumer
2 segments (pure, impure) P and V
>2 segments maiIboxes
Pages

M + n segments with shared
processes In terprocess communication
Fixed-length paged segments
Multiple-length paged segments
Variable-length segments

program. The concept of subroutine structure has been with us
almost from the first programs.

The trap is a hardware subroutine call when conditions
occurring within a single process cause another part of the
program to be called. Typical conditions which cause traps are
arithmetic results outside expected range and erroneous program
conditions (e.g., trying to call someone else’s program). The trap
causes a change in context that is synchronized with the process
causing it. Trapping is a form of program interruption; a trap is an
intraprocess interrupt, as distinct from interprocess interrupts.

The next level of multiprocess environment is one program
with interrupts. Intercommunication between two independent
processes (processes carried out by two independent components)
is usually accomplished by using the program interrupt. The
interrupting process requests that a program interrupt occur in a
component (the interruptee). The interrupter’s request is ac-
knowledged by the interruptee, and a change of process state
occurs in the interruptee; a new process is then run in the
interruptee on behalf of the interrupter. A Kio uses the program-
interrupt request to communicate with its superior Pi0 or Pc. The
program interrupt can also be used among processors in a
multiprocessor system and between one Pc and n Pio’s.

Usually the interruptee is equipped with certain logic which is
capable of arranging the priorities of requesting interrupters. The

typical kinds of interrupt requests are component faults (e.g.,
parity error), the running out of a timer, and various task
completions (e.g., when a program has been completed, a tape
unit has rewound, a disk arm has stopped moving, a certain record
has been found on tape, a buffer is full).

State diagrams would show how all of the communication
methods above are similar to one another. A typical interrupt state
diagram is shown in Fig. 10. There are four states: normal process
interpretation, process state saving, interrupt process interpreta-
tion, and process state restoration. The sequence is as follows:

1 	 Normal instruction interpretation is occurring in the
interruptee.

2 	 The interrupter requests an interrupt.
3 	 After some delay, t.acknowledgment, a state is reached in

which part of the interruptee's process state is saved.
4 After t.acknowledgment + t.save, a program is running in

the interruptee in response to the interrupter.
5 	 The interrupt program is run for t.interrupt.
6 	 At the completion of the interrupt program, the original

process state is restored in the interrupter.
7 	 After t.restore, normal processing resumes in the inter-

rupter.

The significant attributes of the system are the various times
required to move from state to state. These times are directly
related to the amount of process state which must be saved (and
restored) when context is switched. Most interrupt systems allow
several independent classes and/or sources of interrupters. The
classes are arranged in priority so that lower-level interrupters are
ignored until higher-level interrupt programs are run to comple-
tion. The design problems associated with intercommunication
are not those of implementation but of knowing what should be

n 	 1
Interrupt request
from interruptor, ..-,-,,cc " Begin interrupt

stare program

t save(' Interpr:n 	 Instruction in Mp
(interpretation in

(normal interpretation) interrupted state)

Interrupt
No interrupt t, restore program
request execution

I 	 I

Fig. 10. State diagram for the interrupt process.

Section 2 I Memory Hierarchies and Multiple Processes 235

implemented. The PMS structure part and the corresponding
register-transfer implementations for intercommunication are, by
comparison, straightforward.

The next level of multiprocess environment is the monitor
process plus user processes. The monitor program provides the
user with a set of utilities that greatly simplifies the user's
programming effort. These utilities usually include I/O, memory
hierarchy management, and program loading, among others. A
mechanism is required for evoking the monitor process from the
user process. The usual mechanism is to provide special instruc-
tions which are akin to subroutine calls. These are called
extracodes and were perhaps first suggested for the Atlas (Chap.
10). Each extracode can be looked at as just a call to a specific
subroutine. The variables of the user's (caller's) process are made
available to the called (extracode-defined) process. The calling
usually is accompanied by a context shift, in which the monitor
process takes command to interpret the instruction. When a
function such as the input or output of a file is required, the main
process issues a call to the monitor to make the transfer. (In
theory, the monitor knows about conditions in the system and has
the capability to perform the complex function.) A central monitor
control can then begin to run another process if the request is one
which would normally halt the computer. This form of communi-
cation is useful in supplying extra facilities to users and in
providing a method of knowing what the users are doing (e.g., so
that equipment will be better utilized).

The final levels in multiprocess environment are monitor plus
multiple processes where the multiple processes are swapped
(e.g., run to completion), multiprogrammed (e.g., run to a natural
breakpoint), and shared programs (e. g., with interactive time-
sharing users). In these latter levels, intercommunication com-
plexity increases.

In a multiple-process system there are shared resources to
which access can be granted only on a one-at-a-time basis until
access is completed. Various methods of process synchronization
are listed in Table 2 and described briefly below. (See Presser
[19751 for a more extensive discussion of process synchronization.)
In the case of dedicated applications the form of interprocess
communication is completely known and some simple synchroniz-
ing schemes may be adequate. For example, two processes might
be in a producer-consumer relationship communicating via a flag.
The producer checks the flag to see if it is 0before placing data in a
buffer and setting the flag to 1.If the flag is nonzero, the producer
must wait. The consumer checks the flag for opposite conditions.
If the flag is 1, the consumer picks up the data and clears the flag
to 0. If the flag is 0, the consumer is ahead of the producer and the
consumer must wait. Synchronization in this producer-consumer
situation requires only memory and/or flag sharing between
processors. This form of synchronization has been used in the
Datasaab FCPU [Lawson and Magenhagen, 19751.

For more complex synchronization the binary semaphore

236 Part 2 1 Regions of Computer Space

primitives P and 17 can be used [Dijkstra, 1968al. Processes
coordinate by a special flag called a mutex Semaphore. Consider
Fig. 11, where processes P1 and P2 share a table. In order to
ensure that one process is not operating on table data that the
other process is changing (a critical section of the program,
according to Dijsktra), the two processes must synchronize their
use of the table. A semaphore S is provided for this coordination.

The value of S (initially 0) indicates whether the table is being
used by a process (S = I)or not (S = 0).P(S) samples the value of
S. When P(S) finds S = 0 it sets S = 1and allows the process to
continue. V(S) relinquishes control of the table by setting S to 0.
Semaphores are easily generalized to the case of n processes
rather than just two. Unlike the producer-consumer synchroniza-
tion, the testing and setting of S by P must be an indivisible
action; otherwise the following sequence could occur, in which
both process P1 and process P2 gain access to the table:

P in P1 tests S and finds it 0.
P in P2 tests S and finds it 0.

P in P1 sets S to 1.

P in P2 sets S to 1.

P1 uses the table.

P2 uses the table.

Most contemporary computers provide mechanisms for imple-
menting P’s using read-modify-write memory cycles (Chap. 38).
Read-modify-write instructions maintain control of the memory
between the read and write phases to allow a modification of the
memory cell by that process. No other process can use the
memory until that instruction is completed. Figure 12 depicts an
implementation of the P,V synchronization primitives using the
IBM System/360-System/370 “test and set” (code TS) instruction.
TS reads a value from memory, sets condition codes, modifies the
value to all Is, and writes the value into memory.

The implementation in Fig. 12 is a form of “busy waiting.” It is
desirable to put processes to sleep if they are not successful in
their first attempt to gain a resource, so that the hardware can
execute other processes. Sleeping processes do not consume any

P1: P(S); P2: P W ;
use table; use table;

V 6) ; VIS);

compute; compute;

go to P I ; go to P2;

Fig. 11. Process synchronization through semaphores.

Section 2 1 Memory Hierarchies and Multiple Processes

P: TS S Test semaphore and set to all ones.

BM P Branch if the old contents were not zero.

V: SR 0.0 Form zero by subtract register RO from
itself.

ST 0,s Clear semaphore.

~~~ 

Fig. 12. An implementation of P,V in the IBM System/360. 

system resources (other than the overhead involved in making 
the process dormant or active). Some form of queuing is also 
necessary to ensure that no process is permanently blocked. 

Let us turn to the nPc (multiple-processor) case and consider 
two processes, executing on different Pc’s and sharing the same 
resource. Assume that process synchronization occurs through 
shared memory. An Exchange Register with Memory instruction 
can be used for nonbusy semaphore communication. When P1 
wants to use the shared resource it places its identity in a register 
and executes an Exchange instruction. If the new value in the 
register is 0, then the resource is available for use. If it is nonzero, 
then some other process is using the resource and the requesting 
process puts itself to sleep (turns off its run flip-flop or awaits an 
interrupt). W e n  the process finishes with the resource it awakens 
the process identified by the semaphore variable (unless that 
process is itself). Figure 13 depicts an implementation of P,V 
using the Exchange instruction. A survey and comparison of other 
high-level synchronizing primitives can be found in Lipton [1973]. 

Some means of notifying other processes is required. One 
mechanism, used on the multiminiprocessor C.mmp (16PDP-11’s 
communicating with 16 memories through a cross-point switch; 
see Chap. 22), is to provide an interrupt register addressable by 
all processors. Writing a 1 into bit i causes an interrupt in 
processor i. 

The Exchange instruction mechanism breaks down when more 

P: Move myidentity to R 

Exchange R,S 

If R # 0 then wait 

V: Clear R 

Exchange R,S 

I f  R # myidentity then awake process identified by R 

, 



Section 2 I Memory Hierarchies and Multiple Processes 237 

than two processes need to utilize a resource. An alternative 
scheme, employed on C.mmp, uses the Interrupt register and 
two semaphores. Processes test the primary semaphore in the 
normal manner. If it is nonzero, they OR a bit corresponding to 
their processor number into a word (called processes pending) in 
memory. When the process wants to give up the resource by 
doing a V, it places the processes pending word in the Interrupt 
register and clears the primary semaphore. Processes reawakened 
by the interrupt attempt to do a P on a secondary semaphore, 
recording their identity if they lose. The process that wins then 
performs a P on the primary semaphore. In this manner the 
semaphores are tested only when the resource is known to be 
free. 

Processors can even be efficiently multiprogrammed with the 
assistance of some special hardware features. When a process is 
put to sleep its context (contents of registers, condition codes, 
program counter, etc.) can be saved and another process initiated. 
Saving and restoring registers can be extremely time-consuming. 
A single instruction which saves context in memory (Chap. 43) on 
several selectable sets of processor registers can substantially cut 
register-saving overhead. In the latter case a single instruction 
selects which complete set of processor registers to use as context 
for the currently running process and saves the many memory 
cycles that may be necessary in the former case. The identity of 
the next process to run can be selected from a priority queue. 
Rather than interrupt a processor when a process it owns can be 
awakened, the identity of the process is placed in the processor’s 
hardware priority queue. This is similar in concept to the 
pseudointerrupt device (PID) used on the BBN multiprocessor 
(Chap. 23). 

One drawback of the semaphores is that if a processor dies while 
its process is holding on to a semaphore, the entire system may 
block while waiting for the single semaphore. In order to keep the 
system operating and assist recovery from hardware failures, each 
semaphore, or block of semaphores, can have a time out associat- 
ed with it. If the semaphore is not set to 0 within a specified time, 
it should clear itself (busy waiting) or awaken the next (sleeping) 
process waiting for the semaphore. In the double-lock case 
described above the primary semaphore time is turned on when 
the semaphore becomes nonzero, while on the secondary sema- 
phore the timer is turned on immediately, since the process to be 
awakened may also have died. 

Another form of interprocess communication, which can be 
used in both single- and multiple-processor systems, is the 
mailbox. A process can send information to another process by 
placing a message in a queue called a mailbox. Each process 
examines (either periodically or upon an interrupt generated by a 
deposit into the mailbox) its mailbox in order to respond to a 
request. The producer-consumer synchronization discussed earli- 
er  is a limited form of mailbox communication, since only 1bit of 
information (buffer fulliempty) is exchanged. 

Examples 

Now we will turn to examining some system examples that employ 
different solutions to the multiprocess environment and memory 
hierarchy problems. Other examples can be found throughout the 
book in conjunction with various computer descriptions. The 
reader is encouraged to note how the multiprocess environment 
and memory hierarchy parameter choices fit in with the system 
objectives and other design parameters. 

Table 3 lists several existing systems and focuses on the 
attributes of one of the memory maps. The generic type of system 
represented by each example will now be discussed. 

No Special Mapping Hardware (Intel8080) 
If no hardware exists in the Pc to accomplish a memory address 
mapping, then when the address z is encountered in the program, 
the information at Mp[z] will be obtained. There are still, 
however, two different ways to obtain the effect of a virtual 
memory. 

First, one can operate interpretively, with a software system 
taking the place of hardware. That is, the programs of all the users 
are in a nonmachine language (e. g., a higher, procedure-oriented 
language), and each access in the language is processed by the 
software interpreter before an access is made to Mp. It is clear 
that all the logical power of a memory mapping is available with 
this scheme. The only drawback is the loss of efficiency from the 
interpretation, which may range over a factor from 5 to 100. 
Consequently this scheme is used only in special circum-
stances, such as multiuser timeshared conversational algebraic 
languages. 

The second scheme is to modify the code at the time it is placed 
in Mp for a given run, so that all addresses in the code correspond 
to the actual Mp addresses used. That is, an assembly or 
translation operation is performed each time the program is 
placed in Mp. The advantage of this scheme is that no further 
address calculations are necessary. There are three disadvantages. 
Assembly operations are expensive, so that, although the scheme 
is tolerable if the program is brought in once and run to 
completion, it is not tolerable if programs are continually being 
swapped in and out of Mp. In addition, the program must be laid 
into continuous intervals of Mp corresponding to predetermined 
segments of the program, for assembly occurs on a static 
representation of the program and cannot unravel the potential 
effect of address algorithms. Finally, the size of Mv (i.e., the 
addresses used externally) must be no greater than Mp. 

Relative to these software schemes-one interpretive and very 
expensive and one involving assembly (i.e., compilation) and 
loading-the hardware schemes to be described appear as address 
interpreters, where the cost of continuous interpretation has been 
made tolerable. 



Section 2238 Part 2 1 Regions of Computer Space 	 1 

Table 3 Storage Hierarchy Examples 
Mapping Size of Allocation 

Machine Type ficncti,on allocated unit strategies Protection 

Intel 8080 MP Identity . . . . . . . . . . . . . . . . . . . . . . . . . .  	 . . . . . . . . . .  


IBM 1800 MP Identity Word . . . . . . . . . . . . .  	 Bit/word 


SDSSigma2 Mp Identity Page . . . . . . . . . . . . .  	 Bit/page 


IBM S/360 MP Id entity Page 	 Storage 
key/page 

IBM 7040 MP 	 Linear with Variable Single 
concatenation segment 

CDC 6600 MP 	 Linear with Variable . . . . . . . . . . . .  Single 
concatenation segment 

Memory Hierarchies and Multiple Processes 

Comments on method of memory 
allocation among multiple users 

No special hardware. Completely 
done by interpretive pro- 
gramming. 
A protection bit per memory cell. 
Bit specifies whether cell can be 
written or accessed. One special 
user plus one other user. The time 
to change bits if a user job is 
changed makes the method nearly 
useless. No memory allocation 
hardware. 
Protection bit per page (see 
above). No memory allocation 
hardware. 
Each block of memory has a user 
number which must coincide with 
the currently active user number. 
Memory relocation must be done 
by conventions or relocation soft- 
ware. A fixed, small number of 
users are permitted by the hard- 
ware (there are a limited number 
of keys). No memory allocation 
by hardware. A program cannot 
be moved until it is run to 
completion. 
One protection count and one 
field register (addresses formed 
and checked by logic operations). 
All programs are written as 
though their origin were location 
0. The count register determines 
the number of high-order bits to 
be examined. The field register is 
then compared for identity with 
the requested address. Memory 
allocation blocks must be in 
powers of 2. Unless blocks are the 
same size, the memory utilization 
can be poor. Although faster than 
the following scheme (which 
requires a hardware adder), the 
inflexibility of location and size 
makes it restrictive. 
One set of protection and reloca- 
tion registers (base address and 
limit registers). Also called 
boundary registers. All programs 
written as though their origin 
were location 0. The relocation 
register specifies the actual loca- 



Section 2 1 Memory Hierarchies and Multiple Processes 239 

Table 3 (Continued) 

Mapping Size of Allocation 
Machine Type function allocated unit strategies Protection 

UNIVAC 1108 MP Linear with Variable . . . . . . . . . . . . .  Two 
concatenation segments 

Intel 8086 MP Linear with 16 words . . . . . . . . . . . . .  Four 
addition segments 

AtIas MP Linear with 512 words Demand fetch . . . . . . . . . .  
concatenation Periodic 
implemented with replacement 
32-entry assoc- 
iative tables 

B 5500 MP Symbolic Variable Demand fetch Base/li m i t 
segmented <lo24 Best fit in descrip- 

words Cyclic tors 
replacement 

IBM S/360-91 Instruc- Identity 8 bytes Prefetch . . . . . . . . . .  
tion pre- FIFO re- 
fetch placement 

PDP-11/70 Cache Identity 4 bytes Demand fetch . . . . . . . . . .  
Random re- 
placement 

Comments on method of memory 
allocation among multiple users 

tion of the user, and the protection 
register specifies the number of 
words allowed. As users enter and 
leave, primary-memory holes form, 
requiring the moving of users. 
Pure prodecures can be imple- 
mented only by moving the impure 
part adjacent to the pure part. 
Two sets of protection and reloca- 
tion registers. Similar to above. 
Simple, pure procedures with one 
data array area can be imple- 
mented. 
Segment used is a function of 
the instruction interpretation 
cycle (e.g., code, data, stack, 
extra). Protection provided by 
software allocation ensuring that 
16-word segments do not overlap. 
First virtual memory. For each 
page (26 to 212 words) in a user’s 
virtual memory, corresponding 
information is kept concerning 
the actual physical location in pri- 
mary or secondary memory. A 
hardware map may be placed be- 
tween the processor and memory 
to transform processor virtual ad- 
dresses into physical addresses. 
If the map is in primary memory, 
it may be desirable to have 
“associative registers” at the 
processor-memory interface to 
remember previous reference to 
virtual pages, and their actual 
locations. 
All data are considered part of a 
descriptor array which is referred 
to by a number. A descriptor 
table indexed by a descriptor 
number is used to locate the 
array in Mp and give its size. 
Instruction buffer has eight 8- 
byte locations for sequential ad- 
dresses and two 8-byte locations 
for branch target instructions in 
anticipation of su ccessfu I 
branches. 
Cache implemented as a set- 
associative lookup with two sets, 
4 bytes per block, and 256 blocks 
per set. 



- - 

- - 

- - 

240 Part 2 1 Regions of Computer Space 	 Section 2 I Memory Hierarchies and Multiple Processes 

Protection Hardware for Words or  Pages 
(IBM 1800, SDS Sigma 2, IBM System/360) 
There are three schemes in Table 3 that provide means of 
protecting one part of Mp against references from other pro- 
grams. The rationale for these designs is that there will be only 
two users (or user classes), one user being superior and assumed 
perfect (its program debugged). References to Mp via the 
imperfect program to a perfected and superior part of Mp are 
forbidden. These schemes provide no method of hardware 
mapping, and physical addresses are the same as virtual address- 
es. In the simplest scheme, as in the IBM 1800, a protect bit is 
added to every word in Mp. Any reference to a word with a 
protect bit causes an error. The other two schedes protect on the 
basis of blocks of words. 

Protection and Relocation Register Hardware 
(IBM 7040, CDC 6600, UNNAC 1108) 

A protection and relocation mechanism is used in three schemes 
in Table 3. These provide one or two linearly mapped segments 
via a relocation register and bounds register pair. Generally, these 
schemes restrict Mv 5 Mp. 

An additive protection and relocation register pair is shown in 
Fig. 14, in which four users are occupying an Mp[O:7999]. Each 
user program is written to occupy a continuous address space in 
virtual Mv. Thus in ISP, when Pc is running a user, the Relocation 
and Protection Registers are loaded and initialized by the monitor 
to the values in the User Location Information Table. Then the 
hardware performs the following check: 

Mv(z) <0:3> :=begin 

DECODE (z gtr R.protection) 5$ 

O\ Mv +Mp[z + R.relocation], 

1\Protection.violation +- 1 

end 


Protection and Relocation are the two registers that specify 
mapping. The implementation of this scheme generally takes the 
form of adding the contents of the relocation register after all 
address calculations have taken place. Thus, in PMS we might 
think of the structure 

M (protection, relocation) 

Page-Map Hardware (Intel 8086, Atlas) 
This scheme is essentially a generalization of n protectirelocate 
registers but includes more control bits and restricts each block to 

User 

Hardware registers Absolute 

when user 2 IS  running memory 


address 

in 1K words 0 


Relocation register - User 1 -

1 

User 4 0 

User 2 0 

Protection reqistet 

1 

2 

User 3 
0 

1 

Table of user location informat ion 

Relocat ion Protection1 I 1U: reg i s r r  regis;r 

I 

Fig. 14. Memory allocation using a relocation, protection register 
pair. 

be the same size. Note that Mv can be greater than Mp. In 
addition, parts of the virtual memory may remain unused. 

As indicated in the discussion of map implementation, there are 
two general ways the map may be implemented: 

1 	A complete map is first considered as a conventional, 
explicitly addressed M whose addresses correspond to the 
virtual address pages. At a given page-memory address the 
contents of the map specify the address in Mp. The map is 
similar to an indirect reference. However, the map is 
usually about 10 times faster and about 111,000 the size, 
since it keeps track only of pages, not words. The PMS 
structure is 

M m a p  1 
2 	 The map is retained in Mp and referenced by a protection 

and a relocation register set for the particular active user. 



In order to avoid making references to Mp for each word 
reference to Mv by a Pc, a small, fast M(associative) or 
M(set.associative) is placed between Pc and Mp. The PMS 
structure is 

L(data1 

p 
I 

I 

M(associative; 8 ,., 16 words) 

Segment Hardware (SSSOO) 

The hardware required to support segmentation is illustrated in 
Figs. 6, 7, and 8. The discussion of this hardware can be found in 
the discussion of Table 1. 

Instruction Prefetch (LBM Systed360 Model 91) 

Instruction prefetch buffers are used in high-performance Pc 
systems in an attempt to minimize the imbalance between Pc 
execution rate and Mp instruction supply rate. Instruction 
prefetch buffers attempt to take advantage of instruction locality 
by fetching blocks of instructions prior to their use. These buffers 
are invisible to the programmer but are nonetheless important in 
the implementation of an ISP. Even several microprocessors 
employ a one-instruction prefetch (in which the next instruction in 
sequence is fetched while the current instruction is being decoded 
and executed). See Part 2, Sec. 3, for a more detailed discussion of 
instruction prefetch buffers. 

Cache (PDP-11/70) 

Like instruction prefetch buffers, caches dynamically attempt to 
capture locality. Caches can be used for instruction and data 
buffering or mapped address buffering. They are transparent to 
the programmer and can appear between any two levels in the 
memory hierarchy. Most contemporary datdinstruction caches 
are implemented as set-associative rather than pure associative 
because of the latter’s cost. 

Figure 9 illustrates the major parameters in cache design: 
cache capacity, block size, and set size. The cache capacity is the 
maximum number of memory words that can be resident in the 
cache. The block size is the number of words fetched from 
memory at the same time. The set size (associativity) is the 
number of blocks in the cache that can have the same index. 

Section 2 I Memory Hierarchies and Multiple Processes 241 

Set Size Block Size Cache Capacity 
(associativity) (Bytes) (Bytes) 

PDP-11/60 1 2 2048 

PDP-11/70 2 4 2048 

IBM S/370-165 4 32 8192 

~~ ~ 

Fig. 15. Examplesof parametersfor set associative caches. 

Figure 15 depicts the values of these parameters for some 
contemporary caches. 

The selection of the appropriate cache parameters can have a 
dramatic impact on computer system performance. Consider the 
following simple model. Let h be the cache “hit ratio,” that is, the 
probability that an addressed word is in the cache. If t.inst is the 
average instruction time, t.proc is the average time between 
processor requests for memory, t.cache is the cache access time, 
and t.mem is the memory access time, then: 

t.inst = t.proc + ht.caehe + (1 - h)t.rnern 

and 

1Performance = -
t.inst 

If h = 1, then all memory requests are in cache and the memory 
system responds to all accesses at cache speed. At the other 
extreme, if h = 0, the cache has no impact on system perform- 
ance. Figure 16 illustrates the impact of the cache hit ratio on 
performance for various ratios of t.proc to t,mem with t.proc= 1 
ks and t.cache= 200 ns. 

The cache hit ratio h i s  a complex function of the cache 
parameters and application program behavior. Economics dictates 
that the cache capacity be as small as it can be while remaining 
compatible with the selected performance goal. There is a clas- 
sical engineering tradeoff over block size (the larger the block, 
the less frequently memory has to be accessed, but too large a 
block size for fixed cache capacity decreases the number of blocks 
resident in cache and hence the probability of finding a data or 
nonsequentially referred instruction in the cache). A similar 
tradeoff exists over set size. Historically, cache hit ratios have 
been determined experimentally by simulating address traces pro- 
duced by application programs with various cache organizations. 
Figure 17 illustrates the results of such a study used in the 
PDP-11/60 cache design [Mudge, 19771. Similar studies have 
been reported for other cache implementations [Strecker, 1976b; 
Meade, 19701. 



242 Part 2 1 Regions of Computer Space 

-

40% 

5 30% 
U 

1 / tpltm = 1 

? 
2 

D 

20% 

/ tpltm = 2 

10% 

Hit ratio 

Fig. 16. Impact of cache hit ratio on system performance. 

PDP-11 Set Size Block Size Cache Capacity Hit  Ratio 
(Bytes) (Bytes) 

1 2 512 .7 

1 2 1024 .75 

1 2 2048 .87 

2 2 1024 .82 

2 2 2048 .93 

2 2 4096 .93 

Fig. 17. The effect of cache organization on the cache hit ratio. 

Example Machines 

Several papers in this book trace the development of virtual 
machine concepts from their roots in virtual memory systems. 

Section 7 Memory Hierarchies and Multiple Processes ~ 

Atlas 

The Atlas has been described in Chap. 10. Atlas pioneered the 
concept of virtual memory with its one-level store. The Atlas 
extracodes were a forerunner of the standard user-operating- 
system interface commonly used today. By executing these special 
instructions, complete firmware or software functions can be 
evoked. 

B5000 

The B5000, introduced in Chap. 9, had several interesting 
innovations even though it is most often remembered as a stack 
machine. However, a common theme in Burroughs machines has 
been the integration of hardware and software design with the 
consequence of hardware support for software primitives. The 
B5000 provides extensive hardware support for block-structured 
languages. Virtual memory is supported by segmentation and 
indirect referencing through descriptors stored in the Program 
Reference Table. 

B6500/7500 
An evolution to the basic B5000, the B6500l7500, offers even more 
hardware assistance to dynamic memory control. Chapter 16 gives 
a detailed discussion of the tagged memory (tags identify memory 
words as data, descriptors, and control words), descriptor formats, 
the concept of lexical levels in programs, and the corresponding 
hardware development of display registers. Multiprogramming as 
supported by a stack environment is also discussed. 

Cleary 1119691 illustrates how the hardware defined by Hauck 
and Dent in Chap. 16 can be used by software to support multiple 
processes, process activation and deactivation, locking (synchroni- 
zation), software interrupts, and event signaling. Feustel [1973] 
provides a detailed discussion of the advantages of tagged 
architectures. 

ICL 2900 

Based on many of the ideas developed by Manchester University’s 
MU-5 [Ibbett and Capon, 19781, the ICL 2900 series has 
bloodlines traceable to the Atlas machine. ICL’s design goals are 
very similar to Burroughs’ and provide extensive hardware 
support to the software. But unlike Burroughs, ICL has not 
implemented a pure segmented virtual memory, but rather a 
paged-segmented virtual memory. 

Keedy (Chap. 17) presents the fundamentals of virtual memory 
and traces the ICL rationale that ended up in a paged-segmented 
design. While logically tracing the design process, Keedy outlines 
a series of virtual memory designs, one of which is the basis for the 
virtual memory design for almost all contemporary computer 
manufacturers. The advantages and disadvantages of each virtual 
memory system should prove ofinterest to students and designers 



Section 2 1 Memory Hierarchies and Multiple Processes 243 

alike. Keedy concludes with discussions of memory protection, References 
the instruction set, and multiprogramming on the ICL 2900 
series. Belady [19661; Buzen and Gagliardi [19731; Cleary [19691; 

Denning [1970]; Dijkstra [1968bl; Feustel “731; Ibbettand Capon 
VAX-l1/780 [1978]; Katzman [1971]; Kuck [1978]; Lawson and Magenhagen 
Chapter 42 describes the multiprocess environment and virtual [19751; W681; Lipton [19731; Meade [19701; Mudge 
memory for a computer with 32-bit virtual address space. A [1977]; Presser [19751; Randell and Kuehner [1968]; Strecker 
translation buffer (a cache for translated addresses) w7as added [1976bI. 


to the VAX implementation to lessen the performance impact 

of the complex address translation and protection checking 

algorithms. 




Chapter 16 

Burroughs' B6500/B7500 Stack 

Mechanism1 


E. A. Hauck / B. A. Dent 

Introduction 

Burroughs' B6500lB7500 system structure and philosophy are an 
extention of the concepts employed in the development of the 
B5500 system. The unique features, common to both hardware 
systems, are that they have been designed to operate under the 
control of an executive program (MCP)and are to be programmed 
in only higher level languages (e.g., ALGOL, COBOL, and 
FORTRAN). Through a close integration of the software and 
hardware disciplines, a machine organization has been developed 
which permits the compilation of efficient machine code and 
which is addressed to the solution of problems associated with 
multiprogramming, multiprocessing and time sharing. 

Some of the important features provided by the B6500lB7500 
system are dynamic storage allocation, re-entrant programming, 
recursive procedure facilities, a tree structured stack organization, 
memory protection and an efficient interrupt system. A compre-
hensive stack mechanism is the basic ingredient of the B6500/ 
B7500 system for providing these features. 

B6500/67500Processor 

The command structure of the B6500iB7500 Processor is Polish 
string, which allows for the separation of program code and data 
addresses. The basic machine instruction is called an operator 
syllable. This operator syllable is variable in length, from a 
minimum of 8 bits to a maximum of 96 bits. In the interest of code 
compactness, more frequently used operator syllables are encod- 
ed in the 8 bit form. 

The Processor is provided with a hardware implemented stack 
in which to manipulate data and store dynamic program history. 
Also, data may be located in arrays outside the stack and may be 
brought to the stack temporarily for processing. Program parame- 
ters, local variables, references to program procedures and data 
arrays are normally stored within the stack. 

The data word of the B6500/B7500 Processor is 51 bits long. 
Data are transferred between memory and within the Processor in 
51bit words. The first 3 bits of the word are used as tag bits, which 

ISJCC, 1968, pp. 245-251. 

serve to identify the various word types as illustrated in Fig. 1. 
The remaining 48bits are data. Tag bits, in addition to identifying 
word type, provide the B6500lB7500 Processor with two unique 
features: (1) data may be referenced as an operand, with the 
processor worrying about whether the operand consists of one or 
two words, and (2) system integrity and memory protection are 
extended to the level of the basic machine data words. If a job 
attempts to execute data as program code, or to modify program 
code, the system is interrupted. 

The Stack 

The stack consists of an area of memory assigned to a job. This 
stack area serves to provide storage for basic program and data 
references associated with the job. In addition, it provides a 
facility for the temporary storage of data and job history. When 
the job is activated, four high speed registers (A, X, B and Y) are 
linked to the job's stack area (Fig. 2).This linkage is established by 
the stack pointer register ( S ) ,  which contains the memory address 
of the last word placed in the stack memory area. The four 
top-of-stack registers (A, X, B and Y) function to extend the job's 
stack into a quick access environment for data manipulation. 

Data are brought into the stack through the top-of-stack 
registers. The stack's operating characteristic is such that the last 
operand placed into the stack is the first to be extracted. The 
top-of-stack registers become saturated after having been filled 
with two operands. Loading a third operand into the top-of-stack 

000 EXPONENT MANTISSA s,ng,epreC,Ilon 
operand 

: I  I 
010 EXPONENT 

I Special control words 


Fig. 1. B6500/B7500word formats. 


244 



--- 

WORD ntx 

TOS WORD 

currently 

in use 


Stack I 
memory 

area 

Fig. 2. Top of stack and stack bounds registers. 

registers causes an operand to be pushed from the top-of-stack 
registers into the stack memory area. The stack pointer register (S) 
is incremented by one as each additional word is placed into the 
stack memory area; and is, of course, decremented by one as a 
word is withdrawn from the stack memory area and placed in the 
top-of-stack registers. As a result, the S register continually points 
to the last word placed into the job's stack memory area. 

A job's stack memory area is bound, for memory protection, by 
two registers, the Base of Stack (BOS) register, and the Stack 
Limit (SL) register. The contents of the BOS register defines the 
base of the stack area, and the SL register defines the upper limit 
of the stack area. The job is interrupted ifthe S register is set to 
the value contained in either SL or BOS. 

The contents of the top-of-stack registers are maintained 
automatically by the processor hardware in accordance with the 
environmental demands of the current operator syllable. If the 

Chapter 16 I Burroughs' B6500/B7500 Stack Mechanism 245 

current operator syllable demands that data be brought into the 
stack, then the top-of-stack registers are adjusted to accommodate 
the incoming data, and the surplus contents of the top-of-stack 
registers if any, are pushed into the job's stack memory area. 
Words are brought out of the jobs stack memory area and pushed 
into the top-of-stack register for operator syllables which require 
the presence of data in the top-of-stack registers, but do not 
explicitly move data into the stack. 

Top-of-stack registers operate in an operand oriented fashion as 
opposed to being word oriented. Calling a double precision 
operand into the top-of-stack registers implies the loading of two 
memory words into the top-of-stack registers. The first word is 
always loaded into the A register where its tag bits are checked. If 
the word has a double precision tag, a second word is loaded into 
X. The A and X registers are then concatenated to form a double 
precision operand image. The B and Y registers concatenate when 
a double precision operand is moved to the B register. The double 
precision operand splits back to single words as it is pushed from 
the B and Y registers into the stack memory area. The reverse 
process is repeated when the double precision operand is 
eventually popped up from the stack memory area back into the 
top-of-stack registers. 

Data Addressing 

Three mechanisms exist within the B6500/B7500 Processor for 
addressing data or program code: (1)Data Descriptor (DD)/ 
Segment Descriptor (SD), (2) Indirect Reference Word (IRW), 
and (3) Stuffed Indirect Reference Word (IRWS). The Data 
Descriptor (DD) and Segment Descriptor (SD) are B5500 carry-
overs and provide the basic mechanism for addressing data or 
program segments which are located outside of the job's stack 
area. The basic addressing component of the descriptor is an 
absolute machine address. The Indirect Reference Word (IRW) 
and the Stuffed Indirect Reference Word (IRWS) are B6500/B7500 
mechanisms for addressing data located within the job's stack 
memory area. The addressing component of both the IRW and 
IRWS is a relative address. The IRW is used to address within the 
immediate environment of the jobs stack, and addresses relative 
to a display register (described later in Non-Local Addressing). The 
IRWS is used to address beyond the immediate environment of 
the current procedure, and the addresses relative to the base of 
the job's stack. Addressing across stacks is accomplished with an 
IRWS. 

The Descriptor 

In general, the descriptor functions to describe and locate data or 
program code associated with a given job. The Data Descriptor 



246 Part 2 1 Regions of Computer Space 

(DD) is used to fetch data to the stack or store data from the stack 
into an array which resides outside the job's stack area. The format 
of Data and Segment Descriptors are illustrated in Fig. 1. The 
ADDRESS field of both descriptors is 20 bits in length and 
contains the absolute address of an array in either main system 
memory or in the back-up disk store. The Presence bit (P) 
indicates whether the referenced data are present in main system 
memory or in the back-up disk store, and is set equal to ONE 
when the referenced data are present in main system memory. 

A Presence Bit Interrupt is incurred when the job makes 
reference to data via a descriptor which has a P bit equal to ZERO. 
The Presence Bit Interrupt stimulates the operating system 
(called the Master Control Program, br MCP) to move the data 
from disk to main memory. The data location on disk is contained 
in the ADDRESS field of the DD when the P bit is equal to 
ZERO. After transferring the data array into the main memory, 
the operating system (MCP) marks the descriptor present by 
setting the P bit equal to ONE, and places the current memory 
address into the ADDRESS field of the descriptor. The interrupt- 
ed job is then reactivated. 

A Data Descriptor may describe either an entire array of data 
words, or a particular element within an array of data words. If the 
descriptor describes an entire array, the Indexed bit (I-bit) in the 
descriptor is ZERO, indicating that the descriptor has not yet 
been indexed. The LENGTH field of the descriptor defines the 
length of the data array. 

A particular element of an array may be described by indexing 
an array descriptor. Memory protection is insured during in- 
dexing operations by performing a comparison between the 
LENGTH field of the descriptor and the index being applied to it. 
An Invalid Index Interrupt is incurred if the index value exceeds 
the length of the memory area defined by the descriptor. 

If the value being used to index the descriptor is valid, the 
LENGTH field of the descriptor is replaced by the index value. At 
this time the I-bit in the descriptor is set to ONE to indicate that 
indexing has taken place. The ADDRESS and LENGTH fields are 
added together to generate an absolute machine address whenev- 
er a present, indexed Data Descriptor is used to fetch or store 
data. 

The Double Precision bit (D) is used to identify the referenced 
data as being either single or double precision and, as a result, is 
also associated with the indexing operation. The D bit being equal 
to ONE signifies double precision and implies that the index value 
be multiplied by two before indexing. 

The Read-only bit (R) specifies that the memory area described 
by the Data Descriptor is a read-only area. An interrupt is 
incurred upon referencing an area through a descriptor with the 
intention to write if the R bit is equal to ONE. 

The Copy bit (C) identifies a descriptor as being a copy of a 
master descriptor and is related to the present bit action. The 

Section 2 I Memory Hierarchies and Multiple Processes 

intent of the copy action is to keep multiple copies of an absent 
descriptor linked back to one master descriptor. Copy action is 
incurred when a job attempts to pass by name an absent Data 
Descriptor. When this occurs, the hardware manufactures a copy 
of the master descriptor, forces the C bit equal to ONE and inserts 
into the ADDRESS field the address of the master descriptor. 
Thus, multiple copies of absent descriptors are all linked back to 
the master descriptor. 

Non-Local Addressing 

The most important single aspect of the B6500iB7500 stack is its 
facility for storing the dynamic history of a program under 
execution. Two lists of program information are saved in the 
B6500iB7500 stack, the stack history list and the addressing 
environment list. The stack history list is dynamic in nature, 
varying as the job is driven through different program paths with 
changing sets of data. Both lists are generated and maintained by 
the B6500iB7500 hardware system. 

The stack history list is formed from a list of Mark Stack Control 
Words (MSCW) which are linked together by their DF fields (Fig. 
3). A MSCW is inserted into the stack as a procedure is entered, 
and is extracted as that procedure is exited. Therefore, the stack 

Fig. 3. Stack history and addressing environment list. 



history list grows and contracts in accordance with the procedural 
depth ofthe program. Mark Stack Control Words serve to identify 
the portion of the stack related to each procedure. When the 
procedure is entered, its parameters and local variables are 
entered in the stack following the MSCW. When executing the 
procedure, its parameters and local variables are referenced by 
addressing relative to the location of the related MSCW. 

Each MSCW is linked back to the prior MSCW through the 
contents of its DF field to identify the point in the stack where the 
prior procedure began. When a procedure is exited, its related 
portion of the stack is discarded. This action is achieved by setting 
the stack pointer register (S) to point to the memory cell 
preceding the most recent MSCW (Fig. 4).This top-most MSCW, 
pointed to by another register (F), is in effect deleted from the 
stack history list by causing F to point back at the prior MSCW, 
thereby placing it at the head of the stack history list. 

This concept is implemented in the Burroughs' B5500 system, 
and it provides a convenient means to handle subroutine entry 
and exit. But this mechanism alone also gives rise to one of the 
most serious limitations of the ALGOL implementation on the 
B5500. In the B5500 stack, local variables are addressed relative 
to the first Mark Stack Control Word (which corresponds to the 
outer-most block), or relative to the most recent Mark Stack 
Control Word (which corresponds to the current procedure). All 
intervening Mark Stack Control Words, however, are invisible to 
the current procedure. This means that the variables declared 
global to the current procedure, but local to some other proce- 
dure, cannot be addressed at all! This inability to reference 

Discarded Stack 
portion history 
of stack l i s t

TOS WORD I --NI N

I 
I

I,l I I I 

1
I 

N ri, 

Fig. 4. Stack cut-back operation on procedure exit. 

Chapter 16 I Burroughs' 66500/87500 Stack Mechanism 247 

variables declared non-local to the current procedure but local to 
some other procedure is termed the non-local addressing prob- 
lem. 

The manner in which these variables are addressed in the 
B6500/B7500 stack can best be understood by analyzing the 
structure of an ALGOL program. The addressing environment of 
an ALGOL procedure is established when the program is 
structured by the programmer, and is referred to as the lexico- 
graphical ordering of the procedural blocks (Fig. 64 .  At compile 
time, this lexicographical ordering is used to form address 
couples. An address couple consists of two items: 1)the lexico- 
graphical level (11) of the variable, and 2) an index value (6)used to 
locate the specific variable within a given lexicographical level. 
The lexicographical ordering of the program remains static as the 
program is executed, thereby allowing variables to be referenced 
via address couples as the program is executed. 

The B6500/B7500 contains a network of Display Registers (DO 
through D31) which are caused to point at the appropriate MSCW 
(Fig. 5). The local variables of all procedures global to the current 
procedure are addressed in the B6500/B7500 relative to the 
Display Registers. 

The address couple is converted into an absolute memory 
address when the variable is referenced. The lexicographical level 

Stack Addies 

Fig. 5. Display registers indicating current addressing environment. 



248 Part 2 1 Regions of Computer Space Section 2 1 Memory Hierarchies and Multiple Processes 

~ ~ 

BEGIN Lexicographical level "2" 

R E A L  V1; Q Q = 2 , 6 = 2  

REAL V2; Q Q = 2 . 6 = 3  

PROCEDURE A; QP=2.6 = 4  


BEGIN Lexicographical level "3" 

REAL V3; QQ = 3, 6 = 2 
PROCEDURE B; P Q = 3 . 6 = 3  

BEGIN Lexicographlcal level "4" 

v 3  +3; 
v 1 +  v3; 

END; 

B; 
END; 

PROCEDURE C; PQ = 2, 6 = 5 

BEGIN Lexicographical level "3" 

REAL V4; PQ=3,6 = 2  
PROCEDURE D; QQ=3,6  = 3  

-BEGIN Lexicographical level "4" 

REAL V5; P P = 4 , 6  = 2  

v 4  +4; 

v 5  +5; 

A; 

v 2  +v4; 
-END; 

D; 

:ND; 


C; 
END; 

cedure "B" Procedure "D" 

Lexicographical7 

level "4"Procedure "C"cedure "A" 

Lexicographical 
level "3" 

ter program block 

Lexicographical 
level "2" 

Fig. 6. (a) ALGOL program with lexicographical structure indicat 
ed. (b)Addressing environment tree of ALGOL program in (a). 

portion of the address couple functions to select the Display 
Register which contains an absolute memory address pointing at 
the MSCW related to the procedural block (environment) where 
the referenced variable is located. The index value of the address 
couple is then added to the contents of the Display Register to 
generate an absolute memory address to locate the variable. 

It should be recognized that the address couples assigned to the 
variables in a program are not unique. This is true because of the 
ALGOL scope of definition rules, which imply that two variables 
may have identical address couples only if there is no procedure 
within which both of the variables can be addressed. So this 
addressing scheme works because, whereas two variables may 
have the same address couples, there is never any doubt as to 
which variable is being referenced within any particular proce- 
dure. 

What this does imply, however, is that there is a unique place (a 
MSCW) to which each Display Register must point during the 
execution of any particular procedure, and that the settings of the 
Display Registers might have to be changed, upon procedure 
entry or exit, to point to the correct MSCW. This list of MSCWs 
to which the Display Registers must point is called the addressing 
environment of the procedure. 

The addressing environment of the program is maintained by 
the hardware. It is formed by linking the MSCW's together in 
accordance with the lexicographical structure of the program. 
This linkage information is contained with the Stack Number 
(Stack No.) and Displacement (DISP) fields of the MSCW, and is 
inserted into the MSCW whenever a procedure is entered. The 
contents of the DISP field indicate the environment in which the 
entered procedure was declared. Thus the addressing environ- 
ment list is formed by linking each procedure entry Mark Stack 
Control Word back to the MSCW appearing immediately below 
the declaration for that procedure. This forms a tree structured list 
which indicates the legitimate addressing environment of each 
procedure under dynamic conditions (Figs. 5 and 6b).This list is 
searched by the hardware to update the Display Registers' 
contents whenever a procedure entry or exit occurs. 

The entry and exit mechanism of the Processor hardware 
automatically maintains both stack lists to reflect the current 
status of the program. Therefore, the system is able to respond to, 
and return from, interrupts conveniently. Interrupt response is 
handled as a procedure entry. Upon recognition of an interrupt 
condition, the hardware causes the stack to be marked, inserts 
into the stack an indirect reference word (address couple) pointing 
to the interrupt handling procedure, inserts a literal constant to 
identify the interrupt condition, and then causes an entry into the 
operating system interrupt-handling procedure. The Display 
Registers will track with the entry into the interrupt-handling 
procedure to make all legitimate variables visible. Also upon 
return, the Display Registers track back to the environment of the 
former procedure, making all of its variables visible again. 



Chapter 16 1 Burroughs’ 86500/B7500 Stack Mechanism 249 

Multiple Stacks and Re-Entrant Code 

The B6500/B7500 stack mechanism provides a facility to handle 
several active stacks. These stacks are organized into a single tree 
structure. The trunk ofthis tree structure is a stack which contains 
certain operating system global variables, and contains all of the 
Segment Descriptors describing the various procedures within 
the operating system. 

Let us make a distinction between a program, which is a set of 
executable instructions, and a job, which is single execution of a 
program for a particular set of data. As the operating system is 
requested to run a job, a level-1 branch of the basic stack is 
created. This level-1 branch is a stack which contains only the 
Segment Descriptors describing the executable code for the 
named program. Emerging from this level-1 branch is a level-2 
branch, a stack to contain the variables and data for this job. Thus, 
starting from the job’s stack and tracing downward through the 
tree structure, one would find first the stack containing the 
variables and data for the job (at level 2), the program code to be 
executed (at level I), and finally the operating system’s stack at the 
trunk (level 0). 

A subsequent request to run another execution of an already- 
running program would require that only a level-2 branch be 
established. This level-2 stack branch would sprout from the 
level-1 stack that describes the already running program. Thus 
two jobs which are different executions of the same program will 
have a common node, at level 1, which describes the executable 
code. It is in this way that program code, which is not modifiable, 
is re-entrant and shared. It comes about simply from the proper 
tree-structured organization of the various stacks within the 
machine. Thus all programs within the system are re-entrant, 
including all user programs as well as the compilers and the 
operating system itself. 

The B6500/B7500 stack mechanism also provides the facility for 
a single job to split itself into two independent jobs. It is 
anticipated that the most common use of this facility will occur 
when there is a point in a job where two relatively large 
independent processes must be performed. This kind of splitting 
could be used to make full use of a multiprocessor configuration, 
or simply to reduce elapsed time by multiprogramming the 
independent processes. 

This kind of program splitting becomes almost literally “repro- 
duction by budding” in the B6500/B7500 system. A split of this 
type is handled by establishing a new limb of the tree structured 
stack, with the two independent jobs sharing that part of the stack 
which was created before the budding was requested. The process 
is recursively defined, and can happen repeatedly at any level. An 
implementation restriction limits the total number of separate 
stacks to 1024. 

This tree-structure organization for handling multiple stacks is 
referred to as the Saguaro Stack System. 

Linkage of stack branches is achieved through a single array of 
data descriptors, the stack vector array (Fig. 7). A data descriptor 
is entered into the array for every stack branch as it is set up by 
the operating system. This data descriptor, the stack descriptor, 
serves to describe the length of the memory area assigned to a 
stack branch, and its location in either main memory or on disk. 

A stack number is assigned to each stack branch to indicate the 
position of its stack descriptor within the stack vector array. The 
stack number is used as an index value to locate the related stack 
descriptor from the stack vector array for subsequent reference. 

The stack vector array’s size and location in memory is 
described by the stack vector descriptor. This descriptor is located 
in a reserved position of the stack‘s trunk (Fig. 7).All references to 
stack branches are made through the stack vector descriptor 
which is indexed by the value of the stack number to select the 
stack descriptor for the referenced stack. 

A Presence Bit Interrupt is incurred upon making reference to a 
stack which is not present in memory. This Presence Bit Interrupt 
facility provides the means to permit stack overlays and recalls 
under dynamic conditions. Idle or inactive stacks may be moved 
from main memory to disk as the need arises, and when 
subsequently referenced will cause a Presence Bit Interrupt 
which triggers the operating system to recall the non-present 
stack from disk. 

Referencing a variable within the current addressing environ- 
ment of an active procedure is accomplished through the use of 
the address couples contained in the IRW and the address couple 
field of the Program Control Word (PCW) as shown in Fig. 1.Both 
references are made relative to the Display Registers specified by 
the address couple. The address couple and Display Registers are 

Job Jab Job 

Fig.7. Multiple linked stacks. 



250 Part 2 I Regionwf Computer Space 

usable only for addressing variables within the scope of the 
current addressing environment. Reference to variables beyond 
the scope of the current environment is accomplished by a stuffed 
IRWS. This causes the addressing to be accomplished by address- 
ing relative to the base of the stack (BOS) in which the variable is 
located. 

The IRWS contains information specifying the stack number 
(Stack No.), the location (DISP) of the related MSCW, and the 
displacement (6) of the parameter relative to the MSCW. The 
absolute memory location of the sought parameter is formed by 
adding the contents of DISP and S to the base address of the 
referenced stack. The base address of the stack is determined by 

Section 2 1 Memory Hierarchies and Multiple Processes 

accessing the stack descriptor as described previously. The 
information contents of the stuffed IRWS with the exception of 6, 
is dynamic in nature and must therefore be accumulated as the 
program is executed. The contents of the stack number (Stack 
No.) and DISP fields are entered into the IRWS by a special 
hardware operator which is invoked by the software whenever the 
program attempts to pass a parameter by name. 

References 

Burroughs [1964]; Burroughs [1965]; Randall and Russell [1964]. 



Chapter 17 

An Outline of the ICL 2900 Series 
System Architecture 

J. L. Keedy’ 

Summary The system architecture of the ICL 2900 Series is outlined 
informally. Its central feature, the virtual machine concept, is described 
and related to virtual storage, segmentation and paging. The procedural 
approach is then discussed and its implementation by a stack mechanism is 
described. Further sections outline the protection mechanisms, and the 
instruction set and related features. Finally the virtual machine approach 
is related to global sysfem activities. 

The paper has been written such that it may be of interest to readers 
without a specialist knowledge of computer architecture. 

Shortly after its announcement in October, 1974, the ICL 2900 
Series2 was described in the popular computing press [Dorn, 
19741 as little more than a copy of the B6700/7700 systems. It is 
easy to see how this happened, when one discovers that it is a 
stack oriented machine with a segmented virtual memory which 
makes extensive use of descriptors. In reality the implementation 
of these techniques is very different in the two computer families, 
and although a more serious attempt has been made to evaluate 
these differences [Doran, 19751 this is to some extent unsatisfac- 
tory since the author has, I believe, fallen into the same trap, 
albeit more subtly, of viewing the ICL 2900 through the eyes of 
someone thoroughly steeped in B6700 ideas. In fact, although the 
ICL 2900 has features in common with the B6700, radical 
differences exist, and some of the ICL B O O  features have more 
affinity to other systems, such as MULTICS [Organick, 19721. 
Before the similarities and differences between such systems and 
the ICL 2900 Series can be fully appreciated, it is highly desirable 
that the ICL 2900 system architecture should first be understood 
in its own right. The real novelty of the architecture lies in the way 
in which its designers returned to first principles, and in the 
simplicity and elegance of the result. In this paper I shall 
therefore describe its architecture in a manner which attempts to 
reflect the thoughts of its designers, aiming at a level of 
description similar to Organick’s description of the B6700 [Organ- 
ick, 19731. No attempt will be made to compare and contrast it 
with other systems, and it is hoped that the paper will provide an 

‘Australian Computer Journal, vol. 9, no. 2, July 1977, pp. 53-62. 
*References to the ICL 2900 Series in this paper are to the larger members 
of the new ICL range, which should not be confused with the ICL 2903 or 
the ICL 2904 computers. 

intelligible overview to readers without specialist knowledge of 
computer architecture. 

1. The Virtual Machine 

Faced with a problem to be solved using the computer, the user 
formulates a solution in a high level computer language such as 
COBOL or FORTRAN, and having satisfied himself of its 
correctness he will regard the resultant program as “complete.” 
This is in one sense correct. His encoded algorithm will, if he has 
done his job well, be logically complete. However, even after it 
has been compiled, the user’s program (or in more complex cases, 
his sequence of programs which comprise a job) must co-operate 
with other programmed subsystems (operating system, data 
management software, library routines, etc.) to solve the user’s 
problem. The efficiency with which the problem is solved 
depends to a considerable extent on how the whole aggregate of 
necessary subsystems co-operates, and not merely on any one 
subsystem. It follows that it will be advantageous for a computer 
architecture to provide facilities for the efficient construction and 
execution of such aggregates. The 2900 Series explicitly recogni- 
ses these aggregates, calling the environment in which each one 
operates a “virtual ma~hine.”~ An aggregate itself is called a 
“process image,” its execution by a processor is a “process,” and 
its state of execution as characterised by processor registers is its 
“process state.” 

In the following sections we shall develop the idea of the virtual 
machine by considering its mainstore requirements, the dynamic 
relationship between its components, its protection requirements 
and its instruction set. But before we embark on this a few further 
remarks are necessary. 

The fundamental concept, that each job runs in its own virtual 
machine containing all the code and data required to solve the 
application problem, allows the programmer to suppose that he is 
the sole user of the computer. But economic reality dictates that 
the real machine must be capable of solving several problems 
simultaneously, and this necessity for multiprogramming raises a 
set of problems which could threaten to destroy the advantages of 
the virtual machine approach. For example, how are the indepen- 
dent virtual machines co-ordinated, synchronised and scheduled? 
How, in view of high main storage costs, can separate process- 
images be permitted to have a private copy of common subsys- 
tems (e.g., the operating system)? How can virtual machines 
communicate with each other? Such questions will be borne in 
mind as we develop the concept of the virtual machine, and 
subsequently we shall consider them more directly, in an attempt 

The term “virtual machine” has a wide variety of meanings in computer 
jargon. In this paper it is used consistently in the special ICL sense 
described here. 

251 



252 Part 2 1 Regions of Computer Space 

to show that the benefits and principles of the virtual machine are 
not compromised by the secondary modifications which are 
introduced to facilitate the efficient multiprogramming of several 
processes in separate virtual machines. 

2. The Segmented Virtual Store 

The relatively high cost of main store when compared with other 
storage devices, such as drums and discs, forces the computer 
architect to consider how this essential system component can be 
utilised with greatest efficiency. Amongst the more pressing 
problems in this area are: 

a 	 The process-image, and possibly even the user program 
alone, may exceed the size of available main store. 

b 	 Competition for main store by a number of programs may 
exist (e.g. in a time sharing system). 

c 	 Efficient use of main store for variable length tables, etc. 

The most promising technique for solving such problems is the 
virtual storage concept, first used on the Atlas machines. In order 
to ensure that the user’s needs are satisfied we shall look at this 
solution in the light of program structures. 

The output of a compiler consists mainly of a series of logical 
regions comprising an object program. Most third generation 
architectures treat the object program as a single logical unit (e.g. 
for protection purposes), but certain advantages accrue if the 
logically separate regions, such as code sections and data areas, 
which we shall for the moment call program segments, are 
recognised as separate entities. For example, the separation of 
code segments from data segments considerably simplifies the 
production of “pure” reentrant code; this in principle allows 
separate virtual machines to use a single real copy of common 
code (e.g. operating system procedures) whilst allowing us to 
retain the concept of a process image containing all the code 
necessary to solve the user’s problem. We shall see other 
advantages of the architectural recognition of segmentation in due 
course. 

A characteristic feature of segments within a process-image is 
their need to cross-reference each other, the obvious technique 
for implementing this being to form an address consisting of 
segment number plus displacement within segment. If we now 
form for each virtual machine a “segment table” consisting of a list 
of entries (one per segment in the process-image), which map the 
segments onto main store addresses, and make this available to 
the hardware, then the hardware can calculate the exact main 
store location of any item cross-referenced by a “segment number 
plus displacement” address. If a segment table entry also contains 
a marker indicating whether the segment is present in main store, 
or is temporarily held on a secondary storage device (e.g. a 
drum), and a record of the length of each segment (see Fig. l), 

Section 2 1 Memory Hierarchies and Multiple Processes 

then we have the rudiments of a segmented virtual store. This 
concept allows part or all of a process-image to reside temporarily 
outside main store on some secondary storage device, and thus in 
principle solves our problems of (a) a process-image which 
exceeds the size of main store, and (b)competition for main store 
usage in a time-sharing environment. Our remaining problem (c) 
of variable length segments can in principle be solved by allowing 
the recorded segment length to be changed. 

The hardware procedure for translating a “segment number 
plus displacement” address (i.e. a virtual address) into a main store 
address is as follows. If P, indicates that segment i is not in 
main store, the hardware causes an interrupt to allow the software 
to read the segment into main store; otherwise the virtual address i 
(segment number), j (displacement) is calculated as R, + j. A 
further advantage of this scheme is that the test j >Li reveals 
erroneous attempts to jump to non-existent code or to access 
non-existent data beyond the upper bound of any segment. 

Although this segmentation scheme is conceptually complete, 
the practicalities of multiprogramming require the introduction of 
certain modifications for the sake of efficiency. The existence of a 
separate entry in each virtual machine’s segment table for those 
segments required in all virtual machines (e.g. operating systems 

indicates whether ‘i 
segment i i s  
present in mainstore 

i s  the real address R i  
in mainstore of 
segment i 

Li i s  the length of 
segment i 

Fig. 1. A segment table for a process-image consisting of n segment 



code) would not only be wasteful of space-it would also add 
significant overheads when moving such a segment around in the 
virtual store, since each segment table in the system would have 
to be updated, The solution adopted in the 2900 Series is to 
recognise a second category of segment table, the “public” 
segment table, containing an entry for each common or “public” 
segment. Since only one copy of this table need exist (thus saving 
space and allowing efficient movement of public segments) the 
process-image of a job is defined by a combination of its local 
segment table plus the one public segment table, and the 
hardware tests the most significant bit of a segment number to 
select the appropriate table (local segments are numbered 0-8191, 
public segments 8191-16383). 

A third class of segment is shared locally between certain but 
not all virtual machines. Such segments, which are rather 
misleadingly called “global segments” are particularly useful for 
implementing real-time transaction processing on the 2900 Series. 
To implement such global segments as public segments has the 
undesirable side-effect that they would become accessible to 
virtual machines not privileged to access them, by virtue of their 
appearance in the public segment table. Since in practice global 
segments are relatively rare, to include them in each appropriate 
local segment table is unlikely to lead to a serious misuse of 
storage space, but the updating of multiple entries when the 
segment is moved, or when its length is changed, remains a 
dBculty (especially as each virtual machine sharing the segment 
may allocate to it a different segment number). The 2900 Series 
therefore permits a third class of segment table, the “global” 
segment table, which contains entries similar to other segment 
table entries. However, the global tables are not ordered by 
segment number, but are referenced via the local segment tables, 
which for global entries contain an indirection marker and in place 
of a segment’s main store address the address of the appropriate 
global segment table entry (see Fig. 2). In this way movements of 
a global segment require that only the global segment table entry 
be updated, whilst rapid access is achieved via the local segment 
table. 

We now have an addressing structure capable of mapping 
virtual machines efficiently onto the storage hierarchy, but there 
remains the practical question of economic main store manage- 
ment. Since we have followed the most natural path by allowing 
variable length segments (with the additional potential space 
saving benefit of allowing the length of a segment to vary at 
execution time), we are forced to come to terms with the 
well-known problem of the “external” fragmentation of main 
store. This is illustrated in Fig. 3, which shows a map of a main 
store containing segments and holes left by segments no longer in 
main store; there is clearly enough free space for the new 
segment, but it cannot be loaded because the holes are not 
contiguous. 

The 2900 Series designers examined the various solutions to 

Chapter 17 I An Outline of the ICL 2900 Series System Architecture 253 

Global- segment table 
-..r 

Global segment 
w - .-) 

Local segment I) 


table for virtual 

machine Y 


w 

Fig. 2. Two virtual machines sharing a segment 
addressed via a Global Segment Table. 

this problem and decided to adopt the paging technique, whereby 
variable length segments are divided into fixed length pages, thus 
allowing main store allocation to be effected in fixed length 
blocks as is shown in Fig. 4. 

This solution, which always allows a paged segment to be 
loaded provided that sufficient store blocks are free, requires the 
introduction of page tables, and the interpretation of a virtual 
address as “segment number plus page number plus page 
displacement.” The actual 2900 Series virtual address structure is 
shown in Fig. 5, from which it can be seen that a virtual machine 
may contain up to 214segments each consisting of 218bytes divided 
into pages of length bytes. 

The segment table entry is now modified to point to a page table 
(one per paged segment), which is indexed by the page number 
part of the virtual address and contains the inain store addresses of 

Mainstore 

New segment to 
be loaded 

Fig. 3. An example of the external fragmentation of a main store. 



_____ 

__ 

254 Part 2 I Regions of Computer Space 

I 
I I New segmentI I 

Fig. 4. Paged allocation of segments in main store. 

all resident pages. Two of the advantageous side-effects of the 
paging solution are (a) that a segment can be brought into 
main store in stages, and (b) the length of segments can be 
extended without having to find a new block of store large enough 
to hold the whole segment. 

The main drawback with paging is that it can lead to “internal 
fragmentation,” the loss of main store space at the end of a 
segment caused by the necessity of rounding the segment length 
up to an integral number of pages. The average proportional loss 
of storage, assuming that the average segment size s is large in 
relation to the page size p, will be P/zs (i.e. half a page per 
segment). It is intuitively obvious that this loss can be minimised 
in two possible ways: by keeping the page size small in relation to 
the average segment size and/or by attempting to produce 
segments whose lengths are as close as possible to an integral 
number of pages. But the page size must not become too small 
(otherwise the overheads of page tables and secondary store 
transfers become too great) and the segment size as previously 
defined is of an arbitrary length, dependent upon the logical 

SEGMENT PAG D I SP LACEMENTSEGMENT PAG D I SP LACEMENT
NUMBER NUMBERNUMBER NUMBER 

I I I I /~~ 

B i t  0 13 14 2 1  22  31 

Fig. 5. The 2900 series virtual address. 

Section 2 1 Memory Hierarchies and Multiple Processes 

program structure (and therefore not normally a multiple of page 
size). The 2900 Series therefore compromises by treating a 
physical segment as consisting of one or more logical regions, 
called areas, produced by a compiler. This gives the user the 
flexibility to create longer segments in relation to page size, and 
also to attempt to create segments whose length is as near as 
possible a multiple of the page size, and thereby to help reduce 
storage loss through internal fragmentation. For reasons which 
will become clear when we discuss protection the areas compris-
ing a segment should share the same properties (e.g. read only 
data); and for obvious reasons only one variable length area can be 
included in a segment. 

Since there are some segments for which paging is irrelevant 
(e.g. main store resident segments of the operating system) the 
architecture allows for both paged and non-paged segments. 
Figure 6 shows the logical structure of the segment and page 
tables for a particular virtual machine. 

3. Subroutines, Procedures and the Stack 

We now return to the concept that the efficient execution of a 
user’s task depends not merely on his own program but upon the 

L O G, 
Global-

Segment Shared unpaged
table Page table segment- d 

Pointers in ____ 
local segment - Page n of
tables of other  paged publ ic
virtual machines segment 

Publ ic  segment 

table 


(common t o  a l l  

virtual Unpaged publ ic

machines] 
__ Page table 

segment 

~ - Page n of 
paged publ ic  

segment 

Fig. 6. The structure of the page and 
segment tables for a virtual machine. 

I 



c 

totality of code and data required to solve his problem. It is 
essential that the virtual machine, the environment for executing 
such a process-image, provides mechanisms enabling efficient 
dynamic co-operation between the various subsystems comprising 
the process image. 

Inter-subsystem calls are really only a special case of calls 
between code routines within the process-image, the more 
general case being the subroutine or procedure call, which 
appears in one form or another in all the major high level 
languages. The question may now be restated as: how can 
subroutine/procedure calls be flexibly and efficiently incorporated 
into the architectural model? 

A relatively complex subroutine needs its own variables and 
work areas. If it is to be used recursively such work areas must be 
created on each entry to the subroutine. It also needs a mecha-
nism for linkage with the calling code, which may also supply it 
with parameters. Such a subroutine is called in 2900 terminology a 
“procedure,” and is implemented with the aid of a last-in first-out 
hardware assisted stack. 

Each stack is held as a separate segment’ and is controlled by 
four registers (see Fig. 7): 

a Stack Segment Numbers (SSN)-the base address of the 
stack. 

b 	 stack Front (SF)--the address of the next free location in 
the stack. 

Local Name Base (LNB)-the start address of the name-
space for the current procedure or lexical level. 

d 	 Extra Name Base (XNB)--can be used for example to 

‘Thus a virtual machine may support several stacks, and therefore several 
(co-operating) processes. 

Workspace for currently 


LNB active procedure 


SSN-w 

Fig. 7. Stack registers. 

Chapter 17 I An Outline of the ICL 2900 Series System Architecture 255 

address the start of a previous lexical level in the stack or as 
an off-stack pointer. 

A procedure call takes place in two stages-a software pre-call 
sequence and a hardware call instruction. The software stores the 
current LNB value at the address held in SF, raises SF to leave 
space free for linkage data, stores the parameters at the new top of 
stack, and raises LNB to point to the next lexical level. The 
hardware call instruction then inserts the linkage data and in the 
normal case begins executing the new procedure (see Fig. 8).This 
procedure now has access to its parameters via LNB and to a new 
workspace starting at SF. It is free to call further procedures (or 
itself recursively) or to call the hardware exit instruction, which 
causes the stack to be collapsed back to the previous local name 
space, and the calling procedure will then be resumed at the 
instruction following the call instruction.’ 

4. Main Store Protection 

One of the main functions of a computer architecture is to provide 
mechanisms which ensure that procedures have appropriate 
access to the data and code segments necessary for the execution 
of their task, but are not permitted to interfere with other 
segments in an unauthorised way. Such a requirement appears at 
two levels, within a virtual machine and between virtual machines. 

Let us consider first the avoidance of interference within a 
single virtual machine. The most obvious example of the need for 
this is to prevent an untested user program from corrupting the 
other subsystems in its virtual machine. 

The inadequacies of the traditional solution to this problem-
the recognition of two classes of program (privileged software and 
unprivileged programs)-become obvious if we consider a “com-
pile and go” system such as BASIC with the compiler itself 

The re  is, of course, a simple “jump and 1ink”instruction (which stores a 
return address at the top of the stack) for use in implementing more trivial 
subroutines. 

Lmkage data 

-----_ _____-----_ _____  

SSNSSN 
After theAfter callthe call 

sequence instruction 

Fig. 8. The stages of a procedure call. 



256 Part 2 [ Regions of Computer Space 

running as an unprivileged program: in this situation the compiler 
is unnecessarily endangered by the executing program. At the 
other extreme one could envisage a totally safe system in which 
each procedure has its own data class, and is only permitted to 
access data areas of this class; but the overheads in such a system 
would be high. 

The intermediate solution selected for the 2900 Series architec- 
ture provides protection at the segment level (since this type of 
object is already known to the hardware) and associates with a 
process a 4 bit Access Control Register (ACR), allowing a range 
0-15 of protection classes. Each segment table entry has an 
associated “read access key” (RAK) and “write access key” (WAK). 
Only if FLAK 3 ACR is the procedure permitted to read a 
segment, or if WAK 2 ACR to write a segment. Likewise a 
segment can only be executed if a further marker in the segment 
table entry, the “execute permission bit” (EPB) is set. 

The access control register is contained within the “program 
status register”(PSR), as is also a one-bit register known as PRJY, 
which in fact controls access to the PSR (and therefore to ACR). 
Under normal circumstances PRIV is reset, thus prohibiting 
changes to ACR (which reflects the protection level of the current 
procedure). 

However if the procedure attempts to call another procedure 
which executes with a different ACR value, reference is made 
(either by hardware, or by a software interrupt routine running 
with PRIV on) to a software-created system call table to validate 
whether the call is permitted. If so ACR is assigned the value 
associated with the called procedure, PRIV is reset and the 
procedure is entered. Since PSR is stored on procedure entry as 
part of the linkage data, the hardware exit instruction can 
normally reload ACR with the appropriate value on returning to 
the calling procedure.’ 

By limiting the privilege of changing ACR to the lowest level of 
interrupt software access to segments within the same process 
image is properly controlled within sixteen levels of privilege- 
this being sufficient to provide a highly structured operating 
system with several levels remaining for user programs. The one 
apparent loophole in the scheme, the possibility that a less 
privileged level passes as a parameter to a more privileged level a 
manufactured but valid address to which it is not permitted 
access, is overcome by the provision of a special hardware 
“validate” instruction, which the called routine uses to find out 

’This description refers to calls which reduce ACR value (i.e. increase 
privilege), and to the corresponding returns. Calls which increase ACR 
value (i. e. reduce privilege) and corresponding returns involve the 
creation of an additional stack to ensure that onstack data is not available 
to non-privileged code; such calls are generally avoided, because of the 
overheads involved in creating a new stack. 

Section 2 1 Memory Hierarchies and Multiple Processes 

what type of access (if any) the ACR level of the calling routine has 
to data at the address supplied. This is possible because the 
linkage information in the stack contains the ACR value of the 
calling routine, which can be checked against the WAK and RAK 
values in the segment table entry for the address to be validated. 

For obvious reasons the architecture must also provide a 
mechanism to ensure that certain instructions (e.g. instructions 
controlling input-output devices) are not misused, and this is also 
achieved by testing the PRIV bit in the PSR. 

Finally, the question of store protection between virtual 
machines (i.e. prohibiting interference between user jobs) is 
automatically solved by the addressing structure. Any address 
used within a virtual machine is transformed into a real address by 
means of the virtual machine’s own segment tables. It is simply 
impossible to access a location not contained in these segment 
tables. 

5. The Instruction Set 

The instruction set for the 2900 Series was designed specifically 
with the needs of high-level languages in mind, and its objectives 
include efficiency of compilation and execution, reliability of 
execution, and compactness of object code. In order to achieve 
these objectives the 2900 Series instruction set interlocks closely 
with descriptors, registers and the stack in manipulating the basic 
data formats.? 

Although the segmentation protection scheme provides a fair 
degree of execution reliability (e.g. by ensuring that data is not 
“executed’ as code, that code and read-only data cannot be 
corrupted, etc.), this is oriented to ensuring non-interference 
between different subsystems and programs. In order to provide a 
means of detecting execution errors within a single high-level 
language program or subsystem (e.g. an attempt to access an array 
element beyond the array boundaries, or to perform an indexed 
jump beyond the boundaries of a specific code module) the 2900 
Series employs “descriptors,” which associate with a virtual 
address a description of the object addre~sed .~  Descriptors, which 
provide other facilities in addition to run-time error checking, are 
in four standard formats each consisting of 32 bits for the 
description plus 32 bits for the address: 

‘Bits; 8-bit bytes in EBCDIC and packed decimal formats; 32 or 64 bit 
words containing logical or fixed-point numerical values; 32, 64 or 128 bit 
words for floating-point numbers; 32, 64 or 128 bit words containing 7, 15, 
or 31 digit signed decimal integers. 
3UnlikeMULTICS or B6700 descriptors, the ICL 2900 descriptor mecha- 
nism is internal to an address space, rather than a means of defining the 
address space. 



Vector Descriptors contain a size field indicating whether a 
data element is 1, 8, 32, 64 or 128 bits in length; a bound 
field containing a count of elements; a bound-check inhibit 
indicator; and a scale bit which indicates whether address 
modifiers are to be scaled in accordance with the size field. 
The vector descriptor can be used to address individual 
primitive data items (such as an integer variable) or single 
dimension arrays of primitive elements. Provision for multi- 
dimensional arrays is in the form of dope-vectors consisting 
of triplets, each describing a dimension. 
String Descriptors describes rows of bytes, e.g. character 
strings, and hold an indication of the string length. 

Descriptor Descriptors point to other descriptors and thus 
provide an indirect addressing facility. 
Code Descriptors consist of normal code descriptors, system 
call descriptors, and escape descriptors. Normal code 
descriptors serve as operands for procedure call instructions 
not requiring a change of privilege, and for exit instructions 
not requiring an increase in privilege. System call descrip- 
tors contain instead of an address a pair of indices which 
reference a System Call Table entry (see Sec. 4);they are 
used as operands for procedure calls requiring a change of 
privilege and for exits requiring an increase of privilege. 
Escape descriptors, however, may be interchanged with any 
other descriptor as an exceptional means of by-passing 
normal code sequencing rules. On detection of an es-
cape descriptor as an instruction operand the hardware 
causes entry to the code routine whose address is held in 
the escape descriptor, without executing the instruction 
for which it serves as an operand. The escape routine 
might typically monitor the use of a particular table or 
procedure, or instigate the loading into virtual store of 
some exception procedure not normally required (e.g. an 
error routine). A special mechanism is available to allow 
an escape routine, having placed the “correct” descriptor 
in a register, to cause the original instruction to be exe- 
cuted “correctly,” and thence return to the normal code 
sequence. 

In considering what form the register set should take, it was 
evident almost from the beginning that special purpose registers 
with dedicated functions would be more suitable than inter- 
changeable general purpose registers for a “high level language 
machine” such as the 2900 Series. The problem with the latter is 
that compiler-writers, not being in a position to predict in advance 
the dynamic execution of programs to be compiled, are forced into 
following a set of conventions, which may be wasteful but which 
certainly distorts any theoretical advantages of having general 
purpose registers. On the other hand dedicated registers, if 
carefully designed, provide an appropriate tool for the compiler 
writer. At the same time they allow the hardware designer to 

Chapter 17 1 An Outline of the ICL 2900 Series System Architecture 257 

optimise his implementation on the basis of the known purposes 
of the registers. 

The 2900 Series provides the compiler-writer with both a 
dedicated set of registers and a virtually infinite number of 
on-stack locations which in practice serve as registers.’ In addition 
to the four stack registers already described (SSN, SF, LNB, 
XNB) the following registers are “visible” to each process-image in 
unprivileged mode: a variable length accumulator (ACC) whose 
size (32, 64 or 128 bits) is controlled by a %bit register ACS; an 
index modifier (B) used mainly for address modification; a 
descriptor register (DR) used for addressing operands; a program 
counter (PC); a real-time clock (RTC); an overflow indicator (OV); 
a condition code (CC); and a program mask (PM) used to inhibit 
specific program interrupts.2 

There are 113 functions in the instruction set, providing 
facilities for arithmetic, character manipulation, logical opera- 
tions, instruction sequencing, etc. Most instructions operate on 
two operands, one of which (normally a register holding data or a 
descriptor) is usually implied by the function. The other operand 
may be a string whose descriptor is held in DR or may be specified 
in the operand field of the instruction (e.g. as a literal, a 
displacement from a stack register, etc.). The size ofan instruction 
is 16 or 32 bits, depending on the method of specifying the 
operand rather than on the function code. Similarly function codes 
are not dependent on the length of the accumulator, so that the 
same functions are used, for example, in single precision and 
double precision floating point operations. To illustrate how the 
interplay of descriptors, registers and the stack results in efficient 
and compact object code which can be efficiently compiled from 
high level languages, we take three brief examples: arithmetic, 
array handling and character spring manipulation. 

The stack is of course particularly well suited to the evaluation 
of arithmetic expressions by means of “reverse Polish notation, 
and typical sequences such as “store accumulator value at top of 
stack, raise top of stack pointer, load new value into accumulator,” 
or “add (multiply etc.) accumulator value and top of stack value, 
lower top of stack pointer” are efficiently compacted into single 
instructions. 

Array handling will typically consist of a logical subscript value 

‘Since the more powerful machines have a slave-store dedicated to the 
stack, this statement is true not only logically but also in terms of phys-
ical speed. 
’In reality ACS, OV, CC and PM are visible parts of the invisible 
(privileged) register PSR (program status register) which also contains 
ACR and PRIV. Other invisible registers include SSR (system status), 
LSTB and PSTB (base registers for the local and public segment tables), an 
interval timer (IT)and an instruction counter (IC). The totality of registers 
is called the “image store.” 



258 Part 2 1 Regions of Computer Space 

held in the B register operating on an array addressed by a vector 
descriptor. A single hardware instruction is able to check that the 
subscript does not exceed the bound of the array, and to find the 
start address of the logical element required by scaling the 
subscript (using the size field in the descriptor). Special functions 
also exist for performing efficient index arithmetic on multi-
dimensional arrays. 

Since the 24-bit length field of a string descriptor (rather than 
the instruction itself) can determine the length of store-to-store 
operations for character manipulation, long operations can always 
be performed as single instructions’, and need not be broken 
down into sequences of shorter operations (say 256 bytes in 
length), as on some machines. 

These examples not only illustrate the tendency in the 2900 
Series instruction set to efficiency and compactness of the object 
code produced, but point also to simplifications in the compilation 
phase by reducing the necessity for performing arbitrary tasks 
such as top of stack pointer manipulation, subscript scaling and 
character string length checkup. 

6. The System as a Collection of Virtual Machines 

Whilst not ignoring the problems raised by multiprogramming, 
the previous discussion has looked at the architecture largely from 
the view point of a single virtual machine. The emphasis now 
changes as we consider such questions as: How is the allocation of 
real resources (e.g. processor time, mainstore) to virtual 
machines controlled? How are external interrupts (e.g. peripheral 
interrupts) handled? How is the use of shared data segments 
synchronised? In other words, how can virtual machines be forced 
to co-operate with each other? 

The answer must be: these tasks are carried out by one or more 
subsystems. We shall call them collectively the “Kernel.” But how 
can the Kernel be integrated into the architectural model 
described above without distorting it beyond recognition? 

One possibility would be to provide the Kernel with its own 
special virtual machine--an apparently attractive solution if we 
take external interrupts into account. But since the data necessary 
for handling interrupts (e. g. a peripheral request table) originates 
from procedure calls in other virtual machines, the solution in fact 
implies radical modifications to the architecture. 

The alternative solution, to consider the Kernel as a component 
part of every virtual machine, also requires modifications but 
these are more in the spirit of our fundamental principles. The 

‘Such operations can be interrupted by hardware and subsequently 
resumed, thus ensuring that time critical interrupts are not delayed, and 
that virtual store interrupts arising from non-presence in main memory of 
(part 00 one or both operands, can be serviced in mid-instruction. 

Section 2 1 Memory Hierarchies and Multiple Processes 

Kernel will itself be held in public code segments in order that it 
can operate in any virtual machine, and will make use of public 
data segments to store information relating to such functions as 
scheduling. Some mechanism for synchronising the use of these 
shared data areas will of course be required to maintain the 
integrity of the data, and since the model has not placed 
restrictions on the use of public and global data segments this 
synchronisation problem can in fact arise in subsystems outside 
the Kernel. For this reason and because it does not solve the 
probIem for a system with multiple processors, the use of 
non-interruptible code execution does not adequately solve the 
problem of synchronisation. The 2900 Series designers therefore 
included a variant of the semaphore solution [Dijkstra, 1968al. 

The semaphore is an integer associated with a resource to 
ensure that it is allocated exclusively to one process at a time, and 
takes the values: 

-1 Resource free 
0 Resource in use-no waiting processes 
1 Resource in use-one waiting process 
n(>O) Resource in use-n waiting processes 

Assuming that processes co-operate by accessing shared 
tables, etc. via a semaphore (it is to their advantage to do so), 
then the mutual exclusion problem is limited to testing and 
updating the semaphore itself; this is solved by providing two 
non-interruptible hardware instructions-“increment and test” 
(which adds one to the semaphore and sets a condition code 
indicating its new s ta tus)and  “test and decrement” (which 
sets a condition code showing the status of the semaphore 
then decrements it by one). 

“Increment and test” allows a process to request use of the 
semaphored resource and test whether the request was successhl 
(condition code zero) or whether the process was merely added to 
the count of waiting processes (condition code positive). 

“Test and decrement” allows a process to relinquish a sema- 
phored resource which has been allocated to it, and to test 
whether the other processes are waiting (condition code positive). 
The missing link in this scheme, the ability of a process 
relinquishing the resource to advise a waiting process, is supplied 
by an event system which permits waiting processes to suspend on 
an “event” and relinquishing processes to cause the event. 

Control of the event system is of course a function of the 
Kernel, and the scheme can be used independently of sema- 
phores, to provide a general purpose synchronising facility. For 
example a user program can associate an event with a peripheral 
access request, and so be informed by event of the request 
termination. A process may cause an event, test for occurrence of 
an event, suspend on events, or nominate an interrupt routine to 
be entered on the occurrence of an event. The flexibility of the 



Chapter 17 I An Outline of the ICL 2900 Series System Architecture 259 

event system is further improved by the provision of a primitive 
message passing facility (e.g. an indication of the success or Ezilure 
of the peripheral request), thus creating a powedul mechanism for 
virtual machine synchronisation and communication. 

There remains now the question of interrupt handling by the 
Kernel. Since we have defined the Kernel as a component of all 
process-images, it is evident that external interrupts will be 
accepted, and the initial decoding performed, in the currently 
active virtual machine. An attractive implementation of this is to 
treat interrupts as forced procedure calls, thus automatically 
storing the interrupted process state in the stack and at the same 
time creating a new working space for the interrupt routine. 
Unfortunately this solution runs into difficulties with interrupts 
whose purpose is to signify that there is no more space in 
main store at the top of the stack. Thus virtual store interrupts (and 
all interrupts of higher priority) are directed to a special stack 
known to the hardware, which, however, operates in all other 
respects like a normal stack. 

Conclusion 

The features of the 2900 Series system architecture described in 
this article are not peculiar to a particular model within the 2900 
Series, but provide the basis at an architectural level for a 
compatible range of models, varying considerably in power and 
cost. This is achieved by means of two interfaces-the “Kernel 
Interface” which embodies the general architectural model, and 
the “Primitive Level Interface” which defines the instruction set 
and associated features. Neither of these interfaces can be 
regarded as a purely hardware interface, since the cost and power 
objectives of a particular model in the range will determine what 

is economic to implement as hardware, what as microprograms, 
what as software, etc. 

The Kernel cannot be regarded as an operating system-it does 
not even provide a logical facility for communication between the 
operator and either the system or user programs-but is rather a 
primitive layer of software which provides further levels of 
software (operating systems, data management systems, etc.) with 
a consistent abstraction of the architectural model, regardless of 
the implementation details of individual computers in the range. 
Thus the Kernel Interface guarantees to the higher levels of 
software that resources (whether hardware resources such as 
peripheral channels or software resources such as events) are 
handled in a uniform manner and within the virtual machine 
framework provided by the lower level. 

The Primitive Level Interface corresponds approximately to a 
hardware instruction set, but like the Kernel Interface, its 
description does not imply its mode of implementation. Thus it is 
to be expected that for smaller models in the range some functions 
(e.g. floating point operations) might be implemented in the 
Kernel software. Similarly whilst the larger models will use 
special rapid storage locations to implement registers, at the lower 
end registers might be implemented in ordinary main store 
locations. The importance of these two interfaces is that taken 
together they create an abstract machine which provides an 
efficient and reliable environment for the compilation and execu- 
tion of user programs written in high level languages. 

References 

Dijsktra [1968a]; Doran [1975]; Dorn [1974]; Keedy [1976]; 
Organick [1972]; Organick [1973]. 



Section 3 

Concurrency: Single-Processor 

At any given time, technology determines the major time 
constants (e.g., memory access time, microprocessor cycle time) 
that dictate the performance of an implementation. The simple 
two-parameter model involving microcycle time and memory 
pause time presented in Chap. 5 has been applied to three 
computer families and shown to be a good predictor of per- 
formance of minicomputers and maxicomputers (see Chaps. 39 
and 52). 

Computer implementations can exceed the performance avail- 
able through technology alone by introducing concurrency into 
the organization. The degree of concurrency is the number of 
operations that are happening simultaneously. The concurrency in 
a structure is also a measure of its complexity; to have a highly 
concurrent structure implies control structure together with 
multiple data paths (and operations) that can be simultaneously 
active. 

The impact of concurrency on software varies from none to 
need for totally new programming styles. Instruction prefetch and 
interleaved memory are two examples of hardware concurrency 
that are totally transparent to the software. Some concurrency 
techniques impact only the operating system (e.g., processor-I/O 
overlap) or impact user software in minor ways (e.g., in the 
imprecise interrupts in the IBM System S/360 Model 91). At the 
extreme, concurrency structures may not only require dedicated 
programming but also require entirely new algorithms (as do 
associative and multiple processors, for example). In general, only 
the first two levels of software impact are acceptable for general- 
purpose computing. The extreme level is usually acceptable only 
for solving special-purpose problems where the computer is 
actually a support processor to a general-purpose computer. 

Table 1lists the dimensions of the concurrency space. There are 
two major approaches to achieving concurrency: overlap of 
heterogeneous functional units and parallelism of homogeneous 
functional units. 

Overlap 

Processor-VO 
Consider the traditional view of a computer with processor, 
memory, and I/O. The earliest computers employed the processor 
to control IiO. Since the speed differential between electronic and 
mechanical technologies was two orders of magnitude, the 
processor was inefficiently utilized. When a small amount of logic 
was moved into the I/O device, the processor only had to start the 

Table 1 Concurrency Dimensions 

Overlap (heterogeneous functional units) 
Processor-l/O 


Polling 

Interrupts 


Processor-memory 
Instruction prefetch 


1 

n 


Cache 

Instruction 

Data 

Instruction/data 


Processor 

Pipeline 

Multiple function units 


Memory 

Memory interleaving 

Bus-memory overlap 

Multiword access 


Parallelism (homogeneous functional units) 
Serial by bit 
Serial by character 
Parallel by word 
Parallel by bit slice of many words, serial by bit 

Associative processors 

Parallel by vector 

Parallel by array 

Multiple control units 

Multiple function units 


Asynchronous 

Lockstep 


Replication of processors, memory, I10 
1Pc 
1Pc-nPio 
1Pc-nPio-rP(display) 
mPc-nPio-rP(display) 
mPc-nP(array) 
Network 

IiO operation and then continue non-U0 processing. Periodic 
polling of the state of I/O devices was used to determine 110 
completion. 

So that time would not have to be spent periodically polling I/O 
devices, the concept of an interrupt was introduced, whereby the 
IiO device signals the processor upon completion by forcing a 
change in the processor state. The processor state change involves 
the initialization of an interrupt-handling program. Interrupt 
schemes can be categorized by priority and number of levels: 

0 	 Single-priority, single-level. Interrupts are either totally 
enabled or disabled. When any interrupt is honored, the 
processor starts executing a program from a designated 

260 



Section 3 i Concurrency: Single-Processor System 261 

point in memory. Resolution of the identity of the inter- implementations contain several register sets seIectable by the 
rupting I/O device is through polling. interrupt scheme. Thus the time to switch the context (i.e., the .	Single-priority, multiple-level. Interrupts are either totally state of the interrupted program) under program control is 
enabled or disabled. When an interrupt is honored, the significantly reduced. 
processor starts executing a program unique to the I/O 
device in which the interrupt has originated. No resolution 
of device identity is required. 

Multiple-priority, single-level. I/O devices are assigned
prioritites and may interrupt only if their priority is higher 
than that of the currently executing program in the 
processor. All honored interrupts switch processor execu- 
tion to a single interrupt program. 
Multiple-priority, multiple-level. I/O devices are assigned 
priorities, and when an interrupt is honored, an interrupt 
program unique to the device is evoked. 

A critical measure of performance is interrupt response time, 
the time between an I/O device's requesting the attention of the 
Pc by posting an interrupt and the Pc's executing the first 
instruction of a program to service that I/O device. The selection 
of the interrupt scheme to employ in a computer is a function of a 
costhesponse-time tradeoff. If response time is critical, computer 

Processor-Memory 
Another area of overlap in the traditional machine is between the 
processor and memory. For any given technology, memory speed 
is less than that of processor speed. This is partly due to the delays 
in accessing a word from a large memory array and partly to delays 
imposed by the processor-memory bus protocol. Thus ways have 
been developed to cut down memory-to-processor delays. Many 
of these schemes are based on using a memory that is of multiple 
word width (e.g., 2 words or 4). 

One mechanism is to prefetch instructions so that the next 
instruction is available as soon as the processor is ready. Prefetch- 
ing is implemented by fetching a block of instructions and storing 
them in an instruction buffer. The block can be transferred 
simultaneously (see the subsection Memory below) or sequential- 
ly (the next sequential instruction is fetched during the execution 
of the current instruction). In an n-instruction buffer, a block of 
instructions is kept in the local instruction buffer. Table 2 depicts 

Table 2 Concurrency in Machines Treated in This Book 

Overlap 

Processor-II0 

IBM S/360-91 Interrupts 

CDC 6600 Interrupts 
in peripheral 
processing units 

STARAN Interrupts 

TI ASC Interrupts 

llliac IV interrupts 

CRAY-1 Interrupts 

Processor-memory 

Instruction prefetch: 
eight 64-bit words 

Instruction prefetch: 
eight 60-bit words 

User-controlled page 
loading: 

51 2-4096 32-bit words 

Instruction prefetch: 
eight 32-bit words 

Operand prefetch: 
eight 32-bit words 

Instruction prefetch: 
eight 64-bit words 

Instruction prefetch: 
64 16-bit words 

Processor 

10-or more-stage pipe 
3 arithmetic units 

10 arithmetic units 

3-stage pipe 

4-stage pipe 
for instructions 

8-stage pipes 
for arithmetic units 

2-stage fetchlexecute 
Pipe 

12 arithmetic units 

Memory 

16-way interleaving 
64-bit word access 

32-way interleaving 
60-bit word access 

Separate data and 
instruction memories 

5-way interleaving 
32-bit word access 

8-way interleaving 
256-bit word access 

Separate data and 
instruction memories 

8-way interleaving 
512-bit word access 

16-way interleaving 
64-bit word access 

Parallelism 

Parallel by word 
Asynchronous m u I-
tiple function units 

Parallel by word 
Multiple control 
units 

Asynchronous m ul- 
tiple function units 

Serial by bit 
Parallel by bit 
slice 

Parallel by word 
Multiple control 

units 

Parallel by word 
64 lockstep func- 
tional units 

Parallel by word 
Multiple control 
units 



262 Part 2 I Regions of Computer Space 

the number of instructions at a time prefetched by machines in 
this book. These machines also represent a variety of techniques 
of when to update the instruction buffers as a function of the 
location of the program counter. 

One problem with the instruction buffer technique is that it 
assumes the next instruction to be executed is the next one in 
sequence. This may not be true in the case of a branch instruction. 
Branch instructions not only occur frequently (measurements 
indicate that 25 to 30 percent of the dynamic instruction count 
consists of branches [Strecker, 1976a; and Lunde, 19771) but may 
also impose a delay if the target instruction for the branch is not in 
the instruction buffer. At least two schemes have evolved to 
minimize the impact of branches: 

Make the instruction buffer large enough to hold program 
loops. 

Number of instructions 
Machine in instruction buffer 

llliac IV 128 
CDC 6600 32 in FIFO stack 
TI ASC 2 sets of 32 
CRAY-1 4 sets of 64 
IBM S/360-91 16 plus 4 branch target 

Also prefetch instructions from the branch target address in 
case it does not reside in the instruction buffer. 

Chapter 18 contains a detailed discussion of the considerations in 
instruction prefetching and branching. 

A generalization of the prefetch of sequential blocks of instruc- 
tions is to provide for multiple segments of frequently used code 
to be in the instruction buffer. The CRAY-1 has four sets of 
instruction buffers that can be considered an instruction cache. 
Caches can be provided for instructions and operands. There may 
be separate caches, or instructions and operands may share the 
same cache. Caches are described in more detail in Sec. 2 of Part 
2. Caches are included in processor-memory overlap because of 
their similarity to instruction buffers and because caches usually 
replace multiple words (e.g., set size) at the same time, with 
subsequent word replacement overlapped with processor execu- 
tion. 

Processor 
Overlap is also possible among the various parts composing the 
processor. There are several distinct phases to the execution of an 
instruction: instruction fetch, instruction decode, effective-
address calculation, operand fetching, execution, and storage of 
results. Normally these operations are carried on sequentially in 
time on the same set of hardware (in temporal sequencing) as 

Section 3 [ Concurrency: Single-Processor' System 

Hardware unit time * 
Generate 

Instruction 1 Instruction 2 Instruction 3 

instruction 
address 

Instruction fetch 

Instruction decode 

Effective address 
calculation 

Operand fetching 

Execution 

Storage of 
results 

Results of Results of Results of 
Instruction 1 Instruction 2 Instruction 3 

Fig. 1. A time-function diagram of a pipelined processor. 

shown in the state diagram, Fig. 1. However, if specialized 
hardware is provided for each phase, instructions can move 
between phases (in spatial sequencing) and several instructions 
can be in various phases of completion at the same time.' Figure 1 
illustrates the pipeline, sometimes referred to as an assembly- 
line, process. Each hardware unit starts on the next instruction as 
soon as it has completed an instruction. This pipeline has seven 
hardware units, hence seven stages. Thus up to seven instructions 
can be in execution at the same time. The pipeline is limited by, 
and lockstepped to, the slowest hardware unit. A completed 
instruction is produced every cycle of the slowest unit, or once 
every t time units. 

Several factors complicate this simplistic view of pipelining. 
First, there are several aspects of program behavior that prevent 
the pipeline from realizing its maximum performance: 

0 	 Bubbles in the pipeline. Not all instructions will require 
every stage of the pipeline. In strict pipelines, such as in 

'An elaboration of pipelining is to extend the ISP to include vector 
data-types so that the execution phase can also be pipelined. 



8 

the TI ASC (Chap. 45), instructions cannot bypass other 
partially executed instructions even if they do not need the 
hardware unit currently occupied and can use a different 
hardware unit that is currently unoccupied. If the pipeline 
is not organized so that the vast majority of the instructions 
require every stage in the pipeline, the effective speedup 
over nonpipelined processors will be substantially less than 
Ttotai/Tsiow where Ttotal is the total time an instruction 
spends in the pipeline, and Tsiow is the time spent in the 
slowest stage. 

Branches. Branches that change the sequence of program 
flow (so that the next instruction to be executed is not the 
next instruction in sequence) force the aborting of those 
instructions partially executed and a refilling of the pipe- 
line. If such branches occur very frequently they can negate 
the performance gain of the pipeline. For example, if the 
fraction p of the instructions are branches that change the 
sequencing, then the limit value‘ of performance improve- 
ment over a nonpipelined processor is U p .  Various schemes 
have been developed for branch direction prediction in 
attempts to keep pipeline-emptying branch operations to a 
minimum. (See Chap. 18.)Another approach is to limit 
branches either by having compilers which pipeline or 
“vectorize” user code (see Chap. 45) or by providing vector 
data-types in the user-level language so that each instruc- 
tion manipulates more data (see Chaps. 44 and 45). 

Large Tsiow.Some instructions take much longer to execute 
than others (e.g., a floating-point divide takes longer than 
an integer add). Thus many instructions are held up by the 
slower operations. To alleviate this problem, multiple 
function units were introduced. In principle, any of the 
units in a pipeline can be replicated, or indeed the whole 
pipeline, as in the TI ASC with up to four pipes. However, 
the use of multiple function units has been applied mostly 
in the area of arithmetic operations: integer add, multiply, 
and divide; shift and logical; and floating add, multiply, and 
divide. Since the arithmetic functional units have differing 
completion times, instructions may actually finish out of 
sequence. This poses problems with respect to register 
usage, condition codes, and result storage. See Chaps. 18 
and 19 for a detailed discussion of these problems. 

Table 2 shows the use of pipelining and multiple function units in 
machines described in this book. A detailed survey of issues in 
pipelining can be found in Ramamoorthy and Li [1977]. 

Memory 

A simple form of overlap in memory is the division of the memory 
array into modules. Figure 2 illustrates two forms of address 

“-1 

‘For an n-stage pipeline, the expected throughput is Z (1-p)” = 
t=O 

[I-(1-p)”]/p. If it is assumed that n is large, the limiting throughput is 
l lp .  

Section 3 I Concurrency: Single-Processor System 263 

Addresses 

m+2 
m+1 

Memory 0 1 n-I 

module 


(aI Addresses 

(m-1)n (m-I)!?+I). 
... 

2n+l 3n-1 
n+l 

n-I 

Memory 0 1 n-I 
module 

6) 


Fig. 2. (a )High-order interleaving. (b)Low-order interleaving. 

assignment for a block of n.m memory words arranged m words 
per module. In low-performance systems, or systems where 
reliability is a major concern, high-order interleaving is used. 
High-order interleaving means that a memory module responds to 
only one pattern of high-order address bits (memory module 0 
responds to 0 . . . 0, memory module 1responds to 0 . . . 1,etc.) 
corresponding to blocks of m words with consecutive addresses in 
each memory module. The amount of memory in the system can 
be increased by simply adding more memory modules. And i f a  
memory module fails, its only impact on the system is to make a 
contiguous block of memory inaccessible. 

High-performance machines often employ low-order interleav- 
ing (Fig. 2b), where consecutive words are stored in different 
memory modules. Low-order interleaving can contribute to 
higher performance in two ways: 

Single-word requests. In the implementation of memories, 
it is often the case that the memory can provide the stored 
information (in what is known as access time, or t.access) 
faster than it can accept a new request (in what is called 
cycle time, or t.cycle). The ratio t.cycle/t.access is often in 
the range of 2 to 5. If references are staggered to enough 
different memory modules, the apparent memory response 
time can become arbitrarily close to t.access. Each memory 



-- 

264 Part 2 1 Regions of Computer Space Section 3 1 Concurrency: Single-Processor System 

module will have an apparent response time of t.access so 
long as it is not selected again within (t.cycle - t.access). 
Thus the (t.cycle - t.access) is overlapped with requests to 
other memory modules. The actual memory performance 
will be a function of the degree of interleaving (the number 
of memory modules), the ratio t.cycle/t.access, and the 
actual memory-reference pattern (see Chap. 10). 

Multiple-word requests, Blocks of adjacent memory words 
can be provided in t.access. Thus the apparent access time 
per word is reduced. (See Chap. 43.) 

Another aspect of memory performance improvement is the 
overlap of processor-memory bus operations with the memory 
modules. Figure 3 illustrates a processor-memory bus cycle with a 
select time, a wait for memory to respond, a data transmission 
time, and the closing portion of the bus cycle. If memory is fast 
enough (as is memory l),either through technology or interleav- 
ing, the recovery portion of the memory cycle can be overlapped 
with the remainder of the bus cycle. However, if the memory is 
slow (as is memory 2), then the bus cycle will incur an additional 
delay. 

A way to minimize bus overhead is to transfer multiple memory 
words per cycle. This can be done either by a wider, multiword 
bus data path or by a bus subprotocol which sequentially sends 
multiple data words each bus cycle. Both techniques require 
either multiword-wide memory modules or memory interleaving 
to be effective. Table 2 lists the interleaving and number of bits 
accessed per memory cycle for machines described in this book. 

Parallelism 

Recall that parallelism is the concurrent operation by homoge- 
neous functional units. The simplest form of parallelism deals with 

tselect t.data t.close tselect 
Bus 

4-t.cycle 

Memory 1 I t.access t.recovery 1 

4- t.cycle -+ 

data-types and with how many bits are simultaneously involved in 
an operation. 

Serial by Bit 
At the most elementary level, only one bit of an n-bit word is 
operated on at a given time. There is no concurrency, and even 
the most trivial operations on n bits require a time proportional to 
n. The bit-serial processor was used in the first generation because 
the cyclic primary memories to which it connected were funda- 
mentally bit-serial. Some bit- and byte-serial processors were 
implemented during the dawn of LSI technology in order to 
squeeze a processor onto a single chip. Bit-serial processors have 
also been used when either a large number of cheap processors 
were interconnected into a high-performance machine or the 
machine's word width was extremely large (see Chap. 21, where 
256 serial processors are used on 256 bit/word data). 

Serial by Character 
ISPs that support variable-length character-string (e.g., business 
machines, such as the IBM 1401) or decimal-string (e. g., scientific 
calculators, such as the TMS1000, Chap. 34) data-types frequently 
are implemented to operate on a character or a digit at a time. 
Long or variable-length data strings are processed by iteration. 
Serial-by-character implementations (e.g., 4-or 8-bit data paths) 
of wide data-type ISPs (e.g., 16 or 32 bits) have been used for 
low-cost (e.g., IBM System/360 Model 30, Chap. 12) or 
technology-constrained (e.g., Intel 8080 and 8086, Chap. 37) 
implementations. 

Parallel by Word 
The simple parallel-by-word processor is the most common 
processor type. This has come about in part because main 
memories have become parallel by word. Within the processor 
almost every internal register-transfer operation requires one or 
more clock times. Most of these processors do only one operation 
at a time. As a rule, the simple processor is locked to the primary 
memory cycle time and approximately 2 to 10 events (clock times) 
are available within the processor per memory cycle. 

Parallel by Bit Slice 
Figure 4b contrasts the memory-processor organization of 
parallel-by-word and parallel-by-bit-slice machines. The parallel- 
by-bit-slice memory is sometimes referred to as a Eook-aside 
memory. Since one bit of all memory words is available on one 

Memory 2 I t.access ! t.recovery 
I access, it is possible to search all of memory simultaneously for 

+-
 .-+t.cycle 

Fig. 3. Overlap of processor-memory bus with memory operation. 

specified contents by iteration on bit slices. This processor- 
memory organization is sometimes used to implement a content- 
addressable memory (e. g., a memory word can be selected by its 
contents or some attribute or a subfield of its contents rather than 
by address) or an associative processor. 



Memory 

Processing 
( a )  elements 

Processing 

Memory 

( b )  

Fig. 4. (a) Parallel by word. (b) Parallel by bit slice. 

Associative processors are particularly well suited to applica- 
tions involving searching or matrix manipulation. Example appli- 
cations are data base inquiry systems, image processing, seismic 
processing, and weather prediction. Chapter 21 describes one 
commercially available bit-sliced processor. Yau and Fung [1977] 
and Thurber and Wald [1975].provide a more extensive survey of 
associative processors. 

Parallel by Vector 
A conceptual extension to the parallel-by-bit-slice processor 
is the parallel by vector (a one-dimensional array of words) 
processor. Several machines have been called vector machines 
(see Chaps. 44 and 45). However, these machines do not 
operate on all elements of the vector at the same time, but 
rather employ pipeline techniques to operate on several 
elements concurrently. 

Parallel by Array 
Machines called array processors have been built (see Chaps. 20 
and 21) which can actually operate on the elements of a vector 
simultaneously but which must execute a sequence of actions to 
perform an operation on an entire array. 

Flynn [19661 categorized high-speed processors according to 
whether there are single (SI) or multiple (MI) instruction streams 
(i.e., one or more processors) and whether each stream has single 
(SD) or multiple (MD) data streams (i.e., vectors or arrays). The 
next three categories roughly correspond to Flynn’s taxonomy. 

Section 3 1 Concurrency: Single-Processor System 265 

Multiple Control Units. The concept of time-multiplexing a 
high-performance data-path unit among several control units has 
been employed in several machines. Each control unit maintains 
the Pc state of separate instruction streams. The data-path unit 
may be cyclically multiplexed among up to 10 control units with 
each control unit-data-path time slice appearing as an indepen- 
dent virtual machine. The relatively slower preformance of the 
control units is usually due to performance limits of low-cost 
memory, wherein the memory can supply data only at a fraction of 
the data-path unit’s processing rate. Hence data-path utilization is 
driven up by parallel memory operation. 

The cost of an n-control unit, time-multiplexed data-path 
unit should be contrasted to the cost of n separate computers 
each complete with control and data paths. The multiple con- 
trol unit approach is cheaper when the computer is construct- 
ed from discrete or SSI logic. However, the advent of LSI 
with integral control and data on the same chip makes the sepa- 
rate computer approach more attractive. (See Part 2, Sec. 4,for 
details.) 

Several of the computers that are described in this book have 
employed the multiple control unit approach to providing mul- 
tiple peripheral processors (Pio’s) for a high-performance Pc. 
Part 3, Sec. 4,outlines the evolution of the concept from the 
CDC 6600 (Chap. 43) to the TI ASC (Chap. 45)and the CRAY-1 
(Chap. 44). 

Multiple Function Units. In contrast to the multiple control unit 
approach, where the control unit, in fetching the data from Mp, is 
slow compared with the data-path unit, the multiple function unit 
approach is used when performance is limited by the data-path 
units. In such systems, there is considerable processor-memory 
overlap (e. g., through instruction prefetch, caching, memory 
interleaving, and multiword access) so that the access of data 
(instructions and operands) from memory is essentially at the 
speed of internal processor registers. Hence the bottleneck is the 
data operators, particularly the complex data operators (such as 
multiply and divide) or operators for complex data-types (i.e., 
floating-point). 

Multiple functional units may operate asynchronously or in 
lockstep. Asynchronous functional units are usually heterogene- 
ous, with the number of each unit type chosen in an attempt to 
balance the expected incidence of operators in the instruction 
stream and the execution time of the operator. Table 3 lists the 
type and number of units used in machines described in this book. 
Asynchronous functional units usually operate on one instruction 
stream. However, because of the parallelism and the unequal 
execution time, instructions may finish out of sequence. Hence, a 
complex control unit is required to ensure that instructions whose 
operands depend on the results of other instructions are not 
executed before the results are available. Resource allocation of 
the functional units must also be performed. This control resides 



266 Part 2 I Regions of Computer Space 

Table 3 Multiple Function Units 

Machine 	 Multiple function units 

IBM S/360Model 91 	 Fixed Arithmetic Unit 

Floating Add 

Floating Multiply/Divide 


CDC 6600 	 Increment (2) 

Fixed Add 

Fixed Multiply (2) 

Divide 

Shift 

Logical 

Branch 

Floating Add 


CRAY-1 	 Fixed Add (3) 

Fixed Multiply 

Shift (2) 

Logical (2) 

Floating Add 

Floating Multiply 

Recriprocal Approximation 

PoDulation Count 


in the “scoreboard’ for the CDC 6600. Chapter 19 describes in 
detail one possible control algorithm. 

If the multiple function units operate in lockstep, performing 
the same operation on different data, an array organization called 
an array processor results. Chapter go1describes a system with 
one central control unit and 64 processing elements (PEs). The 
control unit broadcasts an instruction to be executed by all PEs on 
local data. Each PE can make minor modifications of the broadcast 
instruction (usually of the form of operand address modification) or 
be programmed to ignore the instruction (via a centrally stored 
PE disable mask). Such array processors are suitable to a class of 
very structured problems, usually involving a large proportion of 
array data-types. To achieve the potential parallelism of an array 
processor, the programmer must pay particular attention to 
algorithm design and data placement. Hence array processors are 
usually treated as special-purpose machines that are attached to a 
general-purpose processor which provides program development 
support. See Kuck El9771 for a discussion of parallel programming 
considerations. 

Replication of Processors, Memory, UO. Another method to 
enhance performance is by replication of entire PMS components. 
The earliest form of replication was the attachment of specialized- 
function processors (e.g., IiO, display, and array processors) to 

’STARAN also allows similar behavior. 

Section 3 1 Concurrency: Single-Processor System 

offload a central processor. With the advent of LSI and the 
availability of low-cost processors, multiple processor systems 
have become popular. The number of dimensions in the multiple 
processor design space is so large that a detailed discussion of 
these systems requires two complete sections (see Part 2, Secs. 4 
and 5).  

Examples of Systems with Concurrency 

This section contains details of three computers that span a wide 
range of concurrency techniques: the IBM Systemi360 Model 91, 
intended for general-purpose computing; the Illiac IV, intended 
for special-purpose array processing; and STARAN, intended for 
special-purpose associative processing. Each of these systems 
employs several concurrency techniques, and it is appropriate to 
study how these techniques are integrated into a single system. 
The available technology will dictate physical sizes (such as the 
bit-slice size of an associative processor) and time ratios (such as 
the relative ratio of memory fetch time to floating-point add). 
These parameters have a major impact on the final system 
implementation. As technology evolves, these sizes and ratios 
change, so that the optimal implementation architecture also 
changes. Nevertheless, it is entirely appropriate for the student to 
study these designs in detail, all the while searching for these key 
sizes and ratios. An interesting exercise would be to redesign 
these architectures using contemporary technology. (The student 
will have a chance to observe a design evolution through time in 
Part 3, Sec. 4,which traces the evolution from the CDC 6600 to 
the TI ASC and the CRAY-1). 

The IBM System/360 Model 91 

The goal of the Model 91 was to attain a performance increase of 
one to two orders of magnitude over the prior-generation 
machine, the IBM 7090. Since logic technology provided a 
speedup of only a factor of 4, the remaining factor was sought 
through organizational concurrency. Two papers from the January 
1967IBMJournaZ (Chaps. 18 and 19) provide a detailed discussion 
of the design parameters selected for the Model 91 implementa- 
tion. 

Chapter 18 describes the various concurrency techniques: 

Memory interleaving 

Multiword memory access 

Instruction pipeline 

Multiple arithmetic units 
Buffers to smooth data flow to and from memory, including 
instruction prefetch, operand prefetch, and operand stor- 
age 



Instruction interlocks 
Branch prefetch and loops 
Interrupt handling 

Chapter 19 presents a general scheme for handling multiple 
arithmetic units. The various forms of System 360 instructions 
(i.e., register-register, register-storage, and storage-storage) are 
dynamically converted to a pseudoregister form. Precedence 
relations are maintained through a scheme of operand tagging and 
reservation stations (buffers) on operator inputs. Instruction 
prefetching plus 4-bit tags allows local optimization of programs 
dynamically to the point that storage into memory of intermediate 
results called for by the program may be used without waiting for 
the memory to be read on a subsequent instruction, since the 
intermediate results may be available to flow directly to its next 
usage point. Keller [1975] presents a generalization of operand 
tagging as well as discussions of other high-performance tech- 
niques. 

Taken as a pair, Chaps. 18 and 19 lay out many of the design 
issues that must be resolved in such high-concurrency machines 
as the CDC 6600, the TI ASC, and the CRAY-1. 

The Illiac N 

The Illiac IV project was initiated at the University of Illinois in 
1966. Design goals called for 1,000 megaflop (millions of floating- 
point operations per second) achieved through both organizational 
and technological advances. 

The organization of Illiac IV evolved from earlier SOLOMON 
design studies [Slotnick et al., 1962; Gregory and McReynolds, 
19631. These machines were designed for special-purpose prob- 
lems with matrix data-types and a potential for a high degree of 
parallelism. This problem class includes differential equations, 
matrix manipulations, weather data processing, and linear algebra 
[Thurber and Wald, 19751. 

As originally envisioned, the Illiac IV was to contain 256 
processing elements (PEs) arranged in four quadrants of 64 PEs. 
In each quadrant, the PEs were to be arranged in an 8 by 8 array 
with each PE connected to its four nearest neighbors (north, 
south, east, and west). The interconnection pattern allows for high 
speed data sharing’ between PEs. The PEs had 2048 words of 
local memory and executed instructions broadcast from a central 
control unit. 

The Illiac IV project also chose to push the state of the art in 
technology. Emitter-coupled logic (ECL) was selected with 2- to 
3-ns gate delays packaged 20 gates per chip. A 25-MHz clock rate 

’For example, a two-dimensional difFerential equation can be solved by the 
“relaxation method,” whereby each data point is iteratively replaced by 
the average of its north, south, east, and west neighbors until the change 
from one iteration to the next is below a preset error threshold. 

Section 3 i Concurrency: Single-Processor System 267 

and a 140-ns memory cycle time were also specified. Problems 
with crosstalk and noise margins in the ECL chips caused a 
reduction in chip size to seven gates per package. The decreased 
density lead to larger board area, increasing cabling, and in- 
creased delays. After more effort, Texas Instruments was able to 
commercially offer 20-gate ECL chips as a direct result of its work 
on the Illiac IV project. These chips were used in the TI ASC 
(Chap. 45). 

Thin-film technology was initially selected for PE memories. 
However, the decreased ECL density consumed so much more 
space that the thin-film memory could not fit in the space that 
remained. Thus thin film was dropped in favor of 256-bit-bipolar- 
semiconductor memory chips produced by Fairchild. 

Several technological firsts have been claimed for the Illiac IV 
[Feierbach and Stevenson, 19791 including: 

First large-scale use of ECL integrated circuits . 	Earliest successful large-scale use of a design automation 
system, ouside of IBM, to design circuit cards 
First large-scale use of bipolar-semiconductor memory 
chips in a large computer’s Mp 

First successful use of large, multilayer laminated circuit 
boards (12 layers) 

Illiac IV was delivered to NASA’s Ames Research Center in 
California in the spring of 1972 with Burroughs serving as the 
overall system contractor. Escalation of the totaI project cost 
(estimated at $31 million in 1972) forced cutting the architecture 
back to one quadrant with 64 PEs. Kagging technology problems 
prevented full operational status until 1975. In early 1979 the 
machine was available about 50 percent of the time for user jobs, 
with 20 to 40 hours per week going to actual repairs. 

Illiac IV runs with stand-alone, single-user software [Falk, 
19761. General-purpose machines provide multiple-user software 
development aids. Applications include solution of two-
dimensional aerodynamic flow equations, weather and climate 
prediction models, signal processing (e. g., beam forming, convo- 
lution, and fast Fourier transform), radiation modeling, linear 
programming, and finite-difference seismic simulations. In 1979, 
Illiac IV ran with a 13-MHz clock with practical operation of up to 
15 million floating-point operations per second (megaflops). This 
contrasts with 5 megaflops for a CDC 7600 observed by Ames 
users and 138 sustained megaflops for a CRW-1. At a logic 
complexity of a million gates, Illiac IV was the most complex 
operational computer structure of its day. 

Figure 5 depicts the Illiac IV system as of early 1979. The 64 
processing elements (PEs), their associated local memory, and the 
control unit are located at the bottom of the figure. The control 
unit can broadcast operands to all PEs and can fetch any word 
from the PE memory. Peak execution rate for hand-coded loops is 
about % million 64-bit floating-point operations per second. 



268 Part 2 I Regions of Computer Space Section 3 I Concurrency: Single-Processor System 

I I 

Pc[ 'PDP-101 

I 

I 

Pc['PDP-11/10; Memory  
Server\MSl 

D [ ' Q l O l l ;  memory  address map; 
4xR?bl 

Pc['PDP-11/40; Ms [ ' l l l iac Disk 
Memory  Management Process\MMP; System Process\TSP Memory\ l4DM; #0:3;Funct ion:  l l l iac  I V  operating system] t.ave.access: 20 ms;

; L--------- ---------4I capacity: 12 Mbytes l  

I 

P[ 'Contro i  U n i t \ C U l  -Pc['Processing Element\PE; - Mp['Processing Element Memory; #0:63; 
#0:631 2048 w; 64 b/w; t.access: 800 ns] 

Fig. 5.PMS diagram of Wac IV. 

The backing store for Illiac IV is the 12 Mbyte, 500 Mbitis 
fixed-head disk called I4DM (Illiac IV Disk Memory). Online 
mass storage is provided by PDP-10 Ms. When a data set is to 
be processed hy Illiac IV, it is moved from PDP-10 files or tape 
into the PE's local memory and I4DM. Data between devices 
are moved via the Central Memory (I4CM). The Memory Man- 
agement Process (MMP) implements Illiac IV file-transfer 
requests. 

Figure 6 summarizes the maximum IiO rates and capacities of 
the Illiac IV memory hierarchy. As with many high-performance 
processors, the processor consumes data faster than the 110 
system can provide them, forming an I/O bottleneck. Using 
Amdahl's rule of thumb of 1bit of I/O per instruction per second 
(see Chap. 5 on performance), Illiac IV requires about 225 bit/s of 
I/O. The I4DM/PE data path can supply 2'' bit/s, but the I4DM 
capacity is only 229bits or 16 s worth of data. Further data would 
have to come from magnetic tape at 220bit/s, a mismatch of a factor 
of 25. Thus one would expect that Illiac IV would perform well on 
problems requiring small amounts of data or data-intensive 

problems of short duration. Even these classes of problems face an 
IiO bottleneck due to the latency in accessing data. The I4DM 
latency of 20 ms corresponds to 300 K to 800 K operations of the 
PEs. 

Table 4 [Feierbach and Stevenson, 19791 summarizes the main 
applications using Illiac IV in early 1979. They were: 

AircraftiSAR. Processing airborne Synthetic Aperture 
Radar (SAR) video data. 
GISS. Weather model. 
I4TRES. Seismic simulation. 
LANDSAT. Classification and color assignment of LAND- 
SAT images. 

0 SHUTTLE. Space shuttle reentry simulation. 
0 2D-STRATO. Model of chemical effects on stratosphere. 

2D-TRANSONIC. Simulation of transonic flow over two- 
dimensional airfoils. 

1 



Section3 I Concurrency: Single-Processor System 269 

design a high-speed Pc, since low I/O data rates and/or long I/O 
1 Mbyte latency can negate a significant portion of the Pc’s performance. 
15-40 mill ion 
operationls 

STARAN’ 

I 
In the spring of 1972 Goodyear Aerospace introduced the 

No transfer STARAN associative processor. Figure 7 depicts the overall 
overlap organization of the STARAN B. STARAN was designed to operate 

227 bitsltape Tape 12 Mbyte either stand-alone or in conjunction with a host computer. The 
20 ms latency basic building block is an associative Array Module (AM). Each 

AM consists of a 256- by 256-bit memory array, 256 bit-serial 
processing elements (PEs), and a routing network that allows 

Transfer overlal: diverse forms of memory array accessing. A STARAN can consist 
226 bitsltaperTape 256 Mbyte of from 1to 32 AMs. Because of their large number the PEs are 

25 rns latency serial processors with only elementary logic capability. Even 
common functions, such as add (see Chap. 21) have to be 

Fig. 6. llliac IV data rates. programmed from ANDs and EXCLUSIVE-ORs. However, this 
bit-serial nature allows for a high degree of variability in data-
types and partitioning the memory arrays into subfields. In the 

3D-Compress. Computing the velocity field for turbulent follow-on STARAN E the user can specify floating-point numbers 
compressible flows. 	 with 2 to 100 bits of mantissa and 7 to 11 bits of exponent. 

Fixed-point numbers can have 3 or more bits of representation. 3D-Galaxy. Simulating the formation and evolution of A unique feature of the AMs is the variety of accessing modes galactic structure due to gravitation. 
available for the 256 by 256 memory array. Access may be to 

3D-Incompress. Computing the velocity field for turbulent words, subfields of words, bit slices, every ith bit, etc. Control of 
incompressible flow. 	 the access mode is via an 8-bit code. Each accessing mode acts as a 

stencil to select a unique pattern of 256 bits from the AM. Some 
Table 4 illustrates the impact of latency and transfer time from general rules for determining the access mode are: 

I4DM. Latency varies from 1 to 125 percent of compute time, 
while latency plus transfer varies from 1to 250 percent of compute If the mode value contains n ones and 8 - n zeros, the 
time. Initial problemidata load time varies from less than 1 stencil selects 2” bits from each of 2(s-nJ memory words. 
percent to 1,396 percent of compute time. Thus one of the major 

lessons to be learned from Illiac IV is that it is not sufficient just to ’TM Goodyear Aerospace Corporation, Akron, Ohio 44315. 


Table 4 Characteristics of Some Major llliac Programs 

I4DM PEM-14DM S ystem-I4 DM 
Compute latency transfer Total transfer 

Applications time time time run time time 

Ai rcraft/SAR 28 22 (79) 2 (7) 52 (186) 768 (1,396) 
GlSS 10,800 930 (8) 60 (0) 10,900(101) 150 (1) 
I4TRES 10,800 10,800(100) 500 (5) 22,100(204) 900 (8) 
LANDSAT 210 3 (1) 3 (1) 216 (103) 540 (257) 
SHUTTLE 790 300 (37) 10 (1) 800 (101) 60 (5) 
2D-STRATO 950 480 (51) 15 (1) 965 (101) 700 (74) 
2D-Transonic 1,110 640 (57) 250 (22) 2,000 (180) 40 (6) 
3D-Compress 3,630 1,630 (45) 370 (10) 4,000 (110) 25 (0) 
3D-Galaxy 2,000 740 (37) 45 (2) 2,045 (102) 360 (18) 
3D-lncompress 400 500 (125) 100 (25) 10,000 (250) 20 (2) 

Notes: Time in seconds; parenthetical numbers are percentage with respect to compute time. 



270 Part 2 I Regions of Computer Space 

1-11 7 

Fig. 7. PMS diagram of STARAN. 

. 	If the leftmost n bits of the mode are Is and the rightmost 
8-n bits are Os, then 2(&) consecutive memory words (with 
the leftmost n bits assumed 0), and the leftmost n bits 
indicate the bit-sliced addresses (with the rightmost 8-n bits 
assumed 0). 
If the rightmost n bits of the mode are IS and the leftmost 
8-n bits are Os, then the Pn,memory words will be spaced 
2" apart. The 2" accessed bits will be consecutive. The 
leftmost 8-n bits indicate the address of accessed words 
(with the rightmost n bits assumed 0), and the rightmost n 
bits indicate the bit-sliced address accessed (with the 
leftmost 8-n bits 0). 

The most commonly used access modes are mode 0 and its 
complement, mode 255. Mode 0 is the bit-slice mode where 1bit 
of each array word is accessed. Mode 255 is word mode and 
accesses 256 bits of one array word. Some useful accessing modes 
are listed in the following table. 

Section 3 I Concurrency: Single-Processor System 

STARAN Addressing Modes 

Mode Number of Number of 
(base 2) selected word; accessed bits 

00000000 256 words spaced 1 1 bit-slice mode 
apart 

0000001 1 64 words spaced 4 4 consecutive bits 
apart addressed 0-3 

00001 11 1 16 words spaced 16 16 consecutive bits 
apart addressed 0-15 

001 1 1 11 1 4 words spaced 64 64 consecutive bits 
apart addressed 0-63 

1111111 1 1 256 consecutive bits, 
word mode 

11 11 1100 4 consecutive words 64 bits spaced 4 apart 
addressed 0-3 

11 11 0000 16 consecutive words 16 bits spaced 16 apart 
addressed 0-15 

11000000 64 consecutive words 4 bits spaced 64 apart 
addressed 0-63 

The stencil can be positioned anywhere in the array memory by 
adding the displacement field from the accessing instruction to 
the starting address of the consecutive block of words or bits. 

Once accessed, the data can be rearranged by a 2n flip- 
permutation and shift network [Batcher, 1977; Batcher, 19761. 
The flip permutation takes an input bit of an input line I and 
assigns it to an output line 

where f is an n-bit flip-control vector and ij, f; are the n-bit binary 
representation of the input line position and F ,  respectively. For 
example, F = 0 represents the identity permutation. For F = 21, 
the flip permutation interchanges each group of 21 lines. For F = 
2"-1, data are completely reversed from end to end (this is the 
mirror permutation). The shift permutation is a shift of 2" places 
modulo Pwhere m and p are integers such that 0 5m <p 5 n. A 
shift of 2" modulo 2f' divides the 2" data items into groups of 2P 
items each and shifts the items within each group right-end 
around 2" places. Many diverse permutations can be developed 
by selection of fliphhift permutations or by successive passes of 
data through the flip network. For example, a left shift of data can 
be accomplished by a mirror flip, a positive shift, and a remirror 
flip. The flip network permutes data on memory-to-PE transfers, 
PE-to-PE transfers, and PE-to-memory transfers. 

A single Associative Processor Control (APC) fetches instruc- 
tions from control memory and broadcasts them to the PEs. The 
PEs may choose whether or not to execute the instruction 
according to a program-settable mask bit in each PE. The APC has 
18 registers: a common register for AM inpudoutput, an array 



register that specifies which AMs are to take part in an operation, 
a block length counter for block transfers, a data pointer for base 
addressing, four field-pointer registers for indexing, two field- 
length counters for specifying operand lengths, and eight branch 
and link registers for subroutine linkage and base addressing. 

The APC allows overlap in instruction fetching and execution. 
Most STARAN instructions use only 31bits. The 32d is a speedup 
bit that enables fetching of future instructions. The speedup bit is 
set to 1 if both the current instruction and the following 
instruction are not branches. If the speedup bit of instruction n is 
1, the control unit starts fetching instruction n + 1(if it has not 
already been started) and n + 2. The control unit fetch mechanism 
uses the following algorithm: 

Speed-up bit of instruction 

n - 1 n Fetch operation 

0 0 Wait until the address of the next in- 
struction is determined and then fetch it. 

0 

1 

1 

1 

1 

0 

Start fetching n + 1 and n + 2. 

Start fetching n + 2 (n + 1 is already being 
fetched). 

Do nothing (n +1is already being fetched). 

Thus, there may be up to three instructions and instruction- 
addresses in the pipe at one time. The assembler sets the speedup 
bit whenever possible by examining the following statement 
before completing the assembly of an instruction. 

The control memory is multiported and provides storage for 
application programs as well as buffer space for communication 
with a host computer. A variety of memory speeds are provided 
for each of the control memory functions, high-speed buffer and 
bulk core storage. Up to 30 K words of control memory is 
externally accessible via DMA. 

The page memory is used for program storage. The first page is 
for the subroutine library, while pages 1and 2 are for application 
code. The three pages are large enough to hold all instructions of 
most program loops (each page memory holds 512 words in 
STARAN B and 4,096 words in STARAN E). The APC reads 
instructions from one page while the other page is being loaded by 
the program pager. Thus the instruction pages act as a high-speed 
(120-ns) cache that must be explicitly managed by the user issuing 
page-memory load commands. 

There are some advantages to user-controlled page loading: 

Blocks can be of any size. 
Blocks can be prefetched far in advance of their execution. 
Both sides of branches may be prefetched. 

Section 3 1 Concurrency: SingleProcessor System 271 

Blocks may be left in the buffer if it is known they will be 
needed again in the near future. 

Presumably, the programmer can take a global look at the 
program and do a better job of loading instruction buffers than 
hardware can. Unfortunately the task of deciding when and where 
to load the page memories is not easy and is done only to fine-tune 
a program for maximum speed. Most STARAN programs use 
static page loading. At load time, some of the program is loaded 
into pages whose contents are fixed during execution. If the 
program is short enough, all of it is loaded into the page 
memories. The larger page size of STARAN E makes this possible 
in many cases. 

All the various STARAN controllers intercommunicate via the 
External Function (EXF)logic. Controllers issue 19-bit commands 
to the EXF and receive 1-bit sense signals in return. 

STARAN provides a variety of channels for I/O: 

Direct Memory Access from the host processor up to 20 
Mbytes/s for control memory or -4M transfers 

0 Buffered IiO for block transfers up to 10 Mbytes/s/AM 
0 Parallel I/O directly into AMs up to 160 Mbyte/s/AM 

Mp (byte1 
All axes: X 103 

wT. communication 

lbyte/sl 

Fig. 8. Kiviat graph for STARAN. 



272 Part 2 1 Regions of Computer Space 	 Section 3 1 Concurrency: Single-Processor System 

Table 5 Performance Comparison of STARAN B versus Conventional Computer Systems 

STARAN time Conventional computer Ratio 
Project (ts) time (tc) (tcltd 
LACIE 

Classification 8.0 mina (360175) 210 mina 26 
Clustering 0.62 mina (360175) 35 mina 56 

427 SPACE COMPUTATION COMPLEX 
SPG4 algorithm 

Worst case (512 objects) 451 msb (H6080) 1280 msb 2.8 
Best case (1536 objects) 180 msb (H6080) 7680 msb 42.7 

Digital photogrammetry 
Map production 3.4 min (CDC 6400) 75 min 22.1 
Stereo correlation 1.47 h" (CDC 6600) 12.0 hC 8.1 

SACWARDANS (data mgt.) 
Minimum load 9.54 mind (H6080) 227.4 mind 23.8 
Maximum load 1.32 hd (H6080) 83.1 9 hd 63.0 

Image averaging process 0.17 s (3601195) 8.04 se 47.3 
0.17 s (360165) 60.0 se 353 

a NASA data (Large Area Crop Inventory Experiment) 

Mitre data 

Army ETL data 

AF and PRC data (based on H6080 enhancement with STARAN, STARAN also results in 3 to 1 file reduction) 

U.S. government data 

STARAN B has been programmed for two general types of ing, signal processing, weather forecasting, reactor design, and 
application [Boulis, 19771: bit-manipulation tasks (e.g., data base fluid dynamics applications). STARAN B applications have been 
management, text searching, command and control, and air traffic measured at 20 MOPS (million operations per second) using two 
control) and bit-group-manipulation tasks (e.g., image process- 	 arrays in an image-processing application [Vocar, 19771. Table 5 

illustrates the type of performance encountered over a range of 
applications. 

Table 6 Comparison of Staran Models B and E The advent of larger memory chips provided the reason for 
reimplementation of the architecture as STARAN E. At the same Feature 	 STARAN B STARAN E time, some of the architectura1 shortcomings of the STARAN B 

Memory were corrected. These modifications included longer word length 
Page memory (up to 65 kilobits), higher transfer rate between array and control 

Size 51 2-1 024 words 4096-81 92 words memory (via an eight-port crossbar switch that allows for cycle- 
Speed 200 ns 1OOns steal memory access among the AMs and between AMs and 

High-speed data external devices), and larger page-memory sizes. Table 6 high- 
buffers lights the major differences between the STARAN B and the Size 	 51 2-1 024 words 51 2-8192 words 

Associative modules STARAN E. Whereas STARAN B could execute a 1,024-point 
Number of modules 1 :32 1:8 16-bit real FFT in 3 ms, STARAN E requires only 0.6 ms. 
Number of PEs 256:8192 256:2048 Software primarily consists of a macro assembler, a linker, a 
Memory array 256 by 256 256 by 256 loader, and debugging aids. Macros are provided for the common 
Number of arrays per 1 9:256 vector operations (e.g., FMPF, multiply array field by array field) 

module so that the applications programmer does not deal with the 
Instruction execution 120 ns 100 ns bit-serial level of detail. Table 7 lists the STARAN instruction and 
speed macro instruction sets. 



Section 3 I Concurrency: Single-Processor System 273 

Table 7 STARAN Macro-Apple Instruction Set’ 

I .  Macro directives RPT REPEAT NEXT INSTRUCTION 
LOOP LOOP THROUGH AN ADDRESS LCLA DECLARE LOCAL ARITHMETIC STRING 

LCLC DECLARE LOCAL CHARACTER STRING 
GBLA DECLARE GLOBAL ARITHMETIC STRING 
GBLC DECLARE GLOBAL CHARACTER STRING IV. Load and Store register instructions 
MACRO BEGIN MACRO DEFINITION LRR LOAD REGISTER@) FROM REGISTER(S) 
MEND END MACRO DEFINITION LI LOAD REGISTER@) WITH IMMEDIATE VALUE 
MGO BRANCH CONDITIONALLY LR LOAD REGISTER(S) FROM AP CONTROL MEMORY 
MLMT SET LIMIT ON NUMBER OF MGO STATEMENTS SR STORE REGISTER(S) IN AP CONTROL MEMORY 
MSET ASSIGN VALUE TO MACRO VARIABLE SYMBOL INCR INCREMENT REGISTER(S) 
MDCL DECLARE ARGUMENT FIELD SYMBOLS TO DECR DECREMENT REGISTER(S) 

BE MACROS LPSW LOAD PROGRAM STATUS WORD FROM AP CONTROL 
MNOP INSERT SEQUENCE SYMBOL MEMORY 
MNOTE ISSUE MACRO ERROR MESSAGE SPSW SWAP PROGRAM STATUS WORD 
MEXIT TERMINATE MACRO DEFINITION 

I l .  Assembler directives V. Associative away instructions 
START START APPLE SOURCE PROGRAM A.  Load Response Store (RS)Register 
END END APPLE SOURCE PROGRAM L LOAD RS FROM SOURCE 
ORG INITIALIZE LOCATION COUNTER LN COMPLEMENT SOURCE, THEN LOAD RS 
EQU EQUATE VALUE TO SYMBOL LOR INCLUSIVE-OR SOURCE WITH RS 
DF DEFINE COMMON REGISTER OR ARRAY FIELD LORN COMPLEMENT SOURCE, THEN INCLUSIVE-OR 
DS DEFINE STORAGE IN AP CONTROL MEMORY SOURCE WITH RS
TOF ADVANCE TO TOP OF FORM LAND -AND SOURCE WITH RS
DC DEFINE CONSTANT VALUE IN AP CONTROL LANDN COMPLEMENT SOURCE, THEN AND SOURCE WITH RS 

MEMORY LXOR EXCLUSIVE-OR SOURCE WITH RS
GEN GENERATE MACHINE INSTRUCTION LXORN COMPLEMENT SOURCE, THEN EXCLUSIVE-OR 
NOP PERFORM NO OPERATION SOURCE WITH RS DA GENERATE CHARACTER STRING LC LOAD COMMON REGISTER FROM FIELD IN 
EXTRN REFERENCE EXTERNALLY DEFINED SYMBOLS ARRAY WORD 
ENTRY DEFINE EXTERNALLY REFERENCED SYMBOLS LCM LOAD COMMON REGISTER FIELD FROM FIELD 
AIF CONDITIONALLY ALTER ASSEMBLY SEQUENCE IN ARRAY WORD 
AGO UNCONDITIONALLY ALTER ASSEMBLY SEQUENCE LCW LOAD COMMON REGISTER FROM RESPONSE STORE ANOP ASSIGN EXECUTION LOCATION COUNTER REGISTER FIELD 

TO SYMBOL SET SET RESPONSE STORE REGISTER AERR INCREMENT ASSEMBLER ERROR COUNTER CLR CLEAR RESPONSE STORE REGISTER 
NLlST OPTIONALLY DISABLE ASSEMBLY LISTING ROT ROTATE RESPONSE STORE OR COMMON REGISTER LIST ENABLE ASSEMBLY LISTING 

B .  Store Response Store ( R S )RegisterI l l .  Branch instructions 
S STORE RS INTO ASSOCIATIVE ARRAY B BRANCH UNCONDITIONALLY SM STORE MASKED RS INTO ARRAY BZ BRANCH IF REGISTER IS ZERO SN COMPLEMENT RS, THEN STORE RS INTO ARRAY 

BNZ BRANCH IF REGISTER IS NOT ZERO SNM COMPLEMENT RS, THEN STORE MASKED RS 
BBS BRANCH IF COMMON REGISTER BIT IS SET INTO ARRAY 
BBZ BRANCH IF COMMON REGISTER BIT IS ZERO SOR INCLUSIVE-OR R S  WITH ARRAY 
BRS BRANCH IF ANY Y RESPONSE STORE BIT IS SET SORM INCLUSIVE-OR MASKED RS WITH ARRAY BNR BRANCH IF ALL Y RESPONSE STORE BITS ARE ZERO SORN COMPLEMENT RS, THEN INCLUSIVE-OR RSBOV BRANCH IF ANY ARITHMETIC OVERFLOW WITH ARRAY 
BNOV BRANCH IF NO ARITHMETIC OVERFLOW SORNM COMPLEMENT RS, THEN INCLUSIVE-OR MASKED 
BAL BRANCH AND LINK TO SUBROUTINE RS WITH ARRAY 

SAND RS WITH ARRAY 
‘Goodyear Aerospace Corp. SANDM AN9 MASKED RS WITH ARRAY 

-~ __--
~ 



__ 

274 Part 2 1 Regions of Computer Space Section 3 I Concurrency: Single-Processor System 

SANDN COMPLEMENT RS, THEN AND RS WITH ARRAY E .  Parallel array field logical operations t 
SANDNM COMPLEMENT RS, THEN ANDMASKED RS ORC INCLUSIVE-OR COMMON REGISTER FIELD WITH 

WITH ARRAY 
__ 

ARRAY FIELD sc STORE COMMON REGISTER INTO FIELD IN ORF INCLUSIVE-OR ARRAY FIELD WITH ARRAY 
ARRAY OR RS FIELD 

SCW STORE COMMON REGISTER INTO FIELD IN ANDC AND COMMON REGISTER FIELD WITH ARRAY 
SINGLE RS OR ARRAY WORD FIELD 

ANDF AND ARRAY FIELD WITH ARRAY -C .  Parallel array field searches t FIELD 
EQC ARRAY FIELDS EQUAL TO COMMON REGISTER XORC EXCLUSIVE-OR COMMON REGISTER FIELD WITH 

FIE-LD ARRAY FIELD 
EQF EQUAL ARRAY FIELDS XORF EXCLUSIVE-OR ARRAY FIELD WITH ARRAY 
NEC ARRAY FIELDS NOT EQUAL TO COMMON FIELD 

REGISTER FIELD CMPC COMPLEMENT COMMON REGISTER FIELD INTO 
NEF NOT EQUAL ARRAY FIELDS ARRAY FIELD 
GTC ARRAY FIELDS GREATER THAN COMMON SETF SET ARRAY FIELD 

REGISTER FIELD CLRF CLEAR ARRAY FIELD 
GTF GREATER THAN ARRAY FIELDS 
GEC ARRAY FIELDS GREATER THAN OR EQUAL TO F. Parallel array field arithmetic operations t 

COMMON REGISTER FIELD 1.Fixed point 
GEF GREATER THAN OR EQUAL ARRAY FIELDS 
LTC ARRAY FIELDS LESS THAN COMMON REGISTER ADC ADD COMMON REGISTER FIELD TO ARRAY FIELD 

FIELD ADF ADD ARRAY FIELD TO ARRAY FIELD 
LTF LESS THAN ARRAY FIELD SBC SUBTRACT COMMON REGISTER FIELD FROM 
LEC ARRAY FIELDS LESS THAN OR EQUAL TO COMMON ARRAY FIELD 

REGISTER FIELD SBF SUBTRACT ARRAY FIELD FROM ARRAY FIELD 
LEF LESS THAN OR EQUAL ARRAY FIELDS ISBC SUBTRACT ARRAY FIELD FROM COMMON 
MAXF MAXIMUM (HIGHEST) ARRAY FIELD(S) REGISTER FIELD 
MlNF MINIMUM (LOWEST) ARRAY FIELD(S) MPC MULTIPLY ARRAY FIELD BY COMMON 
NHI ARRAY FIELDS NEXT HIGHER THAN COMMON REGISTER FIELD 

REGISTER FIELD MPE MULTIPLY ARRAY FIELD BY ARRAY FIELD 
N LO ARRAY FIELDS NEXT LOWER THAN COMMON DVC DIVIDE ARRAY FIELD BY COMMON REGISTER FIELD 

REGISTER FIELD DVF DIVIDE ARRAY FIELD BY ARRAY FIELD 
BLC ARRAY FIELDS GREATER THAN COMMON SQRTF CALCULATE SQUARE ROOT OF ARRAY FIELD 

REGISTER AND LESS 
THAN BLOCK LENGTH COUNTER/DATA POINTER 2.  Floating point 

ZF ARRAY FIELDS EQUAL TO ZERO (a) Single precision (8 bit exponent; 24 bit mantissa) 
NZF ARRAY FIELDS NOT EQUAL TO ZERO 

FADC ADD COMMON REGISTER FIELD TO ARRAY FIELD 
D. Parallel array field moves t FADF ADD ARRAY FIELD TO ARRAY FIELD 

FSBC SUBTRACT COMMON REGISTER FIELD FROM 
MVF MOVE ARRAY FIELD INTO ARRAY FIELD ARRAY FIELD 
MVCF MOVE ONE’S COMPLEMENT OF ARRAY FIELD FSBF SUBTRACT ARRAY FIELD FROM ARRAY FIELD 

INTO ARRAY FIELD FlSBC SUBTRACT ARRAY FIELD FROM COMMON 
MVNF MOVE NEGATIVE OF ARRAY FIELD INTO REGISTER FIELD 

ARRAY FIELD FMPC MULTIPLY ARRAY FIELD BY COMMON REGISTER 
MVAF MOVE ABSOLUTE VALUE OF ARRAY FIELD INTO FIELD 

ARRAY FIELD FMPF MULTIPLY ARRAY FIELD BY ARRAY FIELD 
INCF MOVE ARRAY FIELD WITH INCREMENT INTO FDVC DIVIDE ARRAY FIELD BY COMMON REGISTER 

ARRAY FIELD FIELD 
DECF MOVE ARRAY FIELD WITH DECREMENT INTO FDVF DIVIDE ARRAY FIELD BY ARRAY FIELD 

ARRAY FIELD FSQRTF CALCULATE SQUARE ROOT OF ARRAY FIELD 
Wll instructions in these groups are understood to be applied to masked words. 



Section 3 I Concurrency: Single-Processor System 275 

(b) Double precision (8 bit exponent; 56 bit mantissa) 

DADF ADD ARRAY FIELD TO ARRAY FIELD 
DSBF SUBTRACT ARRAY FIELD FROM ARRAY FIELD 
DMPF MULTIPLY ARRAY FIELD BY ARRAY FIELD 
DDVF DIVIDE ARRAY FIELD BY ARRAY FIELD 
DSQRTF CALCULATE SQUARE ROOT OF ARRAY FIELD 

G. Miscellaneous parallel array instructions 

FIND FIND FIRST RESPONDER(Y RESPONSE STORE 
BITS SET) 

STEP STEP TO FIRST RESPONDER AND CLEAR IT 
RESVFST STEP TO FIRST RESPONDER AND CLEAR 

ALL OTHERS 
COUNTRS COUNTRESPONDERS 
SHIFTY SHIFT Y END-OFF (OPTIONAL Pi0 REQUIRED) 
ROTATY ROTATE Y END-AROUND (OPTIONAL 

Pi0 REQUIRED) 

Vl. Control and Test instructions 

I NT CONTROL AND TEST INTERRUPT 
ILOCK CONTROL AND TEST INTERLOCK 
WAIT DEACTIVATE AP 
RUN START LOADING OVERLAY MODULE 
RUNBF IDENTIFY OVERLAY MODULE 
IOWAIT WAIT OR BRANCH IF I/O IS BUSY 
INSTP INTERRUPT SEQUENTIAL PROCESSOR PROGRAM 
EXIT TRANSFER CONTROL TO BATCH OPERATING 

SYSTEM (BOS) 

As of January 1979, five STARANs have been built. A listing of 
the configuration of existing STARAN systems is given in Table 8. 
All STAFWN systems include one AP array, AP control, control 

Table 8 STARAN Configuration 

System Series Arrayst Pi0 Comments 

1
2 

B
B 

4
4 

Yes
Yes Parallel-head disk 

3 B 2 No 
4 B 2 No Multiple tape units 
5 E 4 No Cross bar I/O to array 

tB arrays are 256 PEs by 256 bits. 

E arrays are 256 PEs by 9,216 bits. 

Vll .  Inputloutput ( I D ) instructions 

A. Standard I10 instructions 

OPEN INITIALIZE DATASET 
OBUFF DEFINE I/O DATASET 
READ START READING 
RBUFF DEFINE INPUT BUFFER 
WRITE START WRITING 
WBUFF DEFINE OUTPUT BUFFER 
CLOSE RELEASE DATASET 

B .  Optional parallel 110 (Pio) instructions 

TPlO CONTROL AND TEST Pi0 CONTROL 
MAM MOVE DATA FROM ARRAY TO ARRAY 
SAM STORE DATA FROM ARRAY INTO AP 

CONTROL MEMORY 
LAM LOAD DATA IN ARRAY FROM AP 

CONTROL MEMORY 
DPlO DEFINE Pi0 MOVE, STORE, OR LOAD 

Vl l l .Program pager instructions 

STRTSG START PAGE SEGMENT 
ENDSG END PAGE SEGMENT 
MVSG MOVE PAGE SEGMENT 
MVSGl MOVE PAGE SEGMENT IMMEDIATELY 
PAGER CONTROL AND TEST PROGRAM PAGER 

memory, program pager, sequential controller, disk, line printer, 
card reader, and control terminal. 

References 

Barnes, Brown, Kato, Kuck, Slotnick, and Stokes [1968]; Batcher 
[1976]; Batcher [1977]; Boulis and Faiss [1977]; Fak [1976]; 
Feierbach and Stevenson [1979]; Flynn [1966], Gregory and 
McReynolds [1963]; Keller [1975]; Kuck r19681; Lunde [1977]; 
Ramamoorthy and Li [1977]; Ruben, Faiss, Lyon, and Quinn 
[19761; Slotnick et al. [19621; Thurber and Wald [19751; Vocar and 
Faiss [1977]; Yau and Fung [1977]. 



Chapter 18 

The IBM System/360 Model 91: 
Machine Philosophy and 
Instruction-Handling1 
D. W. Anderson / F. J. Sparacio / F. M ,  Tomasulo 

Abstract The Systemi360 Model 91 central processing unit provides 
internal computational performance one to two orders of magnitude 
greater than that of the IBM 7090 Data Processing System through a 
combinationof advancements in machine organization, circuit design, and 
hardware packaging. The circuits employed will switch at speeds of less 
than 3 nsec, and the circuit environment is such that delay is approximate-
ly 5 nsec per circuit level. Organizationally, primary emphasis is placed on 
(1)alleviating the disparity between storage time and circuit speed, and (2) 
the development of high speed floating-point arithmetic algorithms. 

This paper deals mainly with item (1)of the organization. A design is 
described which improves the ratio of storage bandwidth and access time 
to cycle time through the use of storage interleaving and CPU buffer 
registers. It is shown that history recording (the retention of complete 
instruction loops in the CPU) reduces the need to exercise storage, and 
that sophisticated employment of buffering techniques has reduced the 
effective access time. The system is organized so that execution hardware 
is separated from the instruction unit; the resulting smaller, semiautono- 
mous “packages” improve intra-area communication. 

Introduction 

This paper presents the organizational philosophy utilized in 
IBM’s highest performance computer, the Systed360 [Amdahl, 
Blaauw, and Brooks, 19641 Model 91. The first section of the 
paper deals with the development of the assembly-line processing 
approach adopted for the Model 91. The organizational tech- 
niques of storage interleaving, buffering, and arithmetic execution 
concurrency required to support the approach are discussed. The 
final topic of this section deals with design refinements which 
have been added to the basic organization. Special attention is 
given to minimizing the time lost due to conditional branches, and 
the basic interrupt problem is covered. 

The second section is comprised of a treatment of the instruc- 
tion unit of the Model 91. It is in this unit that the basic control is 
exercised which leads to attainment of the performance objec- 
tives. The first topic is the fetching of instructions from storage. 
Branching and interrupting are discussed next. Special handling 

’ IBM Journal, vol. 11, January 1967, pp. 8-24. 

of branching, such that storage accessing by instructions is 
sometimes eliminated, is also treated. The final section discusses 
the interlocks required among instructions as they are issued to 
the execution units, the initiation of operand fetches from storage, 
status switching operations, and I/O handling. 

CPU Organization 

The objective of the Model 91 is to attain a performance greater 
by one to two orders of magnitude than that of the IBM 7090. 
Technology (that is, circuitry and hardware) advances’ alone 
provide only a four-fold performance increase, so it is necessary to 
turn to organizational techniques for the remaining improvement. 
The appropriate selection of existing techniques and the develop- 
ment of new organizational approaches were the objectives of the 
Model 91 CPU design. 

The primary organizational objective for a high performance 
CPU is concurrency-the parallel execution of different instruc- 
tions. A consideration of the sequence of functions involved in 
handling a typical processor instruction makes the need for this 
approach evident. This sequence-instruction fetching, instruc- 
tion decoding, operand address generating, operand fetching, and 
instruction execution-is illustrated in Fig. 1. Clearly, a primary 
goal of the organization must be to avoid the conventional 
concatenation of the illustrated functions for successive instruc- 
tions. Parallelism accomplishes this, and, short of simultaneously 
performing identical tasks for adjacent instructions, it is desired to 
“overlay” the separate instruction functions to the greatest 
possible degree. Doing this requires separation of the CPU into 
loosely coupled sets of hardware, much like an assembly line, so 
that each hardware set, similar to its assembly line station 
counterpart, performs a single specific task. It then becomes 

%Circuits employed are from the IBM ASLT family and provide an 
in-environment switching time in the 5 nsec range. 

I -TIME 

i +INSTRUCTION+STORAGE + OPERAND 
ACCESS REGEN ACCESS S%%E 

*INSTRUCTION 

GENERATE DECODE INSTRUCTION 


INSTRUCTION AND GENERATE OPERAND EXECUTION 

ADDRESS ADDRESS 


CIRCUIT FUNCTION 

HSTORAGE FUNCTION 
~ ~ 

Fig. 1. Typical instruction function time sequence. 

4 

276 



Chapter 18 I The IBM System/360 Model 91: Machine Phllosophy and Instruction-Handling 277 

possible to enter instructions into the hardware sets at shortly 
spaced time intervals. Then, following the delay caused by the 
initial filling of the line, the execution results will begin emerging 
at a rate of one for each time interval. Figure 2 illustrates the 
objective of the technique. 

Defining the time interval (basic CPU clock rate) around which 
the hardware sets will be designed requires the resolution of a 
number of conflicting requirements. At first glance it might 
appear that the shorter the time interval (i.e., the time allocated 
to successive assembly line stations), the faster the execution rate 
will be for a series of instructions. Upon investigation, however, 
several parameters become apparent which frustrate this seem- 
ingly simple pattern for high performance design. The parameters 
of most importance are: 

1 	An assembly-line station platform (hardware “trigger”) is 
necessary within each time interval, and it generally adds a 
circuit level to the time interval. The platform “overhead 
can add appreciably to the total execution time of any one 
instruction since a shorter interval implies more stations for 
any pre-specified function. A longer instruction time is 
significant when sequential instructions are logically de- 
pendent. That is, instruction n cannot proceed until 
instruction n + 1 is completed. The dependency factor, 
therefore, indicates that the execution time of any individu- 
al instruction should not be penalized unnecessarily by 
overhead time delay. 

2 	 The amount of control hardwareand control 
complexity-required to handle architectural and machine 
organization interlocks increases enormously as the num- 
ber of assembly line stations is increased. This can lead to a 
situation for which the control paths determining the gating 
between stations contain more circuit levels than the data 
paths being controlled. 

-TI::€ 

Parameters of less importance which influence the determina- 
tion of the basic clock rate include: 

1 	The number of levels needed to implement certain basic 
data paths, e.g., address adders, instruction decoders, etc. 

2 	 Effective storage access time, especially when this time is 
relatively short. Unless the station-to-station time interval 
of the CPU is a sub-multiple of storage access time the 
synchronization of storage and CPU functions will involve 
overhead time. 

Judgment, rather than algorithms, gave the method by which 
the relative weights of the above parameters were evaluated to 
determine the basic station-to-station time interval. The interval 
selected led to a splitting of the instruction handling functions as 
illustrated in Fig. 3.2 

It can be seen in Fig. 3 that the basic time interval accommo- 
dates the assembly line handling of most of the basic hardware 
fimctions. However, the storage and many execution operations 

‘The design objective calls for a 60 nsec basic machine clock interval. The 
judgment exercised in this selection was tempered by a careful analysis of 
the number of circuit levels, fan in, fanout, and wiring lengths required to 
perform some of the basic data path and control functions. The analysis 
indicated that 11 or 12 circuit levels of 5-6 nsec delay per level were 
required for the worst-case situations. 
*Figure 3 also illustrates that the hardware sets are grouped into larger 
units-instruction unit, main storage control element, fixed-point execu- 
tion unit, floating-point execution unit. The grouping is primarily caused 
by packaging restrictions, but a secondary objective is to provide 
separately designable entities having minimum interfacing. The total 
hardware required to implement the required CPU functions demands 
three physical frames, each having dimensions 66” L X 15 “ D x 78”H. 
The units are allocated to the frames in such a way as to minimize the 
effects of interframe transmission delays. 

+INSTRUCTION ACCESS1 	 Y O P E R A N D  ACCESS, 
1ST 


INSTRUCTION RESULT 1 

GENERATE I-ADDRESS> DECODE. GENERATE OPERAND, ADDRESS I EXECUTE INST. 1 

4INSTRUCTION ACCESS, +OPERAND ACCESS+ 
2NO RESULT 2INSTRUCTION 

GENERATE I ADDRESS^ DECODE. GENERATE OPERAND? ADDRESS A E X E C U T E  INST 2 

9INSTRUCTION ACCESS3 +OPERAND ACCESS, 
3R0 RESULT 3INSTRUCTION 

GENERATE LAD DRESS^ +DECODE. GENERATE OPERAND^ ADDRESS 4 E X E C U T E  INST 3 

-4INSTRUCTION ACCESa  	 4 O P E R A N D  ACCESS” 
4TH 	 RESULT 4INSTRUCTION 

A G E N E R A T E  I-ADDRESS, -d DECODE, GENERATE OPERAND4 ADDRESS 4EXECUTE INST 4 

Fig. 2. Illustration of concurrency among successive instructions. 



--- 

278 Part 2 1 Regions of Computer Space Section 3 1 Concurrency:Single-Processor System 

BASIC TIME 

INTERVAL 


k.u4 I I I I I I I I I I I I I 
OPERAND 
ACCESS 

TRANSMIT 
STORAGE OPERAND lNSTRU~TION 
OPERAND 1 IRETURN EXECUTION EXECUT1oN 

TRANSMIT HARDWARETO 

EXECUTION 
UNIT 

MAIN FUNCTIONSANDSTORAGESTORAGECONTROL UNIT 

INSTRUCTION UNIT _____-__ -_ -_________  
FLOATING POINT INSTRUCTION 

FUNCTIONS UNIT FUNCTIONS 

‘+ 4
FLOATING-
POINT 

EXECUTION 

FUNCTION 


Fig. 3. CPU assembly-line stations required to accommodate a typical floating-point storage-to-register instruction. 

require a number of basic intervals. In order to exploit the 
assembly line processing approach despite these time disparities, 
the organizational techiques of storage interleaving [Buchholz, 
19621, arithmetic execution concurrency, and buffering are uti-
lized. 

Storage interleaving increases the storage bandwidth by 
enabling multiple accesses to proceed concurrently, which in turn 
enhances the assembly line handling of the storage function. 
Briefly, interleaving involves the splitting of storage into indepen-
dent modules (each containing address decoding, core driving, 
data read-out sense hardware, and a data register) and arranging 
the address structure so that adjacent words-or small groups of 
adjacent words-reside in different modules. Figure 4 illustrates 
the technique. 

The depth of interleaving required to support a desired 
concurrency level is a function of the storage cycle time, the CPU 
storage request rate, and the desired effective access time. The 

Fig. 4. Arrangement of addresses in n storage modules of m words 
per module. 

effective access time is defined as the sum of the actual storage 
access time, the average time spent waiting for an available 
storage, and the communication time between the processor and 
storage.‘ 

Execution concurrency is facilitated first by the division of this 
function into separate units for fixed-point execution and floating-
point execution. This permits instructions of the two classes to be 
executed in parallel; in fact, as long as no cross-unit dependencies 
exist, the execution does not necessarily foIIow the sequence in 
which the instructions are programmed. 

Within the fixed-point unit, processing proceeds serially, one 
instruction at a time. However, many of the operations required 
only one basic time interval to execute, and special emphasis is 
placed on the storage-to-storage instructions to speed up their 
execution. These instructions (storage-to-storage) enable the 
Model 91 to achieve a performance rate of up to 7 times that of the 
Systemi360 Model 75 for the “translate-and-test” instruction. A 
number of new concepts and sequences [Litwiller and Adler] 
were developed to achieve this performance for normally storage 
access-dependent instructions. 

The floating-point unit is given particular emphasis to provide 
additional concurrency. Multiple arithmetic execution units, 
employing fast algorithms for the multiply and divide operations 
and carry look-ahead adders, are utilized [Anderson, Earle, 
Goldschmidt, and Powers, 19671. An internal bus has been 
designed [Tomasulo, 19671 to link the multiple floating-point 
execution units. The bus control correctly sequences dependent 

]Effective access times ranging from 180-600 nsec are anticipated, 
although the design of the Model 91 is optimized around 360 nsec. 
Interleaving 400 nsecicycle storage modules to a depth o f  16 satisfies the 
360 nsec effective access design point. 



-- - - - -- - - -- - - - - - -- 

- - 

I 

Chapter 18 

“strings” of instructions, but permits those which are independent 
to be executed out of order. 

The organizational techniques described above provide bal- 
ance between the number of instructions that can be pre-
pared for arithmetic execution and those that can actually be exe- 
cuted in a given period, thereby preventing the arithmetic 
execution function from creating a “bottleneck in the assem- 
bly line process. 

Buffering of various types plays a major role in the Model 91 
organization. Some types are required to implement the assembly 
line concept, while others are, in light of the performance 
objectives, architecturally imposed. In all cases the buffers 
provide queueing which smooths the total instruction flow by 
allowing the initiating assembly line stations to proceed despite 
unpredictable delays down the line. Instruction fetch, operand 
fetch, operand store, operation, and address buffering are utilized 
among the major CPU units as illustrated in Fig. 5.’ 

Instruction fetch buffering provides return data “sinks” for 

‘Eight 64-bit double words comprise the array of instruction buffers. Six 
32-bit operand buffers are provided in the fixed-point execution unit, 
while six 64-bit buffers reside in the floating-point execution unit. Three 
64-bit store operand buffers along with three store address and four 
conflict address buffers are provided in the main storage control element. 
Also, there are six fixed-point and eight floating-point operand buffers. 

. (8) L - -- ------ --------------


ADDRESS OUT TO STORAGE 


FLOATING 
INSTRUCTION UNIT 

Fig. 5. Buffer allocation and function separation. 

1 
I 

I 
Ii - r  1 
l 

BRANCH I 

I BUFFERSTARGET 1I 
(2) I 

T ; & I O N  I 
I 

BUFFERS I 

STORAGE MODULES 

0 0 

I The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling 279 

-
previously initiated instruction storage requests. This prefetching 
hides the instruction access time for straight-line (no branching) 
programs, thereby providing a steady flow of instructions to the 
decoding hardware. The buffering is expanded beyond this need 
to provide the capacity to hold program loops of meaningful size. 
Upon encountering a loop which fits, the buffer locks onto the 
loop and subsequent branching requires less time, since it is to 
the buffers rather than to storage. The discussion of branching 
given later in this paper gives a detailed treatment of the loop 
action. 

Operand fetch buffers effectively provide a queue into which 
storage can “dump” operands and from which execution units can 
obtain operands. The queue allows the isolation of operand 
fetching from operand usage for the storage-to-register and 
storage-to-storage instruction types. The required depth2 of the 
queue is a function of the number of basic time intervals required 
for storage accessing, the instruction “mix” of the operating 
program, and the relative time and frequency of execution 
bottlenecks. Operand store buffering provides the same function 
as fetch buffering, except that the roles of storage and execution 

*To show precise algorithms defining these and other buffering require- 
ments is impractical, since diflerent program environments have digerent 
needs. The factors considered in selecting specific numbers are cited 
instead. 

I 
ADDRESS TO STORAGE DATA TO STORAGE DATA FROM STORAGE 

-

CONFLICT FLOATING POINT 
BUFFERSr(I:p”

MSCEt 



- - - - 

280 Part 2 1 Regions of Computer Space 

are reversed. The number of store buffers required is a function of 
the average waiting time encountered when the desired storage 
module is busy and the time required for the storage, when 
available, to utilize the operand. 

Operation buffers in the fixed-point and floating-point execution 
units allow the instruction unit to proceed with its decoding and 
storage-initiating functions while the execution units wait for 
storage operands or execution hardware. The depth of the 
operation buffering is related to the amount of operand buffering 
provided and the “mix” of register-to-register and storage-to- 
register instruction types. 

Address buffering is used to queue addresses to busy storage 
modules and to contain store addresses during the interval 
between decoding and execution of store instructions. The 
instruction unit is thereby allowed to proceed to subsequent 
instructions despite storage conflicts or the encountering of store 
operations. These buffers have comparators associated with them 
to establish logical precedence when conflicting program refer- 
ences arise. The number of necessary store address buffers is a 
function of the average delay between decode and execution, 
while the depth of the queue caused by storage conflicts is related 
to the probable length of time a request will be held up by a busy 
storage module [Boland, Granito, Marcotte, Messina, and Smith, 
19671. 

Concurrency Limitations 
The assembly line processing approach, using the techniques of 
storage interleaving, arithmetic concurrency, and buffering, 
provides a solid high-performance base. The orientation is toward 

----)TIME 

TRANSMIT 
DECODE INST. n + 1 
INST. n + 1 TO FIX EXEC. I 1 I
(%Ep) (%!ilS CT.) 

DECODE 
INST. n + 2 

Fig. 6. GPR address interlock. 

Section 3 j Concurrency: Single-Processor System 

smooth-flowing instruction streams for which the assembly line 
can be kept full. That is, as long as station n need only 
communicate with station n + 1of the line, highest performance 
is achieved. For example, floating-point problems which fit this 
criterion can be executed internally on the Model 91 at up to 100 
times the internal speed of the 7090 [Flynn and Low, 19671. 

There are, however, cases where simple communication be- 
tween adjacent assembly line stations is inadequate, e.g., list 
processing applications, branching, and interrupts. The storage 
access time and the execution time are necessarily sequential 
between adjacent instructions. The organization cannot complete- 
ly circumvent component delay in such instances, and the internal 
performance gain diminishes to about one order of magnitude 
greater than that of the 7090. 

The list processing application is exemplified by sequentialism 
in addressing, which produces a major interlock situation in the 
Model 91. The architecturally specified usage of the general 
purpose registers (GRP’s) for both address quantities and fixed- 
point data, coupled with the assembly line delay between address 
generation and fixed-point execution, leads to the performance 
slowdown. Figure 6 illustrates the interlock and the resulting 
delay. Instructions n and n + 1set up the interlock on GPR X 
since they will alter the contents of X. The decode of n + 3 finds 
that the contents of X are to be used as an address parameter, 
and since the proper contents are not available n + 3 must wait un- 
til .n + 1is executed. The interlock technique involves assigning 
the decode area a status count for each GPR. A zero status count 
indicates availability. As fixed-point instructions pass through the 
decode, they increment the appropriate counter(s). A decode 

FIX EXECUTE 

FIX UNI l  INST. n 

DECODE 

INST. n (ZY+s CT.) 


FIX EXECUTE 
FIX UWIT INST. n + 1 
DECODE 
INST. n + 1 

COMPLETE 

WAIT DECODE OF 


INST. n + 3 


DECODE 
n A 4  



Chapter 18 1 

requiring an unavailable (non-zero status count) GRP cannot be 
completed. As the fixed-point execution unit completes instruc- 
tions it decrements the appropriate counter(s), thus eventually 
freeing the register. 

Branching leads to another sequential situation, since a disrup- 
tion in the instruction supply is created. (Techniques employed to 
minimize or circumvent the storage access delay involved in 
obtaining the new instructions are discussed under Instruction 
Supplying in the following section of this paper.) Conditional 
branching poses an additional delay in that the branch decision 
depends on the outcome of arithmetic operations in the execution 
units. The Model 91 has a relatively lower performance in cases 
for which a large percentage of conditional branch instructions 
lead to the branch being taken. The discontinuity is minimized, 
when the branch is not taken, through special handling of the 
condition code (CC) and the conditional branch instruction (BC). 
The condition code is a two-bit indicator, set according to the 
outcome of a variety of instructions, and can subsequently be 
interrogated for branching through the BC instruction. Since the 
code is to represent the outcome of the last decoded CC-affecting 
instruction, and since execution can be out of sequence, interlocks 
must be established to ensure this. This is accomplished, as 
illustrated in Fig. 7, by tagging each instruction at decode time if 
it is to set the CC. Simultaneously, a signal is communicated 
throughout the CPU to remove all tags from previously decoded 
but not executed instructions. Allowing only the execution of the 
tagged instruction to alter the code ensures that the correct CC 
will be set. The decode hardware monitors the CPU for outstand- 
ing tags; only when none exists is the condition code considered 
valid for interrogation. 

The organization assumes that, for a conditional branch, the CC 
will not be valid when the “branch-on-condition” (BC) is decoded 

-TIME 

REMOVE 

DECODE ABILITY OF 


+w NSEC+ 
DECODE 
INST. n 2 
(SETS CC) 

DECODE 

BRANCH 
ON CON0 

Fig. 7. Condition code interlock. 

The IBM System/360 Model 91: Machine Philosophy and Instruction-Handling 281 

(a most likely situation, considering that most arithmetic and 
logical operations set the code). Rather than wait for a valid CC, 
fetches are initiated for two instruction double-words as a hedge 
against a successful branch. Following this, it is assumed that the 
branch will fall, and a “conditional mode” is established. In 
conditional mode, shown in Fig. 8, instructions are decoded and 
conditionally forwarded to the execution units, and concomitant 
operand fetches are initiated. The execution units are inhibited 
from completing conditional instructions. When a valid condition 
code appears, the appropriate branching action is detected and 
activates or cancels the conditional instructions. Should the 
no-branch guess prove correct, a substantial head start is provided 
by activating the conditionally issued and initiated operand 
fetches for a number of instructions. If the branch is successful, 
the previously fetched target words are activated and provide 
work while the instruction fetching is diverted to the new stream. 
(Additional optimizing techniques are covered under the discus- 
sion of branching in a subsequent section of this paper.) 

Interrupts, as architecturally constrained, are a major bottle- 
neck to performance in the assembly line organization. Strict 
adherence to a specification which states that an interrupt on 
instruction n should logically precede and inhibit any action from 
being taken on instruction n + 1leaves two alternatives. The first 
would be to force sequentialism between instructions which may 
lead to an interrupt. In view of the variety of interrupt possibilities 
defined, this course would totally thwart high performance and is 
necessarily discarded. The second is to set aside sufficient 
information to permit recovery from any interrupt which might 
arise. In view of the pipeline and execution concurrency which 
allows the Model 91 to advance many instructions beyond n prior 
to its execution, and to execute independent instructions out of 
sequence (n  + m before n), the recovery problem becomes 

EXECUTE 
INST. n(0”; 
 ,SETTING) - I -

EXECUTE 
IflST. n + I - 1 - 1 - 1 

EXECUTE TRANSMIT 
- gFE:A;E‘, cc I -UNIT1 I TO 

CC AVAIL. 
WAIT WAIT WAl l  TO DETER. 1 I IMINE 

BRANCH 



-- - - - 

282 Part 2 1 Regions of Computer Space Secticln 3 1 Concurrency: Single-Processor system 

OPE RAN^ ACCESS 

” 
OPERAND ACCESS 

\ “ -----
OPERAND ACCESS 

\ -----
L, 


OPERAND ACCESS 

I I 
OPERAND ACCESS I-----

DECODEINST. n + 7 

Fig. 8. Conditional instruction issuing: the branchon-condition philosophy. 

\-”-. 

extremely complex and costly. Taking this approach would entail 
hardware additions to the extent that it would severely degrade 
the performance one is seeking to enhance. The impracticality of 
both alternatives by which the interrupt specifications could be 
met made it mandatory that the specifications themselves be 
altered. The architecture was compromised by removing the 
above-mentioned “precedence” and “inhibit” requirements. The 
specification change led to what is termed the “imprecise 
interrupt’’ philosophy of the Model 91 and reduced the interrupt 
bottleneck to an instruction supply discontinuity. The imprecise 
interrupt, and the manner in which the instruction discontinuity 
is minimized, are covered in the next section of the paper. 

The bottlenecks discussed above gave rise to the major 

interlocks among the separate CPU areas. Within each of the 
areas, however, additional considerations hold. These are dis- 
cussed as appropriate in the next section or in following papers. 

Instruction Unit 

The central control functions for the Model 91CPU are performed 
in the instruction unit. The objective here is to discuss these 
functions in terms of how they are performed and to include the 
reasons for selecting the present design. However, before pro- 
ceeding with this discussion it will be u s e l l  to examine some 
over-all design considerations and decisions which directly affect 



Chapter 18 1 The IBM Systeml360 Model 91: Machine Philosophy and Instruction-Handling 283 

the instruction unit functions. In approaching the design of the 
instruction unit, many program situations were examined, and it 
was found that while many short instruction sequences are nicely 
ordered, the trend is toward frequent branching. Such things as 
performing short work loops, taking new action based on data 
results, and calling subroutines are the bases upon which pro- 
grams are built and, in many instances, these factors play a larger 
role in the use of available time than does execution. Consequent- 
ly, emphasis on branch sequencing is required. A second finding 
was that, even with sophisticated execution algorithms, very few 
programs can cause answers actually to flow-from the assembly 
line at an average rate in excess of one every two cycles. Inherent 
inter-instruction dependencies, storage and other hardware con- 
flicts, and the frequency of operations requiring multi-cycle 
execution all combine to prevent it. 

Consideration of branching and execution times indicates that, 
for overall balance, the instruction unit should be able to surge 
ahead of the execution units by issuing instructions at a faster- 
than-execution rate. Then, when a branch is encountered, a 
significant part of the instruction unit slowdown will be over- 
lapped with execution catch-up. With this objective in mind it 
becomes necessary to consider what constitutes a fast issue rate 
and what “trade-offs” would be required to achieve it. It is easily 
shown that issuing at a rate in excess of one instruction per cycle 
leads to a rapid expansion of hardware and complexity. (Variable- 
length instructions, adjacent instruction interdependencies, and 
storage requirements are prime factors involved.) A one-cycle 
maximum rate is thereby established, but it too presents difficul- 
ties. The assembly line process requires that both instruction 
fetching and instruction issuing proceed concurrently in order to 
hide storage delays. It is found through program analysis that 
slightly more than two instructions will be obtained per 64-bit 
instruction fetch’ and that approximately 80% of all instructions 
require an operand reference to storage. From this it is concluded 
that issuing the average instruction entails approximately 1.25 
storage accesses: 0.45 (instruction fetches) + 0.80 (operand 
fetches). This figure, with the one-per-cycle issue rate goal, 
clearly indicates a need for either two address paths to storage and 
associated return capabilities, or for multiple words returned per 
fetch. In considering these options, the initial tendency is to 
separate instruction and operand storage access paths. However, 
multiple paths to storage give rise to substantial hardware 

’Storage-to-storage (SS)instructions are not considered here. They can be 
viewed as macro-operations and are treated as such by the hardware. The 
macro-operations are equivalent to basic instructions, and the number of 
micro-instructions involved in performing an SS function indicates that 
many instruction fetches would be required to perform the same function 
using other System/360 instructions. 

additions and lead to severe control problems, particularly in 
establishing storage priorities and interlocks due to address 
dependencies. With a one-at-a-time approach these can be 
established on each new address as it appears, whereas simultane- 
ous requests involve doing considerably more testing in a shorter 
time interval. Multiple address paths to storage were considered 
impractical because of the unfavorable compromise between 
hardware and performance. 

The multiple-words-returned-per-fetch option was considered 
in conjunction with instruction fetching since the instruction 
stream is comprised of sequential words. To prevent excessive 
storage “busying” this approach requires a multiple word readout 
at the storage unit along with a wider data return path. Also, the 
interleaving factor is altered from sequential to multi-sequential, 
i.e., rather than having sequential double words in different 
storage modules, groups of sequential words reside in the same 
module. The interlock problems created by this technique are 
modest, the change in interleaving technique has little perform- 
ance effect,* and storage can be (is, in some cases) organized to 
read out multiple words, all of which make this approach feasible. 
However, packaging density (more hardware required for wide 
data paths), storage organization constraints, and scheduling were 
such that this approach was also discarded. As a consequence, the 
single-port storage bus, which allows sequential accessing of 
double words, was adopted. This fact, in conjunction with the 1.25 
storage accesses required per instruction, leads to a lowering of 
the average maximum issue rate to 0.8 instructions per machine 
cycle. The instruction unit achieves the issue rate through an 
organization which allows concurrency by separating the instruc- 
tion supplying from the instruction issuing function. 

Instruction Supplying 

Instruction supplying includes the provision of an instruction 
stream which will support the desired issue rate in a sequential 
(non-branch) environment, and the ability to switch readily to a 
new instruction stream when required because of branching or 
interrupts. 

“This is more intuitive than analytical. Certainly for strictly random 
addressing, the interleave technique is irrelevant. However, in real 
applications, programs are generally localized with (1) the instructions 
sequential and (2) branches jumping tens or hundreds rather than 
thousands of words. Data is more random because, even though it is often 
ordered in arrays, quite frequently many arrays are utilized concurrently. 
Also, various data constants are used which tend to randomize the total 
use. A proper analysis must consider all these factors and so becomes 
complex. In any event, as long as the interleave factor remains fixed the 
interference appears little atfected by small changes in the interleaving 
pattern. 



284 Part 2 I Regions of Computer Space Section 3 1 Concurrency: Single-Processor system 

Sequential Instruction Fetching. Provision of a sequential string 
of instructions has two fundamental aspects, an initiation or 
start-up transient, and a steady-state function. The initial transient 
entails filling the assembly line ahead of the decode station with 
instructions. In hardware terms, this means initiating sufficient 
instruction fetches so that, following a wait of one access time, a 
continuous flow of instruction words will return from storage. 
Three double-word fetches are the minimum required to fill the 
assembly line, since approximately two instructions are contained 
within a double word, and the design point access time is six 
machine cycles. The actual design exceeds the minimum for 
several reasons, the first being that during start-up no operand 
requests are being generated (there are no instructions), and 
consequently the single address port to storage is totally available 
for instruction fetching. Second, the start-up delay provides 
otherwise idle time during which to initiate more fetches, and the 
eight double words of instruction buffering provide space into 
which the words can return. A third point is that, should storage 
requiring more than six cycles of access time be utilized, more 
fetching-ahead will be required. Finally, establishing an excess 
queue of instructions during the transient time will allow tempo- 
rary maintenance of a full assembly line without any further 
instruction fetching. The significance of this action is that it allows 
the issuing of a short burst of instructions at a one-per-cycle rate. 
This follows from the fact that the single, normally shared storage 
address port becomes exclusively available to the issue function. A 
start-up fetching burst of five double instruction words was the 
design point which resulted when all of these factors had been 
considered. 

Steady-state instruction supplying serves the function of main- 
taining a full assembly line by initiating instruction fetches at 
appropriate intervals. The address port to storage is multiplexed 
between instruction fetches and operand fetches, with instruc- 
tions receiving priority in conflict situations. An additional 
optimization technique allows the instruction fetching to re-
advance to the start-up level of five double words ahead if storage 
address time “slots” become available. A flow chart of the basic 
instruction fetch control algorithm is shown in Fig. 9,’while Fig. 
10 is a schematic of the data paths provided for the total 
instruction supplying function. Some of the decision blocks 

’The one disadvantage to over-fetching instructions is that the extra 
fetches may lead to storage conflicts, delaying the subsequently initiated 
operand fetches. This is a second-order effect, however, first because it is 
desirable for the instruction fetches to win conflicts unless these fetches 
are rendered unnecessary by an intervening branch instruction, and 
second because the sixteen-deep interleaving of storage significantly 
lowers the probability of the conflict situation. 
*In this flow chart, unlabeled exits from decision blocks imply that a “wait” 
state will exist until the required condition has been satisfied. 

I L-IS THE CPU ENVIRONMENT 

ALLOWING SEQUENTIAL 


INSTRUCTION FETCHING’ 


I 
IS THIS THE START-UP AND, IF SO, 

HAVE THE FIRST TWO DOUBLE 
WORDS ALREADY BEEN FETCHED 

TO THE BRANCH TARGET 
I I I 

FETCHING OF THE FIRST TWO 

BUFFER WHICH WILL RECEIVE 

THE NEXT DOUBLE 


I ESTABLISHED?, 

BEEN FETCHED? IS THE 
INSTRUCTION 

BUFFER ARRAY 0
FULL? 

STORAGE BUSY WITH 
OPERAND FETCHING? 

I 
HAVE FOUR DOUBLE WORDS 

BEYOND THE REQUIRED -a BEEN FETCHED? 

Fig. 9. Flow chart of the sequential instruction-supply function. 

contained in the flow chart result from the effects of branch 
instructions; their function will be clarified in the subsequent 
discussion of branching. There are two fundamental reasons for 
checking buffer availability in the algorithm. First, the instruction 
buffer array is a modulo-eight map of storage that is interleaved by 
sixteen. Second, fetches can return out of order because storage 
may be busy or of varying performance. For example, when a 
branch is encountered, point one above implies that the target 
may overlay a fetch which has not yet returned from storage. In 
view of the second point, it is necessary to ensure that the 
unreturned fetch is ignored, as it would be possible for a new 
fetch to return ahead of it. Proper sequencing is accomplished by 
“tagging” the buffers assigned to outstanding fetches, and pre- 
venting the initiation of a new fetch to a buffer so tagged. 



Chapter 18 I The IBM System/360 Model 91:Machine Philosophy and Instruction-Handling 285 

1-


DATA BUS FROM MSCE (64)  

1 
ARRAY BYPASS I 
FROV STORAGE I+ +  	 I BRANCH TARGtT B U F F L R  1 (64) 

000 
00 I T 
CLI  n 

INSTRUCTION 

BUFFER 


I 

ARRAY BYPASS 
FROM BRANCH BUFFERS 

NE’tJ PSW START U P  ADDRESS 	 ’ -T--
BRANCH START UP CONTROLS 
ADDRESS FROM 1 INSTRUCTION FETCH OPERAND ADDRESS 
REGISTER 	 2 BRANCH 

3 INTERRUPT 
I 	 t t 

ADDRESS 	 TO MSCE FOR I l l  1 1 1 1 GENERATION ’ 	 STORING CURRENT PSW , , 	 , 1 

4 1 l@l,  1 1 4 (23, 

ARRAY ARRAY CON0 BR 

UPPER BOUND LOWER BOUND ADDRESS 


( 2 1  


Fig. 10. Data paths for the basic instructionsupply. 

Branch Handling. Branching adds to the complexity of the 
instruction supplying function because attempts are made to 
minimize discontinuities caused by the branching and the conse- 
quent adverse effects on the issue rate. The discontinuities result 
because for each branch the supply of instructions is disrupted for 
a time roughly equivalent to the greater of the storage access 
period (start-up transient previously mentioned), or the internal 
testing and “housekeeping” time required to make and carry out 
the branch decision. This time can severely limit the total CPU 
performance in short program loops. It has a somewhat less 
pronounced effect in longer loops because the branch time 
becomes a smaller percentage of the total problem loop time and, 
qo re  important, the instruction unit has greater opportunity to 
run ahead of the execution units (see Fig. 11).This last makes 
more time available in which to overlap the branch time with 
execution catch-up. 

The detrimental performance effect which stems from short 
loops led to a dual branch philosophy. The first aspect deals with 

branches which are either forward into the instruction stream,’ 
beyond the prefetched instructions, or if backward from the 
branch instruction, greater than eight double-words back. In 
these situations, the branch storage-delay is unavoidable. As a 
hedge against such a branch being taken, the branch sequencing 
(Fig. 12) initiates fetches for the first two double words down the 
target path. Two branch buffers are provided (Fig. 10-the 
instruction supply data flow) to receive these words, in order that 
the instruction buffer array will be unaffected if the result is a no-
branch decision. The branch housekeeping and decision making 
are carried on in parallel with the access time of the target fetches. 
If a branch decision is reached before the access has been 
completed, additional optimizing hardware routes the target fetch 
around the buffer and directly to the instruction register, from 
which it will be decoded. Minor disadvantages of the technique 

‘In the actual program the branch instruction would precede the target for 
this case. 



286 Part 2 1 Regions of Computer Space Section 3 I Concurrency: Single-Processor System 

-
/TIME IN CYCLES 

Fig. 11. Schematic representation of execution delays caused by 
(branch) discontinuities in the instruction issuing rate, for the case 
in which the issuing rate is faster than the execution rate. 

are that the “hedge” fetching results in a delay of the no-branch 
decision and may lead to storage conflicts. Consequently, a small 
amount of time is lost for a branch which “falls through.” 

The second aspect of the branch philosophy treats the case for 
which the target is backward within eight double words of the 
branch instruction. A separation of eight double words or less 
defines a “short” loopth is  number being chosen as a hardwarel 
performance compromise. Part of the housekeeping required in 
the branch sequencing is a “back eight” test. If this test is satisfied 
the instruction unit enters what is termed “loop mode.” Two 
beneficial results derive from loop mode. First, the complete loop 
is fetched into the instruction buffer array, after which instruction 
fetching ceases. Consequently, the address port to storage is 
totally available for operand fetching and a one instruction per 
cycle issue rate is possible. The second advantage gained by loop 
mode is a reduction by a factor of two to three in the time required 
to sequence the loop-establishing branch instruction. (For exam- 
ple, the “branch on index” instruction normally requires eight 
cycles for a successful branch, while in loop mode three cycles are 
sufficient.) In many significant programs it is estimated that the 
CPU will be in loop mode up to 30% of the time. 

Loop mode may be established by all branch instructions except 
“branch and link.” It was judged highly improbable that this 
instruction wouId be used to establish the type of short repetitious 
program loops to which loop mode is oriented. A conditional 
branch instruction, because it is data dependent and therefore less 
predictable in its outcome than other branch instructions, re- 
quires special consideration in setting up loop mode. Initial 
planning was to prevent looping with this instruction, but 
consultation with programmers has indicated that loops are 
frequently closed conditionally, since this allows a convenient 
means for loop breaking when exception conditions arise. 

Furthermore, in these situations the most likely outcome is 
often known and can be utilized to bias the branch decision 
whichever way is desirable. For such reasons, the “back eight” 
test is made during the sequencing of a conditional branch 
instruction, and the status is saved through conditional mode. 
Should it subsequently be determined that the branch is to be 
taken, and the “saved status indicates “back eight,” loop mode is 
established. Thereafter the role of conditional mode is reversed, 
i.e., when the conditional branch is next encountered, it will be 
assumed that the branch will be taken. The conditionally issued 
instructions are from the target path rather than from the 
no-branch path as is the case when not in loop mode. A cancel 
requires recovery from the branch guess. Figure 12 is a flow chart 
of this action. In retrospect, the conditional philosophy and its 
effects on loop mode, although significant to the performance of 
the CPU and conceptually simple, were found to require numer- 
ous interlocks throughout the CPU. The complications of condi- 
tional mode, coupled with the fact that it is primarily aimed at 
circumventing storage access delays, indicate that a careful 
re-examination of its usefulness will be called for as the access 
time decreases. 

Interrupts. Interrupts, like branching, are another disruption to 
a smooth instruction supply. In the interrupt situation the 
instruction discontinuity is worsened because, following the 
recognition of the interrupt, two sequential storage access delays 
are encountered prior to receiving the next instruction.‘ 
Fortunately, and this is unlike branches, interrupts are relatively 
infrequent. In defining the interrupt function it was decided that 
architectural “imprecise” compromise mentioned in the previous 
section would be invoked only where necessary to achieve the 
required performance. In terms of the assembly line concept, this 
means that interrupts associated with an instruction unit decode 
time interval will conform with the specifications. Consequently, 
only interrupts which result from address, storage, and execution 
functions are imprecise. 

One advantage of this dual treatment is that System/360 
compatibility is retained to a useful degree. For example, a 
programming strategy sometimes employed to call special subrou- 
tines involves using a selected invalid instruction code. The 
ensuing interrupt provides a convenient subroutine entry tech- 
nique. Retaining the compatible interrupt philosophy through the 
decoding time interval in the Model 91 allows it to operate 

’This arises from the architectural technique of indirectly entering the 
interrupt subroutines. In System/360 the interrupts are divided into 
classes. Each class is assigned a different, fixed low storage address which 
contains the status to which the CPU shall be set should an interrupt of the 
associated class occur. Part of this status is a new program address. 
Consequently, interrupting requires obtaining a new supply of instruc- 
tions from storage indirectly, through the new status word. 



Chapter 18 I The IBM System/360 Model 91:Machine Philosophy and Instruction-Handling 287 

1ESTABLISHED' 

. GENERATE THE TARGET 

ADDRESS AND FETCH TWO DOUBLE 

WORDS. DOWN THE TARGET PATH 


INTO THE BRANCH TARGET BUFFERS 


I 

IS THE LOOP MODE ESTABLISHED 
AND WAS IT ESTABLISHED BY 

1 
1 GEhERATE AhD SET ASIDE T k i  1 GENERATE AND SET ASIDE THE 

1. DO THE BRANCH 	 A3ORESS OF TnE TARGFT C i  ADDRESS OF THE SEQUENTIAL 
DECISION ARITHMETIC 	 TnE COYOIT OWi. BRANCA INSTRUCTION FOLLOWING THE 

2 DO ThE BACd E % i T  A 1  ThL'ET i CONDITIONAL BRANCH 
TO DETERV'NE IF Th S NSTR-CT O h  2. PROCEED DOWN BRANCH PATH 
ShOU-D ESTAB. SH ThE -0OP NO9E (CONTAINED WITHIN THE 

3 PROCEED TO NEXT SEQUEhTlA. INSTRUCTION ARRAY) 
INSTRUCTION IY  COhO T OhAL h ' 5 X  IN CONDITIONAL MODE 

I I 

I I 
HAS THE CONOlTlON COD 

BECOME VALID? 

IS THE LOOP MODE IS THE LOOP MODE 
AND WAS IT  ESTABLISHED BY AND WPS IT ESTABLISHED BY 
THIS BRANCH INSTRUCTION? THIS CONOITIONAL BRANCH' 

I '  ' I 	 I \ / 

I 	 I 

1. SET UP INSTRUCTION GET TARGET FROM 
FETCHING TO STARTUP INSTRUCTION BUFFERS I
ALONG BRANCH PATH AND PROCEED 


2. 	Do THE "BACK EIGHT" 

LOOP DETERMINATION 


1 ACTIVATE THE CONDITIONAL 

ISSUE0 INSTRUCTIONS 


2 REMOVE THE CONDITIONAL 

MODE 


AVAILABLE FROM I I 

STORAGE, BUFFER 


1. DECODE TARGET 
2. ESTABLISH THE LOOP MODE. 1. RECOVER THE INSTRUCTION STREAM 


IF APPROPRIATE TO THE TARGET OF THE BRANCH 

2. ESTABLISH THE LOOP MODE. I IF APPROPRIATE 

Fig. 12. Flow chart of the branching sequence. 

programs employing such techniques. The manifestation of this to minimize the effect of the interrupt on the instruction supply, 
approach is illustrated in the flow chart of Fig. 13. In accordance so the new status word is fetched to the existing branch target 
with System1360 specifications, no further decoding is allowed buffer in parallel with the execution completion. After the return 
once either a precise or an imprecise interrupt has been signalled. from storage of the new status word, if execution is still incom- 
With the assembly line organization, it is highly probable that at plete, further optimizing allows the fetching of instructions for the 
the time of the interrupt there will be instructions still in the interrupt routine. Before proceeding, it becomes necessary to 
pipeline which should be executed prior to changing the CPU consider an implication resulting from the dual interrupt philoso- 
status to that of the interrupt routine. However, it is also desirable phy. Should a precise interrupt have initiated the action, it is 



288 Part 2 1 Regions of Computer Space 

I 	 I 

ARE THE BRANCH TARGET 

INITIATE THE FETCH OF THE 
NEW PROGRAM STATUS WORD 

(PSW) FROM STORAGE 
I

HAS THE NEW 

PSW RETURNED 

FROM STORAGE7 


1. 	START UP INSTRUCTION FETCHING 
USING THE PROGRAM ADDRESS 
PORTION OF THE NEW PSW 

2 	 THE STATUS PORTION OF THE 
NEW PSW IS RETAINED IN THE 
BRANCH TARGET BUFFER I'I 

IS THIS AN IMPRECISE 

I I 
HAS AN IMPRECISE 

DUE TO EXECUTION 

COMPLETION' 


I 

I 	 1
I 

SIGNAL PROPER 
CHANNEL "INTERRUPT 

HONORED'' 

Fig. 13. Flow chart of the interrupt sequence. 

possible that the execution "cleanup" will lead to an imprecise 
condition. In this event, and in view of the desire to maintain 
compatibility for precise cases, the logically preceding imprecise 
signal should cancel all previous precise action. The flow chart 
(Fig. 13)illustrates this cancel-recovery action. Should no cancel 
action occur (the more likely situation), the completion of all 
execution functions results, with one exception, in the release of 
the new status word and instruction supply. The IiO interrupts 
require special consideration because of certain peculiarities in 
the channel hardware (the System 360/Model 60-75 channel 
hardware is used). Because of them, the CPU-channel communi- 
cation cannot be carried out in parallel with the execution 

Section 3 j Concurrency: Single-Processor System 

completion. However, the relative infrequency of IiO interrupts 
renders negligible the degradation caused by this. 

Instruction Issuing 

The instruction-issuing hardware initiates and controls orderly 
concurrency in the assembly line process leading to instruction 
execution. It accomplishes this by scanning each instruction, in 
the order presented by the program, and clearing all necessary 
interlocks before releasing the instruction. In addition, should a 
storage reference be required by the operation, the issuing 
mechanism performs the necessary address calculations, initiates 
the storage action, and establishes the routing by which the 
operand and operation will ultimately be merged for execution. In 
addition, certain essential inter-instruction dependencies are 
maintained while the issue functions proceed concurrently. 

In terms of the assembly line of Fig. 3, the moving of 
instructions to the decode area, the decode, and the operand 
address generation comprise the issue stations. The moving of 
instructions to the decode area entails the taking of &-bit 
double-words, as provided by the instruction supply, and extract- 
ing from them the proper instruction half-words, one instruction 
at a time. The instruction register is the area through which this is 
accomplished (Fig. 14). The register efficiently handles variable- 
length instructions and provides a stable platform from which to 
decode. All available space in this 64-bit register is kept full of 
instructions yet to be decoded, provided only that the required 
new instruction information has returned from storage. The 
decoder scans across the instruction register, starting at any 
half-word (16-bit) boundary, with new instructions refilling any 
space vacated by instruction issuing. The register is treated 
conceptually. as a cylinder; i.e., the end of the register is 
concatenated with the beginning, since the decode scan must 
accommodate instructions which cross double-word boundaries. 

The decoding station is the time interval during which instruc- 
tion scanning and interlock clearing take place. Instruction-
independent functions (interval timer update, wait state, certain 
interrupts and manual intervention) are subject to entry interlocks 
during this interval. Instruction-associated functions also have 
interlocks which check for such things as the validity of the 
scanned portion of the instruction register, whether or not the 
instruction starts on a half-word boundary, whether the instruc- 
tion is a valid operation, whether an address is to be generated for 
the instruction (and if so, whether the address adder is available), 
and where the instruction is to be executed. In conjunction with 
this last point, should the fixed- or floating-point execution units 
be involved, availability of operation buffering is checked. Inter- 
instruction dependencies are the final class of interlocks which can 
occur during the decoding interval. These arise because of 
decision predictions which, if proven wrong, require that decod- 



i 

Chapter 18 I The IBM System/360 Model 91:Machine Philosophy and Instruction-Handling 289 

of store instructions is high enough that the performance degrada- 
tion would be objectionable. The compromise solution which was 
adopted reduces the number of decoding delays by utilizing a 
truncated-address compare. The time requirements prohibit 
anything more than a compare of the low-order six bits of the 
storage address currently being generated, using the algorithm 
illustrated in Fig. 16. 

FROM
FIXEDPOINT The algorithm attaches relatively little significance to the 

EXECUTION low-order three adder bits (dealing with byte, half-word and 


(RESET)
I full-word addresses) since the primary performance concern is 
I 

FROM IPlSTfiUCTlON SUPPLY (64) 

INSTRUCTION REGISTER 

, _ _ _ _ _ _ _ __ 

I I 

CONTROL STATUS FROM 
INSTRUCTION SUPPLY 

1 

FROM
1 FLOATING-

POINT 


EXECUTION 


with stores of double-words. It is seen, for example, that for the 
full-word case the probability of a carry into the double-word 
address is approximately 1/4, while for double-word handling it is 
negligible. The double-word address three-bit compare will occur 
with 118probability while the word boundary crossover term has a 
probability of 1/16 (probability that instruction can cross bounda- 
ry, 1/2, x probability that the crossover is into the store-affected 
word, U8).The two cases thus have the probabilities: 

OPERAND BUFFER & 
SAR AVAiLABlLlTY 

I

I , ,  
I

,--I OPERATION STACK AVAILABILITY 

I----'LII Full word 1/4 + 1/8 + 1/6 =7/16 and 
T i  'ERAND TO MSCE 

RESS INTERFACE 
G t  ?ATION 

FIXLO & FLOATING-POINT 

OPERATION STAGE 


+ 
TO' TO FLOATING-POINT 

FIXED-POINT EXECUTION UNIT (14) 
EXECUTION 
UNIT (23) 

Fig. 14. Data flow for instruction decoding and instruction issuing. 

ing cease immediately so that recovery can be initiated with a 
minimum of backup facilities. 

Such occurrences as the discovery of a branch wrong guess or a 
store instruction which may alter the prefetched instruction 
stream generate these inter-instruction interlocks. Figure 15 
illustrates the interlock function. The placement of a store 
instruction in the instruction stream, in particular, warrants 
further discussion because it presents a serious time problem in 
the instruction unit. The dilemma stems both from the concurren- 
cy philosophy and from the architectural specification that a store 
operation may alter the subsequent instruction. Recall that, 
through the pipeline concept, decoding can occur on successive 
cycles, with one instruction being decoded at the same time the 
address for the previous instruction is being generated. There- 
fore, for a decode which follows a store instrudtion, a test between 
the instruction counter and the storage address is required to 
detect whether or not the subsequent decode is affected by the 
store. Unless rather extensive recovery hardware is used, the 
decode, if affected, must be suppressed. However, the assembly 
line basic time interval is too short to both complete the detection 
and block the decode. The simplest solution would require a null 
decode time following each store issue. However, the frequency 

Double-word 1/8 + 1/16= 3/16. 

These figures indicate the likelihood of a decode time-interval 
delay following the issue of a store instruction. When such a 
decode delay is encountered, the following cycle is used to 
complete the test, that is, to check the total address to determine 
whether an instruction word has in fact been altered. To this 
effect, the generated storage address is compared with the upper 
and lower bounds of the instruction array (Fig. 16). A between-
the-bounds indication results in a decode halt, a re-fetch of the 
affected instruction double-word, then resumption of normal 
processing. This second portion of the interlock is only slightly 
less critical in timing than the first. Figure 17 illustrates the 
re-fetch timing sequence. One difficulty with the store interlock is 
that in blocking the decode, it must inhibit action over a 
significant portion of the instruction unit. This implies both heavy 
loading and lengthy wire, each of which seriously hampers circuit 
performance. It was therefore important that the unit be as small 
as possible and that the layout of the hardware constantly consider 
the interlock. 

For each instruction, following the clearing of all interlocks, the 
decode decision determines whether to issue the instruction to an 
execution unit and initiate address generation, or to retain the 
instruction for sequencing within the instruction unit. The issuing 
to an execution unit and the operand fetching for storage-to- 
register (RX)instructions constitutes a controlled splitting opera- 
tion; sufficient information is forwarded along both paths to effect 
a proper execution unit merge. For example, buffer assignment is 
carried in both paths so that the main storage control element will 
return the operand to the buffer which will be accessed by the 



GO TO INTERRUPT 
SEQUENCE 

I 

HAL1 

GO TO TIMER SEQUENCE 

WAIT FOR INTERRUPT 

IS A RECOVERY PROCEDURE 
REQUIRED BECAUSE OF AN GO TO RECOVERY SEQUENCE 

INCORRECT BRANCH GUESS? 

I 

WAIT UNTIL INSTRUCTION ARE THE INSTRUCTION REGISTER HALF-WORDS 
SUPPLYING PROVIDES REQUIRED FOR THIS INSTRUCTION ALL VALID? 

THE HALF WORDS 

DOES THE 
HALF.WORD 

DOES THE INSTRUCTION CONTAIN 
A VALID OPERATION CODE? 

t 
GO TO INTERRUPT 


SEQUENCE 


------____-----

IS THE SPECIFIED R1 OPERAND 
REGISTER 0.2,4. OR 6’ 

GO 	TO 

SEI 


I 
WAIT FOR CLARIFICATION &

HAS A STORE INTO THE lN:TRUCTlON GO TO RECOVERY SEQUENCE 

STREAM POSSIBILITY BEEN blGNALLE0’ IF NECESSARY 


INSTRUCTION LIE ON A 
BOUNDARY IN STORAGE’ 

GENERAL INSTRUCTION 
DECODE INTERLOCKS c---____------

INSTRUCTION CLASSIFYING 

I 
IS THE INSTRUCTION A 

OR STORAGE-TO-STORAGE 
OPERATION? 

INITIATE PROPCR INSTRUCTION 
UNIT SEQUENCER TO 

WAIT UNTIL EXECUTION EXECUTE THE OPERATION 
MAKES SPACE AVAILAELE 

REMOVE THE LOOP MODE 

DOES THE INSTRUCTION TO BE AVAILABLE 

REQUIRE A STORAGE 


FETCH’

I 


Fig. 15. Decision sequence for instruction decoding and instruction issuing. 

~-
““ 77=------

290 



Chapter 18 I The IBM System/36O Model 91: Machine Philosophy and Instruction-Handling 291 

IS THE ADDER GENERATING 
A STORE ADDRESS? 

I I 1 
I1 

DOES THE STORE ADDRESS 
GENERATION INDICATE 

A CARRY INTO THE DOUBLE 

I 
WORD PORTION OF THE 

ADDRESS (BIT 28)? 
\ 

I I 

I
I
I 

IS THE I R ADDRESS (MOD 8 )  IS THERE ANY POSSlBlLlN 
= STORE ADDRESS (MOD B)? THAT THE CURRENT INSTRUCTION 

CROSSES A DOUBLE WORD BOUNDARY 
[ BITS 2528 OF BOTH AND IF SO. DOES THE I R  + 1 ADDRESS
I R  & STORE ARE EQUAL] (MOD 8) = STORE ADDRESS (MOD 8)? 

\uI ’ I

I I -I 

BLOCK THE 
( CURRENT DECODE ) 


Fig. 16. Decode interlock (established following the issue of a store instruction). 

execution unit when it prepares to execute the instruction. With 
this technique the execution units are isolated from storage and 
can be designed to treat all operations as involving only registers. 

A final decoding function is mentioned here, to exemplify the 
sort of design considerations and hardware additions that are 
caused by performance-optimizing techniques. The branch se- 
quencing is optimized so that no address generation is required 
when a branch which established the loop mode is re-
encountered. This is done by saving the location, within the 
instruction array, of the target. It is possible, even if unlikely, that 
one of the instructions contained in a loop may alter the parameter 
originally used to generate the target address which is now being 
assumed. This possibility, although rare, does require hardware to 
detect the occurrence and terminate the loop mode. This 
hardware includes two 4-bit registers, required to preserve the 
address of the general purpose registers (X and B) utilized in the 
target address generation, and comparators which check these 

GENERATE TRANSMIT 

DECODE 
STORE 
OPERATION 

STORE 
AODRESS 

COMPARE I C  
WITH STORE 
ADDRESS 
(TRUNCATED) 

ADDRESS TO 
STORE DATA 
BUFFER 
COMPARE 
STORE 
ADDRESS WITH 
INSTRUCTION 

INITIATE 
RE.FETCH 
FOR AFFECTED 
INSTRUCTION 
WORD 

I ARRAY BOUNDS 

BLOCK 
DECODE OF 
INSTRUCTION BLOCK DECODE 
FoLLoWING IF BETWEEN STORE 

IF COMPARE 
(EQUAL ) 

Fig. 17. Effect of the decode interlock on pre-fetched instructions. 

addresses against the sink address (Rl) of the fixed-point instruc- 
tions. Detection of a compare and termination of loop mode are 
necessary during the decoding interval to ensure that subsequent 
branch sequencing will be correct. 

The address-generating time interval provides for the combin- 
ing of proper address parameters and for the forwarding of the 
associated operation (fetch or store) control to the main storage 
control element through an interface register. A majw concern, 
associated with the address parameters, was to decide where the 
physical location of the general purpose registers should be. This 
concern arises since the fixed-point execution unit, as well as the 
instruction unit, makes demands on the GPR’s, whiIe the 
packaging split will cause the registers to be relatively k r  from 
one of the units. It was decided to place them in the execution 
unit since, first, execution tends to change the registers while 
address generation merely examines their contents, and second, 
it was desired that a fixed-point execution unit be able to 
iteratively use any particular register on successive time intervals. 
In order to circumvent the resulting time delay (long wire 
separation) between the general purpose registers and the address 
adder, each register is fed via “hot” lines to the instruction unit. 
The gating of a particular GPR to the adder can thereby be 
implemented locally within the instruction unit, and no transmis- 
sion delay is incurred unless the register contents have just been 
changed. 

Placing the GPR’s outside the instruction unit creates a delay of 
two basic time intervals before a change initiated by the instruc- 
tion unit is reflected at the address parameter inputs from the 
GPRs. This delay is particularly evident when it is realized that 
the address generated immediately following such a GPR change 
generally requires the contents of the affected register as a 
parameter. For example, branch on index, branch on count, 
branch and link, and load address are instruction unit operations 



292 Part 2 1 Regions of Computer Space 

which change the contents of a GPR. Further, in loop situations 
the target of the branch frequently uses the changed register as an 
index quantity in its address. Performance demands led to the 
incorporating of controls which recognize the above situation and 
effect a by-pass of the GPR. This entails substituting the content of 
the adder output register (which contains the new GPR data) for 
the content of the affected GPR. One performance cycle was saved 
by this technique. 

In addition to address generation, the address adder serves to 
accomplish branch decision arithmetic, loop mode testing, and 
instruction counter value generation for various situations. In 
order to perform all of these functions, it was required that the 
adder have two 32-bit inputs and one input of 12 bits. One of the 
32-bit inputs is complementable and a variety of fixed, single-bit 
inputs is provided for miscellaneous sequences. The data path is 
illustrated in Fig. 18. 

Status Switching and InputlOutput. The philosophy associated 
with status switching instructions is primarily one of design 

FROM D FIELD FROM 

DECODE ISSUE INSTRUCTION 


AREA REGISTER 

FROM GENERAL PURPOSE REGISTERS 


(16 SETS OF 32 BITS) 


CONTROL (15) 

4
l h +  

TO CONDITIONAL 
I 

BRANCH TARGET REGISTER 

-4 L%:L:T%F",% 'KS?%%% 
I N  INSTRUCTION SUPPLY ARRAY DECISION-TO DECODE 

ADDER OUTPUT 

FROM INSTRUCTIONFROM SUPPLYING
INSTRUCTION SUPPLYING 
-UPPER & LOWER BOUND
-UPPER & LOWER BOUND 
VALUES TO DtTECT STORE
VALUES TO DtTECT STORE 

INTO INSTRUCTIONS
INTO INSTRUCTIONS 
I 


TO't Ot F I X 1t P O k eMSCE EXECUTION UNIT 

TO MSCE TO FIXED POINT 


EXECUTION UNIT 


t 
TO DECODE & INSTRUCTION 

SUPPLY CONTROL FOR FIX UP 

Fig. 18. Data flow for address generation. 

Section 3 1 Concurrency:Single-Processor System 

expediency. Basic existing hardware paths are exercised wherever 
possible, and an attempt is made to adhere to the architectural 
interrupt specifications. When status switching instructions are 
encountered in conditional mode the instruction unit is halted and 
no action is taken until the condition is cleared. 

The supervisor call (SVC) instruction is treated by the interrupt 
hardware as a precise interrupt. The same new status word 
pre-fetch philosophy is utilized in the load program status word 
(LPSW) operation. 

One difficulty encountered in conjunction with the start-up 
fetching of instructions following a status switch (or interrupt) is 
that a new storage protect key' is likely to obtain. Consequently, a 
period exists during which two protect keys are active, the first for 
previously delayed, still outstanding accesses associated with the 
current execution clean-up, and the second for the fetching of 
instructions. This situation is handled by sending both keys to the 
main storage control element and attaching proper control 
information to the instruction fetches. 

The set program mask (SPM) implementation has a minor 
optimization: Whenever the new mask equals the current mask, 
the instruction completes immediately. Otherwise an execution 
clean-up is effected before setting the new mask to make certain 
that outstanding operations are executed in the proper mask 
environment. 

IiO instructions, and I/O interrupts, require a wait for channel 
communications. The independent channel and CPU paths to 
storage demand that the CPU be finished setting up the 110 
controls in storage before the channel can be notified to proceed. 
Once notified, the channel must interrogate the instruction-
addressed device prior to setting the condition code in the CPU. 
This is accomplished by lower-speed circuitry and involves units 
some distances away; consequently, IiO initiation times are of the 
order of 5-10 microseconds. 

References 

Anderson, Sparacio, and Tomasulo [1967]; Amdahl, Blaauw, and 
Brooks [19641;Anderson, Earle, Goldschmidt, and Powers [1967]; 
Boland, Granito, Marcotte, Messina, and Smith [1967];Buchholz 
et al. [19621; Flynn and Low [1967];Litwiller and Adler [private 
communication]; Tomasulo [19671. 

'The storage protect key is contained in the program status word (PSW).It 
is a tag which accompanies all storage requests, and from it the storage can 
determine when a protect violation occurs. 



Chapter 19 

An Efficient Algorithm for Exploiting 
Multiple Arithmetic Units1 

R. M.  Tomasulo 

Abstract This paper describes the methods employed in the floating- 
point area of the Systemi360 Model 91 to exploit the existence of multiple 
execution units. Basic to these techniques is a simple common data busing 
and register tagging scheme which permits simultaneous execution of the 
independent instructions while preserving the essential precedences 
inherent in the instruction stream. The common data bus improves 
performance by efficiently utilizing the execution units without requiring 
specially optimized code. Instead, the hardware, by “looking ahead’ about 
eight instructions, automatically optimizes the program execution on a 
local basis. 

The application of these techniques is not limited to floating-point 
arithmetic or System/360 architecture. It may be used in almost any 
computer having multiple execution units and one or more “accumula- 
tors.” Both of the execution units, as well as the associated storage buffers, 
multiple accumulators and input/output buses, are extensively checked. 

Introduction 

After storage access time has been satisfactorily reduced through 
the use of buffering and overlap techniques, even after the 
instruction unit has been pipelined to operate at a rate approach- 
ing one instruction per cycle [Anderson, Sparacio, and Tomasulo, 
19671, there remains the need to optimize the actual performance 
of arithmetic operations, especially floating-point. Two familiar 
problems confront the designer in his attempt to balance execu- 
tion with issuing. First, individual operations are not fast enough2 
to allow simple serial execution. Second, it is difficult to achieve 
the fastest execution times in a universal execution unit. In other 
words, circuitry designed to do both multiply and add will do 
neither as fast as two units each limited to one kind of instruction. 

The first step toward surmounting these obstacles has been 
presented in Anderson, Earle, Goldschmidt, and Powers [1967], 
i.e., the division of the execution function into two independent 
parts, a fixed-point execution area and a floating-point execution 

IIBM Journal, vol. 11,January 1967, pp. 25-33. 

$Duringthe planning phase, floating-point multiply was taken to be six 

cycles, divide as eighteen cycles and add as two cycles. Anderson, Earle, 

Goldschmidt, and Powers [I9671 explains how times of 3, 12, and 2 were 

actually achieved. This permitted the use of only one, instead of two, 

multipliers and one adder, pipelined to start an add cycle. 


area. While this relieves the physical constraint and makes 
concurrent execution possible, there is another consideration. In 
order to secure a performance increase the program must contain 
an intimate mixture of fixed-point and floating-point instructions. 
Obviously, it is not always feasible for the programmer to arrange 
this and, indeed, many of the programs of greatest interest to the 
user consist almost wholly of floating-point instructions. The 
subject of this paper, then, is the method used to achieve 
concurrent execution of floating-point instructions in the IBM 
System/360 Model 91. Obviously, one begins with multiple 
execution units, in this case an adder and a multiplieddivider 
[Anderson, Sparacio, and Tomasulo, 19671. 

It might appear that achieving the concurrent operation of these 
two units does not differ substantially from the attainment of 
fixed-floating overlap. However, in the latter case the architecture 
limits each of the instruction classes to its own set of accumulators 
and this guarantees independence. In the former case there is 
only one set of accumulators, which implies program-specified 
sequences of dependent operations. Now it is no longer simply a 
matter of classifying each instruction as fixed-point or floating- 
point, a classification which is independent of previous instruc- 
tions. Rather, it is a question of determining each instruction’s 
relationship with all previous, incompleted instructions. Simply 
stated, the objective must be to preserve essential precedences 
while allowing the greatest possible overlap of independent 
operations. 

This objective is achieved in the Model 91 through a scheme 
called the common data bus (CDB). It makes possible maximum 
concurrency with minimal effort (usually none) by the program-
mer or, more importantly, by the compiler. At the same time, the 
hardware required is small and logically simple. The CDB can 
function with any number of accumulators and any number of 
execution units. In short, it provides a hardware algorithm for the 
automatic, efficient exploitation of multiple execution units. 

The next section of this paper will discuss the physical 
framework of registers, data paths and execution circuitry which is 
implied by the architecture and the overall CPU structure 
presented in Anderson, Sparacio, and Tomasulo [1967]. Within 
this framework one can subsequently discuss the problem of 
precedence, some possible solutions, and the selected solution, 
the CDB. In conclusion will be a summary ofthe results obtained. 

Definitions and Data Paths 

While the reader is assumed to be familiar with System/36O 
architecture and mnemonics, the terminology as modified by the 

3uch dependencies as exist are handled by the store-fetch sequencing of 
the storage bus and the condition code control described in Anderson, 
Earle, Goldschmidt, and Powers [1967]. 

293 



294 Part 2 I Regions of Computer Space 

context of the Model 91 organization will be reviewed here. The 
instruction unit, in preparing instructions for the floating-point 
operation stack (FLOS), maps both storage-to-register and 
register-to-register instructions into a pseudo-register-to-register 
format. In this format R1 is always one of the four floating-point 
registers (FLR) defined by the architecture. It is usually the sink 
of the instruction, i.e., it is the FLR whose contents are set equal 
to the result of the operation. Store operations are the sole 
exception’ wherein R1  specifies the source of the operand to be 
placed in storage. A word in storage is really the sink of a store. 
(R1 and R2 refer to fields as defined by System/36O architecture.) 

In the pseudo-register-to-register format “seen” by the FLOS 
the R2 field can have three different meanings. It can be an FLR 
as in a normal register-to-register instruction. If the program 
contains a storage-to-register instruction, the R2 field designates 
the floating-point buffer (FLB) assigned by the instruction unit to 
receive the storage operand. Finally, R2 can designate a store data 
buffer (SDB) assigned by the instruction unit to store instructions. 
In the first two cases R2 is the source of an operand; in the last 
case it is a sink. Thus, the instruction unit maps all of storage into 
the 6 floating-point buffers and 3 store data buffers so that the‘ 
FLOS sees only pseudo-register-to-register operations. 

The distinction between source and sink will become quite 
important during the discussion of precedence and should be fixed 
firmly in mind. All of the instructions (except store and compare) 
have the following form: 

R1 
Register 

op R2-
Register 

R1 
Register 

or 

source 
buffer 
source sink 

For example, the instruction AD 0, 2 means “place the double- 
precision sum of registers 0 and 2 in register 0,” i.e., RO + R2 + 
RO. Note that R1 is really both a source and a sink.’ Nevertheless, 
it will be called the sink and R2 the source in all subsequent 
discussion. 

This definition of operations and the machine organization 
taken together imply a set of data registers with transfer paths 
among them. These are shown in Fig. 1. The major sets of 
registers (FLR’s, FLB’s, FLOS and SDB’s) have already been 
discussed, both above and in Anderson, Sparacio, and Tomasulo 
[1967]. Two additional registers, one sink and one source, are 
shown feeding each execution circuit. Initially these registers 
were considered to be the internal working registers required by 
the execution circuits and put to multiple use in a way to be 
described below. Later, their function was generalized under the 
‘Compares do not, of course, alter the contents of R1. 

This economy of specification compounds the dimculties of achieving 

concurrency while preserving precedence, as will be seen later. 


Section 3 1 Concurrency: Single-Processor System 

reservation station concept and they were dissociated from their 
“working” function. 

In actually designing a machine the data paths evolve as the 
design progresses. Here, however, a complete, first-pass data 
path will be shown to facilitate discussion. To illustrate the 
operation let us consider, in turn, four kinds of instructions-load 
of a register from storage, storage-to-register arithmetic, register- 
to-register arithmetic, and store. Let us first see how each can be 
accomplished in oacuo; then what difficulties arise when each is 
embedded in the context of a program. For simplicity double- 
precision (64-bit operands) will be used throughout. 

Figure 2 shows the timing relationship between the instruction 
unit’s handling of an instruction and its processing by the FLOS 
decode. When the FLOS decodes a load, the buffer which will 
receive the operand has not yet been loaded from ~ to rage .~  Rather 
than holding the decode until the operand arrives, the FLOS sets 
control bits associated with the buffer which cause its content to 
be transmitted to the adder when it “goes full.” The adder 
receives control information which causes it to send data to 
floating-point register R1, when its source register is set full by 
the buffer. 

If the instruction is a storage-to-register arithmetic function, the 
storage operand is handled as in load (control bits cause it to be 
forwarded to the proper unit) but the floating-point register, along 
with the operation, is sent by the decoder to the appropriate unit. 
After receiving the buffer the unit will execute the operation and 
send the result to register R1. 

In register-to-register arithmetic instructions two floating point 
registers are transmitted on successive cycles to the appropriate 
execution unit. 

Stores are handled like storage-to-register arithmetic functions, 
except that the content of the floating-point register is sent to a 
store data buffer rather than to an execution unit. 

Thus far, the handling of one instruction at a time has proven 
rather straightforward. Now consider the following “program”: 

Example 1 
LD FO FLBl LOAD register FO from buffer 1 

MD FO FLB2 MULTIPLY register FO by buffer 2 

The load can be handled as before, but what about the multiply? 
Certainly FO and FLB2 cannot be sent to the multiplier as in the 
case of the isolated multiply, since FLBl has not yet been set into 
FO. This sequence illustrates the cardinal precedence principle: 

3A FULLIEMPTY control bit indicates this. The bit is set FULL by the 

Main Storage Control Element and EMPTY when the buffer is used. 

LOAD uses the adder in order to minimize the buffer outgates and the 

FLR ingates. 

4Note that the program calls for the product of FLBl and FLBP to be 

placed in FO. This hints at the CDB concept. 




Chapter 19 I An Efficient Algorithm for Exploiting Multiple Arithmetic Units 295 

STORAGE BUS INSTRUCTION UNIT 

1 

II 

8 

FLOATING.POINT 4I I * CONTROL 
REGISTERS (FLR) 2 

n 

DECODER 1 I

FLOATING.FOINT FLOATING.WINT STORE 3


BUFFER REGISTER

(FLB) BUS (FLR) BUS CONTROL DATA 2 


BUFFERS (SOB) 1 

I 

TO STORAGE 

SOURCE CTRL 

RESULTBUS 

Fig. 1. Data registers and transfer paths without CDB. 

I I 1INSTRUCTION UNIT D E C O a  E - 3 TO 10 CYCLE ACCESS-d ~ ~ A ~ ~ ~ & ~ ~ 

I 

TRANSMIT OPI I 

TO FLOS I
I 

TRANSMIT Oi: 
EXECUTION UNIT EXECUTIONi ;:& I ;bRuANy FLB I TRANSMIT F l R  I i -----

Fig. 2. Timing relationshipbetween instructionunit and FLOS decode for the processing of one instruction. 

No floating-point register may participate in an operation if it is LD FO, FLBl 
the sink of another, incompleted instruction. That is, a register MD F2, FLB2 
cannot be used until its contents reflect the result of the most Here it must allow the independent MD to proceed regardless
recent operation to use that register as its sink. of the disposition of the LD.

The design presented thus far has not incorporated any 
mechanism for dealing with this situation. Three functions must The first two requirements are necessary to preserve the logical
be required of any such mechanism: integrity of the program; the third is necessary to meet the 

performance goal. The next section will present several alterna-

1 It must recognize the existence of dependency. tives for accomplishing these objectives. 

2 It must cause the correct sequencing of the dependent Preservation of Precedence 
instructions. 

3 It must distinguish between the given sequence and such Perhaps the simplest scheme for preserving precedence is as 
sequences as follows. A “busy” bit is associated with each of the four floating-



296 Part 2 1 Regions of Computer Space 

point registers. This bit is set when the FLOS decode issues an 
instruction designating the register as a sink; it is reset when the 
executing unit returns the result to the register. No instruction 
can be issued by the FLOS if the busy bit of its sink is on. If the 
source of a register-to-register instruction has its busy bit on, the 
FLOS sets control bits associated with the source register. When 
a result is entered into the register, these control bits cause the 
register to be sent via the FLR bus to the unit waiting for it as a 
source. 

This scheme easily meets the first two requirements. The 
third is met with the help of the programmer; he must use 
different registers to achieve overlap. For example, the expression 
A + B + C + D * E can be programmed as follows: 

Example 2 
LD FO, D FO = D 

LD F2, C F2 = C 

LD F4, B F4 = B 

MD FO, E F O = D * E  

AD F2, FO F2 = C + D * E 

AD F4, A F 4 = A + B  

AD F2, F4 F 2 = A + B + C + D * E  


The busy bit scheme should allow the second add and the multiply 
to be executed simultaneously (really, in any order) since they use 
different sinks. Unfortunately, the timing chart of Fig. 3a shows 
not only that the expected overlap does not occur but also that 
many cycles are lost to transmission time. The overlap fails to 
materialize because the first add uses the result of the multiply, 
and the adder must wait for that result. Cycles are lost to control 
because so many of the instructions use the adder. The FLOS 
cannot decode an instruction unless a unit is available to execute 
it. When an assigned unit finishes execution, it takes one cycle to 
transmit the fact to the FLOS so that it can decode a waiting 
instruction. Similarly, when the FLOS is held up because of a 
busy sink register, it cannot begin to decode until the result has 
been entered into the register. 

One solution that could be considered is the addition of one or 
more adders. If this were done and some programs timed, 
however, it would become apparent that the execution circuitry 
would be in use only a small part of the time. Most of the lost time 
would occur while the adder waited for operands which are the 
result of previous instructions. What is required is a device to 
collect operands (and control information) and then engage the 
execution circuitry when all conditions are satisfied. But this is 
precisely the function of the sink and source registers in Fig. 1. 
Therefore, the better solution is to associate more than one set of 
registers (control, sink, source) with each execution unit. Each 
such set is called a reservation station. Now instruction issuing 
depends on the availability of the appropriate kind of reservation 

Section 3 1 Concurrency: Single-Processor System 

station. In the Model 91 there are three add and two multiply/ 
divide reservation stations. For simplicity they are treated as if 
they were actual units. Thus, in the future, we will speak of 
Adder 1(Al), Adder 2 (A2), etc., and M/D 1and MID 2. 

Figure 3b shows the effect of the addition of reservation stations 
on the problem running time: five cycles have been eliminated. 
Note that the second AD now overlaps the MD and actually 
executes before the first AD. While the speed increase is 
gratifying and the busy bit method easy to implement, there 
remains a dependence on the programmer. Note that the 
expression could have been coded this way: 

Example 3a 
LD FO, E 

MD FO, D 

AD FO, C 

AD FO, B 

AD FO, A 


Now overlap is impossible and the program will run six cycles 
longer despite having two fewer instructions. Suppose however, 
that this program is part of a loop, as below: 

Example 3b 
LOOP 1 	 LD FO, Ei 


MD FO, Di 

AD FO, Ci 

AD FO, Bi 

AD FO, Ai 

STD FO, Fi 

BXH i, -1, 0, LOOP 1(decrease i by 1, 

branch if i > 0) 


LOOP2 	 LD FO, Ei 

LD F2, Ei + 1 

MD FO, Di 

MD F2, D i +  1 

AD FO, Ci 

AD F2, Ci + 1 

AD FO, Bi 

AD F2, Bi + 1 

AD FO, Ai 

AD F2, Ai + 1 

STD FO, Fi 

STD F2, Fi + 1 

BXH i, -2 ,  0, LOOP 2 


’The fetch and store buffers can be considered as specialized, one-operand 
reservation stations. Previous systems, such as the IBM 7030, have in 
effect employed one “reservation station” ahead of each execution unit. 
The extension to several reservation stations adds to the effectivenessof 
the execution hardware. 



Chapter 19 1 An Efficient Algorithm for Exploiting Multiple Arithmetic Units 297 

INSTRUCTION STORAGE 

UNIT ACCESS FLU LEGEND 


LD FO. D I D I AG I # I 0 I I x m F O  D DECODE 

AG ADDRESS GENERATE 
l D l X l  

LD F2.C I D I A G I  0 I I * I I I x rsrjz 
I s I STORAGE ACCESS 

X TRANSMISSION 

l D l X l  RESULT TO FLR FN .IF" 

LD F4. E I D l A G I  1 I I I I I H EXECUTION 

NOTE ALTERNATE LINES 
I D l X l  TO SHOW FLOS ACTIVITY 

M D  FO. E I D  I A G I  8 I I * I u 1 x 1  f t-El 
l D l X l  

AD F2. FO I D 1  1 x 1  I x 1+mF2 
l o l x l  

AD F4. A D I A G I  I I t II I 1t-4~~I I 

I D l X l  F2 

AD F2, F4 I D I  l x l x l  1 X 4 
I

l o l x l  f 
31 CYCLES 

Fig. 3. Timing for the instruction sequence required to perform the function A + B + C + D * E: (a) without reservation stations, (b)with 
reservation stations included in the register set. 



298 Part 2 I Regions of Computer Space 

Iteration n + 1of LOOP 1will appear to the FLOS to depend 
on iteration n, since the instructions in both iterations have the 
same sink. But it is clear that the two iterations are, in fact, 
independent. This example illustrates a second way in which two 
instruction sequences can be independent. The first way, of 
course, is for the two strings to have different sink registers. The 
second way is for the second string to begin with a load. By its 
definition a load launches a new, independent string because it 
instructs the computer to destroy the previous contents of the 
specified register. Unfortunately, the busy bit scheme does not 
recognize this possibility. If overlap is to be achieved with this 
scheme, the programmer must write LOOP 2. (This technique is 
called doubling or unravelling. It requires twice as much storage 
but it runs faster by enabling two iterations to be executed 
simultaneously. ) 

Attempts were made to improve the busy bit scheme so as to 
handle this case. The most tempting approach is the expansion of 
the bit into a counter. This would appear to allow more than one 
instruction with a given sink to be issued. As each is issued, the 
FLOS increments the counter; as each is executed the counter is 
decremented. However, major difficulty is caused by the fact that 
storage operands do not return in sequence. This can cause the 
result of instruction n + 1to be placed in a register before that of 
n. When n completes, it erroneously destroys the register 
contents. 

Some of the other proposals considered would, ifimplemented, 
have been of such logical complexity as to jeopardize the 
achievement of a fast cycle. 

The Common Data Bus 

The preceding sections were intended to portray the difficulties of 
achieving concurrency among floating-point instructions and to 
show some of the steps in the evolution of a design to overcome 
them. It is clear, in retrospect, that the previous algorithms failed 
for lack of a way to uniquely identify each instruction and to use 
this information to sequence execution and set results into the 
floating-point registers. As far as action by the FLOS is con- 
cerned, the only thing unique to a particular instruction is the unit 
which will execute it. This, then, must form the basis of the 
common data bus (CDB). 

Figure 4 shows the data paths required for operation of the 
CDB.’ When Fig. 4 is compared with Fig. 1 the following 
changes, in addition to the reservation stations, are evident: 
Another output port has been added to the buffers. This port has 

‘The FLB and FLR busses are retained for performance reasons. 
Everything could be done by a slight extension of the CDB but time would 
be lost due to conflicts over the common facility. 

Section 3 1 Concurrency: Single-Processor System 

been combined with the results from the adder and multiplier/ 
divider; the combination is the CDB. The CDB now goes not only 
to the registers but also to the sink and source registers of all 
reservation stations, including the store data buffers but excluding 
the floating-point buffers. This data path will enable loads to be 
executed without the adder and will make the result of any 
operation available to all units without first going through a 
floating-point register. 

Note that the CDB is fed by all units that can alter a register and 
that it feeds all units which can have a register as an operand. The 
control part of the CDB enumerates the units which feed the 
CDB. Thus the floating-point buffers 1through 6 are assigned the 
numbers 1 through 6; the three adders (actually reservation 
stations) are numbered 10 through 12; the two multiplier/dividers 
are 8 and 9. Since there are eleven contributors to the CDB, a 
four-bit binary number suffices to enumerate them. This number 
is called a tag. A tag is associated with each of the four 
floating-point registers (in addition to the busy bit2), with both 
the source and sink registers of each of the five reservation 
stations and with each of the three Store Data Buffers. Thus a 
total of 17 four-bit tag registers has been added, as shown in 
Fig. 4. 

Tags also appear in another context. A tag is generated by the 
CDB priority controls to identify the unit whose result will next 
appear on the CDB. Its use will be made clear shortly. 

Operation of this complex is as follows. In decoding each 
instruction the FLOS checks the busy bit of each of the specified 
floating-point registers. If that bit is zero, the content of the 
register(s) may be sent to the selected unit via the FLR bus, just as 
before. Upon issuing the instruction, which requires only that a 
unit be available to execute it, the FLOS not only sets the busy 
bit of the sink register but also sets its tag to the designation 
of the selected unit. The source register control bits remain 
unchanged. As an example, take the instruction, AD FO, FLBl. 
After issuing this instruction to Adder 1 the control bits of FO 
would be: 

BB TAG 
1 1010 (Al) 

So far the only change from previous methods is the setting of 
the tag. The significant difference occurs when the FLOS finds 
the busy bit on at decode time. Previously, this caused a 
suspension of decoding until the bit went off. Now the FLOS will 
issue the instruction and update the tag. In so doing it will not 
transmit the register contents to the selected unit but it will 
transmit the “old” tag. For example, suppose the previous AD was 

%The busy bit is no longer necessary since its function can be performed by 
use of an unassigned tag number. However, it is convenient to retain it. 



Chapter 19 I An Efficient Algorithm for Exploiting Multiple Arithmetic Units 299 

STORAGE BUS 

I

I 

INSTRUCTlON UNIT 

I 

FLOATING 


POINT 


OPERAND 


+
DECODER 
-


CONTROL -1 t 

TAGS DATABUFFERS 2 

FLB BUS I I 
t FLR BUS 

TAG SINK TAG SOURCE CTRL 

TAG SOURCE CTRL 

MULT!PLY/DIVIDE 

+ COMMON DATA BUS (COB) t + ! 

Fig. 4. Data registers and transfer paths, including CDB and reservation stations. 

followed by a second AD. At the end of the decode of this second 
AD, FO's control bits would be: 

BB TAG 
1 1011 (A2) 

One cycle later the sink tag of the A2 reservation station would be 
1010, i.e., the same as Al, the unit whose result will be required 
by A2. 

Let us look ahead temporarily to the execution of the first AD. 
Some time after the start of execution but before the end,' A1 will 
request the CDB. Since the CDB is fed by many sources, its 
time-sharing is controlled by a central priority circuit. If the CDB 
is free, the priority control signals the requesting adder, A l ,  to 

'Since the required lead time is two cycles, the request is made at the start 
of execution for an add-type instruction. 

outgate its result and it broadcasts the tag of the requestor (1010 in 
this case) to all reservation stations. Each active reservation 
station (selected but awaiting a register operand) compares its sink 
and source tags to the CDB tag. If they match, the reservation 
station ingates the data from the CDB. In a similar manner, the 
CDB tag is compared with the tag of each busy floating-point 
register. All busy registers with matching tags ingate from the 
CDB and reset their busy bits. 

Two steps toward the goal of preserving precedence have been 
accomplished by the foregoing. First, the second AD cannot start 
until the first AD finishes because it cannot receive both its 
operands until the result of the first AD appears on the CDB. ' 

Second, the result of the first AD cannot change register FO 
once the second AD is issued, since the tag in FO will not match 
A l .  These are precisely the desired effects. 

Before proceeding with more detailed considerations let US 

recapitulate the essence of the method. The floating-point register 



300 Part 2 I Regions of Computer Space 

tag identifies the last unit whose result is destined for the register. 
When an instruction is issued that requires a busy register, the tag 
is sent to the selected unit in place of the register contents. The 
unit continuously compares this tag with that generated by the 
CDB priority control. When a match is detected, the unit ingates 
from the CDB. The unit begins executing as soon as it has both 
operands. It may receive one or both operands from either the 
CDB or the FLR bus; the source operand for storage-to-register 
instructions is transmitted via the FLB bus. 

As each instruction is issued the existing tag(s) is (are)transmit-
ted to the selected unit and then the sink tag is updated. By 
passing tags around in this fashion, all operations having the same 
sink are correctly sequenced while other operations are allowed to 
proceed independently. Finally, the floating-point register tag 
controls the changing of the register itself, thereby ensuring 
that only the most recent instruction will change the register. 
This has the interesting consequence that a loop of the following 
kind: 

Example 4 
LOOP LD FO, Ai 

AD FO, Bi 
STD FO, Ci STORE 
BXH i, -1,O,LOOP 

may execute indefinitely without any change in the contents of FO. 
Under normal conditions only the find iteration will place its 
result in FO. 

As mentioned previously, there are two ways of starting an 
independent instruction string. The first is to specify a different 
sink register and the second is to load a register. The CDB 
handles the former in essentially the same way as the busy bit 
scheme. The load, which had been a difficult problem previously, 
is now very simple. Regardless of the register tag or busy bit, a 
load turns the busy bit on and sets the tag equal to the 
floating-point buffer which the instruction unit had assigned to the 
load. This causes subsequent instructions to sequence on the 
buffer rather than on whatever unit may have identified the 
register as its sink prior to the load. The buffer controls are set to 
request the CDB when the storage operand arrives. The following 
example and Fig. 5 show this clearly. 

Example 5 
LD FO, FLBl 
DD FO, FLB2 DIVIDE 
STD FO, A 
LD FO, FLB3 
AD FO, FLB4 

Section 3 1 Concurrency: Single-Processor System 

0CDB SLOT 

FLOS DECODES NOT SHOWN 
FO 

LD FO.FLBI~ D ~ A G II 0, - -

DD FO. FLBZ I D l A G l  

STD FO I D IAGI  
r----------; 

LD FO. FLB3 I 
Fo I 

AD FO FLB4 1 D lAGl  

WITH CDB 	 WITH BUSY BIT 
SCHEME ONLY 

Fig. 5. Timing sequence for Example 5, showing effect of CDB. 

Note that the add finishes before the divide. The dashed line 
portion of Fig. 5 shows what would happen if the busy bit scheme 
alone were used. Figure 6 displays the sequences followed under 
the two schemes. This figure graphically illustrates the bottleneck 
caused by using a single sink register with a busy bit scheme. 
Because all data must pass through this register, the program is 
reduced to strictly sequential execution, steps 1through 7. With 
the CDB, on the other hand, the sink register hardly appears and 

FETCH BUFFER 54 
+ 
3 

FO 	 DIVIDER 
I 	 1 

I 

I
STORE BUFFER 

a FETCH BUFFER a1 1 

ADDER 	 DIVIDER+, +,
STORE BUFFER 

(bJ 

Fig. 6. Functional sequence for Example 5 (a)with busy bit controls 
only, (b)with CDB. 



Chapter 19 I An Efficient Algorithm for Exploiting Multiple Arithmetic Units 301 

the program is broken into two independent, concurrent se-
quences. This facility of the CDB obviates the need for loop 
doubling. 

The CDB makes it possible to execute some instructions in, 
effectively, no time at all. In the above example, the store took 
place during the CDB cycle following the divide. In a similar 
fashion a register-to-register load of a busy register is accom- 
plished by moving the tag of the source floating-point register to 
the tag of the sink floating-point register. For example, in the 
sequence 

AD FO, FLBl 
LDR F2, FO move FO to F2 

the tag of FO will be 1010 (Al) at the time the LDR is decoded. 
The decoder simply sets F2’s tag to 1010. Now, when the result of 
the AD appears on the CDB both FO and F2 will ingate since the 
CDB tag of 1010 will match the tag of each register. Thus, no unit 
or extra time was required for the execution of the LDR. 

A number of details have been omitted from this discussion in 
order to clarify the concept, but really only two are of operational 
significance. First, every unit must request the CDB two cycles 
before it finishes execution. (These two cycles are required for 
propagation of the request to the CDB controls, the establishment 
of priority among competing units, and propagation of a “select” 
signal to the chosen unit.) This limits the execution time of any 
instruction to a two-cycle minimum. (Of course, the faster the 
execution the less the need for, or gain from, concurrency.) It also 
adds one1 cycle to the access time for loads. Because of buffering 
and overlap, this does not usually cause an increase in problem 
running time. 

The second point is concerned with mixed precision. Because 
the architectural definition causes the low-order part of an FLR to 
be preserved during single-precision operation, an error can occur 
in the following kind of program: 

LD FO, FLBl 
AD FO, FLB2 
AE FO, FLB3 

Since only the last instruction, which is single-precision, wiII 
change FO, the low order result of the double-precision AD will 
be lost. This is handled by associating a bit with each register to 
indicate whether a particular register is the sink of an outstanding 
single- or double-precision instruction. If this bit does not match 

‘It does not add two cycles since storage gives one cycle prenotification of 
the arrival of data. 

the “length” of the instruction being decoded, the decode is 
suspended until the busy bit goes off. While this stratagem2 solves 
the logic problem, it does so at the expense of performance. 
Unfortunately, no way has been found to avoid this. Note, 
however, that all-single- or all-double-precision programs run at 
the maximum possible speed. It is only the interface between 
single- and double-precision to the same sink register that suffers 
delay. 

Conclusions 

Two concepts of some significance to the design of high- 
performance computers have been presented. The first, reserva- 
tion stations, is simply an expeditious method of buffering, in an 
environment where the transmission time between units is of 
consequence. Because of the disparity between storage access and 
circuit speeds and because of dependencies between successive 
operations, it is observed (given multiple execution units) that 
each unit spends much of its time waiting for operands. In effect, 
the reservation stations do the waiting for operands while the 
execution circuitry is free to be engaged by whichever reservation 
station fiIIs first. 

The second, and more important, innovation, the CDB, utilizes 
the reservation stations and a simple tagging scheme to preserve 
precedence while encouraging concurrency. In conjunction with 
the various kinds of buffering in the CPU, the CDB helps render 
the Model 91less sensitive to programming. It should be evident, 
however, that the programmer still exercises substantial control 
over how much concurrency will occur. The two diEerent 
programs for doing A + B + C + D * E illustrate this clearly. 

It might appear that the CDB adds one cycle to the execution 
time of each operation, but in fact it does not. In practice only 30 
nsec of the 60-nsec CDB interval are required to perform aII of the 
CDB functions. The remaining time could, in this case, be used 
by the execution unit to achieve a shorter effective cycle. For 
example, if an add requires 120nsec, then add plus the CDB time 
required is 150 nsec. Therefore, as far as the add is concerned, the 
machine cycle could be 50 nsec. Besides, even without the CDB, 
a similar amount of time would be required to transmit results 
both to the floating-point registers and back as an input to the unit 
generating the result. 

The following program, a typical partial differential equation 
inner loop, illustrates the possible performance increase. 

*Further complications arise from the fact that single-precision multiply 
produces a double-precision product. This is handled separately but with 
the same time penalty as above. 



302 Part 2 I Regions of Computer Space 

LOOP MD FO, Ai 
AD FO, Bi 
LD F2, Ci 
SDR F2, FO 
MDR F2, F6 
AD2 F2, Ci 
STD F2, Ci 
BXH i, -1 ,0  LOOP 

Section 3 I Concurrency: Single-Processor System 

Without the CDB one iteration of the loop would use 17 cycles, 
allowing 4 per MD, 3 per AD and nothing for LD or STD. With 
the CDB one iteration requires 11cycles. For this kind ofcode the 
CDB improves performance by about one third. 

References 

Tomasulo [19671; Anderson, Earle, Goldschmidt, and Powers 
[1967]; Anderson, Sparacio, and Tomasulo [1967]. 



- -  

APPENDIX SYSTEM/360 MODEL 91, ISP DESCRIPTION 
S360.MODEL.Yl.MFU := 


b e g i n  


I ISPS d e s c r i p t i o n  o f  t h e  360191 F l o a t i n g - P o i n t  Execu t ion  U n i t  (FLEU). 

I Reference: (1) R.M.Tomasulo. " A n  E f f i c i e n t  A l g o r i t h m  f o r  E x p o i t i n g  

I M u l t i p l e  A r i t h m e t i c  U n i t s " .  1BM J o u r n a l .  January 1967. 

I Pages 25-33. 


I (2) S.F.Anderson. e t . a l . .  "The IBM System/360 Model 91: 

I F l o a t i n g - P o i n t  Eaecu t ion  U n i t " .  IBM J o u r n a l .  January 1967, 

I Pages 34-53. 


I I S P  Imp lemen ta t i on  no tes :  

I A c t u a l  e x e c u t i o n  O f  f l o a t i n g  p o i n t  i n s t r u c t i o n s  i s  n o t  

! desc r ibed .  


I Reference ( 2 )  i n d i c a t e s  t h a t  FLRs and FLBs are  72 b i t s  l o n g .  

I A l l  o t h e r  i n d i c a t i o n s  ( r e f ( 1 ) )  l e a d  t o  t h e  c o n c l u s i o n  t h a t  

I they  ape 69 b i t s  l o n g .  


Reference ( 2 )  Shows t h e  FLOS r e g i s t e r s  t o  be 14 b i t s  l ong .  

If t h e  f l o a t i n g  p o i n t  i n s t r u c t i o n  opcodes a r e  mapped from t h e  

s t a n d a r d  e i g h t  b i t s  t o  s i x  b i t s ,  t h e  FLOS w i l l  c o n t a i n  

14 b i t  r e g i s t e r s .  The mapping was accompl ished by  e l i m i n a t i n g  

b i t s  ( 0 )  and <2> which a r e  i d e n t i c a l  i n  a l l  i n s t r u c t i o n s .  

R e g i s t e r  a r r a y s  t h a t  c o n t a i n  TAGS and o t h e r  c o n t r o l  b i t s  

a r e  implemented w i t h  separa te  T A G  and BUSY a r r a y s .  

T h i s  imp lemen ta t i on  i s  a r e s t r i c t i o n  o f  t h e  ISPS S i m u l a t o r .  

n o t  of t h e  ISPS language. 


I T h i s  d e s c r i p t i o n  does n o t  p r o v i d e  any of t h e  f u n c t i o n s  O f  t h e  

I 360191 I n s t r u c t i o n  U n i t  o r  main memory access. F O P  s i m u l a t i o n ,  

I i t  i s  necessary t o  l o a d  t h e  FLOS w i t h  i n s t r u c t i o n s  f o l d e d  

I t o  14 b i t s  as noted above. I t  i s  a l s o  necessary t o  p r e s e t  a l l  

I i n i t i a l  t ags  an b u r y  b i t s  and l o a d  t h e  FLBs p r i o r  t o  s i m u l a t i o n .  


**FLEU.State** 

FLB[ l :6]<0:63> : =  bu fs [ l : 6 ]<0 :63>  F l o a t i n g  P o i n t  B u f f e r s  (FLB) 
FLB.RUSY[l :6]0 : =  b u s y s [ l : 6 ] 0 .  F l o a t i n g  P o i n t  B u f f e r  Busy 

Communication w i t h  e x t e r n a l  s t o r a g e  

FLR[1:4]<0:63> : =  bufs[7:10]<0:63>. F l o a t i n g  P o i n t  r e g i s t e r s  
F L R . T A G [ 1 : 4 ] < 0 : 3 > : = t a g s [ 7 : 1 0 J < O : 3 > .  R e g i s t e r  t a g  f i e l d  
FLR.BUSY[1:4]<>:= b u s y s [ 7 : 1 0 ] 0 .  R e g i s t e r  busy f i e l d  

S D B [ I . 3 ] < 0  63) i o~fs[ll:l3]<0:53>. S t o r e  Da ta  B u f f e r  
SDB. rAG[  1 . 3 ] < 3  3)' = tags [  1I:1?1<0 .3>  S t o r e  Da ta  B u f f e r  t ag  f i e l d  
SDB.BdSY[1'3]<> : =  ousy r [11 :13 ]<> .  S t a r e  Da ta  B u f f e r  busy f i e l d  

Communication w i t h  e x t e r n a l  s t o r a g e  

FLOS[I 8]<0 13). 	 F l o a t i n g  P o i n t  O p e r a t i o n  S tack  

f I O S 1 0 < 0 : 2 > .  	 Counter f o r  number of i n s t r u c t i o n s  
i n  FLOS. 

i r < O :  13). I n s t r u c t i o n  r e g i s t e r  

opcode<0:6> := i r < 0 : 5 > ,  Opera t i on  code 

R1<0:3> : =  i r<6 :9> ,  S ink  r e g i s t e r  

RZ<O: 3) := iP< l o :  13). Source r e g i s t e r  


pc<o:z>. 	 "Program coun te r "  f o r  FLOS 

.*MD.Unit .State** 

MRS,SINK[8:9]<0:83> : =  I M u l t i p l i e r  rese rve  ( s i n k )  s t a t i o n s  
bufs[ l4:16]<0:63>. 

MRs,SINK,lAG[8:9]<0:3> : =  ! M u l t i p l i e r  rese rve  ( s i n k )  t a g  
tags[14:15]<0:3>. 

MRS.SINK BUSY[O:9]<> := I M u l t i p l i e r  Peserve ( s i n k )  busy 
busys [14 :15 ]0 .  

MRS,SOURCE[8:Y]<0:63> :=  I M u l t i p l i e r  rese rve  ( sou rce )  S t a t i o n s  
bufs[16:17]<0:63>. 

MRS.SOURCE.TAG[B:9]<0:3> :=  I M u l t i p l i e r  rese rve  ( sou rce )  t a g  
tags[16:17]<0:3>. 

MRS.SOURCE.BUSY[B:9]0 := I M u l t i p l i e r  rese rve  ( s o u r c e )  busy 
busys [16 :17 ]0 .  

I S t a t i o n  f r e e  ( 0 )  o r  busy ( 1 )  

I M u l t i p l y  r e s e r v a t i o n  S t a t i o n  
I c o n t r o l  b i t s  - a c t u a l  s i z e  
I and use i n  360/91 i s  uiiknown 

MPY.RESULT<O:63>. 1 M u l t i p l i e r  r e s u l t  b u f f e r  

mrs<5:0>. 	 ! Address o f  c u r r e n t  r e s e r v a t i o n  s t a t i o n  

* *Add .Un i t .S ta te * *  

ARS.SINK[lO:12]<0:63> := 1 Adder rese rve  ( s i n k )  S t a t i o n s  
bu fs [ l 8 :20 ]<0 :63> ,

ARS.SINK.TAG[lO:12]<0:3> :=  I Adder rese rve  ( s i n k )  t a g  
tags[ l8:20]<0:3>. 

ARS.SINK.BUSY[lO:12]<> := I Adder res8 rve  ( s i n k )  busy 
busys[18:20]<>. 

ARS,SOURCE[l0:12]<0:63> :=  I Adder rese rve  ( s o u r c e )  S t a t i o n s  
bufs[Z1:231<0:63>. 

ARS.SDURCE.TAG[l0:12]<0:3> := Adder r e s e r v e  ( s o u r c e )  t a g  

tags[21:23]<0:3>. 


ARs.SOURCE.BUSY[lO:l2]0 :=  Adder r e s e r v e  ( sou rca )  busy 

busys[21:23]<>. 


a r s . b u s y [ 1 0 : 1 2 ] 0 .  	 S t a t i o n  f r e e  ( 0 )  o r  busy ( 1 ) .  

ARS.CONTROL[l0:12]<0:5>, 	 Add r e s e r v a t i o n  S t a t i o n  C o n t r o l  

b i t s  - a c t u a l  number and use 

i n  360191 i s  unknown. 


add , resu l t<0 :63> .  I Adder r e s u l t  

ars<6:0>. 	 I Address o f  c u r r e n t  r e s e r v a t i o n  s t a t i o n  

**Implementation.Declarations** 


b u f s  [1 :23 ]<0 :63> .  

t ags  [1:23]<0:3>. 

b u s y s [ 1 : 2 3 ] 0 ,  


n e w f l b o ,  

macro no t .de f i ned  :=  I n o . o p ( ) l .  

**FLEU.Execut ion** 

s t a r t { m a i n )  : =  

beg in  

mrs = 0: 

pc = 0: 

n e w f l b  = 1; 

a r s  = 1 0  n e x t  

FLR.BUS(): FLB.BUS(): M D . U N I T ( ) :  ADD.UNIT(): 

f los.decode( j 

end, 


f l os .decode  :=  

beg in 

W A I T  ( f l o s i o  neq ' 0 0 0 0 )  n e x t  

i r  = FLOS[pc + 11 n e x t  

begin(us) 

DECODE opcode<O>@opcode<2:5> = >  I Decode i n t o  groups a c c o r d i n g  


be0 in 	 I t o  e a e c u t i o n  u n i t .  
[#10.#30.

#02.#201 :=  DECODE opcode => I Loads and S t o r e s  


beg in  

[#40. #SO] : =  b e g i n  


SOD. 
DECO 

beg in
0 : =  SDLl.TAG[R2] = map(R1) + 6. 
1 : =  SDB.TAG[RL] = FLR.TAG[map(Rl)] 

end 

end. 


o t h e r w i s e  := 	 b e g i n  I Load o p e r a t i o n s  

FLn.BUSY[map(RI)] = 1: 

FLR.TAG[map(Rl)] = R 2  

end 


end, 

r#14 .#34 ,  


#15.#35] : =  ( I F  ( f r e e . m d ( )  e g l  0 )  = >  RESTART f l os .decode  n e x t  md()) .  

o t h e r w i s e  : =  ( I F  ( f r e e . a d d ( )  e q l  0 )  = >  RESTART f l os .decode  n e x t  add ( ) )  


end 

end n e x t  

pc = (pc  t 1)  mod 8 n e x t  

f l o s i o  = f l o s i o  - 1 n e x t  

RESTART f l o s .  decode 

end. 


nid :	= I I n s t r u c t i o n  t o  m u l t i p l y / d i v i d e  

b e g i n  

MRS.CONTROL[free.md] = opcode n e x t  

DECODE FLR.BUSYrmap(Rl)l => I S ink  busy? 


ha" i...n 
0 : =  (MRS.SINK[free.md] = FLR[map(Rl)] n e x t  


FLR.BUSY[map(Rl)] = 1: FLR.TAG[map(Rl)] = f ree .nd :  

MRLSINK RusYrfrPa m d i  = n )  


1 : =  (MRs:StNK:;AE[irse:mdi'= Fi/ l : lAG[map(Rl) ] :  

Ml~S.SINK.BUSY[free.md] = 1 n e x t  

FLR.TAG[map(Rl)] = f ree.md) 


end n e x t  
DECODE opcode<O> = >  I Source decode 


b e g i n  

0 : =  DECODE FLR.BUSY[map(RZ)] => I R R  fo rma t  


b e g i n
0 : =  (MRS.SOURCE[free.md] = FLR[map(RZ)]: 

MRS. SOURCE. l lUSY[ f r e e .  md] = 0 )  , 
1 : =  (MRS.SOuRCE.TAG[free .md]  = FLR.TAG[map(Rz)]: 

MRS.SOURCE.[ IUSY[f ree .md]  = 1) 
end. 

1 : =  DECODE FLB.BUSYrR21 => I RX f o rma t  

b e g i n  

0 :=  (MRS.SOURCE.TAG[free .md]  = FLB[RZ]:


MRS.SOURCE.BUSY[f~~~,md]= 0). 

1 :=  (MRS.SOURCE.TAGlfree .md]  = R2;  


MRS.SOURCE.BUSY[free.md] = 1) 

end 


end 

end. 


303 



304 Part 2 1 Regions of Computer Space 	 Section 3 Concurrency: Single-Processor System 

APPENDIX (cont'd) 

f r ee .md( )<0 :3>  : =  I See i f  a m u l t i p l y  u n i t  i s  f r e e  ff37 :=  SUR : =  n o t . d e f I n e d .  RR: S u b t r a c t  unnorma l i zed -sho r t  
b e g i n  #51 I =  CD : =  n o t . d e f i n e d .  R X :  Compare-long 
free.md .= 0 n e x t  #52 := AD : =  n o t . d e f i n e d .  R X :  Add rnormal ized- long 
I F  not mrs.busy[Q] = >  free.md = 9 n e x t  #53 , :=  SO :=  n o t . d e f i n e d ,  R X :  S u b t r a c t  no rma l i zed - long  
I F  n o t  mrs.busy[B] = >  f ree.md = 8 n e x t  $56 : =  AW : =  not . .def ined. R X :  Add unnorma l i zed - long  
I F  free.md neq 0 => mrs.busy[fres.md] = 1 1157 : =  SW : =  n o t . d o f i n e d .  R K :  SUhlraCt unnormal i z s d - l o n g  
end. X71 : =  CE : =  noL .de f i ned .  R h  : Compare- E lhort  

add : =  I I n s t r u c t i o n  t o  Add u n i t  	 x72 : =  AE : =  Inot .dr?f ined. R X :  Add n o m a 1  i r e d - s h o r t  
beg in  	 #73 := SE : =  not .der i i ' ,ed.  R X :  S u b t r a c t  normal i z e d - s h o r t  
ARS.CONTROL[free.add] = opcode n e x t  	 176 := AU : =  no t .de f i ned .  R X :  Add Unnol 'mal ized-Short  
DECODE FLR.BUSYimap(R1)l = >  ff77 : =  SU : =  n o t . d e f i n e d .  R X :  S u b t r a c t  unnorma l i zed -sho r t  

h." in o the rw ise  : =  n o . o p 0""= ... 
0 : =  (ARS.SINK[free.add] = FLR[map(Rl)] n e x t  end n e x t  


FLR.BUSY[map(Rl)] = 1; FLR.TAG[map(Rl)] = f ree .add ;  WAIT (COB e q l  a r s )  n e x t  

CDO(add . resu l t .  a r s )  n e x t  

ARS.SINK. HllSY T f  w e .  add1 = 0 )  

1 : =  t A R S : S I N K : i A c [ i , e e : a d d j ~ =  FLh:TAG[map(Rl)]: a r s . b u s y [ a r s ]  = 0 :  


ARS.SOURCE.QUSY[ars] = ARS.SINK.ouSY[ars] = 0 n e x tARS.SINK.UUSY[free.add] = 1 n e x t  RESlART RDD.UNIT 
fLR.TAGlmaD(R111 = f ree .add1  

~ 

end n e x t  
. .  . _  	 end, 

DECODE opcodec0) => I Source decode map( r<3 :0> )<3 :0> {us )  : =  I Rou t ine  t o  lnap FLR numbers 0 . 2 . 4 . 8  t obeg in  b e g i n  I the  ISPS r e q u i r e d  numbers: 1.2.3,4.0 : =  DECODE FLR.BUSY[map(R2)] => I R R  f o rma t  
heo in  DECODE 	 r => 
b - T =  (ARS.SOURCE[free.add] = FLR[map(RZ)]: beg irr 


ARS.SOURCE.BUSY[free.add] = 0 ) .  0 :=  map = 1. 

1 :=  (AI IS .SOURCE.TAG[free .add]  = FLR.TAG[map(RE)]: Z :=  map = 2 ,  


A R S . S O U R C E . B U S Y T f ~ ~ ~ , a d d ~1) 4 :=  map = 3 . 
= 
end: 	 B :=  map = 4, 

1 : =  DECODE FLB.BUSY[RP] => I R X  f o rma t  o t h e r w i s e  : =  map = r 

beg in  end 

0 :=  (ARS.SOURCE[free.add] = FLB[R2]: end. 


ARS.SOURCE.TAG[free .add]  = 0 ) .  	 CDB(cdb.data<O:63>. c d b . t a g < O : 3 > ) < 5 : 0 > ( p r o c e s s ;  c r i t i c a l }  :=1 :=  (AnS.SOURCE.TAG[free.add] = R 2 :  

A R S . S O U R C E . B U S Y [ f ~ e ~ . ~ d d ]= 1) beg in  


end 	 The Common Da ta  Bus has the  o u t p u t s  o f  t h e  Add U n i t .  t h e
end 

end, 	 M u l t i p l y  U n i t ,  and t h e  F l o a t i n g  B u f f e r s  as  sources. 
D e s t i n a t i o n s  a re  t h e  Add and M u l t i p l y  r e s e r v a t i o n  S t a t i o n s .  

f ree .add( )<0 :3>  := 1 See i f  an Adder i s  f r e e  t h e  r e g i s t e r s ,  and t h e  s t o r e  d a t a  b u f f e r s .  


beq I n 
 **CDB.Control.* 

I F  n o t  a rs .busy [ lZ ]  => f r e e . a d d  = 12 n e x t  
c t r<S :O>.  I Counter 
I F  n o t  a r s . b u s y [ l l ]  = >  f ree .add  = 11 n e x t  


I F  n o t  a r s . b u s v r l 0 1  = >  f r e e . a d d  = 10 n e x t  

I F  f r ee .add  neqLO :> a rs .busy [ f ree .add ]  = 1 **CDB.Execut ion** 


end, cdbus{main: us) :=  
**MD.Execut ion** b e g i n  

COB = 0: 
MD.UNITlrrrocess: us) : =  c t r  = 7 n e x t  


b e g i n  cdb.rUn :=  

I F  n o t  mrs.busy[mrs] o r  b e g i n  


(MRS.SDURCE.BUSY[mrs] o r  MRS.SINK.BUSY[mrs]) => I F  ( t a g s [ c t r ]  e q l  c d b . t a g )  and ( b u s y s [ c t r ] )  = >  
b e g i n  ( b u f s l c t r ]  = Cdb.data: b u s y s [ c t r ]  = 0 )  n e x t  
m r s < Q >  = n o t  mrs<O) n e x t  I Look a t  o t h e r  s t a t i o n  c t r  = c t r  + 1 n e x t  
RESTART MD.UNIT I F  c t r  l s s  23 = >  RESTART cdb.run 
end n e x t  end n e x t  

DECODE MRS.CDNTROL[mrs] = >  COB = cdb . tag  

b e g i n  end 

' 0 0  : =  rnult.1ong : =  n o t . d e f i n e d .  I I n s t r u c t i o n  e x e c u t i o n s  end, 

' 0 1  : =  m u l t . s h o r t  : =  n o t . d e f i n e d .  I a r e  n o t  implemented FLR.EUS(process) := 
'10 : =  d i v i d e . l o n g  : =  n o t . d e f i n e d .  b e g i n 
'11 : =  d i v i d e . s h o r t  : =  n o t . d e f i n e d  

end n e x t  


CDB(mpy.resbl t .  mrs) n e x t  	
I The FLU bus has t h e  f l o a t i n g  r e g i s t e r s  as t h e  sou rce  and 
I The r e s e r v a t i o n  s t a t i o n s  of b o t h  t h e  M u l t i p l y  and Add u n i t s  W A I T  (COB e q l  mrs )  n e x t  I as d e s t i n a t i o n s . 
mrs.busy[mrs]  = 0 :  


MRS.SOURCE.BUSY[mrs] = MRS.SINK.BUSY[mrs] = 0 n e x t  **FLR.QuS.Control** 
RESlART MD.UNIT 

end, c t r ( 5 : 0 > .  ! Counter 

*.Adder.Eaecution** 
**FLR.Execut ion** 

ADD.UNIT(proceSS; us) := 

b e g i n  f l r b u s ( m a i n :  us) : =  

I F  n o t  a rs .busy [a rs ]  o r  b e g i n 


(ARS.SINK .BUSY [ a r s ]  o r  ARS.SOURCE .BUSY[ars]) => 1F n o t  FLR.BUSY[l] = >  FLR.CHK(FLR[l]. 7 )  n e x t  
b e g i n  I F  n o t  FLR.BUSY[Z] = >  FLR.CHK(FLR[Z]. 8 )  n e x t  
a r s  = a r s  + 1 n e x t  I F  n o t  FLR.BUSY[3] = >  FLR.CHK(FLII[S]. 9 )  n e x t  
I F  a r s  g t r  12 = >  a r s  = 10 n e x t  I F  n o t  FLR.BUSY[4] = >  FLR.CtIK(FLR[4]. 1 0 )  n e x t  
RESTART AOD.UNIT RESTART f l r b u s  
end n e x t  end, 

DECODE a r s . c o n t r o l r a r s 1  . .=> I A c t u a l  I n s t r u c t i o n  execu t ions  
beg in  l a re  no t  desc r ibed .  FLR.CHK(f l r .data<O:63>- f l r t a g < 0 : 3 > ) < 0 : 3 >  := 
f fO0 : =  LPDR : =  n o t . d e f i n e d .  I RR: Load p o s i t i v e - l o n g  b e g i n  
f f O 1  : =  LNDR : =  n o t . d e f i n e d .  I R R :  Load n e g a t i v e - l o n g  c t r  = 11 n e x t  
1 0 3  :I LCDR : =  n o t . d e f i n e d .  I IRR: Load comolement-lono f l r . r u n  := 
#04 :=  HDR : =  n o t . d e f i n e d .  I R R :  I i a l v e - l o n g  beg in  
ff11 : =  CDR :=  n o t . d e f i n e d .  ! R R :  Compare-long I F  ( t a g s [ c t r ]  e q l  f l r t a g )  and ( b u s y s [ c t r ] )  => 
ff12 : =  ADR :=  n o t . d e f i n e d .  ! R R :  Add normal i r e d - l o n g  ( b u f s [ c t r ]  = f l r . d a t a :  b u s y s [ c t r ]  = 0 )  n e x t  
ff13 : =  SDR : =  nOt .de f i ned .  I R R :  S u b t r a c t  no rma l i zed - long  C t r  = C t r  + I n e x t  
#16 : =  AWR :=  n o t . d e f i n e d .  I R R :  Add unnorma l i red - long  I F  c t r  1ss 23 => RESTART f l r . r u n  
ff17 : =  SWR :=  n o t . d e f i n e d .  I R R :  S u b t r a c t  u n n o m a l i z e d - l o n g )  -RR end 
# 2 0  : =  LPER :=  n o t . d e f i n e d .  I R R :  Load p o s i t i v e - s h o r t  end 
#21 : =  LNER :=  n o t . d e f i n e d .  I R R :  Load n e g a t i v e - s h o r t  end. 
#23 : =  LCER :=  n a t . d e f i n e d .  I RR: Load complement-short  
#24 : =  HER :=  n o t . d e f i n e d .  I R R :  H a l v e - s h o r t  
#31  : =  CER : =  n o t . d e f i n e d .  I R R :  Compare-short  
ff32 : =  AER :=  no t .de f i ned .  ! R R :  Add norilia1 i r e d - S h o r t  
ff33 : =  SER : =  n o t . d e f i e e d .  I R R :  S u b t r a c t  no rma l i zed -Shor t  
X36 : =  AUR : =  n o t . d e f i n e d .  I R R :  Add unnorma l i zed -sho r t  



Chapter 19 I An Efficient Algorithm for Exploiting Multiple Arithmetic Units 305 

APPENDIX (cont’d) 
FLB.BUS(process) := 


b e g i n  


I The f l o a t i n g  p o i n t  b u f f e r s  a r e  t h e  sou rce .  The d e s t i n a t i o n s  a r e :  

I t h e  Add R e s e r v a t i o n  S t a t i o n  Source b u f f e r s  and t h e  M u l t i p l y  

I Reversa t i on  S t a t i o n  Source b u f f e r s .  


**FLB.BUS.CO~~POI*.  


c t r<B :O>.  I Counter 

*.FLB.Execution** 

f l bbus (ma in :  us) := 
b e g i n  
WAIT(neuf1b) n e x t  
I F  n o t  FLB.BUSY[I]
IF n o t  FLR.BUSY[2] = )  FLB.CIIK(I 
I F  n o t  FLB.BUSY[J] = )  FLB.CIIK(I 
I F  n o t  FLB.BUSY[4] = )  FLH.CtIK(FLB[4j. 4)  n e x t  
I F  n o t  FLB.oUSY[5] = >  FLB.CtIK(FLB[B]. 5 )  n e x t  
I F  n o t  FL8.8USY[6] = )  FLB.CHK(FLB[G]. 6 )  next 
n e v f l b  = 0 n e x t  
RESTART f l b b u s  
end. 

FLB 	 CHK(f lb.data<O:G3) f 1 btag<O:3))<0:3> : = 
b e g i n  
c t r  = 16 n e x t  
f l b . r u n  := 

b e g i n  

I F  ( t a g s [ c t i ]  e q l  f l b t a g )  and ( b u s y s [ c t r ] )  = >  


(buPs [c t r ]  = f l b . d a t a :  b u s y s [ c t r ]  = 0 )  n e a t  
c t r  = c t r  + 1 n e x t  
I F  c t r  e q l  16 => c t l :  = 2 1  n e x t  
I F  c t r  l s s  23 => RESTART f l b . r u n  
end 

end 

end 


end I End o f  3G0/91 MFU 



Chapter 20 

The llliac IV System1 

W. J. Bouknight / Stewart A. Denenberg 

David E. iWc1ntyre / J. M.  Randall 

Amed H. Sameh / Daniel L. Slotnick 


Abstract The reasons for the creation of Illiac IV are described and the 
history of the Illiac IV project is recounted. The architecture or hardware 
structure of the Illiac IV is discussed-the Illiac IV array is an array 
processor with a specialized control unit (CU) that can be viewed as a small 
stand-alone computer. The Illiac IV software strategy is described in terms 
of current user habits and needs. Brief descriptions are given of the 
systems software itself, its history, and the major lessons learned during its 
development. Some ideas for future development are suggested. Applica- 
tions of Illiac IV are discussed in terms of evaluating the function fix) 
simultaneously on up to 64 distinct argument sets x, Many of the 
time-consuming problems in scientific computation involve repeated 
evaluation of the same function on different argument sets. The argument 
sets which compose the problem data base must be structured in such a 
fashion that they can be distributed among 64 separate memories. Two 
matrix applications: Jacobi’s algorithm for finding the eigenvalues and 
eigenvectors of real symmetric matrices, and reducing a real nonsymme- 
tric matrix to the upper-Hessenberg form using Householder’s transfor- 
mations are discussed in detail. The ARPA network, a highly sophisticated 
and wide ranging experiment in the remote access and sharing of 
computer resources, is briefly described and its current status discussed. 
Many researchers located about the country who will use Illiac IV in 
solving problems will do so via the network. The various systems, 
hardware, and procedures they will use is discussed. 

Introduction 

It all began in the early 1950’s shortly after EDVAC [“Electronic 
Computers,” 19691 became operational. Hundreds, then thou-
sands of computers were manufactured, and they were generally 
organized on Von Neumann’s concepts, as shown and described in  
Fig. 1. In the decade between 1950and 1960, memories became 
cheaper and faster, and the concept of archival storage was 
evolved; control-and-arithmetic and logic units became more 
sophisticated: IiO devices expanded from typewriter to magnetic 
tape units, disks, drums, and remote terminals. But the four basic 
components of a conventional computer (control unit (CU), 
arithmetic-and-logic unit (ALU), memory, and I/O) were all 
present in one form or another. 

The turning away from the conventional organization came in 

’Subsetted from Proc. IEEE,  April 1972, pp. 369-388. 

1 I 
b 

INPUT/OUTPUT ARITHMETIC AND 

WOI LOGIC UNIT 
(ALU) 

?
I 1 


MEMORY
I I 

Fig. 1. Functional relations within a conventional computer. The CU 
has the function of fetching instructions which are stored in mem- 
ory, decoding or interpreting these instructions, and finally gen- 
erating the microsequences of electronic pulses which cause the 
instruction to be performed. The performance of the instruction 
may entail the use or “driving” of one of the three other compo- 
nents. The CU may also contain a small amount of memory called 
registers that can be accessed faster than the main memory. The 
ALU contains the electronic circuitry necessary to perform arith- 
metic and logical operations. The ALU may also contain register 
storage. Memory is the medium by which information (instruc- 
tions or data) is stored. The I/O accepts information which is in- 
put to or output from Memory. The I/O hardware may also take 
care of converting the information from one coding scheme to 
another. The CU and ALU taken together are sometimes called 
a CPU. 

the  middle 1960’s, when the law of diminishing returns began to 
take effect in the effort to increase the operational speed of a 
computer. Up until this point the approach was simply to speed 
u p  the operation of the electronic circuitry which comprised the 
four major functional components. (See Fig. 1.) 

Electronic circuits are ultimately limited in their speed of 
operation by the speed of light (light travels about one foot in a 
nanosecond) and many of the circuits were already operating in 
the nanosecond time range. So, although faster circuits could be 
made, the amount of money necessary to produce these faster 
circuits was not justifiable in terms of the small percentage 
increase of speed. 

At this stage of the problem two new approaches evolved. 

1 	Overlap: The hardware structure of the conventional 
organization was modified so that two or more of the major 
functional components (or subcomponents within a major 
component) could overlap their operations. Overlap means 
that more than one operation is occurring during the same 
time interval, and thus total operation time is decreased. 

306 



Chapter 20 1 The Wac IV System 307 

Before operations could be overlapped, control sequenc- 
es between the components had to be decoupled. Certainly 
the CU could at least be fetching the next instruction while 
the ALU was executing the present one. 

2 	 Replication: One of the four major components (or subcom- 
ponents within a major component) could be duplicated 
many times. (Ten black boxes can produce the result of one 
black box in one-tenth of the time if the conditions are 
right.) The replication of I/O devices, for example, was a 
step taken very early in the evolution of digital 
computers-large installations had more than one tape 
drive, more than one card reader, more than one printer. 

Since the above two philosophies do not mutually exclude each 
other, a third approach exists which consists of both of them in a 
continuously variable range of proportions. 

The overlapping philosophy was implemented largely through 
the buffer and pipeline mechanisms. The pipeline mechanism (see 
Fig. 2) breaks down an operation into suboperations, or stages, 
and decouples these stages from each other. After the stages are 
decoupled they can be performed simultaneously or, equivalent- 
ly, in parallel. The buffer mechanism allows an operation to be 
decoupled into parallel operation by providing a place to store 
information. 

The replication philosophy is exemplified by the general 
multiprocessor which replicates three of the four major compo- 
nents (all but the I/O) many times. The cost of a general 
multiprocessor is, however, very high and further design options 

were considered which would decrease the cost without seriously 
degrading the power or efficiency of the system. The options 
consist merely of recentralizing one of the three major compo- 
nents which had been previously replicated in the general 
multiprocessor-the memory, the ALU, or the CU. Centralizing 
the CU gives rise to the basic organization of a vector or array 
processor such as Illiac IV. This particular option was chosen for 
two main reasons. 

1 	 Cost: A very high percentage of the cost within a digital 
computer is associated with CU circuitry. Replication of 
this component is particularly expensive, and therefore 
centralizing the CU saves more money than can be saved 
by centralizing either of the other two components. 

2 	 Structure: There is a large class of both scientific and 
business problems that can be solved by a computer with 
one CU (one instruction stream) and many ALUs. The same 
algorithm is performed repetitively on many sets of differ- 
ent data: the data are structured as a vector, and the vector 
processor of Illiac IV operates on the vector data. All of the 
components of data structured as a vector are processed 
simultaneously or in parallel. 

The Illiac IV project was started in the Computer Science 
Department at the University of Illinois with the objective of 
developing a digital system employing the principle of parallel 
operation to achieve a computational rate of lo9instructions/s. In 
order to achieve this rate, the system was to employ 256 

1 

Fig. 2. Pipelined operation. The large boxes represent the circuits required to transform the operands A and B into the Quantity O(A, B) 
(some function of A and B, say, the sum of A and B). The smaller boxes represent storage stages for the intermediate results O(A, B)t and 
O(A, B)2 and the desired result O(A, B). The operation 0 has been broken down into three stages, each of which accepts as input the output 
of the previous stage, and all of which perform a stage of the operation at the same time. At each step of the timing cycle, the pipeline 
accepts a new pair of operands (A, B) and the previous pair moves to the next stage. This mode of operation causes results (the sum in this 
example) to appear at the end of the pipeline at time intervals equal to the time of operation of the slowest stage of the pipeline. 



308 Part 2 I Regions of Computer Space 

processors operating simultaneously under a central control 
divided into four subassembly quadrants of 64 processors each. 
Due primarily to subcontractor problems several basic technologi-
cal changes were necessitated during the course of the program, 
principally, reduction in individual logic-circuit complexity and 
memory technology. These resulted in cost escalation and sched-
ule delays, ultimately limiting the system to one quadrant with an 
overall speed of approximately 200 million instructions/s. It is this 
one-quadrant system that will be discussed for the remainder of 
this paper. 

The approach taken in Illiac IV surmounts fundamental limita-
tions in ultimate computer speed by allowing-at least in 
principle-an unlimited number of computational events to take 
place simultaneously. The logical design of Illiac Tv is patterned 
after that of the Solomon [Slotnick, Borck, and McReynolds, 1962; 
Slotnick, 19671 computers, prototypes of which were built by the 
Westinghouse Electric Corporation in the early 1960’s. In this 
design a single master CU sends instructions to a sizable number 
of independent processing elements (PEs) and transmits address-
es to individual memory units associated with these PEs (“PE 
memories,” PEMs). Thus, while a single sequence of instructions 
(the program) still does the controlling, it controls a number of 
PEs that execute the same instruction simultaneously on data that 
can be, and usually are, different in the memory of each PE. 

Each of the 64 PEs of Illiac IV is a powe&l computing unit in 
its own right. It can perform a wide range of arithmetical 
operations on numbers that are 64 binary digits long. These 
numbers can be in any of the six possible formats: the number can 
be processed as a single number 64 bits long in either a fixed or a 
“floating” point representation, or the 64 bits can be broken up 
into smaller numbers of equal length. Each of the memory units 
has a capacity of 2048 64-bit numbers. The time required to 
extract a number from memory (the access time) is 188 ns, but 
because additional logic circuitry is needed to resolve conflicts 
when two or more sections of Illiac IV call on the memory 
simultaneously, the minimum time between successive opera-
tions of memory is increased to 350 ns. 

Each PE has more than 100,000 distinct electronic components 
assembled into some 12,000 switching circuits. A PE together 
with its memory unit and associated logic is called a processing 
unit (PU). In a system containing more than six million compo-
nents one can expect a component or a connection to fail once 
every few hours. For this reason much attention has been devoted 
to testing and diagnostic procedures. Each of the 64 processing 
units will be subjected regularly to an extensive library of 
automatic tests. If a unit should fail one of these tests, it can be 
quickly unplugged and replaced by a spare, with only a brief loss 
of operating time. When the defective unit has been taken out of 
service, the precise cause of the failure will be determined by a 
separate diagnostic computer. Once the fault has been found and 

Section 3 1 Concurrency: Single-Processor System 

Illiac IV could not have been designed at all without much help 
from other computers. Two medium-sized Burroughs 5500 com-
puters worked almost full time for two years preparing the 
artwork for the system’s printed circuit boards and developing 
diagnostic and testing programs for the system’s logic and 
hardware. These formidable-design, programming, and operating 
efforts were under the direction of Arthur B. Carroll, who, during 
this period, was the project’s deputy principal investigator. 

The Illiac IV system is scheduled for completion by the end of 
this calendar year; the fabrication phase is essentially complete 
with some final assembly and considerable debugging yet to be 
completed.’ 

Hardware Structure 

Illiac N in Brief 
As stated in the Introduction, the original design of Illiac IV 
contained four CUs, each of which controlled a 64-ALU array 
processor. The version being built by the Burroughs Corporation 
will have only one CU which drives 64 ALUs as shown in Fig. 3. It 
is for this reason that Illiac IV is sometimes referred to as a 
quadrant (one-fourth of the original machine) and it is this 
abbreviated version of Illiac IV that will be discussed for the 
remainder of this paper. For a more complete description of the 
Illiac IV architecture see Slotnick [1971]; Denenberg [1971];and 
Barnes et al. [1968]. 

One difference between Illiac IV and a general array processor 
is that the CU has been decoupled from the rest of the array 
processor so that certain instructions can be executed completely 

‘All of this work was sponsored under a Grant (Contract WAF 
30(602)4144)from the Advanced Research Projects Agency. 

L 
m 
-
0I 

YY 

U


k 

0= 
z 

0 
I-

3 


c 

v)

E 

-.
 ..A 


repaired, the unit will be returned to the inventory of spares. Fig. 3. Functional block diagram of llliac IV. 



Chapter 20 I The lllac IV System 309 

within the resources of the CU at the same time that the ALU is 
performing its vector operations. In this way another degree of ILLIAC IlT SYSTEM 

parallelism is exploited in addition to the inherent parallelism of 
64 ALUs being driven simultaneously. What we have is 2 
computers inside Illiac IV: one that operates on scalars, and one 
that operates on vectors. All of the instructions, however, 
emanate from the computer that operates on scalars-the CU. 

Each element of the ALU array is not called by its generic name I+?+](ALU) but is called a PE. There are 64 PEs, and they are PROCESSOR UNIT (CUl 

numbered from 0 to 63. Each PE responds to appropriate 
instructions if the PE is in an active mode. (There exist instruc- 
tions in the repertoire which can activate or deactivate a PE.) 
Each PE performs the same operation under command from the 
CU in the lock-stepped manner of an array processor. That is, 
since there is only one CU, there is only one instruction stream 
and all of the ALUs respond together or are lock-stepped to the 
current instruction. If the current instruction is ADD for example, 
then all the ALUs will add-there can be no instruction which will 
cause some of the ALUs to be adding while others are multiplying. 
Every ALU in the array performs the instruction operation in this 
lock-stepped fashion, but the operands are vectors whose compo- 
nents can be, and usually are, different. 

Each PE has a full complement of arithmetic and logical 
circuitry, and under command from the CU will perform an 
instruction “at-a-crack as an array processor. Each PE has its own 
2048 word 64-bit memory called a PE memory (PEM) which can 
be accessed in no longer than 350 ns. Special routing instructions 
can be used to move data from PEM to PEM. Additionally, 
operands can be sent to the PEs from the CU via a full-word 
(64-bit) one-way communication line, and the CU has eight-word 
one-way communication with the PEM array (for instruction and 
data fetching). 

An Illiac IV word is 64 bits, and data numbers can be 
represented in either 64-bit floating point, 64-bit logical, 48-bit 
fixed point, 32-bit floating point, %-bit fixed point, or 8-bit fixed 
point (character) mode. By utilizing the 64-bit, 32-bit, and 8-bit 
data formats, the 64 PEs can hold a vector of operands with either 
64, 128, or 512 components. Since Illiac IV can add 512 operands 
in the 8-bit integer mode in about 66 ns, it is capable of 
performing almost 10” of these “short” additionds. Illiac IV can 
perform approximately 150 million 64-bit rounded normalized 
floating-point additionsts. 

The I/O is handled by a B6500 computer system. The operating 
system, including the assemblers and compilers, also resides in 
the B6500. 

The Iliac N System 

The Illiac IV system can be organized as in Fig. 4. The Illiac IV 
system consists of the Illiac IV array plus the Illiac IV I/O system. 
The Illiac IV array consists of the array processor and the CU. In 

I I I I

LklLk-1 I l I  

1/0 SUBSYSTEM 96500 COMPUTERs,!$:ii& 

I I 
I I 

I I
I 

CONTROL DESCRIPTOR BUFFER INPUT/OUTPUT 
CONTROLLER I C W )  

Fig. 4. llliac IV system organization. 

PERIPHERALS 

1 

INPUT/OUTPUT SWITCH 

turn, the array processor is made up of 64 PEs and their 64 
associated memories-PEMs. The Illiac IV I/O system comprises 
the I/O subsystem, the disk file system (DFS), and the B6500 
control computer. The I/O subsystem is broken down hrther to 
the CDC, BIOM, and 10s.The B6500 is actually a medium-scale 
computer system by itself. 

The Illiac IV array will be discussed first, in a general manner, 
followed by two illustrative problems which indicate some of the 
similarities and differences in approach to problem solving using 
sequential and parallel computers. The problems also serve to 
illustrate how the hardware components are tied together. 
Finally, the IIliac IV I/O system is discussed briefly. 

The Illiac IV Array. Fig. 5 represents the Illiac IV array-the 
CU plus the array processor. 

CU. The CU is not just the CU that we are used to thinking of 
on a conventional computer, but can be viewed as a small 
unsophisticated computer in its own right. Not only does it cause 
the 64 PEs to respond to instructions, but there is a repertoire of 
instructions that can be completely executed within the resources 
of the CU, and the execution of these instructions is overlapped 
with the execution of the instructions which drive the PE array. 
Again, it is worthwhile to view Illiac IV as being two computers, 
one which operates on scalars and one which operates on vectors. 

The CU contains 64 integrated-circuit registers called the 
ADVAST data buffer (ADB), which can be used as a high-speed 
scratch-pad memory. ADVAST is an acronym for advanced station 
and is one of the five functional sections of the CU. Each register 
of the ADB (DO through D63) is 64 bits long. The CU also has 4 









































Chapter 21 I A Productive Implementation of an Associative Array Processor: STARAN 329 

B f  AND hi 
(UNCERI’A1Hi.Y 


I N  W I N G )  


APPROPRIATE 
CONFLICPS 


NEXT (FXRST) 

I I 
A L L  IWCERCEPIS 

I I 

Fig. 13. Conflict prediction. 

forced by the conflict resolution program to simulate pilot 
response to a ground controller’s collision avoidance maneuver 
command. Targets may have velocities between 0 and 600 knots, 
altitudes between 100 and 52,000feet, and altitude rates between 
0 and 3000 feet per minute. 

The conflict prediction program sequentially selects up to 100 
operator-designated “controlled or “AVA” aircraft, called refer- 
ence tracks in Fig. 13, and compares the future position of each 
during the look-ahead period with the future positions of all live 
and simulated aircraft and also to the static position of all terrain 
obstacles. Any detected conflicts cause conflict tags in the track 
word format to be set, making the tracks available for conflict 
display processing. A turn detection program not shown opens up 
the heading uncertainty for turning tracks. 

Display processing (Fig. 14) is a complex associative program 
which provides a variety of manage-by-exception display options 
and automatically moves operator-assigned alphanumeric identifi- 
cation display data blocks associated with displayed aircraft so as to 
prevent overlap of data blocks for aircraft in close proximity to one 
another on the display screen. Sector control, hand off, and 
quick-look processing is provided. 

I+/BCD CHAR. 

*I BCD CHAR. 
BEACON 

TAGBIT 

1 
SBIECT
“ 

ALTERNATIVE 

I 

AVA ’AND 
CONFLICT 

NO 


Fig. 14. Display processing. 

All programs listed in Table 2 were successfblly demonstrated 
at three different locations in three successive weeks, using live 
radar data from the Suitland radar at each location. The associative 
programs were operated directly out of the bulk core and page 0 
portions of control memory since there was no requirement, in 
view of the low 400 aircraft density involved, for the higher speed 
instruction accesses available from the page memories. At inter-
vals during the demonstration all programs were demonstrated at 
a speed-up of 20 times real time with the exception of the live data 
and AVA programs which, being real-time, cannot be speeded up. 
Timing data for the individual program segments will be available 
in the final report. The entire program executed in less than 200 
milliseconds per 2 second radar sector scan or in less than 10 
percent of real time. All programming effort was completed in 4% 
months with approximately 3 man-years of effort. This was the 
first and as of this writing the only actual demonstration of a 
production associative processor in a live signal environment 
known to the author. It was completed in June, 1972. Other actual 



330 Part 2 I Regions of Computer Space 

applications currently in the programming process at Goodyear 
involve sonar, electronic warfare and large scale data management 
systems. These will be reported as results are achieved. 

Fast Fourier Transform‘ 
The Fast Fourier Transform (FFT)is a basic operation in digital 
signal processing which is being widely used in the real-time 
processing of radar and sonar signals. The structure of the FFT 
algorithm is such that it can be segmented into many similar 
concurrent operations. Parallel implementation of the FFT can 
provide orders of magnitude speed increases over sequential 
computer execution times. The organization of STARAN lends 
itself to efficient manipulation of data in the FFT. 

The Air Force supplied real radar data (on tapes) to GAC to be 
transformed by the STARAN system. A 512-point, 16-bit FFT was 
performed on this real data in 2.7 milliseconds using only two 
MDA arrays. A 1024-point transform on real input data could be 
performed in about 3.0 milliseconds using all four arrays available 
at GAC’s STARAN evaluation and training facility. For comparison 
purposes, the following is a list of reported execution times for a 
1024-point, real input, FFT: 

Sequential computers 

XDS Sigma 5 660 msec 
IBM 360167 446 msec 
UNIVAC 11 08 190 msec (complex) 
UNIVAC 1108 (with array 29.2 msec (complex) 

processor attachment) 

Special purpose FFT systems 

Time/Data 90 System 28 msec 
ELSYTEC 306/HFFT 18 msec 
SPECTRA SYSTEM ’900’ 9.2 msec 

Sonar Post-Processing 
Sensor data processing can be split into two major categories- 
signal processing and post-processing. Signal processing is the 
area of the system where operations such as the FFT are 
performed; post-processing involves the sorting and editing of the 
signal processor output data to determine tactical information 
such as whether a real target is in the coverage area and where the 
target is. 

The job of sorting the spectral lines that result from the FFT 
operations is a formidable task, especially in a multi-sensor case. 
The trend has been for increasing the sensitivity of signal 
processing systems. The acoustic signal line sorting task that 
accompanies any increased sensitivity can be staggering. For 

T h e  passage beginning here is from Batcher. 

Section 3 I Concurrency: Single-Processor System 

instance, a 6 dB improvement in sensitivity, in a classified Navy 
sonar system, would result in increasing the target load by a factor 
of 16 and the computer processing load by a factor of 250 or more. 

A digital sonar signal processing system, under development at 
the Naval Air Development Center (NADC), requires that 
subroutines operate on the target spectral lines (outputs from an 
FFT) and other input data to form outputs suitable for later use in 
classification algorithms. Since the system is a multi-sensor 
system, these subroutines must process a very large volume of 
data in real time. The content addressability feature of STARAN 
provides the potential for significant performance gains due to the 
requirement for many searches in these post-processing subrou- 
tines. 

As a consequence of this potential improvement, NADC issued 
a contract to GAC to assess the comparative run times for the 
STARAN versus a large-scale conventional computer (the CDC- 
6600). NADC-developed algorithms for the most time consuming 
operations in the post-processor system were programmed on the 
STARAN computer. Real data was then processed on both the 
STARAN and, by NADC, on a CDC-6600. 

The STARAN executed the programs, using the real data, 200 
times faster than the CDC-6600. 

String Search 

A processing function used by several agencies for locating specific 
character strings (such as place names) in textual information, was 
developed for STARAN and tested on a sample data base. The 
same function was executed on a conventional computer (Sigma 5) 
for a timing comparison. The STARAN solution ran 100 times 
faster. This function is also applicable to nondefense applications 
such as patent, legal, and chemical information searches where 
cost of search may be a limiting parameter. 

Summary [Rudolph] 

Although several manufacturers are developing associative pro- 
cessor equipment, the first version to be produced in a production 
configuration was introduced in May of 1972 by Goodyear 
Aerospace Corporation following FAA on-site tests in 1971 at 
Knoxville, Tennessee of a WAF-owned engineering model built 
and demonstrated by Goodyear in 1969. 

The processor provides full content addressability and array 
arithmetic capability within “main frame” memory coupled with a 
unique capability for wide bandwidth (over 3000 megabitslsec for 
a 4-array STARAN) input-output data transfers to mass data stores. 
The associative programming language, APPLE, provides a 
flexible and convenient assembler for programming array arith- 
metic and search algorithms without the complex and costly 
indexing, nested loop and data manipulation constructions re-
quired in conventional computer programming. 



Chapter 21 

The associative processor may be viewed as a software-
programmable super-peripheral, or special purpose subsidiary 
processor, for attachment to any general purpose conventional 
computer system via standard channel attachment. In this role the 
super-peripheral is assigned parallel oriented problem segments 
and data bases which would otherwise, through excess operating 
system software overhead, tend to choke the conventional 
machine. 

Although first applications of the associative processor are of the 
real time, dedicated, command and control type, the extension to 
large scale data base management, on-line management informa- 
tion systems with immediate response to complex multiple-key 
queries, and large scale matrix computations await only user 
decision and ingenuity to accomplish now that production hard- 

i A Productive Implementation of an Associative Array Processor: STARAN 331 

ware and software has become available at the 3701145 price level. 
The cost effectiveness of associative processing has yet to be 

proven in operational systems, but test results from initial users 
should accumulate rapidly now that associative processing is no 
longer only an interesting concept in the literature. 

References 

Batcher [19741; Rudolph [19721;Batcher [1968];Feldman; Fulmer 
and Meilander [1970]; Minker [1971]; Rudolph, Fulmer, and 
Meilander [1971]; Slade and McMahon [1957]; Stillman [1972]; 
Stone [1971]. 



Section 4 

MuIti ple-Process0 r Systems1 

Introduction 

With the advent of larger-scale integrated circuits, it is possible to 
construct highly complex system building blocks. Indeed, design 
with mass-produced processors and memories as primitive com- 
ponents is now a viable, if not the only, approach to providing the 
advanced functionality that increasingly sophisticated users re- 
quire. We are entering an era where multiple-processor systems 
are not only an everyday occurrence but also a necessity. 

For the purposes of this discussion we will consider a multiple- 
processor system to be composed of two or more processors that 
are capable of independent instruction execution and able to 
exchange information through some interconnection mechanism. 
Thus array processors (such as the Illiac IV) and associative 
processors (such as STARAN) are excluded from the present 
discussion. 

The purpose of this section is threefold. First, the reasons 
motivating multiple-processor PMS structures are explored. 
Second, the issues in interconnecting multiple processors are 
illustrated. This represents a continuation of the interconnect- 
bus-switching discussion in Chap. 6 on computer space structure. 
This discussion of interconnection demonstrates that there is a 
continuum from processors sharing a common memory (those 
termed tightly coupled multiprocessors) to processors communi- 
cating via messages but cooperating on one task (termed loosely 
coupled, distributed multiple processors) and on to independent 
computer systems interconnected to share information (termed 
networks).The third, and last, purpose ofthis section is to provide 
examples of tightly coupled multiprocessors. Networks, a very 
mature interconnection technology, are described in Sec. 5. 

Motivations for Developing Multiple-Processor Systems 

The earliest form of multiple-processor systems was local comput- 
e r  networks designed to make efficient use of large uniprocessors 
by segmenting particular functions among particular machines. As 
an example, front-end processors would be dedicated to batch 
input and terminal control. Other processors might handle I/O 
spooling, as did the IBM attached support processors (Chap 52). 
Subsequently, geographically distributed networks evolved. 

’Parts of this section introduction are based on an unpublished research 
paper, “The Multiple-Processor Design Space,” by Daniel P. Siewiorek. 

There are several reasons for justifying a particularly network. 
The following list is adapted from Roberts [1967]: 

Load sharing. A problem (program and data) initiated at one 
computer that is temporarily overloaded is sent to another for 
processing. The cost of transshipment must clearly be less than 
the costs of delay in getting the problem processed. Load 
sharing implies highly similar facilities at the nodes of the 
network. 

Data sharing. A program is run at a node that has access to a 
large, specialized data base, such as a specialized automated 
library. It is less costly to bring the program to the data than to 
bring the data to the program. 

Program sharing. Data are sent to a computer that has a 
specialized program. This might happen because of the size of 
the program (hence, fundamentally the same reason as data 
sharing), but it might also happen because the knowledge (i.e., 
initialization and error rituals) to run the program is available 
at one computer but not at another. 

Specialized facilities. Within the network there need exist only 
one of various rarely used facilities, such as large random- 
access memories, special display devices, or special-purpose 
array processors. 

Message switching. There may be a communication task of 
such magnitude that sophisticated switching and control are 
worthwhile. 

Reliability. If some components fail, others can be used in their 
place, thus permitting the total system to degrade gracefully. 
(At the present state of the art, peripheral computers are 
needed to isolate the periphery from the unreliability of the 
network, and vice versa.) 

Peak computer power. Large parts of the total system can be 
devoted for short periods to a single task, if there are important 
real time constraints to be met. This depends on being able to 
fractionate the task into independent subtasks. 

Communication multiplexing. Efficient use of communication 
facilities is obtained by multiplexing a number of low-data-rate 
users. This may not be a reason for a network per se but may 
justify a larger network, provided that there is some reason for 
having one in the first place. 

Better communication. A community of users (e.g., a scientific 
or engineering community) that could mutually use the same 
programs and data bases and converse about these directly 
(i.e., not by writing about them but in the context of mutual 
use) might become a much more productive community, with 
less duplication of work and faster communication of results. 

Better load distribution through preprocessing. Some tasks 
require very high-data-rate communication with a computer. 
By doing preprocessing in a smaller computer, a reduced 
information rate can be sent to the more general system. 

332 



Meanwhile, multiprocessor systems were evolving. A multipro- 
cessor system is distinguished from a network in that in the 
former, processors share memory, whereas in the latter, proces- 
sors intercommunicate by a preestablished message protocol. As 
with networks, there are many reasons for justifying individual 
multiprocessor structures. A partial list might include: 

Peak computing power. The entire system can be devoted to a 
single problem. A multiprocessor system can solve problems 
with higher or more frequent interprocessor communication 
than a network, since interprocessor communications are more 
efficient. 

Perfomnancetcost. Advanced technology produces low-cost 
processors whose instruction/second/dollar ratio is 10 to 100 
times better than that of large, high-speed processors. Even 
though these low-cost processors have minimal functionality 
(simple instruction set, limited data types), there are special 
applications for which this fbnctionality is adequate. 

Availability and graceful degradation. Multiprocessor systems 
can be designed with no central, critical component. Thus 
failures can be configured out of a system for only an 
incremental loss in computing power. Multiprocessors are 
more cost-effective than uniprocessors with respect to the 
relative cost of redundancy. A uniprocessor system requires 
redundant hardware for failure detection, diagnosis, and 
recovery. A multiprocessor need only have hardware for failure 
detection while relying on the nonaffected processors to 
perform the diagnosis and recovery in software. 

Modular growth. Systems can be designed so that processors, 
memories, and I/O subsystems can be added incrementally. 
Thus systems can be tailored to individual applications or grow 
incrementally to meet demand. 

Functional specialization. Functionally specialized processors 

Table 1 Generic Processor Interconnection Mechanisms 

System type Interconnection Data transfer rate, bitis 

Multicomputer Serial line 7 x 103 
systems 
(networks) 

Serial bus 1 x 106 

Bus link 8 X lo6 

Multiprocessor 
systems Bus switch 18 X lo6 

Bus window 19 x 106 

MuI ti ported 25 X lo6 
(shared) memory 

Section 4 I Multiple-ProcessorSystems 333 

can be added to improve performance for a particular applica- 
tion. 

The next section examines some generic processor interconnec- 
tion schemes and illustrates the continuum of computer structures 
between networks and multiprocessors. Subsequently, parame- 
ters of this design space are presented and the space illustrated by 
examples of existing multiple-processor systems. 

General Multiple-Processor Structures: A Continuum 

The computer structure space ranging from networks to multipro- 
cessors can be viewed as a near continuum where cost and 
performance increase as more hnctions are built into hardware 
(Figs. 1-3). Table 1depicts the generic interconnection mecha- 
nisms for a two-processor system. The mechanisms can be con- 
trasted along several dimensions: 

Data-transfer protocol. The effort required to transfer a single 
item of information. This may vary from complete coordination 
of software running on both processors for each individual item 
(e.g., serial line) to requests resolved automatically by hard- 
ware (e.g., multiported memory). 

Performance. Maximum number of bits transferred per sec- 
ond. 
Interpretation. Whether the information items can be used 
directly by the other processor (as in shared memory), or 
whether the total or partial information has to be interpreted 
(as in messages). 

Initialization protocol. The effort to establish an information 
transfer . 

Cost, $ Costibitis, $ Overhead 

800 0.1 15 Software data transfer 
Software initialization 

1,700 

4,500 

0.0017 

0.00056 

Hardware data transfer 

Hardware data transfer 
Software initialization 

Software initialization 

8,500 
10,000 

7,000 

0.00047 
0.00053 

0.00028 

Hardware initialization 
Hardware initialization 
and transfer 

Software-initialized mapping 
Hardware initialization 
and transfer 



334 Part 2 I Regions of Computer Space Section 4 I Multiple-Processor Systems 

(a) Multiported memory [Chapter 221 

4 

(d) Berkeley PRIME (19721 

Fig. 1. Examples of tightly coupled multiprocessor systems. 

Grunubrity of access. In principle, any interconnection 
mechanism can handle single-item transfers. However, the 
overhead associated with a complete transfer may dictate that 
several items be blocked together for efficiency. The size of 
this block is the granularity of access, and it may range from 
several thousand words to one word. 

Notes 
1 S[processor busl 
2 SLbusswitch; T M I  
3 Siexternal busl 
4 Ms [disk I tape I --- I 

(b) Bus switch [DEC19731 

1 

Notes 

1 S [processorbusl 

2 S[bus window;simplexl 

3 MsIDisk I tape I ...1 


(c) Bus window [DEC 19731 

The generic multiple-processor interconnection mechanism will 
be discussed with respect to each of these dimensions. 

First, consider multiple-computer systems or networks where 
communication is tYPicab by large blocks. In order to compare 
the effective performance of the generic multiple-processor 
structures, models will be developed for the time to set up 



I 

Section 4 1 Multiple-Processor Systems 335 

1 S[Simplexl 

U 

(e) SIFT [Wensley et al. 19781 


L I I

I n  I 1 - 1 


Interface to 
communication 
subsystem 

(f) Pluribus [Chapter 231 ... 

(el Cm' [Swan et al. 1977, Fuller et al. 19781 


Fig. 1. (cont.). 



336 Part 2 1 Regions of Computer Space Section 4 I Multiple-Processor Systems 

B 


Notes 
1 SIprocessor busl 
2 L[buslinkl 

1 S[modes: bypass lvoterl (a1 Bus link [DEC 19731 2 !-[parallel line interface1 

(b) C .vmp [Siewiorek et al. 19781 

Notes 
1 S[global busl 

(c) Global bus 

I 

1 
T 

(el FTMP [Hopkins et al. 19781 

1
I 

I 

Notes 
1 S[dynabusl 

Id) Tandem [Chapter 291 

Fig. 2. Examples of loosely coupled multiprocessor systems. 



I 

(initialize) and the time to perform a block (data) transfer. A 
summary table will then be constructed to compare the initializa- 
tion overhead, the block transfer overhead, and the minimum 
response time (granularity of access). In order to have a common 
basis of comparison for the various structures, it will be assumed 
that all the decisions have been made about the data transfer and 
all parameters have been calculated. 

Serial line. The serial line is the earliest and simplest form 
of interconnection. A hardware interface is provided for 
character (8-bit) or word transfers (see Figs. 3a and 4). The 
hardware serializes the datum and sends it to the other 
interface, which causes a condition the software can sense 
on completion of the transfer (e. g., setting a flag or posting 
an interrupt), Speed is usually in the 110- to 9,600-baud 
range. Software in each computer has to establish a 
conversation (usually via the serial line), pick a transfer 
direction, and agree upon the format and length of the data 
to be transferred (see data transfer protocol in Fig. 4). Since 
the initialization overhead is so large, only block transfers of 
data are economically feasible. 

Figure 5 depicts the timing for a single item data transfer 
for a serial line. A datum is placed in the serial line register, 
and at a time equal to Tslater it is assembled in the receiver 
and an interrupt generated. The receiver calculates for b 
before issuing an acknowledge character. At a time equal to 
Ts later, the sender is interrupted and spends a time units 
processing the acknowledgment. The initialization process 
requires several such character transmissions and acknow- 
legments to pass the block transfer parameters (characters 
from sender might consist of a SEND command and block 
identification; characters from the receiver might consist of 
a START OF TRANSFER command and a length). Each 
item of the block is also sent by a transmission-acknowledg-
ment pair. Table 2 symbolically lists the initialization time 
(assuming one word for each of the four initialization 
parameters), data transfer time (assuming Db bytes of data), 
and minimum response time (time to transfer 1 byte of 
data). 
SeriaZ bus. The serial bus is a high-speed serial interconnec- 
tion between serial bus interfaces (the loop in Figs. 3c and 
6). Typically the interface is given a pointer to a software 
formatted memory block containing transmission informa- 
tion (e.g., destination and block length) and data (e.g., 
software-interpreted commands or data). The interface 
generates message-header, source, and error-detection 
code fields. The interface also inserts the software-
generated destination, length, and data fields. The resul- 
tant message is placed on the serial bus during the next bus 
idle period. When transmission has been completed, a flag 
is set or an interrupt is posted. The receiving portion of the 
interface scans messages for a match between processor 
number and destination field. When a match occurs, the 
source, length, and data fields are assembled at a specified 
location in memory (via direct memory access after each 

(a Serial Line 

(b) ARPANET [Chapter 241 

(c) Loop [Farber 19751 

(e) ALOHANET [Chapter 251 

Fig.3. Examples of networks. 

337 



Hardware registers 

d 	 d
Send 	 Receive8 	 8 


Serial-line unit 

Control <15:0> 	 initialization and data transfer 
(bits1 15 ... 7 6  ... 0 15 . . .  7 6  . . . 0 

Send Transmit Receive 

Data <7:0> 	 time 

Data transfer protocol 1 
Send requesting information (bytes) 

I I 
a = sender processing time 

I I 

Request Identifier 	 b = receiver processing time 
T = transmission time for 8-bit charactei8 

Receive information and identifier (bytes) 	 n = number of characters 

I i I . . .  	
time = n la+ b+2T81 

I 

Fig. 5. Timing for a single item data transfer over a serial line. 

Fig. 4. Hardware registers and data transfer protocol for a serial line 

unit. 


Table 2 Summary of Generic Processor Interconnection Performance 

Interconnection Performance, Minimum response time 

techniaue bitls Initialization Data transfer (granularity) 


~ 

1.  Serial-line 7 x lo3 8(a + b+2Ta) Db(a + b+2T8) 2(a + b+2Ta) 

unit 


2. Serial bus 1 x 106 8Tb(Ob+Rb)+b 8Tb(Ob+ Db) + a  + b 8Tb(20b+ Rb + 1)  + a  +b 
3. Bus link 8 X 106 3(a + b + 2T,) a+(l/2)T,~,$b 2(a + b + 2T,) 
4. 	Busswitch 18 x lo6 a + b  040% degradation a + b 


on each access 

5. Buswindow 19 x lo6 a + b  +T,  0-50% degradation a + b + T, 


on each access 

6. 	Multiported 25 X lo6 1 instruction 0-20% degradation 2 instructions 


memory 


For 	 a =b=lOOTD Ta=573T, Db=1,024 

Tb=(l /2)T, Ob=6 instruction time = 4 ps  

TDMA=T, Rb=4 T,= 2ps 


Interconnection Minimum response 

technique Initialization Data transfer time 


1 .  	Serial-line 1 0,768TD Db(1346Tp) 2(1,346T~) 

unit 21.5 ms 2,756 ms 5.4 ms 


2. Serial bus 140T, 8T,(6+Db)+200TD 336TD 
0.28 ms 16.9 ms 0.67 ms 

3. Bus link 606T, 1o0TD+(1 /2)TDDb 404T, 
1.2 ms 1.2 ms 0.8 ms 

4. Bus switch 200TD . . . . . . . . . . . . . . . .  200T, 

0.4 ms . . . . . . . . . . . . . . . .  0.4 ms 


5. Buswindow 201 T, . . . . . . . . . . . . . . . .  201T, 

0.4 ms . . . . . . . . . . . . . . . .  0.4 ms 


6. Multiported memory 2T, . . . . . . . . . . . . . . . .  4T, 

0.004 ms . . . . . . . . . . . . . . . .  0.008 ms 


338 



-- 
-------- 

Section 4 1 Multiple-Processor Systems 339 

Hardware registers 

Send d Receive6 

(bits) 15 ... 7 6  . . a  0 15 7 6  . . a  0 

Block pointer 
<15:0> 

Data <7:0> u 

Block format in memory (words) 

I SourceIDestinationfLength 

Bus message 

Number 
of  bits 

6 5 5 16 . . .  16 

Fig. 6. Hardware registers and bus transfer protocol for a 
serial bus. 

serial word is received). Finally the interface checks the 
error-detection code field, posts an error flag if an error is 
detected, and either sets a flag or posts an interrupt to 
notify the processor of a received message. 

The nondata information in a message (header, source, 
destination, length, and error code) may require 40 to 180 
bits and represents overhead that cuts down the effective 
data transfer rate. Serial bus speeds range from 1 to 3 
million bits per second. 

Figure 7 depicts the initialization and data transfer 
timings. Table 2 lists the initialization, data transfer, and 
minimum response times. 
Bus link. The bus link is a half-duplex parallel interconnec- 
tion between two buses (Figs. 2a and 8). Both single-word 
transfers and block transfers may be supported. The 
word-transfer mode can be used to exchange initializing 
information (e.g., word count and starting address) for block 

x-----------


arb(0b + R b )L----------

Data transfer 

Send Transmit Receive 

----------x 


a [  

Db = number of bytes of  data 
a = sender processing t ime 
t ime = a + b f 8Tb(Rbf 0, + 2%) 

Fig. 7. Timing for a serial bus transfer. 

transfers. Control information-. g., direction of transfer, 
mode of transfer (word or block), and interrupt request-is 
passed between the buses by special hardware status bits, 
thus hrther simplifying the communications software. 
Once the bus link is initialized (with word count, starting 
address, transfer direction, and mode), the block transfer 
can begin. The source bus uses its address for a direct 
memory access (DMA) to pick up the first item in the block. 
The word count is decremented, the address incremented, 
and the item passed to the other bus. The second bus starts 
a DMA cycle using its address for storing the item. The 
transmission is completed by decrementing word count and 
incrementing the address on the second bus. When a word 
count reaches zero, an interrupt is generated on the 
appropriate bus I 

Due to the initialization protocol, interprocess communi- 
cations tend to have a large granularity. Speed of the block 
transfer is usually one-third to one-half memory speed 
because of the memory-bus protocol overhead for DMA. 
Figure 9 and Table 2 depict the various timings for the bus 
link. 

In multiprocessor systems the various processors can alternate- 
ly access the same memory on a word-by-word basis. The generic 
mechanisms are: 

Bus switch. The bus switch electronically connects a shared 
bus to one of two processor buses (see Figs. l b  and 10).The 



340 Part 2 1 Regions of Computer Space Section 4 I Multiple-Processor Systems 

Hardware registers (Send and Receive1 

(bits) 15 14 * 11 10 9 .. 7 6 -
Request f rom other bus 

Word count <15:0> 

Bus address <15:0> 1 

Data buffer<l5:0> 

Data transfer protocol 

Send requesting information (bytes) in word mode 

Request Bus address 

Receive information in direct memory access (DMA) mode 

Fig. 8. Hardware registers and data transfer protocol for a bus link. 

shared bus may consist of both shared peripherals and 
memory. Software on one processor bus can request the 
switch to attach the shared bus. If the shared bus is not 
currently assigned, the switch connects the shared bus and 
notifies the requesting processor by raising a control signal 
or generating an interrupt. 

If the shared bus is being used, the currently connected 
processor is notified. The currently connected processor 
must remove its request for connection within a specified 
time, or else the switch automatically cancels the request. 
In either case, upon request cancellation, the shared bus is 
connected to the new processor and the new processor is 
notified. 

The shared bus may appear to be slower than the 
processor bus because of delays imposed by the switch. 
Processors frequently perform some internal computations 
after asserting a bus request. If the memory access time 
plus the switch delay is less than the time of this internal 
computation, no degradation of the shared bus performance 
is seen by the processor. Figure 11,and Table 2 show the 
different timings for the bus switch. 

Bus window. The bus window provides full-duplexed 
address-space sharing between two buses (Figs. l c  and 12). 

3 2 1 
-
Request to other bus 

I 

Word count 

The window intercepts memory access requests for a range 
of addresses on one bus and translates them to a program- 
settable range on the target bus. Target-bus accesses are 
performed by a DMA bus cycle. The window may be 
enabled for bidirectional or unidirectional read/write or 
read-only accesses. In addition, the window can be totally 
disabled for independent processing. 

As in the bus link, the window has control bits wired 
between the buses for exchange of initialization and 
cooperation information. When disabled, the window can 
be used for single-word transfers in order to exchange more 
extensive information (e.g., identity of memory block to 
share). If peripheral devices have control registers in the 
memory- address space, the window can be used for both 
memory and peripheral sharing. 

Figure 13 and Table 2 illustrate the various times 
associated with the bus window. As with the bus switch, 
delays imposed by the bus window may or may not be seen 
as degradation by the processor. Additional information on 
bus-link, bus-switch, and bus-window-like mechanisms can 
be found in DEC [1973]. 

Multiported memory. A general multiported memory is 
shown in Fig. la. Processors make requests to memory, 
which the individual memories arbitrate and grant. Arbitra- 



---------- 
----- 

Section 4 I Multiple-Processor Systems 341 

Bus link 

Initialization 

Send Transmit Receive 
timeI x-- --------

51 Request information 

Tp 
' r---------d

" t  
Tp = time to transmit a parallel word 
b = receiver processing time 
a = sender processing time 
I = number of words of initlalizing information 

Data transfer 

tiye Send Transmit Receive 

i t 
TOMA= time to direct memory transfer one word 
Db = number of bytes of data 
time = I ( a + b + 2 T p ) + ( D b / P ) T D M A + a  

Fig. 9. Timing for a bus-link transfer. 

tion is usually round robin and access is granted for only a 
single-word transfer. 

As with the bus window, addresses may be translated to 
allow a larger physical address space to be accessed by a 
smaller processor address space. Thus initialization consists 
simply of loading an address translation register. 

Figure 14 and Table 2 depict the multiported memory 
timings. The memory arbitration logic may or may not 
constitute a performance degradation. (See the foregoing 
description of the bus switch.) 

Hardware register for each bus 

Request from other bus 

Fig. 10. Hardware register for a bus switch. 

Bus switch 

Initialization Current bus 
Requester owner

time 
x - - _ _ _ _ _ _ _ _ _ _ _  

-___---_--- -7b1 
b = current bus owner interrupt processing 

time 
a = requester interrupt processing time 

Data transfer 

Degradation on each access 0-50% 

Fig. 11. Timing for a bus-switch transfer. 

Multiple-Processor Space 

Multiple-processor structures represent points in the design- 
space continuum. In this section we will present parameters of 
that design space. A structure is more accurately described when 
more parameters are given, until, in the limit, there is a unique 
specification of the structure. In order for structural comparisons 
to be useful, the number of parameters should be limited. 
Further, each parameter should allow inferences about other 
system attributes. 

Table 3 presents some parameters that may be used to 
categorize multiple-processor systems. The parameters are ar-
ranged in decreasing order of generality. The first parameter, 
node type, allows inferences to be made about the expected range 
of interconnections, performance, and implementation. However, 
subsequent parameters are required for a more complete under- 
standing of the structure. The reader is invited to suggest other 
parameters (such as concurrency and deadlock control) or to 
rearrange the given parameters so that the most information is 
transmitted by the fewest parameters. The parameters in Table 3 
are discussed beginning on the next page. 

Request to other bus 



342 Part 2 I Regions of Computer Space Section 4 1 Multiple-Processor Systems 

(bits1 15 14 13 12 11 10 9 8 1 0 

1 Status information from other bus 

Relocation address 
<15:0> 

Output data 
<15:0> 

Input data <15:0> 

Memory mapping 

Physical address Physical address 
I
I I 110 

24K 

16K 

8K 

Fig. 12. Hardware registers and memory mapping for a bus window. 

Node types.  Nodes in the multiple-processor structure may 
be identical PMS components (homogeneous) or different 
PMS components (nonhomogeneous). Nonhomogeneous 

Bus window structures are usually composed of memory- and processor- 
type nodes. Thus a nonhomogeneous system implies a 

Initialization 
shared memory system. 

Requester Transmit Target bus 

time -- -- - - - - Homogeneous structures are mostly multicomputer in 
nature (there are notable exceptions). This implies a

Cooperation 
TP t----- information, computer network with local, unshared memories and I -- - --+ shared data communication via messages through a coupled I/O subsys-

identification tem.I
v---- --
T = time t o  transmit a parallel word 

b = target bus interrupt processing time Initialization 

a = requester interrupt processing time Load relocation address location register 

Data transfer Data transfer 

Degradation on each access 0-50% Degradation on each cycle 0-20% 

Fig. 13. Timing for a bus-window transfer. Fig. 14. Timing for a multiported memory transfer. 



1 

Section 4 I Multiple-Processor Systems 343 

Table 3 Multiple-Processor Design-Space Parameters 

Dimensions 

Node types 
Nonhomogeneous 
Homogeneous 

Memory system 
Logical structure of address space 

Local 
Shared 

n 
n(m) 

Protection 

None 

Object 

Capability 


Physical structure of memory 

Size 


Immediate 

System 


Redundancy 

RepIicati on (*r) 

Coding 


Parity (*p) 
Hamming (*h) 

Memory switch 
Logical structure 

Accessibility 

All 

Partial 


Overlapped 
Multiple disjoint 

Access time 

Un iform 

Hierarchical 


Physical structure 
Interconnection 

Direct (circuit-switched) 
Logical paths 

(message-switched) 
Growth rate 


Linear 

Polynomial 


Concurrency 

Processor-memorydata paths 
Width of data path 
Sharing 


Simplex 

Half-duplex 

Full-duplex 

Half-multiplexed 

Full-multiplexed 

Broadcast 


Data rate 
Delay 

I10 system 
Logical structure 

I/O initialization 

Uniform from all processors 

Partial 


I/O data transmission 
Uniform to all processors/memory 
Partial 

Access Time 

Uniform 

Hierarchical 


Physical structure 

Size 

Data rate 

Interconnection 


Direct (circu it-swi tched) 
Logical paths (message-switched) 

Growth rate 

Linear 

Polynomial 


Concurrency 
Sharing 


Simplex 

Half-duplex 

Full-duplex 

Half-multiplexed 

FuII-muItiplexed 

Broadcast 


Ratios 
Memory bandwidth/processor bandwidth 
I/O bandwidth/memory bandwidth 

lnterprocessor communication 
lnterprocessor interrupt 
Pseudointerrupt device 
Segment typing 
Mailboxes 



344 Part 2 1 Regions of Computer Space 

The relationship of processors to memories is the single most 
important attribute for distinguishing between various multiple- 
processor systems. The dimensions have been divided into three 
areas: memory system, memory switch, and processor-memory 
data paths. 

Memory system. The logic structure of the address space is 
the virtual memory the programmer must manipulate (Fig. 
15). The address space may be shared or local. Local 
address spaces are associated with a processor. Any data 

Fig. 15. The logical structure of the shared address space. 

Type Logical Physical 

Map, 

Local 

Mapz 

Shared 

U 

Section 4 1 Multiple-Processor Systems 

sharing would have to be under program control, thus 
implying easy enforcement of data protection but a large 
granularity for data access. An integer in parentheses 
indicates the number of local address spaces. 

Shared memory may consist of one large address space or 
n address spaces mapped into a large physical address 
space. A number in parentheses indicates the number of 
distinct sets of address maps for each address space. Data 
sharing is efficient, but some form of protection mechanism 
must be provided. Access may be restricted on an object 
basis (i.e., a processor has no authority to write, read, 
execute, etc., from the shared memory segment) or on a 
capability basis (i.e., software processes have no capability 
to write, read, execute, etc., a shared memory segment or 
request another software process to perform the operation 
for it). 

The physical structure of memory includes the size 
immediately accessible to a processor and the total system 
size. The memory may also include redundancy for reliabil- 
ity purposes. The redundancy can take the form of full 
replication (represented by an integer r), parity (p), or 
Hamming code (h). 

Memory switch. The memory switch provides access to 
shared memory (Fig. 16). It is not present in systems with 
only local memories whose communication is through the 
IiO system (see below). 

The logic structure of the memory switch includes those 
attributes that impact a system’s programmer. The accessi- 
bility of shared memory impacts problem decomposition, 
interprocess communication, and the form of data struc- 
tures. All of shared memory may be accessible from all 
processors, only a portion of shared memory may be 
accessible to each processor with suitable overlap to 
provide shared access, or subsets of processors may share 
portions of memory disjointed from the rest of memory. 

The system’s programmer is also interested in whether 
the access time to shared memory is uniform or hierarchial, 
i.e., whether access time varies as a function of the physical 
structure of memory. 

An important aspect of the physical structure of the 
memory switch is the interconnection discipline. 

Path discipline. One of the key problems in multiple- 
processor systems (or any system with multiple, shared 
resources) is the prevention of deadlocks. The path disci- 
pline suggests the approach taken to deadlock resolution on 
the interconnecting data paths. 

A set of activities is defined to be deadlocked when no 
activity can proceed without acquiring a resource already 
held by another activity [Habermann, 19721.The necessary 
conditions for deadlock are: (1) resources must not be 
sharable or preemptable, (2) resources must be retained 
while an activity is acquiring further resources, and (3) 
there must be a circularity in the resource requirements of 



Section 4 I Multiple-ProcessorSystems 345 

Accessibility Physical memory 

All 

Partial 
overlap 

0 

Multiple 

disjoint 


Fig. 16. Memory switch logicalstructure. 

the activities. There are at least three ways of dealing with 
deadlocks: deadlock prevention, deadlock avoidance, and 
deadlock detection and recovery. In deadlock prevention a 
static analysis is made of a system with known interconnec- 
tion demands and the system is constructed so that no 
deadlock can ever occur. Since the analysis is made on the 
static system, there is no overhead during system opera- 
tion. A major disadvantage of deadlock prevention is that it 
is geared to worst-case assumptions about the dynamic state 
of the system. Consequently system resources may be 
poorly utilized. Deadlock avoidance employs the current 
state of the system to determine whether a request for 
resources can lead to potential deadlock. A possible in- 
crease in resource utilization may thus occur over what 

deadlock prevention affords because of the dynamic nature 
of the allocation. Deadlock detection and recovery is used 
in systems where deadlocks are allowed to occur; resource 
utilization may increase, but the recovery mechanism is 
often costly. 

Generally either deadlock prevention or detection and 
recovery is used for the data paths. Potential for deadlocks 
exists only in systems where multiple paths are required for 
one information exchange. In circuit switching, each path is 
obtained in a sequential manner until the information path 
is completed. Deadlock prevention is usually employed for 
performance considerations, since a deadlock detection 
mechanism would be quite complex in order to recognize 
deadlocks from general system congestion and would also 
represent a single point of system failure. 

In message switching, each physical path is held only 
long enough to pass a message from one buffer to another. 
Messages proceed in an incremental fashion to their 
destination. Buffers are thus the resources which may 
deadlock. Rather than restrict the interconnection patterns, 
message-switched systems frequently provide more buffers 
than required in a worst-case situation (as does Cm*) or a 
sufficiently large number of buffers so that the probability of 
deadlock is arbitrarily small (as does the ARPANET). 

Finally, the growth rate of the switch complexity is 
important, since it affects cost, while switch concurrency 
(i.e., the number of accesses that can be in progress 
simultaneously) dec t s  both cost and performance. 

Processor-memory data paths. There are several subdimen- 
sions required to specify the data-path dimension. Widthof 
data is the number of data bits transmitted simultaneously. 
Data rate is the number of bits transferred per second. 
Dekzy is the amount of time from the initialization of a 
transfer at the source to its reception at the destination. 
Thus delay is a measure of physical proximity of sources and 
destinations. Finally, sharing indicates the control disci- 
pline used on the data paths. On a simplex line, information 
is passed in only one direction and no arbitration is 
required. A half-duplex line allows information to flow from 
one point to another in one direction at a time. However, 
arbitration must be used in order to turn the line around for 
information flow in the other direction. Full-duplex allows 
simultaneous, bidirectional information flow between 
points. Half-multiplexed allows information to flow in one 
directon either from one point to one of many points or 
from one of many to one. Such a scheme can be used in 
multiported memories, and because of the unidirectional 
information flow, very efficient arbitration techniques exist. 
Full-multiplexed allows bidirectional infermation flow be-
tween many sources and destinations in a one-at-a-time 
manner (a common example is a bus). Arbitration overhead 
for data-path usage can be high. Finally, broadcast allows 
information to flow from one source to many destinations. 



346 Part 2 I Regionsof Computer Space 

Table 4 Example Points in the Multiple-Processor Design Space 

Memory system 	 Memory switch 

Physical structure Logical structure Physical structure 
Node Logical Immediate System Inter- Growth 

System types structure size size Accessibility Access time connection rate 

C.rnrnp Non-horn 16(4)*~ 64 Kbyte 16 Mbyte All Uniform Circuit Polynomial 
Plessey 250 Non-horn 1 ? ? ? ? Circuit Polynomial 
Prime Non-horn 5 ? ? Overlapped Uniform Circuit Polynomial 
Bus switch Non-horn local(2)+1 64 Kbyte 256 Kbyte Al I Uniform Circuit Polynomial 
Pluri bus Non-horn local(l4)+14 64 Kbyte 1 Mbyte All Uniform Circuit Polynomial 
Bus window Horn local(2) +2 64 Kbyte 128 Kbyte All Hierarchical Circuit Polynomial 
Crn* Horn n(2)*P 64 Kbyte 2684 Mbyte A1I Hierarchical Message Linear 
SIFT Horn n*3 ? ? All Hierarchical Circuit Polynomial 

C.vrnp Horn 1 * 3 or local 64 Kbyte 64 Kbyte All Uniform Circuit Polynomial 

Bus link Horn local 64 Kbyte .......... . . . . . . . . . . . .  . . . . . . . . . . .  ..................... 

Global bus Horn local . . . . . . . . . .  . . . . . . . . . .  ............ . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  

Tandem Horn local 64 Kbyte . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . .  ..................... 

FTMP Horn 1 * 3  . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . .  ........... . . . . . . . . . . . . . . . . . . . . .  

Serial line Horn local . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . .  .......... 

ARPANET Horn local . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . .  ........... . . . . . . . . . . . . . . . . . . . . .  

Loops Horn local . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . .  ........... ..................... 

ETHERNET Horn local . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . .  ..................... 

ALOHANET Non-horn local . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . .  ..................... 


The destinations must make an active decision on whether communication determines the responsiveness of the sys- 
the data are meaningful for them. tem to IIO, exceptional conditions, and even requests from 

other processors cooperating on the same task. Notification 
I/O system. The I/O system dimensions parallel those of the can be sent via inteprocessor interupts (as in Cmmp), via a 
memory system. In multiprocessors with shared memory, prioritized queue that processors periodically examine (as
the 1/0system may or may not be analogous to the logical in the Pluribus), via building communication segment types 
structure and physical structure used for the memory on top of existing mapping and sharing (as in the Cm*), or 
system. In multiple-processor systems with local memory, via mailboxes. 
the 110 system is used for interprocessor communication 
and thus becomes the major differentiating feature of 
different architectures. The IlO system dimensions should 
be self-explanatory, considering the foregoing discussion of 
the memory system dimensions. 	 System Examples 

Ratios. Ratios between processor, memory, and I/O band- Table 4 depicts a number of multiple-processor systems arranged 
width are important in determining whether the system is by their values of the design-space parameters. Systems closer to 
balanced or even usable. It is a common pitfall to focus on each other in the table are also closer to each other in concepts. 
processor-memory bandwidth and neglect I/O-memory Figures 1, 2, and 3 illustrate the various systems. 
bandwidth. Thus new problems and/or data cannot be The first eight systems share an address space and arebrought into the system fast enough to utilize the high considered multiprocessors. The next five systems can be consid- processor-memory bandwidth, and the system fails to 
achieve its performance goals on a sustained basis. 	 ered distributed multiple-processor systems or local networks in 

that communication is via the I/O system with more or less 
Interprocessor communication. The form of interprocessor 	 hardware support for information transfer. These five systems are 



Section 4 I Multiple-Processor Systems 347 

I Processor-memory data paths Processor-IlO data paths 

Concurrency Width Sharing Data rate Delay Width Sharing Data rate Delay 

16 h.rn 16X25X1O6 2x10-7 
24 h.m rnx25x lo6 ? 
16 h.m ? ? 
16 h.d 18X106 3 ~ 1 0 - ~  
16 h.d 25X106 2x10-7 
16 f.d 19x106 5x10-’ 
16 f.rn 16X106 10-5 

3 16 h.m 106 ? 

1 16 h.d 13X106 10-7 
. . . . . . . . . . . .  16 h.d 107 5 ~ 1 0 - ~  
............ 16 f.m ? ? 
. . . . . . . . . . . .  16 f.m 108 ? 
. . . . . . . . . . . .  1 f.rn 106 ? 

........ 
............ 

I 1 
1 

h.d. 
S 

104 
5x104 

? 
lo-’ 

. . . . . . . . . . . .  1 S 106 ? 

............ 1 b ? ? 

............ 1 b ? ? 

frequently dedicated to one task at a time, although the task might 
be one of a wide variety of general tasks. The last five systems are 
networks of processors communicating through the I/O system 
primarily for the purpose of sharing data. 

C.mmp 

C.mmp is the classical multiprocessor, with 16 processors sharing 
16 memory modules through a cross-point switch. Chapter 22 
presents the architecture, software structure, reliability experi- 
ence, and performance of C.mmp. The multiple applications 
implemented on C.mmp indicate that there are several classes of 
important applications that can utilize process-level parallelism to 
the point of achieving speedup in a linear relationship to the 
number of processors utilized. An important aspect of the software 
organization of these applications is that the code on all processors 
is identical. Communications and scheduling are via message 
queues. Thus an application can be debugged on a uniprocessor. 
When the code is run in production mode it can utilize all 
available processors (i.e., it does not have to be rewritten or 
modified if processors are not available because of other users’ 
demands or hardware failure). The hardware performance param- 

eters of C.mmp are summarized in Fig. 17. C.mmp was retired on 
March 5, 1980. 

Pluribus 
The Pluribus was conceived in 1972 by Bolt Beranek and Newman 
(BBN), the implementors of the ARPANET, as a modular, 
high-performance IMP. Since traffic volumes at ARPANET sites 
varied widely, an architecture was sought that would span a 10to 
1 performance range. Modularity plus high availability require- 
ments favored a multiprocessor architecture. 

The Pluribus PMS structure is depicted in Fig. If. Processors 
share an address space implemented by a distributed cross-point 
switch. The processors, Lockheed SUES, have a unified memory 
and UO address space as in the PDP-11. The 64-Kbyte address 
space is divided into local and shared. Shared memory access is 
provided by bus couplers, which recognize four 8-Kbyte address 
windows. Shared memory addresses are mapped by the bus 
coupler from 16 bits to a 20-bit, systemwide shared address space. 
A processor bus can be connected to multiple shared memory 
buses. 

Two processors share the same processor bus, since the 



348 Part 2 1 Regions of Computer Space 

MP (byte) 
AII axes: x lo3  

Mp speed 
(byteis) 

Ms speed 
(byteis) 

T. communication 
(byte14 

Fig. 17. Sixteen processor configurations of C.mmp. 

processor bus cycle (which is 100ns) and local memory access time 
(which is 450 ns) are fast enough to support the Pc-Mp bandwidth 
of both processors without degradation (a processor memory 
request approximately every 2 ps). Each processor executes out of 
its own Mp, thus eliminating Mp contention. The local Mp’s act as 
code and temporary data caches. The application code is small 
enough (less than 16 kilowords) to remain resident in the local 
Mp’s. The shared memory is used only for shared system data, 
interprocess communications, redundant copies of local code, and 
less frequently used system code. 

Any number of processor, shared memory, and I/O buses can 
be interconnected via bus couplers. Bus couplers need only be 
provided for those communication paths that will actually be used. 
However, the normal structure will be symmetric and require 
P x (M + I) bus couplers, where P, M, and I are the number of 
processor, memory, and I/O buses, respectively. 

Interprocessor control is via a special set of registers in the I/O 
address space. A processor accesses these registers on another 
processor’s bus by establishing a path via an I/O bus consisting of a 
forward path through an I/O bus coupler and a backward path 
through the target processor’s I/O bus coupler. Since the bus 
coupler access is circuit-switched, this organization is prone to 

Section 4 1 Multiple-Processor Systems 

deadlock if two processors are simultaneously attempting to use 
the same two I/O coupler paths in different directions. This 
deadlock potential is considered acceptable, since the interpro- 
cessor control is attempted very infrequently (i.e,, only in 
reconfiguration attempts after a failure). 

The major form of interprocess communication is via the 
pseudointerrupt device (PID). The PID is a hardware priority 
queue that exists on the I/O bus. When polled by a processor, the 
PID returns the highest priority number in the queue and deletes 
the number. The PIDs are typically used to schedule processes. 
Each number corresponds to a process that can be run on any Pc. 
IiO devices (upon completion of an operation) or processes can 
enter numbers into the PID. Thus, in a dedicated, special- 
purpose application, the PID eliminates the overhead in context 
swapping and scheduling associated with interrupts and system 
monitor calls. In order to work in a real time application, 
however, the system’s programmer has to ensure that the PID is 
polled frequently enough that no I/O information is lost. In the 
IMP application the highest-speed device has to be serviced 
within 400 ps of its request. Since the worst case would be when 
all processors simultaneously started executing a new task, the 
code is divided into strips. Each strip represents a task that, once 
started, runs to completion. There is no temporary context 
between tasks. Each strip requires at most 300 ps to execute, 
ensuring the necessary frequency of PID interrogation. 

Division of an application into strips places a significant burden 
on the application programmer. The interprocessor communica- 
tion mechanisms would have to be rethought if the Pluribus were 
to be used in a general-purpose envirionment. 

By the last quarter of 1978, twenty Pluribus systems had been 
delivered, each dedicated to one of the following applications: 

ARPANET IMP, two- and three-processor systems 
Private Line Interface (PLI), allowing secure data to pass 
through a nonsecure network 
Very Distant Adapter (VDA), allowing remote computers to 
access an ARPANET IMP with an error-checking protocoI 
called Very Distant Host (VDH) protocol 

A fourth application, a terminal communications controller, was 
under development. 

Chapter 23 presents the Pluribus architecture, as well as 
fault-tolerant features. Comments on the Pluribus as a fault- 
tolerant architecture are found in Part 2, Sec. 6. 

Other Systems 

Other multiple-processor systems are described elsewhere in the 
book. Chapter 29 describes a loosely coupled system designed for 



high data integrity. Part 2, Sec. 5, discusses the ARPANET, 
ALOHANET, and ETHERNET. Part 3, Sec. 4, presents the 
CDC 6600 and TI ASC, which utilize high-speed hardware to 
implement several virtual peripheral processes that can communi- 
cate through shared memory. Part 2, Sec. 3, contains Illiac IV and 
STARAN, so-ca11ed single-inst~ction-multiple-data-stream ma-
chines (SIMD), wherein multiple Processors execute the Same 
program on different data in lockstep. Part 4,Sec. 5, discusses the 
multiprocessor systems produced for the IBM Systern/360 and 
System/370 families. 

Section 4 Multiple-Processor Systems 349~ 

References 

DEC [19731; Dijkstra [1968al; Fuller, Ousterhout, Raskin, 
Rubinfe1d7 Sindhu7 and Swan [197'I; Haberrnann [19721; Heart, 
Ornstein, Crowther, and Barker [1973]; Hopkins, Smith, and Lala 
[1978]; Katsuki, Elsan, Mann, Roberts, Robinson, Skowronski, 
and Wolf [19781; Lawson and Megenhagen [19751; Lipton [19731; 
Roberts [19671; Siewiorek, Kini, Mashburn, McConnel, and Tsao 
[1978]; Swan, Fuller, and Siewiorek [1977]; Wensley, Lamport, 
Goldberg, Green, Levitt, Melliar-Smith, Shot&, and Weinstock 
[19781; Wulf and Bell [19721. 



Chapter 22 

The C.mmp/Hydra Project: 
An Architectural Overview 

Henry H. Mashburn 

Summary This article describes the C.mmp/Hydra project at Carnegie- 
MeIIun University. Included are detailed descriptions of the PMS 
structure of C.mmp (a multiprocessor built from minicomputers) and its 
major components. An overview of its operating system, Hydra, is 
provided with emphasis on those sections most concerned with and 
influenced by the architecture. The project is also discussed in terms of 
performance, reliability, programming methodologies, and problems 
encountered. 

In 1971 the Computer Science Department at Carnegie-Mellon 
University (CMU) undertook a project to construct C.mmp 
(Computer.multi-mini-processor), a relatively large-scale multi- 
processor, from minicomputers. A number of project goals and 
criteria influenced the design: 

Minicomputers would be used as the processing elements 
of a multiprocessor that would support a general-purpose, 
time-shared environment. 

The machine would be symmetric: there would be no 
master-slave relation among the processors. 

A large address space would be provided. 

As much commercially available hardware as possible 
would be used. 

Fig. 1. The C.mmp multiprocessor. 

To provide the necessary programming environment, a novel 
operating system was proposed, its principal component being its 
kernel, Hydra [Wulf, Cohen, Convin, Jones, Levin, Pierson, and 
Pollack, 1974; ‘CVulf, Levin, and Pierson, 19751. The following 
criteria were used in designing the operating system: 

Separation of policy and mechanism: a kernel of mecha- 
nisms of “universal applicability” would be created from 
which varying policies could be implemented. 

A capability-based protection system and an object-
oriented virtual memory would provide support for data 
abstraction; it would be extensible to user-defined data- 
types. 

The software would exploit the existence of multiple copies 
of many hardware elements for reliability. 

The structure of the system would be nonhierarchical. 

The system would be able to run for extended periods with 
no human operator. 

The resulting C. mmpiHydra-system has been completed and has 
met these goals. It has been running as a general departmental 
resource since mid-1975, supporting a time-shared user commu- 
nity as well as large-scale computing tasks, such as speech: 
understanding systems. 

Table 1 summarizes the basic hardware and performance of 
C.mmp. 

The Hardware: Cmmp 

C.mmp is an asynchronous, multiple-instruction stream, multi- 
ple-data stream (MIMD) multiprocessor. To achieve the goal of 
symmetry, the processors and primary memory (Mp) are connect- 

Table 1 Cmmp Hardware Summary 

Structure 	 Symmetric, central cross-point-connected 
MIMD multiprocessor allowing up to 16 Pc’s 
and 16 memories. 

Processors 	 PDP-11 models 11/20 or 7 1/40, inany mix. A 
16-Pc configuration of 11 /20’s and 11 /40’s 
was built. Eleven 11/40 models are currently 
in use. 

Shared memory 	 32-Mbyte total shared address space. 2.7 
Mbyte implemented using both core and 
MOS. 

Secondary storage 	 700 Mbyte total moving-head disks. 6 Mbyte 
total fixed-head paging disks. 

Performance 	 4.3 MIPS for 11/40 configuration, 3.0 MIPS 
for current 11/40 configuration. 26.3 X l o6  
reference& total memory bandwidth. 

350 



Chapter 22 I The C.mmp/Hydra Project: An Architectural Overview 351 

ed by a central cross-point switch. Before detailed design began, 
this structure was extensively studied by simulation and analytic 
models [Bhandarkar, 1972; Strecker, 19711, and it was deter- 
mined that a 16 x 16 cross-point switch could be optimal, given 
the available technology. The TTL and Schottky TTL logic 
families were used for the switch and the relocation hardware 
because only they offered a fair range of MSI components. MSI 
components in the faster ECL logic were not available at the time. 
Essentially all of C.mmp is built with 1971-1972 technology, 
although some of the more recent additions use MOS LSI. 

The Digital Equipment Corporation PDP-11 was chosen for the 
processors (Pc’s) primarily because of its Unibus architecture. The 
Unibus allowed easy interfacing to the shared memory and kept 
the Pc modifications minimal. A further advantage of the Unibus 
was that it allowed DMA transfers to use relative, rather than 
physical, addresses because all addresses on the Unibus can be 
mapped in a uniform way by the relocation scheme, which will 
be described in detail. Therefore, the peripheral devices would 
need no modification to access the 25-bit shared memory address, 
even though they generate only the standard 18-bit Unibus 
address. 

The following descriptions are primarily architectural, although 
some internal algorithms are described. For implementation 
detail, consult Fuller and Harbison [1978]. 

1.1 The PMS Structure 

Figure 2 shows the PMS structure as of early 1979.’ There are 16 
processor ports and 16 memory ports in the cross-point switch 
(Smultiport, or Smp). The Pc’s are slightly modified PDP-11/20 
and PDP-11/40 processors, each connected to all the memories by 
Smp via the relocation unit (Dmap). The Pc’s are further 
interconnected by an interprocessor bus (IP-bus), which provides 
basic control functions such as start, halt, and three levels of 
interprocessor interrupt (IPI), as well as the broadcasting of a 
60-bit nonrepeating clock value used for interval timing and 
unique name generation. Note that this clock does not synchro-
nize the internal operation of the processors. 

C.mmp was constructed in several major stages: four prototype 
switches (1x 1, 1x 2, 2 x 2 , 4  x 4), the full 16 x 16 switch with 
five 11120’s as processors, and finally the 16 x 16 Smp with a full 
processor complement of sixteen Pc’s: five 11/2O’s and eleven 
11/40’s. The 16 memory ports were initially configured with the 
1.4 Mbyte of core memory, and a similar amount of MOS memory 
was added later. 

In early 1977 the Pc modifications for the 11/40 were complet- 
ed, and by June 1977, C.mmp itself was completed by adding 

‘Although shown in Fig. 2 to indicate its place in the architecture, only a 
prototype of Mcache was implemented. 

eleven 11/4O’s to the existing five 11/20’s. Any mix of these two Pc 
models is possible. The desire to exploit a writable control store 
included in the 11/40 modifications, and performance measure- 
ments indicating that symmetry in processor speed is desirable,2 
led to exclusion of the 11120’s in early 1978, leaving the eleven 
11/40’s as the total Pc complement. 

In the original PMS design [Wulf and Bell, 19721, a second 
cross-point switch was included to connect peripheral devices to 
any Pc’s Unibus. For reasons of economy, this switch was never 
built and peripherals were assigned to specific Unibuses. I/O 
requests are mapped from requesting processors to the processor 
controlling the device via an IPI and a simple per-Pc queuing 
system in the operating-system kernel. The lack of the second 
cross-point switch has not been detrimental to the system. 

1.2 Shared Memory Access 
Access to shared primary memory (Mp) is performed in two 
stages: relocation of the %bit processor-generated address into a 
%-bit address space, and resolution of contention in accessing that 
memory location. These jobs are performed by the relocation unit 
Dmap and the cross-point switch Smp, respectively. 

1.2.1 The Relocation Mechanism: Dmap Dmap resides on the 
Unibus of each Pc and generally appears as a peripheral device, 
intercepting and mapping most addresses as they are placed on 
the Unibus. The planned, but not implemented, 2 Kbyte proces- 
sor cache memory (Mcache) would interface to the Pc through 
Dmap. 

Dmap divides the 32-Mbyte address space into thirty-two 
8-Kbyte directly addressable pages that may be physically placed 
anywhere in shared memory. There are four address spaces, 
specified by 2 bits in the processor status word (PS). Therefore, 
four sets of eight address-mapping registers are provided in each 
relocation unit. To allow communication between address spaces 
without explicit addressing changes, the stack page is common to 
all four spaces. 

The four address spaces are the heart of the memory protection 
mechanism: in only one space (1,lin the PS space bits) are the 
relocation registers and the PS directly addressable. Since this 
page is used exclusively by the Hydra kernel [Wulf, Cohen, 
Corwin, Jones, Levin, Pierson, and Pollack, 19741, protecting the 
PS from indirect changes (see Sec. 1.5of this chapter) guarantees 

*Many parallel decompositions of algorithms require that all processes 
synchronize between steps of computation. If some processes are running 
on slower Pc’s, the processes executing on faster Pc’s waste time waiting 
for the slower Pc’s processes to report completion. The effect is like a 
convoy: all ships move at the speed of the slowest. See Sec. 3.1.2 of this 
chapter and Fig. 7 for a measurement of this effect. 



352 Part 2 1 Regions of Computer Space Section 4 I Multiple-Processor Systems 

11I40 

1 


Fig. 2.The PMS structure of C.mmp. 

that no addressability changes may be made without the approval (1,l)space are disabled, one each for the Mlocal page and the 
of the operating system. &411 entries to the kernel, whether by peripheral device control-register page. With these registers 
interrupt or user request, force the assertion of both space bits. disabled, addresses that would normally be mapped are passed 

To allow direct addressability, two of the relocation registers in along the Unibus unchanged to be received by the addressed 



memory or register location. Since the registers of Dmap are 
given addresses in the control-register page, they are always 
addressable by Hydra. 

As illustrated in Fig. 3, the Dmap intercepts the 18-bit 
UNIBUS addresses (16-bit words plus the two space bits) and 
converts them in the following manner: the three high-order bits 
of the 16-bit word select a register from the bank specified by the 
space bits. The contents of the register provide a 12-bit page-
frame number; the remaining 13 bits from the address word are 
the displacement within that page. The two are concatenated to 
form the 25-bit shared memory address. The 13-bit displacement 
gives an 8-Kbyte page size. This transparent mapping is per-
formed for all shared memory accesses. In addition to the 12 
page-frame bits, there are 4 bits in each relocation register used 
for control. The first three are designated no page loaded, 
write-protected, and written-into, and the fourth bit controls 
whether values from the page may be stored in Mcache. 

After the 25-bit address is generated, Mcache is checked to see 
if the data are already available. If the access is a read cycle and 
the datum is in Mcache, the datum is immediately returned, 
bypassing shared memory. Although Mcache is a write-through 
design, only read-only data are cached, because the cachelpc 
PMS structure allows multiple, and possibly different,copies of a 
datum. However, since approximately 70 percent of the memory 
accesses are to code rather than data, the read-only requirement is 
expected to produce a high “hit” rate for pure code programs 
[Fuller and Harbison, 19781. 

Pc status word 16-bit PC address work 

<7:8> 
0 
 1 
1 2  space bits I I 

select bank I I 
r------------ I I 
I I 


i 3 - b i t  register I

Dmap / selector I 


relocation reqisters I 
I I , I 

I f’ ‘i 13-bit page II 
I 

I displacement I 
I 
Ii* 

! 
{ I ---

I 

Bank 1 1<12:15>1 < O : l l >  7 12-bit page 

8-bit page 
within port 

gs. 6 & 7 disabled for 
4-bit port 
number 

25-bit shared memory address 

Fig. 3.C.mmp address relocation. 

Chapter 22 1 The C.mmp/Hydra Project: An Architectural Overview 353 

The internal characteristics of Mcache are: 

Capacity 2 Kbyte 
Block size 2 bytes (one word stored or returned per access)
Set size 1 

Although only a single prototype of Mcache was built, it is 
estimated that it would save 50 percent of the time for a read cycle 
if the data were in the cache. However, it is important to realize 
that the motivation for including a cache on each processor was to 
reduce memory contention rather than directly provide fast 
memory. The effects of not having the caches will be discussed in 
Sec. 3.1.4 of this chapter. 

Parity for both data and the 2§-bit address is generated by the 
Dmap interface to the bus from the switch. The address parity is 
checked at the switch interface. If the check fails, the request is 
aborted and the processor interrupted. Data parity is not checked 
until the data are read from memory and returned to a Dmap. The 
fact that data parity is checked only by Dmap and not at any other 
point either in the cross-point switch or in the memory modules 
themselves has probably contributed to the reliability problems 
due to parity errors (see Sec. 3.3.1). Separate parity bits are 
maintained for both bytes of the word: one byte is given odd 
parity, the other, even. This detects words of all 1s or all Os, both 
of which are common results of transient timing errors. 

1.2.2 The Cross-Point Switch: Smp Smp routes the 25-bit 
address request to the memory port specified by the high-order 
four bits of the address. A port is requested by setting the bit 
corresponding to the requesting Pc in the port’s request register. 
Contention for the port is resolved by periodically gating the 
request register into a second register, the queue register, which 
is left-shifted as the port becomes available. The shifting creates a 
priority-ordered queue: as a 1bit is shifted out, the corresponding 
Pc is granted access to the port. Processor 15 is assigned the 
high-order bit and processor 0 the low-order bit, defining the 
priority. When the queue register is 0, all requests have been 
satisfied. The request register is again gated into the queue 
register and cleared, and a new cycle begins. A second request for 
the same port by a processor must enter via the request register; 
hence equality of service among the Pc’s is maintained. The 
two-level request mechanism obscures the internal queue’s 
priority ordering to the point that it is of virtually no importance 
outside the switch, preserving the symmetry of Smp.’ The 
switch’s maximum concurrency (16 independent paths) is 
achieved if all Pc’s request different ports. 

‘In the worst case, in which all Pc’s repeatedly access the same port, the 
lowest-priorityPc suffers a 50 percent memory access time degradation, 
but since this situationis extremelyrare in practice, the effect is negligible 
[McGehearty, 19801. 



354 Part 2 1 Regions of Computer Space 

The centralized and symmetric design of Smp makes the cost of 
memory access equal for all Pc’s. Including address translation, 
switch overhead (no contention), and round-trip cable delay, the 
cost is about 1ps .  Although high by today’s standards, more than 
equal to the access time of the memory, it has not proved 
prohibitive, or even annoying. The memory connected to Smp 
permits a maximum total bandwidth of 26.3 x lo6 memory 
references per second, a value well matched to the speed of the 
1971-vintage processors (see Table 2). 

Smp was designed to allow partitioning of the system into 
smaller units. Each of the 256 cross-points has a switch that may 
be used to manually enable or disable it. These switches, plus a 
global cross-point set switch, set the flip-flops that control the 
individual cross-points. Now disconnected for reliability and 
software security, there was a program interface that allowed 
setting of the cross-point configuration from Pc 0. 

The ability to partition the system was originally intended to 
allow multiple versions of the operating system to coexist. 
However, funds were not available to provide sufficient primary 
and secondary store to allow simultaneous execution of multiple 
copies of Hydra. Currently, the principal use of the manual 
cross-point enable switches is to disconnect faulty hardware 
elements. A Pc and a single memory port are sometimes 
partitioned out of the system to allow maintenance to proceed 
concurrently with normal operations. 

1.3 Primary Memory 

The current complement of primary memory is 2.7 megabytes of 
mixed technology: eleven ports containing 1.4megabytes of core 
memory and five ports with 1.3 megabytes of MOS memory. 
Technologies are not mixed within a memory port. 

The memory port control of Smp permits each port to be 
interleaved in as many ways as there are independently driven 
memory modules. Interleaving is specified by the page number, 
bits 13 to 20 of the 25-bit address (see Fig. 2). C.mmp’s core 
memories are 16-Kbyte modules, and there are eight indepen- 
dently driven modules per port, allowing eight-way interleaving. 

Table 2 Shared Memory Characteristics 

Core memory 	 250-ns access, 650-ns cycle time 
16-Kbyte module size, 8 modules per port 
8-way interleaved within a port 
1.71 x 106references/s per port maximum 
bandwidth 

MOS memory 	 330-ns access, 450-ns cycle time 
65-Kbyte module size, 4 modules per port 
No interleaving 
1.49 x 106references/s per port maximum 
bandwidth 

Section 4 [ Multiple-Processor Systems 

(b) 

Fig. 4. The crosspoint switch. (a)The crosspoint display panel with 
the system partitioned into two disjoint 8 x 8 machines. (b)A detail 
of the display panel. Three Pc’s are selectively permitted access to 
ports 2, 3, and 4 as shown by the crosspoint enable (CPE) lights. 
Two of the Pc’s are actively accessing memory (ACT lights). 

The MOS memory has four 65-Kbyte modules per port. However, 
they are not independent, havingronly one refresh control board, 



and so are not interleaved. Ports can have up to 256 pages, or 2 
megabytes, of memory. Table 2 provides specifications and 
measurements of the memories. 

Each Pc also has 8 Kbyte of local (nonshared) core memory 
(Mlocal). 

1.4 The Interprocessor Bus 

The IP-bus provides a common clock as well as interprocessor 
control. These two logically and functionally separate features use 
separate data paths, although they share a common control 
(Kinterbus). Each processor has an interbus interface (Kibi) that 
defines the processor’s bus address and makes available the bus 
functions to the software. 

The first function is to continuously broadcast the 60-bit, 
250-KHz Kclock. This is done by multiplexing the clock value 
onto a 16-bit-wide data path in four time periods, low-order bits 
first. Any Kibi requesting a Kclock read waits for the initial time 
period and then buffers the four transmissions in four local holding 
registers available to the software. Clock values are often used for 
unique names [Wulf, Cohen, Convin, Jones, Levin, Pierson, and 
Pollack, 1974; Wulf, Levin, and Pierson, 19751, and so the 
otherwise unused high-order four bits of the fourth local register 
are set to the reader’s Pc number to ensure uniqueness when any 
number of Kibi’s read the bus simultaneously. 

Each Kibi has a countdown register for interval timing. It may 
be initialized to a nonzero value by the program, and it is 
decremented by 1every 16 ps (timing supplied by Kclock). The 
Pc is interrupted when the register reaches zero. 

The second bus function is the interprocessor interrupt and 
control mechanism. Each Pc may interrupt, halt, continue, or 
start any other Pc, including itself. Each Kibi has a 16-bit register 
for each of the control operations. The operations are invoked by 
setting the bit(s) corresponding to the processor(s) to be controlled 
in the appropriate register. Setting the ith bit invokes the 
operation on Pc(i). A second 16-bit-wide data path is eight-way- 
time-multiplexed, each control operation being assigned a time 
period. As the appropriate period arrives, each Kibi ORs its 
control operation register onto the bus and clears the register. 
Synchronization of bus access, as well as operation specification, is 
accomplished by the multiplexed time periods. The Kibi also 
inspects the bus to see if the specified operation is being invoked 
on its processor; if so, the requested action is performed. 
Although eight time periods are available, only six are used: three 
priority levels of IPI, halt, continue, and start; the remaining two 
are ignored. 

Each Kibi provides a manual switch register that defines the set 
of Pc’s that the host Pc may interrupt or control. As with the 
control operation registers, setting switch i permits the Pc to 
invoke IP-bus functions on Pc(i). These registers, one per 
processor, are used with the manual cross-point enable switches 

Chapter 22 1 The C.mmp/Hydra Project: An Architectural Overview 355 

Fig. 5. A typical C.rnmp processor with its Kibi. 

to partition the system. A 16-bit LED display register is also 
provided to selectively display the four words of Kclock or the 
interval-timing counter and its control register. 

1I 5 Pc Modifications 

The PDP-11’s used on C,mmp were slightly modified to provide 
software protection and make the Pc’s compatible with a multipro- 
gramming environment. Also, a writable microstore was added to 
the 11140’s. The actual modifications were similar for both PDP-11 
models; however, their implementations were quite different 
because of the differing internal implementations of the two 
models. In neither case were the changes extensive. Certain 
instructions were made privileged to ensure the integrity of the 
system yoftware. In particular, HALT, WAIT, and RESET were 
prohibited from user programs. Since the processor status word 
(PS) controls the relocation address space of the executing 
program (and hence memory protection), two instructions which 
may modify it from user space were also prohibited: RTI (return 
from interrupt) and RTT (return from trap). Both of these 
instructions load the PS from the stack. Since they are sometimes 
used in subroutine calling sequences, they are trapped and 
emulated bj the kernel for user executions-after an appropriate 
checking of the new PS to be loaded. 

Because the operating system must leave some context informa- 
tion on the stack during protected procedure calls [Cohen and 
Jefferson, 1975; b’ulf, Cohen, Corwin, Jones, Levin, Pierson, and 
Pollack, 19741, address bounds checking was added to the stack 



356 Part 2 1 Regions of Computer Space 

pointer register, R6. Stack overflow protection existed, but it was 
necessary to augment it with underflowing checking. The stack 
underjiow register (SUR) prohibits all accesses to the stack, page 
at addresses higher than its contents.’ This protection extends to 
all accesses, whether by stack operations or direct addressing, 
thus protecting the previous context information. Additionally, R6 
is constrained so that its contents always lie in the stack page (page 
0) of Dmap. 

Because of the difficulty of modifying a processor, the stack 
underflow register and the comparison circuitry were physically 
placed on one of the relocation unit boards. This remote 
placement compounded the timing difficulties of adding stack- 
limit checking to the processors. Having to protect the PS by 
disallowing user execution of RTI and RTT increased the pertur- 
bation of stack-operation timing. Unfortunately both of these 
modifications were necessary to ensure safe operation of a 
multiprocessing, multiuser operating system. 

1.6 Writable Microstore 

The PDP-11/40 is implemented via a horizontal microprocessor 
[DEC, 19721 with provision for extended control store to imple- 
ment various instruction-set options. At CMU, a writable control 
store was developed in place of the standard extensions [Fuller, 
Almes, Broadley, Forgy, Karlton, Lesser, and Teter, 19761. The 
writable store contains 1,024 eighty-bit words, a general mask- 
shift unit used for field extraction and data manipulation at the 
microprogram level, and a microprogram subroutine facility. 

No such extension was possible for the 11/20, since it is not a 
microprogrammed processor. This asymmetry in the configura- 
tion was a major reason for the removal of the 11120’s. 

1.7 Peripheral Devices 
Peripheral devices on C.mmp are standard PDP-11 Unibus-
interface devices; no modifications are required. Two of the device 
types are unique: the zero-latency paging disks and the graphic 
displays. The paging disks have 8 Kbyte per track, which exactly 
matches C.mmp’s page size. Their controllers achieve zero 
latency by continuously monitoring the position of the disk under 
the fixed heads and. for full track transfers, can start the transfer at 
any 16-word sector boundary, calculating the proper displacement 
into the page. As the disk turns, the memory address is “wrapped 
around” when the start of track is reached. 

The graphic displays are a CMU-designed and -built vector 
display [Rubin, Guggenheim, and Bihary, 19781. The two on 
C.mmp are equipped with a transparent touch screen in front of 
the CRT display for specialized man-machine interaction studies 

’In the PDP-11 instruction set, stacks grow from higher to lower 
addresses. 

Section 4 1 Multiple-Processor Systems 

in the ZOG data base management project [Robertson and 
Ramakrishna, 19771. 

Table 3 summarizes the major devices and is an indication of the 
capabilities of the machine. 

2. The Software: Hydra 

A discussion of C.mmp would not be complete without an 
introduction to its unique operating system, Hydra. Hydra 
provides two basic mechanisms: (1)process creation and schedul- 
ing and (2)a capability-protected, object-oriented virtual memory 
system for date abstraction. In this section, emphasis wilI be 
placed on those features of the Hydra kernel most related to the 
multiprocessor architecture. 

2.1 Processes, Scheduling, and Control 

The features of Hydra most directly influenced by the architecture 
are process scheduling and control. The heart of Hydra’s multi- 
process, multiprocessor scheduler is the Kernel Multipro-
gramming System (KMPS). This system also implements several 
of the process control functions, including the synchronization 
primitives. 

2.1.1 Processes and Scheduling: KMPS In Hydra, the unit of 
scheduling is the process. Process scheduling is done in two 
phases: long-term (job selection) and short-term (context-swap 
frequency). Perhaps nowhere else in the kernel is the notion of 
policy-mechanism separation so clearly employed as in this 
two-level scheduler [Levin, Cohen, Corwin, Pollack, and Wulf, 
19751. 

KMPS provides the basic process creation and scheduling 
mechanisms as a parameterized short-term scheduler. It is driven, 
in turn, by one or more long-term schedulers. These schedulers, 
known as policy modules (PMs), are implemented as user-level 
programs and provide independent scheduling policies for differ- 
ent job streams, such as timesharing and batch. 

Table 3 Major Devices on C.mmp 

Quantity Device type 

3 200-Mbyte moving-head disks, 3330-type 
2 40-Mbyte moving-head disks, 2314-type 
2 20-Mbyte moving-head disks, 2314-type 
6 1-Mbyte fixed-head, zero-latency paging disks 
2 Vector graphic display terminal with touch screens 
1 600 Vmin line printer 
1 9-track maqnetic tape drive 
1 Interface t i  ARPANET 
n Assorted local terminal interfaces 



Chapter 22 I The C.mmp/Hydra Project: An Architectural Overview 357 

On account of the symmetry of the architecture, processes 
usually need not be bound to specific processors. KMPS sched- 
ules among processors as though the Pc’s were merely a resource 
pool. The PMs need not be concerned with the multiprocessor 
aspects of scheduling. A PM simply supplies KMPS with a stream 
of processes to be run; KMPS will make the necessary multipro- 
cessor scheduling considerations. 

KMPS schedules according to four basic parameters supplied 
by the PMs for each process: 

Process priority The process’s relative priority 
among the set of processes con-
trolled by KMPS 

Time quantum Maximum execution duration, com- 
posed of a time-slice length and 
number of slices 

Processor mask A bit mask of permissible Pc’s for the 
process; normally set to indicate any 
Pc 

Maximum page set size The maximum number of pages that 
the process may have resident in Mp 
at any given time 

When a process is started, the four parameters are set and KMPS 
places it on the feasible list, a list of runnable processes. When 
selected from this list, a process may execute until it blocks, 
completes its time quantum, or is preempted by a higher-priority 
process. If preempted, the process is returned to the feasible list 
and waits until resources are again available at its priority. KMPS 
reconsiders its scheduling at the end of each time slice on any Pc; 
all Pc’s execute KMPS asynchronously. When a process consumes 
its time quantum, it is returned to its controlling PM for 
reconsideration of long-term scheduling. 

The basic KMPS mechanisms for scheduling and multiplexing 
the processes onto Pc’s are quite straightforward: First, the 
highest-priority is chosen from the feasible list. Then, according 
to the process’s processor mask, the highest-priority Pc is chosen, 
and the process is enqueued for that Pc. The Pc is then sent an IPI 
instructing it to reconsider its scheduling. If the incoming process 
is of higher priority than the one currently running, a context 
swap to the new process takes place and the previous process is 
returned to the feasible list. If the incoming process is not of 
higher priority, it is returned to the feasible list and no reschedul- 
ing takes place. Allowing the selected processor to make the 
scheduling decision at a time of its choice (controlled by Pc 
interrupt priority) helps to eliminate race conditions that would 
otherwise be rampant because of the asynchronous nature of 
C.mmp. 

The scheduling mechanisms are quite efficient, since only half 
the mechanism need be invoked for most operations. Usually 
either the process or the Pc is known. For example, at the end of a 
time slice the Pc is known to be free and all that is needed is to 

identify the highest-priority process that it may execute. Similar- 
ly, a blocked process that is awakened only requires that a 
processor be assigned. The full mechanism is needed only when a 
new process is introduced into KMPS control. An additional 
mechanism allows Pc’s with heavy DMA or interrupt traffic to be 
shielded from computational burdens by assigning them a lower 
priority. High-priority Pc’s that have become idle can “steal” 
processes from lower-priority Pc’s, freeing them for I/O duties. 
This mechanism is important in reducing overrun errors (see 
3.3.1). 

With these mechanisms, KMPS is capable of controlling a large 
number of processes; the system routinely runs with more than 
100 processes without inordinate overhead. 

2.1.2 Synchronization One of the most crucial functions of an 
asynchronous multiprocessor is its ability to synchronize indepen- 
dent instruction streams when required. Hydra uses, and pro- 
vides at user level, a number of synchronization mechanisms. 
Most basic of these is the spin lock, implemented by continuous 
polling of a shared memory location. Because of the memory 
contention generated, spin locks are generally undesirable and 
are avoided within the kernel. However, because the fast 
mechanisms of the kernel are not available at user level, 
spin locks are sometimes useful for brief critical sections 
in user programs. 

The most important synchronization mechanisms are the KMPS 
lock and the two forms of semaphore [Dijkstra, 1968a] implement- 
ed by Hydra. Another mechanism, based on message passing, is 
discussed in the next section. While these mechanisms are 
semantically equivalent, they differ widely in implementation and 
timing characteristics. The choice of mechanisms is dictated by 
both synchronization context and performance considerations. 

The KMPS lock is a low-level, mutual-exclusion primitive 
operating below the process level. It is the logical equivalent of a 
spin lock, but its implementation uses interprocessor interrupts to 
avoid the memory contention inherent in continuous polling. The 
use of KMPS locks is restricted to places where context swap is not 
allowed, such as in interrupt routines. 

A KMPS lock is implemented with two counters and a bit mask 
of waiting Pc’s. When a lock request is made, the lock counter is 
indivisibly decremented (from 1)and tested. If the result is 0, the 
requesting Pc has control of the critical section. Otherwise, the Pc 
must wait. In this case, the Pc places its bit in the waiting 
processor mask and executes a WAIT FOR INTERRUPT instruc- 
tion, idling the Pc. When a Pc unlocks a lock, it increments the 
lock counter, sets the second counter (sublock) to 1,and sends the 
highest-level IPI to all Pc’s in the wait mask. 

The blocked Pc’s, upon receipt of the interrupt, resume 
execution and contend for the sublock. One, randomly deter- 
mined, will see that its decrement of the sublock field has resulted 
in 0 and will remove its bit from the mask and assume control of 



358 Part 2 1 Regions of Computer Space 

the critical section. The others resume waiting. By allowing the 
sublock to be reset on each unlock operation, the lock counter 
contains the number of processors blocked (negated) while the 
lock is locked. This information is used in consistency checks that 
detect either incorrect lock addresses or damaged locks. 

The advantages of this apparently complex system are twofold: 
it is extremely cheap in the nonblocking case (most frequent), and 
there are no memory cycles consumed in blocking, although the 
Pc is unavailable. The performance of this mechanism is excellent 
and will be discussed in a following section. 

Semaphores differ from locks in two ways: their counters may 
have large values, and since they are process-level primitives, 
blocked processes are rescheduled. Each semaphore maintains a 
queue of blocked processes that will be rescheduled in the order 
that they have blocked. 

Two forms are supported: one internal to Hydra (kernel 
semaphore) and one for user-level programs (PM semaphore). 
The difference is (conceptually) in their behavior when blocking. 
If a process must block on a kernel semaphore, a token for the 
process is appended to a queue within the semaphore and the Pc 
selects a new process from the KMPS feasible list. In particular, 
the pages of the blocked process remain core-resident. 

Blocking on a PM semaphore is more complex. Not only is a 
token for the process enqueued, but a scheduling decision to swap 
the pages of the process must also be made. This decision is 
delayed for a period (currently 500 ms, a parameter controlled by 
the PM), so that ifthe critical section is freed during this time, the 
process may possibly continue. In this case, the behavior is much 
like the faster kernel semaphore and averts considerable paging 
overhead. If during the delay the process cannot continue, it is 
returned to the PM for the duration of its blocked period and its 
pages become eligible for swapping. Although this mechanism 
pays a penalty of potential paging overhead, it ensures that a 
deadlock in user code does not result in a kernel deadlock. Upon 
receipt of the signal that the process may enter the critical section, 
the PM will again consider it for long-term scheduling and order it 
restarted by KMPS. 

2.1.3 Interprocess Communication A variety of hardware and 
software communication mechanisms are available within 
C.mmp/Hydra. The hardware provides two: First, and most 
basic, is sharing memory, used extensively by both kernel and 
user-level programs. Second is the IP-bus control functions, 
which are used strictly within the kernel. The three IPI levels are 
used for scheduling, interprocessor I/O request queuing, and 
synchronization. The IP bus halt and start functions are used 
during system initialization and by a monitoring Pc to regain 
control of a Pc lost through serious error. 

Hydra provides two software mechanisms: an interprocess 
interrupt (analogous to the IP bus interrupt for Pc’s) and a 
message facility. The KMPS control function allows one process to 

Section 4 1 Multiple-Processor Systems 

interrupt another. Control interrupt entries are made at specified 
points associated with each process. Each process also has a 
control mask associated with it; the process sending a control 
function supplies a similar mask. A nonzero intersection of the 
masks causes the interrupt to be taken.’ Depending on the 
interrupt, additional data may be available in certain predefined 
stack addresses [Newcomer, Cohen, Jefferson, Lane, Levin, 
Pollack, and Wulf, 19761. A similar function, desynch, can be used 
to free a process blocked on a PM semaphore or while waiting for 
a message. In this case, an exception return is made from the 
blocking kernel call. 

The Hydra Port System provides a general message facility that 
can be used for user-level interprocess communications and 
synchronization [Newcomer, Cohen, Jefferson, Lane, Levin, 
Pollack, and Wulf, 19761. Messages are sent to and received by 
ports, which may be interconnected via unidirectional links 
between an output channel of one port and an input channel of 
another. The messages are typed and may contain both data and a 
single capability (discussed in the next section). The basic port 
operations are SEND, RECEIVE, and an RSVP function that 
requests a reply to the message sent. Because the memory 
protection system provides protection only on a per-page basis, 
messages, which are always smaller than a page, must be created 
within the kernel and therefore are not directly addressable by 
user programs. Additional mechanisms, necessary only because of 
the memory protection limitations, are provided for creation of 
messages and copying of their contents. 

The RECEIVE operation may block until a message is received 
by a port. Since ports, not processes, are connected, blocking 
provides a way to synchronize a dynamically changing set of 
cooperating processes in a producer-consumer relationship. No 
process requires knowledge of the number, role, or memory of 
the other processes: it knows only of its connection to a shared 
port and the operation it is to perform. 

The Port System also provides a uniform user-level interface to 
the IiO system. Devices appear as ports, and requests are entered 
by sending an appropriately formatted message to the device. The 
fact that devices are physically connected to specific Pc’s is 
completely obscured, and the common interface allows easy 
interchange of similar devices. 

2.2 Protection and Data Abstraction 

Although the protection and data abstraction mechanisms of 
Hydra are not dependent upon the architecture, the following 

‘Interrupting a user program must be simulated by Hydra to protect the 
PS. Exception interrupts, such as attempting to access nonexistent 
memory, have entry points associated with each process similar to the 
entry for control interrupts. When entry is made, the stack is loaded by 
Hydra with the (PC,PS) pair to simulate an interrupt to the entry point. 
%Notto be conhsed with Smp memory ports. 



Chapter 22 I The C.mmp/Hydra Projeck An Architectural Overview 359 

brief introduction to these mechanisms is presented, since they 
were among the principal design criteria for the operating system. 
Detailed discussions may be found in the Hydra monograph 
Wulf, Levin, and Harbison, 19801and also in Cohen and Jefferson 
[1975], Wulf, Cohen, Corwin, Jones, Levin, Pierson, and Pollack 
[1974], and Newcomer, Cohen, Jefferson, Lane, Levin, Pollack, 
and Wulf [19761. 

In Hydra, all data are encapsulated in objects, which may only 
be accessed via capabilities. The set of all objects is known as the 
Global Symbol Table (GST, pronounced ghost). Capabilities have 
a varying set of access and operation rights that are automatically 
checked whenever a capability is used to name an object. If a 
capability has insufficient rights for the requested access or 
operation, a signal is returned to the caller pointing out the 
protection violation. Hydra provides a set of 16 generic rights that 
are interpreted uniformly for all object types. An additional eight 
rights, the auxiliary rights, are available for each object type, and 
their interpretation is dependent on their type. Sharing of objects 
is permitted by copying capabilities for the object, possibly with 
the access rights restricted to limit authority. 

Objects have a unique name (generated from the 60-bit clock), a 
type, and optionally a data part and list ofcapabilities (C-list).The 
data part allows storage of a limited amount of data (4,000 bytes). 
The C-list allows an object to contain up to 250 references to other 
objects. General graph structures may be built via these capability 
references. The protection mechanism is not hierarchical and may 
be used to protect structures with arbitrary interconnections. 
Objects may be referenced via a path of capabilities in the C-lists 
of other objects (if all capabilities along the path have sufficient 
rights). 

The representations of both capabilities and objects are never 
directly manipulated by user-level programs; all representation 
knowledge is the domain of the kernel. 

Nearly everything is represented as an object: processes, pages, 
semaphores, I/O devices, ports, and a great variety of other types. 
Every executing program has a basic list of capabilities known as 
its Local Name Space (LNS). The LNS and all objects reachable by 
paths rooted in the LNS are the instantaneous protection domain 
of the program. To prevent forgeries, objects may be referenced 
only by such paths; they are never directly referenced by name. 
An LNS typically contains capabilities for its code and data pages 
plus capabilities for any other objects that the program must 
manipulate. 

Protected procedure calls switch protection domains. All 
programs are represented by procedure objects, which have 
C-lists containing capabilities for code pages, data pages, and 
parameter templates, as well as any other objects required. A 
procedure may have capability parameters in the same sense that 
a subroutine has address reference parameters. When called, the 
procedure’s C-list and the actual parameters are merged into an 
LNS for the new protection domain. Procedure calls stack LNS’s, 

so that calls may be nested or recursive. The templates specify the 
parameter’s position in the LNS and the necessary check rights 
and type of the actual capability. If the check rights or type doesn’t 
match, a protection violation is signaled and the call aborted. A 
parameter template may also specify rights amplijication to add 
certain rights to a parameter capability. The amplified capabilities 
exist only in the LNS of the called procedure and are rarely, if 
ever, returned to the caller. 

Two other forms of template are used. Creation templates, 
which specify the initial form and type of an object, are used by a 
common object creation routine to create an instance of a 
particular type. Ampl$cation templates provide rights amplifica- 
tion outside the procedure call mechanism. These are not made 
generally available. 

The kernel provides a small number of basic object types and a 
mechanism for creation of user-defined types. A new type is 
represented by a TYPE object that embodies the abstractions of a 
class of objects. The TYPE object specifies the representation of 
data in the new class and also the operations that may be 
performed on the object. Auxiliary rights may be defined to 
protect these operations. The code defining the representation 
manipulations of an operation is encapsulated as a procedure 
object and is stored in the C-list of the TYPE object. Generally, 
only these procedures may use rights amplification, either by 
template or in the procedure call, to gain sufficient rights to 
directly access the representation of the new type. To allow use of 
the new type, a creation template, made from the TYPE object, is 
made available as needed. 

To invoke an operation on an instance of the new object type, 
Hydra provides a typecall mechanism similar to the protected 
procedure call. Performing a typecall on an object of the new type 
actually specifies a call on one of the procedures in the C-list of the 
TYPE object. A capability for an object of the specific type is 
passed, possibly with rights amplification, to the procedure 
implementing the desired operation. A daerent typecall is 
provided for each operation on an abstract data-type, and the 
index of the procedure in the type object is typically hidden in a 
macro or routine in the source language. 

The typecall mechanism is used to implement all user-level 
subsystems in the Hydra operating system. For example, PMs 
create PM process objects to encapsulate PM scheduling data. For 
a detailed example of how typecall was used to create an 
extensible file system, see Almes and Robertson [1978]. 

3. The Hardware-Software Interaction: Performance, 
Programming Methods, Problems, and Reliability 

Developing the operating system and implementing several large 
application programs has resulted in a considerable body of 
knowledge about how the architecture has interacted with the 



360 Part 2 I Regions of Computer Space 

software. Some expected problems, such as multiprocessor 
scheduling and synchronization, have been solved efficiently and 
effectively. Others, mostly unanticipated, have been difficult to 
solve or minimize, although in one case-reliability-the software 
methods developed are considered one of the project’s major 
successes [Wulf and Harbison, 19781. 

3.1 System Performance 

The following sections present an overview of the performance of 
the C,mmp/Hydra system. Again, the emphasis is on the architec- 
ture and its effects. The data presented have been collected over a 
period of years and represent a number of digerent system 
configurations, since measurements were taken in parallel with 
hardware development. The concurrent measurement and con- 
struction unfortunately prevented simultaneous measurement of 
more than a subset of the potential 16 Pc’s. To offset this, 
modeling results extending the measured data are presented 
where available. 

To measure the system, a number of specialized tools were 
created. Two software tools were created to measure the system 
behavior in parallel execution. A software tracer, partially 
implemented in microcode, was built to selectively trace events 
such as kernel calls and object accesses on the entire set of 
executing Pc’s. A script driver [McGehearty, 19801 provided a 
mechanism to impose a variable and repeatable synthetic load on 
the system and make timing measurements at the user level. A 
special hardware monitor [Swan, 19761 with its own host comput- 
er was developed to measure performance at the memory-access 
and instruction level on individual Pc’s. The monitor’s high- 
impedance probes, which were attached to the measured Pc’s 
Unibus, allowed fine-grained measurements to be taken with 
insignificant perturbation of the Pc. Memory traffic in Smp was 
measured with an access counter that integrated accesses to all 16 
memory ports. 

3.1.1 An Application Example An artificial intelligence applica- 
tion, the Harpy Speech Understanding System [Lowerre, 19761, 
was implemented on C.mmp, among other machines. The system 
was extensively studied as an indicator of the performance and 
problems associated with large, complex tasks in the C,mmp/ 
Hydra environment. 

The following brief description of Harpy and its implementation 
on C.mmp is presented to aid understanding of the application 
and its measurements. The system recognizes speech from many 
speakers, although the recognizable utterances are restricted to a 
finite, task-constrained vocabulary. Knowledge about the task, 
grammar, and vocabulary is represented in a finite-state graph 
structure, one word of the vocabulary per node. Paths along 
interconnections between nodes represent acceptable sentences - in the grammar. When an utterance is to be processed, the word 

Section 4 1 Multiple-ProcessorSystems 

nodes are replaced by networks containing representations of the 
phonemes (units of speech) for all pronunciations of the words. 

After digitization, an utterance is examined by a probability- 
based heuristic search that compares each phoneme of the 
utterance to those in the nodes of the knowledge graph. As the 
search proceeds, a recognition tree of the most probable transi- 
tions in the graph is built. At the end, the utterance is identified 
by backtracking along the path of highest probability in the 
recognition tree. 

The search was implemented in two phases, each executed by a 
set of cooperating processes. In the first phase, the possible 
transitions in the knowledge graph were calculated for the current 
phoneme of the utterance. The second phase performed a 
probability calculation for each transition identified in the first 
phase and discarded those of low probability. Steps of high 
probability were retained as the next level of the recognition tree. 
The processes were synchronized so that all performed the first 
phase, then all performed the second phase. This sequence was 
iterated until all phonemes of the utterance were processed. No 
process was allowed to continue to the next phase until a11 
processes had completed the current phase. 

To ensure that the measurements were indicative of the 
architecture, the number of processes was limited to the number 
of Pc’s available at the time of measurement and the code and data 
were always resident in Mp. These precautions eliminated the 
effects of scheduling and paging. The measurements in Fig. 6a 
[Oleinick, 19791 were made with a 1,000-word vocabulary, 
representing a large search space and heavy compute load. The 
same 15 utterances were processed for each measurement. 

Since versions of Harpy also exist for the PDP-10 (the KLlO 
model, a medium- to large-scale uniprocessor with 1.8 MIPS, and 
also an older KAlO model with 0.4 MIPS) and an 11/40 Unix 
system, some performance comparisons can be made with these 
systems. As Fig. 6a shows, C,mmp achieved better performance 
than KLlO with four Pc’s on the 1,000-word vocabulary task. In 
comparison with the single 11/40 Unix system, shown in Fig. 6b, a 
single process on C.mmp required only slightly greater time to 
execute the task than did the uniprocessor, indicating that 
overhead is low in the parallel environment [Wulf and Harbison, 
19781. For the Unix and K A l O  measurements, a small (37-word) 
vocabulary was used. For reference, measurements of the KLlO’s 
performance on the 37-word vocabulary task are also included in 
Fig. 6b. 

The speedup gained by adding a Pc to Harpy was less than 
linear on account of underutilization of the processes [Oleinick, 
19791. Because of unequal allocation of work, the processes lost 
time waiting for the working processes to complete a phase of the 
search so that the next phase could begin. Considerable effort was 
invested in optimizing the allocation of work, and process 
utilization reached 64 percent, limited by the overhead necessary 
in partitioning the heuristic search. The partitioning overhead is 



Chapter 22 I The C.mmp/Hydra Project: An Architectural Overview 361 

I X 

4 Number of processes 

Fig.6. Comparative performance of C.mmp with other machines on 
the Harpy Speech Understanding System. (a) C.mmp versus KL10 
with a 1000-word vocabulary task. 

also responsible for the fact that C m m p  required seven Pc’s to 
match KLlO performance on the 37-word vocabulary task but only 
four on the more computation-intensive 1,000-word task. A1-
though this problem is seen to be in the decomposition of Harpy 
rather than specific to C.mmp/Hydra, it demonstrates a problem 
with multiprocessors and parallel decompositions: if a Pc must 
wait for all other processors to complete their task before 
proceeding to the next computational step, then speedup will be 
limited by the balance of work among the Pc’s. This is similar to 
the problem of unequal execution speeds mentioned in 3.1.2. 

3.1.2. Synchronization and Its Effects Studies of the synchroni- 
zation mechanisms in Hydra indicated that the mechanisms 
themselves did not cause much overhead, although the methodol- 
ogy of use was critical. In a study of the KMPS lock, several 
benchmark programs each created 16 cooperating processes 

;i180-n 

-P 
8 

160 -
.-E 
c 

0

3 1 4 0 -
% m 

120-

100 -

-80 

1 I I I I t I 1 I . J 

1 2 3 4 5 6 . 7 8 9 1 0 
(4 Number of processes 

(6)C.mmp compared with a 11/40 UnixSystem, a KA10, and a KLlO 
with a 37-word vocabulary task. 

designed to cause varying frequencies of synchronization within 
the kernel [Marathe, 19771. For these experiments, a 14-Pc 
configuration (including the W20’s) was used so that scheduling 
16 processes would ensure full Pc utilization. The measurements, 
taken with the hardware monitor to avoid any perturbation of the 
system, indicate that in the worst cases: 

Fewer than 10 percent of locking requests blocked. . Less than 1percent of execution time was lost in blocking. 
The duration of an average KMPS lock-protected critical 
section was less than 700 ps.  

A model, verified by the hardware monitor measurements, 
predicted that if the KMPS lock mechanism were extended to a 
48-Pc system, the time lost in blocking would be less than 4 
percent [Marathe, 19771. 

Although the lock-unlock code is highly efficient, the fact that so 
little time is lost in blocking is due primarily to the methodology of 
synchronization. The critical factors are association of locks with 
data structures rather than code segments, and choosing synchro- 
nization primitives on the basis of the duration of the critical 
section to be protected. By associating synchronization primitives 
with data structures, several processes may execute the code for a 
critical section without mutual interference, since they each lock 
different locks. Contention is limited to the degree of sharing ofa 



362 Part 2 1 Regionsof Computer Space 

specific instance of a data structure. In Hydra, nearly every shared 
data structure has its own locking primitive. For example, each of 
the tens of thousands of objects in the GST has a KMPS 
semaphore for mutual exclusion. Also, some highly shared 
structures, e.g., the KMPS feasible list, are segmented to allow 
multiple locks and a higher degree of parallel access without 
contention. 

Another advantage of associating the synchronization with data 
structures is that both the primitives and data structures may be 
dynamically created and destroyed as the load or growth of the 
system may dictate. The code remains unchanged during the 
lifetimes of the dynamically created data structures. Binding locks 
to code results in static structures that require programmer 
intervention for alteration. 

The importance of choosing the appropriate primitive was 
shown by a study of a parallel root-finding algorithm [Oleinick and 
Fuller, 19781. Figure 7 illustrates the difference between spin 
locks and PM semaphores. Because the average blocking time is 
short compared with the overhead of PM semaphores (at least 5 
ms), the spin lock produced better performance by a factor of 2. 
For the PM semaphore curves, the e parameter is the delay time 
in milleseconds before a blocked process was returned to the PM. 
Note that zero delay (e=O, in PMO, an early PM) causes poor 
performance due to paging overhead (see Sec. 2.1.2). The 
degradation of performance caused by adding the ninth Pc is not 
due to the synchronization primitives, but is caused by the system 
configuration: eight 11/40’sand three 11120’s.As soon as one 11/20 
was used, the entire task force of processes slowed down, since all 
were forced to wait for the slowest to report completion. 

The choice of primitive is equally important in Hydra. If the 
estimated average blocked period was greater than context-swap 
time, a KMPS semaphore was used; otherwise a KMPS lock was 
best. Measurements indicate that the average KMPS semaphore 
blocked period ran as high as 300 ms [Jain, 19781 because 
semaphores were used for signaling I/O event completion. 
Clearly, if locks, which do not release the Pc, had been used, the 
impact on performance would have been severe. 

3.1.3 Scheduling The script driver was used to measure the 
combined performance of KMPS and the PM as it would be 
perceived by a terminal user, especially with respect to variation 
in response time [McGehearty, 19801. The load placed on the 
system was controlled by both the number of jobs (terminal users) 
and the compute time required by each job. To minimize effects 
other than scheduling, several restrictions were placed on the 
synthetic job stream: 

All jobs were independent. 
All jobs executed at the same KMPS priority 

Jobs made no accesses to the GST (which might cause I10 or 
contention for an object). 

Section 4 1 Multiple-Processor Systems 

550-

C 

8-8 500-
.-E 
I 

n 

450-

-0 
W 

-400 


350 -

300 -

PMI (e=300lsemaphore 

Kernel semaphore 

100 

Spin lock 


50I I I I I I I I J 
1 2 3 4 5 6 7 8 9 

Number of processes 

Fig. 7. Effect of different synchronization primitives on the root-
finder program. 

All codes and data simultaneously fitted into Mp. 

Timings were measured by the script process using the global 
time base, Kclock. For this experiment, a configuration of ten 
11140’swas used. Nine Pc’s executed the synthetic job stream and 
the tenth ran the script driver process (which was locked onto that 
Pc to prevent interference with the measurements). 

To create a synthetic user load, the script driver jobs were 
assigned compute times in exponential distributions with mean 
times of 1, 5 ,  and 10 corresponding to light, medium, and heavy 
loads. Each job waited 10s between compute requests to simulate 
user response time. A total of 400 compute1wait cycles were 
executed for each set of jobs. Because of the varying compute time 
requests, the variation in response time was normalized for all 
processes by calculating a stretch factor, the response time 
divided by the requested compute time. 

The variation of the stretch factor measures equality of service 
and, to the user, the predictability of response time for a request. 
The measurements indicate that the scheduling system was able 
to maintain reasonably equal service even when the machine was 
saturated. As shown in Fig. 8a, b, and c, only one job in 20 
experienced a stretch factor as much as twice the mean. The 
greatest variation occurred in the lightest load (Fig. 8a), where 



Chapter 22 1 The C.mmp/Hydra Project: An ArchltecturalOverview 363 

2 6:jli4 


95th percentile 

\ 

0

0 5 10 15 20 25 30 35 40 45 50 


(4 Number of jobs 

Fig. 8. Variation in normalized response times for job streams of 
varying computational requirements. (a) Low computing load, 
mean = 1 s compute time per interaction. (b)Medium computing 
load, mean = 5 scompute time per interaction. (c) Heavy comput- 
ing load, mean = 10 s compute time per interaction. 

the effects of scheduling were least dominated by computation. 
The sharp rise in Fig. 8b and c indicates the load at which the 
machine was saturated. The mean stretch factor dips below 1in 
Fig. 8a and b because of statistical variations caused by slight 
differences in relative Pc and memory speeds. 

3.1.4 Memory Contention Although a predictable result of not 
having implemented Mcache, memory contention has been a 
problem for high-performance multiprocess application programs 
on C,mmp. If three Pc’s access the same memory port, that port 
becomes saturated. This limited access resulted in poor perform- 
ance of multiprocess programs with shared code pages. The 
solution was to distribute copies of the code pages in different 
ports to each process. The critical code pages were few, and so the 
copies did not make excessive demands on memory. Accesses to 
data were less frequent and sufficiently evenly distributed 
through the data base not to cause significant contention. 
Although the code for the operating system is widely shared, its 
execution is sufficiently asynchronous that memory contention has 
not been a noticeable problem. Figure 9 illustrates the contention 
due to shared code pages for the root-finder program. 

X 

95th percentile .J 

0 5 10 15 20 25 30 35 40 45 50 
(b) Number ofjobs 

95th percentile ‘./ 

t I I I l l I I I , 

5 10 15 20 25 30 35 40 45 50 

Numbrrr of jobs 



I 

364 Part 2 I Regions of Computer Space 	 Section 4 1 Multiple-ProcessorSystems 

;;i325 

3 300 

.-E 
-0' 275 

1 150	I I I I I 1 I 

1 2 3 4 5 6 7 8 9 
Number of processes 

Fig. 9. An example of memory contention with shared code pages. 

As illustrated in Fig. 10, detailed stand-alone (without Hydra) 
measurements of memory contention taken with a synthetic job 
stream indicate that the incremental value ofa Pc is 99 percent for 
the second Pc and decreases uniformly to 86 percent for the ninth 
Pc, with a measurement error of about 3 percent [McGehearty, 
19801. The synthetic jobs executed 25 repetitions of a 100-
instruction sequence that was chosen as representative of typical 
instruction mixes for PDP-11's [Marathe, 1977; McGehearty, 
19801, Each processor executed the same instruction sequence, 
although neither code nor data were shared. After each 25 
executions of the 100-instruction sequence, different memory 
ports for both code and data were independently chosen. The 
choice of port was either uniform for the 16 ports or weighted by 
the number of pages available in each port. The selection of 
different memory ports was repeated 4,096 times, each time 
including the 25 executions of the synthetic instruction sequence. 
Since there was no sharing, the results are representative of the 

1 .oo 

0.95 


sm 

m 
._
rn 

u 

0 

-h 0.90 
m 
c
c 

E 
? 
c
-

0.85 -Measured performancewith each port 
having equal probability of access 

MMeasured performanw with each page 
having equal probability of access 

0.80 
1 2 3 4 5 6 7 8 9 10 11 12 

Number of Pcs 

Fig. 10. Processing power for each additional processor. 

general-purpose, time-shared environment envisioned for the 
machine. 

3.2 The Effects of Using Minicomputers 

While C.mmp has shown that small processors can be effectively 
harnessed into a large-scale system, the decision to use minicom-
puters has not been without problems. Two characteristics of most 
minicomputers available in 1971 and 1972 have had considerable 
impact on the project: first, they were not designed for reliability; 
second, the small word size affects both data representation and 
addressing. The small address size has proved to be a serious 
problem. 

3.2.1 The Small-Address Problem The small-address problem 
(SAP) [Wulf and Harbison, 19781 stems directly from the use of 
minicomputers as the processing elements of C.mmp. The 
PDP-11, being a 16-bit machine, can address only a 64-Kbyte 
space. This is much too small for large-scale applications, although 



it is often sufficient for individual subsystems of the operating 
system. 

The problem typically appears in addressing an application’s 
data base. Large problems tend to have large data bases, and the 
16-bit address allows access only through a 65-Kbyte window. The 
problem hasn’t been as severe for code, because the size of the 
code has usually been relatively small. In cases where code size 
was important (e. g., Hydra), subroutine-calling sequences were 
developed that automatically made the called routine addressable 
before entry and restored addressability of the caller upon return. 

The real cost of SAP is the all-pervasive concern for the 
addressability of the data during the design and coding of a 
program. Demand paging was precluded by the 16-bit address 
and limitations in the relation mechanism. Dmap does not retain 
sufficient information to identify the address causing a nonexistent 
memory fault [Levin, Cohen, Convin, Pollack, and Wulf, 19751. 
Therefore the Hydra paging system was forced to require that 
working-set and addressability changes be written into the 
program. While the mechanisms the paging system provides are 
clean and efficient, the necessity of having to explicitly juggle the 
working set and its addressability results in design and coding 
burdens. Performance problems, although secondary to program- 
ming problems, stem from the frequency of addressing changes. 
The cost of addressing changes is minimized by a microcoded 
relocation-register loading finction available to user-level pro- 
grams, and by the fact that the relocation registers are always 
addressable in the kernel. 

In the Hydra kernel, the performance cost of SAP has been 
measured at 5.5 percent, or an addressing change every 16 
instructions [Marathe, 19771. This is higher than the cost incurred 
by moderately optimized user programs for two reasons. First is 
size: Hydra is, by a considerable margin, the largest program 
executing on C.mmp. It has nearly 50 code pages and from 10 to 
100 data pages, depending on load. The order-of-magnitude 
variation of the data space needed contributes to the frequency of 
addressing changes by forcing nearly all data structures to be 
dynamically addressed. Dynamic addressing, in turn, is made 
more expensive in the kernel by the second reason: the necessity 
of disabling two relocation registers in the (1,l)addressing space 
(see Fig. 3). Perhaps if Dmap supported more relocation registers 
and a smaller page size, the problem (performance, at least) would 
be somewhat alleviated [Wulf and Harbison, 19781. 

Figure 11illustrates a case study of the effects of the SAP [Wulf 
and Harbison, 19781. The task is the Harpy speech understanding 
system with the 37-word vocabulary. Two versions of the same 
task are compared: one with dynamic mapping and one with static 
mapping. In the dynamic mapping version, Harpy checks each 
data access for addressability; in the static case, the program 
assumes the data are addressable. Note that a factor of 3 in 
performance was gained by simplifying the code even though in 

Chapter 22 I The C.mmp/Hydra Project: An Architectural Overview 365 

160 

120 
(C.mmp, static mapping) 

1 2 3 4 5 6 7 8 9 1 
Number of processe 

Fig 11. The effect of SAP on Harpy. 

actuality no addressing changes were ever necessary-the cost 
was incurred by checking for addressability. 

Another example is in the coding of the operating system’s 
Command Language (CL). The CL provides a small ALGOL-like 
programming language (similar to BLISS-11, the implementation 
language used for Hydra [Wulf, Russell, and Habermann, 1971]), 
complete with variable declarations and macro facilities. Static 
data structures were used to implement the CL, with the result 
that although the code is simple, the size of the symbol table is 
quite restricted. This has limited the utility of its macro processor 
in tailoring the user’s interactive environment. 

3.2.2 The Effect on the Capability Protection System Hydra 
represents capabilities in 16 bytes, or 8 words. Eleven bytes are 
required: 8 for the global name and 3 for the rights field. The 
remaining 5 bytes are allocated to reliability checks and other 
implementation details. Having to move 8 words per capability is 
a significant source of overhead in the protected procedure call. 



366 Part 2 1 Regions of Computer Space 

Recent measurements of typical Hydra typecalls, the most 
frequently executed version of the protected procedure call, 
indicate that an overhead of about 30 ms is to be expected. 
Detailed software traces of the calls indicate at least 50 percent of 
the time was spent in merging the capabilities into the new LNS. 
While creating the new LNS is the major function of the call, 
several factors are responsible for its being so expensive: making 
the capabilities addressable at both source and destination, the 
locking required for the capability copies, and simply moving the 
8-word representation. Since this move cannot be done indivisi- 
bly, the locking is required. The typecalls studied were catalog 
lookups and had fewer than 15capabilities per LNS. That fraction 
of the overhead devoted to building the LNS is proportional to 
LNS length. 

The result of the high overhead has been that although the 
capability-based protection system is highly effective, its efficien- 
cy has often limited its use. In particular, protected procedure 
calls are used on a considerably larger grain than was anticipated. 
It should be noted that this is not considered a problem inherent 
in capability systems, but an artifact of implementation with small 
words and on hardware not specifically intended to support 
capability addressing. 

3.2.3 Indivisible Operations The implementation of locks in a 
multiprocessor is dependent on having at least one indivisible 
operation on shared memory. Although not specified in the 
PDP-11 ISP, the 11/20 and 11/40 both perform indivisible 
read-modify-write cycles. Smp maintains the indivisibility, mak- 
ing any instruction using this access mode indivisible. Increment, 
decrement, and shift instructions are used in the construction of 
the various forms of lock in Hydra. The fact that the bit 
manipulation instructions are made indivisible automated the 
synchronization of the bit mask operations so critical in using the 
IP-bus functions. The richness of the indivisible instruction set 
has been of great value to C.mmp and should not be underesti- 
mated. 

3.2.4 Lack of Error Checking The necessity of constructing 
C.mmp from available minicomputers greatly restricted the 
possible-fault-tolerant mechanisms that could be incorporated. 
For example, neither of the two PDP-11 models used, nor the 
Unibus, has error-checking abilities; one must assume that their 
results are correct. Experience has shown that this is frequently 
not the case. Therefore elaborate error checking and correcting of 
the shared memory and its access path were not justified, because 
of the possibility of data corruption on the Unibus. 

The lack of checking by the hardware forced the burden onto 
the software, with a resultant penalty in performance. Software 
checking generally consists of checksums and type and consisten- 
cy checks. Because data integrity is considered highly important, 
the error-checking burden falls most heavily on the GST. 

Section 4 1 Multiple-Processor Systems 

3.3 Reliability 
In spite of the difficulties, the machine has been reasonably 
reliable, considering its highly experimental and unique nature. 
Recent statistics indicate that the total system mean time to crush 
(MTTC) from all causes is, with one exception, fluctuating 
between 6 and 15h, averaged on a monthly basis. This is more 
than enough to be a useful research tool, especially since the 
average downtime after a crash is only about five minutes and the 
machine automatically reloads itself (operator intervention ii 
virtually never required). In aresearch environment, availability has 
proved to be more important than absolute reliability. Figure 12 
illustrates the distribution of crashes during the end of construc- 
tion and the beginning of an intensive maintenance period. 
Completion of the machine allowed engineering efforts to be 
directed to reliability, and the error rate improved accordingly. 

3.3.1 Reliability Experience The reliability experience has been 
quite varied: many failures that were once common are now rare 
or nonexistent, others are still apparent, and some reappear from 
time to time. The failure rate has been significantly improved 
through a program of intensive maintenance, which has been in 
progress since completion of the basic machine. 

Memory parity fdures  have, with rare exception, been the 
most common failure mode. Most are transient, but hard errors 
happen with regularity. Often the memory failure rate has largely 
determined the MTTC. For example, the sharp peak in Fig. 12 
was caused by memory-related errors when the last of the MOS 

-g 240 
r, 
G220 
?i 

-
-

x 

+---+ 
x-x 

Total system crashes 

Non-user caused crashes 

3200 
L -& 180 

E2 160 
Q 

-
-140 

-120 

100 - X 

80 - I , 
I 

, 
-60 

40-

-20 x-x-x/x-x 

01  I , I I E I 
0 1 2 3 4 5 6 7 8 

Fig. 12. Distribution of crashes on Cmmp. Eight months data: 
1 July 1977 to 8 February 1978. 



Chapter 22 1 The C.mmp/Hydra Project: An Architectural Overview 367 

memory was installed. A methodology for recovering from 
transient memory failures in the shared memory of the operating 
system is now being developed, and a marked improvement in 
reliability is expected from this one recovery effort, since most 
memory parity failures happen in the operating-system kernel. 
Memory failures in user-allocated pages present a lesser problem. 

Transient failures, while it is always difficult to isolate their 
source, have been an especially large problem on C,mmp, since 
there are few, if any, trace points in most data paths. Not 
including powerful debugging aids in the logical design has 
continuously hampered development. There was little that could 
be done for the processors, but aids could have been incorporated 
into all the CMU-built logic. When this weakness was realized, 
one tracking register (for the program counter) was added to 
Dmap; another (for operand addresses) is being developed. A 
similar weakness became evident in the software: often informa- 
tion about a failure was lost by the operating system, making 
recording of the conditions for transients unreliable. Robust 
crash-logging procedures have alleviated this to a great extent. 

A transient failure that has eluded solution is the problem of 
“false NXM’s.” The processor reports a nonexistent memory 
(NXM) exception, but upon analysis it is found that the memory is 
responding and the instruction, registers, and index word(s) are 
well formed; no exception should have resulted. Because of the 
lack of checkpoints in the memory data paths, there is insufficient 
information available to isolate what may be failing. 

Another long-standing transient is stack operation problems. 
This usually appears as misexecution of subroutine callheturn 
instructions or as interrupt entry/exit mistakes. The most common 
form of the error is one word too many (few) pushed (popped) onto 
(from) the stack. No cause has ever been isolated, and no method 
of recovering from this &lure has been developed, but, fortunate- 
ly, it is relatively rare. 

A pleasant surprise has been the reliability of Smp. Although it 
is the most complex component of the multiprocessor hardware, it 
is now among the most reliable. No doubt the relatively simple 
design, conservative implementation, and careful construction 
have paid off. The complexity of Smp is indicated in the chip 
counts in Table 4, which also includes the expected chip failure 
rates as calculated by Autofail, a CMU-developed hard-failure 
model based on the Military Standardization Handbook 217B 

Table 4 Chip Complexity and Theoretical Failure Rate for Smp 

Failures p e r  
Logic unit Chips Gates lo6h 

Cross-point logic 1,656 29,808 328.9 
Priority contention resolution 864 7,344 121.7 
Processor interfaces 384 3,552 57.1 

Totals 
Crosspoint enable/disable 

3,448 
544 

45,152 
4,448 

585.4 
77.7 

model [Siewiorek, Kini, Jobbani, and Bellis, 1978; Bellis, 19781. 
Figure 13 illustrates the relative simplicity of the four types of PC 
boards used in Smp. 

An early problem with Smp required considerable effort to fix: 
Certain conditions, characterized by a memory access not com- 
pleted by the Unibus master, could cause Smp to deadlock on 
account of the lack of a time-out circuit in the memory port control 
logic. Any other Pc attempting to access the deadlocked port will 
block until manually cleared. This situation was often caused by 
poorly designed I/O controllers that recovered from errors by 
simply aborting the current access with no regard for proper 
termination of Unibus or switch protocols. 

While the known cases that deadlocked memory ports were 
isolated and individually remedied, the most important result was 
an appreciation of the design principle of mutual suspicion 
[Schroeder, 19721. The switch should never trust that an opera- 
tion started will necessarily be completed; it must be prepared to 
time-out, clear itself, and report a failure condition to the 
requesting processor. 

The IP-bus is as unreliable as the switch is trustworthy. Having 
no error checking whatsoever, its reliability is so poor that if a 
cheap and highly effective method of software recovery hadn’t 
been found, the bus would be nearly unusable. The mode of 
failure is transient loss of interprocessor interrupts and changing 
interrupt levels-usually from level 7 to level 6. Although no 
cause has been isolated, a simple system of pending interrupt 
masks allows an interrupted Pc to determine the validity of the 
interrupt. The same masks allow automatic repetition of lost 
interrupts, likely by a different Pc. 

Two remaining long-term reliability artifacts of the architecture 
are: 

1 	Overrun errors on I/O-device DMA transfers caused by 
memory port contention. This is a predictable result of not 
having the planned cache memories and is effectively 
recovered from in software. 

2 	 Waving 110 devices associated with specific processors 
causes undesirable dependency on that processor. A partial 
solution has been developed in software to recover from 
transient failures, but frequent or hard failures force a 
shutdown for repair or reconfiguration. Fortunately, shut- 
down is very rare. 

3.3.2 Software Recovery Methods within Hydra As the above 
description of the failures encountered indicates, fault tolerance is 
the result of a highly cooperative effort between hardware and 
software. Some failures, such as losing interprocessor interrupts, 
produce no damage and require so little effort in software 
recovery that little motivation exists to correct the hardware. 
Others (deadlocked memory ports) are impossible to recover from 
with software; much effort has been devoted to eliminating the 



368 Part 2 1 Regions of Computer Space Section 4 1 Multiple-Processor Systems 

Fig. 13. PC boards used in the crosspoint switch. (a) Crosspoint logic (72 boards). (b)Priority contention 
resolution (16 boards). (c) Pc interface (16 boards). (d) Memory interface (16 boards). 

sources of failure. The software recovery methods, developed by 
design and evolution, may be grouped by similarity: methods for 
recovery from frequent failures that have little probability of 
nonlocal damage, and methods for treating relatively rare, but 
serious, failures that may imply systemwide damage. 

The first class of failures is typically transient, though fre- 
quent, and does not involve shared data structures. Examples are 
IPI failures, DMA overruns, and memory parity failures in 
user-allocated pages. Although simple recovery methods of 
retrying and reporting failure are used to handle these errors, a 

consistent effort is made to reflect the error report back to a level 
where there is sufficient information for proper action [Parnas, 
1974. 

For the second class of errors, those serious enough to imply 
nonlocal damage, two major techniques have been developed, 
both of which exploit the parallel environment of C.mmp. In the 
Hydra kernel, the availability of multiple Pc's is used to create a 
robust recovery and logging system, and at user level, iiiultiple 
processes are used in an analogous manner. 

Important system elements of Hydra, such as job scheduling 



Chapter 22 I The C.rnmp/Hydra Project: An Architectural Overview 369 

and file systems, are implemented as user-level programs. Their 
response to errors is critical to system reliability, and several 
multiprocess techniques are used. The processes may be multiple 
incarnations of the subsystem’s server processes, or they may be 
free-running daemon processes created specifically to play a 
watchdog role in ensuring the correct and reliable operation of the 
subsystem. The multiple-incarnations approach accepts the loss of 
a server and the processes dependent upon it as a method of 
limiting damage and also tends to improve response. The daemon 
approach is specifically creating redundancy for reliability. 

Within the kernel, serious errors are handled by a formal 
mechanism, the suspectimonitor model, which causes the whole 
system to pause so that a known state is reached before a sequence 
of error logging and analysis is performed. This procedure allows a 
wide range of options, from continuing execution, possibly with 
configuration changes, to reloading (again, possibly reconfigured). 
Developed in response to the low reliability of the developing 
hardware and software, suspect,‘monitor was retrofitted to the 
existing software. 

Invocation of the suspect monitor sequence may occur in two 
ways: First, a Pc may detect an error condition either by hardware 
trap or software check. It then becomes the suspect, and a 
monitor Pc is randomly chosen from the remaining processors. 
Second, a Pc executing the watchdog routine detects that some 
other processor has apparently not been executing. The watchdog 
processor becomes the monitor and declares the apparently 
nonexecuting Pc to be the suspect. The watchdog routine is 
executed by all processors as part of several frequently used 
interrupt service routines and sets a bit (corresponding to the 
executing processor) in a mask maintained by the watchdog. 
Periodically this mask is compared with a mask of Pc’s known to 
have completed initialization (upmask) and then cleared. Any 
processors in the upmask but not in the watchdog mask are 
declared suspects. 

Once the monitor is chosen, it and the suspect achieve 
synchronization by means of a shared-state variable. Each advanc- 
es the variable to the next state upon entry. Both examine the 
state, and if it is not in the synchronized state, each waits for the 
other to advance it to that state. The monitor times all waits for the 
suspect to reach a desired state, and if synchronization is not 
achieved quickly, the monitor attempts to force the suspect Pc to 
execute the recovery code with a sequence of IP-bus operations. 
Continued failure to synchronize causes the monitor to abort the 
sequence and force a reload. Multiple suspects are processed one 
at a time by the same monitor. 

The suspect’s sequence is: record all Pc state at the time of 
failure, including which pages were addressable; copy its local 
memory; execute a short-diagnostic; and, assuming correct execu- 
tion of the diagnostic, attempt analysis of the failure. Completion 
of these actions is communicated to the monitor via the state 
variable. Because of the sensitive nature of the suspect’s execu- 

tion, several coding restrictions were employed in its implemen- 
tation. For reliability, no stack operations are performed, the Pc 
state-logging code is straight-line, and a flag is set upon entry to 
the suspect routine to force an immediate halt upon repeated 
entry for any reason. Halting causes a monitor time-out, forcing a 
reload and preventing the previously logged data from being 
overwritten. 

Once synchronized, the monitor follows the suspect through its 
sequence and, after successful completion, has the following 
options: 

Continue with no changes. 
0 Halt the suspect and continue. 

“Quiesce” the suspect and continue. 
. Reload. 

0 Reload and delete suspect from configuration. 


0 Reload and quiesce the suspect. 

Quiescing a processor allows it to service I/O device interrupts but 
not to execute any other functions (notably user programs). This 
way, the duty cycle is kept low, and it is hoped, so is the 
probability of a failure. This mode is required to keep processors 
with critical IiO devices in the configuration. Since most data 
structures lack the redundancy and associated verification rou- 
tines to guarantee repair of damage, all paths through suspect,‘ 
monitor currently lead to one of the system reload options. 

The analysis that the suspect may perform is highly failure- 
dependent. Because of the problems of installing any recovery 
scheme in an existing large program, the problems of analysis are 
only beginning to be examined. Recovery from memory parity 
failures during kernel execution is being considered as the first 
candidate for analytical recovery. These parity failures are consid- 
ered serious enough to invoke suspectfmonitor because of the 
requirement to maintain the integrity of the GST. Also, a page 
may hold segments of many objects, and so a failure may imply 
future trouble if not caught promptly. For parity failures, the 
analysis must ascertain three things: whether the failure is 
repeatable, whether it happened during interrupt service, and 
whether any critical data structures were locked. If any of these is 
true, recovery is not possible. There is no way to report the failure 
to the process while servicing an interrupt. If locked, a data 
structure may be in an inconsistent state. In these cases, the 
suspect notifies the monitor to reload the system. Otherwise, the 
failure has occurred during a kernel call and may be aborted with a 
parity failure report. The caller may then decide whether to-retry 
the call. No claim is made that this particular method is optimal; it 
is intended to illustrate the role of analysis in the suspect/monitor. 
However, it does promise a high probability of recovering from 
the majority of parity failures with an acceptably small risk of 
undetected damage. 



370 Part 2 1 Regions of Computer Space 

The auto-restart mechanism is responsible for reloading the 
system and is invoked by the suspecb'monitor mechanism. Three 
basic steps are involved: adjusting the configuration masks for any 
deleted or quiesced processors, constructing a free memory list 
(deleting pages that have been marked errant), and loading a fresh 
copy of the kernel from disk. The new system is entered and 
initialization begins. This sequence is normally accomplished 
without human intervention and is so reliable that C.mmp runs 
without an operator. 

The last mechanism associated with failure recovery is the 
automatic diagnostic driver, which initiates and monitors the 
deleted processors' execution of a diagnostic. The driver maintains 
a history of the failures found by each processor as well as the 
processor's successful executions of the diagnostic. The histories 
may be printed on command and are also accessible from Hydra. 
If a processor is able to successfully run the diagnostic for a period 
of time determined by its failure history over the previous few 
days, the driver automatically returns it to the system. Automatic 
return is accomplished by executing the standard per-processor 
initialization and does not require pausing or reloading the 
system. 

4. Conclusion 

The successful implementation of systems such as Harpy, ZOG, 
several language compilers, several file and directory systems, 
ARPANET support, and measurement tools such as the script 
driver has shown that C.mmp and Hydra provide a useful, 

Section 4 I Multiple-Processor Systems 

general-purpose computing environment on a multiprocessor. 
The symmetric design of C.mmp has proved to be valuable in 
error-recovery techniques and in simplifying process scheduling. 
Also, the kernel approach to operating-system design, the protec- 
tion system, and the mechanisms for data abstraction have 
effectively allowed construction of much of the operating system 
as user-level programs: 

The problems, such as reliability, memory contention, and the 
small-address problem, have been effectively managed, if not 
solved entirely. These problems were challenging and the 
reliability problems, especially, motivated a profitable research 
effort. 

References 

Almes and Robertson [19781; Bellis [19781; Bhandarkar [19721; 
Cohen and Jefferson [1975];DEC [1972];Dijkstra [1968a];Fuller, 
Almes, Broadley, Forgy, Karlton, Lesser, and Teter [1976]; Fuller 
and Harbison [1978];Jain [1978];Levin, Cohen, Corwin, Pollack, 
and Wulf [1975]; Lowerre [1976]; Marathe [1977]; McGehearty 
[19801; Newcomer, Cohen, Jefferson, Lane, Levin, Pollack, and 
Wulf [19761; Oleinick [19791; Oleinick and Fuller [19781; Parnas 
[1972]; Robertson and Ramakrishna [1977];Rubin, Guggenheim, 
and Bihary [19781; Schroeder [19721; Siewiroek, Kini, Joobbani, 
and Bellis [1978]; Strecker [1971]; Swan [1976]; Wulf and Bell 
[19721;Wulf, Cohen, Corwin, Jones, Levin, Pierson, and Pollack 
[19741; Wulf and Harbison [19781; Wulf, Levin, and Harbison 
[1980]; Wulf, Levin, and Pierson [1975]; Wulf, Russell, and 
Habermann [1971]. 



Chapter 23 

PluribucAn Operational 
Fault-Tolerant Multiprocessor’ 

David Katsuki / Eric S. Elsam / William F. Mann 
Eric S .  Roberts / John G. Robinson 
F. Stanley Skowronski / Eric W. Wolf 

Summary The authors describe the Pluribus multiprocessor system, 
outline several techniques used to achieve fault-tolerance, describe their 
field experience to date, and mention some potential applications. The 
Pluribus system places the major responsibility for recovery from failures 
on the software. Failing hardware modules are removed from the system, 
spare modules are substituted where available, and appropriate initializa- 
tion is performed. In applications where the goal is maximum availability 
rather than totally fault-free operation, this approach represents a 
considerable savings in complexity and cost over traditional implementa- 
tions. The software-based reliability approach has been extended to 
provide error-handling and recovery mechanisms for the system software 
structures as well. A number of Pluribus systems have been built and are 
currently in operation. Experience with these systems has given us 
confidence in their performance and mantainability, and leads us to 
suggest other applications that might benefit from this approach. 

1. Introduction 

The multiprocessor discussed in this paper had its beginnings in 
1972 when the need for a second-generation interface message 
processor (IMP) [Heart et al., 19701 for the ARPA network 
(ARPANET) [Roberts and Wessler, 1970; Heart, 1975; Wolf, 19731 
became apparent. At that time, the IMP’s Bolt Beranek and 
Newman (BBN) had already installed at more than thirty-five 
ARPANET sites were Honeywell 316 and 516 minicomputers. The 
network was growing rapidly in several dimensions: number of 
nodes, hosts, and terminals; volume of traffic; and geographic 
coverage (including plans, now realized, for satellite extensions to 
Europe and Hawaii). A goal was established to design a modular 
machine which, at its lower end, would be smaller and less 
expensive than the 316’s and 516’s while being expandable in 
capacity to provide ten times the bandwidth of, and capable of 
servicing five times as many input-output (I/O)devices as, the 516 
[Heart et al., 19731. Related goals included greater memory 
addressing capability and increased reliability. 

We decided on a multiprocessor approach because of its 
promising potential for modularity, for cost per performance 

’Proc. IEEE,  vol. 66, no. 10, October 1978, pp. 1,1461,159. 

advantages, for reliability, and because the IMP algorithm was 
clearly suitable for parallel processing by independent processors. 

The IMP’S communicate with host computers and with asyn- 
chronous terminals (IMP’s with terminals attached are called 
TIP’S [Ornstein et al., 19721). Hosts use the network of IMP’s and 
lines to communicate data messages of up to about 8000 bits; the 
IMP’s divide these messages into packets up to about 1000 bits 
long. The functions performed by the IMP are those of a 
communications processor; they include storing and forwarding 
packets, generating headers, routing, retransmission, error check- 
ing, packet and message acknowledgment, message assembly and 
sequencing, flow control, line error detection, host and line status 
monitoring, and related housekeeping functions. The IMP’s also 
send status and performance data to a network control center 
(NCC) which monitors and controls network operations [McKen- 
zie et al., 1972; Ornstein and WaldGn, 19751. The ARPANET 
IMP’s operate 24 hours a day, often in unattended locations. 

In applications of this sort, reliability requirements differ from 
those commonly found in other real-time systems. The IMP 
network forms only a part of a larger system; even a perfectly 
operating network is not sufficient to guarantee perfect overall 
system performance. Failures in the host, or in the interface 
between the host and IMP, may still introduce errors. What this 
means is that some sort of host-process to host-process error 
control is required for critical applications; the best that the IMP 
network can provide is a good environment for host-level error 
recovery processes. These processes need a network which rarely 
makes errors and which, when such errors do occur, can 
effectively process host-to-host retransmissions. In other words, 
occasional dropped messages and brief outages are acceptable; 
outages of more than a few minutes are undesirable even if 
scheduled in advance. 

Once we realized that what was needed was not so much 
reliability as the ability to recover gracehlly from failures, we 
began to see ways to provide a much more robust network by 
coding this type of fault-tolerance into our operating system and 
application algorithms, and by including special modular hard- 
ware designs. The machine that emerged [Heart et al., 1973; 
Ornstein and Walden, 1975; Bressler, Kraley, and Michel, 1975; 
Ornstein et al., 1975; Heart et al., 19761 we call the Pluribus 
(Fig. 1shows a typical Pluribus installation). It provides simple 
checking procedures such as parity, amputation features which 
allow failing equipment to be isolated and, optionally, redundant 
components. The software uses these features to detect, report, 
and isolate hardware failures. Since the symptoms of many subtle 
software failures are similar to those of intermittent hardware 
errors, fault-tolerant procedures which adequately recover from 
one can also recover from the other. 

There is a spectrum of fault-tolerant approaches which are 
appropriate in various applications [Avizienis, 1976; Avizienis, 
19751; our approach opts for a relatively inexpensive system which 

371 



372 Part 2 I Regions of Computer Space 

Fig. 1. The Pluribus front-end processor at Bolt Beranek and 
Newman's Research Computer Center. 

can quickly reinitialize itself, omitting troublesome components. 
This approach is especially suitable for applications in which brief 
outages can be tolerated and where overall correctness can be 
ensured by other techniques. 

II. Pluribus System Architecture 

The Pluribus may be characterized as a symmetric, tighlty 
coupled multiprocessor, designed to be flexible and highly 
modular. Modules are physically isolated to protect against 
common failures, and a form of distributed switch is employed for 
intermodule communications. In this section, we discuss these 
characteristics and describe the hardware architecture of the 
Pluribus. 

A. Major Design Decisions 
In order to make the basic operation of the Pluribus clearer, it is 
useful to examine some of the major design decisions that have 
directed its development, and to consider those decisions in the 
context of other options for multiprocessor system design. We 
have identified three areas which we believe are key aspects of the 
Pluribus approach to multiprocessing, each of which is considered 
in greater detail below. 

Processor Symmetry One dimension of multiprocessing in-
volves the degree of inter-processor symmetry within the system 
[Enslow, 1974, p. 831.In this dimension, one extreme might be a 
typical general purpose computer system, including a central 

Section 4 I Multiple-Processor Systems 

processor, a front-end processor, and perhaps one or more 
channel processors. Such an asymmetric system is relatively 
inflexible in power since increasing its central processing capacity 
requires the introduction of a more powerful central processor. 
Building redundancy into an asymmetric system can be expen- 
sive, since replication of all critical resources involves duplicating 
virtually the whole machine. 

At the other extreme are systems like the Pluribus in which all 
processors are identical. In such systems, the advantages of 
redundancy and flexibility are much easier to achieve since they 
include only one type of processing unit. Even without explicit 
redundancy, a symmetric system can provide graceful degrada- 
tion of throughput when a processing element fails. Pluribus 
systems which are sized for fully redundant operation include just 
one extra processing module; thus the degradation which results 
from failure of any processing module consists only of a loss of 
excess throughput capacity. 

Processor Coupling Another multiprocessing dimension is the 
level at which processors cooperate to accomplish overall system 
requirements. At one extreme the processors might run totally 
separate programs under the direction of a supervisor program, 
communicating only at arm's length. Such processors may be 
described as "loosely coupled [Enslow, 1974, p. 151.At the other 
extreme, which is characterized by array processors such as 
ILLIAC IV [Barnes et al., 19681, the processors run in lockstep, 
with a single program operating simultaneously on a number of 
data streams. The Pluribus lies between these extremes. Its 
processors are tightly coupled in the sense that all processors can 
access all system resources and perform all parts of the operational 
program; they operate independently except for necessary soft-
ware interlocks on specific I/O devices and data structures. 

Flexibility Although one of the goals in the creation of the 
Pluribus was to develop a machine with high throughput, this goal 
was complemented by the need for a smaller, cheaper machine 
with relatively low throughput. Similarly, although the Pluribus 
was conceived as having at least two of every resource to permit 
recovery after failures, it was also clear that not all applications 
required or could afford a fully redundant system. Thus it was 
desirable for the architecture to be flexible in at least two ways: 
The size-flexibility goal was to smooth large incremental steps in 
the cost-performance curve by utilizing a highly modular design, 
which could provide processing capacity well beyond our antici- 
pated needs. Flexibility in the area of fault-tolerance and fault- 
recovery was a related goal, since the need for fault-tolerance 
involves primarily economic considerations and we wanted to 
allow our customers to select fault-tolerance features independent 
of their throughput requirements. Also implied in each of these 
goals was the requirement for easy expansion to meet changing 
requirements. 



Chapter 23 I Pluribus-An Operational Fault-Tolerant Multiprocessor 373 

B. System Overview 

A central requirement in any multiprocessor is that processing 
elements be able to communicate both among themselves and 
with shared resources such as memories and I/O equipment. Ease 
of communication is always desirable and is vital in tightly coupled 
systems, since any delays or unwieldiness would immediately 
impact system operation and reduce programmability. These 
considerations, together with a natural desire for symmetry and 
simplicity, led us to adopt a unified addressing structure in which 
all common memory and I/O devices share the same address 
space. The Pluribus development was strongly influenced by 
previous unified-bus architectures in which processing, memory, 
and I/O units share not only a common address structure but also a 
single, time-multiplexed bus (the DEC PDP-11 is perhaps the 
most familiar example of this). Although multiprocessors based on 
the unified bus are both easily extensible and conceptually simple 
structures, they are vulnerable to single failures anywhere along 
the bus. In addition, the maximum throughput of such multipro- 
cessors is limited both by the design bandwidth of the bus as well 
as by contention for common resources. To avoid these problems 
we used a unified bus to create the functional modules which 
make up the system, but not to form the main connection 
structure. We defined three basic functional modules which share 
a common address space but have separate intermodule commu- 
nications paths: processor buses, memory buses, and I/O buses. A 
simplified system diagram is shown in Fig. 2. 

(In the following sections we will often use the term bus to 
mean a logical and physical module, as in “processor bus,” rather 

Fig. 2. A simplified view of the functional modules in a typical Plur- 
ibus system showing their interconnectivity. No physical relation- 
ships are implied. 

than just an interconnection system. All such usages will be 
italicized for clarity.) 

The system for interconnecting these modules had several 
major requirements. It had to be easily extensible to support as 
many as eight memory or I/O buses (common buses) and eight or 
more processor buses. It had to permit the operating software to 
remove malfunctioning modules from the system and incorporate 
newly acquired or repaired modules. In addition, it had to impose 
minimal cost penalties for smaller systems, while scaling up 
smoothly to produce large systems. Finally, it had to have no 
common point of failure which could lead to total system failure. 

The approach we finally adopted is similar in function to a 
central crossbar switch although it differs greatly in implementa- 
tion. The crossbar switch approach allows an extremely high- 
bandwidth interconnection scheme and has been used to advan- 
tage in several multiprocessors [Wulf and Bell, 19721. However, 
the usual implementation techniques are vulnerable to single- 
point failures. To avoid these problems, we distributed the 
components of the switch among the various system modules in 
such a way that no single failure points remain. Switch elements 
are called bus couplers and consist of two circuit boards connected 
by a cable. 

The bus couplers function by recognizing a range of addresses 
on processor or I/O buses, and initiating an access request on the 
appropriate common bus as a result. Since memory and I/O buses 
share a 20-bit address space, bus couplers must map 16-bit 
processor addresses into 20-bit system addresses under program 
control (see Fig. 3). In addition to handling inter-bus communica- 
tions, bus couplers perform several other functions which will be 
described later. 

Modularity Since the basic Pluribus was modular at several 
levels, an unusual degree of flexibility was available when we set 
out to define standard structures within the system. The three 
basic system modules described above have clear logical functions 
within the system, but their actual implementation depended on 
various tradeoffs between cost, throughput, and available physical 
components I 

It was decided early that the goals of flexibility and symmetry 
could be achieved by segmenting the operational tasks into strips 
of code (task distribution routines, task-oriented application 
routines, timers, etc.) which could be run by any available 
processor. The concept was that the code should be both 
reentrant and accessible to all processors at all times. The primary 
function of the common memory modules is to provide space for 
data buffers, program work areas, and inter-processor communi- 
cations areas. Code storage is divided into two parts: lightly used 
code is stored on common memory buses and is shared between 
processors; heavily used code is replicated in local memory on 
each processor bus. This strategy minimizes contention for access 
to common memory while holding down costs, especially since, in 



374 Part 2 I Regions of Computer Space 

1 MByle COMMON 
ADDRESS SPACE 

R
ti 


ADDRESS SPACE 

OF PROCESSOR ON 


REMOTE JS 


Fig. 3. Pluribus system address space, showing the mapping of 
processor “local” address space into the system space. “Back- 
wards bus coupling” path from one processor bus through an I/O 
bus to another processor bus is shown on the right. 

most applications, only a small part of the code is heavily used. 
The IiO modules were intended to support both polled low-speed 
IiO devices and high-speed interfaces capable of direct memory 
transfers. Couplers provide direct paths both from processor 
buses to I/O buses for control and polling, and from IiO buses to 
memory buses for direct memory transfers. 

All normal processor-to-processor communication occurs 
through locations in common memory. However, to initialize the 
system, it must be possible for one processor to access the local 
memory and control registers of a processor on a different bus. To 
allow this, the bus couplers provide a limited reverse path 
through any common I/O bus. 

In the following sections, we describe the physical implementa- 
tion of these system modules and detail several support functions 
required by the architecture. 

C. Physical System Structure 

As mentioned in previous papers [Heart et al., 1973;Ornstein and 
Walden, 19751, we chose the Lockheed SUE minicomputer as the 

Section 4 [ Multiple-Processor Systems 

point of departure for our system. It is a 16-bit machine, generally 
similar to the DEC PDP-11, which incorporates a unified address 
structure and an asynchronous, time-multiplexed bus. It also 
permits the attachment of a flexible combination of processors, 
memory, and IiO units. In contrast to the PDP-11, the SUE has 
its bus arbitration logic physically separated from the processor. 
This feature permits a bus to have one or several processors, or 
none at all. The Pluribus uses the bus, arbitration logic, proces- 
sors, memories, and several minor I/O units of the SUE. 

The basic Pluribus building block is the bus module. This 
module contains a modified SUE bus and card cage for up to 
twenty-four cards, together with completely self-contained 
cooling fans and power supply. Two bus modules can be connect- 
ed to form an extended bus. A Pluribus system rack contains up to 
five bus modules, and each rack is typically supplied with a 
separate source of ac power. Systems sized to be fully redundant 
allow any bus module or any rack to be powered down for 
maintenance without affecting system availability (see Fig. 4). 

Bus Structure (See Fig. 5)  A processor bus contains one or two 
processors and their associated local memory, a bus arbiter, and 
one bus coupler per logical path. Our current applications require 
8 to 12K words of local memory for each processor. The flexibility 

I 
BLOWER 

Fig.4. Physical organization of bus modules. Modules are indepen- 
dently supplied with power and cooling. 



- Chapter 23 1 Pluribus-An Operational Fault-Tolerant Multiprocessor 375 

PROCESSOR eus MEMORY eus 110 BUS 

m ARBITER 

BUSCOUPLER 8US COUPLER - eus COUPLER 

8K MEMORY 8K MEMORY CLOCK 

eus COUPLER OMMUNICATION 
INTERFACE

lb 

BUSCOUPLER 

BUS EXTENDER 

I 
BUS EXTENDER 

Fig. 5. Local bussing structure and contents of the three kinds of 
bus modules. 

of the processor bus allows us to easily vary this parameter as 
memory prices or the requirements of the applicatian change. 

The common memory bus contains an arbiter, bus coupler 
cards for all the connected paths, and enough memory modules to 
support the application. Up to 512K words of common memory 
can be supported in a system, although that amount of memory 
would probably not be concentrated on one memory bus. Typical 
Pluribus systems have from 32K to 80K words of memory on each 
bus, depending on the application. 

In addition to the bus arbiter and bus coupler cards, an I/O bus 
also contains cards for each of the various types of I/O interfaces 
that are required, including interfaces for modems, terminals, 
host computers, etc., as well as interfaces for standard peripher- 
als. The I/O bus also houses a number of special units including (1) 
a real-time clock (RTC) which is used by the system for timing 
processes and communications links (2) a special hardware task 
disbursing unit known as the pseudo-interrupt device (PID) 
discussed further below and (3) a reload card which monitors up to 
eight communication lines, watching for (and processing) specially 
formatted reload messages from the outside world. 

Inter-Bus Connection System Since dprocessors in our system 
must be able to perform any system task, buses are connected so 
that all processors can access all shared memory and control the 
operation and sense the status of any I/O unit (see Figs. 2 and 6). 

To connect processors and common memory, one card of a bus 
coupler is installed on a common memory bus, and the other on a 
processor bus. Similar connections are made from every processor 
bus to every common I/O bus. Coupler cards are connected by 
cables which may be up to 30 ft long, although most systems 
require a maximum of 10 ft. 

The memory or VO end of a bus coupler contains address- 
recognition circuitry and may be strapped to recognize and pass 
on to the memories or I/O devices any desired address range. 
When a processor makes a reference to common memory or I/O 
buses, the bus coupler cards on the processor bus all map the 
16-bit address on the processor bus into a 20-bit system address 
and pass it to bus couplers at the other ends of the connecting 
cables. If the address is within the recognition range of a memory 
or I/O end bus coupler, it will request a service cycle on its bus. 
Data from the selected memory cell or device register are then 
passed back along the coupler path to the processor. This feature 
differentiates the system address space so that requests for 
memory or IiO bus access only cause service cycles on appropriate 
buses, thereby avoiding unnecessary contention. 

Given a bus coupler connecting each processor bus to each 
common memory bus, all processors can access all common 
memory; I/O devices which do direct memory transfers must also 
access the common memories. These I/O devices are attached to 
as many I/O buses as are required to physically accommodate the 
number of devices and allow redundancy if necessary. Couplers 
connect each I/O bus to each memory bus. This coupler path is 
much like the processor-to-memory coupler path except that no 
address mapping needs to be done. I/O devices must respond to 
processor requests for action or information and in this respect the 
110 devices act like memories. Bus couplers are also used to 
connect each processor bus to each 110 bus. Here also, a mapping 
must be done between the 16-bit processor address space and the 
20-bit system space (see Fig. 3). 

Processor buses need to access each other in order to start and 
stop each other and reload local memories. We provide this low 
bandwidth interconnection by allowing a processor to access 
another processor bus via its processor-to-I/O bus coupler. The 
coupler provides a small (4-word) mapping window from I/O space 
to each processor’s space. A processor accesses another processor 
on a different bus by setting up and referencing this “backwards 
bus-coupling” window in system I/O space. 

The coupler paths that connect processor buses into memory 
and IiO buses have program-settable enabling switches at their far 
(memory and I/O) ends, thus permitting processors to be cut into 
and out of (“amputated from) the system. The reverse paths in 
the processor-to-IiO couplers also have enabling switches; nor- 



376 Part 2 1 Regions of Computer Space 	 Section 4 I Multiple-Processor Systems 

1= g & . J P L E R  	 INTERRUPT = COMMUNICATION 
INTERFACE 

=CENTRAL = eus COUPLER, 
PROCESSOR MEMORY END 

110 BUS 	 110 BUS 
EXTENSION 

PROCESSOR BUSSES 13) 

POWER B 8 K  BK 	 80 K 
SUPPLY A ‘,,‘,,MEM MEM 6 	 MEM 

POWER B c  8K B K B B B B  MEMORY 

UPPLY A 
 ‘” pu MEM MEM 	 eussEs (2)I l i  

1 
POWERB c c c P R T  110 Bus 
SUPPLY E I I I EXTENSIONI: ;; 

Fig. 6. Logical organization of a typical Pluribus system, showing interconnections of the distributed switch (bus coupler) structure. 

mally the forward paths are turned on and the backwards paths are the offending processor. Reinstatement of an amputated bus 
shut off. Since these paths represent a hazard whereby a “sick” happens in a similar manner. 
processor or device could damage the system, we have arranged 
that only by storing a password at the proper address can a switch Parity To aid in detecting faulty bus couplers or defective 
be changed. A processor can neither enable or disable its own memory, we compute and check parity across all bus coupler 
access paths but one processor, deciding that another is sick and paths using a parity computation based on both data and address 
should be eliminated from the system, can amputate the h s of [U.S. Pat., 19771. The scheme detects both “all zeros” and “all 



Chapter 23 1 Pluribus-An Operational Fault-Tolerant Multiprocessor 377 

ones” failures. For writes to common memory, parity is computed 
at the processor or 110 end of the bus coupler and stored in the 
memory cell with the data. When the memory cell is read, the 
stored parity is checked at the processor or I/O qnd of the bus 
coupler. For accesses from processors to units on the UO buses we 
use “feedback” parity; for writes to I/O the parity is computed by a 
special card on the I/O bus. The parity .is then sent back up the 
coupler to the processor bus where it is compared with parity 
computed on that bus. For reads from I/O the special I/O parity 
card computes parity and compares it with recomputed parity on 
the processor bus. 

Pseudo-Interrupt Device Real-time systems or, more generally, 
systems requiring fast response, employ priority interrupt mecha- 
nisms to direct the attention of the processor to the most urgent 
tasks. Reliability and load sharing requirements make it desirable 
that any processor be able to service any I/O device, but also raise 
such questions as which processor to interrupt for servicing. We 
have opted for a simple yet flexible method: each “interrupt 
event” (DMA completion, RTC tick, software events, etc.), instead 
of actually interrupting a processor, writes a value associated with 
its priority to a hardware queuing device called the PID. The 
software is designed to allow each processor to put aside the 
context of its present computation periodically and check the PID. 
The PID, upon being read, will produce the highest value that has 
been stored in it and simultaneously delete that value from its 
internal queue. The processor can then use that value as an index 
to a table of tasks to be performed. The software uses the PID in a 
similar manner: each time a “strip” of code completes, it writes 
the number of the next strip in that task to the PID. When that 
becomes the highest number in the PID, the next available 
processor will execute the associated strip. 

Our system does have two traditional interrupts, however. One 
is a 60-Hz clock interrupt. Each bus has its own 6O-HZclock, but 
conceptually this is an interrupt going to all processors; its main 
function is to time out locked data structures. The other classical 
interrupt is the power-faillpower-restore interrupt; each processor 
handles a power-fail interrupt from its own bus in the traditional 
way. Furthermore, bus couplers connected to processor buses will 
pass on any power-fail interrupt detected at their memory or I/O 
ends. A restoration of power causes first a bus master-reset and 
then a processor interrupt. We have adapted this interrupt 
mechanism to serve also as a bus activity watchdog timer. If any 
bus fails to show access activity for one second, a hardware timer 
fires, causing an artificial power-restore reset and interrupt. *This 
provides recovery from some illegal hardware and software states. 

D. Redundancy 

To assure that a particular machine has enough redundant 
resources to allow survival in the face of component failures, we 

include at least one extra bus of each type so that a failure of any 
one resource, or the bus holding that resource, will not result in 
system failure. This approach also permits the system to survive 
many combinations of multiple failures. Thus if a system requires 
four processors to function at minimum acceptable throughput, six 
processors would be provided for reliability since the failure of any 
processor bus would disable two processors. Similarly, if a 
machine required at least 60K of memory to function, we would 
provide two buses each containing 60K of memory, or three buses 
each containing 30K of memory. It is important to note that 
redundant resources configured into a given machine are not idly 
standing by since they are used by the running machine to 
produce performance greater than the acceptable minimum. 

I/O ports pose a special problem, since the devices and lines to 
which they are connected are frequently not doubled. For 
reliability, I/O interfaces can be doubled on separate I/O buses, 
but both interfaces must usually drive a single cable leaving the 
machine. We allow this by constructing all of our I/O port drivers 
with circuits that present a high impedance while unpowered. In 
addition, each I/O interface has a watchdog timer which, if not 
held off by repeated processor accesses, will disconnect the driver 
circuits within a second. Thus the likelihood that malfunctioning 
or unpowered I/O interfaces will interfere with the signals put on 
the external cable by the backup I/O interface is kept to a 
minimum. 

111. The Pluribus Operating System’ 

Unlike most conventional systems, the principal responsibility for 
maintaining reliability in the Pluribus is placed on the system 
software rather than in the hardware structure. The Pluribus 
hardware was designed to provide an appropriate vehicle for 
software reliability mechanisms. Besides normal error checking 
and reporting in the hardware itself, programmed tests, using 
known data patterns are run at intervals. When hardware errors 
are detected, system software exploits the redundancy of the 
hardware by forming a new logical system configuration which 
excludes the failing resource, using redundant counterparts in its 
place. 

Pluribus systems also check the validity of their software 
structures. Redundant information is intentionally introduced into 
the data structures at various points and checked by processes 
operating upon those structures. An example of this technique 
applied to buffer structures is described in Sec. IV. In addition, 
periodic background processes are used to recompute certain 

‘Portions of Secs. IV, V, and VII of this paper have appeared in ‘‘Software 
Fault-Tolerancein the Pluribus,” J. G. Robinson and E. S. Roberts, AFIPS 
Conference Proceedings, vol. 47, copyright AFIPS Press, Montvale, NJ. 
Reproduced with permission. 



378 Part 2 [ Regions of Computer Space 

variables which are maintained by the operational system. If the 
recomputation uncovers a discrepancy, the variables are fixed 
directly or a more drastic recovery procedure is initiated. 

In many cases, a failure is not detected at the exact time of 
occurrence but later when the software encounters some failure- 
induced discrepancy. By this time, the effects of the failure may 
be more widespread and the actual cause of the failure may be 
difficult to determine. In such cases, the system is not able to 
perform instantaneous recovery and seeks instead to restore 
normal operation as quickly as possible. 

The remainder of this section discusses the organization of the 
Pluribus operating system and some of the techniques used for 
achieving coordination of multiple processors. These techniques 
are further explored below where two examples of Pluribus 
fault-tolerant software strategies are presented. One of these 
examines the Pluribus IMP buffer system in detail, and the other 
covers strategies for understanding failures when they occur and 
effecting necessary repairs. 

A. General Responsibility of the Operating System 

The software reliability mechanisms for a Pluribus system are 
coordinated by a small operating system (called STAGE) which 
performs the management of the system configuration and the 
recovery functions. The overall goal of the operating system is to 
maintain a reliable, current map of the available hardware and 
software resources. The map must include accurate information 
not only about the hardware structure of the machine, but also 
about variables and data structures associated with the processes 
that use that hardware. Moreover, the operating system must 
function correctly even after parts of the system hardware have 
ceased to be operational. New resources, as they are discovered 
(e.g., because hardware has been added or repaired), should be 
incorporated as part of the ongoing operation of the application 
system. 

Since any component of the system may fail at any time, the 
operating system must monitor its own behavior as well as that of 
the application system. It may not assume that any element of 
hardware or software is working properly-each must be tested 
before it is used and retested periodically to ensure that it 
continues to function correctly. The operating system must be 
skeptical of its current picture of the system configuration and 
continually check to see if the environment has changed. 

Based on these considerations, the Pluribus operating system 
builds the map of its environment step by step. Each step tests 
and certifies the proper operation of some aspect of the environ- 
ment, relying on those resources certified by previous steps as 
primitives. Early steps examine the operation of the local 
processor and its associated private resources. Subsequent steps 
look outward and begin to discover and test more global resources 
of the system, giving the checking process a layered appearance. 

Section 4 1 Multiple-Processor Systems 

In the Pluribus operating system, each processor begins by 
checking its own operation and by finding a clock for use as a time 
base. Once these resources have been verified, the processor can 
begin to coordinate with the other active processors to develop an 
accurate picture of the system. 

At the same time, the system must balance the need for reliable 
primitives with the need to accomplish normal operation efficient- 
ly. When all the environment has been certified, the system 
should spend most of its processing power on advancing the 
operational algorithms and return only occasionally to the task of 
reverifying its primitives. When failures of the environment have 
been detected, however, the power of the system must be 
brought to bear on the task of reconfiguring to isolate the failure. 

B. Hierarchical Structure of the STAGE System 

The Pluribus operating system is organized as a sequence of stages 
which are polled by a central dispatcher. A processor starts with 
only the first stage enabled. As each stage succeeds in establishing 
a proper map of its segment of the system state, it enables the next 
stage to run. Each stage may use information guaranteed by 
earlier stages and thus may run only if the previous stage has 
successfully completed its checks. Once enabled, a stage will be 
polled periodically to verify that the conditions for successful 
completion of that stage continue to apply. The system applies 
most of its processing power to the last stage that is enabled but 
returns periodically to poll each earlier stage. The application 
system is the final stage in the sequence and may run only after 
the earlier stages have verified all the configuration information of 
the application and the validity of the data structures. 

Table 1 lists each stage of the Pluribus operating system, 
together with the aspects of the environment it guarantees. Many 
of the functions listed will not be discussed further but are 
provided to illustrate the layering of stages. 

Since processors continue to perform each of the stages 
periodically, changes in the environment will eventually be 
noted, Any stage detecting a discrepancy in the configuration map 
will disable all later stages until the discrepancy is repaired. Then, 
all the later stages, which might depend on data verified by the 
disabling stage, will be forced to run all their checks, guaranteeing 
that they will make any further modifications to the configuration 
map necessitated by the first change. A serious failure, such as a 
nonexistent-memory interrupt, disables all but the first stage. In 
these cases, some reconfiguration might be needed, and all stages 
should perform all their checks before the application system is 
resumed. 

C.  Establishing Communication 
So far, we have described the progress of one processor through 
the staged checking procedures of the operating system. All 
processors in the Pluribus perform the same checks, since it is 



Table 1 Pluribus ODeratina Svstem Staaes 

Stage Function 

0 Checksum local memory code (for stages 0, 1,Z).  
Initialize local interrupt vectors, and enable interrupts. 
Discover Processor 110. Find some real-time clock 

for system timing. 
1 Discover all usable common memory pages. Establish 

page for communication between processors. 
2 Find and checksum common memory code (for stages 3, 

4, 5).Checksum whole page (“reliability page”). 
3 Discover all common busses, PIDS, and real-time clocks. 
4 Discover all processor bus couplers and processors. 
5 Verify checksum (from stage 2) of reliability page code 

(for rest of stages plus perhaps some application 
routines). External reloading of missing code pages is 
possible once this stage is running. 

6 Checksum all of local code. 

7 Checksum common memory code. Maintain page alloca- 


tion map. 
a Discover common 1/0 interfaces. 
9 Poll application-dependent reliability and initialization 

routines. Periodically trigger restarts of halted 

processors. 


10 Application system. 


important that they agree about sthe state of the system resources. 
Coordination of multiple processors with potentially different 
views of the hardware configuration requires two mechanisms: the 
processors must agree on an area of common memory in which to 
record the machine configuration map, and they must cooperate 
in their decisions to modify the map. 

The first step in coordinating the multiple processors of a 
Pluribus is to agree on a page of memory through which to 
communicate. The procedure for initially establishing the page for 
communication is clearly delicate. Prior to establishing the page, 
the processors have no way to communicate about where it will 
be. The procedure must operate correctly in the face of failures 
which might leave some of the processors seeing a different set of 
common memory pages from the rest. Processors which are 
unable to see the communication area will attempt to use another 
memory page and must be prevented from interfering with the 
unaffected processors. 

Any processor that is first starting up (or restarting after some 
massive failure) can assume nothing about the location of the 
communication page. Any page may be used, and therefore a 
small area for communication control variables is reserved on each 
page of common memory. Part of this area is used for a brief 
memory test, which must succeed before the page may be used at 
all. Every processor attempts to establish the lowest numbered 
(lowest address in memory space) page that it sees as the page 

Chapter 23 I Pluribus-An Operational Fault-Tolerant Multiprocessor 379 

through which to communicate. To be valid, any page must have a 
pointer t o  the current communication page, and the communica- 
tion page must point to itself. 

Each processor looks at the pointer on the lowest numbered 
page it can see. There are three possible states for the pointer. 
First, if it points to the page itself, the processor has found the 
communication page and may now proceed to interact with other 
processors about the common environment. If it points to a higher 
numbered page, the processor may just fix the pointer, as the 
requirement that the communication page be lowest makes this 
case inconsistent. If it points to a lower numbered page, the 
processor must attempt to check if the indicated communication 
page is active. It must assume that the data might simply be old or 
invalid and must time it out using a dedicated entry in a special 
array of timers which is allocated on each page. The processor 
increments the timer and, if it ever reaches a certain threshold, 
unilaterally fixes the communication pointer and starts to use this 
page for communication. The processor is prevented from doing 
this by any other processor which is successfully using the lower 
numbered communication page; all such processors periodically 
zero all the timers on all memory pages in the system. 

Consider what happens during various possible hardware 
failures. If the memory bus containing the communication page is 
lost, all processors will attempt to establish a new communication 
page on the other bus. Using their timers on the new lowest page 
(which initially points to the old one after the failure), they await 
the threshold. No one is holding the timers to zero, so the new 
page becomes the communication page when some processor’s 
timer first runs out. 

A processor blinded to the communication page by a bus or 
coupler failure will try to establish a higher numbered page for 
communication. From the point of view of the failing processor, 
this case is indistinguishable from the previous case, where the 
common bus failed. Since the rest of the processors are satisfied 
with the communication pointer, they will hold all timers to zero, 
and the failed processor will never be able to change the 
communication page pointer. If the processor sees a set of pages 
disjoint from the rest of the system, it behaves as if no other 
processors are running, but there is no memory where it may 
interfere and now we have two systems operating independently. 
In this case it is likely that the two systems will intedere over 
other resources; since multiple failures are required for this 
situation to occur in a Pluribus, we choose not to attempt recovery 
here. 

D. The Consensus Mechanism 
When configuration data must be updated, it is crucial to 
coordinate the Pluribus processors before making the modifica- 
tion. The mechanism to accomplish this goal we call consensus. 
Each stage has a consensus which is maintained as part of its 



380 Part 2 1 Regions of Computer Space 

environment. The first step in forming a consensus is to determine 
the set of processors that is executing the corresponding stage. 
This set has certified the primitives necessary to maintain 
successfully this stage’s portion of the configuration map. In order 
for the system to respond to failures, the consensus must be kept 
current-new processors must be able to join it rapidly and 
processors that may have halted or ceased to run the stage must be 
erased from the set. 

Each processor, based on its hardware address in the Pluribus, 
is assigned a bit in three consensus arrays, called “next,” 
“smoothed,” and “fix-it.’’ As part of running the corresponding 
stage, every processor periodically sets its bit in the next 
consensus array to show that it wishes to participate in the 
consensus. After enough time has elasped for each properly 
running processor to set its bit, this array is copied into the 
smoothed consensus and cleared. The set of processors in the 
smoothed array will then be used as a basis for decisions to 
reconfigure some portion of the resource map. 

Any processor which wishes to modify some configuration 
information sets its bit in the appropriate fix-it array. Processors 
that agree with the configuration map clear their bits, and bits 
corresponding to processors not in the smoothed array are also 
cleared. 

In effect, the bits in the fix-it array represent the votes of the 
individual processors in favor of a potential modification. In most 
cases, it is desirable that all processors agree before making the 
change. All processors wait until the fix-it array matches the 
smoothed array before implementing the fix. Other modifications 
might require only majority or two-thirds agreement. The choice 
of policy often depends on some tradeoff between resources (e.g., 
should we use more memory or more processors?). The Pluribus 
approach allows us to make this choice independently at each 
stage. 

Since each processor in the Pluribus performs each stage of the 
checking code, the consensus mechanism provides the coordina- 
tion needed to change the configuration map gracefully. When a 
stage detects a failure, the processor sets the appropriate fix-it bit 
and disables the following stages. When enough processors detect 
the failure they implement the fix to the configuration map. Now 
these processors can complete the later stages, devoting their 
attention to any further changes required by the failure. A 
processor which sees a different picture of the resources and 
cannot reach agreement with the rest of the system hangs forever 
at the point of detecting the discrepancy. This technique effec- 
tively prevents the processor from damaging the system. 

E. Application-Dependent Checking 
In general, it is desirable for the application system to perform its 
own checks before initiating or resuming normal operation. The 

Section 4 I Multiple-Processor Systems 

last stage provides a mechanism which polls application-oriented 
processes to perform consensus-driven checks and repairs of their 
own data structures. This stage uses the results of the hardware 
(application-independent) discovery stages to certify its own data 
structures. For example, it could allocate or deallocate device 
parameter blocks as the I/O devices are discovered or disappear 
and initialize spare memory pages for use as data buffers as they 
become available. User-written reliability checks can be per- 
formed on any of the application data structures, and the 
appropriate reinitialization invoked to remedy failures. 

Occasionally, it is possible for a processor checking application 
data structures to implement minor repairs to the data structures 
uniIaterally. For major reconfigurations of the data structures, 
such as complete application system reinitialization, the checking 
routines must signal to the stage dispatcher that consensus is 
needed. The last concurring processor is then permitted to 
perform the reinitialization routine. Just as the early stages 
guarantee the hardware map, the application-dependent routines 
have the consensus mechanism at their disposal to validate the 
system data structures before entering the system. In addition, 
the application system data structures are rechecked periodically 
during normal system operation. 

IV. An Example of Application Reliability 

We use two general techniques to ensure the validity of data 
structures in the Pluribus. First, redundant information, where it 
exists, is checkedfor discrepancies, and appropriate action taken if 
they exist. Second, since detailed examination of all data for 
inconsistency is deemed impossible for any system of nontrivial 
complexity, we use watchdog timers to ensure the correct 
operation of the application system at various levels. As an 
example, we will discuss the buffer management strategy for the 
Pluribus IMP system. 

Buffers in the Pluribus IMP circulate through the system from 
queue to queue; in some cases, they may be shared between two 
or more processes. Since a compromised queue structure may, in 
general, rapidly degrade the performance of the system, elaborate 
checking methods are built into the IMP program at various 
levels. In particular, we must be able to detect queues that are 
crossed or looped and buffers that have been lost (are on no queue 
at all). 

Associated with each buffer in the system is a set of use bits 
corresponding to various processes that consume buffers. Any 
process that enqueues a buffer for some other process first sets the 
use bit for that process. When a process dequeues a buffer, the 
appropriate use bit must be on or the buffer will not be processed. 
As a special case, buffers on the system free list must have all their 
bits turned off. The buffer-freeing routine only returns a buffer to 



Chapter 23 I Pluribus-An Operational Fault-Tolerant Multiprocessor 381 

the free list if the last remaining use bit is that of the freeing 
process. 

This technique intentionally generates redundant information 
and continually validates it as a buffer circulates through the 
system. In other words, the existence of a buffer on a queue 
informs the system that some processing is desired for that buffer. 
In principle, the use bit signals the same thing. Each buffer- 
processing routine could scan all the buffers in the system for 
those with its use bit set, but such a strategy would clearly be 
inefficient. The redundancy check gives preference to neither the 
queue nor the use bit as an indication of need for service, but 
rather requires agreement between the two indicators. When 
they disagree, the system assumes that a failure has indeed 
occurred and attempts to correct it by forcing the queue to be 
empty, so that the effects of the failure can be contained as much 
as possible. 

The use bits allow the prompt detection of looped and crossed 
queues. In addition, an improper buffer pointer will often lead to 
a failure of the use bit check. 

We must also consider the case of a buffer which has been lost 
from all queues. This condition could arise due to a program bug 
or as a result of a queue being emptied after a use bit failure. We 
could employ a classical garbage-collection scheme for this 
purpose; unfortunately, the demand for buffers is often great in a 
high-speed communication system, and the requisite locking of 
the buffer resources during such a garbage collection would likely 
result in lost inputs. 

The recovery scheme we have chosen is a watchdog timer 
mechanism. Each buffer has associated with it a flag set by normal 
activity of the buffer which, in this case, is defined to be the 
periodic appearance of that buffer on the free list. Whenever a 
buffer is freed, its Aag is set. In addition, flags for all the buffers on 
the free list are set periodically. In the high-speed communica- 
tions environment, where data passes through a network node 
very rapidly, each buffer must appear on the free list at least once 
every two minutes. Therefore, each buffer flag is checked every 
two minutes to be sure it is set, and then cleared. A zero flag 
indicates that the buffer has dropped out of normal activity, and 
the buffer is unilaterally freed and its use bits cleared. In this way, 
any lost buffer is detected within at most four minutes and 
returned to normal usage. 

V. Advantages of the Pluribus 
Approach to Fault-Tolerance 

Two factors help to make our approach a cost-effective one. First, 
fault-tolerance is implemented primarily in software. This not 
only allows us to use unspecialized off-the-shelf hardware for 
much of our system, but also gives us considerable flexibility by 

allowing us to try new ideas as the product develops. When the 
time comes to upgrade machines in the field, a new software 
release is infinitely preferable to hardware modification. Imple- 
menting most fault detection in software also allows more 
complete error reporting than is characteristic of static-
redundancy approaches. 

The second factor is the modular nature of the Pluribus. 
Initially, the modular approach was chosen to permit easy 
expansion of the capabilities of a system to fit an application 
without being hampered by system-size boundaries. Our system 
expands by adding the same hardware modules as those which are 
duplicated to create a dynamic fault-tolerant system. Thus any 
system with more than the minimum number of processors for a 
given application both performs well and is fault-tolerant. A 
processor failure in such a system merely causes it to run a little 
slower. Since individual processors are relatively inexpensive, the 
percentage increase in system cost for processor redundancy is 
usually small, especially in large systems. 

Sometimes the system requirements justify only limited fault- 
tolerance. An example is the large front-end processor which 
services the BBN Research Computer Center [Mann, Omstein, 
and Kraley, 19761. Here the bulk of the machine is fully 
redundant, but several of the host interfaces are used only 
occasionally for experimental systems, and their users can tolerate 
an occasional outage. Therefore, these interfaces are not duplicat- 
ed, with a resultant savings in cost. 

An additional factor contributing to cost-effectiveness is the 
relatively low percentage of processing power spent in explicit 
error detection (about 1percent for current systems). We depend 
to a large extent on checks embedded in the operating program 
(such as code checksums) to detect errors, since the program is 
able to recover from failures whose effects are detected well after 
the fact. It is common practice for large software systems to 
include checks for some “impossible” software states and bad data 
structures. We have expanded these checks to be comprehensive, 
including checks which catch many types of hardware errors as 
well as lingering software problems. 

One interesting effect of our approach is to make even a 
minimal, nonredundant machine significantly more resilient to 
transient failures caused by either hardware or software. All of the 
fault-tolerant mechanisms which run in the large systems run also 
in the small ones, and there are many transient failures which 
cause only momentary confusion which is usually solved by some 
level of reset or reinitialization. Obviously, a solid failure of some 
critical component or destruction of the program cannot be 
resolved without redundant resources, but these are by no means 
the only possible failures. 

One result of our modular approach is that in contrast to the 
usual state of affairs, we expect larger systems to be more reliable 
than smaller ones, since more resources are available to be 
redistributed in case of trouble. 



382 Part 2 1 Regions of Computer Space 

VI. Recent Field Experience 

During the past year, we have had the opportunity to observe 
eight Pluribus IMP systems both under general operational 
conditions and in controlled field tests; the availability of these 
machines has been above 99.7 percent (by availability we mean 
uptime divided by scheduled uptime, excluding power and 
air-conditioning failures). Almost all the downtime was caused by 
program bugs which have been corrected since. Most recently, 
availability has been above 99.9 percent and we expect it to 
improve further as the machines reach maturity. 

In evaluating this experience in terms of fault-tolerant perform- 
ance, we feel that it is important to go beyond overall availability 
numbers and discuss the kinds of faults that the Pluribus system 
can report, the kinds we observed in the field, and the effects 
these faults had on system behavior. 

The concepts of availability and fault-tolerance are complex 
when applied to a Pluribus since failure of a component generally 
results in a reduction in, rather than a complete loss of, 
performance. In many applications this is an advantage since extra 
capacity is useful during periods of peak load and reduced service 
is tolerable while repairing faults. For example, if an IiO intedace 
or an entire I/O bus fails, the machine automatically substitutes a 
spare element with only a momentary (often unnoticeable) 
interruption of service and with no loss in performance. In the 
case of processors and memory, however, all resources are 
normally in use (none are in a standby mode) and the loss of any 
one (or several) of them forces a reduction in performance, but 
does not keep the system from running. 

When used as an IMP, the principal measure of Pluribus 
performance is throughput. In the tests described below, the 
presence of program bugs (since corrected) resulted in somewhat 
lower availability than we had expected, but the three machines 
easily exceeded their contractual requirements and were able to 
deliver better than 92 percent of their rated throughput capacity 
99.76 percent of the time and better than 50 percent of capacity 
99.83 percent of the time. 

Under normal operating conditions, it is possible to observe an 
IMP only by means of its reports to the NCC or by the reports of 
its neighbors in the network. Since IMP’Soften operate unattend- 
ed, emphasis has been placed on the ability of each Pluribus to 
evaluate and report its internal hardware and software health. 
Three varieties of trouble-report messages are sent to the KCC. 

Since the Pluribus continually evaluates the state of its hard- 
ware (see the discussion of the STAGE system), one type reports 
trouble in the hardware area. Examples of this are IiO errors, 
memory parity errors, power failures, and changes in configura- 
tion. The second type reflects the results of numerous interlocks 
and consistency checks which are made regarding tables, queues, 
variables, and other software entities. The third category concerns 
the Pluribus’ role as part of the network. These reports monitor 

Section 4 I Multiple-ProcessorSystems 

normal throughput statistics and temporary discontinuities in 
IMP-IMP message handling protocols, and are normally not 
directly pertinent to the fault-tolerance of the Pluribus itself. In a 
few cases the reports are received some time after a hult has been 
detected and dealt with by the Pluribus, but most fault messages 
appear within a few seconds. 

In the normal course of building and operating Pluribus systems 
during the past year, we observed a number of unexpected 
hardware and software faults, but to verify our ideas and 
procedures we also wanted to observe a number of failure modes 
which would be expected to occur infrequently under normal 
operating conditions. To this end, we conducted an extensive 
series of tests over a three-month period using three four- 
processor Pluribus IMP’S with redundant IiO interfaces, intercon- 
nected by high-speed terrestrial and satellite links. These tests 
demonstrated how the Pluribus handles many of the possible 
faults that might be encountered during the life of the equipment. 
We believe that the combination of the unexpected and planned 
faults we experienced constitutes a valid sample of the wide 
variety of intermittent failures in either hardware or software 
which such systems are likely to encounter. Examples of the types 
of fault recovery which were provoked or observed during these 
tests are discussed in the following. 

1 	 Failures on the processor bus. We powered off various 
combinations of processor buses to demonstrate that the 
system would continue with traffic processing. We also 
tried placing bad instructions in various processors’ local 
memories. In power failure situations, the remaining 
processors continued to operate without reinitialization. 
Data handled by the failed processor(s) was recovered by 
network protocols and a number of trouble-reports indicat- 
ed this fact. Data structures which were “locked by the 
failed processors were “unlocked” by a software watchdog 
timer. When power was restored, the processors were 
smoothly readmitted to the system. Processors with bad 
local memory either halted or looped, and were quickly 
reloaded by other processors and brought back into 
operation automatically. 

2 	 Errors in or loss of common memory. We created situations 
whereby the system suddenly saw common memory 
disappear. In some cases we powered off the memory bus; 
in others we “removed memory from usability tables. We 
also observed some spontaneous parity errors. Since 
common memory pages are assigned specific roles at 
initialization time, loss of one or more pages caused a 
variety of reactions, depending on the role of the lost 
memory and the amount remaining. At one extreme, loss of 
all common memory prevented the system from continu- 
ing. At the other, loss of one of several pages of message 
buffers caused only a brief adjustment of memory assign- 
ments by the Stage program. Most Pluribus systems are 
organized for fully redundant operation and have spare 



Chapter 23 1 Pluribus-An Operational Fault-Tolerant Multiprocessor 383 

code and variable pages. Loss of a primary code or variables 
area caused a short transient in operations while the spare 
was initialized. As an example, loss of one-half of physical 
common memory (several pages of code, variables, and 
buffers) caused a reconfiguration lasting 15 s or less. During 
this period, all processors agreed on the reallocation of the 
remaining memory and reevaluated its usability. As a 
further test, we destroyed the integrity of various pages of 
common memory by storing random data in the check- 
summed areas. The system reacted by restoring the 
contents of the affected page from the backup copy. This 
process required about 10-12 s. We also created test 
conditions in which the system found that all copies of 
critical programs in common memory were unusable (their 
checksum was bad). At this time the system automatically 
requested that it be reloaded (from another of the Pluribus 
IMP’S or the NCC). It should also be emphasized that the 
integrity of message buffers is also protected by software 
checksums; data harmed in any way is reported to the 
NCC, and the originator is notified so that retransmission 
can take place. 
Loss of I10 decice. We both created and observed several 
situations wherein 110 devices were either removed or 
experienced errors. In these cases, the I/O device was 
eliminated from usability tables by all processors and a 
backup device substituted. The system continued to ope- 
rate, although in some cases, depending on the configura- 
tion being used, reinitialization was required. Loss of an 
entire IiO bus was handled in much the same way. 
Loss of critical hardware. We observed that redundantly 
configured Pluribus systems would survive the loss of the 
RTC and the PID by swapping to the backup. Very little 
time was lost before the system continued. Errors in PID 
and RTC operation also are checked for and reported. 
Internal software errors. As previously mentioned, the 
STAGE system and the IMP code are designed to check on 
the internal consistency of various software structures. In 
addition, the system ensures that none of the asynchronous 
processes is allowed to remain in a waiting state or in a 
loop. On a very infrequent basis, we observed that a 
Pluribus will report that such a condition was detected and 
corrected. We also forced many of these situations to occur 
by destroying key data structures or by causing queues to 
be looped or crossed. The system detected these, reported 
the problem, and continued normally, reinitializing if 
necessary. 
Art$ciaZ pathological conditions. We did not attempt to 
cause pathological behavior of Pluribus hardware compo- 
nents which would, for example, write zeros to portions of 
memory or amputate buses at random, although we 
simulated these conditions with the software. Our observa- 
tions of pathological behavior in the field, although infre- 
quent, convince us that many of these cases can be 
withstood by the fault-tolerant software. For example, 

during field tests we observed that some extraneous data 
appear occasionally in certain critical tables causing the 
Pluribus to reinitialize quickly or to suspend activity on a 
communications link briefly. The problem was traced to a 
special reloading device which was being improperly 
activated. This situation was eliminated by a minor pro- 
gram change. 

We have now gained enough experience with the 
Pluribus fault-tolerant mechanisms to have confidence in 
their ability to detect and cope with failures. In the field, 
spontaneous failures have been of a relatively minor nature 
and have been successfully dealt with. Under test condi- 
tions, all the major and minor failures which occurred or 
which we created were well tolerated and the systems 
continued to function within their rated capacities. 

VII. Pluribus System Maintainability 

Most fault-tolerant systems are designed to be repaired, sooner or 
later, by humans. Maintainability thus becomes a significant 
factor in long-term system performance. Since many systems are 
designed to recover from any single failure, but not from all 
multiple failures, the mean time to repair (MTTR) directly 
influences on-line spares requirements and hence the system cost 
for any given performance goal. To minimize MTTR, the system 
must provide accurate and unambiguous information about the 
nature of the detected fault and the automatic recovery process 
initiated. The environment in which the system operates is also 
important since the maintaining authority must be notified and 
must initiate the repair process as soon as possible. 

The actual repair process may be carried out at several levels 
depending on the accuracy of the diagnostics and the obscurity of 
the failure symptoms. At the lowest level, the repair is accurately 
defined by the diagnostic and involves only the replacement of a 
faulty component. At the highest level, the failure may be caused 
by a design bug in either hardware or software. For the latter, the 
system must provide sufficient tools to permit overriding the 
operational recovery procedures. They must permit the repair 
personnel to reconfigure the system and run any required 
diagnostic procedures. The more powerful repair tools must be 
guarded to avoid operator-induced errors. Ideally this “fool- 
tolerance” [Goldberg, 1975, p. 321 should extend into all phases of 
repair. In practice we use only a two-level protection scheme that 
relies on experienced personnel not to make catastrophic errors. 

Although we tend to think of hardware malfunctions as separate 
from software malfunctions, the symptoms of failure and the 
recovery procedures are frequently similar. In the Pluribus, the 
first detection of a fault is usually through failure of an embedded 
check in the main program, and frequently that is all that is 
required to initiate a correct recovery procedure. When the 
diagnostic value of an embedded check is insufficient to define a 
recovery procedure, various modular diagnosrics may be run on 



384 Part 2 I Regions of Computer Space 

the system. Thus in the case of a memory whose checksum is 
discovered to be wrong, the recovery action is to run a brief 
memory diagnostic and, if the memory appears usable, to restore 
the code from a spare copy. 

Including a spare copy of some resource helps system recovery 
only if that spare resource works. Although it is traditional to run 
modular diagnostics on spare resources, our strategy has been to 
force the system to rotate use of resources from time to time. In 
some cases we use manual procedures, but the tendency has been 
to include automatic rotation procedures in the operational system 
software. This technique is clearly more appropriate to our 
application than it would be to a more traditional fault-tolerant 
requirement, since rotating faulty hardware into the operational 
system could cause a transient malfunction. On the other hand, it 
provides a better test of the hardware than modular diagnostics 
would provide. 

One advantage of our reliance on embedded checks for failure 
detection is that we can detect that class of failure which is rarely 
caught by diagnostics. It is axiomatic that the operational program 
is the best program for certifying the hardware, but our operation- 
al program has also become the most comprehensive diagnostic 
for the hardware. In our experience, some of the most subtle 
hardware failures occur during operation of the application 
system, even though hardware diagnostic programs detect no 
errors. By augmenting the operational system with diagnostic 
capabilities, we have often been able to isolate even obscure or 
intermittent failures without interrupting normal operation. 

A. Reporting Facilities 

In the Pluribus IMP, the mechanism for reporting errors, 
recovery operations, and change-of-status information is the 
system trap (i.e., a supervisor call). Traps are reported locally on 
the system terminal and are also sent via trouble-reports to the 
network log at the NCC, where they serve a variety of diagnostic 
purposes. Understanding the nature of a failure in the running 
system requires fairly accurate knowledge of the state of the 
machine at the instant of the failure. The initial implementation of 
the trap mechanism recorded only the code number of the trap, 
which set of processors had encountered it, and a total occurrence 
count. This proved inadequate for accurate diagnosis and we have 
augmented the original trap mechanism to &ow for saving a large 
snapshot of the instantaneous state of the processor, including 
such information as the contents of general registers, the global 
system time, map register settings, the last value read from the 
PID, and other important local data. These snapshots allow us to 
examine diagnostic information about the failure after the recov- 
ery code has taken effect and normal operation of the system has 
resumed. In an operational IMP, the snapshot information is sent 
to a data collection program at the KCC, where it is both stored 

Section 4 1 Multiple-Processor Systems 

for future reference and printed out on a log terminal. The 
snapshot facility is usually only enabled for that set of traps which 
indicate system malfunctions of some kind, since there are many 
normal traps which indicate such things as network topology 
changes. The same data collection program also keeps track of the 
current configuration of each machine and reports any changes on 
the log terminal. Thus the reconfiguration resulting from some 
module failure is immediately apparent. Correlating a reconfigur- 
ation with preceding snapshot error messages is usually sufficient 
to isolate solid failures. 

B. Remote Diagnosis and Repair 

Where the failure is intermittent, or error indications are 
ambiguous, we can make further diagnosis from the NCC using 
the remote connection capabilities of the network. This allows 
personnel at the NCC to interact with a system at a remote site 
exactly as if they were using the system control terminal at the 
site. We have provided a command structure in the system which 
allows us to make either “soft” or “firm” overrides of the 
configuration control structure, loop communications links, and 
run a variety of special diagnostics, monitors, and traffic genera- 
tors. This enables us to diagnose many problems from the NCC 
even before dispatching repair personnel to the site (this can be 
especially appropriate for diagnosing program bugs). The current 
software is best at diagnosing the solid failures typical of mature 
hardware and treats most long-term intermittents as unrelated 
transients. Although we plan to implement heuristics which can 
deal with this type of problem, the diagnosis of long-term 
intermittents currently requires human intervention. Fully re- 
dundant Pluribus systems may be thought of as networks of paths 
and buses, so by causing the system not to use a particular path or 
bus and watching the trap log, we are usually able to localize the 
source of a hardware intermittent. Partitioning the bus and using 
some subset of the modules on the bus further localizes an 
intermittent tiaced to a particular bus, and repairs can then 
proceed. The same tools for reconfiguration are, of course, also 
available to maintenance personnel on site through the system 
control terminal, and trap reports sent to the NCC are duplicated 
also. 

C. Partitioning 
In extreme cases, when all normal diagnostic approaches have 
been exhausted, it is also possible to partition a fully redundant 
machine into two separate machines and run the operational 
system in one half while running stand-alone diagnostics or 
another copy of the system in the other half. We originally 
expected to use this approach quite frequently, but experience 
has shown the technique to be less useful than we expected. 



Chapter 23 1 Pluribus-An Operational Fault-Tolerant Multiprocessor 385 

Splitting a system is a combination of many “firm” overrides of the 
configuration control which are not currently protected against 
operator error (i.e., deleting the last copy of a resource from the 
use tables, or overlapping system resources across the partition). 
There is also the problem of identifying fault-free components to 
include in the operational system half. In general, being able to 
identify a faulty module which is to be excluded from the 
operational system implies that we can fix the fault by replacing 
the module, which usually obviates the need for partitioning into 
two machines. And finally, once a machine has been split, any 
new failures are likely to cause fatal problems that the machine 
might have been able to cope with had it not been split. Our 
current feeling is that the risks of splitting an operational system 
usually outweigh the advantages. 

D. Reloading and Down-Line Loading 

An important facility provided by the Pluribus hardware allows us 
to load and start the machine with no onsite personnel. This is 
accomplished by special-format messages which trigger a simple 
reload device when received over the network. This device is 
used to load a software package capable of dumping or reloading 
the operating system and application code. The source of reload 
code may be either some other Pluribus IMP on the network, or a 
disk file at the network control center. These reloading facilities 
are also used for distributing software updates to the machines in 
the field. A Pluribus IMP which discovers all copies of some 
application code page to be compi-omised will attempt to get a 
down-line reload from a neighbor IMP. This request is reported 
to the NCC where an operator then sets up the reload source for 
the transfer. Its use enables an IMP without duplicated resources 
to recover quickly from transient failures caused by hardware or 
software. 

E. Maintenance Experience 

The prototype Pluribus systems performed their error recovery 
functions well in many cases. Minor problems were often 
bypassed so effectively that the users and maintenance personnel 
were never aware of the problem. Even following drastic failures, 
such as the loss of a common memory bus, normal system 
operation was restored within seconds. From our experience with 
these early systems, however, certain deficiencies in our original 
strategies have become clear. 

In some failure cases, one repair would lead to another, until 
eventually a fairly major reinitialization would be performed, with 
obvious effects on the users of the system. Unfortunately, the 
massive recovery often destroyed evidence of the original failure, 
or masked evidence necessary for effective diagnosis. While the 
goal of restoring the system to normal operation was achieved, we 

were left without any idea ofwhy the reinitialization was required. 
This was particularly frustrating when the frequency of occur- 
rence was on the order of hours or days. 

In other cases, normal operation seemed to continue while 
some hardware failure occurred undetected. Either the failure 
was covered by effective recovery at a fairly low level in the 
system or it occurred in a redundant portion of the hardware 
which was not being exercised. A second failure in conjunction 
with the first would remove the last copy of some critical resource, 
causing the system to fail. 

These initial experiences led through several intermediate steps 
to the current set of maintenance tools and diagnostics. In the 
prototype systems, we were forced to remove the system software 
and run stand-alone diagnostics when trouble arose. Develop-
ment of the original recovery algorithms into early versions of the 
current STAGE system allowed diagnosis and repair while 
running the operational system; however, system programmers 
were required to interpret the traps and wrestle the system into 
different configurations during repair. The usual repair team 
during this period included a system programmer (usually at the 
NCC) watching and interpreting the traps, with a maintenance 
technician on site replacing components. 

At present, the tools and diagnostics are well enough defined 
and documented so that usually only maintenance personnel are 
required for a repair. Hardware and software st& at the NCC may 
offer suggestions when maintenance personnel are dispatched to a 
site and may still direct occasional repair efforts if a difficult 
problem or inexperienced personnel require it, but this is the 
exception rather than the rule. 

VIII. Other Applications and Extensions 

Since the Pluribus has evolved from a communications application 
where overall system availability rather than total fault-coverage is 
the goal, our approach is most obviously suitable for similar 
applications. We have opted for an approach which depends 
heavily upon reconfiguration and reinitialization when faults are 
detected, and which requires very little special hardware beyond 
that needed to implement our multiprocessor architecture. Our 
approach would not be suitable for applications where absolutely 
no downtime can be tolerated, where total computational context 
must be preserved over failures, or where overall correctness 
must be ensured. In these cases, traditional approaches involving 
some form of static redundancy or execution redundancy are 
indicated [Avizienis, 1975; Avizienis, 19763. Techniques some- 
what similar to ours, but for a redundant uniprocessor, are in use 
in the Bell System’s latest Electronic Switching System [Myers et 
al., 19771. Although we have not closely investigated applications 
outside thee communications area, we believe our approach is 



386 Part 2 1 Regions of Computer Space 

suitable for many other tasks, and we discuss several of these 
briefly below. 

A. Message Systems 

We have made an extensive study of the possibility of using the 
Pluribus computer as the basis for a message system. By message 
system we mean not only traditional message-switching such as is 
done in the Telex system, but also a system of madboxes and files 
by which users can exchange and file messages without recourse 
to the U.S. Postal System, secretaries, or filing cabinets, and 
which will permit complicated searches and sorts of message files. 
Such a system must have high availability but could easily tolerate 
brief outages after a failure. 

B. Real-Time Signal Processing 

We have already built one system which is the front-end and 
control processor for a seismic data collection network, and which 
performs some preprocessing of seismic data [Gudz, 19771. We 
believe this application can be extended to other areas of real-time 
signal processing with requirements for high overall system 
availability. Since many signal processing tasks can be broken into 
parallel components, the multiprocessor architecture would be 
especially appropriate. 

C. General-Purpose Timesharing Systems 

It seems to us that explicit use of fault-tolerant techniques could 
benefit general purpose timesharing systems and large operating 
systems. These systems operate continuously and are subject to 
minor hardware errors and subtle software bugs, but do not 
require totally uninterrupted operation. Although most large 
systems include some self-checking in the software, software 
fault-tolerance, to be truly effective, must be well integrated into 
the overall system design, and into the special hardware features 
which are usually required. 

One of the primary purposes of most large operating systems is 
to provide disk and tape handling features. In this context, 
reinitialization in response to faults is a much more serious 
problem than, for example, in the IMP. Various checkpointing 
procedures may be required to restore the overall system state to 
a point where restart is possible [Yourden, 1972, pp. 340-3531, 
Large operating systems often support a variety of checkpointing 
services since the best techniques to use under these circumstanc- 
es depend in part on the applications being serviced; in cases 
involving on-line database updates, the application programs 

Section 4 I Multiple-ProcessorSystems 

themselves must be designed around their fault-tolerance re-
quirements. 

D. Reservations Systems 
Airline, hotel, and car rental reservation systems provide good 
examples of on-line database systems which could benefit from 
well-designed software fault-tolerance systems. Once a reserva- 
tion has been accepted, it must not be lost. Backup techniques 
such as dual updating of two copies of the database, perhaps 
located in different cities with independent central processors and 
telecommunications systems, may be worthwhile. On the other 
hand, minor problems (hardware or software) may be tolerated, 
especially if the problems can be resolved by reentering on-line 
transactions which were affected by the fault. Even with dual 
machines in remote locations, using a machine like the Pluribus 
would increase the reliability of each site separately, and provide 
substantial computing power in an expandable package. Further 
research will be required to understand fully the implications to 
the Pluribus of database integrity requirements for reservation 
systems. 

E. Process Control 

Our approach is clearly more appsopriate to some areas of process 
control than to others. We envision a typical application in the 
area of overall supervisory systems coordinating a number of 
subsidiary systems or controllers, and incorporating tasks such as 
inventory control and job scheduling. Processes that could afford 
to stop momentarily would be controlled directly. End-to-end 
error correction and fault-masking hardware would be used in the 
machine interface for applications needing overall fault-tolerance. 
As with the previous applications, some form of checkpointing 
would be built in to preserve context over restarts. 

References 

Avizienis [1975]; Avizienis [1976]; Barnes et d. [1968]; Bressler, 
Kraley, and Michel[1975]; Enslow [1974]; Goldberg [1975]; Gudz 
[1977]; Heart [1975b]; Heart, Kahn, Omstein, Crowther, and 
Walden [1970]; Heart, Ornstein, Crowther, and Barker [1973]; 
Heart, Omstein, Crowther, Barker, Kraley, Bressler, and Michel 
[19761; Mann, Omstein, and Kraley [1976]; McKenzie, Cosell, 
McQuillan, and Thrope [1972]; Myers et al. [1977]; Omstein, 
Crowther, Kraley, Bressler, Michel, and Heart [19751; Ornstein, 
Heart, Crowther, Rusell, Rising and Michel[1972]; Omstein and 
Walden [1975]; Roberts and Wessler [1970]; U.S. Pat. 4,035,766 
[1977]; Wolf [1973]; Wulf and Bell [19721; Yourden [1972]. 



Section 5 

Networks 

Introduction 

Table 1lists the basic dimensions of a computer network design 
space. Real networks can be represented as a point in design 
space by specifying the values of each dimension. Frequently real 
networks incorporate more than one alternative value (intercon- 

Table 1 The Network Design Space 

Components interconnected 	 Host access 
Terminal-computer Direct 

Computer-computer Subnet 

Homogeneous-heterogeneous Protocols 

Topology Host 
Logical Subnet 


Centralized Line 

Distributed Character 

Hierarchical 	 Routing 

Physical proximity Deterministic 

>1 km (global) Flooding 

100-1,000 m (building) Fixed 

4 0 0 m (room) Split traffic 


Physical structure Ideal observer 
Interconnection Stochastic 

Point-to-point Random 
Simplex Isolated 
Half-duplex Local delay estimate 
Full-duplex Shortest queue 
MuIt i plexed Distributed 

Broadcast Periodic update 
Interconnection capacity Asynchronous update 

Serial Flow control 
0-300 bit/s lsarithm i c 
300-2,400 bit/s Buffer storage allocation 
2.4-19.2 Kbit/s Special route assignment 
56-230.4 Kbitls Reliability 

Parallel Error rate 

1 2 Mbit/s Assumed perfect 


Switching Probability per bit 
Circuit Survivability 
Message Redundancy 
Packet Error codes 

Access connection 	 Performance 
Direct Capacity
Multiplexed Individual components 
Broadcast Total network 
Concentrators 	 Response time 


Time to connect 


nections or different capacities, varying physical separation, etc.). 

This multiplicity and range of values for a single dimension is 

encouraged by: 


Varying cost functions. The functions change over time and 
locality, fostering local optimization. 

Technology evolution. As the network evolves and expands 
over time, new technology (or new cost functions) becomes 
available and is factored into the expansion plans. 

User evolution. As network usage evolves, the network will 
adapt to the new patterns. 

Thus it is extremely rare that a network can be described bv 
selecting one parameter from each of the dimensions in Table 1. 
However, we offer the taxonomy as an orderly way of discussing 
the various decisions that make up a network's design. During our 
discussion of the various dimensions, the reader will note that 
some of the dimensions are interrelated, i.e., the selection of a 
value for one dimension may dictate, or at least bias, the selection 
of a value for another dimension. This phenomenon is characteris- 
tic of complex system design. It is not s&cient to use one 
dimension to optimize, because of its impact on other dimensions. 
Hence the would-be designer must first understand the available 
alternatives and then seek a harmonious blend of the design 
parameters in order to optimize against cost-, performance-, and 
reliability-based objective functions. It is essential that the 
designer identify constraints, design variables, and objective 
functions. Moreover, a network changes with time as the objec- 
tive functions of machines, links, and user costs dpamicdly 
change. The next section will present a brief discussion of the 
design parameters. The following section will examine actual 
networks; the student is encouraged to analyze them to see the 
interdependence of the design parameters. 

Network Design-Space Parameters 

Components Interconnected 

As in most system designs, the intended application is the primary 
shaper of the eventual structure. The network may only exist to 
tie remote terminals to a centralized computer. Historically, 
terminals had relative low data rates limited by available voice- 
grade phone lines (e.g., 100-300 bitis), but the advent of 
interactive graphics, intelligent terminals, better links, and 
modulator-demodulators (modems) will cause this attribute to be 
upgraded. 

Computer-to-computer communication involves higher data 
rates and larger blocks of data than terminal-to-computer commu- 
nications. The type of information transmitted (e.g., data files, 
facsimile, real time voice, or real time video) significantly impacts 

387 



388 Part 2 1 Regions of Computer Space 

not only the communication data rate but also the allowable 
transmission delay. 

Whether the interconnected components are identical (forming 
a homogeneous network, shown in Fig. l a ) or different (forming a 
heterogeneous network, Fig. 1b)-and for whatever reason, 
whether dictated by the application or by economics--can have a 
major impact on design decisions in other dimensions (e.g., host 
access and access connection) 

Topology 
The individual functions of a network (e.g., routing and switching) 
may be either centralized or distributed. Networks of the earliest 
form had all logical and physical functions centralized. These 
networks were called star networks (Fig. 2a), since everything 
was connected to a centralized node, usually the host computer. 
Centralized networks are conceptually easier to design but are 
limited by the capacity and reliability of the central resource. 
Alternatively, a network function can be distributed over several 
nodes in the network (as in the packet routing of the ARPANET, 
Fig. 2b). 

Hierarchical networks are interconnections of several networks 
and may be carried out to any number of levels. Figure 2c 
illustrates the simple case of a hierarchical star network, while 
Fig. 2d depicts local distributed networks interconnected via a 
backbone network. 

The physical proximity of the interconnected components 
determines the feasibility of several other parameters, including 
interconnection capacities and routing strategies. A geographical- 
ly distributed network where nodes are more than a kilometer 
apart will be significantly different from a local network whose 
nodes are separated by a few meters. 

These topology subdimensions are an attempt to abstract 
properties that might be shared by several networks. But the 
flexibility and evolution of networks, particularly of those where 
geographical distribution impacts the topology through local, 
autonomous decisions (i,e ,, those in which physical distance is 
greater than 1 km), means that it is very unlikely that two 
networks will be exactly the same. Thus the definitive method of 

1 

(a) 	 Homogeneous 

network


I (b) Heterogeneous network 

Fig. 1. Homogeneous and heterogeneous networks. 

Section 5 NetworksI 

(a) Star 	 (b) Distributed 

P 


(c )  	Hierarchicalstar 

(d) Hierarchical distributed 

Fig. 2. Examples of various network topologies. 

describing the topology is to give the complete physical structure 
including node types, link types, and geometry. 

Interconnection 

Following the specification of the components to be interconnect- 
ed and their topology, the next most important dimension is the 
means of interconnection. Historically, the majority of networks 
have had point-to-point links. Communications across the links 



Section 5 I Networks 389 

could be unidirectional (simplex), bidirectional but only in one 
direction at a time (half-duplex), bidirectional and in both 
directions at the same time (full-duplex),or combined with other 
communications (multiplexed). 

The availability of high-bandwidth channels by ground and/or 
satellite-based radio has spurred interest in interconnecting nodes 
via broadcasting. Whenever a node wishes to communicate it 
broadcasts over a common channel. The channel protocol (see 
below) resolves any contention for the channel. 

Interconnection Capacity 
The information-rate capacity of the interconnections determines 
the best-case performance of the network. The capacity may be 
allocated hierarchically, with lower capacity at the periphery (or 
access points) to the network and higher capacities where multiple 
communications may be multiplexed onto a single interconnec- 
tion. 

Most interconnections are serial because of cost. The cost of 
communications can be a significant fraction of the cost of the 
overall network. Thus ways to reduce communications cost may 
influence the values of subsequent dimensions (e.g., switching, 
access, and protocols). For a given information flow, a single 
high-capacity interconnection is cheaper than a set of lower- 
capacity interconnections (although the former is less tolerant of 
failures). During the design study for the ARPAKET [Roberts and 
Wessler, 19701 it was shown that a 25-fold increase in line capacity 
(from 2 to 50 Kbit/s) cost only a factor of 10 more. 

Serial interconnections spanned ranges dictated either by 
device characteristics (e.g., hard-copy terminals are usually less 
than 300 bit/s) or telephone network characteristics (e. g., voice- 
grade phone lines can carry up to 2.4 Kbith). 

Parallel interconnections are only economically feasible for 
short distances, less than 100 m. 

Switching 
In circuit switching, a dedicated path is established by connecting 
a succession of point-to-point links between the source and 
destination. A prime example of a circuit-switched network is the 
telephone system. 

Network traffic by nature moves in bursts. In the telephone 
network, a phone call averages only 3 min in duration. The 
overhead for establishing the circuit is only a few seconds and is 
acceptable, given the duration of a call. TYMNET [Schwartz, 
19771 is an example of a circuit-switched terminal network. 
However, terminal-to-computer communication is of much short- 
er duration than telephone calls and occurs more frequently (as in 
a character-by-character transmission from a 30 charis terminal to 
a computer). Setting up a circuit for the duration of a session 
would lead to underutilization of the interconnection’s capacity. 
On the other hand, establishing a circuit for each transmission 

(e.g., for each character or file) would add exceedingly large 
delays. Thus alternatives to circuit switching are sought. 

The first alternative is message switching. Each piece of 
information is bundled into a message with source and destination 
information. The message is multiplexed with other messages on 
the interconnections between nodes. The message is routed from 
node to node until the destination is reached. Message switching 
is often called store and forward, since the messages are stored at 
intermediate nodes and then forwarded. Several new dimensions 
are introduced by message switching, including routing, proto- 
cols, and flow control. Messages must contain extra bits so that the 
correct destination can be found. Longer messages may be 
subdivided into blocks of fixed size (see Fig. 3a) to ease the task of 
message multiplexing. Each block contains such information as 
the message identity and block number, as well as error-checking 
information. Only the first block has information about the 
number of blocks in the message as well as the source and 
destination. When all the blocks are received at the destination, 
the message is reassembled into its original form and an acknowl- 
edgment sent back. All blocks travel the same route, and 
intermediary nodes must hold the complete message before 
forwarding until it is all received. AUTODIN is an example of a 
message-switched network. 

A variation of message switching, termed packet switching, was 
introduced to decrease the response time of the network by 
dividing the message into packets (Fig. 3b), each ofwhich carries 
complete routing information. Thus the packets can be indepen- 
dently routed through the network, perhaps over different paths. 
Packets can be retransmitted as soon as they are received. Both 
the MERIT network [Aupperle, 19731 and the ARPA network 
[Chap. 241 are examples of packet-switching networks. 

Access Connection 
Access to the network can take several forms: a direct, dedicated 
interconnection; a multiplexed interconnection; a broadcast 
interconnection (as in the ETHERNET); or a concentrator. A 
concentrator multiplexes diverse traffic onto a high-capacity 
interconnection in order to save the cost of multiple long-distance 
interconnections, 

Host Access 
Computers that provide the computational cycles for a network 
are called hosts. The hosts may be tied together directly or via a 
communication subnet. The subnet logically separates data 
processing from data communications. Although the subnet 
approach may be less efficient than direct host-to-host intercon- 
nection, it has several advantages: 

Modularity. The subnet can be brought up independently. 
It can be incrementally expanded. And host computer 



390 Part 2 1 Regions of Computer Space Section 5 1 Networks 

Message , 

Mess’ 
ID 1 iyi:,’Source Dest. Text  

Error 
check 

Mess. 
ID 

B l k .  
2 

la) Message switching 

(b) Packet switching 

Fig. 3. Example of (a) message switching and (b) packet switching. 

software, especially complex operating systems, needs very 
little modification, since only a new type of ‘40 device is 
being added to the system. In direct host-to-host intercon- 
nection, each different type of host may require separate 
software; for N host types in the system, there would be 
potentially N 2  software additions. 
Adaptability.Changes can be made in the subnet, including 
changes in protocols, message formats, and routing, without 
affecting host-computer software. 
Reliability. The subnet can be made of highly reliable 
processors, perhaps specially built. Also, since these pro- 
cessors have no I/O devices other than network intercon- 
nections, the subnet processors can be many times more 
reliable than the hosts, with the result that the subnet 
approach is more reliable than the direct approach. 
Maintainability. Since the subnet is autonomous, spe- 
cial error-detection and recovery procedures can be 
evoked, such as down-line loading of code form adja- 
cent subnet processors. See Chap. 24 for a more de-
tailed discussion. 

Protocols 
A network can be viewed as a hierarchy of levels. Each lower level 
provides a reliable, but transparent, communications system for 
the next higher level. Each level has a protocol that consists of 

bless.  B l k .Text E C  T e x t  EC
ID  3 

message format, routing control, and error handling. Figure 4 
illustrates this hierarchy. At each level (for example, at the subnet 
level) messages from the next higher level (in this instance, the 
host) are broken into a series of packets. A header (routing 
information) and an error check are appended. The header-error 
check combination represents a “bit bucket” that envelops the 
text from the next higher level (which includes its own header and 
error check) and delivers the text reliably to its destination. 
Interconnections themselves may have a line protocol (as in 
SDLC [IBM, 19741 or ETHERNET [Chap. 261). All this infonna- 
tion (e.g., protocol and message text) consists of characters which 
have their own formats when placed on a line (perhaps including 
start and stop bits, parity bits, and 7-bit ASCII code). 

Of course, the more levels a message must be transformed 
through, the more bits (headers and error checks) that must be 
appended. If the number of overhead bits becomes too large, 
most of the network resources will be devoted to transmitting 
overhead. Some early measurements on the ARPANET 
[Kleinrock and Naylor, 19741 indicated that the average packet 
was 218 bits long, of which 168 bits were overhead! 

Routing 

In message-and packet-switched networks, a mechanism must 
be provided for determining the routing of messages or packets 



Level I 
Host I 

I D  Source Dest inat ion I 
I 

Subnet 

L i n e  
Error

Header Text check 

Fig.4. Levels of protocol in a typical network. 

from source to destination. Routing mechanisms must also ensure 
that messages‘ do not enter into a routing loop, thus never exit- 
ing the network. Routing mechanisms take two general forms: 
deterministic (i.e., predetermined and fixed) and stochastic 
(i.e., dynamically variable). Several variations of these two basic 
mechanisms have been proposed or implemented [Greene 
and Pooch, 19771. 

One of the simplest deterministic routing algorithms is fEood-
ing, wherein a node retransmits a received message over all its 
links except the link over which the message has been received. 
Eventually the message permeates the network. The source is 
notified of completion upon receiving a copy of its transmitted 
message. 

Conceptually, flooding has several advantages, including simple 
implementation, insensitivity to network topological changes, and 
the ability to ensure miiimal delay in message delivery. Howev- 
er, flooding contributes to network congestion and hence is not 
cost-effective. 

In fixed routing, network topology and traffic patterns are 
assumed static. Optimal routings can be computed and stored in 
each node. Obviously fixed routbigs do not adapt to varying 
network configuration, fluctuations in traffic patterns, or network 
outages. Fixed routing is often used in centralized networks or 
distributed networks with a single routing node (e.g., TYMNET) 
[Schwartz, 19771. 

Split routing provides multiple routing paths with the actual 

’For the remainder of this section we will use the word message to mean 
either message or packet. 

Section 5 I Networks 391 

I II I 

T e x t  

Header Text  

path selected via a predetermined probability. Each node routes 
messages according to the specified probability. 

If complete instantaneous knowledge of the network is known, 
optimal routing of each message is possible. Since complete 
knowledge is not feasible, on account of network delays, this ideal 
observer routing is used as a theoretical limit to compare other 
routing mechanisms with. 

Stochastic routing mechanisms combine network topology with 
an estimate of the current network state. The simplest is random 
routing, which transmits the received message out over a link 
selected at random. The message arrives at its destination after a 
random “walk.” 

Isolated routing mechanisms determine routing of messages on 
the basis of local information only. Network state may be 
estimated by keeping track of message acknowledgment delays as 
a function of the destination and the link transmitted over (this 
method is known as the local delay estimate) or by retransmitting 
the message as soon as possible (the shortest queue or “hot potato” 
method). 

Distributed routing mechanisms exchange observed delay 
information between nodes, thus allowing nodes farther from 
sources of congestion to “learn” about dynamic network varia- 
tions. Usually nodes exchange information only with their nearest 
neighbors. 

Flow Control 
The purpose of flow control is to relieve (or at least to limit) 
network congestion (either locally or globally) and to prevent or 



398 Part 2 1 Regions of Computer Space 

minimize deadlocks (situations in message-switching networks in 
which all resources, such as message buffers, are allocated and yet 
no message is able to be delivered, thus freeing up resources for 
new messages). 

In isarithmic control, the total number of packets in the system 
is held constant. Dummy (nil) packets are added to the number of 
real information packets to keep the total constant. New messages 
may enter the system only by replacing dummy packets. Outgoing 
messages are replaced by dummy packets. Dummy packets are 
circulated through the network by being passed on to nearest 
neighbors. 

In buffer storage allocation, space must be reserved at the 
destination for message reassembly before the message can be 
introduced into the network. This flow-control mechanism is used 
in the ARPA network. 

Special route assignment attempts to control congestion by 
altering the routing on the basis of long-term traffic patterns to 
minimize delay or by avoiding congested nodes. Periodic updating 
of estimated network conditions is required, as in the distributed 
routing mechanisms described above. 

Reliability 

Networks are composed of many hterconnected components and 
are therefore subject to outside disturbances which may cause 
garbling of message transmissions or even the loss of several 
network components. 

Networks are usually designed to ensure correct operation 
within an assumed transmission error rate and survivability in 
spite of component (link or mode) failures. Errors in transmissions 
can be caused by external electromagnetic radiation or by 
congested network operation (for an example, see the contention 
channels in the ALOHANET and ETHERNET, which use 
networkwide error detection as a means of managing congestion). 
These transient errors are usually tolerated by a detection and 
retransmission mechanism. 

Error detection is accomplished by appending an error-check 
code to each message. The error check works on a principle of 
redundancy and can be designed to guarantee detection of a 
specified number of random bit changes and/or a specified length 
(a burst) of consecutive bits, any or all of which can be in error. 
Most error-check codes also have a high probability of detecting 
errors in excess of those guaranteed to be caught. An effective 
network transmission error rate (i.e., rate of undetected faulty 
messages) is usually a dominant network design parameter. The 
cost, in terms of the encoding and decoding complexity and the 
number of error-check bits, is directly related to the specified 
number of random-bit or burst errors to be detected. 

Retransmission of a message is usually triggered by failure to 
receive a positive acknowledgment within a specified period of 
time. Each level of network protocol has extensive provision for 

Section 5 1 Networks 

transient-error survival [e.g., see ETHERNET (Chap. 26) for 
both line and host levels, ARPANET (Chap. 24) for subnet and 
host levels]. 

Since networks are composed of a multitude of interconnected 
components, the network must be able to survive component 
failures, or else it will be available only when all its components 
are properly operating. Network survival is usually accomplished 
by (1)designing network interfaces so that a component failure 
cannot cause other components to fail (the "domino effect" 
occasionally exhibited by power networks) and (2) providing 
redundancy via alternate paths between nodes and by other 
means. 

Performance 

The other primary metric by which the quality of a network 
design can be judged is performance. A crude measure of 
performance is the capacity of individual components or of the 
total network. More meaningful measures are those perceived by 
the user, such as response time and time to establish a two-way 
dialogue (time to connect). 

Network Examples 

The previous section presented a taxonomy of the network design 
space. I? this section we will briefly present some actual points in 
that space. We will conclude by discussing the three networks 
presented in detail by Chaps. 24, 25, and 26. 

Historically there have been many examples of networks. 
Roads, pipelines, railroads, and shipping are all commodity-based 
networks. But communication networks are the ones that have the 
most direct impact on computer networks. Communication 
networks have evolved from telegraphic to telephone to radio. 

Computer-related networks were first constructed to provide 
remote access to a centralized facility. The first such facilities 
serviced a small geographical area. Remote terminal access to a 
central site evolved until distances spanned thousands of miles. 
SABRE I [Knight, 19721 was the first online airlines reservation 
system; it was jointly developed by IBM and American Airlines in 
the early 1960s. SABRE consisted of a central computer with 2,000 
nationwide terminals. 

With the availability of low-cost processors and the increasing 
dominant cost of communications, terminal concentrators were 
evolved to multiplex many terminals onto a single communica- 
tions line, such as in the Dartmouth Time Sharing System (DTSS) 
[Hargraves, 19741. Commercial timesharing systems, such as the 
GE Informations System (Fig. 6) [McCalley and Barrett, 19781 
and TYMNET (Fig. 8) [Schwartz, 19771, also use terminal 
concentrators. The ALOHANET provides central computer ac- 
cess via radio packet switching rather than the more traditional 
leased land lines. 



The concept of computers dedicated to I/O (for example, the 
CDC 6600, Chap. 43) perhaps even predated terminal concentra- 
tors. The concept arose to functionally specialize computers in a 
computer network. A special-purpose network for air defense, 
SAGE (Semiautomatic Ground> Environment) [Everett, Zraket, 
and Benington, 19571, received sensor data from several sources 
(e .g., radar and visual) and transmitted information to various 
weapons systems. Each computer was duplicated for reliability. 

General computer-computer networks became common after 
the construction of the ARPANET, which pioneered packet- 
switching technology. 

LLL octopus 

One of the oldest and most extensive local computer networks is 
the OCTOPUS network at the Lawrence Livermore Laboratory, 
Livermore, California. LLL is a major research laboratory run 
under contract with the Department of Energy by the University 
of California. Large computing facilities were required for nuclear 
research performed by the laboratory, and security dictated that 
the facilities be provided locally. 

The OCTOPUS network is actually separated into six function- 
ally independent subnetworks tied to a collection of six worker 
computers. The pool of worker computers continually evolves so 
that the laboratory always has the most advanced computation 
engines available. In 1966, the worker computers consisted of two 
CDC 6600s, a CDC 3600, a UNIVAC LARC, an IBM Stretch, and 
two IMB 7094s. In 1978 the worker-computer pool had evolved to 
four CDC 7600s and two CDC Stars. To allow the smooth 
introduction of worker-computer types without disrupting net- 
work availability, LLL defined several high-speed data channels 
(36-bit, lo7bit/s and 4 x lo7bitis; 12-bit, 1.5 x 106 bit/s) to which 
all OCTOPUS subnetworks interface and to which all new worker 
computers must interface. 

Figure 5 illustrates the OCTOPUS network configuration as of 
the beginning of 1979. Each of the six subnetworks will be 
described below. 

File Transport Subnetwork One of the original motivations for 
the OCTOPUS network was to provide a large central data base. 
There are two advantages of such a centralized data base: 

1 	 Economies of scale. Online secondary storage is cheapest 
with very large storage devices. 

2 	 Flexibility. Files can be created on one worker computer 
and subsequently accessed on another, increasing availabil- 
ity and allowing load balancing. 

A dual-processor PDP-10 with a shared 256-kiloword buffer 
memory serves as the memory hierarchy controller and buffer for 
moving files from one secondary storage medium to another. In 

Section 5 Nthworks 393I 

1979 there were twelve 100-megabyte disks. An IBM photostore 
provides 10” bits of online storage capacity via a photographic 
process to store archival data. Since the photographic process is 
irreversible, the photostore is a write-once, then read-only 
storage. File updates require copying the data to buffer memory 
or disk and subsequent rewriting to a fresh cell of the photostore. 

Terminal Subnetwork Four PDP-8 minicomputers provide ac- 
cess to the worker computers for 512 teletypewriters. The 
PDP-8’s provide concentration of teletypewriter characters into 
lines, routing of completed lines (messages) to the appropriate 
worker computer, and character-by-character disassembly of lines 
from the worker computer to the terminal. Three PDP-11’s 
provide similar capabilities for 768 advanced terminals. 

The File Transport Subnetwork uses the Terminal Subnetwork 
to send control messages between the PDP-lo’s and the worker 
computers. Control messages are usually short and do not mix 
well with the large files transported over the File Transport 
Subnetwork. 

Remote Job Entry Terminal Subnetwork Three PDP-11’s pro- 
vide access to the worker computers from 40 remote stations, each 
equipped with card readers and line printers. 

Television Monitor Display System (TMDS) Subnetwork Two 
PDP-l1/45’s provide 96 channels of output to 1,024 television 
monitor users. Pictures measuring 512 bits by 512 bits stored on 
disk can be routed through the File Transport PDP-lo’s to the 
TMDS subnetwork. 

Computer Hardcopy Output Recording System (CHORS) 
Subnetwork Two Mod Comp computers provide access to 
hard-copy output on three microfilm or two nonimpact printers. 
CHORS worker channels simulate tape operation of a CDC 7600 
peripheral processing unit (PPU). 

Multi-Access Storage System (MASS) Subnetwork. Two TI 980 
minicomputers provide access to a lo1’ bit CDC 385 MSF tape 
library. High-speed MASS channels provide access to CDC 7600 
819 disks via PPUs at 4 x lo7bit/s. 

GE Information Services 
The General Electric MARK 111 Service computer network 
provides remote computational capabilities (timesharing and 
batch) to cover 600 cities in 21 countries. The network can support 
a peak load of approximately 1,800 simultaneous users accessing 
three data processing centers. Access to the data processing 
centers is provided by over 200 minicomputer concentrators 
interconnected by 300,000miles of telephone lines [McCalley and 
Barrett, 19781. 



394 Part 2 I Regions of Computer Space Section 5 1 Networks 

.CHORSsubnet subnet.-1 

File 

transport 

subnet 


Notes 

1 CrWorker Computers; #A. 6: CDC STAR; #R, S, 2,U: CDC 76001 
2 KI'Multi-Access Storage System/MASS; 40 Mbitlsl 
3 Pcl'TI 980A1 
4 TYCDC Mass Storage Facility/MSF; 64 Mbidcartridge; 16K cartridges; read/write; 4.5 Mbit/s: cartridge.access: 9sl 
5 K['LLL Data Channel; 36 b; 10' bitlsl 
6 Ms[Disk;k0-11;800 Mbytesl 
7 MplCore; 36 b/w; 256 Kw; 1 vsecl  
8 PcrFile Transport; PDP-101 
9 Ms[lBM 1360 PhLtostore; 10" bits; record: 250 Kbitls; read: lo6  bit/% t.access: 5 secl 

10 MsLlBM 2321 DataCell:#0-4:2X 10" bits1 
11 C['PDP-8; interconnected by:. 9.6K -500K bps serial line; attached to 128 terminals; 10 cpsl 
12 K['OctopusChannel: 1.5X lo6 bpsl 
13 CI'PDP-llf34; interconnected by: 9.6K -5WK bidserial line; attached to 256 terminals; 30 -960 cpsl 
14 C['PDP-l1/45; Television Monitor Display SystemjTMDS; interconnected bv: 9.6K - 500K serial line: 

96 channels; 1024 monitors1 
15 KPComputer Hardcopy Output Recording Systern/CHORS bus; 10 Mbit/sl 
16 C['Mod Comp 111 
17 Tl'Honeywell Nonimpact Printer1 
18 TYFR-80 Film Recorder] 
19 C['Remote Job EntryiRJE; PDP-11/10; card reader; line printer] 

Fig. 5. LLL's OCTOPUS network. 

The network is a hierarchical star composed of three levels (Fig. speeds. The remote concentrators are located at 20 network 
6): remote concentrators, central concentrators, and central distribution points. The MiniRemote Concentrator (MCR) is 
switches. User access is provided by dialing the nearest remote intended to operate in unattended locations. Programs stored in 
concentrator. The remote concentrators are minicomputers that read-only memories ask the central concentrators to load MRC 
multiplex terminal information into messages for shipment to software down-line in case of initialization or software corruption. 
central concentrators. There are four t ypes  of remote concentra- The remote concentrators sense dial-up terminal characteristics 
tors that vary with respect to the number of dial-up ports and line (e.g., baud rate and character set) and convert all transmissions to 



Section 5 Networks 395I 

. .. . .. 


dotes 
Cs['Central Switching Center; 'Diginet 16001 

! L[56 Kbit/s; fullduplexl 
I Chost [Host cluster; foreground: 'Honeywell 6088; background: 

' IBM S/3701 'Honeywell DN355; !See Fig. 711 
I Ccc ['Central Concentrator: 'GPAC 4000 with 12 ports] 
i L[9.6114.4119.2 Kbit/r ;fullduplexl 
j Crc['Remote concentrator; 'Honeywell H416 with 4 8  ports to 30C 

bids I 'GE Diginet 1600 with 96 ports to 1200 bitls I 'GE Diginet 
1600 with 14 ports to 9600 bitls I 'MRC mini remote concentratoc 
with 32 asynchronous ports to 2400 bit/s or 12 synchronous port! 
to 56 Kbitlsl 

Fig. 6. General Electric Mark 111 service network. 

a single virtual-terminal format. The virtual-terminal format 
allows for the independent development of remote and central 
concentrator software. Communication to central concentrators is 
via messages composed of a 7-byte header, up to 56 characters of 
text, an end-of-text character, and an error-check character that is 
the EXCLUSIVE OR of all previous characters. There are 16 
central concentrators, each of which can support up to 12 remote 
devices, 2 switching centers, and up to 5 host computers. The 
central concentrators either provide access to the host (Fig. 7) or 
routing to an appropriate central concentrator via the central 
switches. Each host center has more than one central concentrator 
for reliability reasons. The source central concentrator helps 
balance network load by assigning the user to the least loaded 

U 

Notes 
1 Cfg [foreground timesharing: 'HSOSS] 

2 Cbg [background batch; 'IBM 51370 I 'Honeywell 

U 

DN3551 

Fig. 7. General Electric Mark 111 host cluster. 

central concentrator attached to the desired host center. Further 
load balancing occurs at the host center, since the user can run on 
either host on account of the sharing of job information and files. 
Central concentrators intercommunicate via messages composed 
of a 10-byte header, up to 168 characters of text, an end-of-text 
character, and an error-check character. 

There are two switching centers that interconnect all central 
concentrators. The switching center redundancy prevents single 
failures from crippling the network. Average yearly availability 
has exceeded 99.7 percent on account of hardware redundancy at 
the switching-center, central-concentrator, and host-center levels 
(see Fig. 7). 

A network monitoring system gathers data on network configu- 
ration, network activity, and exceptional conditions. Network 
response is periodically checked by sending out dummy mes- 

bsages. 

TYMNET 

TYMNET (Fig. 8) is a terminal-oriented network that provides 
interterminal communication as well as access to timesharing 
hosts. The network has evolved to where user hosts can interface 
to share the network's intercommunication and user resources. 
The network supports three message types: control, short text (up 
to 56 characters), and long text (up to 168 characters). Message 
routing is via virtual circuits determined by central routing 
control. When a user logs on, the virtual circuit is established for 



396 Part 2 1 Regions of Computer Space Section 5 1 Networks 

Notes 
1 L[240014800 9600 bitls leased lines; transatlantic cable1 
2 Cct'TYMSAT Concentrator; ['Varian 620; 32 terminal ports] I 

['Interdata 7/32; 96 300-bit/s ports; 32 1200-bit/s ports; 
8 9600-bitls ports] I 

3 Cc['TYMCOM Concentrator for user hosts] 

Fig. 8. TYMNET network. 

the duration of the session. The TYMSAT concentrators combine 
user messages, identified by their virtual-channel numbers, into 
the larger-format messages for efficiency. Round-trip message 
delays average 400 ms in the United States and 800 ms for 
overseas connections [Schwartz, 19771. 

The MERIT Computer Network 
The, MERIT computer network (Fig. 9) is an experiment in 
interconnecting university computation centers for the purpose of 
expanding the facilities available to any user. MERIT became fully 
operational in October 1972 and interconnects three Michigan 
universities (Michigan State University, University of Michigan, 
and Wayne State University) within 80 miles of each other. 

A subnetwork of Communications Computers (CC) intercon- 
nects the host machines. A subnetwork approach was selected to 
minimize the impact on the diverse host operating systems, to 
isolate the network communications function, and to simplify the 
network interfacing. 

ccc 

C[Wayne State1 

Notes 
1 C[Communications Computer; Pc ['PDP-11 I ; 

Mp[ 16 Kword; 16 b/wl  1 
2 C[ ' IBM S360/671 
3 C [ ' C D C  65001 
4 L[ 2000 bids 1 

Fig.9. The MERIT computer network as of 1973. 

The ARPA Network 

Perhaps the best-known and most widely copied computer 
network is the ARPA Network. The ARPANET has been exten- 
sively studied and documented in the literature. The Advanced 
Research Projects Agency (ARPA) of the Department of Defense 
started development in late 1968 of a new type of computer 
network. The network was intended to interconnect, via 
common-carrier lines, dissimilar computers at geographically 
distributed ARPA-sponsored research sites. The primary purpose 
of this interconnection was to allow resource sharing among the 
research sites so that researchers might share data and interac- 
tively use programs existing at other sites. The network was also 
intended to stimulate research in packet-switching and protocol 
technology. Roberts and Wessler [1970] outline the ARPA Net- 
work goals. 

The ARPA Network has been operational for over 10 years and 
has become a national facility. The network has grown from 4 sites 
to about 60 sites interconnecting over 100 independent computer 
systems via a subnet constructed of Interface Message Processors 
(IMPs). (See Table 2.) The network is in a constant state of 
evolution. Provision for terminal access to the network for sites 
without independent host computers was added via special IMPs 

Table 2 ARPANET Growth 

Year Number of nodes Year Number 0.f nodes 

Late 1969 4 Early 1973 40 
Mid-1 970 10 Mid-1974 46 
Early 1971 15 Mid-1975 56 
Mid-1971 26 Mid-1 977 58 
Late 1972 34 Mid-1 978 61 



called Terminal Interface Processors (TIPS). A multiprocessor 
IMP, called Pluribus, was developed for the twin goals oforderly, 
modular growth and enhanced reliability of the subnet (see Chap. 
23). Satellite channels have been added to allow Europe (via 
Norway) and Hawaii access to the network. 

POP-10 

HAWAII 

8-6700 

POP-11 

FPSAP-1208 


PDP- 11
,q

DEC-2060T 

0 IMP 

TIP 

A PLURIBUS IMP 

0 PLURIBUS TIP 

AM 	SATELLITE CIRCUIT 

VERY DISTANT HOST 

Fig. 10. ARPANET logical map, June 1979. 

Section 5 Networks 397I 

A schematic map of the ARPA Network as of mid-1978 is shown 
in Fig. 10, while a geographical distribution is shown in Fig, 11. 
As can be seen from the map, each site consists of up to eight (four 
real, four fake) independent computer systems (hosts) and one 
IMP, TIP, or Plur&us. Each IMP may be connected to as many as 

PLEASE NOTE THAT WHILE THIS MAP SHOWS THE HOST 

POPULATION OF THE NETWORK ACCORDING TO THE 

BEST INFORMATION OBTAINASLE, NO CLAIM CAN BE 

MADE FOR ITS ACCURACY 

HOST COMPUTER CONFIGURATION SUPPLIED BY THE 
NETWORK INFORMATION CENTER 

NAMES SHOWN ARE IMP NAMES, NOT ( NECESSARILY I 

HOST NAMES 




398 Part 2 1 Regions of Computer Space Section 5 1 Networks 

WA- SATELLITE CIRCUIT 

0 IMP 

0 TIP 

h PLURIEUS IMP 

0 PLURIEUS T IP  


(NOTE: THIS MAP DOES NOT SHOW ARPA’S EXPERIMENTAL SATELLITE CONNECTIONS) 
NAMES SHOWN ARE IMP NAMES, NOT INECESSARILY) HOST NAMES 

Fig. 11. ARPANET geographic map, September 1979 (from the ARPANET Directory) 

five other IMPs using telephone lines of from 9.6 to 230.4 Kbit/s. 
The typical bandwidth is 50 Kbit/s. 

Chapter 24 describes the design of the IMP subnet, including 
message format and protocol, packet format and protocol, routing, 
reliability, hardware design, software design, and projected per- 
formance. Chapter 23 describes a multiprocessor explicitly de- 
signed for the IMP application while giving a good insight into 
multiprocessor design trade-offs and parallel decomposition of an 
application. Chapter 23 also illustrates how reliability techniques 
can be used in a multiprocessor dedicated to the communications 
task. 

Some of the IMP algorithms described in Chap. 24 have been 
altered to improve network performance [McQuillan, Crowther, 
Cosell, Walden, and Heart, 19721: 

Deadlocks. Under heavy traffic conditions, it was possible 
for the subnet to deadlock. The condition, termed reassem-
bly lockup (Fig. 12), occurs when all of an IMP’S buffers are 
allocated to reassembly of multiple packet messages (mes- 
sages A and B in IMP 3) and cannot accept packets for other 
messages. Deadlock occurs if all the adjacent IMPs (IMP 2) 

have filled buffers for the IMP in question but none of 
the packets (of messages C, D, and E for this example) 
are those required to complete a message and thus to 
release buffer space. A request for reassembly space before 
accepting a message from a host was added to the subnet 
protocol. 
Sequence Control. Since the deadlock prevention mecha- 
nism described above provided flow control and since the 
original flow control mechanism (in which each IMP could 
originate at most 63 messages) required large tables in the 
IMPs, the link mechanism was dropped. Sequence control 
was handled by sequence numbers between each source 
and destination IMP. 
Acknowledgments. Separate acknowledgment packets for 
successfully received packets generated extra network 
traffic. A 10 to 20 percent networkwide improvement was 
achieved by “piggybacking” acknowledgments on top of 
normal data packets. 

Models presented in McQuillan, Crowther, Cosell, Walden, and 
Heart [1972] indicated that the above changes lead to: 



Section 5 I Networks 399 

Message reassembly 

IMP 1 IMP2 
for A

\ IMP3  

Message reassembly ’ 
for B 

Fig. 12. Reassembly lockup in the ARPANET. 

Program processing time per packet decreased by 20 
percent. 
Line throughput increased by 4 to 7 percent. 
IMP throughput increased by 17 to 21 percent. 
Line overhead on a full-length packet decreased from 29 
percent to 16 percent. A 50-Kbitls line can handle 43 full 
packets per second instead of the previous 38 full packets 
per second. 

The following provisions were made in the original IMP 
definition to allow for gathering of statistics on network behavior 
[Kleinrock and Naylor, 19741: 

A trace bit in each individual packet. Each traced packet 
was to create a message to the network measurement 
center (NMC) at UCLA containing the following time 
stamps: the arrival of the last bit of the packet, the placing of 
the packet on a queue, the start of transmission of the 
packet, and the receipt of an ACK. 
For a more macroscopic view of network behavior, accumu- 
lated statistics can be collected, including a histogram of 
message lengths, the number of messages from each host, 
the number of control messages, and channel statistics 
(e.g., the number of words sent, number of errors, and the 
number of times the free buffer list is empty). 
Snapshots of multiple IMPS at nearly the same time, 
including queue lengths and routing table information. 
Status reports sent to the Network Control Center (NCC) at 
BBN. These reports are sent each minute and include the 
up or down status of the host, the number of ACKS 
received, the number of packets entering from the host, the 
number of “I’m OK, you’re OK” messages that failed to 
arrive, etc. 

In August 1973 an experiment was conducted to collect data on 
the ARPANET. Table 3 summarizes the data reported in Klein- 

Table 3 ARPANET Experiment 
Week of Aug. I-7,1973 

Total number of bits 6.3x 109 
Total number of messages 26 x lo6 
Average number of messages per second entering 

network 47 
Messages 

Average number of packets per message 1.12 
Average number of bits per message 243 

Average packet length in bits 21 8 
Overhead per packet in bits 168 
Efficiency of buffer storage 1 8.4% 
Average round-trip delay 93 ms 
Average number of IMP hops per packet 3.31 
Average path length between ARPA Network nodes 5.32 
Packet traffic vs. path length 

Hops -% 
0 22 

1 16 

2 8 

3 12 

4 8 

5 9 


6-11 25 

Site dependencies 

80% of traffic generated by the busiest ’13 of 
nodes 

90% of traffic between 12.6% of possible site 
pairs 
44% of traffic to a single favorite site (note: 

favorite site varies from node to node) 
Average line utilization 

With overhead .071 
Without overhead .0077 

Maximum line utilization .I34 
Error rate 

Average 1 per 12,880packets 
Worst case 1 per 340 packets 



400 Part 2 1 Regions of Computer Space 	 Section 5 Networks 

Table 4 Network Reliability Summary 

I M P  down 	 Average host traffic 

Line All Hardwarelsoftware No. of Packetslday 

Month outage causes* Percent MTBF, h MTTR, h:min nodes Internode Intranode 


September '77 0.12% 0.41% 0.1 1 805 0:52 58 6,978,967 2,254,913 
October 0.43% 0.63% 0.1 6 1,116 1 :46 58 7,555,457 2,899,477 
November 0.49% 0.41% 0.06 1,368 0 5 0  58 7,926,677 3,379,314 
December 0.59% 0.38% 0.04 1,484 0:37 59 7,485,728 3,712,888 
January'78 0.35% 0.43% 0.13 81 4 1 :02 59 7,435,571 3,291,647 
February 0.21Yo 0.30% 0.09 1,053 0 5 9  59 7,619,331 3,277,811 
March 0.31% 0.37% 0.03 1,438 0:25 59 8,116,198 2,589,444 
April 0.19% 0.43% 0.18 773 1 :25 60 8,315,295 1,903,111 
May 
June 

0.54% 
0.1 7% 

0.51% 
0.30% 

0.10 
0.10 

81 1 
1,062 

050 
1 :06 

60 
60 

8,655,575 
8,297,662 

1,976,583 
1,815,891 

*Includes P.M., site environmental problems, retrofits, and other causes 

rock and Naylor [1974]. Up until that experiment, t r d c  on the constantly evolving, the network designer should realize that a 
ARPA Network had been growing exponentially from lo5packets a large portion of the network capacity will be devoted to network 
day in October 1971 to 4 x lo6packets a day in August 1973. Table protocol and control. 
4 summarizes more recent network traffic. Control of the ARPA Network was turned over to the Defense 

Another experimental study of the ARPANET was conducted in Communications Agency (DCA) in 1977. 
May 1974 [Kleinrock, Naylor, and Opderbeck, 19761, focusing on 
determining network overhead. This second study also confirmed The ALOHA Network 
the gross network behavior of the August 1973 experiment. A development concurrent with the ARPA Network was the

Figure 13 indicates the number of bits added to each message ALOHA Network, which became operative in 1970 at the 
for protocol and control at each level in the ARPA Network. The University of Hawaii. Initially, the ALOHA Network was designed 
efficiency of the network (i. e., the number of data bits transmitted 
divided by the total number of bits transmitted) is a function of 

% of % of line user traffic characteristics (whether it consists of a small number of 
Measured (May 1974) [Kleinrock 19761 Bits/sec//ine traffic capacity

large data files or a large number of small data files). Figure 14 
depicts the measured data, indicating only 8.8 percent data and Level - 0 Line 444.08 13.2 0.89 

91.2 percent overhead distributed among the various levels. Since Level - 1 Subnet 308.OO 9.1 0.62 

the line utilization was low (6.73 percent), causing the background 
Level - 2 Host 158.72 4.7 0.32

tasks to dominate the transmission, Kleinrock, Naylor, and 
Opderbeck projected the capacity distribution assuming a saturat- Background (routing, 2160.96 64.2 4.32 

ed network with the same traffic characteristics. The projection 
status reports, etc.) 

indicates that data increase to 23.4 percent and overhead Data 295.56 8.8 -0.59 
decreases to 76.6 percent. Even though network protocols are 3367.32 100.00 6.74 

Projected 

Level - 0 Line 17610.3 35.2 
-Level Function Number of  bits 

Level - 1 Subnet 1221 3.95 24.4 
Level - 2 Host 	 protocol 40 

control 93.5 Level - 2 Host 6294.15 12.6 

Level - 1 Subnet 	 protocol 80 Background (routing, 2160.96 4.3 
control 64 status reports, etc.) 

Level - 0 Line 	 protocol 88 Data 11720.64 23.4-control 16 
I 	 50000.00 99.9 


Fig. 13. Number of bits required for protocol and control overhead 

in the ARPA Network. Fig. 14. Measured and projected overhead in the ARPA Network. 




Section 5 1 Networks 401 

to provide remote terminal access to a centralized computing 
facility. Because of the local economics of leased common-carrier 
lines (telephone calls between different islands were charged at 
long-distance rates), an alternative interconnection approach was 
sought. The technology selected was packet switching via radio 
broadcast channels. 

Two radio channels-a random-access channel for user-to- 
computer communication and a broadcast channel for computer- 
to-user communication-tie the remote terminals to the central 
site. A “Menehune” (Hawaiian for imp, hence Interface Message 
Processor, or IMP) receives the random-access channel packets 
for assembly for the Host. Packets are one-half(40 characters) or a 
whole (80 characters) terminal line in length. Individual terminals 
broadcast on the random-access channel whenever a line-
terminating character is typed by the user. The error-check 
character in the packet is used not only to detect random-bit 
errors but also to detect errors in multiple simultaneous transmis- 
sions, which, with a high probability, will not produce a legal 
packet whose bits and error-check character match. If a terminal 
does not receive a positive ACK within a specified time, the 
terminal will retransmit the packet. Since the packet may not be 
acknowledged because of contention on the random-access chan- 
nel, the terminals wait a randomly selected period before 
retransmitting to avoid endless contention for the random-access 
channel. The ALOHA Network is thus a contention network. 

The Host returns information via the broadcast channel, to 
which all terminals are listening. Chapter 25 summarizes the 
design decisions and experiences with the ALOHA Network. 
Suggestions for improving the efficiency of the random-access 
channel are also considered. The random-access channel becomes 
clogged in high-traffic situations, since all packets are garbled due 
to contention and no packets are received intact. It has been 
calculated that the channel capacity (maximum throughput) of 
useful information is 1/2e, or 0.184, for a pure ALOHA technique. 
A slotted ALOHA technique for satellite channels has been 
proposed in which transmission can be started only at discrete 
intervals. The channel capacity then rises to l/e, or 0.368. 

Chapter 25 also suggests that the random-access and broadcast 
channels be combined. This not only saves radio hardware but 
also allows terminals to listen to the random-access channel and 
postpone transmission if the channel is busy. This may increase 
throughput by a factor of 3 to 5. This single-broadcast channel 
concept is employed in the ETHERNET. 

ETHERNET 


With the advent of cheap minicomputers, terminals, and intelli- 
gent terminals, there are more and more situations where a local 
network is required for intercommunication, resource sharing, 

and so forth. Further, because of the mobility of individuals and 
organizations, such a network has to be very flexible and easily 
modifiable. 

The ETHERNET was evolved to solve these problems. It 
consists of stations interconnected with a passive broadcast 
medium, the ether. Based on the ALOHA Network packet- 
switching technology, computer network stations broadcast into 
the ether. All stations listen and the desired destination picks off 
the packet by recognizing its unique address. If the channel is in 
use, stations do not broadcast. Contention is detected by compar- 
ing what was placed on the ether to what the station hears from 
the ether. (Hence the ETHERNET is also a contention network.) 
If there is a mismatch, the station can abort the packet and try 
again later. This prevents the ALOHA Network‘s lengthy time out 
for lack of positive acknowledgment. Further, contentions are 
limited to a small window following the completion of the previous 
packet. Thus, in the limit for small packets, the channel capacity is 
that of the slotted ALOHA technique. For longer packets, channel 
capacity approaches 1.0, since contentions are so short. 

In the case of high network load, the random retransmission 
time is lengthened to automatically adapt to congestion. It should 
be noted that the ETHERNET is only a line protocol, in that 
packets have only a high probability of successful delivery. 
Subnet- and Host-level protocols can be built on top of the 
ETHERNET protocol by the use of concepts such as positive 
acknowledgment on receipt of a packet. However, the 
ETHERNET does provide routing and flow-control functions 
which traditionally have appeared only at the higher levels of 
protocols. 

Conclusions 

As our dependency on computers grows, network technology will 
be even more important than it is today. Indeed, with the advent 
of the cheap microprocessor, structures that were once designed 
as a single logical entity (e.g., the disk controller) are actually a 
network of several microprocessors. 

References 

Aupperle [1973]; Doll [1974]; Everett, Zracket, and Benington 
[19571; Falk and McQuillan [1977]; Greene and Pooch [1977]; 
Hargraves [1974]; IBM [1974]; Kleinrock and Naylor [1974]; 
Kleinrock, Naylor, and Opderbeck [19761; Knight [1972]; Mc- 
Calley and Barrett [1978]; McQuillan, Crowther, Cosell, Walden, 
and Heart [1972]; Roberts and Wessler [1970]; Schwartz [1977]. 



Chapter 24 

The Interface Message Processor 
for the ARPA Computer Network1 

F. E. Heart / R. E. Kahn / S. M. Ornstein / 
W. R. Crowther / D. C.  Walden 

Introduction 

For many years, small groups of computers have been intercon- 
nected in various ways. Only recently, however, has the interac- 
tion of computers and communications become an important topic 
in its own right.' In 1968,after considerable preliminary investiga- 
tion and discussion, the Advanced Research Projects Agency of 
the Department of Defense (ARPA) embarked on the implementa- 
tion of a new kind of nationwide computer interconnection known 
as the ARPA Network. This network will initially interconnect 
many dissimilar computers at ten ARPA-supported research 
centers with 50-kilobit common-carrier circuits. The network may 
be extended to include many other locations and circuits of higher 
bandwidth. 

The primary goal of the ARPA project is to permit persons and 
programs at one research center to access data and use interac- 
tively programs that exist and run in other computers of the 
network. This goal may represent a major step down the path 
taken by computer time-sharing in the sense that the computer 
resources of the various research centers are thus pooled and 
directly accessible to the entire community of network partici- 
pants. 

Study of the technology and tariffs of available communications 
facilities showed that use of conventional line switching facilities 
would be economically and technically inefficient. The traditional 
method of routing information through the common-carrier 
switched network establishes a dedicated path for each conversa- 
tion. With present technology, the time required for this task is on 
the order of seconds. For voice communication, that overhead 
time is negligible, but in the case of many short transmissions, 
such as may occur between computers, that time is excessive. 
Therefore, ARPA decided to build a new kind of digital communi- 
cation system employing wideband leased lines and message 
switching, wherein a path is not established in advance and each 

'Proc. AFIPS SJCC, 1970, pp. 551567. 
zA bibliography of relevant references is included at the end of this paper; 
a more extensive list may be found in Cuadra [1968]. 

message carries an address. In this domain the project portends a 
possible major change in the character of data communication 
services in the United States. 

In a nationwide computer network, economic considerations 
also mitigate against a wideband leased line configuration that is 
topologically fully connected. In a non-fully connected network, 
messages must normally traverse several network nodes in going 
from source to destination. The ARPA Xetwork is designed on this 
principle and, at each node, a copy of the message is stored until it 
is safely received at the following node. The network is thus a 
store and fonvard system and as such must deal with problems of 
routing, buffering, synchronization, error control, reliability, and 
other related issues. To insulate the computer centers from these 
problems, and to insulate the network from the problems of the 
computer centers, ARPA decided to place identical small proces- 
sors at each network node, to interconnect these small processors 
with leased common-carrier circuits to form a subnet, and to 
connect each research computer center into the net via the local 
small processor. In this arrangement the research computer 
centers are called Hosts and the small processors are called 
Interface Message Processors, or IMPs.  (See Fig. 1.) This 
approach divides the genesis of the ARPA Network into two parts: 
(I)design and implementation of the IMP subnet, and (2) design 

H O S T  

-100 kb/s 

HOST 

Fig. 1. Hosts and IMPs. 

402 



and implementation of protocols and techniques for the sensible 
utilization of the network by the Hosts. 

Implementation of the subnet involves two major technical 
activities: providing 50-kilobit common-carrier circuits a n d  the 
associated modems; and providing IMPs, along with software and 
interfaces to modems and Host computers. For reasons of 
economic and political convenience, ARPA obtained common-
carrier circuits directly through government purchasing channels; 
AT&T (Long Lines) is the central coordinator, although the 
General Telephone Company is participating at some sites and 
other common carriers may eventually become involved. In 
January 1969, Bolt Beranek and Newman Inc. (BBN) began work 
on the design and implementation of IMPs; a four-node test 
network was scheduled for completion by the end of 1969 and 
plans were formulated to include a total of ten sites by mid-1970. 
This paper discusses the design of the subnet and describes the 
hardware, the software, and the predicted performance of the 
IMP. The issues of Host-to-Host protocol and network utilization 
are barely touched upon; these problems are currently being 
considered by the participating Hosts and may be expected to be a 
subject of technical interest for many years to come. 

At this time, in late 1969, the test network has become an 
operating reality. IMPs have already been installed at four sites, 
and implementation of IMPs for six additional sites is proceeding. 
The common carriers have installed 50-kilobit leased service 
connecting the first four sites and are preparing to install circuits 
at six additional sites. 

The design of the network allows for the connection of 
additional Host sites. A map of a projected eleven-node network is 
shown in Fig. 2.  The connections between the first four sites are 
indicated by solid lines. Dotted lines indicate planned connec- 
tions 

__.. 

i') 

Fig. 2. Network map (from the ARPANET Directory). 

Chapter 24 I The Interface Message Processor for the ARPA Computer Network 403 

Network Design 

The design of the network is discussed in two parts. The first part 
concerns the relations between the Hosts and the subnet, and the 
second part concerns the design of the subnet itself. 

Host-Subnet Considerations 
The basic notion of a subnet leads directly to a series of questions 

'about the relationship between the Hosts and the subnet: What 
tasks shall be performed by each? What constraints shall each 
place on the other? What dependence shall the subnet have on 
the Hosts? In considering these questions, we were guided by the 
following principles: (1)The subnet should function as a cmmuni-
cations system whose essential task is to transfer bits reliably from 
a source location to a specified destination. Bit transmission 
should be sufficiently reliable and error free to obviate the need 
for special precautions (such as storage for retransmission) on the 
part of the Hosts; (2)The average transit time through the subnet 
should be under a half second to provide for convenient interac- 
tive use of remote computers; (3)The subnet operation should be 
completely autonomous. Since the subnet must function as a store 
and forward system, an IMP must not be dependent upon its local 
Host. The IMP must continue to operate whether the Host is 
functioning properly or not and must not depend upon a Host for 
buffer storage or other logical assistance such as program reload- 
ing. The Host computer must not in any way be able to change the 
logical characteristics of the subnet; this restriction avoids the 
mischievous or inadvertent modification of the communication 
system by an individual Host user; (4)Establishment of Host-to-
Host protocol and the enormous problem of planning to commu- 
nicate between different computers should be an issue separated 
from the subnet design. 

Messages, Links, and RFNMs In principle, a single transmis- 
sion from one Host to another may range from a few bits, as with a 
single teletype character, up to arbitrarily many bits, as in a very 
long file. Because of buffering limitations in the subnet, an upper 
limit was placed on the size of an individual Host transmission; 
8095 bits was chosen for the maximum transmission size. This 
Host unit of transmission is called a message. The subnet does not 
impose any pattern restrictions on messages; binary text may be 
transmitted. Messages may be of variable length; thus, a source 
Host must indicate the end of a message to the subnet. 

A major hazard in a message switched network is congestion, 
which can arise either due to system failures or to peak traffic flow. 
Congestion typically occurs when a destination IMP becomes 
flooded with incoming messages for its Host. If the flow of 
messages to this destination is not regulated, the congestion will 
back up into the network, affecting other IMPs and degrading or 



404 Part 2 1 Regions of Computer Space Section 5 I Networks 

even completely clogging the communication service. To solve 
this problem we developed a quenching scheme that limits the 
flow of messages to a given destination when congestion begins to 
occur or, more generally, when messages are simply not getting 
through. 

The subnet transmits messages over unidirectional logical paths 
between Hosts known as links. (A link is a conceptual path that 
has no physical reality; the term merely identifies a message 
sequence.) The subnet accepts only one message at a time on a 
given link. Ensuing messages on that link will be blocked from 
entering the subnet until the source IMP learns that the previous 
message has arrived at the destination Host. When a link becomes 
unblocked, the subnet notifies the source Host by sending it a 
special control message known as Ready for Next Message (or 
RFNM), which identifies the newly unblocked link. The source 
Host may utilize its connection into the subnet to transmit 
messages over other links, while waiting to send messages on the 
blocked links. Up to 63 separate outgoing links may exist at any 
Host site. When giving the subnet a message, the Host specifies 
the destination Host and a link number in the first 32 bits of the 
message (known as the leader). The IMPs then attend to route 
selection, delivery, and notification of receipt. This use of links 
and RFNMs also provides for IMP-to-Host delivery of sequences 
of messages in proper order. Because the subnet allows only one 
message at a time on a given link, Hosts never receive messages 
out of sequence. 

Host-IMP Interfacing Each IMP will initially service a single 
Host. However, we have made provision (both in the hardware 
and software) for the IMP to service up to four Hosts, with a 
corresponding reduction in the number of permitted phone line 
connections. Connecting an IMP to a wide variety of different 
Hosts requires a hardware interface, some part of which must be 
custom tailored to each Host. We decided, therefore, to partition 
the interface such that a standard portion would be built into the 
IMP, and would be identical for all Hosts, while a special portion 
of the interface would be unique to each Host. The interface is 
designed to allow messages to flow in both directions at once. A 
bit serial interface was designed partly because it required fewer 
lines for electrical interfacing and was, therefore, less expensive, 
and partly to accommodate conveniently the variety of word 
lengths in the different Host computers. The bit rate requirement 
on the Host line is sufficiently low that parallel transfers are not 
necessary. 

The Host interface operates asynchronously, each data bit being 
passed across the interface via a Ready For Next BitlThere's Your 
Bit handshake procedure. This technique permits the bit rate to 
adjust to the rate of the slower member of the pair and allows 
necessary interruptions, when words must be stored into or 
retrieved from memory. The IMP introduces between bits a 
(manually) adjustable delay that limits the maximum data rate; at 

present, this delay is set to 10 psec. Any delay introduced by the 
Host in the handshake procedure further slows the rate. 

System Failure Considerable attention has been given to the 
possible effects on a Host of system failures in the subnet. Minor 
system failures (e.g., temporary line failures) will appear to the 
Hosts only in the form of reduced rate of service. Catastrophic 
failures may, however, result in the loss of messages or even in the 
loss of subnet communication. IMPs inform a Host of all relevant 
system failures. Additionally, should a Host computer go down, 
the information is propagated throughout the subnet to all IMPs 
so they may notify their local Host if it attempts to send a message 
to that Host. 

Specific Subnet Design 

The overriding consideration that guided the subnet design was 
reliability. Each IMP must operate unattended and reliably over 
long periods with minimal down time for maintenance and repair. 
We were convinced that it was important for each IMP in the 
subnet to operate autonomously, not only independently of Hosts, 
but insofar as possible from other IMPs as well; any dependency 
between one IMP and another would merely broaden the area 
jeopardized by one IMP'S failure. The need for reliability and 
autonomy bears directly upon the form of subnet communication. 
This section describes the process of message communication 
within the subnet. 

Message Handling Hosts communicate with each other via a 
sequence of messages. An IMP takes in a message from its Host 
computer in segments, forms these segments into packets (whose 
maximum size is approximately 1000 bits), and ships the packets 
separately into the network. The destination IMP reassembles the 
packets and delivers them in sequence to the receiving Host, who 
obtains them as a single unit. This segmentation of a message 
during transmission is completely invisible to the Host comput- 
ers. Figures 3,  4, and 5 illustrate aspects of message handling. 

The transmitting Host attaches an identifying leader to the 
beginning of each message. The IMP forms a header by adding 
further information for network use and attaches this header to 
each packet of the message. 

Each packet is individually routed from IMP-to-IMP through 
the network toward the destination. At each IMP along the way, 
the transmitting hardware generates initial and terminal framing 
characters and parity check digits that are shipped with the packet 
and are used for error detection by the receiving hardware of the 
next IMP. 

Errors in transmission can affect a packet by destroying the 
framing and/or by modifying the data content. If the framing is 
disturbed in any way, the packet either will not be recognized or 
will be rejected by the receiver. In addition, the check digits 



Chapter 24 I The Interface Message Processor for the ARPA Computer Network 405 

provide protection against errors that affect only the data. The 
check digits can detect all patterns of four or fewer errors 
occurring within a packet, and any single error burst of a length 
less than twenty-four bits. An overwhelming majority of all other 
possible errors (all but about one in 2"")are also detected. Thus, 
the mean time between undetected errors in the subnet should be 
on the order of years. 

As a packet moves through the subnet, each IMP stores the 
packet until a positive acknowledgment is returned from the 
succeeding IMP. This acknowledgment indicates that the mes- 
sage was received without error and was accepted. Once an IMP 
has accepted a packet and returned a positive acknowledgment, it 
holds onto that packet tenaciously until it in turn receives an 
acknowledgment from the succeeding IMP. Under no circum- 
stances (except for Host or IMP malfunction) will an IMP discard a 
packet after it has generated a positive acknowledgment. Howev- 
er, an IMP is always free to refuse a packet by simply not 

Fig. 3. Messages and packets. returning a positive acknowledgment. It may do this for any of 
several reasons: the packet may have been received in error, the 
IMP may be busy, the IMP buffer storage may be temporarily 
full, etc. 

At the transmitting IMP, such discard of a packet is readily 
detected by the absence of a returned acknowledgment within a 
reasonable time interval (e.g., 100 msec). Such packets are 
retransmitted, perhaps along a different route. Acknowledgments 
themselves are not acknowledged, although they are error 
checked in the usual fashion. Loss of an acknowledgment results 
in the eventual retransmission of the packet; the destination IMP 
sorts out the resulting duplication by using a message number and 

W a packet number in the header. 
The packets of a message arrive at the destination IMP, possibly

Fig. 4. RFNMs and acknowledgments. 	 out of order, where they are resassembled. The header is then 
stripped off each packet and a leader, identifying the source Host 
and the link, followed by the reassembled message is then 
delivered to the destination Host as a single unit. See Fig. 3. 

Routing Algorithm The routing algorithm directs each packet to 
its destination along a path for which the total estimated transit 
time is smallest. This path is not determined in advance. Instead, 

/ 
, 

\ 
each IMP individually decides onto which of its output lines to 

/ 
1 

r i c n r  BIT 

,.. transmit a packet addressed to another destination. This selection 
/ ._. is made by a fast and simple table lookup procedure. For each 

/ 
I 

C W A I I A C l t R  .. 	 possible destination, an entry in the table designates the appropri- 
ate next leg. These entries reflect line or IMP trouble, tr&c 
congestion, and current subnet connectivity. This routing table i s  
updated every half second as follows: 

Each IMP estimates the delay it expects a packet to encounter 
in reaching every possible destination over each of its output lines. 
It selects the minimum delay estimate for each destination and 
periodically (about twice a second) passes these estimates to its 

Fig. 5. Format of packet on phone line. 	 immediate neighbors. Each IMP then constructs its own routing 



496 Part 2 1 Regions of Computer Space 

table by combining its neighbors’ estimates with its own estimates 
of the delay to that neighbor. The estimated delay to each 
neighbor is based upon both queue lengths and the recent 
Performance of the connecting communication circuit. For each 
destination, the table is then made to specify that selected output 
line for which the sum of the estimated delay to the neighbor plus 
the neighbor’s delay to the destination is smallest. 

The routing table is consistently and dynamically updated to 
adjust for changing conditions in the network. The system is 
adaptive to the ups and downs of lines, IMPs, and congestion; it 
does not require the I M P  to know the topology of the network. In 
particular, an IMP need not even know the identity of its 
immediate neighbors. Thus, the leased circuits could be reconfi- 
gured to a new topology without requiring any changes to the 
IMPs. 

Subnet Failures The network is designed to be largely invulner- 
able to circuit or IMP failure as well as to outages for maintenance. 
Special status and test messages are employed to help cope with 
various failures. In the absence of regular packets for transmission 
over a line, the IMP program transmits special haello packets at 
half-second intervals. The acknowledgment for a hello packet is an 
I heard you packet. 

A dead line is defined by the sustained absence (approximately 
2.5 seconds) on that line of either received regular packets or 
acknowledgments; no regular packets will be routed into a dead 
line, and any packets awaiting transmission will be rerouted. 
Routing tables in the network are adjusted automatically to reflect 
the loss. We require acknowledgment of thirty consecutive hello 
packets (an event which consumes at least 15seconds), before a 
dead line is defined to be alive once again. 

A dead line may reflect trouble either in the communication 
facilities or in the neighboring IMP itseIf. Normal line errors 
caused by dropouts, impulse noise, or other conditions should not 
result in a dead line, because such errors typically last only a few 
miliseconds, and only occasionally as long as a few tenths of a 
second. Therefore, we expect that a line will be defined as dead 
only when serious trouble conditions occur. If dead lines elimi- 
nate all routes between two IMPs, the IMPs are said to be 
disconnected and each of these IMPs will discard messages 
destined for the other. Disconnected IMPs cannot be rapidly 
detected from the delay estimates that arrive from neighboring 
IMPs. Consequently, additional information is transmitted be- 
tween neighboring IMPs to help detect this condition. Each IMP 
transmits to its neighbors the length of the shortest existing path 
(Le., number of IMPs) from itself to each destination. To the 
smallest such received number per destination, the IMP adds 
one. This incremented number is the length of the shortest path 
from that IMP to the destination. If the length ever exceeds the 
number of network nodes, the destination IMP is assumed to be 
unreachable and therefore disconnected. 

Section 5 1 Networks 

Messages intended for dead Hosts (which are not the same as 
dead IMPs) cannot be delivered; therefore, these messages 
require special handling to avoid indefinite circulation in the 
network and spurious arrival at a later time. Such messages are 
purged from the network either at the source IMP or at the 
destination IMP. Dead Host information is regularly transmitted 
with the routing information. A Host computer is notified about 
another dead Host only when attempting to send a message to that 
Host. 

An IMP may detect a major failure in one of three ways: (1) A 
packet expected for reassembly of a multiple packet message does 
not arrive. If a message is not fully reassembled in 15minutes, the 
system presumes a failure. The message is discarded by the 
destination IMP and both the source IMP and the source Host are 
notified via a special RFNM. (2) The Host does not take a message 
from its IMP. If the Host has not taken a message after 15 
minutes, the system presumes that it will never take the message. 
Therefore, as in the previous case, the message is discarded and a 
special RFNM is returned to the source Host. (3)A link is never 
unblocked. If a link remains blocked for longer than 20 minutes, 
the system again presumes a failure; the link is then unblocked 
and an error message is sent to the source Host. (This last time 
interval is slightly longer than the others so that the failure 
mechanisms for the first two situations will have a chance to 
operate and unblock the link.) 

Reliability and Recovery Procedures For higher system re-
liability, special attention was placed on intrinsic reliability, 
hardware test capabilities, hardwareisoftware failure recovery 
techniques, and proper administrative mechanisms for failure 
management. 

To improve intrinsic reliability, we decided to ruggedize the 
IMP hardware, thus incurring an approximately ten percent 
hardware cost penalty. For ease in maintenance, debugging, 
program revision, and analysis of performance, all IMPs are as 
similar as possible; the operational program and the hardware are 
nearly identical in all IMPs. 

To improve hardware test capabilities, we built special cross-
patching features into the IMP’S interface hardware; these 
features allow program-controlled connection of output lines to 
corresponding input lines. These crosspatching features have 
been invaluable in testing IMPs before and during field installa- 
tion, and they should continue to be very useful when troubles 
occur in the operating network. These hardware test features are 
employed by a special hardware test program and may also be 
employed by the operational program when a line difficulty 
occurs. 

The IMP includes a 512-word block of protected memory that 
secures special recovery programs. An IMP can recover from an 
IMP failure in two ways: (1) In the event of power failure, a 
power-fail interrupt permits the IMP to reach a clean stop before 



Chapter 24 1 The Interface Message Processor for the ARPA Computer Network 407 

the program is destroyed. When power returns, a special 
automatic restart feature turns the IMP back on and restarts the 
program. (We considered several possibilities for handling the 
packets found in an IMP during a power failure and concluded 
that no plan to salvage the packets was both practical and 
foolproof. For example, we cannot know whether the packet in 
transmission at the time of failure successfully ieft the machine 
before the power failed. Therefore, we decided simply to discard 
all the packets and restart the program.) (2)The second recovery 
mechanism is a “watchdog timer,” which transfers control to 
protected memory whenever the program neglects this timer for 
about one minute. In the event of such transfer, the program in 
unprotected memory is presumed to be destroyed (either through 
a hardware transient or a software failure). The program in 
protected memory sends a reload request down a phone line 
selected at random. The neighboring IMP responds by sending a 
copy of its whole program back on the phone line. A normal IMP 
would discard this message because it is too long, but the 
recovering IMP can use it to reload its program. 

Everything unique to a particular IMP must thus reside in its 
protected memory. Only one register (containing the IMP 
number) currently differs from IMP-to-IMP. The process of 
reloading, which requires a few seconds, can be tried repeatedly 
until successful; however, if after several minutes the program has 
not resumed operation, a later phase of the watchdog timer shuts 
off all power to the IMP. 

In addition to providing recovery mechanisms for both network 
and IMP failures, we have incorporated into the subnet a control 
center that monitors network status and handles trouble reports. 
The control center, located at a network node, initiates and 
follows up any corrective actions necessary for proper subnet 
functioning. Furthermore, this center controls and schedules any 
modifications to the subnet. 

Introspection Because the network is experimental in nature, 
considerable effort has been allocated to developing tools whereby 
the network can supply measures of its own performance. The 
operational IMP program is capable of takmg statistics on its own 
performance on a regular basis; this function may be turned on 
and off remotely. The various kinds of resulting statistics, which 
are sent via the network to a selected Host for analysis, include 
“snapshots,” ten-second summaries and packet arrival times. 
Snapshots are summaries of the internal status of queue lengths 
and routing information. A synchronization procedure allows 
these snapshots, which are taken every half second, to occur at 
roughly the same time in all network IMPS; a Host receiving such 
snapshot messages could presumably build up an instantaneous 
picture of overall network status. Ten-second summaries include 
such IMP-generated statistics as the number of processed messag- 
es of each kind, the number of retransmissions, the t r d c  to and 
from the local Host, and so forth; this statistical data is sent to a 

selected Host every ten seconds. In addition, a record of actual 
packet arrival times on modem lines allows for the modeling of 
line t r d c .  (As part of its research activity, the group at UCLA is 
acting as a network measurement center; thus, statistics for 
analysis will normally be routed to the UCLA Host.) 

Perhaps the most powerful capability for network introspection 
is tracing. Any Host message sent into the network may have a 
“trace bit” set in the leader. Whenever it processes a packet from 
such a message, the IMP keeps special records of what happens to 
that packet-. g., how long the packet is on various queues, when 
it comes in and leaves, etc. Each IMP that handles the traced 
packet generates special trace report messages that are sent tQa 
specified Host; thus, a complete analysis of what has happened to 
that message can be made. When used in an orderly way, this 
tracing facility will aid in understanding at a very detailed level 
the behavior of routing algorithms and the behavior of the 
network under changing load conditions. 

Flexibility Flexibility for modifications in IMP usage has been 
provided by several built-in arrangements: (1)provision within 
the existing cabinet for an additional 4K core bank; (2)modularity 
of the hardware interfaces; (3) provision for operation with data 
circuits of widely different rates; (4)a program organization 
involving many nearly self-contained subprograms in the IMP 
program structure. 

This last aspect of flexibility presents a somewhat controversial 
design choice. There are many advantages to keeping all IMP 
software nearly identical. Because of the experimental nature of 
the network, however, we do not yet know whether this luxury of 
identical programs will be an optimal arrangement. Several 
potential applications of “Host-unique’’ IMP software have been 
considered-e. g., using ASCII conversion routines in each IMP 
to establish a “Network ASCII” and possibly to simplify the 
protocol problems of each Host. As of now, the operational IMP 
program includes a structure that permits unique software plug-in 
packages at each Host site, but no plug-ins have yet been 
constructed. 

The Hardware 

We selected a Honeywell DDP-516 for the IMP processor 
because we wanted a machine that could easily handle currently 
anticipated maximum tr&c and that had already been proven in 
the field. We considered only economic machines with fast cycle 
times and good instruction sets. Furthermore, we needed a 
machine with a particularly good I/O capability and that was 
available in a ruggedized version. The geographical proximity of 
the supplier to BBN was also a consideration. 

The basic machine has a 16-bit word length and a 0.96-psec 
memory cycle. The IMP version is packaged in a single cabinet, 



408 Part 2 [ Regions of Computer Space Section 5 1 Networks 

and includes a 12K memory, a set of 16 multiplexed channels r 
(which implement a 4-cycle data break), a set of 16 priority 
interrupts, a 100-psec clock, and a set of programmable status 
lights. Also packaged within this cabinet are special modular 
interfaces for connecting the IMP to phone line modems and to 
Host computers; these interfaces use the same kind of 1MHz and 
5 MHz DTL packs from which the main machine is constructed. 
In addition, a number of features that have been incorporated 
make the IMP somewhat resilient to a variety of failures. 

Teletypes and high-speed paper tape readers which are at- 
tached to the IMPS are used only for maintenance, debugging, 
and system modification; in normal operation, the IMP runs 
without any moving parts except fans. Within the cabinet, space 
has been reserved for an additional 4K memory. Figure 6 is a 
picture of an IMP, and Figure 7 shows its configuration. 

Ruggedization of computer hardware for use in friendly envi- 
ronments is somewhat unusual; however, we felt that the consid- 
erable difficulty that IMP failures can cause the network justified 
this step. Although the ruggedized unit is not fully “qualified to 
MIL specs, it does have greater resistance to temperature 
variance, mechanical shock and vibration, radio frequency inter- 

Fig. 6. The IMP. 

100 u f  C L O C K  

Y I I C H D O G  1 1 M C R  



Chapter 24 1 The Interface Message Processor for the ARPA Computer Network 409 

sync pattern that keeps them in character sync. Bit sync is 
maintained by the modems themselves, which provide both 
transmit and receive clocking signals to the interfaces. When the 
program initiates transmission, the hardware first transmits a pair 
of initial framing characters (DLE, STX). Next, the text of the 
packet 'is taken word by word from the memory and shifted 
serially onto the phone line. At the end of the data, the hardware 
generates a pair of terminal framing characters (DLE, ETX) and 
shifts them onto the phone line. After the terminal framing 
characters, the hardware generates and transmits 24 check bits. 
Finally, the interface returns to idle (sync) mode. 

The hardware doubles any DLE characters within the binary 
data train (that is, transmits them twice), thereby permitting the 
receiving interface hardware to distinguish them from the termi-
nal framing characters and to remove the duplicate. Transmitted 
packets are of a known maximum size; therefore, any overflow of 
input buffer length is evidence of erroneous transmission. Format 
errors in the framing also register as errors. Check bits are 
computed from the received data and compared with the received 
check bits to detect errors in the text. Any of these errors set a flag 
and cause a program interrupt. Before processing a packet, the 
program checks the error flag to determine whether the packet 
was received correctly. 

IMP Software 

Implementation of the IMPS required the development of a 
sophisticated operational computer program and the development 
of several auxiliary programs for hardware tests, program con-
struction, and debugging. This section discusses in detail the 
design of the operational program and briefly describes the 
auxiliary software. 

Operational Program 

The principal function of the operational program is the process-
ing of packets. This processing includes segmentation of Host 
messages into packets for routing and transmission, building of 
headers, receiving, routing and transmitting of store and forward 
packets, retransmitting of unacknowledged packets, reassembling 
received packets into messages for transmission to the Host, and 
generating of RFNMs and acknowledgments. The program also 
monitors network status, gathers statistics, and performs on-line 
testing. This real-time program is an efficient, interrupt-driven, 
involute machine language program that occupies about 6000 
words of memory. It was designed, constructed, and debugged 
over a period of about a year by three programmers. 

The entire program is composed of twelve functionally distinct 
pieces; each piece occupies no more than one or two pages of core 

(512 words per page). These programs communicate primarily 
through common registers that reside in page zero of the machine 
and that are directly addressable from all pages of memory. A map 
of core storage is shown in Fig. 8. Seven of the twelve programs 
are directly involved in the flow of packets through the IMP: the 
task program performs the major portion of the packet processing, 
including the reassembly of Host messages; the modem programs 
(IMP-to-Modem and Modem-to-IMP) handle interrupts and 
resetting of buffers for the modem channels; the Host programs 
(IMP-to-Host and Host-to-IMP) handle interrupts and resetting of 
buffers for the Host channels, build packet headers during input, 
and construct RFNMs that are returned to the source Host during 
output; the time-out program maintains a software clock, times out 
unacknowledged packets for retransmission,, and attends to 
infrequent events; the link program assigns and verifies message 
numbers and keeps track of links. A background loop contains the 
remaining five programs and deals with initialization, debugging, 

.-
I C O Y M O N  S T O R A G EC O Y M O N  S T O R A G E  I 1 

H O S T  T O  I M P  


I M P  T O  H O S T  


T I M E O l J T 


I 
24  P A G E S  

1
I 

1 P A G E  = 5 1 2  WORDS 

B U F F E R  S P A C E  

P R O T E C T E D  P A G E  

Fig. 8. Map of core storage. 



,410 Part 2 1 Regions of Computer Space 

testing, statistics gathering and tracing. After a brief description of 
data structures, we will discuss packet processing in some detail. 

Buffer Allocation, Queues, and Tables The major system data 
structures (see Table 1) consist of buffers and tables. The 
buffer-storage space is partitioned into about 70 fixed length 
buffers, each of which is used for storing a single packet. An 
unused buffer is chained onto a free buffer list and is removed 
from this list when it is needed to store an incoming packet. A 
packet, once stored in a buffer, is never moved. After a packet has 
been successfully passed along to its Host or to another IMP, its 
buffer is returned to the free list. The buffer space is partitioned in 
such a way that each process (store and forward trafIic, Host 
traffic, etc.) is always guaranteed some buffers. For the sake of 
program speed and simplicity, no attempt is made to retrieve the 
space wasted by partially filled buffers. 

In handIing store and forward traffic, all processing is on a per 
packet basis. Further, although traffic to and from Hosts is 
composed of messages, the IMP rapidly converts to dealing with 
packets; the Host transmits a message as a single unit but the IMP 
takes it one buffer at a time. As each buffer is filled, the program 
selects another buffer for input until the entire message has been 
provided for. These successive buffers will, in general, be 
scattered throughout the memory. An equivalent inverse process 
occurs on output to the Host after all packets of the message have 
arrived at the destination IMP. No attempt is ever made to collect 
the packets of a message into a contiguous portion of the memory. 

Buffers currently in use are either dedicated to an incoming or 
an outgoing packet, chained on a queue awaiting processing by 
the program, or being processed. Occasionally, a buffer may be 
simultaneously found on two queues; this situation can occur 
when a packet is waiting on one queue to be forwarded and on 
another to be acknowledged. 

There are four principal types of queues: 

Task:Packets received on Host channels are placed on the Host 
task queue. All received acknowledgments, dead Host and 
routing information, I heard you and he120 packets are placed 
on the system task queue; all other packets from the modems 
are placed on the modem task queue. The program services 
the system task queue first, then the Host task queue, and 
finally the modem task queue. 

Table 1 Program Data Structures 

5000 words-message buffer storage 

120words-queue pointers 

300 words-trace blocks 

100words-reassembly blocks 

150 words-routing tables 

400 words-link tables 

300 words-statistics tables 


Section 5 1 Networks 

Output: A separate output queue is constructed for each 
modem channel and each Host channel. Each modem output 
queue is subdivided into an acknowledgment queue, a priority 
queue, a RFNM queue, and a regular message queue, which 
are serviced in that order. Each Host output queue is 
subdivided into a control message queue, a priority queue, and 
a regular message queue, which are also serviced in the 
indicated order. 
Sent: A separate queue for each modem channel contains 
packets that have already been transmitted on that line but for 
which no acknowledgment has yet been received. 
Reassembly: The reassembly queue contains those packets that 
are being reassembled into messages for the Host. 

Tables in core are allocated for the storage of queue pointers, for 
trace blocks, for reassembly information, for statistics, and for 
links, Most noteworthy of these is the link table, which is used at 
the source IMP for assignment of message numbers and for 
bIocking and unblocking links, and at the destination IMP to 
verify message numbers for sequence control. 

Packet Flow and Program Structure Figure 9 is a schematic 
drawing of packet processing; the processing programs are 
described below. 

The Host-to-IMP routine (H 3 I) handles messages being 
transmitted from the local site. The routine uses the leader to 
construct a header that is prefixed to each packet of the message. 
It also creates a link for the message ifnecessary, blocks the link, 
puts the packets of the message on the Host task queue for further 
processing by the task routine, and triggers the programmable 
task interrupt. The routine then acquires a free buffer and sets up 
a new input. The routine tests a hardware trouble indicator, 

I I I I 

Fig. 9. Internal packet flow. 



Chapter 24 1 The Interface Message Processor for the ARPA Computer Network 411 

verifies the message format, and checks whether or not the 
destination is dead, the link table is full, or the link blocked. The 
routine is serially reentrant and services all Hosts connected to 
the IMP. 

The Modem-to-IMP routine (M I) handles inputs from the 
modems. This routine consists of several identical routines, one 
for each modem channel. (Such duplication is useful to obtain 
higher speed.) This routine sets up an input buffer (normally 
obtained from the free list), places the received packet on the 
appropriate task queue, and triggers the programmable task 
interrupt. Should no free buffers be available for input, the buffer 
at the head of the modem task queue is preempted. If the modem 
task queue is also empty, the received packet is discarded by 
setting up its buffer for input. However, a sufficient number of 
free buffers are specifically reserved to assure that received 
acknowledgments, routing packets, and the like are rarely 
discarded. 

The task routine uses the header information to direct packets 
to their proper destination. The task routine is driven by the task 
interrupt, which is set whenever a packet is put on a task queue. 
The task routine routes packets from the Host task queue onto an 
output queue determined from the routing algorithm. 

For each packet on the modem task queue, the task routine first 
determines whether sufficient buffer space is available. If the IMP 
has a shortage of store and forward buffers, the buffers 09 the 
modem task queue are simply returned to the free list without 
further processing. Normally, however, an acknowledgment 
packet is constructed and put near the front of the appropriate 
modem output queue. The destination of the packet is then 
inspected. If the packet is not for the local site, the routing 
algorithm selects a modem output queue for the packet. If a 
packet for the local site is a RFNM, the corresponding link is 
unblocked and the RFNM is put on a queue to the Host. If the 
packet is not a RFNM, it is joined with others of the same message 
on the reassembly queue. Whenver a message is completely 
reassembled, the packets of the message are put on an output 
queue to the Host for processing by the IMP-to-Host routine. 

In processing the system task queue, the task routine returns to 
the free list those buffers from the sent queue that have been 
referenced by acknowledgments. Any packets skipped over by an 
acknowledgment are designated for retransmission. Routing, I 
heard you, and he120 packets are processed in a straightfoxward 
fashion. 

The IMP-to-Modem routine (I -+ M) transmits successful pack- 
ets from the Modem output queue. After completing the output, 
this routine places any packet requiring acknowledgment on the 
sent queue. 

The IMP-to-Host routine (I-+ H) sets up successive outputs of 
packets on the Host output queues and constructs a RFNM for 
each non-control message delivered to a Host. RFNM packets are 
returned to the system via the Host task queue. 

The time-out routine is started every 25.6 msec (called the 
time-out period) by a clock interrupt. The routine has three 
sections: the fast time-out routine, which “wakes up” any Host or 
modem interrupt routine that has languished (for example, when 
the Host input could not immediately start a new input because of 
a shortage in buffer space); the middle time-out routine, which 
retransmits any packets that have been too long on a modem sent 
queue; and the slow time-out routine, which marks lines as alive 
or dead, updates the routing tables and does long term garbage 
collection of queues and other data structures. (For example, it 
protects the system from the cumulative effect of such failures as a 
lost packet of a multiple packet message, where buffers are tied up 
in message reassembly.) It also deletes links automatically after 15 
seconds of disuse, after 20 minutes of blocking, or when an IMP 
goes down. 

These three routines are executed in the following pattern: 
FFFF FFFF FFFF FFFF FFFF FFFF , . .  

M M M M
M S 

and, although they run off a common interrupt, are constructed to 
allow faster routines to interrupt slower ones should a slower 
routine not complete execution before the next time-out period. 

The link routine enters, examines, and deletes entries from the 
link table. A table containing a separate message number entry for 
many links to every possible Host would be prohibitively large. 
Therefore, the table contains entries only for each of 63 total 
outgoing links at any Host site. Hashing is used to speed accessing 
of this table, but the link program is still quite costly; it uses about 
ten percent of both speed and space in a conceptually trivial task. 

Initialization and Background Loop The IMP program starts in 
an initialization section that builds the initial data structures, 
prepares for inputs from modem and Host channels, and resets all 
program switches to their nominal state. The program then falls 
into the background loop, which is an endlessly repeated series of 
low-priority subroutines that are interrupted to handle normal 
traffic. 

The programs in the IMP background loop perform a variety of 
functions: TTY is used to handle the IMP Teletype tr&c; 
DEBUG, to inspect or change IMP core memory; TRACE, to 
transmit collected information about traced packets; STATISTICS, 
to take and transmit network and IMP statistics; PARAMETER- 
CHANGE, to alter the values of selected IMP parameters; and 
DISCARD, to throw away packets. Selected Hosts and IMPS, 
particularly the Network Measurement Center and the Network 
Control Center, will find it necessary or useful to communicate 
with one or more of these background loop programs. So that 
these programs may send and receive messages from the network, 
they are treated as “fake Hosts.” Rather than duplicating portions 
of the large IMP-to-Host and Host-to-IMP routines, the back- 
ground loop programs are treated as if they were Hosts, and they 



- - - - - - - - 

412 Part 2 1 Regions of Computer Space 

can thereby utilize existing programs. The “For IMP” bit or the 
“From IMP” bit in the leader indicates that a given message is for 
or from a fake Host program in the IMP. Almost all of the 
background loop is devoted to running these programs. 

The TTY program assembles characters from the Teletype into 
network messages and decodes network messages into characters 
for the Teletype; TTY’s normal message destination is the DEBUG 
program at its own IMP; however, TTY can be made to 
communicate with any other IMP Teletype, any other IMP 
DEBUG program or any Host program with compatible format. 

The DEBUG program permits the operational program to be 
inspected and changed, Although its normal message source is the 
TTY program at its own IMP, DEBUG will respond to a message 
of the correct format from any source. This program is normally 
inhibited from changing the operational IMP program; local 
operator intervention is required to activate the program’s full 
power. 

The STATISTICS program collects measurements about net- 
work operation and periodically transmits them to the Network 
Measurement Center. This program sends but does not receive 
messages. STATISTICS has a mechanism for collecting measure- 
ments over 10-second intervals and for taking half-second snap- 
shots of IMP queue lengths and routing tables. It can also 
generate artificial traffic to load the network. When turned on, 
STATISTICS uses 10 to 20 percent of the machine capacity and 
generates a noticeable amount of phone line traffic. 

Other programs in the background loop drive local status lights 
and operate the parameter change routine. A thirty-two word 
parameter table controls the operation of the TRACE and 
STATISTICS programs and includes spares for expansion; the 
PARAMETER-CHANGE program accepts messages that change 
these parameters. 

Control Organization. It is characteristic of the IMP system that 
many of the main programs are entered both as subroutine calls 
from other programs and as interrupt calls from the hardware. 
The resulting control structure is shown in Fig. 10.The programs 
are arranged in a priority order; control passes upward in the 
chain whenever a hardware interrupt occurs or the current 
program decides that the time has come to run a higher priority 
program, and control passes downward only when the higher 
priority programs are finished. No program may execute either 
itself or a lower priority program; however, a program may freely 
axecute a higher priority program. This rule is similar to the usual 
rules concerning priority interrupt routines. 

In one important case, however, control must pass from a 
higher priority program to a lower priority program-namely, 
from the several input routines to the TASK routine. For this 
special case, the computer hardware was modified to include a 
low-priority hardware interrupt that can be set by the program. 
When this interrupt has been honored (i.e., when all other 

Section 5 1 Networks 

I M P  	to HOST 

P R C G R L M R 4 B l E  
I N T E R R U P T  

Arrows i n d i c a t e  that  contro l  i s  passed 

w i t h  a subroutine c a l l ;  contro l  w i l l  

e v e n t u a l l y  return back down the arrow. 

Note that  the hardware i n t e r r u o t s  and 111 


the lower p r i o r i t y  r o u t i n e s  can both -

c a l l  the same programs as s ~ b r o u t i n e s . ~  


@
Set  programmable hardware i n t e r r u o t  

1 1 -

BACKGROUNDm
U 

Fig. 10. Program control structure. 

interrupts have been serviced), the TASK routine is executed. 
Thus, control is directed where needed without violating the 
priority rules. 

Some routines must occasionally wait for long intervals of time, 
for example, when the Host-to-IMP routine must wait for a link to 
unblock. Stopping the whole system would be intolerable; 
therefore, should the need arise, such a routine is dismissed, and 
the TIMEOUT routine will later transfer control to the waiting 
routine. 

The control structure and the partition of responsibility among 
various programs achieve the following timing goals: 

1 	No program stops or delays the system while waiting for an 
event. 

2 	 The program gracehlly adjusts to the situation where the 
machine becomes compute-bound. 

3 	 The Modem-to-IMP routine can deliver its current packet 



Chapter 24 I The Interface Message Processor for the ARPA Computer Network 413 

to the TASK routine before the next packet arrives and can 
always prepare for successive packet inputs on each line. 
This timing is critical because a slight delay here might 
require retransmission of the entire packet. To achieve this 
result, separate routines (one per phone line) interrupt 
each other freely after new buffers have been set up. 

4 	 The program will almost always deliver packets waiting to 
be sent as fast as they can be accepted by the phone line. 

5 	 Necessary periodic processes (in the time-out routine) are 
always permitted to run, and do not interfere with input- 
output processes. 

Support-Software 

Designing a real-time program for a small computer with many 
high rate IiO channels is a specialized kind of software problem. 
The operational program requires not only unusual techniques 
but also extra software tools; often the importance of such extra 
tools is not recognized. Further, even when these issues are 
recognized, the effort needed to construct such tools may be 
seriously underestimated. The development of the IMP system 
required the following kinds of supporting software: 

1 	Programs to test the hardware. 
2 	 Tools to help debug the system. 
3 	 A Host simulator. 
4 	 An efficient assembly process. 

So far, three hardware test programs have been developed. The 
first and largest is a complete program for testing all the special 
hardware features in the IMP. This program permits running any 
or all of the modem interfaces in a crosspatched mode; it even 
permits operating together several IMPS in a test mode. The 
second hardware test program runs a detailed phone line test that 
provides statistics on phone line errors. The final program 
simulates the modem interface check register whose complex 
behavior is otherwise difficult to predict. 

The software debugging tools exist in two forms. Initially we 
designed a simple stand-alone debugging program with the 
capability to do little more than examine and change individual 
core registers from the console Teletype. Subsequently, we 
embedded a version of the stand-alone debugging program into 
the operational program. This operational debugging program not 
only provides debugging assistance at a single location but also 
may be used in network testing and network debugging. 

The initial implementation of the IMP software took place 
without connecting to a true Host. To permit checkout of the 
Host-related portions of the operational program, we built a "Host 
Simulator" that takes input from the console Teletype and feeds 
the Host routines exactly as though the input had originated in a 

real Host. Similarly, output messages for a destination Host are 
received by the simulator and typed out on the console Teletype. 

Without recourse to expensive additional peripherals, the 
assembly facilities on the DDP-516 are inadequate for a large 
program. (For example, a listing of the IMP program would 
require approximately 20 hours of Teletype output.) We therefore 
used other locally available facilities to assist in the assembly 
process. Specifically, we used a PDP-1 text editor to compose and 
edit the programs, assembled on the DDP-516, and listed the 
program on the SDS 940 line printer. Use of this assembly process 
required minor modification of existing PDP-1 and SDS 940 
support software. 

Projected IMP Performance 

At this writing, the subnet has not yet been subjected to realistic 
load conditions; consequently, very little experimental data is 
available. However, we have made some estimates of projected 
performance of the IMP program and we describe these estimates 
below. 

Host Trafficand Message Delays 

In the subnet, the Host-to-Host transit time and the round-trip 
time (for RFNM receipt) depend upon routing and message 
length. Since only one message at a time may be present on a 
given link, the reciprocal of the round-trip delay is the maximum 
message rate on a link. The primary factors affecting subnet delays 
are: 

Propagation delay: Electrical propagation time in the Bell 
system is estimated to be about 10 psec per mile. Cross 
country propagation delay is therefore about 30 msec. 
Modem transmission delay: Because bits enter and leave an 
IMP at a predetermined modem bit rate, a packet requires 
a modem transmission time proportional to its length (20 
psec per bit on a 50-kilobit line). 
Queueing delay: Time spent waiting in the IMP for 
transmission of previous packets on a queue. Such waiting 
may occur either at an intermediate IMP or in connection 
with terminal IMP transmissions into the destination Host. 
IMP processing delay: The time required for the IMP 
program to process a packet is about 0.35 msec for a 
store-and-forward packet. 

Because the queueing delay depends heavily upon the detailed 
traffic load in the network, an estimate of queueing delay will not 
be available until we gain considerable experience with network 
operation. In Table 2, we show an estimate of the one-way and 
round-trip transit times and the corresponding maximum message 



414 Part 2 I Regions of Computer Space 

Table 2 Transit Times and Message Rates 

Minimum Maximum 

Single word message 
Transit time 5 msec 50 msec 
Round-trip 10 msec 100 msec 
Max. message ratellink 1OO/sec 1O/sec 

Single full packet message 
Transit time 45 msec 140 msec 

Round-tri p 50 msec 190 msec 

Max. message ratellink 20/sec 51sec 


8-packet message 
Transit time 265 msec 360 msec 
Round-trip 195 msec 320 msec 
Max. message ratellink 5lsec 3lsec 

rate per link, assuming the negligible queueing delay of a lightly 
loaded net. In this table, “minimum” delay represents a short hop 
between two nearby IMPs, and “maximum” delay represents a 
cross-country path involving five IMPs. In all cases the delays are 
well within the desired half-second goal. 

In a lightly-loaded network with a mixture of nearby and distant 
destinations, an example of heavy Host tr&c into its IMP might 
be that of 20 links carrying ten single-word messages per second 
and four more links, each carrying one eight-packet message per 
second. 

Computational Load 
In general, a line fully loaded with short packets will require more 
computation than a line with all long packets; therefore the IMP 
can handle more lines in the latter case. In Fig. 11,we show a 
curve of the computational utilization of the IMP as a function of 
message length for fully-loaded communication lines. For exam- 
ple, a 50-kilobit line fully loaded in both directions with one-word 
messages requires slightly over 13 percent of the available IMP 

0 1 2 3 4 5 6 1 8 ~ 
M E S S A G E  L E N G T H  ( P A C K E T S 1  

Fig. 11. IMP utilization. 

Section 5 I Networks 

time. Since a line will typically carry a variety of different length 
packets, and each line will be less than fully loaded, the 
computational load per line will actually be much less. 

Throughput is defined to be the maximum number of Host data 
bits that may traverse an IMP each second. The actuaI number of 
bits entering the IMP per second is somewhat larger than the 
throughput because of such overhead as headers, RFNMs, and 
acknowledgments. The number of bits on the lines is still larger 
because of additional line overhead such as framing and error 
control characters. (Each packet on the phone line contains 
seventeen characters of overhead, nine of which are removed 
before the packet enters an IMP.) 

The computational limit on the IMP throughput is approximate- 
ly 700,000 bits per second. Figure 12shows maximum throughput 
as a function of message length. The difference between the 
throughput curve and the line traffic curve represents overhead. 

Discussion 

In this section we state some of our conclusions about the design 
and implementation of the ARPA Network and comment on 
possible future directions. 

We are convinced that use of an IMP-like device is a more 
sensible way to design networks than is use of direct Host-to-Host 
connection. First, for the subnet to serve a store-and-forward role, 
its functions must be independent of Host computers, which may 
often be down for extended periods. Second, the IMP program is 
very complex and is highly tailored to the I/O structure of the 
DDP-516; building such complex functions into specid UO units 

Fig. 12. IMP throughput. 



Chapter 24 1 The Interface Message Processor for the ARPA Computer Network 415 

of each computer that might need network connection is probably 
economically inadvisable. Third, because of the desirability of 
having several Host computers at a given site connect to the 
network, it is both more convenient and more economic to 
employ IMPs than to provide all the network hnctions in each of 
the Host computers. The whole notion of a network node serving 
a multiplexing function for complexes of local Hosts and terminals 
lends further support to this conclusion. Finally, because we were 
led to a design having s o m  inter-IMP dependence, we fohnd it 
advantageous to have identical units at each node, rather than 
computers of different manufacture. 

Considering the multiplexing issue directly, it now seems clear 
that individual network nodes will be connected to a wide variety 
of computer and terminal complexes. Even the initial ten-node 
ARPA Network includes one Host organization that has chosen to 
submultiplex several computers via a single Host connection to 
the IMP. We are now studying variants of the IMP design that 
address this multiplexing issue, and we also expect to cooperate 
with other groups (such as at the National Physical Laboratory in 
England) that are studying such multiplexing techniques. 

The increasing interest in computer networks will bring with it 
an expanding interaction between computers and communication 
circuits. From the outset, we viewed the ARPA Network as a 
systems engineering problem, including the portion of the system 
supplied by the common carriers. Although we found the carriers 
to be properly concerned about circuit performance (the basic 
circuit performance to date has been quite satisfactory), we found 
it difficult to work with the carriers cooperatively on the technical 
details, packaging, and implementation of the communication 
circuit terminal equipment; as a result, the present physical 
installations of circuit terminal equipment are at best inelegant 
and inconvenient. In the longer run, for reasons of economy, 
performance, and reliability, circuit terminal equipment probably 
should be integrated more closely with computer input/output 
equipment. If the carriers are unable to participate conveniently 
in such integrations, we would expect further growth of a 
competing circuit terminal equipment industry, and more preva- 
lent common carrier provision of bare circuits. 

Another aspect of network growth and development is the 
requirement to connect digerent rate communication circuits to 
IMP-like devices as a function of the particular application. In our 
own IMP design, although there are limitations on total through- 
put, the IMP can be connected to carrier circuits of any bit rate up 
to about 250 kilobits; similarly, the interface to a Host computer 
can operate over a wide range of bit rates. We feel that this 
flexibility is very important because the economics of carrier 
offerings, as well as the user requirements, are subject to 
surprisingly rapid change; even within the time period of the 
present implementation, we have experienced such changes. 

At this point, we would like to discuss certain aspects of the 

implementation effort. This project required the design, develop- 
ment, and installation of a very complex device in a rather short 
time scale. The difficulty in producing a complex system is highly 
dependent upon the number of people who are simultaneously 
involved. Small groups can achieve complex optimizations of 
timing, storage, and hardwarelsoftware interaction, whereas 
larger groups can seldom achieve such optimizations on a 
reasonable time scale. We chose to operate with a very small 
group of highly talented people. For example, all software, 
including software tools for assembly, editing, debugging, and 
equipment testing as well as the main operational program, 
involved effort by no more than four people at any time. Since so 
many computer system projects involve much larger groups, we 
feel it is worth calling attention to this approach. 

Turning to the future, we plan to work with the ARPA Network 
project along several technical directions: (1) the experimental 
operation of the network and any modifications required to tune 
its performance; (2) experimental operation of the network with 
higher bandwidth circuits; e.g., 230.4 kilobits; (3) a review of IMP 
variants that might perform multiplexing functions; (4) considera- 
tion of techniques for designing more economical and/or more 
powerhl IMPs; and (5)participation with the Host organizations 
in the very sizeable problem of developing techniques and 
protocols for the effective utilization of the network. 

On a more global level, we anticipate an explosive growth of 
message switched computer networks, not just for the interactive 
pooling of resources, but for the simple conveniences and 
economies to be obtained for many classes of digital data 
communication. We believe that the capabilities inherent in the 
design of even the present subnet have broad application to other 
data communication problems of government and private indus- 
try. 

References 

Baran [1964]; Baran, Boehm, and Smith [1964]; Boehm and 
Mobley [1966]; BBN Report No. 1763 [1969]; BBN Report No. 
1822 [1969]; Brown, Miller, and Keenan [1967]; Carr, Crocker, 
and Cerf [1970]; Cuadra [1968]; Davies [1968a]; Davies [1968b]; 
DavieS, Bartlett, Scantlebury, and Wilkinson [19671; EDUCOM 
EIN Catdog; Everett, Zraket, and Benington [1957]; FCC 
[1966a]; Ford and Fulkerson [1962]; Frank, Frisch, and Chou 
[1970]; James [19661; Kaplan [1968]; Kleinrock [1964]; Kleinrock 
[1969]; Kleinrock [1970]; Marill [1966]; Marill and Roberts 
[1966]; National Library of Medicine [1968]; NOC Symp. [1968]; 
NOC Symp. [1969]; Perry and Plugge [1961]; Roberts [1967]; 
Roberts [1968]; Roberts [1969]; Roberts and Wessler [1970]; 
Scantlebury, Wilkinson, and Bartlett [1968]; Steiglitz, Weiner, 
and Heitman [1969]; Sung and Woodford [1969]; Teitelman 
and Kahn [1969]. 



Chapter 25 

ALOHA Packet Broadcasting: 

A Retrospect' 

R.  Binder / N .  Abramson / F. Kuo / A. Okinaka / 
D. Wax 

Introduction 

Packet broadcasting is a technique whereby data is sent from one 
node in a net to another by attaching address information to the 
data to form a packet-typically from 30 to 1000 bits in length. 
The packet is then broadcast over a communication channel 
which is shared by a large number of nodes in the net; as the 
packet is received by these nodes the address is scanned and the 
packet is accepted by the proper addressee (or addressees) and 
ignored by the others. The physical communication channel 
employed by a packet broadcasting net can be a ground based 
radio channel, a satellite transponder or a cable. 

Packet broadcasting networks can achieve the same efficiencies 
as packet switched networks [Roberts, 1973b], but in addition 
they have special advantages for local distribution data networks 
[Kahn, 19751 and for data networks using satellite channels 
[Abramson, 1973al. In this paper we concentrate on those 
characteristics which are of interest for a local distribution data 
network. In particular, we discuss the lessons learned in the 
design and implementation of the ALOHANET, a packet broad- 
casting radio network in operation at the University of Hawaii 
since 1970. A number of design issues which arose in the 
construction of the system are defined, our solutions are ex- 
plained, and in some cases they are justified. The lessons learned 
from the ALOHANET are used to indicate how such a radio 
packet broadcasting system might best be built using the technol- 
ogy available in 1975. 

In the next section a brief description of the ALOHANET and 
its rationale is given. This is followed by a detailed discussion of 
the major system protocol choices that have evolved, pointing out 
some related theoretical work where appropriate. Choices con- 
cerning the design of the radio communication subsystem are 
then examined, followed by an evolutionary view of the important 
impact microcomputer technology has had on the user interface 
design and resulting system capabilities. The concluding section 
summarizes our present views with respect to the basic system 
configuration and properties of packet broadcasting nets. 

'Proc. APIPS NCC, 1975, pp. 203-215 

The ALOHANET 

The ALOHANET is the first system which successfully utilized 
the packet broadcasting concept for on-line access of a central 
computer via radio. Its primary purpose is to provide inexpensive 
access to one or more time-sharing systems by a large number of 
terminal users, typically in the hundreds. However, it also allows 
user-to-user communication within the net and is evolving toward 
use in a more generally oriented computer communications 
environment. 

Operation 

The present network configuration makes use of a broadcast 
channel for only one direction of traffic flow. (As we shall see in 
later sections, the lack of a broadcast capability in the other 
direction has seriously handicapped the development of effective 
protocols in certain areas). Two 100 KHz channels are used in the 
UHF band-a random access channel for user-to-computer 
communication at 407.350 MHz and a broadcast channel at 
413.475 MHz for computer-to-user messages. The original system 
was configured as a star network, allowing only a central node to 
receive transmissions in the random access channel; all users 
received each transmission made by the central node in the 
broadcast channel. Recently the addition of ALOHA repeaters has 
generalized the network structure. 

A block diagram of the present operational ALOHANET is 
shown in Fig. 1.The central communications processor of the net 
is an HP 2100 minicomputer (32K of core, 16 bit words) called the 
MENEHUNE [Binder, Lai, and Wilson, 19741 (Hawaiian for 
IMP) which functions as a message multiplexor/concentrator in 
much the same way as an ARPANET IMP [Heart et  al., 19701. The 
MENEHUNE accepts messages from the UH central computer, 

0, 

ALOHANET 
CENTRAL STATION 

GATEWAY 

i?tVETWORd RESOURCES ARPANET 

Fig. 1. The ALOHANET. 

416 



an IBM System 360165 running TSO (as of December 1974, a 
370/158) or from ALOHA’S own time-sharing computer, the BCC 
500, or from any ARPANET computer linked to the MENE- 
HUNE via the ALOHA TIP [Ornstein et  al., 19721. Outgoing 
messages in the MENEHUNE are converted into packets, the 
packets are queued on a first-in, first-out basis, and are then 
broadcast to the remote users at a data rate of 9600 baud. 

The packet consists of a header (32 bits) and a header parity 
check word (16 bits), followed by up to 80 bytes of data and a 
16-bit parity check word. The header contains information 
identifying the particular user so that when the MENEHUNE 
broadcasts a packet, only the intended user’s node will accept it. 
More will be said about packet formats later. 

The random access channel (at 407.35 MHz) for communication 
between users and the MENEHUNE is designed specifically for 
the traffic characteristics of interactive computing. In a conven- 
tional communication system a user might be assigned a portion of 
the channel on either an FDMA or TDMA basis. Since it is well 
known that in time-sharing systems, computer and user data 
systems are bursty [Jackson and Stubbs, 19691, such fixed 
assignments are generally wasteful of bandwidth because of the 
high peak-to-average data rates that characterize the traffic. The 
multiplexing technique that is utilized by the ALOHANET is a 
purely random access packet switching method that has come to 
be known as the pure ALOHA technique [Abramson, 1973bl. 
Under a pure ALOHA mode of operation, packets are sent by the 
user nodes to the MENEHUNE in a completely unsynchronized 
manner-when a node is idle it uses none of the channel. Each 
full packet of 704 bits requires only 73 msecs at a rate of 9600 baud 
to transmit (neglecting propagation time). 

The random or multi-access channel can be regarded as a 
resource which is shared among a large number of users in much 
the same way as a multiprocessor’s memory is “shared.” Each 
active user node is in contention with all other active users for the 
user of the MENEHUNE receiver. If two nodes transmit packets 
at the same time, a collision occurs and both packets are rejected. 
In the ALOHANET, a positive acknowledgment protocol is used 
for packets sent on the random-access channel. Whenever a node 
sends a packet it must receive an acknowledgment message (ACK) 
from the MENEHUNE within a certain time-out period. If the 
ACK is not received within this interval the node automatically 
retransmits the packet after a randomized delay to avoid further 
collisions. These collisions will limit the number of users and the 
amount of data which can be transmitted over the channel as 
loading is increased. 

An analysis [Abramson, 1973131 of the random access method of 
transmitting packets in a pure ALOHA channel shows that the 
normalized theoretical capacity of such a channel is %e=0.184. 
Thus the average data rate which can be supported is about one 
sixth the data rate which could be supported if we were able to 

Chapter 25 1 ALOHA Packet Broadcasting: A Retrospect 417 

synchronize the packets from each user in order to fill up the 
channel completely. Put another way, this result shows the 
present 9600 bitlsecond channel could support between 100 and 
500 active teletype users-depending upon the rate at which they 
generate packets and upon the packet lengths. 

ALOHANET Remote Units 

The original user interface developed for the system is an 
all-hardware unit called an ALOHANET Terminal Control Unit 
(TCU), and is the sole piece of equipment necessary to connect 
any terminal or minicomputer into the ALOHA channel. As such 
it takes the place of two dedicated modems for each user, a dial-up 
connection and a multiplexor port usually used for computer 
networks. The TCU is composed of a UHF antenna, transceiver, 
modem, buffer and control unit. 

The buffer and control unit functions of the TCU can also be 
handled by a minicomputer or a microcomputer. In the present 
system several minicomputers have been connected in this 
manner in order to act as multiplexors for terminal clusters or as 
computing stations with network access for resource sharing. A 
new version of the TCU using an Intel 8080 microcomputer for 
buffer and control has been built. Since these programmable units 
allow a high degree of flexibility for packet formats and system 
protocols, they are referred to as PCU’s (Programmable Control 
Unit). A more detailed discussion of terminal considerations is 
given in a companion paper in these proceedings [Fralick et  al., 
19751, 

Since the transmission scheme of the ALOHANET is by 
line-of-sight, the radio range of the transceivers is severely limited 
by the diversity of terrain (mountains, high rise buildings, heavy 
foliage) that exists in Hawaii. A recent development has allowed 
the system to expand its geographical coverage beyond the range 
of its central transmitting station. Because of the burst nature of 
the transmissions in the ALOHA channel it is possible to build a 
simple store-and-forward repeater which accepts a packet within a 
certain range of ID’S and then repeats the packet on the same 
frequency. Each repeater performs identically and independently 
for packets directed either to or from the MENEHUNE. Two of 
the repeaters have been built which extend coverage of the 
ALOHANET from the island of Oahu to other islands in the 
Hawaiian chain. These repeaters are discussed in more detail in 
the following section. 

Protocol Choices 

Two fundamental choices which have dictated much of the system 
protocol are the two-channel star configuration of the original 
network and the use of random accessing for user transmissions. 
Investigation of the random accessing principle using radio was in 



418 Part 2 1 Regions of Computer Space 

fact the original motivation for constructing the ALOHANET, 
while the two-channel configuration was primarily chosen to allow 
this investigation without complication from the relatively dense 
total traffic stream being returned to all users. An additional 
reason for the star configuration was the desire to centralize as 
many communication functions as possible at the MENEHUNE, 
minimizing the cost of the TCU at each user node. 

Within this context, a number of protocol issues must be 
resolved. The more important of these are: 

random access channel control 
broadcast channel queueing 

packet length 

addressing 

error control 

flow controI 

Many of the original choices in these areas have undergone 
significant changes as a result of new user resources and user 
interfaces, or in some instances due to advancements in theoreti- 
cal knowledge, The addition of repeaters has (potentially) a 
particularly significant impact on protocol. 

We now discuss some of the considerations and resulting 
choices made in each of the above areas, with the impacts of new 
factors introduced within the context of each area. The section 
concludes with a brief discussion of the probIem of integrating file 
traffic into the random access channel, a subject of current 
concern in the ALOHANET. 

Random Access Channel Control 
The retransmission strategy used in the random access scheme 
plays a central role in the scheme’s effectiveness. Its determina- 
tion directly affects the average delay experienced by users for a 
successful transmission, given a certain number of users accessing 
the channel, their traffic statistics, and the channel capacity. It can 
also be used to prevent the occurrence of channel saturation, a 
situation in which the channel becomes filled with retransmissions 
and the number of successfbl packets falls to zero. These topics 
have only recently been quantified [Metcalfe, 1973a; Lam, 19741 
and remain subjects of current investigation. 

One approach is to use different constant retransmission 
intervals at each node, with the intervals equal to integer 
multiples of the maximum packet transmission time to avoid 
subsequent conflicts. This results in a priority structure, since 
nodes assigned the longer intervals will experience a correspond- 
ingly longer average delay. As the number of nodes becomes 
large, however, unacceptably large delays result for the majority 
of users. 

A strategy more appropriate for large user popuhtions is to 

Section 5 I Networks 

randomize the retransmission intervals used at each node (note 
that a priority structure can still be introduced if desired by using 
larger mean values for lower priority users-in the remaining 
discussion, equal priorities will be assumed). According to recent 
results by Lam [19741, the resulting channel behavior appears to 
be relatively insensitive to the exact nature of the randomization, 
at least when comparing the use of uniform and geometric 
distributions. In any event, the cost of implementing a particular 
distribution at each node is an important design consideration. 
Based on initial estimates of the expected ALOHANET character- 
istics, a choice was made to use a uniform distribution. This 
allowed a relatively simple implementation in both hardware and 
software user nodes. 

A simple technique was used in the original system nodes to 
achieve short delays when the channel is lightly loaded, while 
preventing channel saturation from occurring due to peak-hour 
loading or statistical traffic fluctuations; small retransmission 
intervals are used (relative to the intervals between new packets), 
but only for a maximum of three successive retransmission 
attempts. If the third attempt is unsuccessful, the user is notified 
of a failure and must manually reinitiate the retransmissions. This 
in effect introduces a long interval between every three retrans- 
missions, allowing time for retransmissions from other users to 
succeed. Based on a maximum packet transmission time of 70 
milliseconds, the intervals are selected from a range of 0.2 to 1.5 
seconds, giving a mean of about 0.7 seconds (ten maximum packet 
times) per retransmission. The lower bound is chosen to allow 
sufficient time to receive an ACK from the MENEHUNE if the 
packet was sent successfully, avoiding unnecessary retransmis- 
sions. (This time is based on a direct user-MENEHUNE path; if 
repeaters form a part of the radio path, the lower limit must be 
increased accordingly.) 

The newer programmable PCU’s in the system offer the 
capability of a more flexible strategy, for example allowing the 
interval used after each third retransmission to be automatically 
inserted. The use of different strategies, such as continuously 
increasing the time range used for selection of successive retrans- 
missions, is also easily implemented by program; these and other 
strategies are currently under investigation. 

Broadcast Channel Queueing 
The MENEHUNE acts as a concentrator for the broadcast (Fz) 
channel, queueing waiting traffic when necessary for sequential 
transmission to user nodes. Four complicating factors exist, 
however: a need for priority queueing, fair allocation of the 
channel, the turnaround delay required by half duplex nodes, and 
the presence of repeaters. 

Priority Queues. It is important that the Fz channel data traffic 
not prevent the prompt return of an ACK to a user node, since this 
could lead to unnecessary user retransmissions and possible 



Chapter 25 1 ALOHA Packet Broadcasting: A Retrospect 419 

degradation of the random access (FJ channel. Thus, an integral 
part of the Fz channel multiplexing is the priority queueing 
mechanism maintained by the MENEHUNE, as shown in Fig. 2. 
Whenever a transmission is completed on the Fg channel the ACK 
queue is checked, and if not empty the ACK at the head of the 
queue is sent. Only when the ACK queue is empty is the data 
packet queue checked for waiting packets. This guarantees that at 
most one complete data packet plus any previously queued ACK’s 
will be sent ahead of an ACK just placed on the queue. (Because 
the average rate of successful arrivals on the Fl channel is limited 
to one-sixth the rate of F2 transmissions by the random access 
technique, the number of previously queued ACK’s will be zero 
most of the time.) 

Fairness. A second problem is the possible hogging of the FZ 
channel by one or a few users. This problem is eliminated by the 
queueing discipline used for the data packet queue. Only one 
packet per user is allowed on the queue at any time, and the 
queue is serviced on a first-come-first-served (FIFO) basis. The 
prevention of more than one packet per user on the queue is 
handled in conjunction with user flow control, discussed below. 

Turnaround Delay. A delay function is used by the 
MENEHUNE to count off the time required by half-duplex user 
nodes to switch from a transmit to a receive state. The actual time 
is determined by the equipment type-the original off-the-shelf 
equipment required 100 milliseconds due to its use of mechanical 
relays; approximately 10 milliseconds is counted off for newer 
equipment now in use. 

Repeater Scheduling. The addition of repeaters to the system 
introduces a number of new problems into the Fz channel, both 
because of radio range overlap and the nature of the repeaters 
themselves. The latter are store-and-forward devices; a packet 

MENEHUNE 1 RADIO 
CHANNELSduta 

&5 CHANNEL 

DATA PACKET 
dufu 

pckefs 
QUEUE 

to user-
nodes 

Fig. 2. Broadcast channel multiplexing. 

which is to be repeated is first received and stored in its entirety, 
then transmitted on the same frequency on which it was received 
(preventing reception of a new packet during this time). In order 
to prevent the loss of a second packet destined to the same 
repeater, the MENEHUNE must therefore appropriately sched- 
ule the packets in its F2 channel queues. 

For efficient scheduling (i.e., to maximize channel utilization), 
the MENEHUNE must know the repeater routing paths for each 
user node. This function could thus become quite complicated or 
even not achievable, depending on the degree of dynamic routing 
used. Because of the small percentage of traffic currently handled 
by repeaters in the present ALOHANET, a very simple brute 
force method is used: whenever a packet is sent which is 
forwarded by one or more repeaters, the MENEHUNE counts off 
sufficient time for it to be repeated once before beginning a new 
transmission to any node (knowledge of which packets are to be 
repeated is available from the user address, discussed below). 
This results in wasted channel capacity, but is not significant due 
to the capacity available in the system at present. 

Packet Length 
Three factors having an important impact on the system are the 
use of variable or fixed-length packets, the way packet length or 
the number of data bytes is indicated, and the maximum packet 
length allowed. The choices made must take into account the 
different traffic characteristics generated by line-oriented and 
character-oriented user-computer interactions. 

Line Transmissions. Fixed-length packets were used in the 
initial system to simplify the design and construction of system 
hardware. The data packet length for both channels was chosen to 
allow up to 80 data bytes (640 bits), based on the user delays 
introduced by the 9600 bps channel data rates, the line length of 
the terminals in the system, and the line-oriented characteristics 
of the IBM 360/65used as the central time-sharing system. An 
end-of-line (EOL) indicator consisting of eight zero bits was used 
within the packet to identify the end of actual data, where the 
latter was restricted to 7-bit ASCII with the eighth (parity) bit set 
to one. Since it was anticipated that many of the lines typed by 
users would be less than 40 characters, a second packet type was 
also defined which contained a 40-byte data field (a “Half- 
Packet”). This last step proved to be a mistake-the half-packet 
logic at each end of the link was a significant source of both 
hardware and software bugs. 

The packet formats have since been changed to allow the use of 
variable-length packets with newer user nodes. An 8-bit count 
field is used in the packet header to indicate the number of 8-bit 
data bytes in the packet, with the data parity word immediately 
following the last data byte. In addition to eliminating the wasted 
channel capacity of the fixed-length packets, this also removes 



420 Part 2 1 Regions of Computer Space 

constraints on the data themselves necessitated by unambiguous 
detection of the EOL indicator within the data stream. The 80 
data-byte maximum has been retained for both channels, since it 
still appears to be a reasonable upper bound with respect to both 
the multiplexing delays introduced to either channel and node 
buffering requirements. This should not be construed as an 
indication that this length is optimal, however; as file-oriented 
messages are introduced to the total traffic and/or user node 
storage continues to become cheaper, a larger maximum may be 
desirable for one or both channels (for a given channel data rate 
and user response time constraints). 

Character-by-Character. The increased flexibility provided by 
PCU’s has allowed the introduction of a “short” data packet in 
which a single data byte is sent in the header in place of the byte 
count, followed only by the header parity word. Although a use for 
this packet occasionally arises for interactions with line-at-a-time 
systems, its main use is with the character-oriented ARPANET 
computers now available to ALOHANET users. 

The use of these character-oriented systems can have 
a considerable impact on the size and frequency of packets sent 
in the random access channel. This has an important conse-
quence for the buffering strategy and choice of packet-length 
used at each node: since a new transmission cannot begin until 
an ACK has been received for the last one, all characters typed 
by the user during the ACK waiting time should be sent in a 
single packet. Thus if communication delays tend to overlap 
inter-character generation times, the affected characters are 
accumulated at the originating node and sent (more efficiently) 
in a variable-length packet, without adversely affecting user-’ 
computer interaction. 

A logical extension of this last strategy is to buffer all characters 
typed by the user at his node until one is typed which causes some 
action to be taken by the computer. If the appropriate set of action 
characters is known at the user node, this allows an optimum use 
of both channel capacity and system buffering without degrading 
the user-computer interaction. A scheme which allows this to be 
done in conjunction with echoing control is given by Davidson 
[1972], and is currently being introduced into selected ARPA- 
NET hosts. Its implementation cost in ALOHANET PCU user 
nodes appears reasonable, and is anticipated for use as its support 
by host computers becomes widespread. 

Addressing 

User Nodes. User addressing is determined by the radio channel 
configuration and associated multiplexing technique. Ignoring 
repeaters for the moment, the two-frequency configuration used 
in the ALOHANET allows only a single destination in the random 
access channel (the MENEHUNE), and a single source in the 

Section 5 [ Networks 

broadcast channel (the MENEHUNE). Thus only the sender’s 
address is required in the random access channel and only the 
destination address in the broadcast channel, which in both cases 
is the user address. Concentration of more than one user at a radio 
node is handled by permanently allocating a block of user 
addresses to the node, allowing user node multiplexing without 
introducing another level of addressing complexity to the system. 
The required address space is determined by the total number of 
users expected to be supported by the random access channel, 
and is 2*(eight header bits) for the present 9600 bps ALOHANET 
channel. 

Repeaters. The use of repeaters in the system introduces some 
significant new factors to be considered in choosing an address 
scheme. Because of radio range overlap and the store-and-forward 
nature of the repeaters, problems can arise involving conflicts 
generated by two or more repeaters repeating simultaneously to 
the same destination, infinite repeating of the same packet 
(looping), and weak-signal operation due to multiple (but time- 
sequential) paths. In addition, the addressing scheme directly 
affects the MENEHUNE’s ability to schedule transmissions in 
order to maximize broadcast channel utilization, as discussed in a 
preceding section. The ability to eliminate or minimize these 
problems depends on the degree of mobility desired for user 
nodes and/or the repeaters themselves. 

Because of the small percentage of user nodes which currently 
require repeaters in the ALOHANET, a simple scheme is in use 
based on the hardwired properties of the original repeaters built 
for the system. A block of user addresses is defined for each 
repeater, the latter repeating only those addresses in its block. 
The block assigned to a repeater two hops from the MENEHUNE 
is a subset of the block assigned to its first hop repeater. User 
nodes are constrained to operate within the geographic range of 
their “assigned repeater by this scheme, but the node’s user 
address is easily changeable if a relocation becomes necessary. 
Since only one path choice exists between each user node and the 
MENEHUNE at present, the optimum path is selected by 
default. As the number of repeaters in use increases and existing 
units are replaced by programmable devices, a more flexible 
repeater addressing scheme is expected to be implemented. 

Resource Addressing. This refers to the user’s choices regarding 
which system resource he may communicate with. The system 
allows users to request a connection to the campus IBM 370058, 
the ARPANET, or another ALOHANET user node. This is 
accomplished by sending special sequences of ASCII characters in 
the data portion of packets to the MENEHUNE, which may 
either be typed by a terminal user or automatically generated. If 
the requested destination is available, its identification is stored in 
a Connection Table entry for the requesting user in the 



Chapter 25 I ALOHA Packet Broadcasting: A Retrospect 421 

MENEHUNE, and the user’s address stored in a similar entry for 
the destination. All subsequent packets from the user are passed 
to the stored destination and conversely, until either end requests 
that the connection be broken. 

Two exceptions exist to this connection table routing of packets. 
The first are commands intended for the MENEHUNE, such as 
the “connect” and “disconnect” above. The second is a capability 
which allows a user to send a single packet to another ALOHA- 
NET user independently of current connection table entries. The 
originating user simply types a special two-character ASCII 
sequence followed by the destination user’s address (up to three 
ASCII digits), followed by the desired text. 

Note that in the case of a connection to another ALOHANET 
node, the latter’s address is also the resource address. If the 
node’s resource can service more than one user at a time (such as 
might be the case for a specialized minicomputer or storage 
device), the present addressing scheme requires either that a 
block of addresses be allocated to the receiving node (as in the 
case of a concentrator for sending), or a sub-address be sent in the 
text portion of every packet. The block allocation suffers from 
rigidity in that resource addresses cannot be reused dynamically 
by different users, and does not appear desirable if many such 
addresses must be allocated in the system. 

Error Control 

Random-Access Channel. Two distinct error sources exist at the 
MENEHUNE receiver, the usual random noise and errors due to 
packet conflicts. Because of the high probability of errors due to 
conflicts at full loading of the random access channel, a very 
reliable error detection mechanism is required. To achieve this it 
was decided to use two 16-bit cyclic polynomial parity check 
words in each data packet, one following the header and a second 
following the data. The separate header parity check forms the 
basis for a highly reliable packet synchronization method dis- 
cussed in another part of this paper; it also allows reliable 
establishment of packet length and other information prior to 
processing the data portion of a packet. A single header bit is also 
used in conjunction with the parity check for sequence number- 
ing, allowing the detection of duplicate packets by the MENE- 
HUNE. 

Broadcast Channel. Error control for broadcast channel data 
packets (MENEHUNE to user nodes) involves some special 
considerations. For efficient operation, the usual positive ac- 
knowledgment scheme in which the ACK’s themselves are not 
acknowledged depends on a high probability of the ACK’s being 
successfully received. However, an ACK sent from user nodes 
must compete with data t d c  in the random access channel. At 
full channel loading each random access packet must be retrans- 

mitted an average of 1.7 times, which means each data packet or 
ACK must be sent a total of 2.7 times on the average before it is 
successfully received. But in order to force retransmission of the 
ACK’s, the data packet being acknowledged must also be sent an 
average of 2.7 times by the MENEHUNE-ven though it was 
received correctly the first time! The problem is compounded by 
the typically high ratios of computerhser traffic which exist for 
most interactive systems, resulting in many more ACK’s than data 
packets in the random access channel. This problem was “re- 
solved” for the initial implementation by simply not sending 
ACK’s from user nodes. Because of the high received signal 
strengths at the nodes, a very low error rate was anticipated; 
considering also that user nodes consisted only of human terminal 
users, it was decided that a simple error detectionher notifica- 
tion scheme would be sufficient. 

However, this is in general not adequate when more sophisti- 
cated data transfer functions take place or significant error rates 
exist at user nodes. An example of the first case is the loading of 
programs into core storage of a minicomputer node, where 
manually initiated error recovery usually requires restarting the 
loading from the beginning of the file. In the second case, error 
rates can become appreciable when user nodes are located in 
weak signal areas caused by distance, multipath interference, or 
line-of-sight blocking, or in strong signal areas in which strong 
local noise sources also exist. To allow for these situations, an 
option which allows user nodes to send positive acknowledgments 
has been implemented. The scheme works identically to that for 
the random access channel, but is only used selectively with 
newer programmable nodes when required (it can be turned on or 
off by a command from the user node to the MENEHUNE.) Its 
effectiveness is based on the relatively light existing channel 
loading of the system and its use by only a few of the nodes. 

One solution to this problem when all traffic to user nodes must 
be acknowledged in a loaded random access channel is to use 
sequence numbering with a large modulus, sending an ACK only 
when the maximum sequence number is received. This approach 
suffers from the unpredictable nature of interactive user-
computer traffic, however; ifthe last computer output prior to new 
user input is missed by the node, a potential deadlock situation is 
created until the user decides something is wrong and takes 
manual action. An additional mechanism can be used to circum- 
vent this, such as using automatic timeouts at the user node or 
sending dummy traffic to the node to “flush out” missed packets. 
However, the sequence numbers succeed only in reducing the 
number of ACK’s sent in the random access channel-to eliminate 
the unnecessary repetitions of data packets from the MENE- 

‘This assumes ACK’s and data packets are the same length; although the 
ACK’s are in fact shorter, the resulting error rate is still very high 
compared to a typical conflict-free channel. 



422 Part 2 i Regions of Computer Space 

HUNE, it is also necessary to acknowledge the ACK..That is, the 
ACK sent by a user node is timed out and retransmitted until an 
acknowledgment for it is received, just as for data packets. If 
another packet is waiting for transmission to the node at this time, 
its transmission with the next sequence number constitutes the 
ACK to the ACK; otherwise, a short ACK-ACK packet is sent by 
the MENEHUNE. This can be easily shown to result in 
significantly less total channel overhead, at the expense of more 
complication in the node implementation. 

Repeaters. We have so far ignored the effects of repeaters in 
this discussion on both random access and broadcast channel error 
control. The repeaters currently in use in the ALOHANET do not 
generate acknowledgments in either direction, resulting in only 
end-to-end acknowledgments between the MENEHUNE and 
user nodes as above (but with longer minimum retransmission 
timeouts). This choice was made for initial repeater simplicity; it 
has been shown analytically, however, that a hop-by-hop acknowl- 
edgment scheme is in general superior to an end-to-end scheme, 
at least in contexts such as ARPANET [Metcalfe, 1973al and the 
ARPA Packet Radio effort [Frank, Van Slyke, and Gitman, 19751. 
Thus we expect to convert to a hop-by-hop scheme when the 
existing repeaters are replaced by programmable units and/or 
repeater traffic error rates require it; this area remains a relatively 
unexplored problem domain within the present ALOHANET 
implementation. 

Single-Channel Configurations. Finally, we note that the prob- 
lems discussed above concerning ACK’s sent by user nodes in the 
random access channel are effectively non-existent if a single- 
frequency channel configuration is used (and propagation times 
are less than the shortest packet transmission times). If all nodes 
can hear the transmission of all other nodes, it is only necessary 
that nodes refrain from sending for an ACK packet time following 
the transmission of a data packet by any node, except for the 
intended receiver who sends an ACK (if appropriate) during this 
time. Thus ACK’s are sent conflict-free, allowing a simple positive 
acknowledgment scheme to be used for all tr&c. Note that 
packets sent by the MENEHUNE are treated exactly the same as 
packets sent by user nodes with respect to ACK’s, thus also 
eliminating any effects due to asymmetric computer-user traffic 
ratios. 

Flow Control 

The Initial System. In the initial system environment of a single 
half-duplex time-sharing system, model 33 Teletypes, and hard- 
wired user nodes which buffered only the line being displayed, 
flow control was a relatively simple matter. A user always received 

Section 5 Networks1 

at least one output line from the time-sharing system (IBM’s TSO 
running on a 360/65) for each input line, and a prompt character 
when it was ready for more input. The bandwidth between the 
MENEHUNE and 360 and the latter’s 110 response times are 
such that one or two MENEHUNE buffers are normally sufficient 
to support transfers of packets received from the random access 
channel; in the unlikely event that no buffers are avaiIable when a 
packet arrives, the channel protocol guarantees its retransmission. 
Thus no explicit flow control was provided to prevent new packets 
from being sent by a user node. If the user sends one before the 
360 is ready, the packet is discarded and a “WAIT” message 
returned to the user by the MENEHUNE (the status of each 360 
connection is known in the MENEHUNE by information routine- 
ly passed from the 360). 

Broadcast channel flow control was necessary, however, since 
each line (packet) sent to a (hardwired) user node must be 
completely displayed before a new line can be received. This was 
accomplished by the scheme shown in Fig. 3, in which the control 
for each user node is centralized at the MENEHUNE. The latter 
counts off the required display time following transmission of each 
packet to a user, inhibiting further transmissions to that user until 
the time is up. To prevent 360 output from tying up MENE- 
HUNE buffers while packets are being displayed, a handshaking 
flow control is used; the 360 sends only one line of output for each 
user, then waits for a go-ahead (GA) message with that user’s 
address. The GA is sent by the MENEHUNE whenever a user’s 
display time is up, resulting in at most one buffer required for 
each user (the MENEHUNE can also hold up acceptance of any 
packet from the 360 indefinitely until it has buffer space availa- 
ble). Note that this strategy also prevents any user from hogging 
the broadcast channel, since it allows only one packet per user in 
the channel queue. 

Some Terminal Complications. The introduction of high speed 
CRT and hardcopy terminals to the system required an expansion 
of the MENEHUNE’s flow control mechanism for the broadcast 
channel. A set of display rates was added, with the rate used at 
each user node stored in a permanent table in the MENEHUNE; 

Fig. 3. Broadcast channel flow control (original system). 



a user can change the stored value for his node by typing a special 
command to the MENEHUNE at any time. The CRT terminals 
require an additional flow control mechanism to suspend output 
when the CRT screen has filled, allowing the user to signal when 
he is ready to proceed. Thus a screensize command was created 
which allows users to specify a screensize of between one and 99 
lines (or an infinite screensize); this value is also stored in 
MENEHUNE tables for each user node. A counter is maintained 
for each user with a finite screensize specification and is updated 
for each line sent to the terminal; when the maximum is reached, 
the MENEHUNE suspends generation of the GA message until 
the user inputs a carriage return. 

Satellite Complications. The next complication ta MENE-
HUNE flow control processing was caused by the connection of 
the ALOHANET to the ARPANET. The latter involves a 50 Kbps 
INTELSAT IV satellite path connecting Hawaii to California; 
because of its long propagation time (approximately 0.25 seconds) 
and ARPANET flow control protocol, a large amount of buffering 
is required at the receive end of the link to support continuous 
display at higher speed terminals-in particular, a 9600 bps 
terminal requires approximately a 1000-byte buffer. (Since in 
general CRT terminal users do not require continuous output at 
this rate, a smaller amount of buffering is in fact used.) This 
required a substantial increase in the size of the MENEHUNE 
buffer pooI and a more complicated queueing structure to support 
the broadcast channel, since now more than one packet per user 
must in general be stored in the MENEHUNE during display at 
the user node. To maintain the single-packet-per-user policy for 
the channel queue, a separate queue was created for each user to 
hold additional packets. The resulting flow control scheme is 
shown in Fig. 4, where the GA’s sent to the 360 in Fig. 3 are now 
sent to the internal ARPANET protocol module. The maximum 
allowed size of each user queue is determined by the user’s 

MENEHUNE 

I ARPANETI 

Fig. 4. Broadcast channel/ARPANET flow control. 

Chapter 25 1 ALOHA Packet Broadcasting:A Retrospect 423 

terminal rate and the available MENEHUNE buffer pool, and in 
turn defines the parameters used in the ARPANET flow control 
protocol. 

Multiple-Line Packets. A second complication resulting from 
the ARPANET connection concerns the extra time required by 
some higher speed displays for certain characters such as carriage 
return (CR) and/or line feed (LF). Output from the 360 in the 
initial system contained such characters only at the end of a line 
(packet), allowing the transmission time and other inter-packet 
delays to provide any extra time required. However, many 
ARPANET computers are character-oriented, at times generating 
many CR and LF characters within a single packet. Thus it was 
necessary to provide a padding function in the MENEHUNE 
which inserts dummy characters or otherwise adds a display time 
delay after each CR or LF occurrence within packets destined for 
a higher speed (greater than 110 bps) terminal. This necessitates 
the splitting of packets whenever the maximum 80-byte packet 
length is exceeded, and in general involves a significant amount of 
additional processing per packet. 

Full Duplex Interaction. A third complication arising from 
many ARPANET computers is their full duplex user interac-
tion. Unlike the 360, users do not necessarily receive output 
in response to each input or an indication of when the com- 
puter is waiting for more input. Since no explicit flow con-
trol is provided for input from user nodes to the MENEHUNE, 
users are forced to either interact in a half duplex fashion 
(guessing as to when the computer has finished its output) or 
suffer occasional losses of input data and subsequent retyping. 
The latter can occur frequently with the hardwired TCU’s, since 
they contain a single buffer which is used for both keyboard input 
and display; if computer output arrives while the user is typing, 
the typed characters are overwritten in the buffer by the received 
packet. The newer programmable user nodes now in the system 
provide full duplex buffering for the terminal, allowing a packet 
to be received and displayed without disturbing the keyboard 
buffer. 

However, even if user nodes are completely full duplex a flow 
control problem exists for packets sent to the MENEHUNE. Un- 
like the case for the 360, users of full duplex hosts may generate 
successive input packets without receiving responses from the 
host computer. If the ARPANET or host computer or both slow 
down, an excessive number of buffers can become queued in the 
MENEHUNE on behalf of the user. Thus, to prevent user 
hogging of the buffer pool a count of the number of input buffers 
queued for each user is now maintained; when equal to the 
maximum allowed, arriving packets are discarded and a discard 
notification returned to the user. 



1 Part 2 Regions of Computer Space 

File Traffic 
The original ALOHANET design was based on a homogeneous 
population of terminal users generating bursty traffic into the 
random access channel. However, the connection of minicomput- 
ers and other terminals with memory has introduced at least two 
sources of non-bursty, or “file,” traffic. The first case occurs when 
users desire to transfer data from a paper tape or other storage 
media to a host computer. The second occurs when it is desired to 
transfer program-generated output from a minicomputer at a user 
node to a display device at a second user node (users can connect 
to other user nodes through the MENEHUNE in the same way as 
to the 360 or ARPANET). In either case the resulting traffic must 
be prevented from hogging or degrading the random access 
channel, and must also be constrained to the destination’s 
acceptance rate. 

The random access technique itself implicitly provides an 
anti-hogging mechanism, since retransmission timeouts can be 
used to decrease the user‘s average rate if conflicts occur. This 
does not provide for destination flow control, however, and is not 
necessarily an optimal solution for the random access channel. A 
second approach is the use of explicit flow control in the form of 
GA’s sent by the MENEHUNE to the sending user node. This 
provides a solution to both problems at the expense of a small 
percentage of broadcast channel capacity. Since the MENE- 
HUNE receives GA’s from the user’s destination, either explicity 
from the 360 or ARPANET module or from its display time 
counting for another ALOHANET node, it can simply relay them 
to the sending node in a short control packet. This approach also 
allows centralized optimization of traffic in the random access 
channel by the MENEHUNE, and is the subject of current 
investigation. 

Radio Subsystem Choices 
The design of the ALOHANET radio communication system 
required the balancing of a number of performance goals against 
various system constraints which are peculiar to the use of radio 
frequencies for data communication channels. These trade-off 
studies resulted in the selection of our RF channels and modula- 
tion method. The determination of operating ranges and the 
choice of a data synchronization method resulted from the basic 
channel and modulation selection decisions. In this section we will 
describe the primary issues related to RF channel selection, 
modulation design, radio range determination, and data synchro- 
nization design. 

RF Channels and Modulation 
The choice of radio channels for any communication system is a 
complex task, requiring the trade-off of many factors such as 

Section 5 1 Networks 

desired bandwidth, area coverage, spectrum availability, potential 
interference and noise sources, regulatory requirements, and 
equipment costs. In the case of the ALOHANET, a wide channel 
bandwidth was considered desirable for the random access 
channel since user nodes are required to send messages to the 
MENEHUNE, at high peak data rates compared to their average 
data rate. Wide bandwidth was aIso deemed advisable for the 
broadcast channel due to the expected high tr&c density from 
the MENEHUNE. The use of wide channel bandwidth tends to 
force the use of higher frequencies where spectrum crowding is 
less severe and the availability of bandwidth is greater. Crowded 
radio bands are undesirable not only from the standpoint of 
interference to other users but also because of potential interfer- 
ence from them. Another disadvantage of lower frequencies is the 
higher probability of interference from man-made noise sources, 
particularly in an urban area where the ALOHANET has most of 
its terminals. 

From the above considerations it can be seen that the 
system’s communication requirements tend to emphasize the use 
of higher radio frequencies. The primary constraint on mov-
ing to even higher ferequencies is equipment cost and radio 
range. Above 500 MHz equipment costs tend to escalate rapidly. 
Area coverage also becomes more difficult due to more pronounced 
shadowing effects of the radio waves by buildings and hilly 
terrain. (Above 30 MHz radio propagation tends to be limited 
to line-of-sight paths.) 

Therefore, the 400 to 500 MHz UHF band was selected as 
the optimum for the ALOHANET radio frequencies. Reason- 
ably priced commercial radio equipment was found to be 
available in this frequency region and radio band crowding 
was not severe in Hawaii. Initially, assignments in the 450 
to 470 MHz mobile radio band were requested but were rejected 
by the FCC because of our wide channel bandwidth requirements. 
(The mobile radio channels are specified at about 15 KHz band- 
width, whereas we were requesting 100 KHz.) We were fortunate 
enough to receive assignments as an experimental service in 
the government UHF band of 406 to 420 MHz, where spectrum 
space was available. 

Since most radio equipments available in the UHF bands use 
frequency modulation (FM), this type of modulation was selected 
for the RF channels. A slight variation was incorporated in the 
hardware design to minimize the interface problems between the 
radios and the data modems. This variation was the use of a 
subcarrier tone to carry the actual data modulation. This tone is 
phase-shift-keyed by the data and the resultant signal is used to 
modulate the FM transmitter. This modulated tone is recovered 
from the F M  receiver and fed to the demodulator of the modem. 
This modulation system is referred to as FM/DPSK to indicate 
frequency modulation by a differentially phase-shift-keyed sub- 
carrier. (Differential phase-shift-keying is used to resolve the 



Chapter 25 1 ALOHA Packet Broadcasting: A Retrospect 425 

problem of received phase ambiguity.) The resultant configuration 
is shown in Fig. 5. 

Radio Range 

The maximum operating distance between any terminal of the 
ALOHANET and the MENEHUNE (or a repeater) is specified as 
the system's radio range. This distance is primarily a function of a 
transmitter's radiated power, the receiver's sensitivity, and the 
attenuation of radio signal power for the given distance. Local 
noise conditions at the receiver location can also affect this 
distance, but for system planning purposes, range is usually 
calculated on the basis of some given propagation model. For 
line-of-sight paths, which exist at VHF, UHF, and higher 
frequencies, two different models are used depending upon local 
topographical conditions. In an urban area these paths are 
partially obstructed and suffer from multipath effects. A power 
loss proportional to l/R4 is usually assumed for these conditions 
[Okumura et al., 19681. Where paths are unobstructed and well 
clear of the local terrain, a spreading loss proportional to l/R2 can 
be assumed. Receiver threshold sensitivity in the ALOHANET is 
defined as that receiver input power level which causes an average 
bit error rate of This bit error rate should provide a packet 
throughput reliability better than 99 percent for full-length 
ALOHA packets. 

Assuming a transmitter equivalent radiated power of 10 watts, a 
simple whip antenna at a user terminal, an elevated antenna at the 
MENEHUNE or repeater and a 3 microvolt receiver sensitivity, 
the radio range works out to about 17 miles in the urban area for 
the ALOHANET frequencies. Between repeaters and the MEN- 
EHUNE terminal, which have well-elevated antennae and good 
path clearances, the assumed 1/R2model gives a maximum range 
of 290 miles. The use of high-gain omnidirectional antenna arrays 
at repeater sites extends these ranges. Tests conducted on a 100 
mile path between two ALOHANET repeaters confirmed the 1/R2 

ALOHA TERMNAL 

M€NEW(/NE 

ALOHA ERM/NALF;[ri
REPEATER REPEATER 

F, 401350UUz 

F. 4 1 3 4 r 5 ~  f7EPEATER 

Fig. 5. ALOHA system UHF radio communicationsystem. 

spreading-loss assumption and indicated a fade margin of 30 db 
existed (due to the 10 db gain antennae used for the test.) 

Data Synchronization 

Because of the burst nature of radio transmission of ALOHANET 
packets, special synchronization techniques must be employed in 
the modem and data terminal equipment. Since the phase-shift- 
keying used in the ALOHANET modem design is a bit-
synchronous technique, bit synchronization must first be per- 
formed in the demodulator before packet synchronization can be 
attempted. Bit-sync is performed by a phase-locking circuit, and a 
lock-indication signal is passed to the data equipment when 
bit-sync has been attained. The bit-sync detection circuit is so 
designed to provide a very low false detection probability (less 
than and a high probability of packet detection. The narrow 
bandwidth of the phase-lock circuit presently designed into the 
ALOHANET modem requires a bit-sync preamble of 90 bits to 
ensure reliable bit-sync. Studies have indicated that this preamble 
can be reduced to about 10 bits by use of a redesigned wide-band 
phase-lock circuit. In fact, we are presently contemplating doing 
away with the bit-sync preamble entirely, further reducing packet 
overhead. The unique characteristics of the ALOHA modem 
design make such an approach feasible. 

Packet synchronization is accomplished in the ALOHANET 
data terminal buffer by means of the 16-bit parity word contained 
in the packet header. When the parity check routine accepts the 
header, the packet is assumed to be synchronized. Since the 
parity check routine is initiated by the first bit of the header, 
packets can be missed due to detection of an early error bit before 
the header. This miss probability is presently controlled by the 
modem at about or less, providing a packet detection 
probability of 99.9 percent or better. The false detection probabil- 
ity of this circuit is -1.5x10-5, which is independent of that of 
the modem. Thus, the overall probability of false detection is less 
than 1.5X lo-". Therefore, less than one out of a thousand packets 
will be lost due to packet sync errors and packet sync false alarms 
occur with extreme rarity. 

User Interface Choices 

The development of the ALOHANET user intel-face has been an 
evolutionary process, as is typical of most research developments. 
Since there were expected to be many user nodes (ascompared to 
the single MENEHUNE node), the primary design goals were 
initially set as simplicity of design and low cost. This led to the 
design of a hardwired control unit with limited data storage 
capability coupled to a modem and radio transceiver. This initial 
design was termed a Terminal Control Unit (TCU). As experience 



426 Part 2 I Regions of Computer Space 

developed with operation of the net, other functions became 
evident as being desirable in a TCU. At about this time the first 
microprocessor chips and low-cost semiconductor memory chips 
were becoming available in the marketplace. It was decided that a 
new TCU design should be initiated using these new devices 
since much greater flexibility and additional functions could be 
readily incorporated in a unit having a capability of being 
programmed. It was also noted that the cost of these new devices 
was such that a unit could be built for the same cost or less than 
that of the original design. Thus, the Programmable Control Unit 
(PCU) was developed, and there are now several operating units 
in the system. We will now discuss some of the issues involved in 
designing a terminal control unit for use on the ALOHANET. 
These issues lie in the general areas of interface considerations, 
and the technology of microprocessors. 

The Original TCU 
The ALOHANET was originally envisioned as a terminal net- 
work, with the TCU’s interfacing human users to a half duplex, 
Iine-oriented time-sharing system. At the time of the first TCU 
design effort memory was relatively expensive, so in order to 
minimize cost a single buffer was chosen for use with both the 
terminal keyboard and display. (As noted earlier in this paper, 
when full duplex computer interactions were available in the 
system the single buffer was found to be quite a disadvantage.) 
The buffer was designed for a full line length of 80 characters, 
which allowed handling of both the 40 and 80 character fixed- 
length packets defined for the system. 

Additional basic functions performed by the TCU’s were 
generation of a cyclic-parity-check code vector and decoding of 
received parity code words for error-detection purposes, and 
generation of packet retransmissions using a simple random 
interval generator. If an acknowledgment was not received from 
the computer after the prescribed number of retransmissions, a 
flashing light was used as an indicator to the human user. Since 
the TCU’s did not send acknowledgments to the MENEHUNE, a 
steady warning light was displayed to the human user when an 
error was detected in a received packet. Thus it can be seen that 
considerable simplification was incorporated into the initial design 
of the TCU, making use of the fact that it was interhcing a human 
user into the network. 

Other functions hardwired into the TCU were the obvious 
requirements of checking for and generating its address, packet 
sequence numbering, checking to see if a received packet is an 
ACK packet or a data packet, and generating and checking for half- 
or full-packet conditions. (The control bits for these hnctions all 
reside in the header portion of the packet.) 

The final consideration was the choice of standard interface 
signals between the TCU and the user’s equipment. This was a 

Section 5 Networks1 

relatively simple choice, since most equipment is designed to 
meet the EIA standard RS 232C interface specification. There- 
fore, the TCU was designed to meet this standard, which allows 
direct connection of most terminals in use today. 

Minicomputer Nodes 
As the ALOHANET developed, some minicomputers were 
interfaced into the network as concentrators for a number of 
terminals. Many of the logical functions performed in a TCU were 
now incorporated into the mini’s software, with error detection 
and parity word generation performed in a special hardware 
interface unit imposed between the minicomputer and an 
ALOHA modem. (This unit was very much like the encoder/ 
decoder unit used at the MENEHUNE to interface that minicom- 
puter to the channel.) Parallel-to-serial and serial-to-parallel 
conversion was also performed in this interface unit. 

However, a minicomputer is an expensive device to use for 
these simple functions, and it requires considerable amounts of 
power and space. If it already exists for the purpose of performing 
various user-oriented tasks, then it is cost-effective to incorporate 
the software interface and a minimal amount of hardware for use 
on the ALOHANET. 

The advent of the microprocessor chip changed all this. The 
relatively low-cost processing power demonstrated by these units 
made it apparent that many system options we had previously 
considered and discarded because of hardware complexity and 
cost limitations in the TCU, were now viable in a PCU. Some of 
these options-file transfer, remote user ACK’s, single frequency 
operation, character-by-character transmission-were discussed 
in previous sections. This trend toward programmable and more 
powerful TCU’s has thus led to the development of the ALOHA 
PCU, using a microprocessor to handle the TCU buffering and 
control functions, in addition to more complex and sophisticated 
functions. 

Microprocessor Technology 
The development from the hardwired TCU concept to the 
fully-programmable PCU has closely followed the rapidly chang- 
ing technology of microprocessors. The availability of lower-cost 
semiconductor memory has allowed the evolution from half- 
duplex to full-duplex operation in the PCU, with the beneficial 
side-effect of decreased logical complexity due to separation of the 
input and output functions. However, the first PCU developed 
had a hardware complexity level comparable to the TCU due to 
the relatively primitive structure of early microprocessor designs. 
This first PCU, designed with the Intel 8008 CPU, required a 
considerable amount of circuitry for buffering and multiplexing 
functions needed with this early microprocessor chip. Because of 
the slow speed of the chip, bit-by-bit processing was not possible 



Chapter 25 I ALOHA Packet Broadcasting: A Retrospect 427 

and additional buffering was also necessary. But, much greater 
flexibility was introduced into the scope of functions which could 
be performed, due to its programmability. 

Later microprocessor designs, such as the Intel 8080 and 
National IMP-16, have introduced much greater sophistication 
into the processor chips accompanied by significant processing 
speed improvements. A newer PCU design, incorporating an 
Intel 8080 chip, has demonstrated a considerable reduction in 
hardware complexity accompanied by an even greater degree of 
processing flexibility. For example, parity generation and check- 
ing are done in software with this prototype design. 

Buffering has progressed from the simple shift-register stor- 
age devices of the TCU to the use of semiconductor RAM devices 
used in the microprocessor’s random-access memory. All of 
the micro-instructions for the Intel 8080 microprocessor 
PCU design reside on four PROM chips, providing 1024 bytes 
of microcode. The randon-access memory consists of 2048 bytes 
of RAM. 

Recent product introductions such as Intel’s 3000 series 
bi-polar chips promise even greater reductions in chip counts 
and increases in processing power and speed. With machines 
such as these, bit-by-bit processing can be readily incor-
porated into software, thus further eliminating the need for 
external interfacing hardware and simultaneously providing 
greater flexibility in the implementation of additional functions. 
A more detailed discussion of communications micropro-
cessors is given in a companion paper in these proceedings 
[Fralick et  al., 19751. 

Size and Power 

In the earlier versions of the TCU smaller size and power drain of 
the unit were not considered major design objectives. The first 
units were designed for ease of access and hardware modifications 
to these TCU’s were made on a fairly casual basis. As more and 
more of the ALOHANET came into use, however, small size, 
portability and lower power drain became desirable. 

Of particular interest is the possibility of designing low power 
battery operated portable PCU’s for mobile units in the ALO- 
HANET. Since the transmitter power need only be on for a short 
burst corresponding to the period of the data burst, the average 
power of the transmitter can be a small percentage of the peak 
power. Since low power and small size were not original design 
objectives, it appears that the construction of low power portable 
PCU’s will involve redesign of several subsections of the PCU and 
some new design efforts. Of particular importance is selection of a 
microprocessor unit which provides a minimum power-drain 
computer architecture consistent with functional requirements. 
The modem should be redesigned to use MOS devices to 
minimize power drain, and the transceiver designed for minimum 
complexity. 

Conclusions 

As the system has been modified during the past several years it 
has become apparent that packet broadcasting architecture is 
remarkably flexible in its tolerance of hardware, system and 
protocol modifications. This flexibility follows from the packet 
verification algorithms which lie at the basis of packet broadcast- 
ing. The only packets accepted by a remote unit or by the 
MENEHUNE are packets which meet all the tests expected by 
the potential acceptor, and the only system resource consumed by 
an unaccepted packet is the capacity of the channel during the 
short burst of the packet duration. Thus it is perfectly feasible in a 
packet broadcasting network to introduce a new form of packet 
(new in format, new in packet length, or even new in modulation 
technique) without disturbing any unit operating with the existing 
scheme. Only the units designed to look for the new packets will 
accept these packets and all other units will simply discard them. 

We plan to employ this property of packet switched channels to 
switch the polynomial used for error control in the present packet 
format. The new polynomial is available in a single IC chip and 
will allow the possibility of error correction as well as error 
detection in some cases. As remote units with new packet formats 
are put into operation we can continue to operate the existing 
remote units without modification as long as we have a single unit 
capable of accepting the new packet format at the MENEHUNE. 
As a side benefit of the introduction of this modification we also 
note that we have effectively doubled the number of user 
addresses in the system. An address in use with the old packet 
format may be reused with the new, since each is effectively 
invisible to the other. 

Another result of our ALOHANET experience, current tech- 
nology, and recent theoretical work on ALOHA channels, is that a 
single-channel network configuration appears preferable to the 
two channels used in our present system. The major reason why 
this is so has to do with the broadcast property of the single- 
channel system, in which all nodes can (for a given geographic 
range) hear the transmission of all other nodes in the net. 

A number of desirable properties result from this broadcast 
feature. First, each node can determine if the channel is free 
before transmitting, greatly reducing the number of packet 
conflicts-Kleinrock and Tobagi [19761 have shown analytically 
that this can increase the throughput of a random access channel 
by a factor of three to five for reasonable user delays, depending 
on the propagation times between nodes. Second, the problem of 
sending acknowledgments from user nodes is resolved in a simple 
manner. Third, system bandwidth can be optimally allocated to 
both directions of traffic by simple time-sharing of the channel. 
Fourth, single channel repeaters require only half the radio 
hardware of two-channel repeaters, and, in fact, the radio 
transceivers at all nodes need be only half duplex. Finally, a 



428 Part 2 1 Regions of Computer Space 

single-channel system constitutes a fully-connected network 
allowing direct communication between all nodes. A star configu- 
ration can still be imposed by protocol to direct all user traffic 
through a central node, but is no longer required. 

It is important to note that many of the above properties are 
made feasible by the availability of pcu’s at a reasonable cost 
through microcomputer technology. This raises a related issue: 
the desirability of distributing presently centralized protocol 
functions such as flow control among the user nodes. Since we 
have just begun to gain experience with PCU’s in a packet 
broadcast network, we must leave this as an open question. 

Section 5 NetworksI 

References 

Abramson [1973a]; Abramson [1973b]; Binder, h i ,  and Wilson 
[19741; Davidson [19721; Fralick, Brandin, Kuo, and Harrison 
[19751; Frank, Van Slyke, and Gitman [1975]; Heart, Kahn, 
Omstein, Crowther, and Walden [1970]; Jackson a.d Stubbs 
[1969]; Kahn [1975]; Kleinrock and Tobagi [1976]; Lam [1974]; 
Metcalfe [1973al; Okumura, Ohmori, Kawano, and Fukuda 
[1968]; Ornstein, Heart, Crowther, Rising, Russell, and Michel 
[19721; Roberts [1973~. 



Chapter 26 

Ethernet: Distributed Packet Switching 
for Local Computer Networks’ 

Robert M.  Metcalfe / David R.  Boggs 

Summary Ethernet is a branching broadcast communication system for 
carrying digital data packets among locally distributed computing stations. 
The packet transport mechanism provided by Ethernet has been used to 
build systems which can be viewed as either local computer networks or 
loosely coupled multiprocessors. An Ethernet’s shared communication 
facility, its Ether, is a passive broadcast medium with no central control. 
Coordination of access to the Ether for packet broadcasts is distributed 
among the contending transmitting stations using controlled statistical 
arbitration. Switching of packets to their destinations on the Ether is 
distributed among the receiving stations using packet address recognition. 
Design principles and implementations are described, based on experi- 
ence with an operating Ethernet of 100 nodes along a kilometer of coaxial 
cable. A model for estimating performance under heavy loads and a packet 
protocol for error controlled communication are included for complete- 
ness. 

1. Background 

One can characterize distributed computing as a spectrum 
of activities varying in their degree of decentralization, with 
one extreme being remote computer networking and 
the other extreme being multiprocessing. Remote computer 
networking is the loose interconnection of previously isolated, 
widely separated, and rather large computing systems. Multi- 
processing is the construction of previously monolithic and 
serial computing systems from increasingly numerous and smaller 
pieces computing in parallel. Near the middle of this spec- 
trum is local networking, the interconnection of computers to 
gain the resource sharing of computer networking and the 
parallelism of multiprocessing. 

The separation between computers and the associated bit rate 
of their communication can be used to divide the distributed 
computing spectrum into broad activities. The product of separa- 
tion and bit rate, now about 1 gigabit-meter per second (1 

‘Cmm.  ACM, vol. 19, no. 7, July 1976, pp. 3951104. 

Gbmps), is an indication of the limit of current communication 
technology and can be expected to increase with time: 

Activity Separation Bit rate 

Remote networks > 10 km < .I Mbps 
Local networks 10-.1 km .l-10 MbpS 
MuItiprocessors < .1 km > 10 Mbps 

1.1 Remote Computer Networking 
Computer networking evolved from telecommunications 
terminal-computer communication, where the object was to 
connect remote terminals to a central computing facility. As the 
need for computer-computer interconnection grew, computers 
themselves were used to provide communication [Abramson and 
Kuo, 1973; Baran, 1964; Rustin, 19701. Communication using 
computers as packet switches [Heart et  al., 1970; Heart et  al., 1972; 
Kahn, 1975; Metcalfe, 1972a; Metcalfe, 1972b; Metcalfe, 1973a; 
Metcalfe, 197313; Roberts and Wessler, 19701 and communications 
among computers for resource sharing [Crocker et  al., 1972; 
Thomas, 19731 were both advanced by the development of the 
Arpa Computer Network. 

The Aloha Network at the University of Hawaii was originally 
developed to apply packet radio techniques for communication 
between a central computer and its terminals scattered among the 
Hawaiian Islands [Abramson, 1970; Abramson and Kuo, 19731. 
Many of the terminals are now minicomputers communicating 
among themselves using the Aloha Network’s Menehune as a 
packet switch. The Menehune and an Arpanet Imp are now 
connected, providing terminals on the Aloha Network access to 
computing resources on the U.S.mainland. 

Just as computer networks have grown across continents and 
oceans to interconnect major computing facilities around the 
world, they are now growing down corridors and between 
buildings to interconnect minicomputers in offices and laborato- 
ries [Ashenhurst and Vonderohe, 1975; Farber et  al., 1973; 
Farber, 1975; Fraser, 1975; Willard, 19731. 

1.2 Multiprocessing 
Multiprocessing first took the form of connecting an I/O controller 
to a large central computer; IBM’s Asp is a classic example 
[Rustin, 19701. Next, multiple central processors were connected 
to a common memory to provide more power for compute-bound 
applications [Thorton, 19701. For certain of these applications, 
more exotic multiprocessor architectures such as Illiac IV were 
introduced [Barnes et  al., 19681. 

More recently minicomputers have been connected in multi- 
processor configurations for economy, reliability, and increased 

429 



430 Part 2 I Regions of Computer Space 

system modularity [Ornstein et  al., 1975; Wulf and Bell, 19721. 
The trend has been toward decentralization for reliability; loosely 
coupled multiprocessor systems depend less on shared central 
memory and more on thin wires for interprocess communication 
with increased component isolation [Metcalfe, 1972a; Roberts and 
Wessler, 19701. With the continued thinning of interprocessor 
communication for reliability and the development of distributa- 
ble applications, multiprocessing is gradually approaching a local 
form of distributed computing. 

1.3 Local Computer Networking 

Ethernet shares many objectives with other local networks such as 
Mitre’s Mitrix, Be11 Telephone Laboratory’s Spider, and U.C. 
Irvine’s Distributed Computing System (DCS) [Farber et al., 
1973; Farber, 1975; Fraser, 1975;Willard, 1973 1. Prototypes ofall 
four local networking schemes operate at bit rates between one 
and three megabits per second. Mitrix and Spider have a central 
minicomputer for switching and bandwidth allocation, while DC S 
and Ethernet use distributed control. Spider and DCS use a ring 
communication path, Mitrix uses off-the-shelf CATV technology to 
implement two one-way busses, and our experimental Ethernet 
uses a branching two-way passive bus. Differences among these 
systems are due to differences among their intended applications, 
differences among the cost constraints under which trade-offs 
were made, and differences of opinion among researchers. 

Before going into a detailed description of Ethernet, we offer 
the following overview (see Fig. 1). 

2. System Summary 

Ethernet is a system for local communication among computing 
stations. Our experimental Ethernet uses tapped coaxial cables to 
carry variable length digital data packets among, for example, 
personal minicomputers, printing facilities, large file storage 
devices, magnetic tape backup stations, larger central computers, 
and longer-haul communication equipment. 

The shared communication facility, a branching Ether, is 
passive. A station’s Ethernet interface connects bit-serially 
through an interface cable to a transceiver which in turn taps into 
the passing Ether. A packet is broadcast onto the Ether, is heard 
by a11 stations, and is copied from the Ether by destinations which 
select it according to the packet’s leading address bits. This is 
broadcast packet switching and should be distinguished from 
store-and-forward packet switching, in which routing is performed 
by intermediate processing elements. To handle the demands of 
growth, an Ethernet can be extended using packet repeaters for 
signal regeneration, packet filters for tr&c localization, and 
packet gateways for internetwork address extension. 

Section 5 1 Networks 

TERMINATOR 

T 4 P  

E 
T 
I 1  
E I I c  I 
R 

5 
E TRAYS-

G CEIVER 
81 
E 
N 
T E R 

I 
I 

COHTROI L E R  

CEIVER REPEATER IUTERF\CE 

TRAHS-


L
D-- -
ETflLR S E G M E N T  #2 

Fig. 1. A two-segment Ethernet. 

Control is completely distributed among stations, with packet 
transmissions coordinated through statistical arbitration. Trans- 
missions initiated by a station defer to any which may already be 
in progress. Once started, if interference with other packets is 
detected, a transmission is aborted and rescheduled by its source 
station. After a certain period of interference-free transmission, a 
packet is heard by all stations and will run to completion without 
interference. Ethernet controllers in colliding stations each 
generate random retransmission intervals to avoid repeated 
collisions. The mean of a packet’s retransmission intervals is 
adjusted as a function of collision history to keep Ether utilization 
near the optimum with changing network load. 

Even when transmitted without source-detected interference, a 
packet may still not reach its destination without error; thus, 
packets are delivered only with high probability. Stations requir- 
ing a residual error rate lower than that provided by the bare 
Ethernet packet transport mechanism must follow mutually 
agreed upon packet protocols. 



Chapter 26 1 Ethernet: Distributed Packet Switching for Local Computer Networks 431 

3. Design Principles 

Our object is to design a communication system which can grow 
smoothly to accommodate several buildings full of personal 
computers and the facilities needed for their support. 

Like the computing stations to be connected, the communica- 
tion system must be inexpensive. We choose to distribute control 
of the communications facility among the communicating comput- 
ers to eliminate the reliability problems of an active central 
controller, to avoid creating a bottleneck in a system rich in 
parallelism, and to reduce the fixed costs which make small 
systems uneconomical. 

Ethernet design started with the basic idea of packet collision 
and retransmission developed in the Aloha Network [Abramson, 
19701. Vi’e expected that, like the Aloha Network, Ethernets 
would carry bursty traffic so that conventional synchronous 
time-division multiplexing (STDM) would be inefficient [Abram- 
son, 1970; Abramson and Kuo, 1973; Metcalfe, 1973a; Roberts and 
Wessler, 19701. We saw promise in the Aloha approach to 
distributed control of radio channel multiplexing and hoped that it 
could be applied effectively with media suited to local computer 
communication. With several innovations of our own, the promise 
is realized. 

Ethernet is named for the historical luminijh-ous ether through 
which electromagnetic radiations were once alleged to propagate. 
Like an Aloha radio transmitter, an Ethernet transmitter broad- 
casts completely-addressed transmitter-synchronous bit sequenc- 
es called packets onto the Ether and hopes that they are heard by 
the intended receivers. The Ether is a logically passive medium 
for the propagation of digital signals and can be constructed using 
any number of media including coaxial cables, twisted pairs, and 
optical fibers. 

3.1 Topology 
We cannot afford the redundant connections and dynamic routing 
of store-and-forward packet switching to assure reliable communi- 
cation, so we choose to achieve reliability through simplicity. We 
choose to make the shared communication facility passive so that 
the failure of an active element will tend to affect the communica- 
tions of only a single station. The layout and changing needs of 
office and laboratory buildings leads us to pick a network topology 
with the potential for convenient incremental extention and 
reconfiguration with minimal service disruption. 

The topology of the Ethernet is that of an unrooted tree. It is a 
tree so that the Ether can branch at the entrance to a building’s 
corridor, yet avoid multipath interference. There must be only 
one path through the Ether between any source and destination; 
if more than one path were to exist, a transmission would interfere 
with itself, repeatedly arriving at its intended destination having 

travelled by paths of different length. The Ether is unrooted 
because it can be extended from any of its points in any direction. 
Any station wishing to join an Ethernet taps into the Ether at the 
nearest convenient point. 

Looking at the relationship of interconnection and control, we 
see that Ethernet is the dual of a star network. Rather than 
distributed interconnection through many separate links and 
central control in a switching node, as in a star network, the 
Ethernet has central interconnection through the Ether and 
distributed control among its stations. 

Unlike an Aloha Network, which is a star network with an 
outgoing broadcast channel and an incoming multi-access chan- 
nel, an Ethernet supports many-to-many communication with a 
single broadcast multi-access channel. 

3.2 Control 
Sharing of the Ether is controlled in such a way that it is not only 
possible but probable that two or more stations will attempt to 
transmit a packet at roughly the same time. Packets which overlap 
in time on the Ether are said to collide; they interfere so as to be 
unrecognizable by a receiver. A station recovers from a detected 
collision by abandoning the attempt and retransmitting the packet 
after some dynamically chosen random time period. Arbitration of 
conflicting transmission demands is both distributed and statisti- 
cal. 

When the Ether is largely unused, a station transmits its 
packets at will, the packets are received without error, and all is 
well. As more stations begin to transmit, the rate of packet 
interference increases. Ethernet controllers in each station are 
built to adjust the mean retransmission interval in proportion to 
the frequency of collisions; sharing of the Ether among competing 
station-station transmissions is thereby kept near the optimum 
[Metcalfe, 1973a; Metcalfe, 1973bl. 

A degree of cooperation among the stations is required to share 
the Ether equitably. In demanding applications certain stations 
might usefully take transmission priority through some systematic 
violation of equity rules. A station could usurp the Ether by not 
adjusting its retransmission interval with increasing traffic or by 
sending very large packets. Both practices are now prohibited by 
low-level software in each station. 

3.3 Addressing 
Each packet has a source and destination, both of which are 
identified in the packet’s header. A packet placed on the Ether 
eventually propagates to all stations. Any station can copy a packet 
from the Ether into its local memory, but normally only an active 
destination station matching its address in the packet’s header will 
do so as the packet passes. By convention, a zero destination 



432 Part 2 1 Regions of Computer Space 

address is a wildcard and matches all addresses; a packet with a 
destination of zero is called a broadcast packet. 

3.4 Reliability 

An Ethernet is probabilistic. Packets may be lost due to interfer- 
ence with other packets, impulse noise on the Ether, an inactive 
receiver at a packet’s intended destination, or purposeful discard. 
Protocols used to communicate through an Ethernet must assume 
that packets will be received correctly at intended destinations 
only with high probability. 

An Ethernet gives its best efforts to transmit packets successful- 
ly, but it is the responsibility of processes in the source and 
destination stations to take the precautions necessary to assure 
reliable communication of the quality they themselves desire 
[Metcalfe, 1972a; Metcalfe, 1973131. Recognizing the costliness 
and dangers of promising “error-free’’ communication, we refrain 
from guaranteeing reliable delivery of any single packet to get 
both economy of transmission and high reliability averaged over 
many packets [Metcalfe, 1973131, Removing the responsibility for 
reliable communication from the packet transport mechanism 
allows us to tailor reliability to the application and to place error 
recovery where it will do the most good. This policy becomes 
more important as Ethernets are interconnected in a hierarchy of 
networks through which packets must travel farther and suffer 
greater risks. 

3.5 Mechanisms 

A station connects to the Ether with a tap and a transceiver. A tap 
is a device for physically connecting to the Ether while disturbing 
its transmission characteristics as little as possible. The design of 
the transceiver must be an exercise in paranoia. Precautions must 
be taken to insure that likely failures in the transceiver or station 
do not result in pollution of the Ether. In particular, removing 
power from the transceiver should cause it to disconnect from the 
Ether. 

Five mechanisms are provided in our experimental Ethernet 
for reducing the probability and cost of losing a packet. These are 
(1)carrier detection, (2) interference detection, (3)packet error 
detection, (4) truncated packet filtering, and (5)collision consen- 
sus enforcement. 

3.5.1 Carrier Detection. As a packet’s bits are placed on the 
Ether by a station; they are phase encoded (like bits on a magnetic 
tape), which guarantees that there is at least one transition on the 
Ether during each bit time. The passing of a packet on the Ether 
can therefore be detected by listening for its transitions. To use a 
radio analogy, we speak of the presence of carrier as a packet 
passes a transceiver. Because a station can sense the carrier of a 
passing packet, it can delay sending one of its own until the 

Section 5 Networks1 

detected packet passes safely. The Aloha Network does not have 
carrier detection and consequently suffers a substantially higher 
collision rate. Without carrier detection, efficient use of the Ether 
would decrease with increasing packet length. In Sec. 6 below, we 
show that with carrier detection, Ether efficiency increases with 
increasing packet length. 

With carrier detection we are able to implement deference: no 
station will start transmitting while hearing carrier. With defer- 
ence comes acquisition: once a packet transmission has been in 
progress for an Ether end-to-end propagation time, all stations are 
hearing carrier and are deferring; the Ether has been acquired 
and the transmission will complete without an interfering colli- 
sion. 

With carrier detection, collisions should occur only when two 
or more stations find the Ether silent and begin transmitting 
simultaneously within an Ether end-to-end propagation time. 
This will almost always happen immediately after a packet 
transmission during which two or more stations were deferring. 
Because stations do not now randomize after deferring, when the 
transmission terminates, the waiting stations pile on together, 
collide, randomize, and retransmit. 

3.5.2 Interference Detection. Each transceiver has an interfer- 
ence detector. Interference is indicated when the transceiver 
notices a difference between the value of the bit it is receiving 
from the Ether and the value of the bit it is attempting to 
transmit. 

Interference detection has three advantages. First, a station 
detecting a collision knows that its packet has been damaged. The 
packet can be scheduled for retransmission immediately, avoiding 
a long acknowledgment timeout. Second, interference periods on 
the Ether are limited to a maximum of one round trip time. 
Colliding packets in the Aloha Network run to completion, but the 
truncated packets resulting from Ethernet collisions waste only a 
small fraction of a packet time on the Ether. Third, the frequency 
of detected interference is used to estimate Ether traffic for 
adjusting retransmission intervals and optimizing channel effi-
ciency. 

3.5.3 Packet Error Detection. As a packet is placed on the 
Ether, a checksum is computed and appended. As the packet is 
read from the Ether, the checksum is recomputed. Packets which 
do not carry a consistent checksum are discarded. In this way 
transmission errors, impulse noise errors, and errors due to 
undetected interference are caught at a packet’s destination. 

3.5.4 Truncated Packet Filtering. Interference detection and 
deference cause most collisions to result in truncated packets of 
only a few bits; colliding stations detect interference and abort 



Chapter 26 1 Ethernet: Distributed Packet Switching for Local Computer Networks 433 

transmission within an Ether round trip time. To reduce the 
processing load that the rejection of such obviously damaged 
packets would place on listening station software, truncated 
packets are filtered out in hardware. 

3.5.5 Collision Consensus Enforcement. When a station deter- 
mines that its transmission is experiencing interference, it 
momentarily jams the Ether to insure that all other participants in 
the collision will detect interference and, because of deference, 
will be forced to abort. Without this collision CorZsensus enforce- 
ment mechanism, it is possible that the transmitting station which 
would othenvise be the last to detect a collision might not do so as 
the other interfering transmissions successively abort and stop 
interfering. Although the packet may look good to that last 
transmitter, different path lengths between the colliding transmit- 
ters and the intended receiver will cause the packet to arrive 
damaged. 

4. Implementation 

Our choices of 1 kilometer, 3 megabits per second, and 256 
stations for the parameters of an experimental Ethernet were 
based on characteristics of the locally distributed computer 
communication environment and our assessments of what would 
be marginally achievable; they were certainly not hard restrictions 
essential to the Ethernet concept. 

We expect that a reasonable maximum network size would be 
on the order of 1kilometer of cable. We used this working number 
to choose among Ethers of varying signal attenuation and to 
design transceivers with appropriate power and sensitivity. 

The dominannt station on our experimental Ethernet is a 
minicomputer for which 3 megabits per second is a convenient 
data transfer rate. By keeping the peak rate well below that of the 
computer’s path to main memory, we reduce the need for 
expensive special-purpose packet buffering in our Ethernet 
interfaces. By keeping the peak rates as high as is convenient, we 
provide for larger numbers of stations and more ambitious 
multiprocessing communications applications. 

To expedite low-level packet handling among 256 stations, we 
allocate the first 8-bit byte of the packet to be the destination 
address field and the second byte to be the source address field 
(see Fig. 2). 256 is a number small enough to allow each station to 
get an adequate share of the available bandwidth and approaches 
the limit of what we can achieve with current techniques for 
tapping cables. 256 is only a convenient number for the lowest 
level of protocol; higher levels can accomodate extended address 
spaces with additional fields inside the packet and software to 
interpret them. 

Our experimental Ethernet implementation has four major 

ACCFSSIBLE T O  SOFTWARE 

S 
V 

DE57
AUDHFSS 

SOURCE
AD1)RFSS 

UATA CHECKSUM 

c 

Fig. 2. Ethernet packet layout. 

parts: the Ether, transceivers, interfaces, and controllers. (See 
Fig. 1.) 

4.1 Ether 
We chose to implement our experimental Ether using low-loss 
coaxial cable with off-the-shelf CATV taps and connectors. It is 
possible to mix Ethers on a single Ethernet; we use a smaller- 
diameter coax for convenient connection within station clusters 
and a larger-diameter coax for low-loss runs between clusters. The 
cost of coaxial cable Ether is insignificant relative to the cost of the 
distributed computing systems supported by Ethernet. 

4.2 Transceivers 

Our experimental transceivers can drive a kilometer of coaxial 
cable Ether tapped by 256 stations transmitting at 3 megabits per 
second. The transceivers can endure (i.e. work afker) sustained 
direct shorting, improper termination of the Ether, and simulta- 
neous drive by all 256 stations; they can tolerate (i.e. work during) 
ground differentials and everyday electrical noise, from typewrit- 
ers or electric drills, encountered when stations are separated by 
as much as a kilometer. 

An Ethernet transceiver attaches directly to the Ether which 
passes by in the ceiling or under the floor. It is powered and 
controlled through five twisted pairs in an interface cable carrying 
transmit data, receive data, interference detect, and power supply 
voltages. When unpowered,. the transceiver disconnects itself 
electrically from the Ether. Here is where our fight for reliability 
is won or lost; a broken transceiver can, but should not, bring 
down an entire Ethernet. A watchdog timer circuit in each 
transceiver attempts to prevent pollution of the Ether by shutting 
down the output stage if it acts suspiciously. For transceiver 
simplicity we use the Ether’s base frequency band, but an 
Ethernet could be built to use any suitably sized band of a 
frequency division multiplexed Ether. 

Even though our experimental transceivers are very simple and 
can tolerate only limited signal attenuation, they have proven 
quite adequate and reliable. A more sophisticated transceiver 



434 Part 2 1 Regions of Computer Space 

design might permit passive branching of the Ether and wider 
station separation. 

4.3 Interface 
An Ethernet interface serializes and deserializes the parallel data 
used by its station. There are a number of different stations on our 
Ethernet; an interface must be built for each kind. 

Each interface is equipped with the hardware necessary to 
compute a 16-bit cyclic redundancy checksum (CRC) on serial 
data as it is transmitted and received. This checksum protects only 
against errors in the Ether and specifically not against errors in the 
parallel portions of the interface hardware or station. Higher-level 
software checksums are recommended for applications in which a 
higher degree of reliability is required. 

A transmitting interface uses a packet buffer address and word 
count to serialize and phase encode a variable number of 16-bit 
words which are taken from the station's memory and passed to 
the transceiver, preceded by a start bit (called SYNC in Fig. 2) and 
followed by the CRC. A receiving interface uses the appearance of 
carrier to detect the start of a packet and uses the SYNC bit to 
acquire bit phase. As long as carrier stays on, the interface 
decodes and deserializes the incoming bit stream depositing 
16-bit words in a packet buffer in the station's main memory. 
When carrier goes away, the intehce checks that an integral 
number of 16-bit words has been received and that the CRC is 
correct. The last word received is assumed to be the CRC and is 
not copied into the packet buffer. 

These interfaces ordinarily include hardware for accepting only 
those packets with appropriate addresses in their headers. 
Hardware address filtering helps a station avoid burdensome 
software packet processing when the Ether is very busy carrying 
traffic intended for other stations. 

4.4 Con troller 
An Ethernet controller is the station-specific low-level firmware 
or software for getting packets onto and out of the Ether. When a 
source-detected collision occurs, it is the source controller's 
responsibility to generate a new random retransmission interval 
based on the updated collision count. We have studied a number 
of algorithms for controlling retransmission rates in stations to 
maintain Ether efficiency [Metcalfe, 1973a; Metcalfe, 19741. The 
most practical of these algorithms estimate traffic load using 
recent collision history. 

Retransmission intervals are multiples of a slot, the maximum 
time between starting a transmission and detecting a collision, 
one end-to-end round trip delay. An Ethernet controller begins 
transmission of each new packet with a mean retransmission 
interval of one slot. Each time a transmission attempt ends in 
collision, the controller delays for an interval of random length 
with a mean twice that of the previous interval, defers to any 

Section 5 Networks1 

passing packet, and then attempts retransmission. This heuristic 
approximates an algorithm we have called Binary Exponential 
Backoff (see Fig. 3) [Metcalfe, 19741. 

When the network is unloaded and collisions are rare, the mean 
seIdom departs from one and retransmissions are prompt. As the 
traffic load increases, more collisions are experienced, a backlog of 
packets builds up in the stations, retransmission intervals in- 
crease, and retransmission traffic backs off to sustain channeI 
efficiency. 

5. Growth 

5.1 Signal Cover 
One can expand an Ethernet just so far by adding transceivers and 
Ether. At some point, the transceivers and Ether will be unable to 
carry the required signals. The signal cover can be extended with 
a simple unbuffered packet  repeater. In our experimental Ether- 
net, where because of transceiver simplicity the Ether cannot be 
branched passively, a simple repeater may join any number of 

ESTlhlATE FUR 

I 


INO 
1 


GENERATE 

FSTlhl \TE LOAD ESTIMATE 

COliNT DOWN 

\\'EICIlTED RANDOM 
NUMBER 

Fig. 3. Collision control algorithm. 



Chapter 26 I Ethernet: Distributed Packet Switching for Local Computer Networks 435 

Ether segments to enrich the topology while extending the signal 
cover. 

We operate an experimental two-segment packet repeater, 
but hope to avoid relying on them. In branching the Ether 
and extending its signal cover, there is a trade-off be-
tween using sophisticated transceivers and using repeaters. 
With increased power and sensitivity, transreceivers become more 
expensive and less reliable. The introduction of repeaters into 
an Ethernet makes the centrally interconnecting Ether active. The 
failure of a transceiver will sever the communications of its 
owner; the failure of a repeater partitions the Ether severing many 
communications. 

5.2 TraRc Cover 

One can expand an Ethernet just so far by adding Ether and 
packet repeaters. At some point the Ether will be so busy that 
additional stations will just divide more finely the already 
inadequate bandwidth. The trafic cover can be extended with an 
unbuffered traEic-filtering repeater or packet filter, which passes 
packets from one Ether segment to another only ifthe destination 
station is located on the new segment. A packet filter also extends 
the signal cover. 

5.3 Address Cover 

One can expand an Ethernet just so far by adding Ether, 
repeaters, and traffic filters. A! some point there will be too many 
stations to be addressed with the Ethernet's 8-bit addresses. The 
address cover can be extended with packet gateways and the 
software addressing conventions they implement [Cerf and Kahn, 
19741. Addresses can be expanded in two directons: down into the 
station by adding fields to identify destination ports or processes 
within a station, and up into the internetwork by adding fields to 
identify destination stations on remote networks. A gateway also 
extends the traffic and signal covers. 

There can be only one repeater or packet filter connecting two 
Ether segments; a packet repeated onto a segment by multiple 
repeaters would interfere with itself. However, there is no limit to 
the number of gateways connecting two segments; a gateway only 
repeats packets addressed to iteselfas an intermediary. Failure of 
the single repeater connecting two segments partitions the 
network; failure ofa gateway need not partition the net ifthere are 
paths through other gateways between the segments. 

6. Performance 

We present here a simple set of formulas with which to character- 
ize the performance expected of an Ethernet when it is heavily 
loaded. More elaborate analyses and several detailed simulations 
have been done, but the following simple model has proven very 

useful in understanding the Ethernet's distributed contention 
scheme, even when it is loaded beyond expectations [Abramson, 
1970; Metcalfe, 1973a; Metcalfe, 1973b; Metcalfe, 1974; Murthy, 
1975; Roberts, 1973133. 

We develop a simple model of the performance of a loaded 
Ethernet by examining alternating Ether time periods. The first, 
called a transmission inteval, is that during which the Ether has 
been acquired for a successful packet transmission. The second, 
called a contention interval, is that composed of the retransmis- 
sion slots of Sec. 4.4, during which stations attempt to acquire 
control of the Ether. Because the model's Ethernets are loaded 
and because stations defer to passing packets before starting 
transmission, the slots are synchronized by the tail of the 
preceding acquisition interval. A slot will be empty when no 
station chooses to attempt transmission in it and it will contain a 
collision if more than one station attempts to transmit. When a slot 
contains only one attempted transmission, then the Ether has 
been acquired for the duration of a packet, the contention interval 
ends, and a transmission interval begins. 

Let P be the number ofbits in an Ethernet packet. Let C be the 
peak capacity in bits per second, carried on the Ether. Let T be 
the time in seconds of a slot, the number of seconds it takes to 
detect a collision after starting a transmission. Let us assume that 
there are Q stations continuously queued to transmit a packet; 
either the acquiring station has a new packet immediately after a 
successful acquisition or another station comes ready. Note that Q 
also happens to give the total ofered load on the network which 
for this anaysis is always 1or greater. We assume that a queued 
station attempts to transmit in the current slot with probability 
l/Q, or delays with probability 1- (UQ); this is known to be the 
optimum statistical decision rule, approximated in Ethernet 
stations by means of our load-estimating retransmission control 
algorithms [Metcalfe, 1973a; Metcalfe, 1973bI. 

6.1 Acquisition Probability 

We now compute A, the probability that exactly one station 
attempts a transmission in a slot and therefore acquires the Ether. 
A is Q *(l/Q)*((l - (l/Q))**(Q- 1);there are Q ways in which 
one station can choose to transmit (with probability (l/Q)) while 
Q - 1 stations choose to wait (with probability 1 - (UQ)).
Simplifying, 

A = (1 - (l/Q))@') 

6.2 Waiting Time 

We now compute W, the mean number of slots of waiting in a 
contention interval before a successful acquisition of the Ether by 
a station's transmission. The probability of waiting no time at all is 
just A, the probability that one and only one station chooses to 
transmit in the first slot following a transmission. The probability 



436 Part 2 1 Regions of Computer Space 

of waiting 1slot is A*(l - A);the probability of waiting i slots is 
A*((l - A)**i).The mean of this geometric distribution is 

W= ( 1  - A)/A 

6.3 Efficiency 

We now compute E ,  that fraction of time the Ether is carrying 
good packets, the eficiency. The Ether’s time is divided between 
transmission intervals and contention intervals. A packet trans- 
mission takes PIC seconds. The mean time to acquisition is W*T. 
Therefore, by our simple model, 

E = (P/C)/((P/C)+ (W*T)) 

Table 1presents representative performance figures (i.e. E )  for 
our experimental Ethernet with the indicated packet sizes and 
number of continuously queued stations. The efficiency figures 
given do not account for inevitable reductions due to headers and 
control packets nor for losses due to imprecise control of the 
retransmission parameter 1/Q; the former is straightforwardly 
protocol-dependent and the latter requires analysis beyond the 
scope of this paper. Again, we feel that all of the Ethernets in the 
table are overloaded; normally loaded Ethernets will usually have 
a Q much less than 1and exhibit behavior not covered by this 
model. 

For our calculations we use a C of 3 megabits per second and a T 
of 16 microseconds. The slot duration T must be long enough to 
allow a collision to be detected or at least twice the Ether’s round 
trip time. We limit in software the maximum length of our packets 
to be near 4000 bits to keep the latency of network access down 
and to permit efficient use of station packet buffer storage. 

For packets whose size is about 4000 bits, the efficiency of our 
experimental Ethernet stays well above 95 percent. For packets 
with a size approximating that of a slot, Ethernet efficiency 

Table 1 Ethernet Efficiency 

0 P =4096 P = 1024 P =512 P = 4 8  

1 1 .oooo 1 .oooo 1 .oooo 1 .oooo 
2 0.9884 0.9552 0.9143 0.5000 
3 \ 0.9857 0.9447 0.8951 0.4444 
4 0.9842 0.9396 0.8862 0.4219 
5 0.9834 0.9367 0.8810 0.4096 
10 0.9818 0.9310 0.8709 0.3874 
32 0.9807 0.9272 0.8642 0.3737 
64 0.9805 0.9263 0.8627 0.3708 
128 0.9804 0.9259 0.8620 0.3693 
256- 0.9803 0.9257 0.861 6 0.3686 

Section 5 Networks1 

approachs l / e ,the asymptotic efficiency of a slotted Aloha Network 
[Roberts, 1973b]. 

7.  Protocol 

There is more to the construction of a viable packet communica- 
tion system than simply providing the mechanisms for packet 
transport. Methods for error correction, flow control, process 
naming, security, and accounting must also be provided through 
higher-level protocols implemented on top of the Ether control 
protocol described in Sections 3 and 4 above [Cerfand Kahn, 
1974; Crocker et al., 1972; Farber et al., 1973; Metcalfe, 1973b; 
Rowe, 1975; Walden, 19721. Ether control includes packet 
framing, error detection, addressing, and multi-access control; 
like other line control procedures, Ethernet is used to support 
numerous network and multiprocessor architectures [IBM, 1974; 
IBM, 1975a1. 

Here is a brief description of one simple error-controlling 
packet protocol. The EJTP (Ethernet File Transfer Protocol) is of 
interest both because it is relatively easy to understand and 
implement correctly and because it has dutifully carried many 
valuable files during the development of more general and 
efficient protocols. 

7.1. General Terminology 

In discussing packet protocols, we use the following generally 
useful terminology. A packet is said to have a source and a 
destination. A flow of data is said to have a sender and a receiver, 
recognizing that to support a flow of data some packets (typically 
acknowledgments) will be sourced at the receiver and destined for 
the sender. A connection is said to have a listener and an initiator 
and a service is said to have a semer and a user. It is very useful to 
treat these as orthogonal descriptors of the participants in a 
communication. Of course, a server is usually a listener and the 
source of data-bearing packets is usually the sender. 

7.2 EFTP 

The first 16 bits of all Ethernet packets contain its interface- 
interpretable destination and source station addresses, a byte 
each, in that order (see Fig. 2). By software convention, the 
second 16 bits of all Ethernet packets contain the packet type. 
Different protocols use disjoint sets of packet types. The EFTP 
uses 5 packet types: data, ack, abort, end, and endreply. 
Following the 16-bit type word of an EJTP packet are 16 bits of 
sequence number, 16 bits of length, optionally some 16-bit data 
words, and finally a 16-bit software checksum word (see Fig. 4). 
The ethernet’s hardware checksum is present only on the Ether 
and is not counted at this level of protocol. 



Chapter 26 I Ethernet: Distributed Packet Switching for Local Computer Networks 437 

Destination Source 

Packet Type 

Sequence Number 

Length ( in words) 

Data (words) 	 Packet 
OnlyI 	 I 

I 

I- 1 16-bit Word 

Fig. 4. EFTP packet layout. 

It should be obvious that little care has been taken to cram 
certain fields into just the right number ofbits. The emphasis here 
is on simplicity and ease of programming. Despite this disclaimer, 
we do feel that it is more advisable to err on the side of spacious 
fields; try as you may, one field or another will always turn out to 
be too small. 

The software checksum word is used to lower the probability of 
an undetected error. It serves not only as a backup for the 
experimental Ethernet’s serial hardware 16-bit cyclic redundancy 
checksum (in Fig. 2), but also for protection against failures in 
parallel data paths within stations which are not checked by the 
CRC. The checksum used by the EFTP is a 1’s complement add 
and cycle over the entire packet, including header and content 
data. The checksum can be ignored at the user’s peril at either 
end; the sender may put all 1’s (an impossible value) into the 
checksum word to indicate to the receiver that no checksum was 
computed. 

7.2.1 Data Transfer. The 16-bit words of a file are carried from 
sending station to receiving station in data packets consecutively 
numbered from 0. Each data packet is retransmitted periodically 

by the sender until an ack packet with a matching sequence 
number is returned from the receiver. The receiver ignores all 
damaged packets, packets from a station other than the sender, 
and packets whose sequence number does not match either the 
expected one or the one preceding. When a packet has the 
expected sequence number, the packet is acked, its data is 
accepted as part of the file, and the sequence number is 
incremented. When a packet arrives with a sequence number one 
less than that expected, it is acknowledged and discarded; the 
presumption is that its ack was lost and needs retransmission 
[Metcalfe, 1973133. 

7.2.2 End. When all the data has been transmitted, an end 
packet is sent with the next consecutive sequence number and 
then the sender waits for a matching endreply. Having accepted 
an end packet in sequence, the data receiver responds with a 
matching endreply and then dallys for some reasonably long 
period of time (10 seconds). Upon getting the endreply, the 
sending station transmits an echoing endreply and is free to go off 
with the assurance that the file has been transferred successfully. 
The dallying receiver then gets the echoed endreply and it too 
goes off assured. 

The comparatively complex end-dally sequence is intended to 
make it practically certain that the sender and receiver of a file will 
agree on whether the file has been transmitted correctly. If the 
end packet is lost, the data sender simply retransmits it as it would 
any packet with an overdue acknowledgement. If the endreply 
from the data receiver is lost, the data sender will time out in the 
same way and retransmit the end packet which will in turn be 
acknowledged by the dallying receiver. If the echoed endreply is 
lost, the dallying receiver will be inconvenienced having to wait 
for it, but when it has timed out, the receiver can nevertheless be 
assured of successful transfer of the file because the end packet has 
been received. 

At any time during all of this, either side is free to decide 
communication has failed and just give up; it is considered polite 
to send an abort packet to end the communication promptly in the 
event of, say, a user-initiated abort or a file system error, 

7.2.3 EFTP Shortcomings. The EFTP has been very useful, but 
its shortcomings are many. First, the protocol provides only for 
file transfer from station to station in a single network and 
specifically not from process to process within stations either on 
the same network or through a gateway. Second, process rendez- 
vous is degenerate in that there are no mechanisms for finding 
processes by name or for convenient handling of multiple users by 
a single server. Third, there is no real flow control. If data arrives 
at a receiver unable to accept it into its buffers, the data can 



438 Part 2 I Regions of Computer Space 

simply be thrown away with complete assurance that it will be 
retransmitted eventually. There is no way for a receiver to quench 
the flow of such wasted transmissions or to expedite retransmis- 
sion. Fourth, data is transmitted in integral numbers of 16-bit 
words belonging to unnamed files and thus the EFTP is either 
terribly restrictive or demands some nested file transfer formats 
internal to its data words. And fifth, functional generality is lost 
because the receiver is also the listener and server. 

8. Conclusion 

Our experience with an operating Ethernet leads us to conclude 
that our emphasis on distributed control was well placed. By 
keeping the shared components of the communication system to a 
minimum and passive, we have achieved a very high level of 
reliability. Installation and maintenance of our experimental 
Ethernet has been more than satisfactory. The flexibility of station 
interconnection provided by broadcast packet switching has 

Section 5 Networks1 

encouraged the development of numerous computer networking 
and multiprocessing applications. 

References 

Abramson [1970]; Abramson and Kuo [1973]; Ashenhurst and 
Vonderohe [1975]; Baran [1964]; Barnes, Brown, Kato, Kuck, 
Slotnick, and Stokes [19681; Binder, Abramson, Kuo, Okinaka, 
and Wax [1975]; Cerf and Kahn [1974]; Computer [1974a]; 
Computer [1974b]; Crocker, Heafner, Metcalfe, and Postel 
[19721; Crowther, Heart, McKenzie, McQuillian, and Walden 
[1975]; Farber, et  al. [1973]; Farber [1975]; Fraser [1975]; Heart, 
Kahn, Omstein, Crowther, and Walden [1970]; Heart, Omstein, 
Crowther, and Barker [1972]; Kahn [1975]; Metcalfe [1972a]; 
Metcalfe [1972b]; Metcalfe [1973a]; Metcalfe [1973b]; Metcalfe 
[1974]; Murthy [1975]; Omstein, Crowther, Kraley, Bressler, 
Michel, and Heart [1975]; Retz [1975]; Roberts and Wessler 
[1970]; Roberts [1973b]; Rowe [1975]; Rustin [1970]; IBM [1974]; 
IBM [1975al; Thomas [1973]; Thomton [1970]; Walden [1972]; 
Willard [1973]; Wulf and Bell [1972]. 



Section 6 

Fault-Tolerant Systems 

Historically, fault-tolerant computers were limited to military, 
aerospace, and telephone switching applications, where the 
consequence of computer failures could be significant economic 
impact or loss of life. Because of several recent trends, fault- 
tolerant techniques have become of increasing importance to 
computers in general. A few of these trends are as follows: 

Critical applications. Computers are being applied in more 
situations where a computer malfunction could have catas- 
trophic results. Examples include the space shuttle, airlin- 
ers, hospital patient monitors, and power system control. 
Harsher environments. With the advent of microproces- 
sors, computers have left the clean environments of com-
puter rooms to rest next to arcing motors, ignition coils, and 
other sources of electromagnetic disturbance. Toleration of 
transient faults is even more important than in the past. 
Novice users. As computer applications spread, their users 
are less knowledgeable. Thus the system design has to be 
more robust not only to run reliably and longer but also to 
withstand inadvertent user abuse. 
Repair costs. With microprocessor cost coming down and 
labor costs going up, a user cannot afford to have field 
service technicians visit too often. In four hours, including 
transit time, the charge for field service might be one-
fourth the total system cost! Users would be better 
off buying spare computers they can replace them-
selves or postponing service visits by using fault-tolerant 
computers. 
Larger systems. As systems become larger there are more 
components that can fail. 

The increased interest in fault tolerance has already had an 
impact on the industrial world. Large mainframe manufacturers 
like IBM, UNIVAC, and Amdahl use redundancy both for 
improving user reliability and for assisting field service personnel 
in fault isolation. Minicomputer manufacturers have also been 
incorporating fault-tolerant features (e.g., Hamming error-
correcting code on memory), and special LSI chips have been 
introduced (e.g., cyclic redundancy code encoderldecoders). 
With low-cost microprocessors, one is tempted to replicate them 
and “vote” on their outputs; such a system could be built for less 
than $2,000.The trend has gone so far that companies are being 
formed to build fault-tolerant computers. 

Fault-tolerant computing can be loosely defined as the correct 
execution of a specified algorithm in the presence of defects. The 

effect of defects can be overcome through the use of temporal 
redundancy (repeated calculations) or spatial redundancy (extra 
hardware or software). 

As in all system design, the system goals and specifications 
constrain the design space and consequently the design tech- 
niques that may be used. At the highest level of specification, 
fault-tolerant systems are categorized as either highly available or 
highly reliable. 

Availability A(t).The availability of a system as a function of 
time is the probability that the system is operational at any 
instant of time t. The limiting availability is the expected 
proportion of the time that the system is available to run 
useful computations. Activities such as preventive mainte- 
nance and repair reduce the time the system is available to 
the user. Availability is typically used as a figure of merit in 
systems where service can be delayed or denied for short 
periods of time without serious consequence (e.g., batch or 
time-shared computer systems; telephone and communica- 
tion systems). 
Reliability R(t). The reliability of a system as a function of 
time is the conditional probability that the system has 
survived the interval [O, t ] ,given that it was operational at 
time t = 0. Reliability is used to describe systems in which 
(1) repair cannot take place or is too costly (e.g., a satellite 
computer); or (2) the computer is serving a critical function 
and cannot be lost even for the duration of a repair (e.g., a 
flight computer on board an aircraft, or the control of a 
power distribution network). In general it i s  more diacult 
to build a highly reliable system than a highly available 
system because of the more stringent requirements of the 
reliability definition. 

An even more stringent goal than R(t) is sometimes used in 
aerospace applications: the minimum number of failures any- 
where in the system that the system can tolerant while still 
functioning correctly. 

There are three distinct functions a fault-tolerant system can 
perform: detection, diagnosis, and correction. A highly available 
system need only worry about fault detection. Diagnosis (fault 
location) and correction (fault repair) can be done manually. For an 
ultrareliable system, diagnosis and correction must also be done 
automatically. Incorporating such features can lead to a significant 
increase in system cost. Current architectural trends in highly 
reliable systems are focusing on complete and early detection 
supported by software and/or firmware (microcode) diagnosis. 
Repair may be through reconfiguration or spare switching. 

Several definitions have become standard in the fault-tolerant 
literature: 

Failure Physical damage. 

Fault An event in which a logical value differs from the 


439 



440 Part 2 1 Regions of Computer Space 

designed value. Faults may be permanent (caused by 
a physical failure), intermittent (recurring, probably 
because a component is on its way to a permanent 
failure), or transient (induced by something in the 
outside environment, such as electromagnetic noise). 

Error The first noticeable manifestation of a fault. 

Since fault-tolerant computers have usually been custom-
designed and are one of a kind, there are not yet enough examples 
to densely populate a design space. Hence Table 1 is sparsely 
populated and deals primarily with the desired attributes of the 
final design. Any fault-tolerant design is heavily influenced by the 
assumed failure model (i.e., fault type and extent) and the system 
goal, There are two major redundancy techniques: spatial for 
surviving permanent faults and temporal for cost-effectively 
surviving transient faults. 

Rather than attempt a concise description of the fault-tolerant 
space, we shall present a brief description of fault-tolerant 
techniques. These techniques will be introduced with respect to 
the three functions: detection, diagnosis, and isolation and 
corrective action. 

Various techniques exist for each activity, their use depending 
upon the allowable period between error generation and error 
detection. The longer an error, and hence a physical fault, goes 
undetected, the more data structures in the system may be 
polluted. The situation is even more critical in a multiprocessor, 
where memory and data structures are shared by several concur- 
rently executing processes. Errors can be multiplied by nonfailed 
components that make incorrect decisions or initiate incorrect 
operations based on the erroneous information. The longer an 
error goes undetected, the more dfficult the recovery is; eventu- 
ally recovery becomes impossible. Thus the techniques are aimed 
at detecting errors at well-defined conceptual boundaries. Gener- 
ally, smaller boundaries are most costly in terms of hardware or 
time but allow for more complete recovery. Consider the 
following conceptual boundaries: 

Hardware subsystem. Typical subsystems may range in size 
from an arithmetic unit to processors, memories, and 
buses. Error detection is performed by hardware, and 

Table 1 Fault-Tolerant Dimensions 

Fault type System measures 

Permanent Availability 

Intermittent Reliability 

Transient Data integrity 


Fault extent Redundancy type 

Single Spatial 

Multiple Replication 

Local Coding 

Distributed Temporal 


Section 6 1 Fault-Tolerant Systems 

recovery is by retry. The goal is to effect recovery without 
program intervention. 

Task. A dynamic program environment spread across 
several hardware subsystems. Error detection can be 
performed at task boundaries by software. Intermediate 
data may be incorrect, but data passed between task 
boundaries is correct. 

System. The total hardwarehoftware environment. At this 
level, application-dependent characteristics are used to 
simplify the detectionlrecovery functions. (The previous 
two levels were application-independent). Here the focus is 
on continuous service, as opposed to having totally correct 
data crossing the system boundary. An example might be a 
sonar signal processor and display. Data arrive continuous- 
ly, but errors can be detected on a millisecond basis and 
recovery can be a cold restart. 

The next three subsections will briefly discuss detection, 
diagnosis, and isolation and corrective action at each of three 
conceptual boundaries. For a more thorough discussion of tech- 
niques the reader should consult Neumann [19731 and Aviiienis 
[19751. 

Detection 

The percentage of faults detected is the single most important 
factor in successful recovery. An undetected error usually has the 
result that incorrect information crosses conceptual boundaries 
and ultimately leads to a system failure.'Detection techniques can 
be continuous (online) or periodic (offline). 

Hardware subsystem. Detection techniques include repli- 
cation (duplication and comparison [Downing, Nowak, and 
Tuomenoksa, 1964; Vance, 19571) and coding for data 
transmissionlstorage (parity; arithmetic codes [Rao, 1974; 
Aviiienis, 19711); self-checking checkers [Anderson and 
Metze, 1973; Carter et al., 1971; Carter and Schneider, 
19691; cyclic redundancy codes [Peterson and Weldon, 
19721; and hardware processor checks (generated by the 
hardware subsystem level [IBM, 1972al). 

Task. Detection techniques include audit programs (check- 
ing the integrity of data structures); checksums; memory 
violations, in which the task attempts to access a memory 
which does not exist or which it has no right to access 
[Schroeder and Saltzer, 19721 or is attempting an incorrect 

'While there is a certain class of applications that rely on statistical 
properties of data and can function at an acceptable level with internally 
incorrect data (e.g., speech understanding systems frequently depend on 
the redundancy in natural speech), those properties have not been applied 
to computer organization in general and will not be considered here. 



access type [Cosserat, 1972; Swan, Fuller, and Siewiorek, 
19761; repeating tasks and comparing; comparing results of 
two different algorithms and encoding for the same task; 
and reasonability checks on inputloutput data. 

System. The detection techniques for the task level also 
apply at the system level. In addition, a sanity or watchdog 
timer [Downing, Nowak, and Tuomenoksa, 19641 can be 
used to detect whether a processor is still executing code in 
a reasonable sequence. 

Diagnosis 

Location of a failure can be achieved by analysis of the state of the 
system when the error is detected. The activity of the error- 
associated components should be stopped and their intermediate 
state frozen. A mechanism should be provided to not& some 
other components in the system of the stoppage. Some unaffected 
intelligence can then examine state, exercise the components, and 
initiate a recovery. Thus at each conceptual boundary the object 
should be controllable and observable. If the fault cannot be 
resolved by the existing state, a diagnostic sequence can be 
initiated. 

Hardware subsystem. Control, input, and output signals 
should be made available to at least one other subsystem. 
Classical combinational and sequential circuit-testing the- 
ory can be used for the diagnostics. Note that the diagnostic 
resoltuion need only be to the smallest replaceable unit (the 
chip, the printed circuit board, or even the hardware 
subsystem itself). 
Task. Each subsystem should be controllable (by halt, start, 
continue, interrupt, and reinitialize [Wulf and Bell, 19721) 
and its internal state (status such as running or disconnect- 
ed, general-purpose registers, program counter, and error 
status register) should be observable by at least one external 
subsystem. Diagnostic programs consist of the functional 
and implementation-dependent diagnostics typical of any 
stand-alone computer. Diagnostics for special hardware 
(e.g., error-detection circuits, controllability and observa- 
bility logic, and memory protection logic) must also be 
written. The diagnostics are loaded, initiated, and run by 
the subsystem that has been notified by an error signal. 
These autodiagnostics should also be run periodically as a 
regularly scheduled task or as an idle task. 

System. Same as for task. 

Isolation and Corrective Action 

The simplest form of isolation is achieved by disconnection or 
power switching. In either case careful design should ensure that 
electrical continuity of shared control signals is maintained. For 

Section 6 I Fault-Tolerant Systems 441 

example, most buses have daisy-chained signals, so that discon- 
necting a module from the bus breaks the daisy chain and denies 
bus signals to modules downstream from the disconnection. 

It should be noted that certain techniques encompass all three 
steps (detection, diagnosis, and corrective action) in one activity 
(i.e., massive redundancy techniques, such as triplication and 
voting [Von Neumann, 19561). Typically, corrective action takes 
one of two forms: retry (which is useful for transient-error 
correction and permanent-failure detection) and standby sparing/ 
graceful degradation. In the latter case, the computation is moved 
to another part of the system and restarted; enough information 
must be retained that the restart can be executed cleanly without 
interference from the side effects of the partially completed first 
instantiation. 

Generally retry is cheaper (as one does not have to keep 
information for restart) and more effective (the information does 
not have to be regenerated after negation of side effects). Consider 
the ARPANET [Heart et al., 19701, where geographically distrib- 
uted minicomputers form the backbone of a computer communi- 
cation network (see Chap. 24). All information is buffered by a 
minicomputer until it receives a positive acknowledgment. Thus a 
minicomputer can have a transient failure, go through a cold 
restart by throwing away its memory state, and still have enough 
information buffered in the rest of the network to pick up with its 
activities. Even in the case of a permanent failure, the network 
can reroute the buffered messages without having to regenerate 
the information. 

Hardware subsystem. Corrective action includes switching 
in of standby spares (which is effective for combination 
logic) and transmission retry of buffered information. 
Task. Corrective action includes checkpointing the task and 
moving to nonfailed hardware subsystems [Aviiienis et al., 
19711 and instruction retry [IBM, 1972al. It should be 
noted that care in design of the processor’s instruction set 
can greatly simplify the retry. For example, PDP-11 
instructions can generate up to seven addresses, any of 
which may cause an error. Certain addressing modes (such 
as autoincrement) have side effects. Thus it is not enough to 
know the start of the instruction; it is also necessary to know 
how far it has progressed so that side effects can be undone 
prior to instruction retry. 

System. Many timesharing systems have developed tech- 
niques that allow retry and graceful degradation. For user 
programs, the operating system checkpoints the initializa- 
tion information and buffers the output information until 
task completion. Thus when an error occurs the task can be 
restarted. For large tasks the user may decide to issue 
commands to the operating system that save intermediate 
states so that computations can restart at the latest interme- 
diate state. Certain user programs that process continuous 
data (sonar signal processing and speech recognition, for 



442 Part 2 1 Regions of Computer Space Section 6 1 Fault-Tolerant Systems 

example) or transform data (sorting) can be restarted 
without any checkpoint information. The operating system 
must be able to dynamically handle failed resources (memo- 
ries, disk blocks, and processors, for example) by reassign- 
ment. Errors during the execution of the operating system 
are more serious, since critical systems tables may be 
affected or pending interrupts lost. Both cases should be 
guarded against by redundancy and buffering. 

There are several examples of fault-tolerant computers de- 
scribed in this book. 

STAR 

The Self-Test and Repair (STAR) experimental computer devel- 
oped by the Jet Propulsion Laboratory (JPL) is a milestone in 
fault-tolerant system design. The STAR was intended to be a 
prototype for real time satellite-control computer targeted for a 
10-year mission’ to the outer planets of the solar system. For such 
a purpose, the fault-tolerant emphasis was on a high probability of 
computer and system program survival through a 10-year mission 
in an unattended environment. Data collection and telemetry 
integrity was of less concern, given the natural redundancy in data 
and the long time frame involved. Certain system status informa- 
tion had to be reliably remembered and certain control functions 
had to be unerringly carried out. 

Chapter 27 presents the architecture of this unique computer. 
STAR primarily used hardware-subsystem fault-tolerant tech- 
niques such as functional-unit redundancy, voting, power switch- 
ing of spares, coding, and self-checks. Task-leveI rollback was also 
blended into this design, which represented the leading edge of 
fault-tolerant techniques in the 1960s. 

Pluribus 

As discussed earlier (Part 2, Sec. 4), Pluribus was conceived as a 
modular, highly available multiprocessor for the ARPANET IMP 
task. Chapter 23 described the architecture as well as the 
fault-tolerant techniques employed. 

Most of the Pluribus fault tolerance is achieved at the software 
task level. A relatively long period between fault occurrence and 
fault detection is acceptable because of the nature of the IMP task. 
The several levels of protocol in the ARPANET (See Part 2, Sec. 

‘The “Grand Tour” mission was to take advantage of the alignment of the 
five outer planets of the solar system in the early 1980s. A spacecraft 
launched from earth could use the planetary alignment for a gravitational 
boost in traveling from one planet to the next. The Grand Tour was 
replaced in NASA’s budget by a series of cheaper Pioneer probes that 
visited different sets of planets. 

5),each with its own error detection and recovery, mean that the 
Pluribus need not concentrate on data integrity. If a failure in a 
Pluribus occurs, all the in-progress messages are buffered at other 
ARPANET nodes until positively acknowledged. These messages 
are eventually rerouted past the failed Pluribus. Even if the 
subnet protocol fails to reliably complete the message transmis- 
sion, the Host-to-Host protocol will retry the entire message 
transmission. 

Thus the application requires only that the Pluribus recover 
gracefully from a failure. This goal can be achieved by quick 
system reinitialization with omission of questionable components. 

The Pluribus IMP software utilizes: 

Periodic software checks including diagnostics 

Redundancy in data structures 
Watchdog timers that must constantly be reset by software 

The multiprocessor structure allows for maximum performance 
when there are no failures (i. e., the periodic checks are estimated 
to degrade performance by only 1 percent) and maximum 
assistance when there are failures (i.e., by focusing all resources 
on reaching a consensus on a failure-free configuration). 

The network structure allows for remote diagnosis from the 
Network Control Center (NCC). Even in the case of total 
destruction of memory contents, the Pluribus can request that the 
code be transmitted from the NCC or other Pluribuses in the 
network. Any transitory messages lost will be restored via the 
retransmission mechanism in the various levels of protocol. 

It is well known that the best system diagnostic is the normal 
execution of programs. Frequently, normal execution will stress 
the system in ways not reproduced by diagnostics (this is 
especially true for IiO or timing-sensitive problems). The “friend- 
ly” environment provided by the IMP application allows the 
Pluribus to rotate hardware into use. Any problematic hardware 
will appear only as a transient to the system, since the offender 
will be quickly configured out. 

The Pluribus represents a cost-effective fault-tolerant architec- 
ture that takes fullest advantage of the characteristics of its 
application environment (i.e., real time applications where data 
loss and brief outages are tolerable). The Pluribus is operational in 
the ARPANET and has achieved a measured factor of 5 improve-
ment in unavailability (0.32percent) over the previous-generation 
IMPS (1.64 percent) [Kleinrock and Naylor, 19741. 

ESS Processors 

The Electronic Switching Systems (ESS) developed by Bell 
Laboratories over the last two decades are the most numerous 



fault-tolerant digital systems. The ESS systems handle the routing 
of telephone calls through central offices. They have a severe 
availability goal, only 2 hours’ downtime in 40 years (Lea, 3 
min/yr). 

Telephone switching has many properties in common with the 
ARPANET IMP’S real time routing of information. There is some 
natural redundancy in the network and in the data (telephone 
users will re-dial ifthey get a wrong number or are disconnected). 
However, there is a user aggravation level that must be avoided: 
users will re-dial so long as it does not happen too frequently. 
Note, moreover, that the thresholds are different for failure to 
establish a call (moderately high) and disconnection of an estab- 
lished call (very low). Thus a staged recovery from failures is 
followed as depicted in Table 2. 

A substantial portion of the complexity of an ESS system is in 
the peripheral hardware. Since the telephone switching applica- 
tion leads to a substantially different PMS structure from others 
studied so far, the following abstract has been included to briefly 
describe the hardware of the No. 4 ESS system.’ 

Figure 1contains an overall system diagram of a No. 4 ESS 
office, broken down by major functional blocks. Essentially it 
consists of a digital time division network which switches digitally 
encoded 4-wire long distance telephone trafEc. T h i s  is controlled 
by a stored-program processor abetted by a group of autonomous 

‘The remainder of the subsection on ESS processors, including Fig. 1, is 
abstracted from J. J. Kulzer, “Systems Reliability: A Case Study of No. 4 
ESS,” in System Security and Reliability. Infotech State ofthe Art Report, 
1977, pp. 186-188. 

Table 2 ESS Stages 

Phase Recoveru action Effect 

1 Initialize specific transient 
memory. 

2 Reconfigure peripheral 
hardware. Initialize all 
transient memory. 

3 Verify memory operation, 
establish a workable pro- 
cessor configuration, ver- 
ify program, configure 
peripheral hardware, in- 
itialize all transient 
memory. 

4 Establish a workable pro- 
cessor configuration, con- 
figure peripheral hard- 
ware, initialize all 
memory. 

Affects temporary stor- 
age. No calls lost. 

Calls in process of 
being established lost. 
Calls in  progress not 
lost. 

Calls in process of 
being established lost. 
Calls in progress not 
lost. 

All calls lost. 

Section 6 1 Fault-Tolerant Systems 443 

signalling units (signal processors and terminals). The major 
functional blocks of Fig. 1 can be further segregated into four 
major areas: 1A Processor, network, signal processors, and 
transmission interface. 

Each area is reviewed below with a brief functional description 
of its component subsystems. 

1A Processor 

Central Control (CC):Main processor performing logic and 
data manipulation associated with call processing, adminis- 
trative tasks, and a recovery task. 
Program Store (PS): Memory complex storing executable 
instructions. 
Call Store (CS): Memory complex storing transient informa- 
tion related to the processing of telephone calls as well as 
data describing office equipment and routing (referred to as 
translations). 

File Store (FS): Disk system used to store backup program 
copies, seldom used maintenance programs, and other 
miscellaneous types of data. 
Auxiliary Units (AU): Additional units used to reference 
magnetic tape storage media which retain basic restart 
programs, new input data, and support maintenance. Also 
possible future use for data link features. 
Input/Output (IiO): Interface hardware used to reference 
input and output terminal devices. 
Bus Systems (AU, PS, CS, PU): Bus systems used to 
interconnect the various functional units with the Central 
Control. 
Master Control Console (MCC): Control and display con- 
sole to permit limited manual control of system and provide 
performance information. 

Network 

Time Slot Interchange (TSI):First and fourth stage of the 4-stage 
time-shared switching network. Performs time division of the 
time-space-time switching function (described in later para-
graphs). 

Time Multiplexed Switch (TMS):Provides second and third 
stage of 4-stage switching (time-shared space portion). 
Network Clock (NC): Provides very accurate timing signals 
for the switching network. 
Peripheral Unit Bus Interface (PUBB): Provides interface 
between 1A Processor and the peripheral units. 

Transmission Interface 
Voiceband Interface Frame (VIF): Interfaces analogue trans- 
mission facilities with the network of converting analogue 



---- 

444 Part 2 1 Regions of Computer Space Section 6 I Fault-Tolerant Systems 

Service circuits 


Wire facilities 
 'p I 
interface 

signalling 

Auxi l iary un i t  (AU) bus 

Fig. 1.  The No. 4 ESS System diagram. 

voiceband channels into digitally encoded Pulse-Code 
Modulated (PCM) signals. 
Digroup Terminal (DT): Interfaces digital transmission 
facilities with the network. Provides signalling interfaces 
with these facilities. 
Echo Suppressor Terminal (EST): Provides digital 4-wire 
Echo Suppression capability for long distance trunks, both 
analogue and digital. 

Signal Processors 

Signal Processor 1 (SP1): provides scanning and signal 
distributing functions for analogue carrier, metallic trunk 
and service circuits. Also can provide miscellaneous control 
points for other peripheral units. 
Signal Processor 2 (SP2): Performs scanning and signal 
distributing functions for digital carrier trunks terminated 
on DTs. Can also provide miscellaneous scan and signal 
distribution functions similar to the SP1. 
Common Channel Interoffice Signalling (CCIS) Terminal. 
Terminates the Interoffice CCIS data links serving as the 
interface between these data links and the signal processors 
and 1A Processor. 

Briefly, No. 4 ESS operates in the following manner. Various 
types of transmission channels, analogue and digital carriers, and 

Program store (PSI bus 

both 2-wire and 4-wire metallic trunks are connected to voice- 
frequency terminal units. The 4-wire outputs are connected to 
subunits (VIUs) of the Voiceband Interface Unit (VIF). These VIUs 
sample, multiplex, and digitally encode analogue signals in one 
direction, reversing the process for the other. The digital output, a 
128 time-slot digital bus, carries 8-bit Pulse-Code Modulated 
(PCM) signals in each time slot to the Time Slot Interchange 
(TSI). The TSI, among other functions, provides a stage of 
switching PCM signals to different time slots on the bus. The 
output of the TSI goes to the Time Multiplexed Switch (TMS), 
which permits switching of the PCM signals during a particular 
time slot from any bus to any other. The output of the TMS goes to 
the TSI where PCM signals may be interchanged to another time 
slot and back to a VIU for reconversion to analogue space-divided 
signals. The VIU does no switching. A similar scenario exists 
for digital lines (T1 carrier) which terminate on subunits of 
the Digroup Terminals, called DTUs. However, the DTU 
also handles synchronization and signal extractionhnsertion for 
these facilities, eliminating any need for conventional scan and 
signal distribute interfaces to channel banks in the transmission 
area. 

Four-wire echo suppression can be provided optionally by the 
Echo Suppressor Terminal (EST) which can be placed between 
the VIF and TSI or DT and TSI depending on facility needs. 

The EST has subunits, ESUs which reside on the digital bus 
between the VIF/DT and the TSI. These subunits process the 



Section 6 I fault-TolerantSystems 445 

digital PCM signals passing in both directions of each 4-wire trunk 
and digitally suppress detected echos. Coordinated timing for all 
of the above functions is critical and is provided by the network 
clock. The wired logic Signal Processor (SP) is used to provide 
scanning and signal distribution functions, relieving the central 
processor of any need to perform these duties. Similar functions 
are provided for digital trunks by the SP2. The Common Channel 
Interoffice Signalling (CCIS) terminal provides a separate data 
link for signalling as an alternative to in-band signalling over trunk 
facilities. The separate signalling system handles digital signals in 
a special format over a 2-way data channel between switching 
machines. This system handles both supervisory and address 
signals for a group of trunks. The CCIS terminal interfaces to the 
system processor over the peripheral bus. 

The entire complement of peripheral hardware described above 
is controlled by the 1A Processor using parallel ac-coupled buses. 
The processor interfaces with the periphery through the Peripher- 
al Unit Bus Interface and has been designed to be separable for 
use in other applications such as No. 1A ESS. 

The 1A Processor provides overall system control, administra- 
tion and call processing support. Complete self-contained system 
maintenance is also provided through the 1A Processor. Elements 
of this include automatic isolation of faulty units, defensive 
software strategies, and system supported rapid repair. 

Chapter 28 sketches the family history of ESS processors as 
summarized in Table 3. 

Tandem 

Tandem Computers Inc. was founded in 1974 for the purpose of 
building high-availability computer systems for commercial trans- 
action processing. The Tandem 16 is the first commercially 
available, modulary expandable system designed specifically for 
high availability. Design objectives for the system included 

Table 3 
~~~~~~~~~~ ~ ~ 

Number Year Number
System of lines introduced Processor installed

EES-1 5,000-65,000 1965 No.1 1,000

ESS-2 1,000-10,000 1969 No. 2 500
ESS-1A >10,000 1976 No. 1A 1ESSQB 1,000-20,000 1975 No.3 500

ESS-3 500-5,000 1976 No. 3

“NonStop”’ operation wherein failures are detected, com-
ponents reconfigured out of service, and repaired compo-
nents configured back into the system without stopping the
other system components
Preventing any single hardware failure from compromising
the data integrity of the system
Modular system expansion through adding more processing
power, memory, and peripherals without impacting appli-
cations software

The Tandem 16 architecture and performance are depicted in
Figs. 2 and 3. It is composed of up to 16 computers interconnect-
ed by two message-oriented Dynabuses. A loosely coupled
architecture was selected over a tightly coupled shared memory
architecture, since it was felt that the former allowed for more
complete fault containment. Built-in hardware error detection
includes

Checksums on Dynabus messages
Parity on data paths
Error-correcting code memory
Watchdog timers

All UO device controllers are dual-ported so that they can be
accessed by an alternate path in case of Pc or Pi0 failure. Upon this
hardware structure, the software builds a process-oriented system
with all communications handled as messages. This abstraction
allows the blurring of the physical boundaries between processors
and peripherals. Any I/O device or resource in the system can be
amessed by a process, no matter where the resource and process
reside.

Data integrity is maintained through the mechanism of 110

‘NonStop is a trademark of Tandem Computers Inc

~~

Comments

First processor with
separate control and
data memories.

Four to eight times
faster than No. 1
processor.

Combined control
and data store.

Microcoded, emulates
No.2 processor.

446 Part 2 1 Regions of Computer Space 	 Section 6 I Fault-Tolerant Systems

...

...

3

K.dynabus K.dynabus K.dynabus K.dynabus

I	 ‘ I

L

. . - .“I,

Mdisk%Mdisk

Mdisk

Mdisk

Kdisk

Notes
1. 	 Mp[2 Mbyte, max.; Options: [core; tc = 800 ns; 32 Kwlboard; (16 b + 1 b parity)lw;

2 card slotslboardl 1 [semiconductor; tc = 500 ns;48 Kwlboard; (16 b 4-6
check b)/w;SEC/DED: 16-pin4 K dynamic RAM chips; 1 card slot/boardl I

2. 	 Pc[l6-bit;tc= 100 ns;gprogram: (1 Kw- 2 Kw;32 b1wl;gmachine: 2-stage

pipelined; 16 major interrupt levels1

3. 	 K.dynabus[Datapath: 16 b; Transfer rate: 13.3 Mbytels max.;message size115 w + 1 YI

LRC check); transfer block size: 64 Kw max.1
4. Pio[Transfer rate: 4 Mbyte1s;Transfer block size: 4 Kbyte max.;To: 256 I10 devices1
5. Kdisk [Dual-port disk controller1
6. Mdisk [Dual-port disk drivel

Fig. 2. Tandem PMS diagram.

“process-pairs.” One I/O process is designated as primary, the
other as backup. All file modification messages are delivered to
the primary 110 process. The primary sends a message with
checkpoint information to the backup so that it can take over ifthe
primary’s processor or access path to the IIO device fails. Files can
also be duplicated on physically distinct devices controlled by an
I/O process-pair on physically distinct processors. All file modifi-
cation messages are delivered to both I/O processes. Thus, in the

Tandem 16 AII axes: x lo3
(per processor) MP (byte)

Ms speed

T.cornmunication
(byte/r)

Fig. 3. Tandem 16 (per processor) Kiviat graph.

case of physical failure or isolation of the primary, the backup file
is up to date and available.

User applications can also use the process-pair mechanism.
Consider a Nonstop application program A. Program A starts up a
backup process A1 in another processor. There are also duplicate
file images, one designated primary and the other backup.
Program A periodically (at user-specified points) sends checkpoint
information to Al . A1 is the same program as A, but it knows that
it is a backup program. A1 reads checkpoint messages to update
its data area, file status, and program counter. A1 loads and
executes if the system reports A’s processor is down (Lea,if an
error message is sent from A’s operating system image or if A’s
processor fails to respond to a periodic “I’m alive” message). All
file activity by A is performed on both the primary and backup file
copies. When A1 starts to execute from the last checkpoint, it may
attempt to repeat 110operations successfully completed by A. The
system file handler will recognize this situation and send A1 a
successfully completed IIO message. A1 periodically asks the
operating system whether a backup process exists. Since one no
longer does, it can request the creation and initialization of a copy
of both the process and file structure. More information on the
operating system and the programming of Nonstop applications
can be found in Bartlett [1977].

Software exists so that up to 255 geographically dispersed
Tandem systems can be interconnected in a distributed data
processing network. Tandem applications have included order
entry, hospital records, bank transactions, and library transac-
tions. AS of fall 1978, 109 systems ~COrPorating 257 ~rocessors
had been installed. The smallest systems two Proces-
sors, and the largest, ten processors.

Chapter 51 discusses Reliability, Availability, and Serviceability
(U S) features in the Systemj370 line of general-purpose commer-
cial computers.

Section 6 1 Fault-Tolerant Systems 447

References

Anderson and Metze [19731; Aviiienis, Mathur, Rennels, and
Rohr [19711; Aviiienis 119751; Bartlett E19771; Cuter, JeSSUP,
Schneider, Wadia, and Bouricius [19711; Carter and Schneider
[1969]; Cosserat [19721; Downing, Now&, and Tuomenoksa
[19641; Heart, K h n , Omstein, Crowther, and Walden [1970];
IBM [1972a]; Kleinrock and Naylor [1974]; Neumann [1973];
Peterson and Weldon [19721; Rao [1974]; Schroeder and Saltzer
[1972]; Swan, Fuller, and Siewiorek [1976]; Vance, Dooley, and
Diss [1957]; Von Neumann [1956]; Wulf and Bell [1972].

Chapter 27

The STAR (Self-Testing And Repairing)
Computer:
An Investigation of the Theory and
Practice of Fau It-To le ran t Co m pu te r

Algirdas Aviiienis / George C. Gilley /
Francis P. Mathur / David A. Rennels /
John A. Rohr / David K. Rubin

Summary This paper presents the results obtained in a continuing
investigation of fault-tolerant computing which is being conducted at the
Jet Propulsion Laboratory. Initial studies led to the decision to design and
construct an experimental computer with dynamic (standby) redundancy,
including replaceable subsystems and a program rollback provision to
eliminate transient errors. This system, called the STAR computer, began
operation in 1969. The following aspects of the STAR system are
described: architecture, reliability analysis, software, automatic mainte-
nance of peripheral systems, and adaptation to serve as the central
computer of an outerplanet exploration spacecraft.

introduction: Chronology and Rationale

This paper presents a summary of the theoretical results and
design experience obtained in an investigation of fault-tolerant
computing which is being conducted at the Jet Propulsion
Laboratory (JPL). Initial studies (1961-1963) led to the conclusion
that dynamic (also called standby) redundancy offered the greatest
promise in the design of fault-tolerant digital computer systems
[Aviiienis, 1967al. The dynamic redundancy [Short, 19681 ap-
proach requires a tpo-step procedure for the elimination of a fault:
first, the presence of a fault is determined; second, a corrective
action is taken (e.g., replacement of failed unit, repetition of
program, reconfiguration of systems, etc.). The alternative to the
dynamic approach is static (masking) redundancy [Short, 19681,
which was already being utilized in existing component-
redundant [Lewis, 1963; Kuehn, 19691 and triple-modular-
redundant (TMR) [Kuehn, 1969; Anderson and hlacri, 1967;
Lyons and Vanderkulk, 19621 computers. Early analytic studies of
dynamic redundancy with idealized series-parallel system models
indicated that mean life gains of an order of magnitude and more

‘IEEE Tram. on Computers, vol. C-20, no. 11, November 1971, pp.
1,312-1,321

over a nonredundant system could be expected from dynamically
redundant systems with standby spares replacing failed units
[Reed and Brimley, 1962; Kruus, 1963; Flehinger, 1958;
Griesmer, Miller, and Roth, 19621. This gain compared favorably
with the mean life gain of less than two in the typical TMR
systems. Other qualitative advantages of the dynamic over the
static redundancy were: (1) greater isolation of catastrophic
(non-independent) faults which is especially important for densely
packed microelectronic circuitry; (2) survival of system until all
spares of one type are exhausted; (3) ability to eliminate errors
which are caused by transient faults by the use of program
rollback; (4) ready adjustability of the number and type of spare
units; (5) utilization of the potentially lower failure rate of
unpowered components in spare units; (6) avoidance of the
circuit-related problems of static redundancy: increases in fan-out,
fan-in, power requirements, and the need for isolation and
synchronization of separate channels; and (7) facilitation of the
check out of spare units by means of standard diagnostic pro-
grams.

The attainment of the apparent advantages of a dynamically
redundant system had been shown to depend very strongly on the
successful execution of the detection and replacement operations
[Flehinger, 1958; Griesmer, Miller, and Roth, 19621; these
observations have since been formalized as the concept of
“coverage” [Bouricius, Carter, and Schneider, 19691.

The second phase of the investigation (196S1970) was focused
on the identification and solution of the problems involved in the
design of a general-purpose digital computer possessing the
properties attributed to the abstract model of a dynamically
redundant computing system. Three major areas of investigation
were: (1) an investigation of fault-detection methods; (2)a study of
computer architecture with emphasis on partitioning into subsys-
tems with minimal interconnection requirements; and (3) a study
of the “hard-core” problem, i. e., the alternate technologies and
logic organizations for implementing the detection and switching
functions. The choices among feasible alternatives in all three
areas are strongly affected by assumptions on the available
component technology and on the computing tasks to be required
of the computer. In order to retain contact with the practice of
computer design, it was decided to design and construct an
experimental general-purpose digital computer which would
incorporate dynamic redundancy (i.e., fault detection and re-
placement of failed subsystems) as integral parts of its structure.
The design objectives have been carried out and the system,
called the STAR (self-testing and repairing) computer, began
operation in 1969. The modular nature of the STAR computer has
allowed systematic expansion and modifications that are still being
continued.

The first objective of the design is to study the class of problems
which are encountered in transforming the theoretical model of a
self-repairing system into a working computer. State-of-the-art

448

Chapter 27 1 The STAR (Self-Testing And Repairing) Computer 449

integrated circuit and memory technology was employed in the
design. The STAR computer characteristics were chosen to satisfy
all predictable requirements of a spacecraft guidance, control, and
data acquisition computer which would be used in the very long
(ten years and more) unmanned missions exploring the outer
planets of the solar system [Long, 19691.The second objective was
to provide a tool for laboratory studies of fault-tolerant computing,
including the injection of transient as well as permanent faults of
catastrophic nature. Very extensive displays of registers, manually
controlled clocking, and provisions for convenient modification of
subsystems were incorporated into the experimental STAR com-
puter breadboard (Fig. 1).

The STAR computer employs a balanced mixture of coding,
monitoring, standby redundancy, replication with voting, compo-
nent redundancy, and repetition in order to attain hardware-
controlled self-repair and protection against transient faults. The
principal goal of the design is to attain fault tolerance for a variety
of faults: transient, permanent, random, and catastrophic. The
actual construction (rather than simulation) of the STAR bread-
board has two significant advantages. First, the design process has
uncovered interesting new hardware-related problems and led to
numerous improvements. Second, the computer serves as a
vehicle for further experimentation and refinement of the recov-
ery techniques.

Fig. 1. The STAR computer.

During the studies of fault-tolerant architecture and the design
of the STAR computer, concurrent investigations were being
conducted in other closely related areas of fault-tolerant comput-
ing, including studies of software, reliability prediction, and
extension of dynamic redundancy to peripheral devices [Aviiienis
et al., 19691.A complete redesign of the STAR computer is being
performed to match the exact requirements of a control computer
for the thermoelectric outer planet spacecraft (TOPS)[Astronaut.,
19701. This effort led to the evaluation of additional fault-recovery
techniques. The results of the efforts described above are
summarized in the following sections of this paper.

Architecture of the STAR Computer

Methods of Fault Tolerance
The STAR computer is a replacement system that provides one
standard configuration of functional subsystems with the required
computing capacity. The standard computer is supplemented with
one or more spares of each subsystem. The spares are unpowered
and are used to replace operating units when permanent faults are
discovered. The principal methods of error detection and recov-
ery are the following.

All machine words (data and instructions) are encoded in
error-detecting codes and fault detection occurs concur-
rently with the execution of the programs.

The computer is divided into a set of replaceable functional
units containing their own instruction decoders and se-
quence generators. This decentralization allows simple
fault location procedures and simplifies system interfaces.

Fault-detection, recovery, and replacement are carried out
by special-purpose hardware. In the case of memory
damage, software augments the recovery hardware.

Transient faults are identified and their effects are correct-
ed by the repetition of a segment of the current program;
permanent faults are eliminated by the replacement of
faulty functional units.

The replacement is implemented by power switching: units
are removed by turning power off and connected by
turning power on. The information lines of all units are
permanently connected to the buses through isolating
circuits; unpowered units produce only logic “zero” out-
puts.

The error-detecting codes are supplemented by monitoring
circuits which serve to verify the proper synchronization
and internal operation of the functional units.

The “hard core” test and repair processor (TARP) is
protected by triplication and replacement of failed mem-
bers of the triplet.

450 Part 2 I Regions of Computer Space

Hardware System Organization

The block diagram of the STAR computer is shown in Fig. 2.
Communication between the units is carried out on two four-wire
buses: the memory-out (M-0) bus, and the memory-in (M-I) bus.
The abbreviations designate the following units.

COP 	 Control processor, contains the location counter and
index registers and performs modification of instruc-
tion addresses before execution.

LOP Logic processor, performs logical operations on data
words (two copies are powered).

MAP Main arithmetic processor, performs arithmetic opera-
tions on data words.

ROM READ-ONLY memory, 16,384 permanently stored
words.

RWM 	 READ-WRITE memory unit with 4096 words of storage
(at least two copies powered; 12 units are directly
addressable).

IOP Input/output processor, contains I D buffer registers.
IRP Interrupt processor, handles interrupt requests.
TARP Test and repair processor, monitors the operation of the

computer and implements recovery (three copies are
powered).

The functional units (processors and memories) of the STAR
computer communicate by means of the M-I and M - 0 (four-wire)
information buses. The 32-bit words are transmitted on these two
buses as eight bytes of four bits each. Three control signals are
sent from the TARP on the three-wire control bus to synchronize
the operations of the functional units and to initiate recovery.
Otherwise the functional units operate autonomously. Unless
otherwise noted, one copy of each unit is powered at a given time.
The decentralized organization allows a standard interface be-
tween each unit and the remainder of the computer. Each STAR
unit interfaces with the computer by the means of 14 signal lines.
Eleven lines, both in active and spare units, are permanently
connected to the computer system buses, and three are connected

STATUS LINES,

SWITCH LINES

Fig. 2. STAR computer organization.

Section 6 1 Fault-Tolerant Systems

to the TARP array. An unpowered unit cannot produce logic one
outputs. The external connections of a STAR unit are shown in
Fig. 3.

The four input and four output lines are connected to the data
M-I and M - 0 buses. They receive and send coded machine words
in four-bit bytes. The power switch control input causes power to
be applied to the unit. The three control bus input signals are:
CLOCK, a basic timing input: SYNC, a periodic synchronization
signal; and RESET, a signal that forces the unit into a standard
initial state. Two unit status lines send information on the internal
operation of the unit to the TARP. These lines carry multiplexed
information which will be discussed in a following section. Each
functional unit is autonomous and contains its own sequence
generator as well as storage for the current operation code,
operands, and results. The internal design of a unit may be altered
without affecting other units as long as the interface specifications
are observed.

It is to be noted that the IOP and IRP units are shown combined
in Fig. 2.

Standard Opera tion

The ST4R computer has two modes of operation: the standard
mode and the recovery mode (under TARP control). During the
standard mode the stored programs are carried out. The TARP
processor issues the principal CLOCK signal and SYNC signal which
occurs when a new step is initiated in the execution of an
instruction. Ten CLOCK periods form the basic time unit (cycle) of
the computer. During the first period, a four-bit “step-code’’ (in
2-out-of4 encoding) is issued by the TARP to the M - 0 bus. The
next eight periods are employed to transmit or manipulate one
eight-byte machine word. During the tenth period a four-bit
“condition-code” byte may be broadcast by one of the functional
units. The ten-period cycle is needed because of the series-
parallel organization of the computer.

One instruction is executed in two or three steps. In the first
step, the address of the instruction is sent from the location

INPUT FROM DATA BUS

FROM TARP: TO TARP:
CONTROL TYPICAL

STAR U N I T

INPUTS !MEMORY OR STATUS
POWER
SWITCH

PROCESSOR)

CONTROL

OUTPUT TO DATA BUS

Fig. 3. Functional unit of STAR computer.

counter in the COP to the memory (ROM and RWM) units. In the
second step, the addressed memory unit broadcasts on the M - 0
bus the operation code and address of the instruction to all
functional units. The address is indexed in the COP which
transmits it to the M-I bus if necessary. The appropriate units
recognize the operation code, store the address, and initiate
execution. In the third step the instruction is executed: an
operand is placed on the appropriate bus and accepted by the
destination unit. The first two steps require one cycle each; the
duration of the third step depends on the instruction and requires
0, 1, or more cycles. Program interrupts begin without the first
step. During the second step an instruction is broadcast by the
interrupting unit (10-IRP or TARP).

The instruction set consists of 180 single-address instructions,
about one-third of which are indexable. It includes fixed-point
arithmetic, maskable logic, and shift operations. Loop-facilitating
and subroutine link register instructions are provided. There are
28 interrupts which can be masked out and tested under program
control. A special class of instructions aids in fault tolerance. They
include diagnostic instructions which exercise unit status messag-
es and the fault-location logic in the TARP. Others perform
updating of the “rollback register in TARP units, name assign-
ment and cancellation of RWM units, power control of spare units,
duplexing of ROMs and processors, and absolute read or write
operations in RWM units.

Computer Words: Formats and Encoding
There are two possible effects of logic faults upon the operation of
a digital computer. First, a data word or an instruction word may
be altered during storage, transmission, or processing. The effect
is a word error. Second, during the execution of an instruction a
processor or a memory module may act incorrectly, act out of
turn, or fail to act at all. The effect is a controE error. Both classes
of errors are detected in the STAR computer. The present section
considers coding techniques for word error detection; control
errors are considered later.

Complete duplication offers the simplest word-error detection
at the highest cost. Low-cost arithmetic error-detecting codes
[Aviiienis, 1967133 are attractive because they are preserved
during arithmetic processing and mandatory duplication of an
arithmetic processor is avoided. An intensive study of error codes
led to the choice of modulo 15 arithmetic checking which is
especially effective for a byte-organized computer with four-bit
bytes [Aviiienis, 19711.

All words in the STAR computer are encoded as shown in Fig.
4. The 32-bit numeric operand word [Fig. 4b] consists of the
28-bit binary number b , and a 4-bit check byte c(b).The check
byte is a binary number which has the value

Chapter 27 1 The STAR (Self-Testing And Repairing) Computer 451

k- INSTRUCTION WORD 32 8115 -4
1 c(a) I a3 I a2 I a1 I a0 I c 2 1 c l I co Ik-
 ADDRESS PART OP-CODE -f

cb) - 15 - I a 2-OUT-OF-4

(a1

k- NUMERIC OPERAND WORD 32 BITS -4
C0) I b6 I b5 I b4 I b3 I b2 I b l 1 bO

RESIDUE CODE: cb) = 154 b I l 5

(b)

Fig. 4. (a) STAR instruction word format. (b)STAR operand word
format.

where lb/15means “the modulo 15residue of b.” This check byte
causes the 32-bit word to be a multiple of 15. The checking
algorithm casts out 15, that is, it computes the modulo 15residue
of the entire coded word. A zero residue, represented by 1111,
indicates a correct word; all other values of the residue indicate a
fault. The casting out 15s is implemented with a four-bit “end-
around carry” adder and takes place concurrently with the
transmission of a word on the bus.

The 32-bit instruction word [Fig. 4a] consists of a 12-bit
operation code and a 20-bit residue-coded address part. The
16-bit address is encoded in the same residue code as the
operands, and the same checking algorithm is used. The operation
code is divided into three bytes, and each byte is encoded in a
2-out-of-4 code. This code permits each byte to be checked
individually. There are six valid forms of each byte, giving a total
of 216 valid op-code variants. The structure of a bus checker
circuit which performs word checking is shown in Fig. 5. The
single step-code and condition-code bytes also use the 2-out-of-4
code and are checked by the bus checker.

I

Fig. 5. The bus checker circuit.

452 Part 2 I Regions of Computer Space

The initial choice of error codes in the STAR computer
emphasized variety for the purpose of comparison and evaluation,
and the arithmetic product (or AN) code was used for operands
[Aviiienis, 1967bJ. Two reasons for the change to the present
encoding of operands were: (1)the residue code is separable and
allows the use of the more efficient two’s complement algorithms
for binary arithmetic, and (2) multiple predision and floating-point
arithmetic is much more readily implemented with residue
encoding. Residue encoding is also suitable for operation codes in
STAR instructions. Its advantage is that an identical checking
algorithm is applied to instructions and operands; an explicit
identification is not required for checking, and loading of pro-
grams is facilitated. The drawback is that the bytes of the op-code
cannot be checked individually as in the 2-out-of-4 coding.

Control Error Detection
It has been observed that a large number of faults which cause
control errors also cause word errors and are detectable by the use
of error codes. Some critical control errors, however, do not fall
into this category and require other methods of detection.

The principal method of control fault detection in the STAR
computer is the validation that every unit is active at the proper
time and that the proper algorithm is carried out within the unit.
The initial design [Aviiienis, 19681 used a four-wire status line for
every replaceable unit to transmit one of six possible “2-out-of-4”
coded status messages. Experience has shown that the diagnostic
logic in the TARP is significantly simplified when status messages
are conveyed to the TARP at predetermined clock times within
each ten-unit cycle of operation. In the revised design, each status
message is conveyed on two wires (in 1-out-of-2 encoding) and
each message covers the time interval between two messages of
the same type. The status-message originating circuits are dupli-
cated in each unit to allow the detection of a fault in the status
message.

The “output active” message indicates that the unit has
produced a nonzero output to the bus in the preceding time
interval. It serves to identify improperly active units which
otherwise would destroy the information being transmitted on a
bus, and make it impossible to locate the source of error. The
absence of an expected active message is also a fault condition,
since the all-zero word is not a validly coded operand or
instruction. The checking of output activity is the most critical of
all status monitoring functions.

The other status messages are multiplexed and sent over the
same pair of wires as the output active messages because the
activity information is not required continuously in the byte-serial
machine structure. The status messages which are listed below aid
in increasing the probability of immediate detection of incorrect
operation.

The “disagree with bus” message is needed for duplex opera-

Section 6 I Fault-Tolerant Systems

tion (discussed in the next section). Two identical units produce
outputs to a bus which acts as $n OR gate. Each unit compares the
bus word to its internally held output word and records a disagree
message if a mismatch occurs. The message is conveyed to the
TARP at a specified time. The bus checker result together with
disagree message permits a rapid identification of a faulty unit. In
simplex operation this message helps to identify improper activity
of another unit.

The “complete” message is essential for functional units which
have variable-duration algorithms. Memory units issue “write
complete” and “read complete” messages which are essential for
immediate detection of incorrect storage events.

The “internal fault” message is produced by internal monitoring
circuits within each unit. Its function is to indicate incorrect
internal algorithms detected by duplication of critical signals,
special test circuits, and “inverse microprogramming” in which an
operation is deduced from active gating signals.

In addition to the above listed four types of messages, time is
provided for a “special” status message which varies for different
units. For example, the IO/IRP uses it to report to the TARP the
arrival of an external interrupt request.

Properties of Functional Units
The main arithmetic processor (MAP) input consists of an
operation code followed by a coded operand, and the output is a
coded result followed by a condition-code byte, indicating either
one of three singularities (sum overflow, quotient overflow, zero
divisor) or the type of a good result (positive, zero, negative). The
control processor (COP) stores the condition code and uses it to
implement conditional branches instructions. The COP also
contains the location counter LC, two index registers, and a
four-bit adder to implement indexing of residue-coded addresses
and incrementing the LC. The logic processor (LOP) performs the
bit-by-bit logic operations and code conversions on input words.
The arithmetic coding is removed from the operand before the
operation, since error codes are not preserved during logic
operations, and the final result is again encoded. The LOP
operation is checked by operating two copies which issue disagree
status messages when their outputs differ. The IOhnterrupt
processor (IOIIRP) receives external interrupt requests, initiates
allowable interrupts, and carries out input/output buffering func-
tions.

The READ-ONLY memory (ROM) contains the permanent
programs and the associated constants. The present machine uses
a “braid assembly of transformers and wires for the permanent
storage of 16,384 words. Complete replicas of the ROM are used
as replacements. Each 4096 word READ-WRITE memory (RWM)
unit has two modes of operation. In the absolute mode a RWM
unit recognizes its own wired-in absolute name. In the relocated
mode a RWM unit responds to an assigned name. All relocated

units with the same assigned name store and read out the same
locations simultaneously. In case of a disagreement with the word
on the M - 0 bus, the RWM unit sends a disagree status message to
the TARP. The relocated mode provides duplicate or triplicate
storage for critical programs and data. When a RWM unit fails, its
replacement unit can be assigned the same name, avoiding a
discontinuity in addresses. Assignment and cancellation of as-
signed names is performed under program control; this provision
allows selective redundancy of storage. A record of RWM name
assignments is retained (in nonvolatile storage) in all active TARP
units. The accessing of storage locations within a RWM unit is
checked by permanently storing the $-bit check byte of its 12-bit
internal address in every location. This byte is read out and
checked against the contents of the address register during every
read and write operation.

In the STAR computer only the logic processor and the RWM
memory unit containing critical system programs are duplexed for
normal operation. For experimentation, complete provisions have
been made for optional duplex operation of all memory and
processor units under program control. The combination of
duplication and coding offers detection of all errors as well as a fast
identification of one faulty unit. In order to permit duplex
operation of processor and ROM units, active TARP units hold a
record of units which are operating in duplex.

The Test and Repair Processor (TARP) and Recovery Mode
The “hard core” monitor of the STAR system is designated as
TARP (test and repair processor) in Fig. 2. The TARP monitors the
operation of the STAR computer by two methods: (1)testing every
word sent over the two data buses for validity of its code; and (2)
checking the status messages from the functional units for
predicted responses. An incorrect word or a deviation from
predicted response causes an interruption of normal computing
and an entry into the recovery mode of operation. The block
diagram of one TARP is shown in Fig. 6. It is functionally divided
into two sections. One section provides standard mode machine

OTHER CONTROL
TARP DISASTER ’BUS
UNITS RESTART

I IAND
POWLR’SWITCH FAULT LocATION I ~~~c-~~

CONTRO. LOGIC

Fig. 6. Test and repair processor (TARP) organization.

Chapter 27 1 The STAR (Self-Testing And Repairing) Computer 453

control and fault location, and the other controls the recovery
mode operation and effects the switching of replaceable units.

The Control and Test (CAT). This section contains the standard
mode control logic consisting of an op-code decoder, a clock, and a
counter which generates the step-code signals for standard mode
operation. The machine-state prediction logic uses the current
instruction and step-code to predict which status messages should
be received from each powered functional unit. It also predicts
the information source and the type of encoding expected on each
bus. The fault location logic compares the status and bus checker
(Fig. 5) results to the prediction. In most cases, it can localize an
error to a particular functional unit. Upon detecting an error, the
CAT section stops the machine and transfers its error information
to the recovery control section.

Recovery Control (REC). This section of the TARP contains a
“rollback point” address register which specifies the location of
the instruction at which normal operation is to be resumed after a
recovery. This register is updated under program control. Before
every updating, the contents of all processor registers needed for
recovery are stored in duplexed memory units. Upon receipt of an
error message from the CAT section, the REC section issues the
“reset” signal, which causes all powered units to be set to an initial
state, and then broadcasts an unconditional jump instruction,
which causes the program to be resumed at the “rollback
address. A repeated fault indication in the same unit leads to its
replacement. The number of repetitions before replacement can
be specified in the experimental TARP. To replace, power is
turned off in the unit, a spare is turned on, and another reset (and
jump) is issued. For cases of temporary power loss and other fault
conditions which cannot be resolved by the fault location logic,
the REC section contains a wired-in “disaster restart” procedure.

The TARP is the hard core of the system. Three fully powered
copies of the TARP are operated at all times together with n
standby spares (n=2 in the present design). The outputs of the
TARPs are decided by a 2-out-of-(n+3) threshold vote. When one
powered TARP disagrees with the other two, the recovery mode
i s entered and an attempt is made to set the internal state of the
disagreeing unit to match the other two units. If this TARP
rollback attempt €ails, the disagreeing unit is returned to the
standby condition and one of the standby units receives power,
goes through the TARP rollback, and joins the powered triplet.
The computer is now restarted, a rollback performed, and
standard operation continues. Because of the three unit require-
ment, design effort has been concentrated on reducing the TARP
to the least possible complexity. Experience with the present
model has led to several refinements of the design.

The replacement of faulty functional units is commanded by the
TARP vote and is implemented by power switching. It offers
several advantages over the switching of information lines which

454 Part 2 1 Regions of Computer Space Section 6 I Fault-Tolerant Systems

connect the units to the bus. The number of switches is reduced
to one per unit, power is conserved, and strong isolation is
provided for catastrophic failures. Magnetic power switches have
been developed which are part of each unit’s power supply and
are designed to open for most internal failures. The threshold
function is inherent in the control windings of the switch. The
information lines of each unit are permanently connected to the
buses through component-redundant isolation circuits. The signal
on a bus is the logic OR of all inputs from the units, and unpowered
units produce only logic zero outputs. The power switch and the
buses utilize component redundancy for protection against fatal
“shorting” failures.

Comparative Reliability Analysis

This section considers the reliability (with respect to permanent
failures) which can be expected for the STAR computer. The
approach is to estimate the relative reliability with respect to
an existing reference system. An absolute reliability prediction
is not made because the failure rates for components which

BASIC STAR

DORMANT STANDBY
SPARES

are being developed for a flight model are not yet adequately
established.

The reference computer for reliability estimation is the nonre-
dundant Mariner Mars 1969 (MM’69) computer, which was the
on-board computer for the successful Mariner 6 and 7 missions to
Mars. It was chosen because a detailed description and extensive
failure rate data are readily available. With respect to computing
performance it must be noted that the MM’69 computer is a
bit-serial machine with a bit rate of 2.4 kHz and an instruction set
of 16 op-codes, whereas the STAR is a byte-serial machine with a
0.5 MHz clock and an instruction set of 130 op-codes. This gain in
performance is not used as a factor in reliability estimation.

Reliability models (1) the MM’69 computer, (2) a simplex
computer equivalent in performance to the STAR, and (3) the
STAR computer are shown in Fig. 7. The MM’69 computer [Fig.
7a] is assigned a complexity of unity. It is assumed that the
simplex computer [Fig. 7b]consisting of eight functional units is
8xCF times as complex as the MM’69 computer. The relative
complexity factor CF is defined as the ratio of complexity
(component count) of a single STAR unit to the complexity of the
entire MM’69 computer. The value CF=1/3 was established by

RaATlVE COMPLEXITY

2.7

8121 *Rl i.’

Fig. 7. Reliability models. (a) Mariner Mars 1969 computer, (b) Simplex computer, (c) STAR computer.

Chapter 27 ! The STAR (Self-Testing And Repairing) Computer 455

detailed comparison and is used in the subsequent analysis. The computer is a computationally equivalent nonredundant machine
comparison is made with respect to MM’69 technology, i.e., it is without “test and repair” capabilities. Since 4 bits of the 32-bit
assumed that the simplex and the STAR computers employ the STAR word serve for error detection, a STF equal to 817 was
same components and packaging techniques as the MM’69 chosen. The STF expresses the overhead due to the self-testing
computer. and repairing features within each STAR unit, that is, a STAR unit

The STAR model [Fig. 7c] consists of eight functional units plus has 817 of the complexity of the same unit in the “simplex”
the test and repair processor (TARP) array in series reliability. All computer. Applying CF = 113 and STF = 817 a STAR unit has the
units are considered to be of similar complexity and are allocated relative complexity of 8/21 with respect to the entire MM’69
an equal number of spares. Results for S=2 and S=3 are computer.
presented. The reliability model applied to all units except the Examples of reliability predictions based on the MM’69 data are
TARP is the standby-replacement redundancy model with dor- shown in Tables 1and 2 and Figs. 8 and 9. The lower bound (K =
mant spares [Bouricius, Carter, and Schneider, 1969; Mathur, 1)assumes equal failure rates of powered and spare units (K is the
1971al. The TARP was modeled as a hybrid-redundant H(3, S) failure rate ratio).The upper bound (K =1)assumes a zero failure
system [Mathur and Aviiienis, 19701. Details of the reliability rate of spare units. Two-spare (S=2) and three-spare (S=3) STAR
models and measures are presented in [Mathur, 1971al. The logic systems are considered. Table 1 and Fig. 8 show the predicted
processor LOP is assumed to have an internal duplication of the reliability as a function of time. Table 2 shows the time (in years)
circuits which are not protected by the error-detecting codes. Two for which the reliability remains above a specified value. Figure 9
sets of three R\VM units each are shown; this is a pessimistic presents the predicted reliability gain, defined as the ratio STAR
assumption, since the computer can function with only one of the reliabilityhf M’69 reliability.
six RWM units surviving. The computing operations for the foregoing analysis, the

The fault coverage factor [Bouricius, Carter, and Schneider, generation of tables, and the plotting of graphs was done with the
19691 in the STAR model is taken into account in two ways: (1)by aid of the computer-aided reliability estimation (CARE) program
including the fault detector and recovery initiator as a separate [Mathur, 1971133, which was developed as a design tool during the
processor (the TARP), and (2) by applying a self-testing factor reliability study. CARE is a software package developed on the
(STF) to the relative complexities of the units. Note that the Univac 1108 computer system at JPL. CARE may be interactively
simplex computer [Fig. 7b] does not contain a processor corre- accessed by a designer from a teletype console to calculate his
sponding to the TARP in the STAR computer since the simplex reliability estimates. The input is in the form of a system

Table 1 Reliability versus Time for Various Configuration (CF = 113)

Sim- STAR computer with S spares

Mission MM’69 vlex Uvver bound . . Lower bound

time com- com- (K = m) (K = 1)

(h) puter puter S = 3 s = 2 s = 3 s = 2

4368
(=6 months) 0.928 0.82 0.9999998 0.99997 0.999995 0.99982
43 680
(= 5 years) 0.475 0.14 0.997 0.97 0.966 0.87
87 360
(= 10years) 0.225 0.019 0.96 0.79 0.71 0.45

Table 2 Mission Duration for Specified Reliability (CF = 113)

Mission duration in years

Desired STAR computer with S spares
mission MM’69 Simplex Upper bound Lower bound

reliability computer computer S = 3 S = 2 S = 3 S = 2

0.9 0.7 0.3 12.5 7.5 6.7 4.5
0.8 1.5 0.6 16.0 9.7 8.5 6.O

0.7 2.4 0.9 18.5 11.7 10.0 7.0
0.6 3.5 1.3 20.5 13.5 11.3 8.3

456 Part 2 1 Regions of Computer Space Section 6 1 Fault-Tolerant Systems

1.0

K * -

0.8

K * -

g 0.6
2 K . 1
m
i

Jw
a 0.4

K - 1

0.2

J* Oe ‘42 49 6 8 10 Y

0

TIME (YEARS1

Fig. 8. Reliability versus mission time MM’69, simplex, and STAR
computers.

I J K . .

K - -

K - 1

K - 1

MARINER MARS 1969

01
0 U h B
0 2 4 6 8 10 U

TlMEffEARSI

Fig. 9. Reliability gain of STAR computer with respect to the MM’69
computer.

configuration description followed by queries on the various
reliability parameters of interest and their behavior with respect
to mission time, fault coverage, failure rates, dormancy factors,
allocated spares, and partitioning. The CARE program is extensi-
ble, and it may be updated to incorporate new reliability models
as they become available.

STAR Computer Software System

Early in the design of the STAR computer it became evident that
the fault-tolerant architecture would impose unconventional
constraints on its software. The development of the software
system for the STAR computer was initiated in 1968 and closely
followed the hardware development. It is partitioned into two
subsystems. The programming subsystem consists of three mod-
ules: an assembler, a loader, and a functional simulator. An
executive program facilitates coordinated use of these modules.
The operating subsystem consists of two modules: the resident
executive module and the applications programs module. The
programming subsystem has been implemented on the Univac
1108 computer of the Scientific Computing Facility at JPL. The
first version of a resident executive for the STAR computer is
nearing completion.

SCAP (the star computer assembly program) is the first module
of STAR software. Programs for the STAR computer are written in
the assembly language SCAL. SCAP is a traditional two-pass
assembler incorporating machine instructions, pseudo-operations,
and macrofacilities. A unique feature of SCAP is the encoding of
instruction and data words as required by the STAR computer.
SCAP calculates the code required and generates the encoded
value of the word. Another feature of SCAP is the COMPILE
pseudo-operation which implements automatic compilation of
simple arithmetic statements by the assembler.

The second module LOAD (the loader) reads the program into
the simulated STAR computer memory. After all decks have been
read, a COMMON area is allocated, relocation is completed, and
external linkage is accomplished. A map and cross-reference table
are printed to aid in debugging and documenting the program.
The third module of STAR software is the functional simulator,
which is modular in nature and follows the latest STAR hardware
configuration. Two special features are incorporated in the
simulator. The first is the facility to simulate hardware errors in
order to test the software aspects of error recovery. The second
feature provides STAR register and memory dumps. An executive
program facilitates the coordinated use of the assembler, loader,
and simulator.

The modules of the operating subsystem of the STAR computer
software system consist of the resident executive module and the
applications programs module. The STAR resident executive
augments the self-testing and repairing features of the hardware in
addition to its normal functions. The standard features include
interrupt control, input/output processing, and job scheduling.
Novel features incorporated due to the fault-tolerance architec-
ture of the STAR computer include a “cold start” capability,
reconfiguration processing, rollback assistance, and diagnosis of
faulty units. The cold start capability resets the hardware and
software after a disaster restart as well as prior to an initial load.

Chapter 27 I The STAR (Self-Testing And Repairing) Computer 457

Reconfiguration processing is required for memory replacement,
since software assistance is required to load a newly activated
memory unit. All programs running on the STAR computer
require rollback (recovery) points. The resident executive pro-
vides rollback status storage and controls events which are
nonrepeatable i.e., they may not occur more than once even if a
rollback takes place. Finally, it implements diagnosis for faulty
units to determine the cause and extent of failures for possible
partial reuse. The present application programs module includes
floating-point arithmetic subroutines, and test and demonstration
programs. The applications programs which will be required for
space missions are a part of the TOPS control computer subsystem
project discussed later in this paper.

Extension of STAR Techniques to Peripheral Systems

The STAR techniques of fault tolerance can be systematically
extended beyond the boundaries of the computer to effect
automatic maintenance of various peripheral systems that commu-
nicate with the computer. The case which was investigated in
connection with the STAR computer development is the imple-
mentation of automatic maintenance for a simplified model of the
JPL thermoelectric outer planet spacecraft (TOPS) which is being
proposed for the exploration of the outer planets [Astronaut.,
19701. The potentially lower failure rates of unpowered spare
units and the constant power demand ofa replacement system are
exceptionally important in missions requiring a ten year survival
of the spacecraft under very strict power constraints.

The methodology of extending the STAR techniques consists of
several steps: (I)identification of the replaceable peripheral units;
(2) selection of internal error detection functions which are
economically feasible within the units themselves; (3) identifica-
tion of possible functional redundancy, in which either another
type of peripheral unit or the computer itself can take over the
function of a failed unit; (4) algorithmic description of the
monitoring and recovery procedures to be performed for each unit
by the computer; (5)development of fault-tolerant communication
between the peripheral units and the VO and interrupt processors
of the computer; (6) translation of the monitoring and recovery
procedures which have been assigned to the computer into
computational requirements: speed, instruction set, storage size,
input/output and interrupt system complexity; and (7) estimation
of reliability and mean life attainable for each peripheral unit.
Several iterations of the design process lead to a system for which
a balanced gain in reliability has been attained by means of
computer-controlled automatic maintenance. A detailed case
study of the application of these techniques is presented in
Gilley [19701.

The investigation has identified and quantized the computing

capability required from the STAR computer in order to effect the
automatic maintenance of the TOPS spacecraft. Furthermore, the
results have shown that: (1)the fully automatic maintenance of a
complex long-life spacecraft is feasible through a systematic
extension of STAR techniques, and (2)the automatic maintenance
requirements of the spacecraft systems can be algorithmically
described to the detail required to produce computer programs
for their implementation. The results of the investigation have
systematically extended dynamic redundancy to various peripher-
al subsystems of an information processing system. Beyond the
specific example of a spacecraft, the methodology is applicable to
computer-controlled automatic maintenance of other complex
data processing, communication, and control systems.

Design of the TOPS Control Computer

The most recent step in the development of the STAR computer
concept has been the design of a control computer subsystem
(CCS) for the thermoelectric outer planet spacecraft (TOPS)
[Astronaut., 19701. After the TOPS requirements were quantified
as described in the preceding section, the CCS design had still to
meet four major externally-imposed constraints: (1)the weight of
the subsystem was not to exceed 40 Ib; (2)power consumption was
not to be greater than 40 W; (3) probability of successfully
completing a 100,000h mission was to be equal to or greater than
0.95 (using TOPS approved part failure rates, and (4)it could not,
as a consequence of any single internal fault, result in a failure
mode catastrophic to the mission.

Because of these constraints, it was not possible merely to
"shrink" the STAR computer into a flight package. The STAR
design was simplified by retaining only the capabilities needed to
meet the TOPS functional requirements. The entire self-test and
repair ability of the larger machine has been retained; in fact, the
TOPS CCS has expanded fiilure detection and recovery capabili-
ty. A variety of advances arising from the years of work on the
STAR computer that preceded the TOPS effort have been
incorporated into its design.

The CCS operates at a clock frequency of 500 kHz. The CCS
word is the same length as the STAR word, 32 bits. The
word-processing cycle, ten byte-times long in the STAR comput-
er, has been reduced to nine in the CCS: eight for processing or
transferring information and one (two in STAR) for the messages
and decision making between words. The execution (including
fetch) of an instruction requires one to three cycles. The STAR
instruction set with over 200 variants has been reduced to less
than 100. To detect word errors, the CCS uses the same residue
code as the STAR computer. Unlike the STAR, however, the CCS
employs the residue encoding also for operation codes of instruc-
tions. In addition to these failure detection measures, the CCS

458 Part 2 1 Regions of Computer Space

incorporates dual control logic and clocking, memory address
checking simultaneous with all memory accesses, and a nonde-
structive read-after-write option on all store instructions.

The CCS consists of the seven STAR computer functional units
designated the COP, LOP, IOP, IRP, ROM, RWM, and TARP
(Fig. 2). The IOiIRP has been split into independent IOP and IRP
units in order to improve failure detection and isolation in a
completely unattended environment. The MAP is deleted be-
cause software multiplication and division are sufficient, while
addition and subtraction are done in the LOP. Simplifications in
the instruction set have resulted in reduced hardware in the COP,
LOP, IOP, and IRP. Conversely, there is increased hardware in
the R&'M and TARP for added failure detection. A 4096-word
ROM and two 4096-word RWM units constitute the program
storage capability of the CCS. In addition, another 4096-word
RWM (designated SHM) is shared (by use of two independent
ports) by the CCS and measurement processor subsystem (MPS).
All the CCS RWM units are identical; any one of them can be
assigned either as a CCS internal memory or as the SHM. The
SHM contains the MPS operating program and the most recent
samples of spacecraft variables gathered by the MPS. Because the
SHM is available to the CCS as part of its own memory, these
samples are conveniently available to it for fault diagnosis and
monitoring of spacecraft activity [Gilley, 19701.

Current Research

The research and development program which led to the STAR
computer is continuing in several directions. The design of several
improved second generation STAR functional units is under way,
including a new arithmetic processor, a control processor for
medium-scale integrated-circuit implementation, and the shared

Section 6 1 Fault-Tolerant Systems

READ-WRITE memory unit for the storage of automatic mainte-
nance information from the spacecraft telemetry system. Analysis
of automatic maintenance algorithms and design of a command/
data bus for their implementation are under intensive study.
Other current investigations are concerned with the following
areas: (1)hardware-software interaction in a fault-tolerant system
with recovery, especially the interaction of the TARP and the
operating system; (2) studies of advanced recovery techniques,
i .e., post-catastrophic restart, TARP replacement schemes, recov-
ery from massive interference, partial utilization of failed units; (3)
advanced component technology, especially methods to attain bus
and power switch (i.e., hard core) immunity to faults; (4)heuristic
studies of fault tolerance by interpretation of extensive experi-
ments with the STAR breadboard as the instrument; (5)design of a
second-generation STAR-type computer with universal processor
and storage modules, and their implementation by large-scale
integration; (6) Computational utilization of the spare units for
supplemental tasks in a multiprocessing mode.

At the present time it is evident that the STAR computer design
and construction effort has led to valuable new insights into the
problem of fault-tolerant computing; further results in this field
are expected from the research program in the future.

References

Anderson and hlacri [1967]; Astronaut [1970]; Aviiienis [1967a];
Aviiienis [1967b]; Aviiienis [19681; Aviiienis [19711; Avifienis,
Mathur, RenneIs, and Rohr [1969]; Bouricius, Carter, and
Schneider [19691; Flehinger [19581; Gilley [1970]; Griesmer,
Miller, and Roth [1962]; Kruus [1963]; Kuehn [1969]; Lewis
[1963]; Long [1969]; Lyons and Vanderkulk [1962]; Mathur and
Aviiienis [1970]; Mathur [1971a]; Mathur [197Ib]; Reed and
Brimley [1962]; Short [1968].

Chapter 28

Fault-Tolerant Design of Local ESS
Processors1

W. N. Toy

Overview The stored program control of Bell System Electronic Switch-
ing Systems (ESS) has been under development since 1953. During this
period, the No. 1ESS, the No. 2 ESS, and the No. 3 ESS have been
developed and used extensively by Bell System operating companies to
provide commercial telephone service. These systems serve all types of
telephone offices: The large-capacity No. 1 ESS serves metropolitan
offices, the medium-capacity No. 2 ESS was designed for suburban offices,
and the No. 3 ESS can be found in many small rural offices. The fault-
tolerant design of ESS processors provides the same highly dependable
telephone service established by the previous electromechanical systems.
Pertinent process architecture features used to achieve ESS reliability
objectives are discussed.

Introduction

Next to computer systems used in space-borne vehicles and U.S.
defense installations, no other application has a higher availability
requirement than a Bell System Electronic Switching System
(ESS). These systems have been designed to be out of service no
more than few minutes per year. Furthermore, design objectives
permit no more than 0.01 percent of the telephone calls to be
processed incorrectly [Downing, Nowak, and Tuomenoksa, 19641.
For example, when a fault occurs in a system, few calls in progress
may be handled incorrectly during the recovery process.

At the core of every ESS is a single high-speed central processor
[Harr, Taylor, and Ulrich, 1969; Browne et al., 1969; Staehler,
19771. To establish an uhrareliable switching environment,
redundancy of system components and duplication of the proces-
sor itself has been the approach taken to compensate for potential
machine faults. Without this redundancy, a single component
failure in the processor might cause a complete failure of the
entire system. With duplication, a standby processor takes over
control and provides continuous telephone service.

When the system fails, the fault must be quickly detected and
isolated. Meanwhile, a rapid recovery of the call processing
functions (by the redundant component(s) and/or processor) is
necessary to maintain the system's high availability. Next, the

'Subsetted from Proc. IEEE, vol. 66, no. 10, October 1978, pp.
1,1261,145.

fault must be diagnosed and the defective unit repaired or
replaced. The failure rate and repair time must be such that the
probability is very small for a failure to occur in the duplicated
unit before the first one is repaired.

Allocation and Causes of System Downtime

The outage of a telephone (switching) office can be caused by
facilities other than the processor. While a hardware fault in one of
the peripheral units generally results in only a partial loss of
service, it is possible for a fault in this area to bring the system
down. By design, the processor has been allocated two-thirds of
the system downtime. The other one-third is allocated to the
remaining equipment in the system.

Field experience indicates that system outages due to the
processor may be assigned to one of four categories shown in Fig.
1 [Staehler and Watters, 19761. The percentages in this figure
represent the fraction of total downtime attributable to each
cause. The four categories are as follows.

Hardware Reliability
Before the accumulation of large amounts of field data, total
system downtime was usually assigned to hardware. We now
know that the situation is more complex. Processor hardware
actually accounts for only 20 percent of the. downtime. With
growing use of stored program control, it has become increasingly
important to make such systems more reliable. Redundancy is
designed into all subsystems so that the system can go down only
when hardware failures occur simultaneously in duplicated units.
However, the data now show that good diagnostic and trouble
location programs are very critical parts of the total system
reliability performance.

Fig. 1. System outage allocation.

459

460 Part 2 1 Regions of Computer Space

Software Deficiencies

Software deficiencies include all software errors that cause
memory mutilation, and program loops that can only be cleared
by major reinitialization. Software faults are the result of improper
translation or implementation of the original algorithm. In some
cases, the original algorithm may have been incorrectly specified.
Program changes and feature additions are continuously incorpo-
rated into working offices. Software accounts for 15percent of the
downtime.

Recovery Deficiencies

Recovery is the system's most complex and difficult function.
Deficiencies may include the shortcomings of either hardware or
software design to detect faults when they occur. When faults go
undetected, the system remains extensively impaired until the
trouble is recognized. Another kind of recovery problem can
occur if the system is unable to properly isolate a faulty subsystem
and configure a working system around it.

The many possible system states which may arise under trouble
conditions make recovery a complicated process. Besides those
already mentioned, unforeseen difficulties may be encountered in
the field, and lead to inadequate recovery. Because of the large
number of variables involved and because the recovery function is
so strongly related to all other components of maintenance,
recovery deficiencies account for 35 percent of the downtime.

Procedural Errors

Human error on the part of maintenance personnel or office
administrators can also cause the system to go down. For example,
someone in maintenance may mistakenly pull a circuit pack from
the on-line processor while repairing a defective standby proces-
sor. Inadequate and incorrect documentation (e. g., users' manu-
als) may also be classified as human error. Obviously, the number
of manual operations must be reduced if procedural errors are to
be minimized. Procedural errors account for about 30 percent of
the downtime.

The shortcomings and deficiencies of current systems are being
continually corrected to improve system reliability.

Duplex Architecture

When a fault occurs in a nonredundant single processor, the
system will remain down until the processor is repaired. In order
to meet the ESS reliability requirement, redundancy is included
in the system design; continuous and correct operation is main-
tained by duplicating all functional units within the processor. If

Section 6 I Fault-Tolerant Systems

one of the units fails, the duplicated unit is switched in,
maintaining continuous operation. Meanwhile, the defective unit
is repaired. Should a fault occur in the duplicated unit during the
repair interval, the system will, of course, go down. If the repair
interval is relatively short, the probability of simultaneous faults
occurring in two identical units is quite small. This technique of
redundancy has been used throughout each ESS.

The first-generation ESS processor structure consists of two
store communities: program store (PS) and call store (CS). The
program store is a read-only memory (ROM) containing the call
processing, maintenance, and administration programs; it also
contains long-term translation and system parameters. The call
store contains the transient data related to telephone calls in
progress. The memory is electrically alterable to allow its data to
be changed frequently. In one particular arrangement, shown in
Fig. 2, the complete processor is treated as a single functional
block and is duplicated. This type of single-unit duplex system has
two possible configurations: Either Processor 0 or Processor 1 can

PERIPHERAL U N I T S1 I
r - - - - - - - - - - - - T"' - -. - - - - - -1
I I I
I I I
I I I

Fig. 2. Single-unit duplex configuration. (a)Processor structure. (b)
Two possible configurations.

be assigned as the on-line working system, while the other unit
serves as standby backup. The mean-time-to-failure (MTTF), a
measure of reliability, is given by the following expression [Smith,
19721:

MTTF = cL2A2

where is the repair rate (reciprocal of the repair time), and A is
the failure rate.

The failure rate (A) of one unit is the summation of failure rates
of all components within the unit. For medium and small ESS
processors, Fig. 2 shows a system structure containing several
functional units which are treated as a single entity, with X still
sufficiently small to meet the reliability requirement. The single-
unit duplex configuration has the merit of being very simple in
terms of the number of switching blocks in the system. This
configuration simplifies not only the recovery program but also
the hardware interconnection. It does this by eliminating the
additional access required to make each duplicated block capable
of switching independently into the on-line system configuration.

In the large No. 1ESS, which contains many components, the
MTTF becomes too low to meet the reliability requirement. In
order to increase the value of the MTTF, either the number of
components (failure rate) or the repair time must be reduced.
Alternatively, the single-unit duplex configuration can be parti-
tioned into a multiunit duplex configuration as shown in Fig. 3. In
this arrangement, each subunit contains a smaller number of
components and is able to be switched into a working system. The
system will fail only if a fault occurs in the redundant subunit
while the original is being repaired. Since each subunit contains
fewer components, the probability of two simultaneous faults
occurring in a duplicated pair of subunits is reduced. The MTTF
of the multiunit duplex configuration can be computed by taking
into consideration the conditional probability of a subunit failing
during the repair time of the original subunit.

An example of a multiunit duplex configuration is shown in Fig.
3. A working system is configured with a fault-free CCx-CSx-CSBx-
PSx-PSBx-PUBx arrangement, where x is either Subunit 0 or
Subunit 1.This means there are 2'j, or 64possible combinations of
system configurations. The MTTF is given by the foIlowing
expression:

MTTF = * 2A2

Chapter 28 i Fault-Tolerant Design of Local ESS Processor? 461

Fig. 3. Multiunit duplex configuration. (a) Processor structure. (b)
Sixty-four possible configurations.

The factor r is at a maximum when the failure rate (Xi) for each
subunit is the same. In this case

or

A,= -A
' s

where

s = number of subunits, s = 6, and r = s

At best, the MTTF is improved by a factor corresponding to the
number of partitioned subunits. This improvement is not fully
realized since equipment must be added to provide additional
access and to select subunits. The partitioning of the subsystem
into subunits as shown in Fig. 3 results in subunits of different
sizes. Again, the failure rate for each individual subunit will not be
the same; hence, the r-factor will be smaller than 6. Because of
the relatively large number of components used in implementing

462 Part 2 1 Regions of Computer Space

the No. 1ESS, the system is arranged in the multiunit duplex
configuration in order to meet the reliability requirement.

Reliability calculation is a process of predicting, from available
failure rate data, the achieveable reliability of a system and the
probability of meeting the reliability objectives for ESS applica-
tions. These calculations are most useful and beneficial during the
early stages of design in order to assess various types of redundan-
cy and determine the system’s organization. In the small and
medium ESS’s, the calculations have supported the use of
single-unit duplex structures. For large ESS’s, it was necessary to
partition the system into a multiunit duplex configuration.

Fault Simulation Techniques

One of the more difficult tasks of maintenance design is fault
diagnosis. Its effectiveness in diagnostic resolution can be deter-
mined by simulation of the system’s behavior in the presence of a
specific fault. By means of simulation, design deficiencies can be
identified and corrected prior to any system being deployed in the
field. It is necessary to evaluate the system’s ability to detect
faults, to recover automatically back into a working system, and to
provide diagnostic information where the fault is within a few
replaceable circuit packs. Fault simulation, therefore, is an impor-
tant aspect of maintenance design.

There are essentially two techniques used for simulating faults
of digital systems: physical simulation or digital simulation.
Physical simulation is a process of inserting faults into a physical
working model. This method produces more realistic behavior
under fault conditions. A wider class of faults can be applied to the
system, such as a blown fuse or shorted backplane interconnec-
tion. However, fault simulation cannot begin until the design has
been completed and the equipment is fully operational. Also, it is
not possible to insert faults interior to an integrated circuit.

Digital fault simulation is a means of predicting the behavior
under failure of a processor modeled in a computer program. The
computer used to execute the program (the host) is generally
different from the processor being simulated (the object). Digital
fault simulation gives a high degree of automation and excellent
access to interior points of logic to monitor the signal flow. It
allows diagnostic test development and evaluation to proceed well
in advance of unit fabrication. The cost of computer simulation can
be quite high for a large, complex system.

The physical fault simulation method was first employed to
generate diagnostic data for the Morris Electronic Switching
System [Tsiang and Ulrich, 19621. Over 50 000 known faults were
purposely introduced into the central control to be diagnosed by
its diagnostic program. Test results associated with each fault
were recorded. They were then sorted and printed in dictionary

Section 6 1 Fault-Tolerant Systems

format to formulate a trouble locating manual (TLM). Under
trouble conditions, by consulting the TLM, it was possible to
determine a set of several suspected circuit packs which might
contain the defective component. Using the dictionary technique
at the Morris system, the average repair time was kept low and
maintenance was made much easier.

The experience gained in the physical fault simulation was
applied and extended in the No. 1ESS development [Downing,
Nowak, and Tuomenoksa, 19641. Each plug-in circuit pack was
replaced by a fault simulator which introduced every possible type
of single fault on the replaced package one at a time and then
recorded the system reaction on magnetic tape. This was done for
all circuit packs in the system. In addition to diagnostic data for
dictionaries, additional data were collected to determine the
adequacy of hardware and software in fault detection and system
recovery. Deficiencies were corrected to improve the overall
maintenance of the system.

A digital logic simulator called LAMP [Chang, Smith, and
Walford, 19741 was developed for the No. 1A ESS development.
It played an important role in the hardware and diagnostic
development of the No. 1A Processor. The simulator is capable of
simulating subsystem with as many as 65 000 logic gates. All
classical faults for standard logic gates are simulatable with logic
nodes stuck at “0” or stuck at “1.”Before physical units are
available, digital simulation can be very effective in verifying the
design, evaluating diagnostic access, and developing diagnostic
tests. Physical fault simulation has been demonstrated in the No.
1ESS to give a very realistic behavior under fault conditions. The
integration of both techniques was employed in the development
of the No. 1A Processor to take advantages of both processes. The
use of complementary simulation allows faults to be simulated
physically (in the system laboratory) and logically (on a computer).
Most of the deficiencies of one simulation process are compensat-
ed for by the other. The complementary method provided both a
convenient method for validating the results and more extensive
fault simulation data than would have been normally if either
process were used individually. Fig. 4 shows the complementary
process of fault simulation used in the No. 1A Processor develop-
ment [Bowman et aI., 1977; Goetz, 19741. Maximum diagnostic
performance was achieved from an integrated use of both
simulation methods.

First Generation ESS Processors

The world’s first ESS provided commerical telephone service at
Morris, IL, in 1959 for about a year on a field trial basis [Keister,
Ketchledge, and Lovell, 19601. The system demonstrated the use
of stored program control and the basic maintenance philosophy

- -

PHYSICAL COMMON DIGITAL

PHYSICAL
FAULT

SIMULATOR

DESCRIPTION

TEST

CIRCUIT
UNDERTEST 1

1
IAPROCESSOR I

I

SOURCE
PROGRAM

I
I
I

LAMP
FAULT

SIMULATOR

i , ~ D B A C K ;

DIAGNOSTIC 1
I SUMMARY I

Fig. 4. Complementary fault-simulation system.

of providing continuous and reliable telephone service. The trial
established valuable guides for designing a successor, the No. 1
ESS.

No. 1 ESS Processor

The No. 1 ESS was designed to serve large metropolitan
telephone offices, ranging from several thousand to 65 000 lines
[Keister, Ketchledge, and Vaughan, 19641. As in most large
switching systems, the processor represents only a small percent-
age of the total system cost. Therefore, performance and reliabili-
ty were of primary importance in the design of the No. 1
Processor; cost was secondary. In order to meet the reliability
standards established by electromechanical systems, all units
essential to proper operation of the office are duplicated (see Fig.
3). The multiunit duplex configuration was necessary to increase
the MTTF of the processor because of the large number of
components in each of the functional blocks.

Even with duplication, troubles must be found and corrected
quickly to minimize exposure to system failure due to multiple
troubles. All units are monitored continually so that troubles in
the standby units are found just as quickly as those in the on-line
units. This is accomplished by running the on-line and standby
units in the synchronous and match mode of operation [Downing,
Nowak, and Tuomenoksa, 19641. Synchronization requires that

Chapter 28 I Fault-Tolerant Design of Local ESS Processors 463

clock timing signals be in close tolerance so that every operation
in both halves is performed in step, and key outputs are compared
for error detection. The synchronization of duplicated units is
accomplished by having the on-line oscillator output drive both
clock circuits. There are two match circuits in each central control
(CC). Each matcher compares 24 bits within one machine cycle of
5.5 p,s. Fig. 5 shows that each matcher has access to six sets of
internal nodes (24 bits per node). In the routine match mode, the
points matched in each cycle are dependent upon the instruction
being executed. The selected match points are those most
pertinent to the data processing steps occurring during a given
machine cycle. The two matchers in each CC compare the same
sets of selected test points. The capability of each CC to compare a
number of internal nodes provides a highly effective means of
detecting hardware errors.

If a mismatch occurs, an interrupt is generated, which causes
the fault-recognition program to run. The basic function of this
program is to determine which half of the system is faulty. The

ROCRlYul ADD I4-1 j
I c- P O I N T S MP:CAEC

BUFFER ORb 1 I ? G V T I N E L V

+WORD R E G J 	 I + :C

ITHE?

c i.

I 	 C i H E R
I N P U T S -

T O 	 I N T E R R U P T
SOURCE

Fig. 5. No. 1 CC match access.

464 Part 2 1 Regions of Computer Space

suspected unit is removed from service and the appropriate
diagnostic program is run to pinpoint the defective circuit pack.

The No. 1ESS was designed during the discrete component era
(early 1960's) using individual components to implement logic
gates [Cagle et al., 19641. The CC contains approximately 12 000
logic gates. Although this number appears small when compared
to large-scale integration (LSI) technology, the No. 1Processor
was a physically large machine for its time.

The match circuits capable of comparing internal nodes are the
primary tools incorporated into the CC for diagnosing as well as
detecting troubles. Specified information can be sampled by the
matchers and retained in the match registers for examination. This
mode of operation obtains critical data during the execution of
diagnostic programs.

The early program store used permanent magnet twister (PMT)
modules as basic storage elements [Ault et al., 19641. They are a
form of ROM in which system failures cannot alter the information
content. Experience gained from the Morris field test system,
which used the less reliable flying spot store, indicated that
Hamming correction code was highly effective in providing
continuous operation. At the time of development, it was felt that
PMT modules might not be reliable enough. Consequently, the
program store word included additional check bits for single-bit
error correction (Hamming code). In addition, an overall parity
check bit which covers both the data and their address is included
in the word. The word size consists of 37 bits of information and
seven check bits. When an error is corrected during normal
operation, it is logged in an error counter. The maintenance
program has access to this counter. Also, detection of a single
error in the address or a double error in the word will cause an
automatic retry.

The call store is the temporary read and write memory for
storing transient data associated with call processing. Ferrite sheet
memory modules are the basic storage elements used in imple-
menting the call store in the No. 1 ESS [Genke, Harding, and
Staehler, 19641. The call store used in most No. 1offices is smaller
than the program store. (At the time of design, the cost per bit of
call store was considerably higher than that of program store.)
Also, ferrite sheet memory modules were considered to be very
reliable devices. Consequently, single-bit error detection rather
than Hamming correction code was provided in the call store.

There are two parity check bits: one over both the address and
data, and the other over the address only. Again, as in the
program store, automatic retry is performed whenever an error is
detected, and the event is logged in an error counter for
diagnostic use.

Troubles are normally detected by fault-detection circuits, and
error-free system operation is recovered by fault recognition
programs [Downing, Nowak, and Tuomenoksa, 19641. This
requires the on-line processor to be capable of making a proper

Section 6 1 Fault-Tolerant Systems

decision. If this is not possible, an emergency action timer will
"time out" and activate special circuits to establish various
combinations of subsystems into a system configuration. A special
program which is used to determine whether or not the assem-
bled processor is sane takes the processor through a series of tests
arranged in a maze. Only one correct path through the maze
exists. If the processor passes through successfully, the timer will
be reset, and recovery is successful. If recovery is unsuccessful,
the timer will time out again, and the rearrangement of subsys-
tems will be tried one at a time (e.g., combinations of CC,
program store, and program store bus systems). For each selected
combination, the special sanity program is started and the sanity
timer is activated. This procedure is repeated until a working
configuration is found. The sanity program and sanity timer
determine if the on-line CC is functioning properly. The active
CC includes the program store and the program store bus.

Operational Results of No. 1 ESS

The No. 1 ESS has been in commercial operation since 1965.
Over 1000 systems are providing telephone service to more than
15 million subscribers. The performance of the No. 1 ESS has
continually improved over a decade of continued effort to improve
all phases of software and hardware.

Fig. 6 shows the result of field data accumulated over many
machine operating hours. This curve was derived from data in a
paper [Fleckenstein, 19741 presented at the 1974 International
Switching Symposium in Munich, Germany, and data supplied by
W. C. Jones of Bell Laboratories.

When the No. 1 ESS was first put into commercial service,
many outages occurred because of software and hardware inade-
quacies that could only be weeded out with field experience. The

Fig. 6. No. 1 ESS service performance.

Chapter 28 I Fault-Tolerant Design of Local ESS Processors 465

inexperience of maintenance personnel also contributed heavily
towards system outages. Most hardware and software bugs were
corrected during the early years of operation. However, deficien-
cies still exist, and designs are continually upgraded in working
systems. Continual improvements include better diagnostic ac-
cess, more complete fault recognition and isolation programs, and
more effective system recovery.

Improved diagnostic capability reduces repair time and human
errors by decreasing the amount of human interaction required by
the machine. Better maintenance procedures and more experi-
enced craftpersonnel also contribute to improved system perform-
ance. The curve in Fig. 6 shows that the outage rate improved as
machine design and operating personnel matured.

No. 2 ESS Processor
The No. 2 ESS was developed during the mid-1960’s [Spencer
and Vigilante, 19691. This system was designed for medium-size
offices ranging from 1000 to 10 000 lines. The processor’s design
was derived from experience with the common stored program
control of a private branch exchange (PBX), the No. 101 ESS
[Seley and Vigilante, 19641. Since the capacity requirement of the
ho. 2 ESS was to be less than that of the No. 1ESS, cost became
one of the more important design considerations. (Reliability is
equally important in all systems.) The No. 2 ESS contains much
less hardware than the No. 1ESS. Understandably, its component
failure rate is also substantially less. Its CC contains approximately
5000 gates (discrete components). To reduce cost and increase
reliability, resistor-transistor logic (RTL) gates were chosen for the
No. 2’s processor since resistors are less expensive and more
reliable than diodes [the No. 1 Processor used diode-transistor
logic (DTL)].

Because the No 2’s CC, program store, and call store are
smaller, they are grouped together as a single switchable block in
the single-unit duplex configuration shown in Fig. 2. Calculations
indicate that its MTTF is approximately the same as the No. 1
multiunit duplex structure, with each of the functional blocks and
associated store buses grouped together as a switchable block.
The use of only two system configurations reduces considerably
the amount of hardware needed to provide gating paths and
control for each functional unit. Moreover, the recovery program
is simplified, and the reliability of the system is improved.

The No. 2 Processor runs in the synchronous and match mode
of operation [Beuscher et al., 19691. The on-line oscillator output
drives both clock circuits in order to keep the timing synchro-
nized. The match operation is not as extensive as it is in the No. 1
ESS. For simplicity, there is only one matcher in the No. 2 ESS; it
is located in the nonduplicated maintenance center (see Fig. 7).
The matcher always compares the call store input registers in the
two CC’s when call store operations are performed synchronous-

I I
PERIPHERAL U N I T S

tI- I {-I j
I

I I I
I I I

I I
I I

I PROCESSOR I PROCESSOR I
l o I ‘ I

I ---_I
ERROR SIGNALS

HPLT OFF-LINE
c c

- RUN DETECTION
PROGRAMS I N- ON-LINE C C

Ir

I M I N T E N M E CENTER I

Fig. 7. No. 2 CC match access.

ly. A fault in almost any part of either CC quickly results in a call
store input register mismatch. This occurs because almost all data
manipulation performed in both the program control and the
input-output (UO)control involves processed data returning to the
call store. The call store input is the central point whereby data
eventually funnel through to the call store. By matching the call
store inputs, an effective check of the system equipment is
provided. Compared to the more complex matching of the No. 1
Processor, error detection in the No. 2 Processor may not be as
instantaneous since only one crucial node in the processor is
matched. Certain faults in the No. 2 Processor will go undetected
until the errors propagate into the call store. This interval is
probably no more than tens or hundreds of microseconds. During
such a short interval, the fault would affect only a single call.

The No. 2 ESS matcher is not used as a diagnostic tool as is the
matcher in the No. 1Processor. Therefore, additional detection
hardware is designed into the No. 2 Processor to help diagnose as
well as detect faults.

When a mismatch occurs, the detection program is run in the
on-line CC to determine if it contains the fault. This is done while
the standby processor is disabled. If a solid fault in the on-line
processor is detected by the mismatch detection program, the
control is automatically passed to the standby processor, causing it
to become the on-line processor. The faulty processor is disabled

466 Part 2 1 Regions of Computer Space

and diagnostic tests are called in to pinpoint the defective circuit
pack.

The program store also uses PMT modules as basic storage
elements, with a word size of 22 bits, half the width of the No. 1’s
word sue. Experience gained in the design and operation of the
No. 101 ESS (PBX) showed that PMT stores were very reliable.
The additional protection provided in the No. 1Processor against
memory faults by error correction was not considered to be as
essential in the No. 2 Processor. This and the need to keep the
cost down led to the choice of error detection only instead of the
more sophisticated Hamming correction code.

Error detection works as follows: one of the 22 bits in a word is
allocated as a parity check bit. The program store contains both
program and translation data. Additional protection is provided by
using odd parity for program words and even parity for translation
data. This detects the possibility of accessing the translation data
area of memory as instruction words. For example, a software
error may cause the program to branch into the data section of the
memory and execute the data words as instruction words. The
parity check would detect this problem immediately. The pro-
gram store includes checking circuits to detect multiple-word
access. Under program control, the sense amplifier threshold
voltage can be varied in two discrete amounts from its nominal
value to obtain a measure of the operating margin. The use of
parity check was the proper choice for the No. 2 ESS in view of
the high reliability of these memory devices.

The No. 2 Processor call store uses the same ferrite sheet
memory modules as the No. 1Processor. However, the No. 2’s
data word is 16 bits wide instead of 24. Fault detection depends
heavily upon the matching of the call store inputs when the duplex
processors run in the synchronous mode. Within the call store
circuit, the access circuitry is checked to see that access currents
flow in the right direction at the correct time and that only two
access switches are selected in any store operation. This ensures
that only one word is accessed in the memory operation.
Similarly, threshold voltages of the sense amplifiers may be varied
under program control to evaluate the operating margins of the
store. No parity check bit is provided in the call store.

Each processor contains a program timer which is designed to
back up other detection methods. Normally, the on-line processor
clears the timer in both processors at prescribed intervals if the
basic call processing program cycles correctly. If, however, a
hardware or software trouble condition exists (e.g., a program
may go astray or a long program loop may prevent the timer from
being cleared), the timer will time out and automatically produce
a switch. The new on-line processor is automatically forced to run
an initialization restart program which attempts to establish a
working system. System recovery is simplified by using two
possible system configurations rather than the multiunit duplex
system.

Section 6 1 Fault-Tolerant Systems

Second Generation of ESS Processors

The advent of silicon integrated circuits (IC’s) in the mid-1960’s
provided the technological climate for dramatic miniaturization,
improved performance, and cost-reduced hardware. “1A technol-
ogy” refers to the standard set of (IC) devices, apparatus, and
design tools that were used to design the No. 1A Processor and
the No. 3A Processor [Becker et al., 19771. The choice of
technology and the scale of integration level was dictated by the
technological advances made between 1968 and 1970. Small-scale
integration (SSI), made possible by bipolar technology, was
capable of high yield production. Because of the processor cycle
time, high-speed logic gates with propagation delays from 5 to
10 ns were designed and developed concurrent with the No. 1A
Processor.

No. 1A Processor

The No. 1A Processor, successor to the No. 1 Processor, was
designed primarily for the control of large local and toll ESS with
high processing capabilities (the No. 1A ESS and No. 4 ESS,
respectively) [Budlong et al., 19771. An important objective in
developing the No. 1A ESS was to maintain commonality with the
No. 1ESS. High capacity was achieved by implementing the new
No. 1A integrated technology and a newly designed system
structure. These changes made possible an instruction execution
rate that is four to eight times faster than the No. 1 Processor.
Compatability with the No. 1 ESS also allows the No. 1A
Processor to be retrofitted into an in-service No. 1ESS, replacing
the No. 1Processor when additional capacity is needed. The first
1A Processor was put into service in January 1976, as control for a
No. 4 ESS in Chicago. Less than one year later, the first No. 1A
ESS was put into commercial operation. By 1980, several hundred
will be in service [Nowak, 19761.

The No. 1A Processor architecture is similar to its predecessor
in that all of its subsystems have redundant units and are
connected to the basic CC via redundant bus systems [Bowman et
al., 19771. One of the No. 1A Processor’s major architectural
differences is its program store [Auk et al., 19771. It has a writable
random-access memory (RAM) instead of PMT ROM. By combin-
ing disk memory and RAM, the system has the same amount of
memory as a system with PMT, but at a lower cost. Backup copy of
program and translation data is kept on disk. Other programs
(e.g., diagnostics) are brought to RAM as needed; the same RAM
spare is shared among different programs. More important is the
system’s ability to change the content of the store quickly and
automatically. This simplifies considerably the administration and
updating of program and translation information in working
offices.

The additional disk (file store) subsystem adds flexibility to the

Chapter 28 1 Fault-Tolerant Design of Local ESS Processors 467

No. 1A Processor [Ault et al., 19771, but it also increases the
complexity of system recovery. Fig. 8 shows the multiunit duplex
1A Processor. This configuration is similar to the No. 1Processor
arrangement (see Fig. 3)with a duplicated file store included. The
file store communicates with the program store or call store via
the CC and the auxiliary unit bus. This allows direct memory
access between the file store and the program store or the call
store. The disk file and the auxiliary unit bus are grouped together
as a switchable entity.

Error detection is achieved by the duplicated and matched
synchronous mode of operation, as in the No. 1Processor. Both
CC’s operate in step and perform identical operations. The
matching is done more extensively in the 1A to obtain as complete
a check as possible. There are two match circuits in each
processor. Each matcher has the ability to compare 24 internal
bits to 24 bits in its mate once every machine cycle. (A machine

P E R l P H t R A L U N l l S
1+

0

’A4 D I S K t I L E 0
1 0

m

v)
- 3
- m--
=? 2>
n

=
u D I S K FILE 1

- a

c l r El-2 -
- n

x u

c c o

C C l

1

Fig. 8. No. 1 A processor configuration.

cycle is 700 ns.) Any one of 16 different %-bit internal nodes can
be selected for comparison. The choice is determined by the type
of instruction being executed. Rather than compare the same
nodes in both CC’s, the on-line and the standby CC’s are arranged
to match different sets of data. Four distinct internal groups are
matched in the same machine cycle. This ensures the correct
execution of any instruction.

The No. 1A Processor design is an improvement of the No. 1
Processor design. The No. 1A Processor incorporates much more
checking hardware throughout various functional units in addition
to matching hardware. Checking hardware speeds up fault
detection and also aids the fault recovery process by providing
indications that help isolate the faulty unit. The matching is used
in various modes for maintenance purposes. This capability
provides powerful diagnostic tools in isolating faults.

The program store and call store use the same hardware
technology. The CC contains approximately 50 000 logic gates.
While the initial design of the stores called for core memories,
they have been replaced with semiconductor dynamic MOS
memories. The word size is 26 bits: 24 data bits and two parity
check bits. In the No. 1Processor, the program store and the call
store are hlly duplicated. Because of their size, duplication
requires a considerable amount of hardware, resulting in higher
cost and increased component failures. To reduce the amount of
hardware in the No. 1A Processor’s store community, the memory
is partitioned into blocks of 64K words, as shown in Fig. 9. Two
additional store blocks are provided as roving spares. If one of the
program stores fails, a roving program store spare is substituted
and a copy of the program in the file store is transferred to the
program store replacement. This type of redundancy has been
made possible by the ability to regenerate data stored in a failing
unit. Since a program store can be reloaded from the file store in
less than a second, a roving spare redundancy plan is sufficient to
meet the reliability requirement. As a result, Hamming correc-
tion code was not adopted in the No. 1A program store. However;
it is essential that an error be detected quickly. Two parity check
bits are generated over a partially overlapped, interleaved set of

I DCl l l? P R O G R A M STORE BUS 0

P S U l
\ / -

f iCT I L E PROGRnM STORE5 STPNDBY PROGRPM S T O R E S

MbXIMUM OF 20 2 R O V I N G SPARES

Fig. 9. No. 1A program store structure.

468 Part 2 1 Regions of Computer Space

data bits and address. This overlapping is arranged to cope with
particular memory circuit fdures which may affect more than one
bit of a word.

The 1A call stores contain both translation data backed up on
the file stores and call-related transient data which are difficult to
regenerate. The roving spare concept is expanded for the call
stores to include sufficient spares to provide full duplication
of transient data. If a fault occurs in a store that contains transla-
tion data, one of the duplicated stores containing transient call
data is preempted and loaded with the necessary translation
data from the duplicated copy in the file store. A parity check
is done in the same manner as in the program store, using two
check bits.

The combination of writable program store and file store
provides a very effective and flexible system architecture for
administrating and implementing a wide variety of features which
are difficult to obtain in the No. 1ESS. However, this architec-
ture also complicates the process of fault recognition and recov-
ery. Reconfiguration into a working system under trouble condi-
tions is an extensive task, depending on the severity of the fault.
(For example, it is possible for the processor to lose its sanity or
ability to make proper decisions.) An autonomous hardware
processor configuration (PC) circuit is provided in each CC to
assist in assembling a working system. The PC circuit consists of
various timers which ensure that the operational, fault recovery,
and configuration programs are successfully executed. If these
programs are not executed, the PC circuit controls the CC-to-
program memory configuration, reloading program memory from
file store when required, and isolating various subsystems from
the CC until a working system is obtained.

No. 3A Processor
The No. 3A Processor was designed to control the small No. 3
ESS [Irland and Stagg, 19741, which can handle from 500 to 5000
lines. One of the major concerns in the design of this ESS was the
cost of its processor. The low cost and high speed of integrated
logic circuitry made it possible to design a cost-effective processor
that performed better than its discrete component predecessor,
the No. 2 Processor. The No. 3A project was started in early 1971.
The first system cut into commercial service in late 1975.

Because the number of components in the No. 3A Processor is
considerably less than in the No. 1A Processor, all subsystems are
fully duplicated, including the main store. The CC, the store bus,
and the store are treated as a single switchable entity rather than
individual switchable units as in the No. 1A Processor. The system
structure is similar to the No. 2 ESS. Experience gained in the
design and operation of the No. 2 provided valuable input for the
No. 3 Processor design.

The 3A’s design makes one major departure from previous ESS

Section 6 Fault-Tolerant Systems ~

processor designs: it operates in the nonmatched mode of duplex
operation. The primary purpose of matching is to detect errors. A
mismatch, however, does not indicate where (which one of the
processors) the fault has occurred. A diagnostic fault-location
program must be run to localize the trouble so that the defective
unit can be taken off-line. For this reason, the No. 3A Processor
was designed to be self-checking, with detection circuitry incor-
porated as an integral part of the processor. Faults occurring
during normal operation are discovered quickly by detecting
hardware. This eliminates the need to run the standby system in
the synchronous and match mode of operation, or the need to run
the fault recognition program to identify the defective unit when a
mismatch occurs.

The synchronous and match mode arrangement of the No. 1
Processor and the No. 2 ESS provides excellent detection and
coverage of faults. However, there are many instances (e.g.,
periodic diagnostics, adminstration changes, recent change up-
dates, etc.) when the system is not run in the normal match mode.
Consequently, during these periods, the system is vulnerable to
faults which may go undetected. The rapid advances in integrated
circuit technology make possible the implementation of self-
checking circuits in a cost-effective manner. This eliminates the
need for the synchronous and match mode of operation. Self-
checking design is covered in more detail in Toy [1978].

Another new feature in ESS processor design is the application
of microprogram technique in the No. 3A [Storey, 19761. This
technique provides a regular procedure of implementing the
control logic. Standard error detection is made part of the
hardware to achieve a high degree of checkability. Sequential
logic, which is difficult to check, is easily implemented as a
sequence of microprogram steps. Microprogramming offers many
attractive features: it is simple, flexible, easy to maintain, and easy
to expand.

The No. 3A Processor paralleled the design of the No. 1A
Processor in its use of an electrically alterable (writable) memory.
However, great strides in semiconductor memory technology
after the No. 1A became operational permitted the use of
semiconductor memory in the 3A rather than core memory.

The 3A’s call store and program store are consolidated into a
single store system. This reduces cost by eliminating buses,
drivers, registers, and controls. A single store system no longer
allows concurrent access of call store and program store. Howev-
er, this disadvantage is more than compensated for by the much
faster semiconductor memory. Its access time is 1 ps (the earlier
PMT stores had an access time of 6 FS).

Normal operation requires the on-line processor to run and
process calls while the standby processor is in the halt state, with
its memory updated for each write operation. For the read
operation, only the on-line memory is read, except when a parity
error occurs during a memory read. This results in a micropro-

Chapter 28 ! Fault-Tolerant Design of Local ESS Processors 469

gram interrupt, which reads the word from the standby store in an
attempt to bypass the error.

As discussed previously, the No. 2 Processor (first generation) is
used in the No. 2 ESS for medium-size offices. It covers
approximately 4000 to 12 000 lines, with a call handling capability
of 19 000 busy-hour calls. (The number of calls is related to the
calling rate of lines during the busy hour.) The microprogram
technique used in the No. 3A Processor design allows the No. 2
Processor‘s instruction set to be emulated. This enables programs
written in the No. 2 assembly language to be directly portable to
the No. 3A Processor. The ability to preserve the call processing
programs permits the No. 2 ESS to be updated with the No. 3A
Processor without having to undergo a complete, new program
development.

The combination of the No. 3A Processor and the peripheral
equipment of the No. 2 ESS is designated as the No. 2B ESS. It is
capable of handling 38 000 busy-hour calls, twice the capability of
the No. 2 ESS [Mandigo, 19761. The No. 2B ESS can be expanded
to cover about 20 000 lines. Furthermore, when an existing No. 2
ESS system in the field exceeds its real-time capacity, the No. 2
Processor can be taken out and replaced with the No. 3A
Processor. The retrofit operation has been carried out successfully
in working offices without disturbing telephone service.

Summary

In order to achieve the reliability requirements, all ESS subsys-
tem units are duplicated. When a hardware failure occurs in any of
the subunits, the processor is reconfigured into a working system
around the defective unit. The partitioning of subsystem units into
switching blocks varies with the size of the ESS processors. For
the medium- or small-size processors such as the No. 2 or the No.
3, the central control, the main memory, the bulk memory, and
the store bus are grouped as a single switchable entity. A failure in
one of the subunits is considered a failure in the switchable block.
Since the number of components within a switchable block is
sufficiently small, this type of single-unit duplex configuration
meets the reliability requirement. For larger processors such as
the No. 1or the No. lA, the central control, the program store,
the call store, the store buses, and the bulk file store are treated
individually as switchable blocks. This multiunit duplex configura-
tion allows a considerable number of combinations in which a
working system can be assembled. The system is down only when
two simultaneous failures occur, one in the subunit and the other
in the duplicated subunit. A greater fault tolerance is possible
with this configuration. This type of configuration is necessary for
the large processor because each subunit contains a larger number
of components.

The first generation of ESS processors, which includes the No.

1and the No. 2, have provided commerical service since 1965 and
1969, respectively. The No. 1ESS serves large telephone offices
(metropolitan); the No. 2 is used in medium-size offices (subur-
ban). Their reliability requirements are the same. Both processors
depend on integrated maintenance software, with the hardware
that must (1)quickly detect a system failure condition, (2) isolate
and configure a working system around the faulty subunit, (3)
diagnose the faulty unit, and (4)assist the maintenance personnel
in repairing the unit. The primary detection technique is the
synchronous and match mode of operation of both central
controls. Matching is done more extensively in the No. 1than in
the No. 2 since cost is one of major considerations in the design of
the No. 2 Processor. In addition to matching, coding techniques,
diagnostic access, and other check logic have been incorporated
into the basic design of these processors to realize the reliability
objectives,

The widespread acceptance of the No. 1ESS and the No. 2 ESS
has created the need for a second generation of ESS processors:
the No. 1A and the No. 3A. They offer greater capability and are
also more cost-effective. Both processors use the same integrated
technology. The 1A Processor extends its performance range by a
factor of four to eight times over the No. 1Processor by using
faster logic and faster memory. The 1A design takes advantage of
the experience gained in the design and operation of the No. 1
ESS. The No. 1A Processor provides considerably more hardware
for error detection and more extensive matching of a large number
of internal nodes within the central control. The design of the No.
3A Processor had benefited by the experience gained from the
No. 2 ESS. A major departure in the design of the 3A Processor
from the design of other ESS processors is the nonsynchronous
and the nonmatch mode of operation. The No. 3A Processor uses
self-checking as primary means of error detection. Another
departure is in the design of the No. 3A Processor’s control
section; it is microprogrammed. The No. 38Processor’s flexibility
permits emulation of the No. 2 Processor quite easily.

References

Auk et al. [1977]; Auk, Callaher, Greenwood, and Koehler
[1964]; Becker et al. [1977]; Beuscher et al. [1969]; Bowman et al.
[1977]; Browne, Quinn, Toy, and Yates [1969]; Budlong et al.
[1977]; Cagle et al. [1964]; Chang, Smith, and Walford [1974];
Downing, Nowak, and Tuomenoksa [1964]; Fleckenstein [1974];
Genke, Harding, and Staehler [1964]; Goetz [1974]; Harr, Taylor,
and Ulrich [1969]; Irland and Stagg [1974]; Keister, Ketchledge,
and Love11 [1960]; Keister, Ketchledge, and Vaughan [1964];
Mandigo [1976]; Nowak [1976]; Seley and Vigilante [1964]; Smith
[1972]; Spencer and Vigilante [1969]; Staehler [1977]; Staehler
and Watters [1976]; Storey [1976]; Toy [1978]; Tsiang and Ulrich
[1962].

--

Chapter 29

The Tandem 16:

A Fault-Tolerant Computing System1

James A. Katzman

Summary A fault-tolerant computer architecture is examined that is
commercially available today and installed in many industries. The
hardware is examined in this paper and the software is examined in the
companion paper.

lntroduction

The increasing need for businesses to go on-line is stimulating a
requirement for cost effective computer systems having continu-
ous availability [Katzman, 1977; Tandem, 19761. Certain applica-
tions such as automatic toll billing for telephone systems lose
money each minute the system is down, and the losses are
irrecoverable. Systems commercially available today have met a
necessary requirement of multiprocessing but not the sufficient
conditions for fault-tolerant computing.

The greatest dollar volumes spent on systems needing these
fault-tolerant capabilities are in the commercial on-line, data base
transaction, and terminal oriented applications. The design of the
Tandem 16 NonStop’ system was directed toward offering the
commercial market an off-the-shelf, general purpose system with
at least an order of magnitude better availability than existing
off-the-shelf systems without charging a premium. This was
accomplished by using a top down system design approach, thus
avoiding the shortcomings of the systems currently addressing the
fault-tolerant market.

Except for some very expensive special systems developed by
the military, universities, and some computer manufacturers in
limited quantities, no commercially available systems have been
designed for continous availability. Some systems such as the ones
designed by ROLM have been designed for high MTBF by
“ruggedizing,” but typically computers have been designed to be
in a monolithic, single processor environment. As certain applica-
tions demanded continuous availability, manufacturers recog-
nized that a multiprocessor system was necessary to meet the
demands for availability. In order to preserve previous develop-
ment effort and compatibility, manufacturers invented awkward
devices such as I/O channel switches and interprocessor commu-

‘0 1977. Reprinted with the express permission of Tandem Computers

Inc., Cupertino, Calif.

WonStop is a trademark of Tandem Computers.

nication adapters to retrofit existing hardware. The basic flaw in
this effort is that only multiprocessing was achieved. While that is
necessary for continuously available systems, it is far from
sufficient.

Single points of failure flourish in these past architectures (Fig.
1). A power supply failure in the I/O bus switch or a single
integrated circuit (IC) package failure in any I/O controller on the
I/O channel emanating from the I/O bus switch will cause the
entire system to fail. Other architectures have used a common
memory for interprocessor communications, creating another
single point of failure. Typically such systems have not even
approached the problem of on-line maintenance, redundant
cooling, or a power distribution system that allows for brownout
conditions. In today’s marketplace, many of the applications of
fault-tolerant systems do not allow any down time for repair.

Expansion of a system such as the one in Fig. 1is prohibitively
expensive. A three processor system, strongly connected in a
redundant fashion, would require twelve interprocessor links on
the I/O channels; five processors would need forty links; for n
processors, 2n(n-1) links are required. These links often consist of
100-200 IC packages and require entire circuit boards priced
between $6,000and $lO,OOO each. Using the I/O channel in this
manner limits the I/O capabilities as a further undesirable side
effect. The resulting hardware changes for expansion, ifundertak-
en, are typically dwarfed in magnitude by the software changes

CPU 2c13
I I

--t

I I.P.i-nlink

I
I
I

-J

Non critical
controller controller

c

TerminalTerminal
controllercontroller

II
I I/

Disc

controller

Fig. I.Example of previous fault-tolerantsystems.

470

needed when applications are to be geographically changed or
expanded.

This paper describes the Tandem 16 architecture at the lowest
level (the hardware). Section 1 deals with the overall system
organization and packaging. Section 2 explains the processor
module organization and its attachment to the interprocessor
communications system. Section 3 discusses the I/O system
organization. Section 4 discusses power, packaging, and on-line
maintenance aspects that are not covered elsewhere in the paper.

1. System Organization

The Tandem 16 Nonstop system is organized around three basic
elements: the processor module, dual-ported I/O controllers, and
the DC power distribution system (Figs. 2 and 3). The processors
are interconnected by a dual-interprocessor bus system: the
Dynabus; the I/O controllers are each connected with two
independent I/O channels, one to each port; and the power
distribution system is integrated with the modular packaging of
the system.

The system design goal is two-fold: (1) to continue operation of
the system through any single failure, and (2)to be able to repair

Dynabus X bus
I I I

Dynabus Control Dynabus Control Dynabus Control

Memory Memory Memory

(up to 512 KB) (up to 512 KB) (up to 512 KB)

110channel I10channel

controller controller

+ p 1

controller 1

controller

Fig. 2. Tandem 16 system architecture.

Chapter 29 1 The Tandem 16 471

Fig. 3. Power distribution.

that failure without affecting the rest of the system. The on-line
maintenance aspects were a key factor in the design of the
physical packaging and the power-distribution of the system.

System Packaging

The cabinet (Fig. 4)is divided into 4sections: the upper card cage,
the lower card cage, cooling, and power supplies. The upper card
cage contains up to 4 processors, each with up to 512K bytes of
independent main memory. The lower card cage contains up to 32
I/O Controller printed circuit (PC) cards, where each controller
consists of one to three PC cards. The cooling section consists of 4
fans and a plenum chamber that forces laminar air flow through
the card cages. The power supply section contains up to 4 power
supply modules. Multiple cabinets may be bolted together, and
the system has the capability to accommodate a maximum of 16
processors.

Each processor module, consisting of CPU, memory, Dynabus
control and I/O channel, is powered by an associated power

I
Processors

I

32 I10 slots

Fig. 4. Tandem 16 physical cabinet.

472 Part 2 I Regions of Computer Space

supply. If a failed module is to be replaced in this section its
associated power supply is shut off, the module is replaced, and
the power supply is turned on. Each card cage slot in the I/O card
cage is powered by two different power supplies. Each of the I/O
controllers is connected via its dual-port arrangement to two
processors. Each of those processors has its own power supply;
usually, but not necessarily, those two supplies are the ones that
power the I/O controller (Fig. 3). Each slot in the 1/0card cage
can be powered down by a corresponding switch disconnecting
power from the slot from both supplies without affecting power to
the remainder of the system. Therefore, if a power supp4y fails, or
if one is shut down to repair a processor, no IIO controllers are
affected.

The dual-power sourcing to the I/O controllers was originally
designed using relay switching. This plan was abandoned for
several reasons: (a) to contend with relay failure modes is dimcult;
(b) the number of contact bounces on a switch-over is neither
uniform nor predictable, making it diacult for the operating
system to handle power-on interrupts from the 110 controllers;
and (c) during the switch-over, controllers do lose power, and
while most controllers are software-restartable, communications
controllers hang up their communications lines. We therefore
devised a diode current sharing scheme whereby I/O controllers
are constantly drawing current from two supplies simultaneously.
If a power supply fails, all the current for a given controller
is supplied by the second power supply. There is also circuitry
to provide for a controlled ramping of current draw on turn-on
and turn-off so there are no instantaneous power demands
from a given supply causing a potential momentary dip in supply
voltage.

Both fans and power supplies are electrically connected using
quick disconnect connectors to speed replacement upon failure.
No tools are required to replace a power supply. A screwdriver is
all that is needed to replace a fan. Both replacements take less
than 5 minutes.

Interconnections

Physical interconnection is done both using front edge connectors
and back-planes. Communication within a processor module (e.g.,
between the CPU and main memory) takes place over four 50 pin
front edge connectors using flat ribbon cable. Interprocessor
communication takes place over the Dynabus on the back-plane
also utilizing ribbon cable. The IiO controllers use etch trace on
the back-plane for communication among PC cards of a multicard
controller. The IiO channels are back-plane ribbon cable connec-
tions between the processors and the I/O controllers.

Peripheral IIO devices are connected via shielded round cable
either to a bulk-head patch panel or directly to the front edge
connectors of the I/O controllers. If a patch panel is used, then

Section 6 1 Fault-Tolerant Systems

there is a connection using round cables between the patch panel
and the front edge connectors of the I/O controllers.

Power is distributed using a DC power distribution scheme.
Physically, AC is brought in through a filtering and phase splitting
distribution box. Pigtails connect the AC distribution box to one of
the input connectors of a power supply. The DC power from the
supply is routed through a cable harness to a laminated bus bar
arrangement which distributes power on the back-planes to both
processors and I/O controllers.

2. Processor Module Organization

The processor (Fig. 5) includes a 16 bit CPU, main memory, the
Dynabus interface control and an IIO channel. Physically the
CPU, I/O channel and Dynabus control consists of two PC boards
16 inches by 18 inches, each containing approximately 300 IC
packages. Schottky TTL circuitry is used. Up to 512K bytes of
main memory is available utilizing core or semiconductor technol-
ogy. Core memory boards hold 32K 17-bit words, and each
occupies two card slots because of the height of the core stack.
Semiconductor memory is currently implemented utilizing 16
pin, 4K dynamic RAMS. These memory boards contain 48K 22-bit
words per board and occupy only one card slot and are therefore
three times denser than core.

The processor module is viewed by the user as a 16-bit,
stack-oriented processor, with a demand paging, virtual memory
system capable of supporting multiprogramming.

The CPU

The CPU is a microprogrammed processor consisting of a bank of
8 registers which can be used as general purpose registers, as a
LIFO register stack, or for indexing; an ALU; a shifter; two
memory stack management registers; program control registers

f
Y bus

A

110 channel

Fig. 5. Tandem 16 processor organization.

Chapter 29 1 The Tandem 16 473

(e.g., program counter, instruction register, environment or
status register, and a next instruction register for instruction
prefetching); scratch pad registers available only to the micropro-
grammer; and several other miscellaneous flags and counters for
the microprogrammer.

The microprogram is stored in read-only memory and is
organized in 512-word sectors of 32-bit words. The microinstruc-
tion has different formats for branching, sequential functions, and
immediate operand operations. The Tandem 16 instruction set
occupies 512 words with the decimal arithmetic option occupying
another 512 words. The address space for the microprogram is 2K
words.

The microprocessor has a 100 ns cycle time and is a two stage
pipelined microprocessor; i. e., all microinstructions take two
cycles to execute but one completes each cycle. In the first stage of
the pipeline any two operands are selected by two source fields in
the microinstruction for loading into the ALU input registers. In
the second stage of the pipeline the ALU performs a primitive
operation on the operands placed in the ALU input registers
during the previous cycle and performs a shift operation on the
results. In parallel, a miscellaneous operation such as a condition
code setting or a counter increment can be done, the result can be
stored in any CPU register or dispatched to the memory system or
I/O channel, and a condition test made on the results. Each of
these parallel operations is controlled by a separate control field in
the microinstruction.

The basic set of 123 machine instructions includes arithmetic
operations (add, subtract, etc.), logical operations (and, or,
exclusive or), bit deposit, block (multiple element) moves/
compares/scans, procedure calls and exits, interprocessor SENDS,
and I/O operations. All instructions are 16 bits in length. The
decimal instruction set provides an additional 20 instructions
dealing with four-word operands.

The interrupt system has 16 major interrupt levels which
include interprocessor bus data received, I/O transfer completion,
memory error, interval timer, page fault, privileged instruction
violation, etc.

Provision is made for several events to cause microinterrupts.
They are entirely handled by the CPU’s microprocessor without
causing an interrupt to the operating system. One event, for
example, is the receipt of a 16 word packet over the Dynabus. A
packet is the primitive unit of data which is transferred over the
Dynabus for interprocessor communication. The microproces-
sor puts the information in a predetermined area of memory
and does not cause a system interrupt until the entire message
is received.

The register stack is used for most arithmetic operations and for
holding parameters for block instructions (moves/compares/scans)
which need the parameters updated dynamically so that the
instructions may be interruptable and restarted. The 8-register

stack is a “wraparound stack and is not logically connected to the
memory stack.

Main Memory
Main memory is organized in physical pages of 1K words of 16
bitdword. Up to 256K words of memory may be attached to a
processor. In the core memory systems there is a parity bit for
single error detection, and in semiconductor memory systems
there are 6 check bits/word to provide single error correction and
double error detection. Due to the relative reliability of these two
technologies, we have found that Semiconductor memory, without
error correction, is much less reliable than core, and that with
error correction, it is somewhat more reliable than core. Battery
backup provides short term non-volatility to the semiconductor
memory system for utility power outage considerations.

It might be noted that there are some memory systems using a
21 bit error correction scheme (5check bits on a 16 bit data word
instead of 6). While 5 bits are enough to correct all single bit
errors, it does not detect approximately % of the possible double
bit error combinations. In these conditions, this 5 check bit
scheme will incorrectly deduce that some bit (neither of the bits
actually in error) is incorrect and correctable. The scheme will
then correct this bit (actually causing 3 bits to be in error), and
deliver it to the system as ‘‘good’’ reporting a correctable memory
error.

Memory is logically divided into 4 address spaces (Fig. 6).
These are the virtual address spaces of the machine; both the
system and the user have a code space and a data space. The code
space is unmodifiable and the data space can be viewed either as a
stack or a random access memory, depending on the addresssing
mode used. Each of these virtual address spaces is 64K words
long, and is addressed by a 16 bit virtual address.

The physical memory address is 18 bits with conversion from
the virtual address to physical address accomplished through a
mapping scheme. Four maps are provided, one for each logical
address space; each map consists of 64entries one for each page in
the virtual address space. The maps are implemented in 50 ns
access bipolar static RAM. The map access and main memory
error correction is included in the 500 ns cycle time for semicon-
ductor memory systems.

The unmodifiable code area provides reentrant, recursive, and
sharable code. The data space (Fig. 7)can be referenced relative
to address 0 (global data or G+ addressing), or relative to the
memory stack management registers in the CPU.

The lowest level language provided on the Tandem 16 system is
T/TAL, a high-level, block-structured, ALGOL-like language
which provides structures to get at the more efficient machine
instructions. The basic program unit in T/TAL is the PROCE-
DURE. Unlike ALGOL, there is no outer block, but rather a main

474 Part 2 I Regionsof Computer Space

Logical
address

0

User System User

data data code

area area area

(64 logical (64 logical (64 logical

pages) pages) pages)

55.525

Logical
page nc t t
0

system

Map entry

i - 0 9

61
A7_-
63

Physical page no. (0.255)

System

area
(64 logical

c

t

system

10 11 12 13 14 15

Fig. 6. Tandem 16 logical memory address spaces.

PROCEDURE. T/TAL has the ability to declare certain variables
as global. PROCEDURES cannot be nested in T/TAL, but a
SUBPROCEDURE can be nested in a PROCEDURE and only in
a PROCEDURE. A SUBPROCEDURE is limited in local variable
access capabilities.

The memory stack, defined by two registers in the CPU, is used
for efficient linkage to and from procedures, parameter passing,
and dynamic storage allocation and deallocation for variables local
to the procedure.

The L register (Local variables) points to the last stack marker
placed on the stack. This marker contains return information
about the caller such as the return address and the previous
location of the L register. The contents of the L register are
primarily changed by the procedure call and exit instructions.

Addressing relative to the L register provides access to
parameters passed to a procedure (L-) and local variables of the
procedure (L+). Parameters may be passed either by value (using
direct addressing) or by reference (using indirect addressing).

The S register (stack top pointer) points to the last element

P = parity

R.R'.R" * reference bits - used by
operating system t o select a page for
overlay

D = dirty bit - set whenever a write
access is made t o the page

A = absent. "I" indicates that the page
is not present in physical memory

Section 6 1 Fault-Tolerant Systems

placed on the stack. It is used for a SUBPROCEDURE's sublocal
data area when S relative addressing (S-) is used.

There is a special mode of addressing used by the operating
system, called System Global (SG+) addressing. It is used by the
operating system while it is working in a user's virtual data space
(on his behalf) and needs to address the system data space. The
system data space contains many resource tables and buffers and
the need to access them quickly justifies the existence of this
addressing mode.

There are three tables known to the operating system, the
microprogram and the hardware: the system interrupt vector
(SIV), the I/O Control (IOC) table, and the Bus Receive Table
(BRT). These tables will be explained in later sections as
appropriate.

The Dynabus

The Dynabus is a set of two independent interprocessor buses.
Bus access is determined by two independent interprocessor bus
controllers. Each of these controllers is dual-powered, in the same
manner as an I/O controller. The Dynabus controllers are very
small, approximately 30 IC packages, and are not associated with,
nor physically a part of, any processor. Each bus has a two byte
data path and control lines associated with it. There are two sets of
radial connections from each interprocessor bus controller to each
processor module. They distribute clocks for synchronous trans-
mission over the bus and for transmission enable. Therefore, no
failed processor can independently dominate Dynabus utilization
upon failure since in order to electrically transmit onto the bus,
the bus controller must agree that a given processor has the right
to transmit. Each bus has a clock associated with it, running
independently of the processor clocks and located on the associat-
ed bus controller. The clock rate is 150 ns on two to eight
processor systems. The clock does need to be slowed down for the
longer interprocessor buses of greater than eight processors.
Therefore each bus on small systems transfers at the rate of 13.3M
bytes/second and on the larger systems at 10M bytestsecond.
Performance measurements have shown that under worst case test
conditions the Dynabus is only 15%utilized in a ten processor
system.

Each processor in the system attaches to both interprocessor
buses. The Dynabus interface control section (Fig. 8) consists of 3
high speed caches: an incoming queue associated with each
interprocessor bus, and a single outgoing queue that can be
switched to either of the buses. All caches are 16 words in length
and all bus transfers are cache to cache. All components that
attach to either of the buses are kept physically distinct, so that no
single component failure can contaminate both buses simultane-
ously. Also in this section are clock synchronization and interlock
circuitry. All processors communicate in a point to point manner

Chapter 29 I The Tandem 16 475

data

Memory reference
instruction in code area:

7 8 9 10 11 12 13 14 15

G i2551

<
Addressin; mode and

displacement from base

Fig. 7. Tandem 16 data space.

using this redundant direct shared bus (DSB) configuration
[Anderson and Jensen, 19751.

For any given interprocessor data transfer, one processor is the
sender and the other the receiver. Before a processor can receive
data over an interprocessor bus, the operating system must
configure an entry in a table (Fig. 9) known as the Bus Receive
Table (BRT). Each BRT entry contains the address where the
incoming data is to be stored and the number of words expected.
To transfer data over a bus, a SEND instruction is executed in
the sending processor, which specifies the bus to be used, the
intended receiver, and the number of words to be sent. The
sending processor's CPU stays in the SEND instruction until the

Memory data transfer is completed. Up to 65,535 words can be sent in a
single SEND instruction. While the sending processor is execut-
ing the SEND instruction, the Dynabus interface control logic in

Bus control

- the receiving processor is storing the data away according to the
appropriate BRT entry. In the receiving processor this occurs

Isimultaneously with program execution.

The message is divided into packets of 15 information words and
Up to 32 buffers

12 buses 16 orocessors) an LRC check word. The sending processor first fills its outgoing Processor 1
rocessor 10 queue with these packets, requests a bus transfer, and transmits

upon grant of the bus by the interprocessor bus controller. The
Fig. 8. Tandem 16 dynabus interface and control. receiving processor fills the incoming queue associated with the

476 Part 2 1 Regions of Computer Space

Bus receive

table

(system day1

3PU o < SG(%700l
BRT entry 1I SG(%702) s ~ m 7 n n+ mfi + ?PI

Transfer address

Word count

BUS x

SG(%736l

"U o< SG(%740l

1 4
I 0 1

Send parameterr
in register stack 12 15 I

Timeout value
Bus Y

A

BUS = X OR Y (0 = X bus)
CPU = processor module0-15
32768 - timeout value i s the

SG(%776) number of 0.8 psec units allocated
t o completing the send example.

Timeout value = 0 then
32768 * 0.8 = 0.026 seconds

Notes: '%' means base 8 notation

Fig. 9. Bus receive table.

bus over which the packet is received, and issues a microinterrupt
to its own CPU. The microprocessor of the CPU checks the BRT
entry, stores the packet away, verifies the LRC check word, and
updates the BRT entry accordingly. If the count is exhausted the
currently executing program is interrupted; otherwise program
execution continues.

The BRT entries are two words that include a transfer count and
buffer address. The SEND instruction has as parameters the
designation of the bus to be used, the intended receiver, the data
buffer address in the system data space, the word count to be
transferred, and a timeout value. Error recovery action is to be
taken in case the transfer is not completed within the timeout
interval. These parameters are placed on the register stack and are
dynamically updated so that the SEND instruction is interruptible
on packet boundaries.

There are several levels of protocol, beyond the scope of this
paper, dealing with the interprocessor bus that exist in software
[Bartlett, 19781, to assure that valid data is transferred. The
philosophy for the hardwarelsoftware partitioning was to leave the
more esoteric decisions to the software, e.g., alternate path

Section 6 1 Fault-Tolerant Systems

routing, and error recovery procedures, with fault detection and
reporting implemented in the hardware. Fault detection was
designed in those areas having the highest anticipated probability
of error.

The Input/Output Channel
The heart of the Tandem 16I/O System is the I/O channel. All I/O
is done on a direct memory access (DMA) basis. The channel is a
microprogrammed, block multiplexed channel with the block size
determined by the individual controllers. All the controllers are
buffered to some degree so that all transfers over the IIO channel
are at memory speed (4M bytedsecond) and never wait for
mechanical motion since the transfers always come from a buffer
in the controller rather than from the actual IiO device.

There exists a table in the system data space of each processor
called the IOC (I/O Control) table that contains a two word entry
(Fig. 10) for each of the 256 possible IIO devices attached to the
I/O channel. These entries contain a byte count and virtual
address in the system data space for data transfers from the 110
system.

The I/O channel moves the IOC entry to active registers during
connection of an I/O controller and restores the updated values to
the 1OC upon a disconnection. The I/O channel alerts the I/O
controller when that count has been exhausted and that causes the
controller to interrupt the processor.

The channel does not execute channel programs as on many
systems but it does do data transfer in parallel with program
execution. The memory system priority always permits I/O
accesses to be handled before CPU or Dynabus accesses (in an
on-line, transaction oriented environment, it is rare that a system
is not I/O bound). The maximum I/O transfer is 4K bytes.

3. I/O System Organization

The I/O system had a design goal of being very efficient in a
transaction, on-line oriented environment. This environment has
constraints different from those of a batch environment. The
figure of merit in an on-line system is the number of transactions/
second/dollar that can be handled by the system. We also wanted
an I/O system that had low overhead, fast transfer rates, no
overruns, and no interrupts to the system until a logical entity of
work was completed (i.e., no character by character interrupts
from the terminals). The resulting design satisfied these goals by
implementing an I/O system that was extremely simple.

110 controllers reconnect to the channel when their buffers are
stressed past a configurable threshold, transfer data in a burst
mode until their buffer stress is zero (buffer empty on input
operations, full on output operations), and disconnect from the
channel. When the transfer terminates, the IiO controller inter-
rupts the processor. Controllers may interrupt for other reasons

1/0control

table

system data

C ‘

0 Transfer address
n
t

: O

I

I P = protect bit (1 -output only)

e

CH ERR = channel error r SG (% 10161 o = ~ ~
l=protect violation
2=PAD in violation

C
3=channel parity violation
4=time out

0 5=map absent bit detected
n 6=map parity error
t 7=uncorrectable memory error
r 1
0
I
I
e Note: ’%‘ means base 8 notation

SG (% 1200)

C

0

n
t
r
o 31
I
I
e
r

Fig. 10. I/O control table.

than an exhausted byte count, e.g., a terminal controller receiving
an end-of-page character from a page mode terminal, or UO
channel error condition, or a disc pack being mounted.

Dual-Port Controllers

The dual-ported 110 device controllers provide the interface
between the Tandem 16 standard I/O channel and a variety of
peripheral devices using distinct interfaces. While the I/O
controllers are vastly different, there is a commonality among
them that folds them into the Tandem 16 Nonstop architecture.

Each controller contains two independent I/O channel ports
implemented by IC packages which are physically separate from
each other so that no interface chip can simultaneously cause

Chapter 29 [The Tandem 16 477

failure of both ports. Each port of each controller has a 5-bit
configurable controller number, and interrupt priority setting.
These settings can be different on each port. The only require-
ment is that each port attached to an I10 channel must be assigned
a controller number and priority distinct from controller numbers
and priorities of other ports attached to the same I/O channel.

Each controller has a PON (power-on) circuit which clamps its
output to ground whenever the controller’s DC supply voltage is
not within regulation. The PON circuit has hysteresis in it so that
it will not oscillate if the power should hover near the limit of
regulation. When the power is within regulation, the output of the
PON circuit is at a TTL “1”level. A power-on condition causes a
controller reset and also gives an interrupt to one of the two
processors to which it is attached. The output of the PON circuit is
also used to enable all the I/O channel bus transceivers so that a
controller being powered down will not cause interference on the
I10 channels during the power transient. This is possible because
the PON circuit operates with the supply voltage as low as .2volts
and special transceivers are used which correctly stay in a high
impedance state as long as the control enable is at a logical “0.”

Logically only one of the two ports of an I/O controller is active
and the other port is utilized only in the event of a path failure to
the primary port. There is an “ownership” bit (Fig. 11)indicating
to each port if it is the primary port or the alternate. Ownership is
changed only by the operating system issuing a TAKE OWNER-
SHIP 110 command. Executing this special command causes the
I/O controller to swap its primary and alternate port designation
and to do a controller reset. Any attempt to use a controller which
is not owned by a given processor will result in an ownership
violation. If a processor determines that a given controller is
malfunctioning on its 110 channel, it can issue a DISABLE PORT
command that logically disconnects the port from that IIO
controller. This does not d e c t the ownership status. That way, if
the problem is within the port, the alternate path can be used, but
if the problem is in the common portion of the controller,
ownership is not forced upon the other processor.

A controller signals an interrupt on the 110 channel if the
channel has indicated an exhausted transfer count, if the control-
ler terminates the transfer prematurely, or for attention purposes.

When simultaneous interrupts occur on an I/O channel, a
priority scheme determines which interrupt is handled first.
There are two levels of priorities, designated “rank 0” and “rank
1.”Each rank has up to 16 controllers assigned to it. Jumper wires
on each controller determine the rank and position within the
rank (positions 0 to 15).The I/O channel issues a rank 0 interrupt
poll cycle and each controller assigned to rank 0 can place an
interrupt request, ifit needs service, on a dedicated data bit of the
110 channel determined by the jumper wires. If there are no
controllers on rank 0 requiring service, the 110channel issues the
interrupt poll cycle for rank 1. Note, only 32 controllers can be
assigned to a given channel and each one has a unique rank and

478 Part 2 1 Regions of Computer Space

Ownership i s taken by
CPU 0when a ”takeIownershid’ is issued

to controller 3. A command
All data and to the
control
information

Ownership
I I

Ownership “unowned”
side is

transfers occur rejected with
a ”device is

owned side. owned by
other port“

Typically,
ownership is not Ifnecessary, CPU 2
chanoed unless can take ownership

away from CPU 0
by issuing a ”take
ownership” to
controller 17.

Fig. 11. Ownership circuitry.

position designation. The highest priority controller is granted
access to the interrupt system. Thus a radial polling technique
allows the processor to resolve 32 different controller priorities in
just two poll cycles. Each port of a controller has a separate set of
configuration jumpers so that a controller can have different
priorities on its primary and alternate path.

Controller Buffer Considerations
In the design of the Tandem 16 110 system, a lot of attention was
paid to the overrun problem. While overruns are possible on this
system, they have been made a rare occurrence. Each 110
controller has 3 configurable settings: the I/O controller number,
the interrupt priority, and buffer stress threshold reconnect
setting.

Each I/O controller is buffered to some extent. The asynchro-
nous terminal controller has 2 bytes of buffering, while the disc
controller has 4K bytes of buffering. Considerations of device
transfer rate, channel transfer rate, the individual controller‘s
buffer depth, the controller’s reconnect priority, and a given
channel’s IIO complement can be used to determine the buffer’s
depth (stress threshold) at which a reconnect request should be
made to the channel to minimize the chance of overrun. Each

Section 6 I Fault-Tolerant Systems

controller with significant buffering (more than 32 bytes) has a
configurable stfess threshold. Buffer stress is defined as the
number of cells full on an input operation, and the number of cells
empty on output operations. In general, the I f 0 channel relieves
stress while the I/O device generates more stress. Therefore the
higher the stress, the more the buffer needs relief from the IIO
channel, regardless of the direction of data transfer.

Tandem has developed a program which takes a system
Configuration and determines the appropriate stress threshold
settings needed to guarantee no data overruns. Since reconnect
overhead time is known, and all transfers on the 110 bus take
place at memory speed, and the upper bound of the block length
is known for each type of controller, it is a deterministic function
as to whether or not an overrun is possible. If it is impossible to
generate a no-overrun configuration, the program will output a
minimum-overrun threshold setting. Most times, however, it is
possible to iterate on the configuration until threshold settings can
be determined that prevent overruns.

Disc Controller Considerations
The greatest fear that an on-line system user has is that “the data
base is down” [Dolotta et al., 19761. Many of these users are
willing to pay the premium of having duplicated or “mirrored’
data bases in case a disc drive fails. To meet this requirement,
Tandem provides automatic mirroring of data bases.

A disc volume is a set of data contained on one spindle or one
removable disc pack. A user may declare any of the disc volumes
as mirrored pairs at system generation time (Fig. 12).The system
then maintains these pairs so they always contain identical data.
Thus protection is achieved for a single drive failure. Each disc
drive in the system may be dual-ported. Each port of a disc drive
is connected to an independent disc controller. Each of the disc
controllers is also dual-ported and connected between two
processors. A string of up to 8 drives (4mirrored pairs) can be
supported by a pair of controllers in this manner.

Note that in this configuration there are many paths to any
given data and that data can be retrieved regardless of any single
disc drive failure, disc controller failure, power supply failure,
processor failure, or I/O channel failure.

The disc controller is buffered for a maximum length record
which provides several features important in an on-line system.
First, the disc controller is absolutely immune to overruns.
Second, data to be written on two drives need be transferred over
the UO channel only once. The data may then be posted twice
from the controller’s internal buffer. Thus the channel’s data
transfer capacity is little impaired by mirrored volumes.

This disc controller uses a Fire code [Peterson, 1961j for burst
error correction and detection. It can correct 11bit bursts in the
controlIer’s buffer before transmission to the channel. Since
overlapped seeks are allowed by the controller, when data is to be

I I I I

I
I I r ‘ I I

1 I I I
Processor Processor

I

Disc
controller

Fig. 12. Tandem 16 disc subsystem organization.

read from a mirrored pair it can be read from the drive which has
its arm closest to the data cylinder. It is interesting to note that
since the majority of transactions in an on-line system are reads,
mirrored volumes actually can increase performance.

Nonstop VO System Considerations

The I/O channel interface consists of a two byte data bus and
control signals. All data transferred over the bus is parity checked
in both directions, and errors are reported via the interrupt
system. A watchdog timer in the I/O channel detects if a
non-existent 110 controller has been addressed, or if a controller
stops responding during an IiO sequence.

The data transfer byte count word in the IOC entry contains
four status bits including a protect bit. When this bit is set to “1”
only output transfers are permitted to this device.

Because I/O controllers are connected between two indepen-

Chapter 29 1 The Tandem 16 479

dent I/O channels, it is very important that word count, buffer
address, and direction of transfer are controlled by the processor
instead of within the controller. If that information were to be
kept in the controller, a single failure could cause both processors
to which it was attached to fail. Consider what would happen if a
byte count register was located in the controller and was stuck in
such a situation that the count could not decrement to zero on an
input transfer. It would be possible to overwrite the buffer and
cause system tables to become meaningless. The error would
propagate to the other processor upon discovery that the first
processor was no longer operating.

Other error conditions that the channel checks for are violations
of IiO protocol, attempts to transfer to absent pages (it is the
operating system’s responsibility to “tack down” the virtual pages
used for IiO buffering), uncorrectable memory errors, and map
parity errors.

4. Power, Packaging, On-Line Maintenance

The Tandem 16 power supply has 3 sections: a 5volt interruptible
section, a 5 volt uninterruptible section, and a 12-15 volt
uninterruptible section. The interruptible section will stop sup-
plying DC power when AC is lost while the uninterruptible
sections will continue to supply DC power. The interruptible
section powers I/O controllers and that portion of a processor
which is not related to memory refresh operation. The uninter-
ruptible sections provide power for the memory array and refresh
circuitry. The 5 volt sections are switching regulated supplies
while the 12-15 volt section is linearly regulated. The uninter-
ruptible sections have a provision for a battery attachment so that
in case of utility power failure, memory contents are kept for 1.5
to 4 hours, depending on the amount of memory attached to the
supply.

The power supply accepts AC input of 110 or 220 volts +20% to
provide brownout insensitivity. At nominal line conditions, over
30 msec of ridethrough is provided by storage capacitors. A
power-fail warning signal is provided when there is at least 5msec
of regulated power remaining so that the processor can go through
an orderly shut down. Some users must remain operational
through utility power failure and have generator systems which
provide continuous AC power for the entire system, including
peripheral devices,

The power-fail warning scheme in the Tandem 16power supply
monitors charge in the storage capacitors rather than monitoring
loss of AC peaks as is conventionally done. This has the advantage
that the 5 msec to do a power shutdown sequence in the processor
is guaranteed even if it occurs after a brownout period.

The power supply provides all other prudent features required
in a computer system, such as over voltage and over current
protection, and over temperature protection.

480 Part 2 1 Regions of Computer Space Section 6 1 Fault-Tolerant Systems

The power-up sequencing on disc drives has been implemented
with independent rather than daisy chained circuits. In the daisy
chained approach, one bad sequencer circuit can cause the
remaining drives in the chain not to sequence up after a power
failure.

Further Packaging and On-Line Maintenance Considerations

Modularity is a key concept in the Tandem 16 system. The
maintenance philosophy is to make all repairs by module replace-
ment at the user site without making the system unavailable to the
user. Therefore the back-planes, power supplies, fans, and I/O
channels, as well as the PC cards, are modular and easily
replaceable. Thumb screws are used when they can be so that a
minimum of tools are needed for repair. The package is designed
so that there is easy access to all modules.

Processors and IiO controfers not only can be replaced on-line,
but added on-line without system interruption if expansion is
planned, all without,application software being changed.

The Tandem 16:

A “NonStop” Operating System’

Joel F. Bartlett

Summary The TandemilG computer system is an attempt at providing a
general-purpose, multiple-computer system which is at least one order of
magnitude more reliable than conventional commercial offerings.
Through software abstractions a multiple-computer structure, desirable
for failure tolerance, is transformed into something approaching a
symmetric multiprocessor, desirable for programming ease. Section 1of
this paper provides an overview of the hardware structure. In Sec. 2 are
found the design goals for the operating system, “Guardian.” Section 3
provides a bottom-up view of Guardian.

1. Introduction

1.1 Background
On-line computer processing has become a way of life for many
businesses. As they make the transition from manual or batch
methods to on-line systems, they become increasingly vulnerable

‘Reprinted with the express permission of Tandem Computers Inc.
“NonStop” is a trademark of Tandem Computers Inc.

Conclusion

The contribution of the Tandem 16 system lies in the synthesis of a
system to directly address the need of the NonStop application
marketplace. By avoiding the “onus of compatibility” to any
previous system, an architecture could be designed from
“scratch’ that was “clean” and efficient.

The system goals have been met to a large degree. Systems
have been shipped containing two to ten processors. Many
application programs are on-line and running. They recover from
failures, and stay up continuously.

References

Anderson and Jensen [1975]; Bartlett [1978]; Dolotta et al. [1976];
Katzman [1977]; Locks [1973]; Mil 217 [1965]; Peterson [1961];
Tandem [19761.

to computer failures. Whereas in a batch system the direct costs of
a failure might simply be increased overtime for the operations
staff, a failure of an on-line system results in immediate business
losses.

1.2 System Overview

The Tandem/l6 [Katzman, 1977; Tandem, 19761 was designed to
provide a system for on-line applications that would be significant-
ly more reliable than currently available commercial computer
systems. The hardware structure consists of multiple processor
modules interconnected by redundant interprocessor buses. A
PMS [Bell and Newell, 19711 definition of the hardware is found
in Fig. 1.

Each processor has its own power supply, memory, and IiO
channel and is connected to all other processors by redundant
interprocessor buses. Each I/O controller is redundantly powered
and connected to two different IiO channels. As a result, any
interprocessor bus failure does not affect the ability of a processor
to communicate with any other processor. The failure of an I/O
channel or of a processor does not cause the loss of an I/O device.
Likewise, the failure of a module (processor or I/O controller) does
not disable any other module or disable any inter-module
communication. Finally, certain IiO devices such as disc drives
may be connected to t~7o different I/O controllers, and disc drives
may in turn be duplicated such that the failure of an I/O controller
or disc drive will not result in loss of data.

I-

Pcentral

Fig. 1. Hardware structure.

The system is not a true multiprocessor [Enslow, 19771, but
rather a “multiple computer” system. The multiple computer
approach is preferable for several reasons. First, since no module
is shared by the entire system, it increases the system’s reliability.
Second, a multiple computer system does not require the complex
hardware needed to handle multiple access paths to a common
memory. In smaller systems, the cost of such a multiported
memory is undesirable; and in larger systems, performance suffers
because of memory access interference.

On-line repair is as necessary as reliability in assuring system
availability. The modular structure of the Tandem/l6 system
allows processors, 110 controllers, or buses to be repaired or
replaced while the rest of the system continues to operate. Once
repaired, they may then be reintegrated into the system.

The system structure allows a wide range of system sizes to be
supported. As many as sixteen processors, each with up to 512K
bytes of memory, may be connected into one system. Each
processor may also have up to 256 I/O devices connected to it.
This provides for tremendous growth of application programs and
processing loads without the requirement that the application be
reimplemented on a larger system with a different architecture.

Finally, the system is meant to provide a general solution to the
problem of providing a failure-tolerant, on-line environment
suitable for commercial use. As such, the system supports
conventional programming languages and peripherals and is
oriented toward providing large numbers of terminals with access
to large data bases.

2. System Design Goals

2.1 Integrated Hardware/Software Design

The Tandem/lG system was designed to solve a specific problem.
This problem was not stated in terms of hardware and software

Chapter 29 1 The Tandem 16 481

requirements, but rather in terms of system requirements. The
hardware and software designs then proceeded in tandem to
provide a unified solution. The hardware design concerned itself
with the contents of each module, their interconnections to the
common buses, and error detection and correction within mod-
ules and on the communication paths. The software design was
given the problem of control; that is, selection of which modules
to use and which buses to use to communicate with them.
Furthermore, as errors are detected, it was the responsibility of
the software to control recovery actions.

2.2 Operating System Design Goals
The first and foremost goal of the operating system, Guardian, was
to provide a failure-tolerant system. This translated into the
following design “axioms”:

The operating system should be able to remain operational
after any single detected module or bus failure.
The operating system should allow any module or bus to be
repaired on-line and then reintegrated into the system.
The operating system should be implemented in a reliable
manner. Increased reliability provided by the hardware
architecture must not be negated by software problems.

A second set of requirements came from the great numbers and
sizes of hardware configurations that are possible:

The operating system should support all possible hardware
configurations, ranging from a two-processor, discless
system through a sixteen-processor system with billions of
bytes of disc storage.

The operating system should hide the physical configura-
tion as much as possible so that applications can be written
to run on a great variety of system configurations.

3. Operating System Structure

To satisfy these requirements, the operating system was designed
to have the appearance of a true multiprocessor at the user level.
The design of the system was strongly influenced by Dijkstra’s
work on the “THE” system [Dijkstra, 1968a], and Brinch Han-
sen’s implementation of an operating system nucleus for a
single-processor system [Brinch Hansen, 19701. The primary
abstractions are processes, which do work, and messages, which
allow interprocess communication.

3.1 Processes
At the lowest level of the system is the basic hardware as earlier
described. It provides the capsbility for redundant modules, i.e.,

482 Part 2 1 Regions of Computer Space Section 6 1 Fault-TolerantSystems

I/O controllers, 1/0devices, and processor modules consisting of a
processor, memory, and a power supply. These redundant
modules are in turn interconnected by redundant buses. Error
detection is provided on all communication paths and error
correction is provided within each processor’s memory. The
hardware does not concern itself with the selection of communica-
tion paths or the assignment of tasks to specific modules.

The first abstraction provided is that of the process. Each
processor module may have one or more processes residing in it.
A process is initially created in a specific processor and may not
execute in another processor. Each process has an execution
priority assigned to it. Processor time is allocated on a strict
priority basis to the highest priority ready process.

Process synchronization primitives include “counting sema-
phores” and process local “event” flags. Semaphore operations are
performed via the functions PSEM and VSEM, corresponding to
Dijkstra‘s P and V operations. Semaphores may only be used for
synchronization between processes within the same processor.
They are typically used to control access to resources such as
resident memory buffers, message control blocks, and IiO control-
lers.

When certain low-level actions such as device interrupts,
processor power-on, message completion or message arrival
occur, they result in “event” flags being set for the appropriate
process. A process may wait for one or more events to occur via
the function WAIT. The process is activated as soon as the first
WAITed for event occurs. Events are signaled via the function
AWAKE. Event signals are queued using a “wake up waiting”
mechanism so that they are not lost if the event is signaled when
the process is not waiting on it. Like semaphores, event signals
may not be passed between processors. Event flags are prede-
fined for eight different events and may not be redefined.

When a process blocks itself to wait for some event to occur or
for a semaphore to be allocated to it, it may specify a maximum
time to block. If the time limit expires and the event has not
occurred or the resource has not been obtained, then the process
will continue execution but an error condition will be returned to
it. This timeout allows “watch dog” timers to be easily placed on
device interrupts or on resource allocations where a failure may
occur.

Each process in the system has a unique identifier or “proces-
s i d in the form: <cpu#,process #>, which allows it to be
referenced on a system-wide basis. This leads to the next
abstraction, the message system, which provides a processor-
independent, failure-tolerant method for interprocess communi-
cation.

3.2 Messages
The message system provides five primitive operations which can
be illustrated in the context of a process making a request to some

server process (Fig. 2).The process’ request for service will send a
message to the appropriate server process via the procedure
LINK. The message will consist of parameters denoting the type
of request and any needed data. The message will be queued for
the server process, setting an event flag, and then the requestor
process may continue executing.

When the server process wishes to check for any messages, it
calls LISTEN. LISTEN returns the first message queued or an
indication that no messages are queued. The server process will
then obtain a copy of the requestor’s data by calling the procedure
READLINK.

Next, the server process will process the request. The status of
the operation and any result will then be returned by the
WRITELINK procedure, which will signal the requestor process
via another event flag. Finally, the requestor process will
complete its end of the transaction by calling BREAKLINK.

A communications protocol was defined for the interprocessor
buses that would tolerate any single bus error during the
execution of any message system primitive. This design assures
that a communications failure will occur if and only if the sender or
receiver processes or their processors fail. Any bus errors which
occur during a message system operation will be automatically
corrected in a manner transparent to the communicating pro-
cesses and logged on the system console. The interprocessor
buses are not used for communication between processes in the
same processor, which can be done faster in memory. However,
the processes involved in the message transfer are unable to
detect this difference.

The message system is designed such that resources needed for
message transmission (control blocks) are obtained at the start of a
message transfer request. Once LINK has been successfully
completed, both processes are assured that sufficient resources
are in hand to be able to complete the message transfer.
Furthermore, a process may reserve control blocks to guarantee
that it will always be able to send messages to process a request

Requestor DataRequestor copiedData copied

I

Fig. 2. Message system primitive operations.

that it picks up from its message queue. Such resource controls
assure that deadlocks can be prevented in complex producer/
consumer interactions, if the programmer correctly analyzes and
anticipates potential deadlocks within the application.

3.3 Process-Pairs

With the implementation of processes and messages, the system is
no longer seen as separate modules. Instead, the system can be
viewed as a set of processes which may interact via messages in
any arbitrary manner, as shown in Fig. 3.

By defining messages as the only legitimate method €or
process-to-process interaction, interprocess communication is not
limited by the multiple-computer organization of the system. The
system then starts to take on the appearance of a true multipro-
cessor. Processor boundaries have been blurred, but I/O devices
are still not accessible to all processes.

System-wide access to 110 devices is provided by the mecha-
nism of “process-pairs.” An 110 process-pair consists of two
cooperating processes located in two different processors that
control a particular I/O device. One of the processes will be
considered the“primary” and one will be considered the “backup.”
The primary process handles requests sent to it and controls the
110 device. When a request for an operation such as a file open or
close occurs, the primary will send this information to the backup
process via the message system. These “checkpoints” assure that
the backup process will have all information needed to take over
control of the device in the event of an I/O channel error or a
failure of the primary process’ processor. A process-pair for a
redundantly-recorded disc volume is illustrated in Fig. 4.

Process

L

I
I
1

Tdisc

Tdisc

U
I
I

Fig. 3. System structure after the addition of processes and
messages.

Chapter 29 1 The Tandem 16 483

- 1

Fig. 4. Process-pair for a redundantly recorded disc volume.

Because of the distributed nature of the system, it is not
possible to provide a block of “driver” code that could be called
directly to access the device. While potentially more efficient,
such an approach would preclude access to every device in the
system by every process in the system.

The I/O process-pair and associated IIO device(s) are known by
a logical device name such as “$DISCl” or by a logical device
number rather than by the processid of either process. IIO device
names are mapped to the appropriate processes via the logical
device table (LDT) in every processor, which supplies two
processids for each device. A message request made on the basis
of a device name or number results in the message being sent to
the first process in the table. If the message cannot be sent or if
the message is sent to the backup process, an error indication will
be returned. The processid entries in the LDT will then be
reversed and the message resent. Note two things: first, the error
recovery can be done in an automatic manner; and second, the
requestor is not concerned with what process actually handled the
request. Error recovery cannot always be done automatically. For
example, the primary process of a pair controlling a line printer
fails while handling a request to print a line on a check. The
application process would prefer to see the process failure as an
error rather than have the request automatically retried, which
might result in two checks being printed.

The two primitives, processes and messages, blur the bounda-
ries between processors and provide a failure-tolerant method for
interprocess communication. By defining a method of grouping
processes (process-pairs), a mechanism for uniform access to an
I/O device or other system-wide resource is provided. This access
method is independent of the functions performed within the
processes, their locations, or their implementations. Within the
process-pair, the message system is used to checkpoint state
changes so that the backup process may take over in the event of a
failure. This checkpoint mechanism is in turn independent of all
other processes and messages in the system.

The system structure can be summarized as follows. Guardian is

484 Part 2 1 Regions of Computer Space

constructed of processes which communicate using messages.
Fault tolerance is provided by duplication of components in both
the hardware and the software. Access to I/O devices is provided
by process-pairs consisting of a primary process and a backup
process. The primary process must checkpoint state information
to the backup process so that the backup may take over on a
failure. Requests to these devices are routed using the logical
device name or number so that the request is always routed to the
current primary process. The result is a set of primitives and
protocols which allow recovery and continued processing in spite
of bus, processor, I/O controller, or I/O device failures. Further-
more, these primitives provide access to all system resources from
every process in the system.

3.4 System Processes

The next step in structuring the system comes in assigning
hnctions to processes. As previously shown, 110 devices are
controlled by process-pairs. Another process-pair known as the
“operator” is present in the system. This pair is responsible for
formatting and printing error messages on the system console.
Here is an example of where Guardian has not followed a strict
level structure. The operator makes requests to a terminal process
to print the messages, yet the terminal process wishes to send
messages to the operator to report UO channel errors. An infinite
cycle is prevented by having the terminal process not send
messages for errors on the operator terminal and having I/O
processes never wait for message completions when sending
errors to the operator. While it may be preferable to prevent
cycles of any type in system design, they have been allowed in
Guardian when it can be shown that they will terminate. The
ability to reserve message control blocks assures that no cycle will
be blocked because of resource problems.

Each processor has a “system monitor” process which handbs
such functions as process creation and deletion, setting time of
day, and processor failure and reload cleanup operations.

A memory management process is also resident in each
processor. This process is responsible for allocating a page of
physical memory and then sending messages to the appropriate
disc processes to do the actual disc I/O. Pages are brought in on a
demand basis and pages to overlay are selected on a “least
recently used” basis over the entire memory of the processor.

The choice of relatively unsophisticated algorithms for schedul-
ing and memory management was a result of the fact that the
system was not intended to be a general-purpose timeshare
system. Fiather, it was to be a system which supported multiple
processes and terminals in an extremely flexible manner.

3.5 Application Process Interhce
Above the process and communication structure there exists a
library of procedures which are used to access system resources.

Section 6 1 Fault-Tolerant Systems

These procedures run in the calling process’ environment and
may or may not send messages to other processes in the system.
For example, the file system procedures do not do the actual I/O
operations. Instead, they check the caller’s parameters, and if
all is in order a message is sent to the appropriate I/O process-
pair. Likewise, process creation is seen as a procedure call to
NEWPROCESS, which does nothing but check the caller’s
parameters and then send a message to the system monitor
process in the processor where the process is to be created. On
the other hand, a procedure such as TIME which returns the
current time of day does not send any messages. In either case,
the access to system resources appears simply as procedure calls,
effectively hiding the process structure, message system, hard-
ware organization, and associated failure recovery mechanisms.

3.6 Initialization and Processor Reload
System initialization starts with one processor being cold loaded
from some disc on the system. The load file contains a memory
image of the operating system resident code and data, with all
system processes in existence and at their initial states. The
system monitor process then creates a command interpreter
process.

Guardian may be brought up even though a processor or
peripheral device is down. This is possible because operating
system disc images may be kept on multiple disc drives, I/O
controllers may be accessed by two different processors, and the
terminal that has the initial command interpreter on it is selected
by using the processor’s switch register.

After a cold load, the system logically consists of one processor
and any peripherals attached to it. More processors and peripher-
als may be added to the system via the command interpreter
command:

:RE LOAD 1,$DISC

This command will read the disc image for processor 1from the
disc $DISC and send it over either interprocessor bus to processor
1.Once it is loaded, all processes residing in other processors in
the system will be notified that processor 1is up.

This command is also used to reload a processor after it has been
repaired. Guardian does not differentiate between an initial load
of a processor and a later reload. In each case, resources are being
logically added to the system and processes must be notified so
that they may make use of them.

The previous example of a reload message being sent to all
processes is an example of how functions are split in Guardian. A
mechanism is provided for informing a process of a system status
change. It may-then take some unspecified action (including doing
nothing). Similarly, a system power-on simply sets the PON event
flag for all processes. The operating system kernel must only
insure that the process structure and message system are correctly

Chapter 29 1 The Tandem 16 485

saved and restored. It is then the responsibility of individual
processes to do such things as reinitialize their IIO controllers.

3.7 Operating System Error Detection
Besides the hardware-provided single error detection and correc-
tion on memory, and single error detection on the interprocessor
and I/O buses, additional software error checks are provided. The
first of these is the detection of a down processor. Every second,
each processor in the system sends a special “I’m alive” message
over each bus to all processors in the system. Every two seconds,
each processor checks to see that it has received one of these
messages from each processor. If a message has not been
received, then it assumes that that processor is down.

Additionally, the operating system makes checks on the
correctness of data structures such as linked lists when operations
are done on them. Any processor detecting such an error will halt.

All I/O interrupts are bracketed by a “watch dog” timer such
that the system will not hang up if an I/O operation does not
complete with the expected interrupt. If an I/O bus error occurs
then the backup process will take over control of the device using
the second I/O bus.

As previously noted, the interprocessor bus protocol is de-
signed to correct single bus errors. In addition to this, extensive
checks are made on the control information received over the
buses to verify that it is consistent with the state of the receiving
processor.

Power-faiuautomatic restart is provided within each processor.
A power-failure is detected independently by each processor
module and as a result is not a system-wide, synchronous event.
The system was designed to recover from either a complete

system power-fail, or a transient which will cause some of the
processors to power-fail and then immediately restart.

4. Conclusions

The innovative aspects of Guardian lie not in any new concepts
introduced, but rather in the synthesis of pre-existing ideas. Of
particular note are the low-level abstractions, process and mes-
sage. By using these, all processor boundaries can be hidden from
both the application programs and most of the operating system.
These initial abstractions are the key to the system’s ability to
tolerate failures. They also provide the configuration indepen-
dence that is necessary in order for the system and applications to
run over a wide range of system sizes.

Guardian provides the application programmer with extremely
general approaches to process structuring, interprocess communi-
cation, and failure tolerance. Much has been said about structur-
ing programs using multiple communicating processes, but few
operating systems are able to support such structures.

Finally, the design goals of the system have been met to a large
degree. Systems, with between two and ten processors, have
been installed and are running on-line applications. They are
recovering from failures and failures are being repaired on-line.

References

Bell and Newell [1971]; Brinch Hansen [1970]; Dijkstra [1968a];
Enslow [19771; Katzman [19771; Tandem [19761.

Section 7

Language-Based Computers

A system designer can place the architectural boundary (i.e., the
boundary of the machine as seen by the programmer) at any
number of places in the digital system’s hierarchy described in
Chap. 2. Placing the architectural boundary higher up (as for
higher-level-language machines) provides flexibility in exploiting
new technology but may constrain the languages or generality of
the computer. On the other hand, placing the architectural
boundary lower (as for microcoded machines) yields greater
flexibility in supporting new languages and programming styles
but may restrict the use of new technology. Traditionally, the
architectural boundary has been placed at the ISP level.
This section explores computer structures that have moved the
boundary up to the high-level-language interface, where the
programmer is provided with a single high-level-language
environment.

Machines that directly execute higher-level languages have
been proposed for over 15 years, and several have been imple-
mented. When functions are implemented in hardware to support
higher-level languages, intermediate levels of abstraction (e. g.,
the machine-code and perhaps even the microcode levels) can be
eliminated. Elimination of levels of abstraction implies a potential
performance improvement, since no time is lost interpreting the
intermediate levels.

Early attempts at high-level-language machines used micropro-
gramming to bypass the machine-code level of abstraction.
Microprogrammed operators directly manipulate complex data
structures (e.g., symbol tables and reverse Polish strings). One
example is the implementation of an interpreter for an ALGOL-
like language, EULER [Wirth and Weber, 1966a, b],for the IBM
Systemi360 Model 30 [Weber, 19671.

Some general-purpose machines that have writable control
stores have added special instructions that assist or boost the
performance of specific language constructs. Yet another approach
is to provide machine language instructions that map one for one
to high-level-language constructs. These instructions can be
added to the ISP of general-purpose machines once the most
frequently used constructs among the compiler languages have
been identified (e.g., three-address operations for common
arithmetic statements and the case and loop instructions in the
VAX-11/780, Chap. 42).

Chu and Cannont [1976] proposed a taxonomy of high-level-
language systems (Table 1)based on user-perceived functionality.
Type l(a) represents the traditional compiler-based systems
typified by creation of a source program with an interactive editor,
syntax checking via compilation, linking of object programs for

Table 1 Types of High-Level-Language Systems

Interactive compilation systems
Type I(a) Editing, compiling, executing the entire source code
Type 1(b) Editing, syntax checking, compiling, and executing

the entire source code
Type l(c) Editinglsyntax checking each line, compiling and

executing the entire source code
Interactive interpretation systems

Type 2(a) Editing, syntax checking, and interpreting the entire
source code

Type 2(b) Editing, syntax checking, and interpreting each line of
source code

Interactive direct-execution systems
Type 3 Editing, syntax checking, and executing each symbol

of source code

execution, and debugging by iterating the editinglcompilingi
linkinglcxecution cycle. Type l(b) separates the syntax checking
and compiling phases in order to speed up program development.
Type l(c) provides incremental syntax checking in dedicated
language systems such as interactive BASIC.

Type 2 systems interpret source code directly by bypassing the
machine-code level of abstraction (the levels usually bridged by
compilers). Type 2(b)systems differ by being incremental inter-
preters.

Type 3 systems operate on a symbol-by-symbol basis.
This section contains three examples of machines based on, and

dedicated to, a single high-level language, SYMBOL, the HP
9845A, and the IBhl Systemi38. It is interesting to note that all
three machines are implemented from multiple processors where
each processor is personalized to a set of subtasks (e.g., text
editing, language translation, or 1/01.

SYMBOL

SYMBOL was an experimental machine that provided hardware
support for Type l(a) interactive compilation. SYMBOL was built
by Fairchild during the 1964-1970 period. The SYMBOL lan-
guage [Rice and Smith, 19711 featured decimal arithmetic,
dynamically variable fields, and string manipulation and format-
ting.

SYMBOL consists of eight dedicated processors. One processor
translates the input string into an internal form to be executed by
another processor. The fundamental unit of memory is a variable-
length string maintained via linked lists in the memory controller.
Scheduling and I/O algorithms are also hardwired.

The SYMBOL paper (Chap. 30) concludes with a performance
and cost analysis, including an informative cost breakdown of
operating expenses for a large, central computer.

486

Section 7 1 Language-Based Computers 487

The HP 9845A 	 Since the user environment is well defined, it is possible to
customize techniques found in more open-ended computer

Desk-top calculators have evolved over the years from "hnction structures such as timesharing systems.
per key" systems with limited I/O to desk-top computers with a The HP 9845A has three levels of abstraction. The highest level
general-purpose programming language and extensive I/o (see is a BASIC machine which deals with abstractions such as
Chaps. 48 and 49 and Part 4, Sec. 3). The HP 8845A is a processes, run queues, symbol tables, and internal forms for
sophisticated single-language, single-user computing system (see language statements. These internal forms allow for more efficient
Figs. 1 and 2) that supports Type 2(b) interactive interpretation. execution than source language interpreters, since the statement

1

MP [#2:3 1
2 T [#0:1: tape cartridge,

P. language

I 1440 bytes1 sec transfer I

K.graphics[32 Kbyte buffer, vector -writing 80 ink,
nine line types 1

I I
I

Tcrt[24 lines X 80 char; raster scan
graphics 1

I

I
T [keyboard 1

Kcrt[8 Kbyte buffer, ASCII and optional 80 charlline, 480 line1character sets 1
min, linls plots 1

MP [#0:11

K['HP98033A; 16-bit parallel interface]

KI'HP98033A; two selectable modes of BCD floating point formats] I
K"HP98035A; clock; month, day, hour, second format]

K"HP98036A; bit serial, RS-2321

K"HP98040A; Incremental Plotter] T"HP9872A Plotter, 4 pens, 14 inlsl

K-Ms [disk]

K['HP98034A; interface to HP-IB IEEE Standard Bus1

Notes

1 Mp[ROM; 32 Kw; 16 bits; interpreter and language options1

2 P.language. interpreter 	 ['BPC [Binary Processor Chip; 16 blw; 1 wlinsrruction; 56
instructions: Pcstate: 4 w;data types: [intwer; boolean] ;
antecedents: 'HP2114, 'HP2116, 'HP21001; IOC [I10Controller;
16 blw; 1 wlinstr;31 instr;Pc.state: 12 w;data types:
[integer boolean] ;EMC [Extended Math Chip; 16blw; 1wlinstr;
15 instr; Pcstate: 8 w;data types: [integer; BCDl I;
Technology: NMOS chips on ceramic substrate1

3 Mp[#O: RAM; 32 Kw; 16 bits; user R lw memory,
#1: ROM; 32 Kw; 16 bits; operating system and I101

4 SLDual Ported]

5 P.peripheral.processing.unit [!same as P. language without EMCll

Fig. 1. PMS diagram of the HP 9845A.

,488 Part 2 1 Regions of Computer Space

HP 9845 AII axes: x 103
MP (byte1

Txomrnunication
(bytels)

Fig. 2. Kiviat graph of the HP 9845.

information has been transformed into a data structure that is
easier to manipulate than source language. The internal form also
contains enough information to recreate the original source
language statement.

The BASIC machine is implemented by ROM programs for a
dual-processor system. Each processor executes a minicomputer
instruction set (similar to that of the HP 2116 minicomputer) that
is implemented entirely with LSI technology. Special-purpose
processors for I/O and BCD arithmetic act as extensions to the
main processors.

The final level of abstraction is the microcoded machine that
implements an HP 2116like instruction set. Chapter 31 describes
the top two levels of abstraction in detail.

This paper is included for several reasons. It characterizes the
desk-top computing (or personal computing) environment as it
differs from other environments, such as that of minicomputers. It
contains the details of another minicomputer instruction set as
well as instruction sets for special-purpose processors (e.g.,
processors for I/O and BCD arithmetic). Finally, since the HP
9845A is a dedicated, single-user machine, performance is

Section 7 1 Language-Based Computers

secondary to ease of use. Without strict performance require-
ments, the BASIC language machine can be implemented in
software ROM on top of a minicomputer ISP.

IBM System/38

The IBM System/38 is a business-oriented data processing system
introduced in late 1978. The System/38 standardizes the hardware
interface between the traditional ISP level and a higher-level
language. Instructions have been implemented whose function-
ality has traditionally been reserved for operating-system soft-
ware. Examples of this functionality include queue-driven task
management, record-level data management, process manage-
ment, and object-oriented memory management. Although the
first release of the Systemi38 software only provided RPG and
Interactive Data Base Utilities, the Control Program Facility
provides a uniform interface to the system hardware upon which
other language environments can be built.

While the System/38 is essentially a Type l(a) system, it
deserves special note for several reasons:

It provides hardware support for high-level-language con-
cepts and may be a harbinger of future ISPs designed to
support multiple high-level languages.

It is the only example in this book of an object-oriented
memory management system fully supported in hardware
(see Part 2 , Sec. 2). Since the access path to objects is
machine-controlled, effective authority enforcement and
automatic serialization of concurrent operations on the same
object are achieved.

The concept of architecture has been pushed up into the
software levels, paving the way for future migration of even
more functionality into microcode and hardware.

A large, 48-bit virtual address is efficiently supported by a
hash table lookup into a physicaI page directory.

Programs are translated into microcode before execution.

Program-variable attributes allow automatic data-type con-
versions.

References

Chu and Cannont [1976]; Rice and Smith [1971]; Weber [1967];
Vl'irth and Weber [1966a,b].

Chapter 30

The SYMBOL Computer
SYMBOL:
A Large Experimental System
Exploring Major Hardware
Replacement of Softwarel

William R. Smith / Rex Rice /

Gilman D. Chesley / Theodore A. Laliotis /

Stephen F. Lundstrom / Myron A. Calhoun /

Lawrence D. Gerould / Thomas G. Cook

Introduction

The SYMBOL system is the result of a major developmental effort
to increase the functional capability of hardware. Part of the
charter of the broad based project was to reexamine the traditional
division between hardware and software, to reexamine the
respective roles of program instruction and data storage, and to
reduce the overall complexity and cost of computing [Rice and
Smith, 19711. In order to adequately evaluate the concepts that
had been developed it was concluded that an experimental,
usable, real system must be built. The SYMBOL system, now
operational, is the embodiment of this effort.

The system was developed in an environment with hardware
and software design considered in common. Virtually no one
associated with the project could refer to himself as a hardware or
software specialist exclusively. As an example, the logic design of
the field process units was done by an individual with a basic
programming background [Mazor, 19681. The wire routing auto-
mation was developed by an engineer who was formerly a pure
logic design specialist.

Even before the system became operational much had been
learned about the practical aspects of building highly capable
hardware. No claim is made that SYMBOL represents an
optimum general purpose, time-sharing, multiprocessing system.
In contrast, numerous simplifying assumptions were made in the
system where they did not serve the goals of the project. Certain
modularity restrictions are examples of this. It i s claimed that
SYMBOL represents a significant advance in systems technology
and provides the foundation for a significant reduction in the cost
of computing. As the system moves into an intensive evaluation

'AFIPS SJCC, 1971, pp. 601-616.

phase it should prove to be a real asset for advanced systems
research.

This paper represents an overview of the SYMBOL organi-
zation. An attempt is made to give simplified examples of
various key features in contrast to a broad brush treatment of
many topics.

Gross Organization

The system has eight specialized processors that operate as
autonomous units. Each functional unit is linked to the system by
the Main Bus. See Fig. 1. Consider some of the features of the
system and their relationship to the gross processor organization
as outlined in the following sections.

Dynamic Memory Management

Direct hardware memory management is perhaps the most
unique feature of the SYMBOL system. The memory manage-
ment centers around a special purpose processor called the
Memory Controller (MC). The MC effectively isolates the main
memory from the main bus and the other processors and in turn
provides a more sophisticated storage function for the various
processors. In contrast to simple read/write memory operations
the MC has a set of fifteen operations that are available to the

~ ~~ ~~ ~ ~~ ~

HlGH SPEED MANJELS
TELEPHONE RATE

CONTROLLER CHANNELS

MEMORY
BUS

CONTROLLER TRACK

RECLAIMER

CENTRAL DISC FILE

PROCESSOR

CP
INTERFACEJf=j

Fig. 1. Gross block diagram of the SYMBOL system.

489

490 Part 2 I Regionsof Computer Space

other processors of the system. The MC is a special purpose
processor that allocates memory space on demand, performs
address arithmetic, and manages the associative memory needed
for paging. The Memory Reclaimer (MR) supports the MC by
reprocessing used space to make it available for subsequent reuse.
It is a separate unit to allow the task to be performed using a low
priority access to the memory.

Direct Compilation
The Translator (TR) accepts the high level SYMBOL language
[Chesley and Smith, 19711 as input and produces a reverse Polish
object string and name table suitable for processing by the Central
Processor (CP). The TR performs the direct hardware compilation
using only a small table of about 100 words stored in main
memory.

Dynamic Variable Field Length

Within the Central Processor all field processing is done with
dynamically variable field lengths. All alphanumeric string pro-
cessing is done by the Format Processor (FP) while all numeric
processing is done by the Arithmetic Processor (AP). The
resources of the MC are used extensively by the CP in handling
the storage of data.

Dynamically Variable Data Structures

Complete variability of data structures is allowed. They can
change size, shape, and depth during processing. Within the CP
the Reference Processor (RP) manages the storage and referencing
of all data arrays and structure. The MC functions are used
extensively by the RP.

Time-sharing Supervision

The System Supervisor (SS) is the task scheduler for the system.
All transitions from one processing mode to another are handled
by the SS. Queues are maintained for all of the time-shared
processors. The SS executes two important hardware algorithms,
job task scheduling and paging management. A real-time clock is
used in the process of rationing out critical resources such as
central processor time. The SS also performs key information
transfers needed to tie hardware algorithms into software system
management procedures.

Direct Text Editing

The Interface Processor (IP)and Channel Controller (CC) perform
the inputioutput tasks of the system. The IP has ability to handle
general text editing in support of interactive communication via a
special terminal. Inputloutput and text editing do not use the CP
resources.

Section 7 1 Language-Based Computers

Virtual Memory Management

When the MC detects that a page is not in main memory it notifies
the requesting processor and the system supervisor. The SS then
utilizes a paging algorithm to supply the appropriate disk transfer
commands to the Disk Controller (DC). Each user of memory
must, upon receiving a page-out response, be able to shut down
and save its current state and status and restart after paging is
complete.

System Configuration

The system has a small complement of peripheral and storage
equipment associated with the main frame. This complement of
equipment has proven sufficient for the experimental purposes of
the system. The main memory is an 8K word x 64 bit/word core
memory with a cycle time of 2.5microsec. It is organized into 32
pages with 256 wordsipage. The main paging memory is a small
Burroughs head-per-track disk divided into 800 pages. The bulk
paging memory is a Data Products Disk-file organized into 50,000
pages.

The Channel Controller is designed to handle up to 31
channels. This low limit was deemed sufficient for evaluation of
the experimental system. As of this writing one high speed
(100,000bitsisec. effective data rate) channel and three phone line
(up to 2400 baud) channels have been implemented. More can be
added during the evaluation phase.

The main frame contains about 18,000 dual in-line CTkL
components. Its physical properties are described in other papers
[Cowart, Rice, and Lundstrom, 1971; Smith, 19681. In order to
get a relative measure of the size of the various autonomous
processors a chart is given in Fig. 2.

System Communication

The main bus of the system is a time-shared, global communica-
tion path. It uses the special properties of the CTpL family in its
implementation [Cowart, Rice, and Lundstrom, 1971; Smith,
19681.The bus contains 111parallel lines. They are distributed as
follows:

Data Bus 64
Address Bus 24
Operation Code Bus 6
Terminal Identification Bus 5
Priority Bus 10
System Clock 1
System Clear 1
Four types of bus usage are available. They are:

Processor to MC transfers

Chapter 30 I The SYMBOL Computer 491

Protestor

Reference
Memory

Controller

Translator

Fig. 2. Breakdown of the SYMBOL hardware showing the relative
sizes of the various processors.

MC to Processor transfers
Processor to Processor transfers
Control exchange cycles

The basic information transfers are priority sequenced. The
priority bus indicates the desired bus usage for the following
cycle; ifa unit desires to use the bus it raises its priority line and
then checks the priority bus to see if there are any higher priority
requests. If not it uses the bus on the following cycle.

Control exchange cycles are used to communicate control
information between the SS and the various processors over the
data and address buses. See Fig. 3. During a control cycle the data
and address bus lines have preassigned uses. Certain lines are
used to start the CP. Others indicate the completion mode for the
TR. During a given cycle any combination of the paths can be
used. The SS has autonomous interface control functions that are
used to communicate with the processors during control cycles so
that more than one control signal can be transmitted during a
given cycle.

Memory Organization

Virtual Memory
The SYMBOL memory is organized as a simple wo-level, fixed
page size virtual memory [Kilburn et al., 19621. 1 le page has 256
words with each word having 64bits. Virtual memory is accessed
by a 24 bit address with 16bits used to select the page and 8 bits to
select a particular word within a page. See Fig. 4.

Fig. 3. Use of the main bus for control exchange cycles.

The main memory for the experimental system is logically
divided into 32 pages. The relative portion of the address is used
directly while the page number accesses an associative memory
which in turn supplies the current page address in main memory.

The associative memory has one cell for each page in the main
memory. By providing an associative memory tied to the main
memory the individual processors need not be concerned with the
location association process. This provides a significant reduction
in the logical complexity of the processors even though it may lead
to slightly more overall electronics.

The paging disk memory has fixed assignment of page locations.

Associative
Memory

15
PAGE A M]RELATIVE ADR

Main Memory Address

Fig. 4. The simple two level addressing structure for the virtual
memory.

492 Part 2 1 Regions of Computer Space

See Fig. 5. A page is brought into an available location in main
memory upon demand. When it is purged back to disk it is
transferred back to the same location on disk. (The return transfer
is omitted if the page was not changed in main memory.)

The main memory organization is shown in Fig. 6. The first
page is used for system tables. This includes a reserved word table
for the translator, a software call table, and the control words for
memory allocation and queuing. The next set of pages are used for
storing the control words of the various terminals or users on the
system. Each active terminal has 24 words of control information
in low core. Much of the control information could have been
placed in virtual memory as would certainly be required for a
system with a larger channel capacity. As a simplifying restriction
for SYMBOL all channel tables were placed in main memory.

The input/output buffers for the various active channels are also
held in core. The buffers require 16 words per active channel.
Variable buffer sizes although possible were not implemented.

The remainder of main memory is available for virtual memory
buffering. Paging is managed by the hardware with the page
selection for purging under the control of the system supervisor.
The algorithm is a very flexible parameterized process that allows
most of the conventional paging algorithms to be executed. The
parameters are maintained for each terminal so that the paging
dynamics can be tailored on a terminal by terminal basis.

The virtual memory organization is quite simple for SYMBOL
in contrast to the more common segmentation schemes [Glaser,
Couleur, and Oliver, 1965; Corbato and Vyssotsky, 19651. The

Main Memory Paging Memory

Fig. 5. Virtual memory organization showing the fixed location of
pages in the paging memory.

Section 7 1 Language-Based Computers

1 Page

TERMINAL
CONTROL 3 Pages
TABLES

INPUTIOUTPUT
BUFFERS 1-2 Pages

VIRTUAL
MEMORY

PAGING SPACE

Fig. 6. Layout of main memory.

primary difference that allows the simplified approach to be taken
in SYMBOL is that contiguous addressing above the page level is
not needed. All users and channels share the same virtual memory
space. The 24 bit address space is thoroughly used. With space
allocated only upon demand and with no restriction on a
scrambled assignment of pages to users it is anticipated that 24
bits will be sufficient for many more than the 31 possible
terminals. If file space is needed beyond the 24 bits of address
space it can be addressed via special block input/output transfers.

Page Lists

Pages are associated together with the use of linked page lists.
Pages available for assignment are maintained on an available page
list. As each user needs space a user page list is started by
transferring a page from the available page list to the particular
user. A control word is established at this time as a focal point for
all future page list management for the user. As more space is
needed pages are added to form a variable length storage area for
general purpose usage. See Fig. 7.

A given user may have more than one page list. Typical page list
usage for a terminal would be one page list for program source

Chapter 30 1 The SYMBOL Computer 493

Avoilabie Fbge List User Page Lists
PE E

Fig. 7. Simplified page list structure within the virtual memory.

text, another for the compiled object program, and a third for data
variable storage. Other page lists are used for long or short term
file storage.

Page lists grow monotonically as space is needed. When an
entire list is no longer needed it is given back to the system by
returning it to the available page list.

Page Organization

In order to handle non-contiguous address space a certain amount
of the storage space must be devoted to linking or association data
overhead. In SYMBOL about 11percent of the storage space is for
overhead bookkeeping.

Pages have three distinct information regions as shown in Fig.
8. The first region called the page header is used to maintain the
page lists and manage the space within the page. The second
region is a set of 28 words. The third region is a set of 28 groups

Grap Link
words

Group
Data space

Fig. 8. Page organization showing group and link word layout
where addresses are given in HEX notation.

with each group containing eight words. Each group has a
corresponding group link word associated by a simple address
mapping. Consider in Fig. 8 word 5 and the corresponding group
5. Data is stored in words 28 through 2F. This eight word group
is the fundamental quantum of space allocation. It is the
smallest amount of memory space that is assignable to a given
purpose.

When data is needed for some purpose groups are assigned. For
example, if six words were needed to store a data vector one group
would be assigned. If space for a vector of 14 one word items were
needed two groups would be assigned. Variable length informa-
tion areas are developed by chaining together these basic units of
storage.

hformation Strings

Variable length lists of storage locations are used for general
information storage in SYMBOL. They are logically contig-
uous memory cells but not necessarily physically contiguous
cells.

Consider a typical variable length information string in Fig. 9.
Data space for 24 words of information is tied together by way of
the associated group link words. If access to the start of the string
is known it is possible to follow the entire string by accessing the
corresponding group link word each time the end of a group is
encountered. It is also possible to traverse the string backwards by
using the back links also stored in the group link word.

Each processor uses the variable length storage service of the
memory controller (MC) without cognizance of the address
sequence that is involved. For example, when a processor needs
space to store a vector of data fields an Assign Group (AG)
command is sent to the MC along with a tag sphifying a page list
with which the string is to be associated. The MC then selects an
available group from the page list and returns the address of the
first word of the group to the requesting processor. When the

String Start Address

Data Space
I I I I I 1

1 I I I I I

Three

I I I I I I I I 1

Fig. 9. Structure of a variable length string.

494 Part 2 1 Regions of Computer Space Section 7 I Language-Based Computers

processor is ready to store a word it transmits the data and
the address previously assigned to the MC along with the
command Store and Assign (SA). The MC stores the word and
generates the address of the next available word. When the end of
the group or string is encountered the MC assigns another group
and links it into the string.

In the string storing process the requesting processor receives
addresses from the MC and resubmits them to the MC at a later
time for future extension of the string. All address arithmetic is
done by the MC. Consider the example in Table 1.The first five
commands result in the words A, B, C, and D being stored in a
string beginning with word A.

To reaccess the string the original start address A is submitted
to the MC with the Fetch and Follow (FF) command. The data in
cell A is returned along with the next address in the logical
sequence. When the string is no longer needed a Delete String
(DS)command along with the string starting address is submitted
to the MC. The entire string is then placed on a space reclamation
list. The Memory Reclaimer processor scans the space reclama-
tion lists of the various page lists during idle memory time and
makes the groups of the deleted strings reassignable.

The basic memory usage process deals with variations of
the AG, SA, FF, and DS operations. Eleven other memory
commands are available to give a full memory service com-
plement.

Space utilization efficiency was an important aspect of the
SYMBOL memory design. Studies have been made into the opti-
mum size of the space allocation group [Smith, 19631. The
trade-offs center on balancing the linking overhead cost and the
unused group fragments cost. The overhead cost is compensated
by the allocation on demand approach. In most machines, fixed
size data arrays are allocated to their maximum needed size.
When the average array usage is considered a substantial amount
of demand allocation overhead can be afforded before approaching
the normal excess fixed allocation space usage.

Table 1 Simplified Example of a Memory Usage Sequence

Address Return Data to Return
Mnemonic Operation to MC address MC data

AG Assign Group a
SA Store & Assign a b A
SA Store & Assign b C B
SA Store &Assign c d C
SA Store & Assign d e D
FF Fetch & Follow a b A
FF Fetch & Follow b C B
FF Fetch & Follow c d C
FF Fetch& Follow d D
DS Delete String a

Information Forms

Data Fields

Two basic data types are defined in the system, namely string and
numeric fields. The string field is characterized by a special String
Start (SS) character followed by a variable length set of ASCII
alphanumeric characters terminated by a special String End (SE)
character. This illustrates perhaps the most significant aspect of all
SYMBOL data representations. The type and length of the datum
is carried with the datum. The instruction code is independent of
the dynamic attributes of the data.

The second data type is a variable length, packed decimal,
floating point number. The numeric form also carries a designator
of the class of precision. Numbers may be exact with an infinite
number of trailing zeros implied or they may be empirical
implying that all following digits are unknown and cannot be
assumed present for calculation purposes. Like the string field all
attributes of the datum are carried by the datum itself.

As a simplifying hardware design decision other forms of data
fields were not implemented. It is straightforward to extend the
SYMBOL concepts to packed variable-length binary strings, fixed
length binary numerics, variable length binary numerics, etc. In
any of these cases the datum must carry a type designator and an
explicit. or implicit designation of field length.

Source Programs

Source programs are special forms of string fields. They are
variable length ASCII character strings with delimiters defining
length and type. They can be treated as data fields during
preparation and then later used as program source for compila-
tion. Source procedures may be assembled into libraries of various
forms as long as they retain the string field attributes for
compilation purposes.

Data Structures

Data structures are defined as a variable length group of items
where an item may be a string field, a numeric field, or another
group of items. With this recursive definition a structure could be
a vector, a matrix, or an irregular array. There is no limit to the
depth or size of an array providing a field or a group does not
exceed the size of main memory during execution.

Consider the example of a simple vector shown in Fig. 10. The
special graphics <,I, and> have been introduced for representing
field boundaries and groupings of fields. They are used to define
the extent of variable length fields and referred to as left group
marks, field marks, and right group marks, respectively. In
memory the string fields are delimited .by String Start (SS) and
String End (SE) characters. Another special character called the
End Vector (EV) code terminates a group of fields. The storage

(J o h n (A l i c e l J i m l E l i z a b e t h)

Fig. 10. A vector of string fields and the corresponding representa-
tion of the data in memory.

representation in Fig. 10shows a series of string fields followed by
a special End Vector (EV) code which again is a length indicator
with the data. The string fields are aligned to start on machine
word boundaries. In the case of Elizabeth two machine words are
needed to store the field.

In Fig. 11 the matrix representation is similar to the vector
example except that two levels of vectors exist. The definition of a
structure could be restated as a variable length group of items
where an item may be a string field, a numeric field, or an address
link to another group

~~~ ~ ~ 

(( 2 N 4 3 2  I P N P i .  1 7 )  
( 2 N 7 0 8 A P C  1 3 I N P N  I . 38)) 

Group Link Level 

Fig. 11. A simple two dimensional array and the corresponding 
three variable length memory strings that are used. 

Chapter 30 1 The SYMBOL Computer 495 

Object String and Name Tables 
When a program is compiled the translator creates a reverse 
Polish string with postfix operator notation and a structured name 
table. The Polish string, called the object string, and the name 
table are the basic information forms used during program 
execution by the central processor. The use of a separate name 
table during,execution is perhaps one of the most distinctive 
departures from traditional processing fosms. Where in most 
systems the program string to be executed contains address 
references to the data space to be utilized, with the SYMBOL 
system the object string contains references to entries in the name 
table which act as a centralized point where all information about a 
given identifier is kept. It is this feature that gives the system its 
extreme execution time dynamicism. Whenever the nature of an 
identifier is modified in any way-location, size, type; etc.-only 
the name table entry need be changed since all references in the 
object string to an identifier must go through this entry. 

The source form of a simple assignment statement and the 
corresponding object string and name table are shown in Fig. 12. 

h r c e  String: 

Alpha -Beta i t  3.2 - (Long Nome pin Beta); 


lbject String 

A[Alpha] A[eeta] 3.2 * A[Lonp Name] A[eeto] pin- O- i 

Source String Storoga 

Name Table Storwe: 

To 
ooto 
Values 

Fig. 12. Information structure for a simple assignment statement. 



496 Part 2 I Regions of Computer Space Section 7 1 Language-BasedComputers 

The identifiers are isolated and added to the name table when not 
already there. Note that the identifiers can be variable length and 
have more than one word. Associated with each identifier is a 
control word. All references in the object string involving the 
identifier will point to the corresponding control word. The object 
string is composed of name table addresses, literal data (the value 
3.2),operators in postfix representation, and correspondence links 
back to the source string. The correspondence links are for simple 
error diagnosis and are therefore ignored during normal execu- 
tion. The object string and name table are totally independent of 
the future size and data type of the variable. 

Now consider the name table after execution has begun and 
assume that the data variables have current values. In Fig. 13 the 
variables Beta and Gamma are simple fields. Gamma is a 
multiword string and therefore it is stored in a memory string with 
a link address placed in the corresponding control word. Beta is a 
short field such that it can be stored in one word directly in the 
name table. Alpha is an irregular structure. The name table for 
Alpha contains a link to the first group which in turn contains two 
string fields, two link addresses, and an end vector mark. The link 
addresses point to two groups, one containing two fields and one 
containing three fields. As execution progresses the attributes and 

Data Values: 

Alpha (John Doe 1110 Main (30-25~DSR}(39~MS~lZ> 

Beta 11432.1I 
Gamma IHeading for a report I 

Storage Representalion: 

Fig. 13. Examples of a structure and two fields and how they are 
stored into memory along with the name table. 

storage representation of the variables may change. In any event, 
the name table and the data itself will contain all the attributes of 
the variables. 

Basic Information Flow 

In order to observe how the various processors of SYMBOL are 
used to serve the end users problem temporarily ignore the 
multiprocessing aspects of the system. A user at a terminal 
operates in various modes; program loading, program compila- 
tion, and program execution are the fundamental usage modes. 
Consider the state diagram in Fig. 14. A user would start in the 
OFF-LINE mode and by some transitional control means he 
would initialize his tasks into the ON-LINE IDLE mode. From 
here he can go into the LOAD mode to develop a program. When 
he is ready to execute his program and assuming he is a perfect 
programmer, he would have his program compiled and executed. 
At the end of execution he can restart and rerun his program or he 
can return to the LOAD mode and modify his program. 

The following sections deal with examples of the information 
flow for the basic operational modes of a terminal. A more detailed 
system block diagram in Fig. 15 will be used to support the 
description. Visualize the time sequence of the terminal opera- 
tional states of Fig. 14 in conjunction with the static hardware 
diagram of Fig. 15. 

LoAY 

CP NORMAL 
COMPLETIONYUN 

TR NORMAL 

Fig. 14. Idealized task flow for one terminal. 



Fig. 15. A more detailed block diagram of the SYMBOL system 
showing register configuration and major functions within each 
processor. 

Load Mode 
The LOAD mode is an inpudoutput text editing mode. Its primary 
purpose is for program source loading. In the normal case a 
separate page list is used to store the text string. This area is called 
the Transient Working Area (TWA). 

Three processors work together to perform the text editing 
tasks. The Channel Controller (CC) transfers data characters to 
and from 110devices from and to the I/O Buffers in main memory 
respectively. When the CC detects control characters in the I/O 
stream, it communicates the control information directly to the SS 
by way of a control exchange cycle. The CC is a character oriented 
processor which services up to 32 processors in a commutating 
manner. The CC also has a high speed (block) operating mode 
which is priority driven to allow servicing of disk and high speed 
tape devices. The block mode is not used in the LOAD or normal 
110 mode. 

The Interface Processor (IP) operating on a burst basis empties 

Chapter 30 1 The SYMBOL Computer 497 

or fills I/O buffers and transfers appropriate characters to and from 
the virtual memory. The IP works with a current text pointer 
while performing its functions. The IP functions include basic text 
insertion, searching, displaying designated text portions, deletion 
of designated text portions, and moving the current pointer. In 
Fig. 16 the basic information flow during the LOAD mode is 
summarized. 

Part of the justification for implementing editing functions in 
hardware came from the desire to eliminate the CP from many of 
the system overhead tasks. In addition, response times would be 
unacceptable if the CC were to communicate directly with virtual 
memory. The IP was developed to make the basic transfers 
between small buffers and paging memory. Once a special 
processor was developed it was found that many editing tasks and 
double buffering could be handled using essentially the same data 
transfer hardware. 

This IP/CC/SS process is available for both LOAD mode data 
preparation and program execution I/O. The full text editing 
facilities are available for any program input statement. 

Compile Mode 
Program compilation and address linkage editing functions are 
performed by the Translator (TR). The TR accepts the language 
source string from the TWA or some other source text area in 
virtual memory. The high level language is converted into a 
reverse Polish string and a structured name (identifier) table. The 
Polish string, called the Object String, and the Name Table may 
be stored in Virtual Memory on separate page lists or on a 
common page list. The gross flow of information in the Translation 
mode is shown in Fig. 17. 

The TR performs a one pass compilation generating the object 

I 

Fig. 16. Information flow in the LOAD mode. 



498 Part 2 1 Regionsof Computer Space Section 7 1 Language-Based Computers 

Transient I 

TRANSLATOR 

Name Table 

U
U 

Procedure Library 

Fig. 17. Information flow in the COMPILE mode. 

string as it scans the source string. It also builds the name table 
during this scan on a program block-by-block basis. At the end of 
the 'source pass the TR processes the name table and resolves all 
global references by creating appropriate indirect links. External 
procedure references are resolved during the name table pass and 
they are compiled and included with the object string as needed. 

The TR includes external procedures by accessing procedure 
source libraries and compiling needed procedures into the object 
string. The procedure libraries are organized into two sets, 
namely privileged and non-privileged procedures. Privileged 
programs differ from normal programs in that they can contain 
privileged statements for direct memory manipulation using the 
MC operations. Storage protection is obtained by controlling the 
privileged status of user programs and the programs that they can 
reference. Non-privileged programs have a high degree of storage 
protection both from other programs and from themselves due to 
the hardware storage management and central processor algo- 
rithms. Programs using privileged statements lose some of the 
protection. By controlling the access to privileged programs and 
the manner in which they are used the overall storage protection 
in the system is quite satisfactory for multiterminal operation. 

Execution Mode 

The Central Processor (CP) is the execution unit for the translated 
language receiving the translated source string along with the 
nested name table blocks as input. Because the CP operates on a 
high order language-actually a Polish string, postfixed operator 

object string-the CP uses a push-down stack for its operands. 
That is, the data reference is generated with all indirections traced 
out until a memory reference point is reached, and then this 
reference is pushed into the stack. This process continues until 
the postfixed operators are encountered in the object string. Each 
operator causes the top one or two (monadic or dyadic operator) 
stack entries to be pulled up, processing to take place, and the 
result to replace the operand(s) on the stack. 

Substructure referencing, also known as subscripting, is a much 
more formidable task in SYMBOL than with conventional sys- 
tems. This is due to the extremely dynamic flexibility of these 
structures. With conventional, systems, accessing an element of a 
vector is a simple matter of assigning a base along with an index 
register for the subscript variable and at execution time merely 
doing an address calculation to find the desired element. With 
SYMBOL there can be no possibility of a base address or an 
address calculation both because of the dynamic nature of space 
allocation as well as the fact that logically contiguous data need not 
be physically contiguous in memory. The Reference Processor 
(RP) has the charter for finding substructure points, basically 
through a scanning technique along with several speed-ups. 

Another novel aspect of the CP is that all processing operations 
are done on variable length data. The string operations can be of 
any length, the only limitation being that they must fit into the 
main memory. The numeric operations are limited to a 99 digit 
fractional length (numbers are represented internally as norma- 
lized floating-point decimal numbers). Furthermore, the length of 
numeric processing is controlled by the limit register. Also, a 
precision mode exists whereby numbers tagged with EM (empiri- 
cal) will limit processing precision to the number of fractional 
digits they contain, unless the limit register is set to a smaller 
value. 

The information flow for the CP is summarized in Fig. 18. The 
CP has four distinct sections, namely the Instruction Sequencer 
(IS), the Reference Processor (RP), the Arithmetic Processor (AP), 
and the Format and String Processor (FP). As shown in Fig. 15the 
CP has a common control bus that is used to control the various 
processors during program execution. The following four sections 
describe the functions of each of the processors in the CP. 

Instruction Sequencer 

The IS portion of the CP is the master controller and switching 
unit of the CP. It has the task of scanning the object string, and 
accumulating items in the stack for the various units it supplies. 
For example, operands are accumulated for the process units and 
any type conversion required is sensed and requested of the FP 
by the IS, as appropriate. Similarly, a structure reference and all 
of its subscripts are computed and placed into the stack which is 
then turned over to the RP for access. 

The IS also prepares data for assignment by the RP or output by 



OBJECT STRING 

DATA STORAGE n 

U 
Data Tronsfer 

Fig. 18. Informationflow during program execution. 

the IIO unit. It does this in the former case by stacking both the 
assignment reference and the data and in the latter case by 
stacking the data and turning control back to the system. 

Another major task performed by the IS is that of dynamically 
creating nested languaged blocks. Reference should be made to 
the companion paper on the SYMBOL language [Chesley and 
Smith, 19711if the concept is new to the reader. In quick review, 
blocks are language constructs consisting of program segments 
contained between the reserved words BLOCK and END 
(PROCEDURE and ON also establish blocks). Within a block, all 
uses of an identifier are local to that block, unless contained within 
a GLOBAL statement, and thus a different name table is 
constructed for each block. The overall structure of name tables 
has a static aspect determined by the way the program is written 
and a dynamic aspect determined by the sequence in which these 
blocks are executed. It is this latter characteristic that we are 
concerned with in this discussion. Whenever a new block is 
encountered by the IS, processing on the old block is suspended 
by pushing down all information about that block that must be 
retained (sometimes called the activation record) into the stack, 
and starting a new stack and activation record for the new block on 
top of the old stack. Of course, the new record must contain a link 
to the old record so that when the new block is completed, the old 
block with its status information can be reestablished. 

A further complexity occurs with procedure blocks because of 
the need to correlate actual and formal parameters (again, see the 
language paper) [Chesley and Smith, 19711. The IS transfers the 
links to the actual parameters from the object string to the stack, 
accesses the name table for the new block where the formal 
parameters occur as the first entries of this name table. The actual 
parameter links are then placed one-by-one into the formal 
parameter entries of the name table. Parameter linking complet- 
ed, the remainder of the normal block action for the procedure is 

Chapter 30 I The SYMBOL Computer 499 

accomplished. Whenever the IS encounters a name table entry 
tagged as a formal parameter, it indirectly accesses the actual 
parameter in its place, which may not be a statement, but may be 
a variable, constant, label, literal, procedure, or expression. This 
indirection mechanism is also handled in the IS stack. A push 
down of a limited set of status information takes place, mostly 
consisting of the address where execution of the object string was 
temporarily discontinued. Then the new object string of the actual 
parameter is executed, using the stack until the return operator is 
encountered indicating the end of the actual parameter string. 
This causes the previous status to be recovered from the stack and 
execution of the object string recommences with the results of the 
execution of the actual parameter remaining in the top of the 
stack. 

Reference Processor 

The basic task of the RP is to deal with structures. As a simple 
added duty, it accesses the address of an item from the name table 
for the IS. That is, the IS receives an address from the object 
string and turns it over to the RP with a request to “get simple 
address.” The RP performs several actions depending on the 
nature of the identifier. If it is an existing data item it provides the 
address of the data along with a code indicating its nature. If it is 
an uninitialized data item, it first assigns space before supplying 
the data address. In a similar manner it provides links to labels 
and procedures and if any identifiers are global, it first traces out 
the global indirection before returning the link. Any anomalies in 
the name table cause an error return. 

The structure handling task may be broken down into two 
subtasks: creation of structures and substructure and the referenc- 
ing of substructure points. Recall that structures are dynamically 
variablf: in all aspects. Thus, there are two further subsets under 
the creation of structures: creation of basic structures and the 
reconfiguration of substructures. As a subset task to the referenc- 
ing of substructures the language contains a character subscripting 
capability where the final subscript may be a “bound-pair’’ of 
subscripts which refer to the starting point and extent of a 
character subfield with the previous subscripts pointing to the 
field. 

The RP receives a linear representation of the structure to be 
created in the IS stack. The RP must store this structure in 
memory, replacing its linear form with a hierarchical form with 
links to lower or deeper elements occurring at the next higher 
level. Refer to Figs. 10, 11,and 13. It achieves this by assigning a 
new memory group each time it encounters a new left group 
mark, creating a line to the new group in the higher group and 
filling that group with elements maintaining a link back to the 
higher group in its own group link stack. Whenever a right group 
mark is encountered in the IS stack, the current memory group is 
closed with an “end vector” tag and the next higher memory 



500 Part 2 I Regions of Computer Space 

group continuation point is accessed from the group link stack. 
This process continues until the structure in the IS stack is 
exhausted and results in a linked, hierarchical structure. 

A similar process takes place when a new structure is assigned 
to an existing substructure point. The old structure is deleted (for 
later recovery by the memory reclaimer) and the new linear 
structure in the stack is structured and linked into the proper 
substructure point. All combinations of replacement are allowed: 
structure by a structure, field by a field, structure by a field, field 
by a structure. The second situation of a field replacing a field can 
be a problem in the case where the new field is larger than the old 
field because vector expansion must take place (in the opposite 
situation, nulls are inserted). The simple solution of providing a 
non-hierarchical link out of a new space is inadequate for the 
situation where successive words of a large vector are sequentially 
expanded. The solution is to link in a new memory group only 
after checking if there is no space remaining in the present group 
or the next one, and then rewriting the remainder of the present 
group adjacent to the new field. In this way, expansion of many 
fields of a vector makes use of the newly created space. 

The general algorithm for structure referencing is for the Rp to 
scan back through the IS stack to find the structured link, and 
then to proceed upward a subscript at a time, accessing each 
vector using special speed-up techniques as appropriate, until the 
final subscript is reached. At this point the RP replaces the 
subscripted reference in the IS stack with a link to a substructure 
or a link to a field if the data level was reached. At any point in 
structure referencing, the structure previously stored may not 
extend to the referenced point (oversubscripting). The language 
rule in this situation is that new space should be created as 
required to expand the structure to the subscripted reference 
point (fields filled with nulls) and the RP is responsible for 
accomplishing this task. 

If after structure referencing to the field level, a bound pair of 
subscripts appear in the IS stack, the RP scans and counts across 
the field, selecting the requisite characters and placing the result 
in the IS stack. An error is called if the bound pair is encountered 
before the field level is reached. 

Arithmetic Processor 

The AP is a serial process unit operating on variable length data 
consisting of floating-point, normalized, decimal numbers. These 
operations are done from high-to-low order to simplify data 
handling by allowing the register operations for both string and 
numeric processing to be similar. Also, comparisons are faster 
because a mismatch is immediately known. Two other important 
features are included in the processing hardware: a limit register, 
loaded by the IS under command of the language, which causes 
processing to terminate at the precision specified, and a precision 
controlling mode whereby each operand can be specified to be 

Section 7 1 Languagemsed Computers 

accurate to its existing precision and thus control the precision of 
the result. 

The operations add, subtract, multiply, and divide are per- 
formed. For add and subtract, one or the other operand is 
streamed through the unit (high-to-low) until the exponents are 
aligned, at which time both operands start to stream through. 
Since the number representation is magnitude plus sign, a 
positive result is desired so that the signs of the operands and the 
sign of the operator are combined to control which, if either, of 
the operands is streamed through in complemented form. High- 
to-low order arithmetic requires a nine’s counter [Mullery, 
Schauer, and Rice, 19631 to delay output over an intervening 
string of nines until a carrylno carry decision is reached. Eventual- 
ly, either an empirical end of an operand is reached, or the limit 
counter value is reached, or both exact numbers are ended. At 
this point, arithmetic is finished and control is turned back to the 
IS. 

Multiply is accomplished by successive additions or subtrac- 
tions followed by a shift until all of the multiplier digits are 
exhausted. Only after the full trapezoid of the partial product is 
produced is a rounding pass applied to achieve the precision 
requirements. The speed-up of adding one to the previous 
multiplier digit and subtracting from the partial product if the 
multiplier digit is larger than four is used. Of course, with 
multiply (and divide) exponents are added (subtracted) so that no 
shift of the fractional portions of the operands are required. 
Division is accomplished by a gradual non-restoring reduction of 
the partial dividend until the precision of the result is equal to the 
least precise of the two operands or the limit counter. 

Since processing in this system is accomplished serially in a 
decimal mode with few speed-ups, the speed of processing is 
sharply dependent on the size of the operands. When the limit 
counter is set to a small value, say 5, processing can be quite fast 
but 99 digit divides can be extremely slow. It is therefore 
important that the user selects only as much precision as he really 
needs. 

The numeric comparisons are performed by the AP as a subtract 
operation but terminate immediately upon a mismatch and return 
a zero result rather than a one. The IS has the task of combining 
the result returned by the AP with the desired comparison 
operation to generate the overall result in the IS stack. 

Format Processor 

The FP unit performs the string JOIN operation, the binary string 
operations AND, OR, NOT, the string comparison operations 
BEFORE, SAME, AFTER, the FORMAT and MASK operations, 
and the automatic type conversion on operands requested by the 
IS: numeric to string, string to numeric, and numeric to integer 
(used primarily for subscripts). These operations are also per- 
formed serially. 



Chapter 30 1 The SYMBOL Computer 501 

The JOIN operation is performed in the obvious manner of 
streaming the second operand onto the tail of the first operand, 
forming a single result operand. 

The binary operations are performed character-by-character, 
performing the required operation by producing 0/1 result 
characters, filling in the shorter operand with zeros. 

The string comparisons are also performed character-by- 
character, comparing successive characters until a mismatch is 
found according to the built-in ASCII collate sequence and 
returning a 0/1result. 

The FORMAT and MASK operators provide a powerful string 
manipulation capability for a wide variety of applications from 
payroll and banking forms preparation to system software charac- 
ter manipulation. FORMAT is a packed-numeric-to-string opera- 
tor that allows the user to describe the format of the result with a 
pictorial like character string. The operation is performed in a 
serial manner as dictated by the operands. The standard default 
conversion from packed numeric form to string is a subset of the 
FORMAT operation. MASK is a string-to-string operator similar 
to FORMAT. MASK can be used for character insertion, deletion, 
and spacing control. It is often used to control or measure the 
length of the fields. MASK is also processed in a serial-by-
character manner. 

System Supervision 

The Load, Compile, Execution, and I/O comprise the basic 
processing modes for the system. Three additional modes are 
defined for a terminal, off-line, on-line idle, and normal comple- 
tion. They are all passive modes and differ only in the allowed 
transitions that can take place upon an interrupt stimulus. For 
example, the normal completion state is the only state from which 
the RESTART execution command can be honored. RESTART is 
only allowed if the object string were left in a reusable state. 

The diagram in Fig. 14 shows a few of the terminal state 
transitions. These transitions are significant in that they are all 
supported by hardware algorithms. When the control code 
corresponding to RUN is received by the SS the transition from 
the Load mode to the compile mode can be processed without 
software intervention. Many other transitions can occur but they 
generally require some system software assistance. The transition 
from the Load mode to the Compile mode involves the following 
steps. If the IP is active it must be allowed to complete in such a 
way that the source string is intact. The task is then removed from 
the queue for the IP and added to the queue for the TR. In 
addition, the control tables in main memory are initialized for the 
TR making available the address of the start of the source string 
and the address of the procedure libraries to be used. 

A typical task queue is illustrated in Fig. 19. It is comprised of a 
linked list of entries (control words). The queue has a pointer to 

Queue Too Queue Bottom 

I Second Entry I 

I b I Third Entry I 
I 

Fig. 19. Typical task queue structure. 

the top entry and another pointer to the bottom entry. By 
maintaining both the top and bottom pointers it is easy to add an 
entry to either the top or the bottom of the queue. 

Each time a control transition occurs the SS updates the queues 
by performing appropriate add or delete actions to each of the 
processor queues involved. This is part of first phase of any SS task 
processing. The second phase of SS processing involves assigning 
work to free processors that have assignable tasks on their queues. 

The multiprocessing algorithm is centered araund manipulation 
and use of queues for the CP, TR, IP, MR, and DC. The SS has a 
general purpose queue processor that allows an item to be added 
to the top, added to the bottom, or deleted from any queue. The 
algorithm has a default mode which is completely hardware 
controlled. Various parameters can be set by software that bias the 
operating dynamics. For example, two time values are maintained 
for each entry in the CP queue. One measures the accumulated 
processing time and the other measures the actual time that the 
task is on the top of a queue. The values are preset to parameter 
values when a task enters the queue. When the values have been 
counted down to zero an SS task is generated to modify the 
queues. In most cases this is used to move the task from a high 
priority position near the top of a queue to a low priority position 
near the bottom of a queue. 

The processing flow in Fig. 14 is greatly oversimplified for 
general purpose system supervision. In Fig. 20, the control 
commands to and from the central processor are illustrated. The 
SS can command the CP to start on a task or to quit working on a 
task. The CP can terminate processing on a given task for one of 
six basic reasons. Consider the I/O completion. In most cases for 
most terminals the hardware algorithm for controlling I/O would 
be sufficient. If on the other hand, a batch processing terminal 



502 Part 2 1 Regionsof Computer Space Section 7 I Languageeased Computers 

NORMAL COMPLETION 


PAGE OUT 


START INTERRUPT OUE TO QUIT 

Y P110 COMPLETION 

\ ‘PROCESSING ERROR 
SUPERVISOR CALL 

Fig. 20. Mode transitions affecting the central processor. 

with spooled I/O were desired, it would be necessary to alter the 
control process for I/O with a system software procedure. To cause 
software to be called for a specific terminal upon an I/O service 
request, a specific control bit must be set in the terminal control 
word for that channel. This causes an automatic software call to be 
generated by the SS. 

The software call is handled in SYMBOL by starting a pseudo 
terminal operating with the requesting channel number as a 
parameter. In this manner the control header tables for the 
requesting channel can be operated upon as data. This is 
illustrated in Fig. 21 where an interrupt of a specific class causes 
the corresponding program specified in a software call table to be 
selected and control transferred to the pseudo terminal with the 

The SYMBOL Computer 
SYMBOL: 
A Major Departure from Classic 
Software Dominated von Neumann 
Computing Systems1 

R. Rice / W. R. Smith 

SYMBOL from a Performance Viewpoint 

The evaluation phase of SYMBOL IIR is just beginning with the 
hardware near completion. In order to obtain a preview of the 

‘From AFlPS SjCC, 1971, pp. 575-587. 

Software Call Table 

Terminal 
N 


Headers 

Fig. 21. Mechanism for handling a software call caused by a 
transition interrupt. 

parameter TN. Each different class of interrupt maps into a 
different control word in the software control table. In this 
manner only the software procedure desired will be accessed in 
virtual memory. In SYMBOL over 80 different software interrupts 
are controlled via the software control table located in the lower 
part of main memory. This represents the principal interface 
between hardware and system software. 

References 
Chesley and Smith [1971]; Corbato and Vyssotsky [1965]; Cowart, 
Rice, and Lundstrom [1971]; Glaser, Couleur, and Oliver [1965]; 
Kilburn et al. E196.21; Mazor [1968]; Mullery, Schauer, and Rice 
[1963]; Rice and Smith [1971]; Smith [1963, 19681. 

performance a set of measurements has been made on the 
hardware. 

Basic Operation Rates 
The clock period on SYMBOL IIR now stands at 320 nsec and may 
be later reduced to about 200 nsec. All measurements were taken 
at the 320 nsec period. The basic clock period in SYMBOL IIR 
contains long logic chains allowing relatively complex tasks to be 
performed. Many of the key logic chains contain 20 to 25 levels of 
AND-OR logic. The system uses Fairchild CTyL, type I through- 
out. The core memory is a 1964 model with a basic 2.5 Ksec cycle. 
Due to a semi-serial interface on the core memory it has an 
effective cycle of 4 ysec. 

An improved system (referred to as SYMBOL 11) has been 
studied and has been partially specified. This system is based on 
the technology of the experimental system, SYMBOL IIR, but has 
been considerably optimized. SYMBOL II is also specified to use 



- - 

Chapter 30 1 The SYMBOL Computer 503 

the latest cost orientated hardware technology. Conservative 
performance estimates of SYMBOL I1 will be made to give a 
comparison of how the SYMBOL algorithms would stand up in a 
contemporary hardware technology design. They will be based on 
a clock period of 100 nsec using a circuit family such as CTpL, 
type I1 and an LSI memory with a 200 nsec period. One should 
keep in mind that the following comparisons are between 
SYMBOL, which is a VFL machine running in a very dynamic 
execution time environment, and a more conventional fixed field 
machine running a language with the data boundaries determined 
at translate time. The former places more demands on the 
hardware while the latter shifts the burden of data management to 
the user. 

For the purposes of comparison SYMBOL IIR will be referred 
to as SIIR and SYMBOL I1 as SII. 

Field Processing Operations 

SIIR performs all field operations in a VFL serial-by-character 
mode. It was always assumed that after system evaluation and 
bottle-neck analysis, if warranted, certain operators such as those 
shown below would be executed in a more parallel mode by using 
additional hardware. SII estimates are based on serial processing 
and known algorithm improvements that reduce or do not 
materially increase the hardware required. 

The following table gives processing times measured on SIIR 
and estimated for SII. The execution time values are specified in 
microseconds and do not include the instruction fetch time or 
single word operand fetching and storing. 

SYMBOL IIR Measured Execution Times in psec 

Operation SIIR S I I  

1234+4321 5.6 1.2 
12345678-87654321 10.0 1.6 
50 digits + 50 digits 45.0 5.0 
Convert to floating point 1234 5.2 1.2 
Convert to floating point 12345678 12.5 1.8 
Convert to floating point: 50 digits 120.0 18.0 
Compare 12345678,87654321 4.0 1.0 
Compare 12345678,12345670 6.5 1.2 
labcljoin)def/ 4.5 1.2 
11 23456781join 1123456781 60.0 12.0 
1234 format IZZZ.DDI 9.0 3.0 
1234format IZBZBV) 8.0 2.6 
12345.6789formatl.$.'C***C***.DDI 76.0 15.0 

Compilation 
Several programs were compiled on SIIR and the overall times 
and space usage measured. The SIIR results are as follows: 

SYMBOL IIR Measured Compile Times in psec 

Average 
N O .  Bytes of Bytes of time per 

statements source object code statement 

Program A 195 8330 731 5 820 
Program B 70 3528 5112 1280 
Program C 157 7560 6025 760 
This represents about 75,000 statements compiled per minute on SIIR. 

A comparative table for SII assuming added flexibility on SII for 
handling various other languages in addition to the SYMBOL 
language is given below. The data is based on a sampled study of 
object code and projected execution times of several recently 
developed algorithms. 

SYMBOL Estimated Compile Times in psec 

Average 
Bytes of Bytes of time per 

Statements source code object code statement 

Program A 195 8330 2350 185 
Program B 70 3528 1735 220 
Program C 157 7560 2110 185 
This would give a compilation rate of 300,000 statements per minute. 

Paging Overhead 

SYMBOL has very low overhead for paging. The algorithms are 
based on direct hardware execution using parameters set up by 
software. A count of worst case paging overhead for SIIR in terms 
of memory cycles for a CP page out is given below. 

SYMBOL IIR Paging Overhead in Memory Cycles 

Item Worst case Average 

CP Shut Down 7 7 
SS Queuing and Push Selection 50 30 
SS Disc Servicing 8 6 
CP Start Up 6 6 

Total memory cycles 71 49 
Assuming an average of 5 psec per memory cycle counting internal 
cycles this gives 355 psec worst case. In Sll using an improved 
algorithm the overhead would be less than 20 psec. 

InpuUOutput 
The overhead for I/O for a time-sharing system becomes an 
important factor in providing adequate terminal response time. To 
illustrate the effect of the hidden software overhead an operation 
trace of a IBM 360/44 during FORTRAN IV output was per- 



504 Part 2 1 Regions of Computer Space 

formed, A similar operation was performed on SIIR. The equiva- 
lent output statements in both languages are shown in the table 
below. 

SYMBOL vs. FORTRAN Output Statement Traces 
in Memorv Cvcles 

Est. overhead 
Language Statement Traced not traced 

SYMBOL OUTPUT 12345.56 
FORMAT ID.DDD,,DD(; 130 0 

FORTRAN 
10 FORMAT (1X,E9.3) 

WRITE (6,lO)X 
3466 1000 

The trace of the FORTRAN statement indicated 1,753 instruc- 
tions being executed. Each instruction requires an average of two 
memory cycles. The trace program does not trace any of the 
supervisor or channel operations so that well over 3,000 and more 
likely near 4,500 memory cycles were used in executing the 
FORTRAN statement. 

Task Control Overhead 

In order to measure the overhead for compilation and execution a 
program consisting of one CONTINUE statement was executed 
on SIIR. This causes a null program to be entered, translated, and 
executed and thus places a large demand on any system resources 
required, isolating overhead from “useful” actions. All memory 
cycles were traced with the following distribution: 

Processor used Memory cycles 

ss 41 
TR 20 
CP 18-

Total 79 

This could be compared with any contemporary system where 
the entire compiler would have been paged in and much of the 
supervisor would have been executed to establish many resources 
that would not have been needed. 

Subscripting 

It would seem that VFL data structures imply slow data referenc- 
ing. However, the SYMBOL project demonstrated that efficient 
handling of dynamically varying data can be achieved with 
sophisticated list processing techniques. SYMBOL IIR estab- 
lished the foundation and the algorithms have now been devel- 
oped to be competitive with conventional fixed field indexing 
while retaining the VFL features. A few references and their 

Section 7 [ Language-Based Computers 

equivalent memory cycles for SIIR are given below. The subscript 
Fetch cycles are not counted. 

Typical memory 
Reference cycles required 

A[4,91 4-6 
A[16,32,6] 8-1 0 
“1 2-3 
W“1 9-1 2 
A 2 

A substantial improvement has been obtained for SYMBOL I1 
promising to make it as fast or in some cases faster than 
conventional indexing. 

SYMBOL from a Cost Viewpoint 

A study of a modern computer installation and its users as a total 
“system” reveals where and how the computing dollar is divided. 
Consultants from Iowa State University made available all the 
necessary data for such a study early in the program [Rice, 19671. 
Figure 1illustrates the I.S. U. IBM 360150 installation in 1966 at 
the time the study was made. This “pie” has since been compared 
with many other business and scientific installations of varying 
sizes with different computer systems. There is general agree- 
ment that the minor variations in the size of the slices for different 
installations do not materially affect the picture. This applies to 
most modern “classic software-dominated systems.” 

The objective of data processing is to solve problems where the 

1966 
$109.600 TOTAL COST/MONTH 

-+.-%- \ r (  

Fig. 1. The computing pie illustrated for Iowa State University 
360150 installation. 



Chapter 30 I The SYMBOL Computer 505 

“user with a PROBLEM” is the input and the “ANSWER” is the 
output. It is assumed that the user has his problem well defined 
and has the data available but the data is not yet programmed. The 
conversion of his problem to a computable language and the 
debugging necessary for correct execution is included in the total 
cost of operating an installation. 

I.S.U. calculated the total system operation on this basis as 
approximately $109,600 per month. The rate and labor costs were 
adjusted to normal commercial standards for the calculations. 
Both commercial and scientific problems were run in the problem 
mix. The following sections discuss the breakdown of the overall 
cost. 

About 37 percent or $40,000 is used by the problem originator 
and/or the professional programmer to convert the problem to a 
debugged, high-level language and to obtain answers. 

Thirty three percent or $36,000 is required for operating 
personnel, keypunch operators, file clerks, systems programmers, 
administration, space, power, etc. 

Thirty percent of the total pie or $33,000 goes €or machine 
rental. It is estimated that about one third of the rental expense 
goes for direct development of hardware and system software 
(perhaps half and half), one third for sales, service, and application 
support, and one third for administrative costs, overhead, and 
profit. 

The choice of a hardware configuration and its machine 
language is the tail wagging the dog. Inexpensive hardware and a 
good, easy-to-use programming system can reduce the size (i.e., 
total cost) of the pie but in conventional systems will not 
materially alter the relative size of the slices. 

In the following text the computing pie is used to illustrate 
SYMBOL concepts from a cost point of view. Each major slice will 
be further subdivided into its own percentage parts (i.e., each 
major slice will be 100 percent of the portion under consideration 
and will be divided into its constituent parts). 

Figure 2 shows the potential problem expense saving to be 

/---+I I 
BASIC SAViNGS 

USER3 TIME 
GREATER THROUGHPUT 
LESS PROFESSIONAL HELP 

ADDED SYMBOL SAVINGS 
USER3 TIME 

C L U N  LANGUAGE 
COMPLETE VARIABILITY IN

CIELDS,
STRINGS 
STRUCT~RES. 

NO DECLARATIONS FOR 
TYPE,
SIZE. 

SOURCE AND MACHINE 
LANGUAGE NEARLY 
IDENTICAL 

Fig. 2. Savings in problem expense. 

obtained from any good conversation-mode, high-level language, 
time-sharing system. It has been estimated that approximately 50 
percent of the problem expense slice can be saved in reduced user 
learning time, increased throughput, less professional program- 
ming support required, etc. We estimate the SYMBOL system 
will further reduce these costs with its “clean” and “concise” 
directly implemented high-level language and simplified operat- 
ing system [Chesley and Smith, 19711. 

The savings in the operation of an installation comes from four 
sources. This is illustrated in Fig. 3. First: A good time-sharing 
system will reduce the administrative help such as file clerks, 
keypunch operators, etc. It is estimated that this saving can be ten 
to fifteen percent of the installation operating expense exclusive of 
system rental. The SYMBOL system with conversation-mode 
multiprocessing and multiprogramming will also share in this 
saving. Second: The “system software” support required in a 
conventional installation i s  a very significant portion of the 
expense. Here SYMBOL shows a definite added saving. What 
system software remains can be written in the high-level, 
general-purpose language and will be easier to write, debug, and 
understand later. This will reduce the number of professional 
personnel required. Third: The SYMBOL language is directly 
implemented in hardware and thus uses less main memory for 
“system software.” For example, a resident compiler is not 
required. In addition, much less program swapping occurs and 
thus less virtual memory transfer time is needed. Hardware 
execution of algorithms is also faster and results in enhanced 
instruction execution speed. These features will require less 
programming attention and also provide more throughput per 
installation dollar spent. Fourth: The SYMBOL hardware is 
designed with modern integrated circuits and large two-layer 
printed circuit boards. The total system hardware package is 
compact and does not need raised floors, special air conditioning, 
or vast amounts of floor space. It is estimated that these SYMBOL 
features will reduce installation operating expense by an addition- 
al 20-35 percent or a total of 30-50 percent. 

--llO-15% 

BASIC TIMESHARING SAVINGS 
FEWER KEYPUNCHERS 
FEWER FILE CLERKS 

ADDED SYMBOL SAVINGS 
FEWER SYSTEM PROGRAMMERS 
EASIER APPLICATION PROGRAMS 
MORE PERFORMANCE /COST
EASIER FACILITIES 

NO RAISED FCOOR 
LESS AIR CONDITIONING 
SMALLER FIBOR AREA 

Fig. 3. Savings in installation Operation expense. 



506 Part 2 1 Regions of Computer Space 

The slice of the computing pie representing the computer 
manufacturer’s hardware contribution is illustrated in Fig. 4; 
approximately seventeen percent of this slice is attributable to 
hardware. For large systems the peripheral equipment and the 
bulk files can approximate about one half of the total cost. The 
main storage is another quarter and the CPU logic is another 
quarter. Naturally some variation in these amounts will occur 
from installation to installation and for different system types. 

The SYMBOL approach saves costs in several ways: The first 
area of savings is in the use of large two-layer printed circuit 
boards and two-layer printed circuit bases with cam-operated 
contacts for all system interconnections. 

Except for cables to peripherals and wires used for correction of 
design errors and for logical extensions no wire exists in the 
system. It is estimated as much as a 50 percent saving will be 
achieved over small board, wire-wrap back panel, multi-cabinet 
conventional systems. This same technique reduces costs in 
terminal equipment but not to such a large degree. We estimate 
that three percent of the manufacturer’s slice of the pie can be 
saved by this functionally-factored, bus-oriented, large printed 
circuit board design philosophy. The second way savings are 
obtained is in the hardware efficiency gained by the SYMBOL 
system. Since most of the normal system software is hard wired, 
very little resident main memory is used, thus providing much 
larger percentages of main memory for application programs. The 
execution of system instructions is done at “clock speeds” in a 
“macro” rather than a “micro” manner. This provides much faster 
high-powered instruction execution. Finally, more of the system 
hardware is simultaneously operating due to the system organiza- 
tion which allows multiple jobs to be in the main frame for 

Fig. 4. Manufacturer’s direct hardware expense. 

Section 7 I Language-Based Computers 

overlapped execution. We estimate that an additional 2 percent 
of the manufacturer’s slice of the pie is saved here. 

The largest and most important single saving for SYMBOL is in 
the “System Software.” Figure 5 illustrates this point. Irrespec- 
tive of whether the system manufacturer or someone else 
produces the software for a conventional computer this large 
expense is real. The SYMBOL features directly implemented in 
logic (i.e., hard wired) make unnecessary at least 80 percent of the 
conventional system software used in large time-sharing ma-
chines. This represents an estimated 16 percent saving in the 
system manufacturer’s slice of the computing pie. 

The field support of the system software is a major expense. The 
sheer volume of paper and record keeping to keep current with 
the latest changes is a major problem. In the design of the 
SYMBOL system this problem was given great attention. In 
studying the software delivered with large systems using a 
relatively static high-level language, we note that most (if not all) 
of the changes made were on the programmed implementation or 
were due to programming errors. Many levels of machine and 
assembly language programs and machine runs were between the 
hardware language and the programmers’ source language. This 
quite naturally introduces confusion (and errors) either in original 
programming or in understanding the hidden rules when using 
the system. 

It may also be noted that as more and more applications are 
programmed in a language it automatically becomes more rigid. 
We believe that the “clean,” high-level, general-purpose SYM-
BOL language is excellent for most uses. Since direct hardware 
implementation requires little field support in the software sense, 

. . /-
YANUFACTURER SUPPLIED. . .. GENERATED OR .. NTRACT SOFTWARE ......... 

Fig. 5. Manufacturer’s system software expense. 



Chapter 30 I The SYMBOL Computer 507 

35% KKENTIAL SAVING 

. 
h 

I 

Fig. 6. Manufacturer’s software application expense. 

we estimate approximately a six percent saving in the manufactur- 
er’s support expense. This is illustrated in Fig. 6. 

Good service is a must in a large system. The SYMBOL 
hardware has been engineered for good reliability and at the same 
time easy maintenance. We do not anticipate any added expense 
for SYMBOL hardware maintenance over conventional systems 
with equivalent storage and logic circuit counts. Our experience 
on the SYMBOL model has verified this belief. 

The previous material has split the computing dollar up in parts 
and has described how major savings can be realized with a “total 
systems” approach. The SYM.BOL techniques described herein 
together with good time-sharing, conversation mode practice can 
reduce computing costs up to 50 percent, Referring to Fig. 7, one 
may visualize how the savings in the whole computing pie add up. 

Conclusion] 

The traditional boundary between hardware an,d software has 
been weakened during the past ten years and is due for a 
significant shift beyond the token improvements. It is believed 
that in SYMBOL a major step towards significantly more capable 
hardware has been attained. 

The SYMBOL system is now entering an extensive evaluation 
phase where the system’s strengths and weaknesses will become 
more apparent through actual day to day usage. The developers of 

‘This conclusion is taken from the paper by Smith et al. that makes up the 
first part of this chapter. 

8% POTENTiAL SGING 

Fig. 7. Potential savings with a good conversation mode hard- 
warekoftware system. 

the system have gained much insight into the merits of each of the 
approaches taken. The overall approach to memory management 
is considered a breakthrough. The moving of data attributes from 
instructions to the data is considered fundamental. 

No claim is made that the SYMBOL system has been balanced 
for optimum performance and use of hardware. Certain critical 
areas of memory management and system supervision are felt to 
be 10 to 100 times more efficient than conventional means. 
Certain aspects of structure referencing are a major advance over 
software list processors but fall short of being competitive for some 
types of large array referencing. Many of the weaknesses in this 
first SYMBOL model were solved by the designers too late to be 
factored into the actual hardware. Many other aspects of the 
system such as the paging and system supervisor algorithms can 
be evaluated after significant usage experience. 

The computing professionals have debated for many years the 
questions: Can a compiler be developed in hardware? Can the 
heart of system supervision be committed to hardware? Can data 
space management be taken over by hardware? Can hardware be 
designed to take over major software functions? Can complex 
hardware be debugged? These and many other questions have 
been positively answered with the running SYMBOL system. The 
most significant part of the entire project is that the concepts were 
reduced to full scale, operating hardware. 

References 

Chesley and Smith [1971]; Rice [1967]. 



Chapter 31 

A Dual-Processor Desk-Top 
Computer: The HP 9845A 

William D. Eads / Jack M. Wdden / Edward L. Miller 

1. introduction 

What differentiates a desk-top computer, as described in this 
paper, from a minicomputer? Questions of this type are dangerous 
and difficult to answer because of the nonspecific usage of the 
terms and the wide variety of understandings of their meanings on 
the part of readers. Nevertheless, some useful generalizations can 
be extracted from common usage, even if they do not apply to all 
minicomputers or desk-top computers, or to all users. 

First, a desk-top computer, unlike a minicomputer, is a 
complete system that necessarily has a high degree of physical 
integration of its elements. It has an input device (a keyboard), a 
display device (a CRT or a single-line display), a mass storage 
device (mag card, cassette, or floppy disk, for example), a 
processor, memory, connectors for external I/O devices, and 
power supplies built into an integrated package which can literally 
fit on the top of a desk. This high degree of integration is made 
possible by the large-scale integration of the key components of 
the computer, including processor, memory, and control logic for 
internal peripherals. 

Second, the typical minicomputer is not ready for operation 
when it is received by the user, or even when all I10 devices are 
connected and it is initially powered up. System software, 
including the operating system, compilers, loaders, interpreters, 
editors, etc., must first be loaded into memory. The system must 
be told which I/O devices are (or may be) in the system at each I/O 
port, and which software module (driver) controls each device; 
this process is called I/O configuration. Only now is the system 
available for use. In contrast, the desk-top computer arrives with 
all system software in ROM already inside the machine, or in 
packages of optional ROMs that the user can easily install, 
generally in less than a minute. When I10 devices are attached, 
the computer can then generally determine for itself the device at 
each port and which driver is to be used. Users simply connect the 
external peripherals they plan to use, turn on the equipment, and 
begin using it. Therefore, desk-top machines incorporate a large 
degree of logical integration. 

A third distinction is in the method of use of the two machines. 
Whereas a mini may have several languages available for the user, 
and an editor which allows programs to be written in any of these 
languages, a desk-top machine typically has a single language, 
with a built-in program editor which understands the syntactic 

restrictions of that language, and which does not allow a line with 
syntax errors to be entered into the user’s program. Since there is 
but one language and one user at a time, the operating system for 
a desk-top machine can accomplish a task with fewer explicit 
directions from the user. There is no need to use a job control 
language to specify the language subsystem, any linkage editor, 
the memory requirements, or what peripherals are-to be allocated 
during program execution. The user simply enters the program or 
loads it from the built-in mass storage, edits ifnecessary, and runs 
it by pressing a single key called RUN. 

A similar distinguishing feature is that a desk-top computer can 
be used as a simple calculator as it stands, at any time during the 
entry or execution of a program. On most minis, the operating 
system doesn’t understand such constructs as SIN (15)unless the 
user has entered some interpretive language subsystem, such as 
BASIC. Even then they don’t necessarily have keyboard 
operation-but may require a program to be run. 

The desk-top computer which will now be described is 
Hewlett-Packard System 45, shown in Fig. 1. It contains a 
typewriter-like keyboard, two cartridge drives for user program 
and data storage, a 24-line x 80-column CRT, and a built-in 480 
line/min 80-column thermal printer, which can make a dot-for-dot 
copy of any CRT image. The internal thermal printer can also be 
used as a plotter with 560 by indefinitely many independently 
addressable dots. This machine has up to 64 Kbyte of user 
read/write memory (mV),plus a separate 98-Kbyte operating 
system including an editor, a BASIC interpreter, and a sophisti- 
cated I 1 0  scheduler. 

The system is presented in a top-down manner. Section I1 

Fig. 1. The 9845A desk-top computer. 



Chapter 31 A Dual-Processor Desk-Top Computer: The HP 9845A 509~ 

discusses the user environmer and presen the internal storage 
format for user programs. The system organization, including 
process and processor synchronization, control, and communica- 
tion, is outlined in Sec. 111. Some details of each LSI component 
are provided in Sec. IV. Section V focuses on interprocessor 
communication and memory address sharing. The paper con- 
cludes with some considerations about the primary I/O device, 
the CRT display. 

II. 	 The User Language and Internal Form of Programs 

The language of the System 45 is ANSI BASIC, enhanced to 
include string and matrix operations, subprograms, program 
linking, tracing, formatted output, mass storage files, and graph- 
ics. To aid in readability, variable names have been extended from 
a single letter or a single letter followed by a single digit to include 
zero to fourteen lowercase letters, digits, and/or underscores 
following a single uppercase letter. bfajor design goals in imple- 
mentation of the BASIC interpreter were: 

1 	Expandability, to allow additional language features to be 
added to the system by use of plug-in ROMs 

2 	 Interactive operation, to allow the user to interrogate and 
change the values of program variables, even as the 
program proceeds 

3 	 Maximizing speed of execution within the constraint of 
interactive operation 

4 	Allowing program lines to be parsed to a form from which 
they can be reconstructed, in a form similar to that in which 
they were originally entered 

An understanding of how these goals were achieved may best 
be found in an illustrative example. As shown in Fig. 2, the first 
operation in the use of the System 45 involves the keying of a 
program line into the computer. Completion of the line is signaled 
by depression of the STORE key. At this time the ASCII 
characters constituting the program line are placed in the line 
bufler, used for syntax analysis and listing. The system control 
supervisor calls the syntax supervisor, whose task is to convert the 
ASCII keystrokes into internal form, that is, into the format of 
program lines as stored in user read/write memory. Beginning at 
the left side of the source line, the syntax supervisor determines 
the line number and creates the first word of internal form in the 
internal form bufler (see Fig. 3). Next, the syntax supervisor 
attempts to match the statement name internal form (IF)with one 
within a linked list of statement keywords, a segment of which is 
shown in Fig. 4.In order to allow expandability there are actually 
as many as three linked lists which the syntax supervisor must 
scan in searching for a match with the statement name. First, an 
area of user readiwrite memory may contain binary programs, the 

:EY BOARD 
“Pu- . 	 . 

F R E 5 U PROGRAML T O FE X E C U T l G N  

PROGRAM 

L I S T I N G  


Fig. 2. The programming process. 

most flexible way of adding language capability. Second, optional 
ROMs, increasing language capability, may be plugged into an 
option ROM port. And finally, the fundamental machine capabili- 
ty which exists within every System 45 includes a fixed set of 
keywords. Tables of keywords associated with the above three 
mechanisms are searched in the sequence above (allowing an 
optional capability to override the capability of the basic machine). 
When a match is found, the character position of the keyword in 
the source line is placed in the upper half of the second word of 
the internal form buffer (Fig. 3), and a pointer, associated with the 
element of the linked list for which a match was found, is placed in 
the third word. This pointer actually points to the fourth word 
down from the end of the keyword (see Fig. 4),at which location 
the ROM code for execution of that statement is located. Two 
words up from the execution routine is a pointer to the routine 
which performs syntax analysis of the rest of the statement. The 
syntax supervisor uses this address to pass control to the next 
statement syntax routine. 

The statement syntax routine shown in Fig. 4 for the I F  
statement immediately passes control to the expression syntax 
routine, which determines the order in which operations will be 
performed and which operands are used by each operation. The 
expression syntaxer creates an internal form for expressions which 
contains a set of operations that will be sequentially executed at 
run time; the present activity is still part of storing the line. Each 
operation consists of an operator pointer followed by zero or more 
operand pointers. For example, the computation of A * B + C * D 
involves the multiplication of A and B, followed by the multiplica- 
tion of C and D, followed finally by the sum of these two products, 
and consists of the three operations, as illustrated in Fig. 5. 



510 Part 2 Regions of Computer Space 	 Section 7 [ Language-EasedComputers 

110 IF Time > Limit  t 100 THEN 200 
I I 

I10 +---LINE NUMBER 

M. 
CHARACTER LOCATION 

7 I I  
ADDRESS OF IF STATEMENT 

C - L E N G T H  OF LINE 
(WORDS OF 

OF IF IN SOURCE LINE INTERNAL FORM) 
INTERNAL FORM 

OF BOOLEAN EXPRESSION 
Time > Limit t 100 

ADDRESS OF THEN KEYWORD 
POINTER TO LINE NUMBER 200 

L J 

Fig. 3. The internal form of a typical statement. 

such as negation or square root, result in two-word entities called 
doubles. The concept of doubles and triples is extended to 

CHAR 1 CHAR 2 	 n-tuples, consisting of an operator pointer followed by n-1 
generalized operands. Thus the MAX function, which allows N 
operands, can be written as the (N+2)-tupkshown in Fig. 6.

CHAR N LAST BYTE HAS 2008 
The contents of the first triple of Fig. 5 are three sequential OFFSET FROM CHAR 1 

TO EXECUTION CODE %byte words: the first is called the operator execution pointer and 
is a pointer to the first word of an execution routine (in system 
ROM) which fetches and multiplies two numeric quantities; the 

BY INTERNAL CODE second and third entries are pointers into WW memory to the I l l  symbol table entries of variables A and B respectively. The form of 
CODE TO LIST THIS STATEMENT symbol table entries for variables is shown in Fig. 7. 

Within an expression, the result of each n-tuple is placed in a 
CODE TO SYNTAX THIS STATEMENT unique 8-byte scratch-pad register. Forty of these registers are 

Fig. 4. An entry in the linked list of statement keywords. El
OPERAND 1 

TRIPLE 	 BOPERAND N1 
Fig. 6. Internal form for the MAX function. 

I I 
Fig. 5. Internal form for the expression A*B+C*D. NAME OF 

VARIABLE 
CHAR N 

The operator-operand-operand entities in Fig. 5 are called 
triples, as are all other operations involving two operands (dyadic 
operations). Operations involving a single operand (monadic), Fig. 7. Format of a symbol table entry. 

0 



available in contiguous memory, so that any single expression can 
have no more than 40 operators. The first operator executed 
causes the first scratch-pad register, called TEMP 1, to be filled; 
the second operator fills TEMP 2, and so forth through the 
expression. Therefore the expression syntax analyzer actually 
creates the third triple of A * B + C * D (see Fig. 5)as +, TEMP 
1,TEMP 2. TEMP 1is the address of the temporary which will 
contain A * B, and TEMP 2 is the address of the temporary for 
C*D. The TEMP pointers are distinguishable from symbol table 
pointers by the fact that the sign bit (most significant address bit) 
is 1for symbol table pointers and 0 for all other machine pointers, 
including TEMP pointers. 

When the expression syntax analyzer recognizes the keyword 
THEN in the example of Fig. 3,  it places a word in the internal 
form buffer corresponding to the THEN part of the statement. 
Control is returned to the statement syntax monitor, which 
recognizes a line number of 200 and places into the internal form 
buffer a pointer to the symbol table entry for that line; only those 
lines which are referenced in the program are located in the 
symbol table. Statement syntaxing is now complete, and control is 
returned to the syntax monitor. At this time the length of line 110 
is known, so that the syntax monitor can place the length of the 
line, in words of internal form, in the lower half of the second 
word of the internal form buffer. The final task of the statement 
syntax analyzer is the placement of the new line in its proper 
position, ordered by line number, in the user’s program area in 
WW memory, 

The execution of a program as shown in Fig. 2 is most easily 
understood as a sequence of operations caused by the internal 
form of the program. The execution of a program in the System 45 
may be viewed as sequential execution of each program state- 
ment, under control of the operating system. We may therefore 
use line 110, shown in Fig. 3, as an example. Execution ofline 110 
within a program would proceed as follows. (The internal code 
pointer, ICPTR, points initially to the first word of the internal 
form of the line.) 

The operating system increments ICPTR by 2. 

The operating system transfers control to code at the 
address given by the word pointed to by ICPTR (IF 
statement code). 
The IF statement increments ICPTR and transfers control 
to the expression executor. 
The expression executor transfers control to the subrou- 
tine, which adds two operands. 
The add subroutine, using ICPTR, fetches Limit and 100 
and adds them, placing the result in TEMP 1and leaving 
ICPTR pointing to the internal code for the “greater than” 
operator; it then returns to the expression executor. 
The expression executor transfers control to the subrou- 

Chapter 31 1 A Dual-Processor Desk-Top Computer: The HP 9845A 511 

tine, which checks for the “greater than” relation of two 
operands. 

7 	 The “greater than” subroutine computes Time > (Limit + 
100). If true, it returns 1; if false, it returns 0. It then 
returns to the expression executor. 

8 	 The expression executor transfers control to the THEN 
subroutine, which returns immediately to the expression 
executor, which in turn returns to the IF  statement 
executor. 

9 	 If the value returned is nonzero, ICPTR is set, using the 
symbol table pointer for line 200, to the beginning of that 
line. If not, ICPTR points to the beginning of the next line 
following 110. 

10 Control is returned to the operating system. 
Because of the convenient form of the internal representation of 

the program line, overhead time for running the above sequence 
is quite small compared to the run time required to interpret the 
statement type, determine the sequence of the expression 
execution, and search through the program for a destination line 
number. 

Listing of program lines, using the internal form of statements 
(Fig. 3)and the linked list of keywords in ROM (Fig. 4),occurs in a 
process converse to that of syntax analysis. Using the first word of 
the internal form, the line number is formed in the source line 
buffer, followed by enough spaces (at least one) to begin the 
keyword in the column position given by the upper half of the 
second word of the internal form. From the third word of internal 
form (the statement execution address) the list routine subtracts 3. 
From Fig. 4, it can be seen that this is the address of the word 
whose lower byte is the offset of the statement keyword from the 
first word of execution code. This offset is then subtracted from 
the statement execution address to give a pointer to the ACSII 
representation of the keyword, which is located at the beginning 
of that section of the linked list of keywords, and follows the 
pointer to the next keyword. These characters are transferred to 
the source line buffer one by one until a byte is found whose most 
significant bit is set, indicating the end of the keyword. Next, the 
address of the beginning of the execution code is decremented by 
1to determine the location of the routine which lists the rest of 
the internal form for that statement. 

Any statement lister may call the expression lister, which 
determines the location of the operators and operands associated 
with that expression. Associated with the ROM execution code is 
the information necessary to list that operator and its operands- 
including the ASCII representation of the operator and the 
number of operands (and how they are arranged syntactically with 
respect to the operator)-as well as the precedence of the 
operator. The operator precedence, together with the sequence of 
operator execution in the internal code, furnishes the expression 
list monitor with sufficient information to list the expression with 



512 Part 2 I Regions of Computer Space 

the same sequence of operands and operators as was entered 
originally, along with required parentheses. The only differences 
between the entered and listed lines involve extraneous or 
missing spaces and redundant parentheses. 

In the example of Fig. 3, control passes from the statement 
lister to the expression lister after 110IF is listed, and it produces 
Time > Limit + 100. Note that no parentheses are listed (even if 
they were placed around Limit f 100when it was keyed in). The 
statement lister then adds THEN from a keyword association with 
its associated execution address and finally adds 200 from the 
symbol table reference. Control is then transferred back to the 
operating system to output or display the now complete line in the 
source line buffer. 

The final feature of the language system to be discussed is that 
of the user’s ability to interact with the program as it is executing, 
a capability which is called having a live keyboard. Since all 
variables are accessible through a symbol table, since the program 
execution monitor has control of the processor at the end of the 
execution of each line, and since the system was built to allow the 
addition of variables and the addition or deletion of program lines 
at any time (even between executions of program lines), the 
capability of interacting with an executing program is extensive. 
Users can interrogate or change variables as the program runs; 
they can compute complex expressions; they can even delete, 
add, or modify program lines as the program executes. While 
these capabilities may be dangerous for a production program, 
they are certainly convenient during the development and 
debugging of new programs, and they can be removed during a 
program run by the execution of the command SUSPEND 
INTERACTIVE. 

The next section provides an overview of the multiprocessor 
system used to implement the user program environment just 
described. 

111. System Organization and Control 

Examination of Fig. 8 reveals that all communication with the 
outside word is via the Peripheral Processing Unit (PPU). A12 
peripherals-keyboard, CRT, printer, etc.-are tied to the PPU’s 
110 bus. The Language Processing Unit (LPU) has no peripherals 
attached to it, and it can communicate only with the PPU. 

The PPU is responsible for managing all the system resources 
except block 0 random-access memory (RAM), which is managed 
by the LPU. The resources managed by the PPU are block 1 
RAM, all I/O devices, and the LPU. 

Interprocessor Communications 
Communication between the processors is solely through the use 
of shared RAM. There are no dedicated signal lines or interrupts 

Section 7 1 Language-Based Computers 

between processors. One mode of communication is via messages 
stored in buffers. Each processor has a fixed buffer of seven words 
for sending a message to the other processor. These buffers are 
guarded and controlled through flags. The second mode of 
communication is quite diverse. Certain words throughout RAM 
are allocated as convenient for the processes needing them. They 
are used as flags, semaphores, tables, etc., to synchronize and 
control the two processors in ways that are specific to the 
particular task. 

In this controlicommunication mechanism, there are several 
cases where a processor must have exclusive access to a table, 
counter, or buffer area; i.e., while one processor is using this area, 
the other processor must nut be allowed access into it. This kind of 
exclusive access can be rigorously controlled by the use of a 
two-flag exclusion algorithm first proposed by T. Dekker [Shaw, 
19741. This algorithm is implemented (in a somewhat simplified 
form) in the HP 9845A to control LPU/PPU access to critical 
constructs. For exampIe, the LPU alone can create buffers; once 
created, a buffer can be filled by either the PPU or the LPU. Both 
the LPU and PPU may have occasion to read from or modify a 
given buffer. Buffers may be destroyed by either the PPU or LPU. 
Clearly, such cooperative use of buffers requires controlled 
access. 

The simplified two-flag algorithm of Fig. 9, implemented in the 
HP 9845A, does not include the case of mutual exclusion, which, 
in the general case, could lead to endless synchronized deadlock if 
not accounted for. In the HP 9845A this cannot occur, because the 
“failure” paths for the LPU and PPU are different; the LPU 
“waits,” whereas the PPU “gives up” and returns to process 
scheduler. 

This exclusive access problem is quite fundamental in all 
multiprocessor systems-which usually implies large systems. It 
may surprise some to find it occurring in a desk-top machine. 

UO Process Handling 

The PPU establishes and controls the keyboard entry protocol. 
When the user makes a complete keyboard-record entry (termi- 
nated by STORE, EXECUTE, or CONTINUE), the keyboard is 
disabled until the system interprets the record; i.e., the system 
examines the line and determines what it should do. As soon as 
the record is interpreted, the keyboard is reenabled while the 
actual execution takes place. This sequencing allows concurrent 
execution of a number of commands but prevents the user from 
submitting a new record before the system is able to accept it. The 
PPU allows concurrent execution of keyboard commands, and also 
execution of keyboard commands concurrent with program 
execution if there is no resource conflict involved. An example of a 
conflict would be a GET command to load a program from a tape 
cartridge, followed immediately by a REWIND of the cartridge 



1-1 	r 

INTERPRETER 

AND OPTiONRL 

TAPE C A R T R I D G E  
DDRESS 

LP" REGISTERS 

SELECT CODE 15w 
3 4 - 1 7  

15-BTT 	 TAPE CARTRIDGE 
MEMORY ADDRESS LANGUAGE ( O P T I O N A L )  

LANGLRGE ROMS 

EXTENDER PROCESSING U N I T  

FSELECT CODE 1 4  

OPTIONAL 


SWITCH REGULATED 
POWER S U P P L I E S ,  % CRT GRAPHICS CLOCKS m--- O P T I O N  

- ,  	 16K WORDS 
0 	 (LOCAL R/W-. MEMORY) 

15.BIT a>5 SELECT CODE 13m-7ADDRESS SPACE d (READ &ND WRITE) 
FORMATTED EY V I R T U E  OF H O I  
IT WAS STORED I N  MEMORY z 

BLOCK 1 I 
G? 


OPERATIhG DUAL PORT FORMATTED S E R I A L  CHARACTER STREAM 
rn IN 7 B I T S  P L U S  CONTOL L I  


s ~ ~ I ~ ~
~ MEMORYM CONTROLLER 	
w 

8 z 

0 +I 

m c  r - -7  

w., L ' 
 11 

E 


P > . z  	 1 1
1 1 
I 1 


15-BIT I '  CRT MEMORY ACCCSS 

2 g 	 IDDRESS S P I C E  1 '  PORT W I T H  M U L T I -  

P L E X E D  L I N E  BUFFERS 

2 R 2  BLOCK 0 


$ S  ADDRESS SPACE 	 SELECT CODE 0 
? E  	 8K WORDS 

(INPUT OhrYI 

STANDRRD 

O P T I O N A L  I N T E R N A L  
ex WORD P E R I P H E R A L  THERMAL P R I N T E R  

INCREMENTS PROCESSING U N I T  SELECT CODE 0 

ADDITIONIZL THREE 

(OUTPUT ONLY1 

1 WORD=16 BITS 


Fig. 8. System 45 hardware block diagram. 

9(-) C L E A R  

F L  i s  a f l a s  the LPJ 
uses to protect tnai 
same e n t , t y  'ros PW 
acce55. 

C L E A R  	 C L E A R  

(*)(.:By:.") 
C L E A R  F? 

i?U C O N T R O L  

Fig. 9. The two-flag method of exclusive access. 

(-ENTRY) 


'P i s  8 f l a g  t h e  PPU 
u5es to protect an 
entity ageinst LW 
aICces*. 

before the GET is completed. When concurrent operations 
cannot be allowed, a SYSTEM BUSY message is given. Since all 
peripherals are attached to the PPU, the PPU must perform all 
transfers of data and programs between the desk-top computer 
and peripheral devices. 

IiO processes can be initiated by the program being executed 
by the LPU, or by the user via keyboard entry commands. Most 
such commands can also be stored as a part of a program. The 
LPU syntaxes, stores, and executes all programs; thus it must be 
able to interpret and cause execution of most commands. There- 
fore most commands, although processed by the PPU during 
keyboard entry, are "handed over" to the LPU for interpretation. 

Thus, each I/O activity is initiated by the LPU but is turned 
over to the PPU to be carried out. Each task involves both 
processors carrying out specific subtasks. These subtasks include 
communication between processors concerning the state of the 
subtasks, as well as monitoring, synchronizing, and terminating 
the overall task. To explain this, each processor and its role will be 
described. 

513 



514 Part 2 1 Regions of Computer Space 

PPU Process Definition 

Except for initialization (power on, SCRATCH ALL) and the 
Process Scheduler (which is the “idle loop”), all PPU work is 
carried out by processes. When a process is needed it is invoked 
by “creating” it. A user process and a keyboard process are 
created during initialization. All other processes are created 
dynamically at the beginnings of the various individual tasks and 
are destroyed upon their individual completions. 

A process is represented by at least one Process Control Block 
(PCB). The PCB is a lo-word WW memory entity used to contain 
(either directly or indirectly) all the information necessary for the 
PPU to execute the associated process. Figure 10 shows the 
structure of a PCB. 

PCBs are taken from block 1 RAM by the PPU memory 
allocator, which maintains a PCB Free List. They are linked to the 
Process Tree during their active life, and are linked back to the 
Free List when the process is completed. The Free List is linked 
through the first word of each PCB. 

Some processes need more temporary process control storage 
than the 10words of a PCB. Those 10words are strictly allocated 
in use as per Fig. 10. Additional 10-word entities called data 
blocks may be obtained from the Free List; they are linked to the 
PCB via the ninth word, Data Block Link (DBL). 

Active PCBs are linked together in various ways through the 
Brother Link (BL), Father Link (FL), and Son Link (SL), labeled 
in Fig. 10. All processes invoked by the user through execution of 
a program are represented and controlled by a tree of PCBs linked 
to the user process (which was created at initialization and is never 
destroyed). The hierarchy of processes is implemented via the SL 
BL, and FL links, to create an orderly control structure. In 
general, the creation of a process, communication between 

Section 7 1 Language-Based Computers 

processes, and the removal of a process take place between 
processes no more than one level apart in this control structure. In 
this hierarchical structure, the SL points to a process at a lower 
level, the FL points back up to the higher-level process, and the 
BL points to associated processes at the same level. 

A process tree which might arise during the execution of a 
program is illustrated in Fig. 11. The Brother Links (BLs) 
represent the existence of more than one incomplete IiO operation 
invoked by the execution of the program. This can only occur 
when the system is running in the OVERLAP mode, which allows 
concurrent, overlapped IiO operations (discussed later). 

In addition to the process tree linking with SL, FL, and BL 
illustrated in Fig. 11, the PCBs are linked together into other 
important lists through the tenth word, i.e., the Queue Link. 

Each peripheral is attached to the machine via an interface 
which has a peripheral address (select code) in the range 0 to 15. 
Ea%h I/O operation invoked by a program statement specifies 
(explicitly, or implicity by system default) the peripheral address 
of the device to which it is directed. When the LPU passes to the 
PPU the I/O process to be handled, the PPU creates a PCB to 
represent the process and links it into the Process Tree. In 
addition to this process control mechanism (which is independent 
of particular devices or select codes) it must also maintain 
knowledge of the specific device. And if other operations to that 
device exist (in the Process Tree), it must also see that the 
chronological sequence is preserved. This is accomplished by also 
linking the PCBs into queues-one for each peripheral address. 
These queues are headed (pointed to) by a table with an entry for 
each peripheral address. In addition to the actual hardware 
peripheral addresses 0 to 15, there are pseudoaddresses 16, 17, 
and 18, which represent various areas of the CRT: those for 
PRINT, DISP (“display” command) and implied DISP. 

9 (REPRESENTS THE OVERALL 
L E V E L  ’ OPERATING SYSTEM) 

(INVOKED 6 Y  U S E R  PRESSINGL E V E L  ! RUN KEY TO EXECUTE PROGRAM) 

P R I N T  

DEL 1 OATA BLOCK LINK 1 
Q L  QUEUE LINK 

PROCESS CONTROL BLOCK 
(PC8) 

PROCESSpJPROCESS 

L E V E L  2 ( I N I T I A T E D  110 GENERATED B Y  
E X E C U T I O N  OF THE PROGRAM) 

_. 

Fig. 10. Format of a process control block (PCB). Fig. 11. A typical process tree linking several PCBs. 

I-&\ ‘  i 



Chapter 31 1 A Dual-Processor Desk-Top Computer: The HP 9845A 515 

In addition to the queue of operations for the peripheral 
address, there is always an associated device buffer. The same 
table which heads the peripheral address queues also contains 
pointers to those buffers. This total construct-pointers to PCBs 
in device queues, and pointers to device buffers-is called the 
QTABLE. 

QTABLE plays an important role in the overall process 
scheduling. It was mentioned earlier that the Process Scheduler is 
the PPU idle loop. What the Process Scheduler does to find 
processes which can be “worked on” is to scan QTABLE for 
peripheral addresses with active queues attached. If such a queue 
exists, the top PCB on the queue is examined to see if that process 
is in a state where anything can be done. Ifnot, the scan continues 
to the next peripheral address. If something can be done, 
depending on the state of the process, it is done. 

In the System 45, the normal mode of I/O transfers is 
“interrupt-by-the-character,” with all transfers to the peripheral 
carried out in an Interrupt Service Routine (ISR). The PPU has 
vectored interrupt as part of its structure (implemented in the 
Inputloutput Chip, IOC in Fig. 8).The overall process of carrying 
out such tranfers occurs in three stages: 

1 	Queueing up of the process, obtaining the resources 
required (buffers, etc.), and activation of the ISR (setting 
interrupt vector table entry, etc.), followed by return of the 
PPU to the idle loop or other tasks 

2 	 Character-by-character transfer as interrupts occur and 
watching for the last transfer, when interrupt transfers are 
terminated 

3 	 Final termination of the process-release of buffers,. de- 
queuing of PCBs, etc. 

As indicated in Fig. 10, the third word of the PCB is a Process 
Status Word (PSW) in which the state of the process is recorded. 
During its lifetime, a process may go through a number of states to 
accomplish the three stages of I/O transfer activity previously 
mentioned. Figure 12 shows the state transitions possible in the 
life of a PCB. The device transfers in the ISR occur during the 
BLOCKED state. 

Formatting Output 

Formatting from internal stored form to external form (such as 
ASCII character streams) is carried out in the act of transfer from 
the block 0 (of memory) data buffer to the block 1 (of memory) 
device buffer. This is performed by the PPU, and so it is 
interesting to see how this is done within the control structure 
that has been described. 

To see the process involved, refer to Fig. 13. Suppose that the 
LPU, in executing a program, has encountered a PRINT state- 
ment with n expressions (items) in its list whose output is to be 
directed to an external printer at peripheral address 8. The LPU 
obtains a data buffer adequate to hold the n items (the size needed 
is determined when the PRINT statement is syntaxed and stored) 
from the block 0 memory manager. It sends a Start I/O message to 
the PPU with three items of information-the peripheral address, 
the block 0 data buffer address, and the starting address for the 
PPU PRINT routine. 

The LPU now begins (without further concern for the PPU) to 

PROCESS 
CREATED 

WAITING FOR ) 

HOLD OR 
SON-HOLD 

1/0 TRANSFER 
IN PROGRESSJ-I_I-\I / /\ / 

/ READY \ 
I 1 

RETAINING A 
DEVICE BUFFER ..i--bII 

COMPLETE 

PROCESS 
REMOVED 

FATHER OR SON 

SON BLOCKED 

Fig. 12. Possible state transitions in the life of a PCB. 



516 Part 2 1 Regions of Computer Space 

BLOCK 0 MEMORY 

SELECT CODE 

I +  
LpU evaludes I/O list. 

VALUE Z= 
From data bufferslusing iMAGEl -

Fig. 13. LPU/PPU interaction during output. 

evaluate the output list expressions. As each is evaluated, it is put 
in the next storage cell of the data buffer, followed by a WAIT 
item. Simultaneously, the PPU responds to the Start I/O message 
by obtaining a PCB, filling it with the buffer pointer (BP) and 
starting address (PEP), and setting it up in the Process Tree, and, 
we will assume, getting it queued at the head of the appropriate 
peripheral address queue. The process is in the HOLD state, but 
the PPU immediately attempts to allocate resources and activate 
the process. Assuming that a device buffer is available, the PPU 
will immediately allocate it and set the PCB READY. The Process 
Scheduler will see the READY and begin execution through the 
PEP. 

The routine at PEP begins the formatting. It will obtain items 
from the data buffer, formatting each into the device buffer. Three 
obvious possibilities exist: 

1 	 The formatting catches up with the LPU, by encountering 
the WAIT item in the buffer. The PPU will change PEP to a 
“continue formatting” routine, leave the PCB READY, and 
return to the Process Scheduler. This allows the PPU to 
work on other processes. 

2 	 The formatting has finished all items when it finds a “done” 
item in the buffer. The PPU will set the interrupt return 
vector, initiate the interrupt output, set PEP to a “clear up” 
routine, BLOCK the PCB, and return to the Process 
Scheduler. The PPU works on other I/O and on this I/O by 
interrupt until transfer is done, then marks PCB complete. 

3 	 The formatting generates enough data to fill the device 
buffer, and so the PPU initiates UO, sets PEP to a “record 
gone, resume formatting” routine, sets PCB BLOCKED, 

I 
I BLOCK I MEMORY 

=(Process Control Biockl 

one for each 
I/O process 

I Ppu begin5formattingj l
I~HEADER~FORMATTEDOUTPUT\ 

I PPU initiates actual transfer 
! T
I I
I TO device ’ 
I “Interrupt-by-choracterllfori aii asynchronous devices 
I 

Section 7 1 Language-Based Computers 

and returns to the Process Scheduler. When the final 
interrupt occurs, the ’process is made READY, and for- 
matting resumes. 

In case 1above, the Process Scheduler, finding the PCB READY, 
will execute the routine at PEP. This routine will check whether 
the WAIT item is still next, or whether it has been replaced by the 
LPU with data. If WAIT is there, it just returns; thus each scan of 
the queues causes a recheck. Notice that there is concurrency 
present in this process. The LPU is evaluating expressions and 
filling the buffer while the PPU follows it (as processor time is 
available) item by item in the formatting. 

Device Conflicts 

One additional task that is extremely important in the correct 
handling of I/O is the management of possible device conflicts and 
the allocation of resources. These conflicts are handled in the 
Process Scheduler routines which switch a process in the HOLD 
state to READY. 

Some obvious things are involved in resource allocation; for 
example, device buffers from the pool at block 1 WW memory. 
One item not so obvious is the DMA channel. There is only one 
DMA channel available. However, DMA transfers may be desired 
for several processes on different peripheral addresses. Thus, the 
resource allocator must keep track of DMA channel utilization and 
sequentially allocate it to processes needing it. 

Another area of device conflict is the relationship between 
synchronous and asynchronous devices. Synchronous devices, 
such as tape transports, require service at intervals dictated by the 
device. If service is not rendered when required, data are lost or 
erroneous data written. A synchronous device on a low-priority 
interrupt might have the processor taken away by a higher- 
priority interrupt, causing it to miss an essential transfer. 

If a synchronous device is protected from this by being allowed 
only on high-priority interrupt levels, DMA transfers may still 
cause trouble. The DMA, if activated, may “steal” so many 
memory cycles that the interrupt service routine response may be 
slowed to a fraction of its normal speed. Again, an essential 
transfer may be missed. 

These conflicts can be resolved by delaying the transfer from 
HOLD to READY for processes that would create these condi- 
tions. 

Overlapped and Serial VO Processing 

The Process Tree and PCB linkage shown in Fig. 11show the 
existence of PCBs (and therefore active I/O processes) at the head 
of three device queues: the printer for the PRINT process; the 
CRT for the DISP process; and a mass storage device for the 
PRINT # process. Since I/O transfers are, in general, interrupt- 
by-character (or DMA for the mass storage device), a number of 



Chapter 31 I A Dual-Processor Desk-Top Computer: The HP 9845A 517 

processes at the heads of different queues could have the I/O 
transfers initiated and be in the BLOCKED state. Transfers would 
occur randomly from one process to another as interrupts 
occurred for the various devices. This is bufered and overlapped 
UO. It is the mode for which the System 45 I/O Process Handling 
was designed. The LPU is allowed to “forge ahead,” sending new 
Start I/O messages and filling new data buffers as long as memory 
is available for data buffers, PCBs, and device buffers. 

However, there are times when all of this overlapped activity is 
not desired. For example, it disconnects the LPU execution of a 
PRINT statement from the PPU outputting of the data. This can 
be very confusing, particularly during program testing and 
debugging. 

At the end of each program line, the LPU examines a flag which 
serves to control this overlapping of IIO. If the flag is in the 
SERIAL mode, the LPU waits for the PPU to send it a message 
that the output associated with that line is finished. It will then 
start the next line. If the flag is in the OVERLAP mode, the LPU 
does not wait for the message, but proceeds on to the next line. 

The PPU does not normally send a message to the LPU upon 
the completion of every IiO operation, so how does it know to do 
SO when the mode is SERIAL? In the discussion of formatting, it 
was mentioned that the PPU knew it was at the last item of a 
PRINT list when it encountered a “done” item. This item is 
placed there by the LPU when it has evaluated the last item on 
the list-if the mode is OVERLAP. If the mode is SERIAL, it 
places a “reply” item instead of “done.” The PPU knows, when it 
sees “reply,” that this is the end of the list and that it should send a 
message to the LPU that the I/O process is done. 

IV. The Hardware Architecture of the 9845A 

The internal architecture of the 9845A hardware is illustrated in 
the block diagram of Fig. 8. The major elements of the diagram 
are the two processors called the Language Processor Unit (LPU) 
and the Peripheral Processor Unit (PPU), and the Memory 
Address Extender (MAE) with its associated four 32-kiloword 
blocks of memory (block 0 through block 3). Associated with the 
memory are the Dual Port Memory Controller and the CRT 
Memory Access Port. 

The main purpose of the LPU is to execute the user’s program. 
To do this it executes a BASIC interpreter encoded in ROM 
located in blocks 2 and 3 of memory. The user’s program is stored 
in block 0 of R/W memory. The main function of the PPU is to 
perform I/O and certain other activities. A communications 
protocol involving shared memory is the basis of LPU/PPU 
communication. 

The LPU and PPU are both processors that, in isolation, can 
command 16-bit memory address spaces. The PPU does in fact 
have access to such a 64-kiloword portion of memory, i.e., block 0 

and block 1.Assembly language coding for the PPU can, in fact, 
ignore the memory address extension scheme altogether and 
simply consider the designations of block 0 and block 1 as an 
artificial distinction between the two halves of its address space. 
For the LPU, however, the 64-kiloword address space is split into 
parts of equal size (32 kilowords) and logically distributed among 
blocks of memory, the sum of whose memory space is far in excess 
of the address space of the processor. In the scheme embodied by 
the MAE the LPU can also access the same memory that the PPU 
does. This gives rise to the need for the Dual Port Memory 
Controller, whose function is to resolve conflicts arising when the 
LPU and PPU try simultaneously to access the same block of 
memory. 

The CRT Memory Access Port accesses memory on behalf of 
the CRT to provide ongoing access to the information stored in the 
system-managed CRT buffer in block 0. The alphanumeric (i.e., 
nongraphic-mode) display is formed on the basis of that informa- 
tion, which must be reread each time the CRT screen is to be 
refreshed. 

Neither the LPU nor the PPU is a homogeneous, monolithic 
entity. Each is composed of smaller functional units which are LSI 
chips. Among these units are a Binary Processor Chip (BPC), 
Input-Output Controller (IOC), and, for LPU only, an Extended 
Math Chip (EMC). The BPCs used in the LPU and PPU are of 
identical design, as are the IOCs. The main functions of a BPC are 
to fetch instructions from memory, execute most instructions that 
reference memory, execute various instructions that perform bit 
manipulation, and accomplish program branching. Thus, the 
BPCs are relatively general-purpose devices, and each serves 
more or less the same general function in the LPU and PPU. The 
main functions of the IOC are to provide I/O and instructions for 
manipulating firmware stacks. The reason the PPU has an IOC is 
to obtain both those capabilities. The LPU, however, does not do 
I/O; it contains an IOC merely to obtain the use of the stack 
instructions. The main function of the EMC is to perform BCD 
arithmetic. This is strictly an LPU activity; therefore the PPU is 
not equipped with an EMC. 

Also shown in Fig. 8 is the PPU-managed I/O Data Bus and the 
various peripherals that are normally permanently connected to 
it. The manner in which I/O is accomplished is discussed in 
conjunction with the IOC. The notion of a select code as the 
address of a peripheral will be fully explained at that time. At this 
point, however, it is appropriate to point out that, in general, two 
peripherals cannot have the same select code. But the keyboard 
and the internal thermal printer both have select code 0. This is a 
special case that doesn’t cause any problems, because the 
keyboard is strictly an input device and the printer is strictly an 
output device. 

There now follows a description of the LPU hardware. Since the 
hardware description of the PPU is a subset of the LPU hardware 
description, the PPU will not be described separately. 



_ _ _ _  

518 Part 2 Regionsof Computer Space 

1: 
I 

Fig. 14. The processor on its substrate. 

Hardware Description of the LPU 
The LPU consists of seven integrated circuits mounted on a 
ceramic substrate (see Fig. 14). Of these, the BPC, IOC, and 
EMC are N-channel MOS LSI chips. The remaining four chips 

I 

USED IN PPU ONLY 

PERIPHERAL BIB'S 


Fig. 15. Processor block diagram. 

-*---.- , -. -.,~.-y----.---7--"-

Section 7 1 Language-Based Computers 

(Bi-Directional Interface Buffers, or BIBs) are entirely bipolar and 
serve as buffers to connect the LSI circuitry to circuitry external to 
the substrate. 

Figure 15 is a block diagram of the LPU and PPU. All of the 
processing capability of the processor resides in the three LSI 
rhinq: exceot for inversion of the IDA Bus the four BIBs are 

r - 7  ~ 

logically powerless. The three LSI chips communicate among 
themselves, and also with the outside world, via a collection of 
control signals and a 16-bit bus called the IDA Bus (IDA stands for 
instructionldataladdress).The processor uses 16-bit addressing 
for memory and implements a single level of indirect addressing.' 

Memory Conventions 

Most of the traffic on the IDA Bus has to do with memory. Both 
the address of memory locations and the contents of those 
locations (data and machine instructions) are transmitted over the 
IDA Bus. Further, memory can be physically distributed along the 
bus. Each of the three chips in the processor contains registers 
which are addressable, and of course, addressable memory also 
exists external to the processor. 

'Except during interrupt, when a two-level indirect is forced. This is 
explained in connection with interrupts. 

POWER SUPPLIES 
AND GROUNDS 

MEMORY BIB'S 




The first 32 addresses of the address space do not refer to 
external memory. Instead, these addresses (0-378) are reserved to 
designate addressable registers within the microprocessor. Figure 
16 lists these registers. There are also a number of nonaddressable 
internal-use registers in the processor. Registers range in size 
from 1to 16 bits; most are 16-bit registers. 

A memory cycle involves some control lines as well as the IDA 
Bus. Start Memory (STM) is used to initiate a memory cycle by 
identifying the contents of the IDA Bus as an address. Either of 
two memory complete signals is used to identify the conclusion of 
a memory cycle. These are Unsynchronized Memory Complete 
(UMC) and Synchronized Memory Complete (WC) .  A line called -
ReadlWrite (RWD) specifies the direction of data movement. 
Each element in the system decodes the addresses for which it 
contains addressable memory. To initiate a memory cycle, an 
element in the system puts the address of the desired location on 
the IDA Bus, sets the ReadiWrite line, and gives Start Memory. It 
is part of the system definition that whatever is on the IDA Bus 
when a Start Memory is given is an address of a memory (or 
register) location. Then, elsewhere in the system the address is 
decoded and recognized, and that agency begins to function as 
memory. 

Among the several service functions performed by the BPC, for 

o n l y  b e  read b y  reading Q13, .._._VOID - - - - -

Fig. 16. The processor registers. 

Chapter 31 I A Dual-Processor Desk-Top Computer: The HP 9845A 519 

the IOC and EMC, is the generation of a signal called R4L 
(Register Access Line). This occurs whenever an address on the 
IDA Bus is within the range reserved for register designation 
(0378). RAL is used by the external memory to prevent its 
response to any memory cycle having such an address. 

General Description of the BPC 
The BPC has two main functions. The first is to fetch machine 
instructions from memory for itself, the IOC, and the EMC. A 
fetched instruction may pertain to one or more of those chips. A 
chip that is not associated with a fetched instruction simply 
ignores that instruction. The second main function of the BPC is 
to execute the 56 instructions in its own repertoire. A condensed 
description of these instructions is shown in their assembly 
language format in Fig. 17. These instructions include general- 
purpose register and memory reference instructions, branching 
instructions, bit manipulation instructions, and some binary 
arithmetic instructions. Most of the BPC’s instructions involve 
one of the two accumulator registers, A and B. 

There are four addressable registers within the BPC, and they 
have the following functions: the A and B registers are used as 
accumulator registers for arithmetic operations, and also as source 
or destination locations for most BPC machine instructions 
referencing memory. The R register is an indirect pointer into an 
area of ReadiWrite memory designated to store return addresses 
associated with nests of subroutines encountered during program 
execution. The P register contains the program counter; its value 
is the address of the memory location from which the next 
machine instruction will be fetched. 

Upon the completion of each instruction the program counter 
(P register) has been incremented by 1,except for the instructions 
JMP, JSM, and RET, and for SKIP instructions whose SKIP 
condition has been met. For those instructions the value of P will 
depend on the activity of the particular instruction. 

Indirect Addressing Indirect addressing is a technique in which 
an instruction that references memory treats the first one or more 
references as an intermediate step in referencing the final 
destination. An intermediate reference yields the address of the 
next location to be referenced. When an intermediate location can 
point to yet another intermediate location, such addressing is 
termed multilevel indirect addressing. The BPC implements 
single-level indirect addressing for all memory references except 
those of a single special case. That special case involves two levels 
and occurs during an interrupt. Indirect addressing is not a 
property of the memory; it is a property of the chips that use the 
memory. Any chip that is to implement instructions employing 
indirect addressing must contain special “gear works” for that 
purpose. 

To indicate indirect addressing for a memory-reference instruc- 
tion, bit 15 of that particular instruction will be set. During 



520 Part 2 1 Regions of Computer Space 	 Section 7 1 Language-Based Computers 

[ . . . I  = O P T I O N A L  S P E C I F I E R S  

/ I N D I C A T E S  C H O I C E  OF S P E C I F I E R S  

R L X  * ? N / M  [ , S / , C I  
S K I P  I F  THE L E A S T  S I G N I F I C A N l  
B I T  OF A (OR B? I S  NON-ZERO.  

SUP * ~ W M  r,s i ,c i  
S K I P  I F  A (OK 8 )  IS P O S I T I V E  

SMM * i N / M  [ , S / , C ]  

S K I P  I F  A (OR B) I S  M I N U S .  

50% * i N / M  [ . S / , C I  

SKIP I F  OVERFLOW S E T  (OR CLEAR)  

MEMORY REFERENCE 	 V A L U E  OF N MAY RANGE FROM - 3 2  TO 31 ,  
(M  I S  A N  ASSEMBLY LANGUAGE LABEL,  OR I N C L U S I V E .  AT  T H E  CONCLUSION OF THE 

E X P L I C I T  ADDRESS) RET R I S  DECREMENTED B Y  ONE. 

( [ , I ]  1 8  THE INDIRECT SPECIFIER) 


LO% M [ , I '  

LOAD A (OR B) FROM M 

CPM M ( , I 1  

COMPARE THE CONTENTS OF 
THE CONTENTS OF A (OR B); 
I F  UNEQUAL. 

AD% M [ , I :  

ADD THE CONTENTS OF M TO 

ST% M [ , I 1  
STORE THE CONTENTS OF A 
M. 

JS" M I ,  I ' 
JUMP TO S U B R O U T I N E .  T H E  

EXE 0 5 M 5 37s , , I 1  

EXECUTE R E G I S T E R  N. T d E  CON-
Y E N T S  OF ANY REGISTER CAN BE 
TREATED AS THE CURRENT I N S T R U C -
T I O N ,  AND EXECUTED I N  T H E  NORMeL 

M W I T H  MANNER. T H E  NEXT I N S T R U C T I O N  
S K I P  EXECUTED W I L L  BE Ti lE  ONE FOLLOW-

I N G  THE EXE M, UNLESS THE CODE I N  
V,  CAUSES A BRANCH. 

A (OR B? .  	 S K I P  
( - j Z < N c j l ,  M W I T H I N  N OF *, * = CUR-
RENT V A L U E  OF P I  

(OR B) I N  R L X  * i N / M  i . ~ . ,  ( *  t N) / (M) ,  NOT * i < N / M >  SEX * fN/ 'M I , S / , C J  

S K I P  I F  A (OR 8)  I S  NOT ZERO. S Y I P  I F  EXTEND I S  CLEAR (OR SET)  

R I H  * t N / M  COMPLEMENT 

CONTENTS S K I P  I F  A (OR B) I S  NOT ZERO, THEN TC% 


OF THE RETURN STACK R E G I S T E R  (R)  INCREMERT A (OR 8 ) .  T W G ' 5  COMPLEMENT A (OR 5 )  

B P F  IN~RFMFNTED B Y  ONE AND T H E 
~~ 

CONTENTS OF P STORED I N  R , I .  8 2 %  * ? N / M  CMI: 

?ROGRAi%I E X E C U T I O N  RESUUES A T  M. 


S K I ?  I F  A (OR 8) I S  ZERO. COMPLEMENT A (OR B). THE A (OR B) 
R E G I S T E S  I S  REPLACED B Y  I T S  O N E ' S  1 8 2  M ~ , 1 1  

81% * t N / M  COIVPLEMENT. 
INCREMENT M; S K I P  I F  N THEN 
E Q U n L S  ZERO.  	 S K I P  I F  A (OR B) I S  ZERO, THEN 

S H I F T - R O T A T E 
INCREMENT A (OR 8). 


AND I [ ,  1 j 
S F X  * L N / M

L O G I C A L  "AND" OF A A N 2  M; T H E  
RESULT i s  LEFT IN a. 	 S K I P  I F  

DSZ M I , I I  80% * L N / M  

DECREMENT M; S K I P  I F  M THEN S K I P  I F  
EQUALS ZERO. 

88% * f N / Y  
I O R  M [ , I 1  SKIP IF 

I N C L U S I V E  "OR" OF A AN.0 M; 
THE RESULT I S  L E F T  I N  A .  SH% * i N / M  

SKIP IF 
JMP Y [ , I ]  

JUMP TO M .  PROGRAM E X E C U T I O N  A L T E R  

< - 3 2 < N ~ i l )  

AXR N 
F L A G  L I N E  SET (OR CLEAR) .  	 A R I T H M E T I C  i l G H T  S H I F T  OF A (OR 8 ) .  A 

(OR 8) I S  S H I F T E D  R I G H T  N PLACES 'WITH 
THE S I G N  B I T  ( B I T  1 5 )  c l L L I N G  A L L  

3 E C l M A L  SET (OR CLEAR? 	 VACATED 

SMR N 

S T A T ~ SLINE S E T  (OR CLEAR) .  	 S H I F T  A 
S H I F T E D  
VACATED 

HALT LINE S E T  (OR CLEAR)  S%L N 

S H I F T  A 
S H I F T E D  

B I T  P O S I T I O N S .  

(OR B) R I G H T .  A (OK 5 )  I S  
R I G H T  N P L A C E S  W I T H  A L L  
B I T  P O S I T 1 0 N S  VACATEC.  

(DR 8) L E F T .  A (OR B) 	 I S  
L E F T  N P L A C E S  W I T H  A L L  
B I T  P O S I T I O N S  CLEARED.CONTINUES A T  L O C A T I O N  M. 	 ( I F  E I T H E R  S OR C I S  PRESENT T d E  VACATED 

TESTED B I T  I S  SET OR CLEARED AFTER 
RET N ( , P I  T H E  TEST)  RXR N 

RETURN.  A READ R , I  OCCbRS.  THAT 
PRODUCES THE ADDRESS ( < P > )  OF THE 

S L X  * f N / M  [ , S / , C l  ROTATE A (OR B) R I G H T .  A (OR B) I S  

I C l T i i r  d 5 L I  THAT OCCURRED. T H E  BPC S K I P  I F  THE L E A S T  S I G N I F I C A N T  ROTATED R I G H T  N PLACES, 'M ITH B I T  0 

FHEN-JUnPS TD ADDRESS < P >  + N. THE B I T  OF A (OR €3) I S  ZERO. R O T A T I N G  I N T O  B I T  1 5 .  

Fig. 17. BPC machine-instructions. 

execution, the contents of the referenced location will be read and 
its entire 16-bit contents treated as the address of the final 
destination to be read from or written into. 

Memory Reference Instructions and Page Addressing Machine 
instructions fetched from memory are 16-bit instructions. Some of 
those bits represent the particular type to which that instruction 
belongs. Other bits differentiate the instruction from others of the 
same type, If a BPC machine instruction is one that involves 
reading from, storing into, or otherwise manipulating the contents 
of a memory location, it is said to be a memory reference 
instruction. Load into A (LDA) and store from B (STB) are 
examples. Each memory reference instruction contains 10 bits to 
represent the address of the location that is to be referenced by 
the instruction. Those 10 bits represent one of 1,02410locations on 
either the base page  or the current page of memory; an additional 
bit (the BIC bit) in the machine instruction indicates which. As far 

as the processor is concerned, its base page is always a particular, 
nonchanging range of addresses that is exactly 1,02410in number. 
A memory-reference machine instruction fetched from any loca- 
tion in memory (i.e., from any value of the program counter) may 
reference directly (i.e., without using indirect addressing) any 
location on the base page. The base-page addresses are 0000008 
0007778 and 177O0Or177777~. 

The reason the base page was split was to provide a convenient 
means to ensure that half of it would be in ROM and half in WW 
memory, without resorting to special decoding circuits. By 
separating the base page as described the desired division comes 
for free, simply by putting the right kind of memory at the right 
addresses. 

What goes in a machine instruction's 10-bit address field is a 
displacement from some reference location, as an actual complete 
address has too many bits in it to fit in the instruction. Also, it is 
the responsibility of the assembler to control the BIC bit at the 



Chapter 31 I A Dual-Processor Desk-Top Computer: The HP 9845A 521 

time the machine instruction is assembled. It does this easily 
enough by determining whether the address of the operand (or its 
“value”) of an instruction is in the range 1770008 through 1777778 
or 0 through 7778. 

For base-page references the lo-bit field is sufficient to indicate 
completely which of the 1,024 locations on the base page is to be 
referenced. The 32 register addresses are considered a part of the 
base page. 

Current-page addressing refers to memory-reference instruc- 
tions which reference a location which is not on the base page. 
Since there are more than 1,024 locations that are not the base 
page, the 10-bit field by itself is not enough to completely specify 
the exact location involved. Also, there are two types of current 
pages. Each type is also 1,02410 consecutive words in length. The 
value of P determines the particular collection of addresses that 
are the current page at any given time. This is done in one of two 
distinct ways, as determined by the signal called RELA. Depend- 
ing upon RELA, the BPC is said to address memory in the relative 
mode or in the absolute mode. Both the BPC in the LPU and the 
BPC in the PPU operate in the relative addressing mode. 

In the absolute mode of addressing the memory address space is 
divided into a base page and 64 possible current pages. The 
possible current pages are the consecutive 1,02410 word groups 
beginning with 000000~.The possible current pages can be 
numbered 0 through 6310. Thus, the “zero page” is addresses 
000000~01777~.Note that the base page is not the same as the 
zero page; the base page overlaps pages 0 and 63. 

In relative addressing there are as many possible current pages 
as there are values of the program counter. In the relative 
addressing mode a current page is the 51210 consecutive locations 
prior to (that is, having lower-valued addresses than) the current 
location (value of P), and the 51110consecutive locations following 
the current location. 

During the execution of each memory-reference machine 
instruction referencing the current page, the BPC uses the value 
of the P register to form a full 16-bit address based on the 10bits of 
address contained within the instruction. How the supplied 10 
bits are manipulated before becoming part of the actual address, 
and how the remaining 6 bits are supplied, depends upon whether 
the addressing mode is relative or absolute. Base-page addressing 
requires different manipulation but is the same in either mode. 

Subroutines The processor implements subroutines in the fol- 
lowing way. The Jump Subroutine (JSM) instruction is used to 
cause a jump (change in value of P) to the start of the subroutine. 
The BPC saves the value of P that corresponds to the word of 
programming that is the JSM. That value is saved in a section of 
ReadiWrite memory called the return stuck. 

The return stack is a group of contiguous locations whose 
starting address less 1was initially stored in the R register (in the 
BPC). Thus, R is an indirect pointer. What a JSM does is to 

increment the value in R and then pse that new value as the 
address at which to store the value of P. Once this activity is 
complete, P is actually set to the address of the first word of the 
subroutine and its execution commences. 

A subroutine is terminated with a RET n instruction. The 
essence of this instruction is to read the location that R points to, 
set P to that value plus n, and then decrement R. The most 
common return is a RET 1. Different values of n permit different 
returns corresponding to error or other special conditions. For 
instance, interrupt service routines are generally terminated with 
a RET 0. 

Subroutines can be nested as deep as the size of the return stack 
will allow. The subroutines themselves can be in either ROM or 
Readmrite memory. 

Flags The BPC is capable of branching based on the condition of 
each of four signals externally supplied to the chip. These signals 
are Decimal Carry (DC), Halt (HLT), Flag (FLG), and Status 
(STS). In the LPU the EMC acts as a source for Decimal Carry, 
which represents an overflow condition during certain arithmetic 
operations performed by the EMC. There is no EMC in the PPU, 
and the DC signal in the PPU is controlled by the CRT. It is used 
to indicate the duration of CRT retrace. 

Bus Requests and Interrupts 
Bus Request and Interrupt are two protocols that involve 
interchip communication. Bus Request (m)provides a way for a 
chip in the processor, or even a device external to the processor 
(such as the CRT), to request unfettered use of the IDA Bus. A 
signal called the Bus Grant (BG) is generated if all chips and any 
other interested entities agree to allow it. The requesting agency 
can use the IDA Bus for whatever purpose it wants (typically to do 
memory cycles). During the time that Bus Grant is in effect all 
chips suspend their activity. Bus Grant can be given even in the 
middle of the execution of an instruction. Because of this, the 
chips do not grant a Bus Request indiscriminately. Furthermore, a 
Bus Grant not requested by the IOC is used by the IOC to create 
Extended Bus Grant (EXBG), which is routed from chip to chip in 
a definite order; chips or other entities not at the top of the chain 
can exercise the right not to pass along the signal. This allows a 
Bus Request from the IOC to have a higher priority than any 
entity farther down the chain. Even if both are requesting the 
Bus, the IOC can “steal” EXBG by not passing it along. Farther 
down the chain from the IOC, BG serves to indicate only that the 
IDA Bus is being granted to somebody; a particular requesting 
device must wait until it sees EXBG before it can use the bus. 

An entity on the Bus may ground BG as long as BG is not 
already being given. This aITows any entity anywhere on the chain 
to protect its own access to the Bus against all agencies. Further, 
the BPC itself refuses to issue a BG as long as any memory cycle is 
in progress. 



522 Part 2 1 Regions of Computer Space 

During an instruction fetch a line called interrupt (WT) can 
signal the other chips to which the IOC has agreed to allow an 
interrupt requested by a peripheral. The management of this 
decision is complicated, but once the decision is made, the IOC 
signals the BPC with m.This has to occur during a certain 
period of time ending with the end of the instruction fetch. (A 
signal called SYNC identifies the instruction fetch.) 

What the chips in the system must do when an interrupt occurs 
is to abort the execution of the instruction just fetched (it will be 
fetched again, later). The K T  causes the BPC to execute the 
instruction JSM 108-indirect in place of the fetched instruction. 
Register address 108 is located in the IOC, and is the Interrupt 
Vector register (IV). That register is a pointer into a stack of 
indirect addresses for the starting locations for the various 
interrupt service routines. These routines handle the traffic 
needed by the interrupting peripheral. A special mechanism in 
the IOC sets the bottom four bits of IV to correspond to the select 
code or peripheral address of the particular peripheral that 
requested the interrupt. Thus IV points to different service 
routines, according to which peripheral has interrupted. 

The JSM 108-indirect causes the value of P for the aborted 
instruction to be saved on the return stack. A RET 0 at the end of 
the service routine results in that very instruction’s being fetched 
over again, at the conclusion of the service routine. 

General Description of the IOC 

The IOC has two main functions. One is to manage the transfer of 
information between the processor and peripheral devices. This is 
done by providing capabilities classified as Standard I/O, Inter- 
rupt, and Direct Memory Access (DMA). The second main 
function is to provide machine instructions allowing software 
management of stacks in Read/Write memory. Figure 18 is a 
condensed description of the machine instructions in the IOC’s 
repertoire. 

General Information about I/O The IOC allows up to 16 
peripheral devices to be present at one time. Each peripheral 
device is connected to the I/O Data (IOD) Bus, Peripheral Address 
Bus, and the various control signals necessary for that particular 
device’s operation. Individual 110 operations (exchanges of single 
words) occur between the processor and one peripheral at a time, 
although interrupt and DMA modes of operation can cause 
automatic interleaving of individual operations. A select code 
transmitted by the Peripheral Address Bus (PABO-PAB3) identifies 
which of the 16 devices is the object of an individual I/O 
operation. 

In addition, the peripheral interface is the source of the Flag 
and Status bits for the BPC instructions SFS, SFC, SSS, and SSC. 
Since there can be many interfaces, but only one each of Flag and 
Status, only the interface addressed by the select code is allowed 

Section 7 1 Language-Eased Computers 

[ , . ]  i OPTIONAL SPECIFIERS 

i I N D I C A T E S  C H O I C E  OF SPECIFIERS 

PLACE THE WIRC OR THE RIGHTE h T l R E  (I<> 
P A ~ F  ( 8 1  O F  R E G .  l N i O  THE S T A C I  P O I N T E D  
* T  BY c “1 D.  

WITLIDPIAN AN E N T I R E  -ORD (rl) OR a BITE 
( a )  FROM T H E  STACK P O I N T E D  4 T  B Y  C OR 
0 AND FU- I T  I N T O  R E G .  A B Y T E  W I L L  BC 
P L A C E D  I N T O  T,E R I G H T  H4LF OF R E G .  

C 8 L  


C eLOCK LOWER. CLEAhS THE CB 
REGISTER. 

i8” 


c BLOCK LPPER. S E T 9  TIlE CB XEGIBTER. 

DBL 

u BLOCK LOWFR. CLEARS THE 0 0  
REGISTER. 


3 8 U  

D BLOCK UPPER. S E T S  THE 3 6  R E G I S T E R  

Il o  
M E W .  R E F .  I N S T .  R E G .  4 - 7  [ , I ]  

! M I T I A T E  AN l i 0  BUS iliLi. 

Fig. 18. IOC machine-instructions. 

to ground these lines. Their logic is such that if the addressed 
peripheral is not present on the I/O Bus, Status and Flag are 
logically false. 

and Ic2 are two control lines that are sent to each 
peripheral interface by the IOC. The state of these two lines 
during the non-DMA transfer of information can be decoded to 
mean something by the interface. Just what “something” will be is 
subject to agreement between the firmware designer and the 
interface designer; it can be anything they want, and it might not 
be the same for different interfaces. 

I/O Bus Cycles The IOC’s repertoire contains no machine 
instructions dedicated to I/O operations. That is, there is no 
specific “output instruction,” and no specific “input instruction.” 
Existing machine instructions cause I/O by referencing certain 
register addresses that cause I/O bus cycles.An I/O bus cycle is an 
exchange of a word between the IDA Bus and IOD Bus, via the 
Peripheral BIBS. The peripheral involved is specified by the 
contents of the 4-bit PA register, which controls the peripheral 
address lines. I/O bus cycles are termed read or write I/O bus 
cycles, depending upon whether information is being read from or 
written into a peripheral. Each of the three modes of I/O 
operation (Standard I/O, Interrupt, and DMA) utilizes I/O bus 
cycles. The explanation of the various modes of I/O amounts to 
showing different ways to initiate I/O bus cycles. 

I/O bus cycles do not involve handshake. It is the responsibility 
of the firmware not to initiate an IIO bus cycle involving a device 
that is not ready. To do so will result in lost data, and there will be 
no warning that this has happened. 



Standard UO Standard 110 is I/O that has been explicitly 
programmed by the system programmer, using explicit assembly 
language coding. Standard 110 involves three activities: 

1 Setting the peripheral address (in the PA register) 
2 Investigating the status of the peripheral 
3 Initiating an I/O Bus Cycle 

During standard 110 operation, an I/O bus cycle is initiated by 
any machine instruction that incorporates a reference to one of 
addresses R4 through R7 (“in” the IOC). One way that can be 
done is with a BPC memory-reference instruction: for instance, 
STA R4 (for a write cycle), or LDA R4 (for a read cycle). However, 
there are no addresses R4 through R7. The use of addresses 4-7 is 
just a signal to the IOC to initiate an I/O bus cycle. Each different 
address produces a different combination of Ic1and m. 
The Interrupt System When the processor grants an interrupt, 
the program segment currently being executed is automatically 
suspended, and there is an automatic JSM to an interrupt service 
(sub)routine that corresponds to the device that has interrupted. 
The service routine uses Standard I/O to accomplish its task. 

The IOC allows two levels of interrupt, and has an accompany- 
ing two levels of priority. Priority is determined by select code: 
select codes 0-78 are the lower level (priority level l),and select 
codes 108178 are the higher level (priority level 2). Within a 
priority level all devices are of “equal” priority, and operation is 
on a first-come-first-served basis; a level-1 device cannot be 
interrupted by another level-1 device, but only by a level-2 
device. However, priorities are not equal in the case of simultane-
ous requests by two or more devices on the same level. In such an 
instance the device with the higher-numbered select code has 
priority. With no interrupt service routine in progress, any 
interrupt will be granted. 

Devices request an interrupt by grounding one of two interrupt 
request lines ( T L  and m - - o n e  for each priority level). The IOC 
determines the requesting select code by means of an interrupt 
poll. If the IOC grants the interrupt, it saves on an internal stack 
the existing select code located in PA, puts the interrupting select 
code in PA, and does a JSM-Indirect through an interrupt table to 
get to the interrupt service routine. [The top of this stack is the 
Peripheral Address register (PA-ll&] The stack is deep enough to 
hold the select code in use prior to any interrupts, plus the select 
codes for two levels of interrupt. 

It is the responsibility of the firmware to maintain an interrupt 
table of 16 consecutive words, starting at some Read/Write 
Memory address whose four least significant bits are 0s. The 
words in the interrupt table are set to the starting addresses of the 
various interrupt service routines for use with the 16 different 
select codes. When a peripheral is allowed to interrupt, its select 

Chapter 31 I A Dual-Processor Desk-Top Computer: The HP 9845A 523 

code is used to determine which interrupt service routine to jump 
to. The interrupt service routine then handles the UO operations 
needed by the interrupting device. 

The firmware must also store the address of the first word of the 
interrupt table in the IV register (Interrupt Vector register, 
address 10, located in the IOC). Those contents will merge with 
the interrupting select code to produce the address of the 
appropriate table entry. A two-level indirect jump is used to 
arrive at the interrupt service routine. This happens automatical- 
ly, because the BPC aborts its instruction fetch and generates a 
JSM IV, 1as part of what it does during an interrupt, and because 
the IOC forces the BPC to do two consecutive “first-level” 
indirect accesses. 

It is difficult to say specific things about interrupt service 
routines in general; much depends upon the particulars of the host 
software system. The next few paragraphs examine some generali- 
ties relating to interrupt service routines. 

The first observation is on the number of service routines. In 
general, there is not a single service routine for each select code, 
or even for each type of peripheral. The usual case is collections of 
routines that perform related functions within the needs of a 
certain class of peripheral activity; each class of activity has its own 
collection. 

For instance, it is unlikely that there will be a single interrupt 
service routine for a disk. On the customer’s level there are many 
commands in the disk’s operating system. On the firmware level 
there are a series of routines that perform “fundamental units” of 
activity, where each fundamental unit involves some amount of 
I/O. Most commands in the user’s disk operating system are made 
up of a series of these fundamental units of activity. Fundamental 
units of activity for the disk are things like moving the head to a 
given track, reading a given sector from a track into such and such 
a buffer, and writing from such and such a buffer into a given 
sector. 

Assume a fairly involved user’s command for a disk is to be 
performed, one that requires reading the directory on the disk to 
determine the location of a certain file on the disk and then 
loading that file into memory. The series of routines here include 
moving the head to the start of the directory, reading through the 
information in the directory sector by sector until the information 
about the desired file is found, moving the head to the file’s 
location, reading its header, reading its first sector, etc. 

Each service routine is told or already knows which service 
routine follows it for the particular high-level task at hand, and ifit 
has a choice based on the waj7 events turn out (error conditions 
etc.), it knows how to handle that, too. As each new step in the 
sequence requiring a different interrupt service routine is 
reached, the concluding routine changes the appropriate entry of 
the interrupt table to the starting address of the next service 
routine. In this way a versatile collection of interrupt service 
routines can serve many purposes. 



-- 

524 Part 2 I Regions of Computer Space Section 7 1 Language-Based Computers 

The computer can be almost anywhere in its internal coding 
when an interrupt is granted. Since the code is suspended, with 
JSM, it is obvious that the way to get back to the right spot is with 
a RET 0,P. (The ,P instructs the IOC to return to the select code 
in use prior to the interrupt.) But it will do no good to come back if 
the items in memory related to the routine are not the same. The 
interrupt service routine must save and later restore any memory 
location that will be directly or indirectly disturbed by  the activity 
of the service routine. This could include the extend and overflow 
registers of the BPC, decimal carry and shift-extend of the EMC, 
and possibIy CB and DB of the IOC. 

The entire interrupt system can be turned off by a DIR machine 
instruction. After this instruction is given the IOC will refuse to 
grant any interrupts whatsoever until the interrupt system is 
turned back on with EIR. While the IOC will not grant any 
interrupts, the RET O,P works as usual so that interrupt service 
routines may be safely terminated, even while the interrupt 
system is turned off. 

Direct Memory Access Direct memory access is a means to 
exchange entire collections of data between memory and 
peripherals. Such a collection must be a series of consecutive 
memory locations. Once started, the process is automatic; it is 
done under control of hardware in the IOC, and regulated by 
the interface. 

The DMA process can transfer data in two ways: single words 
are transferred one at a time, on a cycle-steal basis; or strings of 
words are transferred consecutively in a burst mode. In either 
instance data are transferred one word at a time. To transfer a 
word, a peripheral signals the IOC, which then requests control of 
the IDA Bus with m.That results in an external halt in all other 
system activity on the bus for the duration of the peripheral’s 
request for DMA service. Herein lies the digerenee between 
burst mode and cycle-steal operation: in cycle-steal operation the 
peripheral ceases to request service after one word is transferred, 
and requests service again when ready, while in the burst mode 
the request is held to allow a series of high-speed consecutive 
transfers to occur. 

During a DMA transfer of a collection of data, the IOC knows 
the next memory location involved, whether to input or output, 
which select code to use, and (possibly) whether or not the 
transfer of the entire collection is complete. This information is in 
registers in the IOC, which are set up by the firmware before the 
peripheral is told to begin DMA activity. After that, actual 
transfers are initiated at the request of the interface. 

The DMA process is altogether independent of the operation of 
standard I/O and of the interrupt system and, except for theft of 
the IDA4 Bus for memory cycles, does not interfere with them in 
any way. 

The four least significant bits of DMAPA specify the select code 
which is to be the peripheral side of the DMA activity. During an 

Name Address Meaning 

DMAPA (=13)  DMA peripheral address 
DMAMA (=14)  DMA memory address 
DMAC (=l5) DMA count 
DMAD . . . . i . .  DMA direction 

I/O bus cycle given in response to a DMA data request, the 
content of the PAB Lines will be determined by the four least 
significant bits of DMAPA rather than by the PA register. 

DMAMA is set to the address ofthe first word in the block to be 
transferred. This is the lowest-numbered address; after each 
transfer DMAMA is automatically incremented by the IOC. A 
separate one-bit register (DMAD) exists to specify the direction of 
the transfer; DMAD is controlled by its own set and clear machine 
instructions and is not addressable. 

DMAC can, if desired, be set to n - 1, where n is the number 
of words to be transferred. During each transfer the count in 
DMAC is decremented. During the last transfer DMAC goes 
negative and the IOC automatically generates signals which the 
interface can use to recognize the last transfer. In the case of a 
transfer of unknown size, DMAC should be set to a very large 
count, to thwart the automatic termination mechanism. In such 
cases it is up to the peripheral to identify the last transfer. 

Once the control registers are set up, a “start DMA” command 
is given to the interface through standard programmed IIO. The 
“start DMA” command is an output 110 bus cycle with a particular 
combination of IC1, IC2, and (perhaps) a particular bit pattern in 
the transmitted word. The patterns themselves are subject to 
agreement between the firmware designer and the interface 
designer. Sophisticated peripherals using DMA in both directions 
will have two start commands, one for input and one for output. It 
is also possible that other information can be encoded in the start 
command (the number of words to be transferred, for instance). 

Stack Operations A stack that is implemented in firmware is 
simply a series of consecutive memory locations accessed indirect- 
ly through a pointer. The entries in the stack do not change their 
physical locations in the memory during additions and deletions. 
Instead, the value of the pointer is incremented or decremented. 

The IOC implements some firmware stack-manipulation ma- 
chine instructions. Two registers are provided as stack pointers: C 
and D. There are eight place and withdraw instructions for 
putting things into stacks and getting them out. Furthermore, the 
place and withdraw instructions can handle full 16-bit words, or 
pack 8-bit bytes in words of a stack. And last, there are provisions 
for automatic incrementing and decrementing of the stack pointer 
registers, C and D. 

The mnemonics for the place and withdraw instructions are 
easy to decipher. All place instructions begin with P, and all 
withdraw instructions begin with W. The next character is a W or 



- -  

Chapter 31 1 A Dual-Processor Desk-TopComputer: The HP 9845A 525 

B, for word or byte. The next character is either a C or D, 
depending upon which stack pointer is to be used. There are eight 
combinations, and each is a legitimate instruction. 

The place and withdraw instructions outwardly resemble the 
memory reference instructions of the BPC: a mnemonic followed 
by an operand that is understood as an address, followed by an 
optional, I or, D. The range ofvalues that the operand may have is 
restricted, however. The value of the operand must be between 
0 and 7, inclusive. Thus, the place and withdraw instructions 
can place from, or withdraw into: the first eight registers. These 
are A, B, P, R, and R4 through R7. Therefore, the place 
and withdraw instructions can initiate 110 bus cycles; they can do 
110. 

Regardless of which of ,I  (increment) or ,D  (decrement) is 
specified, a place instruction will do the increment or decrement 
of the pointer prior to the actual place operation. Withdraw 
instructions do the increment or decrement after actual withdraw 
operation. The reason for this is that it always leaves the stack with 
the pointer pointing at the new “top of the stack,” and allows 
intermixing of place and withdraw instructions without adjust- 
ment of the pointer. 

Because the stack in memory is composed of words rather than 
bytes, some means is required to extend the addressing of the 
pointer registers to include designation of bytes within the 
addressed word. 

Left-right indication of bytes is accomplished with a signal 
called BL. BL (Byte Left Not) is in turn controlled by bit 0 of 
either the C or D register. Sixteen-bit addressing is maintained by 
providing an additional 1-bit register for use with each stack 
pointer register. The nonaddressable registers are called CB (C 
Block) and DB (D Block). They are designated block because, as 
the most significant bit of the word pointer value, they divide the 
address space into two halves, or blocks. It is unfortunate that this 
terminology was chosen (it was done before the MAE was 
developed). Do not confuse those blocks with block 0 through 
block 3 of the Memory Address Extension scheme. 

During the automatic increment or decrement to the pointer 
register, CB and DB function as most significant seventeenth bits 
of their respective registers. An advantage of having the bit that 
designates the byte be the least significant bit is that it simplifies 
the process of arithmetic computation upon byte addresses. 

The CB and DB registers can be set to their initial values by 
machine instructions for setting and clearing each register. For 
instance, DBU (D Block Upper) sets the DB register; CBL (C 
Block Lower) clears the CB register. 

General Description of the EMC 
The Extended Math Chip (EMC) provides 15instructions. Eleven 
of these operate on BCD-coded 3-word mantissa data. Two 
operate on blocks of data of from 1to 16 words. One is a binary 
multiply and one clears the Decimal Carry (DC) register. A 

condensed description of these machine instructions is shown in 
Fig. 19. 

Unless specified otherwise, the contents of registers A, B, SE, 
and DC are not changed by the execution of any of the EMC’s 
instructions. 

AR1 is the label of the 4-word arithmetic register located in 
RIW memory, locations 1777708 through 1777738. The assembler 
predefines the symbol ARl as address 1777708. 

AR2 is the label of a 4-word arithmetic accumulator register 
located within the EMC, and occupying register addresses 208 
through 238. The assembler predefines the symbol AR2 as address 
208. 

SE is the label for the 4-bit shift-extended register, located 
within the EMC. Although SE is addressable and can be read 
from and stored into, its primary use is as internal intermediate 
storage during those EMC instructions that read something from, 
or put something into, ASA3. The assembler predefines SE as 
248.  

DC is the mnemonic for the 1-bit decimal-carry register located 
within the EMC. DC is set by the carry output of the decimal 
adder. Sometimes DC is part of the actual computation, as well as 
being a repository for overflow. In such cases the initial value of 
DC affects the result. However, DC will usually be zero at the 
beginning of such an instruction. The firmware sees to that by 
various means. DC does not have a register address. Instead, it is 
the object of the BPC instructions SDS and SDC (Skip $Decimal 
Carry Set and Skip if Decimal Carry Clear) and the EMC 
instruction CDC (Clear Decimal Carry). 

It takes a special mechanism to handle BCD numbers. Done in 
firmware alone, such a mechanism would be slow and cumber- 
some. The EMC supplies some useful operations on portions of 
BCD floating-point numbers. This trims the mechanism in size 
and speeds it up significantly. 

The EMC can perform operations on 12-digit BCD-encoded 
floating-point numbers. Such numbers occupy 4 words of memo- 
ry, and the various parts of a number are put into specific portions 
of the 4 words, as shown in Fig. 20. The exponent and mantissa 
signs (E, and M,, respectively) are encoded as 0 and 1for positive 
and negative, respectively. All the digits D1 through Dlz are 
encoded in BCD, while the exponent is a 10-bit signed 2’s 
complement number. D1 is the most significant digit, and Dlz is 
the least significant digit. A decimal point is assumed to exist 
between D1 and Dz. 

Except for intermediate results within the individual arithmetic 
operations, D1 will never be 0 unless the entire number is 0. 
Sometimes, after each individual arithmetic operation the answer 
needs to be normalized; that is, the digits of the answer need to be 
shifted toward D1 until D1 is no longer 0. The exponent then 
needs to be adjusted to reflect the change. 

An important consideration concerning BCD arithmetic, as 
implemented by the processor, is that mantissas are represented 



T H E  FOUR-WORD GROUP 	 <A>, CB', ETC., DENOTE T H E  CONTENTS 

CLR N 	 0 ~,LOCATION < A > XFR N LOCATION < A > + LOCATION < 0 > OF T H E  I N D I C A T E D  R E G I S T E R  

0 d LOCATION < A > + ! LOCATION < A > + 1 + LOCATION < B > + 1 
MWA 	 WNTISSA WORD ADD. 

DURING THE ADDITION THE EXPONENTS ARE NOT CONSIDERED, AND ARE LEFT 
STRICTLY ALONE, AS ARE THE SIGNS. MWA IS INTENDED PRllydRlLY FOR USE IN 

0 -* LOCATION iA > + N - 1 LOCATION < A > + N - 1 + LOCATION < B > + N - 1 ROUNDING ROUTIPES. 

o--.-.--o D9 D i e  DIL D12 

T H E  M A N T I S S A  S H I F T  GROUP c AR2 > = D1------- Dg DIo D l l  GI) 

< DC > L I N I T I A L  VALUE 
mX M T I S 5 A  RIGHT SHIFT OF A R I  r-TIMES, r = < 00.3 >, PND 0' r z  1 7 8  = 1510. 	 OF DC 

I;+ SHIFT: < An-9 > * Di;.  ...' D. > iDi+,; IS  LOST....D12 

0 iOi;  . _ _ .  > -> Di+,; ....GI? I S  LOST 	 (OVERFLDWj i "Do" Di-------- DI D i n  D i n  Dir + AR2 
j + h  SHIFT: < D. 

r t h  SHIFT: 0 -> GI; _... D. > + Di+,; C 0 1 2  > -,Ao.3; 0 * DC; 0 *A%.&s 	 C D C  (FINAL< . ._.  	 VALUE OF DC) 

FMP 	 FAST MJLTIPLY. THE M T I S S A S  OF A R l  PND AQ2 M E  ADDED TOGETHER (ALONG 
MRY 	 W T I S S A  RIGHT SHIFT OF AR2 < Bo-,  >-TIMES. OTHERWISE IDENTICAL TO MRX WITH DC AS Oh.) < 8 0 - 3  >-TIMES; THE RESULT ACCU'IULATES I N  AR2. 
MLY NWTISSA LEFT SHIFT OF AR2 ONE TIME. 

i > * Dip;,..< D > + Di_,; ....< DI > +Ao.a; 0 -,DC; 0 -,A*->& THE REPEATED ADDITIONS ARE L IKELY To CAUSE SOME W K W  NVMBER OF OVERFLOWS 
TO OCCUR. l H E  NUMBER OF OMRFLO'IIS T W T  OCCURS IS RETURNED I N  40.3. 

AT THE CONCLUSION OF THE OPERATICX SE EQUALS < Ao-3 >. 

DRS 	 W I S S A  RIGHT SHIFT OF A R l  ONE T I W .  

o + o l ;  	 _._., > - * D ,It < D I ? ~ - + A o - 3 ; O + A i , - ~ :< D  . _ _ .  
AT THE CONCLUSION OF THE OPERATION SE EQUALS < A$.> >. 

NPM 	 NoWALIZE AR2. THE WANTISSA DIGITS OF AR2 ARE SHIFTED LEFT UNTIL  D i  # 0. 
IF THE ORIGINZL DI IS NON-ZERO, N3 SHIFTS OCCUR. I F  WELVE SHIFTS OCCUR, 0 + DC, 0 -,A l - l s  q OF OVERFLOWS -,A o - i  
THEN ARZ EOUALS ZERO. AND No FURTHER SHIFTS ARE DONE. THE NUWER OF SHIFTS 
IS  STORED A B I M Y  NUNBER IN 8. 

MPY 	 BIN-2RY MULTIPLY U S 1 6  BWTH'S  ALGORITHM. THE ( B I l M Y )  SIGNED TWO'S 
COMPLEMENT CONTENTS OF T K  A "0 B REGISTERS ARE W L T I P L I E D  TOGETHER. 
THE THIRTY-TWO B I T  PRODUCT I S  ALSO A SIGNED TWO'S COMPLEMENT NUMBER, 

T H E  A R I T H M E T I C  GROUP ma IS STORED BACK IMO A AND 8. B RECEIVES m E  SIGN ANO MOST-
WX TEN'S CMPLEMENT OF AR!. THE W T I S S A  OF PR1 I S  REPLACED WITH I T S  TEN'S SIGNIFICANT BITS, 4ND A THE L E A S T - S I G N I F I W T  BITS: 

COMPLEMENT, AND DC I S  SET TO ZERO. /-..
< A ,  - < B > i < B > < A >  

CMY TEN'S CMPLEMENT OF m2. T M  WNTISSA OF AR2 I S  REPLACED WITH I T S  TEN'S 
COMPLEE'ENT, AND DC I S  SET TO ZERO. 

FDV FAST D IV IDE.  THE WNTISSAS OF AR! AND AR2 ARE ADDED TOGETHER UNTIL  THE 
CDC CLEAR D E C I M L  CARRY. CLEARS THE DC REGISTER; O -> DC. FIRST DECIMAL OVERFLOW OCCURS. THE RESULT OF THESE ADDITIONS ACCUMULATES 

INTO AR2. T K  ?UMBER OF ADDITIONS WIJWUT OVERFLO'II ("1 IS  PLACED INTO 8. 
FXA FIXED-POINT ADDITION. 

DURING THE ADDITION THE EXPONENTS ARE NOT CONSIDERED, RW ARE LEFT 
< AR2 > + < AR1 > + < DC > 1 AR2 (REPEATEDLY UNTIL  OVER'LOWI 

STRICTLY ALCXE. THE SIGNS ARE A L M  LEFT COMPLETELY ALONE. THEN 

< AR2 > c D1 D2 D1--------D12 	 FDV I S  USEC I N  FLOATING-POINT DIVISION TO F IND THE QUOTIENT D IGITS OF A 
DIV IS ION.  I N  GENERAL, MORE THAN ONE APPLICATION OF FDV I S  NEEDEC TO FIND < DC > c I N I T I A L  VALUE OF DC EACH D I G I T  OF THE QUOTIEYT. 

(OVERFLOW) + "Do71 D; D2 D3--------D12 + AR2 	 AS WITH THE OTHER BCD INSTRUCTIONS,THE SIGNS AND EXPOXENTS OF AR1 AND AR2 
ARE LEFT STRICTLY ALONE. 

Fig. 19. EMC machine-instructions. 

I 	 in a signimagnitude format. Ten's complements are used by the 
FLOATING-POINT DATA FORMAT. I 	 firmware in the computational processes, but only as an interme- 

diate step. Furthermore, it is done in such a way that the 
automatic generation of the correct sign of a sum does not occur. 
There is also the frequent need to recomplement an answer. 

AR2 frequently functions as an accumulator for EMC operations 
on BCD numbers, much as the A and B registers are accumulators 
for the instructions ADA and ADB. 

THE INTERNAL FLOATING POINT REPRESENTATION OF V. Memory Address Extension 

.003587219 ( = 3.587219 x 


General Considerations 
The essence of a memory address extention scheme is the 
concatenation of additional upper address bits to the addresses 
sent to memory by the processor. A variety of schemes have been 
devised, and many are not unlike the one to be described. In 
particular, the use of registers to specify the values of the 
additional bits is very common. Simple schemes simply always use 
the contents of such a register to expand the address. More 

Fig. 20. Floating-point data format. 	 flexibility than this was needed for the 9845A. 

526 



Chapter 31 I A Dual-ProcessorDesk-Top Computer: The HP 9845A 527 

It was recognized that certain kinds of memory contents would 
always be grouped together. That is, the main operating system 
(whose code is in ROM), the various user’s programs (in WW), 
operating system data, user‘s data, and option ROM coding are all 
occupants of groups of memory disparate but contiguous within 
themselves. Furthermore, these separate collections frequently 
need access to each other. The occasions when operating-system 
code wishes to access the user’s program, or when the user’s 
program wishes to access the user’s data, are occasions when it 
would be desirable to have some sort of automatic mechanism for 
changing the values of the additional address bits. Not only would 
this save a lot of code (and execution time) otherwise used for 
manipulating the contents of the address extension registers, but 
it can also provide an external structure useful in organizing the 
architecture of the internal sofkware system. 

The key features of the memory address extension scheme 
explained below are these. First, there are several registers used 
to determine the values of the additional address bits. There is a 
means to identify the purpose for which a memory cycle is being 
performed: instruction fetch, indirect reference, base-page refer- 
ence, etc. Each such purpose can invoke different registers, each 
providing different and previously determined additional address 
bits. Note that this is not done simply on a machine instruction- 
to-machine instruction basis. The process is automatic on a 
memory cycle-by-memory cycle basis. This is a very important 
distinction because it allows programmers to let the MAE 
hardware do the work for them as their program runs, freeing 
them from constantly giving machine language instructions to a 
less automatic address extension device. 

Second, the MAE hardware is responsive to the most signifi- 
cant bit of the address produced by the processor. By controlling 
the value of this bit (at programming and assembly time for direct 
references and at run time via programmer algorithms for indirect 
accesses), the programmer can signal the MAE hardware whether 
the additional address bits are to be selected according to the 
various registers mentioned above, or are to be selected from 
among fixed and predetermined values. (It could as easily have 
been from a second collection of additional registers, but this 
added level of flexibility was deemed unnecessary for the 9845A.) 
In this way, code executing at addresses in one-half the proces- 
sor’s address space can easily access data in the other half-but the 
two halves of the processor‘s address space are represented by a 
preselected range of memory addresses, on the one hand, and by 
an arbitrary range of memory address anywhere in memory, on 
the other. This is of great utility in an operating system whose 
controlling programming has to be able to quickly access memory 
anywhere in the system, or in a system where code to be executed 
can be located anywhere in memory. 

As shown in Fig. 8, the computer has a memory with 128 
kilowords, yet each processor has the inherent ability to address 
only 64 kilowords. On the surface it might seem that each 

processor handles halfthe memory, but that is not so. Instead, the 
memory is divided into four 32-kiloword blocks. 

The LPU’s 64-kiloword address space is split into two 32- 
kiloword blocks, as shown in Fig. 21. The Memory Address 
Extender (MAE) embodies a set of conventions to dynamically 
determine which blocks make up the two halves of the processor’s 
address space. These conventions involve the processor’s most 
significant addresses bit, the type of memory cycle (i.e., for what 
purpose-instruction fetch, indirect reference, etc.), and the 
contents of some additional registers in the MAE. Those registers 
are R34, R35, and R37 (each is named for its octal address). These 
each have two bits. The size of the registers is related to the 
number of blocks managed by the MAE; in principle those 
registers could be 16 bits each, allowing a possible 64K blocks of 
32 kilowords each. 

System programmers have exclusive control of the contents of 
R3PR37. In this wa>7 they can control what particular blocks are 
accessed as the MAE implements its conventions. 

The memory address extension scheme i s  performed for the 
LPU only. The address space for the PPU is exactly 64K. It just so 
happens that the bottom half of that address space is the same 
physical memory that the LPU calls block 1, and that the upper 
half is the same as what the LPU calls block 0. This arrangement is 
somewhat arbitrary and was chosen for convenience in coordinat- 
ing LPU and PPU activities. Bear in mind that the PPU has no 
connection with the MAE. The function of the MAE is, in 
principle, altogether separate from the notion of having the 
processors share memory. If the computer had only the LPU, it 
would still (presumably) have the MAE. Also, the problems 

ONE 32K BLOCK 	 ONE 32K BLOCK 
I 

I 


I 	 I I 
II I

* 	 J 
BLOCK 3 IS  HOME BLOCK WORKING BLOCK(O-3)PER R34 

WORKING BLOCK(0-3)PER R 3 5  	 - - - 8 - - - BLOCKOIS HOME BLOCK 

d o R’y 
WORKING BLOCK(0-3)PER 6‘37 - - - 8 - - - BLOCK0 IS HOME BLOCK 

Fig. 21. Block addressing structure implemented by the memory 
address extender (MAE). 



528 Part 2 1 Regions of Computer Space 

arising from both processors’ trying, at the same time, to access 
block 0 or block 1, and the subsequent need for a dual-port 
memory controller, are not related to memory address extension. 

Basic Principles 
The LPU’s processor, in terms of its internal architecture and 
operation, knows absolutely nothing of the memory address 
extension scheme. Regardless of how many blocks are implement-
ed by the MAE, the LPU understands only a single 64K address 
space. Yet it is typical for a memory-reference machine instruction 
for the BPC (refer to Fig. 17) to be fetched from (i.e., located in) 
one block while its operand (the location in memory referenced) is 
in a different block. Such an instance requires automatic block 
switching by the MAE during the execution of the memory- 
reference instruction. Figure 22 illustrates the various conditions 
under which the various blocks are accessed. 

An understanding of Fig. 22 requires the notion of home blocks 
and working blocks. A home block is a block that is always the 
accessed block whenever some particular condition is met. The 
various home block designations are fixed and cannot be changed. 
(The foregoing does not mean that certain blocks are always home 
blocks. Rather, particular circumstances always access certain 
blocks as home blocks. But any block can also be accessed as a 
working block, too.) A working block is one that is designated 
according to the contents of R3PR37. The circumstances which 
determine which block is the home block also determines which of 
R34 through R37 is used to identify the working block. 

As an example, block 3is the home block for instruction fetches, 
while R34 designates the working block for instruction fetches. In 
other words, the programmer can execute code in block 3 by 

THE MAE LISTENS TO THE NATURE OF 
CONDITIONS THE MEMORY CYCLE TRAFFIC AND 

PREVAIL: IMPLEMENTS THESE BLOCK ALLOCATIONS: 

OF MEMORY 
CYCLES: 

HOME BLOCK I S  
DESIGNATED BY: HOME BLOCK Is: WORKING BLOCK IS 

DESIGNATED BY: 

ALL INSTRUCTION 
UPPER 1/2 BASE PAG 

AUTOMATICALLY 

FETCHES, ALL LINK-
POINTER FETCHES FOR 

IN BLOCK 0_ _ _ _ _ _ _ - - --

INDIRECT REFERENCES, 
AND ALL BPC DIRECT 

REFERENCES I 
ADDRESS BIT 15=0 3 R34 

PAGE IN BLOCK 3 

IOC AND EMC 
MEMORY REFERENCES, 

BUS GRANT (TESTER) ADDRESS B I T  15=1 O R37 

Fig. 22.Table of simplified MAE operation. 

Section 7 1 Language-Based Computers 

accessing it as home block, or, execute code out of any other block 
by setting R34 to its block number and accessing that code as 
working-block code. 

Figure 22 shows that there are three different categories of 
memory cycles: instruction fetches etc.; IOC and EMC memory 
references etc.; and bus grants. The MAE listens to the nature of 
the traffic on the IDA Bus and constantly classifies it according to 
these categories. Each category can result in an access to either 
the permanently associated home block or the programmer- 
designated working block. The most significant bit of the address 
determines which. That address bit was programmer-controllable 
at the time the code being executed was assembled. 

Some Special Considerations 

Observe that, by its address, the upper half of the LPU’s base 
page has the form of a working-block reference. It would appear 
that there could be four different upper halves, one for each 
setting of R34. However, in this operating system it is inconven- 
ient to have multiple instances of the upper half of the base page. 
Accordingly, the MAE automatically routes all references to the 
upper half of the base page (which it recognizes by its very high 
addresses) onto block 0. The PPU, of course, has its own base 
page. See Fig. 23. 

Whenever any part of the system addresses a location whose 
address falls within the range 0378, inclusive, the BPC generates 
a signal called RAL. This line is used by the bulk memory to 
prevent itself from responding; this allows the physical location of 
those addresses to be distributed throughout the system. This 
causes no problem with R34-type block allocations, as in these 
cases the addressing space occupied by the registers maps into the 
home block; and for any block allocation there is only ever one 
home block. But for register references via indirect addressing, or 
by the IOC or EMC, some wasted physical memory locations 
result because it is the working block that has the address space of 
the registers. So those locations, in each block, cannot be 
accessed. A similar condition exists for R37-type block allocations. 
These and other details of MAE operation are shown in Fig. 23. 

These facts summarize MAE operation in the absence of a bus 
grant: 

1 	The MAE knows which memory cycles are instruction 
fetches. 

2 	 If an instruction is not a BPC memory-reference instruc- 
tion, its associated memory accesses are done thus: 
a 	 Home block is block 0. 
b 	 Working block is determined by R35. 
c 	 Bit 15equal to 1implies home block; bit 15 equal to 0 

implies working block. 
3 	 If an instruction is a BPC memory-reference instruction, its 

associated memory accesses are done thus: 



6ZE 

n 

h)
13 
I 
5 
(D t15-BIT ADDRESS SPACE f 

W 
W c 

I 1  

8 

0" 
9 
(D 

B 

r
T 
C 

xxxxxx 

0 -
B 

IE 



c 

530 Part 2 I Regions of Computer Space 	 Section 7 1 Language-Based Computers 

a 	 Current-page nonindirect references are almost always 
made to the same block the instruction ~7as fetched 
from. 

b 	 Base-page nonindirect references are made to the 
particular part of the base page specified. 
Block 3 contains the lower half of the base page and 
block 0 has the upper half, regardless of which working 
block is specified. 

d 	 For indirect references the link pointer is accessed 
according to whether it is on the current page or on the 
base page, as described above, but the access to the 
final destination location is made according to the block 
allocation rules for 1OC and EMC instructions. 

These facts summarize memory access during a bus grant: 

1 	The MAE remembers which block allocation scheme was 
suspended in order to do the bus grant and will correctly 
restore the suspended mode when that activity is complet- 
ed. 

2 	 During a bus grant: 
a Home block is block 0. 
b Working block is determined by R37. 
c Bit 15 equal to 1implies home block; bit 15 equal to 0 

implies working block. 

VI. Descriptionof the Display System 

General Description 

The dispIay is a dual raster-scan CRT display. A 12-in, high- 
resolution, magnetic-deflection CRT is used to provide adequate 
viewing area for high-quality alphanumeric and graphic informa- 
tion. In the alphanumeric mode, up to 25 lines of 80 characters 
can be displayed at one time from a standard 128-character ASCII 
character set. A foreign character set can be added, as an option, 
to allow the user to display either French, Spanish, German, or 
Katakana. Other languages are also possible, Three methods of 
highlighting information are available to the user: inverse video, 
underlining, and blinking. Each of these functions can be 
independently changed on a character-by-character basis. The 
viewing area for 25 lines of 80 characters, called the alpha raster, is 
approximately 9.3-in.by 4.8-in. This permits a matrix of 720 X 

375 dots to be displayed. Characters are formed from 7 by 9 dot 
matrices located in 9 by 15 dot fields. 

High-resolution raster graphics can be added to the display as 
an option. In the graphics mode of operation, the viewing area, 
called the graphics raster, is approximately 7.9 in by 6.5 in. This 
permits a matrix of 560 x 455 dots to be displayed. The graphics 
raster is a separate, independent raster that is switched into 
operation when the display is in the graphics mode. The dual 
raster-scan capability allows the size and aspect ratio of each raster 

to be chosen to optimize the quality and capability of the display 
for the function the user wishes to perform, and to achieve 
compatibility with the internal thermal printerlplotter. 

Display Quality 

A considerable emphasis was placed on optimizing the design to 
achieve a high-quality display. To achieve high quality in a CRT 
display requires the optimization of many parameters. Some of 
the most important include character size and legibility, bright- 
ness, resolution, contrast, glare, focus, position distortion, and 
stability. Display quality was one of the major reasons for adding 
the dual raster-scan capability. The alpha raster is tailored to 
display 80 adequately spaced characters per line, while using the 
maximum width possible without introducing excessive distortion 
due to nonuniformity in the CRT screen. A 7 by 9 character font in 
a 9 by 15 cell was chosen because this matrix is sufficient to 
generate aesthetically pleasing characters. The extra rows in the 
cell are used for spaces, ascenders that are needed for some of the 
European characters, and descenders that are used in some of the 
lowercase Roman characters. 

The graphics raster displays the same high-quality characters 
but is limited to 62 per line. The graphics raster increases the 
resolution in the vertical dimension to maximize the proportion of 
screen area that can be used. 

Uniform character size over the entire screen is difficult to 
achieve in CRT displays. Nonlinear current drives must be 
supplied to the yoke because the faceplate is not spherical. To 
achieve a more accurate current waveform, an active correction 
technique was employed in the display. The yoke current is 
compared to a reference current generated by a diode function 
generator and is corrected when a difference occurs. With this 
scheme, an improvement factor greater than 2 was achieved in the 
position distortion. 

Since visible motion on a display is quite annoying, it was 
decided to refresh the display at 60 Hz even when the line 
frequency is 50 Hz to minimize flicker. Sufficient magnetic 
shielding has been added to eliminate interference due to internal 
sources within the mainframe itself, as we11 as from reasonable 
external magnetic fields. 

In the graphics mode of operation the CRT is treated as a 
genuine peripheral with a select code and driven via the IOD Bus. 
This capability is briefly considered at the end of this section. 

In contrast, the alphanumeric interface is a dedicated mecha- 
nism that automatically generates the CRT’s display according to 
the contents of memory. It is connected to the PPU’s IDA Bus and 
performs its own accesses to memory. Thus, to generate a display, 
the PPU needs only to format and manage the contents of a CRT 
display buffer in block 1 memory. The alphanumeric interface 
uses bus requests to interrogate that buffer, and responds to 
certain conventions regarding control bytes that are placed into 
the buffer amid the data by the controlling firmware. 



Chapter 31 1 A Dual-Processor Desk-Top Computer: The HP 9845A 531 

The control bytes and their associated conventions amount to a 
command set for the alphanumeric display. Their employment 
allows efficient use of the memory allocated to the CRT display 
buffer. Rather than structuring the buffer to be a character-for- 
character image of the display, the buffer contains a compacted 
version of the data. For instance, the blanks to the right of a line 
are supplied automatically by the display itself, following an 
end-of-line (EOL)control character. Other control bytes instruct 
the alphanumeric interface where in the buffer to begin the 
display; control the location of the cursor; and specify underlining 
or blinking. 

The size chosen for the display buffer is large enough to contain 
enough characters to fill an entire display. But because of efficient 
allocation of memory (e.g., suppression of trailing blanks by EOL 
control characters) the buffer is rarely full and can be loaded with 
more lines of information than the CRT can display at one time. 
The display buffer can hold four pages of average BASIC 
statements. The controlling firmware can cause the display to 
scroll through the data in the buffer in response to the operator’s 
pressing various control keys on the keyboard. Scrolling requires 
only the manipulation of a few control bytes, not the wholesale 
rearrangement of data in the display buffer. 

Alpha Display Control Logic 

The Control Logic is the alphanumeric interface between the 
mainframe and the display. It reads memory via DMA, processes 
the data, and holds them in a format that the display can use. Each 
byte of a data word represents either a combination of features to 
be set or cleared, an ASCII character, or a control code for the 
display. Figure 24 shows the functions that can be interpreted 
from each byte. 

Data bytes consist of a 7-bit ASCII code and a high-order 0, and 
they will be interpreted as the corresponding ASCII code unless 
the foreign character set has previously been chosen. If the 
high-order bit is set, the five low-order feature bits are latched 
and held until another feature byte occurs to change the state. 

The EOL command fills the remainder of the current line buffer 

B I T  # W I T H I N  BYTE 

7 6 5 4 1 2 1 0 MEAN I NG 

o x x x x x x x DATA 

1 O O O O O 0 0 CLEAR A L L  FEATURE LATCHES 

l 0 X X X X X 011 C L E A R I S E T  THE CURSOR LGTCH 

1 o x x x x 011 X C L E A R J S E T  THE I N V E R S E  V I D E O  LGTCH 

L 0 x x x 011 X X C L E A R I S E T  THE B L I N K I N G  L A T C H  

I 0 x x 011 x X X C L E A R J S E T  THE U N D E R L I N E  L A T C H  

1 0 x 011 x x X X C L E A R J S E T  THE F O R E I G N  CHAR.  SET L A T C H  

L l X X X X X I END OF L I N E  COMMAND (EOL)  

1 L X X X X X 0 NEW WORD ADDRESS COMMAND (NWA.) 

Fig. 24. The alphanumeric mode control bytes. 

(one of two local buffers within the CRT) with blanks. The next 
data byte will be the first character of the next line of displayed 
characters. 

During normal operation, the Control Logic will read the data 
at address 700008, complement them, and use that as the address 
for the first character to be displayed. From that point on the 
address will be incremented by 1for each new data word. The 
NWA command indicates that the contents of the next address are 
to be interpreted as the complement of the address for the next 
data word. The address will then be incremented from the new 
point. 

In addition to being the pointer of the first word of a page, 
700008 is also used to choose between the alpha mode and the 
graphics mode. If the high-order bit is a 0 and the graphics 
hardware is installed, then the display will be the graphics mode. 

An example of an alpha mode data pattern is shown in Fig. 25. 
As each data byte is processed, the data are placed into a 12-bit 

word. The first 7 bits contain the ASCII code for the displayed 
character. The last 5bits indicate whether any ongoing highlight- 
ing should be applied to this character. These feature bits were 
previously specified by a control code, whereupon they were 
latched by the Control Logic and were applied to every character 
until the latches were changed or cleared. These Whit words are 
stored in groups of 80 in one of two local line buffers within the 

MEMORY ADDRESS 

70000 
70001 
7W02 
70007 
700 I 0  
7001 I 
7 0 0 1 2  
70013 
7 0 0 2 0  
70021 

7 0 0 3 2  
7 0 0 3 3  
7 0 0 3 4  

MEMORY DATA 

1 0 7 7 7 6  
140000 
107770 
100040 
03 1053 
031 301 
140000 
107757 
140701 
140701 

140701 
140440 
0 3 2 3 0 1  

FUNCTION 


ALPHA, FIRST I\DDRESS=70001 

NWA, Nu (IGNORED1 


NEXT ADDRESS-70007 

CLEAR, BLANK 


2, + 

2, EOL 


NWA. Nu (IGNORED1 

NEXT A O D R E S S = 7 W O  


EOL, EOL 

EOL, EOL 


EOL, EOL 

EOL, BLANK 


4, EOL 


TOTAL=PO WORDS 

Fig. 25. Sample alphanumeric data pattern. 



532 Part 2 I Regions of Computer Space 

CRT. The purpose of having two line buffers is to provide the 
Display Logic with one full line of characters to display while 
the Control Logic is loading the next line of 80 characters into the 
other buffer. This means that the Control Logic is actually one line 
ahead of the display. When the Control Logic has entered 80 
characters into a line buffer, it waits for the Display Logic to 
indicate that it is ready for a new line. The Control Logic provides 
the Display Logic with the newly filled Line Buffer and starts to 
refill the used Line Buffer with new data. This occurs for each 
character line on the display. As the Control Logic completes each 
line it signals the Display Logic that there is a full Line Buffer. 
The Display Logic cannot wait for a new line once one has been 
requested, or the data will not be displayed in the correct position 
on the screen. So if a new full Line Buffer is not available when the 
Display Logic indicates that it is ready for a new line, the Display 
Logic will blank the video for the remainder of the page. This is 
done because the Control Logic and Display Logic will not be 
synchronized until the beginning of the new page. The Line 
Buffer must be filled in 637 ps. This figure comes from the time it 
takes to display the 15scans that make up the dot matrix of a line 
of characters. For each scan all 80 words in the buffer are read 15 
times before the buffer is refilled. 

The Display’s Effect on the Mainframe 

On account of the nature of the display’s mode of data retrieval, 
there is a definite effect on the performance of the mainframe. 
Since it is necessary for the display to access memory on a regular 
basis, it uses memory cycles which might have been used by the 
PPU for other operations. This will inevitably slow down the PPU. 
The PPU can execute about 1million memory cycles per second. 
The display must read at least one word for every two lines of 
characters (two blank lines) but doesn’t need to read more than 82 
words per line of characters (a feature byte and a character byte in 
every word with a new word address). If a character line is 40 
words in length (80 characters or partial lines with features), the 
display will require 40 memory cycles/line x 25 linedpage X 60 
page&, or 60,000 memory cycles per second. This would reduce 
the PPU to the use of 940,000 memory cycles per second, or a 6.0 
percent increase in execution time. These memory cycles may 
also indirectly slow the LPU by temporarily holding the Dual Port 
Memory Controller in an inconvenient position, but that result is 
probably negligible. 

Over a short term (less than 637 ps) the display will be accessing 
memory to fill a single line of characters. This rate is 158,000 
memory cycles per second, which increases PPU execution time 
by 23 percent (PPU will be allowed 763,000 memory cycles per 
second). However, as soon as the line is complete, memory access 
drops to zero until the next line needs to be refreshed. 

A conflict occurs when some peripheral device, such as a disk, 
attempts a burst-mode DMA and where the efficiency of the 

Section 7 1 Language-Based Computers 

device depends upon a data transfer rate close to the maximum. 
The problem arises when the display requires a sufficient number 
of memory cycles to complete a character line in less than 637 ps 
while at the same time a disk requires data at a rate determined by 
the rotating speed of the disk. If the display is allowed memory 
cycles in such a DMA burst, a disk location might be past the head 
when the data finally arrive. Similarly, if the display is deprived of 
memory cycles during the burst, the analog scanning of the 
display might have started displaying a line before the digital 
circuitry has completely acquired and processed the next line 
from memory. To avoid this and allow for efficient use of disk 
systems the following convention has been adopted. If the display 
is deprived of enough memory cycles that it cannot fill a character 
line by the time that line starts to be scanned on the display, then 
the remainder of the video output for that page will be blanked. 
Video will be resumed at the beginning of the next instance of 
displaying that page. Therefore, it is possible for the display to be 
blank for about 0.3 s if a DMA occurs which reads 64 Kbyte of 
memory at once. A longer blanked period can occur if smaller 
DMAs occur regularly after the start of each refresh cycle. 

Graphics Overview 

Graphics-mode operations allows the generation of entirely 
arbitrary patterns on the CRT screen through the use of a separate 
graphics raster. The screen appears as a field 560dots wide by 455 
dots high. The CRT is equipped with an additional interface 
(select code 13) and a 16-kiloword cache memory. A correspon-
dence between the bits in the cache memory and the dots on the 
screen is established. The user’s software, with help from extra 
BASIC language constructs supplied by a GRAPHICS option 
ROM, can generate an image on the CRT by manipulating the 
contents of the cache memory. 

The graphics mode of operation has its own cursors, including 
one for digitizing information presented on the screen. Also, the 
CRT need not be in the graphics mode for manipulation of the 
graphics memory to occur. The CRT dispIay can be switched 
between the graphics image and the regular alphanumeric format 
at will. 

An additional feature is the CRT-Thermal Printer dump. This 
was made possible by providing the ability to use the contents of 
the 16K cache memory as a source of data to drive the internal 
thermal printer. That printer has a thermal printhead with 560 
uniformly spaced print resistors. The Graphics Dump produces a 
dot-for-dot image of the CRT’s graphics-mode display on the 
printer. 

References 

Shaw [1974] 



Chapter 32 

The IBM System/38: 

A High-Level Machinel 


S.  H.  Dahlby / G. G. Henry / D. N .  Reynolds / 
P. T. Taylor 

One of the primary characteristics of the IBM System/38 that 
identifies it as an advanced computer system is its high-level 
machine instruction interface, which incorporates new architec- 
tural structures and provides a much higher level of function than 
traditional machine architectures, such as the IBM System/3. The 
function and architectural structures are more similar to those of 
high-level languages than to conventional machines. The purpose 
of this article is to describe the advantages and salient architectur- 
al features provided by the System/38 instruction interface, and 
how they are realized in the specifics of the System/38 machine. 

Relevant system objectives 

Many factors influence the choice of the architectural characteris- 
tics [Henry, 19781 of a new system. In System/38 the primary 
influences, such as anticipated user requirements and hardware 
technology trends, led to the adoption of some major objectives 
for the total system. Briefly, these were: 

Programming independence from machine implementation 
and configuration details 
High levels of integrity and authorization capability with 
minimal overhead 

Efficient support in the machine for commonly used 
operations in control programming, compilers, and utilities 
Efficient support in the machine for key system functional 
objectives, such as data base and dynamic multipro- 
gramming. 

The following sections highlight the major System/38 instruction 
interface concepts and features that address these objectives. 

Independence from Machine Implementation 
and Configuration 

In previous systems, the ability for users to take advantage of new 
technology and implement new function was limited by depen- 

IIBM Systemi38: Technical Developments, pp. 47-50. 0 1978 by Interna-
tional Business Machines Corporation. Reprinted by permission. 

dence on a specific low-level instruction interface; for example, 
dependence upon the hardware-implemented address size. One 
of the major gods of System/38 architecture was to enable users to 
be as independent as possible of hardware and device characteris- 
tics. 

In Systeml38, hardware dependencies have been absorbed by 
internal microcode functions that provide an instruction interface, 
which is largely independent of hardware details. Users of the 
instruction interface, therefore, need not be concerned with 
hardware addressing [Berstis, Trutal, and Ranweiler, 19781, 
auxiliary storage allocation and addressing [French, Collins, and 
Loen, 19781, internal data structures and relationships [Pinnow, 
Ranweiler, and Miller, 19781, channel and I/O interface details, 
and internal microprogramming details [Hoffman and Soltis, 
19781. 

This hardware independence characteristic of the System138 
instruction interface is due in large measure to the use of an 
object-oriented interface [Pinnow, Ranweiler, and Miller, 19781 
instead of the more conventional byte-oriented interface. An 
object is a System138 instruction interface construct that contains a 
specific type of information and can be used only in a specific 
manner. A number of different types of objects are defined in the 
interface, and various object-specific instructions are provided to 
operate upon each object type. An example of a System/38 
instruction interface object is a data space (file), which has 
associated instructions for operations such as the adding and 
deleting of records [Watson and Aberle, 19781. 

Each object is created by a System/38 interface instruction that 
uses a user-specified data structure to define the object’s charac- 
teristics and initial values. Once the object is created, its internal 
stored format is not apparent to the user (with the one exception 
discussed below). The status and values of the object may be 
retrieved or changed by using interface instructions, but the 
internal format of the object cannot be directly viewed or 
modified. That is, objects can be operated upon functionally, but 
not as a byte string. This approach prevents dependence on 
the internal format of the object and enables applications to 
remain independent of evolving internal implementations of the 
machine. 

There is one specific exception to this shielding of the internal 
format of an object. A space object is a construct that can be used 
by a program for storage of and operation upon byte-oriented 
operands such as character strings and numeric values. 

In addition to this object orientation, main storage and auxiliary 
storage addresses are not directly apparent in the Systemi38 
instruction interface [Berstis, Truxal, and Ranweiler, 1978; Pin- 
now, Ranweiler, and Miller, 19781. All interface addressing of 
objects is accomplished by resolving symbolic names (supplied by 
the user) to a pointer. A pointer is an object that is used only for 
addressing and does not permit examination or manipulation of 
the implied physical address. A system pointer gives a user the 

533 



534 Part 2 1 Regionsof Computer Space Section 7 1 Language-Based Computers 

ability to address objects; for example, to create or destroy an 
object or to examine or directly modify its content through 
associated specific instructions. A space pointer allows the direct 
addressability of bytes within a space object. Both of these pointer 
types can be contained within a space object, but they can be used 
for addressing only when operated on by pointer manipulation 
instructions. Pointers are assured of validity via tagged storage in 
both main and secondary storage. Direct modification of a pointer 
area via a “computational” instruction results in the tag becoming 
invalid and causes the pointer to no longer be usable for 
addressing purposes. 

Similarly, users are not concerned with the addressing struc- 
tures of either main storage or auxiliary storage [French, Collins, 
and Loen, 19781,or even necessarily that there are multiple levels 
of storage, since all storage used for all objects in the system is 
allocated and managed by the machine. That is, there is no 
differentiation in the Systemi38 instruction interface as to where 
an object or portions of an object reside. The total address space of 
Systemi38 thus consists of an unconstrained number of objects, 
uniformly addressable by pointers. 

Similar constructs shield the Systemi38 instruction interface 
user from dependencies upon channel and IiO device addresses 
and low-level communication protocols. 

Figure 1illustrates this basic object-oriented, high-level inter- 
face approach. 

Access via 
specific functions only 

rz 
system,38 Instruction inter face 

/
1 
/ 

\ 

\ 
 I\ 

storage 

Fig. 1. System138 object-oriented structure. 

Integrity and Authorization 

A natural consequence of the object-oriented approach is im- 
proved system integrity and auth6rization mechanisms [Berstis, 
Truxal, and Ranweiler, 19781. All user information is stored in 
System/38 instruction interface objects. Access to that information 
is through Systemi38 instructions that ensure the structural 
integrity of the manipulated objects. An attempt to misuse an 
object is thus detected and causes the instruction execution 
to be terminated and an exception condition to be raised. An exam-% 
ple is the attempt to directly change a byte within a program 
object. 

Authorization capabilities are likewise facilitated by the System/ 
38 instruction-interface object-oriented structure. Each user of 
the machine is identified by a user profile, which is itself an 
object. Each object in the system is owned by a user profile, and 
the owner may delegate to other user profiles various types of 
authority to operate on the objects. Processes (tasks) execute 
under a specific user profile (in the name of a user), and functions 
executed within a process verify that the objects referenced have 
been properly authorized to that user. 

Figure 2 illustrates this approach to providing integrity and 
authorization capability. 

A System138 instruct ion interface 

Identi f ies executing 

user ownership 


usaqe al lowed 

Fig. 2. System138 instruction interface integrity and ’authorization 
scheme. 



Support for Common Programming Functions 

The Systeml38 instruction interface is designed to provide direct 
support for a wide variety of functions common to control 
programming, compilers, and utilities. This increased level of 
machine function eliminates the need to implement these com- 
mon functions in multiple programming components, increases 
consistency across all programming components, and supports 
programming approaches conducive to providing integrity and 
reliability. 

There are two basic modes of addressing in the Systemi38 
interface. The first is pointers, which allow varying addressability 
to all objects and bytes within space objects. The second, 
dictionary addressing, deals with program references to values 
within a space object. 

Operands referenced in program instructions are defined in a 
dictionary portion of the program separate from the instructions 
themselves. Instruction operands are index references to these 
dictionary entries which define operand characteristics such as 
data type and length. Binary, zoned decimal, packed decimal, 
character, and pointer data types are examples of operand 
characteristics that may be defined. The dictionary entries do not 
contain the operand values; the specific location of the operands is 
not apparent to or required by programs. However, the user can 
control the general type of location characteristics: for example, 
relative to the area addressed by a pointer or relative to the 
storage area allocated for program variables within the executing 
process. 

This approach of having instructions reference dictionary 
entries describing the operand characteristics allows additional 
capability over low-level instruction interfaces. For example, the 
following high-level capabilities are provided: 

Computational instructions are generic with respect to data 
type and length. For example, there is only one numeric 
add instruction in the System/38 instruction interface: it 
operates on whatever data is defined in the operand 
definition dictionary. This enables the use of source and 
receiver operands of varying type, length, and decimal 
positioning with all conversions and scaling being per- 
formed by the machine. 
Arrays may be defined in the interface and instruction 
operands support array indexing to locate specific elements 
of the array. 
Since applications often allow operations on multiple 
formats of data, some instructions (for example, the copy 
instructions) support late-binding of data definition where 
the data (type, length, and decimal positioning) need not be 
defined until the instruction is executed. 

In addition to these types of high-level data operations, the 

Chapter 32 I The IBM System/38 535 

System/38 instruction interface provides and, in some cases, 
requires functions intended to support programming constructs 
more directly than in traditional machines. For example, pro- 
grams are invoked through call/return functions defined in the 
interface. Argumenvparameter functions provide communica- 
tions from one program to another. Allocation and initialization of 
storage for program variables within a process is performed by the 
System138 machine. Additional examples are found in [Watson 
and Aberle, 19781and [Howard and Borgendale, 19781. 

Figure 3 illustrates this System/38 program structure and the 
general relationship between a high-level language program and 
the corresponding System/38 constructs. 

Support for Key System Functions 

The System138 machine was designed to support a usage environ- 
ment characterized by a dynamically changing application load 
consisting of a wide variety of application types-all utilizing 
advanced functions such as data base. For example, batch, 
interactive, and transaction processing, along with program 
development activities, may all be executing concurrently with 
dynamically changing workloads and priorities. One of the key 
requirements for the System/38 instruction interface was to 
provide efficient support in this type of environment for applica- 
tion requirements such as multiprogramming and data base 
operations. This centralization of function in the machine simpli- 
fies the user programming task and reduces overhead in a 
dynamic multi-user environment. 

Two examples of this system function support will be described 
here-multiprogramming and data base. Similar high levels of 

Typical 
high-level 
language Syrternl38 instruct ion 
structure interface Droaram 

DCL 	A BIN 116) 

B BIN 132) 


BASED 1x1 

A =  	A + B  

. 

Fig. 3. SystemM8 instruction interface program structure. 



536 Part 2 1 Regions of Computer Space Section 7 1 Language-Based Computers 

machine capability exist in other major functional areas such as 
I/O. 

System/38 supports multiprogramming through the concept of 
processes. A “process” is similar to a task in other systems and is 
the basis for managing work in the machine. The user of the 
System/% instruction interface controls the number of processes 
currently initiated, the priority of each process, and the relation- 
ship of one process to another, that is, with respect to processor 
utilization and storage utilization. The machine then allocates the 
processor and storage resources based on these parameters as well 
as on the current status of the process, for example, waiting or 
dispatchable. 

This level of multiprogramming support in the System138 
machine offers advantages like these: 

A single resource management mechanism is applied to 
processing across all system activities. This reduces over- 
head and results in better management of resources in a 
complex and dynamic environment. 
Other efficient resource management mechanisms can be 
used to take advantage of hardware characteristics without 
programming dependencies. 

Similarly, the System/38 machine provides the basic functional 
building blocks for a high-function integrated data base. Data base 
objects include a comprehensive set of functions supporting 
different access mechanisms, file sharing, record format definition 
and mapping, efficient record retrieval, update, add, and delete. 
This allows, for example, a data base file structure to be defined 
that maps a single physical file into records with multiple formats 
and content. In addition, a single physical data base file may have 
multiple indexes (access paths) defined over it, all of which are 
concurrently updated when the file is changed. Each user of the 
file may view the data in the form suitable to a particular 
application. 

Overhead Considerations 

One of the major problems inherent in the implementation of a 
high-level instruction interface such as that provided for the 
System/38 is overhead. In order to reduce the potential overhead, 
and also to facilitate future extensions, the System/38 instruction 
interface definition does not require a directly executable imple- 
mentation of the instruction interface. The instructions and the 
operand definition dictionary are presented to the instruction 
interface and are translated into an executable microcode struc- 
ture called a program object. The internal microcode format is not 
apparent at the interface. Figure 4, System/38 executable pro- 
gram creation, illustrates this process. 

Having an executable program creation step allows the system 
to have the advantage of both a high-level instruction interface 
and reduced overhead at execution time. 

System138 > n s t r u c t i o n  interface /Hprogram/I 
Create executable 

program inStruCtlOn 


I I  

Fig. 4. System138 executable program creation. 

In addition, direct support of high-use functions in the System/ 
38 instruction interface, as previously described, is itself an 
approach toward reducing system overhead. A single implementa- 
tion of a complex function that can be applied system-wide 
reduces overhead. 

Also, by implementing these functions in the machine, hard- 
ware facilities can reduce the overhead that is associated with the 
higher level implementation typically required in programming. 

Summary 

The IBM System/38 provides a new type of machine instruction 
interface that comprises a high level of function together with 
structures similar to high level language structures and includes 
computation, addressing, and such traditional programming 
functions as process (task) management, resource management 
(storage and processor), data base management, and device 
handling. This new machine was designed to satisfy major design 
objectives for the entire system-hardware, microprogramming, 
and program products. The concept of a high-level machine has 
been discused in the literature and has been experimented with in 
both industrial and research environments; however, System/38 is 
the first IBM system to bring the advantages of a high-level 
machine to the business user. 

References 

Berstis, Truxal, and Ranweiler [1978]; French, Collins, and Loen 
[1978]; Henry [1978]; Hoffman and Soltis [1978]; Howard and 
Borgendale [19781; Pinnow, Ranweiler, and Miller [1978]; Watson 
and Aberle [19781. 



The IBM System/38: 
Object-Oriented Architecture' 

K. W. Pinnow / J. G. Ranweiler / J. F. Miller 

System/38 provides a range of capability not previously available 
in low-cost data processing systems. This capability is made 
possible by the use of a number of technical innovations. One of 
these is the object. This article discusses objects-the means 
through which information is stored and processed on Systeml38. 
Included are the concepts, purpose, and characteristics of System/ 
38 machine objects and their use by the Control Program Facility 
(CPF). 

Object Concepts 

Previous machine instruction sets have provided bit- and byte- 
string manipulation capabilities. The machine instruction set in 
System/38 provides similar functions and dso provides machine 
instructions that operate on complex data structures to accomplish 
high-level functions. 

Some of the data structures are similar to such things as 
programs and data files in conventional systems. Some are unique 
to Systed38. The data structures that appear in the instruction 
interface are collectively categorized as objects. 

An object is brought into existence through execution of a 
create instruction. The user controls the creation of the object 
through a template [Allsen, 19781 that provides a set of attributes 
and values that are to apply to the new object. The new object also 
has operational characteristics that define the set of functions that 
may be accomplished through it. Examples of object attributes 
and operations are shown in Fig. 1. 

The three examples of attributes illustrated in Fig. 1are (1)a 
name that permits symbolic reference to the object, (2) an 
existence that specifies whether implicit destruction is allowed, 
and (3)ownership that identifies who, ifanyone, owns the object. 

The set of instructions that are operationally meaningful to an 
object consist of generic operations that apply to all types of 
objects and unique operations that apply to a specific type object. 
The generic operations are primarily authorization-, addressing-, 
and resource-related [Berstis, Truxal, and Ranweiler, 19781. The 
unique operations include a destroy that removes the object from 
the system, some form of materialize that identifies the object's 
attributes or content, and sometimes a rnodijy that changes the 
attributes of the object. Many other unique operations exist that 
are not identified in Fig. 1. 

' I B M  Systeml38: Technical Deuelopments, pp. 5154.0 1978 by Interna-
tional Business Machines Corporation. Reprinted by permission. 

Authorization 
Expllcll 
functions 

Generic 

I 
Operations 

I IImplicit 
Object funct,ons Lock enforcement 

Authorization enforcement 

I Unique Destruction 

operati onr I Atomicitv 
Implicit 
funct,ons Lock enforcement 

Authorization enforcement 

Fig. 1. Some examples of object attributes and operations in 
SystemR8. 

Each operation, whether generic or unique, also provides 
significant implicit functions. The implicit functions are authoriza- 
tion, lock enforcement, and atomic (exclusive) operation. 

Object Purpose 

The concept of an object gives a common attribute to a kroup of 
data structures and enables the definition of an intesface that 
produces a number of benefits. 

The existence of objects allows systematic manipulation of 
structures. Their presence permits the definition of an instruction 
interface that is consistent across a wide range of supervisor and 
computational instructions. 

Objects exist to make users independent of specific implemen- 
tation techniques used in the machine. Since it is necessary that 
users control the data used in supervisor functions, object 
management capability is provided. When a request for a 
high-level machine function is made, a specific instruction 
operator (operation code), optionally an attribute template, and an 
object are specified. System/38 uses the object to accumulate 
results of operations, to store them in such a way that they are safe 
from inadvertent modification, and to assure that they are 
available for subsequent operations. 

Objects exist to make the user independent of the addressing 
structure actually used in the hardware. Although main storage 
and auxiliary storage exist in Systeml38, users are shielded from 
the mechanics of actually addressing that storage. In other words, 
objects remove the traditional responsibility of mapping data onto 
physical storage. 

537 



538 Part 2 1 Regions of Computer Space 

Object Characteristics 

For an object like a program, creation establishes the essential 
content of the object, and subsequent instructions use it opera- 
tionally. For other objects, the creation is primarily a space 
allocation mechanism for which succeeding operations establish 
the content. For example, once a data space has been created, 
records may be inserted into it. Management of the size of an 
object and changes to that size are generally transparent to the 
System/38 user. 

All System/38 machine objects are encapsulated. Encapsulation 
is the process of accepting a definition of an object through a 
create instruction and using this definition to produce an object 
whose internal structure is only accessible to the machine. 
Objects are encapsulated to maintain the integrity of the internal 
structure and to permit different implementations of the machine 
instruction interface without impact to its users. 

It is possible to associate an unencapsulated (byte string) area 
with each object. This byte-string area is referred to as a space and 
is up to 16 megabytes of virtual storage into which the machine 
user can build control blocks of other control information or data. 
As a degenerate case of an object, one with essentially no 
encapsulated portion, a space exists as an independent object. 
Whether it is an object itselfor is associated with another object, a 
space has its size modified through explicit instructions by the 
machine user. 

SystemB8 Machine Objects 

Tke following lists and briefly describes the objects of the 
Systeml38 machine-instruction set. 

Access group. An object that permits the physical grouping of 
other objects to achieve more efficient movement of the 
objects between main storage and auxiliary storage. 

Context. An object that contains the type, subtype, and name 
of other objects to allow addressability. 
Controller description. An object that represents an 110 
controller for a cluster of IIO devices or a station that attaches 
groups of communication devices over the same data commu- 
nication link. 
Cursor. An object used to provide addressability into a data 
space. 

Data space. An object used to store data base records of one 
format. 

Data space index. An object used to provide a logical ordering 
of records stored in a data space. 

Section 7 1 Language-Based Computers 

Index. An object used to store and automatically order data. 

Logical unit description. An object that represents a physical 
I/O device. 

Network description. An object that represents a network port 
of the system. 

Process control space. An object used to contain process 
execution. 

Program. An object for uniquely selecting and ordering 
machine interface instructions. 

Queue. An object used to communicate between processes, 
and between a process and a device. 

Space. An object used for storing pointers and scalars. 

User profile. An object used to identify a valid user of the 
machine interface. 

CPF Use of Machine Objects 

The CPF extends the object-oriented approach of the machine 
and provides its users with a high-level, object-oriented interface 
[Harvey and Conway, 19781. All data stored on the system by 
CPF users is stored in object form and is processable in terms of 
control language commands and high-level languages. To the user 
of CPF, objects are named collections of data, and the functions 
associated with objects provide the vehicle for processing this data 
and obtaining work from the system. The 19objects presented to 
the user at the CPF interface include conventional constructs, 
such as files and programs, as well as constructs that are unique to 
System/38, such as job descriptions and message queues [Dem- 
ers, 19781. 

The functions that CPF provides for its objects include some 
that are object-type specific and some that are generic with 
respect to object type. The object-type specific functions define 
and limit the way in which an object can be used while the 
generic functions provide for authorization, locking, saving, re- 
storing, dumping, moving, and renaming objects. Through the 
generic functions, the user has a way of managing objects once 
they exist. 

Objects are brought into existence through the specification of a 
create command that defines the name, attributes, and initial 
value of the object to be created. Each object is assigned a type 
and subtype as a part of the creation process. The object’s type is 
determined by the kind of machine object created to support the 
object that the CPF user wishes to create; the object’s subtype 
designates the use that CPF intends for the machine object. Each 
unique use that the CPF makes of a machine object is assigned a 
unique subtype identifier. This aspect of the design is important 
because it is through the use ofunique types and subtypes that the 



system can ensure that each type of object is always used in the 
way it was intended. After an object has been created, it remains 
on the system until it is explicitly deleted via a delete command. 
At the time an object is created, CPF places the name of the 
object into a machine object known as a context. 

Contexts are presented to the user as libraries. Because the 
functions associated with contexts are capable of finding an object 
based on its name, type, and subtype, libraries can be considered 
as a catalog or container for the user-created objects. Whenever 
an object is to be found, CPF initiates a search for the object 
either in a single library or through an ordered list of libraries that 
the CPF maintains with each executing job. When the list of 
libraries is used to find an object, each successive library in the list 
is searched until the object is found. Using the list of libraries to 
find the objects to be processed is advantageous because the 
same commands or program can perform functions on different 
objects merely by changing the order of the libraries in the 
library list. 

CPF maintains descriptive information for all objects and 
provides functions for the retrieval and display of this data. The 
descriptive information records who the object owner is, when the 
object was created, where the object has most recently been 
saved, and text information provided by the user to further 
describe the object. 

An important feature of CPF object architecture is the manner 
in which CPF objects are constructed. CPF uses machine objects 
as building blocks to produce the objects that CPF users see. 
Figure 2 shows an example of how one kind of Control Program 
Facility object is constructed. 

In this example, four types of machine objects (a data space, a 
data space index, a cursor, and a space) are combined to produce 
the higher level CPF object known to the user as a data basefile. 
CPF manages the individual pieces of a file in a way that allows 
the user to perceive the file as a single entity. For example, the 
separate pieces of the file come into existence when a single 
create-file command is processed and remain in existence until 
the file is explicitly deleted. Thus, the user is relieved of the 
complexity and organizational details of the data and can process it 
as a logical entity. When lower level objects are put together to 
form a higher level object, the higher level object is known as a 
composite object. CPF object architecture permits any type of 
System/38 machine or CPF object to be combined to produce a 
new type of object. In fact, CPF-provided functions for managing 
objects are table-driven, based on unique object type and subtype 
combinations. This aspect of the design means that the object- 
oriented approach can be quickly and easily extended. It also 
permits new kinds of objects to be compatibly introduced later on 
in the life of the system. 

The key advantages of the System/38 building block architec- 
ture, however, is that the implicit functions provided by the 

Chapter 32 IThe IBM System/38 539 

Fig. 2. An example of how one kind of Control Program Facility 
object is constructed. 

machine for its objects are made directly available to the end user 
in a consistent manner. For example, implicit in all CPF objects 
are the machine-provided functions of security, lock enforcement, 
and object resolution by name. The benefits of this architecture 
are readily apparent when one contrasts the approach of System/ 
38 with that of other systems having different addressing struc- 
tures for different collections of data, added-on security functions, 
and user interfaces that require knowledge of the physical aspect 
of data organization. 

Summary 

The object orientation of the System/38 machine and CPF 
interfaces permits common provision of function at each interface. 
With machine-interface objects, the hardware addressing mecha- 
nism and the internal format and organization of data are 
transparent to the user; serialization and authorization functions 



540 Part 2 1 Regions of Computer Space Section 7 I Language-Based Computers 

are implicit in the objects. The key characteristic that makes this 
possible is encapsulation of objects in the machine-instruction 
interface. Since CPF uses the objects of the System/38 instruction 
interface as building blocks, its objects possess all the function of 
the machine objects. 

The IBM System/38: 
Addressing and Authorization1 

V. Berstis / C. I). Truxal / J. G. Ranweiler 

The high-level machine interface of Systeml38 achieves user 
independence from the internal machine implementation primar- 
ily through the use of an object-oriented architecture. Objects 
representing storage for constructs such as programs, processes, 
and data base files are accessed through a consistent, integrated 
addressing structure. Because authority enforcement and control 
of shared objects are critical in multiprogramming environments, 
these functions have been incorporated into the addressing path. 
This article describes some of the key features of the addressing 
design of Systeml38 and how they are presented to the user 
through the Control Program Facility (CPF), which is described 
by Harvey and Conway [1978]. 

Objects and Spaces 

Before addressing can be described, it is necessary to define what 
is accessed. Everything stored in the system is an object (see Fig. 
l),which consists of a functional portion and an associated space 
(see Pinnow et al. [1978]). The functional part of an object is used 
to implement a particular construct. For example, the functional 
part of a program object is created by the translation of Systeml38 
machine instructions into microcode. The program is said to be 
encapsulated because there is no direct access to the storage used 
to support it. Instead, the object is manipulated at a high level 
through the Systemi38 instruction set. In this way, encapsulation 
ensures the functional integrity of all objects. 

The associated space portion of an object is a region of bytes 
that can be directly manipulated by the machine user. The space 
is associated with the functional part of the object and provides a 

‘IBM Systernl38: Technical Developments, pp. 55-58. 0 1978 by Inter-
national Business Machines Corporation. Reprinted by permission. 

References 

Allsen [1978]; Berstis, Truxal, and Ranweiler [1978]; Demers 
[1978]; Harvey and Conway [1978]. 

convenient way of storing additional (user-defined) data perti- 
nent to that object’s usage. One type of object, called a space 
object, has no functional part. Its associated space is used to 
provide storage for control blocks, buffers, pointers, and other 
data. 

Pointers 

There are four different types of pointers. System pointers address 
objects; space pointers and data pointers address specific byte 
locations within the space portion of an object; and instruction 
pointers control execution flow. This article covers object address- 
ing through system pointers. 

A system pointer, used to address an object, contains both the 
location of the object in storage and object usage rights, as will be 
discussed later. Only specific Systemi38 instructions can create 
pointers. Although pointers can be copied, the user cannot 
construct pointers by bit manipulation. As a result of these 
properties, System/38 has the basic elements of capability based 
addressing [Linden, 19761. 

Name Resolution 

A system pointer exists in one of two states: resolved or 
unresolved. In the unresolved state, the pointer specifies the 
name of an object and not its location. When the pointer is first 
referenced (see Fig. 2), the machine searches for an object having 
the specified name. Once found, the resulting object location is 
stored in the pointer, thereby eliminating subsequent searches. 
The pointer is then said to be in the resolved state. 

The search performed during pointer resolution involves the 
use of objects called contexts, containing object names and 
locations. Various execution environments are obtained by speci- 
fying an ordered list of contexts to be\searched. For example, the 
production and test versions of files can be located through 
different contexts. Therefore, by simply exchanging the contexts 
searched, either programming environment can be achieved. 



Object 

Functional part 

Examples 

+	Program 
Process 
Data base file 
index 
Queue 
Context 
User profile 

Fig. 1. SystemRb objects and pointers. 

Object 

System138 instruction 

Unresolved 

system pointer 


\
"Name" Waits processes 

\ 
\ 
\ 

Fig. 2. The object access path. 

Authorization 

The ability to control pointer resolution in the machine is not 
sufficient to effectively control the users' access to objects because 
it is an "all or nothing" type of control. The System/38 object 
authorization mechanism provides the fineness (granularity) of 
control needed for the wide range of operations performed on 
objects. 

I 	 Sample contents of space 

Every reference to an object requires that the user have the 
appropriate authority for the operation to be performed; other- 
wise, the operation is suppressed and the attempted violation is 
recorded. The authority checking function is uniformly applied to 
all types of objects. Separate authorities (retrieve or update, for 
example) can be granted to individual users or to all users (the 
public). Therefore, a user's authority can be limited to what is 
exactly necessary for an application. For example, a user might be 
authorized to retrieve data from a data base file but not to update 
or destroy the file. 

Sources of Authority 

A prerequisite for authority verification is the identification of the 
user. This prerequisite is satisfied through the use of an object 
called the user profile, which identifies the user and the user's 
authority. Every process is initiated with a specified user profile as 
the primary source of authority. Object authorities can be granted 
to or revoked from a user profile, thus providing control over the 
authority available to the process. Objects can also be publicly 
authorized, thereby eliminating the need to explicitly authorize 
every user profile. 

In some applications, subprograms require a different amount 

541 



542 Part 2 1 Regions of Computer Space Section 7 1 Language-Based Computers 

of authority than that available to the calling program. To 
accomplish this, programs can adopt a user profile (Fig. 3). The 
adopted user profile adds its authority to what is already present 
in a process. When the program calls other programs, the adopted 
user profile authorities can be optionally propagated to the called 
program. This provides considerable flexibility in controlling the 
security environment. 

Once authority to an object has been established, it can be 
optionally stored in the pointer to that object. This provides faster 
authority verification than with unauthorized pointers. 

Other Authorizations 

One type of authority not related to objects is the privileged 
instruction authom'ty. Such authorization is used for process 
initiation, user profile creation, machine reconfiguration, etc. 
Other special authorities range over many machine functions 
rather than specific instructions. For example, all object special 
authority permits unlimited use of all objects in the system. The 
control of storage resources is another wide-range authority. The 
storage occupied by objects is charged against the storage limit of 

Process initiation Program 

User profiles contrlbutLng authority to program 

t 
A + B + C  

1 '  
A + B  

Process 
user 
profile -

lser profile 
srociated 
vith a 
irocess 

Adopt & 
propagai 

Adopt & noi 
propagate 

User profile 

User profile 
----* 

Fig. 3. User profiles as sources of authority. 



Chapter 32 1 The IBM Systeml3B 543 

the user profile (the owner) under which they were treated 
Owners have implied object authority to the objects they own. 

Locking and Synchronization 

The authority mechanism of System138 ensures that an application 
accesses only objects within its intended rights. When multiple 
applications attempt to reference the same objects concurrently, 
additional controls are provided to prevent interference. System/ 
38 incorporates implicit synchronization functions into the object 
access implementation to accomplish this. For example, if one 
process is updating an object while another process is attempting 
to access the same object, the operations are automatically 
serialized. On the other hand, if both processes are retrieving data 
from the same object, the operations are allowed to proceed 
simultaneously. Therefore, contention is reduced and integrity of 
the object is ensured. 

Explicit synchronization is available to the users in the form of 
locks. By locking an object, the user can control the access of other 
users to the object. Entire sequences of operations can be 
serialized when required to maintain data integrity. In addition, 
record level locks in data base files reduce much of the contention 
that would be present if the entire file were locked. 

Synchronization functions complete the machine addressing 
path, which starts with the object name and continues through 
pointer resolution and authority verification. 

Addressing Path Usage 

The Control Program Facility (CPF) is an IBM program product 
providing the user a high-function, ease-of-use interface to the 
machine [Harvey and Conway, 19781. With the high-level 
machine facilities available in the Systeml38, the CPF addressing 
and authorization function uses both capability-based and sym- 
bolic object addressing with authority validation at execution 
time. 

CPF uses machine pointer resolution, authorization manage- 
ment, and locking to implement internal CPF security and 
synchronization. It provides these facilities to the user through 
CPF interfaces. 

Within CPF, the work management component isolates and 
protects its critical resource control and scheduling functions by 
executing them under the system user profile. The remaining 
CPF modules execute under the user’s profile. Thus, the machine 
authorization management directly validates the user’s authority 
to perform every requested function on any specified object. 
Everything in CPF is an object. I/O devices and Control 
Language commands are objects, as are more typically files, 

programs, and libraries. Because of this, an installation can control 
system resources to the extent desired. 

Installation Authorization 

This control of an installation’s resources has led to the concept of 
one specific user as an installation’s security administrator. This 
user is entrusted with authorities allowing system-wide control of 
all users and their resources. A set of IBM-supplied user profiles is 
delivered with CPF, including one for the security officer. This 
profile has all-object authority, as well as authority to create and 
modify user profiles. Therefore, the security officer can enroll 
users on the system and control their use of system resources. 
When a user profile is created or modified, special authorities, 
resource allocation parameters, and a user password can be 
specified. The user password is for verification of user identity at 
sign-on and for determining the user profile associated with a 
process. 

Once the user is executing, functions are performed by 
executing programs or commands. These functions reference 
objects (such as files) by name, and CPF locates the object 
through the use of the machine-addressing facilities. This is easily 
implemented because contexts (objects that contain names of 
other objects [Pinnow, Ranweiler, and Miller, 19781) are used by 
CPF as system and user libraries. When an object such as a 
program or file is created, it is placed in a library. Subsequent 
referencing of the object initiates pointer resolution, and the 
machine not only locates the object, but validates the current 
user’s authority to the object and determines whether serialization 
of an operation is necessary. To expedite authority checking, CPF 
requests that the authority be set in the pointer for future use. 

CPF Object Authorities 

When a user creates an object, it can be declared “public” or 
“private.” Subsequently, any of the object’s authorities can be 
granted or revoked to individual users or the public. Display 
commands are also available to report object authority. 

Summary 

The System138 is based on an object-oriented architecture in 
which everything in the system is an object. An object can be 
referenced by its name, which is used in a pointer resolution 
process that includes authorization and synchronization functions. 
The resulting resolved pointer can contain object location and 
authority to avoid subsequent searches. The machine enforces 



544 Part 2 1 Regions of Computer Space Section 7 i Language-Based Computers 

authority requirements on every object referenced, verifying the 
authority from the pointer or user profile(s). The user profile is an 
object that identifies a user in the system and contains all of that 
user‘s authorities. The CPF uses the machine addressing, authori- 
zation, and synchronization facilities, and provides their function 
to the user. 

The System/38 thus delivers the flexibility of named object 

The IBM System/38: 
Hardware Organization of the 
System/38I 

R. L. Hoffman / F. G. Soitis 

The IBM System/38 hardware is designed to efficiently support its 
high-level machine architecture. An engineering design objective 
was to take advantage of new technologies such that certain 
high-level functions would be implemented in hardware and 
microcode. As a result, functions such as task dispatching, queue 
handling, virtual storage translation, stack manipulation, and 
object sharing became a basic part of the hardware control 
structure. A further objective was to provide for sufficient 
extendability to permit future implementation trade-offs. 

Figure 1 shows the hardware configuration of the System/38. 
This article describes the hardware organization and the functions 
used by the hardware control structure. 

Hardware Organization 

System/38 hardware consists of a processor communicating over a 
high-speed channel to independently functioning I/O units. The 
processor and the I/O units have access to a main storage array. 
The System/38 processor, which is implemented in a new, 
high-performance large-scale integration (LSI) technology [Cur- 
tis, 19781, fetches 32-bit micro instructions from the random 
access memory (RAM) control store shown in Fig. 1(8K words for 
both the 5381 Model 3 and Model 5). One micro instruction is 
executed for each processor cycle. The processor cycle times are 

‘IBM Systed38: Technical Developments, pp. 19-21. 01978 by Interna-
tional Business Machines Corporation. Reprinted by permission. 

addressing and the integrity of machine-enforced authorization 
and synchronization of those objects. 

Harvey and Conway [1978]; Linden [1978]; Pinnow, Ranweiler, 
and Miller [1978]. 

400 to 500 ns for the 5381 Model 3 (200 or 300 ns for the 5381 
Model 5), depending on the micro instruction operation. In a 
single cycle, either one- or two-byte arithmetic operations may be 
performed on signed binary, unsigned binary, or packed format 
decimal data. 

A new, high-density metal oxide semiconductor field effect 
transistor (MOSFET) technology main storage [Donofrio, Flur, 
and Schnadt, 19781 is available at two performance levels: 1100 ns 
fetch cycle time for the 5381Model 3and 600 ns fetch cycle for the 
5381 Model 5. Data path width is four bytes to either memory. 
Available memory capacities are 512K, 768K, 1024K, 1280K, and 
1536K bytes for either the Model 3 or 5. In addition, the Model 5 
may have memory capacities of 1792K and 2048K bytes. Error 
correction circuitry (ECC) is used in both models. 

Direct memory access for I/O units as well as for the processor 
is provided by the virtual address translation (VAT) hardware 
which converts 6-byte segmented virtual addresses to main 
storage addresses. Address translation tables in main storage and a 
translation lookaside buffer in hardware provide mapping from 
virtual to real main storage addresses, as discussed by Houdek and 
Mitchell [1978]. Virtual addresses are used in I/O operations, and 
page faults are allowed during data transmissions with low-speed 
devices. 

Page faults are resolved by data transfer from secondary 
storage. Data is moved to main storage in 512-byte page units 
from disk storage via the channel. 

Each I/O device is connected to a controller which is connected 
to the channel. Magnetic media controllers (MMC) [Froemke, 
Heise, and Pertzborn, 19781 are used for high data-rate de- 
vices such as disks, while microprogrammed IiO controllers 
(IOC) [Dumstofi, 19781 handle a multiplicity of lower data-rate 
devices. 

Each system also includes a system control adapter (SCA) which 
shares an IOC with the keyboard display console. The SCA 
performs the system maintenance functions, including testing the 
hardware logic circuitry as described by Berglund [1978]. 



Chapter 32 1 The IBM System/38 545 

t 
- - _ I  

I 
I 
1 

conrro1 DMA 
Channel I 

I 
I 

! 

Fig. 1. Hardware configuration. 

Control Structure 

System/38 manipulates a unit of execution called the "task." All 
computer systems need to control execution and, in multipro- 
grammed systems like SystemM8, switch between units of 
execution, i.e., tasks. Traditionally, an interrupt structure with a 
fixed number of interrupt levels or classes, built on the hardware, 
is transformed by a software supervisor into a multilevel, 
interrupt-driven system to bridge the gap between the actual 
hardware and the abstract concepts of multiprogramming. The 
System/38 replaces this interrupt structure with a single tasking 
mechanism which is used to control all processing. 

A multilevel, queue-driven task control structure is implement- 
ed in microcode and hardware on the System/38. A task dispatch- 
er implemented in microcode allocates processor resources to 
prioritized tasks. I/O and program processing tasks are integrated 
in a common dispatching structure, with their priorities adjusted 
for system balance. I/O processing takes place when system 
resources are available, not when an I/O interrupt occurs. 

I/O and program processing requests are stacked in main 
storage on a linked list called the task dispatching queue (TDQ). 

The task dispatcher selects the highest priority request from the 
TDQ and gives it control of the processor. Instructions associated 
with this task, known as the active-task, are executed until control 
is passed to another task. 

A set of system control operations (SEND and RECEIVE) are 
used to communicate between tasks and to pass control between 
tasks via the task dispatcher. If the active task is to communicate 
with another task, it does so by sending a message to a queue in 
main storage known to both tasks. If the active task is to obtain a 
message from a queue, it executes a RECEIVE operation. If the 
message is available on the queue, the message is passed to the 
active task and processing continues. If the message is not 
available (e.g., it has not yet been sent), the active task is made 
inactive and the task waits for the message. The task dispatcher is 
then invoked to select the new active task from the TDQ. The task 
dispatcher is also invoked on a SEND operation ifa task of higher 
priority than the active task is waiting for the message. If the 
waiting task is of lower priority than the active task, the task 
dispatcher is not invoked, but the processing request for the 
waiting task is placed on the TDQ. 

I/O in System/38 is implemented with a queue-driven com- 



546 Part 2 I Regions of Computer Space Section 7 1 Language-Based Computers 

mand structure using the SEND/RECEIVE mechanism to pass 
information across the IiO interface, which is described by 
Lewis, Reed, and Robinson [1978].To a task, a device looks like 
another task. Commands to devices and responses from devices 
are exchanged in the same way that messages are communicated 
between any two tasks in the system. The messages sent to the 
devices are specially formatted and contain the device commands. 
In addition to individual commands, a complete channel program 
can be sent as a single message. Because a queue structure is 
used, command stacking is automatic. In a similar manner, the 
device sends response and status information back to a task via a 
main storage queue. Note that only commands and responses use 
the queueing structure; data transfers between devices and main 
storage are direct. 

High-level calllreturn functions are directly supported by 
another set of system control operations which provide the linkage 
mechanism between routines executing within the same task. The 
performance of programs written using structured programming 
techniques is enhanced by the use of this mechanism. The same 
linkage mechanism is used by the hardware to report program 
exceptions. With this mechanism, exceptions for any task (includ- 
ing such things as page faults) execute at the same priority level as 
the task itself. A low priority task incurring an exception will not 
interfere with the execution of higher priority tasks. 

Summary 

The hardware implementation of System/38 provides the founda- 
tion on which the high-level machine architecture is. built. 
Through the use of advanced LSI technologies, System/38 
achieves a high level of processor performance and reliability. The 
use of intelligent controllers for I/O device attachments distrib- 
utes the I/O workload throughout thi: system. 

A unique aspect of the System/38 hardware and microcode is 
the incorporation of very powerful control functions. These 
functions provide a single mechanism which is used to control all 
processing in the system. Other high-level functions implemented 
in the microcode further enhance the flexibility and performance 
of the system. 

References 

Berglund [1978]; Curtis [1978]; Donofrio, Flur, and Schnadt 
[1978]; Dumstorff [1978];Froemke, Heise, and Pertzborn [1978]; 
Houdek and Mitchell [1978]; Lewis, Reed, and Robinson [1978]. 



Section 8 	 keyboard, CRT, and ROM-resident BASIC for less than $800. The 
TRS-80 Model I1 has a Z-80 Pc (see Part 3, Sec. 2) operating at 4 
MHz, 64 Kbyte of RAM, 1.5 Mbyte of floppy disk Ms, keyboard, 

Personal Computing Systems 	 CRT, and printer for less than $8,000. Available business software 
includes general ledger, accounts receivable, inventory control, 
mailing lists, and payroll. 

In the mid-197Os, spurred by the availability of single-chip 
microprocessors, personal computing was born. While it is too 
early to make projections or draw conclusions, some general TI 9914 
comments can nevertheless be made. By personal Computing we 
mean a low-cost computer structure that is dedicated to a single Based on Texas Instruments’ TI 9900 (see Part 3, Secs. 1and 2) 
user. The computing environment usually consists of a Pc, Mp, with 16 Kbyte of RAM, the TI 99/4 features a keyboard, color 
Mdisk, keyboard, cathode-ray tube (CRT) display with graphics CRT, extended graphics, sound and speech synthesis, the BASIC 
and/or color, and a standard software complement. Entry-level programming language, and a software library distributed in 
systems (with Pc, Mp, keyboard, CRT, and ROM-based software) ROMs. Software is available for entertainment, education, and 
are frequently priced as low as $400, while systems with a full set financial applications. 
of options may be priced up to $10,000. 

Personal computers are often targeted at a particular application 
area, such as scientific calculation, education, business, or C8PDF 
entertainment. As of mid-1979 over 80 companies offered one or 
more personal computing systems. The following three para- Ohio Scientific’s C8PDF is aimed at the home computing market. 
graphs give examples of these systems and their capabilities. The C8PDF can answer or place telephone calls via an acoustic 
Table 1describes examples of other personal computers available coupler. It can take telephone messages by decoding Touch-Tone 
during the latter part of 1978. We can expect functionality to inputs. In the case of a problem at home, the C8PDF can dial a 
increase and prices to decrease. number and explain the situation using a built-in phonetic speech 

synthesizer. The computer can interface with home security 
systems that incorporate sensors for smoke, fire, intrusion, and 

TRS-80 AC power outages. Lights and appliances (e.g., furnace, air 
conditioner, and microwave oven) can also be placed under 

In the first 20 months they were available, Radio Shack is reported program control. 
to have sold in excess of 100,000 TRS-80 systems with Pc, Mp, Personal computing is a subdimension of the computer €unction 

Table 1 Examples of Personal Computers Using the Basic Programming Language (Late 1978) [Mennie, 19781 

Intelligent 
Commodore Eddy  Systems Ohio Scientific Radio Shack 

Apple I1 PET 2001 Sorcerer Compucolor II Challenger C2-8P TRS-80 

Microprocessor 6502 6502 Zilog 280 Intel 8080 6502 280 
ROM (bytes) 8K 14K 12K 16K 9K Level I:4K 

Level II: 12K 
RAM (bytes) 4K-48K 8K-32K 8K-32K 8K 4K Level I: 4K 

Level 11: 16K 
Video display Color or black- Black-and-white Black-and-white Color monitor Black-and-white Black-and-white 

and-white TV monitor TV or monitor 64 char132 TV or monitor monitor 
40 char124 40 char125 64 char130 tines 32 or 64 char1 64 char116 lines 

lines lines lines 32 lines 
Keyboard style Typewriter Calculator Typewriter Typewriter Typewriter Typewriter 
Mass storage Cassette tape Cassette tape Cassette tape Minidisk Cassette tape Cassette tape 

(1,500 bit/s) Floppy disk (51 Kbyte) Floppy disk Floppy disk 
Floppy disk (80 Kbyte) 
(116 Kbyte) 

System cost $900-$1.200 $800 $900-$1,400 $800-$2,400 $600-$2,000 

547 



548 Part 2 1 Regions of-Computer Space 

dimension. Most of the performance and structure dimensions for 
general-purpose computers will apply to the Personal computing 
function. However, certain techniques may be emphasized on 
account of the requirement for a low price (e.g., time multiplexing 
of Pc between computation and IiO, as discussed in Chap. 33 on 
the Alto). Several examples of personal computers can be found in 
this book. 

TMS 1000 

Chapter 34 describes a monolithic microcomputer designed for 
hand-held calculators. These calculators were the first example of 
widespread low-priced, dedicated computing systems. 

HP 9100A, HP 9810/20/30, HP 9845 

Chapters 45, 49, and 31 trace the evolution of the Hewlett- 
Packard scientific calculators from function per key (HP 9100A) to 
simple algebraic programmable languages (HP 9820), then to 
BASIC (HP 9830), and finally to a sophisticated single-user 
computer (HP 9845). 

Section 8 1 Personal Computing Systems 

Alto 

The Xerox Palo Alto Research Center (PARC) Alto is a high- 
performance personal computer with sophisticated I/O, including 
a raster-scanned display for characters, curves, and halftone and 
gray scale pictures. The high-performance Pc is multiplexed 
between computation, input (e.g., keyboard and “mouse” point- 
ing device), output (e.g., raster-scanned display), Ms (disk), and 
network interfaces. This multiplexing reduced cost while allowing 
high maximum throughput for several devices (e.g., Pc, Mdisk, 
and Tdisplay). Hardware multiplexing between the Pc and Pi0 has 
been used for several years in general-purpose computers such as 
the IBM System/360 and Systemi370 implementations (see Part 4, 
Sec. 5). 

References 

Mennie [1978] 



Chapter 33 

Alto: A Personal Computer1 

C. P. Thacker / E. M.  McCreight / 
B. W. Lampson / R. F. Sproull / D. R. Boggs 

Summary The Alto is a small computer system designed in early 1973 as 
an experiment in personal computing. Its principal characteristics, some of 
the design choices that led to the implementation, and some of the 
applications for which the Alto has been used are discussed. 

1. Introduction 

During early 1973, the Xerox Palo Alto Research Center designed 
the Alto computer system (“Alto”) as an experiment in personal 
computing, to study how a small, low-cost machine could be used 
to replace facilities then provided only by much larger, shared 
systems. During the succeeding six years, the original Alto 
underwent several engineering enhancements to increase its 
memory capacity and reduce its cost, but the basic capabilities of 
the system have remained essentially unchanged. There are now 
(early 1979) several hundred Altos in regular use by computer 
science researchers, engineers, and secretaries. 

The primary goal in the design of the Alto was to provide 
sufficient computing power, local storage, and input-output 
capability to satisfy the computational needs of a single user. The 
standard system includes: 

An 875-line raster-scanned display 

A keyboard, a “mouse” pointing device with three buttons, 
and a five-finger keyset 

A 2.5-Mbyte cartridge disk file 

An interface to the Ethernet system (“Ethernet”), a 3-
Mbit/sec communication facility 

A microprogrammed processor that controls input-output 
devices and supports emulators for a number of instruction 
sets 

64K 16-bit words of semiconductor memory, expandable to 
256K words 

All of these components with the exception of the user terminal 
are packaged in a small cabinet which is an unobtrusive addition to 
a normal office. The terminal, keyboard, and pointing device are 
packaged for desktop use (Fig. 1). 

’0Copyright 1979 by Xerox Corporation. 

Fig. 1.The Alto personal computer, showing a user at work with the 
display, mouse, and keyset. 

The Alto has led to an entirely new computing environment. 
Many applications devote the entire machine to interacting with a 
user and satisfying his needs; examples are document production 
and illustration, interactive programming, animation, simulation, 
and playing music. These individual applications are supple-
mented by a large number of services available via communica- 
tions; examples are printing service, mailbox services for deliver- 
ing electronic mail, and bulk file storage services. The Ethernet 
has also given rise to applications that use several Altos concur- 
rently to furnish additional computing power or to allow several 
people at their machines to interact with one another. 

The principal characteristics of the Alto processor are described 
in Sec. 2 of this chapter. Sections 3 to 6 describe input-output 
controllers for the display, disk, Ethernet, and printer. Section 7 
surveys the environment and applications that grew up for the 
Alto. Section 8 offers a brief retrospective look at the design. 

2. The Alto Processor 

The major applications envisioned for the Alto were interaction 
text editing for document and program preparation, support for 
the program development process, experimenting with real-time 
animation and music generation, and operation of a number of 
experimental office information systems. The hardware design 
was strongly affected by this view of the applications. The design 
is biased toward interaction with the user, and away from 

549 



550 Part 2 I Regions of Computer Space 

significant numerical processing; there are extensive user input- 
output facilities, but no hardware for arithmetic other than 16-bit 
integer addition and subtraction. 

The processor is microcoded, which permitted the machine to 
start out with rather powerful facilities, and also allows easy 
expansion as new capabilities are required. The amount of control 
store provided has evolved over time as shown in Fig. 2. Initially, 
the machine contained only 1K words, implemented with PROM. 
The most recent version provides 4K words, of which 1K is 
implemented with PROM and 3 K  is RAM. 

The micromachine is shared by sixteen fixed-priority tasks. The 
emulator, which interprets instructions of the user's program, is 
the lowest-priority task; the remaining tasks are used for the 
microcoded portions of input-output controllers and for house- 
keeping functions. Control of the micromachine typically switches 
from one task to another every few microseconds, in response to 
wakeup requests generated by the I/O controllers. The emulator 
task requests a wakeup at all times, and runs if no higher-priority 
task requires the processor. There is usually no overhead 
associated with a task switch, since the microprogram counters 
(MPCs) for all tasks are stored in a special high-speed RAM, the 
MPC RAM. The main memory is synchronous with the processor, 
which controls all memory requests. 

The task-switching mechanism provides a way of multiplexing 
all the system resources, both processor and memory cycles, 
among the consumers of these resources. In most small systems 
with single-ported memories, the mgmory is multiplexed among 
the IIO controllers and the CPU, and when an 110 controller is 
accessing the memory, the CPU is idle. In the Alto, the processor 
is multiplexed, and multiplexing of the memory is a natural 
consequence. By sharing the hardware in this way, it has been 
possible to provide more capable logical interfaces to the 110 
devices than are usually found in small machines, since the IiO 

Control hlemO'Y Processor Memory 

I 

I 

Fig. 2. Sizes and technologies used for the principal memories in 
the Alto. 

Section 8 1 Personal Computing Systems 

controllers have the full processing capability and temporary 
storage of the micromachine at their disposal. 

The standard Alto contains controllers for the disk, the display, 
and the Ethernet. The disk controller uses two tasks, the display 
and the cursor use a total of four tasks, and the Ethernet uses one 
task. In addition to the emulator task, there is a timed task that is 
awakened every 38 ps, and a fault task that is awaked whenever a 
memory error occurs and is responsible for logging the error and 
generating an interrupt. The timed task refreshes the main 
memory, and maintains the real-time clock and an interval timdr 
accessible from the emulator. 

The main memory size of the Alto was initially 64K words, 
implemented with 1K bit semiconductor RAM chips. As semicon- 
ductor technology improved, the memory size was increased, as 
shown in Fig. 2. The initial version ofthe machine provided parity 
checking; later configurations employ single error correction and 
double error detection. Memory access time is 850 ns (five 
microinstruction cycles), and either one or two words can be 
transferred during a single memory cycle. In machines with more 
than 64K, access to extended memory is provided via bank 
registers accessible to the micromachine, and the standard 
instruction set and IiO controller microcode make use of the 
additional memory only in limited ways. The reason for this 
clumsy arrangement is that the lifetime of the Alto has been 
longer than originally anticipated, and the additional memory was 
an unplanned addition. 

Because the machine was intended for personal use, protection 
and virtual memory facilities normally included to support sharing 
were omitted from the Alto. 

The multitasking structure of the processor led to an extremely 
simple implementation. The processor is contained on five 
printed circuit boards, each of which contains approximately 
seventy small- and medium-scale TTL integrated circuits. Each of 
the three standard IiO controllers occupies a board with about 70 
ICs. The main memory uses 312 chips. 

2.1 Emulators 
There are emulators for several instruction sets, including BCPL 
[Richards, 19691, Smalltalk [Kay, 1977; Ingalls, 19781, Lisp 
[Deutsch, 19791, and Mesa [Mitchell, Maybury, and Sweet, 
19791. The BCPL emulator is contained in the PROM microstore, 
while the others are loaded into RAM as needed. The BCPL 
instruction set was chosen because it is straightforward to 
implement and because we had previously developed a BCPL 
compiler for a similar instruction set. BCPL is a typeless 
implementation language; it has much in common with its 
well-known descendant, C [Ritchie et al., 19781. The language 
was used extensively to build Alto software; very little assembly 
language code has been written for the Alto. 



Chapter 33 1 Alto: A PersonalComputer 551 

The BCPL instruction set and the virtual machine it provides 
are summarized in Fig. 3. Instructions are divided into four 
groups: 

M-Group instructions transfer 16-bit words between memory 

0 MFunc AC I x D 

0 0 0 JFunc I X D 

0: PCcEfAd(Jump)0: PCcEfAd(Jump) 
1: Ac3-PC + 1 ,PCcElAd(JumpToSubrout~ne)1: Ac3-PC + 1 ,PCcElAd(JumpToSubrout~ne)
2-2- MEMiEiAdl + MEM[ElAdJ ++ 1, t I1 ~ lM€MiEfAdlMEM(EfAd1 == 0thenSkipMEMlEiAdl cMEMiEIAd1 0 then Skip 

n Skip3: MtM[ElAd] cMEM[ElAd]- t,4lMEM[EIAd] I OthenSkip 

1 SrcAC DeSlAC AFunc SH CY NL Skip 

0 1 1 SFunc Argument 

Memory 

ToOestAcitNL=O

i t  I -
SrcAC S 

ACIf Load 11NL: 

OestAC 5 

I I 16
'ySkip Sensor 


Fig. 3. Summary of the BCPL instruction set and the processor 
model implemented by that instructionset. 

and one of the four accumulators ACO-AC3. These instructions 
provide four indexing modes, and one level of indirection is 
allowed. The effective address is a 16-bit quantity, allowing 
access to a 64K word address space. 
J-Group instructions include unconditional and subroutine 
jumps, and two instructions that increment and decrement a 
memory location and test the resulting value for zero. Tlie 
effective address for these operations is calculated in the same 
way as for the M-Group. 
A-Group instructions provide register-to-register arithmetic 
operations, shifts by one or eight places, and conditional skips 
based on the result of the operation. 
S-Group instructions provide a number of functions that do not 
fit within the framework of the first three groups. Instructions 
are provided for loading, reading, and transferring control to 
special microcode in the writable microstore, operating the 
real-time clock and interval timers, optimizing BCPL proce-
dure calls, accessing the extended memory, and maintaining 
specialized data structures used by the display. 

The BCPL emulator provides a vectored interrupt system with 
16 interrupt channels. There is no hardware support for inter-
rupts; they are implemented entirely in microcode. (Note that the 
interrupt system is completely separate from the task-switching 
mechanism; the latter multiplexes the micromachine, while the 
former multiplexes the emulator.) When the microcode associated 
with an I/O controller wishes to cause an interrupt, it 0%one or 
more bits into a micromachine register, NIW (New Interrupts 
Waiting). If the i-th bit of NIW is set, an interrupt on channel i is 
requested. At the start of every macroinstruction, NIW is tested; 
if it is nonzero, and if the corresponding channel is active, the 
emulator's macroprogram counter is saved in a fixed location in 
main memory and control is transferred to a location taken from a 
sixteen-word table that starts at a fixed location. Individual 
channels are made active by setting bits in another fixed location. 
There are S-group instructions to enable and disable the entire 
interrupt system, and to return control from an interrupt routine. 

2.2 Input-Output 
I/O devices may be connected to the Alto in one of three ways, 
depending on the bandwidth required by the device and on the 
degree to which the controller is supported by specialized 
microcode. The three methods of connection and the level of the 
machine used to interface the hardware are summarized in the 
matrix of Fig. 4. 

Device controllers that require significant bandwidth, or 
exploit the computational facilities of the micromachine, are 
connected directly to the processor bus, and use one or more of 
the sixteen microcode tasks. The disk, display, and Ethernet 
controllers, which are part of the standard Alto, are interfaced in 



552 Part 2 I Regions of Computer Space Section 8 1 Personal Computing Systems 

the highest bandwidth but it also has a 16-word buffer, so it can 
LOGICAL INTERFACE LEVEL 

tolerate slightly more latency than the disk (12.8 ps at 20 
BCPL o r  A m  E n i ~ l a t o ioiTimed Private Task MbitsIsec), and is therefore between the disk and Ethernet in 

b a d  s&Storesl Task Microcode M i ~ r o ~ o d e  
priority. 

Impact prlrlter 
Stitch welderProm programmer 

Palallel CPU debugger Low Speed 
I /O Port raster scannri 

X Y  input tablet raster printerP 
H Cassette Tape IY 
S 
I 
C 
A 
L 

C 
0 
N 
N 

Memory 
B U S  

Terminal 
Concentrator 

Modem interface 

Mediumspeed 
raster Scanner 

Consale computer 

E 
C 
T 
i 
0 
N 
S 

Display * 
Ethernet ’ 

D s k  * 
Arpanet 

Processor 
BUS 

Mouse * 
Hardware Multiplier 

STrackTape 

Hlgh Speed 
rasterpr,nter 

Audio 

MOdeln ,ntertace 

* Included ~n Standdrd Alto 

Fig. 4. Schematic illustration of input-output attachments used c 
the Alto. 

this way. The controller for a high-speed raster-scanned printer is 
an example of a non-standard IiO controller interfaced directly to 
the processor bus. These devices are described in detail in later 
sections. 

Processor bus devices have one or more dedicated tasks that 
provide processing and initiate all memory references for the 
device controller; the tasks communicate with programs through 
fixed locations and data structures in main memory, and through 
interrupts. By convention, the second page of the address space is 
reserved for communication with devices of this type. Since there 
is only one processor, data structures shared between 110 
controllers and programs can be interlocked by simply not 
allowing task switches in critical sections of device-control micro- 
code. 

The amount of data buffering in a device controller, its task 
priority, and the bandwidth of the device trade off much as they 
do in systems which have DMA controllers competing for memory 
access. The controller must have enough buffering so that the 
wakeup latency introduced by higher-priority devices will not 
cause the buffer to over- or underrun before it can obtain service. 
The disk, for example, has only one word ofbuffering (10 ps at 1.5 
Mbitsisec), and is therefore the highest-priority task. The Ether- 
net requires more bandwidth, but since it has a 16-word buffer, it 
can tolerate much greater latency than the disk (87 ps at 3 
Mbitsisec), and hence runs at low priority. The display requires 

It is also possible to connect a device directly to the processor 
bus without using a separate task. The microcode of the timed 
task, normally used to refresh the memory, may be modified to 
operate devices that require periodic service. When this is done, 
the timed task microcode is run in the writable microstore. The 
mouse, a pointing device that provides relative positioning 
information by being roIIed over a work surface, is operated by the 
timed task. At 38-ps intervals, the mouse is interrogated for 
changes in position, and two memory locations corresponding to 
the mouse x and y coordinates are incremented or decremented 
when a change occurs. Specialized devices may also be operated 
directly by the emulator microcode; a hardware multiplier is an 
example of this type of device. An S-group instruction is added in 
the writable microstore that loads the registers of the multiplier 
from the ACs, initiates the desired operation, and copies the 
results back into ACs when the operation terminates. 

Devices with less demanding bandwidth requirements, or with 
computational requirements that can be satisfied by an emulator 
program rather than by a microprogram, are interfaced to the 
memory bus of the Alto. The advantage of this method is that no 
special microcode is needed. Communication between the hard- 
ware and a program is done using ordinary memory reference 
instructions, as in the PDP-11. The device controller decodes the 
memory address lines and delivers or accepts data under control 
of a read/write signal generated by the processor. The last two 
256-word pages of the address space are reserved by the hardware 
for this purpose. Since a memory access requires five microin- 
struction cycles, these devices cannot transfer data as rapidly as 
those connected directly to the processor bus, where the transfer 
is controlled by the microinstruction and requires only one cycle. 
In the standard Alto, the keyboard and keyset are examples of 
devices handled in this way. 

It is also possible to provide special microcode for devices that 
interface to the memory bus. A network gateway that connects 64 
300-baud communication lines to the Ethernet has been imple- 
mented in this way. The scanner hardware consists of a single bit 
of buffering for the output lines and level conversion for the input 
lines. Serialization and deserialization of eight-bit characters is 
done by microcode that is a part of the timed task; characters are 
passed to a macroprogram via queues maintained in main memory 
by this microcode. The macroprogram implements the higher- 
level communication protocols. 

The standard Alto provides a third method of connecting simple 
devices, the parallel IIO por t .  This is a memory bus device, and 
consists of a single 16-bit register that can be loaded by a store 
instruction, and a set of 16 input lines that can be read by a load 
instruction. The device controller does not occupy a card slot in 



Chapter 33 1 Alto: A Personal Computer 553 

the backplane, but is external to the machine and attaches via a 
cable to a standard connector on the back of the machine, which in 
turn is wired to the memory control board. A large number of 
devices have been connected to the Alto through this simple 
interface, including low-speed impact printers, a PROM program- 
mer, a stitchwelding machine for the fabrication of circuit boards, 
and several types of low-speed raster printers. Most devices that 
use speed-insensitive handshake protocols can be interfaced via 
the parallel I/O port; such devices require neither specialized 
hardware nor microcode. 

2.3 Details of the MicromachineControl 
The microinstruction format of the Alto is shown in Fig. 5, and the 
principal data paths and registers of the micromachine are shown 
in Fig. 6. Each microinstruction specifies: 

The source of processor bus data (BS) 

The operation to be performed by the ALU (ALUF) 

Two special functions controlled by the F1 and F2 fields 

Optional loading of the T and L registers (LT, LL) 

The address of the next microinstruction (NEXT) 

All microinstructions require one clock cycle (170 ns) for their 
execution. If a microinstruction specifies that one or more 
registers are to be loaded, this happens at the end of the cycle. 

The Alto does not have an incrementing microprogram counter. 
Instead, each microinstruction specifies the least significant ten 
bits of the address of its successor using the NEXT field in the 
instruction. This successor address may be modified by the branch 
logic or by the UO controllers. There are special functions to 
switch banks in the microstore, allowing access to the entire 4K 
address space. The address of the next microinstruction to be 

RSEL A L U F  BS Fl F2 LL LT 

2: BusORT. 2:  - 1  2: Task 2' L<O? 
3: BUSANDT 3. + S  3 TaSkSpecific 3: L Z O ?  
4: BusXORT 4: Sc 4: c L L S H 1  4: N e x l c N e x t O R B u s  
5: Bus + 1 .  5: cMO 5: + LRSH 1 5. AiuCarry? 
6: Bus-1'  6. -Mouse 6: c L L C Y 8  6: M D +  
7: Bus + T 7. c i R p  151 7: cConstanl  7: +Constant 
10.BUS-T 10-17: 10-17: 
11. B u s - T - l  Task Specilic Task Specific 
12. BUS t T + 1 .  

13 Bus + S k i p *  ? I> Branch Condition' 

14. B < i s A N D T *  Next + Next OR Condition 
15: B u s A N D T '  
16: no1 used 
17: not used 
* 
i> T IS loaded 

l rom A L U  result, 
not from the Bus 

Fig. 5. Alto microinstruction format. 

executed by each of the 16tasks supported by the micromachine is 
contained in the 16-word MPC RAM. This RAM is addressed by 
the NTASK register, which contains the number of the task that 
will have control of the processor in the next cycle. The MPC 
RAM value for the current task is updated every microinstruction 
cycle. 

Execution of a microinstruction begins when the instruction is 
loaded into the Microinstruction Register (MIR) from the control 
store outputs. At this time, the information on the NEXT bus is 
written into the MPC RAM at the location addressed by the 
NTASK register. This value is the address of the next instruction; 
within a short time, it appears at the output of the MPC RAM, the 
next instruction is fetched from the control store, and the cycle 
repeats. 

Conditional branches are implemented by ORing one or more 
bits with the NEXT address value supplied by the control store. 
The source of the data to be ORed is usually specified by the F2 
field; it may be a single bit-for example, the result of the BUS=O 
test--or it may be several bits supplied on the NEXT bus by an 
110 controller or by specialized logic. When the value consists of 
an n-bit field, a 2"-way branch, or dispatch, is done. Because the 
next instruction is already being fetched while the instruction is 
being executed, conditional branches and dispatches affect not the 
address of an instruction's immediate successor, but the instruc- 
tion following that one. It is possible to execute branches in 
successive instructions, providing this pipelining is taken into 
account by the microprogrammer. This branching scheme con- 
strains the placement of instructions in the microstore, but the 
constraints are satisfied semi-automatically by the microprogram 
assembler. 

Task switching in the Alto is done by changing the value in the 
NTASK register. As long as the value in this register does not 
change, a task will remain in control of the processor. A task gives 
up control of the processor by executing a microinstruction 

NEXT 



I 

554 Part 2 1 Regions of Computer Space Section 8 1 Personal Computing Systems 

NTASK CTASK] 
8; 

I PROM I 

II 

RAM 1LControl Memory 

II 
1K.3Kw x 32 

L I 

7 

Wakeup Requests
Priorily A AEncoder ' (up to 12 more) A 

I 


1 


Fig. 6. Alto micromachine structure. Single lines represent control signals, double lines show data paths. 

containing Fl=TASK. This function loads the NTASK register 
from the output of a priority encoder whose inputs are the 16 
wukeup request lines, one per task. An I/O controller indicates its 
need for service from the processor by asserting the request line 
associated with its task. If it is the highest-priority requester when 
the running microprogram executes the TASK function, NTASK 
will be loaded with its task number; after a one-instruction delay, 
the new task will acquire the processor. In the microinstruction 
following a TASK, a microprogram may not execute a conditional 
branch, and it must not allow a task switch when it has state in the 
L or T register, since none of the state of a task other than the 
MPC value is saved across a task switch. With these exceptions, 
there is no overhead associated with task switching. 

The conditions that cause I/O controllers to request wakeups 
are determined by the controller hardware, and are usually 
simple-an empty buffer requires data, or a sector pulse has been 
received by the disk controller, for example. When the microcode 
associated with the controller has processed the request and 
commanded the controller to remove the wakeup request, the 
microprogram then TASKS, relinquishing control of the processor. 

By convention, eight of the possible values of the F1 and F2 
fields of the microinstruction are tusk-specijic; that is, they have 
different meanings depending on which task is running. Each I/O 
controller can determine when its associated task has control of 
the processor by decoding the NTASK lines. When the task 
associated with a controller is running, the controller decodes the 



F1and F2 lines and uses them to control data transfers, to specify 
branch conditions, or for other device-specific purposes. This 
encoding reduces the size of the microinstruction. 

The intimate coupling between the micromachine and the I/O 
controllers has proven to be one of the most powerful features of 
the Alto. When a new I/O device is added, the controller not only 
has at its disposal the basic arithmetic and control facilities of the 
micromachine, but it can also implement specialized functions 
controlled by the task-specific function fields of the microinstruc-
tion. This has led to extremely simple hardware in the I/O 
controllers. Most controllers consist of a small amount of buffering 
to absorb wakeup latency, registers and interface logic to imple- 
ment the electrical protocols of the device, and a small amount of 
logic to decode the F1 and F2 lines, generate wakeups, and do 
whatever high-speed housekeeping is required by the device. 
Since the processor makes all the memory requests, controllers 
never manipulate memory addresses, and the usual DMA hard- 
ware found in most minicomputers is eliminated. 

It might appear that sharing the processor in this way would 
result in a significant degradation in performance, particularly for 
low-priority tasks such as the emulator. This is in fact not the case; 
the major bottleneck in the system is the memory. Since most 
computation can be overlapped with memory operation, the 
performance of the Alto compares favorably with other systems 
employing single-ported, non-interleaved memory at comparable 
I/O bandwidths. 

2.4 Details of the Micromachine-Arithmetic 

The arithmetic section of the Alto contains the following compo- 
nents: 

A 16-bit processor bus, used to transmit data between the 
subsections of the processor, the memory, and the I/O 
controllers. The source of bus data is controlled by the BS and 
the FI fields of the instruction. 

A bank of 32 16-bit R registers, and eight banks of 32 16-bit S 
registers. These registers have slightly different properties, 
and together constitute the high-speed storage of the proces- 
sor. As better integrated-circuit technology has become availa- 
ble, the number of S registers has been increased as shown in 
Fig. 2. R and S are addressed by the RSEL field of the 
instruction; either R or S (but not both) can be used during a 
single instruction. Reading and loading of R and S are 
controlled by the BS field of the instruction. 

A 16-bit T register. T is loaded when the LT bit is set in the 
microinstruction. The source of T data is determined by the 
ALU function being executed; it is usually the bus, but may be 
the output of the ALU. T is one of the inputs of the ALU. 
A 16-bit ArithmeticiLogic Unit (ALU). The ALU is implement- 
ed with four SN74S181 ICs. These devices can provide 64 
arithmetic and logical functions, most ofwhich are useless. The 

Chapter 33 1 Alto: A Personal Computer 555 

fourteen most useful functions are selected by the four-bit 
ALUF field of the microinstruction, which is mapped by a 
PROM into the control signals required by the chips. 

A 16-bit L register. L is loaded from the ALU output when the 
LL bit is set in the microinstruction. 

A shifter capable of shifting the data from L left or right by one 
bit position and exchanging the two halves of a word. Simple 
shifts are controlled by the F1 field of the instruction (F1=4, 
5,6). In the emulator task, these functions may be augmented 
by the F2 field to do specialized shifts required by the BCPL 
instruction set, and to do double-length shifts for microcoded 
multiply and divide. 

A 16-bit Memory Address Register (MAR), described later. 

A 256-word by 16-bit constant memory, implemented with 
PROMS. This memory is addressed by the concatenation of 
the RSEL and BS fields of the instruction; when F1 or 
FZ=CONSTANT, the normal actions evoked by RSEL and BS 
are suppressed, and the selected constant is placed on the bus. 
Approximately 200 of the 256 available constants have been 
used. 

An Instruction Register (IR) that holds the current macroin- 
struction being executed by the BCPL emulator. 

The main memory is synchronous with the processor, which 
initiates all memory references by loading MAR with the 16-bit 
address of a location. During a memory reference, data may be 
transferred between the memory and any register connected to 
the bus, including registers in the 110 controllers. The memory 
can transfer a doubleword quantity during two successive instruc- 
tion cycles, as part of a single memory cycle. Using this access 
method, which was provided to support high-performance pe- 
ripherals such as the display, the peak memory bandwidth is 32 
bitsi(6 * 170 ns) = 31.3 Mbitshec. 

The arithmetic section of the Alto contains a small amount of 
hardware to support the emulator for the BCPL instruction set. 
There are special paths to supply part of the R address from the 
SrcAC and DestAC fields of IR, logic to dispatch on several fields 
in IR, and hardware to control the shifter and maintain the 
CARRY and SKIP flags. The total amount of specialized hardware 
is less than ten ICs. 

No special hardware has been added to support emulators for 
other instruction sets. These usually specify the operation to be 
performed with a single eight-bit byte, followed by one or two 
bytes that supply additional parameters for some of the opera- 
tions. The standard dispatching mechanism is used to do an initial 
256-way dispatch to the microcode that emulates each macroin- 
struction. 

The dispatching mechanism has been used for other applica- 
tions. Although the micromachine does not support subroutine 
linkage in the hardware, it has been possible to achieve the same 
effect with only a small performance penalty. The calling micro- 



556 Part 2 1 Regions of Computer Space 

code supplies a small constant as a return index (typically in T) 
which is saved and used as a dispatch value to return to the caller 
when the subroutine has completed its work. The Mesa emulator 
implements an eight word operand stack by dispatching on the 
value of the stack pointer into several tables of eight microinstruc- 
tions, each of which reads or writes a particular R-register. 

The parallelism available in the microinstruction format encour- 
ages the use of complex control structures which are often 
substituted for specialized data-handling capabilities; it is usually 
possible to do an arithmetic operation, a branch or dispatch, and 
at least one special function in each instruction. 

3. User input-Output 

The main goals in the design of the Alto's user input-output were 
generality of the facilities and simplicity of the hardware. We also 
attached a high value to modeling the capabilities of existing 
manual media; after all, these have evolved over many hundreds 
of years. There are good reasons for most of their characteristics, 
and much has been learned about how to use them effectively. 
The manual media we chose as models were paper and ink (the 
display), pointing devices (the mouse and cursor), and keyboard 
devices ranging from typewriters to pianos and organs. 

3.1 The Display 

The most important characteristic of paper and ink is that the ink 
can be arranged in arbitrarily chosen patterns on the paper; there 
are almost no constraints on the size, shape, or position of the ink 
marks. This flexibility is used in a number of ways: 

Characters of many shapes and styles not only represent 
words, but convey much important information by variations in 
size and appearance (italics, boldface, a variety of styles). 
Straight lines and curves make up line drawings ranging in 
complexity from a simple business form to an engineering 
drawing of an automatic transmission. 
Textures and shades of gray, and color, are used to organize 
and highlight information, and to add a third to the two 
dimensions of spatial arrangement. 
Halftones make it possible to represent natural images which 
have continuous tones. 
Fine-grained positioning in two dimensions produces effects 
ranging from the simple (superscripts, marginal notes, multi- 
ple columns) to the complex (mathematical formulas, legends 
in figures). 
The high resolution of ink, combined with the absence of 
positioning constraints, means that a large amount of informa- 
tion can be presented on a single page. 

Section 8 1 Personal Computing Systems 

In addition to imaging flexibility, paper and ink have several 
other important properties: 

Large sizes of paper can present the spatial relationships of 
many thousands of objects. 
Many sheets of paper can be spread out, so that many pages 
can be wholly or partially visible. 
Many sheets of paper can be bound together, so that one item 
from a very large collection of information can be examined 
within a small number of seconds. 

Only one technique is known for approximating all these 
properties of paper in a computer-generated medium: a raster 
display in which the value of each picture element is independent- 
ly stored as an element in a two-dimensional array called a bitmap 
or frame buffer. If the size of a picture element is small enough, 
such a display can approximate the first five properties extremely 
well; about 500-1000 binary (black or white) elements per inch are 
needed for high quality, or 25-100 million bits for a standard 8.5 
by 11-inch page. Another approach (which we did not pursue) is to 
exploit the fact that unlike paper and ink, the display can provide 
true gray. If each picture element can assume one of 256 intensity 
values (or a triple of such values for color), almost all images which 
are made on paper can be reproduced with many fewer picture 
elements than are needed if the elements are binary; about 
100-150 elements per inch are now sufficient, or 8-18 million bits 
for a page. 

Even eight million bits of bitmap was more than we could afford 
in 1973. Furthermore, the computer display cannot hope to match 
paper in size, or in the number of pages which can be visible 
simultaneously. To make up for this deficiency, and to model page 
turning, it is necessary to alter the image on the screen very 
rapidly, so that changes in the single-screen image can substitute 
for changes in where the eye is looking and for the physical motion 
of paper. As the number of bits representing the image grows, 
more processing bandwidth is required to compose it at accepta- 
ble speeds. 

Fortunately, surprisingly good images can be made with many 
fewer bits, if we settle for images which preserve the recognizable 
characteristics of paper and ink, rather than insisting on all the 
details of image quality. Characters 10 points or larger (these are 
printer's points, 72 per inch, and the characters in this sentence 
are 9-point) in several distinguishable styles and in boldface or 
italic, almost arbitrary line drawings, and dozens of textures are 
quite comfortable to read when represented by about 70 binary 
elements per inch; this resolution is also sufficient for crude but 
recognizable characters down to 7 points, and for halftones of 
similar quality. One page at this resolution is about half a million 
bits, or half of the Alto's one-megabit memory. 

The display is an interlaced 875-line monitor running at 30 



frameshecond. There are 808 visible scan lines, and 608 picture 
elements per line. It is oriented with the long dimension vertical, 
and the screen area is almost exactly the same size as a standard 
sheet of paper (Fig. 7) .  Refreshing the display demands an 
average of 15Mbitslsec of memory bandwidth. Since the average 
includes considerable time for horizontal and vertical retrace, the 
peak bandwidth is 20 Mbitshec. The 30-Hz refresh rate results in 
flicker which most people do not find objectionable, provided the 
image does not contain large amounts of detail which appears in 
only one of the two interlaced fields. Flicker is reduced by the use 
of P40 phosphor in the CRT, rather than the faster P4 often used; 
the greater persistence of images which are being moved has not 
proved to be a problem. 

3.2Bitmap Representation 

A bitmap which can be painted on the display is represented in 
storage by a contiguous block of words. A bitmap on the Alto 
represents a rectangular image, w picture elements wide and h 
elements high. For simplicity, w must be a multiple of 16, and one 
row of w picture elements corresponds to wI16 contiguous words 
in the bitmap. As a consequence, two vertically adjacent elements 
correspond to the same bit in two words which are wI16 words 
apart in storage (Fig. 8). 

The display microcode interprets a chain of display control 
blocks stored in memory, with its head at a fixed location. Each 
block specifies its successor, the number of scan lines it controls, 

Overlapping, to be an effective tool, must 
first have all things in the picture roughly 
sketched as if they were transparent-ar if 
you could see through them. The objects 

OVERLAPPING are first &awn as if they were made out of 
glass. By beginning with transparent
objects it is easy to see if they have been 
correctlydrawn. In the finished drawing dl 
objectswill be cotrecily &awn. 

Fig. 7. An example of text and graphics filling an Alto display 
screen. 

Chapter 33 1 Alto: A Personal Computer 557 

I I 

Fig. 8. The display data structure and its mapping onto the screen. 
The top part of the figure illustrates several control blocks and the 
corresponding screen windows they control. The lower part shows 
the relation between a bitmap in memory and the image on the 
screen. Note that the pattern of 1's in the bitmap corresponds to 
the pattern of black dots on the screen. 

the left margin (in 16-element units) of the screen area to be 
painted from the bitmap in storage, the address and width of the 
bitmap array, and the polarity, which determines whether zeros 
in memory are displayed as white (the normal case) or black. The 
left and right margins not painted from the bitmap are filled with 
zeros. This scheme allows the screen to be divided into horizontal 
strips, each with its own bitmap; its advantages and drawbacks are 
discussed below. 

To simulate an 8.5 by 11-inch page we use a single control block 
which covers all 808 visible scan lines, has no left margin, and is 
608 bits (38 words) wide. This is afuEl screen bitmap; it consumes 
about half the main storage of the standard machine, and 
displaying it consumes about 60% of the cycles. In return, it can 
display nearly any image which can appear on a standard sheet of 
paper. More restricted images, however, can be displayed more 
economically. An ordinary text page like this one, for example, 



558 Part 2 1 Regionsof Computer Space 

can be divided into horizontal strips. The white space in the 
margins, in indentations, and to the right of the last line in each 
paragraph need not appear in the bitmap. The leading between 
the lines and the margins at top and bottom, can be represented 
by control blocks specifying a width of zero. For a typical text page 
these tricks reduce the size of the bitmap to about 70% of its full 
size; pages of program listing are reduced by much more. 
Furthermore, lines can be inserted or deleted simply by splicing 
pointers in the control block chain, and parts of the image can be 
scrolled up or down by adjusting the number of scan lines covered 
by one of the zero-width control blocks, without moving anything 
in storage. 

Unfortunately, these techniques rule out anything except a 
single column of text in the image, since various parts of the image 
no longer have any supporting bitmap. Multiple columns (unless 
the lines are perfectly aligned), marginal notes, long vertical lines, 
and windows which do not fill the screen horizontally are not 
possible. We have used multiple control blocks heavily in the 
Alto’s standard text editor, which includes extensive facilities for 
using multiple fonts, controlling margins and leading, justifica- 
tion, etc. The editor continuously displays the text in its final 
formatted form, so that no separate operations are required to 
view the final document. In this context the control block tricks 
have made it possible to fit the editor into the machine, which we 
could not have done using a fill-screen bitmap. All the other 
interesting uses of the display, however, have adopted the 
full-screen bitmap so that they could support more general 
images, and we are convinced that the cost of memory is no longer 
high enough to justify giving up this generality. 

3.3 Composing the Image 

Because many bits are needed to display an image, we have found 
the machine’s ordinary data manipulation instructions inadequate 
for handling images. It is important to have fast ways of building 
up the most common kinds of images and making certain common 
changes (e.g., moving or scrolling a window). For this purpose the 
Alto has one major microcoded operation called BitBlt (for bit 
boundary block transfer), with a surprising number of uses. It 
works on rectangles within bitmaps; such a rectangle is defined by 
the width of the bitmap (which determines the spacing in storage 
of vertically adjacent elements), the address of the bit which 
corresponds to the upper left comer of the rectangle, and the 
height and width of the rectangle (in bits). BitBlt takes two such 
rectangles, called the source and the destination, and does 

destination +- F (destination, source) 

where F (d ,s) can be s (move), d OR s (paint), d XOR s (invert) or d 
A N D  s (erase), or any of these with s complemented. It is also 
possible to supply a 16 x 4 rectangle for the source and have it 

Section 8 1 Personal Computing Systems 

used repetitively; this is useful for producing uniform textures. 
The properties of BitBlt, which was designed by Dan Ingalls, are 
discussed in more detail in Newmann and Sproull[1979], where it 
goes under the name RasterOp. 

BitBlt has a large number of applications, among them 

Painting characters from a font ,  which is simply another 
bitmap, held somewhere in storage, that contains images of the 
characters. It is interesting to note that “Characters” can also be 
used to represent various specialized kinds of graphics, such as 
the symbols in hardware logic drawings. 
Drawing horizontal and vertical lines (which are just narrow 
rectangles). 
Filling in rectangular areas with textured patterns. 
Scrolling an image across a fixed rectangular window on the 
screen, or moving such a window around on the screen. 
Moving an image onto the screen from a copy elsewhere in 
storage. 
Saving part of the image in memory that is not part of the 
display bitmap. Later, the saved image can be copied back to 
cause it to reappear on the screen. 

The Alto also has a specialized operation for painting characters; it 
is considerably less flexible than BitBlt, but easier to invoke and 
more efficient. 

Sometimes one would also like fast operations for painting 
arbitrary lines and curves, and for filling solid areas bounded by 
such shapes, but so far we have not found the need for these to be 
great. Instead, these requirements are adequately met by the 
Alto’s ordinary memory reference instructions, which can be used 
to randomly access and update the display with complete 
flexibility. We have found this to be quite important, and believe 
that it is a significant advantage of the Alto architecture over 
conventional frame-buffer organizations. The ability to reuse part 
or all of the bitmap memory for other purposes when a full-screen 
display is not required has also been very important; with the 
decreasing cost of memory this is no longer such a significant 
consideration. 

3.4 Display Hardware 

This display is supported by three microcode tasks and some very 
simple hardware (Fig. 9). Serial video data is clocked by a 50-ns 
bit clock; everything else is clocked by the machine’s 170-ns main 
clock, which is chosen to be an integral submultiple (224) of the 
display’s line rate (875 * 30 = 26.25 kHz). A 16-word RAM and a 
one-word register implement a FIFO buffer and synchronizer 
between the processor bus and the shift registe‘r which serializes 
data for the display. There is a sync generator with a counter and 
PROM for horizontal sync and one for vertical sync, and logic to 



Chapter 33 I Alto: A Personal Computer 559 

Cyl, tld, Sec o,o, 1 0,0,2 

200000144 145File# 0 1
Page# 512 512 

# bytes 


o,o, 3 O,O,6NextOA nil 0,0,4PreviousOA 

Filename During early 1 9  
"Root Oi r" 73,the XeroxP 

alo Alto Resear 
Created ch Centerdesig 
1-Mar.79 ned the Alto co 
12:15:35 mputer system 
Read ("Alto") as an c 
17-Jun-79 xperimenl in pe 
1546:10 rsonal computi 

ng, to study ho 
Written .17-Jun-79 .13:29:33 

" 
Leader page 01 First data page First data page 

file RootDir of Altol.txt of RootDir 

Fig. 9. The display controller. 

wake up the data task whenever the FIFO is not full, the line task 
when horizontal blanking starts, and the field task when vertical 
blanking starts. There is also some logic to support the cursor 
described in Sec. 3.5. 

The field task runs 60 times a second, and is responsible for 
initializing the line task at the head of the chain of control blocks. 
It also generates a 60-Hz interrupt. The link task runs every 38 ps; 
it initializes the left margin width, bitmap address and bitmap 
width for the data task, and advances to the next control block if 
the current one is exhausted. When no control blocks remain, it 
goes to sleep until reawakened by the field task. The data task 
outputs zeros until the left margin is exhausted, then fetches 
doublewords from storage and delivers them to the FIFO until 
the bitmap width is exhausted, after which it goes to sleep until 
reawakened by the line task. A doubleword fetch takes six cycles 
or 1.05~ s ,and the 32 bits are consumed in 1.6 ps ,  so the data task 
consumes two thirds of the machine while data is being displayed 
(which is 73% of the time, the rest being spent in retracing). 

3.5Pointing 
A user working interactively with images frequently points at 
parts of the image, to identify the spot where something should be 
done, to select a menu item, to indicate the corners of a region, 
etc. For this purpose the Alto has a device called a mouse, which 
fits comfortably under a hand and can be rolled around on the 
work surface [English, Englebart, and Berman, 19671. The mouse 
is supported on three ball bearings, and the x and y rotations of 

Header 

Label 
o,o, 7 
o,o, 2 

of these compo 
nents with the 
exception of th 
e user terminal 
are packaged i 
n a small cabin 
et which is an u Datanobtrusive addi 
tion to a normal 
ollice. The tern 

Leader page of Last data page Second data page 

file Altol.txt of RootDir of Altol.txt 


one of these bearings are sensed by the Alto. The hardware senses 
motion by 21 increments in each direction (one unit is roughly 
1/200 inch), and microcode running in the timed task uses this 
information to update a pair of m u s e  coordinates in storage. 
Often it is also nice to be able to draw, and the mouse can do this, 
too, albeit somewhat clumsily. When drawing is important, a 
tablet is used, but this device interferes so much with the 
keyboard that it is not generally popular. 

It is essential to have visual feedback which indicates the mouse 
position, since there is no direct visual or tactile connection 
between the mouse position and anything in the image on the 
screen. This feedback is provided by the cursor, which is a special 
16 x 16 bitmap stored at a fixed place in memory, together with x 
and y coordinates that control where it is displayed. The cursor 
has its own microcode task, which runs after the display's line task 
and loads two hardware registers with the proper cursor data for 
the current scan line, and the x coordinate at which its first 
element should be displayed. The hardware starts shifting out the 
data when the display reaches the specified picture element, and 
it is ORed with the main display data. The connection between 
the mouse and the cursor coordinates is established entirely by 
software, which may, for example, restrict the cursor to some 
region of the screen, force it to move on a grid to facilitate lining 
things up, or make it "snap" onto sensitive points when it 
approaches close to them. Much use is made of the fact that the 
cursor image, though small (about ?hsq. inch), is programmable. 
This turns out to be extremely valuable, because the user is much 



560 Part 2 1 Regions of Computer Space 

more likely to be looking at the cursor than anywhere else on the 
screen. A remarkable variety of shapes can be represented on 
those 256 bits, and a great deal of important information easily and 
unintrusively conveyed. 

Another important property of the mouse is the three buttons 
on its top surfice. These allow the user to specify a number of 
commands using the same hand with which he is pointing, 
especially when the meanings of the buttons are modified by shift 
keys on the keyboard, or by taking account of the duration or 
frequency of clicks. The current state of each button (up or down) 
appears as three bits in a special memory location, so that the 
program is free to attach meaning to any detail of the user’s 
interaction with the buttons. 

3.6 Keyboard 
The Alto has a standard office typewriter keyboard, augmented 
with a small number (8)of extra keys. The keyboard appears to the 
program as four words of memory; each of the bits in these words 
reflects the current state of one key (up or down). This allows any 
key to be used as a shift key, and as with the mouse, it permits a 
variety of non-standard interpretations of the keys to be pro- 
grammed, ranging from repeating keys to a digital electronic 
organ manual. 

4. LocalStorage 

The Alto has a reasonably powerful and very reliable disk file 
system. This file system is implemented on a 2.5-Mbyte 
moving-head removable-media rigid disk drive with which every 
Alto is equipped. All Alto software can read and write disk files, 
which are the usual interface among Alto software subsystems. 

The disk controller consists of one board of special-purpose 
hardware and a share of the Alto micromachine. The disk 
controller and the file system were designed together, so that the 
functions of the controller match the functions of the file system. 
Thus, certain file system functions are performed entirely by the 
disk controller to insure speed or reliability. These functions are 
easily implemented because the full power ofthe Alto ppocessor is 
available to the controller. 

4.1 File System 

An Alto disk pack contains a set of disk files. A disk file is a 
sequence of bytes, identified by a serial number unique within the 
disk pack. The disk controller and the file system software 
together implement a set of operations to create, extend, trun- 
cate, or delete files, and to read or write sequences of bytes within 
a file. A file is implemented as a non-contiguous sequence of 
fixed-length pages recorded on the disk pack. Each page of a file 
except the last is completely full of data (Fig. 10). 

Section 8 I Personal Computing Systems 

Video to 
Display 

Current task 4Dispatch LNext 
Number Logic Address 

F210:31 

0 Pointer to next ContrOl block orzero8I  last 8 R registers 

74 M i ~ r o i n ~ t r ~ ~ t i o n ~  
1 Re$ POI Left Margin Width 55 MSITTL ICs 

2 
I . .  

Bitmap memory address 
I 

3 Height 

Fig. 10. The Alto file system structure. 

The Alto file system is designed to be reliable. Many file 
systems have the property that bad data on a single page may 
create such confusion that the good data on the rest of the disk is 
practically useless. To control the global damage that could result 
from localized errors, the Alto file system distributes structural 
information to each page on the disk. Each page contains a special 
record called the label, different from the data record, that says, 
for example, “I am now serving as page 17 of file number 34152.” 
Page 0 of a file, the leader page, holds information about the file: 
its alphanumeric name, the date of last modification, and so on; 
actual data begins in page 1. The distributed structural informa- 
tion recorded in the label (serial number, page number, length) 
and in the leader page (name) is the basic file system data 
structure. 

The basic data structure is supplemented by a set of hints, 
performance-improving assertions whose truth can easily be 
verified. Because it is inefficient to scan the entire disk to find the 
leader page of a given file, a directory file maintains hints about 
file locations. If the directory file says that page 0 of file number 
3456 is located at disk address 7890, then before doing anything 
irreversible at disk address 7890, the disk controller checks 
whether the label record at that address admits to being page 0 of 
file 3456. To allow rapid access to a sequence of pages, each label 



Chapter 33 1 Alto: A Personal Computer 561 

records as hints the disk addresses of the immediately preceding 
and following pages of the file (Fig. 10). If hints of any sort are 
found to be erroneous, they can be reconstructed from the 
distributed structural information. In fact, one of the most 
important programs on the Alto is the hint-reconstructing Scav-
enger. 

The disk controller makes it easy to use hints properly and to 
do other common file-system operations. A disk operation is 
invoked with a command block, a group of words in main memory 
that specify a disk address, a page buffer address in main memory, 
and the transfer operation to be performed (Fig. 11). The disk 
controller is activated by putting the address of a command block 
into a particular main memory location. The controller performs 
the requested operation, writes the final status in the command 
block, and (if all went well) automatically proceeds to the next 
command block in a chain of blocks, linked by pointers. Disk 
command blocks are designed to be included in more complex 
operating system data structures describing pending disk trans- 
fers. 

File system damage results as often from errant software as 
from errant hardware. The file system/disk controller design 
attempts to minimize damage in two ways. First, each disk 
command block is required to contain the seal, a certain exact bit 
pattern. The disk controller will stop immediately if it encounters 
an improper seal. Thus if the disk controller is accidentally 

Camnandn 


Fig. 11. The disk controller. 

activated on a block of memory that is not a legal disk command 
block, its seal would probably be improper, and file system 
damage would be avoided. 

The second way to assure file system integrity is to check the 
label record before reading or writing, as mentioned earlier. 
Many disk controllers in other systems implement a header record 
for each page, separate from the data record, that is checked 
before reading or writing the data record. This strategy provides 
protection from failures of seeking or sector counting hardware, 
but not from software failures. An Alto disk sector incorporates 
separate header, label, and data records. The disk controller 
checks the header record to be sure the access hardware works, 
and then checks the label record to be sure that the file system 
software works, before reading or writing a data record. 

4.2 Disk Interface 
The disk controller consists of two micromachine tasks, four R 
registers, about 150 microinstructions, and a modest amount 
(about 55 MSI TTL ICs) of hardware (Fig. 11). The hardware is 
modest because it takes advantage of the computational power 
available in the micromachine. The hardware does only what the 
micromachine cannot do, either because of performance limita- 
tions or because remote sensing or control is involved: cable 
driving and receiving, data buffering, data serialization, and 
de-serialization, data encoding, sync pattern detection, and 
micromachine communication. With the particular disk drive 
used on the Alto (Diablo Model 31), the disk controller is 
responsible for encoding data into a self-clocking Manchester code 
during a write operation, but during a read operation the disk 
drive itself performs data-clock separation. 

Various applications eventually led us to interface a much 
higher performance disk (CalComp Trident) as an option. The 
differences between the two disk controllers are almost entirely in 
areas where the micromachine has sufficient performance to 
handle some function for the slower disk, but not for the faster 
one. For example, although the Alto has sufficient main memory 
bandwidth to handle the Trident (9 Mbitslsec vs. 1.7 Mbitslsec for 
the Diablo), task wakeup latency (the time from when a wakeup is 
requested to when the task gets control of the micromachine) can 
be up to 2 ps, SO multi-word buffering hardware is required in the 
faster controller. 

4.2.1 Disk Sector Task. One micromachine task, called the 
sector task, is invoked whenever a sector notch on the rotating 
disk pack passes a reference location on the disk drive. There are 
12 such notches around the disk, and one of them passes the 
reference location every 3 ms. The sector task can run at low 
priority because its needs for micromachine computation (about 
12 ps) can be satisfied at any time in a 100-ps interval. When the 
sector task is invoked, it records the final status of the just- 



562 Part 2 1 Regions of Computer Space 

completed transfer operation (if there was one) in that operation’s 
disk command block, records any requested interrupts in NIW, 
and checks to see if another command block requires processing. 
If there is no work to do, the sector task goes to sleep. This 
permits lower-priority tasks to run until another sector notch is 
encountered. 

If there is new work, the sector task decides whether the disk 
access machinery is positioned at the correct cylinder and sector. 
If the cylinder is incorrect, a seek operation is initiated, using the 
controller hardware. If both sector and cylinder positions are 
correct, the data transfer is enabled by leaving the necessary state 
information in R registers and commanding the controller to 
generate disk data task wakeup requests. Finally, the sector task 
sleeps. 

4.2.2 Disk Data Task. The other task, called the disk data task, 
is invoked at a very high priority during reading (or writing) 
whenever the one-word data buffer in the controller needs 
emptying (or filling, respectively). This task is awakened about 
every 10 ps and transfers a single word in at most 1.7 ps (unlike 
the display task, which transfers two words per wakeup in 1 ps). 
Thus during disk transfers up to 20% ofthe micromachine’s time is 
devoted to servicing the disk controller. 

The disk data task is expected to read, check, or write each of 
three records in a sector: the header, the label, and the data. Each 
record consists of a preamble area written as all 0 bits, a 
synchronization pattern consisting of a single 1bit, a number of 
information words, and a checksum word. The preamble and 
synchronization bits allow a tolerance for mechanical and electri- 
cal misalignment between writing and reading. 

In a typical operation the data task might check the header and 
label records of a sector, and then write its data record. To read or 
check a record, the Alto waits until the disk head is over the 
preamble to that record, then reads until the sync pattern is 
recognized, then gets words from the disk and writes them into 
memory or compares them with words fetched from main 
memory, and finally compares the computed checksum against 
the one read from the disk. To write a record, it must write 
a certain amount of preamble, then a sync pattern, then the 
data fetched from main memory, and finally the computed check- 
sum. 

A small piece of actual microcode for the disk data task will 
make the preceding description concrete. In the microassembly 
language below, all the clauses between a pair of semicolons (; xxx 
t yyy, zzz, ...;) assemble into one microinstruction (see Fig. 5) .  
For example, in the first line, 

> 
Inpreamblewait: 

L cMinusPreambleRemaining+l, Block; 

Section 8 I Personal Computing Systems 

MinusPreambleRemaining is an R register (say, 16), so RSEL = 
MinusPreambleRemaining (16),ALUF = BUS+1 (5),  BS = 
+-R (0),F1 = BLOCK [task specific] (3) ,F2 = NULL (0), LL = 

Yes (I), LT = No (0), and the NEXT field is assigned by the 
microassembler to point to the next microinstruction in sequence. 
The label Inpreamblewait is defined to be the microinstruction 
address chosen for this microinstruction by the microassembler. , 

One further general point is that conditional jumps and 
dispatches are implemented by ORing a computed value (usually 
just 0 or 1,but not always) with the NEXT address being fetched 
as part of the next microinstruction. Conditional clauses are 
identified by a trailing ?. For example, 

.. . ,Leo?, . . . ; 


.. . ,GoTo[O:PreambleDone, l:InPreambleWait], . .. ; 

The L<O? clause in the first microinstruction will cause a 1to be 
ORed with the NEXT field of the next microinstruction, if and 
only if the previous value of the L register is negative. The second 
microinstruction includes a NEXT field pointing to Preamble- 
Done, and in addition it tells the assembler to locate Preamble- 
Done at an even address and InPreambleWait at the next 
successive odd address, so that PreambleDone OR 1 = InPream-
blewait. 

The microcode fragment given below uses several functions to 
communicate with the hardware interface. All of them are 
task-specific. 

Block (F1)tells the controller hardware that the microcode task 
has run, and the wakeup request should be removed. 

DiskBufferWordt (Fl) loads the one-word output buffer in 
the disk controller hardware from the bus. 

+Data Bufferword (BS) puts the contents of the one-word 
input buffer in the disk controller onto the bus. 

DiskCommandRegisterc(F1) loads the command register in 
the controller from the bus. The bit3 in that register then fan 
out to control several independent conditions in the controller 
hardware. One bit (UseReadClock) determines whether the 
controller bit clock is being generated from a crystal oscillator 
in the controller, or whether it is inferred from the data being 
read from the disk. Another bit (WaitForSyncPattern) deter- 
mines whether the controller should suspend wakeup requests 
until the arrival of the sync pattern from the disk. 

ReadWriteOrCheck? (F2) causes a %bit dispatch based on 
whether the record is to be read, written, or checked 
(compared with memory data). The two bits have earlier been 
placed by the microcode into a special register in the disk 
controller. 



Chapter 33 1 Alto: A Personal Computer 563 

The code begins with a description of the R registers used. The 
code uses four R registers, although for clarity five names are 
used: 

MinusPreambleRemaining:a negative count of the number of 
words of preamble remaining. 

RecordWordCount: the number of words in the record being 
read or written (e.g., the data record is 256 words long). 
BufferBottom:the address of the first word in main memory of 
the buffer for this record. 
OneBeyondNextBufferWord:a pointer into the main memory 
buffer where the next word should be placed. The pointer is 
always “one beyond where the actual store‘ will be done. 
Checksum:a register to accumulate the exclusive OR ofall data 
words read or written in the record. 

As we join the story, the data task has begun “spacing” into a 
disk record in preparation for reading, writing, or checking it. If 
reading or checking, this means marking time until good data is 
known to be under the read head. If writing, this means writing 
preamble. 

In this loop the microcode counts through the preamble, one 
count per data task wakeup. Although no data is being transferred, 
the disk controller is waking up the data task each time the 16-bit 
buffer is full, so that it can count preamble bits. Between 
wakeups, the data task‘s micro-program counter rests pointing at 
either Inpreamblewait or PreambleDone. 

> 
Inpreamblewait: 


L +- MinusPreambleRemaining+l,Block; 

MinusPreambleRemaining +- L, Leo?, Task; 

DiskBufferWord +- Preambleconstant, 


GoTo[O: PreambleDone, 1:InPreambleWaitl; 
(Send more preamble if writing.) 

Now the preamble waiting is over. If reading, this means 
that the head is known to be over a good preamble area 
before the sync pattern. If writing, this means we should 
now write a sync pattern. 

PreambleDone: 

T +- RecordWordCount; 

L +- BufferBottom+T, ReadWriteOrCheck?; 

OneBeyondNextBufferWord +- L, Block, 

(Set up pointer into buffer.) 
GoTo[O:SetupRead, 1: Setupwrite, 2:SetupCheckJ; 

Setupcheck: 

Adjust by 1to make transfer loop exit test more efficient: 

L +- BufferBottom-1; 

BufferBottom +- L; 


SetupRead: 

DiskCommandRegister 


tUseReadClockAndWaitForSyncPattern, 

GoTo[SetupChecksum]; 

Setupwrite: 

DataBufferWord +- SyncPatternconstant; 


Setupchecksum. 

L c StartingChecksumConstant,Task; 

(Initialize Checksum register.) 

Modify Checksum: 

Checksum +-L; 


The data tasks micro-program counter rests here between 
transferring words. If we are reading, and if this is the first word of 
the record, then the data task will wait here until a word has been 
read following the deserializer’s recognition of a sync pattern. 
Note that the transfer loop transfers data from high to low 
addresses; this simplifies the exit test. 

TransferLoop: 
MAR +- L c T +- OneBeyondNextBufferWord-1; 
(Start main memory interface by suppling address to 
MAR.) 

OneBeyondNextBufferWord +- L, 

ReadWriteOrCheck?; 


L +-BufferBottom-T, 

(Compute number of words remaining to transfer.) 

GoTo[O:ReadLoop, l:WriteLoop, 2:CheckLoopI; 
(Dispatch.) 

ReadLoop: 

T +- Checksum, Block, L=O?; 

(Check L: Enough words transferred?) 

L +- (MD tDataBufferWord) XOR T, Task, 
GoTo[O:ModifyChecksum, 1:TransferFinishedl; 
(Move data word from disk controller to memory, mod- 
ify checksum.) 

WriteLoop: 

T c-Checksum, Block; 

(Recall L contains number of words to transfer.) 



564 Part 2 1 Regions of Computer Space 

L +- (DataBufferWord+- MD) XOR T, L=O?; 
(Move data word from memory to disk controller, mod- 
ify checksum. Check L: enough words transferred?) 

Task, GoTo[O:ModifyChecksum, 1:TransferFinishedl; 

TransferFinis hed: 

Checksum +L; 


The task's program counter rests here after sending the 
last data word to the controller or reading the last data word 
from the controller. Now we  must either send the computed 
checksum to the controller or compare the computed 
checksum with that read from the controller. 

T tDataBufferWord 

tChecksum, ReadWriteOrCheck?; 

(Only writes into outgoing buffer word.) 

L +- DataBufferWord-T, Block, 
GoTo[O:CheckChecksum, l:FinishRecord, 

2:CheckChecksum]; 
(This uses the incoming buffer word.) 

Now if we are reading or checking, we test for correct 
checksum by checking whether L is 0, etc. 

In the main reading loop, all but one of the microinstructions 
are executed concurrently with the main memory transfer (i. e., 
between MAR+ and MD+, which are as close together as they 
can be). This is usually true as well for other high-bandwidth 
controller microcode loops in the machine. Thus the main speed 
bottleneck in the Alto is shared access to a single memory 
interface. The additional degradation resulting from also sharing a 
single processor is minimal because so much processing is 
overlapped with memory references. 

ReadWriteOrCheck? is a good example of trading off controller 
hardware against shared processor time, register space, and 
microcode space. Obviously the same effect could have been 
obtained by dispatching on the value in an R register in the 
micromachine, or by having completely separate micromachine 
routines for reading, writing, and checking. Usually the decision 
was made to minimize controller hardware. But in this case by 
introducing a small amount of extra hardware (about two ICs) 
in the controller, one R register or about 30 microinstructions 
were saved. It was economical in 1973, but might not be 
today. 

Section 8 1 Personal Computing Systems 

5. Communication 

A personal computer provides substantial, predictable service to a 
single user. Much of the service he wants, however, cannot be 
provided by his machine alone, either because sharing is essential 
to the service or because of cost. Communication with other 
computers and other users is therefore needed. The communica- 
tion system expands the service available to an individual, by 
allowing several users to share resources. 

Such sharing is advantageous for two reasons. First, it allows 
several users to access the same data. For example, a person who 
composes a memorandum using text-editing facilities contained 
entirely in his Alto may wish to distribute copies to several other 
people. He transmits the data representing the memorandum to 
the Altos of the recipients; each of the recipients can then read it 
on his Alto display. The use of communication is analogous to the 
use of the telephone or U.S. mail. 

Communication can also be used to share resources for 
economic reasons. Although it is too costly to provide a hard-copy 
raster-scan printer for each Alto, a group of users may share a 
printer, transmitting to the printer the data and control informa- 
tion necessary to print a document. Sharing is also economical for 
high-capacity file storage or for special-purpose processors too 
expensive to replicate for each person. 

At the time the Alto was designed, several computer communi- 
cation networks such as the ARPA network [Kahn, 19721 had 
demonstrated the value of packet-switched networks for sharing 
resources and providing personal communication among research 
collaborators. A design suited for personal computers, however, 
has objectives rather different from those of a remote computer 
network such as the ARPANET: 

The transmission speed should be high enough that most users 
will not notice the presence of the network. If network 
bandwidth approximately matches local disk bandwidth, the 
user may not know or care whether a file is retrieved from a 
local disk or from a remote disk. 

The size of a network linking personal computers must not be 
limited. It is not unreasonable to imagine networks linking 
thousands of personal computers. At the same time, just two or 
three computers can constitute a reasonable network. 

The reliability of the network is extremely important when 
essential services such as printing depend on communication. 
If a user's personal computer malfunctions, he can take his disk 
cartridge to another one, but a network malfunction severs his 
access to essential services. In addition, many users are 
inconvenienced when the network fails, but only one when a 
machine fails. 



Personal computers tend to be near to each other and to the 
services they need, thus permitting a local network transmis- 
sion technique for clusters of machines. 

A design for a communication system must anticipate the need 
for standard communication protocols in addition to standards for 
the physical transmission media. The protocols control the flow, 
routing, and interpretation of data in the network. Just as the 
design of the Alto disk controller addresses the needs of a file 
system, so must the design of a network address the needs of 
communications protocols. However, the Alto was designed at a 
time when experience with protocols was limited: many lessons 
had been learned from the ARPA protocols, but newer designs 
such as TCP [Cerfand Kahn, 19741 had yet to emerge. The Alto 
therefore provides a general packet transport system, which has 
been used for a number of protocol experiments and evolutionary 
designsI 

5.1 The Ethernet 
Local Network 
The Ethernet communication system [Metcalfe and Boggs, 1976, 
Chap. 26 of this book, pp. 429 through 4381 is the principal means 
of communication between an Alto and other computers. An 
Ethernet is a broadcast, packet-switched digital network that can 
connect up to 256 computers, separated by as much as a kilo- 
meter, with a 3-MbMsec channel. Control of the Ether is dis- 
tributed among the communicating computers to eliminate the 
reliability problems of an active central controller and to reduce 
the fixed costs which can make small, centralized networks un- 
economical. 

A standard Alto includes an Ethernet controller and transceiv- 
er. As soon as there are two Altos within a kilometer of each other, 
connecting the transceivers together with a coaxial cable establish- 
es an Ethernet. Additional Altos and other computers can be 
connected simply by tapping into the cable as it passes by, above a 
false ceiling or beneath a raised floor. Connections can be made 
and power turned on and off without disturbing network commu- 
nication. 

An Ethernet is an efficient low-level packet transport mecha- 
nism which gives its best efforts to delivering packets, but it is not 
error-free. Even when transmitted without an error detected 
by the sender, a packet may not reach its destination without 
error; thus, packets are delivered only with high probability. 
A hierarchy of layered communication protocols is used to achieve 
reliable transmission on the Ethernet, by requiring receiving 
processes to acknowledge receipt of correct packets and sending 
processes to retransmit packets whose correct receipt is not 
acknowledged. 

Chapter 33 I Alto: A Personal Computer 565 

5.2 The Internetwork 
Although the physical size and addressing of the Ethernet are 
limited, many local networks may be connected together into an 
internal network [Boggs et al., 19801. The internetwork is 
implemented by building gateway computers (usually Altos) that 
connect two or more networks, often using long-haul digital 
communication to connect with gateways on distant local net- 
works. The gateway is responsible for routing packets in the 
internetwork: it receives a packet from a local network, interprets 
a destination address in the packet, and then transmits the packet 
into another network which will get it closer to its ultimate 
destination. Sometimes packets are forwarded through several 
gateways before they arrive at the proper local network. As of 
summer 1979, the Xerox internet provided service to several 
hundred computers on 25 networks interconnected by 20 gate-
ways. 

5.3 Implementation 
The Alto Ethernet controller (Fig. 12) contains about 75 MSI TTL 
ICs-it is slightly larger than the disk and display controllers. The 
transceiver, on the other hand, is much smaller and less expensive 
than either the disk drive or the display monitor. The controller 
hardware consists of the following functions: phase decoder, 
receiver shift register, FIFO buffer and synchronizing register, 
transmitter shift register, phase encoder, and micromachine 

I I 

Fig. 12. The Ethernet controller. 



566 Part 2 1 Regions of Computer Space 

interface. The FIFO buffer is shared by the transmitter and 
receiver, so the interface is half-duplex: it can either be transmit- 
ting or receiving but not both simultaneoulsy. This is not a severe 
limitation, since the Ether itself is half-duplex. It does make 
hardware checkout more difficult, however, because the control- 
ler cannot be looped back on itself; also, the software must make a 
special check for packets that it sends to itself. Up to three 
Ethernet interfaces can be attached to an Alto. Unfortunately the 
tasks cannot share a single copy of the microcode, since the 
micromachine cannot make indexed R-register references. 

The microcode uses one medium-priority task,two R registers, 
and about 100 microinstructions. The task consumes 16%of the 
machine in the data transfer loops, since it runs for five cycles (one 
memory reference) every 5.44ps (one Ethernet word time), doing 
all of its bookkeeping while waiting for the memory. To reject a 
packet the address filter requires 13 cycles (2.21 ps), which 
consumes as much as 20% of the machine in the improbable case 
of minimum-length (2-word) back-to-back packets. The rest of the 
microcode is executed once per packet accepted or transmitted, 
and so consumes a negligible number of cycles. 

The Ethernet task communicates with a program much as the 
disk and display tasks do. The program builds a command block 
describing the operation to be done. When the Ethernet task 
wakes up, it carries out the operation, and then posts status in the 
command block and causes an interrupt by ORing a word from the 
command block into NIW. One difference is in the way the task is 
awakened. The disk and display have periodically occurring events 
(sector notches and scan line retrace) which cause their tasks to 
wake up and check for commands from the software, but there is 
no such periodic event for an Ethernet. Instead, there is an 
S-group instruction which the program executes to set a flip-flop 
in the Ethernet hardware; this flip-flop wakes up the Ethernet 
task to act on the command block. Another difference is that disk 
and display commands complete after a finite time, but an 
Ethernet receiver can be started and not receive a packet for days. 
Hence programs always use interrupts to recognize completion of 
an operation, rather than busy-waiting as many disk drivers do. 
Finally, Ethernet command blocks are not chained, partly 
because of a shortage of microcode space in the early implementa- 
tions, and partly because it was not then clear how to make use of 
chaining. 

Packet address filtering is done by the microcode. When the 
hardware has accumulated the first word of a packet, it wakes up 
the microcode to check the destination address byte. The 
microcode accepts the packet and copies it into memory if any one 
of the following conditions is met: 

The destination address in the packet matches the host address 
field in the command block. 
The host address is zero (in this case the machine is said to be 
promiscuous, and receives all packets). 

Section 8 1 Personal Computing Systems 

The destination address is zero (in this case the packet is a 
broadcast packet, and is received by all machines). 

Otherwise the microcode tells the hardware to ignore the rest of 
the current packet and go to sleep until the beginning of the next 
packet. The address filter takes about 20 microinstructions; done 
in hardware it would take about 8 ICs. 

The flexibility dorded  by this filtering scheme has many 
applications. Any machine can substitute for another by using the 
other machine’s address in the host address field. Promiscuity is 
invaluable for debugging protocols, since a machine can peek at all 
of the packets flowing between two others. It is also easy to study 
the performance of the net by monitoring all the traffic. Broadcasts 
are used to locate resources and to distribute globally useful 
information. A less desirable consequence is that the Ethernet 
itself provides no security; applications which need secure 
communication must use encryption. 

The choice of an eight-bit address has proved to be unfortunate, 
since it means that a machine cannot have a unique hard-wired 
serial number which is normally used as its host address. Instead, 
each Alto has a station address specified by jumpers on the 
backplane, which is unique only among the machines on the 
particular Ethernets it happens to be on. 

Two or more Ethernet transmitters collide when they simulta- 
neously decide that the Ether is free and begin transmitting. 
When a transmitter detects collision, it aborts transmission and 
waits a random time interval before trying again, so as not to 
collide repeatedly. As the load on the net increases, a transmitter 
retries less vigorously, by doubling the mean of its random 
interval each time it participates in a collision. This exponential 
backofalgorithm is done by the microcode and a small amount of 
hardware. The software zeros the LOAD location in the Ethernet 
command block each time it issues an output command, and the 
microcode shifts a one bit into it each time a collision happens. 
The microcode generates a random retransmission interval by 
masking the LOAD location with the real-time clock R register 
maintained by the timed task, and then waiting for that interval by 
telling the hardware to wake it up each time the timed task wakes 
up, and decrementing the interval register at each wakeup. When 
the register goes to zero, the microcode again tries to transmit. 
After 16 consecutive collisions the LOAD location overflows, and 
the microcode gives up and posts a failure code in the command 
block. This algorithm takes about 20 microinstructions; done in 
hardware it would require about 10 ICs. 

6. A Controller for a Raster-Scanned Printer 

The Alto is predominantly a versatile I/O controller: the design 
emphasizes the needs of high-bandwidth I/O for personal comput- 
ing and relegates instruction interpretation to secondary impor- 



Chapter 33 1 Alto: A Personal Computer 567 

tance. One of the objectives of the design is to provide a 
convenient framework in which to build experimental or special- 
purpose IIO controllers, in addition to those for the standard 
display, keyboard, mouse, disk, and Ethernet. This section 
illustrates how the resources of the Alto are harnessed to a 
complex task: an interface to a high-speed raster-scanned page 
printer. The design shows how the page-generation algorithm is 
first analyzed and then divided into parts that are implemented in 
software, microcode, and hardware. 

The objectives of a printer are very similar to those of the Alto 
display: several thousand characters may appear in arbitrary sizes, 
rotations, font styles, and positions on the page; text may be 
proportionally spaced; characters may overlap one another (e.g., 
overstrikes); non-text imagery such as lines and curves may 
appear. Printing quality generally exceeds that of a display by 
using higher resolution-a typical device might print in one 
second an 8.5- by 11-inch page defined with 350 dotstinch 
(roughly 4000 horizontal scan lines of 3000 dots each). 

These observations suggest that the same techniques used to 
generate a digital video signal for the Alto display be used to drive 
a printer. The modest average data rate of 12 Mbitslsec means that 
an image of the page could be buffered in Alto memory and read 
out to generate video, using the same sort of controller as the Alto 
display. The image of the printed page can be created the same 
way as that for a display: using a character table that gives the x 
and y position and character code for each character that appears 
in the image, and afont table that defines a rectangular bitmap 
pattern for each character, BitBh is used to OR each character’s 
pattern into the bitmap buffer at the proper coordinate position. 
Unfortunately, this simple approach fails for two reasons: the Alto 
does not have enough memory to buffer a full-page image (12 
million bits), and the processor cannot execute BitBlt fast enough 
to generate a bitmap for a moderately complex page in one 
second. These two problems force changes in the image-
generation algorithm. After describing the new algorithm, we 
sketch its Alto implementation. 

Because buffering the entire page is impractical, an incremental 
algorithm must be used to generate portions of the image in 
sequence, using a smaller buffer. The image is divided into bands 
of 16 scan lines each, and the entire page image is generated by 
creating the image for each band in turn. This scheme requires 
two buffers, each capable of holding the bitmap for a single band: 
while one buffer is being converted into a video signal and sent to 
the printer, the image of the next band is being prepared in the 
other buffer. 

The incremental approach requires modifications to the image- 
generation algorithm described for a full-page buffer. The prob- 
lem is to identify those characters that lie wholly or partly in the 
band being generated. Although the entire character table can be 
scanned to compute, for each entry, whether the character lies in 
the band, it is more efficient to sort the table by the band number 

in which the character begins (i.e.,by y coordinate of the topmost 
scan line). The sorted table allows easy identification of “new 
characters,” those that start witihin the band being generated. 

Breaking the page image into bands inevitably causes some 
characters to span two or more bands, either because they are 
more than 16 scan lines high, or because their image on the page 
happens to cross a band boundary. For these characters, the 
image-generation process is not completed when a band is 
generated; instead, a portion of the character is left over and must 
be continued in the succeeding band {Fig. 13). The image- 
generation algorithm records left-over characters in a list that 
contains sufficient information to continue image generation 
(BitBlt) in the next band. The companion data structures for new 
and left-over characters are characteristic of many incremental 
image-generation algorithms, such as those for solid polygons and 
hidden-surface images [Newman and Sproull, 19791. The algo- 
rithm to generate the image of a band is: 

1 	 Clear the band buffer to zero. 
2 	 For each character in the character table for this band: 

a Use the character code extracted from the character 

FantTalle 

I A 	 I 

Fig. 13. Schematic diagram of the image-generatlon process for 

printing a page. The band buffers show a character that does no? 

completely fit in band i.It has a “left-over” part extending into the . 

next band. 




568 Part 2 1 Regions of Computer Space 	 Section 8 I Personal Computing Systems 

table to enter the font table and find a character bitmap, 
together with a width and height. 

b OR into the band buffer the image of the character, at 
the specified position. 

c 	 If the character’s image does not terminate in this band, 
save a left-over entry, specifying the x position of the 
character, its width, its height (now reduced), and a 
pointer to the beginning of the next scan line of 
character bitmap information in the font table. 

3 	 For each character in the left-over table formed when 
generating the previous band: 
a Same as step Zb. 
b Same as step 2c. 

4 	 The image in the band buffer is now ready to be converted 
into a video signal and sent to the printer. 

The algorithm was analyzed carefully to design an implementa- 
tion for the Alto. Table 1gives several properties required of the 
memories used in the algorithm, obtained by software simulations 
of the printing of typical pages. These simulations lead to a 
number of design decisions for the algorithm and controller. 
Consider the size of a hand: 16 scan lines. The greater the number 
of scan lines in a band, the larger the band buffers, and hence the 
expense. The smaller the number of scan lines, the more 
frequently the left-over tables must be read and written while 
generating a page, The table shows that a band size of 16 scan lines 
yields both modest left-over bandwidths and inexpensive band 
buffers. It also shows that the memories required divide into two 
classes: small and fast (hand buffers) and large but slow (font, 
character and left-over tables). This division leads to an imple- 
mentation strategy for the Alto: the main memory will hold the 
font, character, and left-over tables, and the controller will hold 
the band buffers, together with some image-generation aids. Such 
a division is feasible only because the Alto micromachine can 
intimately control the image-generation hardware, using charac- 
ter parameters and pattern information read from main memory. 

6.1 Implementa fion 

The organization of the printer controller is shown in Fig. 14. It is 
logically divided into two parts that operate concurrently, the 

Table 1 

Size lbits *101) Bandwidth(bits * 106lvaee) 

Band buffers 30 
Clear buffer 12.3 
Generate image 6+ 
Output video 12.3 

Font table 368+ 2.4+ 
Character table 80+ .08+ 
Left-over list 6.4+ .5+ 
Numbers ending in “+” increase roughly linearly with page complexity. 

video generator and the image generator. The video generator 
reads data from one of the two band buffers, converts it into a 
video signal, and transmits the signal to the printer. As each 
16-bit word is read from the buffer, zeros are written back to clear 
the buffer for subsequent image-generation, When the video 
generator has emptied a buffer, it switches buffers and begins 
emptying the other one. 

The image generator portion of the controller composes the 
image in the buffer that is not being sent to the printer, under 
control of microcode in the printing tusk. The micromachine sets 
several parameter registers that describe the dimensions and 
position of a character to be added to the band buffer (width, 
height, x and y). Then it enters a tight loop, reading the 
character’s bitmap pattern from the font table, and passing two 
16-bit words to the controller every microsecond. This pattern 
passes through a FIFO and is shifted to align it with the word 
boundaries of the band buffer. After masking to account for the 
ends of a character, these 16 values are used to enable writing new 
data values into selected bits of a particular band buffer word. An 
“ink” memory provides the data to be written at these positions. 
Thus the character pattern, shifter, and mask determine where a 
character appears in the band, while the ink memory determines 
the video data values, and thus allows characters to appear to have 
texture or halftone patterns. When the interface signals to the 
processor that it is finished processing the current character, the 
microcode reads the controller status, including the height 
register, to determine whether the character was completed, or 
whether a left-over entry must be made, and records the left-over 
entry in Alto memory if necessary. The microcode repeats this 
process for all the characters that appear in the band. When the 
image for the band is completed, the printing task sleeps until the 
video generator switches buffers, indicating that the task must 
begin generating the image of the next band. 

The design of the printer controller is extremely economical, 
because it takes maximum advantage of the facilities already 
available in the standard Alto: substantial memory and a versatile 
micromachine. This approach retains the flexibility to change 
easily the sizes, formats, and contents of important structures: the 
font and character tables. The special hardware helps implement a 
general mechanism for composing page images (BitBlt), a mecha- 
nism that places no restrictions on the size, position, or content of 
characters, nor on the number of different character shapes that 
can appear on a page. Indeed, the controller will generate 
arbitrary video patterns, including lines, curves, and halftones. 
The performance of the system is limited by two constraints: (1) 
the font and character tables must not exceed the size of Alto main 
memory; and (2)the time available to generate a band dictates the 
number of micromachine cycles available to read character 
patterns from memory and pass them to the controller. 

Each of several dozen printers in the Xerox research environ- 
ment is driven by a printer controller, plugged into a standard 



Chapter 33 1 Alto: A Personal Computer 569 

Alto. Although the page-printing task is complex, the special 
hardware is not large (about 300 ICs) because of extensive use of 
microcode and memory resources in the standard Alto. The 
design illustrates how a page-generation algorithm was analyzed 
and then implemented using appropriate facilities: macroinstruc- 
tion programs for y sorting, microcode for left-over table manage- 
ment and font table references, and special hardware for the 
“inner loops” of image and video generation. 

7.  Applications 

A successful personal computing environment depends not only 
on economical hardware and devices for communicating with 
humans, but also on software constructed to meet personal 
computing needs. This section surveys the major software systems 

that have been built, and discusses the impact of the local network 
on the Alto computing environment. 

7.1 Programming Environments 

Two kinds of programming environments have developed on the 
Alto: conventional compiler-based systems and fully interactive 
environments. The first conventional environment to be con-
structed is implemented almost exclusively in the BCPL program-
ming language, and includes common tools: a compiler, an 
assembler, a linker, a debugger, an “open” operating system 
[Lampson and Sproull, 19791, a command processor, file-
manipulation utilities, etc. Subsequently, the Mesa programming 
language was designed and implemented on the Alto [Geschke, 
Morris, and Satterthwaite, 1977; Mitchell, Maybury, and Sweet, 
19791. Both of these environments have been used extensively to 
build applications. 



570 Part 2 I Regions of Computer Space 

Interactive programming environments emerged to take advan- 
tage of the personal nature of the Alto. The Smalltalk environment 
turned the Alto into an “interim Dynabook,” a prototype for a 
personal dynamic medium that emphasizes visual and audio 
communication [Kay and Goldberg, 1977; Kay, 1977; Kay, 1978; 
Ingalls, 19781. Smalltalk has been used to interact with documents 
containing text and graphics, to build visual animations [Baecker, 
19761, to synthesize music, and to build a variety of simulations of 
personal interest. 

An implementation of Interlisp [Teitelman, 19781 explored the 
problem of providing a large interactive environment on the Alto 
[Deutsch, 19791. Although the Alto micromachine was successful- 
ly adapted to interpret byte-coded Interlisp instructions at 
reasonably high speeds, the small main memory of most Altos at 
the time (64K) proved to be a crippling performance limitation. 

The various programming environments used on the Alto 
coexist gracefully by sharing only files stored on the local disk, and 
network protocols for communication among computers. No other 
facilities of the Alto are standardized. This policy allows each 
environment and each application to exploit the hardware in novel 
ways; for example, it fosters different strategies for using the 
display and interacting with the user. It also allows a language or 
application to use special-purpose microcode to interpret instruc- 
tions or perform application-specific calculations. The policy has a 
few drawbacks: failure to standardize the use of the display, for 
example, makes it essentially impossible for one Alto to be used as 
a remote terminal to another one. 

7.2 Personal Applications 
Some applications use the Alto as a stand-alone computer, usually 
making extensive use of the display, mouse, and keyboard for 
interaction. The most commonly used applications of the Alto 
today are the various programs developed for document produc- 
tion: a text editor that supports a wide range of formatting styles 
and text fonts, and a set of “illustrators” to prepare diagrams using 
geometrical figures such as lines, circles, and curves, or raster 
images obtained by scanning existing documents or by free-hand 
drawing. Many of the display techniques used are described in 
Newman and Sproull[1979]; camera-ready copy for that book was 
produced with Alto document-production software. 

Some uses of the Alto support research in computer science 
within Xerox. The best example is a design automation system 
used to aid designers of digital hardware. Logic drawings are 
prepared with an illustrator, and are then analyzed by a program 
to determine what integrated circuits are pictured in the diagram 
and how they are connected. Other software then checks loading 
rules, makes wire lists, and drives semi-automatic wiring equip- 
ment. The Alto also serves as a console computer to simplify 
debugging or diagnosis of experimental hardware. An umbilical 
cord connects the Alto to the hardware so that it can load registers 
and memories, issue control commands such as “single step,” and 

Section 8 1 Personal Computing Systems 

read back important internal state. An Alto program presents this 
information on the display, accompanied by symbolic names of the 
registers or signals in the experimental hardware. The display also 
presents menus of operations, such as “step,” that are invoked by 
pointing with the mouse and cursor. In this way, the Alto is used 
to provide a comfortable user interface for an engineer, technician, 
or system programmer working on the hardware. 

7.3 Communication in Applications 

No Alto users depend only on the resources available within a 
single Alto; all use communication to extend these services. Even 
the user of document-production application requires communi- 
cation to obtain hardcopy output at a shared printer or to 
distribute a document file to other users. Alto applications and 
users depend on a wide variety of services implemented on server 
machines throughout the network: 

Printing. An application program running in any Alto may 
transmit to the printing serwer a description of a document 
to be printed. The printing server is an Alto that queues 
requests, and later prints the files using the raster printer 
controller described in Sec. 6 of this chapter. 
File storage. File services are provided both to allow 
sharing of files among users and to escape the limitations of 
the local storage available on the standard Alto. The service 
machines have one or more high-pedormance disks at- 
tached and offer several different styles of file access. Some 
provide a “page IeveI” access [Swinehart, McDaniel, and 
Boggs, 19791, some a “file transfer” access patterned after 
the ARPA network file transfer facilities [Crocker et al., 
19721, and some a “transaction access” suitable for imple- 
menting a file service that is distributed over several 
machines [Israel, Mitchell, and Sturgis, 19781. 
Mailboxes. A popular application of the Alto is an electronic 
mail service. The personal machine is used to prepare 
messages for transmission to other Alto users, and to display 
and retain on the disk messages that have been received. A 
network mailbox service is provided to hold messages for a 
user until he wishes to receive them with the mail program. 
The mailbox service is often implemented within the same 
computer that provides network file storage [Levin and 
Schroeder, 19791. 
Timesharing. The Alto can be used as a terminal on the 
MAXC timesharing system [Fiala, 19781. For simple appli- 
cations, the Alto simulates a conventional video character 
display. More ambitious applications use a “display proto- 
col” to format text and graphics carefully on the screen 
[Sproull, 19791. DLISP, which provides display-oriented 
access to the Interlisp programming environment, is the 
primary user of the display protocol [Teitelman, 19771. 
Time of day. A simple but necessary service is to inform 
Altos of the correct time. A time serve is conveniently 



located in the same computer as a communication gateway. 
Error logging. This service records a log of error informa- 
tion sent to it, and is usually operated by hardware and 
software maintenance groups. Altos that are not in use run a 
diagnostic program that periodically sends error summaries 
to the logger. The maintenance organization examines the 
log to schedule service calls. 

Bootstrap. Alto microcode allows the computer to be 
bootstrap-loaded from either the local disk or the Ethernet. 
An Ethernet bootstrap service accepts a request for an Alto 
program, reads it from a local disk, and sends it over the 
network to the computer making the request. This service 
was first used to bootstrap the Scavenger program, which 
repairs a damaged disk file structure. Many programs are 
now distributed in this way, reducing the demands on local 
disk storage. The ability to bootstrap diagnostic programs 
over the Ethernet is especially useful to the maintenance 
staff. 

The services outlined above are implemented on various server 
machines spread throughout the internetwork. Servers can be 
added or removed straightforwardly as needs grow or shrink. All 
application programs access the services using standardized 
protocols, which in effect define the services that are offered. 
Standardization is necessary to allow sharing; applications that 
share a file must obey the protocol standards of the service used to 
store the file. Thus the protocols constitute a standardized 
interface, analogous to the file system on the disk, which is 
observed by all programs in the environment [Boggs et al., 19801. 

In addition to standard services, individual applications use the 
network in special ways. For example, the debugger may commu- 
nicate with an identical debugger running elsewhere in the 
network, essentially passing the user’s commands to the remote 
machine and returning information to be displayed. Thus a 
programmer in California can examine and fix a bug on a machine 
in New York. The Ethernet is used as a performance-analysis tool: 
the program to be analyzed transmits packets that summarize 
system status or that record the occurrence of a particular event. 
An analysis program running elsewhere in the network records 
and displays the information [McDaniel, 19771. The network is 
also used to couple programs together so that two people can 
cooperatively edit and illustrate documents in real time, sending 
digitized voice as well as keystrokes and mouse movements 
through the network. 

8. Conclusions 

As an experiment in personal computing, the Alto has been very 
successful. The number of Altos in use exceeds the original 
expectations of its designers by more than an order of magnitude. 

Chapter 33 I Alto: A Personal Computer 571 

The Alto has led to an entirely new kind of computing 
environment, because it puts computing power near the user, and 
makes it possible for him to do most of his work without relying on 
a centralized facility. The Alto environment provides a high- 
bandwidth, comfortable user interface, is extremely reliable 
because of its distributed nature, and provides performance that 
scales linearly with cost. One of the Alto’s most attractive features 
is that it does not run faster at night [Morris, personal communica- 
tion]. 

A few aspects of the Alto design did not work out well. The 
limitations on the size of the address space and on the amount of 
real memory have been serious. Although some programming 
systems have been able to take advantage ofthe extended memory 
banks, not all Altos have this extension, and a great deal of time 
has been spent fitting standard software that must run on all 
machines into the limited space available. To a great extent, the 
memory size limitation is due to the fact that the system’s life has 
been longer than planned. 

The facilities of the micromachine are not well suited for 
emulating existing architectures with structured opcodes. Fortu- 
nately, the virtual machines for which new emulators have been 
built use simple instruction encodings that fit well with the 
micromachine’s dispatch mechanism. The emulator for the Mesa 
machine interprets instructions just as fast as the emulator for 
BCPL, even though the latter has some hardware assistance for 
decoding, and the former does not. 

The sharing of the micromachine among I/O activities and 
emulation has been extremely successful. The micromachine 
allows these activities to interact by sharing memory, and 
provides the high memory bandwidth necessary to support the 
high-speed I/O requirements of the personal computer. Today, 
hardware costs are low enough that it is possible to replicate the 
processor in every I/O controller, but if this is done without taking 
additional steps such as using cache memories to decouple the 
processors from the memory, or using more complex multi-ported 
memories, shared memory access will still limit the system’s 
performance. Since both these alternatives add cost, while the 
multitasking is very inexpensive, we feel that this architecture is 
still viable today. 

Some of the early decisions in the design of the Alto computing 
environment worked out very well. The arrangement by which all 
software is standardized at the level of disk files and network 
messages has made it possible to build a wide variety of 
cooperating software subsystems. The disk file system has proven 
to be extremely reliable, primarily due to the distributed redun- 
dancy. Although the hardware and software have both had bugs, 
the reliability as perceizjed by users has been exceptionally high, 
since files are almost never irretrievably lost. 

The high-bandwidth communication provided by the Ethernet 
has been more valuable than anticipated, since we underestimat- 
ed the importance of servers. The network and network services 



572 Part 2 1 Regions of Computer Space 

have been the mainstays of the environment, and we feel that a 
facility with an order of magnitude lower bandwidth would have 
had a qualitatively different effect. 

References 

Baecker [19761; Boggs, Shoch, Taft, and Metcalfe [1980]; Cerfand 
Kahn [1974]; Crocker, Heafner, Metcalfe, and Postel [1972]; 
Deutsch [1979]; English, Englebart, and Berman [1967]; Fiala 

Section 8 1 Personal Computing Systems 

[1978]; Geschke, Morris, and Satterthwaite [1977]; Ingalls [1978]; 
Israel, blitchell, and Sturgis [1978]; Kahn [1972]; Kay [1977]; Kay 
[1978]; Kay and Goldberg [1977]; Lampson and Sproull [1979]; 
Levin and Schroeder [19791; McDaniel [19771; Metcalfe and 
Boggs [1976]; Mitchell, Maybury, and Sweet [1979]; Morris 
[personal communication]; Newman and Sproull [19791; Richards 
[1969]; Ritchie, Johnson, Lesk, and Kernighan [1978]; Shoch and 
Hupp [1977]; Shoch [19791; Sproull[1979]; Swinehart, McDaniel, 
and Boggs [1979]; Teitelman [1977]; Teitelman [1978]. 



Part 3 

Computer Classes 

Introduction 

This part of the book examines sets of computer architectures grouped by size from 
the smallest single-chip hand-held calculator systems to the largest high-performance 
computer systems. Each set of architectures is selected not only to cover the major 
approaches in each size category but also to provide comparisons and contrasts 
between systems. 

Since each example is a complete system, each system will have a value for each 
computer space dimension and subdimension discussed in Part 2. The reader is 
encouraged to both observe the values of the dimensions and question the 
relationship between the values of the dimensions. Why did the system designer 
select those particular values? 

Part 3 also provides the most detailed systems information in the book. There is the 
heaviest concentration not only of lSPs but also of implementation details. The lSPs 
are provided so that the reader can practice programming the machines. Implementa- 
tion details are given for the smaller machines so that the reader can apply these 
techniques to understand and/or design portions of the larger systems, which, by 
necessity, are presented at higher levels of abstraction. The reader is encouraged to 
partake in design exercises utilizing, say, microprocessor and microprogramming 
information to design a vector pipeline; for design tradeoffs and interactions are only 
appreciated after studying and practicing design. Design is an act of synthesizing and 
creating. Analysis of the designs of others only takes the reader so far. To fully 
appreciate design, one must partake of the art. 

Classes 

There are four major sections in Part 3, covering monolithic microcomputers, 
microcomputers, minicomputers, and maxicomputers. What are the definitions of 
these computer classes, and how does one assign a system to a class? 

There is no precise definition of a class, since the concept of class attempts to 
group points in the computer space that are, in some sense, neighbors. These 
groupings are difficult to make, since there needs to be a sense of closeness not only 
on an individual dimension but also between dimensions. Furthermore, the expecta- 
tions of a class member grow with time: i.e., a 1980-vintage minicomputer is expected 
to have substantially more capacity and capability than a 1965-vintage minicomputer. 
This introduction to Part 3 will elaborate the discussion presented in Chap. 1 on 
computer classes by considering cost and size of address space. 

573 



574 Part 3 I Computer Classes 

Computer Classes from an Economic Viewpoint’ 

The economic viewpoint is so strongly influenced by technology that the four 
generations of computers have been named after the technology of their components 
(see Chap. 5): vacuum tubes, transistors, integrated circuits (multiple transistors 
packaged together), and LSI circuits (large-scale integration). Every electronic 
technology has its own set of characteristics (e.g., cost, speed, heat dissipation, 
packing density, reliability), all of which the designer must balance. These factors 
combine to limit the applicability of any one technology; typically, one technology is 
used until a limit is reached or another technology supersedes it. 

When an improved basic technology becomes available to a computer designer, 
there are four paths the designs can take to incorporate the technology: 

1 	 Use the newer technology to build a lower-cost system with the same 
performance. 

2 	 Hold the cost constant and use the technological improvement to get an 
increase in performance. 

3 	 Push the design to the limits of the new technology, thereby increasing both 
performance and cost. 

4 	 Find a drastically new structure using the computer as a basic archetype (e.g., 
calculators) so that the design can be considered off the evolutionary path. 

Figure 1 shows the trajectory of the first three of the design alternatives. In general, 
the design alternatives occur in an evolutionary fashion as in Fig. 2, with a first (base) 
design and subsequent designs evolving from the base. 

In the first design style, the performance is held constant and the improved 
technology is used to build lower-cost machines which attract new applications. This 
design style has as its most important consequence the concept of the “minimal 
computer.” The minimal computer has traditionally been the vehicle for entering new 
applications, since it is the smallest computer that can be constructed with a given 
technology. Each year, as the price of the minimal computer declines, new 
applications become economically feasible. 

’This viewpoint is expressed in “Seven Views of Computer Systems,” Chap. 1 in Bell, Mudge, 
and McNamara [1978],pp. 9-13. 

Deslgn style 3 

cost 	 Design style 2 

Design style 1 

Time 

Fig. 1. Three design styles on the evolutionary path. 



Part 3 I Computer Classes 575 

I I 
Time 

Fig. 2. Evolutions from the base design 6. 

The second, constant-cost alternative uses the improved technology to get better 
performance, and will usually yield the best increase in total system cost and 
effectiveness. This approach provides a growth in performance and quality at a 
constant price and is probably the best for the majority of existing users. 

The third alternative is to use the new technology to build the most powerful 
machine possible. New designs using this alternative often solve previously unsolved 
problems and, in doing so, advance the state of the art. The design alternative must 
be used cautiously, since going too far in cost or performance (i.e., building beyond 
the technology) is dangerous and can lead to a zero-performance, high-cost product. 
There are usually two motivations for operating at this leading edge: preliminary 
research motivated by the knowledge that the technology will catch up; and national 
defense, where an essentially infinite amount of money is available because the 
benefit-avoiding annihilation-is infinite. Figure 3 depicts the selling price of several 
computers described in this book. The stratification of the price range is clearly 
evident. 

Table 1 shows the effect of pursuing the two design strategies of (1) constant 
performance at decreased cost and (2) constant cost at increased performance. The 
first column gives the base case at a given time t. Because this is the base case, the 
cost, performance, and cost/performance ratio of the computer are all 1. As the 
computer is applied to a particular environment, operational overhead is added at a 
cost of 2 to 4 times the original cost of the computer; the total cost to operate the 
computer becomes 3 to 5, and the performanceitotal cost ratio is reduced to between 
0.33 and 0.2 (depending on the total cost). 

Now assume the same operating environment, with the same fixed (overhead) 
costs to operate, at a new generation time, t + 1, when technology has “improved” by 
a factor 2. Two alternative designs are carried out; one is at constant cost and higher 
performance and the other is at constant performance and lower cost (cotumns 2 and 
3). The application is constant in three cases (columns 1-3), and a new base 
application is discovered for the fourth case (column 4). Both the constant-cost and 
constant-performance designs give the same basic performance/cost improvement- 
when only the cost of the computer is considered. However, when one considers the 
high fixed overhead costs associated with a base application (columns 13) ,  there is a 



576 Part 3 1 Computer Classes 

Fig. 3. Computer class as a function of price. 

Table 1 Using New Technology for Constant Cost and Constant Performance Designs 

Introduction time t t +1 tfl t+l 
(generation) 

Design style Base case Constant cost, Constant Constant 
increased performance, performance, 
performance decreased decreased 

cost cost 
Application Base Base Base New base 
Computer cost 1 1 0.5 0.5 
Operating costs 2-4 2-4 2-4 1-2 

(range) 
Total cost 3-5 3-5 2.5-4.5 1.5-3 
Performance 
(and improvement) 1 2 1 1 

Improvement 
(in total cost) 1 1 0.83-0.9 0.5-0.6 

Performance/cost 1 2 2 2 
(computer only 
and improvement) 

Performance1 
total-cost 0.33-0.2 0.66-0.4 0.4-0.22 0.66-0.4 

Improvement (in 
perf./total cost) 1 2 1.21-1.1 2 



Part 3 j Computer Classes 577 

relatively small improvement in performancekost, although there is a cost savings of 
17 to 10 percent with the minimal design. The greatest gains come in applying the 
computer with greater performance and getting the attendant factor of 2 gain in 
performance and in performancekost ratio. 

To summarize, the constant cost-increased-performance design style gives a 
better gain because operating costs remain the same. Its gain can only be equaled by 
the constant-performance design style when operating costs are halved upon its 
application. This only occurs when a new application is found, as shown in column 4. 

Applying the three design styles shown in Fig. 1over several generations produces 
the plot given in Fig. 4. These figures lead to an economic view that computer classes 
can be distinguished by cost and named as follows: monolithic micro, micro, mini, and 
maxi. The class maxi is sometimes referred to by the single, nondescriptive name 
mainframe. 

When one distinguishes computer classes by cost, a new range of costs can be 
made possible by new technology and can create a new class. The new class 
appears at the low end of the cost scale, where the minimal computer is introduced at P 

a significantly lower cost level than existing computers. 
The measure used to define a new class is cost, whereas the measure defining an 

established class is performance. This is because once a new class has become 
established in the marketplace, the users become familiar with what computers and 
what class can be used for their applications, and tend to characterize that class on a 
performance basis. The characterization of existing classes on a performance basis 
is important to this discussion, because at each new technology time, performance 

Lines of Maximum- Lines of Optimum 

constant performance constant costlperformance 


1 design petformance design 


\\

\c 
Maxi 

Mini (mal) 
I I cost-based I
I I design 1 

1 f +  1 f +  2 

Fig. 4. Price versus time for each machine. 



578 Part 3 I Computer Classes 

increases by one category, and mini performance becomes available on a micro, for 
example. 

The effect of technology upon computer classes can be summarized in the 
following thesis: Continual application of technology via the two major design styles 
results in 

1 Cost declines which create new classes of computers 

2 New classes becoming established classes 

3 Established classes becoming encroached upon 

Computer Classes from an Address Space Viewpoint 

Another viewpoint of computer classes is based on capacity and functionality. We 
have selected the one dimension bytes of virtual address to capture this viewpoint. 
Several computer space dimensions are roughly correlated with the number of bytes 
in the virtual address, A larger virtual address usually means: 

Wider instruction words to hold larger virtual addresses. These wider words 
imply wider memories and data paths, higher Pc-Mp bandwidth, and larger 
instruction sets. 

Usually, more functionality in ISP, represented by an ability to support more 
data-types in hardware. 

Higher cost due to wider everything. 

Higher performance to gain economies of scale (see Chap. 5). 

35 -

V A X ~ l 1 / 7 8 0  

30 

w 
? 
0 Atlas 
%- 25 
32-
> 
0 2 0 .  
'ciI 

r'- Mdrrchester 

z 15 
Mark! 

Q
E 
L 

5 10 
N-

0_I 

5 
//

Maxicomput e r b  Mln~comp,ulf!rs Microcomputi?rs Monolithic microcomputers Mollolllhlc 
Systellls 

1945 1950 1955 1960 1965 1970 1975 1980 

Fig. 5 Computer classes as a function of virtual address space. 



Part 3 1 Computer Classes 579 

Figure 5 plots the number of bytes in the virtual address versus the year for 
machines found in this book. Four classes are distinguishable: monolithic microcom- 
puter, microcomputer, minicomputer, and maxicomputer. Note that as time progress- 
es, the size of the virtual address in each class grows. The rate of growth is 
approximately doubling every year, which coincides with the doubling in semiconduc- 
tor memory chip density every 1 to 2 years. For the purposes of Part 3 we will 
introduce the machines in order of size, smallest class first, according to the four 
classes depicted in Fig. 5. 

References 

Bell, Mudge, and McNamara [1978]. 









Section 1 1 Monolithic Microcomputers 583 

Table 1 (Continued) 

TMSO980 TMS1980 TMSO920 TMS1990 TMS1500 TP0310 TP0320 

PMOS PMOS PMOS PMOS PMOS CMOS CMOS 

28 28 28 28 28 28 28 

4 bits 4 bits 40 bits 4 bits 64 bits 40 bits 4 bits 
serially serially serially 

2048x 2048x 511X 1024X 2048 x 511x 2048x 
9 bits 9 bits 9 bits 8 bits 13 bits 9 bits 9 bits 

64x 64x 40 x 64x 64x 40 x 64x 
9 bits 9 bits 5 bits 4 bits 20 bits 5 bits 13 bits 

9 10 30 12 165 30 11 

46 47 . . . . . .  31 . . . . . .  . . . . . .  46 

VLED VF VF VLED VLED LC LC 
~ ~~ 

TI-30 Dataman TI-1 025 TI-1000 Ti-57 TI-1030 TI-50 
Slide Rule Mathematical drills 4-function 4-function Scientific 4-function Scientific 
Business, analytical, 6/77 6/77 6/77 programmable 6/78 6/78 
financial TI-1050 TI-1050 4/77 BAll 
6/76 Sfunction 5-function MBA Financial 
Programmers 6/77 6/77 Financial, 6/78
Number base conversion statistical 

8/77
8/77 

TI-55 
Scientific 
programmable 
1I78 

instruction. Thus, a preloaded register pair (x,y) is assumed Instructions with side effects. Certain instruction op codes 
to contain the currently valid address when executing the have been selected so that they can apply appropriate 
memory-reference instruction. The register can be updated constants to the ALU and RAM. While this saves ROM 
by using instructions with immediate operands or by space for frequently used constants, it seems to make op 
incrementing. (Note that the x and y registers are physically code selection difficult and add nonsyrnmetry to the 
separated so that a carry from the y register does not change instruction format. 
x. x would have to be changed under programmed control.) 

This mechanism has also been used on microcomputers 

(e.g., Intel 8008 and 8080). The TMSlOOO was introduced in 1974 and used in the SR-16 

calculator. Table 1summarizes the 13 different chips used in TI 
Program Counter (PC) incrementing. In order to save a single-chip calculators. These chips vary in implementationseparate incrernenter for the PC or trips through the ALU technology, number of I/O lines, display drive, amount of ROMfor updating, the PC update is implemented by a pseudo- 
random sequence to go through all 64 states produced by a (up to 26.6 Kbit) and amount of RAM (up to 1280 bits). Calculator 
feedback shift register such as is used in cyclic redundancy applications range from simple four-function calculators to the 
codes. Thus only a shifter and several logic gates are 50-step programmable TI-57. As of mid 1979, over 35 million 
required. Figure 1 gives the logic implementation €or the TMSlOOO chips were used in both calculator and noncalcu- 
feedback shift counter. lator applications, establishing the TMS1000 as the computer 



584 Part 3 I Computer Classes 

I 
6-bit 

~ Input shift register 

LS B * MSB 

Fig. 1. TMS1000 feedback shift counter. 

architecture with the largest installed base. The internal clock rate 
varies from 200 to 450 KHz, depending on technology. 

A follow-on to the TMSlOOO is the TMS7000 series announced 
in 1981 [Hayn, McDonogh, and Bellay, 19811. The TMS7000 is an 
8-bit monolithic microcomputer with 2 or 4 Kbyte a user-
definable instruction set. The first two chips, the 7020 and 7040, 
have 2 or 4 Kbyte of use ROM respectively, and 128 bytes of RAM 
in a 40-pin package. Up to 60 Kbyte of external memory can be 
added. A complete family of monolithic microcomputers is 
planned. 

In 1978, General Instrument Corporation (GI) introduced a 
single-chip computer called the PIC1650 (Programmable Intelli- 
gent Controller). Five variations have been produced varying in 
number of pins (18 to 40), amount of ROM (256 to 1,024 twelve-bit 
words), amount of RAM (24 to 64eight-bit bytes), and operational 
voltage range. The large majority (67 to 80 percent) of the pins are 
devoted to program-controlled I/O. 

GI sought an easy-to-program, general-purpose microcontrol- 
ler. Thus the PIC1650 differs from the TMSlOOO in several 
significant areas: 

Section 1 1 Monolithic Microcomputers 

Fixed rather than user-PLA-defined instruction set. In 
order to increase instruction-set power, symmetry, and 
understandability, the PIC instruction word was specified 
to be larger than the internal data path (i.e., 12 bits as 
opposed to 8 bits). This is in direct contrast to the more 
conventional practice of making instruction and data words 
of equal length. 

Focus on 8-bit integer and boolean data-types rather than a 
4-bit BCD data-type. Typical control applications are better 
suited to 8-bit integer data-types for sensing and controlling 
the magnitude of variables and to boolean data-types for 
sensing and controlling on/oE conditions. 

Program-controlled rather than PLA-controlled output 
codes. A special literal output instruction allows users to 
define code conversion tables in memory, adding to display 
flexibility and variety. 

Adherence to the single-word instruction format (which simpli- 
fies the implementation of the 1650) poses serious problems for 
expansion when technology allows more ROM to be implemented 
on a chip and control applications require more than the 256 to 
1,024 words of program in the current PIC architecture. The 
small-address-space problem has been encountered in all classes 
of computers; hence there is a wide range of solutions that have 
historically been tried. The following is a list ordered from 
smallest to greatest impact on existing user code: 

Increasing the instruction word width by adding more bits 
to the address field. 

Bank registers: one or more registers, loadable by a special 
instruction, that are concatenated with the program count- 
er. The user must explicitly manage addressability and be 
concerned about the absolute value of addresses for various 
code segments. This scheme has been used in the PDP-8 
and Data General Nova minicomputers. 

Address translation: a set of address translation registers 
placed between the Pc and Mp. The registers supply more 
bits of physical address than are contained in the instruction 
word. This scheme has been used in several minicomput- 
ers, such as the PDP-11. 

Addressing modes: Adding new addressing modes to the 
ISP that combine the contents of new, wider, architecture 
registers with the address supplied by the instruction. An 
example of this is the base/displacement addressing in the 
IBM System/360-System/370. 

The PIC1650 has been used in electronic toys (by Ideal Toy and 
Coleco), electronic scales (Detecto), and cameras (Bosch). 



Section 1 Monolithic Microcomputers 585I 


Table 2 Intel MCS-48 Microcomputers 

8021 8022 8035 8039 8041 8048 8049 8741 8748 

Number of pins per 28 40 40 40 40 40 40 40 40 
package 

On-chip instruction 
ROM size (bytes) 1K 2K . . . .  .... 1K 1K 2K 1K 1K 

Maximum addressable 
instruction memory 1K 2K 4K 4K 1K 4K 4K 1K 4K 
(bytes) 

On-chip data storage 
RAM memory (bytes) 64 64 64 128 64 64 128 64 64 

Maximum addressable 
data storage memory 64 64 320 384 64 320 384 64 320 

I/O bits
(bytes) 

21 23 27 27 18 27 27 18 27 
Maximum clock frequency 3 3 3,6 6, 11 6 3,6 11 6 3, 6 
(MHz) 

Table 3 The TI-9900 Family 

TMS998Ol 
TMS9900 TMS9900-40 SBP9900A TMS9981 TMS9985 TMS9940 

Technology NMOS NMOS I*L NMOS NMOS NMOS 
Number of pins per 64 64 64 40 40 40 
package 

Clock rate (MHz) 3.3 4 3 10 5 1-5 
Clock Off chip Off chip Off chip On chip On chip On chip 
Relative throughput 1 1.3 0.9 0.6 0.65-0.8 1.2 
Maximum memory size 65K 65K 65K 16K 65K 2.2K 
(bytes)

On-chip memory . . . . . . . .  . . . . . . .  . .  . . . . .  256 RAM 2K ERAM 
128 RAM 

Number of address bus 15 15 15 14 16 . ....... .  
lines 

Number of data bus lines 16 16 16 8 8 
Addressable I/O bits 8K 8K 8K 4K 32K 32 
Number of interrupt 16 16 16 5 5 4 
levels 

Monolithic Microcomputer Families on the 8022). As in the Texas Instruments TMS series, there is a 
large number of chips with varying capability. Although the range 

The Intel MCS-48 is a family of microcontrollers. Introduced in of variability appears small, the family is supported by the 
1976, the Intel 8048 contains an 8-bit microprocessor, program marketplace. Consider a mass-produced product that employs 
ROM, data RAM, and program controllable I/O lines. Table 2 lists electronic control, such as an automobile. With production in the 
the MCS-48 family members as of late 1978. More details can be millions per year, substantial savings can be realized by using the 
found in Gregoretti [1978] and Wakerly [1979]. smallest microcontroller chip with enough capacity for the 

The family evolved as the amount of on-chip ROM/RAM was application. In such products a small saving (e.g., 50 cents to $1) 
increased, as off-chip RAM/I/O expansion capability was added, might be due to a smaller chip package (e.g., because the 
and as transducers were integrated (e.g., the 8-bit A/D converters application requires a small number of I/O lines leading to a 



586 Part 3 1 Computer Classes 

cheaper package and less board area) or to a smaller program 
storage (e.g., because the application requires only a small control 
program leading to less ROM and a higher chip-fabrication yield). 

Another approach to microcomputer families is to take an 
existing ISP and implement it in as few chips as possible. Future 
technology growth will eventually allow the total system to be 
placed on a single chip. This approach simplifies software 
development, since the existing software is directly usable. Care 
must be taken, however, that at least some members of the family 
have expansion capability to handle growth of the larger applica- 
tions. 

The Texas Instruments TMS9900 series is an example of a 
family in transition (see Table 3). Based on the TI-990 minicom- 
puter ISP, the family offers three microcomputers with varying 
speed. The TMS9980A is a reduced-complexity chip. The 

Section 1 1 Monolithic Microcomputers 

TMS9985 offers a small amount of on-chip memory. Finally the 
TMS9940 is a single-chip computer system with on-chip RAM/ 
ROM and 32 programmable IIO lines instead of the traditional I/O 
bus for memory and peripherals. 

Conclusion 

The monolithic microcomputer class is already well populated 
with examples. This computer class will increase in importance as 
technology makes more complex systems feasible. 

References 

Gregoretti [19781; Hayn, McDonogh, and Bellay [1981]; Simpson 
et  al. [1978]; Wakerly [1979]. 



Chapter 34 

TMSI000/1200: Chip 
Architecture and Operation’ 

Introduction 

The TMS100011200 functional block diagram (Fig. 1)shows all 
major logic blocks and major data paths in the TMS1000/1200 
architecture. The ROM, ROM addressing, and instruction decode 
are on the left side of the diagram. On the right side of the 
diagram are the adder/comparator, the RAM, the registers for 
addressing the RAM, and the accumulator, which is the main 
working register. The major logic blocks are interconnected to the 
adder with four-bit parallel data paths. The various portions of the 
architecture will be discussed in the following paragraphs. 

Mp State 
The ROM has 8,192 possible matrix points (1,024 eight-bit words) 
where MOS transistors are placed to define the bit patterns of the 
machine language code. The ROM is organized into 16 pages of 64 
words. 

There are four RAM files, each containing 16 four-bit words in 
the RAM’S 256-bit matrix (shown in the upper right of Fig. 1). 

There are two modes of RAM access (read and write) during the 
instruction cycle: 

1 	 Data may be read out of the RAM for the purpose of 
addition, subtraction, or transfer to the other registers. 

2 	 Data is stored in the RAM via the write bus. 

Two sources of information are written into the RAM; these 
sources are selected by the write multiplexer (shown on the right 
side of the function diagram, Fig. 1).In one mode the multiplexer 
selects the accumulator information to be written into the RAM 
(uses the STO microinstruction). The accumulator data is trans- 
ferred to memory after data is read from the RAM but before the 
ALU results are stored into the accumulator. In the second mode, 
the constant and K-input logic is written into the RAM (by the 
CKM microinstruction). The constants from the ROM instruction 
bus are transferred to the RAM directly, and an optional data path 
from K1, K2, K4, and K8 exists although not selected in the 
standard instruction set. Four RAM bits are carried on the read 
bus to either the P-multiplexer or the N-multiplexer and then to 
the addericomparator. 

’Abstracted from TMSlOOO Programmer’s Reference Manual, Texas 
Instruments, Inc., 1975. 

Pc State 

a 	 PA<O:S>\Page. Address. Register. Contains the number of 

the page within the ROM being addressed. 


b 	 PB<O:3>\Page. Buffer.Register. The PB is loaded with a 
new page address which is then shifted into the PA for a 
successful branch or call. The PB is changed by the load 
page (LDP) instruction. 

C 	 PC<O:S>\Program. Counter. Contains the current location 
of the word (within the page) being addressed. 

d 	 SR<O:5>\Subroutine. Return. Register. Contains the re-
turn word address in the call subroutine mode. 

e 	 X<O:1>. Designates which of four RAM files are being 
accessed. 

f 	 Y<0:3>. Designates which of 16 four-bit words are being 
accessed in the specified RAM file. 

g 	 R<O:12>. Output register to control external devices. 
h 	 0<0:4>. Output register for display. 
i 	 K<O:3>. Input register. 

.i A<O:3>L4ccumulator. 
k 	 Status.Logic<>. One-bit flag containing the status of 

previously executed instructions. 

On powerup, the program counter is reset to location zero, and 
the PA is set to 15.Then the program counter counts to the next 
ROM address in a pseudorandom sequence. The sequence of 
addresses in the program counter can be altered by a branch 
instruction or a call instruction. A new branch address (W)can be 
stored into the program counter upon the completion of a 
successful branch or call instruction. If the branch instruction is 
not successful, then the program counter goes to the next ROM 
location within the current page. 

In a successful call or branch execution the page address 
register (PA) receives its next page address from the buffer register 
(PB). The contents of the PB are changed by the load page 
instruction (LDP), which can be executed prior to the branch or 
call. Execution always continues on the same page unless PB is 
explicitly changed. 

When the branch is executed successfully and when the 
processor is not in the call mode (CL = 0),the page buffer register 
is loaded into the page address register. If the contents of the page 
buffer register have been modified prior to the branch instruction, 
then this instruction is called a long brunch instruction, since it 
may branch anywhere in the ROM (a long branch, BL, directive in 
the source program generates two instructions-LDP, load page 
buffer, and BR, branch). In the call mode (CL = 1),only “short” 
branches are possible, those staying within a given page. 

Note that the normal state of the status logic is ONE. Several 
instructions can alter this state to a ZERO; however, the ZERO 

587 



588 Part 3 1 Computer Classes Section 1 I Monolithic Microcomputers 

I 
I 
I 
I I h l RAM ARRAY 

ROM ARRAYI 8192 BIT 
I (64X8X16) 

l16X4X4) 

DECODE 

I I I 
I 

I 

I 

I 

I I 
I J lNE

I 
I AUTA 


AUTY 


I STSL 

Fig. 1. TMS100011200 block diagram. 



Chapter 34 1 TMSl000/1200: Chip Architecture and Operation 589 

state lasts for only one subsequent instruction cycle (which could 
be during a branch or call); then the status logic will normally 
revert back to its ONE state (unless the following instruction 
resets it to ZERO). 

Like branch instructions, call instructions are conditional. One 
level of subroutine is permitted, and a call within a call does not 
execute properly. In the case of a successful call when status logic 
equals ONE: 

The call latch (CL) is set to ONE. 

The contents of the page buffer register (PB) and the page 
address (PA) register are exchanged simultaneously. 

The return address is stored in SR and PB. The SR address 
is one address ahead of the program counter when the call 
instruction is executed. The return address i s  saved for a 
future return instruction. 

The branch address field of the instruction word writes into 
the program counter. 

When a return instruction occurs: 

1 	The subroutine return register (containing the call instruc- 
tion address plus one) is always transferred to the program 
counter. 

2 	 The contents of the page buffer register (containing the 
page at call) is always transferred to the page address 
register. 

3 	 The call mode is reset (CL = 0). 

If a call instruction is executed within a previous call (no return 
has occurred and the call latch is still a ONE and status is a ONE), 
there is no transfer of the page buffer register to the page address 
register; instead contents of the page address register transfer to 
the page buffer register, although the branch address (W) loads 
into the program counter. 

Thus a call within a call to another page will cause the return 
page to change, losing the correct return page address. 

An X and Y address selects one four-bit RAM character, 
M(X,Y), this address being the storage location in the RAM 
matrix. The X-register can be set to a constant equal to 0 through 3 
(LDX instruction), or X can be complemented (COMX instruc- 
tion) to flip the address of X to the file (e.g., 00 to 11,or 01 to 
10). 

The Y-register has three purposes. 

1 	The Y-register addresses the RAM in conjunction with the 
X-register for RAM character select. 

2 	 The Y-register is a working register. The Y-register may be 
set to any constant between 0 and 15 (by the TCY 

instruction), loaded from memory (TMY instruction), load- 
ed from the accumulator (TAY instruction), decremented 
(DYN), and incremented (IYC). Note that in the functional 
block diagram (Fig. l),the Y-register has no inverted adder 
input. Thus, the Y-register cannot be subtracted from the 
accumulator or memory. 

3 	 The Y-register addresses the R-output register for setting 
and resetting individual latches. Whenever a particular 
R-output needs to be set, the constant bus inputs the R’s 
address (0 through 12) to Y (TCY instruction), and then a set 
R-output (SETR) instruction is executed. 

The TMSlOOO has two outputs: 

R-outputs used for control 
0-outputs used to transmit data 

The purpose of the R-outputs is to control the following: 

External devices 

Display scans 

Input encoding 

Dedicated status logic outputs (such as overflow) 

Each R-output has a latch that stores a ONE or ZERO, and each 
latch may be set (ONE)or reset (ZERO) individually by the set R 
(SETR) or reset R (RSTR) instruction. The Y-register points to 
which R-output is set by these instructions. 

The R-output can be strobed by the ROM program to scan a key 
matrix (K-input). Figure 2 represents the maximum key matrix 
possible without external logic. A simple short from an R line to a 
K-input can be detected by the ROM program and interpreted as 
any function or data entry. Expanding the matrix is possible by 
external logic such as using a 4-line to 16-line decoder. 

The status latch and the accumulator data are loaded into the 
0-output register (bottom right of Fig. 1)by a fixed instruction 
from the ROM (TDO) when the programmer decides to change 
output data. A separate instruction clears the 0-output register. 
This instruction (CLO) causes all five output register bits to be 
reset to ZERO. The five bits from the 0 register are converted to 
a parallel eight-bit code by the 0 PLA. 

The accumulator is a four-bit register that interacts with the 
adder, the RAM, and the output registers. The accumulator is the 
main working register for addition and subtraction. It is the only 
register which is inverted before its contents are sent to the adder 
for subtraction. Subtraction is accomplished by two’s complement 
arithmetic. It is a storage register for inputs from the constant and 
K-input logic as well as the Y-register. 

Variable data from the K-inputs is also stored via the accumula- 



590 Part 3 1 Computer Classes 
Section 1 1 Monolithic Microcomputers 

K8 K4 K2 K 1  

R 1  

R 2  

R 3  

Fig. 2. Keyboard matrix connections. 



Chapter 34 I TMS100011200: Chip Architecture and Operation 591 

tor into the RAM array. Therefore, any variable data input from 
the K-inputs or from the adder output must pass through the 
accumulator to the RAM array for storage. Likewise, any data to 
the 0-outputs must come through the accumulator. Four accumu- 
lator register bits may be latched by the 0-output register (where 
the status latch information is also latched) for decode by the 
0-output decoder. 

There are 18instructions that affect status logic, either setting it 
(to ONE) or resetting it (to ZERO). In turn, the status logic will 
permit the successful execution of a branch or call instruction (if 
status logic = ONE) or prevent successful execution of these 
instructions (if reset to ZERO). Status logic will remain at a ZERO 
level only for the following instruction cycle and then automatical- 
ly be set to the normal ONE state (unless reset to ZERO by the 
next instruction). 

There are two microinstructions (NE and C8) that are used by 
instructions affecting status. If the microinstruction C8 is used and 
a carry occurs in the addition of two four-bit words, the carry goes 
from the MSB sum to status, setting status logic to a ONE. If 
no carry occurs, status logic is ZERO. In a logic compare instruc- 
tion (using microinstruction NE), status logic is set to ONE 
if the four-bit words at the N and P addericomparator inputs 
are not equal; conversely, status logic is ZERO if the inputs are 
equal. 

The status latch buffers the status-logic bit to the 0-output 
register for decode by the 0-output PLA. Status-logic output is 
selectively loaded into the status latch by special microinstruction 
STSL (used in a logical-compare test instruction that causes the 
status logic to output a ONE or ZERO). For example, if the test 
instruction YNEA (in the standard instruction set) causes status 
to be a ONE (if Y-register is not equal to A), then the ONE 
writes into the status latch. If a ZERO is output by that instruc- 
tion from status logic, then the ZERO writes into the status 
latch. 

The status latch transfers to the 0-register with the accumulator 
bits when TDO, transfer data out, is executed. 

Instruction Set 

Table 1summarizes the standard instruction set, composed of the 
12 “fixed” instructions and the 31 standard microprogrammed 
instructions. These standard instructions are available as a default 
to the user if he does not choose to redefine them by specifying a 
different PLA pattern. 

Instruction Formats 

The machine instructions have been divided into four instruction 
formats. A format subdivides the eight bits of each instruction into 
fields. These fields contain the operation code and operands. 

Instruction Format I: 

r -

I I I I I I 
OP w 
I I I I I I 

This format has a two-bit operation-code field, and the operand is 
a six-bit ROM-word address field. This format is used for program 
control by branch and call instructions. The operand, the branch 
address, has a value of 0 to 63. 

Instruction Format 11: 

0 1 2 3 4 5 6 7 


I I I 1 I I 1 
I OP I C I 

This format has a four-bit operation-code field; the operand is a 
four-bit constant field. This format is used for instructions that 
contain an immediate value that loads RAM memory or a register 
with a constant. 

Instruction Format 111: 

I 

I I I I I 
OP B 

I I I I I I 

This format has a six-bit operation code, and the operand is a 
two-bit RAM bit address field. This format is used for addressing a 
bit in a RAM word. Also, B describes the two-bit X-address 
operand for the LDX command. 

Instruction Format W. 

0 1 2 3 4 5 6 7 


I I 1 1 1 I I I I 
OP 

I 1 I I I 1 I J 

‘The constant values are reversed in this field. The assembler converts 
values into proper machine code format. 



Table 1 TMS1000/1200 Standard Instruction Set 

Instruction 
Function Mnemonic C8 N E  Description format 

Register to TAY . .. . . . Transfer accumulator to Y-register. IV 

register TYA . . . . . . Transfer Y-register to accumulator. IV 


C LA . . . . . . Clear accumulator. IV 


Transfer TAM ... . . . Transfer accumulator to memory. IV 

register to TAMIY . .  . .. . Transfer accumulator to memory and increment Y-register. IV 

memory TAMZA . .  . . . . Transfer accumulator to memory and zero accumulator. IV  


Memoryto TMY . . . . . . Transfer memory to Y-register. IV 

register TMA .. . .. . Transfer memory to accumulator. IV 


XMA . . . . . . Exchange memory and accumulator. IV 

~ 

Arithmetic AMAAC Y . . . Add memory to accumulator, results to accumulator. If carry, one to status. IV 

SAMAN Y . . . Subtract accumulator from memory, results to accumulator. IV 


If no borrow, one to status. IV 

IMACi Y . . . Increment memory and load into accumulator. If carry, one to status. IV 

DMANt Y .. . Decrement memory and load into accumulator. If no borrow, one to status. IV 

IA .. . Increment accumulator, no status effect. IV 

IYC . . . Increment Y-register. If carry, one to status. IV 

DAN .. . Decrement accumulator. If no borrow, one to status. IV 

DYN . . . Decrement Y-register. If no borrow, one to status. IV 

A8AAC . . . Add 8 to accumulator, results to accumulator. If carry, one to status. IV 

A1 OAAC .. . Add 10 to accumulator, results to accumulator. If carry, one to status. IV 

A6AAC .. . Add 6 to accumulator, results to accumulator. If carry, one to status. IV 

CPAIZ . .. Complement accumulator and increment. If then zero, one to status. IV 


Arithmetic ALEM Y . . . If accumulator less than or equal to memory, one to status. IV 

compare ALEC Y .. . If accumulator less than or equal to a constant, one to status. II 


Logical MNEZ . .. Y If memory not equal to zero, one to status. IV 

compare YNEA . . . Y If Y-register not equal to accumulator, one to status and status latch. IV 


YNEC . . . Y If Y-register not equal to a constant, one to status. II 


Bits in SBlT . . . . . . Set memory bit. 111 

memory RBlT . . . . . . Reset memory bit. 111 


TBlTl . . . Y Test memory bit. If equal to one, one to status. 111 


Constants 	 TCY . . , .. . Transfer constant to Y-register. II 

TCMIY .. . . . . Transfer constant to memory and increment Y. II 


Input 	 KNEZ .. . Y If K-inputs not equal to zero, one to status. IV 

TKA . . . . . . Transfer K-inputs to accumulator. IV 


output 	 SETR .. . . . . Set R-output addressed by Y. IV 

RSTR . . . . . . Reset R-output addressed by Y. IV 

TDO .. . . . . Transfer data from accumulator and status latch to 0-outputs. IV 

CLO . . . .. . Clear 0-output register. IV 


RAM X LDX . . . . . . Load X with a constant. 111 

addressing COMX .. . .. . Complement X. IV 


ROM BR . . . . . . Branch on status = one. I 

addressing CALL . .. . . . Call subroutine on status = one. I 


RETN . . . . . . Return from subroutine. IV 

LDP . . . . . . Load page buffer with constant. II 


tC8 (microinstruction C8 is used) -Y (Yes) means that if there is a carry out of the MSB, status output goes to the ONE state. If no carry is generated, status 
output goes to the ZERO state. 
NE (microinstruction NE is used) -Y (Yes) means that if the bits compared are not equal, status output goes to the ONE state. If the bits are equal, status 
output goes to the ZERO state. 
AZERO in status remains through the next instruction cycle only. If the next instruction is a branch or call and status is aZERO, then the branch or call is not 
executed. 

$Execution of the DMAN or IMAC instruction does not change (increment or decrement) the content of the addressed memory cell. 



This format defines an eight-bit operation code field only. 
Instructions of this format have no constant operands. The 
instruction always performs the same action, for example, trans- 
ferring the accumulator to the Y-register. 

Eighteen instructions conditionally affect the machine status 
logic. The mnemonics for these instructions contain a one- or 
two-character descriptor to indicate how status logic is affected. 
Each descriptor (shown in Table 2) indicates the condition where 
status will remain set (logic ONE). The conditional instructions, 
branch and call, are successful only if status is set. The mnemonic 
descriptor therefore indicates the conditions under which an 
immediately following branch or call will be performed. If the 
instruction results do not meet the descriptor‘s condition, then 
status is reset (logic ZERO) and any immediately following branch 
or call will not be performed. [Status logic in the reset (ZERO) 
state affects only branches or calls in the next instruction cycle 
before returning to the normal (logic ONE) state.] 

The way in which the instruction depends upon status or sets 
status is defined as follows: 

Set: The instruction unconditionally forces status to ONE 
and is not conditional upon status. 

Carry into Status: The value of the carry from the adder 
is transferred to status. In the subtraction instructions, 
carry = borrow. 

Comparison Result into Status: The logical comparison 
value from the ALU is transferred to status (equal: ZERO to 
status; unequal: ONE to status). 

Conditional on Status: The instruction’s execution results 
are conditional upon the state of the status. After the 
instruction is executed, status is unconditionally equal to 
ONE. 

Implementation 

The instruction timing is fixed and each instruction requires six 
clock cycles to execute. Each of the 43 basic instructions is defined 
to enable one or more microinstructions that activate control lines 
during one instruction cycle. These microinstructions explain the 

Table 2 DescriptorAction 

Descriptor Causetresult that transfers O N E  to status 
~~~ 

C Carry out during addition or increment
instructions
No borrow during subtraction or decre-
ment instructions

in Zero result from 2’s complement
Tested memory bit is a logic ONE

Middle of
mnemonic

-LE-i-NE- Is not eaual to
Is less than or equal to

Chapter 34 I TMS1000/1200: Chip Architecture and Operation 593

firmware bridge between software instructions and the individual
logic block capabilities. A hardwired logic decoder that cannot be
modified decodes 12 “fixed” basic instruction codes into 12 fixed
microinstructions for output instructions, branching, subroutines,
RAM X-addressing, reset and set bit instructions. The remaining
31 basic instructions activate a combination of 16 programmable
microinstructions that are encoded by the instruction PLA. The
concept of fixed and programmable microinstructions is used as a
tool for understanding the software on the machine level and is
used to increase the power of the instruction set to fit more
applications (microprogramming the instruction set).

The purpose of the CKI logic (Fig. 1) is to select either the
K-inputs or the four-bit constants from ROM (the C field of
the instruction word) or a bit mask to go out to the CKI data bus. The
constant and K-input logic is used whenever microinstructions
CKP, CKN, or CKM are selected by an instruction. The data
going out on the CKI bus changes for predetermined instruction
values, however, and this section details what the data is and the
versatility of CKI microinstructions. Since the constant and
K-input logic is not changeable, it is important to understand the
four separate functions CKI controls before learning how CKI
microinstructions are performed. Table 3 shows the binary-
decoded groupings of the instruction word and the particular
output enabled by the CKI logic.

First, for eight hexidecimal instruction values (08to OF16 as
listed in Table 3), the K-inputs are active. That is, the
constants from the ROM are shut off, and the four-bit
external-input bus (center left of Fig. 1)is made available to
either the adder/comparator or the RAM. The instruction
decoder determines how the available data is used.

The second main function is to channel constant data from
the instruction bus (from ROM) to the CKI bus output
(instruction values 00 to 07 and 4016 to 7F16 as listed in Table
3). The CKI bus is available to the P adder input, the N
adder input, or the write multiplexer for the RAM as shown
in Fig. 1.The constant data from the ROM can be selected
by 72 possible machine instruction values, although the
standard instructions use only 68 of these.

The constant logic is disabled (output at ZERO for values
2OI6to 2F16).

A bit mask is active. For example, the bit mask as used in
the test bit instruction (TBIT1) determines if a bit from the
RAM is a ONE by comparing it with ZERO. The bit mask
has only one ZERO in the four-bit CKI output, as deter-
mined by the B field of the instruction word (see TBITl in
Table 3). The B field is two bits and points to the selected
opening (ZERO) in the mask. Thus, if the least significant
bit is to be tested, then the bit mask outputs the binary
word 1110 to the CKI bus output. Then the CKI bus output
goes into both sides of the adder/comparator, and the word
at M(X,Y) is input simultaneously (logically ORed) with the

I

Table 3 Constant and K-Input Logic Truth Table

cK l logicOp code Mnemonic and other (binary list) Op code (standard
(0) (1) (2) (3) (4) (5) (6) (7) (hex) instructions)

0 0 0 0 0 0 0 0 0 0 COMX

0 0 0 0 0 0 0 1 0 1 A8AAC

0 0 0 0 0 0 1 0 0 2 YNEA

i
y I I

0 0 0 0 0 0 1 1 0 3 TAM l(7-4) + ltjq = MSB

0 0 0 0 0 1 0 0 0 4 TAMZA CKI bus 1,4) = LSB

0 0 0 0 0 1 0 1 0 5 A1 OAAC

0 0 0 0 O ~ " 1 1 0 0 6A6AAC

0 0 0 0 0 1 1 1 0 7 DAN

0 0 0 0 1 0 0 0 0 8 TKA

0 0 0 0 1 0 0 1 0 9 KNEZ

0 0 0 0 1 0 1 0 0 A TDO
 y I I
0 0 0 0 1 0 1 1 0 B CLO

0 0 0 0 1 1 0 0 0 c RSTR

O O O O 1 1 O l O D SETR

0 0 0 0 1 1 1 0 0 E IA

0 0 0 0 1 1 1 1 O F RETN

l(7-4) + No effect on CKI;

0 0 0 1 c 1 . . . LDP PB only affect PB

0 0 1 0 0 0 0 0 2 O T A M l Y

0 0 1 0 0 0 0 1 2 1 TMA

0 0 1 0 0 0 1 0 2 2 TMY

0 0 1 0 0 0 1 1 2 3 TYA

0 0 1 0 0 1 0 0 2 4 TAY

0 0 1 0 0 1 0 1 2 5 AMAAC

0 0 1 0 0 1 1 0 2 6 M N U

0 0 1 0 0 1 1 1 2 7 S A M A N 0 --z CKI

O O 1 0 1 0 0 0 2 8 l M A C BUS

0 0 1 0 1 0 0 1 2 9 ALEM

0 0 1 0 1 0 1 0 2 A DMAN

0 0 1 0 1 0 1 1 2 B IYC

0 0 1 0 1 1 0 0 2 C DYN

0 0 1 0 1 1 0 1 2 D C P A I Z

0 0 1 0 1 1 1 0 2 E XMA

0 0 1 0 1 1 1 1 2 F CLA

0 0 1 1 0 0 B 3 . . . SBlT Bit mask -+ B = O CKl=1110

0 0 1 1 0 1 B 3 . . . RBlT CKI bus 1 1101

0 0 1 1 1 0 B 3 . . . TBlT 1 Y 2 1011

3 0111

0 0 1 1 1 1 B 3 .. . LDX l(7-6) -+ X No effect on CKI.

0 1 0 o c 4 . . . TCY y l(7-4) -+ l(7) = MSB

0 1 0 1 c 5 . . . YNEC Y CKI bus l(4) = LSB

0 1 1 0 c 6 . . . TCMIY Y

0 1 1 1 c 7 . . . ALEC Y C -+ CKI bus;

C = 0 to 15

1 0 W BR Not used
1 1 W CALL

Note: I = Instruction (op code), C = Constant, W = Branch Address. Y = Yes (CKP, CKN, or CKM microinstruction is used). PB = Page Buffer Register (ROM)

594

^-

CKI bus into the P side of the adderkomparator. The
compare feature of the addericomparator is activated, and
then the state of the tested bit transfers directly to status
logic. The bit mask also selects RAM bits to be set or reset.
For the set bit (SBIT) and reset bit (RBIT) instructions, the
ZERO in the bit mask field (Table 3)also acts as a pointer to
one of the four bits (identified by X- and Y-register
contents) in a RAM character.

There are two PLA’s in the TMSlOOO series:

The 0-output PLA
The instruction decoder PLA

In a PLA, a matrix of gates first decodes a number of binary
logic inputs into a set of output lines (also called “terms”). Each
term can select a combination of output lines from a second matrix
of gates (see Fig. 3). Both matrices are implemented by program-
mable-input NAND gates (Fig. 4). Since we are concerned only
with the input-to-output code conversion, positive-logic AND and
OR functions are used herein.

Figure 4 shows two AND matrix terms, Fo and F1,which are
encoding two output OR matrix terms, Qo and Q1.The simplified
method of presenting the same circuit is shown in Fig. 5. Each

LOGICAL PRODUCT

T

LOGICAL SUM

Fig.3. PLA block diagram.

Chapter 34 1 TMS100011200: Chip Architecture and Operation 595

A

B

’OR“

Fig. 4. Standard logic PLA circuit schematic.

circle in the diagram represents a MOSFET which selects a gate
input to a matrix term.

User programming of these PLA’s requires inputs to the
TSMlOOO simulator for 0-output PLA programming and to the
assembler and simulator for instruction PLA programming.

The 0-output PLA determines the parallel output definition for
each TMSlOOO series program. Thus, a user understanding the
capabilities can define an efficient output organization before
designing an algorithm. The organization of the outputs is a
necessary starting point for new system designs.

The 0-output register sends five bits to the 0-output PLA
(bottom of Fig. 1). Figure 6 shows the five corresponding

(10=TED-
Fig. 5. Array logic equivalent schematic.

596 Part 3 1 Computer Classes 	 Section 1 1 Monolithic Microcomputers

to the OR matrix. The pattern is stored in the matrix by placing
MOS transistors (gates) to select inputs and not placing a gate

I I 1 I I 1 1 1 1 1 1 1 I I , , , , , , ’

where an input is not desired. 42mEach AND matrix term may decode a subset of the following

-
SL

SL 0 1

0 6 / 3 0 ?

051=j03

04

Fig. 6. Typical coding example of 0-output PLA.

0-register bits (from accumulator and status latch) going into the
AND matrix in true and complemented form. The AND matrix
has 20 terms available for decoding a prescribed pattern of inputs

Table 4 	 TMSlOOO Series Programmable Microinstructions

Boolean equation:

F N = (A1 9 n). (A2 . a). (A4 .a). (A8 . A8) . (SL .x)
Either the true or the complement (not both) or neither (don’t
care) of the two inputs enclosed in parentheses can be selected.
The AND matrix may decode up to 20 of these Boolean equations.

Each OR matrix line determines the 0-output pattern for each
AND term used. If an AND term is true, the output selection
(represented by a circle) is a subset of the following expression:

0 ontpnt = oo+ 0, + o2+ 0, + 0, + 0 5 + 0 6 + 0,

If any two or more AND term equations are satisfied, then their
ORed output functions are logically ORed together.

The example coding shown in Fig. 6 shows an output classified
into seven-segment information and binary information. If the
status latch bit is ZERO, then the PLA sends binary information
out. If the status latch bit is ONE, then the PLA encodes
seven-segment display information. Riote that there are 20 input
terms to the OR matrix; four terms encode the binary value of the
accumulator bits, 16 terms encode the characters 0 to F.

The TDO instruction latches the status latch and the accumula-

~-~~

Execution Logic

sequence Mnemonic affected

1 	 CKP P-MUX
YTP P-MUX
MTP P-MUX

1 	 ATN N-MUX
NATN N-MUX
MTN N-MUX
15TN N-MUX
CKN N-MUX

1 	 CIN Adder

NE Adder/status

C8 Adder/status

2 	 STO Write M U X
CKM Write MUX

AUTA AU select
AUTY AU select
STSL Status latch

3

Function

CKI to P-adder input.

Y-Reg to P-adder input.

Memory (X, Y) to P-adder input.

Accumulator to N-adder input.

Accumulator to N-adder input.

Memory (X, Y) to N-adder input.

F,, to N-adder input.

CKI to N-adder input.

One isadded to s u m of P plus N inputs

(P+N+l).

Adder compares P and N inputs. If they

are identical, status is set to zero.
Carry is sent to status (MSB only).

Accumulator data to memory.
CKI to memory.

Adder result stored into accumulator.
Adder result stored into Y-Reg.
Status is stored into status latch.

Chapter 34 1 TMS1000/1200: Chip Architecture and Operation 597

tor bits in the 0 register. In the case of term zero (Fo), a ONE
from the status latch and ZERO from the accumulator encode the
seven-segment character for zero.

Two logic blocks decode the eight-bit instructions into the
various microinstructions:

Fixed instruction decoder

Programmable instruction PLA

The fixed instruction decoder cannot be modified and enables 12
fixed controls affecting ROM addressing, RAM X-register, output
control, set bit and reset bit instructions. Every program must use
these instructions with their corresponding fixed microinstruc-
tions.

The remaining 31 basic instructions in the standard set (43basic
instructions-we fixed basic instructions equal to 31 programma-
ble instructions) have their operations determined by combining
one or more microinstructions as determined by the instruction
PLA.

The programmable instructions are defined to the assembler
and simulator programs by default definition when the standard
instructions are used. When one or more instructions are
redefined, the user specifies the entire set of instruction mnemon-
ics to the assembler, and the new PLA implementation is defined
to the simulator.

Table 4 defines the operation of the programmable microin-
structions, and the logic block controlled by each. In one
instruction cycle the sequence of microinstruction execution is as
follows:

1 Read RAM, select the inputs to the adder/comparator.
Microinstructions: CIN, MTP, MTN, CKP, CKN,
YTP, ATN, ISTN, NATAN, C8, NE

2 Write accumulator contents or CKI bus information into
the RAM.

Microinstructions: CKM, STO

3 Add or compare, then store results into the Y-register,
accumulator, status logic, or status latch.

Microinstructions: AUTY, AUTA, STSL

Thus the MTP (RAM memory contents to P-adder input) microin-
struction is executed before STO (store accumulator data into
RAM). The adder can perform one operation per instruction
cycle. If two input buses are selected for the same side of the
adder, the inputs are logically ORed together.

The programmable microinstructions are an aid to learning how
instructions work. For example, the IA instruction (increment
accumulator) enables three microinstructions, ATN, CIN, and
AUTA:

1 	 ATN transfers the accumulator data to the N-adder input
(P = 0).

2 	 CIN causes 1 to be added to the P- and N-adder inputs.
3 	 AUTA causes the result of the addition to be stored in the

accumulator.

Knowing the hardware and how Texas Instruments combined the
microinstructions explains all 31 programmable instructions. For
example, the YNEC instruction activates three microinstructions.

1 	 CKN causes the constant from ROM (immediate operand)
to go into the N-input.

2 	 YTP enables Y to the P-input.

3 	 NE sends the comparison to status.

Therefore, if Y is logically compared to a constant operand and is
not equal to the CKI data, status equals ONE.

Figure 7 illustrates the PLA implementation designed by Texas

AND O R
n A

Fig. 7. TMSl00011200 standard instruction decode PLA.

598 Part 3 1 Computer Classes

Instruments for the standard instruction set. The 31 instructions
are translated by 30 PLA terms into a combination of the 16
microinstructions possible (the A8AAC and the AlOAAC are
combined on a single PLA line).

The instruction PLL4can be reprogrammed in cases where
timing or other requirements dictate an instruction redefinition.
Microprogramming this PLA should be considered only when the
standard definition is insufficient to accomplish the program
objectives.

Addition Instruction
The following example illustrates the addition arithmetic instruc-
tions. This example shows adding a word to a BCD draft in
memory. BCD correction is performed to keep the digit in the
range 0 to 9. Upon exit from this routine the accumulator contains
a ONE if a carry has resulted or a ZERO if no carry has resulted.

Label Op code Operand Comment

AMMAC ADD CURRENT DIGIT
TO A

BR FIXUP BRANCH IF CARRY
(SUM > 15)

TAM TRANSFER A TO
MEMORY

A6AAC ADD 6, TEST FOR DIGIT
10 TO 15

BR CORRECT BRANCH IF CARRY
CLA CLEAR ACCUMULATOR

CONTU EXIT

FIXUP AGAAC ADD 6 TO CORRECT
TO BCD

CORRECT TAMZA TRANSFERATO
MEMORY, CLEAR A

IA INCREMENT
ACCUMULATOR

BR CONTU EXIT

Input

The following example illustrates the input instructions. This
example handles input from a keyboard. The keys must be
sampled one row at a time. The particular row selected is
determined by which R-output line is set on. This example shows
sampling on row five only, and determines which of four keys on
row five are depressed. If all four K-inputs are zero, no key is
currently depressed. For simplicity no key-debounce logic has
been included.

Section 1 1 Monolithic Microcomputers

Label Op code Operand Comment

TCY 5 SET ROW 5
SETR ENABLE ROW 5
KN EZ TEST K INPUTS FOR NON-ZERO

*
BR INPUT YES, GO TO INPUT

‘NO DATA PRESENT ON INPUT LINES
*

RSTR DISABLE ROW 5
BR CONTU EXIT

*

*NOW STORE THE DATA FROM THE K LINES.

INPUT TKA INPUT K LINES TO A

’
RSTR DISABLE ROW 5

*

*NOW FIND WHICH KEY ON ROW 5.
’

ALEC 1 KEY l ?

BR ONK1 YES

ALEC 2 KEY 2?

BR ONK2 YES

ALEC 4 KEY 4?

BR ONK4 YES

BR ONK8 MUST BE ON K8.

TMSlOOO Display Scan

The ThlSlOOO is a digit-scan calculator chip. The displalred
information is turned on one digit at a time. The segment lines for
each digit are connected in parallel. The correct segment lines for
a particular digit are turned on by the TMSlOOO 0 lines and then
the correct digit line (R line) is turned on to enable the
illumination of that single digit. This process is continued for each
digit to complete one display scan cycle, and then the entire cycle
is repeated. The display is scanned as rapidly as possible to avoid
flicker problems or display “breakup” when the calculator is
moved. This rate is typically in the range of 150 to 300 Hz for the
TMS1000.

output

The following example illustrates the various output instructions.
Four data words from memory, M(O,3), go to the 0-output
register. The R-outputs are used to signal which word is pre-
sented. The 0-register is cleared after each word has been
presented. The example assumes that a previous YNEA instruc-
tion set the status latch to ZERO.

Label Op code Operand Comment

TCY 3 SET INDEX AND COUNTER
LOOP SETR SET R(Y) OUTPUT STROBE

TMA LOAD DIGIT INTO A
TDO LOAD OUTPUT FROM A AND SL
RSTR RESET R(Y) OUTPUT STROBE
CLO CLEAR 0 OUTPUT REGISTER
DYN DECREMENT Y REGISTER
BR LOOP LOOP UNIT Y BORROWS

Program Control
The following example illustrates the usage of the program control
instructions BR, CALL, RETN and LDP.

This example illustrates using a control loop that calls a
subroutine to perform a specific function. The control loop
continues to call the subroutine until certain conditions are met;
then control is passed to another portion of the main program in a
different ROM page. This particular example calls a “shift left”
routine to shift a five-word string left one word address at a time.
The shift routine is called until a non-zero word is found in
position M(0,3).Because the subroutine is in another page, a long
call is performed by setting a new page address in the page buffer
(PB) before the call.

Chapter 34 I TMS1000H200: Chip Architecture and Operation 599

Label 	 Op code Operand Comment

LDX 	 0 SET RAM ADDRESS
LOOP 	 TCY 3 to M(0,3)

MNEZ M(0,3) -+ 0;
BR DONE BRANCH IF NOT EQUAL,

DONE
*
*SET UP TO CALL SHIFT LEFT ROUTINE
*

LDP 5 SLRTN IS IN PAGE 5
CALL SLRTN CALL SLRTN
BR LOOP RETURN HERE, BRANCH

TO LOOP
*
DONE LDP 4 GO TO PAGE 4

BR MORE PERFORM LONG BRANCH
*

*COMMON SUBROUTINE, SLRTN, SHIFT LEFT.

*

SLRTN TCY 0 CLEAR Y INDEX
CLA CLEAR A

SWITCH XMA EXCHANGE MEMORY &
ACCUMULATOR

IYC INCREMENT Y INDEX
YNEC 4 Y = 4? (END OF STRING)
BR SWITCH CONTINUE IF NOT EQUAL
RETN RETURN TO CALL

600 Part 3 1 Computer Classes 	 Section 1 I Monolithic Microcomputers

APPENDIX 1 ISP of the TMSlOOO

ROM[O:1023]<0:7>. ROM f o r i n s t r u c t i o n s t o r a g e
RAM[O: 63](0:3>. RAM i n i t . i n s t r . p l a : =

r a m . b i t [O : 2 5 5] < > := RAM[Q:63]<0:3> RAM b i t map b e g i n
I N S T R . P L A [* ' O l ~ = '0001101111011100: ABAAC

P C . S t a t e * * I N S l R . P L A l " 0 2 1 = ' 001010111110~001 : YNEA
~ N S T R . TAMP L A ~ , . o ~ ~

PA<O:3>. Page a d d r e s s r e g i s t e r INSTR.PLA["O4] TAMZA
PB<O: 3 > , IPage b u f f e r r e g i s t e r INSIR.PLA["OS] AlOAAC
P C < O : ~ > . Progi'am c o u n t e r INS I R .PLA[" 06] A6AAC
S R < O : 5) . S u b v o u t i n e r e t U P n a d d r e s s INSlR.PLA["O7] UAM
C L O . C a l l l a t c h 1NSIR.PI A [" C C l] TKA
R [O : l O] O . I: o u t p u t r e g i s t e r I N C l R PI n r " o e I KNEL
X<O:l>. I A
Y<0:3>. P o i n t e r / s t o r a q e r e q l s t e r ' 1 10: : ' I I 1 ~ 0 u : 1 1 : TAMIY . .

S O , L o g i c S t a t u s INSTR.PLA["Z l] , I 01 I:IllIl O o l 1 3 1 : TMA

SL<>. C ~ n t l i t i o n d l b r a n c h S t a t u s INS1 R . PI.A[" 2 2 J ,I 3 1 !:1: 1 I 1 0 0 1 :1c; TMY

A<O:3>. Accuinu l a t o r INSlR.Pl A[" 2 3 1 ~l:llllllocll:~: TYA

O(0 :4>, O u t p u t b u f f e r lNSTR.PLA["24] IGIl:. 1 1 1 1 0 1 c : TAY

CKI,BUS<O:3> INSTR.PLAf"P61 = '0011001111011100: AMAAC

iNSTR,P;Af"Z6i = '0011011111101000: MNEL
E x t e r n a l . S t a t e * * INSTR. P L A t " 2 7 j = ' 0 0 1 1010111010100: SAMAN

lNSTR.PLA["Za] = '0011011111010100: IMAC

I N I T O I n i t l i n e INSTR.PLA["ZQ] = '001101011101000~: ALEM

K<0:3> E x t e r n a l i n p u t s I OMAN

! IYC
I DYN
I C P I A Z

M u l t i p l e x e r t o a d d e r I N s l R . P L A l " 2 C] = '1011011111001100; I XMA
Mu1 t I p l e r e r t o a d d e r INST!:.PLA["2F] = '0011111111001100: I CLA
The a d d e r I A L U INSIR.PlA["3(1] = 'OOO1Ol1llOlOlOOO: I TBITl
r e l n p o r a r y r e g i s t e r i w 9 r R P I A ! " ~ O ~ ' n n n ~ o ~ i ~ ~ o ~ o ~ o o o : r B I T i= I

S . t r a c e 0 . S t a t u s t r a c e i N ; l R , P i A [' * 3 i j ~000101i1l0l01000~ ! T B l T l
3

r o m , a d d r e s s < 0 : 9 > . I n s t r u c t i o n ROM address r e g . INSTII.I 'LA["301 = '0001011110101000: I T B I T l

OUI.PLA[O:31]<0:7>. S i m u l a l i o n o f o u t p u t p l a temp = 0 n e x t

I n i t . 1 oop :=

INSIR.PLA[O:Z55](0:15>. S m u l a t i o n o f i n s t r u c t i o n PLA b e g i n

b . rev(O:l>, 	 I levePse b i t b f i e l d . INSTU,PLA["40 + temp] = ~0001111111001010: TCY

c . r e v < 0 : 3 > I leverne b i t c f i e l d . 1 N S i R . P L A ~ " 5 0 + teinp] = '0010111110101000: YNEC
INSTR,PLA["60 + temp] = ' 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 : TCMIY
1NSlR.PLAI " 1 0 + t e m p 1 = '0001110111010000 , l e n t ALEC

I n s t P u c t i o n . F o r m a t * * 	 temp = t e i p + 1 n e x t -
I F teinp NFQ 0 => RCSTART i n i t . 1 o o p

1,BUS\lnstruction,Bus(0:7> I OOUbleS as i n s t r u c t i o n r e g i s t e r e n d
end

I F o r m a t I i n s t r u c t i o n s

o p . l < O : l > := l.BUS<O:l>. I Opcode * *serv ice .Rout ines* * {us)

w < O : 5) := 1.8US<2:7>, I New b r a n c h a d d r e s s
I A c c e s s r o u t i n e t o t r a n s l a t e t h e 0 r e g i s t e r t h r o u g h t h e O u t p u t PLA

F o r m a t I I i n s t r u c t i o n s
o p . I 1 (0 : 3 > : = I .BUS<O:3>. Opcode activate.out.pla(o<o:4>)<0:7> : = (a c t 7 v a t e . o u t . p l a = o u r . P i n [O]) .
c<0:3> : = I . B U S < 4 : 7 > . C o n s t a n t (n o t e b ? t r e v e r s a l)

I A c c e s s P o u t i n e t o t r a n s l a t e i n s t r u c t i o n s t h r o u g h t h e i n s t r u c t i o n PLA.
F o r m a t 111 i n s t w c t i o n s

op,III<O:5> : = I.BUS<O:5>. OPcode f i e l d activate.instr.pla(I.BUS<O:7>)<0:15> :=

b<0:1> : = I .BUS<6:7>.
(a c t i v a t e . i n s t r . p l a = INSTR.PLA[I.OUS])

F o r m a t I V i n s t r u c t i o n s *I I n s t r u c t ?on. I n t e r p r e L a t i a n * * (u s)

op,IV<0:7> := I.BUS(O:7>, Opcode 	 s t a P t [lna i n) := I M a i n C o n t r o l l o o p
beg iii

F o r m a t V (1000/1300 o n l y) If i n i t => I I n i t i a l i z a t i o n s e q u e n c e

Opcode b e g i nop.V<0:4> : = 1.BUS<O:4>. i n i t . iins tP .p1 a () : i nit .o u t , p l a (!;
f<0:2> : = I .BUS<S:7> D a t a f o r LUX
OC 0 i R = CL = 0 : PA = PB = 1111:
i

S - = 1: I N 1 1 = 0PLR,lnitiali2ation**(us) 	 e n d next
s . t r a c e = 0;

I The o u t p u t Programmable L o g i c A P r a y (P L A) t r a n s l a t e s t h e root. a d d r e s s =

I c o n t e n t s o f t h e 0 r e g i s t e r i l l t o a u s e r d e f i n e d code an t h e l ' n @ (~ C < z : 5) @ (P C < l)e q v P C < 5)) B (P c < o > x o r PC<1> eqv PC<5>)) lnext
I 0 - o u t p u t l i n e s . The PLA i n i t i a l i z a t i o n d e f i n e d b e l o w I IIUS = l lOM[ro in .aadress] n e x t
! p r o v i d e s e n c o d i n g f o r d r i v m g Seven segment LED d i s p l a y s b . r e Y = b<l)@b<O>:
I w i t h t h e c h a r a c t e r s : c . r e Y = c<3>Bc<2>FC<1>@C<O>:

I 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 6 . 9 . A . b . C . d . E . F . = @ XOI. '11111))
PC I P C < I : ~ > ((P C < O > eqv PC<I>) (pC<1:5> e q l n e x t

Chapter 34 I TMS1000M200: Chip Architecture and Operation 601

APPENDIX 1 (cont'd.)

UECODE I . W S =) I CKI.RUS d e t e r m i n a t i o n
b e g i n
"00:"07 : = CKI.BUS = c . r e v . i Load f rom i n s t r u c t i o n .
" 0 O : " G F := CKI.OUS = K. I I n p u t f rom e x t e r n a l l i n e s .
" 2 O : " Z F := CKI.OUS = 0. I Ze ro .
"30:"30 : = CKI.IIUS = (' I l l 0 SLR b . r e v) .
"40:"7F : = CKI.OUS = C . P B V . I Load f rom i n s t r u c t i o n .

othef'wise : = n o . a p l)
end n e x t

DECODE I.OUS = > F i x e d i n s t r u c t i o n decode
b e g i n
"00 : = COMX(). Comp1 ement X
" O A : = T U O () . T r a n s f e r : o = A
'"GO : = CLO(). C l e a r 0 - o u t p u t
" O C : = I lsrR(). Reset R [Y]
"OD : = SE I I l () . Set R [Y]
" O F : = I R E I N () . Submu 11ne Re t u PII

"10 :'I 1F := L I W () , Laad Page B u f f e r (c o n s t a n t)

" 3 0 :"33 := SII I T () , Se t ineiilory b i t

"34: "37 := RRI r() , Reset inieniory b i t

"3C:"3F := LUX(). Load X (c o n s t a n t)

"oo:*~or:= iiiq). Branch on s t a t u s = 1

"C0:"FF : = CALL(), C a l l s u b r o u t i n e (s t a t u s = 1)

o t h e r w i s e : = microexe,: " t i o n ()

end next
~ ~.

I F s . tPace => RESTART s t a r t n e x t

S = 1 n e x t

RESTART S t a r t

end

~ * I n s t r u c t i o n . E x e c u t i o n * . (u s)

BR := I Branch on s t a t u s = 1
b e g i n
DECODE S =>

b e g i n

0 := s = 1.

1 := (I F CL e q l ' 0 = > PA = PB: PC = w)

end

end,

CALL := ! C a l l s u b r o u t i n e .
b e g i n I c o n d i t i o n a l on S t a t u s
DECODE S@CL = >

beg in
'10 := 	 (SR = PC: temp = PA n e x t

Pa = PO n e x t

Po = teinp: PC = w: CL = 1).

'11 := (PC = w : PB = PA),

o t h e r w i s e := S = 1

end

end.

RETN := I Re tu rn f rom s u b r o u t i n e
b e g i n
I F CL 5) PC = SR n e x t
PA = PB: CL = 0
end.

LDP : = (PB = c . r e v) . I Load page b u f f e r
LDX : = (X = b . r e v) . 1 Load x w i t h c o n s t a n t
COMX := (X = n o t X) . I Complement x
TOO := (activate.aut.pla(SL@A)). I T r a n s f e r t o o u t o u t
CLO := (a c t i v a t e . o u t . p l a (0)) . C l e a r o u t p u t r e g i s t e r
S€TR := (I F Y l e q I 0 = > R [Y] = 1) . S e t R [Y] t o I

Set R [Y] t o 0
S e t menwry b i t
Reset memory b i t

. * M i c r o i n s t r u c t i o n . E x e c u t i o n . . (u s)

m i c w e x e c u t i o n :=
b e g i n
a c t i v a t e . i a s t r . p l a (I . B U S) : P .MUX = 0: N.MUX = 0 n e x t
I f a c t iva r e . iI) s t r ,p 1a<0) =) S T O :iR A M r X f l Y] = A :
I F a c t i v a t e . I n s t r . p l a < l > = > C K M : = l iAM[Xf lY] 2 CKI.OUS n e x t
I F r i o t a C t i v a t e . i n s t r . p l a < z) = > CKP := P.MUX = CKI.UUS:
I F n o t a c t i v a t e . i n s t r . p l a (3) = > Y T P :iP.~MIlX i Y ..
IF (not a c t i v a t e . i n s t r . p l a (4) = > MTP := P.MUX = n A M [X @ Y] ;
I F (not a c t ? v a t e . i n s t r . p l a < 5 > = > R T N : = N.MUX = A :
I F no1 e c t i V a t e . i n s t r . p l i (B > = > NATN := N.MUX = n o t A:
I F n o t a c l i v a t e . i n s t r . p l a < 7 > = > MTN := N.MU): = IRAM[X@Y]:
I F n o t a c t i v a t e . i n s t r . p l a < O > =) lN15 : = N.MUX = " F :
IT lint a c t i v a t e . i n s t r . p l a < 9 > = > CKN := N.MUX = CKI.IIUS n e x t
AIJUER = IP.MUX + N.MUX n e x t
I F a c t i v a t e . i n s t r . p l a < l o > =) NE := (S = (P.MUX neq N.MUX):

s . t ~ a c e= 1):
I F mt a c t i v a t e . i n s t r . p l a < l Z > = > C I N : = ADDER = P.MUX + N.MUX t 1 nex
IF a c t i u a t e . i n s t r . p l a < l l > => CO : = IS = ADOLR<O>:

". "" ., .."".
I T 	 a c t i v a t e . i n s t r . p l a < 1 3 > = > AUlA : = A = AD~ll.li<l:4>:
I F a c t i v a t e . i n s t ~ . p i a < l 4 >=> AUTY : = Y = AUUI.R<1:4>:
l r ~CtiYate.iiis1~.."la(15) = > STSL := SL = S
end

end I End O f TMSlOOO

602 Part 3 [Computer Classes

Chapter 35

PIC1650: Chip Architecture

Operation

Frank M . Gruppuso

1. introduction and Design Goals

The PIC1650 is an MOS/LSI circuit array containing RAM, IiO, a
central processing unit, and a customer-defined ROM on a single
chip. General Instrument (GI) architectured the PIC (Program-
mable Intelligent Controller) in 1976 to satisfy the need for a
low-level, easy-to-use microcontroller. The only other microcom-
puter available at the time was the calculator-based design
TMS1000, and it was felt that a much more powerful machine
could be built around a general-purpose-register, minicomputer-
like architecture. Thus was laid the groundwork for the PIC1650.

The PIC is fabricated in an N-channel MOS-process technology
that permits fabrication of both enhancement- and depletion-
mode transistors. Depletion-mode transistors allow low-voltage
(5-volt) operation and, when used as internal load resistors, offer
much better speed-power performance than enhancement-mode
transistors used in a similar fashion.

As a controller, the PIC chip was designed to emphasize bit,
byte, and register-transfer operations. Its main objectives would
be to perform logical processing, basic code converting, and
formatting, and to generate fundamental timing and control
signals for various subservient I/O devices [PIC 1979a,b]. The
emphasis was placed on the ability to provide control and interface
functions rather than computing functions. The PIC was seen as a
key element to providing so-called intelligence to long-established
non-computer, small-system designs which, as it turned out, were
mostly electromechanical in nature. Some of the initial proposals
were for applications in vending machines, small dot-matrix
impact printers, and metered mailing systems.

The following are several key issues which motivated the
architecture and logic design.

Wide instruction word. It was felt that a 12-bit-wide
instruction word that was wider than the 8-bit data word
afforded both simplicity (and thus compactness) of chip
design and ease of user-programmability. All instructions
were therefore designed to be one word long; this kept the
control logic simple since no multiple fetches had to be
made from program memory to execute even the most
complex instructions. Also, a 12-bit instruction word allows
every register to be directly addressed by the program. It

Section I 1 Monolithic Microcomputers

further permits literals in program ROM to be accessed at
the same time as the instruction op code. For example, in a
machine with an 8-bit-wide instruction word, a load
immediate instruction wouId normally take two 8-bit ROM
words fetched and executed in two instruction cycles. In
the PIC1650, the equivalent instruction only occupies one
12-bit ROM word in memory and executes in one cycle.

General-register architecture. Another aspect of the design
that was considered important was the general-purpose
nature of the register array: the program counter (PC),
every I/O register, and most other specialized registers
occupy an address in the register array address space. This
permits every instruction that can operate on a general-
purpose register to operate, say on an I/O file register or the
PC. In the case of the program counter, for example, the
instruction MOVW F2 (move the contents of the working
register to the PC) is actually a computed GOTO instruc-
tion.

Minimal parts count. It was envisioned that the PIC would
be applied in areas that would be cost-sensitive from a
systems viewpoint. Thus, efforts were taken to minimize
the amount of external outboard circuitry. A single-pin
oscillator whose frequency of operation was determinable
by a single resistor and capacitor was designed. A second
power supply, Vxx was added to drive the output buffers of
the processor. It was not expected that TTL gates would be
the only loads that the microcomputer I/O lines were ever
going to see. Discrete switching transistors, coils, and large
LED displays represent only a few of the different kinds of
external circuits it was felt the PIC chip had to be capable of
interfacing with. If Vxx is varied externally from 5 1‘to, say,
9 V, the output buffer transistors behave as voltage-
controlled resistors. This allows any interface between the
PIC chip and the outside world to be more effectively
matched. Section VI of this chapter describes an application
using this pin.

Direct Bit SetiCleadTest instructions. In view of the PIC’S
overall architectural goal of being a controller, it was highly
desirable for the processor to be able to directly set, clear,
and test individual bits in any register without forcing the
user to program the usual “mask with a literal” coding
sequences. Instead, the chip performs these functions
internally. Thus, to execute the Bit Set instruction on bit 2
of a particular register, for example, the processor internal-
ly sets up the mask B ’00000100 ‘ and performs a logical OR
between this mask and the register.

Wide operating-voltage range. Soon after the release of the
PIC1650 to the marketplace, it became apparent that a
number of applications were found which required battery
operation (e.g., electronic hand-held games and digital
scales) or, more generally, a wide operating-voltage range.
h wide operating-voltage-range chip could tolerate a less
critical and, hence, less costly external power supply. Thus,

Chapter 35 1 PICi650: Chip Architecture and Operation 603

GI initiated a design effort that generated the “A” series of Auto-dialer telephone system. This system is capable of
PIC chips-PIC1650A, PIC1655A-that are identical to the storing and retrieving sixteen 10-digit telephone numbers.
original except that the operating voltage range was in- Here, the PIC chip processes command codes, which are
creased from 4.75-5.23 V to 4.5-7 V. As four C cell entered through the keyboard, and drives outboard CMOS
batteries fully charged produce 6.8 V in series, 7 V was RAM, which stores the actual digits.
chosen as the upper limit. 	 Motor control. In this application, the PIC chip serves as a

feedback element in a constant-speed motor control sys-
Several versions of the PIC1650 have been architectured tem. The microcomputer senses the present speed of the

which, among other things, vary according to number of 110lines, motor and adjusts the firing pulse to an external SCR,
RAM size, and ROM size. These are enumerated in Table 1. which, in turn, drives the motor. The high instruction rate

Applications using the PIC series have centered around those permits precise control over a wide range of speeds. Typical
where a single-chip microcomputer could perform systems func- applications of this system are found in industrial drill
tions at a lower cost than non-computer solutions presently presses and hand drills.
available or, alternatively, provide extra features which heretofore Consumer electronics. In the consumer arena, the PIC has
would have been prohibitively expensive without a microcomput- been programmed into a variety of electronic games. The
er. Present applications that use the PIC chip include: PIC is quite efficient in the area of sound generation: the

high instruction rate permits higher-frequency sounds and
Digital-readout weight scale. In this application, weight is thus more complex sounds than would be possible with a
converted to a digital pulse train via a front-end transducer slower processor. Other areas of consumer electronics use
circuit. The pulses are applied to the RTCC (Real Time the aforementioned motor control technique in household
Clock Counter) input. The ROM program computes the mixers, blenders, and food processors. The PIC has also
difference between the frequency with the weight applied been designed into appliances requiring time controlling,
and the no-weight frequency (thereby providing for auto- 	 such as microwave oven timing.
zero correction) and converts the difference to a 4-digit
BCD number which is subsequently displayed. To save Figure 1shows a functional block diagram of the PIC1650. All
multiplexing costs, all thirty-two I/O lines drive the display data elements-arithmetic logic unit, register file array, IiO
directly. registers-are connected via an internal 8-bit bidirectional bus.

Table 1 Familv of PIC Architectures

PICl 650A PICl 655A PICl 670 PICl 645 PICl 656

Technology NMOS NMOS NMOS NMOS NMOS
Number of pins per package 40 28 40 18 28
Cycle time (psec) 4 4 4 4 4
Data path width (bits) 8 8 8 8 8
instruction word width 12 12 12 12 12
(bits)

Program ROM size 51 2 512 1024 256 51 2
(12-bit bytes)

Number of fixed instructions 30 30 33 31 31
Data storage RAM size 32 32 64 24 32
(8-bit bytes)

Operating-voltage supply range 4.5-7.0 4.5-7.0 4.5-7.0 4.5-7.0 4.5-7.0
(volts)

interrupt capability No No Yes Yes Yes
Levels of pushdown stack 2 2 4 3 3
110 configuration (registers)

Input/output 4 8-bit 1 8-bit 4 8-bit 1 4-bit 1 8-bit
input only 1 4-bit 14-bit 1 4-bit
Output only 1 8-bit 1 4-bit 1 &bit

Date of introduction 1978 1978 Planned Planned 1979
1979 1979

__

604 Part 3 I Computer Classes Section 1 1 Monolithic Microcomputers

RA <0:7>
8

I/O regA (F5) I /O reg 6 (F6)

8 8

8

8,

3
W regI

8, [
+ ‘

I 110 regC (F7l
RC<O:7>

Arithmetic Instruction

logic unit

8-bil Shifterbidirectiona
bu, 8

8 1/0 reg D (F8)
I Program

Register ROMI I
file array
(F9to F31) reg (F41

512 X 12

m-

1
MCLR- Program counter (F2)

8
1

Fig. 1. PIC1650block diagram.

Descriptions of these various elements appear in the following 111. pc State
sections.

The register file arrangement is delineated as follows:

II. Mp State a FO. FO is not a physically implemented register. Rather, it
is used as an indirect register-select mechanism; when FO

The Program ROM contains 6144 bits organized as 512 twelve-bit is specified in the register file field of an instruction, the
words. RAM storage consists of 32 eight-bit registers, all of which PIC will use the contents of F4 to select the register to be
are addressable by instructions contained in the program ROM. used in that instruction.
These registers are divided into two functional groups: operation- b F1<7:O>UReal.Time. Clock. Counter. Register. This regis-
al registers and general-purpose registers. The general registers ter counts external events by incrementing on the falling
are addressed as F9 to F31 and contain data and control edge of the RTCC pin. This register can also be loaded and
information. These registers are all located in a contiguous block read under program control.

labeled “Register File Array” in Fig. 1.The operational registers, c F2<8:O>Vrogram.Counter (PC). The program counter

FO to F8, are scattered throughout the chip, and not only are they points to the next instruction to be executed in memory.

addressable by the program, but they also perform special This register is 9 bits wide to address the 512-word ROM,

functions described in Sec. I11 of this chapter. but only the low-order 8bits can be written to or read from

by the program. The ninth bit can be considered a page bit
and can only be altered by a GOT0 instruction. The PC is
initialized to 7778 upon a low-to-high transition of the
MCLR input pin. It increments normally thereafter except
as modified by the program via the use of the CALL,
RETURN or other, similar instructions.
F3<2:0>\Status.Word.Register. This register contains
status bits which are modified as a result of arithmetic
operations.

C<>\ Carry.bit:= F3 <O>. Stores the carry out ofthe
most significant bit of the resultant of an arithmetic
operation. This bit is also used as a link for rotate
instructions.
DC<>\ Digit.Carry := F3<1>. Stores the carry out of
the fourth low-order bit (bit 3) of the resultant of an
arithmetic operation. The bit is useful in processing
decimal data.
Z<>\Zero := F3 <2>. This bit is set if the resultant of
an arithmetic operation is zero and cleared if the
resultant is not zero.

Since these bits constitute a file register, they can also be
modified under program control. However, to avoid a
conflict between altering the status flags under program
control and altering the status flags as a result of arithmetic
operations, F3 can only be modified under program
control by either the BIT SET or BIT CLEAR instruction.
F4<7:0>\ File. Select. Register (FSR). Only the low-order
5 bits are used in this register. The FSR is used in
generating effective file register addresses under program
control. When this register is directly addressed as a file,
all 5 bits can be written to and read from. The upper 3bits
read as a logic “1.”

F5<7:0>\ 1nput.Output.Register A.

F6<7:0>\ Input. Output. Register. B.
F7<7:0>\ Input. Output. Register. C I

F8<7:0>\ 1nput.Output. Register. D,
F9<7:0>-F31<7:0>. Twenty-three general-purpose reg-
isters.
W<7:0>\ Working.Register. The accumulator.
Stack [1:0]<8:0>. Two registers that store return address-
es for use in CALL and RETURN instructions.
IR<ll:O>\ 1nstruction.Register. A 12-bit register that
stores the instruction currently being executed by the PIC.

Note that neither register of the pushdown stack can be directly
accessed by the program. When a CALL instruction is executed,

d

e

f
g
h
i

j

k
1

m

Chapter 35 1 PIC1650: Chip Architecture and Operation 605

the contents of the program counter (which is*already pointing to
the next instruction after the CALL) are pushed into the top
register of the pushdown stack. The top register’s former contents
are pushed onto the second register in the stack. Any prior data in
this second register is lost, thereby limiting the amount of
subroutine nesting to two. The RETURN instruction (mnemonic
RETLW) functions in reverse fashion: the top register of the stack
replaces the current PC while the second register of the stack
replaces the stack top. The contents of the second register remain
unchanged.

IV. Instruction Set

Table 2 summarizes the PIC1650 instruction set. Each instruction
is a 12-bit word divided into an op code field which specifies the
instruction type and one or more fields which select the operand
data source and destination. The instruction set is broken into
three different formats: general file register operations, bit-level
file register operations, and literal and control operations.

Instruction Format I: General File Register Operations

OP CODE d f I FILE #)

This format has a 6-bit op code field, a 5-bit register select field,
and a single-bit destination field. The 5-bit register select field can
directly access any one of the 32 file registers (FO through F31).
Instructions in this format will specify either a single source
operand-a file register-or two source operands-a file register
and the W register.

Two-source operand instructions include SUBTRACT, Inclu-
sive OR, AND, Exclusive OR, ADD, and MOVE. Single-source
operand instructions include CLEAR, DECrement, COMple-
ment, INCrement, Rotate Right, Rotate Left, and SWAP. For all
instructions in this format, however, the destination bit (bit 5)will
specify where the result of the operation will be placed. If the
destination bit equals 1, the result will be placed in the file
register originally specified as the source; if the destination bit
equals 0, the result will be placed in the W register.

Two other instructions in this format permit compact coding in
the case of software timing loops. Decrement file, skip if zero
(DECFSZ) decrements the source file, and if the result of the
decrement operation is zero, then the next instruction after

Table 2 PIC 1650 Instruction-Set Summary
~

In the following PIC instruction descriptions “ k ’ represents an eight-bit constant or literal value, “f” represents a file register designator
and “d” represents a destination designator. The file register designator specifies which one of the 32 PIC file registers is to be utilized by
the instruction. The destination designator specifies where the result of the operation performed by the instruction is to be placed. If “d”
is zero, the result is placed in the PIC W register. If “d” is one, the result is returned to the file register specified in the instruction. If the
“d” operand is omitted, the f register is assumed as the destination. “f” and “d” may be numbers, characters, or symbols as described in
the PIC Assembler and PIC Simulator instructions. A “b” field specifies the bit number within an 8-bit register, “C” represents the carry
bit, “Z” represents the zero bit, and “DC” represents the digit carry bit.

General file register operations

f o r d = 0, f-W
d = 1, f+f

Instruction (octal) Name Syntax Operation Status affected

000000 0 OOOOQ (0000) Nooperation NOP None
OOOOOO 1 fffff (0040) Move W to f t MOVWF f W-f None
000001 0 fffff (0100) Clear W CLRW - 0-w Z
000001 1 fffff (0140) Clear f CLRF f O+f Z
000010 d fffff (0200) Subtract W from f SUBWF f , d f-W+d C, DC, Z
000011 d fffff (0300) Decrement f DECF f , d f-l+d Z
000100 d fffff (0400) Inclusive OR W and f IORWF f , d Wvf-d Z
000101 d fffff (0500) AND W and f ANDWF f , d WAf-d Z
000110 d fffff (0600) Exclusive OR W and f XORWF f, d Wt/f-d Z
000111 d fffff (0700) Add W and f ADDWF f , d W+f-+d C, DC, Z
001000 d fffff (1000) Movef MOVF f ,d f b d Z
001001 d fffff (1100) Complement f COMF f, d f-+d Z
001010 d fffff (1200) Increment f INCF f, d f+l+d Z
001011 d fffff (1300) Decrementf,SkipifZero DECFSZ f, d f-I-d, skip if Zero None
001100 d fffff (1400) Rotate Right f RRF f, d f(n)+d(n-l), f(O)-C, C-+d(7) C
001101 d fffff (1500) Rotate Left f RLF f, d f(n)-d(n+l), f(7)--tC, C-d(0) C
001110 d fffff (1600) Swap halves f SWAPF f, d f(O-3)$f(4-7)-6 None
001111 d fffff (1700) Increment f, Skip if Zero INCFSZ f, d f+l+d, skip if zero None

BIT-level file register overations

(8-11) (5-7) (0-4)

I OPCODE I b(BIT#) 1 f (FILE #d
Instruction (octal) Name Syntax Operation Status

0100 bbb fffff (2000) Bit Clear f BCF f, b O--tf(b) None
0101 bbb fffff (2400) Bit Set f BSF f, b l+f(b) None
0110 bbb fffff (3000) Bit Test f, Skip if Clear BTFSC f, b Bit Test f(b); skip if clear None
0111 bbb fffff (3400) Bit Test f, Skip if Set BTFSS f, b Bit Test f(b); skip if set None

Literal and control operations

(8-1 1) (0-7)
I OPCODE I I (LITERAL)

Instruction (octal) Name Syntax Operation Status

1000 0 0 0 0 0 0 0 0 (4000) Return RET - O+W, RAR-PC None
1000 k k k k k k k k (4000) Return and place Literal in W RETLW k k+W, RAR-PC None
1001 k k k k k k k k (4400) Call subroutinet CALL k PC+I+RAR, k-PC None
lO lx k k k k k k k k (5XOO)t Go To address GOT0 k k+PC None
1100 k k k k k k k k (6000) Move Literal to W MOVLW k k+W None
I101 k k k k k k k k (6400) Inclusive OR Literal and W IORLW k kvW-+W z
1110 k k k k k k k k (7000) AND Literal and W ANDLW k kAW-W z
I l l 1 k k k k k k k k (7400) Exclusive OR Literal and W XORLW k kvW-W Z

tThe 9th bit of the program counter in the PIC1650 is zero for a CALL and a MOVWF F2. Therefore, subroutines must be located in page 0. However,
subroutines can be called from page 0 or page 1 since the RAR is 9 bits wide (Page 0: 0-255. Page 1: 256-511).

:!If x = 0, the address is in page 0; if x = 1, the address is in page 1. The PIC assembler takes care of assigning the correct op codes.

606

Chapter 35 1 PIC1650: Chip Architecture and Operation 607

DECFSZ is skipped; if the reslt i s not zero, then the next
instruction is executed. Increment file, skip if zero (INCFSZ)
operates in a similar fashion.

Instruction Format 11: Bit-Level Register Operations

I 1
r

OP CODE B (BIT #I f (FILE #I

1 1 1 10 9 8 7 6 5 4 3 2 1 0 1

This format has a 5-bit register select field, a 3-bit bit select field
and a 4-bit op code field. There are only four instructions in this
category: two instructions that set or clear individual bits in a
particular register, and the other two instructions that test a bit for
a one or zero and skip accordingly. Again, the register select field
(bits 0-4)can directly address one of 32 file registers while the bit
select field (bits 5-7) selects one of eight bits in that register to be
either set or cleared. The other seven bits in the register remain
unchanged. None of the status bits are altered by any of the
instructions in this category.

Any instruction in the above two classes may specify FO in the
register select field. In that case, as an example, say the PIC is to
execute DECF FO, W and the contents of F4 at the time of
execution are 148. Then register 148 is decremented and its results
placed in the W register.

Instruction Format HI: Literal and Control Operations

OP CODE I (LITERAL)

I 1

This format has a 4-bit op code and an 8-bit constant field.
Instructions using this format fall into two sub-groups: one group
treats constants located in program ROM as data, while the other
treats them as addresses. As an example of the first, IORLW
Inclusive ORs an 8-bit constant with the present contents of the W
register and places the result in the W register.

The CALL instruction and the GOTO instruction treat the
literal field as an address. Although one GOTO mnemonic appears
in Table 2 there are really two GOTO instructions. The program
counter is 9 bits wide to address 512 words, while the literal field
is only 8 bits wide. Thus, bit 8 of the GOTO instruction specifies
the ninth bit of the program counter. The op code field is limited,

however, and therefore this same technique cannot be applied to
the CALL instruction. Thus, when a CALL instruction is execut-
ed, the ninth bit of the PC is forced to a zero. This requires all
subroutines to be located in the low 256-word ROM memory
space. Similarly, when the PC is also changed by the use of the
MOVW F2 instruction, the ninth bit is also forced to a zero. Since
the pushdown stack is 9 bits wide, though, subroutines can be
called from anywhere in the 512-word ROM space.

The Return and Place Literal in W instruction (RETLW) is a
little unusual in that it is two instructions in one. The op code
specifies that the top element of the pushdown stack (indicated as
RAR for Return Address Register in Table 2) replace the program
counter. Simultaneously, the constant contained in the literal field
is loaded into the W register. This instruction provides a very
convenient facility for table look-up.

V. Implementation

Timing

The basic instruction cycle timing for the PIC is generated from an
on-chip ring oscillator. The only external components required to
support oscillation are a resistor and a capacitor. The oscillator
runs at four times the internal clock frequency; thus, to support a
4-JJ,Sinstruction cycle, the oscillator must operate at 1MHz.

An internal two-phase, non-overlapping clocking scheme is
central to the microcomputer’s internal operation. This is shown
in Fig. 2. To keep the control logic simple, a pipelined instruction
fetchlinstruction execute system was used. Thus, while the PC is
accessing the current instruction in ROM memory, the ALU and
register array data sections are executing the instruction accessed
in the previous cycle. This requires the use of a separate
incrementer for the PC as there is no time for the ALU to perform
the incrementation. The program counter increments on the

, ,

01

i Program 3 P C = x x pc=x+1 x-counter 1

Instruction Execution of Execution ofI I I
execution instruction @ x - 1 instruction @ x

I

Fig. 2. Instruction cycle timing.

_ _ _ _ _ _

608 Part 3 1 Computer Classes Section 1 1 Monolithic Microcomputers

01 4

X PC = literal X PC = literal + I
I

Load
PC with

literal

Fig. 3. Modified cycle timing for CALL, GOTO, etc.

rising edge of every 01 clock. At the same time, a master-slave
flip-flop located at the output of the ROM latches the instruction
fetched in the previpus cycle. This prevents the neu7 instruction
fetch from potentially corrupting the previous fetch. This pipelin-
ing scheme keeps the instruction throughput high.

For those instructions that modify the contents of the program
counter, this scheme does not work. Opportunity must be given
for the ROM to access the instruction at the new address. Thus the
PIC must wait an additonal cycle before accessing the next
instruction after CALL or similar instructions (Fig. 3).

Input/Output Registers

Thirty-two pins of the PIC1650 (housed in a 40-pin dual in-line
package) constitute the inpuVoutput pins. They are segregated
into four groups of eight pins each. Each group of eight represents

Dn

(internal -

data bus)

- I
J

!
Read
(internal
signal)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _J

Fig. 4. 110 register circuit diagram.

a register that occupies an address in the address space of the
register file array. Pins RA<0:7> are the 110 pins that constitute
F5 (Fig. 1). Similarly, RB<O:7>:= F6<7:0>,RC<O:7>:=
F7<7:0>, and RD<O:7>:= F8<7:0>. A circuit diagram of the
110 register interfacing to a TTL gate is shown in Fig. 4.

Each I/O bit contains a latch which will be written into if its I/O
file is specified as the destination register in an instruction. If we
consider the IIO bit as part of an output file, then the logic value
attained‘by the pin will be the logic value in the latch. If a “1”is
stored in the latch, transistor Q1 will still be on, hit transistor Q2
will attain an impedance of approximately 200 0and drive the pin
to a low level.

An auxiliary power supply, Vxx, provides the voltage required
to turn on transistor Qz. The higher this supply, the lower the
impedance Qz attains when it is on. Typically, increasing the VXX
supply from 5 V to 10 V will roughly halve the impedance of QZ
from 200 C? to 100a.In driving large-segment LED displays, for
example, a typical system configuration would call for VCC
(primary chip supply) to be 5 V and VXX to be 10V. This provides
the large current-sinking capability necessary to drive the displays
without the need for any interfacing bipolar transistors.

Now consider the use of the I/O bit as part of an input file.
When an 110 file is used as a source register, an internal READ
signal gates the data on the I/O pin into the internal data bus. In
this configuration, Qz should be kept off by presetting the register
to 1(allowingQ1to be conveniently used as apull-up transistor). If
Q2 is on, an impedance conflict will occur if an external device is
attempting to drive the pin to a logic “1”level. For purposes of
logic definition, then, it can be said that the I/O bit and the
external device form a logical AND when the I/O register is used
as an input file.

I I----
i f
1 T T L i e v i c e output
I (open-collector)

I

Chapter 35 1 PIC1650: Chip Architecture and Operation 609

VI. 	 Program Examples

Use ofIndirect Addressing
This example illustrates the use of the File Select Register (F4)
and the indirect addressing mode using FO. This program clears
files F5 to F31.

Label Op co& Operand Comment

MOVLW 5 Move literal 5 to W REG.
MOVWF 4 Move W to F4. (F4 = 5).

Loop CLRF 0 Clear the contents of the file

INCFSZ 4, F
pointed to by F4.

Increment F4. The PC will
skip after F31 is cleared.

GOTO Loop Repeat the steps beginning at
Loop to clear the next file.

END Files F5 and F31 are cleared.

BCD Number Display
This example converts a BCD number held in the four least
significant bits of F20 (the 4 MSB's are assumed zero) to a
7-segment code. The 7-segment code is output via I/O port F5,

a

Typical 7-segment bar position.
Assembler recognizes the format
Fi'bbbbbbbb' as an 8-bit binary
data word where b is a 0 or 1.
The LED segment positions are

C thus B'Oabcdefg'.

RA<O>

RA<l>

PIC1650 RA<2>

vcc = 5 v

vxx = 10 v RA<3>

RA<4>

RA<5>

RA<6>

L----
Specs: 	RoN = 100n;diode drop = 1.8 V; therefore, lLED= 16mA.

RS = 10052

Fig. 5. LED display connection diagram.

-+5v

Label Op code Operand

MOVLW TB LSTR
ADDWF 20,W

CALL CONVRT

MOVWF 5

END

CONVRT: MOVWF 2

TBLSTR: RETLW

RETLW

RETLW

RETLW

RETLW

RETLW

RETLW

RETLW

RETLW

RETLW

B'00000001

6'01001111

B'OOO10010

6'00000110

B'O1001100

6'00100100

6'01 100000

B'OOOO1 11 1

6'00000000

B'00001100

Comment

Starting address of table.
Add BCD number as offset to

Table start.
Call the conversion
subroutine.

Output the 7-segment code
to I10F5. The 7-segment
will now show the BCD
number and this output will
remain stable until F5 is set
to a new value.

Move the computed address
into the PC. Because the
ninth bit of the PC is set to
zero by a MOVWF 2, the
TBLSTR routine must be
located in the low 256-word
ROM memory area.

Complement of 0 in 7-segment
code.

Complement of 1 in 7-segment
code.

Complement of 2 in 7-segment
code.

Complement of 3 in 7-segment
code.

Complement of 4 in 7-segment
code.

Complement of 5 in 7-segment
code.

Complement of 6 in 7-segment
code.

Complement of 7 in 7-segment
code.

Complement of 8 in 7-segment
code.

Complement of 9 in 7-segment
code.

which is directly tied through current-limiting resistors to a
7-segment LED display. This program illustrates the use of the
computed GOTO instruction. Figure 5 shows the external
component connections.

The RETLW instruction loads the W register with the specified
literal value and returns to the instruction following the CALL
instruction (MOVWF 5).The complement of the 7-segment code
is used because the LED display unit is common-anode; a
segment is activated when the output is set low.

References

PIC [1979a]; PIC [1979b].

Section 2 	 processor with respect to the memory and processor-memory bus
technology. A single memory could support two to three proces-
sors concurrently without showing any degradation, whereas in Microcomputers 	 most computer systems, memory performance is the chief limiting
factor on processor performance. As the number of gates per chip
has continued to rise, the architecture of microprocessors has

Historically, the semiconductor industry had focused its efforts on become closer to that of larger mainframe computers. Chapter 36
increasing the number of memory bits per chip. Controllers were extrapolates from technology trends in order to predict speed-
built from SSI and MSI. Only when random-logic densities were power products, RAM and random-logic densities, and RAM and
great enough to fabricate several hundred gates per chip did LSI random-logic costs. Faggin (Chap. 36) also discusses the impact of
control elements become available. The first microcomputer chip these technology trends on microcomputer implementation,
set was introduced by Intel as the MCS-4 in 1971. The MCS-4 architecture, and software.
consisted of four different elements, all in 16-pin packages: The microcomputer class has been very active with tens of

architectures implemented in the first 6 years. Table 1summariz-

The Intel 4004 four-bit processor with 45 instructions es the characteristics of some of the more important microcomput-
ers. As time has passed, these architectures have grown to 40-pin typically requiring 12.5 p s each to execute
packages, 8- to 16-bit data paths, 64-Kbyte to 1-Mbyte address

The Intel 4001 2-Kbit ROM for program storage space, large instruction sets, sophisticated addressing modes, and
The Intel 4002 320-bit RAM for data storage more capable interrupt structures. Chapter 37 traces this evolu-

tion for one major manufacturer: Intel. The Intel 8086, which is
The Intel 4003 I/O expander described in detail, is an architecture exhibiting many of the

properties of mainframe computers, including memory manage-
The processor consisted of about 2,200 transistors, or approxi- ment, instruction and data address spaces, support for complex
mately 750 gates. data-types including strings, instruction prefixes as instruction

On account of the limited number of gates available, these early modifiers, and interlocks for multiple-processor systems.
microcomputers exhibited a number of architectural anomalies: a The Intel 8086 control is implemented as a microprogrammed
limitation on the number of op codes, data-types, and addressing sequencer executing 21-bit microinstructions from a 504-word
modes; limited data-path width; only partial support of some microstore [McKevitt, 19791. The microword is kept narrow
data-types; and limited interrupt capability, if any. An interesting through the use of instruction register contents to specify ALU
performance anomaly was the relatively slow speed of the data length (e. g., 8 or 16 bits), ALU function, and operand location

Table 1 Microprocessors

Intel Intel National Motorola Intel RCA Fairchild Zilog Intel Motorola Zilog
4004 8008 I M P 8 6800 8080 COSMAC F-8 2-60 8086 MC68000 28000

Tech nology PMOS PMOS PMOS NMOS NMOS CMOS NMOS NMOS HMOs HMOS NMOS
Number of pins per 16 18 24 40 40 28, 40 40 40 40 64 48

package
Instruction time (ps) 12.5 7.5 4.2 2 2 6 2 1 0.25 0.25 0.75
Data-path width (bits) 4 8 2 x 4 8 8 8 8 8 8 16 16
Maximum memorysize 4K 16K 64K 64K 64K 64K 64K 64K 1M 16M 8M

(bytes)
Register file size 16 7 4 3 7 16 72 7 (2 sets) 16 16 16
Stack size 3 7 16 In RAM In RAM InRAM InRAM InRAM InRAM
Instruction size 1-2 1-3 1-2 1-3 1-3 1 1 1-3 1-4 2-6 2-1 0

(bytes)
Basic instruction-set 45 66 38 72 111 48 101 89 133 59 110
size

Number of addressing 4 4 Many 7 5 2 3 10 24 10 8
modes

Data-types Integer, Integer Integer Integer, Integer, Integer Integer, Integer, Integer, Integer, Integer,
decimal decimal decimal decimal decimal decimal decimal decimal,

string
Interrupt None 8 levels 1 level 1 level 8 levels 1 level 2 levels 128 vec- 256 levels 8 levels 3 levels

tored 256 vec. vectored
Year introduced 1971 1972 1973 1974 1974 1975 1975 1975 1978 1980 1979

610

Section 2 I Microcomputers 611

Table 2 Microcomputers Based on Minicomputers

Intersil TI Micro Nova Fairchild
6100 LSI-11 LSI-11/23 TMS9900 MN601 9400

Techno1 ogy CMOS NMOS NMOS NMOS NMOS l2L
Number of chips 1 4 2 1 4 1
Number of pins per 40 40 40t 64 40 40
package

Cycle time (ps) 5 0.4 0.29 0.25 ? 0.1
Register move time N.A. 3.5 1.7 4.7 2.4 1.5

(PSI
Data-path width 12 8 16 16 16 4
(bits)

Maximum memory 32K 64K 256K 64K 32K 64K
size (bytes)

Microcode size . . . 1,024 X 22 522 X 25
Register file 1 26 16 16 4 4
size (In memory)

Stack size . . . In RAM In RAM . . . In RAM ...
Instruction set PDP-8 PDP-11/40 PDP-11/34 TI-990 Data General Data General
emulated Nova Nova

Year introduced 1975 1975 1979 1976 1976 1978

?Twochips per 40-pin chip carrier.

(e.g., register file or memory buffer registers). See Part 2, Sec. 1. Microcomputers Based on Minicomputers
Microprogram sequencing is provided by incrementing a 4-bit
microprogram counter, which is concatenated to an 8-bit ROM

Rather than evolve new instruction sets, some of the simpler
existing instruction sets with large software bases could be

address register. Sequencing can be modified by a short jump implemented. Table 2 is a small sample of this growing class of
(jamming a 4-bit microword subfield into the microprogram microcomputer systems which are based on minicomputers. It is
counter) or a long jump (by having 4 bits specify one of sixteen interesting to note that the PDP-8 was a very early, if not the first,
12-bit addresses stored in an auxiliary ROM).

The 8086 has a two-stage pipeline composed of instruction fetch
minicomputer, and it was also implemented early as a one-chip
processor. Chapters 49 and 31 describe microcomputer imple-

and execution. A 6-byte buffer allows prefetching of instructions mentations of an HP 2116-like ISP. The HP 2116 is a 16-bit
during long-execution-time instructions and supplying instruc- minicomputer with a close kinship to the PDP-8 ISP.
tions with no memory latency following short-execution-time
instructions. The instruction execution stage of the pipeline also Referencesallows for partial overlap of current instruction execution with
next instruction decoding. Adams [1978]; Holt [1974]; McKevitt [1979].

Chapter 36

Trends in Microcomputers1

F. Fae 'n

Technology Trends

Fueling the microcomputer product and market expansion i s a
rapid technological evolution. Today, the microcomputer market
is fundamentally technology-driven, and it is expected to remain
in this condition for at least 10more years. To characterize market
trends, it is, therefore, essential to examine first the LSI
technology trends and then assess the potential market impact.

The following projections will be limited to the MOS technolo-
gy, since it represents the fistest-moving and most promising
technology for high-performance and large-complexity VLSI
circuits.

Each technology is characterized by figures of merit that relate
to performance and cost. The most common figures of merit are:

Propagation delay, i. e., the time delay of a signal through a
logic gate driving 10 identical gates. Propagation delay i s
usually measured in nanoseconds.
Speed-power product, i.e., the product of the propagation
delay of a gate and its power dissipation, usually measured
in picojoules.
Gate density and bit density measured in gates per square
millimeter and bits per square millimeter.
Cost per bit and cost per gate, measured in cents per bit
and cents per gate for a product that has reached high-
volume production levels.

Figure 1shows past and expected future trends of speed-power
product and propagation delay (tpd) for the major generations of
state-of-the-art noncomplementary MOS technologies used for
LSI production.

Figure 2 shows past and expected future trends of bit density
for major generations of dynamic RAMS. The future also shows
expected chip size and the expected first year of production for
each major new RAM generation.

Figure 3 shows trends of random-logic gate density and how
this translates into practical gate complexity and circuit size for
major generations of random-logic circuits.

Underscoring these trends are the following considerations and
developments. Optical photolithography limits will be reached by

'Adapted from keynote address to ACM Sigarch Workshop on Future
Directions in Computer Architecture, November 1977, Austin, Texas.

i000 c'

, tpd =4ns

Si-gate MOS N-channel '\ .\Low-voltage substrate bias
Short channel tpd = 1.5 ns ,

10 - \
\

Scaled-down tpd = .6 ns
3V operation \

\

tpd = 2 5 ns
\

\
1 I I l l l l ' * l l l l * l ' l l l l I)

Fig. 1. Speed-power product for MOS noncomplementary technol-
ogies.

the late seventies and further progress will be made possible by
the application to large-scale production of electron beam lithog-
raphy now under development. Electron beam lithography will
make possible the scaling down of structures to micron and
submicron sizes with consequent increase in density. The actual
physical limitations to a continuing increase in complexity and
performance are not expected to result from line-width limitations
but rather from breakdown phenomena in semiconductors and
from total power dissipation. Breakdown phenomena are usually
proportional to electric field strengths; therefore, as the geometry
is scaled down, the supply voltage must be reduced. Ultimately,
thermal phenomena will limit this voltage to a multiple of KTlq.

A gross estimate of a practical limit for MOS technology is a
circuit using complementary MOS technology, operating at a
supply voltage of 400 mV, having minimum line width of 'A pm,
dissipating 1W at 100 MHz of operating frequency, having a size
of about 5 cm by 5 cm, and having the complexity of about 100
million gates! This shows that the trends shown in Fig. 1, Fig. 2,
and Fig. 3 are still very far from a practical limit and that
technological acceleration will continue well beyond the next
decade.

I should also point out that an important assumption contained
612

1.001

Chapter 36 1 Trends in Microcomputers 613

100.00~

1024Kv0

,'0 53 mm2
r = 1.5

0
256Kf

1o.ooc ,39mm2
, r = 1.75

6 4 5 d ,30rnm2 , r = 2.0

20 mm2
r = 2.5

r = 3.0

Aernory

11.4 mrn2
:hip size r = 3.5 r =

total chip area
memory array area

'1.001)
67 '68 '63 '70 '71 '72 '73 '74 '75 '76 '77 '78 '79 '80 '81 '82 '83 '84 '85 '86 Year

Fig. 2. Dynamic RAM bit density for state-of-the-art RAMS.

in the previous data is that the data is valid for state-of-the-art,
high-volume products or technologies and not for R and D
projects.

Finally, Fig. 4shows the cost-equivalent die size as a function of
time for state-of-the-art, high-volume-production products. The
increase in die size for a given cost is made possible by the use in
production of larger-diameter wafers, as shown, and the continu-
ing improvement and control of yield-limiting factors, such as
mask quality, fabrication-equipment sophistication, and clean-
room facilities. I should stress that only mature products follow
the curve of Fig. 4,i.e., products in high-volume production with
similar production volume history. For a product of a given chip
size, the cost (not the price) is found to follow a 70 percent
learning curve; i. e., the cost becomes 70 percent of the original
every time the cumulative volume produced doubles.

Microcomputer Trends

The data given only shows the inherent capabilities of technology.
The products suggested in the curves are only indicative of the
increased complexity possible in relationship to and in conformity

2d generation
pP (Intel

*080) w generation

1st generation
1.001

pP (Intel 4004)

10 Gate

complexity

I2.2 mm2
Chip size

li I I I I I I I l l l l l l l l l l l l l t
67 '68 '69 '70 '71 '72 '73 '74 '75 '76 '77 '78 $79 '80 '81 '82 '83 '84 '85 '86 Year

Fig. 3. Random logic gate density for state-of-the-art pPs.

with today's products. However, the real impact of such technolo-
gy potential is in creating the breeding ground for a new
revolutionary development of which the microcomputer is the
forerunner. To better clarify this concept, let's examine the
influence semiconductor technology has had on the evolution of
the basic constituents of a computer:

Memory. This function was the first to be integrated, and
over a period of 6 years, semiconductor memories have
practically replaced the magnetic core memory. Much of
the technological development motivation in the seventies
was due to the existence and-the demands of the memory
market.

CPU. As soon as memory technology reached a sufficient
level of maturity, the function of a simple CPU could be
integrated-the microprocessor was born. Microprocessors
still use memory technology for their implementation and
have borrowed architectural concepts from the well-
developed area of computer architecture. I need to stress
here that since computer architecture has evolved under
the economic and technological reality of small-scale and
medium-scale integration, it is predictable that LSI and

50

614 Part 3 1 Computer Classes Section 2 I Microcomputers

A Chiparea

(mm2)
100 - 0

' :ost/gate

circuits

-

Randomlogic /'
0' 0'

\'/-F(
Memory circuits

30 -

-10 / 5 5 0

5-cm-diameter wafers I 7.5.cm wafers I 10-cm wafers 1 12.5-cm wafers

1 l l 1 0 l l l l l l 1 1 1 1 1 1 1

'67 '68 '69 '70 '71 '72 '73 '74 '75 '76 '77 '78 '79 '80 '81 '82 '83 '84 '85 Year

001

'87 '68 '69 '70 '71 '72 '73 '74 '75 '76 '77 '78 '79 '80 '81 '82 '83 '84 '85 '86 Year

Fig. 4 (b).Dynamic memory cost per bit.

I I I I I 1 1 1 , I I I I , I I I 1 1 ,
67 '68 69 ' m '71 '72 '73 '74 '75 '76 '77 '73 '79 '80 '81 32 83 '84 85 '86 Ycai

Fig. 4 (c).Microprocessor cost per gate.

VLSI will have a profound influence on computer and
system architecture in general.
Inputfoutput. This function, because of the multiplicity of
requirements, was the last to be integrated, and this
process is still in its infancy. To solve the I/O problem, our
industry has introduced a novel idea, i.e., inputloutput
devices whose hardware configuration and timing require-
ments are software-programmable. This way, the same
circuit can be adapted to a variety of different uses within
the same class: parallel interface, serial interface, or specific
peripheral controllers.
Software. So far, software technology has only been
marginally affected by the existence of microcomputers.
Areas of influence are, for example, in diagnostic tools, such
as software-development systems and specialized logic
analyzers and hardware emulation tools. Under the pres-
sure of an expanding market, however, microcomputer
software, is rapidly maturing to the level of sophistication
found in minicomputer and megacomputer software. High-
level languages specifically designed for microcomputers
are now being developed, and the trend will continue by
incorporating features into the microcomputer architecture
that will make high-level programming very efficient.

Chapter 37

Intel Microprocessors: 8008 to 8086’

Stephen P. Morse / Bruce W. Ravenel /
Stanley Mazor / William B. Pohlman

1. Introduction

“In the beginning Intel created the 4004 and the 8008.”

A. The Prophecy

Intel introduced the microprocessor in November 1971 with the
advertisement, “Announcing a New Era in Integrated Electron-
ics.’’ The fulfillment of this prophecy has already occurred with
the delivery of the 8008 in 1972, the 8080 in 1974, the 8085 in
1976, and the 8086 in 1978. During this time, throughput has
improved lOO-fold, the price of a CPU chip has declined from
$300 to $3, and microcomputers have revolutionized design
concepts in countless applications. They are now entering our
homes and cars.

Each successive product implementation depended on semi-
conductor process innovation, improved architecture, better
circuit design, and more sophisticated software, yet upward
compatibility not envisioned by the first designers was main-
tained. This paper provides an insight into the evolutionary
process that transformed the 8008 into the 8086, and gives
descriptions of the various processors, with emphasis on the 8086.

B. Historical Setting

In the late 1960s it became clear that the practical use of
large-scale integrated circuits (LSI) depended on defining chips
having

High gate-to-pin ratio
Regular cell structure
Large standard-part markets

In 1968, Intel Corporation was founded to exploit the semicon-
ductor memory market, which uniquely fulfilled these criteria.
Early semiconductor RAMS, ROMs, and shift registers were
welcomed wherever small memories were needed, especially in
calculators and CRT terminals. In 1969, Intel engineers began to
study ways of integrating and partitioning the control logic
functions of these systems into LSI chips.

At this time other companies (notably Texas Instruments) were

‘Intel Corporation, copyright 1978

exploring ways to reduce the design time to develop custom
integrated circuits usable in a customer‘s application. Computer-
aided design of custom ICs was a hot issue then. Custom ICs are
making a comeback today, this time in high-volume applications
which typify the low end of the microprocessor market.

An alternate approach was to think of a customer’s application as
a computer system requiring a control program, IIO monitoring,
and arithmetic routines, rather than as a collection of special-
purpose logic chips. Focusing on its strength in memory, Intel
partitioned systems into RAM, ROM, and a single controller chip,
the central processor unit (CPU).

Intel embarked on the design of two customer-sponsored
microprocessors, the 4004 for a calculator and the 8008 for a CRT
terminal. The 4004, in particular, replaced what would otherwise
have been six customized chips, usable by only one customer.
Because the first microcomputer applications were known, tangi-
ble, and easy to understand, instruction sets and architectures
were defined in a matter ofweeks. Since they were programmable
computers, their uses could be extended indefinitely.

Both of these first microprocessors were complete CPUs-on-a-
chip and had similar characteristics. But because the 4004 was
designed for serial BCD arithmetic while the 8008 was made for
8-bit character handling, their instruction sets were quite differ-
ent.

The succeeding years saw the evolutionary process that eventu-
ally led to the 8086. Table 1 summarizes the progression of
features that took place during these years.

II. 8008 Objectives and Constraints

Late in 1969 Intel Corporation was contracted by Computer
Terminal Corporation (today called Datapoint) to do a pushdown
stack chip for a processor to be used in a CRT terminal. Datapoint
had intended to build a bit-serial processor in TTL logic using
shift-register memory. Intel counterproposed to implement the
entire processor on one chip, which was to become the 8008. This
processor, along with the 4004, was to be fabricated using the
then-current memory fabrication technology, p-MOS. Due to the
long lead time required by Intel, Computer Terminal proceeded
to market the serial processor and thus compatibility constraints
were imposed on the 8008.

Most of the instruction-set and register organization was
specified by Computer Terminal. Intel modified the instruction
set so the processor would fit on one chip and added instructions
to make it more general-purpose. For although Intel was develop-
ing the 8008 for one particular customer, it wanted to have the
option of selling it to others. Intel was using only 16- and 18-pin
packages in those days, and rather than require a new package for
what was believed to be a low-volume chip, they chose to use 18
pins for the 8008.

615

616 Part 3 1 Computer Classes Section 2 I Microcomputers

Table 1 Feature Comparison

8008 8080 8085

Number of 66 111 113
instructions

Number of 4 5 5
flags

Maxi mum 16K bytes 64K bytes 64K bytes
memory size

110 ports 8 input 256 input 256 input
24 output 256 output 256 output

Number of 18 40 40
pins

Address bus 8 t 16 16
width

Data bus 87 8 8
width

Data types 8-bit unsign 8-bit unsign 8-bit unsign
16-bit unsign 16-bit unsign
(Iimi ted) (limited)

Packed BCD Packed BCD
(limited) (Iim ited)

Addressing Reg isterj Memory direct Memory direct
modes Immediate (limited) (limited)

Memory indirect Memory indirect
(I i mi ted) (I i mited)

Register$ Register;:
Immediate Immediate

Introduction 1972 1974 1976
date

t Address and date bus multiplexed.

$ Memory can be addressed as a special case by using register M.

111. 8008 Instruction-Set Processor

The 8008 processor architecture is quite simple compared to
modern-day microprocessors. The data-handling facilities provide
for byte data only. The memory space is limited to 16Kbytes, and
the stack is on the chip and limited to a depth of 8. The instruction
set is small but symmetrical, with only a few operand-addressing
modes available. An interrupt mechanism is provided, but there is
no way to disable interrupts.

A. Memory and VO Structure

The 8008 addressable memory space consists of 16K bytes. That
seemed like a lot back in 1970, when memories were expensive
and LSI devices were slow. It was inconceivable in those days that
anybody would want to put more than 16K of this precious
resource on anything as slow as a microprocessor.

The memory size limitation was imposed by the lack of available

8086

133

9

1M bytes

64K input

64K output

40

16t

16t

8-bit unsign

8-bit signed

16-bit unsign

16-bit unsign

Packed BCD

Unpacked BCD

Memory direct

Memory indirect

Register

Immediate

Indexing

1978

pins. Addresses are sent out in two consecutive clock cycles
over an 8-bit address bus. Two control signals, which would have
been on dedicated pins if these had been available, are sent
out together with every address, thereby limiting addresses to 14
bits.

The 8008 provides eight 8-bit input ports and twenty-four 8-bit
output ports. Each of these ports is directly addressable by the
instruction set. It was felt that output ports were more important
than input ports because input ports can always be multiplexed by
external hardware under control of additional output ports.

One of the interesting things about that era was that, for the
first time, the users were given access to the memory bus and
could define their own memory structure; they were not confined
to what the vendors offered, as they had been in the minicomput-
er era. -4san example, the user had the option of putting IiO ports
inside the memory address space instead of in a separate 110
space.

Chapter 37 I Intel Microprocessors: 8008 to 8086 617

B. Register Structure

The 8008 processor contains two register files and four 1-bit flags.
The register files are referred to as the scratchpad and the address
stack.

1. Scratchpad. The scratchpad file contains an 8-bit accumulator
called A and six additional 8-bit registers called B,C,D,E,H, and
L. All arithmetic operations use the accumulator as one of the
operands and store the result back in the accumulator. All seven
registers can be used interchangeably for on-chip temporary
storage.

There is one pseudo-register, M, which can be used inter-
changeably with the scratchpad registers. M is, in effect, that
particular byte in memory whose address is currently contained in
H and L (L contains the eight low-order bits of the address and H
contains the six high-order bits). Thus M is a byte in memory and
not a register; although instructions address M as if it were a
register, accesses to M actually involve memory references. The
M register is the only mechanism by which data in memory can be
accessed.

2. Address Stack. The address stack contains a %bit stack pointer
and eight 14-bit address registers providing storage for eight
addresses. These registers are not directly accessible by the
programmer; rather they are manipulated with control-transfer
instructions.

Any one of the eight address registers in the address stack can
serve as the program counter; the current program counter is
specified by the stack pointer. The other seven address registers
permit storage for nesting of subroutines up to seven levels deep.
The execution of a call instruction causes the next address register
in turn to become the current program counter, and the return
instruction causes the address register that last served as the
program counter to again become the program counter. The stack
will wrap around if subroutines are nested more than seven levels
deep.

3. Flags. The four flags in the 8008 are CARRY, ZERO, SIGN,
and PARITY. They are used to reflect the status of the latest
arithmetic or logical operation. Any of the flags can be used to
alter program flow through the use of the conditional jump, call,
or return instructions. There is no direct mechanism for saving or
restoring flags, which places a severe burden on interrupt
processing (see Appendix 1for details).

The CARRY flag indicates if a carry-out or borrow-in was
generated, thereby providing the ability to perform multiple-
precision binary arithmetic.

The ZERO flag indicates whether or not the result is zero. This
provides the ability to compare the two values for equality.

The SIGN flag reflects the setting of the leftmost bit of the

result. The presence of this flag creates the illusion that the 8008 is
able to handle signed numbers. However, there is no facility for
detecting signed overflow on additions and subtractions. Further-
more, comparing signed numbers by subtracting them and then
testing the SIGN flag will not give the correct result if the
subtraction resulted in signed overflow. This oversight was not
corrected until the 8086.

The PARITY flag indicates if the result is even or odd parity.
This permits testing for transmission errors, an obviously useful
function for a CRT terminal.

C. Instruction Set

The 8008 instructions are designed for moving or modifying 8-bit
operands. Operands are either contained in the instruction itself
(immediate operand), contained in a scratchpad register (register
operand), or contained in the M register (memory operand). Since
the M register can be used interchangeably with the scratchpad
registers, there are only two distinct operand-addressing modes-
immediate and register. Typical instruction formats for these
modes are shown in Fig. 1. A summary of the 8008 instructions
appears in Fig. 2.

The instruction set consists of scratchpad-register instructions,
accumulator-specific instructions, transfer-of-control instructions,
input/output instructions, and processor-control instructions.

The scratchpad-register instructions modify the contents of the
M register or any scratchpad register. This can consist of moving
data between any two registers, moving immediate data into a
register, or incrementing or decrementing the contents of a
register. The incrementing and decrementing instructions were
not in Computer Terminal's specified instruction set; they were
added by Intel to provide for loop control, thereby making the
processor more general-purpose.

Most of the accumulator specific instructions perform opera-
tions between the accumulator and a specified operand. The
operand can be any one of the scratchpad registers, including M ,
or it can be immediate data. The operations are add, add-with-
carry, subtract, subtract-with-borrow, logical AND, logical OR,
logical exclusive-OR, and compare. Furthermore, there are four
unit-rotate instructions that operate on the accumulator. These
instructions perform either an 8- or %bit rotate (the CARRY flag
acts as a ninth bit) in either the left or right direction.

Transfer-of-control instructions consist of jumps, calls, and
returns. Any of the transfers can be unconditional, or can be
conditional based on the setting of any one of the four flags.
Making calls and returns conditional was done to preserve the
symmetry with jumps and for no other reason. A short one-byte
form of call is also provided, which will be discussed later under
interrupts.

Each of the jump and call instructions (with the exception of the
one-byte call) specifies an absolute code address in the second and

618 Part 3 j Computer Classes

+-+-+-*-+-+-+-+-+

; opcode ;

+-*-+-*-+-*-+-+-*

+-+-+-+-*-+-+-+-+

j OpcOde I Peg operand in register

+-+-*-+-+-+-+-+-+

--+-+-+-+-*-+-+
Iopo/ reg :opood: Operand in register

I-+-+-+-+-+-+-+-+

I-+-*-*-*-+-+-+-*

I O P C ; rp: 0p00de1 operand in ~ e g i s t e ~
pair (d o a o o n l y)
I-+-+-+-*-*.-+-+-+

+-+-*-*-+-+-+-*-*
:OPE; rp: opcade: indiPect addreSSing (8080 o n l y)
+-*-+-+..+-+-+-+-+

-+--+-t-+-t-t-+ *-+-*-*-+-*-*-+-+

; opcode : I data I immediate o p e ~ a n d

--*-+-+-+-+-*-+ *-+-+-*-+-+-+-+-+

+-t-*-*-*-*-*-+-* +-+-+-*-+-+-+-+-* +-+-+-+-+-+-+-*-+ direct

/ opoode / : addr-lo ; I addr-hi I addressing

+-+-*-+-*-I-+-+-+ t-+-+-*-+-t-+-*-t *-*-+-+-*-+-+-*-+ (8 0 8 0

o n l y)

two operands

*-+-+-+-+-+-+-+-+

Iopc: reg I reg ! both operands in register

+-+-+-+-+-+-+-+-+

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ o n e operand in register,
Iopc; res : opc / ! data ; OtheF is immediate Operand
+-+-+-*-*-+-+-+-+ +-*-+-+-+-+-*-+-+

o n e OpePand
+-+-*-*-I-+-+-+-+ +-+-+-+-+-+-+-+-+ *-+-+-*-+-t-+-+-+ in register
:OPC: P P I opoodel I SddP-lo I : addr-hi ; pair, Other-
+-+-+-+-+._*-*-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ia immediate

operand

(8060 on l y 1

input/output
___---__----
I-+-+-+-*-+-+-+-+

Iopc: port ; o I (8 0 0 8 only)
+-t-+-*-+-+-*-+-+

+-*-+-*-+-*-+-*- *-+-+-+-*-+-*-+-+ +-*-t-+-t-+-*-t-*

; opcode : addr-lo : IIIII addr-hi I (8008 Only)

t-+-t-+-*-+-t-+- +_+-+_*_+-+-+-+-+ +-t-+-+-+-*-*-+-*

+-+-+-*-+-+-+-+- t-+-+-+-+-+-+-+-+ I-*-*-+-+-+-+-+-+

I opcode I add?-lo I 1 addr-hi I (8 0 8 0 Only)

+-*-+-+-+-*-+-* - *-+-+-+-+-+-+-*-+ +-+-+-+-+-+-+-+-+

8 0 0 8- -__-
0 O O : A
001:B

0 1 o : c

p e g i 	011:D

10O:E

1 0 l : h
11o:L

I l i : M

Fig. 1. Typical 8008 and 8080 instruction formats.

third byte of the instruction. The second byte contains the six
high-order bits of the address, and the third byte contains the
eight low-order bits. This inverted storage, which was to haunt all
processors evolved from the 8008, was a result of compatibility
with the Datapoint bit-serial processor, which processes addresses

Section 2 I Microcomputers

from low bit to high bit. This inverted storage did have a virtue in
those early days when 256 by 8 memory chips were popular: it
allowed all memory chips to select a byte and latch it for output
while waiting for the six high-order bits which selected the chip.
This speeded up memory access.

There are eight input instructions and 24 output instructions,
which altogether use up 32 opcodes. Each of these instructions
transfers a byte of data between the accumulator and a designated
I/O port.

The processor-control instructions are halt and no-op. Halt puts
the processor into a waiting state. The processor will remain in
that state until an interrupt occurs. No-op is actually one of the
move instructions; specifically, it moves the contents of the
accumulator into the accumulator, thereby having no net effect
(move instructions do not alter flag settings).

D. Interrupts

Interrupt processing was not a requirement of the 8008. Hence
only the most primitive mechanism conceivable-not incre-
menting the program counter-was provided. Such a mechanism
permits an interrupting device to jam an instruction into the
processor's instruction stream. This is accomplished by having the
interrupting device, instead of memory, respond to the instruc-
tion fetch; since the program counter isn't incremented, the
instruction in memory that doesn't get fetched won't be skipped.
The instruction typically supplied by the interrupting device is a
call, so that an interrupt service routine can be entered and then
the main program can be resumed after interrupt processing is
complete (a jump instruction would result in the loss of the main
program return address). To simplify the interrupting device's
task of generating an instruction, the 8008 instruction set provides
eight one-byte subroutine calls, each to a fixed location in
memory.

There are no instructions provided for disabling the interrupt
mechanism, and so this function must be realized with external
hardware. More important, there are no instructions for conve-
niently saving the registers and flags when an interrupt occurs.

IV. 	 Objectives and Constraints of the 8080

By 1973the technology had advanced from p-MOS to n-MOS for
memory fabrication. As an engineering exercise it was decided to
use the 8008 layout masks with the n-MOS process to obtain a
faster 8008. After a short study, it was determined that a new
layout was required, so it was decided to enhance the processor at
the same time, and to utilize the new 40-pin package made
practical by high-volume calculator chips. The result was the 8080
processor.

The 8080 was the first processor designed specifically for the
microprocessor market. It was constrained to include all the 8008

-

z

P
t
w
0
Y
0
2

P
P -
05

Y0

--
V
r

Y)

P

V
E

0'

b

,;

620 Part 3 I Computer Classes

instructions but not necessarily with the same encodings. This
meant that user’s software would be portable but the actual ROM
chips containing the programs would have to be replaced. The
main objective of the 8080 was to obtain a 1 O : l improvement in
throughput, eliminate many of the 8008 shortcomings that had by
then become apparent, and provide new processing capabilities
not found in the 8008. These included a commitment to 16-bit
data types mainly for address computations, BCD arithmetic,
enhanced operand-addressing modes, and improved interrupt
capabilities. Now that memory costs had come down and process-
ing speed was approaching TTL, larger memory spaces were
appearing more practical. Hence another goal was to be able to
address directly more than 16K bytes. Symmetry was not a goal,
because the benefits to be gained from making the extensions
symmetric would not justify the resulting increase in chip size and
opcode space.

V. The 8080 Instruction-Set Processor

The 8080 architecture is an unsymmetrical extension of the 8008.
The byte-handling facilities have been augmented with a limited
number of 16-bit facilities. The memory space grew to 64K bytes
and the stack was made virtually unlimited.

Various alternatives for the 8080 were considered. The simplest
involved merely adding a memory stack and stack instructions to
the 8008. An intermediate position was to augment the above with
16-bit arithmetic facilities that can be used for explicit address
manipulations as well as 16-bit data manipulations. The most
difficult alternative was a symmetric extension which replaced the
one-byte M-register instructions with three-byte generalized
memory-access instructions. The last two bytes of these instruc-
tions contained two address-mode bits specifying indirect ad-
dressing and indexing (using HL as an index register) and a 14-bit
displacement. Although this would have been a more versatile
addressing mechanism, it would have resulted in significant code
expansion on existing 8008 programs. Furthermore, the logic
necessary to implement this solution would have precluded the
ability to implement 16-bit arithmetic; such arithmetic would not
be needed for address manipulations under this enhanced ad-
dressing facility but would still be desirable for data manipula-
tions. For these reasons, the intermediate position was finally
taken.

A. Memory and VO Structure

The 8080 can address up to 64K bytes of memory, a fourfold
increase over the 8008 (the 14-bit address stack of the 8008 was
eliminated). The address bus of the 8080 is 16 bits wide, in
contrast to eight bits for the 8008, so an entire address can be sent
down the bus in one memory cycle. Although the data handling

Section 2 1 Microcornputen

facilities of the 8080 are primarily byte-oriented (the 8008 was
exclusively byte-oriented), certain operations permit two consecu-
tive bytes of memory to be treated as a single data item. The two
bytes are called a word. The data bus of the 8080 is only eight
bits wide, and hence word accesses require an extra memory
cycle.

The most significant eight bits of a word are located at the
higher memory address. This results in the same kind of inverted
storage already noted in transfer instructions of the 8008.

The 8080 extends the 32-port capacity of the 8008 to 256 input
ports and 256 output ports. In this instance, the 8080 is actually
more symmetrical than the 8008. Like the 8008, all of the ports
are directly addressable by the instruction set.

B. Register Structure

The 8080 processor contains a file of seven 8-bit general registers,
a 16-bit program counter (PC) and stack pointer (SP), and five
1-bit flags. A comparison between the 8008 and 8080 register sets
is shown in Fig. 3.

noso---_
s c r a t c h p a d genera1 r e g i s t e r s

7 0 7 0 7 0
+-t-+-+-+-+-+-+-+ +-*-+-+-+-+-+-*-+

A A
*-+-+-+-+-+-+-+-+ +-+-t-+-C-+-+-+-+-t-+-+-+-+-+-4-+

E 8 C
+-+-+-+-+-t-+-t-+ , -+-*-+-+-+-+-*-+-+-+-+-+-+-+-*-+

C D E

+-+-t-+-+-t-+-+-+ +-+-+-+-*-+-+-+-+-+-+-*-+-+-+-*-+

D H L

+-+-t-t-+-+-+-+-+ I - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

E

+-+-+-+-+-+-+-+-+

H
+-+-t-+-c-+-+-t-+

L

+-+-t-+-t-+-+-t-+

a d d r e s s stack s t a c k p o i n t e r a n d program counter
1 3 12 0 1 5 0

+-+-+-+ t-+-,-+-l-+-+-t-~-+-+-+-+-+-+-+-*

: SP I S P
+-+-+-t-+-+-t-*-+-+-*-+-+-+-+-+-+
~ - ~ - ~ - + - + - + - ~ - ~ - + - ~ - ~ - + - ~ - + - +

+-+-+-+-+-t-+-+-t-+-+-+-+-+-+

15 U
+-+-*-+-t-+-+-+-t-+-+-+-+-+-+ +-+-t-+-t-+-t-t-+-+-+-+-+-*-+-+-+

P C
+-+-+-+-,-+-+-+-+-+-+-+-~-+-+ c-t-+-+-t-+-t-+-+-t-+-+-+-*-+-+-+

+-*-t-+-+-+-l-+-+-l-+-~-~-*-*

+-*-+-+-+-t-+-t-*-+-+-+-•

+-+-+-+-+-+-*-+-+-+-+-+-+-+-+

flags f l a g s
I 0

+-+ +-* + - * - + - I - + - + - + - + - +

I s : I7.I I C i P I I A : I Z I I S !
I-+ 1-* I-+-*-+-*-+-+-+-+

-+ +-
I P I I C I
c-+ +-+

Fig. 3. Comparison of 8008 and 8080 registers.

Chapter 37 1 Intel Microprocessors: 8008 to 8086 621

1. General Registers. The 8080 registers are the same seven
8-bit registers that were in the 8008 scratchpad-namely A,B,C,
D,E,H, and L. In order to incorporate 16-bit data facilities in the
8080, certain instructions operate on the register pairs BC, DE,
and HL.

The seven registers can be used interchangeably for on-chip
temporary storage. The three register pairs are used for address
manipulations, but their roles are not interchangeable; there is an
8080 instruction that allows operations on DE and not BC, and
there are address modes that access memory indirectly through
BC or DE but not HL.

As in the 8008, the A register has a unique role in arithmetic
and logical operations: it serves as one of the operands and is the
receptacle for the result. The HL register again has its special role
of pointing to the pseudo-register M.

2. Stack Pointer and Program Counter. The 8080 has a single
program counter instead of the floating program counter of the
8008. The program counter is 16 bits (two bits more than the
8008’s program counter), thereby permitting an address space of
64K.

The stack is contained in memory instead of on the chip, which
removes the restriction of only seven levels of nested subroutines.
The entries on the stack are 16 bits wide. The 16-bit stack pointer
is used to locate the stack in memory. The execution of a call
instruction causes the contents of the program counter to be
pushed onto the stack, and the return instruction causes the last
stack entry to be popped into the program counter. The stack
pointer was chosen to run “downhill” (with the stack advancing
toward lower memory) to simplify indexing into the stack from the
user’s program (positive indexing) and to simplify displaying the
contents of the stack from a front panel.

Unlike the 8008, the stack pointer is directly accessible to the
programmer. Furthermore, the stack itself is directly accessible,
and instructions are provided that permit the programmer to push
and pop his own 16-bit items onto the stack.

3. Flags. A fifth flag, AUXILIARY CARRY, augments the 8008
flag set to form the flag set of the 8080. The AUXILIARY CARRY
flag indicates if a carry was generated out of the four low-order
bits. This flag, in conjunction with a decimal-adjust instruction,
provides the ability to perform packed BCD addition (see
Appendix 2 for details). This facility can be traced back to the 4004
processor. The AUXILIARY CARRY flag has no purpose other
than for BCD arithmetic, and hence the conditional transfer
instructions were not expanded to include tests on the AUXILIA-
RY CARRY flag.

It was proposed too late in the design that the PARITY flag
should double as an OVERFLOW flag. Although this feature
didn’t make it into the 8080, it did show up two years later in
Zilog’s 2-80.

C. Insti-uction Set

The 8080 includes the entire 8008 instruction set as a subset. The
added instructions provide some new operand-addressing modes
and some facilities for manipulating 16-bit data. These extensions
have introduced a good deal of asymmetry. Typical instruction
formats are shown in Fig. 1. A summary of the 8080 instructions
appears in Fig. 4.

The only means that the 8008 had for accessing operands in
memory was via the M register. The 8080 has certain instructions
that access memory by specifying the memory address (direct
addressing) and also certain instructions that access memory by
specifying a pair of general registers in which the memory address
is contained (indirect addressing). In addition, the 8080 includes
the register and immediate operand-addressing modes of the
8008. A 16-bit immediate mode is also included.

The added instructions can be classified as load/store instruc-
tions, register-pair instructions, HL-specific instructions,
accumulator-adjust instructions, carry instructions, expanded I/O
instructions, and interrupt instructions.

The loadistore instructions load and store the accumulator
register and the HL register pair using the direct and indirect
addressing mode. Both modes can be used for the accumulator,
but due to chip size constraints, only the direct mode was
implemented for HL.

The register-pair instructions provide for the manipulation of
16-bit data items. Specifically, register pairs can be loaded with
16-bit immediate data, incremented, decremented, added to HL,
pushed on the stack, or popped off the stack. Furthermore, the
flag settings themselves can be pushed and popped, thereby
simplifying saving the environment when interrupts occur (this
was not possible in the 8008).

The HL-specific instructions include facilities for transferring
HL to the program counter or to the stack pointer, and exchang-
ing HL with DE or with the top entry on the stack. The last of
these instructions was included to provide a mechanism for (1)
removing a subroutine return address from the stack so that
passed parameters can be discarded or (2)burying a result-to-be-
returned under the return address. This became the longest
instruction in the 8080 (5 memory cycles); its implementation
precluded the inclusion of several other instructions that were
already proposed for the processor.

Two accumulator-adjust instructions are provided. One comple-
ments each bit in the accumulator and the other modifies the
accumulator so that it contains the correct decimal result after a
packed BCD addition is performed.

The carry instructions provide for setting or complementing the
CARRY flag. No instruction is provided for clearing the CARRY
flag. Because of the way the CARRY flag semantics are defined,
the CARRY flag can be cleared simply by ORing or ANDing the
accumulator with itself.

630 Part 3 1 Computer Classes

performs a table-lookup byte translation. We will see the useful-
ness of this operation below, when it is combined with string
operations.

The address-object transfers-load effective address and load
pointer-are an 8086 facility not present in the 8080. A pointer is a
pair of 16-bit values specifying a segment start address and an
offset address; it is used to gain access to the full megabyte of
memory. The load pointer operations provide a means of loading a
segment start address into a segment register and an offset address
into a general or pointer register in a single operation. The load
effective address operation provides access to the offset address of
an operand, as opposed to the value of the operand itself.

The flag transfers provide access to the collection of flags for
such operations as push, pop, load, and store. A similar facility for
pushing and popping flags was provided in the 8080; the load and
store flags facility is new in the 8086.

It should be noted that the load and store operations involve
only those flags that existed in the 8080. This is part of the
concessions made for 8080 compatibility (without these operations
it would take nine 8086 bytes to perform exactly an 8080 PUSH
PSW or POP PSW).

3. Arithmetics. Whereas the 8080 provided for only 8-bit
addition and subtraction of unsigned numbers, the 8086 provides
all four basic mathematical functions on 8- and 16-bit signed and
unsigned numbers. Standard 2’s complement representation of
signed values is used. Sufficient conditional transfers are provided
to allow both signed and unsigned comparisons. The OF flag
allows detection of the signed overflow condition.

Consideration was given to providing separate operations for
signed addition and subtraction which would automatically trap on
signed overflow (signed overflow is an exception condition,
whereas unsigned overflow is not). However, lack of room in the
opcode space prohibited this. As a compromise, a one-byte
trap-on-overflow instruction was included to make testing for
signed overflow less painful.

The 8080 provided a correction operation to allow addition to be
performed directly on packed binary-coded representations of
decimal digits. In the 8086, correction operations are provided to
allow arithmetic to be performed directly on unpacked represen-
tations of decimal digits (e.g., ASCII) or on packed decimal
representations.

Multiply and divide. Both signed and unsigned multiply and
divide operations are provided. Multiply produces a double-
length product (16 bits for 8-bit multiply, 32 bits for 16-bit
multiply), while divide returns a single-length quotient and a
single-length remainder from a double-length dividend and
single-length divisor. Sign extension operations allow one to
construct the double-length dividend needed for signed division.

Section 2 I Microcomputers

A quotient overflow (e.g., that caused by dividing by zero) will
automatically interrupt the processor.

Decimal instructions. Packed BCD operations are provided in
the form of accumulator-adjustment instructions. Two such
instructions are provided-one for an adjustment following an
addition and one following a subtraction. The addition adjustment
is identical to the 8080 DAA instruction; the subtraction adjust-
ment is defined similarly. Packed multiply and divide adjustments
are not provided, because the cross terms generated make it
impossible to recover the decimal result without additional
processor facilities (see Appendix 2 for details).

Unpacked BCD operations are also provided in the form of
accumulator adjust instructions (ASCII is a special case of
unpacked BCD). Four such instructions are provided, one each
for adjustments involving addition, subtraction, multiplication,
and division. The addition and subtraction adjustments are similar
to the corresponding packed BCD adjustments except that the
AH register is updated if an adjustment on AL is required. Unlike
packed BCD, unpacked BCD byte multiplication does not
generate cross terms, so multiplication adjustment consists of
converting the binary value in the AL register into BCD digits in
AH and AL; the divide adjustment does the reverse. Note that
adjustments for addition, subtraction, and multiplication are
performed following the arithmetic operation; division adjustment
is performed prior to a division operation. See Appendix 2 for
more details on unpacked BCD adjustments.

4. Logicals. The standard logical operations AND, OR, XOR,
and NOT are carry-overs from the 8080. Additionally, the 8086
provides a logical TEST for specific bits. This consists of a logical
AND instruction which sets the flags b.ut does not store the result,
thereby not destroying either operand.

The four unit-rotate instructions in the 8080 are augmented
with four unit-shift instructions in the 8086. Furthermore, the
8086 provides multi-bit shifts and rotates including an arithmetic
right shift.

5. String Manipulation. The 8086 provides a group of 1-byte
instructions which perform various primitive operations for the
manipulation of byte or word strings (sequences of bytes or
words). These primitive operations can be performed repeatedly
in hardware by preceding the instruction with a special prefix.
The single-operation forms may be combined to form complex
string operations in tight software loops with repetition provided
by special iteration operations. The 8080 did not provide any
string-manipulation facilities.

Hardware operation control. A11 primitive string operations use
the SI register to address the source operands, which are assumed

Chapter 37 I Intel Microprocessors: 8008 to 8086 623

required a separate oscillator chip and system controller chip to
make it usable). The new processor, called the 8085, was
constrained to be compatible with the 8080 at the machine-code
level. This meant that the only extension to the instruction set
could be in the twelve unused opcodes of the 8080.

The 8085 turned out to be architecturally not much more than a
repackaging of the 8080. The major differences were in such areas
as an on-chip oscillator, power-on reset, vectored interrupts,
decoded control lines, a serial I/O port, and a single power supply.
Two new instructions were added to handle the serial port and
interrupt mask. These instructions (RIM and SIM) appear in Fig.
4. Several other instructions that had been contemplated were not
made available because of the software ramifications and the
compatibility constraints they would place on the forthcoming
8086.

VII. Objectives and Constraints of 8086

The new Intel 8086 microprocessor was designed to provide an
order of magnitude increase in processing throughput over the
older 8080. The processor was to be assembly-language-level-
compatible with the 8080 so that existing 8080 software could be
reassembled and correctly executed on the 8086. To allow for this,
the 8080 register set and instruction set appear as logical subsets
of the 8086 registers and instructions. By utilizing a general-
register structure architecture, Intel could capitalize on its
experience with the 8080 to obtain a processor with a higher
degree of sophistication. Strict 8080 compatibility, however, was
not attempted, especially in areas where it would compromise the
final design.

The goals of the 8086 architectural design were to provide
symmetric extensions of existing 8080 features, and to add
processing capabilities not found in the 8080. These features
included 16-bit arithmetic, signed 8- and 16-bit arithmetic
(including multiply and divide), efficient interruptible byte-string
operations, improved bit-manipulation facilities, and mechanisms
to provide for re-entrant code, position-independent code, and
dynamically relocatable programs.

By now memory had become very inexpensive and micro-
processors were being used in applications that required large
amounts of code and/or data. Thus another design goal was to be
able to address directly more than 64k bytes and support
multiprocessor configurations.

Vlll. The 8086 Instruction-Set Processor

The 8086 processor architecture is described in terms of its
memory structure, register structure, instruction set, and external
interface. The 8086 memory ‘structure includes up to one

megabyte of memory space and up to 64K input/output ports. The
register structure includes three files of registers. Four 16-bit
general registers can participate interchangeably in arithmetic and
logic operations, two 16-bit pointer and two 16-bit index registers
are used for address calculations, and four 16-bit segment
registers allow extended addressing capabilities. Nine flags record
the processor state and control its operation.

The instruction set supports a wide range of addressing modes
and provides operations for data transfer, signed and unsigned 8-
and 16-bit arithmetic, logicals, string manipulations, control
transfer, and processor control. The external interface includes a
reset sequence, interrupts, and a multiprocessor-synchronization
and resource-sharing facility.

A. Memory and VO Structure

The 8086 memory structure consists of two components-the
memory space and the inputloutput space. All instruction code
and operands reside in the memory space. Peripheral and IIO
devices ordinarily reside in the I10 space, except in the case of
memory-mapped devices.

1. Memory Space. The 8086 memory is a sequence of up to 1
million 8-bit bytes, a considerable increase over the 64K bytes in
the 8080. Any two consecutive bytes may be paired together to
form a 16-bit word. Such words may be located at odd or even
byte addresses. The data bus of the 8086 is 16bits wide, so, unlike
the 8080, a word can be accessed in one memory cycle (however,
words located at odd byte addresses still require two memory
cycles). As in the 8080, the most significant 8 bits of a word are
located in the byte with the higher memory address.

Since the 8086 processor performs 16-bit arithmetic, the
address objects it manipulates are 16 bits in length. Since a 16-bit
quantity can address only 64K bytes, additional mechanisms are
required to build addresses in a megabyte memory space. The
8086 memory may be conceived of as an arbitrary number of
segments, each at most 64K bytes in size. Each segment begins at
an address which is evenly divisible by 16 (i.e., the low-order 4
bits of a segment’s address are zero). At any given monient the
contents of four of these segments are immediately addressable.
These four segments, called the current code segment, the
current data segment, the current stack segment, and the current
extra segment, need not be unique and may overlap. The
high-order 16 bits of the address of each current segment are held
in a dedicated 16-bit segment register. In the degenerate case
where all four segments start at the same address, namely address
0, we have an 8080 memory structure.

Bytes or words within a segment are addressed by using 16-bit
offset addresses within the 64K byte segment. A 20-bit physical
address is constructed by adding the 16-bit offset address to the
contents of a 16-bit segment register with 4 low-order zero bits
appended, as illustrated in Fig. 5.

624 Part 3 1 Computer Classes

lffoet[- Effective address
ddress

;egrnent
iddress

Memory address latch 'hyricalI I address

Fig. 5. To address 1 million bytes requires a 20-bit memory
address. This 20-bit address is constructed by offsetting the
effective address 4 bits to the right of the segment address, filling
in the 4 low-order bits of the segment address with zeros, and
adding the two.

Various alternatives for extending the 8080 address space were
considered. One such alternative consisted of appending 8 rather
than 4 low-order zero hits to the contents of a segment register,
thereby providing a 24-bit physical address capable of addressing
up to 16 megabytes of memory. This was rejected for the following
reasons:

Segments would be forced to start on 256-byte boundaries,
resulting in excessive memory fragmentation.

The 4 additional pins that would be required on the chip
were not available.

It was felt that a I-megabyte address space was sufficient.

2. Input/Output Space. In contrast to the 256 I/O ports in the
8080, the 8086 provides 64K addressable input or output ports.
Unlike the memory, the 1/0 space is addressed as if it were a
single segment, without the use of segment registers. Input/
output physical addresses are in fact 20 bits in length, but the
high-order 4 bits are always zero. The first 256 ports are directly
addressable (address in the instruction), whereas all 64K ports are

Section 2 I Microcomputers

indirectly addressable (address in register). Such indirect address-
ing was provided to permit consecutive ports to be accessed in a
program loop. Ports may be 8 or 16 bits in size, and 16-bit ports
may be located at odd or even addresses.

B. Register Structure

The 8086 processor contains three files of four 16-bit registers and
a file of nine 1-bit flags. The three files of registers are the
general-register file, the pointer- and index-register file, and the
segment-register file. There is a 16-bit instruction pointer (called
the program counter in the earlier processors) which is not
directly accessible to the programmer; rather, it is manipulated
with control transfer instructions. The 8086 register set is a
superset of the 8080 registers, as shown in Figs. 6 and 7 .
Corresponding registers in the 8080 and 8086 do not necessarily
have the same names, thereby permitting the 8086 to use a more
meaningful set of names.

g e n e r a l r e g i s t e r s
7 0 7 0

+-+-+-+-+-+-+-+-+-+-+-+-+-*-+-+-*
; / / / / / / / / / / / / / / / I A

H L : !+-+-+-+-+-+-+-+-+-+-+-*-+-+-+-+-+
h L

Bc: +-+-+-+-+-t-+-+-+-+-+-+-+-+-+-+-*I B C

D E : + - + - + - + - + - + - + - + - + - + - C - + - + - + - + - fI u I E

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-*

15 p o i n t e r and i n d e x r e g i s t e r s 0

S P : +-+-+-+-+-+-+-+-+-+-+-+-+-*-+-+-* II

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
.

+-+-+-+-+-+-+-+-+-+-+-+-*-+-+-+
.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
.

+-+-+-+-t-+-+-+-t-+-+-+-+-+-+-+-+

15 s e g m e n t r e g i s t e r s 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
.

+-+-+-t-+-+-+-+-+-t-+-+-+-+-*-+

.

+-+-+-+-+-+-+-+-+-t-+-+-+-+-+-+-+

.

c-c-+-+-+-+-t-+-t-+-+-*-+-+-+-+-+

.

+-+-+-+-t-+-+-+-+-+-*-+-+-+-+-+-+

i n ~ t r u c t i o n p o i n t e r a n d flags
1 5 U
+-+-+-+-+-+-+-+-+-t-+-+-*-+-+-+-+

P c : I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-*

FLAGS: I ! / / / / / / / I S ! Z I I A l I P I I C I
+-+-+-t-+-+-+-+-+-+-+-+-+-+-+-+-+

/ / / / E p r e s e n t i n 8 0 8 6 b u t n o t i n 8080

Fig. 6. The 8080 registers as a subset of the 8086 registers.

~

g e n e r a l r e g i s t e r s
7 0 7 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+
Ax: I Ah A L I ‘ a c c u m u l a t o r ‘

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
B X : B H B L I “ b a s e “~

+ -+-+-+-+-+-+-+-+-+-+-+-+-*-+-+-+
c x : 	I C H C L I “ c o u n t ”

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-*-+

ox:; DH DL I “ d a t a ”

+-+-+-+-+-+-+-+-+-+-t-t-+-+-+-*

p o i n t e r and i n d e x r e g i s t e r s
15 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

s p : : I “ s t a c k p o i n t e r “
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

B P : I I “ b a s e p o i n t e r “
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

s1:; I “ s o u r c e i n d e x ’
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

DI:I i ”d e s t i n a t i o n
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ i n d e x “

segment r e g i s t e r s
15 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

cs : I ” c o d e “
~

+ -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+~+

DS: I 1 d a t a ”

+ - + - + - + - + - + - + - + - + - + - + ~ + ~ + ~ + - + ~ + ~ +

ss: I I > : s t a c k ”

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

E S : I i “ e x t r a “

+-+-+-+-+-+-t-+-+-+-+-+-*-+-+-+-+

i n s t r u c t i o n P o i n t e r and f l a g s

15 0

t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1P:I I * i n s t r u c t i o n

+-+-+-+-+-+-+-+-t-+-+-+-+-+-+-+-+ p o i n t e r “

FLAGS : I IOIDIIITISIZI I A I I P I I C I

+-+-+-t-+-+-+-+-+-+-+-+-*-+-+-+-+

Fig. 7. The 8086 register structure.

1. General-Register File. The AX-BX-CX-DX register set is
called the general-register file, or HL group (for reasons that will
be apparent below). The general registers can participate inter-
changeably in the arithmetic and logical operations of the 8086.
Some of the other 8086 operations (such as the string operations)
dedicate certain of the general registers to specific uses. These
uses are indicated by the mnemonic phrases “accumulator,”
“base,” “count,” and “data” in Fig. 7 .The general registers have a
property that distinguishes them from the other registers-their
upper and lower halves are separately addressable. Thus, the
general registers can be thought of as two files of four 8-bit
registers-the H file and the L file.

2. Pointer- and Index-Register File. The SP-BP-SI-DI register
set is called the pointer- and index-register file, or the P and I
groups. The registers in this file generally contain offset addresses
used for addressing within a segment. Like the general registers,
the pointer and index registers can participate interchangeably in

Chapter 37 I Intel Microprocessors: 8008 to 8086 625

the 16-bit arithmetic and logical operations of the 8086, thereby
providing a means to perform address computations. These
registers play a major role in effective address computations, as
described in Sec. VIII. C. 1. of this chapter.

There is one main difference between the registers in this file,
which results in dividing the file into two subfiles, the P or pointer
group (SP,BP) and the I or index group (S1,DI). The difference is
that the pointers are by default assumed to contain offset
addresses within the current stack segment, and the indexes are
by default generally assumed to contain offset addresses within
the current data segment. The mnemonic phrases “stack pointer,”
“base pointer,” “source index,” and “destination index” are
mnemonics associated with these registers’ names, as shown in
Fig. 7 .

3. Segment-Register File. The CS-DS-SS-ES register set is
called the segment-register file, or S group. The segment
registers play an important role in the memory addressing
mechanism of the processor. These registers are similar in that
they are used in all memory address computations (see Sec. VIII.
A. of this chapter). The segment registers names have the
associated mnemonic phrases “code,” “data,” “stack,” and “extra,”
as shown in Fig. 7 .

The contents of the CS register define the current code
segment. All instruction fetches are taken to be relative to CS,
using the instruction pointer (IP) as an offset. The contents of the
DS register define the current data segment. Generally, all data
references except those involving BP or SP are taken by default to
be relative to DS. The contents of the SS register define the
current stack segment. All data references which explicitly or
implicitly involve SP or BP are taken by default to be relative to
SS. This includes all push and pop operations, interrupts, and
return operations. The contents of the ES register define the
current extra segment. The extra segment has no specific use,
although it is usually treated as an additional data segment which
can be specified in an instruction by using a special default-
segment-override prefix.

In general, the default segment register for the two types of
data references (DS and SS) can be overriden. By preceding the
instruction with a special one-byte prefix, the reference can be
forced to be relative to one of the other three segment registers.
This prefix, as well as other prefixes described later, has a unique
encoding that permits it to be distinguished from the opcodes.

Programs which do not load or manipulate the segment
registers are said to be dynamically relocatable. Such a program
may be interrupted, moved in memory to a new location, and
restarted with new segment-register values.

At first a set of eight segment registers was proposed along with
a field in a program-status word specifying which segment register
was currently CS, which was currently DS, and which was
currently SS. The other five all served as extra segment registers.

626 Part 3 1 Computer Classes

Such a scheme would have resulted in virtually no thrashing of
segment register contents; start addresses of all needed segments
would be loaded initially into one of the eight segment registers,
and the roles of the various segment registers would vary
dynamically during program execution. Concern over the size of
the resulting processor chip forced the number of segment
registers to be reduced to the minimum number necessary,
namely four. With this minimum number, each segment register
could be dedicated to a particular type of segment (code, data,
stack, extra), and the specifying field-in the program status word
was no longer needed.

4. Flag-Register File. The AF-CF-DF-IF-OF-PF-SF-TF-ZF
register set is called the flag-register file or F group. The flags in
this group are all one bit in size and are used to record proces-
sor status information and to control processor operation. The
flag registers’ names have the following associated mnemonic
phrases:

A F Auxiliary carry

CF Carry

DF Direction

IF Interrupt enable

OF Overflow

PF Parity

S F Sign

TF Trap

ZF Zero

The AF, CF, PF, SF, and ZF flags retain their familiar 8080
semantics, generally reflecting the status of the latest arithmetic
or logical operation. The OF flag joins this group, reflecting the
signed arithmetic overflow condition. The DF, IF, and TF flags
are used to control certain aspects of the processor. The DF flag
controls the direction of the string manipulations (auto-
incrementing or auto-decrementing). The IF flag enables or
disables external interrupts. The TF flag puts the processor into a
single-step mode for prografn debugging. More detail is given on
each of these three flags later in the chapter.

C. Instruction Set

The 8086 instruction set-while including most of the 8080 set as a
subset-has more ways to address operands and more power in
every area. It is designed to implement block-structured languag-
es efficiently. Nearly all instructions operate on either 8- or 16-bit
operands. There are four classes of data transfer. A11 four
arithmetic operations are available. An additional logic instruc-
tion, test, is included. Also new are byte- and word-string
manipulations and intersegment transfers. A summary of the 8086
instructions appears in Fig. 8.

Section 2 I Microcomputers

1. Operand Addressing. The 8086 instruction set provides many
more ways to address operands than were provided by the 8080.
Two-operand operations generally allow either a register or
memory to serve as one operand (called the first operand), and
either a register or a constant within the instruction to serve as the
other (called the second operand). Typical formats for two-
operand operations are shown in Fig. 9 (second operand is a
register) and Fig. 10 (second operand is a constant). The result of a
two-operand operation may be directed to either of the source
operands, with the exception, of course, of in-line immediate
constants. Single-operand operations generally allow either a
register or a memory to serve as the operand. A typical one-
operand format is shown in Fig. 11. Virtually all 8086 operators
may specify 8- or 16-bit operands.

Memozy operands. An instruction may address an operand
residing in memory in one of four ways as determined by the mod
and rim fields in the instruction (see Table 2).

Direct 16-bit offset address
Indirect through a base register (BP or BX), optionally with an
8- or 16-bit displacement

Indirect through an index register (SI or DI), optionally with an
8- or 16-bit displacement

Indirect through the sum of a base register and an index
register, optionally with an 8- or 16-bit displacement

The general register, BX, and the pointer register, BP, may serve
as base registers. When the base register BX is used without an
index register, the operand by default resides in the current data
segment. When the base register BP is used without an index
register, the operand by default resides in the current stack
segment. When both base and index registers are used, the
operand by default resides in the segment determined by the base
register. When an index register alone is used, the operand by
default resides in the current data segment.

Auto-incrementing and auto-decrementing address modes were
not included in general, since it was felt that their use is mainly
oriented towards string processing. These modes were included
on the string primitive instructions.

Register operands. The four 16-bit general registers and the four
16-bit pointer and index registers may serve interchangeably as
operands in 16-bit operations. Three exceptions to note are
multiply, divide, and the string operations, all of which use the
AX register implicitly. The eight 8-bit registers of the HL group
may serve interchangeably in 8-bit operations. Again, multiply,
divide, and the string operations use AL implicitly. Table 3 shows

I

628 Part 3 I Computer Classes 	 Section 2 1 Microcomputers

+.+.+.+.+.+.+.+.+ +-*-+-+-+-+-+-+-+ +-+-+-+-t-+-+-+-+

:seg: : opcode ldlwl Imodl reg I r / m I
+.+.+.+.+.+.+_+.+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

(optional)

+.+.+.+.+.+.+.+.+ +.+.+.+.+.+.+.+.+
: disp-lo : : disp-hi :
+.+.+.+ +.+.+.+.+ +.+.+.+.+.+.+.+.+

(optional) (optional)

first operand is register o r meilory specified by seg, mod, r/m,
disp-lo, disp-hi

mod = 0 0 , 0 1 , 1 0 : first operand is memory (see Table 2)
11: first operand is register (see Table 3)

seg is overriding segment register

second operand is register specified by reg

Y I 0: operands are 8 bits
1: operands are 16 bits

d = 0: destination is first operand

1: destination is second operand

Fig. 9. Typical format of 8086 two-operand operation when second
operand is register.

the register selection as determined by the r/m field (first
operand) or reg field (second operand) in the instruction.

Immediate operands. All two-operand operations except multi-
ply, divide, and the string operations allow one source operand to
appear within the instruction as immediate data represented in 2's
complement form. Sixteen-bit immediate operands having a
high-order byte which is the sign extension of the low-order byte
may be abbreviated to 8 bits.

+ . + . + _ + . + . + . + . + . + t-+-4-+-t-+-+-+-+ +-+-+-t-+-+-+-+-+

: : s e g : : I opcode h l w / ;mod; opc I r / m I

+ . + . + . + _ * . + _ + . + . + +-+-+-t-+-+-+-t-+ +-+-+-+-c-+-+-+-+

(optional)

+.+.+.+.+.+.+.+.+ +.+.+.+.+.+.+.+.+
: disp-lo : : disp-hi :
+.* .+.+.+.+.+.+.* + .+ .+ .++* .+ .+ .+_+

(optional) (optional)

+-+-,-+-+-+-+-t-+ +.+.+.+.+.+.+.* .+
I data-lo I : data-hi :
+-+-+-t-+-+-+-+-+ + .+ .+ . * .+ .+ .+ .+ .+

(o p t i o n a l)

first operand is r e g i ~ t e ~ 	 mod, r / m ,or rnemo~y specified by s e g ,

disp-lo, disp-hi

mod = 00,01, 10: First operand is memory (s e e Table 2)
11: first operand is register' (s e e Table 3)

seg is overriding segment register

seoond operand is immediate data specified by s , w , data-lo, data-hi

Y 0: DATA I data-lo (data-hi is absent)
1 : s = 0: DATA = data-hi, data-lo

1: DATA i data-lo sign extended (data-hi is absent)

Fig. 10.Typical format of 8086 two-operand operation when second
operand is a constant (immediate data).

+.+.+.+.+.+.+.+.+ +-+-t-+-+-+-+-+-+ +-+-+-I.-+-+-+-+-+

:seg: : I opcode l w l lmodlopcodl r/m
+.+.+.+.+.+.+.+.+ +-+-c-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

(optional1

+.+.+.+.+.+.+.+.+ +.+.+.+.+.+.+.+.+
: disp-lo : : disp-hi :
+.+.+.+.+.+.+.+.+ +.+.+.+.+.+.+.+.+

(optional) (optional)

operand is register o r memory specified by seg, mod, r / m ,
disp-lo, disp-hi

mod = 	 0 0 , 0 1 , 1 0 : operand is memory (s e e Table 2)
1 1 ; operand is register (see Table 3)

seg is overriding segment register

u = 0: operand is 8 bits
1: operand is 16 bits

Fig. 11. Typical format of 8086 one-operand operation.

Addressing mode usage. The addressing modes permit registers
BX and BP to serve as base registers and registers SI and DI as
index registers. Possible use of this for language implementation is
discussed below.

'
Simple variables and arrays: A simple variable is accessed with
the direct address mode. An array element is accessed with the

sindirect address mode utilizing the sum of the register SI
(where SI contains the index into the array) and displacement
(where displacement is the offset of the array in its segment).
Based variables: A based variable is located at a memory
address pointed at by some other variable. If the contents of
the pointer variable were placed in BX, the indirect addressing
mode utilizing BX would access the based variable. If the
based variable were an array and the index into the array were
placed in SI, the indirect addressing mode utilizing the sum of
the register BX and register SI would access elements of the
array.

Stack marker: Marking a stack permits efficient implementa-
tion of block-structured languages and provides an efficient
address mechanism for reentrant procedures. Register BP can
be used as a stack marker pointer to the beginning of an
activation record in the stack. The indirect address mode
utilizing the sums of the base register BP and a displacement
(where displacement is the offset of a local variable in the
activation record) will access the variable declared in the
currently active block. The indirect address mode utilizing the
sum of the base register BP, index register SI (where SI
contains the index in an array), and displacement (where
displacement is the offset of the array in the activatiqn record)
will access an element of the array. Register DI can be used in

Table 2 Determining8086 Offset Address of a Memory Operand
(UseThis Table When mod # 11:Otherwise Use Table 3.)

000: OFFSET=(BX)+(SI)+DISP‘
001 : OFFSET=(BX)+(DI) +DlSP
010: OFFSET=(BP)+(SI) +DISP

r/m = 011: OFFSET=(BP)+(DI)+DlSp indirect
100: OFFSET= (SI)+DlSP z address
101: OFFSET= (DI)+DISP mode
110: OFFSET=(BP) +DISP
111: OFFSET=(BX) +DISP

() means “contents of” 	 J

The following special case is an exception to t h e above rules:

if mod=00 and r/m=llO direct
address

then OFFSET=disp-hi, disp-lo mode]

the same manner as SI so that two array elements can be
accessed concurrently.

Example: An example of a procedure-calling sequence on the
8086 illustrates the interaction of the addressing modes and
activation records.

Table 3 Determining8086 Register Operand
(Use This Table When mod = 11;Otherwise Use Table 2.)

First operand Second operand

rlm &bit 16-bit reg 8-bit 16-bit

000: AL AX 000: AL AX
001 : CL cx 001: CL cx
010: DL DX 010: DL DX
011: BL BX 011: BL BX
100: AH SP 100: AH SP
101: CH BP 101: CH BP
110: DH SI 110: DH SI
111: BH DI 111: BH DI

Chapter 37 1 Intel Microprocessors: 8008 to 8086 629

;CALL MYPROC (ALPHA, BETA)
PUSH ALPHA ;pass parameters by
PUSH BETA ; . . .pushing them on

;the stack

CALL MYPROC ;call the procedure

;PROCEDURE MYPROC (A, B)
MYPROC: ;entry point

PUSH BP ;save previous BP value

MOV BP,SP ;make BP point at new

;record
SUB SP,LOCALS 	 ;allocate local storage on

;stack
; . . . for reentrant pyocedur-
;es (stack advances towards
;lower memory)

;body of procedure
MOV SP,BP ;deallocate local storage
POP BP ;restore previous BP
RET 4 ;return and discard 4 bytes

;of parameters

Upon entry to the procedure MYPROC its parameters are
addressable with positive offsets from BP (the stack grows
towards lower memory addresses). Since usually less than 128
bytes of parameters are passed, only an 8-bit signed displace-
ment from BP is needed. Similarly, local variables to MYPROC
are addressable with negative offsets from BP. Again, economy
df instruction size is realized by using 8-bit signed displace-
ments. A special return instruction discards the parameters
pushed on the stack.

2. Data Transfers. Four classes of data transfer operations may
be distinguished: general-purpose, accumulator-specific, address-
object transfers, and flag transfers.

The general-purpose data transfer operations are move, push,
pop, and exchange. Generally, these operations are available for
all types of operands.

The accumulator-specific transfers include input and output and
the translate operations. The first 256 ports can be addressed
directly, just as they were addressed in the 8080. However, the
8086 also permits ports to be addressed indirectly through a
register (DX).This latter facility allows 64Kports to be addressed.
Furthermore, the 8086 ports may be 8 or 16 bits wide, whereas
the 8080 only permitted 8-bit-wide ports. The translate operation

630 Part 3 1 Computer Classes

performs a table-lookup byte translation. We will see the useful-
ness of this operation below, when it is combined with string
operations.

The address-object transfers-load effective address and load
pointer-are an 8086 facility not present in the 8080. A pointer is a
pair of 16-bit values specifying a segment start address and an
offset address; it is used to gain access to the full megabyte of
memory. The load pointer operations provide a means of loading a
segment start address into a segment register and an offset address
into a general or pointer register in a single operation. The load
effective address operation provides access to the offset address of
an operand, as opposed to the value of the operand itself.

The flag transfers provide access to the collection of flags for
such operations as push, pop, load, and store. A similar facility for
pushing and popping flags was provided in the 8080; the load and
store flags facility is new in the 8086.

It should be noted that the load and store operations involve
only those flags that existed in the 8080. This is part of the
concessions made for 8080 compatibility (without these operations
it would take nine 8086 bytes to perform exactly an 8080 PUSH
PSW or POP PSW).

3. Arithmetics. Whereas the 8080 provided for only 8-bit
addition and subtraction of unsigned numbers, the 8086 provides
all four basic mathematical functions on 8- and 16-bit signed and
unsigned numbers. Standard 2’s complement representation of
signed values is used. Sufficient conditional transfers are provided
to allow both signed and unsigned comparisons. The OF flag
allows detection of the signed overflow condition.

Consideration was given to providing separate operations for
signed addition and subtraction which would automatically trap on
signed overflow (signed overflow is an exception condition,
whereas unsigned overflow is not). However, lack of room in the
opcode space prohibited this. As a compromise, a one-byte
trap-on-overflow instruction was included to make testing for
signed overflow less painful.

The 8080 provided a correction operation to allow addition to be
performed directly on packed binary-coded representations of
decimal digits. In the 8086, correction operations are provided to
allow arithmetic to be performed directly on unpacked represen-
tations of decimal digits (e.g., ASCII) or on packed decimal
representations.

Multiply and divide. Both signed and unsigned multiply and
divide operations are provided. Multiply produces a double-
length product (16 bits for 8-bit multiply, 32 bits for 16-bit
multiply), while divide returns a single-length quotient and a
single-length remainder from a double-length dividend and
single-length divisor. Sign extension operations allow one to
construct the double-length dividend needed for signed division.

Section 2 I Microcomputers

A quotient overflow (e.g., that caused by dividing by zero) will
automatically interrupt the processor.

Decimal instructions. Packed BCD operations are provided in
the form of accumulator-adjustment instructions. Two such
instructions are provided-one for an adjustment following an
addition and one following a subtraction. The addition adjustment
is identical to the 8080 DAA instruction; the subtraction adjust-
ment is defined similarly. Packed multiply and divide adjustments
are not provided, because the cross terms generated make it
impossible to recover the decimal result without additional
processor facilities (see Appendix 2 for details).

Unpacked BCD operations are also provided in the form of
accumulator adjust instructions (ASCII is a special case of
unpacked BCD). Four such instructions are provided, one each
for adjustments involving addition, subtraction, multiplication,
and division. The addition and subtraction adjustments are similar
to the corresponding packed BCD adjustments except that the
AH register is updated if an adjustment on AL is required. Unlike
packed BCD, unpacked BCD byte multiplication does not
generate cross terms, so multiplication adjustment consists of
converting the binary value in the AL register into BCD digits in
AH and AL; the divide adjustment does the reverse. Note that
adjustments for addition, subtraction, and multiplication are
performed following the arithmetic operation; division adjustment
is performed prior to a division operation. See Appendix 2 for
more details on unpacked BCD adjustments.

4. Logicals. The standard logical operations AND, OR, XOR,
and NOT are carry-overs from the 8080. Additionally, the 8086
provides a logical TEST for specific bits. This consists of a logical
AND instruction which sets the flags b.ut does not store the result,
thereby not destroying either operand.

The four unit-rotate instructions in the 8080 are augmented
with four unit-shift instructions in the 8086. Furthermore, the
8086 provides multi-bit shifts and rotates including an arithmetic
right shift.

5. String Manipulation. The 8086 provides a group of 1-byte
instructions which perform various primitive operations for the
manipulation of byte or word strings (sequences of bytes or
words). These primitive operations can be performed repeatedly
in hardware by preceding the instruction with a special prefix.
The single-operation forms may be combined to form complex
string operations in tight software loops with repetition provided
by special iteration operations. The 8080 did not provide any
string-manipulation facilities.

Hardware operation control. A11 primitive string operations use
the SI register to address the source operands, which are assumed

to be in the current data segment. The DI register is used to
address the destination operands, which reside in the current
extra segment. The operand pointers are incremented or decre-
mented (depending on the setting of the DF flag) after each
operation, once for byte operations and twice for word operations.

Any of the primitive string operation instructions may be
preceded with a 1-byte prefix indicating that the operation is to be
repeated until the operation count in CX is satisfied. The test for
completion is made prior to each repetition of the operation.
Thus, an initial operation count of zero will cause zero executions
of the primitive operation.

The repeat prefix byte also designates a value to compare with
the ZF flag. If the primitive operation is one which affects the ZF
flag and the ZF flag is unequal to the designated value after any
execution of the primitive operation, the repetition is terminated.
This permits the scan operation to serve as a scan-while or a
scan-until.

During the execution of a repeated primitive operation the
operand pointer registers (SI and DI) and the operation count
register (CX) are updated after each repetition, whereas the
instruction pointer will retain the offset address of the repeat
prefix byte (assuming it immediately precedes the string operation
instruction). Thus, an interrupted repeated operation will be
correctly resumed when control returns from the interrupting
task.

Primitive string operations. Five primitive string operations are
provided:

MOVS moves a string element (byte or word) from the
source operand to the destination operand. As a repeated
operation, this provides for moving a string from one
location in memory to another.
CMPS subtracts the string element at the destination
operand from the string element at the source operand and
affects the flags but does not return the result. As a repeated
operation this provides for comparing two strings. With the
appropriate repeat prefix it is possible to compare two
strings and determine after which string element the two
strings become unequal, thereby establishing an ordering
between the strings.
SCAS subtracts the string element at the destination
operand from AL (or AX for word strings) and affects the
flags but does not return the result. As a repeated operation
this provides for scanning for the occurrence of, or depar-
ture from, a given value in the string.

LODS loads a string element from the source operand into
AL (or AX for word strings). This operation ordinarily would
not be repeated.
STOS stores a string element from AL (or AX for word

Chapter 37 1 Intel Microprocessors: 8008 to 8086 631

strings) into the destination operand. As a repeated opera-
tion this provides for filling a string with a given value.

Software operation control. The repeat prefix provides for rapid
iteration in a hardware-repeated string operation. Iteration-
control operations provide this same control for implementing
software loops to perform complex string operations. These
iteration operations provide the same operation count update,
operation completion test, and ZF flag tests that the repeat prefix
provides.

The iteration-control transfer operations perform leading- and
trailing-decision loop control. The destinations of iteration-control
transfers must be within a 256-byte range centered about the
instruction.

Four iteration-control transfer operations are provided:

LOOP decrements the CX (“count”) register by 1 and
transfers if CX is not 0.
LOOPE decrements the CX register by 1 and transfers if
CX is not 0 and the ZF flag is set (loop while equal).

LOOPNE decrements the CX register by 1and transfers if
CX is not 0 and the ZF flag is cleared (loop while not equal).
JCXZ transfers if the CX register is 0. This is used for
skipping over a loop when the initial i:ount is 0.

By combining the primitive string operitions and iteration-
control operations with other operations, it is possible to build
sophisticated yet efficient string manipulation routines. One
instruction that is particularly useful in this context is the translate
operation; it permits a byte fetched from one string to be
translated before being stored in a second string, or before being
operated upon in some other fashion. The translation is performed
by using the value in the AL register to index into a table pointed
at by the BX register. The translated value obtained from the
table then replaces the value initially in the AL register.

As an example of use of the primitive string operations and
iteration-control operations to implement a complex string opera-
tion, consider the following application: An input driver must
translate a buffer of EBCDIC characters into ASCII and transfer
characters until one of several different EBCDIC control charac-
ters is encountered. The transferred ASCII string is to be
terminated with an EOT character. To accomplish this, SI is
initialized to point to the beginning of the EBCDIC buffer, DI is
initialized to point to the beginning of the buffer to receive the
ASCII characters, BX is made to point to an EBCDIC-to-ASCII
translation table, and CX is initialized to contain the length of the
EBCDIC buffer (possibly empty). The translation table contains
the ASCII equivalent for each EBCDIC character, perhaps with
ASCII nulls for illegal characters. The EOT code is placed into

632 Part 3 1 Computer Classes

those entries in the table corresponding to the desired EBCDIC
stop characters. The 8086 instruction sequence to implement this
example is the following:

JCXZ
Next:

Empty

LODS Ebcbuf ;fetch next EBCDIC character
XLAT Table ;translate it to ASCII
CMP AL,EOT ;test for the E O T
STOS Ascbuf ;transfer ASCII character
LOOPNE Next ;continue if not EOT

Empty:

The body of this loop requires just seven bytes of code.

6 . Transfer of Control. Transfer-of-control instructions (jumps,
calls, returns) in the 8086 are of two basic varieties: intrasegment
transfers, which transfer control within the current code segment
by specifying a new value for IP, and intersegment transfers,
which transfer control to an arbitrary code segment by specifying
a new value for both CS and IP. Furthermore, both direct and
indirect transfers are supported. Direct transfers specif>? the
destination of the transfer (the new value of IP and possibly CS) in
the instruction; indirect transfers make use of the standard
addressing modes, as described previously, to locate an operand
which specifies the destination of the transfer. By contrast, the
8080 provides only direct intrasegment transfers.

Facilities for position-independent code and coding efficiency
not found in the 8080 have been introduced in the 8086.
Intrasegment direct calls and jumps specify a self-relative direct
displacement, thus allowing position-independent code. A short-
ened jump instruction is available for transfers within a 256-byte
range centered about the instruction, thus allowing for code
compaction.

Returns may optionally adjust the SP register so as to discard
stacked parameters, thereby making parameter passing more
efficient. This is a more complete solution to the problem than the
8080 instruction which exchanged the contents of the HL with the
top of the stack.

The 8080 provided conditional jumps useful for determining
relations between unsigned numbers. The 8086 augments these
with conditional jumps for determining relations between signed
numbers. Table 4 shows the conditional jumps as a function of flag
settings. The seldom-used conditional calls and returns provided
by the 8080 have not been incorporated into the 8086.

7. External Interface. The 8086 processor provides both com-
mon and uncommon interfaces to external equipment. The two

Section 2 1 Microcomputers

Table 4 8086 Conditional Jumps as a Function of Flag Set-
tings

Jump on Flag settings

EQUAL ZF = 1

NOT EQUAL.. ZF = 0

LESS THAN (SF xor OF) = 1

GREATER THAN ((SF xor OF) or ZF) = 0

LESS THAN OR EQUAL ((SF xor OF) or ZF) = 1

GREATER THAN OR EQUAL (SF xor OF) = 0

BELOW CF = 1

ABOVE (CF or ZF) = 0

BELOW OR EQUAL(CF or ZF) = 1

ABOVE OR EQUAL CF = 0

PARITY EVEN PF = 1

PARITY ODD PF = 0

OVERFLOW.. OF = 1

NO OVERFLOW OF = 0

SIGN SF = 1

NO SIGN SF = 0

varieties of interrupts, maskable and non-maskable, are not
uncommon, nor is single-step diagnostic capability. More unusual
is the ability to escape to an external processor to perform
specialized operations. Also uncommon is the hardware mecha-
nism to control access to shared resources in a multiple-processor
configuration.

Interrupts. The 8080 interrupt mechanism was general enough
to permit the interrupting device to supply any operation to be
executed out of sequence when an interrupt occurs. However, the
only operation that had any utility for interrupt processing was the
1-byte subroutine call. This byte consists of 5 bits of opcode and 3
bits identifying one of eight interrupt subroutines residing at eight
fixed locations in memory. If the unnecessary generalization was
removed, the interrupting device would not have to provide the
opcode and all 8 bits could be used to identify the interrupt
subroutine. Furthermore, if the 8 bits were used to index a table
of subroutine addresses, the actual subroutine could reside
anywhere in memory. This is the evolutionary process that led to
the design of the 8086 interrupt mechanism.

Interrupts result in a transfer of control to a new location in a
new code segment. A 256-element table (interrupt transfer vector)
eontaining pointers to these interrupt service code locations
resides at the beginning of memory. Each element is four bytes in
size, containing an offset address and the high-order 16-bits of the
start address of the service code segment. Each element of this
table corresponds to an interrupt type, these types being num-
bered 0 to 255. All interrupts perform a transfer by pushing the
current flag setting onto the stack and then performing an indirect
call (of the intersegment variety) through the interrupt transfer
vector.

The 8086 processor recognizes two varieties of external
interrupt-the non-maskable interrupt and the maskable inter-
rupt. A pin is provided for each variety.

Program execution control may be transferred by means of
operations similar in effect to that of external interrupts. A
generalized %byte instruction is provided that generates an
interrupt of any type; the type is specified in the second byte. A
special 1-byte instruction to generate an interrupt of one particu-
lar type is also provided. Such an instruction would be required
by a software debugger so that breakpoints can be “planted’
on 1-byte instructions without overwriting, even temporarily,
the next instruction. And finally, an interrupt return instruction
is provided which pops and restores the saved flag settings
in addition to performing the normal subroutine return func-
tion.

Single step. When the TF flag register is set, the processor
generates an interrupt after the execution of each instruction.
During interrupt transfer sequences caused by any type of
interrupt, the TF flag is cleared after the push-flags step of the
interrupt sequence. No instructions are provided for setting or
clearing TF directly. Rather, the flag-register file image saved on
the stack by a previous interrupt operation must be modified so
that the subsequent interrupt return operation restores TF set.
This allows a diagnostic task to single-step through a task under
test while still executing normally itself.

External-processor synchronization. Instructions are included
that permit the 8086 to utilize an external processor to perform
any specialized operations (e.g., exponentiation) not implemented
on the 8086. Consideration was given to the ability to perform the
specialized operations either via the external processor or through
software routines, without having to recompile the code.

The external processor would have the ability to monitor the
8086 bus and constantly be aware of the current instruction being
executed. In particular, the external processor could detect the
special instruction ESCAPE and then perform the necessary
actions. In order for the external processor to know the 20-bit
address of the operand for the instruction, the 8086 will react to
the ESCAPE instruction by performing a read (but ignoring the
result) from the operand address specified, thereby placing the
address on the bus for the external processor to see. Before doing
such a dummy read, the 8086 will have to wait for the external
processor to be ready. The “test” pin on the 8086 processor is used
to provide this synchronization. The 8086 instruction WAIT
accomplishes the wait.

If the external processor is not available, the specialized
operations could be performed by software subroutines. To invoke
the subroutines, an interrupt-generating instruction would be
executed. The subroutine needs to be passed the specific
specialized-operation opcode and address of the operand. This

Chapter 37 1 Intel Microprocessors: 8008 to 8086 633

information would be contained in an in-line data byte (or bytes)
following the interrupt-generating instruction.

The same number of bytes are required to issue a specialized
operation instruction to the external processor or to invoke the
software subroutines, as illustrated in Fig. 12. Thus the compiler
could generate object code that could be used either way. The
actual determination of which way the specialized operations were
carried out could be made at load time and the object code
modified by the loader accordingly.

Sharing resources with parallel processors. In multiple-
processor systems with shared resources it is necessary to provide
mechanisms to enforce controlled access to those resources. Such
mechanisms, while generally provided through software operat-
ing systems, require hardware assistance. A sufficient mechanism
for accomplishing this is a locked exchange (also known as
test-and-set-lock).

The 8086 provides a special 1-byte prefix which may precede
any instruction. This prefix causes the processor to assert its
bus-lock signal for the duration of the operation caused by the
instruction. It is assumed that external hardware, upon receipt of

-- code monitored by external p’.oceaso~.

+-c-+-c-+-+-+-+-+

I k A I T opcode I WAIT instruction

+-+-+-+-+-+-+-+-+

+ .+ .+ .+_+ . * .+ .+_+ +-t-+-*-t-+-+-+-+ +-+-+-+-+-+-+-+-+
:seg: : :ESCAPE opl x I lmodl y I r/m I

+ . + . + . + . + . + . + . + _ + +-t-+-t-t-*-+-+-t +-+-+-+-+-+-+-+-+ ESCAPE
(optional) instruction

+_+_+ .+ . .+ .+ .+ .+ .+ +.+.+.+.+.*.+.+.+
: disp-lo : : disp-hi :
+ _ + _ + . + . + _ + . + . + . + +.+.+.+.+.+.+.+.+ /

(optional) (optional >

X , Y = opcode for external processor, unused by ESCAPE i n ~ t r u f t i o n
x i Opcode group
y = Opcode within grcup

-- software simulation when external P T O E ~ S S O ~is unavailable

+-t-+-+-+-t-+-+-+ +-+-+-+-+-+-t-+-+

I I N T opcode I lgrcupheadl x I I N T instruction
+-+-+-+-+-+-+-+-+ t-+-t-+-+-+-+-*-+

+ .+ .+_+ .+ .+ .+ .+ . * +-+-+-+-+-+-+-+-+

:seg: : ImodI y : r/m I

+ .+_+ .+ .+ .+ .+ .+ .+ +-+-+-t-t-+-+-*-+

(optional) 	 inline-data

+.+.+.+.+.+.+++.+ + . + . + _ + . + . + . + _ + . +

: disp-lo : : disp-hi :
 I

I.+.+.+.+.+.+.+.+ + . + . + . + . + _ + . + . + _ + /
(optional) (optional)

grCup-head,OOO i 	first of eight interrupt types, each
corresponding to a distinct OpCOde group

interrupt table entry of apcade grcup carresponds t o i n t e w u p t
SubPcUtine for that group

interrupt Subroutine reads in-line data to obtain operand a d d r e s s
and opcode (bumps pushed IP beyond in-line data)

Fig. 12. Example of executing specialized instructions in 8086.

634 Part 3 I Computer Classes 	 Section 2 I Microcomputers

that signaI, will prohibit bus access for other bus masters during IX. Summary and Conclusions
the period of its assertion.

The instruction most useful in this context is an exchange “The 8008 begat the 8080, and the 8080 begat the 8085, and the
register with memory. A simple software lock may be implement- 8085 begat the 8086.”
ed with the following code sequences:

Check: During the six years in which the 8008 evolved into the 8086, the
MOV AL,1 ;set AL to 1(implies processor underwent changes in many areas, as depicted by the

;locked) conceptual diagram of Fig. 13.Figure 14compares the functional
LOCK XCHG Sema,AL ;test and set lock block diagrams of the various processors. Comparisons in per-
TEST AL,AL ;set flags based on AL formance and technology are shown in Tables 5 and 6.
JNZ Check ;retry if lock already set The era of the 8008 through the 8086 is architecturally notable

for its role in exploiting technology and capabilities, thereby
;critical region lowering computing costs by over three orders of magnitude. By

removing a dominant hurdle that has inhibited the computer
MOV Sema,O ;clear the lock when done industry-the necessity to conserve expensive processors-the

Arithmetic 	 loadlstore Lock

logical

8- and 16-bit ops

5 volts
16BIT

Multiplyldivide 	 Load/Store/XCHG

IMM load 1 TTL load

Add

Increment/decrement 0, 5, 12 volts

Packed BCD

arithmetic and logical power TTL Hold mode

&bit immediate External

Nonsymmetric

Direct address

memory

Stack marker

\ arithmetic 	 Enable/disable interrupts

Indirect using Interrupt

Double indexing BC, DE, HL and automatic

Direct address flag savings \\ \I
256 110devices

/
E- and 16-bit data ,/jump address 	 64KI/O

Short and long
displacements Direct and

indirect address
 Facilities

E-. 16.. 32-bit Pipeline
jump address

1-Mbyte memory

Fig. 13. Evolutionfrom 8008 to 8086.

KOOK CPU
BLOCK DIAGRAM

Do D7 B1 DIRECTIONAL
DATA BUS

e-
[r

u15

S rACK
MULTIPLEXER

PROGRAM COUNTEA
114

LEVELNO 1

(1%
LEVELNO 2

(141

(141
LEVELNO 3

LEVELNO 4

ACCU-
MUL ATION (81

B
REG (8)

C
REG (8).

D
REG (8)

E
REG (8)
H

REG (811

SCHATCH
PAD

CONTROL
STACK

ISTATUS

111
S O S 1 S2

I N T

INT

READY

t
READY

SYNC CLOCKS

SYNC 01 02

Fig. 14. Functional block diagrams of (a)Intel 8008.

AD7:ADo
8085 CPU FUNCTIONAL

BIDIRECTIONALBLOCK DIAGRAM
A D D R E W D A T A BUS

1 DATABUS\
&FER LATCH&

(8 BIT) 18 BIT)

INTERNAL DATA BUS INTERNAL DATA BUS

t II CI cz i

ACCUMULA~OR TEMP REG
INSTRUCTION
REGISTER (12) -

W (8)
TEMP REG

Z
TEMP REG

(8)

INSTRUCTION
t-.V

9
B

REG
(8) C

H EG
18)

, DECODER , W
a a

D
REG

(81 E
REG

(8)

w H
REG

(8) L
REG

(8) REGISTEF
ARRAY

0w STACK POINTER ‘lG)a

PROGRAM COUNTER (16)

-~
INCREMENTER DECREMENTER+ ADDRESS L A r C k (16) -

I CONTROL

I ADDRESSBUFFER -
INTERRUPT HOLD WAIT#IWRITE READ

ElIC ~ N T R O L CONTROL CONTROL STATUS

t 1 1 1 1 v
READY So S, ALE IO/M RESET

INTR RST 6.5 A 1 5-A8

RST 7.5 RESET OUT ADDRESS BUS
CLK TRAP

lnl lTI

Fig. 14. (cont’d.) (b) Intel 8085.

---------- ----- ---- r
I
I
I
i
I
I
I
I
I
I
!

-I

I

L--l
I
IfiI

I

I
I
I
I
I
I
I

I
I

637

638 Part 3 I Computer Classes Section 2 I Microcomputers

Table 5 Performance Comparison new era has permitted system designers to concentrate on solving

8008 8080 (2 M H z) 8086 (8 MHz) the fundamental problems of the applications themselves.

register-register 12.5 2 0.25

jump
register-immediate

subroutine call
increment (1 6-bit)
addition (16-bit)
transfer (16-bit)

transfer

operation

25
20

28
50
75
25

5
3.5

9
2.5
5
2

0.875
0.5

2.5
0.25
0.375
0.25

X. References

Bylinsky [1975]; Faggin et al. [1972]; Hoff [1972]; Intel 8080
Manual [1975];Intel MCS-8 Manual [1975];Intel MCS-40 Manual
[1976]; Intel MCS-85 Manual [1977]; Intel MCS-86 Manual
[1978]; Morse [1980]; Morse, Pohlman, and Ravenel [1978];
Shima, Faggin, and Mazor [1974];Vadasz et al. [1969].

~ ~~

All times are given in microseconds.

Table 6 Technology Comparison

8008 8080 8085 8086

Silicon P-channel N-chan nel N-channel Scaled
gate enhancement enhancement depletion N-channel
technology load device load device load device (HMOs)

depletion
load device

Clock 0.5-0.8 MHz 2-3 MHz 3-5 MHz 5-8 MHz
rate

Min gate delayt 30 ns: 15 ns$ 5 ns 3 ns
FO = FI = 1

Typical speed- 100 pj 40 Pi 10 Pj 2 Pj
power product

Approximate number 2,000 4,500 6,500 20,0000
of transistors7

Average transistor 8.4 7.5 5.7 2.5
density (milz
per transistor)

t Fastest inverter function available with worst-case processing.

$ Linear-mode enhancement load.

5 This is 29,000 transistors if all ROM and PLA available placement sites are counted.

7 Gate equivalent can be estimates by dividing by 3.

APPENDIX 1 SAVING AND RESTORING FLAGS IN THE 8008 The 8008 flags can be restored very efficiently if they are saved
in the following format in a byte in memory.

Interrupt routines must leave all processor flags and registers
unaltered so as not to contaminate the processing that was
interrupted. This is most simply done by having the interrupt
routine save all flags and registers on entry and restore them prior
to exiting. The 8008, unlike its successors, has no instruction for
directly saving or restoring flags. Thus 8008 interrupt routines
that alter flags (practically every routine does) must conditionally
test each flag to obtain its value and then save that value. Since
there are no instructions for directly setting or clearing flags, the Most significant =bit 7 = original value of CARRY
flag values must be restored by executing code that will put the bit 6 = original value of SIGN
Aags in the saved state. bit 5 = original value of SIGN

* * . - I--=-

bit 4 = 0
b i t 3 = 0
bit 2 = complement of original value

of ZERO
bit 1= complement of original value

of ZERO
bit 0 = complement of original value

of PARITY

With the information saved in the above format in a byte called
FLAGS, the following two instructions will restore all the saved
flag values:

LDA FLAGS ;load saved flags into accumulator
ADD A ;add the accumulator to itself

This instruction sequence loads the saved flags into the accumula-
tor and then doubles the value, thereby moving each bit one
position to the left. This causes each flag to be set to its original
value, for the following reasons:

The original value of the CARRY flag, being in the leftmost
bit, will be moved out of the accumulator and wind up in
the CARRY flag.
The original value of the SIGN flag, being in bit 6, will wind
up in bit 7 and will become the sign of the result. The new
value of the SIGN flag will reflect this sign.
The complement of the original value of the PARITY flag
will wind up in bit 1,and it alone will determine the parity
of the result (all other bits in the result are paired up and
have no net effect on parity). The new setting of the PARITY
flag will be the complement of this bit (the flag denotes
even parity) and therefore will take on the original value of
the PARITY flag.
Whenever the ZERO flag is 1, the SIGN flag must be 0
(zero is a positive two’s-complement number) and the
PARITY flag must be 1 (zero has even parity). Thus an
original ZERO flag value of 1will cause all bits of FLAGS,
with the possible exception of bit 7 , to be 0. After the ADD
instruction is executed, all bits of the result will be 0 and the
new value of the ZERO flag will therefore be 1.
An original ZERO flag value of 0 will cause two bits in
FLAGS to be 1and will wind up in the result as well. The
new value of the ZERO flag will therefore be 0.

The above algorithm relies on the fact that flag values are always
consistent, i.e., that the SIGN flag cannot be a 1when the ZERO
flag is a 1.This is always true in the 8008, since the flags come up
in a consistent state whenever the processor is reset and flags can

Chapter 37 I Intel Microprocessors: 8008 to 8086 639

only be modified by instructions which always leave the flags in a
consistent state. The 8080 and its derivatives allow the program-
mer to modify the flags in an arbitrary manner by popping a value
of his choice off the stack and into the flags. Thus the above
algorithm will not work on those processors.

A code sequence for saving the flags in the required format is as
follows:

MVI A,O
JNC L1
ORA 80H

L1: JZ L 3

ORA 06H

JM L2
O M 60H

L2: JPE L3

ORA 01H

L3: STA FLAGS

; move zero in accumulator
; jump if CARRY not set
; OR accumulator with 80 hex
; (set bit 7)
; jump if ZERO set (and SIGN
; not set and PARITY set)
; OR accumulator with 03 hex
; (set bits 1and 2)
; jump if negative (SIGN set)
; OR accumulator with 60 hex
; (set bits 5 and 6)
;jump if parity even (PARITY
; set)
; OR accumulator with 01 hex
; (set bit 0)
: store accumulator in FLAGS

APPENDIX 2 DECIMAL ARITHMETIC

A. Packed BCD

1. Addition. Numbers can be represented as a sequence of
decimal digits by using a 4-bit binary encoding of the digits and
packing these encodings two to a byte. Such a representation is
called packed BCD (unpacked BCD would contain only one digit
per byte). In order to preserve this decimal interpretation in
performing binary addition on packed BCD numbers, the value 6
must be added to each digit of the sum whenever (1)the resulting
digit is greater than 9 or (2) a carry occurs out of this digit as a
result of the addition. This is because the 4-bit encoding contains
six more combinations than there are decimal digits. Consider the
following examples (numbers are written in hexadecimal instead
of binary for convenience).

Example 1: 81+52
d2 d l dO names of digit positions

+
8
5

1
2

packed BCD augend
packedBCDaddend

D 3
+ 6 adjustment because d l > 9

1 3 3 packed BCD sum

640 Part 3 1 Computer Classes

Example 2: 28+19
d2 d l dO names of digit positions

+
2 8
1 9

packed BCD augend
packedBCDaddend

+
4 1

6
carry occurs out of dO
adjustment for carry

4 7 packed BCD sum

In order to be able to make such adjustments, carries out of either
digit position must be recorded during the addition operation.
The 4004, 8080, 8085, and 8086 use the CARRY and AUXILIARY
CARRY flag to record carries out of the leftmost and rightmost
digits respectively. All of these processors provide an instruction
for performing the adjustments. Furthermore, they all contain an
add-with-carry instruction to facilitate the addition of numbers
containing more than two digits.

2. Subtraction. Subtraction of packed BCD numbers .can be
performed in a similar manner. However, none of the Intel
processors prior to the 8086 provides an instruction for performing
decimal adjustment following a subtraction (Zilog’s 2-80, intro-
duced two years before the 8086, also has such an instruction). On
processors without the subtract adjustment instruction, subtrac-
tion of packed BCD numbers can be accomplished by generating
the ten’s complement of the subtrahend and adding.

3. Multiplication. Multiplication of packed BCD numbers could
also be adjusted to give the correct decimal result if the
out-of-digit carries occurring during the multiplication were
recorded. The result of multiplying two one-byte operands is two
bytes long (four digits), and out-of-digit carries can occur on any of
the three low-order digits, all ofwhich would have to be recorded.
Furthermore, the carries out of any digit are no longer restricted
to unity, and so countess rather than flags would be required to
record the carries. This is illustrated in the following example
(numbers are written in hexadecimal instead of binary for
convenience).

Example 3: 94 * 63
d3 d2 d l dO names of digit positions

9 4 packed BCD multiplicand
* 6 3 packed BCD multiplier

1 B C carry occurs out of d l
3 7 8 carry occurs out of d l , three out of d2

3 9 3 C carry occurs out of d l
+ 6 6 adjustment for . . .
+ 6 6 . . . above s i x . . .
+ 6 6 . . . carries

Section 2 1 Microcomputers

4 c 5 c carry occurs out of d l and out of d2
+ 6 6 adjustment for above two carries

5 2 B C carry occurs out of d2
+ 6 adjustment for above carry

5 8 B C
+ 6 adjustment because dO is greater than 9

5 8 C 2
+ 6 adjustment because d l is greater than 9

5 9 2 2 packed BCD product

The preceding example illustrates two facts. First, packed BCD
multiplication adjustments are possible if the necessary out-of-
digit carry information is recorded by the multiply instruction.
Second, the facilities needed in the processor to record this
information and apply the correction are non-trivial.

Another approach to determining the out-of-digit carries is to
analyze the multiplication process on a digit-by-digit basis as
follows:

Let x1and x2 be packed BCD digits in multiplicand.
Let y 1and y2 be packed BCD digits in multiplier.

Binary value of multiplicand = 16 *xl + x2

Binary value of multiplier = 16 * y l + y2

Binary value of product = 256 * x l * y l + 16 * (x l q 2 +
x2*y1) + x2 * y2

= xl*yl in most significant byte,
x2*y2 in least significant byte,
(xl*y2 + x2*yl) straddling
both bytes

If there are no cross terms (i.e., either xl or y2 is zero and either
x 2 or y l is zero), the number of out-of-digit carries generated by
the x l * y l term is simply the most significant digit in the most
significant byte of the product; similarly the number of out-of-digit
carries generated by the x2 * y2 term is simply the most
significant digit in the least significant byte of the product. This is
illustrated in the following example (numbers are written in
hexadecimal instead of binary for convenience).

Example 4: 90 * 20
d3 d2 d l dO names of digit positions

9 0 packed BCD multiplier
* 2 0 packed BCD multiplier

0 0 0
1 2 0

1 2 0 0
\ / \ /
9 * 2 0 * 0

Chapter 37 I Intel Microprocessors: 8008 to 8086 641

The most significant digit of the most significant byte is 1,
indicating that there was one out-of-digit carry from the low-order
digit when the 9*2 term was formed. Adjustment is to add 6 to
that digit.

1 2 0 0
+ 6 adjustment

1 8 0 0 packedBCDproduct

Thus, in the absence of cross terms, the number of out-of-digit
carries that occur during a multiplication can be determined by
examining the binary product. The cross terms, when present,
overshadow the out-of-digit carry information in the product,
thereby making the use of some other mechanism to record the
carries essential. None of the Intel processors incorporates such a
mechanism. (Prior to the 8086, multiplication itself was not even
supported.) Once it was decided not to support packed BCD
multiplication in the processors, no attempt was made to even
analyze packed BCD division.

B. Unpacked BCD

Unpacked BCD representation of numbers consists of storing the
encoded digits in the low-order four bits of consecutive bytes. An
ASCII string of digits is a special case of unpacked BCD with the
high-order four bits of each byte containing 0110.

Arithmetic operations on numbers represented as unpacked
BCD digit strings can be formulated in terms of more primitive
BCD operations on single-digit (two digits for dividends and two
digits for products) unpacked BCD numbers.

1. Addition and Subtraction. Primitive unpacked additions and
subtractions follow the same adjustment procedures as packed
additions and subtractions.

2. Multiplication. Primitive unpacked multiplication involves
multiplying a one-digit (one-byte) unpacked multiplicand by a
one-digit (one-byte) unpacked multiplier to yield a two-digit
(two-byte) unpacked product. If the high-order four bits of the
multiplicand and multiplier are zeros (instead of don’t-cares), each
will represent the same value interpreted as a binary number or as
a BCD number. A binary multiplication will yield a two-byte
product in which the high-order byte is zero. The low-order byte
of this product will have the correct value when interpreted as a
binary number and can be adjusted to a two-byte BCD number as
follows:

High-order byte = (binary product)/lO
Low-order byte = binary product modulo 10

This is illustrated in the following example (numbers are written
in hexadecimal instead of binary for convenience).

Example 5: 7 * 5
d l dO names of digit positions

0 7 unpacked BCD multiplicand
0 5 unpacked BCD multiplier

2 3 binary product

2 3 binary product
/ 0 A adjustment for high-order byte (/ lo)

0 3 unpacked BCD product (high-order byte)

modulo
2
0

3
A

binary product
adjustment for low-order byte
(modulo 10)

’ 0 5 unpacked BCD product (low-order byte)

3. Division. Primitive unpacked division involves dividing a
two-digit (two-byte) unpacked dividend by a one-digit (one-byte)
unpacked divisor to yield a one-digit (one-byte) unpacked quo-
tient and a one-digit (one-byte) unpacked remainder. If the
high-order four bits in each byte of the dividend are zeros (instead
of don’t-cares), the dividend can be adjusted to a one-byte binary
number as follows:

Binary dividend = 10 * high-order byte + low-order byte

If the high-order four bits of the divisor are zero, the divisor will
represent the same value interpreted as a binary number or as a
BCD number. A binary division of the adjusted (binary) dividend
and BCD divisor will yield a one-byte quotient and a one-byte
remainder, each representing the same value interpreted as a
binary number or as a BCD number. This is illustrated in the
following example (numbers are written in hexadecimal instead of
binary for convenience).

Example 6: 45/6
d l do names of digit positions

0 4 unpacked BCD dividend (high-order byte)
0 5 unpacked BCD dividend (low-order byte)

2 D adjusted dividend (4* 10 + 5)
/ 0 6 unpacked BCD divisor -

0 7 unpacked BCD quotient
0 3 unpacked BCD remainder

4. Adjustment Instructions. The 8086 processor provides four
adjustment instructions for use in performing primitive unpacked
BCD arithmetic-one for addition, one for subtraction, one for
multiplication, and one for division.

The addition and subtraction adjustments are performed on a

642 Part 3 1 Computer Classes

binary sum or difference assumed to be left in the one-byte AL
register. To facilitate multi-digit arithmetic, whenever AL is
altered by the addition or subtraction adjustments, the adjust-
ments will also do the following:

set the CARRY flag (this facilitates multi-digit unpacked
additions and subtractions)
consider the one-byte AH register to contain the next most
significant digit and increment or decrement it as appropri-
ate (this permits the addition adjustment to be used in a
multi-digit unpacked multiplication)

The multiplication adjustment assumes that AL contains a binary
product and places the two-digit unpacked BCD equivalent in AH
and AL. The division adjustment assumes that AH and AL contain
a two-digit unpacked BCD dividend and places the binary
equivalent in AH and AL.

The following algorithms show how the adjustment instructions
can be used to perform multi-digit unpacked arithmetic.

Addition

Let augend = a"] a[N-l]. . . a[2] a[l]

Let addend = b[N] b[N- 11. . . b[2] b[ll

Let sum = c[N] c[N-l] . . . c[2] c[l]

0 -+ (CARRY)
D O i = 1 t o N

Mil) -+ (AL)

(AL) + (b[il) -+ (AL)

where + denotes add-with-carry

add-adjust (AL) + (AX)

(AL) -+ (c[il)

Subtraction

Let minuend = a"] a"- 11 . . . a[2] a[11
Let subtrahend = b[Nl b[N- 11 . . . b[2] b[lI
Let difference = c[Nl ~"-11 . . . c[21 c[ll

Section 2 I Microcomputers

0 -+ (CARRY)
D O i = 1 t o N

(a[il) -+ (AL)

(AL) - (b[il) -+ (AL)

where - denotes subtract-with-borrow

subtract-adjust (AL) -+ (AX)

(AL) -+ (c[il)

Multiplication

Let multiplicand = a"] a"- 1 3 . . . a[21 a[11

Let muItiplier = b

Let product = c[N+ 11 c[N] . . . c[Z] c[ll

(b)AND OFH -+ (b)

0 -+ (c[ll)

D O i = 1 t o N

(a[i]) AND OFH -j (AL)

(AL) * (b)-+ (AX)

multiply-adjust (AL) -+ (AX)

(AL) + (c[i]) --f (AL)

add-adjust (AL) + (AX)

(AL) -+ (clil)

(AH) -+ (c[i+ 11)

Division

Let dividend = a"] a"-11 . . . aE1 a[11

Let divisor = b

Let quotient = c[Nl c[N-11 . . . c[21 c[ll

(b) a n d OHF + (b)

0 -+ (AH)

D O i = N t o l

(a[i]) AND OFH + (AL)

divide-adjust (AX) -+ (AL)

(AL)/(b) -+ (AL)

with remainder going into (AH)

(AL) -+ (dill

APPENDIX 3 INTEL 8080 ISP

18080::
beg in

I 1SP d e s c r i p t i o n o f t h e I n t e l 8080 mic rop rocesso r a r c h i t e c t u r e .

I The f o l l o w i n g d e s c r i p t i o n o f t h e c o n t e n t s a r e p r o v i d e d t o a i d
I i n read ing t h e ISP.

I **MP.State**: The p r i m a r y memory.

I * *PC.S ta te * * : Processor r e g i s t e r s . s t a t u s word, and s t a c k

I p o i n t e r d e s c r i p t i o n .

* .External .State**: I n t e r r u p t v a r i a b l e s and 1/0 addresses.

I **Implementation.Variables**: R e g i s t e r s and tempora r ies
I r e q u i r e d by t h e imp lemen ta t i on , b u t t h a t a r e
I n o t P a r t of t h e a r c h i t e c t u r e .

I **lnstructiOn.Farmat'.: A d e s c r i p t i o n o f t he i n s t r u c t i o n
I 	 r e g i s t e r and i t s f i e l d s .

I **Address.Calculation.*: Rout ines used t o access memory
I and r e g i s t e r s .

I * *SerV iCe .Fac i l i t i es * . : U t i l i t y r o u t i n e s used t o pe r fo rm
I 	 a r i t h m e t i c . Set C o n d i t i o n codes, and execu te
I c o n d i t i o n a l c a l l s and r e t u r n s .

I *.Instruction.Interpretation**: The ma in p rocesso r e x e c u t i o n

I cyc le .

I 	 .*In~truction.fXeCution.*: Main i n s t r u c t i o n decoding.

l n s t r u c t i o n d e f i n i t i o n s f o r execu t ion .

MP.State

m[O:#177777]<7:0> I Pr imary memory

**PC.State.*

PC<15: a > , I PFogram coun te r
dr[O:3]<15:0>. I Double r e g i s t e r s

r[O:7](7:0>:- I R e g i s t e r s

I Rename t h e s e q u e n t i a l r e g i s t e r s to match INTEL mnemonics

8<7:0>
C(7: 0)

0<7:0>
E<7: 0)

H<7:0)
L<7:0>

SP<15:0>

psw<7:0>,
s<>
Z O

A C O
P O
C Y O

R<7:0>

: = r [0]<7 :0> .
:= r[1]<7:0>,

:= r[2]<7:0>.
:= r [J]<7: 0) .

:= r[4]<7:0>.
:= r [5]<7:0>.

:= dr[3]<15: 0).

:= psw<7>.
:E psw<6>.
:= psw<4>.
:s psu<2>.
:= psu<o>,

* * E x t e r n a l . S t a t e * *

i n t e 0 .
i n t o .
input:device[0:265]c7:0>.

output.device[0:255]<7:0>

*.Implementation.Variables**

tl<>.
tenp(8:0>.
tempd(l6:0>.
g o o .
dbuf(15:O).
buf< 7: 0) := dbuf(7 :O>

*.InStPuCtion.FoPmat**

IR<7:0>.
e b i t<>
group<l:O>
df ie ld<Z:O)
d r f i e l d < l : O)
s f i e ld<Z :O>

:= IR<3>,
:= IR(7:6>.
:= 1R<5:3>.
:= IR<5:4>.
:= iR<2:0>

I Stack p o i n t e r i s a r e g i s t e r p a i r

S t a t u s word

Sign b i t (+ o r -)

Zero b i t

A u r i l l i a r y c a r r y b i t

P a r i t y b i t

C a r r y b i t

I Accumulator

I I n t e r r u p t enab le b i t
I I n t e r r u p t r e q u e s t b i t

One b i t temporary
A r i t h m e t i c temporary
Double l e n g t h a r i t h m e t i c temporary
Go b i t
Memory b u f f e r and temporary r e g i s t e r
Lower o r d e r b y t e o f doub le buf fer

l n s t r u c t i o n r e g i s t e r

I n s t r u c t i o n group

D e s t 3 n a t i o n f i e l d

R e g i s t e r p a i r d e s i g n a t o r

Source f i e l d

l *AddreSS.C1 lcU la t i on*~

source.r(sss<Z:O>) :=

beg in

DECODE sss =>

b e g i n
0:5 	 : = b u r = r [sss] .

6 : = buf =. m[il @ L].

7 := b u f = A

end

end.

s o u r c e . i l :=

beg in

b u f = m[PC] n e x t

PC = PC + 1

end,

source . i 2 :=

b e g i n

dbu f = m[PC + 11 @ m[PC] n e x t

PC = PC + 2

end.

source .d r :=

b e g i n

dbuf = d r [d r f i e l d]

end,

d e s t . r (ddd<2:0>) :=

beg in

DECODE ddd =>

beg in
0:5 	 := r [ddd] = b u f .

6 :; m[H B L] = buf.

'I := A = b u f

end

end.

d e s t . d r :=

b e g i n

d r c d r f i e l d] = dbuP

end.

d e s t . l o a d :=

beg in

DECODE d r f i e l d e q l '10 =>

beg in

0 := A = m[dbuf].

1 := b e g i n

H = m[dbuf + I]:

L = m[dbuf]

end

end

end.

d e s t . s t o r e :=

b e g i n

DECODE d r f i e l d e q l '10 =>

b e g i n

0 := m[dbuf] = A.

1 := begin

ni[dbuf + I]= H:

m[dbuf] = L

end

end

end

.Serv,ce.Faci l i t ies.

I Rou t ines t o s e t c o n d i t i o n code b i t s

setcc(exp<7:0>. d e s t 4 0) :I

beg in

S = exp<7>:

Z = exp<7:0) e q l 0(7:0>;

P = n o t exp<7) X O P exp<6> x o r exp<5> xor exp<4>

xo r exp(3) X O P exp<2> x o r e x p < l) x o r exp<O>:

AC = exp<4) % o r des t4

end.

ar i th(exD<O:O>. dest4<))(7:0> :=

beg in

CY = exp<a>:

a r i t h = exp(7:O) n e x t

s e t c c (a r i t h . des t4)

end.

643

APPENDIX 3 (cont'd.)
I : = DECODE d f i e l d B s f i e l d EQL #66(5:0> =>

I Rou t ines used f a r c o n d i t i o n a l c a l l , r e t u r n . and jump inStrUCtlOnS beg in
I Move

c o n d . c a l l (c b i t 0) := 1 : = H L T O I H a l t0 : = M O V O , ~

b e g i n ' 	 end,
DECODE c b i t =>

b e g i n

0 := PC = PC + 2.

1 := 	 beu in I General a r i t h m e t i c o p e r a t i o n s

s o i r c e . i 2 () n e x t 2 : = beg in
s o u r c e . r (s f i e l d) n e x tm[Sp - 11 = PC(15:8>: DECODE d f i e l d = >
dw - 2 1 i Pc(7:0> n e a t

- A

SP i SP - 2 n e x t 	 b e g i n
I Add t o A0 : = A O D O .P C = dbu f

end
end

end. 1 := ADC(). I Add t o A w i t h Car ry
2 : = SUB(). I S u b t r a c t f rom R

c o n d . r e t (c b i t (>) : = 3 : = SBB() . I S u b t r a c t f r o m A w i t h borrow
b e y i n 4 := A N A O . ! ANn with A._.. .
DECODE c b i t => 5 : = X R A (j , I XOR w i t h A

bey in ! OR w i t h A

1 : = b e g i n 7
end

:=- CMPO I Comoare w i t h A
0 : = n o . o p 0 . 	
6 := O R A O .

PC = m[SP + 11 13 m[SP] n e x t

SP = SP + 2 end.

end
 3 := b e g i n
end DECODE s f i e l d =>

end. b e q i n

cond. j ump(cbi t 0) := 0 : = beg in I C o n d i t i o n a l r e t u r n s

beg in DECODE d f i e l d =>

OCCODE c b i t => b e g i n

0 := R N Z () . I Return on no z e r o
0 := PC = PC + 2. 1 := R Z O .
bey in I Retu rn on z e r o

1 := beg in 2 := R M C O . I Re tu rn on no c a r r y
s o u r c e . i ? O n e x t 3 := R C O . I Re tu rn on c a r r y

4 : = RPOO. I Return on p a r i t y addPC = dbuf I Return on p a r i t y evenend 5 := R P E ~ ~ .
6 := RPO. ! Re tu rn on p o s i t i v eend
7 := RM() I Retu rn on minus

end
end

**lnstruction.Interpretation'* end.

r t a r t (ma in) := 1 := b e g i n
beg in DECODE e b i t = >
go = 1 n e x t beg in

r u n 0 0 := P O P O . I POP r e g i s t e r p a i r

end

run\instruction,interpretation : = 1 := 	 beg in

b e g i n 	
DECODE d r f i e l d =)

beg inwAlT(go) n e x t 0 := R E T O . I Retu rnI R = m[PC] n e x t 1 : = no.op() . I Unde f ined i n s t r u c t i nI F n a t (i n t e and i n t) = > PC = PC + 1 n e x t I I n t e r r u p t s e r v i c e

exec() ' n e x t 	
2 := PCHL() , I H & L t o PC

3 : = SPHL() ! H & L to SP
RESTART run endend end

..InstPuction.EXec"tation** end

Exec:= end,

beg in

DECODE group => 2 : = b e g i n I C u n d i t i o n a l jumps

b e g i n DECODE d f i e l d =>
0 := DECODE s f i e l d = > b e g i n

b e g i n 0 := JNZO. I Jump on no ze ro
0 := n o . o p 0 . 1 := J 7 0 . I Jump on ze ro

2 : = JNCO. I Jump on no c a r r y
1 	:iDECODE e b i t = > 3 := J C O . I Jump on c a r r y

b e g i n 4 := JPOO. ! Jump on p a r i t y odd
0 : = L X I O , I Load immediate r e g i s t e r p a i r 5 : = JPEO. I ~ u m pon p a r i t y even
1 := D A D O I Double add 6 := J P (j : ! Jump on p o s i t i v e
end. 7 := JM() I ~ u m pon minus

end
2 : = DECODE d r f i e l d < l > B e b i t = > 	 end.

b e g i n
0 : = S T A X () . I S t o r e A i n d i r e c t 3 : = b e g i nI : = L D A X () . I Load A i n d i r e c t DECODE d f i e l d =>2 := SHLD.STA() . I Store H & L d i r e c t bea in3 : = LHLD.LDA() I Load H & L d i r e c t o T= j m p o . ! ~ u m pu n c o n d i t i o n a l
end, 1 : = n o . 0 ~ 0 .

2 : = O U T () . I o u t p u t
3 : = DECODE e b i t = > 3 : = I N () . I I n p u t

beg in I Exchange t o p o f s t a c k . H&L

Decrement doub le r e g i s t e r s 4 :=:= XCHGO. II D i s a b l eExchange I n t e r r u p t sO&E.0 : = 	 I N X O . I nc remen t doub le r e g i s t e r s 5 XTHL() , H&L
1 := DCXO 6 := 0 1 0 .
end. 7 := E l () I Enable I n t e r r u p t s

end

4 : = I N R O . I nc remen t

end.

5 : = DCR(). Decrement
6 	 : = M V I O . Move immediate

4 : = beg in I C o n d i t i o n a l c a l l s
DECODE d f i e l d =>

7 := DECODE d f i e l d => b e g i n
b e g i n 0 := CNZO. I C a l l On no z e r o
0 : = RLCO. R o t a t e A l e f t 1 : = c z o . I c a l l on z e r o
1 : = R R C O . R o t a t e A r i g h t I C a l l on no c a r r y

R o t a t e A i e r t t h r u c a r r y 	 2 : = C N C O .
2 : = R A L O . 	 3 : = c c o . I C a l l on c a r r y
3 := R A R O . R o t a t e A r i g h t t h r u c a r r y 4 := CPOO, I c a l l on p a r i t y odd
4 : = OAR(). neclrnal a d l u s t A 5 : = CPEO. ! c a i i on p a r i t y even... .
5 : = CMA() . Compliment A 6 := CPO. 1 c a l l on p o s i t i v e
6 :iS T C O . Set c a r r y 7 := C M () I C a l l on in inus
7 := C M C () I compi w e n t c a r r y end
end end

end.

l

APPENDIX 3 (cont'd.)

5 : = b e g i n
DECODE e b i t =>

beg in
0 = PUSH(), I Push doub le r e g i s t e r on s t a c k

DCR :=
beg in
r o u r c e . r (d f i e 1 d)
11 = b u f < 4 > n e x t

n e x t

! Decrement r e g i s t e r

1 :=

end
end.

beg in
DECODE d r f i e l d =>

1 3 := no.op()

beg in
0 := CALL(),

end
end

I C a l l U n c o n d i t ~ o n a l

buf = bu f - 1 n e x t
se tcc (bu f . t l) n e x t
d e s t . r (d f i e 1 d)
end.

beg in
soi i rce. i l () n e x t
d e s t . r (d f i e l d)
end.

M V I := I Move immediate

6 := beg in I Accumulator immediate i n s t r u c t i o n s
s o u r c e . i l () n e x t
DECODE d f i e l d =>

b e g i n
0 : = ADI () .
1 := A c t () .

3 := S B I () ,
4 := ANI() .
5 : = X R I () .
6 := O R I l l .

2 := S U I () .

I Add immediate t o A
Add immediate w i t h c a r r y
S u b t r a c t immediate f rom A
S u b t r a c t Immediate w i t h bo r row
AND immediate w i t h A
XOR immediate Wi th A
OR immediate w i t h A

beg in
C Y = A<7> n e x t
A = A s l r 1
end.

beg in
C Y = A<O> n e x t
A = A s r r 1
end.

RLC : =

R R C :=

I R o t a t e A l e f t

I R o t a t e A r i g h t

7 :=
end

7 :=
end

end,

RST()

C P I i j . Compare

R e s t a r t

immediate w i t h A

beg in
temp = C Y 0 A s l r 1 n e x t
C Y = tsmp<8>: A = temp<7:0>
end.

RAL : = I R o t a t e A l e f t t h r u c a r r y

end
end

end. beg in
RAR : = I R o t a t e A r i g h t t h r u c a r r y

I n s t r u c t i o n e x e c u t i o n d e f i n i t i o n s

temp
C Y =
end.

= C Y B A
temp:

S P P 1 n e x t
A = temp<7:0>

L X I :=
b e g i n
s o u r c e . i 2 ()
des t .d r ()
end.

DAD :=
b e g i n
s o u r c e . d r ()

n e x t

n e x t

I Load immediate

I Double add

DAA := I Decimal a d j u s t accumu la to r
begin(us]
I F (A<3:0> g t r 9) o r AC = > A = a r i t h ((A + 6) . A<4>) n e x t
I F (A<7:4) g t r 9) O P CY =>

b e g i n
temp = A<7:4> + 6 n e x t
C Y = temp<4>: A<7:4> = temp<3:0>
end

end.

tempd = H @ L + dbuf n e x t
Cy = tempd<lB>: H = tempd<15:8>:
end.

L i tempd(7:o)
CMA
S T C
CMC

: =
:=
: =

(A = n o t A) ,
(CY = 1) .
(CY = n o t C Y) .

I Complement accumu la to r
I SeL c a r r y
I Complement c a r r y

STAX :=
beg in
sou rce .d r () n e x t
d e s t . s t o r e ()
end,

I S t o r e A i n d i r e c t MOV :=
be" in
so ; rce . r (s f i e ld)
d e s t . r (d f 7 e l d)
end.

n e x t

I Move

b e g i n
s o u r c e . d r () n e x t
d e s t . l o a d ()
end.

b e g i n
s o u r c e . i 2 () n e x t
d e s t . s t o r e ()
end.

LDAX :=

SHLD.STA :=

I Load A i n d i r e c t

I S t o r e H & L d i r e c t

HLT : =
ADD :=
ADC : =
SUB :=
SBR : =
ANA :=
XRA :=
ORA :=

CMP :=

(go = 0) .
(A = a r i t h ((b u f + A)
(A = a r i t h ((A + bu f ;(us)CY):A<4>)),
(A = a r i t h ((A - b u f)
(A = a r i t h ((A - bu f :(us)CY)'A<4>)).
(A = a r i t l i ((b u f and A) . nc4,j).
(A = a r i t h ((A x o r b u f) . A < 4 >)) .
(A = a r i t h ((A o r b u f) . ~ (4))) .

~ (4 ,))

A < 4 >))

beg in

H a l t
Add t o A
Add t o A w i t h c a r r y
S u b t r a c t f rom A
S u b t r a c t f rom A w i t h bo r row
AND w i t h A
XOR w i t h A
O R w i t h A

Compare

b e g i n
s o u r c e . i Z ()
d e s t . l a a d ()
end,

LHLD.LDA :=

INX :=
beg in
d r [d r f i e l d]
end.

DCX : =
beg in
d r C d r f i e l d]
end.

n e x t

= d r r d r f i e l d] + 1

= d r [d r f i e l d] - 1

I Load H & L d i r e c t

I I nc remen t r e g i s t e r p a i r s

I Decrement r e g i s t e r p a i r s

C Y = 0 n e x t
a r i t h ((A - b u f) . A<4>)
end.

R N L : = (c o n d . r e t (n o t 2)) .
RL
RNC := (c o n d . r e t (n o t C Y)) .
RC : = (c o n d . r e t (C Y)) .
RPO : = (c o i i d . r e t (n o t P)) .
HPE : = (c o i i d . reL (P)) .
R P :: (cond . reL (no t S)) .
RM := (cond . r e t (S)) ,

:= (cond. r e t (z)) ,

pop : =
b e g i n
dbuf = m[SP + 11 B m[SP]
SP = SP + 2 NEXT

n e x t

Re tu rn on no ze ro
Re tu rn on z e r o
Re iu rn on no c a r r y
R e t u r n on c a r r y
Re tu rn on p a r i t y odd

I R e t u i n on p a r i t y even
! Re tu rn an p o s i t i v e
I Re tu rn on minus

I Pop r e g i s t e r p a i r

I N R : =
beg in
s o u r c e . r (d f i e l d) n e x t
t l = bu f<4> n e x t
buf = buf + 1 n e x t
se tcc (bu f . t.1) n e x t
d e s t . r (d f i e l d)
end,

I Inc remen t r e g i s t e r DlCODE d r f i e l d e q l '11 =>
b e g i n
0 : = d e s t . d r () .
1 : = beg in

A = dbu f<15 :8> :
Psw = dbv f<7 :0>
end

end
end.

645

648 Part 3 1 Computer Classes 	 Section 2 I Microcomputers

APPENDIX 3 (cont’d-)

R I T := (c o n d . r e t (1)) . I R e l ~ i r n (u i l c o n d i t i o n a l)
I’CIII. : = (PC = I1 B L). ! H & I t o PC
SI’IIL : = (SP = ll B L). 	 ! I1 & L t o SP

JNZ 	 : = (cond . jump(no t 2)). Jump on n o t z e r o
32 := (cond .j ump(2)) , Jump on z e r o

JNC := (cond.]uinp(n o t C Y)) , Jump o n n o c a r r y

JC := (cond . jump(CY)) , Jump on c a r r y

JPO : = (cond . jun ip (no t P)) , Jump an p a r i t y odd

JPE := (cond . jump(P)) . Juinp on p a r i t y even

JP : = (c o n d . j u n p (n o t S)) . Jump an p o s i t i v e

JM : = (cond . j ump(S)) . Jump on minus

JMP 	 := Jump (u n c o n d i t i o n a l)

b e g i n

s o u r c e . i Z () n e x t

PC = dbuf

end.

OUT 	 : = ! o u t p u t (IIO)

b e g i n

s o u r c e . i l [) n e x t

o u t p u t . d e v i c e [b u f] = A

end,

TN 	 .= I I n p u t (110)

beg in

s o u r c e . i l () n e x t

A = i n p u t . d e v i c e [b u f]

end.

XTHL : = I Exchange t o p o f s t a c k , H L 1
b e g i n
tempd = m[SP] I3 L n e x t
L = tempd<l5:8>:
m[SP] = tempd<7:0> n e x t
tempd = in[SP + I] I H n e x t
H = tempd<l5:8>:
m[sP + 11 = tempd<7:0>
end.

XCHG : = I Exchange DBE w i t h tIB1

b e g i n

temp = H n e x t

II = o n e x t

D = temp<7:0> n e x t

temp = L n e x t

L = e n e x t

e = temp<7:0>

end.

DI := (i n t e = 0). D i s a b l e i n t e r r u p t s
E I : = (i n t e = 1). Enable i n t e r r u p t s
CNZ := (c o n d . c a l l (n o t 2)) . C a l l o n no ze ro
C Z : = (c o n d . c a l l (2)) . C a l l on z e r o
CNC := (c o n d . c a l l (n o t C Y)) . C a l l on no c a r r y
CC := (c o n d . c a l l (C Y)) . C a l l on c a r r y
CPO : = (c o n d . c a l l (n o t P)) . C a l l o n p a r i t y add
CPE : = (cond .ca l l (P)) . C a l l on p a r i t y even
C P : = (c o n d . c a l l (n o t S)) . C a l l on p o s i t i v e
CM := (c o n d . c a l l (S)) . C a l l on minus

PUSH := ! Push doub le r e g i s t e r on s tack
b e g i n
OECODE d r f i e l d e q l ‘11 =>

b e g i n
s o u r c e . d r () ,
dbu f = A B psw
end n e x t

in[SP - I] = dbuf<15:8>:
, n [s ~ - 21 = dbuf<7:0> n e x t
SP = SP - 2
end.

CALL := (c o n d . c a l l (1)) . ! C a l l (u n c o n d i t i o n a l)
A01 := (A = a r i t h ((A 1. b u f) . A<4>)). I Add immediate t o A
A c I : = (A = a r i t h ((A t bu f +(us)CY).A<4>)). I Add immediate t o A w i t h c a r r y
9111 .iIA = a r i t h l (A - b u f l . A<4>)) . I S u b t r a c t immediate f rom A
iii I=i A = i P 7 t h i i A - bu f ’ - (us)C? j .A<4>)) . I S u b t r a c t immediate f r o m A ,. W i + h.. h n r r n w. -..
AM1 := (A = a r i t h ((A and b u f) . A<4>)) . I AN0 i inmediate w i t h A
X R I : = (A = a r i t h ((A X O P b u f) . A t 4 >)) . I XOR i inmediate w i t h A
O R 1 := (A = a r i t h ((A o r b u f) . A<4>)). I OR immediate w i t h A
CPI : = (a r i t h ((f l - b u f) . A<4>)) . 1 Compare immediate w i t h A

I lST 	 := I R e s t a r t

b e g i n

m[SP - I] = PC(16:8>:

m[sP - 2 1 = PC<7:0> n e x t

SP = SP - 2 NEXT

PC = d f i e l d s10 3

end,

end I end o f I n t e l DO80 d e s c r i p t i o n

Section 3

Minicomputers

A major attribute of computers below the class of maxi is their use
in dedicated applications areas. The minicomputer evolved from a
conceptual view of design wherein a programmable controller was
perceived to be the cheapest, fastest way to implement a
special-purpose function. The minicomputer did not require the
generality of larger computers and hence required less software
and less overhead. Thus minicomputers were leaner and more
responsive than their cousins.

The need for minicomputers evolved from several areas,
including control, switching, and data processing. IBM’s first
minicomputer was the 1401 (c. 1962). As initially conceived, the
1401 was a stored-program replacement for the former hardwired
controllers used to interconnect card readers, magnetic tape
units, and line printers in an offline batch support system.

The CDC 160, introduced in 1960 at a price of $60,000, was the
first high-performance, low-cost, real time computer. Like the
1401 it was designed as a support computer to a larger machine
and as a computer to test peripherals. Although it was not
intended to be sold as a programmable computer, it was
subsequently applied to scientific and commercial computations.

The DEC PDP-5 was introduced in 1964 for real time data
collection and control. The PDP-5 had a single 12-bit accumula-
tor, a 1-bit link for overflow and multiple-precision arithmetic,
and a 1-bit interrupt enable. The program counter was held in
primary memory, and an analog-to-digital converter was built
directly into the accumulator.

The immediate successor of the PDP-5, the PDP-8, can be
credited with triggering the minicomputer revolution. Its small
size (halfa cabinet) and cost ($18,000) brought the computer into
the region where it was cost-effective in dedicated real time
applications, especially since it could be packaged as part of a
larger system. By 1980 over 100,000 PDP-8’s had been sold since
their introduction in 1966.

From these origins, where the minicomputer was considered to
be the minimal-complexity computer, the minicomputer has
grown in functionality and performance to the point where it
rivals the higher-cost, general-purpose computers of a decade ago.
This section describes four minicomputers: the PDP-8, the
PDP-11, the HP 2116, and the IBM System/38.

The PDP-8

The 12-bit PDP-8 is described in a top-down fashion in Chap. 8.
The description is carried from the PMS and ISP levels to

register-transfer, gate, and circuit levels, illustrating the hierarchy
of design. Since the PDP-8 is conceptually simple, it is possible to
provide substantial details of the design in terms of the mid-1960s
discrete technology used to implement the original PDP-8. A
Kiviat graph for the original PDPS is shown in Fig. 1.

Chapter 15illustrates how the PDP-8 might be implemented by
using contemporary bit-sliced microprogrammed chip sets. The
design illustrates the use of ISP to describe the hardware building
blocks (the Am2901 and 2909) and microcode to emulate other
ISPs. PDPS programs have been successfully executed by using
the ISP simulator on this bit-sliced PDP-8. After Chap. 15,
machines are discussed only at the register-transfer level or
above. However, the reader should have enough working knowl-
edge about technology at this point to use Am2900 chips and/or
ISP in design exercises completing the details in lower-level
descriptions of other machines in this book. We encourage the
reader to try at least a paper exercise of some other machine.

Finally, Chap. 46 summarizes the evolution of the PDP-8
family of implementations over a decade of technological change
ranging from discrete logic to microcomputer implementations.

The PDP-11

The need was felt to increase the functionality of minimal
computers, especially by providing a larger address space. This,
coupled with a change from 6-bit (e.g., two characters per PDPS

Mo h v t e lr
 -.

Pc (access/sl

Dataphone

T. communication
Ibvtdr)

I

Fig. 1. Kiviat graph for the PDP-8.

647

648 Part 3 1 Computer Classes Section 3 1 Minicomputers

PDP-11170
AII axes: x lo3

T communication
lbvtelrl

Fig. 2. Kiviat graph for the PDP-11/70.

12-bit word) to 8-bit character representations lead to a large
number of 16-bit machines. The PDP-11, one of the most popular
16-bit minicomputers, is discussed in Chap. 38, which is complete
with ISP and PMS descriptions. The performance of one PDP-11
family member, the Model 70, is summarized by the Kiviat graph
in Fig. 2. Chapter 39 reviews the major implementation tradeoffs,
while Chap. 47 outlines the evolution of the PDP-11 family. A
maxicomputer, the VAX-11/780, with strong PDP-11 family ties
and PDP-11 compatability, is described in Chap. 42.

A contemporary of the PDP-11 is the data General Nova.
Wheras the PDP-11 sought to increase the semantic content of
instructions, the Nova designers sought an ISP whose implemen-
tations would be simple, provide high performance, and be
oriented toward MSI technology. The generic Nova implementa-
tion consists of a single fast loop from register file to ALU, to
shifter, to condition code sensing, and back to the register file (see
Fig. 3). Each instruction can cause one of each type of function to
execute on a single cycle throughout the loop. Thus machine-level
instructions are microcoded ?I la the PDP-8 operate group of
instructions. The similarity with the PDP-8 is not surprising, since
the Nova designers were veteran PDP-8 implementors and users.
In order to pay for this rich, easily decoded class of register-to-
register instructions, the Nova has a meager (eng., four-

I
.f F<16:0> I

Skip sensor
Register

Carry

Loadlno load

Fig. 3. Data path of the Data General Nova.

instruction) memory/register class of instructions. Being simple,
the Nova ISP consistently was cheaper and faster on individual
instructions than its PDP-11 rival. The Nova ISP was implement-
ed in a single LSI chip in 1976, a feat not yet matched by the
PDP-11 as of 1979.

The Nova ISP philosophy represents an interesting tradeoff
between ISP power and speed. One way to increase system
performance is to increase the semantic content of the ISP so that
fewer instructions have to be executed to complete a task.
Another way to increase performance is to execute a lot of very
simple instructions very fast. In the latter case, an optimizing
compiler can provide a higher-level abstract machine so that the
user never has to bother with assembly language. One cannot tell
from the marketplace which approach is best, since the PDP-11
and the Nova have become the second and third minicomputer
ISP, respectively, to surpass 50,000 units sold.

The HP 2116

A contemporary of the PDP-II resembling a 16-bit stretch of the
PDP-8 is the HP 2116. The HP 2116 was also influenced by a
PDP-8 alumnus, John Kondek. An instruction set similar to that of
the H P 2116 is contained in Chap. 31, where a cousin of the HP
2116 was used to implement a desk-top computer. Another
variation of the ISP is found in Chap. 49. Strong family ties with
the HP 2116 ISP can be found in the more recent HP 2100 ISP.

The IBM System/38

Chapter 32 describes a business-oriented minicomputer that
provides an architectural interface above the traditional ISP level.

Chapter 38

A New Architecture for
Mini-Computers: The DEC PDP-11

G. Bell / R. Cady / H. McFarland / B. DeLagi /
J. 	O’Laughlin / R. Noonan / W. Wulf

Introduction

The mini-compute? has a wide variety of uses: communications
controller; instrument controller; large-system pre-processor;
real-time data acquisition systems . . . ;desk calculator. Histori-
cally, Digital Equipment Corporation’s PDP-8 Family, with 6,000
installations has been the archetype of these mini-computers.

In some applications current mini-computers have limitations.
These limitations show up when the scope of their initial task is
increased (e. g., using a higher level language, or processing more
variables). Increasing the scope of the task generally requires the
use of more comprehensive executives and system control pro-
grams, hence larger memories and more processing. This larger
system tends to be at the limit of current mini-computer
capability, thus the user receives diminishing returns with respect
to memory, speed efficiency and program development time. This
limitation is not surprising since the basic architectural concepts
for current mini-computers were formed in the early 1960’s. First,
the design was constrained by cost, resulting in rather simple
processor logic and register configurations. Second, application
experience was not available. For example, the early constraints
often created computing designs with what we now consider
weaknesses:

1 	Limited addressing capability, particularly of larger core
sizes

’AFZPS Proc. SJCC, 1970, pp. 657-675.

Few registers, general registers, accumulators, index regis-
ters, base registers
No hardware stack facilities

Limited priority interrupt structures, and thus slow context
switching among multiple programs (tasks)
No byte string handling
No read only memory facilities
Very elementary I/O processing
No larger model computer, once a user outgrows a
particular model

High programming costs because users program in ma-
chine language.

In developing a new computer the architecture should at least
solve the above problems. Fortunately, in the late 1960’s inte-
grated circuit semiconductor technology became available so that
newer computers could be designed which solve these problems
at low cost, Also, by 1970 application experience was available to
influence the design. The new architecture should thus lower
programming cost while maintaining the low hardware cost of
mini-computers.

The DEC PDP-11, Model 20 is the first computer ofa computer
family designed to span a range of functions and performance. The
Model 20 is specifically discussed, although design guidelines are
presented for other members of the family. The Model 20 would
nominally be classified as a third generation (integrated circuits),
16-bit word, 1 central processor with eight 16-bit general
registers, using two’s complement arithmetic and addressing up
to 216eight bit bytes of primary memory (core). Though classified
as a general register processor, the operand accessing mechanism
allows it to perform equally well as a 0-(stack), 1-(general register)
and 2-(memory-to-memory) address computer. The computer’s
components (processor, meTories, controls, terminals) are con-
nected via a single switch, called the Unibus.

2The PDP-11 design is predicated on being a member of one (or more) of the micro, midi, mini, . . . , maxi (computer name) markets. We will define
these names as belonging to computers of the third generation (integrated circuit to medium scale integrated circuit technology), having a core memory
with cycle time of .5 - 2 microseconds, a clock rate of 5 - 10 M hz . . . , a single processor with interrupts and usually applied to doing a particular task
(e.g., controlling a memory or communications lines, pre-processing for a larger system, process control). The specialized names are defined as follows:

Processor and Word Processor

Maximum addressable memory cost length state

primary memory (words) (1970 kilodollars) (bits) (words) Data types

Micro 8 K - 5 8 -12 2 Integers, words, boolean vectors
Mini 32 K 5 -10 12-16 2-4 Vectors (i.e.,indexing)
Midi 65 - 128 K 10 -20 16 -24 4-16 Double length floating point

(occasionally)

649

650 Part 3 1 Computer Classes

The machine is described using the PMS and ISP notation of
Bell and Newel1 [1971] at different levels. The following descrip-
tive sections correspond to the levels: external design constraints
level; the PMS level-the way components are interconnected
and allow information to flow; the program level or ISP (Instruc-
tion Set Processor)-the abstract machine which interprets
programs; and finally, the logical design level. (We omit a
discussion of the circuit level-the PDP-11 being constructed
from TTL integrated circuits.)

Design Constraints

The principal design objective is yet to be tested; namely, do
users like the machine? This will be tested both in the market
place and by the features that are emulated in newer machines; it
will indirectly be tested by the life span of the PDP-11 and any
offspring.

Word Length
The most critical constraint, word length (defined by IBM) was
chosen to be a multiple of 8 bits. The memory word length for the
Model 20 is 16 bits, although there are 32- and 48-bit instructions
and 8- and 16-bit data. Other members of the family might have
up to 80 bit instructions with 8-, 16-, 32- and 48-bit data. The
internal, and preferred external character set was chosen to be
&bit ASCII.

Range and Performance

Performance and function range (extendability) were the main
design constraints; in fact, they were the main reasons to build a
new computer. DEC already has (4)computer families that span a
range’ but are incompatible. In addition to the range, the initial
machine was constrained to fall within the small-computer
product line, which means to have about the same performance as
a PDP-8. The initial machine outperforms the PDP-5, LINC, and
PDP-4 based families. Performance, of course, is both a function
of the instruction set and the technology. Here, we’re fundamen-
tally only concerned with the instruction set performance because
faster hardware will always increase performance for any family.
Unlike the earlier DEC families, the PDP-11 had to be designed
so that new models with significantly more performance can be
added to the family.

A rather obvious goal is maximum performance for a given
model. Designs were programmed using benchmarks, and the
results compared with both DEC and potentially competitive

’PDP-4, 7 , 9, 15 family; PDP-5, 8, 8 6 , S/I, 8/L family; LINC, PDP-
SILINC, PDP-12 family; and PDP-6, 10family. The initial PDP-1 did not
achieve family status.

Section 3 1 Minicomputers

machines. Although the selling price was constrained to lie in the
$5,000 to $10,000 range, it was realized that the decreasing cost of
logic would allow a more complex organization than earlier DEC
computers. A design which could take advantage of medium- and
eventually large-scale integration was an important consideration.
First, it could make the computer perform well; and second, it
would extend the computer family’s life. For these reasons, a
general registers organization was chosen.

Interrupt Response. Since the PDP-11 will be used for real time
control applications, it is important that devices can communicate
with one another quickly (i.e., the response time of a request
should be short). A multiple priority level, nested interrupt
mechanism was selected; additional priority levels are provided
by the physical position of a device on the Unibus. Software
polling is unnecessary because each device interrupt corresponds
to a unique address.

Software

The total system including software is of course the main objective
of the design. Two techniques were used to aid programmability:
first benchmarks gave a continuous indication as to how well the
machine interpreted programs; second, systems programmers
continually evaluated the design. Their evaluation considered:
what code the compiler would produce; how would the loader
work; ease of program relocability; the use of a debugging
program; how the compiler, assembler and editor would be
coded-in effect, other benchmarks; how real time monitors
would be written to use the various facilities and present a clean
interface to the users; finally the ease of coding a program.

Modularity

Structural flexibility (sometimes called modularity) for a particular
model was desired. A flexible and straightforward method for
interconnecting components had to be used because of varying
user needs (among user classes and over time). Users should have
the ability to configure an optimum system based on cost,
performance and reliability, both by interconnection and, when
necessary, constructing new components. Since users build
special hardware, a computer should be easily interfaced. As a
by-product of modularity, computer components can be produced
and stocked, rather than tailor-made on order. The physical
structure is almost identical to the PMS structure discussed in the
following section; thus, reasonably large building blocks are
available to the user.

Microprogramming

A note on microprogramming is in order because of current
interest in the “firmware” concept. We believe microprogram-
ming, as we understand it [Wilkes, 19511, can be a worthwhile

technique as it applies to processor design. For example, micro-
programming can probably be used in larger computers when
floating point data operators are needed. The IBM System1360 has
made use of the technique for defining processors that interpret
both the Systemi360 instruction set and earlier family instruction
sets (e.g., 1401, 1620, 7090). In the PDP-11 the basic instruction
set is quite straightforward and does not necessitate micropro-
grammed interpretation. The processor-memory connection is
asynchronous and therefore memory of any speed can be connect-
ed. The instruction set encourages the user to write reentrant
programs; thus, read-only memory can be used as part of primary
memory to gain the permanency and performance normally
attributed to microprogramming. In fact, the Model 10 computer
which will not be further discussed has a 1024-word read only
memory, and a 128-word read-write memory.

Understandability
Understandability was perhaps the most fundamental constraint
(or goal) although it is now somewhat less important to have a
machine that can be quickly understood by a novice computer
user than it was a few years ago. DEC's early success has been
predicated on selling to an intelligent but inexperienced user.
Understandability, though hard to measure, is an important goal
because all (potential) users must understand the computer. A
straightforward design should simplify the systems programming
task; in the case of a compiler, it should make translation
(particularly code generation) easier.

PDP-11 Structure at the PMS Level'

Introduction

PDP-11 has the same organizational structure as nearly all present
day computers (Fig. I).The primitive PMS components are: the
primary memory (Mp) which holds the programs while the central
processor (Pc) interprets them; io controls (Kio) which manage
data transfers between terminals (T) or secondary memories (Ms)
to primary memory (Mp); the components outside the computer at
periphery (X) either humans (H) or some external process (e.g.,
another computer); the processor console (T. console) by which
humans communicate with the computer and observe its behavior
and affect changes in its state; and a switch (S) with its control (K)
which allows all the other components to communicate with one
another. In the case of PDP-11, the central logical switch
structure is implemented using a bus or chained switch (S) called
the Unibus, as shown in Fig. 2. Each physical component has a

'A descriptive (block-diagram) level [Bell and Newell, 19711 to describe
the relationship of the computer components: processors memories,
switches, controls, links, terminals and data operators.

Chapter 38 I A New Architecture for Mini-Computers: The DEC PDP-I1 651

h-n u8erproceesor

I

1 1
a.&., T e h -

periphery

h u u r user
or

other process

I

?c- ?.console IR

'Rls lbt.tioo

Fig. 1. Conventional block diagram and PMS diagram of PDP-11.

652 Part 3 1 Computer Classes

computer H X X
periphery

I

Ma...
np Pc Ki : K;o
S s Unibus switching

8 tructure

Unibus control packaged with Pc

Fig. 2. PDP-11 physical structure PMS diagram.

switch for placing messages on the bus or taking messages off the
bus. The central control decides the next component to use the
bus for a message (call). The S (Unibus) differs from most switches
because any component can communicate with any other compo-
nent.

The types of messages in the PDP-I1 are along the lines of the
hierarchical structure common to present day computers. The
single bus makes conventional and other structures possible.
The message processes in the structure which utilize S (Unibus)
are:

1 	 The central processor (Pc) requests that data be read or
written from or to primary memory (Mp) for instructions
and data. The processor calls a particular memory module
by concurrently specifying the module's address, and the
address within the modules. Depending on whether the
processor requests reading or writing, data is transmitted
either from the memory to the processor or vice versa.

2 	 The central processor (Pc) controls the initialization of
secondary memory (Ms) and terminal (T) activity. The
processor sets status bits in the control associated with a
particular Ms or T, and the device proceeds with the
specified action (e.g., reading a card, or punching a
character into paper tape). Since some devices transfer data
vectors directly to primary memory, the vector control
information (i.e., the memory location and length) is given
as initialization information.

3 	 Controls request the processor's attention in the form of
interrupts. An interrupt request to the processor has the
effect of changing the state of the processor; thus the
processor begins executing a program associated with the
interrupting process. Note, the interrupt process is only a
signaling method, and when the processor interruption
occurs, the interruptee specifies a unique address value to
the processor. The address is a starting address for a
program.

4 	 The central processor can control the transmission of data
between a control (for T or Ms) and either the processor or
a primary memory for program controlled data transfers.

Section 3 1 Minicomputers

The device signals for attention using the interrupt dia-
logue and the central processor responds by managing the
data transmission in a fashion similar to transmitting
initialization information.

Some device controls (for T or Ms) transfer data directly
to/from primary memory without central processor inter-
vention. In this mode the device behaves similar to a
processor; a memory address is specified, and the data is
transmitted between the device and primary memory.

The transfer of data between two controls, e.g., a secon-
dary memory (disk) and say a terminal/T.display is not
precluded, provided the two use compatible message
formats.

As we show more detail in the structure there are, of course,
more messages (and more simultaneous activity). The above does
not describe the shared control and its associated switching which
is typical of a magnetic tape and magnetic disk secondary memory
systems. A control for a DECtape memory (Fig. 3) has an
S(' DECtape bus) for transmitting data between a single tape unit
and the DECtape transport. The existence of this kind of structure
is based on the relatively high cost of the control relative to the
cost of the tape and the value of being able to run concurrently
with other tapes. There is also a dialogue at the periphery
between X-T and X-Ms which does not use the Unibus. (For
example, the removal of a magnetic tape reel from a tape unit or a
human user (H) striking a typewriter key are typical dialogues.)

All of these dialogues lead to the hierarchy of present comput-
ers (Fig. 4).In this hierarchy we can see the paths by which the
above messages are passed (Pc-Mp; Pc-K; K-Pc; Kio-T and
Kio-Ms; and Kio-Mp; and, at the periphery, T-X and T-Ms; and
T.console-H).

Model 20 Implementation
Figure 5 shows the detailed structure of a uni-processor, Model 20
PDP-11 with its various components (options). In Fig. 5 the
Unibus characteristics are suppressed. (The detailed properties of
the switch are described in the logical design section.)

Ms(#O:7; 'DECtape) ...
L-

'DECtape bus;
concurrency: 1i[1

Kio('DECtape)

Fig. 3. DECtape control switching PMS diagram.

Chapter 38 I A New Architecture for Mini-Computers:The DEC PDP-11 653

M M

S

I

a. 1 port

S

I

b. 4 port

Fig. 6. 1 and 4 port memory modules PMS diagram.

absorb approximately 16megabitsisecond, the simple one Unibus
structure must be modified to make the memory cycles available.
Two changes are necessary: first, each of the memory modules
have to be changed so that multiple units can access each module
on an independent basis; and second, there must be independent
control accessing mechanisms. Figure 6 shows how a single
memory is modified to have more access ports (i.e., connect to 4
Unibusses).

Figure 7 shows a system with 3 independent memory modules
which are accessed by 2 independent Unibusses. Note that two of
the secondary memories and one of the transducers are connected
to both Unibusses. It should be noted that devices which can
potentially interfere with Pc-Mp accesses are constructed with
two ports; for simple systems, the two ports are both connected to
the same bus, but for systems with more busses, the second
connection is to an independent bus.

Figure 8 shows a multiprocessor system with two central

Kio

Fig. 4. Conventional hierarchy computer structure.

Extensions to Increase Performance
The reader should note (Fig. 5) that the important limitations of
the bus are: a concurrency of one, namely, only one dialogue can
occur at a given time, and a maximum transfer rate of one 16-bit
word per .75 psec., giving a transfer rate of 21.3megabits/second.
While the bus is not a limit for a uni-processor structure, it is a
limit for multiprocessor structures. The bus also imposes an
artificial limit on the system performance when high speed
devices (e.g., TV cameras, disks) are transferring data to multiple
primary memories. On a larger system with multiple independent
memories the supply of memory cycles is 17 megabitdsecond
times the number of modules. Since there is such a large supply of
memory cycles/second and since the central processor can only

Pca- T.console -
r 1

.TTeletype; Model 33,35 ASR;

fu l l duplex; 1 0 char/sec;

char set: ASCII; 8 bit/charI
T paper tape; reader;

100 char/sec; 8 bit/charc I'
T[paper tape; punch;

100 char/sec; 8 bit/char 3'

processors and three Unibusses. Two of the Unibus controls are
included within the two processors, and the third bus is controlled
by an independent control unit. The structure also has a second

.I4 secondary/#; fixed head disk;

16 b/w; 32768 w; i .rate; 66 ps/w;

t.acce8s: 0 - 34 maec.i 1
X (6 0 cycle clock)-L(60 cycle line)-

'Mp(techno1ogy: tor, 4096 words; r.cycle: 1.2 p; t.access:

. 6 p; 16 bita/word)

aP(central/c; Model 30; integrated circuit; general registers;

2 addresses/instruction; addresses are: resister. stack.

MJ; data types: b i t s , bytes, words, vord integers, byte
integers. boolean vectors; 8 blts/byte; 16 bits/word

operations:(+, -,/ (optional), x (optional), / 2 , x2,

7. - (negate); V. 3;

M(processor atate; 'general registers; 8 + 1 word; integrat-

ed c i rcu i t))

3S('Unibus; non-hierarchy; bus; concurrency: 1 ; 1 uord/.75 r s)

Fig. 5. PDP-11 structure and characteristics PMS diagram.

switch to allow either of two processors (Unibusses) to access
common shared devices. The interrupt mechanism allows either
processor to respond to an interrupt and similarly either processor
may issue initialization information on an anonymous basis. A

Fig. 7. Three Mp, 2 S('Unibus) structure PMS diagram.

654 Part 3 1 Computer Classes

@ Pc T . . . us... Y,

HP P
dats‘t ransferr

K(‘Unibua)

aS(’Unibue n u l t i p l e bus t o s ing le bus coupler;

frm: 2 Unibus; to: 1 Unibus)

SK(’Processor t o processor coupler)

4Me(duplex)

Fig. 8. Dual Pc multiprocessor system PMS diagram.

control unit is needed so that two processors can communicate
with one another; shared primary memory is normally used to
carry the body of the message. A control connected to two Pc’s
(see Fig. 8) can be used for reliability; either processor or Unibus
could fail, and the shared Ms would still be accessible.

Higher Performance Processors

Increasing the bus width has the greatest effect on performance. A
single bus limits data transmission to 21.3 megabitsisecond, and
though Model 20 memories are 16 megabits/second, faster (or
wider) data path width modules will be limited by the bus. The
Model 20 is not restricted, but for higher performance processors
operating on double word (fixed point) or triple word (floating
point) data two or three accesses are required for a single data
type. The direct method to improve the performance is to double
or triple the primary memory and central processor data path
widths. Thus, the bus data rate is automatically doubled or
tripled.

For 32- or 48-bit memories a coupling control unit is needed so
that devices of either width appear isomorphic to one another.
The coupler maps a data request of a given width into a higher- or
lower-width request for the bus being coupled to, as shown in Fig.
9. (The bus is limited to a fixed number of devices for electrical
reasons; thus, to extend the bus a bus repeating unit is needed.
The bus repeating control unit is almost identical to the bus
coupler.)A computer with a 48-bit primary memory and processor
and 16-bit secondary memory and terminals (transducers) is
shown in Fig. 9.

In summary, the design goal was to have a modular structure
providing the final user with freedom and flexibility to match his
needs. A secondary goal of the Unibus is open-endedness by

Section 3 I Minicomputers

Mp(48 b) Pc(48 b)

coupler;

48 b i t Unibus

Fig. 9. Computer with 48 bit Pc, Mp with 16 bit Ms, T PMS diagram.

providing multiple busses and defining wider path busses.
Finally, and most important, the Unibus is straightforward.

The Instruction Set Processor (ISP) Level-Architecture1

Introduction, Background and Design Constraints
The Instruction Set Processor (ISP) is the machine defined by
hardware and/or software which interprets programs. As such, an
ISP is independent of technology and specific implementations.

The instruction set is one of the least understood aspects of
computer design; currently it is an art. There is currently no
theory of instruction sets, although there have been attempts to
construct them [Maurer, 19661, and there has also been an
attempt to have a computer program design an instruction set
[Haney, 19681. We have used the conventional approach in this
design: first a basic ISP was adopted and then incremental design
modifications were made (based on the results of the bench-
marks).’

Although the approach to the design was conventional, the

‘The word architecture has been operationally defined [Amdahl, Blaauw,
and Brooks, 19641 as “the attributes of a system as seen by a programmer,
i.e., the conceptual structure and functional behavior, as distinct from the
organization of the data flow and controls, the logical design and the
physical implementation.”
’A predecessor multiregister computer was proposed which used a similar
design process. Benchmark programs were coded on each of 10“competi-
tive” machines, and the object of the design was to get a machine which
gave the best score on the benchmarks. This approach had several
fallacies: the machine had no basic character of its own; the machine was
difficult to program since the multiple registers were assigned to specific
functions and had inherent idiosyncrasies to score well on the benchmarks;
the machine did not perform well for programs other than those used in
the benchmark test; and finally, compilers which took advantage of the
machine appeared to be difficult to write. Since all “competitive ma-
chines” had been hand-coded from a common flowchart rather than
separate flowcharts for each machine, the apparent high performance may
have been due to the flowchart organization.

Chapter 38 I A New Architecture for Mini-Computers: The DEC PDP-11 655

resulting machine is not. A common classification of processors is
as zero-, one-, two-, three-, or three-plus-one-address machines.
This scheme has the form:

op 11, 12, 13, 14

where 11 specifies the location (address) in which to store the
result of the binary operation (op) of the contents of operand
locations 12 and 13, and 14 specifies the location of the next
instruction.
The action of the instruction is of the form:

11 +- 12 op 13; goto 14

The other addressing schemes assume specific values for one or
more of these locations. Thus, the one-address von Neumann
[Burks, Goldstine, and von Neumann, 19621 machines assumes 11
= 22 = the “accumulator” and 14 is the location following that of
the current instruction. The two-address machine assumes I1 = 22;
14 is the next address.

Historically, the trend in machine design has been to move
from a 1or 2 word accumulator structure as in the von Neumann
machine towards a machine with accumulator and index regis-
ter(s).’ As the number of registers is increased the assignment of
the registers to specific functions becomes more undesirable and
inflexible; thus, the general-register concept has developed. The
use of an array of general registers in the processor was apparently
first used in the first-generation, vacuum-tube machine, PEGA-
SUS [Elliott et al., 19561 and appears to be an outgrowth of both 1-
and 2-address structures. (Two alternative structures-the early 2-
and 3-address per instruction computers may be disregarded,
since they tend to always access primary memory for results as
well as temporary storage and thus are wasteful of time and
memory cycles, and require a long instruction.) The stack concept
(zero-address) provides the most efficient access method for
specifying algorithms, since very little space, only the access
addresses and the operators, needs to be given. In this scheme the
operands of an operator are always assumed to be on the “top of
the stack. ” The stack has the additional advantage that arithmetic
expression evaluation and compiler statement parsing have been
developed to use a stack effectively. The disadvantage of the stack
is due in part to the nature of current memory technology. That is,
stack memories have to be simulated with random access memo-
ries, multiple stacks are usually required, and even though small
stack memories exist, as the stack overflows, the primary memory
(core) has to be used.

Even though the trend has been toward the general register

‘Due in part to needs, but mainly technology which dictates how large the
structure can be.

concept (which, of course, is similar to a two-address scheme in
which one of the addresses is limited to small values), it is
important to recognize that any design is a compromise. There are
situations for which any of these schemes can be shown to be
“best.” The IBM System/360 series uses a general register
structure, and their designers [Amdahl, Blaauw, and Brooks, 19641
claim the following advantages for the scheme:

1 	Registers can be assigned to various functions: base ad-
dressing, address calculation, fixed point arithmetic and
indexing.

2 	 Availability of technology makes the general registers
structure attractive.

The System1360 designers also claim that a stack organized
machine such as the English Electric KDF 9 [Allmark and
Lucking, 19621 or the Burroughs B5000 [Lonergan and King,
19611 has the following disadvantages:

1 	 Performance is derived from fast registers, not the way they
are used.

2 	 Stack organization is too limiting and requires many copy
and swap operations.

3 	 The overall storage of general registers and stack machines
are the same, considering point 2.

4 	 The stack has a bottom, and when placed in slower memory
there is a performance loss.

5 	 Subroutine transparency is not easily realized with one
stack.

6 	 Variable length data is awkward with a stack.

We generally concur with points 1, 2, and 4. Point 5 is an
erroneous conclusion, and point 6 is irrelevant (that is, general
register machines have the same problem). The general-register
scheme also allows processor implementations with a high degree
of parallelism since instructions of a local block all can operate on
several registers concurrently. A set of truly general purpose
registers should also have additional uses. For example, in the
DEC PDP-10, general registers are used for address integers,
indexing, floating point, boolean vectors (bits), or program flags
and stack pointers. The general registers are also addressable as
primary memory, and thus, short program loops can reside within
them and be interpreted faster. It was observed in operation that
PDP-10 stack operations were very powerful and often used
(accounting for as many as 20% of the executed instructions, in
some programs, e.g., the compilers.)

The basic design decision which sets the PDP-11 apart was
based on the observation that by using truly general registers and
by suitable addressing mechanisms it was possible to consider the

656 Part 3 1 Computer Classes

machine as a zero-address (stack), one-address (general register),
or two-address (memory-to-memory) computer. Thus, it is possi-
ble to use whichever addressing scheme, or mixture of schemes, is
most appropriate.

Another important design decision for the instruction set was to
have only a few data types in the basic machine, and to have a
rather complete set of operations for each data type. (Alternative
designs might have more data types with few operations, or few
data types with few operations.) In part, this was dictated by the
machine size. The conversion between data types must be easily
accomplished either automatically or with 1or 2 instructions. The
data types should also be sufficiently primitive to allow other data
types to be defined by software (and by hardware in more
powerful versions of the machine). The basic data type of the
machine is the 16 bit integer which uses the two’s complement
convention for sign. This data type is also identical to an address.

PDP-11 Model 20 Instruction Set (Basic Instruction Set)

A formal description of the basic instruction set is given in
Appendix 1using the ISP notation [Bell and Newell, 19711. The
remainder of this section will discuss the machine in a convention-
al manner.

Primary Memory. The primary memory (core) is addressed as
either 216 bytes or P5words using a 16 bit number. The linear
address space is also used to access the input-output devices. The
device state, data and control registers are read or written like
normal memory locations.

General Register. The general registers are named: R[O:7]
<15:0>’; that is, there are 8 registers each with 16 bits. The
naming is done starting at the left with bit 15 (the sign bit) to the
least significant bit 0. There are synonyms for R[6] and R[7]:

Stack Pointer/SP<15:0> := R[6]<15:0>. Used to access a
special stack which is used to store the state of interrupts, traps
and subroutine calls

Program Counter/PC<15:0> := R[7]<15:0>. Points to the
current instruction being interpreted. It will be seen that the
fact that PC is one of the general registers is crucial to the
design.

Any general register, R[0:7], can be used as a stack pointer. The
special Stack Pointer (SP)has additional properties that force it to
be used for changing processor state interrupts, traps, and
subroutine calls (It also can be used to control dynamic temporary
storage subroutines.)

‘A definition of the ISP notation used here may be found in Chapter 4.

Section 3 1 Minicomputers

In addition to the above registers there are 8 bits used (from a
possible 16)for processor status, called PS<15:0> register. Four
bits are the Condition Codes (CC) associated with arithmetic
results; the T-bit controls tracing; and three bits control the
priority of running programs Priority <2:0>. Individual bits are
mapped in PS as shown in Appendix 1.

Data Types and Primitive Operations. There are two data
lengths in the basic machine: bytes and words, which are 8 and 16
bits, respectively. The non-trivial data types are word length
integers (w. i.); byte length integers (by.i); word length boolean
vectors (w.bv), i.e., 16 independent bits (booleans) in a 1
dimensional array; and byte length boolean vectors (by. bvj. The
operations on byte and word boolean vectors are identical. Since a
common use of a byte is to hold several flag bits (booleans), the
operations can be combined to form the complete set of 16
operations. The logical operations are: “clear,” “complement,”
‘ I .inclusive or,” and “implication” (x 2 y or l x v yj.

There is a complete set of arithmetic operations for the word
integers in the basic instruction set. The arithmetic operations
are: add, subtract, multiply (optional), divide (optional), compare,
add one, subtract one, clear, negate, and multiply and divide by
powers of two (shift). Since the address integer size is 16 bits,
these data types are most important. Byte length integers are
operated on as words by moving them to the general registers
where they take on the value of word integers. Word length
integer operations are carried out and the results are returned to
memory (truncated).

The floating point instructions defined by software (not part of
the basic instruction set) require the definition of two additional
data types (of length two and three), i.e., double word (d.w.) and
triple (t.w.) words. Two additional data types, double integer (d.i.)
and triple floating point (t.f. or 0 are provided for arithmetic.
These data types imply certain additional operations and the
conversion to the more primitive data types.

Address (Operand) Calculation. The general methods provided
for accessing operands are the most interesting (perhaps unique)
part of the machine’s structure. By defining several access
methods to a set of general registers, to memory, or to a stack
(controlled by a general register), the computer is able to be a 0, 1
and 2 address machine. The encoding of the instruction Source (S)
fields and Destination (D)fields are given in Fig. 10 together with
a list of the various access modes that are possible. (Appendix 1
gives a formal description of the effective address calculation
process.)

It should be noted from Fig. 10 that all the common access
modes are included (direct, indirect, immediate, relative, in-
dexed, and indexed indirect) plus several relatively uncommon
ones. Relative (to PC) access is used to simplify program loading,

Chapter 38 1 A New Architecture for Mini-Computers: The DEC PDP-11 657

m I d] r e

(1 1 10 9 0 7 6 b i t
sm sd Br

4 3 2 1 0 b i t

' f do dd d r

r - r e g i s t e r s p e c l f l c s t l o n R[rl

d = d e f e r (l n d l r e c t) a d d r e s s b i t
- mode (00 = R[r]; 01 - R[r); next R [r] +Liz1

I0 - RCrl, R L r l - a i . n e x t R[1]

1 1 = indexed wi th next word)

The fo l lowing access d e a can be s p e c i f i e d :

0 d i r e c t - t o a r e g i s t e r . R[rl

1 i n d i r e c t - t o a r e g i s t e r . R[rl f o r a d d r e s s of d a t a

2 a u t o iocrement v ia r e g i s t e r (pop) - use r e g i s t e r as a d d r e s s , t h e n

3 a " t s s F , ~ * ~ ~ " ~ e ~ ~ t ~ ~ g l * t e r(pop) - d e f e r
4 a u t o decrement v i a r e g i s t e r (push) - decrement r e g i s t e r , then use

r e g i s t e r a8 a d d r e s s

5 a u t o decrement i n d i r e c t - deeremcnt r e g l s t e r . then use r e g i s t e r as t h e

a d d r e s s of the a d d r e s s of d a t a

2 immediate d a t a - n e x t f u l l word is t h e d a t a (-'.PO

3 d i r e c t d a t a - next f u l l vord is t h e a d d r e s s o f d a t a (r P C)

6 d i r e c t indexed - use n e x t f u l l w r d indexed with R[rl .B a d d r e s s of da ta

7 d i r e c t lndexed - i n d i r e c t - ume n e x t f u l l w r d Lndercd w i t h R[rl a8 the

sddreaa of the a d d r e s s o f d a t a

6 r e l a t i v e a c c e s s - next f u l l w r d plun R: is the a d d n a a (r P C)

7 r e l a t l v e i n d i r e c t a c c e s s - next f u l l word p l u s PC I B t h e a d d r e s s o f the

a d d r e s s of d a t a (rmpc)

'addream i n c r t m e n t / a i v a l u e l a 1 or 2

Fig. 10. Address calculation formats.

while immediate mode speeds up execution. The relatively
uncommon access modes, auto-increment and auto-decrement,
are used for two purposes: access to stack under control of the
registers' and access to bytes or words organized as strings or
vectors. The indirect access mode allows a stack to hold addresses
of data (instead of data). This mode is desirable when manipulating
longer and variable-length data types (e.g., strings, double fixed
and triple floating point). The register auto increment mode may
be used to access a byte string; thus, for example, after each
access, the register can be made to point to the next data item.
This is used for moving data blocks, searching for particular
elements of a vector, and byte-string operations (e.g., movement,
comparisons, editing).

This addressing structure provides flexibility while retaining
the same, or better, coding efficiency than classical machines. As

'Note, by convention a stack builds toward register 0, and when the stack
crosses 4008, a stack overflow occurs.

Deser io t lm

replace A with cmtent . of l
replace A with number, N
rep1.ce element o f . cor.n*ctor
replace element of .v e c t a .
move t o next element

load r e g i s t e r
s tore r e g i s t e r
load or a t w e iad i rcc t "1.
element A

reg is te r t o reg is te r t ransfer
s tore indexed (load l a d e e d)
(or store)

load (or s tore) indexed indl rec t

load imdlract v i r reg la te r

l a d (Or Store) e l e m a t Lndirect
Vl. regi.ter. m e to next elemcat

load ntack with l i teral
load stack with cmtemt. of 4
by stack u l th L m o q @peclficdload top of st.ck

s tore a t a c t in b

a tare *tack top In memory
.ddre...d by stack top -1
duplloatr top of .tack

Fig. 11. Coding for the MOVE instruction to compare with conven-
tional machines.

an example of the flexibility possible, consider the variations
possible with the most trivial word instruction MOVE (see Fig.
11). The MOVE instruction is coded as it would appear in
conventional 2-address, 1-address (general register) and 0-address
(stack) computers. The two-address format is particularly nice for
MOVE, because it provides an efficient encoding for the common
operation: A +- B (note, the stack and general registers are not
involved). The vector move A[I] +- B(1) is also efficiently encoded.
For the general register (and 1-address format), there are about 13
MOVE operations that are commonly used. Six moves can be
encoded for the stack (about the same number found in stack
machines).

Instruction Formats. There are several instruction decoding
formats depending on whether 0, 1, or 2 operands havk to be
explicitly referenced. When 2 operands are required, they are
identified as Source/S and DestinationID and the result is placed
at DestinationlD. For single operand instructions (unary opera-
tors) the instruction action is D +- u D; and for two operand
instructions (binary operators) the action is D +- D b S (where u
and b are unary and binary operators, e.g., 1,- and +, -, X, I,

658 Part 3 I Computer Classes

respectively. Instructions are specified by a 16-bit word. The most
common binary operator format (that for operations requiring two
addresses) is shown below.

15. .. 12; 11. . .6; 5 . . . 0

OD D S

The other instruction formats are given in Fig. 12.

Instruction Interpretation Process. The instruction interpreta-
tion process is given in Fig. 13, and follows the common
fetch-execute cycle. There are three major states: (1)
interrupting-the PC and PS are placed on the stack accessed by
the Stack PointerlSP, and the new state is taken from an address
specified by the source requesting the trap or interrupt; (2) trace
(controlled by T-bit)---essentially one instruction at a time is
executed as a trace trap occurs after each instruction; and (3)
normal instruction interpretation. The five (lower) states in the
diagram are concerned with instruction fetching, operand fetch-
ing, executing the operation specified by the instruction and
storing the result. The non-trivial details for fetching and storing
the operands are not shown in the diagram but can be constructed
from the effective address calculation process (Appendix 1). The
state diagram, though simplified, is similar to 2- and 3-address
computers, but is distinctly different than a 1address (1accumula-
tor) computer.

Binary arithmetic and logical operations: bop 1 s I D 1 '
form: D t S b D

example: ADD (:.boo=0010) -+ (CC,D + MS);

Unary arithmetic and logical operation:

form: D c u D ;

examples: NEG (:=uop,0000101100) -+ (CC.D c - D) - negate
ASL (:=uop,00000110011) -+ (CC,D c R X 2) ; shift l e f t

Branch (relative) operators: brop I o f f s e t]

form: y brop condition then (PC + PC + offset) ;

example: BEQ (: = brop I 0316) (2 -t (PC c P C + offset)) :

Jump: 0 000 000 001 I D

form: F'C + D + Pc
Jump to subroutine: 0 000 100 I D I

save R[sr] on stack, enter subroutine a t D + PC

Hisc. operations: I op code I
form: ST t f

exauaple: HALT (: instruction 0) (RUN + 0) ;I I

'Note: theme instructions are a l l 1 uord. D and/or S my each require

additional i a r d i a t e data or addresa uord. Thus inatructions C a

be 1 , 2, or 3 words law.

Fig. 12. PDP-11 instruction formats (Simplified).

Section 3 1 Minicomputers

U
Fig. 13. PDP-11 instruction interpretation process state diagram.

The ISP description (Appendix 1)gives the operation of each of
the instructions, and the more conventional diagram (Fig. 12)
shows the decoding of instruction classes. The ISP description is
somewhat incomplete; for example, the add instruction is defined
as: ADD (:= bop = 0010) +(CC,D +- D + S) ; addition does not
exactly describe the changes to the Condition Codes/CC (which
means whenever a binary opcode [bop] of 0010, occurs the ADD
instruction is executed with the above effect). In general, the CC
are based on the result, that is, Z is set if the result is zero, N if
negative, C if a carry occurs, and V if an overflow was detected as a
result of the operation. Conditional branch instructions may thus
follow the arithmetic instruction to test the results of the CC bits.

Examples ofAddressing Schemes

Use as a Stack (Zero Address) Machine. Figure 14 lists typical
zero-address machine instructions together with the PDP-11
instructions which perform the same function. It should be noted
that translation (compilation) from normal infix expressions to
reverse Polish is a comparatively trivial task. Thus, one of the
primary reasons for using stacks is for the evaluation of expressions
in reverse Polish form.

Chapter 38 I A New Architecture for Mini-Computers: The DEC PDP-11 659

~~~~ ~ 

place address v a l w  A m stack 
load .tack from -wry address specified 

by .tack 


l M d  stack from -wry location A 


store stmck a t  r w r y  address spec i f ied  

by stack 


s tore  stack a t  mnory Locatim A 


duplicate top of #tack 


+ , add 2 top data of stack t o  stack 

-,X. /; subtract,  u l t i p l y ,  divide 


-;negate t o p  data of stack 


clear top data of stack 


v; “inclusive or“ 2 top data of #tack “md“ 

2 top data of stack 


-; complement top of arack 


test top of stack (set branch indicators) 


branch m indicator 


j.Q4P ~ C ~ i t i Q O . l  


add mddreased Icest ioa  A t o  top of stack -

(not co..oo for stack a c h i o e )  equivalent 

to: lMd stsck,  add map top 2 stack data 


reset  stack l o c a t i a  t o  N 

A. “and“ 2 top stack data 

‘Stack pointer has been arbitrarily used a# resister RO for th i s  e u q l c .  

Fig. 14. Stack computer instructions and equivalent PDP-11 in-
structions. 

Consider an assignment statement of the form 

D tA + B/C 

which has the reverse Polish form 

DABC/+ c 

and would normally be encoded on a stack machine as fol- 
lows 

load stack address of D 

load stack A 

load stack B 

load stack C 


+/ 
store 

However, with the PDP-11 there is an address method for 
improving the program encoding and run time, while not losing 
the stack concept. An encoding improvement is made by doing an 
operation to the top of the stack from a direct memory location 
(while loading). Thus the previous example could be coded as: 

load stack B 
divide stack by C 
add A to stack 
store stack D 

Use as a One-Address (General Register) Machine. The 
PDP-11 is a general register computer and should be judged on 
that basis. Benchmarks have been coded to compare the PDP-11 
with the larger DEC PDP-10. A 16 bit processor performs better 
than the DEC PDP-10 in terms of bit efficiency, but not with time 
or memory cycles. A PDP-11 with a 32 bit wide memory would, 
however, decrease time by nearly a factor of two, making the times 
essentially comparable. 

Use as a Two-Address Machine. Figure 15 lists typical two- 
address machine instructions together with the equivalent 
PDP-11 instructions for performing the same operations. The 
most useful instruction is probably the MOVE instruction because 
it does not use the stack or general registers. Unary instructions 
which operate on and test primary memory are also usehl and 
efficient instructions. 

Extensions of the Instruction Set 
for Real (Floating Point) Arithmetic 

The most significant factor that affects performance is whether a 
machine has operators for manipulating data in a particular 
format. The inherent generality of a stored program computer 
allows any computer by subroutine to simulate another-given 
enough time and memory. The biggest and perhaps only factor 
that separates a small computer from a large computer is whether 
floating point data is understood by the computer. For example, a 
small computer with a cycle time of 1.0 microseconds and 16 bit 
memory width might have the following characteristics for a 
floating point add, excluding data accesses: 

Programmed 250 microseconds 
Programmed but (special normalize 
and differencing of exponent 
instructions) 75 microseconds 

Microprogrammed hardware 25 microseconds 
Hardwired 2 microseconds 

It should be noted that the ratios between programmed and 
hardwired interpretation varies by roughly two orders of magni- 
tude. The basic hardwiring scheme and the programmed scheme 
should allow binary program compatibility, assuming there is an 
interpretive program for the various operators in the Model 20. 
For example, consider one scheme which would add eight 48 bit 
registers which are addressable in the extended instruction set. 



660 Part 3 1 Computer Classes 

Two Address C-uttr PDP-11-
A t l i  trmsfer B t o  A WVE 1.A 

A +A*; add ADD 1.A 

-I X. I (see add) 
A +-A; Dclatt  WeC A 

A + A  v B; i n c l u s i v e  or 3SETB.A 
A +-,A; not em 

Jump uacmditicmed uw 

Teat  A, and transfer t o  1 TST A 

BR L, c. >. 2. <. 5 )  B 

Fig. 15. Two address computer instructions and equivalent PDP-11 
instructions. 

The eight floating registers, F, would be mapped into eight 
double length (32 bit) registers, D. In order to access the various 
parts of F or D registers, registers FO and F1 are mapped onto 
registers RO to R2 and R3 to R5. 

Since the instruction set operation code is almost completely 
encoded already for byte and word length data, a new encoding 
scheme is necessary to specify the proposed additional instruc- 
tions. This scheme adds two instructions: enter floating point 
mode and execute one floating point instruction. The instructions 
for floating point and double word data would be: 

binaru ops O P  floatingpointf f  and double wordld 
~~ ~ 

bop' S D c FMOVE DMOVE 
+ FADD DADD 
- FSUB DSUB 
X FMUL DMUL 
I' FDlV DDlV 

compare FCMP DCMP 

unary ops 

UOD' D - FNEG DNEG 

Logical Design of S(Unibus) and Pc 

The logical design level is concerned with the physical implemen- 
tation and the constituent combinatorial and sequential logic 
elements which form the various computer components (e.g., 
processors, memories, controls). Physically, these components 
are separate and connected to the Unibus following the lines of the 
PMS structure. 

Unibus Organization 

Figure 16 gives a PMS diagram of the Pc and the entering signals 
from the Unibus. The control unit for the Unibus, housed in Pc for 
the Model 20, is not shown in the figure. 

Section 3 1 Minicomputers 

Fig. 16. PDP-11 Pc structure. 

The PDP-11 Unibus has 56 bi-directional signals conventionally 
used for program-controlled data transfers (processor to control), 
direct-memory data transfers (processor or control to memory) 
and control-to-processor interrupt. The Unibus is interlocked; 
thus transactions operate independently of the bus length and 
response time of the master and slave. Since the bus is bi- 
directional and is used by all devices, any device can communicate 
with any other device. The controlling device is the master, and 
the device to which the master is communicating is the slave. For 
example, a data transfer from processor (master) to memory 
(always a slave) uses the Data Out dialogue facility for writing and 
a transfer from memory to processor uses the Data In dialogue 
facility for reading. 

Bus Control. Most of the time the processor is bus master 
fetching instructions and operands from memory and storing 
results in memory. Bus mastership is determined by the current 
processor priority and the priority line upon which a bus request 
is made and the physical placement of a requesting device on the 
linked bus. The assignment ofbus mastership is done concurrently 
with normal communication (dialogues). 

Unibus Dialogues 

Three types of dialogues use the Unibus. All the dialogues have a 
common protocol which first consists of obtaining the bus 
mastership (which is done concurrently with a previous transaction) 



followed by a data exchange with the requested device. The 
dialogues are: Interrupt; Data In and Date In Pause; and Data Out 
and Data Out Byte. 

Interrupt. Interrupt can be initiated by a master immediately 
after receiving bus mastership. An address is transmitted from the 
master to the slave on Interrupt. Normally, subordinate control 
devices use this method to transmit an interrupt signal to the 
processor. 

Data In and Data In Pause. These two bus operations transmit 
slave’s data (whose address is specified by the master) to the 
master. For the Data In Pause operation data is read into the 
master and the master responds with data which is to be rewritten 
in the slave. 

Data Out and Data Out Byte. These two operations transfer 
data from the master to the slave at the address specified by the 
master. For Data Out a word at the address specified by the 
address lines is transferred from master to slave. Data Out Byte 
allows a single data byte to be transmitted. 

Processor Logical Design 
The Pc is designed using TTL logical design components and 
occupies approximately eight 8” x 1%’printed circuit boards. The 
organization of the logic is shown in Fig. 16. The Pc is physically 
connected to two other components, the console and the Unibus. 
The control for the Unibus is housed in the Pc and occupies one of 
the printed circuit boards. The most regular part of the Pc, the 
arithmetic and state section, is shown at the top of the figure. The 
16-word scratch-pad memory and combinatorial logic data opera- 
tors, D(shift) and D(adder, logical ops), form the most regular part 
of the processor’s structure. The 16-word memory holds most of 
the 8-word processor state found in the ISP, and the 8 bits that 

Chapter 38 A New Architecture for Mini-Computers: The DEC PDP-11 661~ 

form the Status word are stored in an 8-bit register. The input to 
the adder-shift network has two latches which are either memo- 
ries or gates. The output of the adder-shift network can be read to 
either the data or address parts of the Unibus, or back to the 
scratch-pad array. 

The instruction decoding and arithmetic control are less regular 
than the above data and state and these are shown in the lower 
part of the figure. There are two major sections: the instruction 
fetching and decoding control and the instruction set interpreter 
(which in effect defines the ISP). The later control section 
operates on, hence controls, the arithmetic and state parts of the 
Pc. A final control i s  concerned with the interface to the Unibus 
(distinct from the Unibus control that is housed in the Pc). 

Conclusions 

In this paper we have endeavored to give a complete description 
of the PDP-11 Model 20 computer at four descriptive levels. 
These present an unambiguous specification at two levels (the 
PMS structure and the ISP), and, in addition, specify the 
constraints for the design at the top level, and give the reader 
some idea of the implementation at the bottom level logical 
design. We have also presented guidelines for forming additional 
models that would belong to the same family. 

References 

Allmark and Lucking [1962]; Amdahl, Blaauw, and Brooks [1964]; 
Bell and Newell [1971]; Burks, Goldstine, and Von Neumann 
[1962]; Elliott, Owen, Devonald, and Maudsley [19561; Haney 
[1968]; Lonergan and King [1961]; Maurer [1966]; Rothman 
[19593; Wilkes [19511. 



APPENDIX 1 PDP-11 ISP 

111 : =  *.lmplemei,tation.Declarations** 
b e g i n  

b u s . e r r o r 0 .  ! B U S  e r r o r  d e t e c t e d  
This i s  a sumnary d e s c r i p t i o n  o f  a PDP-11/70 p r o c e s s o r  w r i t t e n  b y t e  .access<) ,  ! 1 f o r  b y t e  r e a d f w r i t e  
i n  t h e  JSPS language .  cn lode<l :0). I Teii iporary f a r  a l l  processing u s i n g  c u r r e n t  mode 

bus reg ( l5 :O) .  I C o n t a i n s  t r a p  v e c t o r  when a t r a p  1s s e t  up 
T h i s  sunmaiy e x p l i c i t l y  d e f i n e s  t h e  i n s t r u c t i o n  f e t c h  and e x e c u t e  d l ' \ d e s t i n a t l o l i .  r e g . a d d l . . i n . r e g i s t e r . f i l e < 3 : 0 ) .  
c y c l e s  o f  t h e  PU11-11f70. I i l a g O .  I Used w i t h  t o  f o r c e  I space access  

o l d v a l < l 5 : 0 > .  I Register v a l u e  b e f o r e  a u t o  i nc remen t fdec remen t  
Mos t  o f  t h e  a c t u a l  i n s t r u c t i o n  e x e c u t i o n  d e s c r i p t 7 o n s  hawe been p c .  te inp( l5 :O) .  ! Used d u r i n g  t r a p  r o u t i n e s  
e l i i n i n a t e d .  H o w e v e r .  a t  l e a s t  one i n s t r u c t i o n  fron1 each O f  pnlode<l:O). ! Se t  by mtp and infp i n s t r u c t i o n s :  
t h e  ma jo r  1 m t i . u c t i o n  c l a s s e s  i s  d e s c r i b e d  i n  f u l l .  I if0 t h e r  rnoriiial r e a d / w P i t e  

I if1 the,)  use p r e v i o u s  i n ~ t r u c t i o nSpace 
l h e  inenlory managelrent d e s c r i p t i o n  Ihas been e l i i n i n a t e d  f rom t h l s  summary if 2 the,, use p r e v i o u s  d a t a  space 

p s .  temp( l5 :O) .  ! used  during t r a p  r o u t i n e s  
The r e g ~ s l e rinsapping ROM i n i l i a l i z a t i o n  lhas beei l  e l i m i n a t e d  l e y f l g o .  ! D e s ~ g n a t e s r e g i s t e r  access t o  r e a d l w l ' l t e  p r o c e d u r e s  
froin t h e  sunmlary. I f  S i i i l u l a t i o n s  a r e  p e l ' f o m e d .  RLGROM[BS:O] 111GROM\ reg is t e P .mill,p I n g . r e a d  .on l y i i iemovy~63 :0 j ( 3  :O) . 
s h o u l d  be i i l i t i a l I , e d  by  use  o f  an e x t e r n a l  R t A O  f i l e .  s r \ s o u r c e , r e g . a d d r  ~ n . r e g l s t e r . f i l e ( l : O ) .  

L ~ I R I ~ C ~. . . n >. I Curr 'ent  s t a t e  0 = i n s t r u c t i o n  f e t c h l d e c a d e  . .. . . 

MP. State ' .  1 = e x e c u t e  


2 = s e r v i c e  

Macro d e f i n i t i o n s  t o  a l l o w  easy change o f  memory Configuration. 3 = unused 

The 11/70 a l l o w s  a d d r e s s i n g  up t o  2M * 2 b y t e s .  A S m a l l e r  temp< 17 :0). 

memory i s  dec laped  f o r  s i t n u l a t o r  space e f f i c i e n c y .  temp1<3:0). 


t r a c e .  flage), I Trace t r a p  b i t  t empora ry  

C P O  max.by te  : =  1111G7777 1 .  I ( 2 8 k  
 2 b y t e s )  t r a p . i n s t r 0 .  I Se t  by emt.  t r a p ,  b p t .  and i o t  t o  i n h i b i t  

"ar<21:0 ) .  ! V i r t u a l  addpess r e g i s t e r  used i n  r e a d  and W r i t e  
[ m a x .  b y t e :  0 ]<7 : O > ,  I The a d d r e s s i n g  space r e r o s < 6 3 : 0 ) .  ! 64 b i t s  o f  ze ros  
Lmax,  b y t e :  0 ]<15 :  0 > (  i ncremen t : 2) := MB[mar, b y t e :  0 ]<7:0>,  
I t i [ a l 7 7 7 7 7 7 7 : 1 1 1 7 7 G 0 0 0 0 ] < 7 : 0 > .  I l h e  i / o  page ( 4 k )  '.InstPUction.Farmat.* 
1 0 [ # 1 7 7 7 7 7 7 7 : # 1 7 7 6 0 0 0 0 ~ < 1 5 : 0 ~ ( i n c r e m e n t : 2 ):= MBJO[KI1777777:#177GU000]<7:0~.  

R\Memo~'y. addl'. rey<Zl:O). 

R\Memo?y. b u f f .  reg< 15:O). J ~ \ l n s t l . u c t i o n . r e g i s t e r < l 5 : 0 >  : =  1<15:0>.  

bmb r \ b y  l e .mhi'<7 :0) := MBIK7 :0 ) .  


S \ S O U I ' C B .  f i e l d < 5 : 0 )  :=  i < 1 1 : 6 > ,  I Source  address  i n f o r m a t i o n  
~ . ~ \ s ~ u i ' ~ e . ~ i , o d e < l :0) : =  s < 5 : 4 > ,  
s d \ s o u r c e . d e f e r r e d O  : =  s<3> .  

:'C . S t a t e *. s r c r s g \ s o u r c e .  reg<2 :0 )  : =  s < 2 : 0 > .  

r e g i s t e r [ l 5 : 0 ] < 1 5 : 0 > .  I R e g i s t e r  f i l e  i n c l u d i n g  two s e t s  o f  g e n e r a l  ! S p r c l a l  h a n d l i n g  i f  r e g i s t e r  6 [ S t a c k  P o i n t e r )  o r  r e g i s t e r  7 (Program
I r e g i s t e r s :  R O - R 5  ( a d d r e s s  0000-0101,  1000-1101) .  ! Cuu i l l ec )  1s used 111 au to lnc i ' e ine l i t / au tode t l ' emen t  addl 'ess ing modes. 

! One prog ram c o u n t e r  ( a d d r e s s  0111) .  and t h r e e  

! S tack  p o i n t e r s  ( a d d r e s s  01J0.1110.1111)  macl'o srG7 : =  l(s<2:1> e q l  ' 1 1 ) l .  


<15:0> : =  R[ '0111]<15:0) .  I O n l y  1 p rog ram c o u n t e r  d \  tiest ) s a t 1on .f 1 e 1d<5 :0) := i< 5 :0) , ! D e s t i n a t i o n  address  i n f o .  
d in \des t i na t  i o n  . i i lode( l :O)  : =  d<5:4>. 


cro  SP : =  ~ ~ [ c m o d e < O ) ~ ' 1 1 9 ( c m o d e < l >and cmode<O))] 1 .  ! S tack  p o i n t e r  (3) dd \des t  i n a t i o n . d e f e l r e d 0  : =  d<3) ,  

c r o  l i n k  : =  I R [ r s @ ' l O l l  I .  I Two R 5 ' s  ( s u b r o u t i n e  l i n k )  d e s i . e g \ d e s t i n a t i o i i . r e g < 2 : 0 )  : =  d(2:O).  


,<15:0> : =  M O I L I [ # 1 7 7 7 7 7 7 7 : # 1 7 7 7 7 7 7 G ~ < 7 : 0 >  Progra in s t a t u s  word  imacro d r 6 7  : =  I(d(2:l) e q l  '1111. 

cm\c "PTe i i t .mode~ l :O>  := PS<15:14). C u r r e n t  add ress  space 


( k e l . n e l / s u p e i ~ v i s o r / u s e r )  ! l u s t r u c l i o a  decoding f i e l d s  
macro k e r n e l  : =  I ( cmode  e q l  ' 0 0 )  

macro super  : =  I ( c inode  e q l  ' 0 1 )  : =  i < 8 : 6 > .  

m a c r o  u s e r  : =  I ( cm0de  e q l  ' 1 1 )  : =  1R<7:0). 

p m \ p r e v ~ o u s .mode<l :0) := PS<13: 12), P r e v i o u s  address  Space :=  1<7 :6 ) ,  

p \ p r i o r i t y < 2 : 0 >  :=  p s < 7 : 5 > .  C u r r e l i t  p r o c e s s  p r i o r i t y  : =  1<15). 

? s \ r e g i S t e r . s e t < >  : =  PS(ll>. : =  1<15), 

t \ t r a c e < >  : =  P S < 4 > .  : =  i ( 8 ) . 

Cc\co11d,t1on,COdes<3:0) : =  PS(3:O). : =  i < 1 5 : 5 > ,  


N \ n e g a t i v e O  :=  cc<3> .  : =  i<Z:O).
Z \ze ro<)  : =  CC<2). : =  i < 5 : 3 > .  
v \oYePf low<>  :=  C C < l > .  . =  i < l O : B > .  
C \ c a r r y O  :=  C C < O > .  : =  i < l l : 9 > ,  

: =  i<10:9?, 

E x t e r n a l  i n t e r r u p t  r e q u e s t s  := i<ll>. 


:= i < 4 > .  

' 7 \ b u s . r e q u e s t . 7 0 .  I E x t e r n a l  i n t e r r u p t  r e q u e s t s  

' 6 \ b ~ s . r e q u e s t . 6 0 .  

'6 \buS.  r e q u e S t . 5 0 .  ! Source l o a d s  t h e  v a l u e  o f  t h e  s o u r c e  uperand  i n t o  r e g i s t e r  source. 
'4\bus. r e q u e s t .  4 0 .  ! D e s t  l o a d s  t h e  address  o f  t h e  d e s t i n a t i o n  operand  i n t o  r e g i s t e r  d e s t  

! and f e t c h e s  t h e  o p e l a n d  t o  t h e  MBR. 
I I ? R E G \ c ~ u . ~ P P o P .r e g i s t e r ( l 5 : O )  := MI3IO[ I/ 17 7 7 7 167 :K 177 777 661  < 7 :0). 


i l l h l t \ i l l e g a l  , h a l t < >  : =  E I ? I l I K G < 7 ) .  s o u r c e (  ) < 1 5 : 0) := 

orldai ld \odd a r l d r e 8 s O  : =  tRll l~CG<G>. b e g i n 

~~ 

nomem\non, 
. 

e x 1  
.~ 

s t e n t . m e m o r y 0  :=  EllllREG<5). i f l a g  = 0 n e x t  

t i m e o u t \ u n  1 b u s . t i w e  .Ou t<>  :=  CI I I l I ICG<4> ,  DECODE sm => 

ye1  l o w \ y e l l a w . z o n e .  s t a c k .  I iiiii t 0  := ClIRilCG(3). beg?"  

r e d \ r e d . l o n e . s t a c k . l I m i t O  : =  C l I I l l lEG<2> .  0 := S O U P C ~= R[sr] .  ! n e g i s t e r  mode: r e g i s t e r s  


I a r e  addressed  d i r e c t l y .  
f S l l l \ s y s t e m .  id(15:O) := MR10[1117777765:1117777764]<7:0>. ! I l a r d w i r e d  Sys N O .  1 : =  b e g i n  ! A u t a l n c r e m e n t  nmode: use  
t a c t  i v i t y < O : l > ,  i f l a g  = ( S i - eql ( "S)  K 7 ) :  ! t h e  c o n t e i i t s  o f  t h e  s p e c i f l e d  

I r e a i s t e r  as an address.  
macro yo : =  I ( a  e q l  ' 0 O ) l .  
imacro WAIT : =  / ( a  eq1 : o l ) l .  beg;" 
macro HALT :=  / ( a  e q l  l o ) ( .  n l s r ]  = R [ s P ]  1. ( 2  - (us) b y t e . a c c e s s ) .  

R [ s r ]  = q s r ]  * 2 
Trap  v e c t o r  add resses :  The a s s o c i a t e d  e r r o r  c o n d i t i o n s  cause e x e c u t i o n  end n e x t  
t o  s w i t c h  t o  t h e  PC aiid PS s t o p e d  1" t h e  t w o  words a t  t h e  t r a p  address .  r e a d ( b y t e . a c c e s s  * (us)  ( 1  - (us) s d ) )  n e x t  

source = MDR: i f l a g  = 0 
macro c p u . e r r o r s  : =  /NO04 1 .  end. 
macro i l l . i n s t r  :=  lNOlO 1 .  2 : =  b e g i n  I Au todec remen t  mode: 
m a c r o  r e s .  i n S t F  :=  ) # 0 1 0  1 ,  DECODE ( s r 6 7  o r  s d )  = >  I decrement  c o n t e n t s  o f  t h e  
macro  b p t . t r a p  : =  I n014  1 .  b e g i n  I s p e c i f i e d  r e g i s t e r  be fore  
macro  1 0 t . t r a p  : =  I N 0 2 0  1 .  I u s e .  
macro  power.  f a i l  : =  1 8 0 2 4  1 .  

R[sr]  = R L s r ]  - 2 
R [ s r ]  = I l [ s ~ ]  - ( 2  - ( u s )  b y t e . a c c e s s ) .  

inacro e n i t . t r a p  :iI N 0 3 0  I .  
macro t r a p . t r a p  : =  111034 I .  end n e x t  

662 

http:'7\bus.request.70
http:'6\b~s.request.60
http:requeSt.50


APPENDIX 1 (cont'd.) 
MAR = R[sr] n e x t  d. read( b y t e .  act<>) := I Dest.  read  
r e a d ( b y t e  access . ( U S )  ( 1  -(us) s d ) )  n e r t  b e g i n  
S O U P C ~  = MBR d e s t ( )  n e x t
end .  r e a d (  by te .acc  j

3 :  = beg in  Index (made: f e t c l l  t h e  nex t  end.

i f l a g  = 1: MAR = PC n e x t  wo ld  froin $nelilOry and add 

PC = PC + 2 n e x t  	 read (by te .acc<>)  :=

add i t  t o  t h e  c o n t e n t s  b e g i no f  t he  s p e c i f i e d  # r e g i s t e r  I F  MAR<O> and loot by te .acc  = >  o d d e r r ( ) :  v a r  = MAR n e x tread (0 )  n e x t  i f l a g  = 0: t o  for in t h e  erfrctive a d d r ~ c q~~......-- i f  (var<15:13> er j l (us) #7) = >  var<21:6> = #77 n e x tMAR = (MB!l + lR[sr])<15:0)~. n e x t  l!ie r e o i s t e r  c o n t e n t s  DECODE var(21:1B> eq l (us )  # I 7  => 
rend (by t$ .acccss  *(us) ( 1  - ( u s )  s d ) )  ,next 	 b e g i n  
SouI'ce = MQR 	 0 : =  DECODE I reg f l g  => I checkI R e g i s t e r  access ing  
end b e g i n  

end n e x t  0 : =  DCCODE b v t e . a c c  => I n o t  r e g i s t e r  
beg in  

I F  sd = >  I C o r r e c t i o n  f o r  a l l  defer l 'ed MBR = MWCvar] .  
b e g i n  I mode addresses. Use "Source" MBR = MR[var] 
MAR = source n e x t  I genera ted  above as an addrsss end, 
read (by te .access )  (next ! t u  a p o i n t e r  t o  the  t r u e  1 :=  DECODE by te .acc  => I R e g i s t e r  
sou rce  = MBR I source. b e g i n  

end MBR = RCdr]. 


end, MBR = ll[d1']<7:0> 

end


d e s t ( ) < l 5 : 0 >  := 	 end. 
beg in  1 : =  I F  var<17:13>  eq l (us )  #37 => ! Yes 
i f l a "  = 0: o l d v a l  = R[dr l  n e x t  beg in.. ._  . .  
DECOEE dm = >  DCCODE by te .acc  = >  I IO.page

beg in  beg in
0 : =  b e g i n  I R e g i s t e r  mode: r e g i s t e r s  MBR = MWIO[var].

des t  = 0: r e g f l g  = 1  I a r e  addressed d i r e c t l y  MBR = MQIO[var]
end. end 

1 : =  	 b e g i n  Piuta i n c  rement inode : use end 

des t  = RCdr] n e x t  o f  t he  s p e c i f i e d  r e g i s t e r  end 

DECODE (drG7 o r  t h e ' c o n t e n t s  o f  t h e  end.
d d l  => . .  


beg in  ! as an address.  increment 

I t h e  r e g i s t e r  a f t e r  u s e .  w r i t e ( b y t e . a c c 0 )  :=  


R [ d r l  = RCdr l  + ( 2  - ( u s )  by te .access ) .  b o g i n  
R[dl'] = lR[dr] + 2 I F  MAR<O> and n o t  by te .acc  = >  o d d e r r ( ) :  v a r  = MAR n e x t  
end n e x t  If (va r<15 :13>  eq l ( l i s )  #7) = >  v a r < Z l : l G >  = #77 n e x t  

i f l a g  = ( d r  eq l (us )  #7 )  ! Force I space i f  u s i n g  PC DLCODE v a r ( 2 1 : l a )  e q l ( m )  1/17 = )  
end. b e g i n  

0 :=  DFCODE r o g f l g  => 1 R e g i s t e r  access 
2 := b e g i n  ! Autodecreinent mode: beg i i i  I check 

DECODE (d r67  o r  dd )  =)  ! decrement t h e  r e g i s t e r  0 : =  DECODE by te .acc  = >  I n o t  r e o i s t e r  
beg in  I lhen  use t h e  c o n t e n t s  b e g i n  

I as an addPeSS. MW[var'] = MQR.
R C d r l  = R [ d r l  - ( 2  - (us )  b y t e . a c c e s s ) .  Ml l [var]  = binbr 
R[dr]  = R[dr] - 2 end, 
end n e x t  1 : =  n l c o l l r  bv te .acc  =)  ! R e g i s t e r

des t  = R[dr] beg in
end. R[dr]  = MBR. 

R[dr]<7:0> = bmbP 
3 : =  b e g i n  Index mode: f e t c h  the  end. .  

i f l a g  = 1 :  M A R  = PC n e x t  n e x t  word froin inelllory and end, 
PC = PC + 2 n e x t  add i t  t o  t h e  c o n t e n t s  1 : =  I F  va1'<17:13> eq l (us )  137 = >  I Yes 

c0nt.elltS o f  t h e  s p e c i f i e d  beg i n  
f'ead(0) n e x t  r e Q i s t e i  t o  fo rm t h e  DCCOOE b y t e . a c c  = >  I I0 .page
i f l a g  = 0: des t  = MQR + ~ [ d r ]  e f f e c t i v e  address.  b e g i n
end R e g i s t e r  c o n t e n t s  reinain MWlO[var] = M B R ,  

unmodif l e d .  M B I O [ v a v ]  = bmbr 

end n e x t  end 


MAR = des t  n e x t  end 

end 


I F  dd = >  C o r r e c t i o n  f o r  a l l  d e f e r r e d  end,

beg i n  mode adi lvesses. Use 


i f l a g  = r e g f l g  = 0 ;  above a s  a n  address t o  a 
1 n d i t i o n  code s e t t i n g  and branch o p e r a t i o n s  

~ 

read(0 )  n e x t  	 " d e s t i n a l i o i l "  genera ted  

MAR = MBR 	 w i n t e r  t o  t l ie t r u e  se tcc (n .<15 :0> .  v.(15:a>. Z.(I~:O>) :=end d e s t i n a t i o n .  beg in 
end. 

UCCOOE bv te .access  =>* * S e r v i c e . F a c i l i t i e s * *  beg i n  

0 : =  beg i n  	 ! Word o v e r a t  i o nS t k r e f \ s t a c k . r e f e r e n c e  : =  	 N =  n.<15>:
b e g i n  V =  Y .  <15:0> 8100000:
r e g f l g  = 0 :  Stack op cannot go t o  regs .  1 ; 1 ,<15:0> 

SP = SP - 2 end

end, 1 : =  	b e g i n  ! ByLe o p e r a t i o n1 : =  b e g i n  ! ByLe o p e r a t i o n  

N =N n .<7> := n .<7> :
odderr \odd .address .er ror  : =  v 2 v ( 7 : ~ ) e q l ( u r )  #zoo:
v 2 v ( 7 : ~ ) e q l ( u r )  #zoo:

beg in  I = r . < 7 : 0 >  eq1 0
I = r . < 7 : 0 >  eq1 0
addadd = b u r . e r r o r  = 1 n e x t  end

c k s t a t e ( 1 )  end

end. end, 


c k s t a t e ( a b o r t t 0 )  :=  I Check s l a t e  h ranc l i f  cond i t i o n < > )  := 

beg i n  b e g i n 

DECODE s t a t e  => 	 I F  c o n d i t i o n  = >  PC = PC + ( o f f s e t  s10 1)

beg in  end,

n o . o P 0 .  ! I f e t c h  

LEAVE exec. ! Execute I I n t e r r u p t  s e r v i c e  r o u t i n e s  

LEAVC Serv i ce .  ! S e r v i c e  

n o . o p o  I Unused b u s . r e s e t  : =  ( n o . o p ( ) ) . 

end 


end, i i l t u e c \ i n t e r r u p l . t i a p . v c c t o r . s e t u p ( v e c t a r < B : O > )  : =  

beg in 


s d . r e a d ( h y t e . a c c 0 )  := 1 Source.  des t .  Iread 	 MAR = busreg = v e c t o r :  
beg in  m o d e  = by te .access  = 0 n e x t  ! M a p  a l l  t r a p s  thPu 
SOUPCB( ) n e x t  #read(b y t e . a c c e s s )  n e x t  ! k e r n e l  space
d e s t ( )  n e x t  pc. temp = MQR n e x t  
l e a d ( b y t e .  acc) MAii = b u s r e o  + 2 n e x t
e n d .  road(by t e .  a c c e s s )  n e x t  



APPENDIX 1 (cont'd.) 
pc.  trmp = 1M3R incxt ' 1  : =  5UB : =  !n%op()  

s t k r e f l  \ :  Mill? = PS s e x t  ! 010 P C  a n d  IPS saved end 


M A R  = SP i l O X t  I / n  ,new space 	 e n d .  I C x t e n d e d  i n S t r U C t i o n  s e tw r i l e ( h y t e . a c c e s s )  n e x t  	 #7 : =  I l O . " P ( )  
s t k l e l ( ) :  MHR = PC i l ex t  end 

MA11 = SP next  

w t t e ( b y t e . a c c e s s )  l i e i t  

PI,' = C," lnelt 

I'C = p c .  ite~np: P S  = p s .  teinp 

eod.  b e g i n  


UCCODC r e s o p  = >  

~ n s t r .t P a p \ i n s t P " C t i O n . t ~ a p (t rap ,uec to r rO :O; )  : =  ! R e s w v e d  and i l l e g a l  h e u i n  


beg iII I Oucotle s e r v i c e  

i n t v e c (  t r a p .  v e c t o r )  n e x t  

I F  h u s . e r r o r  = >  a = 2 ! H a l t  t h e  p1'0cess01 '  ~f bus e r r o r  O C C U P S  IlePe 

end. end 


T r a p  and ~ n t a r r u p ts e r v > c e  ~ o u t i n e s .  Sel 'u Ice I S  c a l l e d  a f t e r  each 

i n s t r u c t i o n  I S  c o i i i p l e t e .  The t r a p  pend ing  o f  t h e  l h i g i l e s t  p r i o l ' l t y  i s  

a c t i v a t e d .  I f  a t r a p  w a s  s e t  by  i l l e g a l .  r e s e r v e d  o r  t r a p
i n s t P u c t i o n s  t h e n  t h e  IPC aiid PS lhave a l r e a d y  beel l  pushed and t h e  new 

1/00 : = r e g a p ( ) ,  Reg ?stel '  i 8 i s t r ' uc t i on
PC a n d  PS a r e  l o a d e d .  A n  a d d i t l o n a i  t r a p  I S  p e m l t t e d .  	 # O l  : =  b r a n c h ( ' 1 ) .  I ~ r a i i c h( b r  op #00004) 

6 0 2  : =  I INC : =  b ranCh(nOt  2). ni'anch ~f n o t  equal
grant\hus.grant,processing.routine(type.i.equest<l6:0>) :; 	 BranchB r a n c h  1 1  g t i '  equal

b e o i n  # O 3  : =  l l f Q  : =  b r ' a n c h ( 2 ) .  ~f equa lo r  

a i o n e x t  1104 m r  : =  IHWCII(N eqv v ) .  
i n t v e c ( t y p e . r e q u e s t )  n e x t  n o 5  : =  i l l 1  : =  b r a n ~ h ( Nx o r  V ) .  III.B~CI, i f  l e s s  t h a n  

# 0 6  : =  	 f l ranch i f  g r e a t e r  than
LEAVIs e r v i c e  
end,  BGI  : =  h r n n c l l ( n o t  ( 2  o r  ( N  ~01-V ) )  

B r a n c h  i f  l e s s  o r  e q u a lH07 , =  BLE , =  b l 'a i lch(7 O r  ( N  xur V ) ) .
U 1 0  = BPL , =  h l ' anch (n0 t  N). B r a n c h  i f  p l u s

s e r v i c e  : =  1111 : =  I l M I  ' =  b r a i I C I I ( N ) .  B c a i i c h  i f  i n i n u s  
b e g i n  

# 1 2  : =  8111 . =  b v a o c h ( n o t  ( C  or Z ) ) .  B ranch  i f  h i g h e r
If bus.e l ' l 'o r  => 

#I3 : =  ULOS , =  b i a n c h ( C  o r  2 ) .  ~ v a n c 1 1I f  l o w e r  o r  same 
b e g i n  	 Bl'ancI1 I f  o ~ e ~ . f I o wc l e a r
bus.er l 'or  = 0 n e x t  ! BUS e r r o r  #I4 : =  BVC = b l ' anch (no t  V ) .  


~ n t v e c ( c p u . e r i ' o r s )  n e x t  #15 : =  UVS . =  b r a n c h ( V ) .  Bl'aiich i f  o v e r i l o w  S e t  


I F  h u s . e r r o r  = >  	 # I G  : =  UCC : =  b r a n c h ( n o 1  C ) .  BI.RIICII ~f c a r r y  c l e a r  

# I 7  : =  UCS : =  b r a n c l l ( C )  Branch i f  c a r r y  s e t  

a I 2 n e x t  end 
L E A V E  s e r v i c e  end,  
end n e x t  

b e a i n  

LFAVE s e r v i c e  r e q o p \ r e g i s t e ? .ope r a t lolls := 


end b e q l n  UICODE r o p  => 

e n d  h e g i n  


0 : =  h e g i n 

* * I n s t r u c t i o n .  I n t e r p r e t a t i o n * '  	 I f  con top  eql 0 = >  

h e o i n
! I n i t i a l i z a t i o n  sequence 


h e g i n 

s t a r t { m a i n )  : =  110 : =  I I I T O .  I l a l t  

b e g i n  # I  : =  WAIT. = t l o . o p ( ) .  W a i t  l o r  i n t e r r u p t
i e r o s  = 0: ! I n i t i a l i r e  z e r o s  
LIIHIIEG = 0 :  I c l e a r  a 1 1  cpu  e r r o r s  # 2  : =  R T I . R T T  : =  no.op(). R e t u r n  f r o m  i n t e r r u p t  

a = 0 n e x t  I C l e a r  a c t i v i t y  # 3  : =  U P 1  : =  m o p ( ) .  BPeakpOlnt  t r a p  
#4 : =  J O T  : =  n o . 0 ~ 0 .  I n p u t / o u t p u t  t r a p

r u n ( )  115 : =  RESET : =  n o . o p ( ) .  Reset  e x t e r n a l  bus
end,  # 6  : =  R T I . R I T  : =  n o . o p ( ) .  R e t u m  from t r a p  

! Mai l l  r u n  c y c l e  O f  t h e  ISP 	 #7 : =  I n s t r . t r a p ( r e s . I n s t r )  Unused apcode 
end 

T I IP \ i ns t r i iC t iO i i .  i n t e r p r e t a t i o n  ' =  	
0"d._. 

end 
_.b e g i n  	 ! JumpIf go = >  1 : =  JMPO. 

b e g i n  2 : =  b e g i n  
s t a t e  = t r a p . i n s t r  = 0: o i c o i x  C O n t O D  =; 
MAR = I'C n e x t  

! M U S ~be even h e r e  / I0  R T S ( ) .  !b e g i n  	 ~ e t u r nfrom s u b r o u t i n e: =0LCDI)L MflI I<O> = >  
u 1 : u z  : =  I s s t r . t r a p ( r e s . I n s t r ) .b e g i n  ! S e t  p r i o v i t y  l e v e l0 : =  	 h e g i n  ! Even #3 : =  SPL : =  i , O . O P ( ) .  

cinode = C I ~ :  r e g r i g  = n ,next #4:u7 : =  cco : =  " o . o p ( )  I C o n d i t i o a  code ops 
r e a d ( 0 )  n e x t  ! I n s t r u c t i o n  r e t c h  end 
I n  = 1MBR: PC = PC + 2 >next end. 
b y t e . a c c e s s  = hyap :  t r a c e . f l a g  = 1; 3 . =  SbIAB() I Swap b y t e s  
sr = llCCliOMLciiiode B P S  8 s r c r e g ] :  end 
dl' = I?I.GIlOM~cmadeB P S  8 d e s r e g l :  end. 
s t a t e  = 1 (next  
e x e c ( )  
end. 

1 :ia d d e r r ( )  I C a l l  el.ror r o u t i n e  f o r  ClaSSOp\seCOndary,decode.~nto.classes :=  
! odd at i t i ress e r r o ~p r o c e s s i n g  b e g i n  


ei id  DECODE tvDeoD => 

beg in ' 
end (next s u h e m t ( ) .  ! S u b r o u t l n e / e n i u l a t o r  t r a pl f  H A I T  = >  S l o p ( )  n e x t  
s i n y l o p 0 .  ! S i n g l e  ope ra l i d  c l a s sStat ,?  = 2 ,next T h , r + n n i i  ! S h i f t  onera torss e r v i c e ( )  ,next 	 I.. 

I n s t r )IllS T A R T  ruil 	 i n s l ~ : i F ~ ~ ( r ' e s .  ! Unused bp codes 

end end 

.*!nstrUction.EXecution** end.  

e x e c \ i n s t i u c t i o n . e r e c u t i o n  : =  
suhei!it\Suh I ' o i i t i  ne. emu1a t o r , t r a p , and. t r a p .  ii n s t r u c t i o n s  : =  

b c g i nb e g i n  	 DECODE j e t o p  = >D€CODF hop = >  	 b e g i i ib e g i n  	 0 : =  JSRl1. I ~ u i n pl o  s u b r o u t i n e#O r e s e r o p (  ) ,  Reserved op code 
H 1  . =  

:= 
M O V O .  M o v e  I n s t r u c t i o n  	 1 ' =  b e g i n  

#2 : =  CMP : =  n o . 0 ~ 0 .  Cotupare i n s t r u c t i o n  	 o[COuc 1 < 0 )  =; ! EMT o r  T R A P  
#3 ' =  B I T  : =  n o . o p ( ) .  B i t  t e s t  i n s t r u c t i o n  beg?"  


# 4  : =  HIC : =  " a . o p ( ) .  U l t  C l e a r  I r l S t I ' U C t l O l l  0 : =  E M T O .  


#5 : =  8 1 s  : =  no .op( ) .  I l l 1  set  I I 1 S t l ' " C t l O l l  
1 . =  T R f l P O  


U6 : =  beg!" ! Add d i id  sub t i ' ac t  end  

endUECOUE b y t e . a c c e s s  => 


b e g i n  end 


'0 : =  flUD : =  no " p i ) .  end.  


664 



APPENDIX 1 (cont'd.) 

s ~ n ~ l o p \ s i n g l e . o p e r a n d . i n s t r u c t i o n s:= 	 ! Jump. swab e x e c u t i o n  and r e g i s t e r  o p e r a t i o n  decode 
beg in  
DLCODC "OP = >  JMP := ! Jump. JUMI' op code WOO01

b e g i n  h e g i n 
#O :=  CLR(). C l e a r l b y t e  l l l C O l l l  (dm @ <!d) oql 0 => 

W1 : =  COM : =  n o . o p ( ) ,  Coiiip Iemen t l b y t e  b e g i n 
U 2  :=  INC : =  no.op() .  l n c r e m a n t l b v t e  

#3 : =  DCC : =  "o .op ( ) .  iOec remsn t /b~ te  

114 : =  N E G  ! =  n o . 0 ~ 0 .  Negate /by  t e  

X5 : =  ADC : =  8no.op(). Add c a r r y l b y t e  0 : =  ( d e s t ( )  n e x t  PC = M A R ) ,  ! F a l s e  

116 : =  SBC : =  a o . o p ( ) .  S u b t r a c t  c a r r y l b y t e  1 : =  i n s t r . t i a p ( i l l . i n s t r )  I T rue  

n7 :=  T E S T  : =  no0 .op ( )  i e s t / b y t e  end 

end 	 end.~. 


end, 


S h i f f . o p \ s h i f t .  i n s t r u c t i o n s  := 
beg in  
DECODE uop = >  SWAR : =  ! Swap b y t e s ,  SWAB op cade #DO03 

beg in  b e g i n
#O : =  Ron( ) . Ro ta te  r i g h t / b y t e  d .  read (by te .access )  n e x t  
n i  := ROL := Rota le  i e f t i b y t e  MOH = bmbr @ MRR<15:0> n e x t  
112 : =  ASR : =  A r i t h i n e t l c  s h i f t  r i g h t l b y t e  C V = 0 ;  N = MBn<7>: Z = MBR<7:O> e q l  0 :2 

113 : =  ASL : =  APithinet,c S h i f t  l e f t l b y t e  	 I F  d eeq #01 = >  u r i t e ( b y t e . a c c e s s )
n 4  := MARK : lh2s.k .. End. 

65 : =  MFP : =  Move f rom p r e v i o u s  i n s t r u c t i o n  

X G  : =  MTP :=  Move t o  p r e v i o u s  i n s t r u c t i o n  

17 := SXT : =  S ign  ex tend  
end 	 I S h i f t  i n s t r u c t i o n  e x e c u t i o n

end, 

MOV : =  ! Move and Move By te  AOR : =  I n o t a t e  r i g h t  and r o t a t e  r i g h t  b y t e ,  
I MOV opcode # O l .  MOVB op code U l t  1 ROR op code #0060, RORB op code #lo60 

b e g i n  b e g i n  
s o u r c e ( )  n e x t  d . read (by te .access )  n e x t  


d e s t ( )  n e x t  DECODE bvte.acceSS => 


I F  r e g f l g  and by te .access  => 	 b e g i n  
b e g i n  0 :=  ( t emp< l6 :0>  = ( c  @ MBR) s r r  1 n e x t  
source < =  source<7:0>: c = t emp< l6> :  MBR = temp< l5 :0> ) .  

by te .access  = 0 1 : =  (telnp<O:O> = ( c  0 balbr) S P P  1 n e x t  
end n e x t  c = temp<B>: bnibr = tesp<7 :0>)  

MOR = sau rce  n e x t  	 end n e x t  

setcc(MHR, 0. MB11): 	 se tcc ( ten ip .  0 .  temp) n e x t  
w r i t e i b u t e . a c c e s s )  	 V = N XOI' C n e x t  
end. 	 w r i t e ( b y t e . a c c e s s )  


end, 

! . . . .  I I n d i c a t e s  i i i s t p u c t i o n  d e s c r i p t i o n s  

I . . . .  I n o t  i n c l u d e d  i n  t h i s  summary ! . . . .  
. . . .  
! S u b r o u t i n e .  Emu la to r  T r a p .  and Trap i n s t r u c t i o n  e x e c u t i o n  ! CPU c o n t r o l  i n s t r u c t i o n  e x e c u t i o n  

JSR 	 : =  I Jump t o  s u b r o u t i n e .  JMP op code #004 
b e g i n  HLT := I H a l t .  HALT op  code # O O O O O O  
DECODE (din I3 dd) e q l  0 = >  b e g i n  

b e a i n  	 DECODE k e r n e l  => 
0 : =  b e g i n  I F a l s e  	 b e g i n  

0 :=  ( i l l h l t  = 1;  i n t v e c ( c p u . e r r o r s ) ) .  I Nod e s t ( )  inert  
temp MAR<15:0> n e a t  1 : = a = 2  I Yes 

7 

s t k r e r ( )  n e x t  end, 
end 


M A R  i SP:  MOR = R [s r ]  n e x t  

w r l t e ( b y t e . a c c e s s )  n e x t  	

RTS := I Re tu rn  f rom s u b r o u t i n e .  RTS op code #00020nrsrl = PC n e a t  

pi: =>temp<15:0> beg in  


end. 	 PC = RCdv] n e x t  MAR = SP n e x t  
r e a d ( b y t e . a c c e s s )  n e x t1 : =  i n s t r . t r a p ( i l 1 . i n s t r )  ! True 	 SP = SP + 2 n e x tRnd 	 R[dr]  = MBRend. 
end, 

E M 1  	 :=  I Emu la to r  t r a p  op codes, E M I  op code #10400O:W104377 

b e g i n  I . . . .  

I n t v e c ( e m t . t r a p ) :  t r a p . i n s t r  = 1 I . . . .  

end. 
 end ! end o f  d e s c r i p t i o n  

TI lAP : =  I Trap op codes. TRAP op code #104400:X104777 

b e g i n  

i n t v e c ( t r a p . t i a p ) :  t r a p . i n s t r  = 1 

end. 


I S i n g l e  operand i n s t r u c t i o n  e a e c u t i o n  

CLR 	 : =  ! C l e a r  and c l e a r  b y t e .  
I CLR op code  H O o 5 0 .  CLRB op code 11050 


b e g w  

c c  = ' 0 1 0 0  n e x t  


. .  
I . .  

665 



Chapter 39 

Implementation and Performance 
Evaluation of the PDP-11 Family 

Edward A. Snow / Daniel P. Siewiorek 

In order that methodologies useful in the design of complex systems may 
be developed, existing designs must be studied. The DEC PDP-11 was 
selected for a case study because there are a number of designs (eight are 
considered here), because the designs span a wide range in basic 
performance (7 to 1)and component technology (bipolar SSI to MOS LSI), 
and because the designs represent relatively complex systems. 

The goals of the chapter are twofold: (1) to provide actual data about 
design tradeoffs and (2) to suggest design methodologies based on these 
data. An archetypical PDP-11 implementation is described. 

Two methodologies are presented. A top-down approach uses micro- 
cycle and memory-read-pause times to account for 90 percent of the 
variation in processor performance. This approach can be used in initial 
system planning. A bottom-up approach uses relative frequency of 
functions to determine the impact of design tradeoffs on performance. 
This approach can be used in design-space exploration of a single design. 
Finally, the general cost/performance design tradeoffs used in the PDP-11 
are summarized. 

1. Introduction 

As semiconductor technology has evolved, the digital systems 
designer has been presented with an ever-increasing set of 
primitive components from which to construct systems: standard 
SSI, MSI, and LSI, as well as custom LSI components. This 
expanding choice makes it more difficult to arrive at  a near- 
optimal cost/performance ratio in a design. In the case of highly 
complex systems, the situation is even worse, since different 
primitives may be cost-effective in different subareas of such 
systems. 

Historically, digital system design has been more of an art than 
a science. Good designs have evolved from a mixture of experi- 
ence, intuition, and trial and error. Only rarely have design 
methodologies been developed (among those that have are 
two-level combinational logic minimization and wire-wrap routing 
schemes, for example). Effective design methodologies are essen- 
tial for the cost-effective design of more complex systems. In 
addition, if the methodologies are sufficiently detailed, they can 
be applied in high-level design automation systems [Siewiorek 
and Barbacci, 19761. 

Design methodologies may be developed by studying the 
results of the human design process. There are at least two ways 
to study this process. The first involves a controlled design 

experiment where several designers perform the same task. By 
contrasting the results, the  range of design variation and tech- 
nique can be established [Thomas and Siewiorek, 19771. Howev-
er, this approach is limited to fairly small design situations 
because of the redundant use of the human designers. 

The second approach examines a series of existing designs that 
meet the same functional specification while spanning a wide 
range of design constraints in terms of cost, performance, etc. 
This paper considers the second approach and uses the DEC 
PDP-11' minicomputer line as a basis of study. The PDP-11 was 
selected on account of the large number of implementations (eight 
are considered here) with designs spanning a wide range in 
performance (roughly 7 to 1) and component technology (bipolar 
SSI, MSI, MOS custom LSI). The designs are relatively complex 
and seem to embody good design tradeoffs as ultimately reflected 
by their pricelperformance and commercial success. 

Attention here  is focused mainly upon the CPU. Memory 
performance enhancements such as caching are considered only 
insofar as they impinge upon CPU performance. 

This paper is divided into three major parts. The first part (Sec. 
2) provides an overview of the PDP-11functional specification (its 
architecture) and serves as background for subsequent discussion 
of design tradeoffs. The second part (Sec. 3)presents an archetypi- 
cal implementation. The last part (Secs. 4 and 5 )  presents 
methodologies for determining the impact of various design 
parameters on system performance. The magnitude of the impact 
is quantified for several parameters, and the use of the results in 
design situations is discussed. 

2. Architectural Overview 

The PDP-11 family is a set of small- to medium-scale stored- 
program central processors with compatible instruction sets [Bell 
e t  al., 19701. The family evolution in terms of increased perform- 
ance, constant cost, and constant performance successors is traced 
in Fig. L2 Since the 11/45, 11/55, and 11/70 use the same 
processor, only the 11/45 is treated in this study. 

A PDP-11 system consists of three parts: a PDP-11 processor, a 
collection of memories and peripheraIs, and a link called the 
Unibus over which they all communicate (Fig. 2). 

A number of features, not otherwise considered here, are 
available as options on certain processors. These include memory 
management and floating-point arithmetic. The next three sub- 

'DEC, PDP, LSI-11, Unibus, and Fastbus are registered trademarks of 

Digital Equipment Corporation. 

2The original equipment manufacturer (OEM) versions of the 11/10, 

11/20, and 11140 are the 11/05, 11/15, and 11/35 respectively. The OEM 

machines are electrically identical (or nearly so) to their end-user 

counterparts, the distinction being made for marketing purposes only. 


666 



Chapter 39 1 Implementationand Performance Evaluation of the PDP-11 Family 667 

/
11/70 

11/20 11/40 1I /60 


Fig. 1. PDP-11 family tree. 

sections summarize the major architectural features of the 
PDP-11, including memory organization, processor state, ad- 
dressing modes, instruction set, and Unibus protocol. The 
references list a number of processor handbooks and other 
documents which provide a more precise definition ofthe PDP-11 
architecture than is possible here. 

2.1 Memory and Processor State 
The central processor contains the control logic and data paths for 
instruction fetching and execution. Processor instructions act 
upon operands located either in memory or in one of eight general 
registers. These operands may be either 8-bit bytes or 16-bit 
words. 

Memory is byte- or word-addressable. Word addresses must be 
even. If N is a word address, then N is the byte address of the 
low-order byte of the word and N + 1is the byte address of the 
high-order byte of the word. The control and data registers of 
peripheral devices are also accessed through the memory address 
space, and the top 4 kilowords of the space are reserved for this 
purpose. 

The general registers are 16 bits in length and are referred to as 
RO through R7. R6 is used as the system stack pointer (SP) to 
maintain a push-down list in memory upon which subroutine and 

Fig. 2. Typical PDP-11 configuration. 

interrupt linkages are kept. R7 is the program counter (PC) and 
always points to the next instruction to be fetched from memory. 
With minor exceptions (noted below) the SP and PC are accessible 
in exactly the same manner as any of the other general registers 
(RO through R5). 

Data-manipulation instructions fall into two categories: arith- 
metic instructions (which interpret their operands as 2’s comple-
ment integers) and logic instructions (which interpret their 
operands as bit vectors). A set of condition code flags is maintained 
by the processor and is updated according to the sign and 
presence of carry/overflow from the result of any data manipula- 
tion instruction. The condition codes, processor interrupt priori- 
ty,and a flag enabling program execution tracing are contained in 
a processor status word (PS), which is accessible as a word in the 
memory addressing space. 

2.2 Addressing Modes and Instruction Set 
The PDP-11 instruction set allows source and destination oper- 
ands to be referenced via eight different addressing modes. An 
operand reference consists of a field specifying which of the eight 
modes is to be used and a second field specifying which of the 
eight general registers is to be used. The addressing modes are: 

Mode 0 	 Register. The operand is contained in the specified 
register. 

Mode 1 	Register deferred. The contents of the specified 
register are used to address the memory location 
containing the operand. 

Mode 2 	 Autoincrement. The contents of the specified regis- 
ter are used to address the memory location contain- 
ing the operand, and the register is then incre- 
mented. 

Mode 3 	 Autoincrement deferred The contents of the speci- 
fied register address a word in memory containing 
the address of the operand in memory. The specified 
register is incremented after the reference. 

Mode 4 Autodecrement. The contents of the specified regis- 
ter are first decremented and then used to address 
the memory location containing the operand. 

Mode 5 	 Autodecrement deferred The contents of the speci- 
fied register are first decremented and then used to 
address a word in memory containing the address of 
the operand in memory. 

Mode 6 	 Indexed The word following the instruction is 
fetched and added to the contents of the specified 
general register to form the address of the memory 
location containing the operand. 

Mode 7 	 Indexed deferred. The word following the instruc- 
tion is fetched and added to the contents of the 
specified general register to form the address of a 
word in memory containing the address of the 
operand in memory. 

The various addressing modes simplify the manipulation of 



668 Part 3 1 Computer Classes 

diverse data structures such as stacks and tables. When used with 
the program counter these modes enable immediate operands and 
absolute and PC-relative addressing. The deferred modes permit 
indirect addressing. 

The PDP-11 instruction set is made up of the following types of 
instructions: 

Single-operand instructions. A destination operand is fetched 
by the CPU, modified in accordance with the instruction, and 
then restored to the destination. 
Double-operand instructions. A source operand is fetched. 
followed by the destination operand. The appropriate opera- 
tion is performed on the two operands and the result restored 
to the destination. In a few double-operand instructions, such 
as Exclusive OR (XOR), source mode 0 (register addressing) is 
implicit. 
Branch instructions. The condition specified by the instruction 
is checked, and if it is true, a branch is taken using a field 
contained in the instruction as a displacement from the current 
instruction address. 

Jumps. Jump instructions allow sequential program flow to be 
altered either permanently (in a jump) or temporarily (in a 
jump to subroutine). 
Control, trap, and miscellaneous instructions. Various instruc- 
tions are available for subroutine and interrupt returns, halts, 
etc. 
Floating-point instructions. A floating-point processor is avail- 
able as an option with several PDP-11 CPUs. Floating-point 
implementation will not be considered in this paper. 

For the purpose of looking at the instruction execution cycle of 
the various PDP-11 processors, each cycle shall be broken into 
five distinct phases:' 

Fetch. This phase consists of fetching the current instruction 
from memory and interpreting its opcode. 
Source. This phase entails fetching the source operand for 
double-operand instructions from memory or a general regis- 
ter and loading it into the appropriate register in the data paths 
in preparation for the execute phase. 
Destination. This phase is used to get the destination operand 
for single- and double-operand instructions into the data paths 
for manipulation in the execute phase. For JMP and JSR 
instructions the jump address is calculated. 
Execute. During this phase the operation specified by the 

'N.B.: The instruction phase names are identical to those used by DEC; 
however, their application here to a state within a given machine may 
differ from DEC's since the intent here is to make the discussion 
consistent over all machines. 

Section 3 1 Minicomputers 

current instruction is performed and any result rewritten into 
the destination. I 

Service. This phase is only entered between execution of the 
last instruction and fetch of the next to grant a pending bus 
request, acknowledge an interrupt, or enter console mode 
after the execution of a HALT instruction or activation of the 
console halt key. 

2.3 The Unibus 

All communication among the components of a PDP-11 system 
takes place on a set of bidirectional lines referred to collectively as 
the Unibus. The LSI-11 is an exception and uses an adaptation of 
the Unibus, The Unibus lines carry address, data, and control 
signals to all memories and peripherals attached to the CPU. 
Transactions on the Unibus are asynchronous with the processor. 
At any given time there will be one device which it addresses, the 
addressed device becoming the bus slave. This communication 
may consist of data transfers or, in the case where the processor is 
slave, an interrupt request. The data transfers which may be 
initiated by the master are: 

DATO Data out-A word is transferred from master to 
slave. 

DATOB Data out, byte-A byte is transferred from master to 
slave. 

DATI Data in-A word is transferred from slave to master. 
DATIP Data in, pause-A word is transferred from slave to 

master and the slave awaits a transfer from master 
back to slave to replace the information that was 
read. The Unibus control allows no other data 
transfer to intervene between the read and the 
write cycles. This makes possible the reading and 
alteration of a memory location as an indivisible 
operation. In addition it permits the use of a 
read/modify/write cycle with core memories in 
place of the longer sequence of a read cycle followed 
by a write cycle. 

3. PDP-11 Implementation 

The midrange PDP-11's have comparable implementations, yet 
their performances vary by a factor of 7. This section discusses the 
features common to these implementations and the variations 
found between machines which provide the dimensions along 
which they may be characterized. 

3.1 Common Implementation Features 

All PDP-11 implementations can be decomposed into a set of data 
paths and a control unit. The data paths store and operate upon 
byte and word data and interface to the Unibus, which permits 



Chapter 39 Implementationand Performance Evaluation of the PDP-11 Family 669 

Note. All data paths are 16 bilr wide unless olharvir. indicaled 

18 
N, Bus Address 

Bus Data 

Conditi 

Codes 


Fig. 3. Archetypical medium-range PDP-11 data paths. 

them to read from and write to memory and peripheral devices. 
The control unit provides all the signals necessary to evoke the 
appropriate operations in the data paths and Unibus interface. All 
PDP-11’s have comparable data-path and control unit implemen- 
tations that allow them to be contrasted in a uniform way. In this 
section a basis for comparing these machines shall be established 
and used to characterize them. 

3.1.1 Data Paths. An archetype may be constructed from which 
the data paths of all midrange PDP-11’s differ but minimally. This 
archetype is diagrammed-in Fig. 3. All major registers and 

r 

Synchronization
Signals
from UNIBUS 
Interface 

I 1 

next 
___ uword * 

processing elements, as well as the links and switches which 
interconnect them, are indicated. The data-path illustrations for 
individual implementations are shown in Figs. 5 through 7. These 
figures are laid out in a common format to encourage comparison. 
Note that with very few exceptions all data paths are 16 bits wide 
(the PDP-11 word size). 

The heart of the data paths is the arithmetic logic unit or ALU, 
through which all data circulate and where most of the processing 
actually takes place. Among the operations performed by the ALU 
are addition, subtraction, 1’s and 2’s complementation, and logical 
ANDing and ORing. 

1 

UNIBUS 

and UNlBUS 
clock Control 
control Slgnais
field 

data -----+ Control 

path --.--.+ Signals 

control to 

fields F:::s 



___ 

I 

Computer Classes Section 3 1 Minicomputers 

within SPM. 

D DAL<15:08> 

Condition 
Codes 

Fig. 5. LSI-11 data paths. 

The inputs to the ALU are the A leg and the B leg. The A leg is 
normally fed from a multiplexer (Aleg MUX), which may select 
from an operand supplied it from the scratch-pad memory (SPM) 
and possibly from a small set of constants and/or the processor 
status register (PS). The B leg also is typically fed from its own 
MUX (Bleg MUX), its selections being among the B register and 

0 


Condition 

Codes < 


MUX 

Fig. 6. PDP-11/34 data paths. 

I 

certain constants. In addition, the Bleg MUX may be configured 
so that byte selection, sign extension, and other functions may be 
performed on the operand which it supplies to the ALU. 

Following the ALU is a multiplexer (the AMUX) typically used 
to select between the output of the ALU, the data lines of the 
Unibus, and certain constants. The output of the AMUX provides 

> Bus Data 

I 



Chapter 39 1 Implementation and Performance Evaluation of the PDP-11Family 671 

Note All data pathrara 16 bits wide un1.i~ olherwire cndtcaled 

Bus Address 

Fastbus Dala
Condition 

F	Fastbus Data 

UNlElUS Data 

DMUX 

Fig. 7. PDP-11/45 data paths. 

the only feedback path in all midrange PDP-11 implementations 
except the 11/60 and acts as an input to all major processor 
registers. 

The internal registers lie at the beginning of the data paths. The 
instruction register (IR)contains the current instruction. The bus 
address register (BA) holds the address placed on the Unibus by 
the processor. The program status register (PS) contains the 
processor priority, memory-management-unit modes, condition 
code flags, and instruction trace-trap enable bit. The scratch-pad 
memory (SPM) is an array of 16individually addressable registers 
which include the general registers (RO to R7) plus a number of 
internal registers not accessible to the programmer. The B 
register (Breg) is used to hold the B leg operand supplied to the 
ALU. 

The variations from this archetype are surprisingly minor. The 
most frequently used elements (such as the ALU and SPM) are 
relatively fixed in their position in the data paths from implemen- 
tation to implementation. Elements which are less frequently 
used, and hence have less of an impact on performance, can be 
seen to occupy positions which vary more between implementa- 
tions. Variations to be encountered include routings for the bus 
address and processor status register; the point of generation for 
certain constants; the position of the byte swapper, sign extender, 
and rotatekhift logic; and the use of certain auxiliary registers 
present in some designs and not others. 

3.1.2 Control Unit. The control unit for all PDP-11 processors 
(with the exception of the PDP-11/20) is microprogrammed 
[Wilkes and Stringer, 19531. The considerations leading to the use 
of this style of control implementation in the PDP-11 are 
discussed in O’Loughlin [1975]. The major advantage of micropro- 
gramming is flexibility in the derivation of control signals to gate 
register transfers, to synchronize with Unibus logic, to control 
microcycle timing, and to evoke changes in control flow. The way 
in which a microprogrammed control unit accomplishes all of 
these actions impacts performance. 

Figure 4 represents the archetypical PDP-11 microprogram-
med control unit. The contents of the microaddress register 
determine the current control-unit state and are used to access the 
next microinstruction word from the control store. Pulses from 
the clock generator strobe the microword and microaddress 
registers, loading them with the next microword and next 
microaddress, respectively. Repeated clock pulses thus cause 
the control unit to sequence through a series of states. The 
period spent by the control unit in one state is called a micro-
cycle (or simply cycle when this does not lead to confusion with 
memory or instruction cycles), and the duration of the state as 
determined by the clock is known as the cycle time. The 
microword register shortens cycle time by allowing the next micro- 
word to be fetched from the control store while the current 
microword is being used. 



672 Part 3 1 Computer Classes 

Most of the fields of the microword supply signals for condition- 
ing and clocking the data paths. Many of the fields act directly or 
with a small amount of decoding, supplying their signals to 
multiplexers and registers to select routings for data and to enable 
registers to shift, increment, or load on the master clock. Other 
fields are decoded according to the state of the data paths. An 
instance of this is the use of auxiliary ALU control logic to generate 
function-select signals for the ALU as a function of the instruction 
contained in the IR. Performance as determined by microcycle 
count is in large measure established by the connectivity of 
the data paths and the degree to which their functionality 
can be evoked by the data-path control fields of the microprogram 
word. 

The complexity of the clock logic varies with each implementa- 
tion. Typically the clock is fixed at a single period and duty cycle; 
however, processors such as the 11/34 and 11/40 can select from 
two or three different clock periods for a given cycle depending 
upon a field in the microword register. This can significantly 
improve performance in machines where the longer cycles are 
necessary only infrequently. 

The clock logic must provide some means for synchronizing 
processor and Unibus operation, since the two operate asynchro- 
nously with respect to one another. Two alternate approaches are 
employed in midrange implementations. Interlocked operation, 
the simpler approach, shuts off the processor clock when a Unibus 
operation is initiated and turns it back on when the operation is 
complete. This effectively keeps microprogram flow and Unibus 
operation in lockstep with no overlap. Overlapped operation is a 
somewhat more involved approach which continues processor 
clocking after a DATI or DATIP is initiated. The microinstruction 
requiring the result of the operation has a function bit set which 
turns off the processor clock until the result is available. This 
approach makes it possible for the processor to continue running 
for several microcycles while a data transfer is being performed, 
improving performance. 

The sequence of states through which the control unit passes 
would be fixed if it were not for the branch-on-microtest (BUT) 
logic. This logic generates a modifier based upon the current state 
of the data paths and Unibus interface (contents of the instruction 
register, current bus requests, etc.) and a BUT field in the 
microword currently being accessed from the control store, which 
selects the condition on which the branch is to be based. The 
modifier (which will be zero in the case that no branch is selected 
or that the condition i s  false) is ORed in with the next microin- 
struction address so that the next control-unit state is not only a 
function of the current state but also a function of the state of the 
data paths. Instruction decoding and addressing mode decoding 
are two prime examples of the application of BUTs. Certain code 
points in the BUT field do not select branch conditions, but rather 

Section 3 I Minicomputers 

provide control signals to the data paths, Unibus interface, 
or the control unit itself. These are known as active or working 
BUTs. 

The JAM logic is a part of the microprogram flow-altering 
mechanism. This logic forces the microaddress register to a known 
state in the event of an exceptional condition such as a memory 
access error (bus timeout, stack overflow, parity error, etc.) or 
power-up by ORing all Is into the next microaddress through the 
BUT logic. A microroutine beginning at the address of all Is 
handles these trapped conditions. The old microaddress is not 
saved (an exception to this occurs in the case of the PDP-11/60); 
consequently, the interrupted microprogram sequence is lost and 
the microtrap ends by restarting the instruction interpretation 
cycle with the fetch phase. 

The structure of the microprogram is determined largely by the 
BUTs available to implement it and by the degree to which special 
cases in the instruction set are exploited by these BUTs. This may 
have a measurable influence on performance as in the case of 
instruction decoding. The fetch phase of the instruction cycle is 
concluded by a BUT that branches to the appropriate point in the 
microcode based upon the contents of the instruction register. 
This branch can be quite complex, since it is based upon source 
mode for double-operand instructions, destination mode for 
single-operand instructions, and op code for all other types of 
instructions. Some processors can perform the execute phase of 
certain instructions (such as set/clear condition code) during the 
last cycle of the fetch phase; this means that the fetch or service 
phase for the next instruction might also be entered from BUT 
IRDECODE. Complicating the situation is the large number of 
possibilities for each phase. For instance, there are not only eight 
different destination addressing modes, but also subcases for each 
that vary for byte and word and for memory-modifying, memory- 
nonmodifying, MOV, and JMP/JSR instructions. 

Some PDP-11 implementations such as the 11/10make as much 
use of common microcode as possible to reduce the number of 
control states. This allows much of the IR decoding to be deferred 
until some later time into a microroutine which might handle a 
number of different cases; for instance, byte- and word-operand 
addressing is done by the same microroutine in a number of 
PDP-11s. Since the cost of control states has been dropping with 
the cost of control-store ROM, there has been a trend toward 
providing separate microroutines optimized for each special case, 
as in the 11/60. Thus more special cases must be broken out at the 
BUT IRDECODE, and so the logic to implement this BUT 
becomes increasingly involved. There is a payoff, though, because 
there are a smaller number of control states for IR decoding and 
fewer BUTs. Performance is boosted as well, since frequently 
occurring special cases such as MOV register to destination can be 
optimized. 



4. Measuring the Effect of Design 

Tradeoffs on Performance \ 

There are two alternative approaches to the problem of determin- 
ing just how the particular binding of different design decisions 
affects the performance of each machine: 

1 	 Top-down approach. Attempt to isolate the effect of a 
particular design tradeoff over the entire space of imple- 
mentations by fitting the individual performance figures for 
the whole family of machines to a mathematical model 
which treats the design parameters as independent varia- 
bles and performance as the dependent variable. 

2 	 Bottom-up approach. Make a detailed sensitivity analysis of 
a particular tradeoff within a particular machine by compar- 
ing the performance of the machine both with and without 
the design feature while leaving all other design features 
the same. 

Each approach has its assets and liabilities for assessing design 
tradeoffs. The first method requires no information about the 
implementation of a machine, but does require a sufficiently large 
collection of different implementations, a sufficiently small num- 
ber of independent variables, and an adequate mathematical 
model in order to explain the variance in the dependent variable 
to some reasonable level of statistical confidence. The second 
method, on the other hand, requires a great deal of knowledge 
about the implementation of the given system and a correspond- 
ingly great amount of analysis to isolate the effect of the single 
design decision on the performance of the complete system. The 
information that is yielded is quite exact, but applies only to the 
single point chosen in the design space and may not be genera- 
lized to other points in the space unless the assumptions 
concerning the machine’s implementation are similarly generaliz- 
able. In the following subsections the first method is used to 
determine the dominant tradeoffs and the second method is used 
to estimate the impact of individual implementation tradeoffs. 

4.1 Quantifying Performance 

Measuring the change in performance of a particular PDP-11 
processor model due to design changes presupposes the existence 
of some performance metric. Average instruction execution time 
was chosen because of its obvious relationship to instruction- 
stream throughput. Neglected are such overhead factors as direct 
memory access, interrupt servicing, and, on the LSI-11, dynamic 
memory refresh. Average instruction execution times may be 
obtained by benchmarking or by calculation from instruction 
frequency and timing data. The latter method was chosen because 
of its freedom from the extraneous factors noted above and from 

Chapter 39 1 Implementation and Performance Evaluation of the PDP-11 Family 673 

the normal clock rate variations found from machine to machine 
of a given model. This method also allows us to calculate the 
change in average instruction execution time that would result 
from some change in the implementation. Such frequency-driven 
design has already been applied in practice to the PDP-11/60 
[Mudge, 19771. 

The instruction frequencies are tabulated in Appendix 1 and 
include the frequencies of the various addressing modes. These 
figures were calculated from measurements made by Strecker’ on 
7.6 million instruction executions traced in 10 different PDP-11 
instruction streams encountered in various applications. While 
there is a reasonable amount of variation of frequencies from one 
stream to the next, the figures should be representative. 

Instruction times were tabulated for each of the eight PDP-11 
implementations and reported in Snow and Siewiorek [1978]. 
These times were calculated from the engineering documents for 
each machine. The times differ from those published in the 
PDP-11 processor handbooks for two reasons. First, in the 
handbooks, times have been redistributed among phases to ease 
the process of calculating instruction times. In Snow and Siewio- 
rek the attempt has been made to accurately characterize each 
phase. Second, there are inaccuracies in the handbooks arising 
from conservative timing estimates and engineering revisions. 
The figures included here may be considered more accurate. 

A performance figure is arrived at for each machine by 
weighting its instruction times by frequency. The results, given in 
Table 1, form the basis of the analyses to follow. 

4.2 Analysis of Variance of  PDP-11 

Performance: Top-Down Approach 


The first method of analysis described above will be employed in 
an attempt to explain most of the variance in PDP-11performance 
in terms of two parameters: 

1 	Microcycle time. The microcycle time is used as a measure 
of processor performance which excludes the effect of the 
memory subsystem. 

2 	 Memory-read-pause time. The memory-read-pause time is 
defined as the period of time during which the processor 
clock is suspended during a memory read. For machines 
with processoriUnibus overlap, the clock is assumed to be 
turned off by the same microinstruction which initiates the 
memory access. Memory-read-pause time is used as a 
measure of the memory subsystem’s impact on processor 
performance. Note that this time is less than the memory 
access time since all PDP-11 processor clocks will continue 
to run at least partially concurrently with a memory access. 

Private cornmunication . 



674 Part 3 I Computer Classes Section 3 I Minicomputers 

Table 1 Average PDP-11 Instruction Execution Times in Microseconds 

Fetch Source Destination Execute 
~~ 

LSI-11 2.514 0.689 1.360 1.320 
PDP-11/04 1.940 0.610 0.81 1 0.682 
PDP-11/10 1.500 0.573 0.929 1.094 
PDP-11/20 1.490 0.468 0.802 0.768 
PDP-11/34 1.630 0.397 0.538 0.464 
PDP-11/40 0.958 0.260 0.294 0.575 
PDP-11/45 0.363 0.1 01 0.213 0.185 
(bipolar memory) 

PDP-l1/60 0.541 0.185 0.218 0.635 
(87% cache hit ratio) 

The choice of these two factors is motivated by their dominant 
contribution to, and (approximately) linear relationship with, 
performance. Keeping the number of independent variables low 
is also important because of the small number of data points being 
fitted to the model. 

The model itself is of the form: 

t, = k,c,  + ks, 
where t, = the average instruction execution time of 

machine i from Table 1 
clz= the microcycle time of machine i (for machine 

with selectable microcycle times, the  predom- 
inant time is used) 

cSt= the memory-read-pause time of machine i 

This model is only an approximation, since it assumes kl and k2 
will be constant over all machines. In general this will not be the 
case. kl is the number of microcycles expected in a canonical 
instruction. This number will be a hnction mainly of data-path 
connectivity, and strictly speaking, another factor should be 
included to take that variability into account; however, since the 
data-path organizations of all PDP-11 implementations considered 
here (except the 11/03, 11/45, and 11/60)are quite comparable, 
the simplifying assumption of calling them all identical at the price 
of explaining somewhat less of the variance shall be made. kz is the 
number of memory accesses expected in a canonical instruction 
and also exhibits some variability from machine to machine. A 
small part of this is due to the fact that some PDP-11’s actually 
take more memory cycles to perform a given instruction than do 
others (this is really only a factor in certain 11/10 instructions, 
notably JMP and JSR, and the 11/20 MOV instruction). A more 
important source of variability is the Unibus-processor overlap 
logic incorporated into some PDP-11 implementations, which 
effectively reduces the actual contribution of the kzczt term by 
overlapping more memory access time with processor operation 
than is excluded from the memory-read-pause time. 

Speed 

relative to 


Total LSI-11 


5.883 1.000 
4.043 1.455 
4.096 1.436 
3.529 1.667 
3.029 1.942 
2.087 2.819 
0.863 6.820 

1.578 3.727 

Given the model and the dependent and independent data for 
each machine as given in Table 2, a linear regression was applied 
to determine the coefficients kl and kz and to find out how much of 
the variance is explained by the model. 

If the regression is applied over all eight processors, kl = 
11.580,kz= 1.162, and R2 = 0.904. R2 is the amount of variance 
accounted for by the model, or 90.4 percent. If the regression is 
applied to just the six midrange processors, kl = 10.896, kz = 
1.194, and Rz = 0.962. Rz increases to 96.2 percent partly because 
fewer data points are being fitted to the model and partly because 
the LSI-11 and 11/45 can be expected to have dfierent k 
coefficients from those of the midrange machines and hence do 
not fit the model as well. Note that if two midrange machines, the 
11/04 and the 11/40, are eliminated instead of the LSI-11 and 
11/45, then R2 decreases to 89.3 percent rather than increasing. 
The k coefficients are close to what should be expected for average 
microcycle and memory cycle counts. Since kl is much larger than 

Table 2 Ton-Down Model Parameters in Microseconds 

DependentIndependent variables variable 

Memory- Average 
Microcycle read- instruction 

time pause- execution 
time time 

LSI-11 0.400 0.400 5.883 
PDP-11/04 0.260 0.940 4.043 
PDP-11/10 0.300 0.600 4.096 
PDP-11/20 0.280 0.370 3.529 
PDP-11/34 0.180 0.940 3.029 
PDP-11/40 0.140 0.500 2.087 
PDP-11/45 0.150 0.000 0.863 
(bipolar memory) 

PDP-11/60 0.170 0.140 1.578 
(87% cache hit ratio) 



kz, average instruction time is more sensitive to microcycle time 
than to memory-read-pause time by a factor of kJk2 or approxi- 
mately 10. The implication for the designeris that much more 
performance can be gained or lost by perturbing the microcycle 
time than the memory-read-pause time. 

Although this method lacks statistical rigor, it is reasonably safe 
to say that memory and microcycle speed do have by far the 
largest impact on performance and that the dependency is 
quantifiable to some degree. 

4.3 Measuring Second-Order Effects: Bottom-up Approach 
It is a great deal harder to measure the effect of other design 
tradeoffs on performance. The approximate methods employed in 
the previous section cannot be used, because the effects being 
measured tend to be swamped out by first-order effects and often 
either cancel or reinforce one another, making linear models 
useless. For these reasons such tradeoffs must be evaluated on a 
design-by-design basis as explained above. This subsection will 
evaluate several design tradeoffs in this way. 

4.3.1 Effect of Adding a Byte Swapper to the 11/10. The 
PDP-11/10 uses a sequence ofeight shifts to swap bytes and access 
odd bytes. While saving the cost of a byte swapper, this has a 
negative effect on performance. In this subsection the perform- 
ance gained by the addition of a byte swapper either before the B 
register or as part of the Bleg multiplexer is calculated. Adding a 
byte swapper would change five different parts of the instruction 
interpretation process: the source and destination phases where 
an odd-byte operand is read from memory, the execute phase 
where a swap byte instruction is executed in destination mode 0 
and in destination modes 1 through 7, and the execute phase 
where an odd-byte address is modified. In each of these cases 
seven fast shift cycles would be eliminated and the remaining 
normal-speed shift cycle could be replaced by a byte swap cycle 
resulting in a saving of seven fast shift cycles or 1.050 ps. None of 
this time would be overlapped with Unibus operations; hence, all 
would be saved. This saving is only effected, however, when a 
byte swap or odd-byte access is actually performed. The frequen- 
cy with which this occurs is just the sum of the frequencies of the 
individual cases noted above, or 0.0640. Multiplying by the time 
saved per occurrence gives a saving of0.0672 ps or 1.64 percent of 
the average instruction execution time. The insignificance of this 
saving can well be used to support the decision for leaving the 
byte swapper out of the PDP-11/10. 

4.3.2 Effect of adding Processor/Unibus Overlap to the 11/04. 
Processor/Unibus overlap is not a feature of the 11/04 control unit. 
Adding this feature involves altering the control unit/Unibus 
synchronization logic so that the processor clock continues to run 
until a microcycle requiring the Unibus data from a DATI or 

Chapter 39 1 Implementation and Performance Evaluation of the PDP-11 Family 675 

DATIP is detected. A bus address register must also be added to 
drive the Unibus lines after the microcycle initiating the DATIP is 
completed. This alteration allows time to be saved in two ways. 
First, processor cycles may be overlapped with memory read 
cycles, as explained in Subsection 3.1.2. Second, since Unibus 
data are not read into the data paths during the cycle in which the 
DATIP occurs, the path from the ALU through the AMUX and 
back to the registers is freed. This permits certain operations to be 
performed in the same cycle as the DATIP; for example, the 
microword BAtPC; DATI; P C t P C f 2  could be used to start 
fetching the word pointed to by the PC while simultaneously 
incrementing the PC to address the next word. The cycle 
following could then load the Unibus data directly into a scratch- 
pad register rather than loading the data into the Breg and 
then into the scratch-pad on the following cycle, as is necessary 
without overlap logic. A saving of two microcycle times would 
result. 

DATI and DATIP operations are scattered liberally throughout 
the 11/04 microcode; however, only those cycles in which an 
overlap would produce a time saving need be considered. An 
average of 0.730 cycles can be saved or overlapped during each 
instruction. If all of the overlapped time is actually saved, then 
0.190 ps, or 4.70 percent, will be pared from the average 
instruction execution time. This amounts to a 4.93 percent 
increase in performance. 

4.3.3 Effect of Caching on the 11/60. The PDP-11/60 uses a 
cache to decrease its effective memory-read-pause time. The 
degree to which this time is reduced depends upon three factors: 
the cache-read-hit pause time, the cache-read-miss pause time, 
and the ratio of cache-read hits to total memory read accesses. A 
write-through cache is assumed; therefore, the timing of memory 
write accesses is not affected by caching and only read accesses 
need be considered. The performance of the 11160 as measured by 
average instruction execution time is modeled exactly as a 
function of the above three parameters by the equation 

t = k ,  + kdk,a + k,[l-al) 

where t = the average instruction execution time 
a = the cache hit ratio 
k, = the  average execution time of a PDP-11/60 

instruction excluding memory-read-pause 
time but including memory-write-pause time 
(1 .339~s )

k, = the number of memory reads per average in- 
struction (1.713)

k, = the memory-read-pause time for a cache hit 
(0.000ps) 

k4  = the memory-read-pause time for a cache miss 
(1 .075~s )  



__- -

676 Part 3 I Computer Classes 

The above equation can be rearranged to yield: 

t = (kl + kzk,) - kz(k4-ka)a 

The first term and the coefficient of the second term in the 
equation above are equivalent to 3.181 ps and 1.842 ps respec-
tively with the given k parameter values. This reduces the average 
instruction time to a function of the cache hit ratio, making it 
possible to compare the effect ofvarious caching schemes on 11/60 
performance in terms of this one parameter. 

The effect of various cache organizations on the hit ratio is 
described for the PDP-11family in general in Strecker [1976b]and 
for the PDP-11/60 in particular in Mudge [1977]. If no cache is 
provided, the hit ratio is effectively 0 and the average instruction 
execution time reduces to the first term in the model, or 3.181 ps. 
A set-associative cache with a set size of 1word and a cache size of 
1,024 words has been found through simulation to give a .87 hit 
ratio. An average instruction time of 1.578 ps results in a 101.52 
percent improvement in performance over that without the cache. 

The cache organization described above is that actually em- 
ployed in the 11/60. It has the virtue of being relatively simple to 
implement and therefore reasonably inexpensive. Set size or 
cache size can be increased to attain a higher hit ratio at a 
correspondingly higher cost. One alternative cache organization is 
a set size of 2 words and a cache size of 2,048 words. This 
organization boosts the hit ratio to .93, resulting in an instruction 
time of 1.468ps, an increase in performance of 7.53 percent. This 
increased performance must be paid for, however, since twice as 
many memory chips are needed. Because the performance 
increment derived from the second cache organization is much 
smaller than that of the first while the cost increment is 
approximately the same, the first is more cost-effective. 

4.3.4 Design Tradeoffs Affecting the Fetch Phase. The fetch 
phase holds much potential for performance improvement, since 
it consists of a single short sequence of microoperations that, as 
Table 1clearly shows, involves a sizable fraction of the average 
instruction time because of the inevitable memory access and 
possible service operations. In this subsection two approaches to 
cutting this time are evaluated for four different processors. 

The Unibus interface logic of the PDP-11/04 and that of the 
11/34 are very similar. Both insert a delay into the initial 
microcycle of the fetch phase to allow time for bus-grant 
arbitration circuitry to settle so that a microbranch can be taken if 
a serviceable condition exists. If the arbitration logic were 
redesigned to eliminate this delay, the average instruction 
execution time would drop by 0.220 p s  for the 11/04and 0.150 ps 
for the 11/34.' The resulting increases in performance would be 
5.75 percent and 5.21 percent respectively. 

'These figures are typical. Since the delay is set by an RC circuit and 
Schmitt trigger, the delay may vary considerably from machine to 
machine of a given model. 

Section 3 I Minicomputers 

Another example of a design feature affecting the fetch phase is 
the operand-instruction fetch overlap mechanism of the 11/40, 
11/45,and 11/60.From the normal fetch times in the appendix and 
the actual average fetch times given in Table 1,the saving in fetch 
phase time alone can be calculated to be 0.162 ps for the 11/40, 
0.087 ps for the 11/45,and 0.118 ps for the 11/60,or an increase of 
7.77 percent, 10.07 percent, and 8.11 percent over what their 
respective performances would be if fetch phase time were not 
overlapped. 

These examples demonstrate the practicality of optimizing 
sequences of control states that have a high frequency of 
occurrence rather than just those which have long durations. The 
11/10 byte-swap logic is quite slow, but it is utilized infrequently, 
so that its impact upon performance is small; while the bus 
arbitration logic of the 11/34 exacts only a small time penalty but 
does so each time an instruction is executed and results in a larger 
performance impact. The usefulness of frequency data should thus 
be apparent, since the bottlenecks in a design are often not where 

*intuition says they should be. 

5. Summary and Use of the Methodologies 

The PDP-11 offers an interesting opportunity to examine an 
architecture with numerous implementations spanning a wide 
range of price and performance. The implementations appear to 
fall into three distinct categories: the midrange machines (PDP-
11/04/10/20/34/40/60);an inexpensive, relatively low-performance 
machine (LSI-11); and a comparatively expensive but high-
performance machine (PDP-11/45).The midrange machines are 
all minor variations on a common theme with each implementa- 
tion introducing much less variability than might be expected. 
Their differences reside in the presence or absence of certain 
embellishments rather than in any major structural differences. 
This common design scheme is still quite recognizable in the 
LSI-11 and even in the PDP-11/45. The deviations of the LSI-I1 
arise from limitations imposed by semiconductor technology 
rather than directly from cost or performance considerations, 
although the technology decision derives from cost. In the 
PDP-11/45, on the other hand, the quantum jump in complexity is 
purely motivated by the desire to squeeze the maximum perform- 
ance out of the architecture. 

From the overall performance model presented in Sec. 4.2 of 
this chapter, it is evident that instruction-stream processing can 
be speeded up by improving either the performance of the 
memory subsystem or the performance of the processor. Memory 
subsystem performance depends upon the number of memory 
accesses in a canonical instruction and the effective memory-read- 
pause time. There is not much that can be done about the first 
number, since it is a function of the architecture and thus largely 
fixed. The second number may be improved, however, by the use 



Chapter 39 1 Implementation and Performance Evaluation of the PDP-11Family 677 

of faster memory components or techniques such as caching. 
The performance of the PDP-11 processor itself can be 

enhanced in two ways: by cutting the number of processor cycles 
to perform a given function or by cutting the time used per 
microcycle. Several approaches to decreasing the effective micro- 
cycle count have been demonstrated: 

1 	Structure the data paths for maximum parallelism. The 
PDP-11/45 can perform much more in a given microcycle 
than any of the midrange PDP-11’s and thus needs fewer 
microcycles to complete an instruction. To obtain this 
increased functionality, however, a much more elaborate 
set of data paths is required in addition to a highly 
developed control unit to exercise them to maximum 
potential. Such a change is not an incremental one and 
involves rethinking the entire implementation. 

2 	 Structure the microcode to take best advantage of instruc-
tion features. All processors except the 11/10 handle 
JMPIJSR addressing modes as a special case in the micro- 
code. Most do the same for the destination modes of the 
MOL7 instruction because of its high frequency. Varying 
degrees of sophistication in instruction dispatching from 
the BUT IRDECODE at the end of every fetch is evident in 
different machines and results in various performance 
improvements. 

3 	 Cut effective microcycle count by overlapping processor 
and Unibus operation. The PDP-11/10 demonstrates that a 
large microcycle count can be effectively reduced by 
placing cycles in parallel with memory access operations 
whenever possible. 

Increasing microcycle speed is perhaps more generally useful, 
since it can often be applied without making substantial changes to 
an entire implementation. Several of the midrange PDP-11’s 
achieve most of their performance improvement by increasing 
microcycle speed in the following ways: 

1 	Make the data paths faster. The PDP-11/34 demonstrates 
the improvement in microcycle time that can result from 
the judicious use of Schottky TTL in such heavily traveled 
points as the ALU. Replacing the ALU and carry/look-ahead 
logic alone with Schottky equivalents saves approximately 
35 ns in propagation delay. With cycle times running 300 ns 
and less, this amounts to better than a 10 percent increase 
in speed. 

2 	 Make each microcycle take only as long as necessary. The 
11/34 and 11/40 both use selectable microcycle times to 
speed up cycles that do not entail long data-path propaga- 
tion delays. 

Circuit technology is perhaps the single most important factor 
in performance. It is only stating the obvious to say that doubling 
circuit speed will double total performance. Aside from raw 
speed, circuit technology dictates what it is economically feasible 

to build, as witnessed by the SSI PDP-11/80, the MSI PDP-11/40, 
and the LSI-11. Just the limitations of a particular circuit 
technology at a given point in time may dictate much about the 
design tradeoffs that can be made, as in the case of the LSI-11. 

Turning to the methodologies, the two presented in Sec.4 of 
this chapter can be used at various times during the design cycle. 
The top-down approach can be used to estimate the performance 
of a proposed implementation, or to plan a family of implementa- 
tions, given only the characteristics of the selected technology and 
a general estimate of data-path and memory-cycle utilization. 

The bottom-up approach can be used to perturb an existing or 
planned design to determine the performance payoff of a particu- 
lar design tradeoff. The relative frequencies of each function (e.g., 
addressing modes and instructions), while required for an accu- 
rate prediction, may not be available. There are, however, 
alternative ways to estimate relative frequencies. Consider the 
three following situations: 

At least one implementation exists. An analysis of the 
implementation in typical usage (i.e., benchmark programs 
for a stored-program computer) can provide the relative 
frequencies. 
N o  implementation exists, but similar systems exist. The 
frequency data may be extrapolated from measurements 
made on a machine with a similar architecture. 
No implementation exists and there are no prior similar 
systems. From knowledge of the specifications, a set of 
most-used functions can be estimated (e.g., instruction 
fetch, register and relative addressing, move and add 
instructions for a stored-program computer). The design is 
then optimized for these functions. 

Of course, the relative-frequency data should always be updated 
to take into account new data. 

Our purpose in writing this chapter has been twofold: to provide 
data about design tradeoffs and to suggest design methodologies 
based on these data. It is hoped that the design data will stimulate 
the study of other methodologies while the results of the design 
methodologies presented here have demonstrated their useful- 
ness to designers. 

References 

Bell et al. [1970]; Mudge [1977]; O’Loughlin [1975]; Siewiorek 
and Barbacci [1976]; Snow and Siewiorek [1978]; Strecker [1976b]; 
Thomas and Siewiorek [1977]; Wilkes and Stringer [1953]. The 
following Digital Equipment Corporation documents define the 
architecture and instruction set of the PDP-11 in addition to 
detailing features peculiar to individual processor implementa- 
tions: DEC [1971]; DEC [1975]; DEC [1976a-el; DEC [1977]. 



678 Part 3 1 Computer Classes Section 3 I Minicomputers 

APPENDIX 1 INSTRUCTION TIME COMPONENT FREQUENCIES Frequency 

This appendix tabulates the frequencies of PDP-11 instructions 
Execute 1.oooo 

and addressing modes. These data were derived as explained in 
Subsection 4.1.Frequencies are given for the occurrence of each Double operand 0.4069 

phase (e.g., source, which occurs only during double-operand ADD 0.0524 
instructions), each subcase of each phase (e.g., jump destination, SUB 0.0274 
which occurs only during jump or jump to subroutine instruc- BIC 0.0309 
tions), and each instance of each phase, such as a particular 
addressing mode or instruction. The frequency with which the 
phase is skipped is Iisted for source and destination phases. Source 
and destination odd-byte-addressing frequencies are listed as well 
because of their effect on instruction timing. 

BlCB 
BIS 
BlSB 
CMP 
CMPB 
BIT 

0.0000 
0.001 2 
0.0013 
0.0626 
0.021 2 
0.0041 

Frequency BlTB 0.0014 

Fetch 1.oooo MOV 
MOVB 

0.1517 
0.0524 

Source 0.4069 XOR 0.0000 
Mode 

0.1377 
Single operand 0.2286 

0.0338 CLR 0.0186 
0.1587 CLRB 0.0018 
0.01 22 COM 0.0000 
0.0352 COMB 0.0000 
0.0000 INC 0.0224 
0.0271 INCB 0.0000 
0.0022 DEC 0.0809 

No Source 0.5931 
NOTE: Frequency of odd-byte addressing (SMl-7) = 0.0252. 

DECB 
NEG 
NEGB 

0.0000 
0.0038 
0.0000 

Destination Mode 0.6872 ADC 0.0070 

Data Manipulation 0.6355 
ADCB 
SBC 

0.0000 
0.0000 

Mode SBCB 0.0000 
O R  0.3146 ROR 0.0036 
1 @RorR 0.0599 RORB 0.0000 
2 (R)+ 0.0854 
3 @(R)+ 0.0307 
4 -(R) 0.0823 

6 X(R) 0.0547 
7 @X(R) 0.0080 
NOTE: Frequency of odd-byte addressing (DM1-7) = 0.0213. 

Jump (JMP/JSR) 0.051 7 

5 @-(R) 0.0000 

ROL 
ROLB 
ASR 
ASRB 
AS L 
ASLB 
TST 
TSTB 
SWAB 

0.0059 
0.0000 
0.0069 
0.0000 
0.0298 
0.0000 
0.0329 
0.0079 
0.0038 

Operand Mode SXT 0.0000 

6 X(R) 

O R  
1 @ R o r ( R )  
2 (R)+ 
3 @(R)+ 
4 -(R) 
5 @-@I 

0.0000 All branches (true) 
0.0079 
0.0000 

0.0438 

O.OOOO (ILLEGAL) Branch 
0.0000 

All branches (false) 
SOB (true) 

0.0000 SOB (false) 

0.2853 

0.1744 
0.1 109 
0.0000 
0.0000 

7 @X(R) 0.0000 

No Destination 0.31 28 



Chapter 39 I Implementation and Performance Evaluation of the PDP-11 Family 679 

Jump 0.0517 

JMP 0.0272 

JSR 0.0245 


Control, trap 

and miscellaneous 0.0270 


Set/clear condition codes 0.0017 

MARK 0.0000 

RTS 0.0236 

RTI 0.0000 

RTT 0.0000 

IOT 0.0000 

EMT 0.0017 

TRAP 0.0000 

BPT 0.0000 


NOTES: Frequency of destination odd-byte addressing (DM1-7) = 

0.0213. 

Execution frequencies indicated as 0.0000 have an aggregate fre- 

quency c 0.0050. 




Section 4 

Maxicomputers 

Introduction 

What distinguishes the maxicomputer class from the classes 
already presented? As illustrated in Chap. 1, one primary 
characteristic is price. The maxicomputer tends to be the largest 
machine that can be built in a given technology at a given time. 
The typical price for a maxicomputer in 1980 was greater than $1 
million. Another characteristic used in Chap. 1 was a large 
virtual-address space. In 1980 this meant a virtual-address space 
size in excess of 16 Mbyte. 

Maxicomputers usually have a rich set of data-types. Over the 
years the scientific data-types have progressed from short-word to 
long-word fixed-point scalars, to floating-point scalars, and finally 
to vectors and arrays. Commercial data-types have progressed 
from character-at-a-time to fixed-length instructions using des- 
criptors and on to variable character strings. The PMS structure of 
maxicomp_uters has-evolved from a single Pc to 1-Pc-n-Pio, then 
to in-Pc-n-Pio, and on to C-Cio [data-base]-Cio [communica- 
tion]. 

Not all maxicomputers satisfy all the characteristics. Several 
maxicomputers have just basic processing performance as a goal 
and have only high-performance implementations (as do the TI 
ASC and the CMY-l), often with a limited range of peripherals 
and software. Other maxicomputers have a family of program- 
compatible implementations spanning a large performance range 
(as do the Systeml369-370 Model 91 and Model 195 and the 
VAX-11). Particular implementations of these families of machines 
may be high-performance; however, such implementations are 
constrained by the family ISP, which may not have provision 
for features related only to high performance. (As an example 
of such a feature, the TI ASC has a PREPARE TO BRANCH 
instruction that notifies instruction prefetch logic of an upcom- 
ing branch. By prefetching instructions down both possible 
branch paths this instruction can keep the instruction pipeline 
filled.) 

This section examines five maxicomputers. The Systeml360 and 
the VAX-11 represent implementation families, while the CRAY-1 
and the TI ASC are explicitly targeted for the very-high-
performance market, where the goal is solely performance. The 
CDC 6600, while designed primarily for the high-performance 
market, can be assembled into lower-performance models if the 
high-performance central processor is deleted. 

The IBM System/360 

The IBM Systemi360 is the name given to a third-generation 
series of computers. More recent than the System/360 is the IBM 
Systemt370, which has been followed by cost-reduced implemen- 
tations in the Series 3030 and Series 4300, which constitute the 
current primary IBM product line. Chapters 40 and 41 focus on 
the ISP of the original Systeml360. A discussion of the System/370 
and the 3030 and 4300 series plus a comparison of the various 
models in the SystemMBO, System/370, Series 3030, and Series 
4300 is covered in Part 4, Sec. 5. 

The following discussion covers only the processor. The 
instruction set consists of two classes, scientific ISP and data 
processing ISP, which operate on the different data-types. These 
data-types correspond roughly to the IBM 7090 and IBM 1401 
[Bell and Newell, 19711. For the scientific ISP there are half- and 
single-word integers; address integers; single, double, and qua- 
druple (in the Model 85) floating point; and logical words (boolean 
vectors). For the data processing ISP there are address or 
single-word integers, multiple-byte strings, and multiple-digit 
decimal strings. These many data-types give the 360 strength in 
the minds of its various types of users. However, the many 
data-types, each performing few operations, may be of ques- 
tionable utility and may constrain the ISP design in a way 
that a more complete operation set for a few basic data-types 
does not. 

The ISP uses a general-register organization, as is common in 
virtually all computers in use during the 1970s. The ISP power 
can be compared with several similar multiple-register ISP 
structures, such as those of the UNIVAC 1107 and 1108; the CDC 
6600 and 7600; the CRAY-1; the DEC PDP-6, PDP-10, PDP-11, 
and VAX-11; the Intel 8080 and 8086; the SDS Sigma 5 and Sigma 
7; and the early general-register-organized machine Pegasus 
[Elliott et al., 19561. Of these machines the Systemi360 scientific 
ISP appears to be the weakest in terms of instruction effectiveness 
and the completeness of its instruction set. As part of the Military 
Computer Family (MCF) project [Computer, 1977; CFA, 19771, a 
statistically designed experiment was conducted to compare the 
effectiveness of the Interdata 8/32, PDP-11, and IBM System/360 
ISP. Sixteen programmers implemented test programs from a set 
of 12 benchmark descriptions. In all, 99 programs were written 
and measured. The results indicated that the Systerni360 required 
21 percent and 46 percent more memory to store programs than 
the PDP-11 and the Interdata 8/32, respectively. Further, the 
System/360 required 37 percent and 49 percent more bytes than 
the PDP-11 and Interdata 8/32, respectively, to be transferred 
between primary memory and the processor during execution of 
the test programs. 

In the following discussion, it would be instructive to contrast 

680 



Section 4 I Maxicomputers 681 

the System/360 ISP with a more contemporary ISP, such as that of 
the VAX-11. For example, in the VAX-11/780 (Chap. 42), symme- 
try is provided in the instruction set. For any binary operation b 
the following are possible: 

GR + GR b Mp Memory/register to register 
GR tGR b GR Register to register 
M p  tGR b M p  Memorylregister to memory 
Mp tM p  b Mp Memory/memory to memory 

The 360 ISP provides only the first two. Additional instructions 
(or modes) would increase the instruction length. 

In the System/360 the only advantage taken of general registers 
is to make them suitable for use as index registers, base registers, 
and arithmetic accumulators (for operand storage). Of course, the 
commitment to extend the general-purpose nature of these 
general registers would require more operations. 

The 360 has a separate set of general registers for floating-point 
data, whereas the VAX-11/780 uses one register set for all 
data-types. Data-type-specific register sets provide more proces- 
sor state and temporary storage but again detract from the 
general-purpose ability of the existing registers. Special com- 
mands are required to manipulate the floating-point registers 
independently of the other general registers. Unfortunately the 
floating-point instruction set is not quite complete (e.g., in 
conversion from fixed to floating point; several instructions are 
needed to move data between the fixed and floating registers). 

When multiple data-types are available, it is desirable to have 
the ability to convert between them unless the operations are 
complete in themselves. The VAX-11/780 provides a full set of 
instructions for converting between data-types. The System/360, 
on the other hand, might use more data-conversion instructions, 
for example, between the following: 

1 	 Fixed-precision integers and floating-point data. 
2 	 Address-size integers and any other data. 
3 	 Half-word integers and other data. 
4 	 Decimal and byte string and other data. (Conversion 

between decimal string and byte string is provided.) 

Some of the facilities are redundant and might be handled by 
better but fewer instructions. For example, decimal strings are not 
completely variable-length (they are variable up to 31 digits, 
stored in 16 bytes), and so essentially the same arithmetic results 
could be obtained by using fixed multiple-length binary integers. 
This would remove the special decimal arithmetic and still give 
the same result. If a large quantity of fixed-field decimal or byte 

data were processed, then the binary-decimal conversion instruc- 
tions would be useful. 

The communication instructions between Pc and Pi0 are 
minimal with the System/360. The Pc must set up Pi0 program 
data, but there are inadequate facilities in the Pc for quickly 
forming Pi0 instructions (which are actually yet another data- 
type). There are, in effect, a large number of Pio’s, as each device 
is independent of all others. However, signaling of all Pio’s is via a 
single interrupt channel to the Pc. By contrast, the VAX-11 I/O 
devices are implemented as a set of registers with addresses in the 
memory address space. Thus the entire instruction set is usable to 
directly control the I/O activity. There are no specific I/O 
instructions. 

The Pc state consists of 26 words of 32 bits each: 

1 	Program state words, including the instruction counter (2 
words) 

2 	 Sixteen general registers (16 words) 
3 	 Four %word floating-point general registers (8 words) 

Many instructions must be executed (taking appreciable time) to -	 _ _  
preserve the Pc state and establish a new one. A single instruction 
would be preferable; even better would be an instruction to 
exchange processor states, as in the CDC 6600 (Chap. 43). 

As originally designed in the System/SfjO, the methods used to 
address data in Mp had some disadvantages. It is impossible to 
fetch an arbitrary word in Mp in a single instruction, because the 
address space is limited to a direct address of only 212 bytes. Any 
Mp access outside the range requires an offset or base address to 
be placed in a general register. Accesses to several large arrays 
may take significant time if a base address has to be loaded each 
time. The reason for using a small direct address is to save space in 
the instruction. The VAX-11 provides multiple addressing modes, 
including direct access to bytes, that gives the programmer 
flexibility in accessing arbitrary operands. 

Another difficulty of the 360 addressing is the nonhomogene- 
ity of the address space. Addressing is to the nearest byte, but the 
system remains organized by words; thus, many addresses are 
forced to be on word (and even doubleword) boundaries. For 
example, a double-precision data-type which requires two words 
of storage must be stored with the first word beginning at a 
multiple of an 8-byte address. (However, the Model 85, which is a 
late entry in the series, allows arbitrary alignment of data-types 
with word boundaries, while the Systeml370 eliminated this 
limitation.) When a general register is used as a base or index 
register, the value in the index register must correspond to the 
length of the data-type accessed. That is, for the value of a half 



682 Part 3 1 Computer Classes 

integer, single integer, single floating (long), and quadruple 
floating (extended), i must be multiplied by 2, 4, 4, 8, and 16, 
respectively, to access the proper element. The VAX-11 does not 
require data-types to be aligned on artificial boundaries. 

A single instruction to load or store any string of bits in Mp (as 
provided in the IBM Stretch) would provide a great deal of 
generality. Provided the length were up to 64 bits, such an 
instruction might eliminate the need for the more specialized 
data-typesI 

A basic scheme for dynamic multiprogramming through pro- 
gram swapping was nonexistent in the System/360 because of the 
inadequate relocation hardware. Only a simple method of Mp 
protection is provided, using protection keys (see Part 2, Sec. 2). 
This scheme associates a 4-bit n u m k r  (key) and a 1-bit write 
protect with each 2-Kbyte block, and each Pc access must have 
the correct number. Both protection of Mp and assignment of Mp 
to a particular task (greater than 24 tasks) are necessary in a 
dynamic multiprogramming environment. Although the archi- 
tects of the System/360 advocate its use for multiprogramming, 
the operating system does not enforce conventions to enable a 
program to be moved, once its execution is started. Indeed, the 
nature of the System/360 addressing is based on absolute binary 
addresses within a program. The later, experimental Model 67 
does, however, have a very nice scheme for protection, reloca- 
tion, and name assignment to program segments [Arden et al., 
19661. 

VAX 

The VAX-11 (Virtual Address Extension) is a 32-bit successor to 
the PDP-11 minicomputer (Chap. 38). The VAX-11 ISP bears a 
strong kinship to the PDP-11 ISP, especially with respeck to 
addressing modes. 

While the primary reason for creating an ISP based on 32-bit 
words was for a 32-bit address space, the extra word width allowed 
for the addition of new data-types (strings, characters, etc.) and a 
general cleaning up of the instruction format (e.g., from a variety 
of op code field lengths of 4,8, 10, and 16 bits in the PDP-11 to 
multiples of 8-bit fields). Several of the perceived shortcomings of 
the System1’360 instruction set were fixed, including: 

1 	 ISP symmetry for source and destination operands. 

2 	 A complete set of instructions for each data-type and for 
converting between data-types. 

3 	 General-register architecture where the registers are used 
for all data-types. There are no special registers dedicated 
to a subset of the data-types. 

Section 4 1 Maxicomputers 

4 	 I/O handling through the address space, as in the PDP-11. 
The same set of instructions can be used in either data 
manipulation or I D .  

5 	 A virtual-memory system that provides both program 
protection and memory relocation. 

6 	 Rapid context swap through automatic register saving as 
determined by a settable bit mask. 

7 	 Addressability of any location in memory by a single 
instruction. 

8 	 Stacks and stack operators integral to the design, especially 
for procedure calls. 

The VAX-11 ISP represents what the System/360 ISP could 
have been given 10 years of experience in instruction sets. The 
evolution ofthe VAX-11 ISP from the PDP-11 ISP is an interesting 
study of concern for user-program compatibility on architectures 
using different word lengths. This evolution is also interesting to 
compare with that of the System/360 and Systeml370 (Chap. 51). 

Figures 1and 2 illustrate the PMS diagram and Kiviat graph for 
the first VAX implementation, the VAX-11/780. An LSI-11 serves 
as the console processor. The LSI-11 interprets commands typed 
on the console for machine control. The console teletype replaces 
the traditional console light and switch panel in performing 
functions such as HALT, SINGLE STEP, DEPOSIT, and EXAM-
INE. The console processor also provides for system initiation 
(booting), diagnosis (through microdiagnostics and the diagnostic 
control store), and status monitoring. Conceptually, the console 
terminal could be replaced by a phone line or serial line to another 
computer for remote monitoring and control. 

A set-associative cache provides performance improvement on 
operand fetching. Because of the elaborate translation from virtual 
to real address, a translation buffer (or physical address cache) 
provides speedup to the address translation process. 

Any mix of four Unibus or Massbus adaptors provides for 
attaching to peripheral buses that are not compatible with the 
VAX-11/780 processor/memory. 

The CDC 6600,7600, and CYBER Series 

The CDC 6000 series development began in 1960, using high- 
speed transistors and discrete components of the second genera- 
tion. The first 6600 was announced in July 1963 and first delivery 
was in September 1964. Subsequent, compatible successors 
included the 6400, in April 1966, which was implemented as a 
conventional Pc (a single shared arithmetic function unit instead of 
the 10 D’s); the 6500, in October 1967, which uses two 6400 Pc’s; 
and the 6416, in 1966, which has only peripheral and control 



Section 4 1 Maxicomputers 683 

AII axes: x103 

M.dcslDiagnostic Control 
Store; 1Kw; 96 biwl 

i2H-E7t-T,K.uba Sunibus 

M.tape 

\ 

Kmba Smassbusm?;; 

I / 

T.communication 
(byteis) 

Fig. 2. Kiviat graph for the VAX-11/780. 

Notes 

1. P40-5 addressesfinstruction: technology: TTL MSI; options: floating point accelerator1 
2. Kuba[’Unibus Adaptor; 1.5 Mbytekl 
3. Kmba[’Massbus Adaptor; 2.0 Mbyteisl 
4. Pconsole [‘LSI-11; technology: NMOS LSI] 

Fig. 1. PMS diagram of VAX-lln80. 

processors (PCP). The first 7600, which is nearly compatible, was 
delivered in 1969. The dual-processor 6700, consisting of a 6600 
and a 6400 Pc, was introduced in October 1969. Subsequent 
modifications to the series in 1969 included the extension to 20 
peripheral and control processors with 24 channels. CDC also 
marketed a 6400 with a smaller number of peripheral and control 
processors (the 6415-7, with seven). Reducing the maximum PCP 
number to seven also reduced the overall purchase cost by 
approximately $56,000 per processor. 

The computer organization, technology, and construction are 
described in Chap. 43. ISP descriptions for the Pc are given in 
Appendix 1of Chap. 43. 

To obtain the very high logic speeds, the components are placed 
close together. The logic cards use a cordwood-type construction. 
The logic is direct-coupled-transistor logic, with 5 ns of propaga-

tion time and a clock of 25 ns. The fundamental minor cycle is 100 
ns, and the major cycle is 1,000 ns, as is the memory cycle time. 
Since the component density is high (about 500,000 transistors in 
the 6600), the logic is cooled by conduction to a plate with Freon 
circulating through it. 

This series is interesting from many aspects. It remained the 
fastest operational computer for many years, until the advent of 
the IBM Systeml360 Model 91 and the follow-on CDC 7600. Its 
large component count almost implies it cannot exist as an 
operational entity. Thus it is a tribute to an organization, and the 
project leader-designer, Seymour Cray, that a large number exist. 
There are sufficiently high data bandwidths within the system that 
it remains balanced for most job mixes (an uncommon feature in 
large C’s). It has high-performance Ms.disks and T.displays to 
avoid bottlenecks. The Pc’s ISP is a nice variation of the 
general-register processor and allows for very efficient encoding of 
programs. The Pc is multiprogrammed and can be switched from 
job to job more quickly than any other computer. Tt smaller C’s 
control the main Pc and allow it to spend time on use.% (billable) 
work rather than on its own administration. The independent 
multiple data operators in the 6600 increase the speed Ey at least 
2% times over a 6400, which has a shared D. Finally, it realizes 



684 Part 3 I Computer Classes 	 Section 4 1 Maxicomputers 

-	 the 10 C's in a unique, interesting, and efficient manner. Not 
many computer systems can claim half as many innovations. cc 

PMS Structure 

A simplified PMS structure of the C[ ' 6400, ' 66001 is given in 

Fig. 3. Here we see the C[io; #1:10], each ofwhich can access the 

central computer (Cc) primary memory (Mp). Figure 3 shows why 

we consider the 6600 to be fundamentally a network. Each Cio 

(actually a general-purpose, 12-bit C) can easily serve the 

specialized Pi0 function for Cc. The Mp of Cc is an Ms for a Cio, of 

course. By having a powerful Cio, more complex inputioutput 

tasks can be handled without Cc intervention. These tasks can 

include data-type conversion and error recovery, among others. 

The K's which are connected to a Cio can also be less complex. 

Figure 3 has about the same information as Fig. 1in Chap. 43. 


A detailed PMS diagram for the C[ ' 6400, '6416, '6500, and 
I 66001 is given in Fig. 4, accompanied by a Kiviat graph in Fig. 5 Fig. 3. CDC 6600 PMS diagram (simplified). 
that is representative of the CDC 6600 series. The interesting 

1 2 	 3 

Core Storage1 

6 	 7 
L[a2:4; To: 'Extended 	

KL'Write Pyramidl 

8 9 11 	 12I I  

Id ~ I H Z I I ~ lML'Barrell 	 T[#l:2; 'CRT Display1 

TI'KeyboardI 

Notes 

1. MplCore; l.Ops/w:4096 w; (5x12) blwl  
2. SItime multiplex; 0.1 pslw; 60 b1wl 
3. 	 Pc['6600; 15130 blinstruction; functional units: 'Shift, 'Boolean, 'Increment. 'Branch, 'Add, 'Long Add, 'Multiply, 'Divide; 


'Instruction Stack: 8w, 60 blw; Switchboard, 'Scoreboard; !No C['Centrall in CDC 6416; CDC 6500 and CDC 6400 

do not have 'Scoreboard, separate functional units, and 'Instruction Stack!l 


4. Pc['Only present in CDC 65001 
5. ML'Extend Core StorageIECS; 3.2 pdw; 12595218 w; 8x60, parity b1wl 
6. K['Read Pyramid; buffer: 5 stages; 12 blw; i words in stage i; .2 p d w l  
7. K['Write Pyramid; buffer; 5 stages; 12 blw; 5-i words in stage i; .2 ps1wl 
8. MpLCore;4096 w; 12 b1w; 1.Opslwl 
9. SItime multiplex; ,1 pslw; 12 biwl 

10. ML'Barrel; time multiplex; 10 stages; 51 blstage; 0.1 !.~s/rtagel 
11. Ppcp['Peripheral and Control Processor; time multiplex; .1 pslw; 1 addresrlinstruction: 1-2 wlinstruction; 12 b/wl  
12. L(1 p / w ;  12 blwl 

Fig. 4. CDC 6400,6416,6500,and 6600 PMS diagram. 



AII axes: x103
MP (byte) 

/ t \ 

w
T. communication 

(byteis1 

Fig. 5. Kiviat graph for the CDC 6600. 

structural aspects can be seen from Fig. 4.The four configura- 
tions, 6400 through 6600, are included just by considering the 
pertinent parts of the structure. That is, a 6416 has no large Pc; a 
6400 has a single, Straightforward Pc; a 6500 has two Pc’s; and the 
6600 has a single, powerful Pc. The 6600 Pc has ten D’s, so that 
several parts of a single instruction stream can be interpreted in 
parallel. A 6600 Pc also has considerable M,buffer to hold 
instructions so that Pc need not wait for Mp fetches. 

The implementation of the ten Cio’s can be seen from the PMS 
diagram (Fig. 4). Here, only one physical processor is used on a 
time-shared basis. Each 0.1 ps, a new logical P is processed by the 
physical P. The ten Mp’s are phased so that a new access occurs 
each 0.1ps. The ten Mp’s are always busy. Thus the i. rate is 10 x 
12 bit/ps or 120 Mbit/s. This process of shifting a new Pc state into 
position each 0.1 ps has been likened to a barrel by CDC. A 
diagram of the process is shown in Fig. 6. 

The T’s, K’s, and M’s are not given, although it should be 
mentioned that the following units are rather unique: a K for the 
management of 64 telegraph lines to be connected to a Cio; an 
Ms(disk) with four simultaneous access ports, each at a data- 
transfer rate of 1.68 megacharacters per second and a capacity of 
168 megacharacters; an Ms[magnetic tape] with a K[#1:4] and S 
to allow simultaneous transfers to four Ms’s; the T[display] for 

Section 4 1 Maxicomputers 685 

monitoring the system’s operation; K’s to other C’s and Ms’s; and 
conventional T[card reader, punch, line printer, etc.]. 

ISP 
The ISP description of the Pc is given in Appendix 1of Chap. 43. 
The Pc has a very clean, straightforward, scientific-calculation- 
oriented ISP. We can consider it a variation on the general- 
register structure because the Pc state has three sets of general 
registers. Their use is explained both in Chap. 43 and its 
Appendix 1. This structure assumes that a program consists of 
several read accesses to a large array (or arrays) and a large number 
of operations on these accessed elements, followed by occasional 
write accesses to store results. We would agree that this is a valid 
assumption for scientific programs (e.g., look at a FORTRAN 
arithmetic statement), and it is probably valid for most other 
programs as well. 

Cc has provisions for multiprogramming in the form of a 
protection and relocation address register pair. The mapping is 
given in the ISP description for both Mp and Ms[ ’ Extended Core 
StorageiECS]. 

The 6600 PCP is about the same as the early CDC 160 
minicomputer (see Part 3, Sec. 3). The PCP has an 18-bit A 
register because it has to process addresses for the large Cc. 

One interesting aspect of the 6400 which we question is the lack 
of communication among all components at the ISP (program- 
ming) level. When Pc stops, it has no way of explicitly informing 
any other components. There are no interprocessor interrupts. An 
110 device cannot interrupt a Pio, nor can Pio’s communicate with 
one another except by polling. The state switching for Pc is 
elegant, however, since a Pi0 can request Pc to stop a job, store 
Mps, and resume a new task in one instruction. (The t.save + 
t.restore - 2 ks.) 

The Operating System 

The Cio’s functions are data transmission between a peripheral 
device and the large Cc via the Cio’s Mp with some data 
transformation or conversions; complete task management, in- 
cluding initiation, termination, and error handling; and manage- 
ment of Pc. The Cio’s perform in about the same manner as the 
C[ ’Attached Support Processor] in the System/360 (see Part 4, 
Sec. 5). The operating-system software is managed by a single 
fixed Cio. The remaining nine Cio’s are free, and as I/O tasks arise 
in the system, the Cio’s assign themselves to particular tasks, 
carry out the tasks, and then free themselves to take on other 
tasks. The operating-system software resides in Mp(Pc) (that is, 
Cc), is accessible to all Cio’s, and includes: 

1 	The variables which determine the state of a particular job, 
e.g., data pointers to Ms[disk, ’ ECS], running time, a list 
of jobs to do 



2 

686 Part 3 1 Computer Classes 	 Section 4 i Maxicomputers 

SLOl  

CENTRAL4 1
t t l  	

,CENTRAL 
MEMORY 	 MEMORY 
(601 	 (601 


(121 

REAL TIME 

0 I 2 3 4 5 6 7 1 0 1 1 1 2 I 3 1 4  

Fig. 6. CDC 6600 peripheral and control processors. (Courtesy of Control Data Corporation.) 

Programs for the Cio's: In a typical system, one might expect to find the following 
a Parts of the operating system used by the Cio responsi- assignment of PCP's: 

ble for the system management 

b 	 I/O management programs (or programs to get the task 1 Operating-system execution, including scheduling and 
management program from Ms) which Cio's use management of Cc and all Cio's 



Section 4 1 Maxicomputers 687 

2 	 Display of job-status data on T[display] 
3 Ms[disk] transfer management 
4 	 T[printers, card reader, card punch] 
5 L[#1:3; to:C.satellite] 
6 Ms[magnetic tape] 

7 	 T[64 Teletypes] 
8 Free to be used with Ms[disk] and Ms[magnetic tape] 
9 	 Free 

10 Free 

The CDC 7600 Series 
The CDC 7600 system is an upward-compatible member of the 
CDC 6000 series. Although the main Pc in the 7600 is compatible 
with the main Pc of the 6600, instructions have been added for 
controlling the I/O section and for communicating between Large 
Core Memories (LCM) and Small Core Memory (SCM). It is 
expected to compute at an average rate 4 to 6 times that of a 
C[ 66001. 

The PMS structure (Fig. 7) is substantially different from that of 
the 6600. The C[ 76001 Peripheral Processing Unit (PPU), unlike 
the Peripheral and Control Processors of the C[ 66001, has a loose 
coupling with the main C. The PPUs are under control of the main 

K ['Core to Core Transfer1 

K['lnput Output Section1 

G* 

Notes 

1. 	 Mp"Smal1 Core MemoryISCM; 275 nslw; 2KW; 60  blwl 
2. 	 S[time multiplexed; 27.5 nslw; 60 blwl 

C when transferring words into SCM via K['Input-Output 
Section]. The fifteen C[ PPUI's have eight inputloutput channels. 
These channels, which can run concurrently, provide the link 
between C[ PPU] and peripheral Ms's and T's. Some of the PPUs 
are located in the same physical space as the Pc. 

The 7600 Pc can be interrupted by a clock, the PPUs, and a trap 
condition within the Pc. A breakpoint address, BPA, can be set up 
within Pc to initiate a trap when the program reaches BPA. This 
interruption scheme is in contrast to that of the 6600, which could 
not be interrupted or trapped. The 7600 interrupt may be a 
reaction to the lack of intercommunication in the 6600. 

The CDC CYBER Series 
The CDC CYBER-170's continued the line of computers begin- 
ning with the CDC 6600. The CYBER-170 series, manufactured 
in six models, was announced in 1970. This series extended into 
timesharing and multimode operations the concept of separate 
hardware for computation, input/output, and monitoring. The 
CYBER-170 series, while incorporating refined versions of the 
architecture and software of its predecessors, offers a broader 
range of performance levels and applications, as well as cost- 
effective operation. 

The CDC CYBER-170 series of machines features six compati- 
ble computer systems in the medium- to large-scale range. All of 
these high-performance machines share the same basic architec- 

3. 	 Pc['7600; functional units: 'Shift. 'Boolean. 'Increment, 'Long Add, 'Floating Add, 'Floating Multiply, 'Floating Divide, 
'Normalize, 'Population Count1 :'Instruction Stack: 12 w; 60  blwl 

4. 	 M['Large Core MemoryILCM: 1.76 pslw; (64/8) KW; 8 x 6 0  blwl 
5. 	 KL'lnput Output Section; buffer; 55 nslw; 15w; 60  blwl  
6. 	 Mp[#O:l: 275 nslw;2048 w; 12 blwl 
7. 	 Sltime multiplex] 
8. 	 Pppu"Periphera1 Processing Unit/PPU; 1 addresslinstruction; 1-2 wlinstruction; 12 b/wl 

Fig. 7.  CDC 7600 computer PMS diagram. 



688 Part 3 j Computer Classes 	 Section 4 1 Maxicomputers 

I

1 	 - DI’Small ALU; 

F-	 l8-bi t l  

7.1 1 11 
CL’rnsio; #1 :HMs[‘76391819 Mass 	 I - D[‘Cornpare 

(4--14)1 Storage Subsystem1 Move Unit; 
[-- !For character 

operations!1 

!Pc [#21 is  operational on ‘171 and ‘172, not present 
on ‘173. standard on ’174; D.Cornpare.Move Unit is  
operational on ‘171, standard on ‘172. ’173, ’174! 

r - 1 - 1  	
I ;  

To Pc Cio[#l :I01 	
‘Model 11751176): 

(Interrupt Control) Control) [ 

r I 
M [‘Operating 

Registers; #1 :241 
Subsystem K[‘Instruction 

Control 

Notes I -init, D[’Functional Units; i ;4 1 
#l:91

1. P .CYBER.170 := 

P[Technology: ECL; Data :integerlfloating, singleldouble; tclock = 27.5 nsec M [‘Instruction 

M.operating.registers Stack1 


[[#1 :8) := MI‘Operand Registers; #I:8;60-bit1; 

(#0:16) := Mr’Address Registers; #l:8; 18-bit1 ; M. Instruction.Stack[Capacity: 48 instructionsl ;
(#17:24) := M[‘lncrement Registers; #1:8, 18.bit D.Functional.Units[’lndependent Parallel Execution! 

I; 	 1
2. Ms[6O-bit/w;tr: 82.5 ns; tw: 165 ns;4Kw/bank; 16-way inter1eaved;size options: (131 Kw1196 Kw1262 Kw); Mp 

transfer rate: 27.5 ns/60-bit word; error correction: SECIDED; 8 error-correction bitsl6O-bit word; techno1ogy:bipolar 

1 


3. 	 M.ecs[ExtendedCoreStorage; size options: 10.5 Mwl l  Mwl2 Mw); 60 bitstword; Error Correction: SECIDED; Bandwidth to1 

from Mp: (18 Mw/s136 Mwls 1 Mw, 2Mw options only); 256 Kwlbank; interleaved; t.block.transfer: (27.5 nst6O-bit word 

1 Mw, 2 Mw options1 55nslw 0.5 Mw option) 

1 


4. S.ecs[‘ECS Coupler1 
5. Kcmc[’Central Memory Controll 
6. K.iornux[’lnput/Output Multiplexer; total bandwidth: 180 M characters/secl 
7. 	 C.msio[’CDCCYBER 176 high-speed peripheral processor units; 12-bit; Mp[4096 w; 12 blwl  ; !Pairs of PPU‘s work in 


master-slave fashion to effect transfers totfrom the Mass Storage Subsystem; pre.ansigned buffer areas in MP 

accessed by Pc interrupt through K.iomux! 


I 
8. !Second Peripheral Processing Subsystem i s  operational and comes with 4, 7 or 10 PPU’s! 
9. 	 Cio[’CDC CYBER 170 Peripheral Processor; ECL; tclbck: 50 ns; tcycle: (500 nsi 1000 ns); 12-bit; Data: SI 


Mp[4096 w; (12 b + 1 b parity)lw; MOSl ;To: 12 bidirection data channels; Transfer rate: 2 MHztchannel; 64 

instructions; M[’System Status and Control Register] ;!PPU‘s are time multiplexed ilito K.iomux and thus share 

common circuitry for logical, arithmetic and 110 operations; when operating under a single CYBER 170 operating 

system the PPU’s do a major portion of O.S. tasks in addition to 110;access any Mp locations through Pc interrupt! 


1 
10. 	 Kioxhannel [from: 10 PPU; to: 8 peripherals max ;data-rate: 1 1241 word1500 ns; 12 b + 1 b odd parity;full duplex 


1 

11. !Present only in ’Models 1751176, when not present Cio interface directly to K.cmc! 

Fig. 8. CDC CYBER-170 series PMS diagram. 



Section4 1 Maxicomputers 669 

ture; which distributes functions among a central processor, for 
computation, and auxiliary peripheral processors, which perform 
systems inputioutput and operating-system functions. (See Fig. 8.) 
For most of the CYBER-170 models the central processor is 
field-upgradable, and there is no software conversion necessary 
throughout the entire line. The six CYBER-170 models (171-176) 
are built with common components and exhibit a high degree of 
commonality in their basic configuration, which is composed of 
the central processor unit, the memory units, and the peripheral 
processors. All processors in the series are implemented in 
emitter-coupled logic integrated circuits, and the central memo- 
ries are implemented in bipolar semiconductor logic. The Kiviat 
graph (Fig. 9) summarizes the CYBER-170 system performance. 

The models 171, 172, 173, and 174 feature a high-speed, unified 
arithmetic Central Processor Unit, which executes 18-bit and 
60-bit operations, and a Compare Move Unit (CMU) to enhance 
the system’s performance when it is working with variable-length 
character strings. 

The base Pc for the CYBER-170 series is the Model 171. A 
second proces’sor, to increase system performance, is optional. A 
CMU is also available as an option. The Model 172 has a 
performance-enhanced Model 171 Pc. Again, one or two Pc’s may 
be configured. The CMU is a standard feature with the Model 
172. The Model 173 further enhances the performance level using 
the same basic Pc as Models 171 and 172; however, only one Pc 

AII axes: x103 
MD (byte) 

T.external T.hurnan 
(byteis) (byte/sl 

\ I / 

T.communication 
(bvteisl 

Fig. 9. Kiviat graph for the CYBER 170. 

may be configured into the system. The CMU is again a standard 
feature. The Model 174 employs two Model 173 Pc’s in a 
dual-processor configuration with each processor having a CMU. 

The Pc’s for Models 175 and 176 have nine functional units, 
which allow concurrent execution of instructions. The Model 175 
may have a standard or a performance-enhanced Pc. An instruc- 
tion stack is also provided to allow fast retrieval of previously 
executed instructions. The Model 176 is an upgraded version of 
the Model 175 and in addition has an integrated interrupt system. 

The range of capabilities and performance between Models 171 
and 176 is significant, and there is total compatibility among the 
six different processors. The lower-performance models are 
ideally suited as front-end systems for the more powerful Pc’s. 

The peripheral processor subsystem consists of 10, 14, 17, or 20 
functionally independent, programmable computers (peripheral 
processing units, or PPUs), each with 4,096 twelve-bit words of 
MOS memory. These act as system-control computers and 
peripheral processors. All PPUs communicate with central memo- 
ry, external equipment, and each other through 12 or 24 
independent bidirectional input/output channels. These channels 
transfer data at the rate of two E-bit words per microsecond. For 
the Model 176, optional high-speed PPUs are required to drive 
high-speed mass-storage devices, such as the CDC 7639/819 
units, which transfer data at rates of approximately 40 million bits 
per second. A minimum of 4 high-speed PPUs are necessary, and a 
maximum of 13 may be connected to the system. 

The central memory options for the CYBER-170 series range in 
size from 64 to 256 kilowords organized into 8 or 16 interleaved 
banks of 60-bit words. Depending on the model, the minor cycle 
transfer rate of the 60-bit words is 50, 27.5, or 25 ns. However, 
because of interleaving, the memory operates at much higher 
apparent access rates. The central memory provides orderly data 
flow between various system elements. 

The Central Memory may be supplemented with additional 
extended memory, which is available in increments ranging from 
0.5 to 2 megawords. The extended memory may be used for 
system storage, data collection, job swapping, or user programs. 

The CRAY-1 

Chapter 44 introduces the CRAY-1, a direct descendant of the 
CDC 6600 series. The similarities between the architectures are 
not surprising, owing to the fact that Seymour Cray was also the 
chief designer for the CRAY-1. 

Points of similarity with the CDC 6600 can be seen in the 
multiple functional units (address, scalar, vector, floating-point), 
the instruction buffer, and the field-length/limit registers for 
memory protection. The most important ISP improvement over 
the CDC 6600 is the addition of the vector data-type. 

A common feature of all the high-performance machines is the 



690 Part 3 I Computer Classes 

extensive use of buffers to smooth the flow of data and to ensure 
that the Pc units never have to wait for data. There are buffers to 
smooth the flow of data to and from memory. There is also an 
instruction buffer, which provides three functions: 

1 	The prefetch of instructions in blocks from memory to 
smooth any mismatch between processor and memory 
subsystems. The memory boxes are usually n-way inter- 
leaved, so that n words can be fetched at once. 

2 	 An instruction look-ahead past branches, which fetches 
instructions down both branch paths so that no matter what 
the outcome of the branch, instructions will be available for 
execution. 

3 	 If the instruction buffer is large enough, an ability to 
contain and repeatedly execute whole program segments at 
instruction buffer speed. Thus the instruction buffer can 
double in function as a cache. 

The arithmetic instructions in the CRAY-1 only operate on the 
large array of registers: 

1 	Eight 64-bit scalar registers 

2 	 Eight sets of vector registers, each 64 registers of 64-bits 
each 

These register files are meant to hold intermediate results until 
computations are completed. They also perform the function of a 
cache, except that the user or compiler must ensure data locality 
in the registers. 

Figure 10 depicts the PMS structure of the CRAY-1, while Fig. 
11 illustrates the internal Pc organization. Each of the 13 
functional units is pipelined. Figure 12 shows the mass-storage 
subsystem, and Fig. 13 summarizes the CRAY-1 performance. 

The Pc and memory are implemented in ECL logic. The 
processor has a 12.5-ns basic clock cycle time, and the memory 
has an access time of 50 ns. The Pc is capable of accessing a 
maximum of 1million 64-bit words. The memory is expandable 
from 0.25 megaword to a maximum of 1 megaword. There are 
12 input channels and 12 output channels in the inputioutput 
section. They connect to a Maintenance Control Unit (MCU), a 
mass-storage subsystem, and a variety of front-end systems or 
peripheral equipment. The MCU provides for system initializa- 
tion and for monitoring system performance. The mass-storage 
subsystem has a maximal configuration that provides storage for 
9.7 x lo9 eight-bit characters. The CRAY-1 Operating System, 
COS, is a multiprogramming batch system with up to 63jobs. As 
of 1979, two languages were supported: FORTRAN and Assem- 
bler. The FORTRAN compiler analyzes the innermost loops of 
FORTRAN to detect vectorizable sequences and then generates 
code that takes advantage of the processor organization. 

Section 4 1 Maxicomputers 

In the fall of 1979, Cray Research introduced the 12 models of 
the S series computers. Ranging from the Si250 through the 
Si4400, the models differed in amount of main memory (114 
megaword to 4 megawords) and IiO configuration. Three models 
(S/250,Si500, SilOOO) have li4, 1/2, and 1megaword of memory 
each with no IiO subsystem. The nine remaining models have 
either 1, 2 ,  or 4 megawords of memory with 2, 3, or 4 IiO 
processors. In the maximal IiO subsystem configuration, there are 
four IiO processors, 1megaword of IiO Buffer Memory (maximum 
transfer rate 2,560 Mbitis), sixteen Block Multiplexer Channels, 
and forty-eight 606-Mbyte disks (total storage 2.9 x lo9bytes). 

The first customer shipment of a CRAY-1 Computer System was 
in March 1976 to Los Alamos Scientific Laboratories (LASL). 
Other customer shipments as of 1979 include the National Center 
for Atmospheric Research, the Department of Defense (two 
systems), the National Magnetic Fusion Energy Computer Cen- 
ter, the European Centre for Medium Range Weather Forecast- 
ing, and an upgraded version to LASL. 

The CRAY-1 processor’s performance is 5 times that of a CDC 
7600’s or 15 times that of an IBM Systeml370 Model 168. 

The TI ASC 

The Texas Instruments Advanced Scientific Computer was initial- 
ly planned for high-speed processing of seismic data. Therefore, 
vector data-types were also important for the ASC. The ASC 
shows some strong kinship to the CRAY machines, because it was 
built on the knowledge of the earlier CDC machines. But it also 
has some significant differences. 

The most important problem was perceived as obtaining a high 
memory-processor bandwidth. Thus a Memory Control Unit 
(MCU) that could sustain a transfer rate of 640 megawords per 
second was designed. The MCU is actually a cross-point switch 
between eight processor ports and nine memory ports. 

The ASC is controlled by eight peripheral processors (PP) 
executing operating-system code, as in the ten CDC 6600 
peripheral processors. The PPs are implemented as virtual 
processors (VP), as in the CDC 6600. Each VP has its own register 
set (e.g., program counter, arithmetic, index, base, and instruc- 
tion registers) sharing ROM, ALU, instruction decoder, and 
central memory buffers. Also, as in the CDC 6600, the PP’s ISP is 
control-oriented and hence lacks the richer instruction set of the 
Central Processor (CP). 

The CP has dedicated function registers: 16 base, 16 arithmetic, 
8 index, and 8 for holding parameters for vector instructions. The 
CP employs multiple functional units, as do the CDC 6600 and 
the CRAY-1. However, the units are organized in a rigid order of 
succession called a pipeline. An ASC can support up to four 
pipelines of eight stations each. The instruction fetchidecode is 



4 

Notes !See CRAY-I CPU PMS diagram concurrently! 
1. Pc:= 

P[64b/w: clock period\CP: 12.5 ns; clock pulse width: 3 ns: Processing Modes: (scalar1 vector); Data: 
[integer; floating-point; address] ;16 blinstruction 'parcel; 112 'parcelslinstruction !May cross word 
boundary!; no. of instructions: 128; address capability: 4Mw; technology: [bipolar ECL; 16-pin hermetic 
flat-pack1 ;major ICtype: "1 4-input gate + 1 5-input gate)/flatpack; (normal + inverted) outputs; propaga- 
tion delay 0.5 - 1nsecl ;power supply voltages: [-5.2 V IC power: -2.0 V line termination] :primary 
power supply: [2150-Kw motor generators; 208 V: 400-Hz; 3-phase1 ;power consumption: 118 Kw for 
max. memory size; cooling: refrigerant-22 circulation through chassis 

1 
2. Mp:= 

M 1164 b data + 8 b ECC)/w; 64 Kw/bank; organization: (16 banks interleaved) I 8  banks interleaved phased 
!A fixed switch selects one of two 8-bank groups!) address bits: (6 b chip address + 10 b in.chip address + 4 
b bank select); memory chip: 1024Kx1 b ECL; size options: (256 KwI512 K w l 1  Mw); transfer rate: (1 
w/clock period\CP t o  BREG, TREG, VREGl 1 w/2 CP to AREG. SREGl 1 w14 CP to M.instruction.buffer); 
error correction: SEC/DED 

1 
3. K.ios := 

K['lnput Output Subsection; 12 input channels; 12 output channels; 4 channel groups; 6 channelslgroup; 
channel group service rate by Mp: 1 CP every 4 CP; channel width: (16 b data + 3 b control + 4 b parity); 
1 64-bit assembly registerlchannel: 120-b current address register\C&khannel; 1 20-b channel limit register 
CLIchannel; !Service priority in a channel-group decreases with increasing channel number!; 

From 
wlp 	 To (C.felTIMslM.mss)" I  uu 


K [input channel; t 
1 

4. 	 C.mcu[P.mcu := PI'Data General Eclipse S-200; 16 blwl  ; 
Mmcu := M [ I 6  blw; 32 Kwl ; 
T.mcu [T.cardreader; TAineptinter; T.9-track.tape.unit; T.display.terrninal [#I 2 1 ;  T.moving.head.disk1 ; 
K.ios channel assignment: 1inputloutput channel pair; 
MCU control signals: ['Master Clear;'I/O Master Clear; 'Deaddump; 'Sample Parity Error] 

1 
5. MmssI'Mass-Storage Subsystem; K.ios channel assignment: 2 input/output channel pairs; !See CRAY-I Mass 

Storage Subsystem PMS Diagram! 

1 


6. 	 K.fei"Front-End Interface; optional; custom-made; technology: compatible with Pc; function: !To compensate 
for CRAY-I, C.fe differences in: channel width, word size, logic levels, control protocols!; cooling: 
refrigerant-22 

1 
7. C.fe['Front-End Computer1 

Fig. 10. CRAY-1 Computer system PMS diagram. 

691 



692 Part 3 1 Computer Classes 	 Section 4 Maxicomputers~-
M.interrnediatexalar.regsJT 

ToMP+--J 

Notes 
1. 	 M.vrn[‘Vector Mask Register] M.instruction.buffer [0:31 [0:171 [0:41<0:15> 
2. 	 M.rtcl’Real Time Clock Reqisterl 
3. 	 M.xa L‘Exchange Address Register; used with Exchange 


Jump Instruction1 

4. 	 M.vl [’Vector Length Register] 
5. 	 M.nipI‘Next Instruction Parcell 
6. 	 M.lip[‘Lower Instruction Parcell 
7. 	 M.cip[’Current Instruction Parcell 

Fig. 11. CRAY-1 CPU PMS diagram. 

also pipelined in four stages (fetch, operand decode, effective 
address calculation, and operand fetch). .Thus up to 36 instructions 
can be in various states of execution at the same time. 

The pipeline stages are usually smaller functions than the 
functions performed by the multiple functional units (e. g., 
exponent extract versus floating-point multiply). The pipeline also 
suffers if not all of the stages are to be used for a given instruction. 
An instruction that utilized stages 1,2, 3, 5, 6, and 8 (floating add; 
see Fig. 7 in Chap. 45) would hold up an instruction that utilized 
only stages 1, 4,5, and 8 (integer multiply) because of resource 
conflicts. The multiple functional units are only held up by the 
unavailability of operands. 

The pipeline concept, especially as used in instruction fetch/ 
decode, is a very effective method to improve processor perform- 
ance. Since the hardware cost to implement instruction fetch/ 
decode is small, the method is used almost universally, even 
appearing on some microprocessors. 

The design and control of operand/operator parallelism is much 

DL’Vector Shift; 50 nsl 

D[’Vector Logical; 25 ns] 

2 

DI’Vector,Add; 37.5 nsl 

M.rtc<0:63> 

D[’Floating Add: 75 nsl 

M.scalar.regs\SREG [0:71<0:63> D[’Floating Multiply; 87 nsl 

-
To To D [‘Floating Reciprocal 


Exchange Vector appr. 175 nsl 

Control Control 


D [‘PopulationILeading 
zero 37.5 - 51a
DL’Scalar Shift; 25 -31 

To CA 
in 

K.ios 

5 

To CL 

DI’Address Multiply1 

M. nip<0 :16> DI‘Address Add; 25 nsl 

more complex. Chapter 19 outlines in detail the design of the IBM 
Systemi360 Model 91, which employed multiple functional units. 
The most effective way to gain high-speed parallelism is to have 
the operands in registers and use register-to-register instructions. 
The CRAY-1 does this through having only register-to-register 
arithmetic instructions and forcing the user or compiler to convert 
the applications program to register form. Since the Systemi360 
Model 91 had to adhere to the System/36O ISP, hardware was 
added to dynamically convert System/360 instructions into a 
pseudoregister instruction set. 

Chapter 19 also nicely explains the problems faced (and a 
solution to them) by parallelism in multiple functional units. In 
particular, the following problems have to be addressed: 

1 	Condition code dependencies. When a branch instruction 
is encountered, some strategy must be established on 
instruction fetching until the instruction setting the condi- 
tion code is completely executed. 



Section 4 I Maxicomputers 693 

C.rnini-- 0I-
I I 1
I 

K.ios.input.channe1 S.full.duplex
K.ios.output.channe1 

K.ios.i nput.channe1 
S.full.duplex

K.ios.output.channe1 

I. Kio“DCU.2 Disk Controller; Technology: [Flatpack ECL; similar to CRAY-I Pcl ; 

upto 4 ‘DCU-2I’DCC-I cabinet; to: 4 ‘00-19 Disk Drives; 

Coplant: Refrigerant-22 

1 


2. 	 Ms[’DD-19 Disk Storage Unit; Capacity: 2.424 X 1O9b;4O recording surfaces;411 

tracksisurface; 18 sectorsltrack; 32,768 blsector; 10 head roups; latency: 

16.6 ms; access time: 15 -80 ms; transfer rate: 35.4 X 109i b/s avg.; max. bit 
stream length (disk cylinder capacity): 5.9 X lo6  b; dual-ported drive; !A second 
independent path may exist to the drive from another ‘DCU-2; access 
arbitration logic isprovided! 

1 
3. 	 !A second set of 4 ‘DCU-2 in a ‘DCCI cabinet identical to the first set! 
4. 	 !Each ‘DCU-2 optionally additionally connects to a 16-b minicomputer; access 


arbitration must be provided in software! 


Fig. 12. CRAY-1 mass storage subsystem PMS diagram. 

2 	 Use of results before they are available. Because of the 
parallelism, several instructions are in partial states of 
execution a t  the same time. An instruction requiring the  
results of a previous instruction has to be held u p  until the 
results are available. If the whole instruction stream is held 
u p  until t he  one instruction completes execution, the 
parallelism in the multiple functional units is lost. 

Finally, Dean [1973] states that there are several advantages of 
TI’S PP approach over CDC’s: 

As has been stated before, the PPU is the unit in which the operating 
system executes. Other manufacturers have attempted to execute the 
executive functions in peripheral units with less than satisfactory 
results. There are some significant differences in the ASC architecture 
which make this possible, however. First, the PPU can execute code 
directly from central memory. All of central memory can be addressed 
by each VP (virtual processor). To change the function of a VP requires 
only a branch to the new code. This feature greatly enhances the 
dynamic “balancing” of VP power to meet system requirements. When 
system programs are written in re-entrant form, one copy of the code 
suffices for several VP’s, thereby reducing the memory requirements 
for system tasks. Second, a special set of 64 32-bit registers are built 

All axes: X lo3  
MP (byte) 

\ 	 / 

T.communication 
(bytels) 

Fig. 13. Kiviat graph for the CRAV-1. 

into the PPU. These registers (called communication registers) are 
literally the nerve center for the entire ASC system. Each VP has the 
ability to test and set individual bits in these registers in a single clock 
time. This allows for interprocessor control and communication on a 
dynamic basis. These registers also serve as control bits for data 
channels, context switch status, and act as 110 channels for some low 
bandwidth devices (e.g., the operator’s console). Finally, the PPU 
contains a small execute only memory. Routines stored in the read only 
memory are accessible to all VP’s. The maximum size of this memory is 
4096 words. It is used for three purposes. First, it is non-volatile and 
thus contains the bootstrap routines needed when power is first turned 
on. Second, it is fast. Being an integral part of the PPU, instructions 
may be fetched at the clock speed of the PPU. Finally, the ASC is 
basically a polling oriented system. When a VP is in a polling loop, the 
instructions can be placed in this memory and not interfere with main 
memory traffic. 

Hardware Technology 
The preceding discussion has been concerned with some of the special 
features and architecture of the ASC system. A final word is in order 
concerning its physical construction. All of the Central Processor, the 
Peripheral Processor, and the Memory Control Unit are fabricated of 
the advanced emitter-coupled logic (ECL) integrated circuits. These 
circuits are interconnected on 17-layer multilayer circuit board. 
Further, the back panel wiring found on most large machines has been 
replaced by mnltilayer “motherboards” into which the circuit boards 
are plugged. The entire system is cooled by chilled water and forced 



694 Part 3 1 Computer Classes Section 4 1 Maxicomputers 

air within each logic co1um;l and appears to be relatively insensitive to 
the ambient temperature. 

Comparison ofMaxicomputers 

Bucy and Senne [1978] reported on nonlinear filter design that 
required the solution of nonlinear partial differential equations. 
The problem was solved on eight machines, including a general 
purpose minicomputer (PDP-l1/70); a microprogrammed, special 
purpose auxiliary processor (AP120 B); machines with multiple 
functional units (CDC 6600, CDC 7600, CRAY 1,IBM S/370-168); 
machines with pipelines (CDC STAR-100, CRAY 1)and an array 
processor (Illiac IV). The benchmark consisted of the following 
floating point computations: 53,341 adds, 28,864 multiplies, one 

division, and 32 exponentations. The resultant computation rates 
and cost per operation are depicted in Table 1. The most cost 
effective organization from a cost per operation is the functional 
specialized AP120B. However, when software development costs 
are considered, systems such as the CRAY 1 with vectorizing 
FORTRAN compilers may be the best long-term solution. 

References 

Arden et al. [1966]; Bell and Newel1 [1971]; Bucy and Senne 
[1978]; Dean [1973]; Elliott et al. [1956]; Computer [1977]; CFA 
[19771. 



Chapter 40 

The Structure of SYSTEM/3601 
Part I-Outline of the Logical Structure 

G. A. Blaauw / F. P. Brooks, Jr. 

Summary A general introductory description of the logical structure of 
SYSTEM/360 is given. In addition, the functional units, the principal 
registers and formats, and the basic addressing and sequencing principles 
of the system are indicated. 

In the sYSTEM/360 logical sthcture, processing efficiency and 
versatility are served by multiple accumulators, binary address- 
ing, bit-manipulation operations, automatic indexing, fixed and 
variable field lengths, decimal and hexadecimal radices, and 
floating-point as well as fixed-point arithmetic. The provisions for 
program interruption, storage protection, and flexible CPU states 
contribute to effective operation. Base-register addressing, the 
standard interface between channels and inputloutput control 
units, and the machine-language compatibility among models 
contribute to flexible configurations and to orderly system expan- 
sion. 

S Y S T E M / ~ ~ Ois distinguished by a design orientation toward 
very large memories and a hierarchy of memory speeds, a broad 
spectrum of manipulative functions, and a uniform treatment of 
inpub'output functions that facilitates communication with a 
diversity of inputloutput devices. The overall structure lends itself 
to program-compatible embodiments over a wide range of 
performance levels. 

The system, designed for operation with a supervisory pro- 
gram, has comprehensive facilities for storage protection, pro- 
gram relocation, nonstop operation, and program interruption. 
Privileged instructions associated with a supervisory operating 
state are included. The supervisory program schedules and 
governs the execution of multiple programs, handles exceptional 
conditions, and coordinates and issues input/output (I/O) instruc-
tions. Reliability is heightened by supplementing solid-state 
components with built-in checking and diagnostic aids. Intercon- 
nection facilities permit a wide variety of possibilities for multi- 
system operation. 

The purpose of this discussion is to introduce the functional 
units of the system, as well as formats, codes, and conventions 
essential to characterization of the system. 

' I B M  Sys. J, vol. 3, no. 2, 1964, pp. 119-135. 

Functional Structure 

The sYST~Mi360 structure schematically outlined in Fig. 1 has 
seven announced embodiments. Six of these, namely, Models 30, 
40, 50, 60,62, and 70, will be treated here.' Where requisite IIO 
devices, optional features, and storage capacity are present, these 
six models are logically identical for valid programs that contain 
explicit time dependencies only. Hence, even though the allowa- 
ble channels or storage capacity may vary from model to model (as 
discussed in Chap. 41), the logical structure can be discussed 
without reference to specific models. 

Inpu t/Ou tput 

Direct communication with a large number of low-speed termi- 
nals and other IiO devices is provided through a special muZti-
plexor channel unit. Communication with high-speed IlO devices 
is accommodated by the selector channel units. Conceptually, the 
inputioutput system acts as a set of subchannels that operate 
concurrently with one another and the processing unit. Each 
subchannel, instructed by its own control-word sequence, can 
govern a data transfer operation between storage and a selected 
I/O device. A multiplexor channel can function either as one or as 
many subchannels; a selector channel always functions as a single 
subchannel. The control unit of each IIO device attaches to the 
channels via a standard mechanical-electrical-programming inter-
face. 

Processing 

The processing unit has sixteen general purpose 32-bit registers 
used for addressing, indexing, and accumulating. Four 64-bit 
floating-point accumulators are optionally available. The inclusion 
of multiple registers permits effective use to be made of small 
high-speed memories. Four distinct types of processing are 
provided: logical manipulation of individual bits, character strings 
and fixed words; decimal arithmetic on digit strings; fixed-point 
binary arithmetic; and floating-point arithmetic. The processing 
unit, together with the central control function, will be referred to 
as the central processing unit (CPU). The basic registers and data 
paths of the CPU are shown in Fig. 2. 

The CPU's of the various models yield a substantial range in 
performance. Relative to the smallest model (Model 30), the 
internal performance of the largest (Model 70) is approximately 
50:l for scientific computation and 15:l for commercial data 
processing. 

*Aseventh embodiment, the Model 92, is not discussed in this paper. This 
model does not provide decimal data handling and has a few minor 
differences arising from its highly concurrent, speed-oriented organiza- 
tion. A paper on Model 92 is planned for future publication in the IBM 
Systems Journal. 



696 Part 3 1 Computer Classes Section 4 I Maxicomputers 

STORAGE 

~~ ~~~~~~ 

ARITHMETIC AND LOGIC 

PROCESSING UNIT 

INPUT/OUTWT 

CHANNELS CONTROL UNITS DEVICES 

(MULTIPLE 
LOW-SPEED 

SUBCHANNELS) 

I 
I 
I 
I 
I 
I 
I 
I 

/ .+-12,----2 
I(SINGLE I 

HIGH.SPEED 
SUBCHANNEL) 

Fig. 1. Functional schematic of SYSTEM/360. 

Control 

Because of the extensive instruction set, SYSTEM/360 control is 
more elaborate than in conventional computers. Control functions 
include internal sequencing of each operation; sequencing from 
instruction to instruction (with branching and interruption); 
governing of many I/O transfers; and the monitoring, signaling, 
timing, and storage protection essential to total system operation. 
The control equipment is combined with a programmed supervi- 
sor, which coordinates and issues all I/O instructions, handles 
exceptional conditions, loads and relocates programs and data, 
manages storage, and supervises scheduling and execution of 

I 
I 

Q?----
nn n 

multiple programs. To a problem programmer, the supervisory 
program and the control equipment are indistinguishable. 

The functional structure of SYSTEid360, like that of most 
computers, is most concisely described by considering the 
data formats, the types of manipulations performed on them, 
and the instruction formats by which these manipulations are 
specified. 

Information Formats 
The several SYSTEM/360 data formats are shown in Fig. 3. An 8-bit 
unit of information is fundamental to most of the formats. A 



I 

Chapter 40 1 The Structure of SVSTEM/~@ 697 

r--------- b 
I ’h INSTRUCTIONS 
I 
I I ,,I I 

II VARIABLEI COMPUTER INDEXED FIXED-POINT FLOATING -POINT 
I SYSTEM OPERATIONS FIELD LENGTH OPERATIONS
I CONTROL I OPERATIONS 

I 
I t
I I 

16 
GENERAL 

REGISTERS 

I 

Fig. 2. Schematic of basic registers and data paths. 

consecutive group of n such units constitutes afield of length n. 
Fixed-length fields of length one, two, four, and eight are termed 
bytes, halfwords, words, and double words, respectively. In 
many instructions, the operation code implies one of these four 
fields as the length of the operands. On the other hand, the length 
is explicit in an instruction that refers to operands of variable 
length. 

The location of a stored field is specified by the address of the 
leftmost byte of the field. Variable-length fields may start on any 
byte location, but a fixed-length field of two, four, or eight bytes 
must have an address that is a multiple of 2, 4, or 8, respectively. 
Some of the various alignment possibilities are apparent from 
Fig. 3. 

Storage addresses are represented by binary integers in the 
system. Storage capacities are always expressed as numbers of 
bytes. 

Processing Operations 

The S~S~Ekd360operations fall into four classes: fixed-point 
arithmetic, floating-point arithmetic, logical operations, and 
decimal arithmetic. These classes differ in the data formats used, 
the registers involved, the operations provided, and the way the 
field length is stated. 

I 


1 

4 FLOATING-POINT REGISTERS 

Fixed-Point Arithmetic 

The basic arithmetic operand is the 32-bit fixed-point binary 
word. Halfword operands may be specified in most operations for 
the sake of improved speed or storage utilization. Some products 
and all dividends are 64 bits long, using an even-odd register pair. 

Because the 32-bit words accommodate the 24-bit address, the 
entire fixed-point instruction set, including multiplication, divi- 
sion, shifting, and several logical operations, can be used in 
address computation. A two’s complement notation is used for 
fixed-point operands. 

Additions, subtractions, multiplications, divisions, and compar- 
isons take one operand from a register and another from either a 
register or storage. Multiple-precision arithmetic is made conve- 
nient by the two’s complement notation and by recognition of the 
carry from one word to another. A pair of conversion instructions, 
CONVERT TO BINARY and CONVERT TO DECIMAL, provide 
transition between decimal and binary radices without the use of 
tables. Multiple-register loading and storing instructions facilitate 
subroutine switching. 

Floating-Point Arithmetic 

Floating-point numbers may occur in either of two fixed-length 
formats-short or long. These formats differ only in the length of 
the fractions, as indicated in Fig. 3. The fraction of a floating-point 



698 Part 3 I Computer Classes Section 4 1 Maxicomputers 

OOUBLE WORD 

Fig. 3.The data formats. 

number is expressed in 4-bit hexadecimal (base 16) digits. In the 
short format, the fraction has six hexadecimal digits; in the long 
format, the fraction has 14 hexadecimal digits. The short length is 
equivalent to seven decimal places of precision. The long length 
gives up to 17 decimal places of precision, thus eliminating most 
requirements for double-precision arithmetic. 

The radix point of the fraction is assumed to be immediately to 
the left of the high-order fraction digit. To provide the proper 
magnitude for the floating-point number, the fraction is consid- 

ered to be multiplied by a power of 16. The characteristic portion, 
bits 1 through 7 of both formats, is used to indicate this power. 
The characteristic is treated as an excess 64 number with a range 
from -64 through +63, and permits representation of decimal 
numbers with magnitudes in the range of to loT5 

Bit position 0 in either format is the fraction sign, S. The 
fraction of negative numbers is carried in true form. 

Floating-point operations are performed with one operand from 
a register and another from either a register or storage. The 



Chapter 40 1 The Structureof S Y S T E M / ~ ~ O699 

result, placed in a register, is generally of the same length as the 
operands. 

Logical Operations 
Operations for comparison, translation, editing, bit testing, and 
bit setting are provided for processing logical fields of fixed 
and variable lengths. Fixed-length logical operands, which con- 
sist of one, four, or eight bytes, are processed from the general 
registers. Logical operations can also be performed on fields of 
up to 256 bytes, in which case the fields are processed from left 
to right, one byte at a time. Moreover, two powerful scanning 
instructions permit byte-by-byte translation and testing via 
tables. An important special case of variable-length logical 
operations is the one-byte field, whose individual bits can be 
tested, set, reset, and inverted as specified by an 8-bit mask in 
the instruction. 

I4567 00 01 10 11 00 01 10 

Character Codes 
Any 8-bit character set can be processed, although certain 
restrictions are assumed in the decimal arithmetic and editing 
operations. However, all character-set-sensitive, I/O equipment 
assumes either the Extended Binary-Coded-Decimal Interchange 
Code (EBCDIC) of Fig. 4 or the code of Fig. 5,  which is an 
eight-bit extension of a seven-bit code proposed by the Interna- 
tional Standards Organization. 

Decimal Arithmetic 
Decimal arithmetic can improve performance for processes 
requiring few computational steps per datum between the source 
input and the output. In these cases, where radix conversion from 
decimal to binary and back to decimal is not justified, the use of 
registers for intermediate results usually yields no advantage over 
storage-to-storage processing. Hence, decimal arithmetic is pro- 

11 00 01 10 11 00 01 10 11 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 mi1011 

1100 

1101 

1110 

1111 a Z l 4
PF Punchoff BS Backspace SM 
HT HOrlZOntaltlb IL Idle PN 
LC Lowcrcasa BYP ~ypssr  US 
DEL Delete LF Linefeed uc 
RES Restore €00 Endolbloek EOT End of transmission 
NL Newline WE Prefix SP Space 

Fig. 4. Extended binary-coded-decimal interchange code. 

+ > = 

--.I ? 

Setrncde 
Funchon 
Reader stop
uppe,caL(I 



/--11-


700 Part 3 I Computer Classes Section 4 1 Maxicomputers 

BIT POSITIONS- 76 
CO-, ,--I-\ /-lo-


4 4 3 2 1  00 01 10 11 00 01 10 1100 01 10 11 00 01 10 11 


Do00 

OOO1 


0010 


0011 


0100 


0101 


0110 


0111 


1OOO 


1001 


1010 


1011 K 


1100 L cs2 

1101 M 1 -
Ill0 N At+++---l 
1111 I l l 0o l' ~ l 

*Third I s 0  draft prowsal for 6 and 7 bt coded CIMrwter s$tslor mformstian pracrring Interchange. International Standards Organization. June 1964. 
HT Horizontal tabulation DC2 Dericecontml 
LF L i n e l d  DC3 Device~ontml 
YT Vertical tabulation DWI Dewcc contrOl (stop)
FF Farmled  NACK Negative achqmledge
CR Carriagereturn SYNC Synchronous idle us U"lt *cparator
SO Shiftout €18 End of trmsmbsmn block SP space. normallyn0n.pnntms
SI Shiftin CNCL Cancel CS2 Currency s y m b
M E  Data Ibnk a c a w  EM End of medium \ Grave accent 
Dcl  Dwlcccontrol SS Start of r w i a l  ~ q u c n c e  DEL Delete 

Fig. 5. Eight-bit representationfor proposed internationalcode. 

vided in SYSTEMf360 with operands as well as results located in and sign. Operands participating in an operation have indepen-
storage, as in the IBM 1400 series. Decimal arithmetic includes dent lengths. Negative numbers are carried in true form. 
addition, subtraction, multiplication, division, and comparison. Instructions are provided for packing and unpacking decimal 

The decimal digits 0 through 9 are represented in the 4-bit numbers. Packing of digits leads to efficient use of storage, 
binary-coded-decimal form by 0000 through 1001, respectively. increased arithmetic performance, and improved rates of data 
The patterns 1010 through 1111are not valid as digits and are transmission. For purely decimal fields, for example, a 90,000-
interpreted as sign codes: 1011 and 1101 represent a minus, the byteisecond tape drive reads and writes 180,000 digitdsecond. 
other four a plus. The sign patterns generated in decimal 
arithmetic depend upon the character set preferred. For Instruction Formats 

EBCDIC, the patterns are 1100 and 1101; for the code of Fig. 5, Instruction formats contain one, two, or three haifwords, depend-
they are 1010 and 1011. The choice between the two codes is ing upon the number of storage addresses necessary for the 
determined by a mode bit. operation. If no storage address is required of an instruction, one 

Decimal digits, packed two to a byte, appear in fields of variable halfword suffices. A two-halfword instruction specifies one ad-
length (from 1to 16 bytes) and are accompanied by a sign in the dress; a three-halfword instruction specifies two addresses. All 
rightmost four bits of the low-order byte. Operand fields can be instructions must be aligned on halfword boundaries. 
located on any byte boundary, and can have lengths up to 31digits The five basic instruction formats, denoted by the format 



mnemonics RR, RX, RS, SI, and SS are shown in Fig. 6. RR 
denotes a register-to-register operation, RX a register and 
indexed-storage operation, RS a register and storage operation, SI 
a storage and immediate-operand operation, and SS a storage-to- 
storage operation. 

In each format, the first instruction halfword consists of two 
parts. The first byte contains the operation code. The length and 
format of an instruction are indicated by the first two bits of the 
operation code. 

The second byte is used either as two 4-bit fields or as a single 
8-bit field. This byte is specified from among the following: 

Four-bit operand register designator (R) 
Four-bit index register designator (X) 

Four-bit mask (M) 

FIRST HALFWORD SECOND HALFWORD 

OPERANDS 

1 2 1 -

RR FORMAT OP CODE R R 

I REGISTER I STORAGE
I OPERAND I OPERAND 

OPERANDS OPERAND 
1 2 

RS FORMAT OP CODE R R B D 

P 
SI FORMAT OPCODE I B D 

7 8  19 20 

I 
I OPERAND 1 STORAGE 

LENGTHS OPERAND 
1 2 1 1 

S S  FORMAT OP CODE L L B D 

Fig. 6. Five basic instruction formats. 

Chapter 40 The Structure Of SYSTEM/360 701~ 

Four-bit field length specification (L) 

Eight-bit field length specification 


Eight-bit byte of immediate data (I) 


The second and third halfwords each specify a 4-bit 

base register designator (B), followed by a 12-bit displacement 

(D). 


Addressing 
An effective storage address E i s  a %-bit binary integer given, in 

the typical case, by 


E = B + X + D  


where B and X are 24-bit integers from general registers 


THIRD HALFWORD 

I 

\ 

I 
311

I STORAGE 
OPERAND1 i 

B D 



702 Part 3 1 Computer Classes 

identified by fields B and X, respectively, and the displacement D 
is a 1.2-bit integer contained in every instruction that references 
storage. 

The base B can be used for static relocation of programs and 
data. In record processing, the base can identify a record; in array 
calculations, it can specify the location of an array. The index X 
can provide the relative address of an element within an array. 
Together, B and X permit double indexing in array processing. 

The displacement provides for relative addressing of up to 4095 
bytes beyond the element or base address. In array calculations, 
the displacement can identify one of many items associated with 
an element. Thus, multiple arrays whose indices move together 
are best stored in an interleaved manner. In the processing of 
records, the displacement can identify items within a record. 

In forming an effective address, the base and index are treated 
as unsigned 24-bit positive binary integers and the displacement 
as a 12-bit positive binary integer. The three are added as 24-bit 
binary numbers, ignoring overflow. Since every address is formed 
with the aid of a base, programs can be readily and generally 
relocated by changing the contents of base registers. 

A zero base or index designator implies that a zero quantity 
must be used in forming the address, regardless of the contents of 
general register 0. A displacement of zero has no special 
significance. Initialization, modification, and testing of bases and 
indices can be carried out by fixed-point instructions, or by 
BRANCH AND LINK, BRANCH ON COUNT, or BRANCH ON 
INDEX instructions. LOAD EFFECTIVE ADDRESS provides 
not only a convenient housekeeping operation, but also, when the 
same register is specified for result and operand, an immediate 
register-incrementing operation. 

Sequencing 

Normally, the CPU takes instructions in sequence. After an 
instruction is fetched from a location specified by the instruction 
counter, the instruction counter is increased by the number of 
bytes in the instruction. 

Conceptually, all halfwords of an instruction are fetched from 
storage after the preceding operation is completed and before 
execution of the current operation, even though physical storage 
word size and overlap of mstruction execution with storage access 
may cause the actual instruction fetching to be different. Thus, an 
instruction can be modified by the instruction that immediately 
precedes it in the instruction stream, and cannot effectively 
modify itself during execution. 

Branching 

Most branching is accomplished by a single BRANCH ON 
CONDITION operation that inspects a 2-bit condition register. 
Many of the arithmetic, logical, and I/O operations indicate an 

Section 4 1 Maxicomputers 

outcome by setting the condition register to one of its four 
possible states. Subsequently a conditional branch can seIect one 
of the states as a criterion for branching. For example, the 
condition code reflects such conditions as non-zero result, first 
operand high, operands equal, overflow, channel busy, zero, etc. 
Once set, the condition register remains unchanged until modi- 
fied by an instruction execution that reflects a different condition 
code. 

The outcome of address arithmetic and counting operations can 
be tested by a conditional branch to effect loop control. Two 
instructions, BRANCH ON COUNT and BRANCH ON INDEX, 
provide for one-instruction execution of the most common 
arithmetic-test combinations. 

Program Status Word 

A program status word (PSW), a double word having the format 
shown in Fig. 7 ,  contains information required for proper 
execution of a given program. A PSW includes an instruction 
address, condition code, and several mask and mode fields. The 
active or controlling PSW is called the current P S W .  By storing 
the current PSW during an interruption, the status of the 
interrupted program is preserved. 

Interruption 

Five classes of interruption conditions are distinguished: input/ 
output, program, supervisor call, external, and machine check. 

For each class, two PSW’s, called old and new, are maintained 
in the main-storage locations shown in Table 1. An interruption in 
a given class stores the current PSW as an old PSW and then takes 
the corresponding new PSW as the current PSW. If, at the 
conclusion of the interruption routine, old and current PSW’s are 
interchanged, the system can be restored to its prior state and the 
interrupted routine can be continued. 

The system mask, program mask, and machine-check mask bits 
in the PSW may be used to control certain interruptions. When 
masked off, some interruptions remain pending while others are 
merely ignored. The system mask can keep I/O and external 
interruptions pending, the program mask can cause four of the 15 
program interruptions to be ignored, and the machine-check 
mask can cause machine-check interruptions to be ignored. Other 
interruptions cannot be masked off. 

Appropriate CPU response to a special condition in the 
channels and IiO units is facilitated by an I/O interruption. The 
addresses of the channel and I/O unit involved are recorded in the 
old PSW. Related information is preserved in a channel status 
word that is stored as a result of the interruption. 

Unusual conditions encountered in a program create program 
interruptions. Eight of the fifteen possible conditions involve 
overflows, improper divides, lost significance, and exponent 
underflow. The remaining seven deal with improper addresses, 



Chapter 40 I The Structure of SYSTEM/^^^ 703 

SYS MASK KEY CMWP I N T t R R U P T  COLIC 

SYSTEM MASK- MPX channel ILC- Instructionlengthcode 
SEL channels 1.6 
External CC- Condition code 

KEY- Storageprotection kw PROCRAM MASK- Fixed wmt overtlow 
decimal weflluw 

CMWP- Character set mode exponent underflow 
Machcheck st8nilicance 
Watt state 
Problem slate 

Fig. 7. Program status word format. 

attempted execution of privileged instructions, and similar condi- 
tions. 

A supervisor-call interruption results from execution of the 
instruction SUPERVISOR CALL. Eight bits from the instruction 
format are placed in the interruption code of the old PSW, 
permitting a message to be associated with the interruption. 
SUPERVISOR CALL permits a problem program to switch CPU 
control back to the supervisor. 

Through an external interruption, a CPU can respond to signals 
from the interruption key on the system control panel, the timer, 

Table 1 Permanent Storage Assignments 

Address Bute length Purvose 

0 8 Initial program loading PSW 
8 8 Initial program loading CCW 1 

16 8 Initial program loading CCW 2 
24 8 External old PSW 
32 8 Supervisor call old PSW 
40 8 Program old PSW 
48 8 Machine check old PSW 
56 8 Input/output old PSW 
64 8 Channel status word 
72 4 Channel address word 
76 4 Unused 
80 4 Timer 
84 4 Unused 
88 8 External new PSW 
96 8 Supervisor call new PSW 

104 8 Program new PSW 
112 8 Machine check new PSW 
120 8 InpuWoutput new PSW 
128 Diagnostic scan-out areat 

~ ~~ ~ 

?The size of the diagnostic scan-out area is configuration 
dependent. 

other CPU’s, or special devices. The source of the interruption is 
identified by an interruption code in bits 24 through 31 of the 
PSW. 

The occurrence of a machine check (if not masked o@ termi-
nates the current instruction, initiates a diagnostic procedure, and 
subsequently effects a machine-check interruption. A machine 
check is occasioned only by a hardware malfunction; it cannot be 
caused by invalid data or instructions. 

Interrupt Priority 

Interruption requests are honored between instruction execu-
tions. When several requests occur during execution of an 
instruction, they are honored in the following order: (1) machine 
check, (2)  program or supervisor call, (3) external, and (4) 
input/output. Because the program and supervisor-call interrup- 
tions are mutually exclusive, they cannot occur at the same time. 

If a machine-check interruption occurs, no other interruptions 
can be taken until this interruption is fully processed. Otherwise, 
the execution of the CPU program is delayed while PSW’s are 
appropriately stored and fetched for each interruption. When the 
last interruption request has been honored, instruction execution 
is resumed with the PSW last fetched. An interruption subroutine 
is then serviced for each interruption in the order (1)input/output, 
(2)external, and (3)program or supervisor call. 

Program Status 

Overall CPU status is determined by four alternatives: (1)stopped 
versus operating state, (2) running versus waiting state, (3) 
masked versus interruptable state, and (4) supervisor versus 
problem state. 

In the stopped state, which is entered and left by manual 
procedure, instructions are not executed, interruptions are not 
accepted, and the timer is not updated. In the operating 



704 Part 3 1 Computer Classes 

state, the CPU is capable of executing instructions and of being 
interrupted. 

In the running state, instruction fetching and execution pro- 
ceeds in the normal manner. The wait state is typically entered by 
the program to await an interruption, for example, an 110 
interruption or operator intervention from the console. In the 
wait state, no instructions are processed, the timer is updated, 
and I/O and external interruptions are accepted unless masked. 
Running versus waiting is determined by the setting of a bit in the 
current PSW. 

The CPU may be interruptable or masked for the system, 
program, and machine interruptions. When the CPU is interrup- 
table for a class of interruptions, these interruptions are accepted. 
When the CPU is masked, the system interruptions remain 
pending, but the program and machine-check interruptions are 
ignored. The interruptable states of the CPU are changed by 
altering mask bits in the current PSW. 

In the problem state, processing instructions are valid, but all 
I/O instructions and a group of control instructions are invalid. 
In the supervisor state, all instructions are valid. The choice 
of problem or supervisor state is determined by a bit in the 
PSW. 

Supervisory Facilities 

Timer 
A timer word in main storage location 80 is counted down at a rate 
of 50 or 60 cycles per second, depending on power line frequency. 
The word is treated as a signed integer according to the rules of 
fixed-point arithmetic. An external interrupt occurs when the 
value of the timer word goes from positive to negative. The full 
cycle time of the timer is 15.5 hours. 

As an interval timer, the timer may be used to measure elapsed 
time over relatively short intervals. The timer can be set by a 
supervisory-mode program to any value at any time. 

Direct Control 
Two instructions, READ DIRECT and WRITE DIRECT, provide 
for the transfer of a single byte of information between an external 
device and the main storage of the system. These instructions are 
intended for use in synchronizing CPU’s and special external 
devices. 

Storage Protection 
For protection purposes, main storage is divided into blocks of 
2,048 bytes each. A four-bit storage key is associated with each 
block. When a store operation is attempted by an instruction, the 
protection key of the current PSW is compared with the storage 

Section 4 1 Maxicomputers 

key of the affected block. When storing is specified by a channel 
operation, a protection key supplied by the channel is used as the 
comparand. The keys are said to match if equal or if either is zero. 
A storage key is not part of addressable storage, and can be 
changed only by privileged instructions. The protection key of the 
CPU program is held in the current PSW. The protection key of a 
channel is recorded in a status word that is associated with the 
channel operation. 

When a CPU operation causes a protection mismatch, its 
execution is suppressed or terminated, and the program execution 
is altered by an interruption. The protected storage location 
always remains unchanged. Similarly, protection mismatch due to 
an I/O operation terminates data transmission in such a way that 
the protected storage location remains unchanged. 

Multisystem Opera tion 

Communication between CPU’s is made possible by shared 
control units, interconnected channels, or shared storage. Multi- 
system operation is supported by provisions for automatic reloca- 
tion, indication of malfunctions, and CPU initialization. 

Automatic relocation applies to the first 4,096 bytes of storage, 
an area that contains all permanent storage assignments and 
usually has special significance for supervisory programs. The 
relocation is accomplished by inserting a 12-bit prefix in each 
address whose high-order 12 bits are zero. Two manually set 
prefixes permit the use of an alternate area when storage 
malfunction occurs; the choice between prefixes is preserved in a 
trigger that is set during initial program loading. 

To alert one CPU to the possible malfunction of another, a 
machine-check signal from a given CPU can serve as an external 
interruption to another CPU. By another special provision, initial 
program loading of a given CPU can be initiated by a signal from 
another CPU. 

InputlOutput 

Devices and Control Units 
Input/output devices include card equipment, magnetic tape 
units, disk storage, drum storage, typewriter-keyboard devices, 
printers, teleprocessing devices, and process control equipment. 
The I/O devices are regulated by control units, which provide the 
electrical, logical, and buffering capabilities necessary for I/O 
device operation. From the programming point of view, most 
control-unit and I/O device functions are indistinguishable. 
Sometimes the control unit is housed with an I/O device, as in the 
case of the printer. 

A control unit functions only with those UO devices for which it 
is designed, but all control units respond to a standard set of 



Chapter 40 1 The Structure of SYSTEM/~BO 705 

signals from the channel. This control-unit-to-channel connec- 
tion, called the IiO interface, enables the CPU to handle all I/O 
operations with only four instructions. 

VO Instructions 

Inpub'output instructions can be executed only while the CPU is 
in the supervisor state. The four 110 instructions are START I/O, 
HALT YO, TEST CHANNEL, and TEST I/O. 

START I/O initiates an IIO operation; its address field specifies a 
channel and an IiO device. If the channel facilities are free, the 
instruction is accepted and the CPU continues its program. The 
channel independently selects the specified I/O device. HALT I/O 
terminates a channel operation. TEST CHANNEL sets the 
condition code in the PSW to indicate the state of the channel 
addressed by the instruction. The code then indicates one of the 
following conditions: channel available, interruption condition in 
channel, channel working, or channel not operational. TEST IiO 
sets the PSW condition code to indicate the state of the addressed 
channel, subchannel, and I/O device. 

Channels 
Channels provide the data path and control for 110 devices as they 
communicate with main storage. In the multiplexor channel, the 
single data path can be time-shared by several low-speed devices 
(card readers, punches, printers, terminals, etc.) and the channel 
has the functional character of many subchannels, each of which 
services one I/O device at a time. On the other hand, the selector 
channel, which is designed for high-speed devices, has the 
functional character of a single subchannel. All subchannels 
respond to the same I/O instructions. Each can fetch its own 
control word sequence, govern the transfer of data and control 
signals, count record lengths, and interrupt the CPU on excep- 
tions. 

Two modes of operation, burst and multiplex, are provided for 
multiplexor channels. In burst mode, the channel facilities are 

monopolized for the duration of data transfer to or from a 
particular 110 device. The selector channel functions only in the 
burst mode. In multiplex mode, the multiplexor channel sustains 
several simultaneous IIO operations: bytes of data are interleaved 
and then routed between selection I/O devices and desired 
locations in main storage. 

At the conclusion of an operation launched by START I/O or 
TEST I/O, an I/O interruption occurs. At this time a channel 
status word (CSW) is stored in location 64. Figure 8 shows the 
CSW format. The CSW provides information about the termina- 
tion of the I/O operation. 

Successful execution of START I/O causes the channel to fetch a 
channel address word from main-storage location 72. This word 
specifies the storage-protection key that governs the I/O opera- 
tion, as well as the location of the first eight bytes of information 
that the channel fetches from main storage. These 64 bits 
comprise a channel command word (CCW). Figure 9 shows the 
CCW format. 

Channel Program 

One or more CCW's make up the channel program that directs 
channel operations. Each CCW points to the next one to be 
fetched, except for the last in the chain which so identifies itself. 

Six channel commands are provided: read, write, read back- 
ward, sense, transfer in channel, and control. The read command 
defines an area in main storage and causes a read operation from 
the selected I/O device. The write command causes data to be 
written by the selected device. The read-backward command is 
akin to the read command, but the external medium is moved in 
the opposite direction and bytes read backward are placed in 
descending main storage locations. 

The control command contains information, called an order, 
that is used to control the selected I/O device. Orders, peculiar to 
the particular IIO device in use, can specify such functions as 
rewinding a tape unit, searching for a particular track in disk 

KEY 0 0 0 0 COMMAND ADDRESS 



1 

706 Part 3 I Computer Classes Section 4 1 Maxicomputers 

I ,
I I ICOMMAND CODE DATA ADDRESS 

B!ts Othrough 7 spscify the command code 
Blts 8 through 31 specify the location of a byte In main storage 
Bits 32 through 3 6  are flag bits 

Bot 32 causes the address pQRion of the next CCW to be used 
Bit 33  causes the command code and data address In the next 

ccw to bs usad. 

Bit 34 causer a possible incorrect length indication to be suppressed 
Bit 3 5  suppresses the transfer of information to main storage 
Bit 3 6  causes an interruption 

Bits 37 through 39 must contain zeros 
Bits 40 through 47 are ignored
Bits 4 8  through 63  specify the number of bytes in the Operation 

Fig. 9. Channel command word format. 

storage, or line skipping on a printer. In a functional sense, the 
CPU executes I/O instructions, the channels execute commands, 
and the control units and devices execute orders. 

The sense command specifies a main storage location and 
transfers one or more bytes of status information from the selected 
control unit. It provides details concerning the selected IiO 
device, such as a stacker-full condition of a card reader or a 
file-protected condition of a magnetic-tape reel. 

A channel program normally obtains CCW’s from a consecutive 
string of storage locations. The string can be broken by a 
transfer-in-channel command that specifies the location of the 
next CCW to be used by the channel. External documents, such 
as punched cards or magnetic tape, may carry CCW’s that can be 
used by the channel to govern the reading of the documents. 

The inputioutput interruptions caused by termination of an I/O 
operation, or by operator intervention at the 110 device, enable 
the CPU to provide appropriate programmed response to condi- 
tions as they occur in I/O devices or channels. Conditions 
responsible for IiO interruption requests are preserved in the I/O 
devices or channels until recognized by the CPU. 

During execution of START I/O, a command can be rejected by 
a busy condition, program check, etc. Rejection is indicated in the 
condition code of the PSW, and additional detail on the conditions 
that precluded initiation of the IiO operation is provided in a 
c s w .  

Manual Control 
The need for manual control is minimal because of the design of 
the system and supervisory program. A control panel provides the 
ability to reset the system; store and display information in main 
storage, in registers, and in the PSW; and load initial program 
information. After an input device is selected with the load unit 
switches, depressing a load key causes a read from the selected 
input device. The six words of information that are read into main 
storage provide the PSW and the CCW’s required for subsequent 
operation. 

Instruction Set 

The SYSTEM/36O instructions, classified by format and function, 
are displayed in Table 2. Operation codes and mnemonic abbrevi- 
ations are also shown. With the previously described formats in 
mind, much of the generality provided by the system is apparent 
in this listing. 

Table 2 (opposite)System1360 instructions 



RR F a n a t  

001oxx*r Oollxun 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

SPM 
BALR 
BCTR 
BCR 
SSK 
ISK 
SVC 

SET PROGRAM MASK 
BRANCH AND LINK 
BRANCH ON COUNT 
BRANCH/CONDITION
SET KEY 
INSERT KEY 
SUPERVISOR CALL 

LPRLNR 
LTR 
LCR 
NR 
OR 
CLR 

XR 
LR 
CR 
AR 
SR 
MR 
OR 
ALR 
SLR 

LOAD POSITIVE LOAD NEGATIVE 
LOAD AND TEST 
LOAD COMPLEMENT 
AND 
OR 
COMPARE LOGICAL 

EXCLUSIVE OR 
LOAD 
COMPARE 
ADD 
SUBTRACT 
MULTIPLY 
DIVlDE 
ADD LOGICAL 
SUBTRACT LOGICAL 

LNDR 
LTDR 
LCDR 

LPDR 

HDR 

LDRCDR 
ADR 
SDR 
MDR 
DDR
AWR 
SWR 

LOAD NEGATIVE 
LOAD AND TEST 
LOAD COMPLEMENT 

LOAD POSITIVE 

HALVE 

LOADCOMPARE 
ADD N 
SUBTRACT N 
MULTIPLY 
DIVIDE
ADD U 
SUBTRACT U 

LPER 
LNER 
LTER 
LCER 
HER 

LER 
CER 
ALR 
SER 
MER 
DER 
AUR 
SUR 

LOAD WSlTlVE 
LOAD NEGATIVE 
LOAD AND TEST 
LOAD COMPLEMENT 
HALVE 

LOAD 
COMPARE 
ADD N 
SUBTRACT N 
MULTIPLY 
DIVIDE 
ADD U 
SUBTRACT U 

nm 
011lxun 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

STH 
LA 
STC 
IC 
EX 
BAL 
BCT 
BC 
LH 
CH 
AH 
SH 
MH 

CVD 
CVB 

STORE 
LOAD ADDRESS 
STORE CHARACTER 
INSERT CHARACTER 
EXECUTE 
BRANCH AND LINK 
BRANCH ON COUNT 
BRANCH/CONDITION
LOAD 
COMPARE 
ADD 
SUBTRACT 
MULTIPLY 

CONVERT-DECIMAL 
CONVERT.BINARY 

ST 

N 
CL 
0 
X 
L 

CAS 
M 
D 
ALSL 

STORE 

AND 
COMPARE LOGICAL 
OR 
EXCLUSIVE OR 
LOAD 

COMPAREADDSUBTRACT 
MULTIPLY 
DIVIDE 
ADD LOGICAL SUBTRACT LOGICAL 

STD 

LD 
CDAD 
SD 
MD 
DDAW 
SW 

STORE 

LOAD 
COMPAREADD N 
SUBTRACT N 
MULTIPLY 
DIVIDEADD U 
SUBTRACT U 

STE 

LE 
CE 
AE 
SE 
ME 
DE 
AU 
SU 

STORE 

LOAD 
COMPARE 
ADD N 
SUBTRACT N 
MULTIPLY 
DIVIDE 
ADD U 
SUBTRACT U 

R$ S1 

Blanching 
status switching 

and shifting 

Fixed-point 
logical and 

input/ou$ut 

lOlOmx IOIlXxxr 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
011I 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

SSM 

LPSW 

WRD 
RDD 
BXH 
BXLE 
SRL 
SLL 
SRA 
SLA 
SRDL 
SLDL 
SRDA 
SLDA 

SET SYSTEM MASK 

LOAD PSW 

WRITE DIRECT 
READ DIRECT 
BRANCH/HIGH
BRANCH/LOW.EQUAL
SHIFT RIGHT SL 
SHIFT LEFT SL 
SHIFT RIGHTS 
SHIFT LEFTS 
SHIFT RIGHT DL 
SHIFT LEFT DL 
SHIFT RIGHT D 
SHIFT LEFT D 

DIAGNOSE 

STM 

MVI 

NI 
CLI 
01 
XI  
LM 

SIO 
TI0 
HI0 
TCH 

TM 

TS 

STORE MULTIPLE 

MOVE 

AND 
COMPARE LOGICAL 
OR 
EXCLUSIVE OR 
LOAD MULTIPLE 

START 1/0
TEST 1/0
HALT 1/0 
TEST CHANNEL 

TEST UNDER MASK 

TEST AND SET 

I l lo rm Ill lxun 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 

MVN 
MVC 
MVZ 
NC 
CLC 
OC 
XC 

MOVE NUMERIC 
MOVE 
MOVE ZONE 
AND 
COMPARE LOGICAL 
OR 
EXCLUSIVE OR 

MVO 
PACK 
UNPK 

MOVE WITH OFFSET 
PACK 
UNPACK 

1001 
1010 
1011 
1100 
1101 
1110 
1111 

TR 
TRT 
ED 
EDMK 

TRANSLATE 
TRANSLATE AND TEST 
EDIT 
EDIT AND MARK 

ZAP 
CP 
AP 
SP 
MP 
DP 

ZERO AND ADD 
COMPARE 
ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 



708 Part 3 I Computer Classes 	
Section 4 1 Maxicomputers 

APPENDIX 1 IBM SystemD70 ISP 
chareg<O :7). ! Channel address r e g i s t e r  

s370 := deureg<O: 7). I Dev iLe  r e g l s t , e r  
B E G I N  I Holds dev i ce  address (0-255) 

ex t reg (0 :  7). I E x t e r n a l  r e g i s t e r :
1 ISP summary d e s c r i p t i o n  o f  IBM System/370 a r c h i t e c t u r e .  I B i t  0 = t i m e r  In teP ' rup t

I B i t  I = c o n ~ o l e  i n t e r r u p t  
! T h i s  summary g i v e s  an ove rv iew  o f  t h e  m a j o r  a r c h i t e c t u r a l  i od reg<0 :7> .  ! Holds I l a ta  b y t e  for d i r e c t  I/O
I f e a t u r e s  o f  t h e  S370. I I t s  meanino Icosnand o r  da ta )  

I i s  i i n p l e m e ~ t b t ~ o ndependent
I I n s t r u c t i o n  f e t c h  and e x e c u t i o n  c y c l e s  a re  f u l l y  desc r ibed .  s igout<O:Q>. I S i g n a l  out. f o r  d i r e c t  I t 0  

I b u t  t h e  a c t u a l  e x e c u t i o n  o f  i n d i v i d u a l  i n s t r u c t i o n s  i s  l i m i t e d  

I t o  one o r  two examples f rom each group ( R R .  R X .  RS lS l .  and SS).  . . I ~ ~ s t r ~ c t i o n . F o r m a t * *  


1 The summary i s  f u l l y  c o m p a t i b l e  w i t h  t h e  ISPS c o m p i l e r  and s i m u l a t o r  IR(0:47>. I Instruction r e g i s t e r  
i rw[O:2]<0:15> : =  IR(O:47). ! 1/2 word address f o r  IR (enecute) 

**MP.State*. OpCode<O:7> : =  IR<O:7>. I R R .  R X .  RS. S l .  SS 

macro maxb :=  (16383 I .  R 1 < 0 : 3 >  : =  l R < B : l I > ,  I R R .  R X ,  RS 

inacro maxkey :=  17 1 ,  	 R2<0:3> := IR<IP:15>. I RR 
X2<0:3> :=  IR<12:15>. I R X  
B1<0:3> : =  IR<16:19). I R X .  RS. S I .  SS 

MB[O:maxb]<O:7). By te  memory 01<0:11> : =  IR<20:31>. I R X .  RS. SI .  SS
MH[O:maxb]<O:l5>(lNCREMENT:2) := H a l f  word memory 

R3<0:3> : =  IR(12:15>. ! RS

MBf 0 :eaxbl<O :7). 

Word memory MI[o:3]<> : =  I R < B : l l > .  I Mask 1 

MW[O :maxb j?O :BI>(iNCREMENT '4)  := 12<0:7> : =  IR<8:15>. I SI 


MB[O:maxb]<O:7>. LFLO<O:7> :iIR<8:15>. I ss

M D W [ O : I ~ ~ ~ ~ ~ ] ( O : ~ ~ > ( I N C R ~ M E N T : ~ )  	Dou h 1eword memory 

Ll(O.3) :=  rR<8:11>, I ss:= 
MB[O:maxb]<O:7>. L2<0:3)  : =  IR<12:15).  I ss 


Memory address reg  E2<0 : 3 >  : = IR<32:35>, I ss 

MAR<O:23>, 02<0:11> :=  IR<36:47> I ss 

MBR<O:31>. 	 Memory b u f f e r  r e g  

STKEYS[O:maxkey]<O:4>, 	 Sto rage  key a r r a y  ..Service.Facilities**(us) 

I I n t e r r u p t  code  5 i m p l i e s  add ress ing  e r r o rI Permanent Storage Assignments I l n t e r w p t  code 6 i m p l i e s  s p e c i f i c a t i o n  ( a l i g n m e n t  e r r o r )  

iplpsw<O:63) IPL  PSW j I n t e r r u p t  code 4 i m p l i e s  p r o t e c t i o n  
IPL CCW #I I The Order of  s e t t i n g  these  Codes may be imp lemen ta t i on  deper n t .  

ip lcwi<O:O3) ! Tes ts  on a model 75 show Code 6 i s  f i r s t .i p l c s 2 < 0  :G3) IPL ccw #2 
oxopsw<0:63> E x t e r n a l  O l d  PSW I Check r o u t i n e  f o r  s to rage  p r o t e c t i o n  
svcpsw<O:63> 	 SVC O l d  PSW c k p r  := 


Program O l d  PSW beg in 
propsw<0 :63) 	 checker(SlKEYS[MAR<0:21)1(1:4> neq PROTKY. 4)mkopsw(0: 63) Machilie check O l d  PSW 

ioopsw<O:G3> 110 O ld  PSW end. 


chstwd<O:63) 	 Channel S t a t u s  Word 
Channel Address Word 	 c k r d p r  := I Check r o u t i n e  f o r  read p r o t e c t i o n  

chadwd(O:31> 
l i l n r r  c a l l  b e g i n 
t ime r < 0 :23: I F  STKEYS[MAR<O:12>]<0> => Ckpr ( ) 
ernpsw<0:63) E x t e r n i l  New PSW 


svnpsw<0:63) SVC New PSW end, 


prnpsw<0: 63) 	 Prograiu New PSW 
M a c h ~ n e  check New P S I  keyck := I Check r o u t i n e  f o r  ssk & i r k  i n s t r u c t i o n s  

mknpsw<O:G3) beg inionpsw<0:63) 110 New PSW checker(PROBS1. 2 )  next I P r i v i l e g e d  s t a t e  check 
scnou t (0 :  63) O i a g n o s t i c  Scan ou t  

c! iecker( l l [RZ1(28:31: neq 0.  6 )  n e x t  
* *Pc .S ta te * *  c l ~ e c k e r ( l l j R 2 ] ~ ~ : 2 0 >  5)g t r  7. 

end.R[O:l5]<0:31> 	 General  pu rpose  r e g i s t e r s  ckliwad : =  I Check l l 2  word address r o u t i n e  
PSW<0:63>. 	 Program S t a t u s  Word beg in  

checkzr(MAR(PJ>. 6 )  n e x t  

psvrw[O:3]<0:15> :=  PSW<O:63>. A l t e r n a t e  PSW d e f i n i t i o n  checker(MAR<O:22) g t r  maxbI2.  5)


CHAMSK<O:7> : =  PSW<O:7>. Channel Mask end.
PROTKY<O:3> : =  PSW<8:11>. P r o t e c t i o n  Key 
ASCMSKO : =  PSW<12>. USASCII Mask ckwdad := I Check word address r o u t i n e  
MCHKMKO :=  PSW<l3>. Machine check mask beg in
WAITST<> : =  PSW<14>. Wa i t  s t a t e  	 checker(MAR<PZ:23> neq 0. 6 )  n e x tProblem s t a t e  


I n t e r r u p t  code 	 checker(MAR<O:21) g t r  maxbl4.  5 )  


I n s t r u c t . i o n  l e n g t h  code end. 


C o n d i t i o n  code ckdwad := I Check double word address r o u t i n e 

F i x e d  p o i n t  o v e r f l o w  mask 


O O f M S K O  :=  PSW<37> Decimal o v e r f l o w  mask beg in  


Exponent under f 1ow mask checker(MAR<21:23) neq 0.  6) n e x t  

Significance mask checkel'(MAR<O:ZO> g t r  maxbl8.  5) 
Program coun te r -24  b i t s  	 end. 

c h e c k e r ( c o n d i t i o n 0 .  i n t code<0 :15>)  :=
**Implementation.Declarations'* 	 beg in 


I F  c o n d i t i o n  => 

amaPl<0 :23>, A u X i l l a P y  memory address r e g . ( l )  b e g i n 

arnar2<0: 23>, AuX i l l aPy  memory address  reg.(2) 


L e f t  b y t e  I n  MBR I N T C D E  = i n t c o d e ;  i n t v e c < Z >  = 1 n e x t  

l oby te<0 :7>  :=  MBR<0:7>. LEAVE i c y c l e 

h iby te<0 :7>  := MBR<24:31>. R i g h t  b y t e  i n  MBR end

I n " x l < o : l > .  	 B y t e  coun t  r e g i s t e r  1 end,
l aux2<0 : I > .  	 B y t e  c o u n t  r e g i s t e r  2 


Execute r e c u r s i o n  f l a g  I Read a b y t e  r o u t i n e 

2 b i t  temp r d b v t e  := 


beg in
t 4<0: 3>, 4 b i t  temp checker(MAR g t r  maxb. 5) n e x t  ! Check v a l i d  b y t e  address 
t24<0:23>. 24 b i t  temp 

C 'n r o p r ( )' ' \  " e x z-~ 

0 " f O .  	 o v e r f l o w  
Stop Sw i t ch  	

MBR<24:31> = MB[MARI
s t o p b i t < > .  	 end.
intvec<O:4>. I n t e r r u p t  v e c t o r :  


B i t  0 = machine check wrby te  : =  I W r i t e  a b y t e  r o u t i n e 

B i t  1 = svc 
B i t  2 = p rog  check beg in  
B i t  3 = t i m e r  i n t e r r u p t  	 checker(MAR g t r  maxb. 5 )  n e x t  I Check v a l i d  b y t e  address 

c k p r l )  n e x tB i t  4 = l / O  i n t e r r u p t  MBLMAR] = MBR<24:31>
Channel mask r e g i s t e r  

c h r l s < > .  Channel r e l e a s e  end. 


c h s e l < > .  	 Channel s e l e c t  r e g i s t e r  readhw := I Read a 112 word r o u t i n e  
Cl,anCC<O: 1 ) .  Channel c o n d i t i o n  code beg in 

chinst [O:3]<>. Channel i n s t r u c t i o n  l i n e  ckhvad( )  n e x t 
0 = >  SID 


1 = >  TI0 ck!'dpr() n e x t  

2 => HI0 MBR<16:31> = MtI[MAR] 

3 = >  TCH 	 end. 



Chapter 40 1 The Structure Of SYSTEM/360 709 

wrhw := I W 

beg in  b e g i n 

ckhwad() n e x t  	 I F  n o t  s t o p b i t  =>
C k p r O  n e x t  	 be0 inMH[MAR' ..."",.,.".I 

RESTART run  
readwd := I Read a word r o u t i n e  end 


beg in  end. 

ckwdad() n e x t  

c l r d p r 0  n e x t  i c y c l e  := I I n s t r u c t i o n  i n t e r p r e t a t i o n  c y c l e  

MBR = MW[MAR] b e g i n 

end. i f e t c h ( )  n e x t  


i e x e c ( )  n e x t  

wrwd :=  I W r i t e  a word r o u t i n e  I F  e x r f  => ( i e x e c o  n e x t  e x r f  = 0) 


beo in  end. 

ckGdad() n e x t  

C l p r O  n e x t  i f e t c h  := I I n s t r u c t i o n  f e t c h  
HW[MAR] = MBR b e g i n 

end. M A R  = PC n e x t  


readhw() n e x t  

l l f c h  :=  I Fe tch  of 1.2 operand i f  p o s s i b l e  o r  a l o a d  IR<O:15> = MUR<lG:31>. ILC  = (MBR<16> + MBR<17>) + 1: 


beg in  I O f  ze ro  i n t o  the  MOR I f  L2 f i e l d  i s  exhausted. PC E PC + ( ( M B R < 1 6 >  +'MUR<17>) + 1) 
 2; ov f  = 0 nex t  
UECODE laux2  eq l  0 => . I F  ILC g t r  1 = >  


beo in  be0 in 

0 y - b e g i n  MA^ = MAR + 2 next 


l aux2  = l a u x f  - ( t c )  i next r e a d h w o  n e x t  

MAR = amar2 + l a u x z  n e x t  IH< lG :31 j  = M6R<16:31> n e x t  

r d b y t e ( )  I F  ILC g t r  2 => 

end. beg in 


I :=  MOR = 0 MAR = MAR t 2 n e x t  

snd readhw() n e x t  


end. IR<32:47> = MB11<16:31> 

end 


a d r i o  := ! Dev ice  address ing  f o r  IIO i n s t r u c t i o n s  end 
b e g i n  end 
chareg = ( D l  + R[O11)<15:8>: devreg = (01 + R[B1])<7:0> 
end. ' * I n s t r u c t i o n . C x e c u t i o n . . ( u s )  

s e t f c c  := I Set f i x e d  p o i n t  c o n d i t i o n  Codes 	 i e x e c  := 
beg in  b e g i n 

CC = 0 n e x t  DCCODE OpCode<O:l> = >  

OCCOOE R [ R l ] < O >  = >  b e g i n 


b e g i n  '00 : =  R R ( ) , 

0 : =  I F  R C R l ]  => CC = 2,  ' 0 1  : =  R X ( ) , 

1 : =  cc = 1 '10 :=  R S . S I ( ) , 

end n o x t  	 '11 : =  S S O  

I f  o v f  => CC = 3 n e x t  end 

checke r (ov f  and FPOPMS. 8 )  mid. 

end. 


RR : =  ! RR i n s t r u c t i o n  decode t a b l e  
b e g i n

ope* : =  ( c h e c k e r ( ' 1 .  1 ) ) .  I I l l e g a l  op-code DECODE OpCode =>i n t  :=  beg in
beg in  "04 : =  SPM(), I Set  program mask 
t 2  = ILC n e x t  1 Save i n s t r u c t i o n  l e n g t h  " 0 5  :=  B A L R O .  1 B ranch  and l i n k  


I F  i n t v e c ( 0 j  and MCHKMK = >  ! Handle p r i o r i t y  (1) i n t e r r u p t s  	 "06 : "3F  := no .op ( ) ,  I Opcodes n o t  Shown i n  t h i s  summary b e g i n  

mkopsw = PSW n e x t  o t h e r w i s e  : =  apex ( ) 

mkopsw<lG:31> = 0 n e x t  end

Scnout = PSW n e x t  end.

PSW = mknpsw: i n t vec<0 :2>  = 0 

end n e x t  R X  : =  I R X  i n s t r u c t i o n  decode t a b l e  


b e g i n 

I F  i n t v e c < l >  = >  ! Handle p r i o r i t y  ( 2 )  i n t e r r u p t s  MAR = D1 n e x t  I E f f e c t i v e  address c a l c u l a t i o nb e g i n  I F  U1 = jMAR = MAR + R[B1] n e x t  

svcpsw = PSW n e x t  i r  x2 = )  MAR = MAR + ~ 1 x 2 1next
PSW = svnpsw: i n t v e c < i >  = 0 
end n e x t  	 DECODE OpCode => I Opcode decode f o r  RX 

beg in
I F  i n t v e c < t >  = >  

beg in  	 "40 :iSTH( 1. ! S t o r e  h a l f w o r d  
propsw = PSW n e x t  	 "41:"74 no.op() .  I Opcodes n o t  Shown i n  t h i s  summary PSW = prnpsw; i n t v e c < 2 >  = 0 	

:= 

end n e x t  o t h e r w i s e  := apex ( )  

end 


I F  i n t v e c < 3 >  and CHAMSK = >  I Handle p r i o r i t y  ( 3 )  i n t e r p u p t s  end, 

beg in  

INTCDE = e x t r e o  n e x t  R S . S I  := ! RS.  SI i n s t r u c t i o n  decode t a b l e  


b e g i n  


MAR = 0 1  n e x t  i E f f e c t i v e  address c a l c ~ l a t i o n  

I F  intveC<4> and iomsk => I Handle p r i o r i t y  ( 4 )  i n t e r r u p t s  
I F  01  = >  MAR = MAR + R[Bl ]  n e x t  


beg in  DrCOOL OpCode => 

INTCOE = dev reg  n e x t  b e g i n  

I Opcode decod ing  


ioopsw = PSW n e x t  "00 : =  S S M ( ) .  ! Set system mask 
PSW = ionpsw: i n t v e c < 4 >  = 0 

end n e x t  	 "81:"9F := no .op ( ) .  ! Opcodes n o t  shown i n  t h i s  sunmaPy 

INTCDE = 0: ILC = t2 ! Reset ILC & i n t e r r u p t  code 	 o t h e r w i s e  :=  apex ( )
end 	 end 

n s t r u c t i o n . I n t e r p r e t a t i o n * . ~ u s )  	 end. 

s t a r t ( m a i n )  :=  	 SS : =  I SS i n s t r u c t i o n  decode t a b l e  
b e g i n  b e g i n  
S t o p b i t  = 0 n e x t  
run() amar l  = D1: amar2 = 02 n e x t  ! E f f e c t i v e  address c a l c u l a t i o n  
end, 	 I F  01  = >  ainar l  = amar l  + R [ o l ] . 


I F  02 = >  amar l  = amar l  1. R[OZ]'next 




710 Part 3 1 Computer Classes 	
Section 4 1 Maxicomputers 

APPENDIX 1 (Cont'd.) 
I 

o C C O I l C  OpCode = >  I Opcode decod ing  


b e g i n 

" D l  : =  M V N ( ) .  I Move numerics 

I Opcodes n o t  Shown i n  this sununary 

o t h e r w i s e  : =  o p e x 0  

end 


end. 


I RR i n s t r u c t i o n s  

SPM 	 :=  I s e t  program mask 

b e g i n  

PSW<34:39> = R[R1]<2:7> 

end. 


RPll R ! =  1 Branch and l i n k  r e g i s t e r.. 

b e g i n 

t 2 4  = R [ R 2 ] < 0 : 3 1 >  n e x t  

R [ R 1 ]  = PSW(32:63> n e x t  

I F  R2 = >  PC t 2 4 
i 

end, 

1 I n s t r u c t i o n  d e s c r i p t i o n s  n o t  
I i n c l u d e d  i n  t h i s  summary. 1 	 j : : : :  

I R X  I n s t r u c t i o n s  

STH 	 := I S t o r e  h a l f w o r d  

b e g i n 

MOR = ~ [ n 1 ] < 1 6 : 3 1 >  n e x t  

wrhw() 

end, 


I . . . .  
I . . . .  
I RS. S t  i n s t r u c t i o n s  

SSM 	 :=  I Se t  system mask 

b e g i n  

checker(PROBS1. 2 )  n e x t  I P r i v i l e g e d  s t a t e  check 
r d b y t e o  n e x t  

P S W < O : ~ > = h i b y t e  

end. 


I , . . .  . . . .  
I ss i n s t r u c t i o n s  

MVN : =  I Move numer i cs  
b e g i n  . 

l a u x l  = 0 :  l a u x 2  = 0 n e x t  

n w n l  : =  b e g i n 


M A R  = amar2 + l a u x l  n e x t  
r d b y t e ( )  n e x t  
~ f i l ~= amaPlt 4  = MOR(28:31>+ iauxi: n e x t  
r d b y t e o  n e x t  
M U I K ~ O : ~ ~ >= t 4  n e x t  
w r b y t e ( )  n e x t  
IF L F L D  g t r  l a u x l  = >  

b e g i n
l a u x l  = l a u x l  + 1 1 aux2 l a u x l  + 1 n e x t  
RESTART m V n l  
end 

end 

end. 


end 

I . . . .  
I . . . .  
! End o r  5370 suiiiinary d e s c r i p t i o n  



Chapter 41 

The Structure of SYSTEM/3601 
Part II-System Implementations 

W. Y. Stevens 

Summary The performance range desired of SYSTEM/360 is obtained by 
variations in the storage, processing, control, and channel functions of the 
several models. The systematic variations in speed, size, and degree of 
simultaneity that characterize the functional components and elements of 
each model are discussed. 

A primary goal in the SYSTEMt360 design effort was a wide range 
of processing unit performances coupled with complete program 
compatibility. In keeping with this goal, the logical structure of 
the resultant system lends itself to a wide choice of components 
and techniques in the engineering of models for desired perform- 
ance levels. 

This paper discusses basic choices made in implementing six 
SYSTEM/360 models spanning a performance range of fifty to one. 
It should be emphasized that the problems of model implementa- 
tion were studied throughout the design period, and many of the 
decisions concerning logical structure were influenced by difFicul- 
ties anticipated or encountered in implementation. 

Performance Adjustment 

The choices made in arriving at the desired performances fall into 
four areas: 

Main storage 
Central processing unit (CPU) registers and data paths 
Sequence control 
Input/output (I/O channels) 

Each of the adjustable parameters of these areas can be subordi- 
nated, for present purposes, to one of three general factors: basic 
speed, size, and degree of simultaneity. 

Main Storage 

Storage Speed and Size 
The interaction of the general factors is most obvious in the area of 
main storage. Here the basic speeds vary over a relatively small 

' I B M  Sys. J .  vol. 3, no. 2, 1964, pp. 136-143. 

range: from a 2.5-psec cycle for the Model 40 to a 1.0-psec cycle 
for Models 62 and 70. However, in combination with the other 
two factors, a 32:l range in overall storage data rate is obtained, as 
shown in Table 1. 

Most important of the three factors is size. The width of main 
storage, i.e.,the amount of data obtained with one storage access, 
ranges from one byte for the Model 30, two bytes for the Model 
40,and four bytes for the Model 50, to eight bytes for Models 60, 
62, and 70. 

Another size factor, less direct in its effect, is the total number 
of bytes in main storage, which can make a large difference in 
system throughput by reducing the number of references to 
external storage media. This number ranges from a minimum of 
8192 bytes on Model 30 to a maximum of524,288 bytes on Models 
60, 62, and 70. An option of up to eight million more bytes of 
slower-speed, large-capacity core storage can hrther increase the 
throughput in some applications. 

Interleaved Storage 
Simultaneity in the core storage of Models 60 and 70 is obtained 
by overlapping the cycles of two storage units. Addresses are 
staggered in the two units, and a series of requests for successive 
words activates the two units alternately, thus doubling the 
maximum rate. For increased system performance, this technique 
is less effective than doubling the basic speed of a single unit, 
since the access time to a single word is not improved, and 
successive references frequently occur to the same unit. This is 
illustrated by comparing the performances of Models 60 and 62, 
whose only difference is the choice between two overlapped 
2.0-ksec storage units and one single 1.0-psec storage unit, 
respectively. The performance of Model 62 is approximately 1.5 
times that of Model 60. 

CPU Registers and Data Paths 

Circuit Speed 
sYSTEM/360 has three families of logic circuits, as shown in Table 
2, each using the same solid-logic technology. One family, having 
a nominal delay of 30 nsec per logical stage or level, is used 
in the data paths of Models 30, 40,and 50. A second and faster 
family with a nominal delay of 10 nsec per level is used in Models 
60 and 62. The fastest family, with a delay of 6 nsec, is used in 
Model 70. 

The fundamental determinant of CPU speed is the time 
required to take data from the internal registers, process the data 
through the adder or other logical unit, and return the result to a 
register. This cycle time is determined by the delay per logical 
circuit level and the number of levels in the register-to-adder 
path, the adder, and the adder-to-register return path. The 

711 



- -- 
712 Part 3 Computer Classes ~ 

Table 1 Systern/360 Main Storage Characteristics 

Model Model Model 
30 40 50 

Cycle time (psec) 
Width (bytes) 
Interleaved access 

2.0 
1 

no 

2.5 
2 

no 

2.0 
4 

no 
Maximum data rate (bytes/psec) 0.5 0.8 2.0 
Minimum storage size (bytes) 8,192 16,384 65,536 
Maximum storage size (bytes) 65,536 262,144 262,144 
Large capacity storage attachable no no Yes 

number of levels varies because of the trade-off that can usually be 
made between the number of circuit modules and the number of 
logical levels. Thus, the cycle time of the system varies from 1.0 
psec for Model 30 (with 30-nsec circuits, a relatively small 
number of modules, and more logic levels) and 0.5 psec for Model 
50 (also with 30-nsec circuits, but with more modules and fewer 
levels) to 0.2 psec for Model 70 (with 6-nsec circuits). 

Local Storage 

The speed of the CPU depends also on the speed of the general 
and floating-point registers. In Model 30, these registers are 
located in an extension to the main core storage and have a 
read-write time of2.0psec. In Model 40, the registers are located 
in a small core-storage unit, called local storage, with a read-write 
time of 1.25 psec. Here, the operation of the local storage may be 
overlapped with main storage. In Model 50, the registers are in a 
local storage with a read-write time of only 0.5 psec. In Model 

Table 2 System/360 CPU Characteristics 

Model 
30 

Circuit family: nominal delay per logic level (nsec) 30 
Cycle time (psec) 1 .o 
Location of general and floating registers main 

core 
storage 

Width of general and floating register storage (bytes) 1 
Speed of general and floating register storage (psec) 2.0 
Width of main adder path (bits) 8 
Width of auxiliary transfer path (bits) 
Widths of auxiliary adder paths (bits) 
Approximate number of bytes of register storage 12 
Approximate number of bytes of working locations in local 45 
storage (main 

storage) 
Relative comwtina weed 1 

Section 4 I Maxicomputers 

Model Model Model 
60 62 70 

2.0 	 1 .o 1 .o 

8 8 8 


Yes no Yes 
8.0 8.0 16.0 


131,072 262,144 262,144 

524,288 524,288 524,288 


Yes Yes Yes 

60162, the local storage has the logical characteristics of a core 
storage with nondestructive read-out; however, it is actually 
constructed as an array of registers using the 30-nsec family of 
logic circuits, and has a read-write time of 0.25 psec. In Model 70, 
the general and floating-point registers are implemented with 
6-nsec logic circuits and communicate directly with the adder and 
other data paths. 

The two principal measures of size in the CPU are the width of 
the data paths and the number of bytes of high-speed working 
registers. 

Data Pa tb Organization 

Model 30 has an 8-bit wide (plus parity) adder path, through 
which all data transfers are made, and approximately 12 bytes of 
working registers. 

Model 40 also has an 8-bit wide adder path, but has an 
additional 16-bit wide data transfer path. Approximately 15bytes 

iModel Model Model Model 
40 50 60162 70 

30 30 10 6 

0.625 0.5 0.25 0.2 

local local local transistor 

core core transistor registers 


storage storage storage 

2 4 4 4or8 

1.25 	 0.5 0.25 

8 32 56 64 

16 8 


8 8,8,and 24 

15 30 50 100 

48 60 4 


3.5 10 21 /30 50 



Chapter 41 1 The Structure of SYSTEMBBO 713 

of working registers are used, plus about 48 bytes of working 
locations in the local storage, exclusive of the general and 
floating-point registers. 

Model 50 has a 32-bit wide adder path, an 8-bit wide data path 
used for handling individual bytes, approximately 30 bytes of 
working registers, plus about 60 bytes of working locations in the 
local storage. 

Model 60162 has a 56-bit wide main adder path, an 8-bit wide 
serial adder path, and approximately 50 bytes of working regis- 
ters. 

Model 70 has a 64-bit wide main adder, an 8-bit wide exponent 
adder, an 8-bit wide decimal adder, a 24-bit wide addressing 
adder, and several other data transfer paths, some of which have 
incrementing ability. The model has about 100 bytes of working 
registers plus the 96 bytes of floating point and general registers 
which, in Model 70, are directly associated with the data paths. 

The models of SYSTEhd360 differ considerably in the number of 
relatively independent operations that can occur simultaneously 
in the CPW. Model 30, for example, operates serially: virtually all 
data transfers must pass through the adder, one byte at a time. 
Model 70, however, can have many operations taking place at the 
same time. The CPU of this model is divided into three units that 
operate somewhat independently. The instruction preparation 
unit fetches instructions from storage, prepares them by comput- 
ing their effective addresses, and initiates the fetching of the 
required data. The execution unit performs the execution of the 
instruction prepared by the instruction unit. The third unit is a 
storage bus control which coordinates the various requests by the 
other units and by the channels for core-storage cycles. All three 
units normally operate simultaneously, and together provide a 
large degree of instruction overlap. Since each of the units 
contains a number of different data paths, several data transfers 
may be occurring on the same cycle in a single unit. 

The operations of other SYSTEM1360 models fall between those 
mentioned. Model 50, for example, can have simultaneous data 
transfers through the main adder, through an auxiliary byte 
transfer path, and to or from local storage. 

Table 3 System/36O Sequence Control Characteristics 

Model 
30 

Type read-only 
storage 

Cycle time (psec) 1.o 
Width of read-only storage word (available bits) 60 
Number of read-only storage words available 4096 
Number of gate-control fields in read-only storage 
word 9 

Sequence Control 

Complex Instruction Sequences 

Since the SYSTEhd360 has an extensive instruction set, the CPU’s 
must be capable of executing a large number of different 
sequences of basic operations. Furthermore, many instructions 
require sequences that are dependent on the data or addresses 
used. As shown in Table 3, these sequences of operations can be 
controlled by two methods: either by a conventional sequential 
logic circuit that uses the same types of circuit modules as used in 
the data paths or by a read-only storage device that contains a 
microprogram specifying the sequences to be performed for the 
different instructions. 

Model 70 makes use of conventional sequential logic control 
mainly because of the high degree of simultaneity required. Also, 
a sufficiently fast read-only storage unit was not available at the 
time of development. The sequences to be performed in each of 
the Model 70 data paths have a considerable degree of indepen- 
dence. The read-only storage method of control does not easily 
lend itself to controlling these independent sequences, but is well 
adapted where the actions in each of the data paths are highly 
coordinated. 

Read-only Storage Control 

The read-only storage method of control is described elsewhere 
[Peacock, n.d.1. This microprogram control, used in all but the 
fastest model of SYSTEhd360, is the only method known by which 
an extensive instruction set may be economically realized in a 
small system. This was demonstrated during the design of Model 
60162. Conventional logic control was originally planned for this 
model, but it became evident during the design period that too 
many circuit modules were required to implement the instruction 
set, even for this rather large system. Because a sufficiently fast 
read-only storage became available, it was adopted for sequence 
control at a substantial cost reduction. 

The three factors of speed, size, and simultaneity are applicable 

Model 
40 

Model 
50 

Model 
60162 

Model 
70 

read-only 
storage 
0.625 

60 
4096 

read-only 
storage 

0.5 
90 

2816 

read-only 
storage 

0.25 
100 
2816 

sequential 
logic 
0.2 

10 15 16 



714 Part 3 Computer Classes Section 4 1 Maxicomputers~ 

to the read-only storage controls of the various SYSTEIvd360 fields in a word provides some measure of this simultaneity. 

models. The speed of the read-only storage units corresponds to Model 30 has 9 such fields. Model 60162 has 16. 

the cycle time of the CPU, and hence varies from 1.0 psec per 

access for Model 30 down to 0.25 psec for Models 60 and 62. 


The size of read-only storage can vary in two ways-in width 
(number of bits per word) and in number of words. Since the bits Input/Output Channels 

of a word are used to control gates in the data paths, the width of 
storage is indirectly related to the complexity of the data paths. Channel Design 

The widths of the read-only storages in S~STEbd360 range from 60 The SYSTEM/~~O inputloutput channels may be considered from 
bits for Models 30 and 40 to 100 bits for Models 60 and 62. The two viewpoints: the design of a channel itself, or the relationship 
number of words is affected by several factors. First, of course, is of a channel to the whole system. 
the number and complexity of the control sequences to be From the viewpoint of channel design, the raw speed of the 
executed. This is the same for all models except that Model 60162 components does not vary, since all channels use the 30-nsec 
read-only storage contains no sequences for channel functions. family of circuits. However, the different channels do have access 
The number of words tends to be greater for the smaller models, to different speeds of main storage and, in the three smaller 
since these models require more cycles to accomplish the same models, different speeds of local storage. 
function. Partially offsetting this is the fact that the greater degree The channels differ markedly in the amount of hardware 
of simultaneity in the larger systems often prevents the sharing of devoted exclusively to channel use, as shown in Table 4. In the 
microprogram sequences between similar functions. Model 30 multiplexor channel, this hardware amounts only to 

sySTEM/360 employs no read-only storage simultaneity in the three 1-byte wide data paths, 11 latch bits for control, and a 
sense that more than one access is in progress at a given time. simple interface polling circuit. The channel used in Models 60, 
However, a single read-only storage word simultaneously controls 62, and 70 contains about 300 bits of register storage, a 24-bit wide 
several independent actions. The number of different gate control adder, and a complete set of sequential control circuits. The 

Table 4 System/360 Channel Characteristics 

Model Model Model Model Model 
30 40 50 60162 70 

Selector channels 
Maximum number attachable 2 2 3 6 6 
Approximate maximum data rate on one channel in 250 400 800 1250 1250 

Kbypst (1250 on 
high speed) 

Uses CPU data paths for: 
iniation and termination Yes Yes Yes Yes 
byte transfers no no no no 
storage word transfers no low speed no no 

only 
chaining Yes Yes Yes no no 

CPU and 110overlap possible Yes Yes regu lar-yes Yes Yes 
high speed-no 

Multiplexor channels 
Maximum number attachable 1 1 1 0 0 
Minimum number of subchannels 32 16 64 
Maximum number of subchannels 96 128 256 
Maximum data rate in byte interleaved mode (Kbyps) 16 30 40 
Maximum data rate in burst mode (Kbyps) 200 200 200 
Uses CPU data paths for all functions ves ves Yes 
CPU and I10 overlap possible in byte mode 
CPU and I/O overlao oossible in burst mode 

yes 
ves 

tThousand bytes per second. 



Chapter 41 1 The Structure of sysTEM/360 715 

amount of hardware provided for other channels is somewhere in 
between these extremes. 

The disparity in the amount of channel hardware reflects the 
extent to which the channels share CPU hardware in accomplish- 
ing their functions. Such sharing is done at the expense of 
increased interference with the CPU, of course. This interference 
ranges from complete lock-out of CPU operations at high data 
rates on some of the smaller models, to interference only in 
essential references to main storage by the channel in the large 
models. 

ChannelEystern Rela tionship 

When the channels are viewed in their relationship to the whole 
system, the three factors of speed, size, and simultaneity take on a 
different aspect. The channel is viewed as a system component, 
and its effect on system throughput and other system capabilities 
is of concern. The speeds of the channels vary from a maximum 
rate of about 16 thousand bytes per second (byte interleaved 
mode) on the multiplexor channel of Model 30 to a maximum rate 
of about 1250 thousand bytes per second on the channels of 
Models 60, 62, and 70. The size of each of the channels is the 
same, in the sense that each handles an 8-bit byte at a time and 
each can connect to eight different control units. A slight size 
difference exists among multiplexor channels in terms of the 
maximum number of subchannels. 

The degree of channel simultaneity differs considerably among 
the various models of SYSTEM/360. For example, operation of the 
Model 30 or 40 multiplexor channels in burst mode inhibits all 
other activity on the system, as does operation of the special 
high-speed channel on Model 50. At the other extreme, as many 
as six selector channels can be operating concurrently with the 
CPU on Models 60, 62, or 70. A second type of simultaneity 
is present in the multiplexor channels available on Models 30, 
40, and 50. When operating in byte interleaved mode, one of 
these channels can control a number of concurrently operat- 
ing inpudoutput devices, and the CPU can also continue 
operation. 

Differences in Application Emphasis 

The models of SYSTEbd360 differ not only in throughput but also in 
the relative speeds of the various operations. Some of these 
relative differences are simply a result of the design choices 
described in this paper, made to achieve the desired overall 
performance. The more basic differences in relative performance 
of the various operations, however, were intentional. These 
differences in emphasis suit each model to those applications 
expected to comprise its largest usage. 

Thus the smallest system is particularly aimed at traditional 
commercial data processing applications. These are characterized 
by extensive inputloutput operations in relation to the internal 
processing, and by more character handling than arithmetic. The 
fast selector channels and character-oriented data paths of Model 
30 result from this emphasis. But despite this emphasis, the 
general-purpose instruction set of SYSTEM/360 results in much 
better scientific application performance for Model 30 than for its 
comparable predecessors. 

On the other hand, the large systems are expected to find 
particularly heavy use in scientific computation, where the 
emphasis is on rapid floating-point arithmetic. Thus Models 60, 
62, and 70 contain registers and adders that can handle the full 
length of a long format floating-point operand, yet do character 
operations one byte at a time. 

No particular emphasis on either commercial or scientific 
applications characterizes the intermediate models. However, 
Models 40 and 50 are intended to be particularly suitable for 
communication-oriented and real-time applications. For example, 
Model 50 includes a multiplexor channel, storage protection, and 
a timer as standard features, and also provides the ability to share 
main storages between two CPU’s in a multiprocessing arrange- 
ment. 

References 

Peacock [n.d.]. 



Chapter 42 

VAX-11 R80-A Virtual Address 
Extension to the DEC PDP-11 Family' 

W. D. Strecker 

Introduction 

Large Virtual Address Space Minicomputers 

Perhaps the most useful definition of a minicomputer' system is 
based on price: depending on one's perspective such systems are 
typically found in the $20K to $200K range. The twin forces of 
market pull-as customers build increasingly complex systems on 
minicomputers-and technology push-as the semiconductor 
industry provides increasingly lower cost logic and memory 
elements-have induced minicomputer manufacturers to produce 
systems of considerable performance and memory capacity. Such 
systems are typified by the DEC PDP-11/70. From an architectur- 
al point of view, the characteristic which most distinguishes many 
of these systems from larger mainframe computers is the size of 
the virtual address space: the immediately available address space 
seen by an individual process. For many purposes the 65K byte 
virtual address space typically provided on minicomputers (such 
as the PDP-11) has not been and probably will not continue to be a 
severe limitation. However, there are some applications whose 
programming is impractical in a 65K byte virtual address space, 
and perhaps most importantly, others whose programming is 
appreciably simplified by having a large virtual address space. 
Given the relative trends in hardware and software costs, the 
latter point alone will insure that large virtual address space 
minicomputers play an increasingly important role in minicom- 
puter product offerings. 

In principle, there is no great challenge in designing a large 
virtual address minicomputer system. For example, many of the 
large mainframe computers could serve as architectural models for 
such a system. The real challenge lies in two areas: 
compatibility-very tangible and important; and simplicity- 
intangible but nonetheless important. 

The first area is preserving the customer's and the computer 
manufacturer's investment in existing systems. This investment 
exists at many levels: basic hardware (principally busses and 
peripherals); systems and applications software; files and data 
bases; and personnel familiar with the programming, use, and 
operation of the systems. For example, just recently a major 
computer manufacturer abandoned a major effort for new comput- 

'AFIPS P ~ o c .NCC, 1978, pp. 967-980. 

er architectures in favor of evolving its current architectures 
[McLean, 19771. 

The second intangible area is the preservation of those attrib- 
utes (other than price) which make minicomputer systems attrac- 
tive. These include approachability, understandability, and ease 
of use. Preservation of these attributes suggests that simply 
modelling an extended virtual address minicomputer after a large 
mainframe computer is not wholly appropriate. It also suggests 
that during architectural design, tradeoffs must be made between 
more than just performance, functionality, and cost. Performance 
or functionality features which are so complex that they apprecia- 
bly compromise understanding or ease of use must be rejected as 
inappropriate for minicomputer systems. 

VAX-11 Overview 

VAX-11 is the Virtual Address extention of PDP-11 architecture 
[Bell et al., 1970; Bell and Strecker, 19761. The most distinctive 
feature of VAX-11 is the extension of the virtual address from 16 
bits as provided on the PDP-11 to 32 bits. With the 8-bit byte the 
basic addressable unit, the extension provides a virtual address 
space of about 4.3 gigabytes which, even given rapid improve- 
ment in memory technology, should be adequate far into the 
future. 

Since maximal PDP-11 compatibility was a strong goal, early 
VAX-11 design efforts focused on literally extending the PDP-11: 
preserving the existing instruction formats and instruction set and 
fitting the virtual address extension around them. The objective 
here was to permit, to the extent possible, the running of existing 
programs in the extended virtual address environment. While 
realizing this objective was possible (there were three distinct 
designs), it was felt that the extended architecture designs were 
overly compromised in the areas of efficiency, functionality, and 
programming ease. 

Consequently, it was decided to drop the constraint of the 
PDP-11 instruction format in designing the extended virtual 
address space or native mode of the VAX-11 architecture. Howev- 
er, in order to run existing PDP-I1 programs, VAX-11 includes a 
PDP-11 compatibility mode. Compatibility mode provides the 
basic PDP-11 instruction set less only privileged instructions 
(such as HALT) and floating point instructions (which are optional 
on most PDP-11 processors and not required by most PDP-11 
software). 

In addition to compatibility mode, a number of other features to 
preserve PDP-11 investment have been provided in the VAX-11 
architecture, the VAX-11 operating system 'VAXNMS, and the 
VAX-111780 implementation of the VAX-11 architecture. These 
features include: 

1 	 The equivalent native mode data types and formats are 
identical to those on the PDP-11. Also, while extended, the 
VAX-11 native mode instruction set and addressing modes 

716 



Chapter 42 1 VAX-lli780-A Virtual Address Extension to the DEC PDP-11 Family 717 

are very close to those on the PDP-11. As a consequence 
VAX-11 native mode assembly language programming is 
quite similar to PDP-11 assembly language programming. 
The VAX-11/780 uses the same peripheral busses (Unibus 
and Massbus) as the PDP-11 and uses the same peripher- 
als. 

The 1”AXNMS operating system is an evolution of the 
PDP-11 RSX-11M and IAS operating systems, offers a 
similar although extended set of system services, and uses 
the same command languages. Additionally, V M M S  
supports most of the RSX-llM/IAS system service requests 
issued by programs executing in compatibility mode. 

The VAXJVbIS file system is the same as used on the 
RSX-llM/IAS operating systems permitting interchange of 
files and volumes. The file access methods as implemented 
by the RMS record manager are also the same. 

VAX-11 high level language compilers accept the same 
source languages as the equivalent PDP-11 compilers and 
execution of compiled programs gives the same results. 

The coverage of all these aspects of VAX-11 is well beyond the 
scope of any single paper. The remainder of this paper discusses 
the design of the VAX-11 native mode architecture and gives an 
overview of the VAX-11/780 system. 

VAX-11 Native Architecture 

Processor State 
Like the PDP-11, VAX-11 is organized around a general register 
processor state. This organization was favored because access to 
operands stored in general registers is fast (since the registers are 
internal to the processor and register accesses do not need to pass 
through a memory management mechanism) and because only a 
small number of bits in an instruction are needed to designate a 
register. Perhaps most importantly, the registers are used (as on 
the PDP-11) in conjunction with a large set of addressing modes 
which permit unusually flexible operand addressing methods. 

Some consideration was given to a pure stack based architec- 
ture. However it was rejected because real program data suggests 
the superiority of two or three operand instruction formats 
[Myers, 1977bI. Actually VAX-11 is quite stack oriented, and 
although it is not optimally encoded for the purpose, can easily be 
used as a pure stack architecture if desired. 

VAX-11 has 16 32-bit general registers (denoted RO-R15) which 
are used for both fixed and floating point operands. This is in 
contrast to the PDP-11 which has eight 16-bit general registers 
and six 64-bit floating point registers. The merged set of fixed and 
floating registers were preferred because it simplifies program- 
ming and permits a more effective allocation of the registers. 

Four of the registers are assigned special meaning in the VAX-11 
architecture: 

R15 is the program counter (PC) which contains the 
address of the next byte to be interpreted in the instruction 
stream. 
R14 is the stack pointer (SP) which contains the address of 
the top of the processor defined stack used for procedure 
and interrupt linkage. 

R13 is the frame pointer (FP). The VAX-11 procedure 
calling convention builds a data structure on the stack 
called a stack frame. FP contains the address of this 
structure. 

R12 is the argument pointer (AP). The VAX-11 procedure 
calling convention uses a data structure called an argument 
list. AP contains the address of this structure. 

The remaining element of the user visible processor state 
(additional processor state seen mainly by privileged procedures is 
discussed later) is the 16-bit processor status word (PSW). The 
PSW contains the N, Z, V, and C condition codes which indicate 
respectively whether a previous instruction had a negative result, 
a zero result, a result which overflowed, or a result which 
produced a carry (or borrow). Also in the PSW are the IV, DV, 
and FU bits which enable processor trapping on integer overflow, 
decimal overflow, and floating underflow conditions respectively. 
(The trapping on conditions of floating overflow and divide by zero 
for any data type are always enabled.) 

Finally, the PSW contains the T bit which when set forces a trap 
at the end of each instruction. This trap is useful for program 
debugging and analysis purposes. 

Data Types and Formats 
The VAX-11 data types are a superset of the PDP-11 data types. 
Where the PDP-11 and VAX-11 have equivalent data types the 
formats (representation in memory) are identical. Data type and 
data format identity is one of the most compelling forms of 
compatibility. It permits free interchange of binary data between 
PDP-11 and VAX-11 programs. It facilitates source level compati- 
bility between equivalent PDP-11 and VAX-11 languages. It also 
greatly facilitiates hardware implementation of and software 
support of the PDP-11 compatibility mode in the VAX-11 
architecture. 

The VAX-11 data types divide into five classes: 

1 	 Integer data types are the 8-bit byte, the 16-bit word, the 
%bit longword, and the 64-bit quadword. Usually these 
data types are considered signed with negative values 
represented in two’s complement form. However, for most 
purposes they can be interpreted as unsigned and the 



718 Part 3 j Computer Classes 	 Section 4 I Maxicomputers 

VAX-11 instruction set provides support for this interpreta- 
tion. 

2 	 Floating data types are the 32-bit floating and the 64-bit 
double floating. These data types are binary normalized, 
have an 8-bit signed exponent, and have a 25- or 57-bit 
signed fraction with the redundant most significant fraction 
bit not represented. 

3 	 The cariable bit field data type is 0 to 32 bits located 
arbitrarily with respect to addressable byte boundaries. A 
bit field is specified by three operands: the address of a 
byte, the starting bit position P with respect to bit 0 of that 
byte, and the size S of the field. The \’M-llinstruction set 
provides for interpreting the field as signed or unsigned. 

4 The character string data type is 0 to 65535 contiguous 
bytes. It is specified by two operands: the length and 
starting address of the string. Although the data type is 
named “character string,” no special interpretation is 
placed on the values of the bytes in the character string. 

5 	 The decirnal string data types are 0 to 31 digits. They are 
specified by two operands: a length (in digits) and a starting 
address. The primary data type is packed decimal with two 
digits stored in each byte except that the byte containing 
the least significant digit contains a single digit and the 
sign. Two ASCII character decimal types are supported: 
leading separate sign and trailing embedded sign. The 
leading separate type is a “+,” “- ,” or “<blank>” 
(equivalent to “+”) ASCII character followed by 0 to 31 
ASCII decimal digit characters. A trailing embedded sign 
decimal string is 0 to 31 bytes which are ASCII decimal 
digit characters except for the character containing least 

Table 1 Data Types 

Data time Size Ranee (decimal) 

significant digit which is an arbitrary encoding of the digit 
and sign. 

All of the data types except field may be stored on arbitrary byte 
boundaries-there are no alignment constraints. The field data 
type, of course, can start on an arbitrary bit boundary. 

Attributes of and symbolic representations for most of the data 
types are given in Table 1and Fig. 1. 

Instruction Format and Address Modes 

Most architectures provide a small number of relatively fixed 
instruction formats. Two problems often result. First, not all 
operands of an instruction have the same specification generality. 
For example, one operand must come from memory and another 
from a register; or one must come from the stack and another from 
memory. Second, only a limited number of operands can be 
accommodated: typically one or two. For instructions which 
inherently require more operands (such as field or string instruc- 
tions), the additional operands are specified in ad hoc ways: small 
literal fields in instructions, specific registers or stack positions, or 
packed in fields of a single operand. Both these problems lead to 
increased programming complexity: they require superfluous 
move type instructions to get operands to places where they can 
be used and increase competition for potentially scarce resources 
such as registers. 

To avoid these problems two criteria were used in the design of 
the VAX-11 instruction format: (1)all instructions should have the 
“natural” number of operands and (2) all operands should have the 
same generality in specification. These criteria led to a highly 

Integer Signed Unsigned 

Byte 8 bits -128 to +127 0 to 255 
Word 16 bits -32768 to +32767 0 to 65535 
Longword 32 bits -237 to +237-1 o to 232-1 
Quadword 64 bits -263 to +263-1 o to 264-1 

Floating point k2.9 x 10-3 to1.7 x 1038 

Floating 32 bits approximately seven decimal 
digits precision 

Double Floating 64 bits approximately sixteen decimal 
digits precision 

Packed decimal 0 to 16 bytes numeric, two digits per byte 
string (31 digits) sign in low half of last byte 

Character string 0 to 65535 bytes one character per byte 
~~ 

Varaible-length 0 to 32 bits dependent on interpretation 
bit field 



Chapter 42 I VAX-llP80-A Virtual Address Extension to the DEC PDP-11 Family 719 

Autoincrement mode in which the contents of the designat- 

ed register are first used as the address of the operand and 

are then incremented by the size of the operand. Note that 


LONGWOR D if the designated register is PC, the operand is located in 

31 	 0

]:A 	 the instruction stream. This use of autoincrement mode is 
called immediate mode. In immediate mode the one to QUADWORD 

31 0 eight bytes of data are the specifier extension. 

Autoincrement mode can be used sequentially to process 


a vector in one direction and autodecrement mode used to 
DOUBLE FLOATING process a vector in the opposite direction. Autoincrement, 
15 7 6  0 register deferred, and autodecrement modes can be ap- 
S( EXPONENT [ FRACTION plied to a single register to implement a stack data 

FRACTION structure: autodecrement to “push,” autoincrement toFRACTION 
FRACTION 	 “pop,” and register deferred to access the top of the stack. 

PACKED DECIMAL STRING I+1231 61 	 48 Autoincrement deferred mode in which the contents of the CHARACTER STRING ( X Y Z )  designated register are used as the address of a longword in 

memory which contains the address of the operand. After 


:A+  1 this use, the contents of the register are incremented by 

LENGTH -231 <P <231 - 1 o <SG32 

:A + 2 four (the size in bytes of the longword address). Note that if 

BITFIELD P + S  P+S-I P P-I 0 PC is the designated register, the absolute address of the 


VARIABLE-

1L
I I 	 J :A  operand is located in the instruction stream. This use of 
A=ADD R ESS s - 1  0 

I 	 autoincrement deferred mode is termed absolute mode. In 
absolute mode the 4-byte address is the specifier extension. 

Fig. 1. Data formats. 
Displacement mode in which a displacement is added to the 
contents of the designated register to form the operand 

variable instruction format. An instruction consists ofa one or two’ address. There are three displacement modes depending 
byte opcode followed by the specifications for n operands (n 2 0) on whether a signed byte, word, or longword displacement 
where n is an implicit property of the opcode. An operand is the specifier extension. These modes are termed byte, 

word, and longword displacement respectively. Note that if specification is one to 10 bytes in length and consists of a one or PC is the designated register, the operand is located two byte operand spec$er followed by (as required) zero to eight relative to PC. For this use the modes are termed byte, 
bytes of specifier extension. The operand specifier includes the word, and longword relative mode respectively. 
address mode and designation of any registers needed to locate 
the operand. A specifier extension consists of a displacement, an Displacement deferred mode in which a displacement is 
address, or immediate data. 	 added to the designated register to form the address of a 

longword containing the address of the operand. There are The V U - 1 1  address modes are with one exception a superset of three displacement deferred modes depending on whether 
the PDP-11 address modes. The PDP-11 address mode auto- a signed byte, word, or longword displacement is the 
decrement deferred was omitted from VAX-11 because it was specifier extension. These modes are termed byte, word, 
rarely used. and longword displacement respectively. Note that if PC is 

Most operand specifiers are one byte long and contain two 4-bit the designated register, the operand address is located 
fields: the high order field (bits 7 4  contains the address mode relative to PC. For this use the modes are termed byte, 
designator and the lower field (bits 3:O)contains a general register word, and longword relative deferred mode respectively. 
designator. The address modes include: Literal mode in which the operand specifier itself contains a 

6-bit literal which is the operand. For integer data types the 
1 Register mode in which the designated register contains the literal encodes the values 0-63; for floating data types the 

operand. literal includes three exponent and three fraction bits to 
2 	 Register deferred mode in which the designated register give 64 common values. 

contains the address of the operand. Index mode which is not really a mode but rather a one byte 
3 	 Autodecrement mode in which the contents of the designat- prefix operator for any other mode which evaluates to a 

ed register are first decremented by the size (in bytes) of memory address (i.e., all modes except register and literal). 
the operand and then used as-the address of the operand. The index mode prefix is cascaded with the operand 

specifier for that mode (called the base operand specifier) to 
‘No currently defined instructions use two byte opcodes. form an aggregate two byte operand specifier. The base 



720 Part 3 1 Computer classes 

operand specifier is used in the normal way to evaluate a 
base address. A copy of the contents of the register 
designated in the index prefix is multiplied by the size (in 
bytes) of the operand and added to the base address. The 
sum is the final operand address. There are three advantag-
es to the VAX-11form of indexing: (a)the index is scaled by 
the data size and thus the index register maintains a logical 
rather than a byte offset into an indexed data structure, (b) 
indexing can be applied to any of the address modes which 
generate memory addresses and this results in a compre-
hensive set of indexed addressing methods, and (c) the 
space required to specify indexing and the index register is 
paid only when indexing is used. 

The VAX-11 assembler syntax for the address modes is given in 
Fig. 2.  The bracketed ((1) notation is optional and the programmer 
rarely needs to be concerned with displacement sizes or whether 
to choose literal or immediate mode. The programmer writes the 
simple form and assembler chooses the address mode which 
produces the shortest instruction length. 

In order to give a better feeling for the instruction format and 
assembler notation, several examples are given in Figs. 3 to 5. In 
Fig. 3 is an instruction which moves a word from an address which 
is 56 plus the contents of R5 to an address which is 270 plus the 
contents of RG. Note, that the displacement 56 is representable in 
a byte while the displacement 270 requires a word. The instruc-
tion occupies 6 bytes. In Fig. 4 is an instruction which adds 1 to a 
longword in RO and stores the result at a memory address which is 
the sum of A and 4 times the contents of R. This instruction 
occupies 9 bytes. Finally, in Fig. 5 is a return from subroutine 
instruction. It has no explicit operands and occupies a single byte. 

The only significant instance where there is non-general 
specification of operands is in the specification of targets for 

Autodeci emcril -WI 
Auloiricrernent (Rn) ' 
Automcrernrril Delerrrc! Q (Ro) t Indexed 

n = 0 ttirougti 15 !x = 0 through 14 

Fig. 2.Assembler syntax. 

Section 4 I Maxicomputers 

- 270 -idisplacement 

Fig. 3. MOVW 56 (R5), 270 (R7). 

7 0 


I93 ADOL3 opcode 

literal mode 

0 I constant 1
, 

I
I 

II register mode 55 1 00 1 register 0 

index prefix
44 1 22 1 register 2I 


autoincrement mode 
99 I 1 155 1 register 15  (absolute)c 


{ address A 

i 

Fig. 4. ADDL3 #I,RO, @ #A [R2]. 

I 1 

Fig. 5.RSB. 



Chapter 42 I VAX-IIn80-A Virtual Address Extension to the DEC PDP-11 Family 721 

branch instructions. Since invariably the target of a branch 
instruction is a small displacement from the current PC, most 
branch instructions simply take a one byte PC relative displace- 
ment. This is exactly as if byte displacement mode were used with 
the PC used as the register, except that the operand specifier byte 
is not needed. Because of the pervasiveness of branch instructions 
in code, this one byte saving results in a non-trivial reduction in 
code size. An example of the branch instruction branch on equal is 
given in Fig. 6. 

Instruction Set 

A major goal of the VAX-11 instruction set design was to provide 
for effective compiler generated code. Four decisions helped to 
realize this goal: 

1 	A very regular and consistent treatment of operators. Thus, 
for example, since there is a divide longword instruction, 
there are also divide word and divide byte instructions. 

2 	 An avoidance of instructions unlikely to be generated by a 
compiler. 

3 	 Inclusion of several forms of common operators. For 
example the integer add instructions are included in three 
forms: (a) one operand where the value one is added to an 
operand, (b) two operands where one operand is added to a 
second, and (c) three operands where one operand is added 
to a second and the result stored in a third. Since the 
K4X-11 instruction format allows fully general specifica- 
tions of the operands, VAX-11 programs often have the 
structure (though not the encoding) of the canonic program 
form proposed in Flynn [19-77]. 

4 	Replacement of common instruction sequences with single 
instructions. Examples of this include procedure calling, 
multiway branching, loop control, and array subscript 
calculation. 

The effect of these decisions is reflected in several observations. 
First, despite the larger virtual address and instruction set 
support for more data types, compiler (and hand) generated code 
for VAX-11 is typically smaller than the equivalent PDP-11 code 
for algorithms operating on data types supported by the PDP-11. 
Second, of the 243 instructions in the instruction set about 75 

Fig. 6. BEQL A. 

percent are generated by the VAX-11 FORTRAN compiler. Of the 
instructions not generated, most operate on data types not part of 
the FORTRAN language. 

A complete list of the VAX-11 instructions is given in Appendix 
1. The following gives an overview of the instruction set. 

1 	 Integer logic and arithmetic-Byte, word, and longword 
are the primary data types. A fairly conventional group of 
arithmetic and logical instructions is provided. The result 
generating dyadic arithmetic and logical instructions are 
provided in two and three operand forms. A number of 
optimizations are included: clear which is a move of zero; 
test which is a compare against zero; and increment and 
decrement which are an optimization of add one and 
subtract one respectively. A complete set of converts is 
provided which covers both the integer and the floating 
data types. In contrast to other architectures only a few 
shift type instructions are provided: it was felt that shifts are 
mostly used for field isolation which is much more conve- 
niently done with the field instructions described later. In 
order to support greater than longword precision integer 
operations, a few special instructions are provided: extend- 
ed multiply and divide and add with carry and subtract with 
carry. 

2 	 Floating point instructions-Again a conventional group of 
instructions are included with result producing dyadic 
operators in two and three operand forms. Several special- 
ized floating point instructions are included. The extended 
modulus instruction multiplies two floating operands to- 
gether and stores the integer and fraction parts of the 
product in separate result operands. The polynomial 
instruction computes a polynomial from a table of coeffi- 
cients in memory. Both these instructions employ greater 
than normal precision and are useful in high accuracy 
mathematical routines. A convert rounded instruction is 
provided which implements the ALGOL rather than 
FORTRAN conventions for converting from floating point 
to integer. 

3 	 Address instructions-The move address instructions store 
in the result operand the effective address of the source 
operand. The push address optimizations push on the stack 
(defined by SP)the effective address of the source operand. 
The latter are used extensively in subroutine calling. 

4 	 Field instructions-The extract field instructions extract a 0 
to 32-bit field, sign- or zero-extend it if it is less than 32 
bits, and store it in a longword operand. The compare field 
instructions compare a (sign- or zero-extended if necessary) 
field against a longword operand. The find first instructions 
find the first occurrence of a set or clear bit in a field. 

5 	 Control instructions-There is a complete set of condition- 
al branches supporting both a signed and, where appropri- 
ate, an unsigned interpretation of the various data types. 
These branches test the condition codes and take a one byte 



722 Part 3 1 Computer Classes Section 4 1 Maxicomputers 

PC relative branch displacement. There are three uncondi- 
tional branch instructions: the first taking a one byte PC 
relative displacement, the second taking a word PC relative 
displacement, and the third-called jumptak ing  a gener- 
al operand specification. Paralleling these three instruc- 
tions are three branch to subroutine instructions. These 
push the current PC on the stack before transferring 
control. The single byte return from subroutine instruction 
returns from subroutines called by these instructions. 
There is a set of branch on bit instructions which branch on 
the state of a single bit and, depending on the instruction, 
set, clear, or leave unchanged that bit. 

The add compare and branch instructions are used for 
loop control. A step operand is added to the loop control 
operand and the sum compared against a limit operand. 
The result of the comparison determines whether the 
branch is taken. The sense of the comparison is based on 
the sign of the step operand. Optimizations of loop control 
include the add one and branch instructions which assume 
a step of one and the subtract one and branch instructions 
which assume a step of minus one and a limit of zero. 

The case instructions implement the computed go to in 
FORTRAN and case statements in other languages. A 
selector operand is checked to see that it lies in range and is 
then used to select one of table of PC relative branch 
displacements following the instruction. 

Queue instructions-The queue representation is a doubly 
linked circular list. Instructions are provided to insert an 
item into a queue or to remove an item from a queue. 

Character string instructions-The general move character 
instruction takes five operands specifying the lengths and 
starting addresses of the source and destination strings and 
a fill character to be used if the source string is shorter than 
the destination string. The instruction functions correctly 
regardless of string overlap. An optimized move character 
instruction assumes the string lengths are equal and takes 
three operands. Paralleling the move instructions are two 
compare character instructions. The move translated char- 
acters instruction is similar to the general move character 
instruction except that the source string bytes are translat- 
ed by a translation table specified by the instruction before 
being moved to destination string. The move translated 
until escape instruction stops if the result of a translation 
matches the escape character specified by one of its 
operands. The locate and skip character instructions find 
respectively the first occurrence or non-occurrence of a 
character in a string. The scan and span instructions find 
respectively the first occurrence or non-occurrence of a 
character within a specified character set in a string. The 
match characters instruction finds the first occurrence of a 
substring within a string which matches a specified pattern 
string. 
Packed decimal instructions-A conventional set of arith- 
metic instructions is provided. The arithmetic shift and 

round instruction provides decimal point scaling and 
rounding. Converts are provided to and from longword 
integers, leading separate decimal strings, and trailing 
embedded decimal strings. A comprehensive edit instruc- 
tion is included. 

VAX-11 Procedure Instructions 

A major goal of the VAX-11 design was to have a single system 
wide procedure calling convention which would apply to all 
inter-module calls in the various languages, calls for operating 
system services, and calls to the common run time system. Three 
VAX-11 instructions support this convention: two call instructions 
which are indistinguishable as far as the called procedure is 
concerned and a return instruction. 

The call instructions assume that the first word of a procedure is 
an entry mask which specifies which registers are to be used by 
the procedure and thus need to be saved. (Actually only RO-R11 
are controlled by the entry mask and bits 15:12 of the mask are 
reserved for other purposes.) After pushing the registers to be 
saved on the stack, the call instruction pushes AP, FP, PC, a 
longword containing the PSW and the entry mask, and a zero 
valued longword which is the initial value of a condition handler 
address. The call instruction then loads FP with the contents of SP 
and AP with the argument list address. The appearance of the 
stack frame after the call is shown in the upper part of Fig. 7. 

The form of the argument Iist is shown in the lower part of Fig. 
7 .  It consists of an argument count and list of longword arguments 
which are typically addresses. The CALLG instruction takes two 
operands: one specifying the procedure address and the other 
specifying the address of the argument list assumed arbitrarily 
located in memory. The CALLS instruction also takes two 
operands: one the procedure address and the other an argument 
count. CALLS assumes that the arguments have been pushed on 
the stack and pushes the argument count immediately prior to 
saving the registers controlled by the entry mask. It also sets bit 
13 of the saved entry mask to indicate a CALLS instruction was 
used to make the call. 

The return instruction uses FP to locate the stack frame. It 
loads SP with the contents of FP and restores PSW through PC by 
popping the stack. The saved entry mask controls the popping and 
restoring of R11 through RO. Finally if the bit indicating CALLS 
was set, the argument list is removed from the stack. 

Memory Management Design Alternatives 
Memory management comprises the mechanisms used (1)to map 
the virtual addresses generated by processes to physical memory 
addresses, (2)to control access to memory (i.e., to controlwhether 
a process has read, write, or no access to various areas of memory), 
and (3)to allow a process to execute even if all of its virtual address 
space is not simultaneously mapped to physical memory (i.e., to 



Chapter 42 I VAX-lli780-A Virtual Address Extension to the DEC PDP-I1 Family 723 

modes which would be used quite generally. Although it 
differed in a number of ways, the design was motivated by 
the Multics [Organick, 1972; Schroeder and Saltzer, 19711 

CONDITION HANDLER FPr--
I 

REG I STERI IMASK psw 

I OLD AP 

I
I 

OLD FP 

RETURN PC 

I OLD RO...Rll 

+--OLD SP 

#ARGS c--AP 

ARG 1 

Fig.7. Stack frame. 

provide so called virtual memory facilities). The memory manage- 
ment proved to be the most difficult part of the architecture to 
design. Three alternatives were pursued and full designs were 
completed for the first two alternatives and nearly completed for 
the third. The three alternatives' were: 

1 	 A paged form of memory management with access control 
at the page level and a small number (4) of hierarchical 
access modes whose use would be dedicated to specific 
purposes. This represented an evolution of the PDP-llI70 
memory management. 

2 	 A paged and segmented form with access control at the 
segment level and a larger number (8)of hierarchical access 

'It should not be construed that memory management is independent of 
the rest of the architecture. The various memory management alternatives 
required different definitions of the addressing modes and different 
instruction level support for addressing. 

architecture and the Woneywell 6180 implementation. 

3 	 A capabilities [Needham, 1972; Needham and Walker, 
19771 form with access control provided by the capabilities 
and the ability to page larger objects described by the 
capabilities. 

The first alternative was finally selected. The second alternative 
was rejected because it was felt that the real increase in 
functionality provided inadequately offset the increased architec- 
tural complexity. The third alternative appeared to offer function- 
ality advantages that could be useful over the longer term. 
However, it was unlikely that these advantages could be exploited 
in the near term. Further it appeared that the complexity of the 
capabilities design was inappropriate for a minicomputer system. 

Memory Mapping 

The 4.3 gigabyte virtual address space is divided into four regions 
as shown in Fig. 8. The first two regions-the program and 
control regions-comprise the per process virtual address space 
which is uniquely mapped for each process. The second two 
regions-the system region and a region reserved for future 
use-comprise the system virtual address space which is singly 
mapped for all processes. 

Each of the regions serves different purposes. The program 
region contains user programs and data and the top of the region is 
a dynamic memory allocation point. The control region contains 
operating system data structures specific to the process and the 
user stack. The system region contains procedures which are 
common to all processes (such as those that comprise the 
operating system and RMS) and (as will be seen later) page tables. 

A virtual address has the structure shown in the upper part of 
Fig. 9. Bits 8:O specify a byte within a 512 byte page which is the 

PER-PROCESS SPACE 
(ONE FOR EACH 
EXECUTABLE P((OCESS1 

- 3 G B  kzdZiZ:M 
RESERVED FOR 

'FUTURE EXPANSION 

- 4 G B  

Fig. 8. Virtual address space. 



724 Part 3 1 Computer Classes 	 Section 4 1 Maxicomputers 

VIRIUAL ADDRESS 	 executive, supervisor and user. The use of these modes by 
31 30 ?P 	 V R 0I I
-VlklUAL PAGE NUMBER BYTE WITHIN PAGE-

0 0 
0 I 
I 0 
I 1 

P(IOC*RAM R~GICIN 
CONIROL M G i C N  
S V S l E M  REGION 
RESERVEC 

PHYSICAL AOOUESS 

i i\’ 
31 M?9?8 

I l l 1  

V R

1
I 

0 

I 
-AGE FRAMt NUMBER - - w r E  WIIHIN PAGE-

0 0 
0 0  

Fig. 9. Virtual and physical addresses. 

basic unit of mapping. Bits 29:9 specify a virtual page number 
(VPN). Bits 31:30 select the virtual address region. The mecha- 
nism of mapping consists of using the region select bits to select a 
page table which consists of page table entries (PTEs). After a 
check that it is not too large, the VPN is used to index into the 
page table to select a PTE. The PTE contains either (1)21-bit 
physical page frame number which is concatenated with the nine 
low order byte in page bits to form a 30-bit physical address shown 
in the lower part of Fig. 9, or (2)an indication that the virtual page 
accessed is not in physical memory. The latter case is called a page 
fault. Instruction execution in the current procedure is suspended 
and control is transferred to an operating system procedure which 
will cause the missing virtual page to be brought into physical 
memory. At this point instruction execution in the suspended 
procedure can resume transparently. 

The page table for the system region is defined by the system 
base register which contains the physical address of the start of the 
system region page table and the system length register which 
contains the length of the table. Thus the system page table is 
contiguous in physical memory. 

The per process space page tables are defined similarly by the 
program and control region base registers and length registers. 
However, the base registers do not contain physical addresses: 
rather, they contain system region virtual addresses. Thus the per 
process page tables are contiguous in the system region virtual 
address space and are not necessarily contiguous in physical 
memory. This placement of the per process page tables permits 
them to be paged and avoids what would otherwise be a serious 
physical memory allocation problem. 

Access Control 

At a given point in time a process executes in one of four access 
modes. The modes from most privileged to least are called kernel, 

VAXNMS is as follows: 

1 	Kernel-Interrupt and exception handling, scheduling, 
paging, physical IIO, etc. 

2 	 Executive-Logical I10 as provided by RMS. 

3 	 Supervisor-The command interpreter. 

4 	 User-User procedures and data. 

The accessibility of each page (read, write, or no access) from 
each access mode is specified in the PTE for that page. Any 
attempt to improperly access a page is suppressed and control is 
transferred to an operating system procedure. The accessibility is 
assumed hierarchically ordered: if a page is writable from any 
given mode, it is also readable; and if a page is accessible from a 
less privileged mode, it is accessible from a more privileged 
mode. Thus, for example, a page can be readable and writable 
from kernel mode, only readable from executive mode, and 
inaccessible from supervisor and user modes. 

A procedure executing in a less privileged mode often needs to 
call a procedure which executes in a more privileged mode: e.g., a 
user program needs an operating system service performed. The 
access mode is changed to a more privileged mode by executing a 
change mode instruction which transfers control to a routine 
executing at the new access mode. A return is made to original 
access mode by executing a return from exception or interrupt 
instruction (REI). 

The current access mode is stored in the processor status 
Zongword (PSL) whose low order 16 bits comprise the PSW. Also 
stored in the PSL is the previous access mode; i.e., the access 
mode from which the current access mode was called. The 
previous mode information is used by the special probe instruc- 
tions which validate arguments passed in cross access mode calls. 

Procedures running at each of the access modes require a 
separate stack with appropriate accessibility. To facilitate this, 
each process has four copies of SP which are selected according to 
the current access mode field in the PSL. A procedure always 
accesses the correct stack by using R14. 

In an earlier section, it was stated that the VAX-11 standard 
CALL instruction is used for all calls including those for operating 
system services. Indeed procedures do call the operating system 
using the CALL instruction. The target of the CALL instruction is 
the minimal procedure consisting of an entry mask, a change 
mode instruction, and a return instruction. This access mode 
changing is transparent to the calling procedure. 

Interrupts and Exceptions 

Interrupts and exceptions are forced changes in control flow other 
than that explicitly indicated by the executing program. The 



Chapter 42 I VAX-lli780-A Virtual Address Extension to the DEC PDP-11 Family 725 

distinction between them is that interrupts are normally unrelat- 
ed to the currently executing program while exceptions are a 
direct consequence of program execution. Examples of interrupt 
conditions are status changes in I/O devices while examples of 
exception conditions are arithmetic overflow or a memory man- 
agement access control violation. 

VAX-11 provides a 31 priority level interrupt system. Sixteen 
levels (16-31) are provided for hardware while 15levels (1-15)are 
provided for software. (Level 0 is used for normal program 
execution.) The current interrupt priority level (IPL) is stored in a 
field in the PSL. When an interrupt request is made at a level 
higher than IPL, the current PC and PSL are pushed on the stack 
and new PC obtained from a vector selected by the interrupt 
requester (a new PSL is generated by the CPU). Interrupts are 
serviced by routines executing with kernel mode access control. 
Since interrupts are appropriately serviced in a system wide 
rather than a specific process context, the stack used for interrupts 
is defined by another stack pointer called the interrupt stack 
pointer. (Just as for the multiple stack pointers used in process 
context, an interrupt routine accesses the interrupt stack using 
R14.) An interrupt service is terminated by execution of an RE1 
instruction which loads PC and PSL from the top two longwords 
on the stack. 

Exceptions are handled like interrupts except for the following: 
(1)since exceptions arise in a specific process context, the kernel 
mode stack for that process is used to store PC and PSL and (2) 
additional parameters (such as the virtual address causing a page 
fault) may be pushed on the stack. 

Process Context Switching 
From the standpoint of the VAX-11 architecture, the process state 
or context consists of: 

1 	The 15 general registers RO-R13 and R15. 

2 	 Four copies of R14 (SP): one for each of kernel, executive, 
supervisor, and user access modes. 

3 	 The PSL. 

4 	 Two base and two limit registers for the program and 
control region page tables. 

This context is gathered together in a data structure called a 
process control block (PCB) which normally resides in memory. 
While a process is executing, the process context can be consid-
ered to reside in processor registers. To switch from one process 
to another it is required that the process context from the 
previously executing process be saved in its PCB in memory and 
the process context for the process about to be executed to be 
loaded from its PCB in memory. Two VAX-11 instructions support 
context switching. The save process context instruction saves the 

complete process context in memory while the load process 
context instruction loads the complete process context from 
memory. 

VO 
Much like the PDP-11, VAX-11 has no specific I/O instructions. 
Rather, I/O devices and device controllers are implemented with 
a set of registers which have addresses in the physical memory 
address space. The CPU controls I/O devices by writing these 
registers; the devices return status by writing these registers and 
the CPU subsequently reading them. The normal memory 
management mechanism controls access to I/O device registers 
and a process having a particular device's registers mapped into its 
address space can control that device using the regular instruction 
set. 

CompatibilityMode 

As mentioned in the VAX-11 overview, compatibility mode in the 
VAX-11 architecture provides the basic PDP-11 instruction set 
less privileged and floating point instructions. Compatibility mode 
is intended to support a user as opposed to an operating system 
environment. Normally a compatibility mode program is com- 
bined with a set of native mode procedures whose purpose is to 
map service requests from some particular PDP-11 operating 
system environment into VAXNMS services. 

In compatibility mode the 16-bit PDP-11 addresses are zero- 
extended to 32-bits where standard native mode mapping and 
access control apply. The eight 16-bit PDP-11 general registers 
overmap the native mode general registers RO-R6 and R15 and 
thus the PDP-11 processor state is contained wholly within the 
native mode processor state. 

Compatibility mode is entered by setting the compatibility 
mode bit in the PSL. Compatibility mode is left by executing a 
PDP-11 trap instruction (such as used to make operating service 
requests), and on interrupts and exceptions. 

VAX-1lP80 Implementation 

VAx-11/780 
The \'AX-11/780 computer system is the first implementation of 
the VAX-11 architecture. For instructions executed in compatibili- 
ty mode, the VAX-11/780 has a performance comparable to the 
PDP-11/70. For instructions executed in native mode, the -11/780 
has a performance in excess of the -11/70 and thus represents the 
new high end of the -11(LSI-11, PDP-11, VAX-11) fimily. 

A block diagram of the -11/780 system is given in Fig. 10. The 
system consists of a central processing unit (CPU), the console 
subsystem, the memory subsystem, and the I/O subsystem. The 



726 Part 3 1 Computer Classes 

Fig. 10. VAX-lli780 system. 

CPU and the memory and I10 subsystems are joined by a hign 
speed synchronous bus called the Synchronous Backplane lnter- 
connect (SBI). 

CPU 
The CPU is a microprogrammed processor which implements the 
native and compatibility mode instruction sets, the memory 
management, and the interrupt and exception mechanisms. The 
CPU has 32-bit main data paths and is built almost entirely of 
conventional Schottky TTL components. 

To reduce effective memory access time the CPU includes an 
8K byte write through cache or buffer memory. The cache 
organization is %way associative with an 8-byte block size. To 
reduce delays due to writes, the CPU includes a write buffer. The 
CPU issues the write to the buffer and the actual memory write 
takes place in parallel with other CPU activity. 

The CPU contains a 128 entry address translation buffer which 
is a cache of recent virtual to physical translations. The buffer is 
divided into two 64 entry sections: one for the per process regions 
and one for the system region. This division facilitates permitting 
the system region translations to remain unaffected by a process 
context switch. 

A fourth buffer in the CPU is the 8-byte instruction buffer. It 
serves two purposes. First, it decomposes the highly variable 
instruction format into its basic components and, second, it 
constantly fetches ahead to reduce delays in obtaining the 
instruction components. 

The CPU includes two standard clocks. The programmable 
real-time clock is used by the operating system for local timing 
purposes. The time-of-year clock with its own battery backup is 
the long term time references for the operating system. It is 

Section 4 I Maxicomputers 

automatically read on system startup to eliminate the need for 
manual entry of data and time. 

The CPU includes 12K bytes ofwritable diagnostic control store 
(WDCS) which is used for diagnostic purposes, implementation of 
certain instructions, and for future microcode changes. As an 
option for very sophisticated users, another 12K bytes of writable 
control store is available. 

A second option is the floating point accelerator (FPA). Al-
though the basic CPU implements the full floating point instruc- 
tion set, the FPA provides high speed floating point hardware. It is 
logically invisible to programs and only affects their running time. 

Console Subsystem 

The console subsystem is centered around an LSI-11 computer 
with 16K bytes of RAM and 8K bytes of ROM (used to store the 
LSI-11 bootstrap, LSI-11 diagnostics, and console routines). Also 
included are a floppy disk, an interface to the console terminal, 
and a port for remote diagnostic purposes. 

The floppy disk in the console subsystem serves multiple 
purposes. It stores the main system bootstrap and diagnostics and 
serves as a medium for distribution of software updates. 

SBI 
The SBI is the primary control and data transfer path in the 
-111780 system. Because the cache and write buffer largely 
decouple the CPU performance from the memory access time, the 
SBI design was optimized for bandwidth and reliability rather 
than the lowest possible access time. 

The SBI is a synchronous bus with a cycle time of 200 nsec. The 
data path width of the SBI is 32 bits. During each 200 nsec cycle 
either 32 bits of data or a 30-bit physical address can be 
transferred. Since each 32-bit read or write requires transmission 
of both address and data, two SBI cycles are used for a complete 
transaction. The SBI protocol permits 64-bit reads or writes using 
one address cycle and two data transfer cycles: the CPU and I10 
subsystem use this mode whenever possible. For read transactions 
the bus is reacquired by the memory in order to send the data: 
thus the bus is not held during the memory access time. 

Arbitration of the SBI is distributed: each interface to the SBI 
has a specific priority and its own bus request line. When an 
interface wishes to use the bus, it asserts its bus request line. 
If at the end of a 200 nsec cycle there are no interfaces of 
higher priority requesting the bus, the interface takes control 
of the bus. 

Extensive checking is done on the SBI. Each transfer is parity 
checked and confirmed by the receiver. The arbitration process 
and general observance of the SBI protocol are checked by each 
SBI interface during each SBI cycle. The processor maintains a 



Chapter 42 VAX-111780-A Virtual Address Extension to the DEC PDP-11 Family 727~ 

running 16-cycle history of the SBI: any SBI error condition causes 
this history to be locked and preserved for diagnostic purposes. 

Memory Subsystem 

The memory subsystem consists of one or two memory controllers 
with up to 1M bytes ofmemory on each. The memory is organized 
in 64-bit quadwords with an 8-bit ECC which provides single bit 
error correction and double bit error detection. The memory is 
built of 4K MOS RAM components. 

The memory controllers have buffers which hold up to four 
memory requests. These buffers substantially increase the utiliza- 
tion of the SBI and memory by permitting the pipelining of 
multiple memory requests. If desired, quadword physical ad- 
dresses can be interleaved across the memory controllers. 

As an option, battery backup is available which preserves the 
contents of memory across short term power failures. 

VO Subsystem 

The IiO subsystem consists of buffered interfaces or adapters 
between the SBI and the two types of peripheral busses used on 
PDP-11 systems: the Unibus and the Massbus. One Unibus 
adapter and up to four Massbus adapters can be configured on a 
VAX-11/780 system. 

The Unibus is a medium speed multiplexor bus which is used as 
a primary memory as well as peripheral bus in many PDP-11 
systems. It has an 18-bit physical address space and supports byte 
and word transfers. In addition to implementing the Unibus 
protocol and transmitting interrupts to the CPU, the Unibus 
adapter provides two other functions. The first is mapping 18-bit 
Unibus addresses to 30-bit SBI physical addresses. This is 
accomplished in a manner substantially identical to the virtual to 
physical mapping implemented by the CPU. The Unibus address 
space is divided into 512 512-byte pages. Each Unibus page has a 
page table entry (residing in the Unibus adapter) which maps 
addresses in that page to physical memory addresses. In addition 
to providing address translation, the mapping permits contiguous 
transfers on the Unibus which cross page boundaries to be 
mapped to discontiguous physical memory page frames. 

The second function performed by the Unibus adapter is 
assembling 16-bit Unibus transfers (both reads and writes) into 
64-bit SBl transfers. This operation (which is applicable only to 
block transfers such as from disks) appreciably reduces SBI traffic 
due to Unibus operations. There are 158-byte buffers in the 
Unibus adapter permitting 15simultaneous buffered transactions. 
Additionally there is an un-buffered path through the Unibus 
adapter permitting an arbitrary number of simultaneous un-
buffered transfers. 

The Massbus is a high speed block bus used primarily for disks 

and tapes. The Massbus adapter provides much the same 
functionality as the Unibus adapter. The physical addresses into 
which transfers are made are defined by a page table: again this 
permits contiguous device transfers into discontiguous physical 
memory. 

Buffering is provided in the Massbus adapter which minimizes 
the probability of device overruns and assembles data into 64-bit 
units for transfer over the SBI. 

References 

Bell and Strecker [1976]; Bell et al. [1970]; Flynn [1977]; Levy and 
Eckhouse [19801; McLean [1977]; Myers [1977b]; Needham 
[19721; Needham and Walker [19771; Organick [19721; Schrocker 
and Saltzer [1971]. 

APPENDIX 1 VAX-11 INSTRUCTION SET 

Integer and Floating Point Logical Instructions 

MOV- Move(B,W, L, F,D,Q)t 

MNEG- Move Negated(B,W,L,F,D) 

MCOM- Move Complemented(B, W, L) 

MOVZ- Move Zero-Extended(BW,BL, WL) 

CLR- Clear(B, W, L= F,Q= D) 

CVT- Convert(B, W, L,F, D)(B,W,L,F,D) 

CVTR-L Convert Rounded(F, D) to Longword 

CMP- Compare(B,W, L, F, D) 

TST- Test(B, W, L, F,D) 

BIS-2 Bit Set(B, W,L)e-Operand 

BIS-3 Bit Set(B, W,L)3-Operand 

BIC-2 Bit Clear(B,W,L)2-Operand 

BIC-3 Bit Clear(B, W,L)3-Operand 

BIT- Bit Test( B,W, L) 

XOR-2 Exclusive OR(B,W, L)%Operand 

XOR-3 Exclusive OR(B,W,L)3-Operand 

ROTL Rotate Longword 

PUSHL Push Longword 


Integer and Floating Point Arithmetic Instructions 

INC- Increment(B,W,L) 

DEC- Decrement(B, W, L) 

ASH- Arithmetic Shift(L,Q) 

ADD-2 Add(B,W,L,F, D)Z-Operand 

ADD-3 Add(B,W,L,F, D)3-Operand 

ADWC Add with Carry 

ADAWI Add Aligned Word Interlocked 


t B  = byte, W = word, L = longword, F = floating, D = double floating, 
Q = quadword, S = set, C = clear. 



728 Part 3 1 Computer Classes Section 4 I Maxicomputers 

SUB-2 Subtract(B, W, L, F,D)e-Operand CMPV Compare Field 
SUB-3 Subtract(B, W, L, F,D)3-Operand CMPZV Compare Zero-Extended Field 

SBWC Subtract with Carry FFS Find First Set 

MUL-2 Multiply(B, W, L,F, D)2-Operand FFC Find First Clear 

MUL-3 Multiply(B,W, L, F,D)3-Operand 

EMUL Extended Multiply Branch on Bit Instructions 

DIV-2 Divide(B, W,L,F, D)2-Operand BLB- Branch on Low B(S,CI) 
DIV-3 Divide(B,W,L,F, D)3-Operand BB- Branch on Bit(S,Cl) 
E DIV Extended Divide BBS- Branch on Bit Set and(S,Cl)Bit EMOD- Extended Modulus(F, D) Branch on Bit Clear and(Set,Clear)Bit POLY- Polynomial Evaluation(F, D) BBC 

BBSSI Branch on Bit Set and Set Bit Interlocked 
BBCCI Branch on Bit Clear and Clear Bit Interlocked 

Index Instruction 

INDEX Compute Index Queue Instructions 

Packed Decimal Instructions INSQUE Insert Entry in Queue 

REMQUE Remove Entry from Queue 


MOVP Move Packed 

CMPP3 Compare Packed 3-Operand Address Manipulation Instructions 

ChlPP4 Compare Packed 4-Operand 
ASHP Arithmetic Shift Round and Packed MOVA- Move Address(B, W,L=F,Q= D) 
ADDP4 Add Packed 4-Operand PUSHA- Push Address(B,W,L=F,Q=D)on Stack 
ADDP6 Add Packed 6-Operand 

SUBP4 Subtract Packed 4-Operand Processor State Instructions 

SUBP6 Subtract Packed 6-Operand 

PUSHR Push Registers on Stack
MULP Multiply Packed 
POPR Pop Registers from Stack DIVP Divide Packed 

CVTLP Convert Long to Packed MOVPSL hIove from Processor Status Longword 
CVTPL Convert Packed to Long BISPSW Bit Set Processor Status Word 

CVTPT Convert Packed to Trailing BICPSW Bit Clear Processor Status Word 

CVTTP Convert Trailing to Packed 

C\TPS Convert Packed to Separate Unconditional Branch and Jump Instructions 

CVTSP Convert Separate to Packed 


Edit Packed to Character String 
BR- Branch with(B,W)Displacement 

EDITPC JMP Jump 

Character String Instructions Branch on Condition Code 
MO\’C3 Move Character %Operand BLSS Less Than 
MO\’C5 Move Character 5-Operand BLSSU Less Than Unsigned 
MOVTC Move Translated Characters 


(BCS) (Carry Set) MOVTUC Move Translated Unit Character BLEQ Less Than or Equal 
CMPC3 Compare Characters %Operand BLEQU Less Than or Equal Unsigned 
CMPC5 Compare Characters 5-Operand Equal
LOCC Locate Character BEQL 

SKPC Skip Character (BEQLU) (Equal Unsigned) 

SCANC Scan Characters BNEQ Not Equal 

SPANC Span Characters (BN EQU) (Not Equal Unsigned) 

MATCHC Match Characters BGTR Greater Than 
BGTRU Greater Than Unsigned 
BGEQ Greater Than or Equal 

Variable-Length Bit Field Instructions BGEQU Greater Than or Equal Unsigned 
EXTV Extract Field (BCC) (Carry Clear) 

EXTZV Extract Zero-Extended Field BVS Overflow Set 

INSV Insert Field BVC Overflow Clear 




Chapter 42 VAX-ll/780-A Virtual Address Extensionto the DEC PDP-11 Family 739 

Loop and Case Branch 

ACB- Add, Compare and Branch(B,W,L,F,D) 
AOBLEQ Add One and Branch Less Than or Equal 
AOBLSS Add One and Branch Less Than 
SOBGEQ Subtract One and Branch Greater Than or Equal 
SOBGTR Subtract One and Branch Greater Than 
CASE- Case on(B,W,L) 

Subroutine Call and Return Instructions 

BSB Branch to Subroutine with(B,W,) Displacement 
JSB Jump to Subroutine 
RS B Return from Subroutine 

Procedure Call and Return Instructions 
CALLG Call Procedure with General Argument List 
CALLS Call Procedure with Stack Argument List 
RET Return from Procedure 

Access Mode Instructions 

CHM 	 Change Mode to (Kernel, Executive, Supervisor, 
User) 

RE1 Return from Exception or Interrupt 
PROBER Probe Read 
PROBEW Probe Write 

Privileged Processor Register Control Instructions 

SVPCTX Save Process Context 
LDPCTX Load Process Context 
MTPR Move to Process Register 
MFPR Move from Processor Register 

Special Function Instructions 

C RC Cyclic Redundancy Check 

BPT Breakpoint Fault 

XFC Extended Function Call 

NOP No Operation 

HALT Halt 




Chapter 43 
Parallel Operation in the Control Data 
6600’ 

Jaines E. Thoriiton 

History 

In the summer of 1960, Control Data began a project which 
culminated October, 1964 in the delivery of the first 6600 
Computer. In 1960 it was apparent that brute force circuit 
performance and parallel operation were the two main approaches 
to any advanced computer. 

This paper presents some of the considerations having to do 
with the parallel operations in the 6600. A most important and 
fortunate event coincided with the beginning of the 6600 project. 
This was the appearance of the high-speed silicon transistor, 
which survived early difficulties to become the basis for a nice 
jump in circuit performance. 

System Organization 

The computing system envisioned in that project, and now called 
the 6600, paid special attention to two kinds of use, the very large 
scientific problem and the time sharing of smaller problems. For 
the large problem, a high-speed floating point central processor 
with access to a large central memory was obvious. Not so 
obvious, but important to the 6600 system idea, was the isolation 
of this central arithmetic from any peripheral activity. 

It was from this general line of reasoning that the idea of a 
multiplicity of peripheral processors was formed (Fig. 1).Ten such 
peripheral processors have access to the central memory on one 
side and the peripheral channels on the other. The executive 
control of the system is always in one of these peripheral 
processors, with the others operating on assigned peripheral or 
control tasks. All ten processors havk access to twelve input- 
output channels and may “change hands,” monitor channel 
activity, and perform other related jobs. These processors have 
access to central memory, and may pursue independent transfers 
to and from this memory. 

Each of the ten peripheral processors contains its own memory 
for program and buffer areas, thereby isolating and protecting the 
more critical system control operations in the separate processors. 

’AFIPS Proc. FJCC, pt. 2, vol. 26, 1964, pp. 3340.  

The central processor operates from the central memory with 
relocating register and file protection for each program in central 
memory. 

Peripheral and Control Processors 

The peripheral and control processors are housed in one 
chassis of the main frame. Each processor contains 4096 memory 
words of 12 bits length. There are 12- and %-bit instruction 
formats to provide for direct, indirect, and relative addressing. 
Instructions provide logical, addition, subtraction, and condi- 
tional branching. Instructions also provide single word or 
block transfers to and from any of twelve peripheral channels, 
and single word or block transfers to and from central memory. 
Central memory words of 60 bits length are assembled from 
five consecutive peripheral words. Each processor has instruc- 
tions to interrupt the central processor and to monitor the cen- 
tral program address. 

To get this much processing power with reasonable economy 
and space, a time-sharing design was adopted (Fig. 2). This design 
contains a register “barrel” around which is moving the dynamic 
information for all ten processors. Such things as program 
address, accumulator contents, and other pieces of information 
totalling 52 bits are shifted around the barrel. Each complete trip 
around requires one major cycle or one thousand nanoseconds. A 
“slot” in the barrel contains adders, assembly networks, distribu- 
tion network, and interconnections to perform one step of any 
peripheral instruction. The time to perform this step or, in other 
words, the time through the slot, is one minor cycle or one 
hundred nanoseconds. Each of the ten processors, therefore, is 
allowed one minor cycle of every ten to perform one of its steps. A 
peripheral instruction may require one or more of these steps, 
depending on the kind of instruction. 

In effect, the single arithmetic and the single distribution and 
assembly network are made to appear as ten. Only the memories 
are kept truly independent. Incidentally, the memory read-write 
cycle time is equal to one complete trip around the barrel, or one 
thousand nanoseconds. 

Input-output channels are bi-directional, U b i t  paths. One 
12-bit word may move in one direction every major cycle, or 1000 
nanoseconds, on each channel. Therefore, a maximum burst rate 
of 120 million bits per second is possible using all ten peripheral 
processors. A sustained rate of about 50 million bits per second 
can be maintained in a practical operating system. Each channel 
may service several peripheral devices and may interface to other 
systems, such as satellite computers. 

Peripheral and control processors access central memory 
through an assembly network and a dis-assembly network. Since 

730 



Chapter 43 I Parallel Operation in the Control Data 6600 731 

a CONTROL a CONTROL a CONTROL a CONTROL 
PROCESSOR PROCESSOR PROCESSOR PROCESSOR 

4096WORD 4096 WORD* CORE MFMORY CORE MEMORY 
PER1 PH ERAL 6600CENTRAL PROCESSOR PER1 PH ERA L a CONTROL a CONTROL 
PROCESSOR 

6600 CENTRAL MEMORY * PROCESSOR 

4096WORD 4096WORDL
CORE MEMORY 

PHERIPHERAL PERIPHERAL PERIPHERAL 
a CONTROL a CONTROL a CONTROL 8 CONTROL 
PROCESSOR PROCESSOR PROCESSOR PROCESSORI I I I I 


Fig. 1. Control Data 6600. 

PROCESSOR TIME-SHARED PROCESSOR 
REGISTERS INSTRUCTION MEMORIES

CONTROL 

EXTERNAL EQUIPMENT 

Fig. 2. 6600 peripheral and control processors. 



732 Part 3 1 Computer Classes Section 4 I Maxicomputers 

five peripheral memory references are required to make up one 
central memory word, a natural assembly network of five levels is 
used. This allows five references to be “nested” in each network 
during any major cycle. The central memory is organized in 
independent banks with the ability to transfer central words every 
minor cycle. The peripheral processors, therefore, introduce at 
most about 2% interference at the central memory address 
control. 

A single real time clock, continuously running is available to all 
peripheral processors. 

Central Processor 

The 6600 central processor may be considered the high-speed 
arithmetic unit of the system (Fig. 3). Its program, operands, and 
results are held in the central memory. It has no connection to the 
peripheral processors except through memory and except for two 
single controls. These are the exchange jump, which starts or 

PERIPHERAL AND 

CONTROL PROCESSORS 


UPPER 
BOUNDARY 

LOWER 
BOUNDARY 

12 INPUT 

OUTPUT CHANNELS 


Fig. 3. Block diagram of 6600. 

interrupts the central processor from a peripheral processor, and 
the central program address which can be monitored by a 
peripheral processor. 

A key description of the 6600 central processor, as you will see 
in later discussion, is “parallel by function.” This means that a 
number of arithmetic functions may be performed concurrently. 
To this end, there are ten functional units within the central 
processor. These are the two increment units, floating add unit, 
fixed add unit, shift unit, two multiply units, divide unit, boolean 
unit, and branch unit. In a general way, each of these units is a 
three address unit. As an example, the floating add unit obtains 
two 60-bit operands from the central registers and produces a 60 
bit resuIt which is returned to a register. Information to and from 
these units is held in the central registers, of which there are 
twenty-four. Eight of these are considered index registers, are of 
18 bits length, and one of which always contains zero. Eight are 
considered address registers, are of 18 bits length, and serve to 
address the five read central memory trunks and the two store 
central memory trunks. Eight are considered floating point 

CENTRAL PROCESSOR 

ADD 

I 

MULTIPLYI I 

INCREMENT 



registers, are of 60 bits length, and are the only central registers to 
access central memory during a central program. 

In a sense, just as the whole central processor is hidden behind 
central memory from the peripheral processors, so, too, the ten 
functional units are hidden behind the central registers from 
central memory. As a consequence, a considerable instruction 
efficiency is obtained and an interesting form of concurrency is 
feasible and practical. The fact that a small number of bits can give 
meaningful definition to any function makes it possible to develop 
forms of operand and unit reservations needed for a general 
scheme of concurrent arithmetic. 

Instructions are organized in two formats, a 15-bit format and a 
30-bit format, and may be mixed in an instruction word (Fig. 4). 
As an example, a 15-bit instruction may call for an ADD, 
designated by the f and m octal digits, from registers designated 
by the j and k octal digits, the result going to the register 
designated by the i octal digit. In this example, the addresses of 
the three-address, floating add unit are only three bits in length, 
each address referring to one of the eight floating point registers. 
The 30-bit format follows this same form but substitutes for the k 
octal digit an 18-bit constant K which serves as one of the input 
operands. These two formats provide a highly efficient control of 
concurrent operations. 

As a background, consider the essential difference between a 
general purpose device and a special device in which high speeds 
are required. The designer of the special device can generally 
improve on the traditional general purpose device by introducing 
some form of concurrency. For example, some activities of a 

f m i h 

4 3 3 3 3 3 IS BITS 

14 0I J
4 


OPERATION 
CODE- 1 

Kl BITS RESULT 

0 REG 


(1 of 8) 


1st OPERAND IREG. 
(1 of 8) 

2nd OPERANO 
REG 
(I of 8) 

Fig. 4. Fifteen-bit instruction format. 

Chapter 43 Parallel Operation in the Control Data 6600 733~ 

housekeeping nature may be performed separate from the main 
sequence of operations in separate hardware. The total time to 
complete a job is then optimized to the main sequence and 
excludes the housekeeping. The two categories operate concur- 
rently. 

It would be, of course, most attractive to provide in a general 
purpose device some generalized scheme to do the same kind of 
thing. The organization of the 6600 central processor provides just 
this kind of scheme. With a multiplicity of functional units, and of 
operand registers and with a simple and highly efficient address- 
ing system, a generalized queue and reservation scheme is 
practical. This is called the scoreboard. 

The scoreboard maintains a running file of each central register, 
of each functional unit, and of each of the three operand trunks to 
and from each unit. Typically, the scoreboard file is made up of 
two-, three-, and four-bit quantities identifying the nature of 
register and unit usage. As each new instruction is brought up, the 
conditions at the instant of issuance are set into the scoreboard. A 
snapshot is taken, so to speak, of the pertinent conditions. If no 
waiting is required, the execution of the instruction is begun 
immediately under control of the unit itself. If waiting is required 
(for example, an input operand may not yet be available in the 
central registers), the scoreboard controls the delay, and when 
released, allows the unit to begin its execution. Most important, 
this activity is accomplished in the scoreboard and the functional 
unit, and does not necessarily limit later instructions from being 
brought up and issued. 

In this manner, it is possible to issue a series of instructions, 
some related, some not, until no functional units are left free or 
until a specific register is to be assigned more than one result. 
With just those two restrictions on issuing (unit free and no 
double result), several independent chains of instructions may 
proceed concurrently. Instructions may issue every minor cycle in 
the absence of the two restraints. The instruction executions, in 
comparison, range from three minor cycles for fixed add, 10minor 
cycles for floating multiply, to 29 minor cycles for floating divide. 

To provide a relatively continuous source of instructions, one 
buffer register of 60 bits is located at the bottom of an instruction 
stack capable of holding 32 instructions (Fig. 5).Instruction words 
from memory enter the bottom register of the stack pushing up 
the old instruction words. In straight line programs, only the 
bottom two registers are in use, the bottom being refilled as 
quickly as memory conflicts allow. In programs which branch back 
to an instruction in the upper stack registers, no refills are allowed 
after the branch, thereby holding the program loop completely in 
the stack. As a result, memory access or memory conflicts are no 
longer involved, and a considerable speed increase can be had. 

Five memory trunks are provided from memory into the central 
processor to five of the floating point registers (Fig. 6). One 
address register is assigned to each trunk (and therefore to the 



FROM 

Fig. 5. 6600 instruction stack operation. 

OPERANDS 

I .._ 
(60-BIT) 

xn 1 
rc XI  

x2 

I 
OPERANDS .c 

-
x 3  

x 4  -x5 
RESULTS X6 

4 

ADDRESSES (18-81T) 
L x 7  

-CENTRAL 
MEMORY 

OPERAND 

ADDRESSES -
A2 
A3 

A4 

-- 10 FUNCTIONAL 
UNITS 

I I A5 I 
RESULT 

ADDRESSES INCREMENT 
( 1  8-BIT) 1

I 
REGISTERS 

INSTRUCTION 

I 
1 

Fi 
INSTRUCTION 

STACK 

(UP TO 8 WORDS 
60-BIT) 

-
INSTRUCTIONS 

Fig. 6. Central processor operating registers. 

734 

- m m x s c - . P A  I." 
P ___II /*v_n_______ 



Chapter 43 1 Parallel Operation in the Control Data 6600 735 

floating point register). Any instruction calling for address register 
result implicitly initiates a memory reference on that trunk. These 
instructions are handled through the scoreboard and therefore 
tend to overlap memory access with arithmetic. For example, a 
new memory word to be loaded in a floating point register can be 
brought in from memory but may not enter the register until all 
previous uses of that register are completed. The central registers, 
therefore, provide all of the data to the ten functional units, and 
receive all of the unit results. No storage is maintained in any unit. 

Central memory is organized in 32 banks of 4096 words. 
Consecutive addresses call for a different bank; therfore, adjacent 
addresses in one bank are in reality separated by 32. Addresses 
may be issued every 100 nanoseconds. A typical central memory 
information transfer rate is about 250 million bits per second. 

As mentioned before, the functional units are hidden behind 
the registers. Although the units might appear to increase Fig. 7. 6600 printed circuit module. 
hardware duplication, a pleasant fact emerges from this design. 
Each unit may be trimmed to perform its hnction without regard “on” and averages about five nanoseconds of stage delay. Logic 
to others. Speed increases are had from this simplified design. circuits are constructed in a cordwood plug-in module of about 2% 

As an example of special functional unit design, the floating inches by 2% inches by 0.8 inch. An average of about 50 
multiply accomplishes the coefficient multiplication in nine minor transistors are contained in these modules. 
cycles plus one minor cycle to put away the result for a total of 10 Memory circuits are constructed in a plug-in module of about 
minor cycles, or 1000 nanoseconds. The multiply uses layers of six inches by six inches by 2% inches (Fig. 8). Each memory 
carry save adders grouped in two halves. Each half concurrently module contains a coincident current memory of 4096 12-bit 
forms a partial product, and the two partial products finally merge 
while the long carries propagate. Although this is a fairly large 
complex of circuits, the resulting device was sufficiently smaller 
than originally planned to allow two multiply units to be included 
in the final design. 

To sum up the characteristics of the central processor, remem- 
ber that the broadbrush description is “concurrent operation. ” In 
other words, any program operating within the central processor 
utilizes some of the available concurrency. The program need not 
be written in a particular way, although certainly some optimiza- 
tion can be done. The specific method of accomplishing this 
concurrency involves issuing as many instructions as possible 
while handling most of the conflicts during execution. Some of the 
essential requirements for such a scheme include: 

1 	 Many functional units 
2 	 Units with three address properties 
3 	 Many transient registers with many trunks to and from the 


units 

4 	A simple and efficient instruction set 

Construction 

Circuits in the 6600computing system use all-transistor logic (Fig. 

7) .  The silicon transistor operates in saturation when switched Fig. 8.6600 memory module. 




- - 

736 Part 3 j Computer Classes Section 4 1 Maxicomputers 

Fig. 9. 6600 main frame section. 

words. All read-write drive circuits and bit drive circuits plus 
address translation are contained in the module. One such module 
is used for each peripheral processor, and five modules make up 
one bank of central memory. 

Logic modules and memory modules are held in upright hinged 
chassis in an X shaped cabinet (Fig. 9). Interconnections between 
modules on the chassis are made with twisted pair transmission 
lines. Interconnectlons between chassis are made with coaxial 
cables. 

Both maintenance and operation are accomplished at a pro- 
grammed display console (Fig. 10). More than one of these 

Fig. 10. 6600 display console. 

coiisoleb ma\ bc included in a s\steni if desired Dead start 
tacilities bi ing the ten peripheral processorb to a condition u hich 
a h  9 iiifoimntion to enter from n i w  choscn peripheral de\ ice 
Such loads normally bring in an operating system which provides 
a highly sophisticated capability for multiple users, maintenance, 
and so on. 

The 6600 Computer has taken advantage of certain technology 
advances, but more particularly, logic organization advances 
which now appear to be quite successful. Control Data is 
exploring advances in technology upward within the same com- 
patible structure, and identical technology downward, also within 
the same compatible structure. 

References 

Allard, Wolf, and Zemlin [1964]; Clayton, D o s ,  and Fagen 
[19641. 



Chapter 43 1 Parallel Operation in the Control Data 6600 737 

APPENDIX 1 ISP OF CDC 6600 PERIPHERAL AND CONTROL PROCESSOR 
- -PC6600{process)  : =  #41  A [ i d ]  A [ i d ]  + {US]  I AD1 - Add ((6))

b e g i n  M.PCP[M.PCP[d]]. 
#42 A c i d ]  = A [ i d ]  - (us) I S8I - S u b t r a c t  ( ( d ) )

! ISP o f  t h e  COC 6600 P e r i p h e P a l  and C o n t r o l  P r o c e s s o r ,  B a r r e l  d i s t r i b u t o r .  M.PCP[M.PCP[d]],
! and  1 / 0  c h a n n e l s .  #21 & [ i d ]  = A [ l d ]  + dm. 1 ADC - Rdd dm 

1 5  1 P. [ id ]  = A [ i d ]  +(us) I ADM * Add ( m  + ( d ) )
! A l t h o u g h  t h e  6600 has 10 i d e n t i c a l  P e r i p h e r a l  and  C o n t r o l  p r o c e s s o r s .  M.PCP[ index(  i d ) ] ,  

! t h e  I S P  f o r  a s i n g l e  p r o c e s s o r  i s  shown. Ail i d e n t i f y i n g  p a r a m e t e r  162 A [ i d l  = &?[id] -{us) I SBM - S u b t r a c t  (rn + ( d ) ) 

! i s  utilized to s p e c i f y  wh ich  o f  t h e  t e n  p r o c e s s o r s  1 s  a c t i v e  d u r i n g  M.PCP[ index ( id ) ] . 

I S i m u l a t i o n .  	 # l o  [DECODE d<5> => ! SIIN - S h i f t  d 

b e g i n
! The COC 6 6 0 0  P e r i p h e r a l  and C o n t r o l  p r o c e s s o r s  each possess a 0 : =  A c i d ]  s l r  d .  
! 4096 word 1 2  b i t  l o c a l  memory. The I S P  Shows o n l y  one 4096 word  1 : =  A [ i d ]  s r O  ( n o t  d)
! memory wh ich  i s  used  by a l l  t h e  “pPocesso rs ” .  e n d ) .  

#11  A [ i d J < 5 : 0 >  = A [ i d ] < 5 : 0 >  I ILMN - L o g i c a l  d i f f e r e n c e  d 
. ‘Channel .State**  x o r  d ,  

#12 A [ i d ]  = A [ i d ]  and d .  I LPN - L o g i c a l  p r o c u c t  d 
CHAN[0:11]<11:0>. ! 110 c h a n n e l s  #13 A [ id ]<5 :Q>  = A [ i d ] < 5 : 0 >  ! SCN - S e l e c t i v e  c l e a r  d 

and  ( n o t  d ) .  
cac t [O :  1170. 1 Channel  a c t i v e  i n d i c a t o r  1/33 A [ i d ] < l l : O > =  A [ i d ] < l l : O >  I LMD - L o g i c a l  d i f f e r e n c e  ( d )
C f ” l [ o :  11]<>. I Channel  f u l l  i n d i c a t o r  M.PCP[d].x o r  

#43 A [ i d ] < l l : O > =  A [ i d ] < l l : O >  ! LMI - L o g i c a l  d i f f e r e n c e  ( ( d ) )
* * B a r r e l . S t a t e * *  x o r  M.PCP[M.PCP[d]]. 

#22 A r i d ]  = A [ l d ]  and dm. I LPC - L o g i c a l  p r o d u c t  dm 
B a r r e l  A r e g i s t e r s  1123 A [ > d ]  = A [ i d ]  X O P  dm. I LMC - L o g i c a l  d i f f e r e n c e  dm 
B a r r e l  P r e g i s t e r s  #53 A [ l d ] < l l : O >  = ! LMM - L o g i c a l  d i f f e r e n c e  
B a r r e l  Q r e g i s t e r s  I ( m  + ( d ) )
B a r r e l  K r e g i s t e r s  A [ i d ] < I l : O >  XOI‘ M.PCP[ index ( id )J .

#35 M.PCP[d] = A [ IdJ  = A [ l d ]  ! RAD - Rep lace  add  (d )
**PCP.Memory.State**  + M.PCP[d]. 

#36 M.PCP[d] = A [ i d ]  ! AOD - Rep lace  add  one ( d )
M.PCP[O:4095]<11:0>. O n l y  one PCP memory i s  shown = M.PCP[d] + 1. 

W31 M . P C P r d ]  = K [ l d ]  ! SOD - Rep lace  S u b t r a c t  one ( d )
read[O:4]<11:0>, Read p y r a m i d  	 M.PCP[d] 1.= -

~ . r e a d < 5 9 : 0 >: =  read[0:4]<11:0>.  #45 M.I’CP[M.I’CP/dj] = A r i d ]  I R A I  - Rep lace  add ( ( d ) )  
= A l i d J  + M.PCI’[M.I’CP[d]].

w r i t e [ 0 : 4 ] < 1 1 : 0 > .  W r i t e  p y r a m i d  #46 M.I’CP[M.PCP[d]] = A [ i d ]  I A 0 1  - Rep lace  add One ( ( d ) )  
c . w r i t e < 5 9 : 0 >  : =  w r i t e [ 0 : 4 ] < 1 1 : 0  = M.PCI’]M.PCI’[d]] + 1. 

#41  M.PCPrM.PCP[d]] = A r i d ]  I SO1 - Rep lace  S u b t r a c e  one 
. * P C P . I n s t r u c t i o o . F o r m a t . .  = M PCPLM.PCP[d]] - 1. ! ( ( d ) )  

# 5 5  M.PCP[ index l  = A [ i d ]  I RAM - Rep lace  add ( m  + ( d ) )  
i A [ i d ]  + M. I ’CP [ inde r ( i d ) ] .  

# 5 6  M.PCI’[ ~ n d e x ]  = A t i d ]  ! AOM - Rep lace  add  one 
= M . P C t ’ l i i i d ~ ~ ( i i l ) ]+ 1 .  ! (in + ( d ) )  . - . *57 M . P C P [ ~ n d e r l = A c i d 1  ! SOM - I l e p l a c e  S u b t r a c t  one

dm(17: 0) := p i P< 17: 0). = M. I ’CPL index ( id ) ]  - 1 .  ! (a + ( d ) )
1103 P [ x d ]  = ( P [ i d ]  - 1) + d .  \ UJN - U n c o n d i t i o i , d l  jump d 

* * A d d r e s s i n g  .Cal  cu1a t ian* * (us )  #01 I f  A [ i d ]  e q l ( u s )  0 = >  I ZJN - Z e r o  Jump d 
P [ i d ]  = ( P [ i d ]  - 1) + d .  

i n d e x ( i d < 3 : 0 > ) < 1 1 : 0 >  :: I I n d e x e d  a d d r e s s i n g  #05 I f  & [ i d ]  neq[us)  0 = >  I I J N  - Nonzero  jump d
b e g i n  P [ i d ]  ( P [ i d ]  - 1) + d .  
DECODE d eol 0 = >  	

i 

1106 I I  A [ i d ]  geq {us ]  0 => I PJN - P l u s  jump d
b e g i n  P [ i d J  = ( P [ i d ]  - 1 )  + d ,
0 :=  ( i n d e x  = m + M.PCP[d]: # 0 7  I F  A [ i d ]  l s s ( u s )  0 = >  MJN - M inus  jump d 

P [ i d ]  = ) ’ [ id ]  + 1 ) .  P [ i d ]  = ( I ’ c i d ]  - 1) + d ,
1 : =  i n d e x  = m no1 !‘[id] = i n d e x ( i d ) .  LJM - Long lump t o  m + (d)
end w o 2  (M.PCP[ir!dex( i d ) ]  RJM - R e t u r n  jump t o  m + ( d )

end. = P r i d l  + 2 n e x t  
“ E a r r e l . E x e c u t i o n * .  &‘[id] = L i n i e x  + l i .  

#2G : =  ( M A 1 1  ( x j f  eqv ‘ 0 )  ,next EXN - Exchange Jump 
b a r r e l ( m a i n )  := x j a  = & [ i d ] :  x j f  = 1). 

b e g i n  .~# 2 7  : =  A r i d ]  = pc.  RPN - Read Drooram address  
p c p ( 0 )  n e x t  ! A c t i v a t e  p r o c e s s o r  0 #60 : =  ( c . r e a d  = MP[A[ id ] ]  [next CRD C e n t r a l  r e a d  d = ( A )
pcp(1 )  n e x t  ! A c t i v a t e  p r o c e s s o r  1 M.PCP[d+Q] = r e a d l o ]  (next 
p c p ( 2 )  n e x t  I A c t i v a t e  p r o c e s s o r  2 M.PCP[d+l ]  = r e a d [ l ]  n e x t  
p c p ( 3 )  n e x t  I A c t i v a t e  p r o c e s s o r  3 M.PCP[d+Z] = read[Z:I n e x t  
p c p ( 4 )  n e x t  ! A c t i v a t e  p r o c e s s o r  4 M.PCPld+31 = r e a d [ 3 1  n e x t  
p c p ( 5 )  n e x t  ! A c t i v a t e  p r o c e s s o r  5 M.PCP[d+4] = read [4 ] ) ,  
p c p ( 6 )  n e x t  ! A c t i v a t e  p r o c e s s o r  6 #61 : =  (M.PCP[O] = P [ i d ]  + 1 n e x t  CRM C e n t r a l  r e a d  ( d )  
PCP(7) n e x t  ! A c t i v a t e  p r o c e s s o r  7 PCid ]  = in: Q [ i d ]  = d n e x t  words f r o m  ( A )  t o  m 
pcp(8 )  n e x t  ! n c t i v a t e  p r o c e s s o r  8 CRMO : =  
p c p ( 9 )  n e x t  ! A c t i v a t e  p r o c e s s o r  9 - - s...h o n i n  


RESTART b a r r e l  I DO i t  a l l  a g a i n  c , r e a d  = MP[A[ id ] ]  n e x t  

end. 


**PCP.Execut ion* . (oc)  

p c p ( i d < 3 : 0 ) )  : =  

b e o i n  


i e i t  	 A [ i d ]  = A [ i d ]  + 1: 
Q [ ) d ]  = Q [ i d ]  - 1 n e x t  
1F Q [ i d ]  neq 0 = >  RESTART CRMO 
end  n e x t  

Li‘ECOdE K i i d i  J >  

I PSN - P a s s  



738 Part 3 I Computer Classes 
Section 4 I Maxicomputers 

APPENDIX 1 (cont'd.) 

P [ i d J  = P [ i d J  + 5 :  

A [  i d ]  = A [ i dJ  + 1: 

Q [ i d ]  = Q [ i d ]  - 1 n e x t  

I F  Q[?d] neq 0 = >  R C S l A R i  CWMO 

end ,next 

P [ i d ]  = M.PCP[O]).
#64 : =  (UtCOU[ c a c t l d ]  = >  I RJM - Juiilp t o  rn i f  cha l>ne l  

b e g i n  I d 1s a c t i v e  
0 : =  P [ i d ]  = P [ i d ]  + 1 .  
1 : =  P [ i d ]  = m 
e n d l .  

#65 : =  (DECODE c a c t [ d ]  =)  I I JM - Jump t o  m I f  c h a n n e l  
b e g ) "  I d i s  i n a c t i v e  
0 : =  P [ i d ]  = m .  
1 := P [ i d ]  = P [ i d ]  + 1 
e n d l .  

#66 : =  (DECODE c f u l [ d ]  =)  I FJM - ~ u m pt o  in i f  c h a n n e l  
b e g i n  I d i s  f u l l  
0 :iP [ l d ]  = P [ i d ]  + 1. 
1 : =  P [ i d ]  = m 
end).


#67 : =  (DECODE c f u l [ d ]  = >  I EJM - ~ u m pt o  m ifchannel 
b e g i n  I d I S  empty  
0 : =  P [ i d ]  = m .  
1 : =  P r i d ]  = P [ i d ]  + 1. .  ~~ 

e n d ) ,  
1110 : =  A [ i d J  = CliAN[d]. I I A N  - I n p u t  A froin CIIAN d 
#71  : =  (M.PCP[O] = P [ i d ]  n e x t  I I A M  - I n p u t  ( 8 )  words  t o  m 

P [ j d J  = rn n e x t  I f m n  c h a n n e l  d 
IAMO : =  

b e g i n
I t  A [ i d J  neq @ = >  M.PCP[P[ id ] ]  = 0 (next  
I F  c a c t r d ]  = )  

b e g i n  
M.PCPCP[id]] = CllANCdJ n e x t  
P [ l d ]  = P [ i d ]  + 1 .  A [ i d l  = A r i d ]  - 1 n e x t  
I F  A [ i d ]  neq 0 = >  RESTnRT IAMD 
end  

end n e x t  
P [ > d ]  = M.PCP[O]). 

#72 : =  CliAN[d] = A [ i d ] .  ! O A N  - O u t p u t  f r o m  A 
I on c h a n n e l  d 

,y73 : =  ( ~ . p c p [ o ]  i P [ i d ]  + 1 n e x t  I OAM - O u t p u t  ( A )  words  
P r i d l  = m n e x t  I f rom m on channe l  d 
@ i M O ' : =  

begin 
I F  c a c t [ d ]  and ( A c i d ]  neq 0) => 

b e g i n  
CIIAN[d] = M . P C P [ A [ i d l l  n e x t  
A [ i d ]  = R f ~ d ]- 1 n e x t  
RESTART OAMO 
end 

end n e x t  

P i i d ]  + M.PCI'[O]). 


#74 : =  c a c t [ d ]  = 1 .  I ACN - A c t i v a t e  c h a n n e l  d 
1175 : =  c a c t [ d ]  = 0 .  I DCN - D i s c o n n e c t  channe l  d 
#76 : =  CllAN[dJ = A [ i d ] .  I 1AN - FUnCt iDn ( A )  on  CHAN d 
n 7 7  := (C l lAN ld ]  = m: I FNC - F U i l c t ? o n  s on CIIAN d 

? [ i d ]  = P [ i d ]  + 1 ) .  

end 


end  


end I Eod COC 6 6 0 0  P e r i p h e r a l  and C o n t r o l  p rocesso r  



Chapter 43 Parallel Operation in the Control Data 6600 739 

APPENDIX 2 ISP OF THE CDC 6600 

CDC66oO(process} :: 
beg in  

! ISP of t h e  CDC 6600 

macro no t .desc r ibed  := Ino .op ( ) l .  

**Reservat10n,Contr01,State** 

! F l o a t i n g  p o i n t  i n s t r u c t i o n s  are n o t  desc r ibed  

! The c e n t r a l  p rocesso r  and c e n t r a l  memory ape desc r ibed  i n  t h i s  
! ISP. An a u x i l l a r y  ISP (PC66OO.ISP) descr ibes t h e  p e r i p h e r a l  
! processors and Con t ro l  b a r r e l  execu t ion .  

abusy[0:7]<>. 
arw [0:7]<>. 
bbusy[O:7]<>. 
brw [0:7]<>. 
xbusy[O:7]<>. 
xrw [ 0 : 7 ] 0 .  

A r e g i s t e r s  busy b i t s  
A r e g i s t e r s  r e a d ( O ) / w r i t e ( l )  
0 r e g i s t e r s  busy b i t s  
B r e g i s t e r s  r e a d ( O ) / w r i t e ( l )  
X r e g i s t e r s  busy b i t s  
X r e g i s t e r s  r e a d ( O ) / w r i t e ( l )  

! The t e n  f u n c t i o n a l  u n i t s  ape desc r ibed  and a l l o w  p a r a l l e l  
! s imu la t i on .  

fbusy[O:9]<>. Func t i ona l  U n i t  busy b i t s  

! InStPUCtionS are  processed from an inStPUCtion s tack .  I n s t r u c t i o n  
! c o n f l i c t s  a r e  reso lved  by keeping a "scorecard" c o n t a i n i n g  U t i l i z a t i o n  
! i n f o r m a t i o n  on a l l  r e g i s t e r s  and a l l  f u n c t i o n a l  u n l t s .  
! Reserva t i on  c o n t r o l  decodes an instruction t o  determine r e g i s t e r  
! u t i l i z a t i o n .  Source and d e s t i n a t i o n  r e g l s t e r r  ape a l l o c a t e d  
! if they  are no t  be ing  used as destinations of ano the r  f u n c t i o n a l  
1 u n i t .  I f  t h e  r e q u i r e d  f u n c t i o n a l  u n i t  i s  f ree  and ifb o t h  t h e  
! Source and des t i na t10n  r e g i s t e r s  are a v a i l a b l e .  t he  i n s t r u c t i o n  
! i s  Peleased t o  t h e  u n i t  f o r  execu t ion .  Ift h e  Pesources a r e  
! n o t  a v a i l a b l e ,  r e s e r v a t i o n  c o n t r o l  ho lds  t h e  i n s t r u c t i o n  u n t i l  
! the  resources become a v a i l a b l e .  
! A t  t h e  comp le t i on  of execu t ion  by  a f u n c t i o n a l  u n i t ,  t h e  PesouPces 
! a re  re leased  by marking the  scorecard,  

! The f o l l o w i n g  page by page index O f  t h e  ISP i s  p rov ided  t o  a i d  
! i n  l o c a t i n g  CDC 6600 a r c h i t e c t u r a l  f ea tu res .  

f a  [0:9]<2:0>. 
f a u [ o : Q ] o .  
f b  [0:9]<2:0>. 
fbu[O:Q]<>. 
f x  [0:9]<2:0>. 
fx"[o:9]<>, 

un i t<3 :0> ,  

The f o l l o w i n g  t a b l e s  ape 
used t o  d e a l l o c a t e  t h e  
resource assignments e i t h e v  
i n  t he  even t  of c o n f l i c t  d u r i n g  
a l l o c a t i o n .  o r  d u r i n g  d e a l l o c a t i o n  
a t  i n s t r u c t i o n  complet ion.  
F??U<> i n d i c a t e s  usage o f  t h e  
r e g i s t e r s  by  a u n i t .  

Func t i ona l  U n i t  A r e g i s t e r  
A r e g i s t e r  usage 
Func t iona l  U n i t  B r e g i s t e r  
B r e g i s t e r  usage 
Func t iona l  U n i t  X r e g i s t e r  
X r e g i s t e r  usage 

1 = used. 0 = n o t  used 

! Temporary f o r  a r i t h  u n i t  number 

.*Central  Menory Sta:e** o e f i n o s  t he  CentPal Honory. 

.*Processor State.. d e i l n e s  c e n t r i l  p rocesso r  C L P P B ~ P S  

..!"9tPLCtion.Far.a1-. aefiner i n s t r ~ c t ~ o nf l e l o s .  

..lmplEnsntatiOn.DeCla~~t~~~s.'oel'lnes ISP r e l a t e d  vaPlables.  

. .ResePYdt,On.Contr01.S:aie.. de f ines  v a r j a o l e s  used by 
w s e r v a t ? o n  c o n t ~ o l .  i n e s e  uec1aPat ions c o n s t l t L t e  t h e  
r e s ~ u p c ea1:ocat lon "scorecara ' ,  

.' lnStructIon.Tetch.. o e s c r l o e s  t he  > n S t r u c t i o n  Stack 
c o n t m l  and ,ns t rdc t?on  f e t c n  processes. 
~~Cent~al.Henory.Accers-'o e s c p l o e s  t h e  i n s t r w t > o n  read 
and t he  r e g i s t e r  assoc ia ted  memory a c c e s s  p~ocesses .  
..Exchange.Jump.. I S  t ne  processor In te l ' r up t  f a c I l l t y .  
'.lnstPuCtion.Cycle'. I S  t he  m a i n  I n s t r u c t ' o n  processing 
c y c l e .  l n s t r d c t i o n  execu t ion  1 9  i n l t l a t e d  by ~ s s u i n g  
the  I n s t r u c t i o n s  t o  tne  a p p w p r i a t e  functional u n i t .  

OescrIbe t h e  r e ~ e r 1 a t 1 0 n  c o n t ~ o l  execL l i on .  

! l h e  f u n c t l o n i l  u n i t s  are. 

**Reseruation.Control**(us) 

source()<> := ! Source r e g i s t e r  a l l o c a t i o n  
beg in  
Source = 0 n e x t  
DECODE f m  => 

beg in
#01 := I F  (i.e q l  #1) or (i.e q l  1 2 )  => 

(IF f bu [un i t ]  and ( f b [ u n i t ]  e q l  j . )  => source 
Pb[uni t ]  = j . :  f b u c u n i t ]  = 1: 
I F  ( n o t  bbusyCj.1) and ( n o t  brw[ j . ] )  => 

source = bbusy[ j . ]  = 1). 
[#02.#04:#07.#22]:= (IF f b u [ u n i t ]  and ( f b [ u n i t ]  e q l  i.)=> s o u x e  = 1 

f b [ u n i t ]  = i.:f b u [ u n i t ]  = 1: 
I F  ( n o t  bbusyCi.1) and ( n o t  b w [ i . ] )  => 

source = bbusy[ i . ]  = 1). 
[#04:#07,#23:#27 
#51.#56:#57.#61 

= 1 n e x t  

n e x t  

! 
f 
! 
! 
! 
! 

Branch U n i t .  
Boolean U n i t .  
S h > f t  U",t. 
Add U n i t .  
Long Add U n i t .  
M u l t i p l y  U n i t  0. 
M u l t i p l y  U n i t  1. 
D i v i d e  U n i t .  
Increment U n i t  0. 
Increment U n i t  1. 

#66:#67.#71 
#76:#77]:= 

[#53:1157.#63:#67]:= 

[#50.#54.#55.#80. 
#64.#65.#70.#74. 

( I F  f bu [un i t ] -and  ( f b [ u n i t ]  e q l  j . )  => source = 1 
f b [ u n i t ]  = j.: f b u c u n i t ]  = 1: 
I F  ( n o t  bbusyCj.1) and ( n o t  brwCj.1) => 

source = bbusyCj.1 = 1). 

f b [ u n i t ]  = k . :  f b u [ u n i t ]  = 1: 
I F  ( n o t  bbusy[k.]) and ( n o t  bbusyCk.1) => 

SOL~PCB = bbusy[k.] = 1). 

( I F  fbu[uni t ] .end ( f y u n i t ]  e q l  k.) => source = 1 

n e x t  

n e x t  

* *Cen t ra l  .MemoPy.State** 

MP[O:4095]<59:0>. 

..PrOceSSor.State*. 

xjp[O:15]<59:D>. 
x ja<l6:0>. 
x j f < > .  

! Use o n l y  4k o f  60 b i t  memory 

! Exchange Jump Package 
! Exchange Jump Address 
! Exchange Jump F lag  

#75]:= 

[#03.#10]:= 

[#ll:P13.#15:#17. 
#30:#42.#52.#53. 

(IF f au [un i t ]  and ( f a [ u n i t ]  e q l  j . )  => source = 1 
f a [ u n i t ]  = j . :  f a u l u n i t ]  = 1: 
I F  ( n o t  abusycj .1)  and ( n o t  arwCj.1) => 

Source = bbUsy[j.] = 1). 

PxCun i t ]  = i.:f x u [ u n i t ]  = 1: 
I F  ( n o t  rbusy [ i . ] )  and ( n o t  r r w [ i . ] )  => 

source = xbusy [ i . ]  = 1). 

( I F  f x u [ u n i t l  and ( f x [ u n i t ]  e q l  i.)=> source = 1 

n e x t  

n e x t  

px<19:0>,  
PC<17:0> := ~x<19:2>. 
,1c<1:0> .= px<1:0>. 
TSC<4.0> := px<4:0>. 

AREG[O:7]<17:0>. 
BREG[O:7]<17:0>. 
XREG[O:7]<59:0>, 
RACM<I7:0>. 
FLCM<t7:O>. 
RAECS(23: 0). 
FLECS<23:0>. 
EM<17:O>. 
MA< 17 :0); 

.*InstPuct ion.Format* '  

! Pseudo program CounteP 
! Program Counter 
! I n s t r u c t i o n  l e n g t h  coun t  
! I n s t r u c t i o n  s tack  Counter 
! A r e g i s t e r s  
! B r e g i s t e r s  
! X r e g i s t e r s  
! Ref Address ( c e n t r a l  memo! 
! F i e l d  l e n g t h  O f  program 
! Reference Address f o r  ECS 
! F i e l d  l e n g t h  f o r  ECS 
! Program e x i t  mode 
! Mon i to r  exchange 

"Y) 

#62.#63.#72.#73]:= ( I F  f x u L u n i t ]  and ( f x [ u n i t ]  e q l  j . )  => soupce = 1 
f x [ u n i t ]  = j.: f x u [ u n i t ]  = 1: 
IF ( n o t  xbusy [ j . ] )  and ( n o t  xrw[ j . ] )  => 

source = xbusy[ j . ]  = 1). 
[# l l :#17.#22:#27. 

#30:#42.#44.#46. 
#47]:= ( I F  f x u [ u n i t ]  and ( f x [ u n i t ]  e q l  k.) => source = 1 

f x [ u n i t ]  = k . :  f x u [ u n i t ]  = 1: 
I F  ( n o t  xbusyCk.1) and ( n o t  r ru [ k . ] )  => 

source = xbusy[k. ]  = 1) .  
Otherwise : =  Source = 1 

end 
end. 

des t ( )<>  := ! Q e s t i n a t i o n  r e g i s t e r  a l l o c a t i o n  
beg in  
des t  = 0 n e x t  

n e x t  

n e x t  

I<29:0>, 
i0<14:0> := 
i1<14:0> := 

f .  <2:0> := 

I<29:15>. 
1<14:0>, 

1<29:27>. 

! I n s t r u c t i o n  r e g i s t e r  
! Shor t  i n s t r u c t i o n  (15 b i t )  
! Long i n s t r u c t i o n  e x t e n s i o n  

DECODE f m  => 
h i n i n..

[#lo :#4E ;.-
#47.#70:#77]:= ( f x [ u n i t ]  = i.:f x u [ u n i t ]  

#50:#57 := ( f a [ u n i t ]  = i.:f a u [ u n i t ]  
I F  n o t  x b u s y l i . 1  => des t  

= 1: 

= 1: 
= rbusyC i . ]  = xrw[ i . ]  = 1). 

#60:#67]:= 
[#24:#26. 

o the rw ise  : %  

( f b l u n i t ]  = i.: f b u l u n i t ]  = 1: 

I F  n o t  abusyCi.1 => des t  = abusy[ i . ]  

:F not bbusy [ i . ]  =>  d e s t  = b b u r y [ i . ]  
d e s t  = 1 

= aruCi.1 

= brw[ i . ]  

= 1). 

= 1). 

end 
is[0:71<59:0>. 

i s h i < l 7 : 0 > .  
ismi0:31]<14:0> 

i s l0<17 :b> ,  
isa<2:0>. 

:= 
! I n s t r u c t i o n  s tack  

! High address l i m i t  in s t a c k  
is[0:71<59:0>. 

. ! 10; address l i m i t  i n  s tack  
! S tack  i n s e r t  countec 

end. 

mark :=  
beg in
i s l o  = i s h i  = PC 

! Mark s t a c k  as i n v a l i d  

..Imp~ementation.Declarations.. 

StoP.b i t<> .  I StOD f l a a  

end. 

dealloc(dunit<3:O>){critical]
hraoin 

:= I Oea l l oca te  resoupces 



740 Part 3 I Computer Classes 	 Section 4 1 Maxicomputers 

APPENDIX 2 (cont'd.) 
-

! Read n e x t  i n s t r u c t i o n  
b e g i n
IF n o t  r a n g e ( p c 1 )  => m i  = MPCRACM + p c i ]  
e n d ,  

! A r e g i s t e r  f o r c e d  r e s e w  := 
b e g i n  

! memory access 

unit = 15 n e x t  ! Mark as "no u n i t "  AREG[reQ] = Val  n e x t  
DECODE fm => r a n g e ( v a 1 )  n e x t  

b e g i n  DECODE r e g  => 
- - a 
#00:#07 : =  u n i t  = 0 .  ! B r a n c h  U n i t  	 h p o i n  
# O  : =  n o . 0 ~ 0 .#10:#17 : =  u n i t  = 1. ! B o o l e a n  U n i t  # 1 : # 5  : =  ( I F  range => (XREC[reg] = MP[o] n e x t  LEAVE a r e f )  n e x t# 2 0 : # 2 7 . # 4 3 ] : =  u n i t  = 2 .  ! S h i f t  U n i t  XREG[?eg] = MP[AREG[reg] + RACM]).

# 3 0 : # 3 5  : =  U n i t  = 3. ! Add U n i t  
#36:#37 : =  u n i t  = 4 .  ! Long Add U n i t  #6:#7 : =  ( I F  r a n g e  => LEAVE a r e f  n e x t  


# 4 0 : # 4 2  : =  DECODE f b u s y [ 5 ]  = >  ! M u l t i p l y  U n i t s  MP[AREG[reg] + RACM] = XREGCreg]) 


b e g i n  end.  
end 


0 := u n i t  = 5 .  

1 := I F  not f b u s y [ 6 ]  = )  u n i t  = 6 

end.  **Exchange.Jurnp**(us) 


#44:#47 : =  u n i t  = 7 ,  ! D i v i d e  U n i t  

#50:#77 : =  DECODE f b u s y [ 8 ]  => ! I n c r e m e n t  U n i t s  ! Exchange jump i s  t h e  c e n t r a l  p r o c e s s o r ' s  i n t e r r u p t  mechanism. 


b e g i n  ! t x c h a n g e  jump i s  ~ n i t l a t e d  by power O n  O P  b y  one O f  t h e  t e n  
0 := u n i t  = 8. ! peripheral p r o c e s s o r s .  A l l  o f  t h e  c e n t r a l  p r o c e s s o r ' s  s t a t e  
1 := IF n o t  f b u s y [ 9 ]  = >  u n i t  = 9 ! ( I n c l u d i n g  a11 r e g i s t e r s )  i s  exchanged w i t h  16  words O f  c e n t r a l  
e n d  ! memory. The c e n t r a l  memory s t a r t i n g  a d d r e s s  1s p r o v i d e d  by 

e n d  n e x t  	 ! t h e  " i n t e r r u p t i n g "  p e r i p h e r a l  p r o c e s s o r .  The C e n t r a l  memory 
I F  u n i t  neq 1 5  => ! words a r e  f o r m a t t e d  such t h a t  a l l  O f  t h e  S t a t e  Can b e  e x t r a c t e d  

b e g i n  ! and l o a d e d  ? " t o  t h e  a p p r o p r i a t e  r e g i s t e r s .  
DECODE f b u s v r u n i t l.- .=> ! T h i s  i m p l e m e n t a t i o n  uses a 16 word h o l d i n g  a w l  ( x j p )  t o  f o r m a t  and 

b e g i n  	 ! t e i n p o c a r i l y  p r e s e r v e  t h e  o l d  S t a t e  U n t i l  t h e  n e w  S t a t e  1 s  l o a d e d .  
0 := 	 DECODE ( o a t  d e s t ( ) )  o r  ( n o t  s o u r c e ( ) )  => 

b e g i n  x i  := 
0 : =  f b u s y [ u n l t ]  = 1, 
1 : =  b e g i n  #000000:  

d e a l l o c ( u n i t )  n e x t  BREG[l]: 
RESTART P e S e P V  BREG[2]: 
e n d  BREG[3]: 

end.  BREG[4]: 
1 := 	 b e g i n  BREG[S]: 


WAIT ( n o t  f b u s y [ u n i t ] )  n e x t  BREG[B]: 

RESTART PeSePV BREG[7]: 

end 


e n d  
end 

end,  

n s t r u c t i o n . F e t c h , * ( u s )  


n s t w c t i o n  f e t c h  i s  a l w a y s  fPom t h e  i n S t r U C t i a n  s t a c k .  I f  

he s t a c k  1s empty ( i n i t i a l  power on o r  b r a n c h  o u t  o f  s t a c k ) .  MP[x ja  + 00](53:18>: 


# P  i f  t h e r e  a r e  l e s s  t h a n  t h r e e  i n s t r u c t i o n  wopds l e f t  in t h e  MP[x ja  + 011: 

t a c k ,  f e t c h  r e l o a d s  t h e  s t a c k  b e f o r e  o b t a i n i n g  an i n s t r u c t i o n .  MP[x ja  + 021:
n s t r u c t i o n s  may b e  1 5  O P  30 bits l o n g  and a l i g n e d  an any 1 5  b i t  MP[x ja  + 031:
moundry. F e t c h  o b t a i n s  15 b I t S  O f  an i n s t r u c t i o n  t h e n  d e t e r m i n e s  MPCij.3 + 041:
f a second 15 b i t s  a r e  r e q u i r e d .  MP[x ja  + MI: 

f e t c h  := 	 MP[x ja + 061:  
MP[x ja  + 071:  
MP[x ja  + 081: 
MP[r.ja + 091: 
MP[x ja  + 101: 

i s l o  = PC + i s a  n e x t  M P [ r j a  + 111: 

s f e t c h  : =  M P [ x j a  + 121: 


b e g i n  MP[x ja  + 131: 
i s [ i s a ]  = r n i ( P C  + i s a )  n e x t  MP[x ja  + 141: 
l s h l  = PC + I s a  n e x t  MP[n,a + 1 5 1  n e x t  
i s a  = i s a  + 1 n e x t  
IF ( i s h i  - PC) 1 s s  #7 = >  RESTART S f e t c h  
end 

end n e x t  
i 0  = i s r n r i s c l  n e x t  
px = px 5 1 n e x t  
DECODE fm => ! check f o r  30 b i t  i n s t r u c t i o n s  

b e a i n  
10:#01.#04:#67. 
;0:#37.#50:#52. 
;0 :#62.#70:#721:= f i l  = i s m r i r c l  n e x t

1 . 


px = px Y 1): 

O t h e r w i s e  : =  na.oP()  


end 

end.  


Central.Memary.Access**(oc) 


c e n t e r a l  memory 1 s  a l w a y s  accessed i n d i r e c t l y  b y  a u s e r  program. end. 
The Read N e x t  I n S t P U C t l o n  ( R N I )  P o U t l n e  1s used 10 l o a d  t h e  
instruction stack. T o u c h i n g  t h e  A r e g i s t e r s  1 t h r o u g h  7 CaUSeS 
t h e  c o r r e s p o n d i n g  X r e g l r t e r  t o  be l o a d e d  ( A [ 1 : 5 ] )  f rom memory s t a r t ( m i n )  :=OP S t o r e d  (AC6.71)  i n  memory. ! I n i t i a l i z a t i o n  

b e g i n ( x j f )
range(  p e l  ( 1 7 :  O > ) O  := ! Address r a n g e  f a u l t  check 

W A I T  n e x t  ! wait f o r  exchange jump 

b e g i n  	 S t O p . b i t  = 0 n e x t  ! C l e a r  S t o p  b i t  
m a r k 0  n e x t  ! I n s t r u c t i o n  S t a c k  empty range = 0 n e x t  ! M a i n  c y c l e  
IF r e 1  4 e q  (FLCM - 1) => P""  :=  


beg;n 

r a n g e  = 1: ! F a u l t  b e g i nI F  x j f  = >  x j ( )  n e x t  ! Check f o r  exchange jump 

DECODE EM<12> => ! AddPeSS e x i t  s e l e c t  I F  ~ 1 0 p . b i t = >  RESTAR1 S t a r t  n e x t  
b e g i n  I F  not range = >  
0 := I = MPCO]. ! N o t  s e l e c t e d  b e g i n  
1 ;=  b e g i n  	 f e t c h 0  n e x t  1 G e t  an i n S t P U C t i o n  

r e s e w ( )  ! R e s e r v a t i o n  ContPOl MP[RACM]<53:48> = MP[RACM](53:48> o r  #010000: 
e n d  n e x t  ! w711 n o t  r e t u v n  u n t i l  MP[RACM]<47:30> = r e 1  + 1 n e x t  ! a l l  usage c o n f l i c t s  a r eI = MPCRACM]: PC = 0 n e x t  range = 0 n e x t  

STOP( )  ! s t o p  t h e  p r o c e s s o r  ! r e s o l v e d .  
end e x e c 0  n e x t  ! Issue t h e  i n s t r u c t i o n  

end RESTART cull 

end end 
*",i end." ._, 



Chapter 43 I Parallel Operation in the Control Data 6600 741 

APPENDIX 2 (cont'd.) 
exec : =  The instruction I S  i s s u e d  


b e g i n  t o  t h e  a p p r o p l a t e  e x e c u t i o n  * * S h i f t . E x e c u t , o n * * ( u s )  

DECOOE u n i t  = >  u n i t .  


b e g i n  S h i f t ( m a 1 n )  :=  

0 : =  BRANCH.UNIT(I), b e g i n  

1 : =  BOOLEAN.UNIT(I), OECODE f m  => 

2 : =  SHIFT.UNIT(1) .  b e g i n  

3 : =  ADD.UNIT(I), 1 2 0  : =  XREG[ i . ]  = X R E G C i . 1  SIPj k ,  ! L X i  
4 : =  LONG.AOD U N I T ( 1 ) .  # 2 1  : =  XREG[ i . ]  = X R E G r i . 1  s p p  j k ,  ! AX1 
5 : =  MULTIPLY.UNIT.O(I) #22 : =  DECODE B R E G [ j . ] < l 7 >  =) ! L X i
6 :=  MULTIPLY . u N I T . l (  I ) :  	 0 : =  X R E G 1 i . j  = XREGIk.1 S ~ BREG[j.]<5:0>b e g i n  	 P 
7 :=  DIVIDE U N I l ( 1 ) .  

8 : =  IfJCREMENT.UNIT.O(I). 1 : =  DECODE ( n o t  8 R E G [ j . ] < 1 0 : 6 > )  e q l  'OOOOi =)

9 : =  INCREMENT.UNIT.~(I) beo in 

end 0 I=XREGCi.1 = 0 .  


end.  1 : =  XREGCi.1 
: The r e m a i n d e r  o f  t h e  ISP d e s c r i b e s  t h e  t e n  a r i t h m e t i c  p r o c e s s i n g  = XREGCk.1 s r d  ( n o t  8 R E G [ j . ] < 1 0 : 0 > )  
! U n i t s .  These u n i t s  w i l l  f u n c t i o n  i n  P a r a l l e l  much as t h e y  do end 
! i n  t h e  r e a l  CDC 6600.  	 rnr l  

#23 : =  DECO6E-EREG[j.]<17> => ! AX1 

! N o t e  t h a t  f l o a t i n g  p o l n t  i n s t w c t i o n s  a r e  decoded b u t  t h i s  ISP b e g i n  


! does n o t  d e s c r i b e  t h e i r  a c t u a l  e x e c u t i o n .  0 : =  DECODE BREG[ j . ]<10:6> eql '00000 => 

b e g i n  


* * B r a n c h . U n i t * *  0 : =  XREG[i.] = 0. 

1 : =  X R E G l i . 1  = XREGCk.1 sPd BREG[ j . ]  

nnrl_..". = s l r  ( n o t  BREG[ j . ]<5:0>)  

b e g i n  
BRANCH.UNIT(i<29:O>){process: c r i t i c a l )  : =  	 1 : =  XREG[i.] XREGIk.1 

end. 

* * B r B n c h . D e c l a r a t i o n s . .  #24 : =  n o t . d e s c r i b e d .  ! NXi 


#25 : =  n 0 t . d e r c r i b e d .  ! Z X i  

fm  <5:0> : =  i < 2 9 : 2 4 > ,  #26 : =  b e g i n  ! UXi  

1 .  <2:0> : =  i < 2 3 : 2 1 > .  	 XREG[ i . l  < =  XREG[k.]<59> B XREG[k.]<47:0>: 
I .  <2:0> : =  i < 2 0 : 1 8 > .  	 BREGCJ.1 <= #ZOO0 - (us)  XREG[k.]<58:48> 
k .  <2:0> : =  1<17:15>,  	 end,  

#27 : =  b e g i n  ! ? X i  

**Branch.Execution**(oc] XREG[1.]<47:0> = XREG[L.]<47:0): 


XREG[1.]<59> = XREG[k.]<59>: 

b ranch(rnai n) :i DECODE XREGrk.1<59> => 


~~ 

b e g i n  	 b e g i n  
DECODE f m  I3 i. 0 : =  XREG[ i . ]<58:48> = n o t  B R E G [ ~ . ] ( ~ O >  

b e g i n  @ BREG[j.]<9:0>. 
# O D ? ?  : =  PS 2 S t o p . b i t  = 1. 1 : *  XREG[ i . ]<58:48> = BREG[ j . ]<10> 
#OlO : =  R J  	 (MP[kl+RACMI = #0400@(PC+l)<17:0>@#000000000 0 n e x t  end 

8 n o t  8REG[ j . ]<9:0> 
PC = k l  + 1: m a r k ( ) ) .  ~~ 

#02?? :=  JP (PC = k 1  + BREG[ i . ] .  m a r k ( ) )  end. 
1 0 3 0  : =  2R I F  X R E G l j . 1  e q l  0 =iPC = k 1 :  #43 : =  b e g i n  ! MXi 
# 0 3 1  : =  NZ I F  X R E G [ j . l  neq 0 => PC = k l  XREGI1.1 = 0 n e x t  
1 0 3 2  : =  PL I F  n o t  XREG[j.]<59> => PC = i l .  xREGl1. ]<59> = ( j k  n e q  0 )  n e x t  
#033 : =  NG I F  XREG[J.]<59> => PC = k 1  Xi7EGCi.j = X R E G l i . 1  srd ( j k  -(us) 1)
#034 : =  I R  I F  n o t  ( ( X R E G [ j . 1 < 5 9 : 4 8 >  e i l ( u s )  #3777)  O P  end 

(XREG[ j . ]<59:48> eql(uS) # 4 0 0 0 ) )  => PC = t i .  end n e x t  

#035 : =  OR. IF ( X R E G [ j . ] < 5 9 . 4 8 >  e q l ( u s )  #3777)  o r  d e a l l a c ( 2 l  


( X R t G [ j . 1 < 5 9 : 4 8 >  e q i ( U s )  #4000)  => PC = end 
. ,  


#036 : =  DF I F  n o t  ( ( X R E G [ j . j < 5 9 : 4 8 >  eql{us) H1777) o r  
k l .  e n d ,  


(XRLG[1.1<59:48> e q l ( u s )  116000)) = >  PC = k l ,  * * A d d . U n i t * * 
#037 :=  ID I F  (XREG[ j . ]<59:48> e q l ( u S )  #1777)  O P  


(XREG[ j .1<59:48> e q l j u s )  # m o o )  = >  PC = k l ,  ADD.UNIT(i<29:O>){procers: c r i t i c a l )  :=

10477 : =  FO I F  8 R E G I i . l  e q l ( u s )  BREG[ j . ]  =>  PC = k l .  b e g i n 

no577 : =  ii  I F  BREG[ i . ]  neq(us) BREG[,.] = >  PC = k l 

#06?? : =  G E  I F  B R E G l i . 1  geq(us)  BREG[ j . ]  = >  PC = t i '  * * A d d . D e c l a r a t i o n s * *  

#07?? :=  LT I F  B R E G j i . 1  l s S ( m )  8 R E G l j . l  = >  PC = k 1 ' 

end n e x t  * * A d d . E i e c u t i o n * * ( o c ) 


I F  (PC l s s ( u s )  islo) O P  (PC g t r { u s )  I s h i )  = >  m a r k ( )  n e x t  

d e a l l o c ( 0 )  add(main) := 

end b e g i n 


e n d .  OECODE fm => 

* B o o l e a o . U n i t * *  b e g i n  


#30 : =  n o t . d e s c r i b e d ,  ! F X i  - >  ( X j  + Xk)
0 0 L E A N . U N I T ( 1 < 2 9 : 0 > ) { p r o c e s s :  c r i t i c a l )  :i # 3 1  : =  n o t . d e s c n b e d .  ! F X 1  - >  ( X j  - Xk) 
b e g i n  #32 : =  n a t . d e s c n b e d  ! O X 1  -> ( X j  + X k ) 

.BOOlean.DeclapLt ionS.+ #33 : =  n O t . d e s c r i b e d :  ! 0x1 -> ( X j  - Xk) 
#34 : =  n o t . d e s c r i b e d  	 ! R X 1  -> ( X j  + x k )  

fm <5:0> : =  i < 2 9 : 2 4 ) ,  	 #35 : =  n o t . d e s c r i b e d '  ! R X i  ->  ( X j  - Xk)  
i. <2:0> : =  i < 2 3 : 2 1 > ,  	 end n e x t  

j .  <2:0> := i < 2 0 : 1 8 > .  	 d e a l l o c ( 3 )  

k .  <2:0> : =  i<17:15>,  	 end.  
end 

*.Baolean.Execution**{uS) 	 * * L o n g . A d d . U n i t * *  

b a o l e a n ( m a i n }  := LONG.ADD.UNIT(~<29:O>)(process: c r i t i c a l )  := 

b e g i n  b e g i n  

DECODE f m  = >  ! R 1 1  i n s t r u c t i o n s  a r e  *'LOng.Add.Declarations..b e g i n  

#10 : =  XREG[i.] = 	 fm <5:0> := i < 2 9 : 2 4 > ,  
i#11 := X R E G [ i . ]  	 i.<2:0> : =  i < 2 3 : 2 1 > .#12 :=  X R E G I i . 1  i 

#13 :=  XREG[i.] i 
j. <2:0> : =  i < 2 0 : 1 8 > .  


# I 4  : =  X R E G I I . ]  i 
k. <2:0> :=  i < 1 7 : 1 5 > ,  


#15 : =  XREGC1.1 i 	 * 'Lang.Add.Execut,on**{oc)#16 := XREG[i.] i 


#17 : =  XREG[?. j  i 1 add(main}  :F 


end n e x t  beg 1n 

d e a l  loc( 1) OECODE f m  => 

end h e n i n 
..

end. #38 :=  XREGr? 1 = xREGLj .1  + XREGCk.1. ! 1 x 1  ->  X j  + Xk
' S h I f t . U n i t * *  $37 X R E G ~ ~ : ~X R E G l j . 1  - X R W k . 1 .  ! I X i  -> X j  - Xk: =  = 


othervrise : =  

lIFT.UNIT(i<Z9:O>){process: critical) : =  d e a l l a c ( 4 )n e x t 
end 

b e g i n  
end 


' S h i f t . O e c l a r a t i D n 5 . 1  	 end. 
fm <5:0> : =  i < Z 9 : 2 4 > ,  	 * * M u l t i p l y . U n ~ t . O * *  
1 .  <2:0> : =  i < Z 3 : 2 1 > ,  
I .  <2:0> : =  i < 2 0 : 1 8 > .  	 MULTIPLY.UNIT.O(i<29:O))(pracers: c r i t i c a l )  := 
k .  <2:0> : =  i < 1 7 : 1 5 > ;  	 b e g i n  
j k  <5:0> : =  i < Z 0 : 1 5 > ,  	 * *IMuIt i p 1 y .0 .Dec 1 a r at ions*  * 



742 Part 3 1 Computer Classes 	
Section 4 1 Maxicomputers 

APPENDIX 2 (cont'd.) 
#5 : =  a r e f ( i . . A R C G [ j . ]  - BREGlk.1) .

f m  < 5 : 0 >  : =  i < 2 9 : 2 4 ) .  #6 : =  a r e f ( i . , B R E G [ j . ]  + BREG[k.]). 

**Multiply.O.Execution**(oc) 
#7 :=  a r e f ( i . . B R E G [ j . ]  - BREGCk.1) 
end 

e n d .
mpyO(main) : =  #60:#67 : =  S B i

b e g i n  : =  b e g i n
OECOOE f m  => DECODE m. = ) 


b e g i n  b e g i n 

#40 :=  n a t . d e s c r i b e d ,  ! F X i  ->  X j  * Xk # O  : =  BREG[i.] 

# 4 1  : =  n o t . d e s c r i b e d ,  ! R X i  ->  X j  * Xk #l : =  B R E G l i . 1 

#42 : =  n a t . d e s c r i b e d  ! 0x1  ->  X j  * Xk #2 : =  BREG[ i.3 


#3 : =  BREG[ i.I 
#4 :=  BREG[i.] 
#5 : =  BREG[i . ]

end,  #6 : =  BREG[l.] 

#7 : =  BREG[1.]


* * M u l t ? p l y . U n i t . I * '  end 


I: r ? t i c a l )  := 	 e n d .
M U L T I P L Y . U N I T . ~ ( ~ ~ ~ ~ : ~ > ) { ~ P O C ~ S S :  	 #70:#77 :=  S X i

b e g i n  : =  	b e g i n 

DECODE m. = ) 


**Multiply.l.DeclaPations** b e g i n
#o  : =  XREG[i.] < =  AREG[j.] + k l .

frn < 5 : 0 >  : =  i < 2 9 : 2 4 > .  #1 : =  XREG[,.] <= B R E G [ j . l  + k l .  
#2 := XREG[ i . ]  < =  XREG[ j . ]<17:0> + k1.

**Multiply.l.Execution**(oc) #3 :=  X R E G l i . 1  < =  XREG[j.]<17:0> + BREGCk.1. 
# 4  :=  XREG[i.] < =  AREGCj.1 + BREGCk.1. 

m p y l { m a i n )  := #5 : =  XREG[i.] < =  AREG[].] - EREGCk.1. 
b e g i n  #6 : =  XREG[i.] < =  BREG[j.] + BREGCk.1.
DECODE fm =) #7 : =  XREG[i.] < =  BREGCj.1 - BREGCk.1

b e g i n  end 
#40 := n o t .  desc r ibed,  ! F X i  ->  X j  * Xk 

#41 : =  n o t . d e s c r i b e d .  ! RXi  -> XI * Xk e n d  


#42 : =  n o t . d e s c r i b e d  ! D X i  - >  X J  * Xk end n e x t  


e n d  n e x t  d e a l l o c ( 8 )  


d e a l l a c ( 6 )  end 


e n d  	 end,  
end,  	 * * I n c r e m e n t . U n i t . l * *  

* * D i v i d e . U n i t * *  iNCREMENT.UNIT.1(1<23:O>){process: C r i t i c a l )  :=  

DIVIDE.UNIT(~<ZQ:O>)(procerr: c r i t i c a l )  :=  b e g i n  


b e g i n  
 **IncPement.l.Qeclarations** 

* * D i v i d e . O e C l d P a t i o n s * *  

fm < 5 : 0 >  :=  i < 2 9 : 2 4 > .  
rn. <2:0> : =  i < 2 6 : 2 4 > ,  
i. < 2 : 0 >  : =  i < 2 3 : 2 1 ) .  
j .  <2:0> :=  i < 2 0 : 1 8 > .  
k.  <2:0> : =  i < 1 7 : 1 5 > ,  
k 1 < 1 7 : 0 >  := i < 1 7 : 0 > ,  

! C o u n t e r  f o r  C X i  	 **Increment.1.Execution..{oc) 

..Oivide.Execution'.(oc) 	 I n c r l { m a i n )  : =  
b e g i n  

d i  v j m a i  n) := DECODE f m  => 
b e g i n  b e g i n  
DECODE f m  =) #50:#57 :=  S A i  ! Increment 

b e g i n  :=  b e g i n  

#44 := n o t .  d e s c r i b e d .  ! F X I  - >  X i  = X j  / Xk DECODE m .  => 

#45 := n a t . d e s c r i b e d .  ! R X ~-> X i  = X j  IXk b e g i n  

# 4 6  :iNO := nO.OP(). no :=  a r e f ( i  ..AREG[j.] + kl). 

#47 := C X i  n i  : =  a r e f ( i  ..BREG[j.] + Ll). 

:= b w i n  # 2  : =  a r e f ( 7  . ,XREG[ j . ]<17:0)  + k l ) .  
x c i t  0: #3 : =  a r e f ( 1  . .XREG[ j . ]<17:0> + BREG[k= 
XREG[i.] = 0 n e x t  	 #4 :=  a w f  ( i  ,.AREG[].] + BREGCk.1). 
C X i .  : =  #5 : =  & r e f  ( 1  , .AREG[ j . I  - BREGCk.]), 

b e g i n  #6 := a r e f ( i  . .BREG[ j . ]  + BREGCk.1). 
XREG[i.] = XREG[i.] +(US) XREG[k.]<O) n e x t  n7 : =  & r e f  ( 1  . .EREG[ j . ]  - BREGCk.1) 
XREGCk.1 = XREGCk.7 S P P  1: end 
x c n t  = X c n t  + 1 n e x t  e n d ,  
IF x c n t  l s s (us)  60 => RESTART C X i .  # 6 0 : # 6 7  : =  S B i  
end : =  b e g i n  

end DECODE m. => 

end nex t  b e g i n  


d e a l l o c ( 7 )  # O  :=  BREG[i .] 

end #1 :=  BREG[l . ]  


end.  # 2  :=  BREGCi.1 

#3 : =  BREGCi.1 


BREGCi .I 0'.t .* * I n c r e m e n t .  U n i  #4 : =  
#5 : =  BREGC1.1 

INCREMENT.UNIT.O(i<29:O>)(proceSs: C r i t i c a l }  := #6 :=  BREGCi . ]  
b e g i n  #7 : =  BREG[ i.3 

e n d  
~*Increment.O.Oeclarations** end.  

# 7 0 : # 7 7  : =  S X i  
fm  <5:0> : =  i < 2 9 : 2 4 ) .  : =  b e g i n  
m.  <2:0> : =  i < 2 6 : 2 4 > .  	 DECODE m. = >  
1 .  <2:0> : =  i < 2 3 : 2 1 ) .  	 b e g i n  
j .  < 2 : 0 >  : =  i < 2 0 : 1 8 ) ,  # O  := XREGCi.1 < =  A R E G l j . 1  + k 1 .  
... #1 :=r ( 7 . 0 )  := i < 1 7 : 1 5 > .  X R E G l i . 1  < =  BREGCj.1 + k l ,  
k1<17:0)  := i < 1 7 ; 0 ) ,  # 2  := XREG[1.] < =  XREG[ j . ]<17:0> + k l .  

#3 :=  XREG[i .I < =  XREG[ j . ]<17:0> + BREGCk.1. 
**Increment.O.Execution*.(oc) #4 :=  XREG[ i.] < =  AREGI j .7  + BREGlk.1. 

#5 : =  XREGCi.1 <= AREGl j .1  - EREGCk.1. 
i n c r o ( m a i n )  :=  #6 : =  XREG[i.] <= BREGCj.1 + EREGlk.1.  

b e g i n  #7 : =  X R E G r i . 1  <= BREGCj.1 - BREG[k.l 
DECODE fm => end 

b e g i n  e n d  

#50:#57 : =  S A i  ! I n c r e m e n t  end n e x t  


:= b e g i n  	 d e a l l o c ( 9 )
DECODE m. => 


b e g i n  

# O  :=  a r e f ( i . . A R E G [ j . ]  + k l ) .  end,  


81 : =  a r e f ( i . , B R E G [ j . ]  + k l ) .  	 R E Q U I R E . I S P  I P C 6 6 0 0 . i r p l .  ! P e P i p h e r a l  P r o c e s s o r  D e s c r i p t i o n  

#2 : =  a r e f ( i . . X R E G [ ] . ] < l l : O )  + k 1 ) .  

#3 :=  a r e f ( i . . X R E G [ j . ] < 1 7 : 0 >  + BREGCk.]), 

# 4  :=  a r e f ( i . . A R E G [ j . ]  + BREG[k.]). e n d  ! End CDC 6600 




Chapter 44 

The CRAY-1 Computer System’ 

Richard M .  Russell 

This paper describes the CRAY-1, discusses the evolution of its architec- 
ture, and gives an account of some of the problems that were overcome 
during its manufacture. 

The CRAY-1 is the only computer to have been built to date that satisfies 
ERDA’s Class VI requirement (a computer capable of processing from 20 
to 60 million floating point operations per second) [Keller 19761. 

The CRAY-1’s Fortran compiler (CFT) is designed to give the scientific 
user immediate access to the benefits of the CRAY-1’s vector processing 
architecture. An optimizing compiler, CFT, “vectorizes” innermost DO 
loops. Compatible with the ANSI 1966 Fortran Standard and with many 
commonly supported Fortran extensions, CFT does not require any source 
program modifications or the use of additional nonstandard Fortran 
statements to achieve vectorization. Thus the user’s investment of 
hundreds of man months of effort to develop Fortran programs for other 
contemporary computers is protected. 

Introduction 

Vector processors are not yet commonplace machines in the 
larger-scale computer market. At the time of this writing we know 
of only 12 non-CRAY-1 vector processor installations worldwide. 
Of these 12, the most powerful processor is the ILLIAC IV (1 
installation), the most populous is the Texas Instruments Ad- 
vanced Scientific Computer (7 installations) and the most publi- 
cized is Control Data’s STAR 100 (4 installations). In its report on 
the CRAY-1, Auerbach Computer Technology Reports published 
a comparison of the CRAY-1, the ASC, and the STAR 100 
[Auerbach, n.d.1. The CRAY-1 is shown to be a more powerful 
computer than any of its main competitors and is estimated to be 
the equivalent of five IBM 3ZOil95s. 

Independent benchmark studies have shown the CRAY-1 fully 
capable of supporting computational rates of 138 million floating- 
point operations per second (MFLOPS) for sustained periods and 
even higher rates of 250 MFLOPS in short bursts [Calahan, Joy, and 
Orbits, n.d. ; Reeves, 127_5].Such comparatively high perform- 
ance results from the CRAY-1 internal architecture, which is 
designed to accommodate the computational needs of carrying out 
many calculations in discrete steps, with each step producing 
interim results used in subsequent steps. Through a technique 
called “chaining,” the CRAY-1 vector functional units, in combina- 
tion with scalar and vector registers, generate interim results and 

’Comm. ACM, vol. 21, no. 1, January 1978, pp. 63-72. 

use them again immediately without additional memory referenc- 
es, which slow down the computational process in other contem- 
porary computer systems. 

Other features enhancing the CRAY-1’s computational capabili- 
ties are: its small size, which reduces distances electrical signals 
must travel within the computer’s framework and allows a 12.5 
nanosecond clock period (the CRAY-1 is the worlds fastest scalar 
processor); a one million word semiconductor memory equipped 
with error detection and correction logic (SECDED); its 64-bit word 
size; and its optimizing Fortran compiler. 

Architecture 

The CRAY-1 has been called “the worlds most expensive 
love-seat” [Computer World, 19761. Certainly, most people’s first I_ 

reaction to the CRAY-1 is that it is so small. But in computer 
design it is a truism that smaller means faster. The greater the 
separation of components, the longer the time taken for a signal to 
pass between them. A cyclindrical shape was chosen for the 
CRAY-1 in order to keep wiring distances small. 

Figure 1 shows the physical dimensions of the machine. The 
mainframe is composed of 12 wedgelike columns arranged in a 
270” arc. This leaves room for a reasonably trim individual to gain 
access to the interior of the machine. Note that the love-seat 
disguises the power supplies and some plumbing for the Freon 
cooling system. The photographs (Figs. 2 and 3)show the interior 
of a working CRAY-1 and an interior view of a column with one 
module in place. Figure 4 is a photograph of a single module. 

An Analysis of the Architecture 

Table 1details important characteristics of the CRAY-1 Computer 
System. The CRAY-1 is equipped with 12 i/ochannels, 16 memory 
banks, 12 functional units, and more than 4K bytes of register 
storage. Access to memory is shared by the ilo channels and 
high-speed registers. The most striking features of the CRAY-1 
are: only four chip types, main memory speed, cooling system, 
and computation section. 

Four Chip Types 

Only four chip types are used to build the CRAY-I. These are 16 
x 4 bit bipolar register chips (6nanosecond cycle time), 1024 x 1 
bit bipolar memory chips (50nanosecond cycle time), and bipolar 
logic chips with subnanosecond propagation times. The logic chips 
are all simple low- or high-speed gates with both a 5 wide and a 4 
wide gate (5/4NAND). Emitter-coupled logic circuit (ECL) technol-
ogy is used throughout the CRAY-1. 

743 




744 Part 3 I Computer Classes Section 4 1 Maxicomputers 

k 
k------ 1031/2” d 

-Dimensions 
Base-1034 inches diameter by 19 inches high 
Columns-564 inches diameter by 77 inches high inchdin$ 

height of base 
-24 chassis 
-1662 modules; 113 module types 

-Each module contains up to 288 IC packages per module 

-Power consumption approximately 115 kw input for maximun 


memory size Fig. 2. The CRAY-1 computer. 
-Freon cooled with Freon/water heat exchange 
-Three memory options 
-Weight 10,500 Ibs (maximum memory size) 
-Three basic chip types 

5/4 NAND gates 
Memory chips 
Register chips 

Fig. 1. Physical organization of mainframe. 

The printed circuit board used in the CRAY-1 is a 5-layer board 
with the two outer surfaces used for signal runs and the three 
inner layers for -5.217, -2.OV, and ground power supplies. The 
boards are six inches wide, 8 inches long, and fit into the chassis, 
as shown in Fig. 3. 

All integrated circuit devices used in the CRAY-1 are packed in 
16-pin hermetically sealed flat packs supplied by both Fairchild 
and Motorola. This type of package was chosen for its reliability 
and compactness. Compactness is of special importance; as many 
as 288 packages may be added to a board to fabricate a module 
(there are 113module types), and as many as 72 modules may be 
inserted into a 28-inch-high chassis. Such component densities 
evitably lead to a mammoth cooling problem (to be described). 

Main Memory Speed 

CRAY-1 memory is organized in 16 banks, 72 modules per bank. 

Each module contributes 1bit to a 64-bit word. The other 8 bits Fig. 3. CRAY-1 modules in place. 




Table 1 CRAY-1 CPU Characteristics Surnrnarv 

Computation Section 
Scalar and vector processing modes 
12.5 nanosecond clock period operation 

64-bit word size 

Integer and floating-point arithmetic 

Twelve fully segmented functional units 

Eight 24-bit address (A) registers 

Sixty-four 24-bit intermediate address (6) registers 

Eight 64-bit scalar (S) registers 

Sixty-four 64-bit intermediate scalar (T) registers 

Eight 64-element vector (V) registers (64-bits per element) 

Vector length and vector mask registers 

One 64-bit real time clock (RJ) register 

Four instruction buffers of sixty-four 16-bit parcels each 

128 basic instructions 

Prioritized interrupt control 


Memory Section 
1,048,576 64-bit words (plus 8 check bits per word) 
16 independent banks of 65,536 words each 
4 clock period bank cycle time 
1 word per clock period transfer rate for 6, J, and V registers 
1 word per 2 clock periods transfer rate for A and S registers 
4 words per clock period transfer rate to instruction buffers (up  to 

16 instructions per clock period) 
i/o Section 

24 i/o channels organized into four 6-channel groups 
Each channel group contains either 6 input or 6 output channels 
Each channel group served by memory every 4 clock periods 
Channel priority within each channel group 
16 data bits, 3 control bits per channel, and 4 parity bits 
Maximum channel rate of one 64-bit word every 100 nanoseconds 
Maximum data streaming rate of 500,000 64-bit words/second 
Channel error detection 

are used to store an 8-bit check byte required for single-bit error 
correction, double-bit error detection (SECDED). Data words are 
stored in 1-bank increments throughout memory. This organiza- 
tion allows 16-way interleaving of memory accesses and prevents 
bank conflicts except in the case of memory accesses that step 
through memory with either an 8 or 16-word increment. 

Cooling System 

The CRAY-1 generates about four times as much heat per cubic 
inch as the 7600. To cool the CRAY-1 a new cooling technology 
was developed, also based on Freon, but employing available 
metal conductors in a new way. Within each chassis vertical 
aluminumistainless steel cooling bars line each column wall. The 
Freon refrigerant is passed through a stainless steel tube within 
the aluminum casing. When modules are in place, heat is 
dissipated through the inner copper heat transfer plate in the 

Chapter 44 1 The CRAY-1 Computer System 745 

Fig. 4. A single module. 

module to the column walls and thence into the cooling bars. The 
modules are mated with the cold bar by using stainless steel pins 
to pinch the copper plate against the aluminum outer casing of the 
bar. 

To assure component reliability, the cooling system was 
designed to provide a maximum case temperature of 130°F (54°C). 
To meet this goal, the following temperature differentials are 
observed: 

Temperature at center of module 13OoF(54"C) 

Temperature at edge of module 118"F(48"C) 

Cold plate temperature at wedge 78"F(25"C) 

Cold bar temperature 7OoF(21"C) 

Refrigerant tube temperature 7O0F(21"C) 

Functional Units 

There are 12 functional units, organized in four groups: address, 
scalar, vector, and floating point. Each functional unit is pipelined 



746 Part 3 1 Computer Classes 

Table 2 CRAY-1 FunctionalUnits 

Functional 
Register unit time 
usage {clock pe-

riods) 

Address function units 
address add unit A 2 
address multiply unit A 6 

Scalar functional units 
scalar add unit S 3 
scalar shift unit S 2 or 3 if double 

word shift 
scalar logical unit S 1 
population/leading zero count 

unit S 3 
Vector functional units 

vector add unit V 3 
vector shift unit V 4 
vector logical unit V 2 

Floating-point functional units 
floating-point add unit S and V 6 
floating-point multiply unit 
reciprocal approximation unit 

S and V 
S and V 

7 
14 

into single clock segments. Functional unit time is shown in Table 
2. Note that all of the functional units can operate concurrently so 
that in addition to the benefits of pipelining (each functional unit 
can be driven at a result rate of 1per clock period) we also have 
parallelism across the units too. Note the absence of a divide unit 
in the CRAY-1. In order to have a completely segmented divide 
operation the CRAY-1 performs floating-point division by the 
method of reciprocal approximation. This technique has been 
used before (e.g. IBM Systeml360 Model 91). 

Registers 

Figure 5 shows the CRAY-1 registers in relationship to the 
functional units, instruction buffers, do channel control registers, 
and memory. The basic set of programmable registers is as 
follows: 

8 %-bit address (A) registers 
64 %bit address-save (B) registers 

8 64-bit scalar (S) registers 

64 @-bit scalar-save (T) registers 

8 64-word (4096-bit) vector (17) registers 

Expressed in 8-bit bytes rather than 64-bit words, that’s a total of 
4,888 bytes of high-speed (6ns) register storage. 

The functional units take input operands from and store result 

Section 4 1 Maxicomputers 

VECTOR REGISTERS 

/--A SCALAR RE 

INSTRUCTION BUFFERS 

Fig. 5. Block diagram of registers. 

operands only to A, S, and V registers. Thus the large amount of 
register storage is a crucial factor in the CRAY-1’s architecture. 
Chaining could not take place if vector register space were not 
available for the storage of final or intermediate results. The B and 
T registers greatly assist scalar performance. Temporary scalar 
values can be stored from and reloaded to the A and S register in 
two clock periods. Figure 5 shows the CRAY-1’s register paths in 
detail. The speed of the CFT Fortran IV compiler would be 
seriously impaired if it were unable to keep the many Pass 1and 
Pass 2 tables it needs in register space. Without the register 
storage provided by the B, T, and V registers, the CRAY-1’s 
bandwidth of only 80 million wordsisecond would be a serious 
impediment to performance. 

Instruction Formats 

Instructions are expressed in either one or two 16-bit parcels. 
Shown is the general form of a CRAY-1 instruction. Two-parcel 
instructions may overlap memory-word boundaries, as follows: 



m 
16-31 

Bit posi-
tions 

(16) 

Parcel 1 Parcel 2 

The computation section processes instructions at a maximum 
rate of one parcel per clock period. 

For arithmetic and logical instructions, a 7-bit operation code 
(gh) is followed by three %bit register designators. The first field, 
i, designates the result register. The j and k fields designate the 
two operand registers or are combined to designate a B or T 
register. 

The shift and mask instructions consist of a 7-bit operation code 
(gh) followed by a 3-bit i field and a 6-bit jk field. The i field 
designates the operand register. The jk combined field specifies a 
shift or mask count. 

Immediate operand, read and store memory, and branch 
instructions require the two-parcel instruction word format. The 
immediate operand and the read and store memory instructions 
combine the j, k, and m fields to define a 22-bit quantity or 
memory address. In addition, the read and store memory 
instructions use the h field to specify an operating register for 
indexing. The branch instructions combine the i, j, k,and m fields 
into a 24-bit memory address field. This allows branching to any 
one of the four parcel positions in any @-bit word, whether in 
memory or in an instruction buffer. 

Operating Registers 

Five types of registers-three primary (A, S, and V) and two 
intermediate (B and T)-are provided in the CRAY-1. 

A registers-eight 24-bit A registers serve a variety of applica- 
tions. They are primarily used as address registers for memory 
references and as index registers, but also are used to provide 
values for shift counts, loop control, and channel do operations. In 
address applications, they are used to index the base address for 
scalar memory references and for providing both a base address 
and an index address for vector memory references. 

The 24-bit integer functional units modify values (such as 
program addresses) by adding, subtracting, and multiplying A 
register quantities. The results of these operations are returned to 
A registers. 

Data can be transferred directly from memory to A registers or 
can be placed in B registers as an intermediate step. This allows 
buffering of the data between A registers and memory. Data can 
also be transferred between A and S registers and from an A 
register to the vector length registers. The eight A registers are 
individually designated by the symbols AO, A l ,  A2, A3, A4, A5, 
A6, and A7. 

Chapter 44 1 The CRAY-1 Computer System 747 

B registers-there are sixty-four 24-bit B registers, which are 
used as auxiliary storage for the A registers. The transfer of an 
operand between an A and a B register requires only one clock 
period. Typically, B registers contain addresses and counters that 
are referenced over a longer period than would permit their being 
retained in A registers. A block of data in B registers may be 
transferred to or from memory at the rate of one clock period per 
register. Thus, it is feasible to store the contents of these registers 
in memory prior to calling a subroutine requiring their use. The 
sixty-four B registers are individually designated by the symbols 
BO, B1, B2, . . . , and B778. 

S registers-eight 64-bit S registers are the principal data 
handling registers for scalar operations. The S registers serve as 
both source and destination registers for scalar arithmetic and 
logical instructions. Scalar quantities involved in vector operations 
are held in S registers. Logical, shift, fixed-point, and floating- 
point operations may be performed on S register data. The eight S 
registers are individually designated by the symbols SO, S1, S2, 
S3, S4, 55, S6, and S7. 

T registers-sixty-four 64-bit T registers are used as auxiliary 
storage for the S registers. The transfer of an operand between S 
and T registers requires one clock period. Typically, T registers 
contain operands that are referenced over a longer period than 
would permit their being retained in S registers. T registers allow 
intermediate results of complex computations to be held in 
intermediate access storage rather than in memory. A block of 
data in T registers may be transferred to or from memory at the 
rate of one word per clock period. The sixty-four T registers are 
individually designated by the symbols TO, T1, T2, . . . , and 
T778. 

V registerseight 64-element V registers provide operands to 
and receive results from the functional units at a one clock period 
rate. Each element of a V register holds a 64-bit quantity. When 
associated data is grouped into successive elements ofa V register, 
the register may be considered to contain a vector. Examples of 
vector quantities are rows and columns of a matrix, or similarly 
related elements of a table. Computational efficiency is achieved 
by processing each element of the vector identically. Vector 
merge and test instructions are provided in the CRAY-1 to 
allow operations to be performed on individual elements desig- 
nated by the content of the vector mask (VM) register. The 
number of vector register elements to be processed is contained 
in the vector length (VL) register. The eight V registers are 
individually designated by the symbols VO, V1, V2, V3, V4, 
V5, V6, and V7. 

Supporting Registers 

The CPU contains a variety of additional registers that support the 
control of program execution. These are the vector length (VL) 



748 Part 3 1 Computer Classes 

and vector mask (VM) registers, the program counter (P), the base 
address (BA) and limit address (LA) registers, the exchange 
address (XA) register, the flag (F) register, and the mode (M) 
register. 

VM register-the 64-bit vector mask (VM) register controls 
vector element designation in vector merge and test instructions. 
Each bit of the VM register corresponds to a vector register 
element. In the vector test instruction, the VM register content is 
defined by testing each element of a V register for a specific 
condition. 

P register-the %bit P register specifies the memory register 
parcel address of the current program instruction. The high order 
22 bits specify a memory address and the low order two bits 
indicate a parcel number. This parcel address is advanced by one 
as each instruction parcel in a nonbranching sequence is executed 
and is replaced whenever program branching occurs. 

BA registers-the 18-bit base address (BA) register contains the 
upper 18 bits of a 22-bit memory address. The lower four bits of 
this address are considered zeros. Just prior to initial or continued 
execution of a program, a process known as the “exchange 
sequence” stores into the BA register the upper 18 bits of the 
lowest memory address to be referenced during program execu- 
tion. As the program executes, the address portion of each 
instruction referencing memory has its content added to that of 
the BA register. The sum then serves as the absolute address used 
for the memory reference and ensures that memory addresses 
lower than the contents of the BA register are not accessed. 
Programs must, therefore, have all instructions referencing 
memory do so with their address portions containing relative 
addresses. This process supports program loading and memory 
protection operations and does not, in producing an absolute 
address, affect the content of the instruction buffer, BA, or 
memory. 

LA register-the 18-bit limit address (LA) register contains the 
upper 18bits of a %bit memory address. The lower 4 bits of this 
address are considered zeros. Just prior to initial or continued 
execution of a program, the “exchange sequence” process stores 
into the LA register the upper 18 bits of that absolute address one 
greater than allowed to be referenced by the program. When 
program execution begins, each instruction referencing a memory 
location has the absolute address for that reference (determined 
by summing its address portion with the BA register contents) 
checked against the LA register content. If the absolute address 
equals or exceeds the LA register content, an out-of-range error 
condition is flagged and program execution terminates. This 
process supports the memory protection operation. 

XA register-the 8-bit exchange address (XA) register contains 
the upper eight bits of a 12-bit memory address. The lower four 
bits of the address are considered zeros. Because only twelve bits 
are used, with the lower four bits always being zeros, exchange 

Section 4 1 Maxicomputers 

addresses can reference only every 16th memory address 
beginning with address 0000 and concluding with address 4080. 
Each of these addresses designates the first word of a 16-word 
set. Thus, 256 sets (of 16 memory words each) can be specified. 
Prior to initiation or continuation of a program’s execution, the 
XA register contains the first memory address of a particular 16- 
word set or exchange package. The exchange package contains 
certain operating and support registers’ contents as required 
for operations following an interrupt. The XA register supports 
the exchange sequence operation and the contents of XA are 
stored in an exchange package whenever an exchange sequence 
occurs. 

F register-the 9-bit F register contains flags that, whenever 
set, indicate interrupt conditions causing initiation of an exchange 
sequence. The interrupt conditions are: normal exit, error exit, do 
interrupt, uncorrected memory error, program range error, 
operand range error, floating-point overflow, real-time clock 
interrupt, and console interrupt. 

M register-the M (mode) register is a three-bit register that 
contains part of the exchange package for a currently active 
program. The three bits are selectively set during an exchange 
sequence. Bit 37, the floating-point error mode flag, can be set or 
cleared during the execution interval for a program through use of 
the 0021 and 0022 instructions. The other two bits (bits 38 and 39) 
are not altered during the execution interval for the exchange 
package and can only be altered when the exchange package is 
inactive in storage. Bits are assigned as follows in word two of the 
exchange package. 

Bit 37-Floating-point error mode flag. When this bit is set, 
interrupts on floating-point errors are enabled. 

Bit 3CUncorrectable memory error mode flag. When this big 
is set, interrupts on uncorrectable memory parity errors are 
enabled. 

Bit 39-Monitor mode flag. When this bit is set, all interrupts 
other than parity errors are inhibited. 

Integer Arithmetic 

All integer arithmetic is performed in %-bit or 64-bit 2’s 
complement form. 

Floating-point Arithmetic 

Floating-point numbers are represented in signed magnitude 
form. The format is a packed signed binary fraction and a biased 
binary integer exponent. The fraction is a 49-bit signed magnitude 



Chapter 44 I The CRAY-1 Computer System 749 

value. The exponent is 15-bit biased. The unbiased exponent 
range is: 

2-20000s to 2i-177778 

or approximately 

10-2500 to 10+2500 

An exponent equal to or greater than 2+- is recognized by the 
floating-point functional units as an overflow condition, and causes 
an interrupt if floating point interrupts are enabled. 

Chaining 

The chaining technique takes advantage of the parallel operation 
of functional units. Parallel vector operations may be processed in 
two ways: (a) using different functional units and V registers, and 
(b)chaining; that is, using the result stream to one vector register 
simultaneously as the operand set for another operation in a 
different functional unit. 

Parallel operations on vectors allow the generation of two or 
more results per clock period. A vector operation either uses two 
vector registers as sources of operands or uses one scalar register 
and one vector register as sources of operands. Vectors exceeding 
64 elements are processed in 64-element segments. 

Basically, chaining is a phenomenon that occurs when results 
issuing from one functional unit (at a rate of onelclock period) are 
immediately fed into another functional unit and so on. In other 
words, intermediate results do not have to be stored to memory 
and can be used even before the vector operation that created 
them runs to completion. 

Chaining has been compared to the technique of “data 
forwarding” used in the IBM 3601195. Like data forwarding, 
chaining takes place automatically. Data forwarding consists of 
hardware facilities within the 195floating-point processor commu- 
nicating automatically by transferring “name tags,” or internal 
codes between themselves [O’Murphy and Wade, 19701. Unlike 
the CRAY-1, the user has no access to the 195’s data-forwarding 
buffers. And, of course, the 195 can only forward scalar values, not 
entire vectors. 

Interrupts and Exchange Sequence 

Interrupts are handled cleanly by the CRAY-1 hardware. Instruc- 
tion issue is terminated by the hardware upon detection of an 
interrupt condition. All memory bank activity is allowed to 
complete as are any vector instructions that are in execution, and 

then an exchange sequence is activated. The Cray Operating 
System (COS) is always one partner of any exchange sequence. The 
cause of an interrupt is analyzed during an exchange sequence and 
all interrupts are processed until none remain. 

Only the address and scalar registers are maintained in a 
program’s exchange package (Fig. 6). The user’s B, T, and V 
registers are saved by the operating system in the user’s Job Table 
Area. 

The CRAY-1’s exchange sequence will be familiar to those who 
have had experience with the CDC 7600 and Cyber machines. 
One major benefit of the exchange sequence is the ease with 
-

0 2 1 0 1 2  16 18 24 31 36 40 	 63 

n 

n s  I 

n t 2  


n +  3 

n *  4 

n +  s 
n +  6 

n +  7 

n + e  . 	 so 

5 1 
n c 9  

n+io 	 52 

53
n t i i  . 
n + 12 	 s4 


s s 
1 t 1 3  

I t 1 4  , 	
5 6  

?.In + t s  i 	 L 

M - Modest Reqisters 

36 Interrupt on correctable S Syndrome b i t s  


memory error RAB Read address for  error 
37 Interrupt on f loat ing  point (where 8 i s  bank) 
38 Interrupt on uncorrectable P Program address 

memory error BA Base address 

39 Monitor mode LA Limit address 


F - Flagst XA Exchange address 


31 Console interrupt VL Vector length 

32 RTC interrupt E - Error type ( b i t s  0.1) 
33 Floating point error 10 Uncorrectable memory 
34 Operand range 01 Correctable memory 
35 Program range 
36 Memry error R - Read mode ( b i t s  10,ll) 
37 1/0 interrupt 00 Scalar 
38 Error e x i t  01 I/O 
39 Normal e x i t  10 Vector 

11 Fetch 

‘Bit position from l e f t  of word 

Fig. 6. Exchange package. 



750 Part 3 1 Computer Classes 

which user jobs can be relocated in memory by the operating 
system. On the CRAY-1, dynamic relocation of a user job is 
facilitated by a base register that is transparent to the user. 

Evolution of the CRAY-1 

The CMY-1 stems from a highly successful line of computers 
which S. Cray either designed or was associated with. Mr. Cray 
was one of the founders of Control Data Corporation. While 
at CDC, Mr. Cray was the principal architect of the CDC 
1604, 6600, and 7600 computer systems. While there are many 
similarities with these earlier machines, two things stand out 
about the CRAY-1: first it is a vector machine; second it 
utilizes semiconductor memories and integrated circuits rather 
than magnetic cores and discrete components. We classify the 
CRAY-1 as a second generation vector processor. The CDC 
STAR lOOA and the Texas Instruments ASC are first-generation 
vector processors. 

Both the STAR 100 and the ASC are designed to handle long 
vectors. Because of the startup time associated with data stream- 
ing, vector length is of critical importance. Vectors have to be long 
if the STAR 100 and the ASC vector processors are to be at all 
competitive with a scalar processor [Calahan, Joy, and Orbits, 
n.d.1. Another disadvantage of the STAR 100 architecture is that 
elements of a “vector” are required to be in consecutive address- 
es. 

In contrast with these earlier designs, the CMY-1 can be 
termed a short vector machine. Whereas the others require vector 
lengths of a 100or more to be competitive with scalar processors, 
the cross-over point between choosing scalar rather than vector 
mode on the CRAY-1 is between 2 and 4 elements. This is 
demonstrated by a comparison of scalarhector timings for some 
mathematical library routines shown in Fig. 7.’ 

Also, the CMY-1’s addressing scheme allows complete flexibili- 
ty. When accessing a vector, the user simply specifies the starting 
location and an increment. Arrays can be accessed by column, 
row, or diagonal; they can be stepped through with nonunary 
increments; and, there are no restrictions on addressing, except 
that the increment must be a constant. 

Vector Startup Times 

To be efficient at processing short vectors, vector startup times 
must be small. On the CRAY-1, vector instructions may issue at a 
rate of one instruction parcel per clock period. All vector 

IWork done by Paul Johnson, Cray Research. 

Section 4 1 Maxicomputers 

COST (CLOCK PERIODS/RESULT) 
340 
320 
300 
280 
260 
240 
220 
200 
iao 
160 ALOG 
140 
120 

cos 
SQRT 

100 EXP 

80 
60 
40 

20 
0 

cos 
ALOG 
SORT 
EXP 

1 10 20 30 40 50 60 64 
VECTOR LENGTH 

Fig. 7. Scalarhector timing. 

instructions are one parcel instructions (parcel size = 16 bits). 
Vector instructions place a reservation on whichever functional 
unit they use, including memory, and on the input operand 
registers. In some cases, issue of a vector instruction may be 
delayed by a time (in clock periods) equal to vector length of the 
preceding vector operation + 4. 

Functional unit times are shown in Table 2. Vector operations 
that depend on the result of a previous vector operation can 
usually “chain” with them and are delayed for a maximum “chain 
slot” time in clock periods of functional unit time + 2.  

Once issued, a vector instruction produces its first result after a 
delay in clock periods equal to functional unit time. Subsequent 
results continue to be produced at a rate of 1per clock period. 
Results must be stored in a vector register. A separate instruction 
is required to store the final result vector to memory. Vector 
register capacity is 64-elements. Vectors longer than 64 are 
processed in 64-element segments. 

Some sample timings for both scalar and vector are shown in 
Table 3.2 Note that there is no vector ASIN routine and so a 
reference to ASIN within a vectorized loop generates repetitive 
calls to the scalar ASIN routine. This involves a performance 
degradation but does allow the rest of the loop to vectorize (in a 
case where there are more statements than in this example). 
Simple loops 14, 15, and 16show the influence of chaining. For a 
long vector, the number of clock periods per result is approxi- 
mately the number of memory references + 1.In loop 14, an extra 
clock period is consumed because the present CFT compiler will 
load all four operands before doing computation. This problem is 

Work done by Richard Hendrickson, Cray Research. 



Chapter 44 I The CRAY-1 Computer System ,751 

Table 3 Execution Time in Clock Periods per Result for Various Simple DO 
Loops of the Form 

DO 10 I = 
10 A(1) = 

l ,N 
B(1) 

10 100 loo0 

5.5 2.6 2.5 

5.8 .2.7 2.5 

6.9 2.9 2.6 

8.2 3.9 3.7 

7.0 2.9 2.6 

8.3 4.0 3.7 

10.8 4.1 3.7 

13.3 7.6 7.2 

61.O 33.3 31.4 

209.5 189.5 188.3 

7.5 2.9 2.6 

11.2 5.2 4.8 


12.7 6.3 5.8 


16.0 7.7 7.1 

14.7 6.6 6.0 

12.7 5.5 5.0 


Loop bodu 

1. A(/) = 
2. A(/) = 
3. A(/) = 
4. A(/) = 
5.A(/) = 

6.A(/) = 
7. A(/) = 
8.A(/) = 
9.A(/) = 
10.A(/) = 

N = l  

41.O 

44.0 

55.0 

59.0 

56.0 

60.0 

94.0 

89.0 

462.0 

430.0 

61.O 

80.0 


90.0 


110.0 

113.0 

95.0 


1000 

Scalar 

22.5 

31.O 

37.O 

41.O 

38.0 

42.0 

52.0 

60.0 

198.1 

169.1 


47.0 


57.0 

63.0 

52.0 


CALL statements are not currently vectorized. Loops may 
contain function references if the hnction is known to the 
compiler to have a vector version. Most of the mathematical 
functions in the CRAY library are vectorizable. By using the 
vector mask and vector merge features of the CRAY-1, future 
versions of the compiler will be able to vectorize loops containing 
I F  and GO TO statements. 

Early experience with CFT has shown that most Fortran loops 
will not run as fast as optimally hand-coded machine language 
equivalents. Future versions of CFT will show improved loop 
timings due mainly to improved instruction scheduling. 

Other CRAY-1 software includes Cray Assembler Language 
(CAL) which is a p o w e h l  macro assembler, an overlay loader, 
a full range of utilities including a text editor, and some debug 
aids. 

Front-End Computer Interface 

The CRAY-1 was not designed for stand-alone operation. At the 
very minimum a minicomputer is required to act as a conduit 
between the CRAY-1 and the everyday world. Cray Research 
software development is currently being done using a Data 

~ 

1 .  
B(I)

B(/) + 10. 

B(l) + C(I) 

B(/)*lO. 

B(/)*C(I) 
B(/)/lO. 
B(/)/C(I) 
SIN(B(1))

ASIN(B(1)) 


~~ 

12. A(/) = AMAXl(B(I), C(/))
C(/)= A(/){13. A(/) = B ( / ) }  
B(1) = C(/) 

14.A(/) = B(I)*C(I) + D(I)*E(I) 
15.A(\) = B(I)*C(I) i-(D(I)*E(I)) 
16.A(/) = B(/)*C(I) + D(I) 

11. A(/) = ABS(B(1)) 

overcome in loop 15by helping the compiler with an extra set of 
parentheses. 

Software 

At the time of this writing, first releases of the CRAY Operating 
System (COS) and CRAY Fortran Compiler (CFT) have been 
delivered to user sites. cos is a batch operating system capable of 
supporting up to 63 jobs in a multiprogramming environment. 
cos is designed to be the recipient of job requests and data files 
from front-end computers. Output from jobs is normally staged 
back to the front-ends upon job completion. 

CFT is an optimizing Fortran compiler designed to compile ANSI 
66 Fortran IV to take best advantage of the CRAY-1’s vector 
processing architecture. In its present form, CFT will not attempt 
to vectorize certain loops which, due to dependence conditions, 
appear at first sight, unvectorizable. 

However, future versions of CFT will be designed to eliminate 
as many dependency conditions as possible increasing the amount 
of vectorizable code. Basically, to be vectorizable, a DO loop 
should manipulate arrays and store the results of computations in 
arrays. Loops that contain branches such as GO TO’S, IF’S, or 



752 Part 3 1 Computer Classes 

General Eclipse computer in this category. The Cray Research 
“A” processor, a 16-bit, 80 MIPS minicomputer is scheduled to 
replace the Eclipse in early 1978. Front-end computers can be 
attached to any of the CRAY-1’s 12 i/o channels. 

The physical connection between a front-end computer and the 
CRAY-1 is shown in Fig. 8. In this example an IBM 3701168 is 
assumed in the front-end role. Note that each computer requires a 
channel adapter between its own channel and a Cray Research 
phase-modulated long line. The link can only be driven at the 
speed of its slowest component. In this example it is the IBM 
block multiplexer channel speed of 3 megabytes/second. The 
discipline of the link is governed by the Cray Link Interface 
Protocol. 

CRAY-1 Development Problems’ 

Two of the most significant problems encountered on the way to 
the CRAY-1 were building the first cold bar and designing circuits 
with a completely balanced dynamic load. 

Building the Cold Bar 

It took a year and a half of trial and error before the first good cold 
bar was built. The work was done by a small Minnesota company. 
A major problem was the discovery, quite early, that aluminum 
castings are porous. If there is a crack in the stainless steel tubing 
at the bond between the tubing and the elbow then the Freon 
leaks through the aluminum casing. The loss of the Freon is not 
itself a problem, but mixed with the Freon is a little oil, and the oil 
can cause problems if it is deposited on the modules. Aluminum 
also tends to get bubbles in it when it is cast, requiring a long 
process of temperature cycling, preheating of the stainless steel 
tube, and so on. 

’This section on CMY-1 development problems is based on remarks made 
by Seymour Cray in a speech to prospective CRAY-1 users in 1975. 

PHASE MODULATE0 LONG L I N E  

64X.lO6 bos IBM 3701168 

90 METERS 

Fig. 8. Front-end system interface. 

Section 4 I Maxicomputers 

Designing the Circuits 

CRAY-1 modules are 6 inches wide. The distance across the board 
is about a nanosecond which is just about the edge time of the 
electrical signals. Unless due precautions are taken, when electric 
signals run around a board, standing waves can be induced in the 
ground plane. Part of the solution is to make all signal paths in the 
machine the same length. This is done by padding out paths with 
foil runs and integrated circuit packages. All told, between 10 and 
20 per cent of the IC packages in the machine are there simply to 
pad out a signal line. The other part of the solution was to use only 
simple gates and make sure that both sides of every gate are 
always terminated. This means that there is no dynamic compo- 
nent presented to the power supply. This is the principal reason 
why simple gates are used in the CRAY-1. If a more complex 
integrated circuit package is used, it is impossible to terminate 
both sides of every gate. So all of the CRAY-1’s circuits are 
perfectly balanced. Five layer boards have one ground layer, two 
voltage layers, and then the two logic layers on the outside. 
Twisted pairs which interconnect the modules are balanced and 
there are equal and opposite signals on both sides ofthe pairs. The 
final result is that there is just a purely resistive load to the power 
supply! 

Summary 

The design of the CRAY-1 stems from user experience with first 
generation vector processors and is to some extent, evolved from 
the 7600 Auerbach [n.d.]. The CRAY-1 is particularly effective at 
processing short vectors. Its architecture exhibits a balanced 
approach to both scalar and vector processing. In Keller [1976], 
the conclusion is drawn that the CRAY-1 in scalar mode is more 
than twice as fast as the CDC 7600. Such good scalar performance 
is required in what is often an unvectorizable world. 

At the time of this writing, Cray Research has shipped CRAY-1 
systems to three customers (Los Alamos Scientific Laboratory, 
National Center for Atmospheric Research, and the European 
Center for Medium Range Weather Forecasts) and has contracts to 
supply three more systems, two to the Department of Defense, 
and one to United Computing Systems (UCS). Production plans 
already anticipate shipping one CRAY-1 per quarter. As the 
population of CRAY-1 computers expands, it will become clear 
that the CRAY-1 has made a significant step on the way to the 
general-purpose computers in the future. 

References 

Auerbach [n.d.]; Calahan, Joy, and Orbits [n.d.]; Computer 
World [1976]; Keller [1976]; O’Murphy and Wade [1970]; Reeves 
[1975]. 



Chapter 45 

The TI ASC: A Highly Modular and 
Flexible Super Computer Architecture1 

W.J. Watson 

Introduction 

Early in 1966, a large computer development program was begun 
by Texas Instruments. The goal for this effort was to provide 
needed capacity for supporting seismic processing, plus offering a 
general super computer capability in the support of new markets. 

This development has resulted in the Advanced Scientific 
Computer (AX)-a highly modular system offering a wide 
spectrum of computing power and configurability. 

Overview of the System 

The major subsystems of a typical configuration are shown in Fig. 
1: the central memory, the central processor, the peripheral 
processor, on-line bulk storage, a digital communications inter- 
face, plus a selection of standard peripherals. 

The peripheral processor has been designed for executing the 
operating system. The central processor has been designed 
expressly to provide high computing power for large arrays of 
data. The central processor operates as a slave to the peripheral 
processor. This design approach was chosen to maximize the 
overlapping of system overhead tasks with the execution of user 
programs. In operation the job stream is analyzed by the 
peripheral processor. The language processors, plus user object 
code, are executed by the central processor. System control and 
IiO tasks are processed by the peripheral processor. 110is routed 
through high-speed, head-per-track disc storage. A data commu- 
nications interface for the common carriers is provided for the 
support of remote batch and interactive terminals. Standard types 
of peripherals are also provided. The central memory serves as the 
common access communications and access storage medium for 
these subsystems. 

Central Memory 

The ASC central memory consists of a memory control unit 
(MCU) and appropriately sized modules of high-speed or 

‘Proc. AFlPS FICC, 1972, pp. 221-228. The section on software 
beginning on p. 759 is excerpted from Dean [1973]. 

CENTRAL 
DISC STOMGEI I MEPORV 

DATA COnflUNlCATIONS COMON CARRIERS m 
PERIPHERALS 

I 
Fig. 1. Major ASC subsystems. 

medium-speed central memory. Optionally, a medium-speed 
central memory extension can be used in conjunction with a 
high-speed memory. 

The MCU is organized as a two-way, 256-bitkhannel (8-word) 
parallel access traffic net between eight independent processor 
ports having full accessibility to all memories. The nine memory 
buses are organized to provide eight-way interleaving for the first 
eight buses with the ninth bus used for the central memory 
extension. The MCU provides the facilities for controlling access 
from the eight processor ports to a CM having a %-bit address 
space (16 million words). A port expander can be utilized to 
expand the number of processor ports. Fig. 2 illustrates this 
structure. 

The MCU is designed to operate asynchronously, independent 
of cable delays, processor clock rates, and memory unit access and 
cycle times. This capability allows for a great deal of flexibility to 
accommodate improvements in memory or processor technologies 
which may be desired. The MCU is capable of handling a 
maximum data transfer rate of 80 million words per second per 
port, giving a total transfer capacity of 640M words per second. 
Therefore, a significant capacity beyond today’s memory and 
processor speeds is available in the MCU. 

The semiconductor high-speed central memory modules have a 
cycle time of 160 ns and a read time of 140 ns. Additionally, all 
transfers are 256 bits (eight 32-bit words) with a Hamming code 
providing single-bit error correction and double-bit error detec- 
tion for each 32-bit word. High-speed central memory is typically 
divided into eight equal sized modules which permits eight-way 
interleaving. A patch board within the MCU controls the memory 
address decoding and sets the interleaving pattern. 

The optional central memory extension provides for large 

753 




754 Part 3 I Computer Classes 

lTERLEAVED 
IGH-SPEED OR 
:DIUM-SPEED 
IMORY MODULES 

Fig. 2. Modular structure of the ASC central memory. 

amounts of relatively economical medium-speed memory to be 
utilized in support of the high-speed central memory. The 
memory extension uses 1 ps semiconductor technology and is also 
accessed in 8-word increments. Single-bit error correction is 
provided at the 8-word level. The central memory extension is 
included in the address space of the central memory and, 
therefore, can be addressed by a processor or channel controller 
for instructions or operands. It is also possible to effect block 
transfers of data between high-speed memory and the memory 
extension. This is possible because both a normal memory bus and 
a memory access port are provided. Block transfers are initiated 
by the peripheral processor with the specification of the source 
starting address, the destination starting address, and the block 
length. The block transfer proceeds automatically at 40M words 
per second, and the peripheral processor is notified upon 
completion. 

The central memory size is limited only by the %-bit address 
(16 megawords). The proportions of fast memory and memory 
extension may be varied in order to balance memory capacities to 
suit the particular system requirements. The present high-speed 
memory module is modular from 16K to 128K 32-bit words. This 
permits memories from 128K to one million words to be 
configured. 

Central memory management and access control of memory 
ports is achieved through the use of two facilities: map registers 
and protect registers. Each user program has its own unique page 
address map. Page addresses not required by the program are 
mapped into absolute page zero which is not accessible to the CP. 
When a program is loaded into memory, it will likely be loaded 

Section 4 I Maxicomputers 

into discontiguous memory pages. During program execution, 
program developed page addresses are converted, without execu- 
tion time penalty, to actual page addresses by the map registers. 
Because a reference to page zero is denied and the relevant 
processor notified, the map registers provide for inter-user 
memory protection. Figure 3 shows the mapping scheme. 
Desired page sizes depend on the amount of central memory and 
the problem mix of a particular installation. Four different page 
sizes may be specified for an ASC system, varying from 4K to 
256K words. A program may utilize any one of the page sizes 
available. 

The protect registers allow for intra-user protection. These 
registers consist of three pairs of bounds registers for defining the 
upper and lower addresses of access for read, write, or execute 
areas. The five combinations of protection presently used by the 
system software with the bounds registers are: 

Execute Only 
Read Only 
Execute, Read, No Write 
Read, Write, No Execute 
Read, Write, Execute 

An attempt to reference an area out of bounds for a particular 
control state is denied and the processor notified of the attempted 
violation. 

In large ASC systems, more processors and control units 
require additional access ports to memory. In these cases memory 
port expanders are utilized to provide additional ports and are 
utilized to service the devices not requiring the full bandwidth of a 
memory port. Each memory access port expander provides a 1:4 
expansion with a maximum bandwidth degradation of ten percent; 

Fig. 3. Memory mapping. 



Chapter 45 1 The TI ASC: A Highly Modular and Flexible Super Computer Architecture 755 

i.e., from 80 million 32-bit words per second to approximately 72 
million 32-bit words per second. These expanders can be concate- 
nated to provide further increases in connectivity. Priorities at the 
single access port interface are resolved on either a fixed or 
distributed basis. The mode is selected by patch card wiring in the 
expander hardware. 

Central Processor 

The central processor (CP) providgs both scalar (single operand) 
and vector (array) instructions at the machine level. The basic 
instruction size is 32 bits, with 16-, 32-, or 64-bit operands. The 
single instruction stream, which contains a mixture of scalar and 
vector instructions, is preprocessed by the instruction processing 
unit. 

The central processor design is such that one, two, three, or 
four execution units or "pipes" can be provided. These units 
employ the pipeline concept in both scalar and vector modes. A 
single execution unit can have up to twelve scalar instructions in 
process at one time. From one to four vector results can be 
produced every 60 ns, depending on the number of execution 
units provided. 

The CP has 48 program-addressable registers. This group of 
32-bit registers consists of sixteen base address registers, sixteen 
arithmetic registers, eight index registers, and eight vector 
parameter registers. This last group is used to extend the 
instruction format for the complete specification of vector instruc- 
tions. The basic instruction format is shown as it relates to these 
register groups in Fig. 4. 

The CP scalar instruction repertoire includes an extensive set of 
Load and Store instructions: halfword, fullword, and doubleword 
instructions, with immediate, magnitude, and negative operand 

capabilities. Ability to load and store register files and to load 
effective addresses is also available. Arithmetic scalars include 
various adds, subtract, multiply, and divide for halfword (16-bit) 
and fullword (32-bit) fixed point numbers and fullword and 
doubleword (64-bit) floating point numbers. Scalar logical instruc- 
tions are provided as are arithmetic, logical, and circular shifts. 
Various comparison instructions and combination comparison- 
logical instructions are provided for halfword, fullword, and 
doublewords. Many combinations of test and branching instruc- 
tions with incrementing or decrementing capability are also 
available. Stacking and modifying arithmetic registers can be done 
with single instructions. Subroutine linkage is accomplished 
through Branch and Load instructions. Format conversion for 
single and doublewords, as well as normalize instructions, are 
available. 

The vector capabilities of the CP are made available through the 
use of VECTL (vector after loading vector parameter file) and 
VECT (assumes parameter file is already loaded) instructions. The 
vector repertoire includes such arithmetic operations as add, 
subtract, multiply, divide, vector dot product, matrix multiplica- 
tion, and others for both fixed point and Boating point representa- 
tions. Vector instructions are also available for shifting; logical 
operations; comparisons; format conversions; normalization; and 
special operations-such as Merge, Order, Search, Peak Pick, 
Select and Replace, among others. 

One important characteristic of the vector instruction capability 
is the ability to encompass three dimensions of addressability 
within a single vector instruction. This is equivalent to a nest of 
three indexing loops in a conventional machine. 

The basic structure of the CP, shown in Fig. 5, has three major 
components: the instruction processing unit (IPU) for non-
arithmetic stages of instruction processing for the CP instruction 
stream, the memory buffer unit (MBU) to provide operand 

I 
4 4 4 I2 

VECTOR 


R E G I S T E R 5  


E F F E C T l V E  AODRESS ( M  T . N  


Fig. 4. Instruction format and register groups. Fig. 5. Basic structure of the CP. 



756 Part 3 I Computer Classes 

interfacing with the central memory, and an arithmetic unit (AU) 
to perform the specified arithmetic or logical operations. Figure 5 
shows a CP diagram for 2- or 4-pipeline CP’s, each with a 
corresponding number of MBU-AU pairs. Note that a memory 
port is required for the IPU and, in addition, one memory port for 
each pipeline (MBU-AU pair) in a CP. 

A significant feature of the CP hardware is an operand 
look-ahead capability which causes memory references to be 
requested prior to the time of actual need. Double buffering in 
multiple 8-word (octet) buffers for each pipeline provides a 
smooth data flow to and from each arithmetic unit. The pipelined 
AU achieves its highest sustained flow rate in the vector mode, 
typically a result each 60 ns per AU. 

Instruction Processing Unit 

The primary function of the instruction processing unit (IPU) is to 
supply a continuous stream of instructions for execution by the 
other parts of the CP. One Central Memory port is required to 
provide the instruction stream. Two 8-word (octet) buffers are 
utilized to achieve a balanced stream of instructions from memory 
to the IPU. Instructions are transferred from memory in octets as 
are all other references to memory for fetching or storing of 
information. 

The following functions are performed by the IPU: (1)instruc-
tion fetch, (2) instruction decode, (3) register operand selection, 
(4) effective address development through indexing and/or indi- 
rect addressing, (5)immediate operand development, (6)branch 
address development, (7) determination of branch condition, (8) 
storage of AU results into the register file, (9) scalar hazard and 
register conflict resolution, (10) generation of vector starting 
addresses, and (11)transmittal of vector parameters to the MBU 
during vector initialization. 

Up to 36 instructions in various stages of execution can be 
overlapped within the 4-pipe CP. There are twenty positions for 
instructions in the 2-pipe CP and twelve positions for instructions 
in the 1-pipe CP. Four levels are contained within the IPU, and 
eight levels are contained in each arithmetic pipeline (MBU-AU 
pair). In addition to the previously mentioned functions, the IPU 
performs routing of instructions to the MBU-AU pairs based on an 
optimum use of arithmetic unit capability. 

Vector processing is altered by software in order to distribute 
segments of the vector for multiple pipe systems. 

Several features are provided to alleviate the potential prob- 
lems of branches and instruction dependencies in the instruction 
pipeline. The Prepare-to-Branch instruction, used extensively by 
the Fortran compiler, increases the execution speed of branches, 
particularly important in loop iterations. This instruction provides 
the IPU control hardware with advance address information to 
facilitate uninterrupted instruction processing. Instruction depen- 

Section 4 I Maxicomputers 

dencies are recognized by the hardware. It scans the instruction 
stream and distributes the independent instructions across 
MBU-AU pairs to insure proper, yet efficient, execution sequenc- 
es. 

Memory Buffer Unit 

The memory buffer unit (MBU) provides an interface between 
central memory and the arithmetic unit. Its primary function is to 
supply the arithmetic unit with a continuous stream of operands 
from memory and to provide for the storing of the results back to 
memory. Note that all references to memory, whether for fetching 
or storing, are made in 8-word increments (octets). 

The MBU has three double buffers, one octet per buffer, called 
the “X” and “Y” buffers for input and the “Z” buffers for output. 
This double buffering is provided so that pipeline processing can 
be sustained at a high rate with minimal memory access conflicts. 
These buffers are illustrated in Fig. 6. 

During scalar operations, data specified by effective addresses 
developed in the IPU are fetched or stored as required. The Z 
buffer can be transferred directly to the X or Y buffers so that 
memory references are not necessary for scalar operands which 
reside in the Z buffer. 

For most vector operations, two operand data strings are 
fetched, while a result data string is stored. Addresses for 
sustaining the vector operations are computed in the MBU using 
parameters initially specified by the vector parameter file. 

Arithmetic Unit 

The primary function of a CP arithmetic unit (AU) is to perform 
the arithmetic operations specified by the operation code of the 
instruction currently at the AU level. There is one AU per pipeline 

MEMORY BUFFER U N I T  

TO IMEMORY 
CONTROL 4 

U N I T  I I 

X Y z 

Fig. 6. Multiple operand streams in the memory buffer unit. 



Chapter 45 

FLOATING ADD F I X E D  M U L T  

I 

RECEIVER REGISTER 

EXPONENT SUBTRACT 

I 

ALIGN i 
I I 

+
I # 

I 

ACCUMULATE1-Ij 
I 

OlJTPUTw 

RESULT RESl lLT 

Fig. 7. Arithmetic unit pipeline concept. 

in the CP, each having a 60 ns basic cycle time. A distinguishing 
feature of an AU is the pipeline structure which allows efficient 
execution of the arithmetic part of all instructions. There are eight 
exclusive partitions of the AU pipeline involved, each of which can 
provide an output every 60 ns. These eight sections are (1) 
received register, (2) exponent subtract, (3) align, (4) add, (5) 
normalize, (6)multiply, (7) accumulate, and (8)output. Figure 7 
shows how different sections of the AU are utilized for execution of 
particular instructions; i.e., floating point addition and fixed point 
multiplication. 

An AU is a 64-bit parallel operating unit for most scalar and 

I The TI ASC: A Highly Modular and Flexible Super Computer Architecture 757 

vector instructions. Exceptions are double length multiply and all 
types of division. In these circumstances various combinations of 
the components of the AU are utilized; and therefore, more than 
one clock cycle is required to complete these arithmetic opera- 
tions. 

Fixed point negative numbers are represented in two's comple- 
ment no tion, and the floating point representation is hexadeci- 
ma1 with 5"the exponent biased by 40(16). 

The Peripheral Processor 

The peripheral processor (PP) is a p o w e h l  multiprocessor 
designed to perform the control and data management functions 
of the ASC. Several aspects of the implementation of the 
peripheral processor concept greatly increase the effectiveness of 
the ASC system. Figure 8 shows the logical organization of the PP. 

The PP is a collection of eight individual processors called 
virtual processors (VP's). Each VP has its own program counter 
along with arithmetic, index, base, and instruction registers. The 
eight VP's share a read only memory, an arithmetic unit, an 
instruction processing unit, and a central memory buffer. Use of 
the common units is distributed among the VP's using sixteen 
single 85 ns cycles. When an equally distributed sequence of time 
units is used, each of the eight VP's receives two 85 ns cycles 
every 1.4 FS. The typical PP instruction requires two 85 ns cycles 
for completion. The distribution of available time units can be 
dynamically varied to suit particular processing requirements. 
Figure 9 illustrates two possible distributions. 

The read only memory within the PP is utilized for program 

I I T I 

SOYY"*IUTIO" 
"rOISTE15 (5") 

Fig. 8. Peripheral processor. 



758 Part 3 I Computer Classes 

Fig. 9. Two possible VP time slot assignments. 

storage and execution of those short routines which are highly 
utilized by the VP’s, such as polling loops. The read only memory 
consists of up to 4K 32-bit words of non-volatile memory elements 
with a cycle time of less than 85 ns. It is modular in 256-word 
increments. 

Because the PP is intended to perform control functions rather 
than execute mathematical algorithms, the instruction set is 
oriented toward control operations and does not require multipli- 
cation, division, or floating point operations. The instruction 
format is similar to that of the central processor, using a 32-bit 
word for each instruction. Instructions are provided for bit (1bit), 
byte (8 bits), halfword (16 bits), and fullword (32 bits) operations. 

Each VP has direct access to the entire central memory for 
program execution and data storage. Therefore, a single copy of 
reentrant code can be executed simultaneously by more than one 
VP. 

The communications register (CR)file contains sixtp-four 32-bit 
word registers which are program addressable by the VP’s. The 
CR file serves as the principal storage medium for control 
information necessary for the coordination of all parts of the ASC 
system. Synchronization of communications is achieved between 
a11 processors (CP, VP’s channel controllers, and peripheral unit 
controllers) from interpretation of status bits received from all 
devices into the CR file. 

Disc Storage 

Disc storage is the principal secondary storage system for the ASC 
system. Disc storage consists of head-per-track (H/T)disc systems 
supplemented by positioning-arm disc (PAD) systems. 

Head-per-Track(H/T)Disc System) 

The H/T disc system is a high-performance device whose effective 
performance is further enhanced because the operating system 

Section 4 1 Maxicomputers 

utilizes a shortest-access-time-first (SATF) algorithm [Denning, 
19671 for data transfers. This combination of hardware and 
software provides a very high effective transfer rate. Each HiT 
disc module has a capacity of 25 million 32-bit words with a 
transfer rate of approximately 500K words per second. Using the 
shortest-access-time-first algorithm, access time will average 
approximately 5 ms which results in an exceptionally fast “effec- 
tive” transfer rate. The rotational period of the disc is 32 ms. Each 
H/T disc module has seven discs with fourteen surfaces. Two 
surfaces of the module are used as alternate storage for inoperative 
sections. For data ordering purposes, the discs are divided into 
bands and then further subdivided into sectors of 64 words each. 

Positioning-Arm Disc (PAD) System) 

The PAD system, when utilized to supplement head per track, is 
available in a variety of configurations. Control of PAD systems is 
achieved by use of channel interface, disc controller, and disc 
interface units. From two to eight PAD disc drives may be 
attached to a set of control devices. The number of controllers and 
discs per controller will depend upon the storage and retrieval 
problem requirements. 

The PAD system has a transfer rate of 200K words per second 
and a storage capacity of 25M words per disc drive. Access time is 
divided into two categories: positioning-arm time which is 30 ms 
average with a maximum of 55 ms and average rotational latency 
which is 8.4 ms. Thus, average total access time is approximately 
38 ms. 

Data Communications 

The data communication system is very modular and, thus, 
externally flexible in the various devices which may be utilized for 
communication with the ASC. Data communications are con- 
trolled by a data concentrator which, in turn, interfaces to the 
MCU through a channel control device. 

Data Concentrator 

The data concentrator is a TI-980 minicomputer equipped with 
special-purpose hardware communication interface units on its 
direct memory access ports. The TI-980 is a small, general- 
purpose computer with up to 64K 16-bit words of memory and 
a one-microsecond cycle time. The data concentrator hardware 
is under control of a data communications operating system 
which executes in the TI-980. This operating system provides 
for the functions of buffering, reformating, routing, proto-
col handling, error control and recovery procedures, and 
system control messages. The system services multiple stations 
concurrently. 



Chapter 45 I The TI ASC: A Highly Modular and Flexible Super Computer Architecture 759 

The data communications system presently supports communi- 
cation with three types of stations: high-performance user termi- 
nals, other large computers, and remote concentrators. The 
system can be easily extended to support smaller terminals down 
to the teletype level. These stations may be either remote or local. 
When local, the communication link is implemented with multi- 
ple conductor cables. Since the transfer is asynchronous by word, 
the average transfer rate is very dependent upon cable length with 
a maximum transfer rate of 250,000words per second for distances 
less than 500 feet. 

Remote Links 
Remote links are presently implemented with non-switched, full 
duplex common carrier data transmission facilities. Data is 
transferred over these links synchronously at rates determined by 
the modems and common carrier bandwidths. The data communi- 
cation system supports transfer rates up to a maximum of 240,000 
bits per second. Because the system supports full duplex transmis- 
sion, this capacity typically translates to the ability to support a 
1200 lpm printer simultaneously with a 1000 cpm reader over a 
9600 bps transmission facility. 

Peripherals 

Standard types of magnetic tape drives, card equipment, and 
printers have been interfaced with the ASC. These interfaces are 
attached to primary or secondary memory ports through a variety 
of standard selected and multiplexed data channels. 

Summary 

Preservation of global system modularity concepts in the design of 
the ASC has resulted in a capability for configuring systems having 
a very wide range of cost and capabilities. 

In the memory area capacity, performance, connectivity, 
protection, and mapping are all variable over wide bounds. The 
central processor can be tailored to provide a wide range of 
processing power by using one, two, three, or four pipes. 

The peripheral processor provides for dynamically matching the 
execution rates of up to eight independent instruction streams 
with the task requirements. The highly flexible communication 
register file provides a matrix of 2048 bits which can be manipulat-
ed and sensed by the eight virtual processors. Flexible hardware 
interfaces are provided for coupling these bits to external I/O 
signal lines. Finally, the modular read only program memory of 
the peripheral processor accommodates growth and modifications 
in read only memory resident operating system code. 

An example of a complete system configuration is illustrated in 
Fig. 10. 

Software’ 

At the beginning of the software design effort, several goals were 
established which have directed the development effort. It was 
desired that the system support multi-programming, local and 
remote batch processing, as well as multiple users of the 
previously mentioned interactive terminals. It was considered 
important that the powerful central processor be reserved for the 
scientific computations for which it was designed and that as much 
as possible of the “overhead’ function be performed in the 
Peripheral Processor Unit. It was determined that the first users of 
the ASC had a significant investment in Fortran coded programs. 
Fortran was thus selected as the first high level scientific language 
and it was important that the compiler produce highly efficient 
object code with no change in the source. It was required that an 
extensive file management system be provided with special 
emphasis on privacy of files. It was desired that the services and 
facilities of the system-both hardware and software-be made 
available to the user in a simple and straightforward manner. 
Simple jobs should require only minimal user descriptions and 
knowledge of the inner workings of the operating system should 
not be a requirement for the efficient use of the ASC system. 
Finally, it was recognized that each installation has somewhat 
different workload and priority requirements. Anticipating that 
some of these requirements might be over-looked in the initial 
design, it was thus considered important that the system be 
modular and easily modified to meet each installations’ particular 
needs. 

In the following paragraphs a description of the ASC Fortran is 
given. 

ASC Fortran 

As was mentioned as a design goal, the ASC Fortran was designed 
to accept previously coded Fortran programs. As such, it contains 
ANSI Fortran and Fortran IV as a part of its language, but also 
contains certain extensions. The compiler is designed to optimize 
the execution of the object code on the ASC. It also performs an 
extensive diagnostic analysis complete with a set of appropriate 
output messages. 

In the area of extensions, two new features are worthy of special 
mention. These are the subarray and array cross section. The 
following example illustrates the concepts using three dimensional 

’The section from here to the end of this chapter is excerpted from L.C. 
Dean, “Texas Instructments Advanced Scientific Computer,” Informatie 
juargung, vol. fifteen, no. 4, April 1973, pp. 191-193. 



760 Part 3 1 Computer Classes Section 4 1 Maxicomputers 

YCYQV 

D I S C  C W I M N C L  D I S C  INTEW D I S C  M O W L C  
AND C o n m m L c n  CACC UNIT  2 5  Y W D I D I  

DISC C M N N C L  DISC I N T S W  D I S C  Y O W L S  
AND c o n m o L L c n  FACE UNIT  I ¶  Y WORDS 

1 
C O Y M u N I C A -
71ON C W I N N C L  

CAD C W I N N C L  lwo P A D  D 1 5 C S  
AND c o n m m L E n  

P A D C M A M M C L  LA",;',:S 
AND C o n m o L L E n  

C C * T M U  

C X T C W S W N  TWO CAD D I S C S 
I Y W 0 1 D S  PAD C W N C L  30 Y W O l D S 
AND C o n m o L L r n  

P A 0  C W I N M C L  TWO C A D  D I S C S  
AND C o n m o L L E n  SO Y W O I D S  

Fig. 10. A possible ASC system configuration. 

arrays, although both subarray and array cross section may be As shown, the "parent" array, A, is dimensioned as (50, 20, 30). 
applied to arrays up to a dimension of seven. If in an executable statement of the Fortran source code, the array 

Dimension A (50,20,30) A(*, *, 13)appears, it means the array consisting of all points lying 
0 in the 13th "plane" of the array A. Thus the asterisk in a given 
0 subscript position means to vary that subscript over its defined 
0 range of values in the conventional order. The array cross section 

_ - _ _  A (x ,  *, 13) - - - may also be used as A (*, *, J) where the array defined depends . upon the current value of J. . The subarray statement defines a three-dimensional subset C of 
0 A, with dimensions (4,5, 8),with the point C (1,1, 1)at A (23, 2, 

Subarray C (4,5, 8) a t  A (23,2, 11) 11).The subarray statement may also be used as: Subarray C(1, J, 



Chapter 45 1 The TI ASC: A Highly Modular and Flexible Super Computer Architecture 761 

K) at A (L, M, N) by (P, Q, R) where the current values of I, J, K 
determine the size of the array C, where the current values of L, 
M ,  N determine the position of C within A, and where P, Q, R 
determine the increments to be used on the subscripts of A to 
determine the values in the array C. This latter feature allows the 
array C to be “less dense” than the parent array A. It has 
particular utility when iterative procedures are used and larger 
“g r id  spacing is desired at early stages of the iteration. 

Both the array cross section and the subarray statement are 
powerful new tools to the Fortran programmer. They not only 
allow for more efficient memory utilization and minimize the 
memory to memory data movement, but they allow the program- 
mer to formulate his array processing problem in a more direct 
and convenient manner. Both of these extensions are presently 
under consideration by the X3J3 Standards Committee. They 
have been approved “in principle” by this committee. 

Optimization algorithms within the compiler include such 
conventional areas as constant propagation, elimination of redun- 
dant sub-expressions, reduction in operator strength, register 
assignment, and removal of loop constant assignment statements 
and loop constant expressions from DO loops. Further, it includes 
paired memory fetching techniques, retention of intermediate 
values, and extensive re-ordering of instructions for optimum 
“pipe-line” flow. 

One of the most powerful procedures in the optimization 
algorithms is the automatic conversion of scalar source code into 
vector instructions. The most frequently occurs within DO loops 
and often results in the complete elimination of software indexing. 
Figure 11is an illustration of this process. In Example 1of this 
illustration, the source code appears in standard Fortran. In 
example 2, the array cross-section feature is used. In example 3, 
pure vector representation is employed. Regardless of the source 
code, the ASC Compiler will produce a single vector instruction 
in the object code. In addition to this vectorization, the Compiler 

Dimension M (3,3),N (3,3) 
Integer K 

b 


b 


b 


Example 1. DO 10 J = 1,3 

D O  10 I = 1,3 


10 N (I, J) = M (I, J) -K
. 
0 

Example 2. DO 10 J = 1,3 

10 N(*,J) = M(*,J)-K 


b 


b 


Example 3. N = M-K 

Fig. 11 

uses vector instructions for assignment statements where possi- 
ble, and provides extensive analysis to optimize memory referenc- 
ing (e. g., loop reversal and re-ordering). 

Figure 12 is an illustration of this type of analysis. The original 
source code is given in example 1of that illustration. If no vector 
instructions or memory optimation were employed, the object 
code would require approximately 20,000 clocks. Vectorization 
yields a reduction to 2351 clocks, almost a 10:l improvement. By 
reversing the order of the loops and using temporary storage, the 
execution time can be reduced to 880 clocks even though two 
passes through memory are employed. In example 3, the loops are 
reversed and one is inverted, yielding a further reduction and 
eliminating the need for temporary storage. Finally, in example 4, 
loops are.both inverted and reversed yielding an execution of 437 
clocks. Since 400 items are to be moved this result is probably 
near optimum (only 37 clocks of “overhead). This example is 
obviously a simple one involving only the movement of data, but it 
illustrates the kind of analysis performed by the ASC Compiler in 
optimizing memory references. 

To allow maximum use of mathematical functions within 
instructions which can or should be vectorized, both scalar and 

1 Basic problem 
Dimension A(25,25) 
DO 10 I = 1,20 
DO 10 J = 1,20 

10 A(I,J + 1)= A(I + 1,J) 

2 Reversal of loops 
Reversal of loops introduces fault. This can be  circum- 
vented by introduction of temporary vector. 

DO 10 J = 1,20 
DO 10 I = 1,20 

10 T(1,J) = A(I +1,J) 
DO 20 J + 1,20 
D O  20 I = 1,20 

20 A(I,J + 1)= T(1,J) 

3 Loops reversed and inverted 
This removes the fault without introducing temporary 
vector. 

DO 10 J = 1,20 

DO 10 I = 1,20 


10 A(I,22-J) = A(I + 1,21-J) 


4 Loops reversed and  both inverted 
This has properties of solution 3 but  makes better use 
of memory. 

D O  10 J = 1,20 
D O  10 I = 1,20 

10 A(21-1,22- J) = A(22-1,21- J) 

Fig. 12. Vector optimization. 



762 Part 3 1 Computer Classes Section 4 I Maxicomputers 

“vector” mathematical subroutines are provided. This allows such 
functions as “cosine” to have meaning when the argument is an 
array. For example, COS (A) means: compute the cosine function 
for every element of A when A is an array. 

In general, this will give a performance improvement of 
between 6:l  and 8:1 (depending on the mathematical function) 
over repeated calls to the scalar math routines. There is a slightly 
higher overhead in set up time for the vector math routines, but it 

appears that the cross-over point is about six elements, i.e., if the 
number of arguments is greater than six, it is faster to use the 
vector math pack version. 

References 

Dean [1973];Denning [1967]. 



Family Range, Compatibility, and Evolution 
The relentless pace of technology has fostered the concept of computer systems that 
are related through some architectural similarity. Such sets of related computer 
systems form a family. At least three types of computer families have been historically 
identified. 

Family by evolution. The most primitive relationship is that of cultural compati-
bility, A computer architecture slowly changes over a number of technological 
generations. The basic architectural concepts remain (e.g., stack versus 
general-register) while enhancing the architectural functionality. The PMS 
organization and even the ISP may change. Machine language programs 
written for one family member will not execute on another family member. 
Programs written in high-level languages, with little or no changes, are usually 
transportable between machines. The Burroughs computers (Part 1, Sec. 3), 
the CDC 6600/7600, the CRAY-1 (Part 3, Sec. 4), and the Hewlett-Packard 
calculators (Part 4, Sec. 3) are all examples of families by evolution. 

Family for compatibility. The next strongest family tie is that of program 
compatibility. Successive generations of family members attempt to capture as 
much existing software as possible. Assembly language-level programs 
usually execute directly, since each ISP is a proper superset of its predecessor. 
The machine languages of family members may differ, thus necessitating a 
reassembly or recompilation of transported programs. Frequently compatibility 
is also sought at the PMS level so that peripherals, whose technology changes 
less rapidly than the Pc technology, can be transported between family 
members. The Intel 8080/8086 (Part 3, Sec. 2), the PDP-8 (Part 4, Sec. 2), and 
the IBM System/360-System/370 (Part 4, Sec. 5) are examples of families for 
compatibility. 

Family for range. A family can be planned so that the various members span a 
wide cost and performance range. Total compatibility is sought so that software 
(including machine language) written on any family member can execute 
unmodified on other family members. Peripherals are also interchangeable. 
Thus the cost of developmental efforts in software, peripherals, documentation, 
training, and maintenance is shared among all the family members. The 
PDP-11 (Part 4, Sec. 2), the IBM Systeml360 (Part 3, Sec. 4), and the IBM 
Systemi370 (Part 4, Sec. 5) are examples of families designed for range. 

Part 4 focuses on six families ranging from microcomputers to maxicomputers. 
Each family grew up under a different set of constraints. The evolution of these 
families and the decisions on how to utilize technology are traced. The range, 
compatibility, cost, and costlperformance will be analyzed for each family. 





Section 1 

Microcomputer FamiIies 

The Intel 8080 Family 

Chapter 37 traces the evolution of the Intel 808018086 microcom-
puter family. The family was unplanned, and new technology was 
used to enhance both raw performance and functionality. Because 
of the limits on single-chip complexity when the microcomputer 
was launched in 1971, the Intel ISP base represented by the Intel 
4004 was in many ways more primitive than the PDP-8. Hence 
ISP-level family constraints were not imposed until the successors 
to the Intel 8080 were created. These successors sought either 
machine code-level or assembly language-level compatibility 
with the Intel 8080 (i.e., the user’s symbolic source code for the 
Intel 8080 could be reassembled for the Intel 8086). 

765 



Section 2 

Minicomputer Fam i Iies 

The PDP-8 Family 

The PDP-8 was the first minicomputer. As with many early 
second-generation machines, the popularity and longevity of the 
basic ISP was greatly underestimated. The first applications of 
new technology focused on price reduction while maintaining 
constant performance, although the original PDP-8 had a signifi- 
cant performance increase over its predecessor, the PDP-5. The 
architecture was also subjected to several painful stretches from 
1963 to 1979, including: 

Three changes in the physical I/O bus (from negative- 
polarity logic to positive-polarity logic, then to a unified 
bus, and finally to a reduced-width microcomputer bus) 
Memory expansion from 4 kilowords to 32 kilowords, and 
finally to 128 kilowords 

ISP enhancements, including multiply-divide, and, finally, 
floating-point instruction sets 

The PDP-8 family history (Chap. 46) is an excellent example of the 
problems with maintaining a family with limited growth potential 
(primarily due to the simple ISP) through several technological 
generations. 

The PDP-11 and VAX-11 Family 

As the System1360 was IBhl’s follow-on to the 7090 series, the 
PDP-11 was DEC’s follow-on to PDP-8. The PDP-11 also 
represents a planned family, although one not as tightly controlled 
as the System/360 (see Chap. 47). The implementation tradeoffs 
among the PDP-11 models is discussed in Chap. 39, where a 
simple two-parameter model is developed which relates technolo- 
gy and implementation techniques to performance. The model fits 
PDP-11 data as well as Systernf360 and Systemt370 data. 

It is interesting to note that a PDP-11 now fits on a small 
number of LSI chips (e.g., four) and DEC has developed a 
semantically richer ISP, the VAX-11/780 ISP (Chap. 42). 



Chapter 46 

The PDP-8 Family] 
C. G. Bell 1J. E. McNamara 

Figure 1depicts the PDP-8 family tree. The family ancestry began 
with the Laboratory Instrument Computer (LINC) initially built 
at the MIT Lincoln Laboratory in 1962, which, incidentally, we 
believe was the earliest personal computer. DEC began manufac- 
turing LINC's in 1965. Eventually a PDP-8 and LINC were 
combined in a dual processor called the LINC-8. 

In 1962, the need arose to produce a replacement for an analog 
monitoring system as a front end to a reactor control complex. A 
12-bit real time control computer, the PDP-5, was constructed. 

'Abstracted from C. G. Bell, J. C. Mudge, and J. E. McNamara, 
Computer Engineering:A DEC Viewof Hardware S y s t e m  Design, Digital 
Press, Maynard, Mass., 1978, pp. 175-208. 

-1978 

1976 -

-1974 

-1972 

1970 

-

1968 - Gc 

The analog nature of the initial application was addressed by 
building an analog-to-digital converter into the Accumulator. The 
concept of an l/O bus was introduced instead of the radial IiO 
structure of previous DEC designs. The I/O Bus permitted 
equipment options to be added incrementally from a zero base 
instead of having the pre-allocated space, wiring, and cable 
drivers that characterized the radial structure. This lowered the 
entry cost of the system and simplified the later reconfiguring of 
machines in the field. 

Although the design was optimized around the 4-Kword 
memory, the PDP-5 ultimately evolved to 32-Kword configura- 
tions using a memory extension unit. Similarly, although the base 
machine design did not include built-in multiply and divide 
functions, these were added later in the form of an Extended 
Arithmetic Element. 

While the PDP-5 had been a reasonably successful computer, it 
soon became evident that a new machine capable of far greater 
performance was required. New logic technology promised a 
substantial speed improvement, and new core memory technolo- 
gy was becoming available that would permit the memory cycle 

in-a- chips 
terminal P 

Processor-
on-a-chin 

PDP-BIE 

Omnibus Family 

A PDP-8IL 

'DP-8/1 

-

LINC-8 

1966 -

-

-


-


1964 

-1962 

Fig. I.PDP-8 family tree. 

767 



768 Part 4 1 Family Range, Compatibility, and Evolution 

time to be shortened from 6 microseconds in the PDP-5 to 1.6 
microseconds in the new machine. In addition, the cost of logic 
was now low enough so that the program counter could be moved 
from the memory to a separate register, substantially reducing 
instruction execution times. The new machine was called the 
PDP-8. 

The new 12-bit machine was only half the size of its predeces- 
sor, occupying only half a cabinet. The net small size meant that 
the PDP-8 was the first true minicomputer. It could be placed on 
top of a lab bench or built into equipment. It was this latter 
property that was the most important, as it laid the groundwork 
for the original equipment manufacturer (OEM) purchase of 
computers to be integrated into total systems sold by the OEM. 

Like its predecessor the PDP-5, the PDP-8 was a single-address 
12-bit computer designed for task environments with minimum 
arithmetic computing and small primary memory requirements. 
Typical of these environments were process control applications 
and laboratory applications such as controlling pulse height 
analyzers and spectrum analyzers. 

The PDP-8 was the first of the “8 Family.” A subset, called 
“Omnibus 8“ machines, is introduced later when the PDP-WE, 
PDP-8IM, and PDP-8IA machines are discussed. Finally, comput- 
ers which implement the PDP-8 instruction set in a single 
complementary metal oxide semiconductor (CMOS) chip will be 
referred to as “CMOS-8” based systems. 

The PDP-8, which was first shipped in April 1965, and the 
other 8-Family machines that followed it achieved a production 
status formerly reserved for IBM computers with about 50,000 
machines produced by 1979, excluding the CMOS-8 based 
computers. During the 15 years that these machines have been 
produced, logic cost per function has decreased by orders of 
magnitude, permitting the cost of entire systems to be reduced by 
a factor of 10. Thus, the 8 Family offers a rare opportunity to study 
the effect of technology on implementations of the same instruc- 
tion set processor from early second generation to late fourth 
generation. 

The PDP-8 was followed in late 1966 by the PDP-8IS, a 
cost-reduced version. The PDP-81S was quite small in size, 
scarcely larger than a file cabinet drawer. It achieved its low cost 
by implementing the PDP-8 instruction set in serial fashion. This 
did reduce the cost, but it so radically reduced the performance 
that the machine was not a good seller. 

In 1968, the PDP-811 was produced, using medium-scale 
integration (MSI) integrated circuits to implement the PDP-8 
instruction set with better performance than the PDP-8, and at 
two-thirds the price. For those customers wishing a package with 
less option mounting space but the same performance, the 
PDPSIL was introduced later the same year. 

The PDP-8/S, PDP-8/1, and PDP-8iL are mentioned only 
briefly here because their characteristics were basically dictated 

Section 2 1 Minicomputer Families 

by the cost and performance improvements made possible by the 
emerging integrated circuit technology. The cost and perform- 
ance figures for these machines are examined in greater detail in 
Figs. 4 to 8 and Table 1. 

Shortly after the introduction of the PDP-8IL, it became 
evident that customers wanted a faster and more expandable 
machine. The continuing technological trend toward higher- 
density logic and some new concepts in packaging made it 
possible to satisfy both of these requirements but to still produce a 
new machine that would be cheaper than its predecessor. The 
new machine was the PDP-8IE. The PDP-8IE incorporated an 
adapter for interconnecting to PDP-8II and PDP-81L IIO devices. 
In addition, signal converters were available for interconnecting 
to the older PDP-5, PDP-8, and PDP-8IS IIO devices. Thus it was 
not necessary to design a complete new set of options at the time 
the machine was introduced, and existing customers could 
upgrade to the new computer without having to buy new 
peripherals. The reason for using an adapter to connect to existing 
IIO devices was that the PDP-8IE featured a new unified-bus IiO 
Bus implementation called the Omnibus. 

The Omnibus, which is still in use in the PDP-8/A, has 144 
pins, of which 96 are defined as Omnibus signals. The remainder 
are power and ground. The large number of signals permit a great 
number of intraprocessor communications links as well as IiO 
signals to be accommodated. The Omnibus signals can be 
grouped as ~ O ~ ~ O W S :  

1 	 Master timing to all components 

2 	 Processor state information to the console 

3 	 Processor request to memory for instructions and data 

4 	Processor to IIO device commands and data transfer 

5 	 IIO device to processor, signaling completion (interrupts) 

6 	 IiO Direct Memory Access control for both direct and 
Three Cycle Data Break transfers 

The approximately 30 signals in groups 4 and 5 provide 
programmed IIO capability. There are about 50 signals in group 6 
to provide the Direct Memory Access capability. These 80 signals 
are nearly equivalent in quantity and function to the preceding 
PDP-8 IIO Bus design, making the conversion from Omnibus 
structure to PDP-8II and PDP-8IL IIO equipment very simple. 

The processor for the PDP-8/E occupied three 8- x 10-inch 
boards; 4 Kwords of core memory took up three more boards; a 
memory shield board, a terminator board, a teleprinter control 
board. and the console board completed the minimum system 
configuration. Thus, a total of ten 8- x 10-inch boards formed a 
complete system. The three-board PDP-81E processor, occupying 
240 in2, was in striking contrast to the 100-board PDP-5 processor, 
which occupied 2,100 in2. 



Chapter 46 [ The PDP-8 Family 769 

The PDP-81E implementation was determined by the availabili- 
ty of integrated circuits. Multiplexers, register files, and basic 
arithmetic logic units performed the basic operations in a 
straightforward fashion using a simple sequential controller. 
Microprogrammed control was not feasible because suitable 
read-only memories were not available. Integrated circuit read- 
only memories available at that time were too small, holding only 
about 64 bits. 

The PDP-81E was mounted in a chassis which had space and 
power to accommodate two blocks of Omnibus slots. Thirty-eight 
modules could be mounted in the slots, allowing space for the 
processor and almost 30 peripheral option controllers. Many 
customers wanted to build the PDP-81E into small cabinets and 
have it control only a few things. They found the large chassis and 
its associated price to be more than they wanted. To reach this 
market, the PDP-81M was designed. 

THE PDP-BIM was essentially a PDP-81E cut in half. The 
cabinet had half the depth of a PDP-8/E, and the power supply 
was half as big. There were 18 slots available, enough for the basic 
processor-memory system and about eight options. The processor 
was the same as that for a PDP-8IE. 

By 1975, DEC had been building “hex” size printed circuit 
boards. The hex boards were 8 x 15 inches, half again as big as the 
“quad” boards used in the PDP-8IE and PDP-8IM, which were 8 
x 10 inches. The dimensional difference was along the contact 
side of the board. A hex board had six sets of 36 contacts while the 
quad board had only four sets. Semiconductor memory chips had 
also become available, so a new machine was designed to utilize 
the larger boards and new memories to extend the PDP-BIE, 
PDP-81M to a new, lower price range. The new machine was the 
PDP-8IA. The PDP-8IA processor and register transfer diagram is 
shown in Fig. 2. 

The hex modules permitted some of the peripheral controller 
options that had occupied several boards in the PDP-8IE to fit on a 
single board in the PDP-8IA. The availability of hex boards and of 
larger semiconductor read-only memories permitted the PDP-814 
processor to use microprogrammed control and fit onto a single 
board. It should be noted here that when a logic system occupies 
more than one board, a lot of space on each board is used by etch 
runs going to the connectors. This was particularly true of the 
PDP-81E and PDP-8IM processor boards, due to the contacts on 
two edges of the boards. When an option is condensed to a single 
board. more space becomes available than square inch compari- 
sons would at first indicate because many of the etch lines to the 
contacts are no longer required. 

The first PDP-81A semiconductor memory took only 48 chips (1 
Kbit each) to implement 4 Kwords of memory. Memories of 8 
Kwords and 16 Kwords were also offered. In 1977, only 96 16-Kbit 
chips were needed to form a 128-Kword memory, With greater 
use of semiconductor memory, especially read-only memory, a 

scheme was devised and added to the PDP-8/A to permit 
programs written for read-write memory to be run in read-only 
memory. The scheme adds a 13th bit to the read-only memory to 
signify that a particular location is actually a location that is both 
read and written. When the processor detects the assertion of the 
13th bit, the processor uses the other 12 bits to address a location 
in some read-write memory which holds the variable information. 
This effectively provides an indirect memory reference. 

In 1976, an option to improve the speed of floating-point 
computation was added to the PDP-8IA. This option is a single 
accumulator floating-point processor occupying two hex boards. It 
supports 3- or 6-word floating-point arithmetic (12-bit exponent 
and 24- or 60-bit fraction) and 2-word double precision 24-bit 
arithmetic. As a completely independent processor with its own 
instruction set processor, it has its own program counter and eight 
index registers. The performance, approximately equal to that of 
an IBM 360 Model 40, provides what is probably the highest 
performanceicost ratio of any computer. 

More Omnibus 8 computers (PDP8/E, PDPSIM, PDP-8IA) 
have been constructed than any of the previous models. The high 
demand for this model appears to be due to the basic simplicity of 
the design, together with the ability of the user to easily build 
rather arbitrary system configurations. 

In 1976, Intersil offered the first PDP-8 processor to occupy a 
single chip, using CMOS technology. (Here we should note that 
an internal to DEC processor-on-a-chip effort, the PDP-8IB, 
yielded a design in 1973.) DEC verified that it was a PDP-8 and 
began to apply it to a product in the fall of 1976. In the meantime, 
in additon to Intersil, Harris Semiconductor became a second 
source of chip supply for DEC. 

The CMOS-8 processor block diagram is given in Fig. 3. The 
block diagram looks very much like a conventional PDP-8IE 
processor design using medium scale integrated circuits. It has a 
common data path for manipulating the Program Counter (PC), 
Memory Address (MA), Multiplier-Quotient (MQ), Accumulator 
(AC), and Temporary (Temp) registers. The Instruction Register 
(IR), however, does not share the common arithmetic logic unit 
(ALU). Register transfers, including those to the “outside world,” 
are controlled by a programmable logic array (PLA), as indicated 
by the dotted lines in the figure. 

While the CMOS-8 is the first DEC processor to be built on a 
single chip, the most interesting thing about it is the systems 
configurations that it makes possible. It is not only small in size (a 
single 40-pin chip), but it also has miniscule power requirements 
due to its CMOS construction. Thus, some very compact systems 
can be built using it. 

An excellent example of the use of a CMOS-8 as part of a 
packaged system is the VT78 video terminal. The goals for this 
terminal were to drastically reduce costs by including the 
keyboard, cathode ray tube, and processor in a single package the 

, 




770 Part 4 I Family Range, Compatibility, and Evolution Section 2 I Minicomputer Families 

Table 1 Characteristicsof PDP8 Family Computers 

PDP-5 PDP-8 PDP8IS PDP-8II 

Project start, first ship 9/63 4/65 9/66 4/68 

Goals Lowest cost Cost, much cost; Better cost, 
comp uter, greater tabletop more function 
interfaceability performance than 8 

Applications Process +message Standalone Remote job 
control switch control calculator entry station, 
monitoring; Lab processing TSS18 
laboratory for 

instruments 

Innovationslimprovements I10 bus; Wi re-wrap ; Serial Integrated 
ISP producible; implementation circuits 

low cost bit- 
sample com- 
munications 
controller 

Processor + 4 Kword 25.8 16.2 8.79 11.6 
memory (K$) 

Same + terminal (K$) 27.0 18.0 9.99 12.8 

Price/memory word ($) 1.83 1.83 0.73 1.46 

Processor + 8 Kword + 51.1 38.8 30.4 28.9 
terminal + mass storage 

Memory cycle time 6.0 1.6 8.0 1.5 

Processor Mwor ds 0.1 0.63 0.04 0.67 
accessedls 

Processor bits accessedls/$ 93 466 55 651 

Performance/price improve- . . . . 5.0 0.1 2 11.8 
ment (over predecessor) 

Price improvement . . . .  I .6 1.84 0.76 

Performance improvement . . . . 6.3 0.06 16.75 

Product life (years) 3 5 3 3 

Programmed 110 bus 49 49 43 + Bus 40 

DMA 110 bus 49 49 49 50 

size of an ordinary terminal. The CMOS-8 chip and high density whose program can be loaded (usually via a communications line) 
RAM chips made this possible. To form a complete, stand-alone to take on a variety of characteristics-i.e., it can learn. An 
computer system that supports five terminals, mass storage was intelligent terminal can be used either as part of a network or as a 
added. Because the mass storage was floppy disks, it was not in stand-alone computer system. In the former case, the application 
the terminal but in a small cabinet. Even without the mass is determined by the network to which the terminal is attached, 
storage, however, the VT78 forms an “intelligent terminal.” An but in the latter case, the terminal functions as a desk-top 
intelligent terminal is usually defined to incIude a computer computer running various PDP-8 software. 



Chapter 46 1 The PDP-8 Family 771 

PDPStL PDP-81E PDP-8tM PDP-8tA VT78 

11/68 3/71 6/72 1175 6/77 

Lower cost Easy to configure; Lower cost, Lower cost Cost; complete 
more functions limited system higher density system in a 
better Performance terminal 

+Business data Computer-in-a- Word processing; 
processing, desk desk-top com- 
testing; puter, terminal 

Less package Omnibus Semiconductor Processor-on-a-
memory; chip; low 
floating-point power 
processor 

7.0 4.99 3.69 2.6 NA 

8.5 6.49 5.1 9 4.1 NA 

0.98 0.73 0.61 33.0 NA 

24.1 15.3 .... . . . .  11.6 

1.6 1.3 1.3 1.5 3.6 

0.63 0.76 0.76 0.67 0.28 

1080 1828 2472 3092 .... 
1.65 1.69 1.35 1.25 . . . .  

1.66 1.4 1.35 1.42 .... 
0.94 1.23 1.o 0.87 0.42 

3 7+ 5+ 2+ . . . .  
30 96 8E 8E 5 connectors 

50 . . . .  . . . .  . . . .  . . . .  

Technology, Price, and Psrformance of the 12-Bit Famity technology can be utilized in the computer industry in three ways: 
lower cost implementations as constant performance and function- 

The PDP-8 has been re-implemented 10times with new technolo- ality, higher performance implementations at constant cost, 
gy, from early second-generation to late fourth-generation, over a implementation of new basic structures. Of these three ways, the 
period of 15years. Its implementations have included a minimal PDP-8 Family has primarily used lower cost implementations of 
minicomputer and a minimal microcomputer. The performance constant performance and functionality. 
characteristics of these implementations are given in Fig. 4.New The points in Fig, 5 are arranged to show the cost trends of 



772 Part 4 I Family Range, Compatibility, and Evolution Section 2 I Minicomputer Families 

lPROGRAMMERSI CONSOLE 

I 

Fig. 2. PDP-IIA processor and register transfer diagram. 

three configurations. The first configuration is merely a central 
processor with 4 Kwords of primary memory. The second 
configuration adds a console terminal, and the third configuration 
adds DECtapes or floppy disks for file storage. Note that the basic 
system represented in the first configuration has declined in price 
most rapidly: 22 percent per year in the early days and 15percent 
per year in recent years. The price of primary memory, on the 
other hand, has declined at the rate of 19percent per year, as seen 
in Fig. 6. 

The price and performance trajectories for the PDP-8 family of 
machines are plotted in Fig. 7, with lines of constant price/ 
performance separated at factors of 2. Note that the early 
implementations had significantly lower performance than the 
original PDP-8. Memory performance and instruction execution 

performance were directly related in all of these machines except 
the PDP-5 (which kept the Program Counter in primary memory) 
and the PDP-8IS (which was a serial machine). Thus, with the 
design emphasis on lowering the cost with each new machine, 
performance continued to lag behind that of the PDP-8 until 
higher speed primary memory was available without a cost 
penalty. Other performance improvements, such as the addition 
of floating-point hardware or the addition of a cache, are not 
treated in this comparative analysis. 

Figure 8 gives the performanceiprice ratio for the PDPB 
Family machines. Setting aside the PDP-5 design point, the 
improvement for the 12-bit machines has been 22 percent per 
year. 

Rather than try to fit a single exponential to the performance/ 



Chapter 46 1 The PDP-8 Family 773 

LEGENO 
MULTIPLEXER --

--- INTERNAL CONTROL L I N f S  
EXTERNAL INPUTS-OUTPUTS 
DATA LINES 	

l o t  
09 


-0 8  	 P D P  B I E  

/ 0 y t 8 h  P O P  8 I A  

\. VT7
RESET RUN nLT 
DMAREQ. CPREO 

GENERATOR 

O t 5 "  
O G N O  

CRVSTAL 

a 004 -
2 POP 8/SXTA. XT8 XTC luHLPD M A G N T ' a ~ ~ l 
INTGNT.IFETCH. DEVICE SKP.CO. 003 -

TIMING A N 0  ~ ~ ~ ,MEMORYANO ~ ~C l .  c2 ~ R 
OATAF. RUN 

CONTROL TRANSFER 
LOGIC 

coNrnoL 
U M A R .  OEVSEL 
SWSEL. MEMSEL 

WAIT  (40 PINS1 CPSEL 

O o 2 I  

Fig. 3. Block diagram of CMOS-8. 001 1 1 I I I I I 1 I I 1 1 , 
84 65 68 61 68 69 70 71 12 73 74 75 76 7 7  7 

100 	 YEAR 

9 0 -- NOTE 
80 L l N C  L l N C  8 and P D P  12 
7 0  -	 include 2 L1NCtap.s Fig. 4. Performanceof DEC's 12-bit computer versus time. 
60 -	 (0, D E C t a p e s l  and scopes an 

A I D  conversion 

4 1  

31 

21 

P O P  

1 (  

5 05 
0 0 8  
0 0 1  
2% 0 6  

0 6  

0 44 - = 7 M O  x 0851-19689 

LEGENO 
3 - ~ K W A N O C P U  	 0 3  

0 2P R O G A A M  L O A O N G  DEVICE 

1 USER SYSTEM W I T H  A 8 Kw 2 O E C t a p e i  
IOR fOUIVALENT1 A N 0  HARO COPV 

0 1  l l i l l l l l l l l l l 
65 68 67 68 (19 70 71 12 13 14 7 6  7 6  1 7  7 8  

Y E A R  
Y E A R  

Fig. 5. Price of DEC's 12-bit computers versus time (log). Fig. 6. Price per word of 12-bit memory versus time. 



774 Part 4 1 Family Range, Compatibility, and Evolution 	 Section 2 I Minicomputer Families 

*11/0 OR 
SECONOAIIV 

MEMORY1 

(a) Negative (PDP-5,8,8/S)and 
positive @/I, 8/L) logic families. 

I I I 1 I 
ONMIBUS 196 SlGNALSl 

(b) Omnibus family (PDP-B/E. 8/F.8/M. 8/N. 

CPU PERFORMANCE lMlLLlONS OF ADOITIONS/SECOND~ 

Fig. 7. Price versus performance of DEC's 12-bit computers. 

I I I I 
CMOS I) B U S  :25 5lGNALS 

10.000 

(c) CMOS-8 (6100)processor-on-a-chip family 

1,000 

0 .-.B 
0 


E 
8 
Y 
h 

(d) VT78 computer-in-a-terminal. 
1oa 

Fig. 9. Evolution of PDP-8 family PMS structures. 
0 

PDP-8/S 
price data points in Fig. 8, it might be better to try two 
independent exponentials. The reason for this is that the data 
points really mark the transition between two generations. The 
PDP-5 was a mid-second (transistor) generation machine, and the 

1 1 1 1 ~ ~ ~ ' ' 1 1 ~ ' ~ ~ 1 ~ 

1964 1968 
 1972 1976 1980 	 PDP-8 represents a late second generation machine. The PDPSII 

and PDP-8IL were beginning third (integrated circuit) generation 

Fig. 8. Bits accessed by the central processor/s/$ versus time (for 4 designs. These four machines represent a relatively rapid evolu- 
K word + processor systems). 	 tion from 1963 to 1968. After the PDPS/L, the evolution slows 



Chapter 46 I The PDP-8 Family 775 

somewhat between 1968 and 1977, as medium-scale integrated 
circuits continued to be the implementation technology, and the 
cost of packaging and connecting components continued to be 
controlled by the relatively wide bus structure. 

During their evolution, the DEC 12-bit computers have 
significantly changed in physical structure, as can be seen from 
the block diagrams in Fig. 9. The machines up through the 
PDP-8IL had a relatively centralized structure with three buses to 
interface to memory, program-controlled 110 devices, and Direct 
Memory Access devices. The Omnibus-8 machines bundled these 
connections together in a simpler physical structure. The 
CMOS-8 avoids the wide bus problem by moving the bus to lines 
on a printed circuit board. The number of interconnection signals 
on the bus is then reduced by roughly a factor of 4 to about 25 
signals which can be brought into and out of the chips within the 
number of pins available. 

Figures 4 and 7 illustrate the oscillating priceiperformance 
history of the design evolution summrized below: 

1 	While the PDP-5 was designed to keep price at a mini- 
mum, the PDP-8 had additions to improve the perform- 
ance while not increasing price significantly over that of a 
slower speed design. The cost per word was modestly 
higher with the PDP-8 than with the PDP-5, but the 
PDP-8 had 6 times the performance of a PDP-5. Thus, the 
PDP-8 crosses three lines of constant priceiperformance in 
Fig. 7. 

2 	 The PDP-81S was an attempt to achieve a minimum price 
by using serial logic and a minimum price memory design. 
However, the performance of the PDP-8IS was low. 

The market pressures created by PDPSIS performance 
probably caused the return to the PDP-8 design, but in an 
integrated circuit implementation, the PDP-811. 
The PDP-8/1 was relatively expensive, so the PDP-8IL was 
quickly introduced to reduce cost and bring the design into 
line with market needs and expectations. 
The PDP-81E was introduced as a high performance 
machine that would permit the building of systems larger 
than those possible with the PDP-81L. 
The PDP-8IMwas a lower cost, smaller cabinet version of 
the PDP-81E and was intended to meet the needs of the 
OEM market. 

The design goal of machines subsequent to the PDP-81M has 
been primarily one of price reduction. The PDP-8/A was intro- 
duced to further reduce cost from the level of the PDP-81E and 
PDP-SIM, although some large system configurations are still 
built with PDP-81E machines. The CMOS-8 chips represent a 
substantial cost reduction but also a substantial performance 
reduction. The CMOS-8 performance is one-third that of a 
PDP-8/A, so a stand-alone system using a CMOS-8 is less 
cost-effective than an PDP-8IA when the central processor is used 
as the only performance criterion. The main reason for using 
large-scale integration is the reduced cost and smaller package 
rather than performance. Obviously, the next step is increased 
performance or more memory, or both more performance and 
more memory on the same chip. 



Chapter 47 

The Evolution of the PDP-lI1 

G. G. Bell / J. C. Mudge 

In the original 1970 PDP-11 paper (Chap. 38), a set ofdesign goals 
and constraints were given, beginning with a discussion of the 
weaknesses frequently found in minicomputers. The designers of 
the PDP-11 faced each of these known minicomputer weaknesses, 
and their goals included a solution to each one. This section 
reviews the original goals, commenting on the success or failure of 
the PDP-11 in meeting each of them. 

The weaknesses of prior designs that were noted were limited 
addressability, a small number of registers, absence of hardware 
stack facilities, elementary IiO processing, absence of growth- 
path family members, and high programming costs. 

The first weakness of minicomputers was their limited address- 
ing capability. The biggest (and most common) mistake that can be 
made in a computer design is that of not providing enough address 
bits for meniory addressing and management. The PDP-11 
followed this hallowed tradition of skimping on address bits, but it 
was saved by the principle that a good design can evolve through 
at least one major change. 

For the PDP-11, the limited address problem was solved for the 
short run, but not with enough finesse to support a large family of 
minicomputers. That was indeed a costly oversight, resulting in 
both redundant development and lost sales. It is extremely 
embarassing that the PDP-11 had to be redesigned with memory 
management' only two years after writing the paper that outlined 
the goal of providing increased address space. All earlier DEC 
designs suffered from the same problem, and only the PDP-10 
evolved over a long period (15years) before a change occurred to 
increase its address space. In retrospect, it is clear that another 
address bit is required every two or three years, since memory 
prices decline about 30 percent yearly, and users tend to buy 
constant price successor systems. 

A second weakness of minicomputers was their tendency to 
skimp on registers. This was corrected for the PDP-11 by 
providing eight 16-bit registers. Later, six 64-bit registers were 
added as the accumulators for floating-point arithmetic. This 
number seems to be adequate: there are enough registers to 

'Excerpted from C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer 
Engineering: A DEC View of Hardware Systems Design, Digital Press, 
Maynard, Mass., 1978, pp. 37W08. 
2The memory management served two other functions besides expanding 
the 16-bit processor-generated addresses into 18-bit Unibus addresses: 
program relocation and protection. 

allocate two or three registers (beyond those already dedicated to 
program counter and stack pointer) for program global purposes 
and still have registers for local statement c~mputa t ion .~  More 
registers would increase the context switch time and worsen the 
register allocation problem for the user. 

A third weakness of minicomputers was their lack of hardware 
stack capability. In the PDP-11, this was solved with the 
autoincrement/autodecrement addressing mechanism. This solu- 
tion is unique to the PDP-11, has proved to be exceptionally 
useful, and has been copied by other designers. The stack limit 
check, however, has not been widely used by DEC operating 
systems. 

A fourth weakness, limited interrupt capability and slow 
context switching, was essentially solved by the Unibus interrupt 
vector design. The basic mechanism is very fast, requiring only 
four memory cycles from the time an interrupt request is issued 
until the first instruction of the interrupt routine begins execution. 
Implementations could go further and save the general registers, 
for example, in memory or in special registers. This was not 
specified in the architecture and has not been done in any of the 
implementations to date. VAX-11 provides explicit load and save 
process context instructions. 

A fifth weakness of earlier minicomputers, inadequate character 
handling capability, was met in the PDP-11 by providing direct 
byte addressing capability. String instructions were not provided 
in the hardware, but the common string operations (move, 
compare, concatenate) could be programmed with very short 
loops. Early benchmarks showed that this mechanism was 
adequate. However, as COBOL compilers have improved and as 
more understanding of operating systems string handling has been 
obtained, a need for a string instruction set was felt, and in 1977 
such a set was added. 

A sixth weakness, the inability to use read-only memories as 
primary memory, was avoided in the PDP-11. Most code written 
for the PDP-11 tends to be reentrant without special effort by the 
programmer, allowing a read-only memory (ROM) to be used 
directly. Read-only memories are used extensively for bootstrap 
loaders, program debuggers, and for simple functions. Because 
large read-only memories were not available at the time of the 
original design, there are no architectural components designed 
specifically with large ROMs in mind. 

A seventh weakness, one common to many minicomputers, was 
primitive IiO capabilities. The PDP-11 answers this to a certain 
extent with its improved interrupt structure, but the completely 
general solution of IiO computers has not yet been implemented. 
The IiO processor concept is used extensively in display proces- 
sors, in communication processors, and in signal processing. 

%ince dedicated registers are used for each Commercial Instruction Set 
(CIS) instruction, this was no longer true when CIS was added. 

776 



Having a single machine instruction that transmits a block of data 
at the interrupt level would decrease the central processor 
overhead per character by a factor of 3; it should have been added 
to the PDP-11 instruction set for implementation on all machines. 
Provision was made in the 11/60 for invocation of a micro-level 
interrupt service routine in writable control store (WCS), but the 
family architecture is yet to be extended in this direction. 

Another common minicomputer weakness was the lack of 
system range. If a user had a system running on a minicomputer 
and wanted to expand it or produce a cheaper turnkey version, he 
frequently had no recourse, since there were often no larger and 
smaller models with the same architecture. The PDP-11 has been 
very successful in meeting this goal. 

A ninth weakness of minicomputers was the high cost of 
programming caused by programming in lower level languages. 
Many users programmed in assembly language, without the 
comfortable environment of high-level languages, editors, file 
systems, and debuggers available on bigger systems. The PDP-11 
does not seem to have overcome this weakness, although it 
appears that more complex systems are being successfully built 
with the PDP-11 than with its predecessors, the PDP-8 and the 
PDP-15. Some systems programming is done using higher level 
languages; however, the optimizing compiler for BLISS-11 at first 
ran only on the PDP-10. The use of BLISS has been slowly gaining 
acceptance. It was first used in implementing the FORTRAN-IV 
PLUS (optimizing) compiler. Its use in PDP-10 and VAX-11 
systems programming has been more widespread. 

One design constraint that turned out to be expensive, but 
worth it in the long run, was the necessity for the word length to 
be a multiple of eight bits. Previous DEC designs were oriented 
toward 6-bit characters, and DEC had a large investment In 12-, 
18-, and 36-bit systems. 

Microprogrammability was not an explicit design goal, partially 
because fast, large, and inexpensive read-only memories were not 
available at the time of the first implementation. All subsequent 
machines have been microprogrammed, but with some difficulty 
because some parts of the instruction set processor, such as 
condition code setting and instruction register decoding, are not 
ideally matched to microprogrammed control. 

The design goal of understandability seems to have received 
little attention. The PDP-11 was initially a hard machine to 
understand and was marketable only to those with extensive 
computer experience. The first programmers’ handbook was not 
very helpful. It is still unclear whether a user without program- 
ming experience can learn the machine solely from the handbook. 
Fortunately, several computer science textbooks [Gear, 1974; 
Eckhouse, 1975; Stone and Siewiorek, 19751 and other training 
books have been written based on the PDP-11. 

Structural flexibility (modularity) for hardware configurations 
was an important goal. This succeeded beyond expectations and is 

Chapter 47 1 The Evolution of the PDP-11 

discussed extensively in the Unibus Cost and Performance 
section. 

Evolution of the Instruction Set Processor 

Designing the instruction set processor level of a machine-that 
collection of characteristics such as the set of data operators, 
addressing modes, trap and interrupt sequences, register organi- 
zation, and other features visible to a programmer of the bare 
machine-is an extremely difficult problem. One has to consider 
the performance (and price) ranges of the machine family as well 
as the intended applications, and difficult tradeoffs must be made. 
For example, a wide performance range argues for different 
encodings over the range; for small systems a byte-oriented 
approach with small addresses is optimal, whereas larger systems 
require more operation codes, more registers, and larger address- 
es. Thus, for larger machines, instruction coding efficiency can be 
traded for performance. 

The PDP-11 was originally conceived as a small machine, but 
over time its range was gradually extended so that there is now a 
factor of 500 in price ($500 to $250,000) and memory size (8 
Kbytes to 4 Mbytes’) between the smallest and largest models. 
This range compares favorably with the range of the IBM System 
360 family (4 Kbytes to 4 Mbytes). Needless to say, a number of 
problems have arisen as the basic design was extended. 

Chronology of the Extensions 

A chronology of the extensions is given in Table 1. Two major 
extensions, the memory management and the floating point, 
occurred with the 11/45. The most recent extension is the 
Commercial Instruction Set, which was defined to enhance 
performance for the character string and decimal arithmetic 
data-types of the commercial languages (e.g., COBOL). It intro- 
duced the following to the PDP-11 architecture: 

Data-types representing character sets, character strings, 
packed decimal strings, and zoned decimal strings. 
Strings of variable length up fo 65 Kcharacters. 

Instructions for processing character strings in each data- 
type (move, add, subtract, multiply, divide). 
Instructions for converting among binary integers, packed 
decimal strings, and zoned decimal strings. 

Instructions to move the descriptors for the variable length 
strings. 

The initial design did not have enough operation code space to 

‘Although 22 bits are used, only 2 megabytes can he utilized in the 11/70. 



778 Part 4 I Family Range, Compatibility, and Evolution Section 2 1 Minicomputer Families 

Table 1 Chronology of PDP-11 Instruction Set Processor (ISP) 

Eoolution 

Base ISP (16-bit virtual address) and PMS (16-bit 
processor physical memory address) Unibus 
with 18-bit addressing 

Extended Arithmetic Element (hardware multiply/ 
divide) 

Floating-point instruction set with 6 additional 
registers (46 instructions) in the Floating-point 
Processor 

Memory management (KT11C). 3 modes of pro- 
tection (Kernel, Supervisor, User); 18-bit proc- 
essor physical addressing; 16-bit virtual ad-
dressing in 8 segments for both instruction and 
data spaces 

Extensions for second set of general registers 
and program interrupt request 

Extended Instruction Set for multiply/divide; 
floating-point instruction set (4 instructions) 

Memory Management (KTllD), 2 modes of pro- 
tection (Kernel, User); 18-bit processor physical 
addressing; 16-bit virtual addressing in 8 seg-
ments 

22-bit processor physical addressing; Unibus 
map for peripheral controller 22-bit addressing 

Error register accessibility for on-line diagnosis 
and retry (e.g., cache parity error) 

Program access to processor status register 
via explicit instruction (versus Unibus address) 

One level program interrupt 

Extended Function Code for invocation of user-
written microcode 

VAX architectural extensions for 32-bit virtual 
addressing VAX ISP 

Commercial Instruction Set (CIS) 

lnterprocessor Interrupt and System Timers for 
muIti processor 

accommodate instructions for new data-types. Ideally, the com- 
plete set of operation codes should have been specified at initial 
design time so that extensions would fit. With this approach, the 
uninterpreted operation codes could have been used to call the 
various operation functions, such as a floating-point addition. This 

Evolution 

Modells) 

11/20 

11/20 

11/45 
(11/55,11/70, 
11 /60,11/34) 

11/45 
(1 1 /55,11/70) 

11/45 
(11/55,11/70) 

11I40 
(1 1 103) 

1 1/40 
(11/34,11/60) 

11/70 

11 /70 
(1 1 160) 

11/03 
(11/04,11/34) 

11/03 

11/60 

VAX-11/780 

1 1/03 

11/70mP 

would have avoided the proliferation of run-time support systems 
for the various hardwareisoftware floating-point arithmetic meth- 
ods (Extended Arithmetic Element, Extended Instruction Set, 
Floating Instruction Set, Floating-point Processor). The extracode 
technique was used in the Atlas and Scientific Data Systems 
(SDS) designs, but these techniques are overlooked by most 
computer designers. Because the complete instruction set pro- 
cessor (or at least an extension framework) was unspecified 
in the initial design, completeness and orthogonality have been 
sacrificed. 

At the time the PDP-11/45 was designed, several operation 
code extension schemes were examined: an escape mode to add 
the floating-point operations, bringing the PDP-11 back to being a 
more conventional general register machine by reducing the 
number of addressing modes, and finally, typing the data by 
adding a global mode that could be switched to select floating 
point instead of byte operations for the same operation codes. The 
floating-point instruction set, introduced with the 11/45, is a 
version of the second alternative. 

It also became necessary to do something about the small 
address space of the processor. The Unibus limits the physical 
memory to the 262,144 bytes addressable by 18-bits. In the 
PDP-11/70, the physical address was extended to 4 Mbytes by 
providing a Unibus map so that devices in a 256 Kbyte Unibus 
space could transfer into the 4-hlbyte space via mapping registers. 
While the physical address limits are acceptable for both the 
Unibus and larger systems, the address for a single program is still 
confined to an instantaneous space of 16 bits, the user virtual 
address. The main method of dealing with relatively small 
addresses is via process-oriented operating systems that handle 
many small tasks. This is a trend in operating systems, especially 
for process control and transaction processing. It does, however, 
enforce a structuring discipline in (user) program organization. 
The RSX-11 series of operating systems for the PDP-11 are 
organized this way, and the need for large addresses is lessened. 

The initial memory management proposal to extend the virtual 
memory was predicated on dynamic, rather than static, assign- 
ment of memory segment registers. In the current memory 
management scheme, the address registers are usually considered 
to be static for a task (although some operating systems provide 
functions to get additional segments dynamically). 

With dynamic assignment, a user can address a number of 
segment names, via a table, and directly load the appropriate 
segment registers. The segment registers act to concatenate 
additional address bits in a base address fashion. There have been 
other schemes proposed that extend the addresses by extending 
the length of the general registers-of course, extended addresses 
propagate throughout the design and include double length 
address variables. In effect, the extended part is loaded with a 
base address. 



Chapter 47 1 The Evolution of the PDP-11 779 

With larger machines and process-oriented operating systems, 
the context switching time becomes an important performance 
factor. By providing additional registers for more processes, the 
time (overhead) to switch context from one process (task) to 
another can be reduced. This option has not been used in the 
operating system implementations of the PDP-11s to date, 
although the 11/45 extensions included a second set of general 
registers. Various alternatives have been suggested, and to 
accomplish this effectively requires additional operators to handle 
the many aspects of process scheduling. This extension appears to 
be relatively unimportant since the range of computers coupled 
with networks tends to alleviate the need by increasing the real 
parallelism (as opposed to the apparent parallelism) by having 
various independent processors work on the separate processes in 
parallel. The extensions of the PDP-11 for better control of I/O 
devices is clearly more important in terms of improved perform- 
ance. 

Architecture Management 

In retrospect, many of the problems associated with PDP-11 
evolution were due to the lack of an ongoing architecture 
management function. The notion of planned evolution was very 
strong at the beginning. However, a formal architecture control 
function was not set up until early in 1974. In some sense this was 
already too late-the four PDP-11 models designed by that date 
(11120, 11/05, 11/40, 11/45) had incompatibilities between them. 
The architecture control function since then has ensured that no 
further divergence (except in the LSI-11) took place in subsequent 
models, and in fact resulted in some convergence. At the time the 
Commercial Instruction Set was added, an architecture extension 
framework was adopted. Insufficient encodings existed to provide 
a large number of additional instructions using the same encoding 
style (in the same space) as the basic PDP-11, i.e., the operation 
code and operand specifier addressing mode specifiers within a 
single 16-bit word. An instruction extension framework was 
adopted which utilized a full word as the opcode, with operand 
addressing mode specifiers in succeeding instruction stream 
words along the lines of VAX-11. This architectural extension 
permits 512 additional opcodes, and instructions may have an 
unlimited number of operand addressing mode specifiers. The 
architecture control function also had to deal with the Unibus 
address space problem. 

With VAX-11, architecture management has been in place since 
the beginning. A definition of the architecutre was placed 
under formal change control well before the VAX-111780 was built, 
and both hardware and software engineering groups worked 
with the same document. Another significant difference is 
that an extension framework was defined in the orig-
inal architecture. 

An Evaluation 

The criteria used to decide whether or not to include a particular 
capability in an instruction set are highly variable and border on 
the artistic. Critics ask that the machine appear elegant, where 
elegance is a combined quality of instruction formats relating to 
mnemonic significance, operatoddata-type completeness and 
orthogonality, and addressing consistency. Having completely 
general facilities (e.g., registers) which are not context dependent 
assists in minimizing the number of instruction types and in 
increasing understandability (and usefulness). The authors feel 
that the PDP-11 has provided this. 

At the time the Unibus was designed, it was felt that allowing 4 
Kbytes of the address space for I/O control registers was more 
than enough. However, so many different devices have been 
interfaced to the bus over the years that it is no longer possible to 
assign unique addresses to every device. The architectural group 
has thus been saddled with the chore of device address bookkeep- 
ing. Many solutions have been proposed, but none was soon 
enough; as a result, they are all so costly that it is cheaper just to 
live with the problem and the attendant inconvenience. 

Techniques for generating code by the human and compiler 
vary widely and thus affect instruction set processor design. The 
PDP-11 provides more addressing modes than nearly any other 
computer. The eight modes for source and destination with dyadic 
operators provide what amounts to 64 possible ADD instructions. 
By associating the Program Counter and Stack Pointer registers 
with the modes, even more data accessing methods are provided. 
For example, 18 varieties of the MOVE instruction can be 
distinguished as the machine is used in two-address, general 
register, and stack machine program forms. (There is a price 
for this generality-namely, fewer bits could have been used 
to encode the address modes that are actually used most of the 
time.) 

How the PDP-11 Is Used 
In general, the PDP-11 has been used mostly as a general register 
(i.e., memory to registers) machine. This can be seen by 
observing the use frequency from Strecker’s data (see Appendix 1 
in Chap. 39). In one case, it was observed that a user who 
previously used a one-accumulator computer (e. g., PDP-S), 
continued to do so. A general register machine provides the 
greatest performance, and the cost (in terms of bits) is the same as 
when used as a stack machine. Some compilers, particularly the 
early ones, are stack oriented since the code production is easier. 
In principle, and with much care, a fast stack machine could be 
constructed. However, since most stack machines use primary 
memory for the stack, there is a loss of performance even if the top 
of the stack is cached. While a stack is the natural (and necessary) 
structure to interpret the nested block structure languages, it does 



780 Part 4 1 Family Range, Compatibility, and Evolution 

not necessarily follow that the interpretation of all statements 
should occur in the context of the stack. In particular, the 
predominance of register transfer statements are of the simple 2-
and 3-address forms: 

D + S  

and  

Dl(index 1)+ f(S2(index Z), %(index 3))  

These do not require the stack organization. In effect, appropri- 
ate assignment allows a general register machine to be used as a 
stack machine for most cases of expression evaluation. This has the 
advantage of providing temporary, random access to common 
subexpressions, a capability that is usually hard to exploit in stack 
architectures. 

The Evolution of the PMS (Modular) Structure 

The end product of the PDP-11 design is the computer itself, and 
in the evolution of the architecture one can see images of the 
evolution of ideas. In this section, the architectural evolution is 
outlined, with a special emphasis on the Unibus. 

The Unibus is the architectural component that connects 
together all of the other major components. It is the vehicle over 
which data flow between pairs of components takes place. 

In general, the Unibus has met all expectations. Several 
hundred types of memories and peripherals have been interfaced 
to it; it has become a standard architectural component of systems 
in the $3K to $100K price range (1975).The Unibus does limit the 
performance of the fastest machines and penalizes the lower 
performance machines with a higher cost. Recently it has become 
clear that the Unibus is adequate for large, high performance 
systems when a cache structure is used because the cache reduces 
the traffic between primary memory and the central processor 
since about one-tenth of the memory references are outside the 
cache. For still larger systems, supplementary buses were added 
for central processor to primary memory and primary memory to 
secondary memory traffic. For very small systems like the LSI-11, 
a narrower bus was designed. 

The Unibus, as a standard, has provided an architectural 
component for easily configuring systems. Any company, not just 
DEC, can easily build components that interface to the bus. Good 
buses make good engineering neighbors, since people can 
concentrate on structured design. Indeed, the Unibus has created 
a secondary industry providing alternative sources of supply for 
memories and peripherals. ’Iliith the exception of the IBM 360 
hlultiplexer-Selector Bus, the Unibus is the most widely used 
computer interconnection standard. 

Section 2 ] Minicomputer Families 

The Unibus has also turned out to be invaluable as an “umbilical 
cord” for factory diagnostic and checkout procedures. Although 
such a capability was not part of the original design, the Unibus is 
almost capable of controlling the system components (e.g., 
processor and memory) during factory checkout. Ideally, the 
scheme would let all registers be accessed during full operation. 
This is possible for all devices except the processor. By having all 
central processor registers available for reading and writing in the 
same way that they are available from the console switches, a 
second system can fully monitor the computer under test. 

In most recent PDP-11 models, a serial communications line, 
called the ASCII Console, is connected to the console, so that a 
program may remotely examine or change any information that a 
human operator could examine or change from the front panel, 
even when the system is not running. In this way computers can 
be diagnosed from, a remote site. 

Dificulties with the Design 

The Unibus design is not without problems. Although two of the 
bus bits were set aside in the original design as parity bits, they 
have not been widely used as such. Memory parity was imple- 
mented directly in the memory; this phenomenon is a good 
example of the sorts of problems encountered in engineering 
optimization. The trading of bus parity for memory parity 
exchanged higher hardware cost and decreased performance for 
decreased service cost and better data integrity. Because engi- 
neers are usually judged on how well they achieve production cost 
goals, parity transmission is an obvious choice to pare from a 
design, since it increases the cost and decreases the performance. 
As logic costs decrease and pressure to include warranty costs as 
part of the product design cost increases, the decision to transmit 
parity may be reconsidered. 

Early attempts to build tightly coupled multiprocessor or 
multicomputer structures (by mapping the address space of one 
Unibus onto the memory of another), called Unibus windows, 
were beset with a logic deadlock problem. The Unibus design 
does not allow more than one master at a time. Successful 
multiprocessors required much more sophisticated sharing mech- 
anisms such as shared primary memory. 

Unibus Cost and Performance 

Although performance is always a design goal, so is low cost; the 
two goals conflict directly. The Unibus has turned out to be nearly 
optimum over a wide range of products. It served as an adequate 
memory-processor interconnect for six of the ten models. Howev- 
er, in the smallest system, DEC introduced the LSI-11 Bus, 
which uses about half the number of conductors. For the largest 
systems, a separate 32-bit data path is used between processor 
and memory, although the Unibus is still used for communication 
with the majority of the IiO controllers (the slower ones). 



The bandwidth of the Unibus is approximately 1.7 megabytes 
per second or 850 K transfersisecond. Only for the largest 
configurations, using many IiO devices with very high data rates, 
is this capacity exceeded. For most configurations, the demand 
put on an I/O bus is limited by the rotational delay and head 
positioning of disks and the rate at which programs (user and 
system) issue IiO requests. 

An experiment to further the understanding of Unibus capacity 
and the demand placed against it was carried out. The experiment 
used a synthetic workload; like all synthetic workloads, it can be 
challenged as not being representative. However, it was generally 
agreed that it was a heavy IiO load. The load simulated transaction 
processing, swapping, and background computing in the configu- 
ration shown in Fig. 1. The load was run on five systems, each 
placing a different demand on the Unibus. 

Each run produced two numbers: (1) the time to complete 
2,000 transactions, and (2) the number of iterations of a program 
called HANOI that were completed. 

Benchmark Number of 
time HANOI 

System (minutes)* iterations 

11 160cache on 
11  160cache off 
1 1/40 
1 1  170MBCBUS 
11/70Unibus 

15 
15 
15 
15 
26 

12 
2 
3 
23 
38 

*2,000transactions plus swapping plus HANOI. 

The results were interpreted as follows: 

1 IiO throughput. For this workload the Unibus bandwidth 

---_ _--_- -___--_ -
BACKGROUND COMPUTATION (HANOI 
BENCHMARK LOOPING) 

1000 TRANSACTIONS 
TRANSACTION 	 EACH TRANSACTION INVOLVES 8 

READS AND 2 WRITES (TOTAL OF 4064 
WORDS PER TRANSACTION) AND 12 ms 
PROCESS IN  G-_ _  -_ --__-_  ---__ 

TRANSACTION 
8K PROCESSING 1000 TRANSACTIONS IAS FOR NO. 1) 

Fig. 1. The synthetic workload used to measure Unibus capacity. 

Chapter 47 1 The Evolution of the PDP-11 781 

was adequate. For systems 1 through 4, the IIO activity 
took the same amount of time. 

11/70 Unibus. The run on this s?stem (no use was made of 
the 32-bit wide processorimemory bus) took longer because 
of the retries caused by data lates (approximately 19,000)on 
the moving head disk (RP04). The extra time taken for the 
benchmark allowed more iterations of HANOI to occur. 
The PDP-11/70 Unibus had a bandwidth of about 1 
megabyte. It was less than the usual Unibus (about 1.7 
megabyte) because of the map delay (100 nanoseconds), the 
cache cycle (240 nanoseconds), and the main memory bus 
redriving and synchronization. 

11/60 Cache. Systems 1and 2 clearly show the effectiveness 
of a cache. Most memory references for HANOI were to the 
cache and did not involve the Unibus, which was the 
PDP-llIGOs I/O Bus. Systems 2 and 3 were essentially 
equivalent, as expected. There are two reasons for the 
11/40 having slightly more compute bandwidth than an 
11/60 with its cache off. First, the 11/40 memory is faster 
than the 11/60 backing store, and second, the 11/40 
processor relinquishes the Unibus for a direct memory 
access cycle, the 11/60processor must request the Unibus 
for a processor cycle. 

There are several attributes of a bus that affect its cost and 
performance. One factor affecting performance is simply the data 
rate of a single conductor. There is a direct tradeoff involving cost, 
performance, and reliability. Shannon [19481 gives a relationship 
between the fundamental signal bandwidth of a link and the error 
rate (signal-to-noise ratio) and data rate. The performance and cost 
of a bus are also affected by its length. Longer cables cost 
proportionately more, since they require more complex circuitry 
to drive the bus. 

Since a single-conductor link has a fixed data rate, the number 
of conductors affects the net speed of a bus. However, the cost of a 
bus is directly proportional to the number of conductors. For a 
given number of wires, time domain multiplexing and data 
encoding can be used to trade performance and logic complexity. 
Since logic technology is advancing faster than wiring technology, 
it seems likely that fewer conductors will be used in all future 
systems, except where the performance penalty of time domain 
multiplexing is unacceptably great. 

If, during the original design of the Unibus, DEC designers 
could have foreseen the wide range of applications to which it 
would be applied, its design would have been different. Individu- 
al controllers might have been reduced in complexity by more 
central control. For the largest and smallest systems, it would 
have been useful to have a bus that could be contracted or 
expanded by multiplexing or expanding the number of conduc- 
tors. 

The cost-effectiveness of the Unibus is due in large part to the 
high correlation between memory size, number of address bits, 



782 Part 4 1 Family Range, Compatibility, and Evolution 

IiO traffic, and processor speed. Gene Amdahl’s rule of thumb for 
IBM computers is that 1byte of memory and 1bitisec of IiO are 
required for each instruction/sec. For traditional DEC applica- 
tions, with emphasis in the scientific and control applications, 
there is more computation required per memory word. Further, 
the PDP-11 instruction sets do not contain the extensive comnier- 
cial instructions (character strings) typical of IBM computers, so a 
large number of instructions must be executed to accomplish the 
same task. Hence, for DEC computers, it is better to assume 1 
byte of memory for each 2 instructions/sec, and that 1byteisec of 
IiO occurs for each instructionisec. 

In the PDP-11, an average instruction accesses 3-5 bytes of 
memory, so assuming 1byte of IiO for each instructionisec, there 
are 4-6 bytes of memory accessed on the average for each 
instructionisec. Therefore, a bus that can support 2 megabytesisec 
of traffic permits instruction execution rates of 0.33-0.5 mega-
instructionsisec. This implies memory sizes of 0.1G-0.25 mega-
bytes, which matches well with the maximum allowable memory 
of 0.064-0.256 megabytes. By using a cache memory on the 
processor, the effective memory processor rate can be increased 
to balance the system further. If fast floating-point instructions 
were added to the instruction set, the balance might approach that 
used by IBM and thereby require more memory (an effect seen in 
the PDP-11/70). 

The task of IiO is to provide for the transfer of data from 
peripheral to primary memory where it can be operated on by a 
program in a processor. The peripherals are generally slow, 
inherently asynchronous, and more error-prone than the proces- 
sors to which they are attached. 

Historically, IiO transfer mechanisms have evolved through the 
following four stages: 

1 	Direct sequential YO under central processor control. An 
instruction in the processor causes a data transfer to take 
place with a device. The processor does not resume 
operation until the transfer is complete. Typically, the 
device control may share the logic of the processor. The 
first inpub‘output transfer (IOT) instruction in the PDP-1 is 
an example: the IOT effects transfer between the Accumu- 
lator and a selected device. Direct 110 simplifies program- 
ming because every operation is sequential. 

2 	 Fixed buffer, 1-instruction controllers. An instruction in 
the central processor causes a data transfer (of a word or 
vector), but in this case, it is to a buffer of the simple 
controller and thus at a speed matching that of the 
processor. After the high speed transfer has occurred, the 
processor continues while an asynchronous, slower transfer 
occurs between the buffer and the device. Communication 
back to the processor is via the program interrupt mecha- 
nism. A single instruction to a simple controller can also 
cause a complete block (vector) of data to be transmitted 
between memory and the peripheral. In this case, the 

Section 2 1 Minicomputer Families 

transfer takes place via the direct memory access (DMA) 
link. 

Separate I/O processors-the channel. An independent 
IiO processor with a unique ISP controls the flow of data 
between primary memory and the peripheral. The struc- 
ture is that of the multiprocessor, and the I/O control 
program for the device is held in primary memory. The 
central processor informs the I/O processor about the IiO 
program location. 

I/O computer. This mechanism is also asynchronous with 
the central processor, but the I/O computer has a private 
memory which holds the IiO program. Recently, DEC 
communications options have been built with embedded 
control programs. The first example ofan I/O computer was 
in the CDC 6600 (1964). 

The authors believe that the single-instruction controller is 
superior to the 110 processor as embodied in the IBM Channel 
mainly because the latter concept has not gone far enough. 
Channels are costly to implement, sufficiently complex to require 
their own programming environment, and yet not quite powerful 
enough to assume the processing, such as file management, that 
one would like to offload from the processor. Although the IiO 
traffic does require central processor resources, the addition of a 
second, general purpose central processor is more cost-effective 
than using a central processor-IiO processor or central processor- 
multiple IiO processor structure. Future IiO systems will be 
message-oriented, and the various IiO control functions (including 
diagnostics and file management) will migrate to the subsystem. 
When the I/O computer is an exact duplicate of the central 
processor, not only is there an economy from the reduced number 
of part types but also the same programming environment can be 
used for I/O software development and main program develop- 
ment. Notice that the I/O computer must implement precisely the 
same set of functions as the processor doing direct I/O. 

Technology: Components of the Design 

Computers are strongly influenced by the basic electronic tech- 
nology of their components. The PDP-11 Family provides an 
extensive example of designing with improved technologies. 
Because design resources have been available to do concurrent 
implementations spanning a costiperformance range, PDP-11s 
offer a rich source of examples of the three different design styles: 
constant cost with increasing functionality, constant functionality 
with decreasing cost, and growth path. 

Memory technology has had a much greater impact on PDP-11 
evolution than logic technology. Except for the LSI-11, the one 
logic family (7400 series TTL) has dominated PDP-11 implemen- 
tations since the beginning. Except for a small increase after the 



Chapter 47 I The Evolutionof the PDP-11 783 

Table 2 Characteristics of PDP-11 Models with Techniques Used to Span Cost and Performance Range 

Perjomnance 

Basic Floating-point 
instructions arithmetic 
per second (whetstone Memory 

Range-spanning techniques 

First (relative to instructions range For high Notable 
Model shipment PDP-11/03) per second) (Kbytes) performance F o r  low cost attributes 

1 1 103 
(LSI-11) 

6/75 1 26 8-56 8 bit wide datapath; 
LSI-11Bus; tailored 

LSI-4 chips; ODT; 
Floating-point (FIS), 

PLA control CIS, WCS mid-life 
kickers 

11 104 9/75 2.8 18 8-56 Standard package; Backplane compatible 
ROM; PLA with 11/34for field 

upgrade; built-in 
ASCII console; self- 
diagnosis 

11105 6/72 2.5 13 8-56 Microprogrammed; Minimal 11 (2 
ROM boards) 

11 /20 6/70 3.1 20 8-56 ISP; Unibus 

11/34 3/76 3.5 204 16-256 Shared use of ALU; Cost-performance 
PLA; ROM; balance; 11/34C 
microprogrammed mid-life kicker; 

bit-slice FPP 

11/34c 5/78 7.3 262 32-256 Classic use of cache 

11/40 1 173 3.6 57 16-256 Variable cycle Microprogrammed FIS extension 
length 

11/60 6/77 27 592 32-256 Fetch overlap; Heavily Integral floating- 
dual scratch- microprogrammed point; WCS for local 
pads; lTL/S storage; RAMP 

1 1 145 6/72 Core: 13 -260 8-256 Instruction Pc speed to match 
MOS: 23 -335 prefetch; dual 300 ns bipolar; high 
Bipolar: 41 -362 scratch pads; speed minicomputer 

Fastbus; FPP; memory 
autonomous management 
FPP; l T L / S  

11 155 6/76 41 725 16-64 All bipolar 
(0-1 92 memory 
core) 

11 170 3/75 36 671 64-2048 32-bit wide Cache; multiple buses, 
DMA bus; RAMP, FPll-C mid-life 
large memory kicker; remote diagnosis 

70mP Multiprocessor archi- 
tectural extensions; on-
line maintainability; 
performance; availability 

range: range: range: 
41 -1 56-i 25611 



784 Part 4 I Family Range, Compatibility, and Evolution 

PDP-11/20, gate density has not improved markedly. Speed 
improvement has taken place in the Schottky TTL, and a 
speedipower improvement has occurred in the low power 
Schottky (LS) series. Departures from medium-scale integrated 
transistor-transistor logic, in terms of gate density, have been few, 
but effective. Examples are the bit-slice in the PDP-11/34 
Floating-point Processor, the use of programmable logic arrays in 
the PDP-11/04 and PDP-11/34 control units, and the use of 
emitter-coupled logic in some clock circuitry. 

Memory densities and costs have improved rapidly since 1969 
and have thus had the most impact. Read-write meznory chips 
have gone from 16 bits to 4,096 bits in density and read-only 
memories from 16 bits to the 8 or 16 Kbits widely available in 
1978. 

The memory technology of 1969 imposed several constraints. 
First, core memory was cost-effective for the primary (program) 
memory, but a clear trend toward semiconductor primary memo- 
ry was visible. Second, since the largest high speed read-write 
memories available were just 16 words, the number of processor 
registers had to be kept small. Third, there were no large high 
speed read-only memories that would have permitted a micropro- 
grammed approach to the processor design. 

These constraints established four design attitudes toward the 
PDP-11’s architecture. First, it should be asynchronous, and 
thereby capable of accepting different configurations of memory 
that operate at different speeds. Second, it should be expandable 
to take eventual advantage of a larger number of registers, both 
user registers for new data-types and internal registers for 
improved context switching, memory mapping, and protected 
multiprogramming. Third, it could be relatively complex, so that 
a microcode approach could eventually be used to advantage: new 
data-types could be added to the instruction set to increase 
performance, even though they might add complexity. Fourth, 
the Unibus width should be relatively large, to get as much 
performance as possible, since the amount of computation possi- 
ble per memory cycle was relatively small. 

As semiconductor memory of varying price and performance 
became available, it was used to trade cost for performance across 
a reasonably wide range of PDP-11 models. Different techniques 

Section 2 1 Minicomputer Families 

I \ \ 

Fig. 2. PDP-11 models price versus time with lines of constant 
performance. 

were used on different models to provide the range. These 
techniques include: microprogramming for all models except the 
11/20 to lower cost and enhance performance with more data- 
types (for example, faster floating point); use of faster program 
memories for brute-force speed improvements (e.g., 11/45 with 
MOS primary memory, 11/55with bipolar primary memory, and 
the 11/60 with a large writable control store); use of caches (11170, 
11/60, and 11134C); and expanded use of fast,registers inside the 
processor (the 11/45 and above). The use of semiconductors versus 
cores for primary memory is a purely economic consideration. 

Table 2 shows characteristics of each of the PDP-11 models 
along with the techniques used to span a range of cost and 
performance. (Chapter 39 gives a detailed comparison of the 
processors.) Figure 2 gives the costiperformance mapping for the 
various PDP-11 implementations. 

References 

Bell et  al. [1970]; Eckhouse [1975]; Gear [1974]; Shannon [1948]; 
Stone and Siewiorek [19751. 



Section 3 

Evolution of HP Calculators 

Desk-top calculators present a total computation environment to 
the user. The syntax and semantics of all the keys are predefined. 
Individual keystrokes vary widely in power from simple addition 
to complex I10 operations. Further, support functions such as 
editing, debugging aids, syntax analyzing, incremental execution, 
and keybaard monitoring are not only completely defined but also 
locked into hardware. This is to be contrasted with computer 
systems whose instruction sets are specified and whose computa-
tional environment is defined by ever-evolving multiple layers of 
software. 

This section focuses on the architecturesof the Hewlett-Packard 
series of desk-top calculators, starting with the HP 9100A (c. 
1968); its first-generation descendants, the HP 9810/20/30 (c. 
1972);and its second-generation descendants, the HP 9815135145 
(c. 1976). The series span the technology range from discrete 
components through MSI to LSI in the latest generation. The 
advances in technology have allowed costs to decrease while 
allowing functionality to increase. Performancehas increased by a 
factor of 8, operating-system ROM by a factor of 25, and user RAM 
by a factor of 240. These advances are graphically displayed in 
Figs. 1to 4. 

These computers represent an unplanned family with no 

12 -

11 -

10 -

I 9 -
M 

L 
0 

2 8 -
m 


0-5 7 -
m 

6 - 


.-c 


; 
-
-

5 - I - - - - I  


r 
.-," 4 -
a
m 
m 

3 -

MSI LSI 

I I I I I I I I I I 

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 

Fig. 1. Selling price (thousands of dollars) versus introduction 
date. 

I I I I I I I I I I 

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 

Fig. 2. ROM operating system (Kbytes) versus introduction date. 

,125 I I I I I I I I I I I 

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 


Fig. 3. RAM (minimum configuration) versus introductiondate. 

785 



786 Part 4 1 Family Range, Compatibility, and Evolution 

0.1 
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 

Fig. 4. Floating point add times versus introduction date. 

Section 3 I Evolutionof HP Calculators 

constraint on user compatibility between generations. Chapters 
48,49, and 31 sketch the designs of the three major generations of 
Hewlett-Packard desk-top calculators. Functionality has increased 
with each generation and is best exemplified by the programming 
interface. HP 9100A programs consisted of arithmetic keystroke 
functions and program control operations (e.g., GO TO and IF). 
The HP 9800 series ranged from an algebraic language through 
BASIC, traditionally a computer-based language. The perception 
is that the HP 9810120130 series is matched to user functionality 
rather than software compatibility. The HP 9845 also supports 
BASIC. This section concludes, in Chap. 50, with some observa- 
tions by Tom Osborne, one of the architects of the Hewlett- 
Packard desk-top series. 



Chapter 48 

The HP Model 9100A Computing 
Calcu iato r1 

Richard E. Monnier / Thomas E.  Osborne / 
David S. Cochran 

A New Electronic Calculator with Computerlike 
Capabilities 

Many of the day-to-day computing problems faced by scientists 
and engineers require complex calculations but involve only a 
moderate amount of data. Therefore, a machine that is more than 
a calculator in capability but less than a computer in cost has a 
great deal to offer. At the same time it must be easy to operate and 
program so that a minimum amount of effort is required in the 
solution of typical problems. Reasonable speed is necessary so that 
the response to individual operations seems nearly instantaneous. 

The HP Model 9100A Calculator, Fig. 1,was developed to fill 
this gap between desk calculators and computers. Easy interaction 
between the machine and user.was one of the most important 
design considerations during its development and was the prime 
guide in making many design decisions. 

CRT Display 

One of the first and most basic problems to be resolved concerned 
the type of output to be used. Most people want a printed record, 
but printers are generally slow and noisy. Whatever method is 
used, if only one register is displayed, it is difficult to follow what 
is happening during a sequence of calculations where numbers are 
moved from one register to another. It was therefore decided that 
a cathode-ray tube displaying the contents of three registers 
would provide the greatest flexibility and would allow the user to 
follow problem solutions easily. The ideal situation is to have both 
a CRT showing more than one register, and a printer which can be 
attached as an accessory. 

Figure 2 is a typical display showing three numbers. The X 
register displays numbers as they are entered from the keyboard 
one digit at a time and is called the keyboard register. The Y 
register is called the accumulator since the results of arithmetic 
operations on two numbers, one in X and one in Y, appear in the Y 
register. The Z register is a particularly convenient register to use 
for temporary storage. 

'This chapter is a compilation of three articles [Monnier, 1968; Osborne, 
1968; Cochran, 19681, reprinted from Hewlett-Puckard Journal, vol. 20, 
no. 1, September 1968, pp. 3-9, 10-13, and 14-16. 

Fig. 1. This new WP Model 9100A calculator is self-contained and is 
capable of performing functions previously possible only with 
larger computers. 

Numbers 

One of the most important features of the Model 9100A is the 
tremendous range of numbers it can handle without special 
attention by the operator. It is not necessary to worry about where 
to place the decimal point to obtain the desired accuracy or to 
avoid register overflow. This flexibility is obtained because all 

Fig. 2. Display in fixed point with the decimal wheel set at 5. The Y 
register has reverted to floating point because the number is too 
large to be properly displayed unless the digits called for by the 
DECIMAL-DIGITS setting are reduced. 

787 



788 Part 4 I Family Range, Compatibility, and Evolution 

numbers are stored in “floating point arithmetic.” A floating point 
number is expressed with the decimal point following the first 
digit and an exponent representing the number of places the 
decimal point should be nmved-to the right if the exponent is 
positive, or to the left if the exponent is negative. 

4.398 364 291 X = .004 398 364 291 

The operator may choose to display numbers in FLOATING 
POINT or in FIXED POINT. The FLOATING POINT mode 
allows numbers, either positive or negative, from 1 x lo4 to 
9.999 999 x 10%to be displayed just as they are stored in the 
machine. 

The FIXED POINT mode displays numbers in the way they are 
most commonly written. The DECIMAL DIGITS wheel allows 
setting the number of digits displayed to the right of the decimal 
point anywhere from 0 to 9. Figure 2 shows a display of three 
numbers with the DECIMAL DIGITS wheel set at 5. The 
number in the Y register, 5.336 845 815 x 1Oj = 533 684.5815, is 
too big to be displayed in FIXED POINT without reducing the 
DECIMAL DIGITS setting to 4 or less. If the number is too big 
for the DECIMAL DIGITS setting, the register involved reverts 
automatically to floating point to avoid an apparent overflow. In 
FIXED POINT display, the number displayed is rounded, but full 
significance is retained in storage for calculations. 

To improve readability, 0’s before the displayed number and 
un-entered 0’s following the number are blanked. In FLOATING 
POINT, digits to the right of the decimal are grouped in threes. 

Pull-out Instruction Card 

A pull-out instruction card, Fig. 3, is located at the front of the 
calculator under the keyboard. The operation of each key is briefly 
explained and key codes are listed. Some simple examples are 
provided to assist those using the machine for the first time or to 
refresh the memory of an infrequent user. Most questions 
regarding the operation of the Model 9100A are answered on the 
card. 

Data Entry 
The calculator keyboard is shown in Fig. 4. Numbers can be 
entered into the X register using the digit keys, the 7~ key or the 
ENTER EXP key. The ENTER EXP key allows powers of 10to be 
entered directly which is useful for very large or very small 
numbers. 6.02 x is entered@ o @@@@. If the 
ENTER EXP key is the first key Too a number entry, a 1 is 
automatically entered into the mantissa. Thus only two keystrokes @q6 suffice to enter 1,000,000.The CHG SIGN key changes the 
sign o either the mantissa or the exponent depending upon which 
one is presently being addressed. Numbers are entered in the 
same way, regardless ofwhether the machine is in FIXED POINT 

Section 3 1 Evolutionof HP Calculators 

Fig. 3. Pull-out instruction card is permanently attached to the 
calculator and contains key codes and operating instructions. 

or FLOATING POINT. Any key, other than a digit key, decimal 
point, CHG SIGN or ENTER EXP, terminates an entry; it is not 
necessary to clear before entering a new number. CLEAR X sets 
the X register to 0 and can be used when a mistake has been made 
in a number entry. 

Fig. 4. Keys are in four groups on the keyboard, according to their 
function. 



Chapter 48 I The HP Model 9100A Computing Calculator 789 

Control and Arithmetic Keys 

ADD, SUBTRACT, MULTIPLY, DIVIDE involve tvr7o numbers, 
so the first number must be moved from X to Y before the second 
is entered into X. After the two numbers have been entered, the 
appropriate operation can be performed. In the case of a DIVIDE, 
the dividend is entered into Y and the divisor into X. Then the + 

key is pressed causing the quotient to appear in Y, leaving t Pe 
divisor in X. 

One way to transfer a number from the X register to the Y 
register is to use the double sized key, 0,at the left of the digit 
keys. This repeats the number in X into Y, leaving X unchanged; 
the number in Y goes to Z, and the number in Z is lost. Thus, 
when squaring or cubing a number, it is only necessary to follow 0with 0or 00.The 0key repeats a number in Z to Y 
leaving Z unchanged, the number in Y goes to X, and the number 
in X is lost. The @ key rotates the number in the X and Y reg-
isters up and the number in Z down into X. @ rotates the num- 
bers in Z and Y down and the number in X up into Z. @ inter-
changes the numbers in X and Y. Using the two ROLL keys and 
@ , numbers can be placed in any order in the three registers. 

Functions Available from the Keyboard 

The group of keys at the far left of the keyboard, Fig. 4, gives a 
good indication of the power of the Model 9100A. Most of the 
common mathematical functions are available directly from the 
keyboard. Except for @ the function keys operate on the number 
in X replacing it with the function of that argument. The numbers 
in Y and Z are left unchanged. @ is located with another group of 
keys for convenience but operates the same way. 

The circular functions operate with angles expressed in RADI-
ANS or DEGREES as set by the switch above the keyboard. The 
sine, cosine, or tangent of an angle is taken with a single 
keystroke. There are no restrictions on direction, quadrant or 
number of revolutions of the angle. The inverse functions are 
obtained by using the 0key as a prefix. For instance, two key 
depressions are necessary to obtain the arc sin x:@@. The 
angle obtained will be the standard principal value. In radians: 

0 5 cos- 'x I 7 r  

The hyperbolic sine, cosine, or tangent is obtained using the@ 
key as a prefix. The inverse hyberbolic functions are obtained with 
three key depressions. Tanh-' x is obtained by@@@. The arc 
and hyper keys prefix keys below them in their column. 

Log x and In x obtain the log to the base 10 and the log to the 
base e respectively. The inverse of the natural log is obtained with 

the ex key. These keys are useful when raising numbers to odd 
powers as shown in one of the examples on the pull-out card, Fig. 
3. 

Two keys in this group are very useful in programs. @ takes 
the integer part of the number in the X register which deletes the 
part of the number to the right of the decimal point. For example 
int(-3.1416) = -3. @ forces the number in the Y register 
positive. 

Storage Registers 

Sixteen registers, in addition to X, Y, and Z, are available for 
storage. Fourteen of them, 0, 1.2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, can 
be used to store either one constant or 14 program steps per 
register. The last registers, e and f, are normally used only for 
constant storage since the program counter will not cycle into 
them. Special keys located in a block to the left of the digit keys 
are used to identify the lettered registers. 

To store a number from the X register the key @ is used. The 
parenthesis indicates that another key depression, representing 
the storage register, is necessary to complete the transfer. For 
example, storing a number from the X register into register 8 
requires two key depressions:@ @ . The X register remains 
unchanged. To store a number from Y register the key@ is used. 

The contents of the alpha registers are recalled to X simply by 
pressing the keys a, b, c, d, e, and f. Recalling a number from a 
numbered register requires the use of the @ key to distinguish 
the recall procedure from digit entry. This key interchanges the 
number in the Y register with the number in the register 
indicated by the following keystroke, alpha or numeric, and is also 
useful in programs since neither number involved in the transfer 
is lost. 

The CLEAR key sets the X, Y, and Z display registers and the f 
and e registers are set to zero to initialize them for use with the @ 
and @ keys as will be explained. In addition the CLEAR key 
clears the FLAG and the ARC and HYPER conditions, which 
often makes it a very useful first step in a program. 

Coordinate Transformation and Complex Numbers 

Vectors and complex numbers are easily handled using the keys in 
the column on the far left of the keyboard. Figure 5 defines the 
variables involved. Angles can be either in degrees or radians. To 
convert from rectangular to polar coordinates, with y in Y and x in 
X, press @. Then the display shows 0 in Y and R in X. In 
converting from polar to rectangular coordinates, 0 is placed in Y, 
and R in X. @ is pressed and the display shows y in Y and x in X. 

ACC+ and ACC- allow addition or subtraction of vector 
components in the f and e storage registers. ACCS adds the 
contents of the X and Y register to the numbers already stored in f 
and e respectively; ACC- subtracts them. The RCL key recalls 
thc numbers in the f and e registers to X and Y. 



790 Part 4 I Family Range, Compatibility, and Evolution 

t)=tan-’ t 

Fig. 5. Variables involved in conversions between rectangular and 
polar coordinates. 

Illegal Operations 

A light to the left of the CRT indicates that an illegal operation has 
been performed. This can happen either from the keyboard or 
when running a program. Pressing any key on the keyboard will 
reset the light. When running a program, execution will continue 
but the light will remain on as the program is completed. The 
illegal operations are: 

Division by zero 
&where x < 0 
In x where x 5 0; log n where x 5 0 
sin-’ x where 1x1 > 1;cos-‘ x where 1x1 > 1 

cosh-‘ x where x < 1;tanh-’ x where 1x1 > 1 

Accuracy 

The Model 9100A does all calculations using floating point 
arithmetic with a twelve digit mantissa and a two digit exponent. 
The two least significant digits are not displayed and are called 
guard digits. 

The algorithms used to perform the operations and generate the 
functions were chosen to minimize error and to provide an 
extended range of the argument. Usually any inaccuracy wiII be 
contained within the two guard digits. In certain cases some 
inaccuracy will appear in the displayed number. One example is 
where the functions change rapidly for small changes in the 
argument, as in tan x where x is near 90”. A glaring but 
insignificant inaccuracy occurs when an answer is known to be a 
whole number, but the least significant guard digit is one count 
low: 2.000 000 000 = 1.999 999 999. 

Accuracy is discussed further in the “Internal Programming” 
section in this chapter. But a simple summary is: the answer 

Section 3 I Evolution of HP Calculators 

resulting from any operation or function will lie within the range 
of true values produced by a variation of 21 count in the tenth 
digit of the argument. 

Programming 

Problems that require many keyboard operations are more easily 
solved with a program. This is particularly true when the same 
operations must be performed repeatedly or an iterative tech- 
nique must be used. A program library supplied with the Model 
9100A provides a set of representative programs from many 
different fields. If a program cannot be found in the library to 
solve a particular problem, a new program can easily be written 
since no special experience or prior knowledge of a programming 
language is necessary. 

Any key on the keyboard can be remembered by the calculator 
as a program step except STEP PRGM. This key is used to 
“debug’ a program rather than as an operation in a program. 
Many individual program steps, such as “sin x” or “to polar” are 
comparatively powerful, and avoid the need of sub-routines for 
these functions and the programming space such sub-routines 
require. Registers 0, 1,2, 3,  4, 5, 6, 7, 8, 9, a, b, c, d can store 14 
program steps each. Steps within the registers are numbered 0 
through d just as the registers themselves are numbered. 
Programs can start at any of the 196 possible addresses. However 
0-0 is usually used for the first step. Address d-d is then the last 
available, after which the program counter cycles back to 0-0. 

Registers f and e are normally used for storage of constants only, 
‘one constant in each register. As more constant storage is 
required, it is recommended that registers d, then c, then b, etc., 
are used starting from the bottom of the list. Lettered registers 
are used first, for the frequently recalled constants, because 
constants stored in them are more easily recalled. A register can 
be used to store one constant or 14 program steps, but not both. 

Branching 
The bank on the far right of the keyboard, Fig. 4, contains 
program oriented keys. @ is used to set the program counter. 
The two sets of parentheses indicate that this key should be 
followed by two more key depressions indicating the address of 
the program step desired. As a program step, “GO TO” is an 
unconditional branch instruction, which causes the program to 
branch to the address given by the next two program steps. The 
“IF” keys in this group are conditional branch instructions. With 
@@ ,and @ the numbers contained in the XandY registers are 
compared. The indicated condition is tested and, if met, the next 
two program steps are executed. If the first is alphameric, the 
second must be also, and the two steps are interpreted as a 
branching address. When the condition is not met, the next two 
steps are skipped and the program continues. @ is also a very 
useful conditional branching instruction which tests a “yes” or 



“no” condition internally stored in the calculator. This condition is 
set to “yes” with the SET FLAG from the keyboard when the 
calculator is in the display mode or from a program as a program 
step. The flag is set to a “no” condition by either asking IF FLAG 
in a program or by a CLEAR instruction from the keyboard or 
from a program. 

Data Input and Output 

Data can be entered for use in a program when the machine is in 
the display mode. (The screen is blank while a program is 
running.) A program can be stopped in several ways. The @key 
will halt the machine at any time. The operation being performed 
will be completed before returning to the display mode. AS a 
program step, STOP stops the program so that answers can be 
displayed or new data entered. END must be the last step in a 
program listing to signal the magnetic card reader; when encoun- 
tered as a program step it stops the machine and also sets the 
program counter to 0-0. 

As a program step, PAUSE causes a brief display during 
program execution. Nine cycles of the power line frequency are 
counted-the duration of the pause will be about 150 ms for a 60 
Hz power line or 180ms for a 50 Hz power line. More pauses can 
be used in sequence if a longer display is desired. While a 
program is running the PAUSE key can be held down to stop the 
machine when it comes to the next PAUSE in the program. PAUSE 
provides a particularly useful way for the user and the machine to 
interact. It might, for instance, be used in a program so that the 
convergence to a desired result can be observed. 

Other means of input and output involve peripheral devices 
such as an X-Y Plotter or a Printer. The PRINT key activates the 
printer, causing it to print information from the display register. 
As a program step, PRINT will interrupt the program long enough 
for the data to be accepted by the printer and then the program 
will continue. If no printer is attached, PRINT as a program step 
will act as a STOP. The FMT key, followed by any other 
keystroke, provides up to 62 unique commands to peripheral 
equipment. This flexibility allows the Model 9100A to be used as a 
controller in small systems. 

Sample Program-N! 

A simple program to calculate N! demonstrates how the Model 
9100A is programmed. Figure 6 (top) shows a flow chart to 
compute N! and Fig. 6 (bottom) shows the program steps. With 
this program, 60! takes less than 1h second to compute. 

Program Entry and Execution 

After a program is written it can be entered into the Model 9100A 
from the keyboard. The program counter is set to the address of 
the first program step by using the GO TO ( )  ()  key. The 
RUN-PROGRAM switch is then switched from RUN to PRO- 

Chapter 48 1 The HP Model 9100A Computing Calculator 791 

Store N 

FI Recall N 

1I 


/ ,  

Fig. 6. Fiow chart of a program to compute N! (top). Each step is 
shown (bottom) and the display for each register. A new value for 
Ncan be entered at the end of the program, since END automatical-
ly sets the program counter back to 0-0. 

GRAM and the program steps entered in sequence by pushing 
the proper keys. As each step is entered the X register displays 
the address and key code, as shown in Fig. 7. The keys and their 
codes are listed at the bottom of the pull-out card, Fig. 3. Once a 
program has been entered, the steps can be checked using the 
STEP PRGM key in the PROGRAM mode as explained in Fig. 7. 
If an error is made in a step, it can be corrected by using the @ 
key without having to re-enter the rest of the program. 

To run a program, the program counter must be set to the 
address of the first step. If the program starts at 0-0 the keys @
@m a r e  depressed, or simply just @since this key automatically 



792 Part 4 Family Range, Compatibility, and Evolution Section 3 1 Evolution of HP Calculators 

Fig. 7. Program step address and code are displayed in the X 
register as steps are entered. After a program has been entered, 
each step can be checked using the STEP PRGM key. In this 
display, set 2-d is 36, the code for multiply. 

sets the program counter to 0-0. CONTINUE will start program 
execution. 

Magnetic Card Reader-Recorder 
One of the most convenient features of the Model 91001%is the 
magnetic card reader-recorder, Fig. 8. A program stored in the 
Model 9100A can be recorded on a magnetic card, Fig. 9, about 
the size of a credit card. Later when the program is needed again, 
it can be quickly re-entered using the previously recorded card. 
Cards are easily duplicated so that programs of common interest 
can be distributed. 

As mentioned earlier, the END statement is a signal to the 

Fig. 8. Programs can be entered into the calculator by means of the 
magnetic program card. The card is inserted into the slot and the 
ENTER button pressed. 

Fig. 9. Magnetic programming card can record two 196-step 
programs. To prevent accidental recording of a new program over 
one to be saved, the corner of the card is cut as shown. 

reader to stop reading recorded information from the card into the 
calculator. For this reason END should not be used in the middle 
of a program. Since most programs start at location 0-0 the reader 
autoinatically initializes the program counter to 0-0 after a card is 
read. 

The magnetic card reader makes it possible to handle most 
programs too long to be held in memory at one time. The first 
entry of steps can calculate intermediate results which are stored 
in preparation for the next part of the program. Since the reader 
stops reading at the END statement, these stored intermediate 
results are not disturbed when the next set of program steps is 
entered. The stored results are then retrieved and the program 
continued. Linking of programs is made more convenient if each 
part can execute an END when it finishes to set the prograiii 
counter to 0-0. It is then only necessary to press CONTINUE after 
each entry of program steps. 

Hardware Design of the Model 9100A Calculator 

All keyboard functions in the Model 9100A are implemented by 
the arithmetic processing unit, Figs. 10 and 11. The arithmetic 
unit operates in discrete time periods called clock cycles. All 
operations are synchronized by the clock shown at the top center 
of Fig. 10. 

The clock is connected to the control read only memory (ROM) 
which coordinates the operation of the program read only memory 
and the coincident current core readiwrite memory. The former 
contains information for implementing all of the keyboard opera- 
tions while the latter stores user data and user programs. 

All internal operations are performed in a digit by digit serial 



Chapter 48 1 The HP Model 9100A Computing Calculator 793 

825 ns
Activate CLOCK Activate 

(Read only) (Read-Write) 

7 I 

Activate 
(Read only) i1
Capacity 

PROGRAM CONTROL COINCIDENT 

MEMORY 
High Orderi Memory 

1 
CONTROL 

I 64 WORD 368 WORDS
29 BlTlW I I 6 BlTlW II I 800 ns I 

0 

2 

PROGRAM culS 
ROM - Low Order 

ADDRESS ADDRESS FLIP FLOPS ADDRESS MemoryFLIP FLOPS FLIP FLOP FLIP FLOPS 

No Memory-, t 

t t f f 1 f OUTPUT 


INPUT 

Keyboard 


Fig, 10. Arithmetic processing unit block diagram. This system is a marriage of conventional, reliable diode-resistor logic to a 32,000-bit 
read-only memory and a coincident current core memory. 

basis using binary coded decimal digits. An addition, €or example, 
requires that the least significant digits of the addend and augend 
be extracted from core, then added and their sum replaced in 
core. This process is repeated one BCC digit at a time until the 
most significant digits have been processed. There is also a 

Fig. 11. Arthmetic unit assembly removed from the calculator. 

substantial amount of “housekeeping” to be performed such as 
aligning decimal points, assigning the proper algebraic sign, and 
floating point normalization. Although the implementation of a 
keyboard function may involve thousands of clock cycles, the total 
elapsed time is in the millisecond region because each clock cycle 
is only 825 ns long. 

The program ROM contains 512 64-bit words. When the 
program ROM is activated, signals (micro-instructions) corre- 
sponding to the bit pattern in the word are sent to the hard wired 
logic gates shown at the bottom of Fig. 10. The logic gates define 
the changes to occur in the flip flops at the end of a clock cycle. 
Some of the micro-instructions act upon the data flip flops while 
others change the address registers associated with the program 
ROM, control ROM and coincident current core memory. During 
the next clock cycle the control ROM may ask for a new set of 
micro-instructions from the program ROM or ask to be read from 
or written into the coincident current core memory. The control 
ROM also has the ability to modify its own address register and 
to issue micro-instructions to the hard wired logic gates. 
This flexibility allows the control logic ROM to execute 
special programs such as the subroutine for unpacking the 
stored constants required by the keyboard transcendental func- 
tions. 



794 Part 4 I Family Range, Compatibility, and Evolution Section 3 1 Evolution of HP Calculators 

Specificationsof HP Model 9100* 
The HP Model 9100A is a program-
mable, electronic calculator which 
performs operations commonly en-
countered in scientific and engineering 
problems. Its log, trig and mathematical 
functions are each performed with a 
single key stroke, providing fast, con- 
venient solutions to intricate equations. 
Computer-like memory enables the cal- 
culator to store instructions and con- 
stants for repetitive or iterative solu- 
tions. The easily-readable cathode ray 
tube instantly displays entries, answers 
and intermediate results. 
Operations 

Direct keyboard operations include: 
Arithmetic: addition, subtraction, 

multiplication, division and 
square-root. 

Logarithmic: log x, In xand ex. 
Trigonometric: sin x, cos x, tan x, 

sin-lx, cos-lx and tan-lx (x in de-
grees or radians). 

Hyperbolic: sinh x, cosh x, tanh x, 
sinh-lx, cosh-'x, and tanh-lx. 

Coordinate transformation: polar-
to-rectangular, rectangular-to-
polar, cumulative addition and 
subtraction of vectors. 

Miscellaneous: other single-key 
operations include-taking the 
absolute value of a number, ex- 
tracting the integer part of a 
number, and entering the value of 
T.  Keys are also available for posi- 
tioning and storage operations. 

*Courtesy of Loveland Division. 

Control Lo& 

Programming 
The program mode allows entry of 
program instructions, via the key-
board, into program memory. Pro- 
gramming consists of pressing keys 
in the proper sequence, and any key 
on the keyboard is available as a pro- 
gram step. Program capacity is 196 
steps. No language or code-
conversions are required. A self-
contained magnetic card read-
er/recorder programs from program 
memory onto wallet-size magnetic 
car& for storage. It also reads pro- 
grams from cards into program mem- 
ory for repetitive use. Two programs 
of 196 steps each may be recorded on 
each reusable card. Cards may be 
cascaded for longer programs. 

Speed 
Average times for total performance 
of typical operations, including 
decimal-point placement: 

add, subtract: 2 milleseconds 
multiply: 12 milliseconds 
divide: 18milliseconds 
square-root: 19 milliseconds 
sin, cos, tan: 280 milliseconds 
In x: 50 milliseconds 
ex: 110 milliseconds 

These times include core access of 
1.6 microseconds. 

General 
Weight: Net 40 Ibs, (18.1 kg.); ship- 

ping 65 Ibs. (29.5 kg.). 
Power: 1 15 or 230V i. lo%, 50 to 
60 Hz, 400 Hz, 70 watts. 

Dimensions: 8%'' high, 1 6  wide, 19' 
deep. 

operate the program ROM, coincident current core, and selected 
micro-instructions.The control logic uses a wire braid toroidal core read only memory 

containing 64 29-bit words. Magnetic logic of this type is 
extremely reliable and pleasingly compact. 

Coincident Current Core Readmrite MemoryThe crystal controlled clock source initiates a current pulse 
having a trapezoidal waveform which is directed through one of 64 The 2208 (6 x 16 x 23) bit coincident current memory uses wide 
word lines, Bit patterns are generated by passing or threading temperature range lithium cores. In addition, the X, Y, and 
selected toroids with the word lines. Each toroid that is threaded inhibit drivers have temperature compensated current drive 
acts as a transformer to turn on a transistor connected to the sources to make the core memory insensitive to temperature and 
output winding of the toroid. The signals from these transistors power supply variations. 



-16.5 

Power Supplies 
The arithmetic processing unit operates from a single -15 volt 
supply. Even though the power supply is highly regulated, all 
circuits are designed to operate over a voltage range of -13.5to 

Display 

The display is generated on an HP electrostatic cathode ray tube 
only 11inches long. The flat rectangular face plate measures 3% 
x 413/16 inches. The tube was specifically designed to generate a 
bright image. High contrast is obtained by using a low transmis- 
sivity filter in front of the CRT. Ambient light that usually tends to 
“wash out” an image is attenuated twice by the filter, while the 
screen image is only attenuated once. 

All the displayed characters are “pieces of eight.” Sixteen 
different symbols are obtained by intensity modulating a figure 8 
pattern as shown in Fig. 12. Floating point numbers are parti- 
tioned into groups of three digits and the numeral 1is shifted to 
improve readability. Zeros to the left of the most significant digit 
and insignificant zeros to the right of the decimal point are 
blanked to avoid a confusing display. Fixed point numbers are 
automatically rounded up according to the decimal wheel setting. 
A fixed point display will automatically revert to floating point 
notation if the number is too large to be displayed on the CRT in 
fixed point. 

Multilayer Instruction Logic Board 

All of the hard wired logic gates are synthesized on the instruction 
logic board using time-proven diode-resistor logic. The diodes and 
resistors are located in separate rows, Fig. 13. All diodes are 
oriented in the same direction and all resistors are the same value. 
The maze of interconnections normally associated with the back 
plane wiring of a computer are located on the six internal layers of 
the multilayer instruction logic board. Solder bridges and acciden- 
tal shorts caused by test probes shorting to leads beneath 
components are all but eliminated by not having interconnections 
on the two outside surfaces of this multilayer board. The 

Fig. 12. Displayed characters are generated by modulating these 
figures. The digit 1 is shifted to the center of the pattern. 

Chapter 48 I The HP Model 9100A Computing Calculator 795 

instruction logic board also serves as a motherboard for the control 
logic board, the two coincident core boards and the two flip flop 
boards, the magnetic card reader, and the keyboard. It also 
contains a connector, available at the rear of the calculator, for 
connecting peripherals. 

Flip Flops 

The Model 9100A contains 40 identical J-K flip flops, each having 
a threshold noise immunity of 2.5 volts. Worst case design 
techniques guarantee that the flip flops will operate at 3 MHz 
even though 1.2 MHz is the maximum operating rate. 

Program Read Only Memory 

The 32,768 bit read only program memory consists of 512 64-bit 
words. These words contain all of the operating subroutines, 
stored constants, character encoders, and CRT modulating pat- 
terns. The 512 words are contained in a 16 layer printer-circuit 
board having drive and sense lines orthogonally located. A drive 
line consists of a reference line and a data line. Drive pulses are 
inductively coupled from both the reference line and data line 
into the sense lines. Signals from the data line either aid or cancel 
signals from the reference line producing either a 1or 0 on the 
output sense lines. The drive and sense lines are arranged to 
achieve a bit density in the ROM data board of 1000 bits per 
square inch. 

The program ROM decodeddriver circuits are located directly 
above the ROM data board. Thirty-two combination sense 
amplifier, gated-latch circuits are located on each side of the ROM 
data board. The outputs of these circuits control the hard wired 
logic gates on the instruction logic board. 

Side Boards 

The program ROM printed circuit board and the instruction logic 
board are interconnected by the side boards, where preliminary 
signal processing occurs. 

The Keyboard 

The keyboard contains 63 molded plastic keys. Their markings 
will not wear off because the lettering is imbedded into the key 
body using a double shot injection molding process. The key and 
switch assembly was specifically designed to obtain a pleasing feel 
and the proper amount of tactile and aural feedback. Each key 
operates a single switch having gold alloy contacts. A contact 
closure activates a matrix which encodes signals on six data lines 
and generates an initiating signal. This signal is delayed to avoid 
the effects of contact bounce. An electrical interlock prevents 
errors caused by pressing more than one key at a time. 





Magnetic Card Reader 
Two complete 196 step programs can be recorded on the credit 
card size magnetic program card. The recording process erases 
any previous information so that a card may be used over and over 
again. A program may be protected against accidental erase by 
clipping off the corner of the card, Fig. 9. The missing corner 
deactivates the recording circuitry in the magnetic card reader. 
Program cards are compatible among machines. 

Information is recorded in four tracks with a bit density of 200 
bits per inch. Each six-bit program step is split into two 
time-multiplexed, three-bit codes and recorded on three of the 
four tracks. The fourth track provides the timing strobe. 

Information is read from the card and recombined into six bit 
codes for entry into the core memory. The magnetic card reading 
circuitry recognizes the “END” program code as a signal to end 
the reading process. This feature makes it possible to enter 
subroutines within the body of a main program or to enter 
numeric constants via the program card. The END code also sets 
the program counter to location 0-0, the most probable starting 
location. The latter feature makes the Model 91OOA ideally suited 
to “linking” programs that require more than 196 steps. 

Packaging and Servicing 
The packaging of the Model 9100A began by giving the HP 
industrial design group a volume estimate of the electronics 
package, the CRT display size and the number of keys on the 
keyboard. Several sketches were drawn and the best one was 
selected. The electronics sections were then specifically designed 
to fit in this case. Much time and effort were spent on the 
packaging of the arithmetic processing unit. The photographs, 
Figs. 11and 14, attest to the fact that it was time well spent. 

The case covers are die cast aluminum which offers durability, 
effective RFI shielding, excellent heat transfer characteristics, and 
convenient mechanical mounts. Removing four screws allows the 
case to be opened and locked into position, Fig. 14. This 
procedure exposes all important diagnostic test points and 
adjustments. The keyboard and arithmetic processing unit may be 
freed by removing four and seven screws respectively. 

Any component failures can be isolated by using a diagnostic 
routine or a special tester. The fault assembly is then replaced and 
is sent to a service center for computer assisted diagnosis and 
repair. 

Reliability 
Extensive precautions have been taken to insure maximum 
reliability. Initially, wide electrical operating margins were 

Chapter 48 I The HP Model 910OA Computing Calculator 797 

Fig. 14. International adjustments of the calculator are easily 
accessible by removing a few screws and lifting the top. 

obtained by using “worst case” design techniques. In production 
all transistors are aged at 80% of rated power for 96 hours and 
tested before being used in the Model 9100A. Subassemblies are 
computer tested and actual operating margins are monitored to 
detect trends that could lead to failures. These data are analyzed 
and corrective action is initated to reverse the trend. In addition, 
each calculator is operated in an environmental chamber at 55°C 
for 5 days prior to shipment to the customer. Precautions such as 
these allow Hewlett-Packard to offer a one year warranty in a field 
where 90 days is an accepted standard. 

Internal Programming of the 9100A Calculator 

Extensive internal programming has been designed into the HP 
Model 9100A Calculator to enable the operator to enter data and 
to perform most arithmetic operations necessary for engineering 
and scientific calculation with a single key stroke or single 
program step. Each of the following operations is a hardware 
subroutine called by a key press or program step: 

Fig. 13(opposite). Printed-circuit boards which make up the arithmetic unit are, left to right at top, side board, control logic, flip flop, core 
and drivers, core sense amplifiers and inhibit, flip flop, and side board. Large board at the lower left is the multilayer instruction board, 
and the program ROM is at the right. The magnetic card reader and its associated circuitry are at the bottom. 



798 Part 4 1 Family Range, Compatibility, and Evolution 

Basic arithmetic operations 

Addition 

Subtraction 

Multiplication 

Division 


Extended arithmetic operations 
Square root 
Exponentia1-4 
Logarithmic-ln x, log x 

Vector addition and subtraction 
Trigonometric operations 

Sin x, cos x, tan x 
Arcsin x, arccos x, arctan x 
Sinh x, cosh x, tanh x 
Arcsinh x, arccosh x, arctanh x 
Polar to rectangular and rectangular to 
polar coordinate transformation 

Miscellaneous 

Enter T 

Absolute value of y 

Integer value of x 


In the evolution of internal programming of the Model 91OOA 
Calculator, the first step was the development of flow charts of 
each function. Digit entry, Fig. 15, seemingly a trivial function, is 
as complex as most of the mathematical functions. From this 
functional descfiption, a detailed program can be written which 
uses the microprograms and incremental instructions of the 
calculator. Also, each program must be married to all of the other 
programs which make up the hard-wired software of the Model 
91OOA. Mathematical functions are similarly programmed defin- 
ing a step-by-step procedure or algorithm for solving the desired 
mathematical problem. 

The calculator is designed so that lower-order subroutines may 
be nested to a level of five in higher-order functions. For instance, 
the “Polar to Rectangular” hnction uses the sin routine which uses 
multiply which uses add, etc. 

Addition and Subtraction 

The most elementary mathematical operation is algebraic addi- 
tion. But even this is relatively complex-it requires comparing 
signs and complementing if signs are unlike. Because all numbers 
in the Model 91OOA are processed as true floating point numbers, 
exponents must be subtracted to determine proper decimal 
alignment. If one of the numbers is zero, it is represented in the 
calculator by an all-zero mantissa with zero exponent. The 
difference between the two exponents determines the offset, and 
rather than shifting the smaller number to the right, a displaced 
digit-by-digit addition is performed. It must also be determined if 
the offset is greater than 12, which is the resolution limit. 

Although the display shows 10 significant digits, all calculations 

ENTRYI I 

Functions 

yes 	 A REGISTER 
TRANSFER ? 

STORE DIGIT I N  STORE DIGIT IN 
LEAST SIGNIFICANT MOST SIGNIFICANT 

EXWNENT LOCATION LOCATIDN 

POINT SET ? 

ANY PRIOR 

EXPONENT FROM EXPONENT 

MOST SIGNIFICANT 
DIGIT COCATION THIS LOCATION 

Fig.15. Flowchart d a simple digit entry. Some of these flow paths 
are used by other calculator operations for greater hardware 
efficiency. 



Chapter 48 I The HP Model 9100A Computing Calculator 799 

are performed to 12 significant digits with the two last significant 
digits (guard digits) absorbing truncation and round-off errors. All 
registers are in core memory, eliminating the need for a large 
number of flip-flop registers. Even with the display in “Fixed 
Point” mode, every computed result is in storage in 12 digits. 

Mu1tiplica tion 

Multiplication is successive addition of the multiplicand as 
determined by each multiplier digit. Offset in the digit position 
flip-flops is increased by one after completion of the additions by 
each multiplier digit. Exponents are added after completion of the 
product. Then the product is normalized to justify a carry digit 
which might have occurred. 

Division 

Division involves repeated subtraction of the divisor from the 
dividend until an overdraft occurs. At each subtraction without 
overdraft, the quotient digit is incremented by one at the digit 
position of iteration. When an overdraft occurs, the dividend is 
restored by adding the divisor. The division digit position is then 
incremented and the process continued. Exponents are subtract- 
ed after the quotient is formed, and the quotient normalized. 

Square Root 

Square root, in the Model 9100A, is considered a basic operation 
and is done by pseudo division. The method used is an extension 
of the integer relationship. 

In square root, the divisor digit is incremented at each iteration, 
and shifted when an overdraft and restore occurs. This is a very 
fast algorithm for square root and is equal in speed to division. 

Circular Routines 

The circular routines (sin, cos, tan), the inverse circular routines 
(arcsin, arccos, arctan) and the polar to rectangular and rectangu- 
lar to polar conversions are all accomplished by iterating through a 
transformation which rotates the axes. Any angle may be repre- 
sented as an angle between 0 and 1 radian plus additional 
information such as the number of times rr/2 has been added or 
subtracted, and its sign. The basic algorithm for the forward 
circular function operates on an angle whose absolute value is less 
than 1radian, but prescaling is necessary to indicate quadrant. 

To obtain the scaling constants, the argument is divided by 2n, 
the integer part discarded and the remaining fraction of the circle 
multiplied by 2n. Then n12 is subtracted from the absolute value 
until the angle is less than 1 radian. The number of times n/2 is 

subtracted, the original sign of the argument, and the sign upon 
completion of the last subtraction make up the scaling constants. 
To preserve the quadrant information the scaling constants are 
stored in the core memory. 

The algorithm produces tan 8. Therefore, in the Model 9100A, 
cost 8 is generated as 

1 
41 + tan2 o 

and sin O as 

tan 8 

d1+ tan2 o 


Sin 8 could be obtained from the relationship sin 8 = 
~ l - c o s 28, for example, but the use of the tangent rela-
tionship preserves the 12 digit accuracy for very small angles, 
even in the range of 8 < lo-’’. The proper signs of the functions 
are assigned from the scaling constants. 

For the polar to rectangular functions, cos 8 and sin 8 are 
computed and multiplied by the radius vector to obtain the X and 
Y coordinates. In performing the rectangular to polar function, the 
signs of both the X and Y vectors are retained to place the 
resulting angle in the right quadrant. 

Prescaling must also precede the inverse circular functions, 
since this routine operates on arguments less than or equal to 1. 
The inverse circular algorithm yields arctangent functions, making 
it necessary to use the trigonometric identity. 

X
sin-’ (x) = tanw1--di-?F 
If c o d  (x) is desired, the arcsin relationship is used and a scaling 
constant adds d 2  after completion of the function. For arguments 
greater than 1,the arccotangent of the negative reciprocal is found 
which yields the arctangent when d 2 is added. 

Exponential and Logarithms 

The exponential routine uses a compound iteration algorithm 
which has an argument range of 0 to the natural log of 10 (In 10). 
Therefore, to be able to handle any argument within the dynamic 
range of the calculator, it is necessary to prescale the absolute 
value of the argument by dividing it by In 10 and saving the 
integer part to be used as the exponent of the final answer. The 
fractional part is multiplied by In 10 and the exponential found. 
This number is the mantissa, and with the previously saved 
integer part as a power of 10exponent, becomes the final answer. 

The exponential answer is reciprocated in case the original 
argument was negative, and for use in the hyperbolic functions. 
For these hyperbolic functions, the following identities are used: 



800 Part 4 Family Range, Compatibility, and Evolution ~ 

Natural Logarithms 

The exponential routine in reverse is used as the routine for 
natural logs, with only the mantissa operated upon. Then the 
exponent is multiplied by In 10 and added to the answer. This 
routine also yields these log,, and are hyperbolic functions: 

In xlog,,x =-In 10 
sinh-'(x) = ln(x + a) 

cosh-l(x) = ln(x + m) 

tanh-'(x) = lnJz l t x  


1 - x  

Section 3 Evolution of HP Calculators1 

The sinh-' (x) relationship above yields reduced accuracy for 
negative values of x. Therefore, in the Model 9100A, the absolute 
value of the argument is operated upon and the correct sign 
affixed after completion. 

Accuracy 

It can be seen from the discussion of the algorithms that extreme 
care has been taken to use routines that have accuracy commensu- 
rate with the dynamic range of the calculator. For example; the 
square root has a maximum possible relative error of 1part in 10'' 
over the full range of the machine. 

There are many algorithms for determining the sine of an angle; 
most of these have points of high error. The sine routine in the 
Model 9100A has consistent low error regardless of quadrant. 
Marrying a full floating decimal calculator with unique mathemati- 
cal algorithms results in accuracy of better than 10 displayed 
digits. 



Chapter 49 

The HP 9810/20/30 Series 

A New Series of Programmable 
Calcu latorsl 

Richard M .  Spangler 

In recent years, programmable calculators have taken on a large 
portion of the computation jobs that were previously handled by 
computers. Calculators have several advantages that are responsi- 
ble for this trend. Calculators are small, self-contained, and easily 
transported-they can be brought directly to the user’s desk. 
They are quiet, and fit easily into a laboratory or office environ- 
ment. No complicated turn-on procedure is required; the user 
merely turns on the power switch, and the calculator is ready. The 
most important advantage is a psychological one-calculators are 
“friendly.” They are interactive, they provide immediate feed- 
back and immediate answers, and they are dedicated to their user. 

The 9800 Series is a new line of powerful programmable 
calculators and an extensive set of calculator peripherals. The 
series is designed to cover a broad range of applications. 
Important objectives of the new series are to provide the user with 
a choice of calculators that are flexible and expandable, and to 
support those calculators with comprehensive applications soft- 
ware and peripherals. 

The new 9800 Series is the successor of the 9100AiB [Hewlett- 
Packard, September 19681, HP’s first programfnable calculators. 
These earlier calculators were as powerful as the limits of 
technology at the time of their conception would allow them to be. 
But with technological advances come better calculators, hence 
the 9800 Series. 

Three Models 

There are currently three calculators in the 9800 Series. Model 10 
is a key-per-function calculator with a keyboard and language that 
are extensions of the HP 9100NB. The display is a three-register 
numeric display like the 9100AiB’s, hut uses seven-segment 
light-emitting-diode characters rather than a cathode-ray tube. 

Model 20 has a statement-oriented algebraic language. The user 
doesn’t have to position his variables in special registers or keep 
track of temporary results. He can enter arithmetic expressions in 
the same order as he would read them, including parentheses. 
Model 20 even allows implied multiplication, something that’s not 

’Hewlett-PuckurdJournal, vol. 24, December 1972, pp. M. 

allowed even in most high-level computer languages. Model 20 
has a display of 16 alphanumeric characters that can display a 
whole statement at a time. The alphanumeric display can be used 
during program execution to display comments and instructions as 
well as numeric results. This capability enhances the interactive- 
ness of this model. 

Model 30 is even more interactive. The keyboard is alphanu- 
meric, like a typewriter, rather than key-per-function. This 
complements the 32-character alphanumeric display by making it 
convenient to enter text and messages. The programming lan- 
guage of the Model 30 is BASIC, a well-known and easy-to-learn 
computer language that is designed for use in interactive environ- 
ments. 

The electronics of the 9800 Series is general in design and is 
common to all three calculators. The central processing unit is a 
microprogrammed, 16 bit serial processor that implements a 
general computer machine language (see article, p. 000). The 
three separate keyboard languages and the arithmetic routines are 
implemented by firmware routines stored in MOS read-only 
memory (ROM), and the user’s programs are stored in MOS 
read-write memory. The inputioutput structure is a general 
purpose system which makes it possible to interface with a wide 
variety of peripherals (see article, p. 817). 

Many Peripherals 

Some of the more important peripherals that have been interfaced 
are: 

9860A Card Reader 
9861A Output Typewriter 
9862A X-Y Plotter 
9863A Mechanical Paper Tape Reader 
9864A Digitizer 
9865-4 Magnetic Tape Cassette 
9866A Thermal Line Printer 
9869,4 Hopper Fed Card Reader 
2570A Instrumentation Coupler 
2748A Paper Tape Reader 
2895A Paper Tape Punch 

Several general purpose interface cards are also available to 
interface with other HP instruments, the new HP interface 
systems [Nelson and Ricci, 19721, and many peripherals from 
other manufacturers. 

Flexible and Expandable 

Flexibility and expandability of the keyboard and programming 
languages of 9800 Series calculators are provided through the use 
of add-on ROM modules. From the optional ROMs available, the 

801 



802 Part 4 1 Family Range, Compatibility, and Evolution 

Comparing9800 Series Calculators 

91OOAIB 981 OA 

Language Reverse Polish Reverse Polish 
Keyboard Key per Key per 

function function 
ROM size (bytes) 4K 5K to 11K 
RWM size (bytes) 128(A); 256(B) 908 to 2924 
Available to user 

I10 structure Special purpose General 
User definable None Optional-

keys or functions single key 
subroutine 

Recording device Magnetic card Card with 
cassette 
optional 

Display 3 register 3 register 
numeric CRT numeric LED 

Primary Printer Optional 16 Optional 16 
column numeric column alphanumeric 

user can select the language features that are required by his 
particular discipline. 

In Model 10, three ROM blocks of up to 2048 bytes each may be 
added to the calculator. The first block is used to define and 
implement the functions of a set of 15 keys on the keyboard. The 
second and third blocks are for control of internal and external 
peripherals. 

In Model 20, three blocks may be added, each controlling one 
of three sets of ten keys on the keyboard. 

In Model 30, eight blocks may be added, and since the Model 
30 has an alphanumeric keyboard, no special keys are required. 
The ROMs are accessed through mnemonics which are entered as 
a sequence of alphabetic characters. 

Different Models for Different Users 

Each of the three calculators is general purpose, but each has 
features which make it more appealing to different sets of users. 
Model 10’s advantages are its low cost, and its compatibility with 
the 9100A/B, which provides the basis for an extensive applica- 
tions program library. For example, the Surveying and Statistics 
applications packages that were originally developed for the 
9100AlB have been updated and expanded to make use of the new 
features of Model 10. 

Section 3 Evolution of HP CalculatorsI 

9820A 9830A 

Algebraic BASIC 
Key per Alphanumeric 
function 
8K to 14K 14K to 31 K 
1384 to 3432 3520 to 761 6 

General General 
Optional- Standard-

single key subroutine 
subroutine or function 
or function with one 
with pa- parameter 
rameters 

Card with Cassette 
cassette standard 
optional 

16 character 32 character 
alphanu- alphanumeric 
meric LED LED 

Standard 16 Optional 80 
column alphanumeric column alphanumeric 

Its natural algebraic language and its many programming and 
editing features, such as program flags and relative addressing, 
make Model 20 ideal for users who want to do their own 
programming. These features are particularry appealing to re- 
search scientists and engineers. The peripheral control capabili- 
ties of the Model 20 also make it attractive for use as a controller in 
instrumentation systems [Nelson and Ricci, 19721. 

Its larger memory, its array -variable capability, and its built-in 
tape cassette make Model 30 appealing to users with large 
programs and data bases, such as structural engineers and 
investment analysts. The alphanumeric keyboard, string-variable 
capability, and page-width printer appeal to users in fields outside 
the scientific, such as education and business. The programming 
language of the Model 30 appeals to a large number of users who 
already know BASIC as a time-sharing language. With an optional 
Terminal ROM time-share users can transform the Model 30 into 
a versatile terminal with local as well as remote computation and 
storage capability. 

With all three calculators, each user can specify a system of 
optional ROIvls, peripherals, and read-write memory- size to meet 
his own needs. This versatility is enhanced by user-definable 
keys, optional on the Models 10 and 20 and standard on Model 30. 
All three machines can also be expanded by the user of special 
machine language programs that can be loaded into read-write 
memory from a magnetic card or cassette. This capability can be 



Chapter 49 1 The HP 9810/20/30 Series 803 

used, for example, to supply a software driver for a special 
peripheral. 

The special features of each calculator along with the general 
purpose nature of the hardware are designed so that some 
combination of 9800 Series instruments will provide a solution to 
almost any programmable calculator application. 

Model 10 Maintains Compatibility, 
Expands Capabi IityI 

Curtis D. Brown / Jack M. Walden 

In keyboard language and appearance, Model 10 of the 9800 
Series, or Model 9810A, is closely related to the 9100MB 
Calculators, HP’s first programmable calculators and the prede- 
cessors of the 9800 Series. Most of the 9810A keys are marked the 
same as the 9100AiB keys, and when used in the same way, 
perform the same operations. The same “reverse Polish” keyboard 
language is used. What’s more, the keycodes stored in the 
program memory are the same when the keys are marked the 
same. This close similarity was maintained wherever possible to 
provide a useful carryover of the well established 9100MB 
keyboard operations and associated programming techniques. 
However, 9100AiB operations are a subset of the 9810A’s. Many 
new capabilities and features have been added in the new 
calculator. 

In hardware implementation the 9810A hears no resemblance 
to the 9100AiB. Rather, it is similar to the other 9800-Series 
Calculators, Models 20 and 30. 9800-Series Calculators are all 
implemented from a common hardware base which is actually a 
16-bit-word, general-purpose minicomputer. Individual calcu- 
lator-model characteristics are obtained by internal ROM-stored 
machine-language programming. The unique hardware for each 
model consists primarily of the keyboard and display, which are 
tailored to the needs of the individual models. 

The most important individual characteristics of the 9810A are: 

1 	A three-register (x, y, and z) light-emitting diode display 

2 	 Separate memories for program and data storage 

3 	 All-decimal addressing of program and data storage 
4 	 Modular internal expansion of program and/or data storage 
5 	 Indirect addressing for any register reference 

‘Hewlett-Packard Journal, vol. 24, December 1972, pp. 5-8. 

References 

Hewlett-Packard [September 19681; Nelson and Ricci [1972]. 

6 	 Arithmetic operations (all four functions) into or from all 
data registers 

7 	 Optional function blocks (ROM) to define the operation of 
the lefthand keyblock and other auxiliary functions, user- 
installable with ease. 

9810A Hardware Features 

The three-register LED display is one of the most conspicuous 
front-of-machine changes noticed by those familiar with the 
9100AiB’s CRT display. LED display was chosen because it is a 
bright, highly visible display whose brightness and size of 
characters are practically uninfluenced by line voltage, it fits in a 
small space, and its low supply voltages and signal levels interface 
directly to internal logic levels and supply voltages. 

The magnetic card reader has a new feedthrough card path, 
allowing the use of longer cards than those used in the 9100MB. 
The longer cards have greatly increased storage capacity, a 
necessity for making full use of the larger program and data 
memories of the 9810A and 982OA Calculators. 

The 9810A and 9820A Calculators each have three sockets for 
plug-in read-only-memory (ROM) modules. These are direct 
extensions of the internal ROM. They allow expansion of operating 
features and redefinition of the lefthand keyblock. In the 9810A 
the lefthand keys may be defined at the user’s option to provide 
standard mathematical functions (almost identical to the 9100MB), 
statistical calculations, user-definable (keyboard language) func- 
tions, or programming aids. 

The optional plotter, cassette, typewriter, and other peripher- 
als are controlled by other plug-in blocks that are accessed by use 
of the FMT key on the keyboard. This plug-in block concept 
allows the user to configure and reconfigure the machine and 
peripheral-control facilities to suit the needs of the moment. 

The thermal strip printer, housed within the calculator case, is 
controlled by internal programming. The basic 9810A provides for 
the printing of numeric values as they appear in the x register, or 
the listing of programs as they appear in the program-mode 
display. An optional plug-in block provides for message printing 



504 Part 4 I Family Range, Compatibility, and Evolution 

and the addition of keycode mnemonics (functional abbreviations) 
to the program listings. 

9810A Software Features 

While the 9810A has a much larger bit-storage capacity than the 
9100A/B, its memory is effectively made still larger by some new 
step-saving features. A major change from the 9100MB is the 
decimal addressing structure for programs and data. The novice 
programmer adapts more quickly to decimal addressing, but a 
more important reason for its adoption is that it is necessary for 
the indirect addressing mode. An indirect reference to register a, 
say, will result in using the zjalue of register a as a new register 
address. For example, the keystroke sequence x-+, INDIRECT, 
a,  will store the contents of the calculator’s x register in the 
register whose address is given by the contents of a. 

The indirect capability of the calculator can save many steps 
when a number of data registers are to undergo equivalent 
operations. One data register can be set aside as a pointer. The 
value of the pointer register designates one of the data registers to 
which the operations are to be applied. By incrementing the 
pointer register, a common subroutine can operate on the desired 

Fig. 1. Model 10 of the 9800 Series has all the capabilities of 
previous HP programmable calculators, plus many others. New 
features are the LED display, a larger internally expandable 
memory, decimal and indirect addressing, arithmetic operations 
into or from all data registers, and optional plug-in function blocks 
to define the lefthand keyblock and other auxiliary functions. 

Section 3 Evolution of HP Calculators1 

data registers in turn, saving many program steps over the direct 
reference method. 

Another important step-saving feature in the 9810A is the 
register arithmetic capability. Normally, if one wanted to add the 
x register to register 10, one would recall register 10 to the y 
register, add the x register, and store the results in register 10. 
With register arithmetic, however, a mathematical operator may 
be specified preceding the transfer address in a store or recall 
operation. One I V O U I ~then say x-, +, 10 to do the above 
operation. 

This capability is bidirectional. Thus x+, +, 10will add register 
10 to the x register. Since any of the four arithmetic operations (+, 
-, x , t)may be used, each register of the 9810A is in effect a 
powerful accumulator. This feature greatly increases program- 
ming flexibility by reducing the amount of shuffling of the x, y, 
and z registers. 

Indirect addressing may be used with register arithmetic by 
including the INDIRECT key either before or after the arithmetic 
operator. 

Because of the size of the 9810A memory, an improvement in 
programming and debugging ease over the 9100MB was vital. 
Three new features attack this problem directly: label goto’s; 
alphanumeric key mnemonics; and a printed record of entered 
keystrokes (keylogging.) 

Labeled transfers are most useful during the program creation 
phase, where actual program step addresses either are not known 
or may change frequently as debugging progresses. Any step in 
the calculator program may be assigned a label by entering the 
LABEL key followed by any other keystroke. Control may later be 
transferred to that step by executing a GOTO or GOSUB LBL, 
then the same keystroke. A search is initiated, beginning at 
program step zero, and continuing through the program area until 
the label is found. Later, when the program is operating 
satisfactorily, absolute addresses may be substituted for each 
labeled GOTO; this gives a speed advantage by eliminating the 
search. (Model 9820A also has these capabilities.) 

Alpha Printing 

An alternative to remembering the numerical equivalents of all 64 
keys is provided by an optional ROM, which generates three- 
letter mnemonics during listings on the thermal printer. These 
are useful for program debugging or documentation. This ROM 
also allows printing of messages during program execution, using 
the Format key to change the definition of the calculator 
keyboard. TWO consecutive FMT keystrokes begin the character 
print mode. Keys that follow are interpreted as characters Of the 
alphabet, rather than as their assigned function, and are printed a 
line at a time on the strip printer. Another FMT key terminates 



Chapter 49 1 The HP 9810/20/30 Series 805 

the character print mode and restores normal calculator opera- 
tion. 

The keylog feature provides a printed record of all calculator 
keyboard operations. When the keylog mode is selected each key 
entered from the keyboard is automatically printed. If the 
calculator is in keyboard mode, the steps in a certain calculation 
may be verified. In program mode, the result is a full step-by-step 
listing of the program entered. With the optional plug-in ROM, 
mnemonics are printed along with the keycode. 

Another feature that simplifies the operator’s interaction with 
the-9810A is a backstep key. The backstep key decrements the 
calculator program step counter. It’s helpful in examination of 
stored programs. 

Flexibility through Plug-in ROMs 

To one person, his 9810A may be an aid in statistics, to another it 
may be a purely mathematical or scientific machine, while to a 
third, it may be a peripheral controller. This changing nature of 
the 9810A is made possible by the plug-in ROM concept. The 
implementation of this concept posed a special problem for the 
machine coding. How can blocks yet to be conceived be slot- 
independent and still interface readily to the basic calculator? 

The solution was to use the Format key to initiate a search 

Interactive Model 20 
Speaks Algebraic Language1 

Rex L. James / Francis J .  Yockey 

In Model 20 of the 9800 Series, or Model 9820A, the emphasis is 
on using the 9800 technology to provide a highly interactive 
calculator. Like the 9810A, the 9820A is a ROM-driven minicom- 
puter. Its interactive nature stems mainly from its natural 
algebraic language and its built-in peripherals-keyboard, print-
er, and display. 

Modularity provides another level of interactiveness by allow- 
ing the user to configure the 9820A to fit his application. 

The display consists of a single register of sixteen alphanumeric 
characters. Each character is formed by a seven-row, five-column 
matrix of light-emitting diodes (LEDs). The printer and keyboard 

‘Hewlett-Puckard Journal, vol. 24, December 1972, pp. 8-13. 

through possible ROM block locations. The key following the 
FMT is compared with a special identifier word in each ROM, and 
when these codes match, the desired ROM has been found. 

Many operations which could not be included in the keyboard 
directly are also implemented through the FMT key: 

1) FMT f: 	 raise the plotter pen and move 
the coordinates given in the x 
and y registers. 

2) FMT $: 	 lower the plotter pen and move 
to the coordinates given in the x 
and y registers. 

3) FMT x+ load or record data registers us- 
X t ing the magnetic card reader. 

4) FMT GOTO 	 load a magnetic card program at 
location zero, and begin execu- 
tion at location zero (useful for 
chain-loading programs). 

5) FMT CONTINUE 	 start the paper tape reader and 
prepare the calculator to accept 
information. 

There routines are all contained in the basic 9810A. 

are similar mechanically to those of the 9810A (see box, 
page 808). 

The 9820A’s combination of fast LED display and quiet thermal 
strip printer allows a program to be run in an interactive mode 
unattainable before. The hard-copy results on the printer aren’t 
cluttered with user instructions, since these appear in the LED 
display. User instructions appear instantaneously in the display; 
there’s no need to wait for a printout. 

When a key is pressed a mnemonic or character appears in the 
display to give instant visual feedback. The 16 characters are 
enough so that successive keystrokes can be seen in context. For 
example, the expression “if the square root of 6 equals A, go to 
line 17” would require the keystrokes 

I F  6= A; GOTO 17 

and would appear in the display as 

IF v‘% = A; GTO 17 



806 Part 4 1 Family Range, Compatibility, and Evolution 

Natural Algebraic Language 

Model 20 uses a powerful but natural instruction set to enable the 
user to solve complex mathematical problems quickly. The 
instruction set combines the features of the keyboard with the 
features of computer languages like ALGOL, FORTRAN, and 
BASIC. The result is a human-oriented, conversational approach 
to problem-solving, an approach that follows the structure of 
algebra in symbols and hierarchy. 

A typical prograin for the 9820A is as follows. The program 
solves the quadratic equation (-B*d(BB-4AC) 12A. 

0: ENT “A VALUE”,A 

1: PRT “A=”,A 

2: ENT “B VALUE”,B 

3: PRT “B=”,B 

4: ENT “C VALUE”,C 

5: PRT “C=”,C 

6: IF 4AC>BB;GTO “IMAG” 

7: PRT “REAL R0OTS”;SPC 1 
8: PRT (-B+V/AC))12A;SPC 1 

9: PRT (-B-,d(BB-4AC))/ZA;SPC 9;JMP -9 

10: “IMAG” 

11: PRT “COMPLEX RO0TS”;SPC 1 
12: PRT “REAL”, “1MAGINARY”;SPC 2 

13: PRT -B/2A,v(4AC-BB)/2A;SPC 1 

14: PRT -B/2A, -‘d(4AC-BB)/2A;SPC 9; GTO 0 
15: END 

Notice in lines 8 and 9 of the program that the answer to the 
equation is programmed in the same way that the user would 
write it on paper. There are no artificial machine rules to 
remember. To maintain the structure ofdgebra, implied multipli- 
cation was implemented to avoid forcing the user to insert “*” 
between variables to be multiplied. Parentheses can be used and 
nested to any depth to change the order of evaluation of an 
algebraic expression. 

Lines 0-5 demonstrate the interactiveness of the calculator. 
First the calculator stops and displays an alpha message of what is 
to be entered. The user then keys in the desired value. After RUN 
PROGRAM is pressed the calculator stores the value away and 
prints the label and the value of the entered data. In this way all 
three values A, B, and C may be entered. The roots then appear 
on the printout. 

Section 3 1 Evolution of HP Calculators 

Fig. 2. Model20 of the 9800 Series has a 16-character alphanumeric 
LED display that shows several keystrokes or program steps in 
context. Special features are a natural algebraic language, an 
interactive mode of operation, and plug-in modules that define the 
functions of the three lefthand keyblocks. 

Editing 

Convenient editing features have been included in the 9820A. To 
edit the above program to change to the absolute form of the 
GOTO, the user would key in GOTO 6 RECALL. Line 6 will be 
recalled to the display. Hitting the back key 7 times will give the 
following display: 

6 : IF  4AC>BB; GTO 

To finish the edit, the user keys in 1 0 STOAE to form the new line 
of program. Since the label is no longer needed in line 10, it can 
be eliminated by keying in GTO 1 0 RECALL DELETE. 

The new listing is as follows: 

0: ENT “A VALUE”,A 
1: PRT “A=”,A 

2: Ent “B VALUE”,B 

3: PRT “B=”,B 



4: ENT “C VALUE”,C 

5: PRT “C=”, C 

6: IF 4AC>BB;GTO 10 
7: PRT “REAL RO0TS”;SPC 1 
8: PRT (-B+d(BB-4AC))/2A;SPC 1 
9: PRT (-B-d(BB-4AC))/2A;SPC 9;JMP -9 

10: PRT “COMPLEX R0OTS”;SPC 1 

11: PRT “REAL”, “1MAGINARY”;SPC 2 
12: PRT -B/2A,V(4AC-BB)/BA;SPC 1 

13: PRT -B/2A, -d(4AC-BB)/ZA;SPC 9;GTO 0 
14: END 

Notice that the label has been deleted and all the lines below it 
have been moved up and renumbered. 

With the editing keys, the user can REPLACE, INSERT, 
or DELETE any line or character. The user observes all of 
the changes as they take place, by watching the alphanumeric 
display. 

Machine Language 

An algebraic language is easy for humans to understand and use, 
but is dimcult for a machine to understand and execute. Take the 
example: 

When operators appear between operands as in equation 1, the 
precedence of the operators becomes important in the sequence 
of execution. Since multiply is normally assigned a higher 
precedence than addition, those operations associated with 
multiplication are performed before addition. 

Equation 1can be rewritten so that operations are executed as 
they are encountered: 

This notation is known as “Polish,” or more correctly, “reverse 
Polish notation. 

When equation 2 is executed, operands are passed directly to a 
stack, which is a temporary holding area organized so that the first 
item into the stack will be the last item out. When a b i n a ~  
operator is encountered, it is applied to the top two values of the 
stack. The specified operation is performed and a single result is 

Chapter 49 1 The HP 9810/20/30 Series 807 

returned to the stack. Several forms of Polish notation are widely 
used by most desk calculators today, including the 9810A. Its 
main advantages are that it is easy to implement, it has fast 
execution speed, and it allows compact storage of programs. Its 
main disadvantage is that it isn’t natural to the untrained user. 

9820A Has Compiler 

To take advantage of both the naturalness of the algebraic 
language and the speed and compactness of Polish notation, the 
9820A’s algebraic language is compiled into a machine language 
similar to the reverse Polish notation shown in equation 2. The 
compiler flowchart is shown in Fig. 3, along with an example 
showing the process of compiling the equation. 

A+ B?(C*D/(D+F)*G) 

As a string of algebraic codes is input, the compiler forms a 
string of machine language codes. During the compiling operation 
a stack is used to hold the operators and establish their order of 
appearance in the compiled string. All operands are passed 
directly to the output string while operators are put into the stack. 

Fig.3. Model20 compiles algebraic-language user programs into a 
faster-executing machine language. Only the compile version is 
stored. 



Printer and Keyboard for Models 10 and 20 
The 9810A and 9820A Calculators use the same thermal 
printer and keyboard design. 

The printer (Fig. 1) prints lines of sixteen alphanumeric 
characters on heat-sensitive paper. A five-by-seven dot 
matrix is used to form each character. The printer has a 
row of print elements distributed linearly across its printing 
head. Each print element is an electrical resistor of the right 
size and shape to produce a dot on heat-sensitive paper 
moved at a right angle to the line of print elements. Dots 
are formed in the conventional manner by exciting a resistor 
element with a pulse of electrical current, which raises its 
temperature. 

The printer produces each line of print by printing the 
top row of all sixteen characters, then stepping down to 
print the second row, and so on until all seven rows are 
printed. Three blank steps are then added to produce the 
space between lines. 

The printer is quiet and adaptable and has a minimum 
number of moving parts-all in the paper advance. 

The keyboard is a contactless unit made up of an array of 
printed circuit transformers (Fig. 2). The secondaries of all 
the coiis are tied in series to form the sense line (Fig. 3). 
The primaries of the coils are arranged in pairs. Each pair 
is connected in series with opposite polarity. Every pair has 
a drive and sink line, which is selected and driven by the 
scanner. 

Centered above each coil is a metal disc attached to the 
end of the key shaft. When a key is pressed the disc moves 
closer to the coil. The disc acts like a shorted turn, reducing 
the coupling of the coil and unbalancing the pair. This un- 
balance is amplified by the comparator when it is greater 
than the "on" bias. The comparator triggers the one-shot 
multivibrator, which turns off the scanner and lowers the 
"on" bias. The scanner remains in the same state, which 
corresponds to the drive and sink line of the key that was 
pressed. This state is the keycode of the key pressed. 

Fig. 1. Thermal printer has few moving parts. 

When the key is released a spring retracts the key and 
disc. When the unbalance is less than the lowered "on" 
bias the comparator turns off and the scanner starts again, 
ready for a new keystroke. The two bias levels give the key 
mechanical hysteresis. 

Plated 

Through


Holes 


Two Sided Printed Circuit Board 

Fig. 2. Printed-circuit transformers, one for each key, are 
used in the contacfless keyboard. 

--+--P-

.a 

v, =v, -v* +v3-v, +...v,-, -v, 

Fig. 3. Pressing a key unbalances one of the pairs of trans-
formers and causes a keycode to be transmitted by the 
scanner. 



Before an operator is placed into the stack, the stack is checked to 
see that all operators of greater or equal priority are first output. 

Parentheses can be used to change the normal order of 
execution of an algebraic statement. The left parenthesis has the 
effect of temporarily resetting the compiler for the evaluation of 
the string of codes found inside the parentheses. The right 
parenthesis will then cause all operators in the stack to be output 
until a left parenthesis occurs. However, neither of the two 
parentheses are needed in the compiled code. 

Compilers of this and more complex types have been used for 
years in computers. When changes to the program have to be 
made, the source cards or paper tape are changed accordingly and 
the program is recompiled. With a desk calculator, this operation 
is too severe a penalty to pay. Also, it isn’t possible to store both 
the source code and the compiled code in the calculator memory 
at the same time. It’s necessary, therefore, to reconstruct the code 
for editing and program listings. 

Uncompiler 

The solution to this problem is the concept of the uncompiler (see 
Fig. 4).With the uncompiler, it’s possible to take the compilied 
code as input and reconstruct the original algebraic form. The 
code is scanned backwards. Parentheses are inserted where 
needed in the reconstructed code, and redundant parentheses are 
omitted. For example, 

(A*B) + (CxD) 

will be reconstructed as 

A*B + C*D 

after going through the compileiuncompile process. 
With the compileiuncompile feature, the 9820A only has to 

store the compiled form of the code. In the 9820A, a line of 
program is the basic unit used for the compileriuncompiler and 
editing features. As a line of program is entered, it is stored in a 
buffer area and displayed in its algebraic form. When the STQRE 
key is hit, the line of program is compiled and stored away in the 
program area. 

When the user chooses to edit a line of program, the program 
line is located in memory, uncompiled into a buffer area, and 
displayed in its reconstructed form. Now editing can be per- 
formed. When the editing is finished, the line is compiled and 
once again stored in memory. To the user, the compilehncompile 
process is transparent except for a slight pause while storing or 
recalling a line of program. 

Chapter 49 I The HP 9810/20/30 Series 809 

Fig. 4. An uncompiler reconstructs the original program for editing 
or listing. 

Modularity 

Another level of interactiveness is brought about by the modular- 
ity of the memory structure and the general-purpose minicomput- 
er heart of the calculator. The 9820A can be configured to various 
applications in three ways: additional keyboard functions by 
read-only-memory additions, additional readiwrite memory, and 
addition of external peripherals. 

There are thirty keys, arranged in three blocks of ten, available 
to the user to be defined for his special needs by means of plug-in 
ROM. Some plug-in modules provide mathematical functions, 
others give high-level-language control of external peripheral 
devices, and another allows users to define subroutines for their 
own special functions. 

Because MOS RWM is used, additional user memory may 
easily be added to the basic machine. The fully loaded 9820A has 
9K (9216) 16-bit words of memory: 7K is ROM and 2K is RWM. 

The IiO structure provides four I/O slots on the back of the 
calculator to accept interface cards for peripheral devices. An IiO 
expander augments the four IiO slots of the calculator. 

Another Program Example 

A good example of Model 20’s interactive nature is this Butter- 
worth filter design program. 



810 Part 4 1 Family Range, Compatibility, and Evolution Section 3 I Evolutionof HP Calculators 

Display: NUMBER OF POLES? 
Key in: 3 
Display: CENTER FREQUENCY 
Key in: 10000000 
Display: BAND WIDTH? 
Key in: 1000000 
Display: RESISTANCE? 
Key in: 50 
Display: REALIZATION TYPE 
Key in: 2 

Realization Type 2 specifies the physical configuration of the 
circuit. 

With this input the output shown in Fig. 5 comes from the 
printer. 

BASIC-Language Model 30 Can Be 
Calculator, Computer, or Terminall 

Richard M .  Spangler 

Model 9830A is the latest and most powerful calculator in the 9800 
Series. Its keyboard design, programming language, memory 
size, IiO capability, and flexibility make the 9830A more like a 
desktop computer than a calculator. Yet it maintains the conve- 
nience and user interaction that makes a programmable calculator 
so easy to use. The user can still set the machine on his desk, turn 
the power on, type in 2i-2, and see 4 on the display. 

Like the 9810A and 9820A, the 9830A (Fig. 6) is a ROM-driven 
general-purpose minicomputer with specialized peripherals built 
in. In its minimum configuration, the 9830A contains 7%K words 
of read-only memory (ROM) and 2K words of readiwrite memory 
(RWM). The memory is expandable to 16K words of ROM and, 
initially, to 4K words of RI%'M. The display register contains 32 
alphanumeric characters, and uses the same 5 x 7 LED dot 
matrix as the 9820A. 

A built-in tape cassette unit is included in the mainframe in 
place of the magnetic card reader used in previous HP calculators. 
The IiO structure of the 9830A is identical to that of the 9810A and 
9820A, so all the 9800-Series peripherals operate with the 9830A. 
The new 9866A page-width thermal line printer (see Fig. 1)is 
designed to be the primary output peripheral for the 9830A. It fits 
directly on top of the calculator. It can print 80-column lines at a 
rate of 250 lines per minute. 

'Hewlett-FackardJournal, vol. 24, December 1972, pp. 14-18 

Fig. 5. Butterworth filter design program demonstrated interactive- 
ness of calculator. Printer output is shown here; user instructions 
appear in display. 

Fig. 6. Model 30 of the 9800 Series has an alphanumeric keyboard 
like a teleprinter. Its language is BASIC. It can be used as a desktop 
computer or a remote computer terminal, yet it maintains the 
convenience and user interaction of a programmable calculator. 

Alphanumeric Keyboard 

The keyboard of the 9830A represents its most significant 
departure from the traditional concept of a programmable calcula- 
tor. It is not a key-per-function keyboard, but rather an alphanu- 
meric keyboard like that of a typewriter or teleprinter terminal. 

Besides the alpha section of the keyboard, there are three 
groups of special keys that facilitate use of the 9830A. The first 
group is a calculator secfion, which contains the digits and the 



Fig. 7. Model 9866A Thermal Line Printer is the primary output 
peripheral for Model 30. 

most commonly used arithmetic operators. The second group 
contains special control keys used in operating, editing, and 
debugging programs. The keys in the third group are definable by 
the user. 

The use of an alphanumeric keyboard rather than a key-per; 
function keyboard removes the major restriction to programming 
language definition and language expandability. It is not necessary 
to add a new key to the keyboard whenever a new function is 
added to the language. Rather, a new function is assigned a 
mnemonic which can be entered as a sequence of alpha charac- 
ters. 

BASIC Language 

In the development of the 9830A, it was decided not to define 
another new and unique programming language. The language of 
the 9830A is BASIC, which is well known among users of small 
computer and time-shared systems. All of the changes that have 
been made in BASIC in the 9830A are additions to standard 
BASIC, so programs written in versions of BASIC that are close to 
the standard version will run on the 9830A with little or no 
modification. This means that a tremendous program library is 
already available. 

Besides being well known and used extensively, BASIC has 
several other characteristics which make it well suited for a 
programmable calculator. Since the language was originally 
designed for use in time-sharing environments, it is interactive 
and conversational. The 9830A hlly exploits these characteristics 
by communicating through the 32-character alphanumeric display 
and the thermal line printer. 

Chapter 49 1 The HP 9810/20/30 Series 811 

BASIC is easy to learn because the commands closely resemble 
English and there are very few tricky syntax rules to memorize. 
Each statement in a program is given a line number by the 
programmer, and the BASIC operating system automatically 
places the statements in order. 

Program editing is easily accomplished simply by retyping any 
incorrect statement or assigning a line number between two 
existing lines to a statement to be inserted in a program. The 
9830A has expanded on this editing capability by providing 
complete character-by-character editing. The user may recall a 
line of program to the display, edit the characters within that line, 
and store the corrected line without retyping the whole line. If an 
error is made while typing a statement, the incorrect line can be 
recalled and edited. 

BASIC is also well suited for implementation by an interpreter 
rather than a compiler. With a compiler, the user’s program is 
transformed before execution time into machine-language instruc- 
tions, which are executed directly by the machine processor. With 
an interpreter, the user’s program remains in memory in source 
form and an interpreting program examines the source program 
and calls on the appropriate execution routines. The main 
advantage ofan interpreter in an interactive system like the 9830A 
is that only one copy of the user‘s program is needed for program 
editing and execution. With an interpreter, only minor additions 
are required to implement calculator functions such as T M C E  or 
single STEP, or execution of statements directly from the 
keyboard. 

Features of BASIC 

The BASIC language has several important features which are 
new to programmable calculators. The most important is the type 
of variables that are allowed. Simple numeric variables, single- 
and double-subscripted array variables, and string variables may 
all be used. Array variables permit the analysis of large numbers of 
data items. String variables, which are strings of alphanumeric 
characters, permit such things as names and addresses to be 
analyzed and stored. Each variable is named by any letter of the 
alphabet, so the user can use R for resistance, Q for quota and N 
for the number of elements in an array. The calculator interpreter 
reserves only enough memory space for the variables currently in 
use. 

Another feature of the BASIC language is user-definable 
[unctions. Standard BASIC restricts these functions to single 
arithmetic expressions, and allows only one parameter. 

Like standard BASIC, 9830A BASIC allows only one parameter. 
However, the definition of the function can consist of more than 
one statement. For example, a function to evaluate N factorial may 
be defined as follows: 



812 Part 4 I Family Range, Compatibility, and Evolution 

100 DEF FKF (N) 

110 N1 =1 
120 FOR N2 = 1TO N 
130 N1 = N1* N 2  
140 NEXT N2 

150 RETURN N1 

To assign a function to a user-definable key, the user presses the 
key labeled FETCH and then presses an17 of the ten definable 
keys. This puts the calculator into the key-definition mode. The 
user then enters his function and presses the END key. Now 
whenever he presses that particular key, the calculator responds 
with the name of the function-for example FNF for the factorial 
function. The user can then enter the argument, 5 for example, 
followed by the EXECUTE key. The calculator responds with the 
answer 120. Functions assigned to keys can be called either from 
the keyboard or from a program. 

Single- or multiple-line functions are one of three categories of 
operations that can be assigned to the user-definable keys. These 
keys can also be used to store entire programs. 

The user may also assign typing aids to his user-definable keys. 
A typing aid is simply a string of alphanumeric characters. 
Whenever a typing aid key is pressed, the characters that are 
assigned to that key are entered into the display just as if those 
characters had been entered individually from the keyboard. For 
instance, each of the keys could be assigned a mnemonic such as 
PRINT, INPUT, READ, and so on. These keys could then be 
used in typing BASIC psograms. These functions of the user- 
definable keys make the 9830A act more like a calculator. 

Output Formatting 

A severe limitation of BASIC is its restricted formatting capability. 
In the 9830A3, four new statements have been added to make 
output formatting more flexible. Two statements, FIXED and 
FLOAT, allow the user to specify the format for the numeric 
output in his PRINT or MAT PRINT statements. Two other 
statements called WRITE and FORMAT give the user formatting 
capability similar to FORTMN. Fig. 8 illustrates the 9830A's 
formatting ability. 

A series of tape operating commands has also been added to 
9830A BASIC to control the built-in tape cassette. A command 
called MARK is used to initialize a cassette and set up a structure 
of fixed length files. These files can then be accessed randomly by 
file number. Three types of information can be stored and recalled 
from the cassette: user programs, numeric and string data, and 
sets of user definable keys. The command structure is simple yet 
flexible. 

Section 3 Evolution of HP Calculators1 

Fig. 8. Sample 9886A printout shows the extended formatting 
capability of the 9830A. 

Add-on ROM 

The most unique feature in the 9830A BASIC interpreter is its 
modularity. Each statement or function is accessed through a 
series of tables in ROM. Tables can be accessed on as many as 
eight optional add-on ROM modules, or even in the read-write 
memory-. These add-on ROM modules, each containing 1024 
words, are available both in small plastic cases and as printed- 
circuit modules that can be plugged into the 9830A. After a ROM 
is in place, the calculator can understand the commands imple- 
mented by that ROM and the interpreter can jump to the 
execution routines stored in it. 

Five add-on ROMs are now available. The Matrix and String 
Variable ROMs include commands that are part of many BL4SIC 
systems, but are not needed by all BASIC users. The MAT 
commands on the Matrix ROM allow initialization of an array to all 
ones, all zeroes, or the identity matrix, or reading of the values for 
an array from DATA statements. Matrix arithmetic functions- 
addition, subtraction, multiplication, and multiplication by a 
scalar-are easily called for, and functions to take the inverse and 
transpose are also included. This ROM also includes two com- 
mands that are not common in BASIC. They are a REDIM 
statement to redimension an array without changing the values of 
any elements, and a DET function for taking the determinant of a 
matrix. 

The String Variable ROM allows the BASIC program to handle 
strings of alphanumeric characters. The program can initialize, 
change, examine, and test these strings, and it can ask the 
operator to input character strings through the keyboard. The 
simplest example of the value of string variables is an operator 



Chapter 49 I The HP 9810120130 Series 813 

typing “YES” or “NO” in response to a question posed by the 
program. This add-on ROM makes the 9830A truly conversation- 
al. 

The Plotter ROM adds several new statements to the 9830A 
language and provides the drivers needed to control the 9862A 
X-Y Plotter. Some of the most significant capabilities added are 
automatic scaling, convenient axis drawing, absolute and incre- 
mental plotting, and plotting relative to any origin. Labeling plots 
and axes has been made simple by a LABEL statement. This 
statement allows the user to draw alphanumeric characters of any 
height and width, at any angle of rotation. 

The Extended IiO ROM adds statements and functions which 
provide convenience and flexibility in controlling input and output 
peripherals. The two most important features in this block are an 
ENTER statement that is used to input data from a peripheral in 
either free field or formatted form, and an automatic code 
conversion capability which a l l o ~ s  the 9830A to communicate 
with peripherals using character codes other than ASCII. 
The Extended I/O ROM communicates through the standard inter- 
face scheme of the 9800 Series, and uses the standard interface 
cards. 

Terminal Capability 

The fifth ROM that is presently available with the 9830A is a 
Terminal ROM. This ROM gives the 9830A the unusual capability 

to act as a computer terminal. It can communicate with a 
time-sharing service through a modem at any speed from 3 to 300 
baud. This optional ROM overrides the standard keyboard input 
routine and bypasses the syntax routines so that lines of free text 
can be stored in memory. For example, a FORTRAN program 
may be entered into the 9830A, edited, and saved on cassette. 
After a program has been entered and edited, the user can call up 
his time-sharing service and have the 9830A transmit the program 
automatically. The user may also have his time-sharing service 
transmit a program to be saved in the memory of the 9830A. The 
editing, execution and storage capabilities of the 9830A make it a 
very powerful computer terminal. 

Modular Firmware 

Underlying the modularity and expandability of 9830A BASIC is 
the modular structure of the firmware (machine-language pro- 
grams) stored in ROM in the 9830A. Fig. 9 is an overall block 
diagram. Each shaded block can accept optional ROMs to expand 
its capabilities. 

The keyboard input routine and keyboard monitor perform the 
user interaction and editing functions. The syntax routines, the 
pre-execution processing routines and the statement execution 
routines are the essential elements of the BASIC interpreter. 
There is a separate syntax routine and execution routine for each 
different statement type. 

Fig. 9.9830A BASIC is implemented by firmware routines stored in read-only memory. Modularity 
makes it easy to expand the language by adding plug-in ROM. The shaded blocks are the 
expandable modules. 



814 Part 4 1 Family Range, Compatibility, and Evolution Section 3 1 Evolutionof HP Calculators 

The syntax routines accept an input record from the keyboard 
routines. This record is a string of the characters that were 
entered at the keyboard. The syntax routines examine the input 
record, character by character, checking for proper statement 
syntax, and transform the string of characters into a series of 
operation and operand codes that can be more easily used by the 
execution routines. 

The key to the modularity of the syntax firmware is a table 
search routine which scans a series of name tables on each of the 
option-block ROMs and the main system ROM. The table search 
routine searches for a match between the characters in the input 
record and the characters in the tables in ROM. If a match is 
found, two codes are stored in the translated format of the input 
record, a code for the command, and a code for the ROM block 
where the command is located. 

‘ Two codes of information are also stored for each operand, a 
five-bit code for the letter naming the operand, and a five-bit code 
for the variable type. The type code is used to distinguish, for 
example, A ,  A(1), A l ,  and A$, which all have the same variable 
name. During syntax analysis, numeric constants are converted to 
a floating point format, and line numbers are converted to 16-bit 
integers. After syntax analysis, control is passed to the memory 
management routines to store the statement in program memory, 
or to the initialization routine, which prepares the calculator to 
execute the statement directly. 

The interpreter uses a symbol table to keep track of the 

9800 Processor Incorporates 

8-MHz Microprocessor’ 


Henry J. Kohoutek 

The processing unit for HP 9800-Series calculators is a micropro- 
grammed 16-bit serial processor that is capable of executing 15 
basic machine-language instructions. The processor 

controls the data flow between memory and working 
registers, 
performs logical and binary or decimal arithmetic opera- 
tions on data in the working registers, 
performs logical decisions (branching) based on the states of 
16 qualifiers (carryborrow, operation codes contained in 
machine-language instructions, etc.), 

‘Hewlett-Packard Journal, vol. 24, December 1972, pp. 19-22. 

variables that are currently in use. It is the job of the pre- 
execution processing routines to set up this symbol table at the 
start of program execution. Tt’hen the RUN command is given, old 
symbols are deleted, and then the current program is scanned. 
Any array variable names and their dimensions are saved in the 
new symbol table. 

-4fter the program scan, storage is reserved for each array and a 
pointer giving the starting memory address for each array is saved 
in the symbol table. A special key causes the pre-execution 
processing phase to be performed without the execution phase. 
This allows the user to set up his symbol table for array variables 
so they can be used from the keyboard. 

Symbol table entries for simple variables and user-defined 
functions are made during the execution phase. This allows simple 
variables to be defined by a statement executed directly from the 
keyboard. The calculator user needn’t be aware that a symbol 
table is being used. Any variable he wants to use is available 
immediately. 

The execution monitor uses the code stored with each state- 
ment to locate the proper block of memory and branches to the 
execution routine for that statement. The execution routines 
examine the operation and operand codes and call upon subrou- 
tines to perform the arithmetic execution. The statement execu- 
tion routines also call upon driver routines for control of the 
cassette, printer, display and any external input or output devices. 

controls the internal clock for variable-cycle-time micropro- 
gram steps, and 

transfers control to the I/O controller for input and output 
instruction execution. 

The processing unit is implemented with MSI bipolar logic 
circuitry with strong emphasis on read-only memories. Central 
control of the processor, memory, and I/O unit is nested in 
microprograms stored in these ROMs in the microprocessor 
section of the processor (see Fig. 10). The microprocessor 
executes machine-language instructions in cycles by following 
these microprograms. 

It’s important to note that there are two levels of ROM in 
9800-Series Calculators. Keystrokes or user program statements 
initiate sequences of machine-language instructions. These se- 
quences are stored in MOS ROMs that are part of the memory 
system. For each of the 75 machine-language instructions there is 
a sequence of microinstructions stored in the microprocessor’s 
bipolar ROM. The ROU modules that plug into 9800-Series 



Chapter 49 1 The HP 9810/20/30 Series 815 

Fig. 10. Processor organization features three buses, five working registers, microprocessor, 
and arithmetic/logic unit (ALU). 

Calculators expand the higher-level MOS ROM, not the micro- 
processor ROM, which is the same in all models. 

The microprocessor ROM, which holds the microprogrammed 
execution routines for individual machine-language instructions, 
consists of a block of seven bipolar read-only memories organized 
in 256 words of 28 bits. Fast routine execution times, based on an 
internal clock frequency of 8 MHz, help speed up all keyboard 
functions. 

Fig. 11 is a block diagram of the 9800 processor, showing its 
organization and its relationships with the memory and input/ 
output control unit. The processor has an R-S-T bus configuration. 
Two buses, R and S, carry data to the arithmeticflogic unit (ALU), 
and the third bus, T, carries the ALU output. 

There are five principal working registers which communicate 
via the bus system and the ALU, under control of the micropro- 
cessor’s instruction logic and the number of shift clock pulses that 
have occurred. 
P-register is the calculator’s program counter. By going through a 
step-by-step counting sequence, it causes successive instructions 
to be read out of the memory. The sequential stepping can be 
altered by execution of skip or jump instructions, thus causing the 

Fig. 11. Arithmetic/logic unit (ALU) performs binary arithmetic and program to continue at a different memory address. During logic operations and binary-coded-decimal operations. 



816 Part 4 i Family Range, Compatibility, and Evolution 

execution of some instructions, the P-register contains a special 
binary word that is used to simplify digit and word counting. 
A-register is one of the calculator’s two accumulators. It is capable 
of accepting results of both binary and decimal arithmetic 
operations. When a decimal operation is performed, the four-bit 
result is temporarily received in bits A g A o  of the A register. 
B-register is another accumulator. It has the same capabilities as 
the A-register except for decimal arithmetic. 
E-register represents a flexible four-bit extension of all other 
registers. It’s used for left and right shifts with binary-coded- 
decimal data occupying several memory locations. 
Q-register contains the program instruction currently being 
executed. Its individual bits can be tested as qualifiers to perform 
microprogram branching according to the instruction code. In the 
final part of microprogram routines when the instruction code has 
been fully recognized, the Q-register is used for temporary 
storage of internal processor information. 

The programmable clock contains the system clock generator, 
along with logic which, by decoding the clock field of the 
microinstruction, causes the correct number of shift pulses to be 
issued to the working registers and the ALU. This scheme makes 
it possible to have variable cycle time for each state of the 
microprogram, and results in a substantial saving in microproces- 
sor ROh4. A ROM clock pulse occurs once for each microprogram 
state and is applied to the ROM address flip-flops. 

The binaryiBCD arithmetic logic unit (ALU) performs one-bit 
binary logic and arithmetic operations, as well as four-bit binary- 
coded-decimal arithmetic operations. Coded results for all logic 
and arithmetic operations are nested in a form of special look-up 
table on two bipolar 1024-bit ROM’s. Data from working registers 
and the carry flip-flop, together with the microinstruction to be 
executed serve as ALU inputs. These inputs define a unique ROM 
address where the proper result is encoded, and gates are enabled 
to place this result on the ALU output lines. The states of two ALU 
carry flip-flops are communicated to the microprocessor where 
they are recognized as special qualifiers. The ALU organization is 
shown in Fig. 11. 

The processor communicates with the memory unit and the 110 
control unit via the T-bus and the S-bus and by special groups of 
memory and IiO microinstructions. The processor’s clock circuitry 
synchronizes all units by generating memory clock pulses and I/O 
clock puIses. 

Microprocessor 

Detailed structure of the microprocessor is shown in Fig. 12. 
The primary and secondary address flip-flops form a micropro- 

gram counter, which selects the memory location where the 
microinstruction to be executed is stored. Each microinstruction 
is 28 bits wide and contains information to control the data flow in 

Section 3 Evolution of HP Calculators~ 

Fig. 12. Microprocessor read-only memories contain sequences of 
microinstructions that control execution of keyboard instructions. 

the system by enabling appropriate gates and generating the 
proper number of shift clock pulses. 

Also included is information to define the ROM address of the 
next microinstruction. Thus instead of being limited to a fixed 
address sequence, the microprogram may in effect execute almost 
a random walk through the ROM addresses. 

The microinstruction format is shown in Fig. 13. The four-bit 
qualifier code in each microinstruction serves a dual purpose. If 
branching is desired, the microinstruction BRC must be pro- 
grammed. If the preceding microinstruction is BRC, the four-bit 
qualifier code selects the proper qualifier to be tested and the 
primary address of the next microinstruction is the same as the 
current one. If the preceding microinstruction is not BRC the 
qualifier code defines the primary address of the next microin- 
struction. 

Fig. 13. Microinstruction format. 



A single-chip 16-bit data selector permits any one of the 16 
qualifiers to be tested according to the qualifier code. Ifbranching 
is to occur, the microinstruction BRC, along with a signal from the 
data selector, defines the least significant bit of the secondary 
address of the next microinstruction, according to the result of the 
qualifier test. 

A special microinstruction, IQN, inhibits all shift clock pulses 
from the clock decoder in case the selected qualifier condition was 
not met. This in effect prevents execution of microinstructions in 
that ROM state. 

To minimize the microinstruction width the operation codes for 
clock decoder, ALU, bus-gate control, and so on, are coded into 
groups and decoded by hardware into individual signals. 

Besides the 75 basic machine-language instructions, the system 
can also perform indirect memory calls, interrupts, IiO calls, and a 
simple resident diagnostic of its own performance in start-up 
conditions. 

Testing in Production and Service 

The microinstructions that control the calculator’s processor and 
memory define the lowest language that can control the machine 
hardware. Therefore, for testing 9800 Series Calculators on the 
production line and in the field, a tester was designed to execute 

Versatile Inputloutput Structure 
Welcomes Peripheral Variety’ 

Gary L. Egan 

The input output structure of 9800-Series Calculators, which links 
the calculator with its peripherals, is designed to be versatile and 
easy to use. It is flexible enough so a user can easily interface his 
calculator with a variety of HP peripherals as well as with many 
standard units and others of his own design. 

110 Processor 

The inputioutput processor is a self-contained microprocessor 
composed of commerically available TTL logic circuits which 
generate the microinstructions necessary to implement the ten 
input-output instructions. The IiO processor is fully synchronous 

‘Hewlett-Packard Journal, vol. 24, December 1972, pp. 24-27. 

Chapter 49 1 The HP 9810120130 Series 817 

machine diagnostics on the microprocessor level, following a 
“start-small” strategy. 

The tester organization is very similar to that of the micro- 
processor, but instead of machine-language execution routines, a 
system of tests is nested in a group of ROM’s. Virtually identical 
organization, hardware, and timing of microprocessor and tester 
assures similarity between working and testing conditions from a 
physical and an electrical point of view. This means that the 
diagnostic information represents a realistic picture of the state of 
the tested machine. 

The tester hardware also contains logic for convenient manual 
operations, simple aids for troubleshooting in case an error is 
detected, and circuitry for computer interface. 

Test routines are organized in a sequence. There is a pretest, a 
series of 22 tests, and a posttest to check magnetic-card-reader 
mechanics. The pretest is a manually controlled resident microdi- 
agnostic routine designed to test the tester‘s hardware. The 
start-small strategy is reflected in the test sequence, which begins 
with very simple tests of binary logic functions of the ALU, and 
continues through register tests to complex tests of the entire ALU 
and memory. Each test uses only successfully tested parts of the 
machine hardware and evaluates only a small new part of the 
hardware. This makes it easy to locate failures when an error is 
discovered. 

with the system clock and main processor, receiving starting 
control from the main processor whenever an input-output 
instruction is read from memory. While the IiO processor is in 
control, the main processor remains in a two-state waiting loop 
until the input-output instruction has been implemented, where- 
upon control is returned to the main processor. (See Fig. 14.) 

The inputioutput instructions require six to twelve microsec- 
onds to execute. There are 110 instructions for setting or clearing 
flip-flops, for testing the state of flip-flops, and for moving data 
between registers in the main processor and the inputioutput 
register. 

I/O Register 

The I/O register is a 16-bit universal (parallel idout, serial iniout) 
data register that is connected to the main processor by the serial 
bus system. Data contained in the IiO register is sent bit-serial 
into the main processor via the S-bus. Conversely, bit-serial data 
is received from the main processor by the I10 register via the 
T-bus. 



- - 

818 Part 4 I Family Range, Compatibility, and Evolution 

Fig. 14. Input/output processor is a self-contained microprocessor 
that implements the ten I/O instructions. 

The IiO register’s 16 parallel outputs provide the source for an 
output information bus structure which is common to all connect- 
ing peripherals. Parallel input information is received via an input 
information bus structure terminated by the twelve least-
significant parallel inputs of the I/O register. Input information 
may be loaded into the IiO register by interrupt request or upon 
demand from the calculator. 

All data communication between individual peripherals and the 
caIculator makes use of a “handshaking” operation. Data is placed 
on the bus lines by the transmitter and then a signal indicating 
data ready is sent. The receiver acknowledges this and returns a 
signal noting that data has been accepted. 

Associated with the IiO register are control circuits that 
implement this “handshaking” operation. The control circuitry 
consists of gates and flip-flops which are controlled by the I/O 
processor. 

Section 3 I Evolution of HP Calculators 

Internal Peripherals 

A group of peripherals which may be contained within the 
calculator are called internal peripherals and are distinguished 
from a group called external peripherals by the fact that they are 
directly addressed as a part of the input/output instruction. This 
group of internal peripherals includes keyboard, display, 
magnetic-card storage, thermal printer, and IiO register. 

Each internal peripheral has associated with it a driver con- 
tained in read-only memory in the basic calculator, plus support- 
ing control hardware. The IiO register is included as an internal 
peripheral since it is directly addressable from the 110 instruction 
set and it functions as a holding and passing register for all 
peripherals. Fig. 15 shows the relationship between the internal 
peripherals and the IiO structure. 

External Peripherals 

External peripherals are connected to the calculator by an 
external signal cable. They are addressed indirectly from the IiO 
register. In general the driver for any external peripheral is 
contained in a pIug-in ROM which may be unique to a certain 
peripheral (e.g., a typewriter) or may contain a general-purpose 
driver which communicates in bit-parallel, character-serial 
ASCII. Fig. 15 also shows the relationship between external 
peripherals and the I/O structure. 

Fig. 15. I/o structure is designed to accommodate a variety of 
internal and external peripherals. 



Chapter 49 1 The HP 9810120130 Series 819 

Peripheral Communication has been accomplished a control signal is placed on the control 
line which, with the decoded four-bit address, causes the desired 

All internal peripherals are addressed by the 110 instructions. peripheral to take action. A receiving peripheral acknowledges 
Therefore, the receiving peripherals have access to the full 16-bit the receipt of data by returning a flag signal. A transmitting 
field of the IiO register. In addition each internal peripheral has peripheral places its data and status on the twelve input lines and 
its own control and flag logic by which “handshaking” takes place. sends a data-ready signal to the calculator. 

Communication with an external peripheral requires that a The kinds of external peripherals are unlimited. The addressing 
16-bit word be formed in the processor. This word consists of a scheme of 9800 Series Calculators provides €or a maximum of 15 
four-bit address in the four most significant bit positions, a four-bit different addresses. Of these, addresses 10 through 15 are fixed 
status word in the four next-most significant bit positions, and and are reserved for unique drivers. Addresses 1through 9 are 
eight data bits in the eight least significant bit positions. This variable and may be selected on a peripheral’s interface card by 
16-bit word is sent to the IiO register, where the parallel outputs means of jumper wires or switches. The bus structure makes the 
of the IiO register place the word on the bus structure. After this peripheral interfaces slot-independent, that is, they may be 

System Information Series 9800 Programmable Calculators 

Model 10 
Basic Model 10 Calculator, including 51 Field lnstallable Option 
registers and 500 program steps 981 OA $2475 429 Total Data Registers 11 228A $1 490 * 

Factory Installed Options Plug-In Function Blocks 
11 1 Total Data Registers opt. 001 $ 400 Peripheral Control I 1 1220A $ 4 8 5  
1012 Total Program Steps, or opt. 002 $ 500 Mathematics 11221A $ 485 
2036 Total Program Steps opt. 003 $ 850 User Definable 11222A $ 485 
Printer Opt. 004 $ 675 Cassette 11 223A $ 225 
Carrying Handle Opt. 015 $ 25 Peripheral Control II 1 1224A $ 485 

Field lnstallable Options Model 30 
11 1 Total Data Registers 11216A $ 440* Basic Model 30 Calculator, including 
1012 Total Program Steps, or 11217A $ 540* 3520 Bytes (1760words) readlwrite memory 9830A $5975 
2036 Total Program Steps 11218A $ 890* Factory Installed Option 
Field Installed Printer 11219A $ 715* 7616 Total Bytes (3808 words) 

Plug-In Function Blocks readlwrite memory Opt. 275 $1 475 
Mathematics 11210A $ 485 Plug-In Function Blocks 
Printer Alpha 11211A $ 485 Matrix Operations 112708 $ 485 
Typewriter 11212A $ 225 Plotter Control 112718 $ 485 
User Definable 11213A $ 485 Extended I10 11272B $ 485 
Statistics 11214A $ 485 String Variables 1 12748 $ 485 
Plotter 11215A $ 485 Terminal I 11 2778 $ 485 
Plotter/Printer Alpha Comb. 11261A $ 800 9800 Series Peripherals 
PeripheralICassette Comb. 1 1262A $ 625 Mark-Sense Card Reader 9860A $ 850 
Peripheral 1 1264A $ 485 Typewriter Output 9861 A $2250 
Cassette Memory 1 1265A $ 225 Plotter 9862A $2675 
PeripheraVPrinter Alpha Comb. 11266A $ 800 Paper Tape Reader 9863A $1470 
TypewriterEassette Comb. 1 1267A $ 450 Digitizer 9864A $5900 

Model 20 Tape Cassette 9865A $1750 
Basic Model 20 Calculator, including IIO Expander 9868A $ 975 
173 registers 9820A $4975 General I/O Interface 1 1202A $ 200 

Factory Installed Option BCD Interface 11 203A $ 300 
429 Total Registers opt. 001 $1 250 Thermal Printer 9866A $2975 
Carrying Handle Opt. 015 $ 25 Hopper-Fed Card Reader 9869A t. - . .  

Hewlett-Packard Manufacturing Division: Calculator Products Division. 

*Plus field installation charges 


?Not available. 




- 

- -  

- -  

820 Part 4 1 Family Range, Compatibility, and Evolution 	 Section 3 1 Evolution of HP Calculators 

the handshaking operation assures reliable data transmission over 
cables up to 10 feet long. Although 10 feet is the maximum 
recommended length, longer cables have been used successfully. 

APPENDIX 9800 MICROPROGRAMMED PROCESSOR 

Instruction Set of  the Central Processor 

The instruction set, as alluded to before, is strongly related to the 
HP 2114 and HP 2116 minicomputer instruction set. There are 75 

Fig. 16. Basic calculator has four I/O slots for external peripherals. basic instructions. The memory reference, skip, alter, comple- 
Expanders add nine more slots each. ment, and shift-rotate classes of instructions are essentially 

identical to the Binary Processor Chip (BPC) used in the HP 9845 
connected to any calculator IiO slot (Fig. 16).The basic calculator (see Chap. 31). The full set of 28 ROM outputs with their 
has 4 slots for peripherals, and this can be expanded to as many as associated microinstructions is shown in Table 1. The list of 16 
40 by means of IiO expanders. qualifiers and assigned codes is contained in Table 2.  

The 9810/20/30Series processors did not have separate proces- 
Reliability sors for IiO and extended arithmetic as the HP 9845 does. Thus 

instructions beyond those in the BPC were required to deal with 
The IiO system uses time-proven TTL circuits with known good IiO and decimal arithmetic. These additional instructions are 
reliability characteristics. Supplementing the hardware reliability, outlined in Table 3. 

Table 1 Microinstruction Set-9000 A 

Positive Negative true 

tme outputs 


Control ROM Decoded p-instruction 	 Functionfield output output 

General 1. IQN 	 Inhibit shift clock if qualifier not met. 
2. BRC 	 Branch: inhibits SO0 if qualifier not met. 
3. TTT 	 T BUS-. T REG 
4. TTM 	 T BUS-. M REG 
5. XTR 	 AfB REG+ R BUS 

SCI sco 
S-code 6. SC1 ZTS 	 0 0 ZERO+ S BUS 

7. 	 sco MTS 0 1 M REG+ S BUS 

TTS 1 0 T REG- S BUS 

UTS 1 1 ONE+ S BUS 


RC2 RCI RCO 

R-code 8. RC2 UTR 0 0 0 ONE-. R BUS 
9. RC1 	 PTR 0 0 1 P REG-; R BUS 

10. 	 RCO TRE 0 1 0 T REG+ E REG -j R BUS 
WTM .ZTR 0 1 1 Store contents T REG +memory 
TQ6 .2TR 1 0 0 T BUS-. Q REG (bit 6) 
QTR 1 0 1 Q REG-. R BUS 
RDM . ZTR 1 1 0 READ MEMORY <M> -.T REG 
ZTR 1 1 1 ZERO- R BUS 



- - -  

- - - 

Chapter 49 The HP 9810120130 Series 821~ 

Table 1 (Cont’d.) 

Positice Negative true 

true outputs 


Control ROM Decoded pinstruction Functionfield output output 

x c 2  XCI xco 
X-code 11. xc2  TTQ 0 0 0 T BUS-. Q REG 

12. xc1  	 QAB 0 0 1 Q REG (bit 11) +AB flip-flop 
13. 	 XCO BCD 0 1 0 BCD arithmetic mode of ALU 


TBE 0 1 1 T BUS+ E REG -.R BUS 

CAB 1 0 0 Complement the AB flip-flop 

TTP 1 0 1 T BUS-. P REG 

TTX 1 1 0 T BUS- A/B REG 

NOP 1 1 1 None of the above 


Decoded in ALU 

AC2 ACl ACO 

ALU 14. AC2 XOR 0 0 0 Exclusive OR . . . . . . . .  R@S -+ T BUS 

15. AC1 	 AND 0 0 1 Logical AND . . . . . . . . .  R . S --+ T BUS 

16. 	 ACO IOR 0 1 0 Inclusive OR . . . . . . . . .R + S +T BUS 


ZTT 0 1 1 ZERO-+ T BUS 

ZTT . CBC 1 0 0 ZERO- T BUS, clear binary carry 

IOR . CBC 1 0 1 Inclusive OR, clear binary carry 

IOR . SBC 1 1 0 Inclusive OR, set binary carry 

ADD 1 1 1 Bjnary add 


ClOC 17. CCl 	 This 4-bit code initializes a preset-
18. CC2 	 table down counter to generate any 
19. c c 4  	 number of shift clocks from 1 through 
20. c c 8  	 \ 16. Shift is inhibited by IQN if qualifier 

not met. 
Qualifier 21. QC3 This 4-bit code performs two func-

22. QC2 	 Itions: (1) addressing the data selector 
23. QCl 	 to select one of sixteen qualifier inputs; 
24. 	 QCO (2) providing complement code to pri-


mary flip-flops.
1 

Secondary 25. SO3 This 4-bit code provides complement 
address 26. SO2 code to the secondary flip-flops. 

27. SO1 	 If BRC is given and qualifier is not 
28. SO0 	 met, the SO0 bit is inhibited 

Special microinstructions 

TQR = UTR .XTR 	 transfers Q14.Q11+ PO4 

Q-Register to primary address Q12-9 PO5 

as shown Q13-. PO6 


Q14+ PO7 

IOS = PTR . XTR 	 (a) initiates transfer of control to VOif10 = 1 
(b) sets “single service” FF in I/O via SRA if Q10 = 0 

Special operations 
~ ~~ 

BCD sum -+ A<O:3> = BCD .UTR . ROM CLOCK 

Clear decimal carry = QAB . ROM CLOCK 

Set decimal carry = UTR . BCD . ROM CLOCK 

Decimal add = BCD . ZTT . . .  T<O:3> + A<O:3> +Qi0:3> 

10’s complement n/decimal add = BCD . ADD . . .  .Tc0:3> + A<O:3> -+Q<O:3> 




~ Evolutionof HP Calculators 822 Part 4 I Family Range, Compatibility, and Evolution 	 Section 3 

Table 2 Qualifier Set-9000A 

Qualifier code 

QC3 	 QC2 QCl QCO Mnemonic Function 
~ 

0 0 0 0 QOO Shiftlskip one bit 

0 0 0 1 Q01 Shiftlskip two bits 

0 0 1 0 Q02 Shift/skip four bits 

0 0 1 1 Q03 Shift/skip eight bits 

0 1 0 0 Q04 Fast square root qualifier 

0 1 0 1 Q05 Set bit in A/S group; FDV qualifier 

0 1 1 0 Q06 T-bus qualifier via TQ6 

0 1 1 1 QBC Binary carry from ALU 

1 0 0 0 QPO P Register bit 0, for BCD counting 

1 0 0 1 Q15 Indirect address, clear bit in A/S group 

1 0 1 0 QMR Memory reference qualifier 

1 0 1 1 Q10 Current page qualifier, FXA qualifier 

1 1 0 0 QNR Non-servi ce request qualifier 

1 1 0 1 Q08 FMP qualifier 

1 1 1 0 QDC Decimal carry from ALU 

1 1 1 1 QRD* ROM disable (normally zero) 


POP will preset ROM address flip-flops at turn-on. 

*QRD may be used with IQN to insure zero shift except when in I/O loop. 

Table 3 1/0and Decimal Arithmetic instructions of the 

HP9810/20/30 Central Processors 


Execute-DMA group 	 Inuutloutnut erouv IIOG) 

These three special-purpose instructions were chosen to speed up holding or clearing the flag flop after execution 
printing and extended memory operations. of OT". The different select codes allow differ- 

EXA/B 	 Execute A. The contents of the A register are treated as ent functions to take place after loading the I10 
the current instruction, and executed in the normal register. 
manner. SC=OO Data from the A or B register is output 

DMA Direct Memory Access. The DMA control in Extended eight bits at a time for each OT* in- 
Memory is enabled. struction given. The A or B register is 

rotated right eight bits. Inputloutput group (IOG) SC=Ol The I/O register is loaded with 16 bits 
The eleven IOG instructions, when given with a select code, are from the A/B registers. 
used for the purpose of checking flags, setting or clearing flag and SC=02 Data from the A/B register is output 
control flip-flops, and transferring data between the A/B registers one bit at a time for each OT* instruc- 
and the I/O register. tion for the purpose of giving data to 

STF <SC> Set the flag flip-flop of the channel indicated by the Magnetic Card Reader. The I10 
select code <SC>. register is unchanged. 

CLF <SC> Clear the flag flip-flop. SC=04 The I/O register is loaded with 16 bits 
SFC <SC> Skip if flag clear. from the A/B register and the control 
SFS <SC> H/C Skip if flag set. H/C indicates if the flag flip-flop flip flop for the printer is then set. 

should be held or cleared after executing SFS. SC=OB The I/O register is loaded with 16 bits 
CLC <SC> H/C Clear control. H/C indicates if the flag flip-flop from the A/B register and the control 

should be held or cleared after executing CLC. flip flop for the display is then set. 
STC <SC> H/C 	 Set Control. Set the control flip-flop in the SC=16 The I/O register is loaded with 16 bits 

channel indicated by <SC>. H/C indicates if from the A/B register and then data in 
the flag flip-flop should be held or cleared after the I10 register is transferred to the 
executing STC. switch latches. 

OT* <SC> H/C Output A or B. Sixteen bits from the A/B regis- LI* <01> H/C Load into A or B. Load 16 bits of data into the 
ter are output to the I/O register. H/C allows A/B register from the I/O register. H/C allows 



Chapter 49 1 The HP 9810/20/30Series 823 

Table 3 (Cont’d.) 

Inputloutput group (IOG) 

holding or clearing the flag flop after L1* has 
been executed. 

LI* <oo> 	 The least significant 8 bits of the I/O register are 
loaded into the most significant locations in the 
A or B register. 

MI* <01> H/C 	 Merge into A or B. Merge 16 bits of data into the 
A/B register from the I/O register by “inclusive 
or.” H/C allows holding or clearing the flag flop 
after MI* has been executed. 

MI* <OO> 	 The least significant 8 bits of the I10register are 
combined by inclusive OR with the least signifi- 
cant 8 bits of the A or B register, and rotated to 
the most significant bit locations of the A or B 
register. 

MAC instruction group 

A total of 16 MAC instructions are available for operation (a) with 
the whole floating-point data (transfer, shifts, etc.) or (b) with two 
floating-point data words to speed up digit and word loops in 
arithmetic routines. 
Note: A<O:3> means: contents of A-register bit 0 to 3. 

AR 1 is a mnemonic for arithmetic pseudo-register located in 
R/W memory on addresses 1744 to 1747 (octal). 

AR 2 is a mnemonic for arithmetic pseudo-register located in 
R/W memory on addresses 1754 to 1757 (octal). 

Di means: mantissas’ i-th decimal digit; most significant digit 
is D1; least significant digit is D12; decimal point is located 
between D1 and D2. 

Every operation with mantissa means BCD-coded decimal opera- 
tion. 

RET Return 
16-bit number stored at highest occupied address in stack 
is transferred to the program counter. Stack pointer is 
decremented by one. 

MOV 	 Move overflow 
The contents of E-register are transferred to A<O:3>. Rest 
of A-register and E-register filled by zeros. 

CLR Clear a floating-point data register in R/W memory on lo-
cation <A> 

ZERO<A>, <A>+l, <A>+2, <A>+3 

MAC instruction group 

XFR 	 Floating-point data transfer in R/W memory from location 
<A> to location <B>. 

MRX AR1 mantissa is shifted to right n times. Exponent word 
remains unchanged. 

MRY 	 AR2 mantissa is shifted to right n times. 
MLS AR2 mantissa is shifted to left once. Exponent word re- 

mains unchanged. 
DRS AR1 mantissa is shifted to right once. Exponent word re- 

mains unchanged. 
DLS AR1 mantissa is shifted to left once. Exponent word re- 

mains unchanged. 
FXA 	 Fixed-point addition 

Mantissas in pseudo-registers AR2 and AR1 are added to- 
gether and result is placed into AR2. Both exponent words 
remain unchanged. When overflow occurs “0001” is set 
into E-reg.; in opposite case<E> will be zero. 

FMP 	 Fast multiply 
Mantissas in pseudo-registers AR2 and AR1 are added to- 
gether B<O:3>-times and result is placed into AR2. Total 
decimal overflow is placed to A<O:3>. Both exponent 
words remain unchanged. 

FDV 	 Fast divide 
Mantissas in pseudo-registers AR2 and AR1 are added to- 
gether repeatedly until first decimal overflow occurs. Re- 
sult is placed in AR2. Both exponent words remain un- 
changed. Each addition without overflow causes +1 in- 
crement of <B>. 

CMX 	 10’s complement of AR1 mantissa is placed back in AR1, 
and ZERO is set in E-register. Exponent word remains 
unchanged. 

CMY 	 10’s complement of AR2 mantissa. 
MDI 	 Mantissa decimal increment 

Mantissa on location <A> is incremented by decimal ONE 
on D12 level, result is placed back in the same location, 
and zero is set in E-reg. Exponent word is unchanged. 

NRM 	 Normalization 
Mantissa is pseudo-register AR2 is rotated to the left to get 
D1 # 0.Number of these 4-bit left shifts is stored in 
B<O:3> binary form (B<4:15>=0). Exponent word re- 
mains unchanged. 



Chapter 50 

Hewlett-Packard Calculator 

Architectures 


Thomas E. Osborne 

Summary This chapter focues on some of the more important architec- 
tural differences between the first Hewlett-Packard electronic calculator, 
the HP 9100.4 (c. 1968), and its descendants, the HP 9810120130. The 
architectures of the two generations are so different that the reasons for 
making the change are, in many ways, as interestingas the differences in 
the architectures. 

Except for using similar components, the early programmable 
calculators had surprisingly little in common with the concurrent 
digital computers. Among the many reasons for the differences, 
none is as large as the fact that very few, if any, of the early 
calculator designers were defectors from the ranks of computer 
designers. Contrary to the old adage, anyone engaged in design- 
ing computers could see that the grass was very green on his side 
of the fence-so green that few even acknowledged the existence 
of other pastures. 

A quick glance at some of the objectives of the early electronic 
calculator manufacturers shows that even if there had been 
defectors from the computer field, precious little technology 
would have been directly applicable to the calculator environ- 
ment. 

Would a technology that understood megabit core memories 
designed to operate in a controlled temperature environment 
have been capable of stretching enough to design inexpensive 
kilobit memories to operate from 0 to 55”C? Was there any 
assurance that those who were skilled in the design of microsec- 
ond parallel binary adders would find these skills useful in 
designing inexpensive serial decimal adders? Who knows? The 
test was never run. 

Because the early calculator designers had so little practical 
exposure to the inner workings and hidden mechanisms of 
computers, it follows that their designs would not necessarily be 
an extrapolation from the concurrent computer architectures. 
Both groups of designers had the same building blocks and shared 
somewhat similar problems, but in the same ~7ay that different life 
forms sprang from the same primordial soup, early calculator 
architectures were quite a different species from concurrent 
computer architectures. 

The first Hewlett-Packard programmable calculator, the HP 
9100A (c. 1968) [Hewlett-Packard, 19681, was micro-programmed 
to perform floating-point arithmetic and to evaluate the forward 

and inverse circular, exponential, and hyperbolic transcendentals. 
Its IiO was also controlled by its inductive ROM, which contained 
512 64-bit words. The ROWS extra-wide micro-words allude to 
the nonstandard architecture found in the HP 9100A. 

Instead of having an arithmetic and logic unit (ALU) connected 
to various registers by a common bus, the HP 9100A had no ALU 
per se. Instead, its arithmetic section was distributed throughout 
the system by assigning small, but specialized, tasks to the various 
registers within the system. Separate buses then interconnected 
selected pairs of these registers. As a consequence, several 
(typically three to seven) micro-instructions were executed simul- 
taneously during each micro-word time. Half of the 64-bit 
micro-word was used to encode these micro-instructions. The 
other half of the 64-bit word was used for addressing and to test 
conditions of both internal registers and asynchronous external 
signals generated by IiO devices. The results of each test 
determined the next ROM address and, at the micro-
programmer’s discretion, whether or not to suppress the action of 
the micro-instructions in the other half of the ROhl micro-word. 
Figure 1 pictorially demonstrates the syntax of a typical micro- 
word used in the HP 9100A. 

The micro-programmer would interpret Fig. 1 as follows: 
“When the conditions defined by QX are true, execute the set of 
micro-instructions (1.4,IB, TC, . . . ) and go to ROM address ‘j’ for 
the next micro-word; when QX is false, inhibit all micro-
instructions [symbolically shown by the shaded corner in the right 
exit of the diamond] and go to address ‘k‘for the next micro- 
word.” Notice that, unlike what happens in a standard flowchart, 
in which the instructions within the box precede the test 
designated by the diamond, both actions occurred simultaneously 
in the HP 9100A. 

The advantages of conditionally inhibiting a set of micro- 
instructions are many, but one frequent use stands out. In most 

IP 


(IA, IB, IC, ) 

N-

t o  ‘k‘tor‘f 1 
L 

Fig. 1. A typical microword from the HP 9100A. 

824 



Chapter 50 1 Hewlett-Packard Calculator Architectures 825 

applications, one tests the exit conditions of an iterative loop (1)to 
re-enter the loop when the exit conditions are not met or (2)to exit 
when they are met. When the test occurs at the beginning of a 
loop and the exit conditions are met, none of the loop instructions 
are executed. In the HP 9100A, loops of this type frequently 
consisted of a single micro-word to be repeated until the exit 
conditions were met, at which time the micro-instructions were 
inhibited and the exit path selected. 

As one would expect, this highly parallel architecture resulted 
in a very fast system. Contrary to what one might expect, the 
actual micro-coding was not overly difficult, nor was the multi-bus 
hardware difficult to lay out on PC boards. Although the “wide 
word’ architecture of the HP 9100A was abandoned for reasons to 
be discussed later, it seems that it would be worth revisiting. One 
might find that micro-processor speeds could be enhanced by an 
order of magnitude without resorting to a higher-speed IC 
process. 

Quantifiers are tested to determine which of the two next 
micro-address fields should be used. In Fig. 2 a single signal, 
IQAM, connects the QUALIFIER SELECTION LOGIC to the 
MAIN CONTROL LOGIC. This signal is actually the output of a 
comparator whose right inputs come from the QU,4LIFIER 
subfield of the ROM and whose left inputs come from an encoder 
whose inputs are, in turn, all of the individual conditions to be 
tested. An unobvious, but very beneficial, byproduct of this 
technique is the fact that the entire system is free from problems 
resulting from any external qualifiers’ asynchronously changing 
state between clock times. The signal IQAM either is effective 
upon the CONTROL LOGIC or isn’t. In either case the CON- 
TROL LOGIC is deterministic in its response to IQAM. 

It is interesting to notice that the patents obtained for the 
HP 9100 did not use the words micro-program and micro-
instruction. We were not aware of either term until after the HP 
9100A was introduced, even though it was a micro-programmed 
machine. 

Before discussing some of the aspects of the stack as seen by the 

External Internal 

signals signals 


-log2 ‘n’ 
signals 

subfield) 

IQAM 

Fig. 2. Next microinstruction address select logic. 

HP 9100A user (i.e., the X and Y registers), one must first 
appreciate the fact that calculator designers and qomputer design- 
ers are in violent disagreement as to the way in which a stack is 
visualized. Since there are about 100 times as many calculator 
users visualizing the last entry at the bottom of the stack as there 
are computer users visualizing the last entry at the top of the 
stack, we will side with the majority. We justify this position with 
the attitude that the same person who “inverted’ the computer 
stack was responsible for deciding that “trees” have their “roots” 
above their “leaves.” Regardless of how the minority view came 
about, the calculator stack is as it is because we wanted the 
numerator to be above the denominator when a division is 
performed. 

For nontechnical reasons, the HP 9100A presented a unique 
stack to its users. Prior to the introduction of the HP 9100A, one of 
the well-established mechanical calculator users introduced an 
electronic calculator having a classic stack (with its last entry at the 
bottom). To avert any possible patent infringements, we invented 
a stack in which a dyadic operator overwrote the first entered 
operand (the second operand in the stack) and left the bottom of 
the stack unchanged. (A classic stack could be thought of as 
performing the same operation but “popping” the stack following 
the dyadic operator.) In the HP 9100A, an operand that followed 
any operator simply overwrote the bottom of the stack, with the 
result that there was no difference between the classic stack and 
our version in executing a series of dyadic operators. In fact, when 
an evaluation required multiple uses of the last stack operand, as 
often occurred, our version was superior to the classic version. 
Konetheless, our stack had one shortcoming. When a monadic 
operator was to be performed upon the result of a dyadic operator, 
it was necessary to manually “drop” the stack prior to performing 
the monadic. 

We found that the public adapted very well to the concept of a 
stack. The fact that it was displayed in its entirety on a CRT 
helped, but the fundamental nature of the concept was even more 
important. The HP 35 only displayed the bottom of the stack, and 
it was well received. 

Even today, if these were the only choices of stacks, it would be 
dimcult to choose between the two. Fortunately a third choice 
exists which has the advantages of both. It functions as a classic 
stack with the feature that the bottom of the stack, which is 
consumed by an operation, is saved prior to performing the 
operation and made available for recall as the next operand. Those 
familiar with any of the later versions of HP hand-held calculators 
will recognize this feature as the “LAST X” operator and can 
testify to its usefulness. 

As mentioned earlier, the wide-word architecture of the HP 
9100A was not used in other HP calculators. No single factor 
contributed to the demise of the HP 9100A architecture as did the 
HP 2114 mini-computer. And for good reason. An investigation of 
its architecture showed that it could be reduced to an MSI 



826 Part 4 I Family Range, Compatibility, and Evolution 

micro-processor and that its software could be locked up in ROM. 
By simulating the calculator on a copy of the HP 2114, an 
order-of-magnitude increase in performance was realized over the 
hand-soldered diode-ROM simulator used to develop the HP 
9100A. On top of that we thought we could use the software and 
operating system that had been developed for the HP 2114. As it 
turned out, little of either was used, but the fact that it existed 
weighed heavily in the decision to abandon the HP 9100A 
architecture. Finally, it seemed wise to use the same I/O protocols 
adopted by the HP 2114. 

Shortly after the decision was made to use the HP 2114 
architecture, it became evident that portions of the system had to 
be enhanced to meet the speed required by the three calculators 
that were to use the 2114 “micro-processor.” The MSI version of 
HP 2114 was enhanced by including a decimal adder in the ALU, 
and by expanding the instruction set to include an extensive set of 
macro-instructions whose principal use was to assist floating-point 
decimal operations. 

One of the more interesting consequences of the first genera- 
tion RAM’Swas the dramatic impact they had upon scientific 
desk-top calculators like the HP 9810/20/30 [Hewlett-Packard, 
19721. Most, if not all, of the early RAM’S were aimed at replacing 
large core memories found in digital computers. To achieve this 
end, the LSI RAM manufacturers were aiming at a price of about 
two cents per bit. As anyone who has designed a core memory 
knows, its driving and sensing circuitry is inherently expensive. 
When this cost is prorated among the few bits found in a small 
memory like the one used in the HP 9100A, one could easily 
encounter costs of 20 cents per bit. Fortunately for the calculator 
designers, the per bit cost of LSI RAM was relatively independent 
of the ultimate size of the memory. Whereas two cents per bit was 
a break-even point for the computer environment, it represented 
an order-of-magnitude improvement for the calculator envi-
ronment. It was no coincidence that many of the first produc- 
tion orders for RAM’S went into programmable desk-top calcula- 
tors. 

Unlike the operating systems of digital computers, which share 
user RAM, the operating systems of the HP 9810/20/30 were all 
committed to ROM. As one of the HP engineers recently said, “If 
you think it takes nerves of steel to release a software operating 
system, imagine how it feels to release one in firmware.” 

The firmware of the 9800 Series calculators supports some 
rather sophisticated features. At the low end of the line, the HP 
9810 performed indirect register arithmetic. For example, the 
sequence 

will multiply the contents of the X register by the contents of the 

Section 3 1 Evolution of HP Calculators 

register whose address is found in register 50 and place the 
product in that register. 

The HP 9820 was Hewlett-Packards first algebraic (non-Polish) 
machine. Instead of running interpretively, it partially compiled 
its source programs into reverse Polish strings, which accom-
plished two important objectives. First, the lexical and parsing 
phases of the compilation were only performed once, but second 
and more important, a “decompiler” was able to reconstruct the 
source code from the reverse Polish strings, thereby giving the 
user unprecedented on-line editing of his source code without 
storing the source code in user memory. 

The HP 9820 firmware also supported recursive functions. For 
example, one could define a function like MAX and then use it as 
one of its own arguments. For example, MAX(A, MAX (B,C)) is a 
valid HP 9820 statement. 

At the upper end of the calculator spectrum, the HP 9830 
supports BASIC. In its maximum configuration, it offers 16K 
words of 16 bits to its users. Remember that this is all user 
memory. The operating system is in ROM. An additional two-and- 
a-half million words of memory is available in the HP 9880 mass 
(disc) memory. 

Since the introduction of the HP 9830, LSI micro-processor 
versions of the HP 9810/20/30 have been introduced. As one 
might expect, they run faster, cost less, and do more than their 
ancestors. How they achieve these ends will be left to the authors 
of future research papers. 

So far the reader has been told why things are as they are and 
very little about why they aren’t something else. Why, for 
example, was the HP 9830 not given a CRT? Although one was 
considered, the designers did not want their product to be 
confused with the competition of the day, terminals driven from 
remote computers. It was thought that the combination of a 
32-character LED display and an 80-column, 300 line per minute 
thermal printer would be an adequate solution and at the same 
time prevent confusion in the minds of potential customers as to 
what a terminal was and what a stand-done computing station 
was. Whether or not this was the best decision remains open. 
However, one thing is clearly obvious: it was not a bad decision. 
The HP 9830 is a very successful product. 

Negative experiences, though painful, can be helpful in the 
long run. Such was the case with the HP 9100A 110. The signals 
emanating from its IiO connector were fondly referred to as 
“semi-modulated white lightning.” The peripherals that con-
nected to the I/O connector stand as a tribute to engineering. 
The obstreperous nature of the HP 9100A I/O was a strong con- 
tributor to the fact that its descendants have excellent IiO char- 
acteristics. 

Another disturbing fact of life surrounds the desire to maintain 
the same fundamental architecture between successive genera- 
tions so that the software from previous generations can be used 



in the generation being developed. Unfortunately, two factors 
team up to defeat this admirable goal. First, it seems that 
regardless of how carefully the previous software was document-
ed, the (new) personnel who will be responsible for the next 
generation find the ancestor software’s documentation dull and 
uninspired. Second, the performance objectives of the new 
generation automatically render much of the ancestral code 
obsolete. Once Pandora’s box is opened, good intentions escape 
and most of the code is rewritten. The paradoxical result of this 
process is that an architecture is retained because one wishes to 
capitalize upon its software when, in fact, very little of the 
software is actually used. The measurable effect of this logic is that 
an architecture may persist much longer than it would if its 
software were removed from the decision process. 

It has been more than a decade since the first scientific desk-top 
calculator was introduced. Since that time the public has had 
enough time to appraise many systems and use their respective 
languages. To me it appears that as we add more deep structure to 
the grammars upon which the languages are based, the users 
become more confused. In an odd way, the more powerful we 
make our grammars, the less useful they become to all but a few. 
The following BASIC statement is an example: 

1 - l O R N O T O A N D O = 2 ? S Q R O * f l  

’ Unless you have committed to memory the nine levels of 

Chapter 50 I Hewlett-Packard Calculator Architectures 827 

hierarchy involved, there is little chance that you would parse the 
sentence as: 

My point is that while the first sentence is derived from what 
many consider to be a trivial grammar, the sentence can only be 
understood if the user has memorized the proper grammatical 
rules or has access to a manual in which they are described. The 
entire meaning of what is being said is lost if the rules of the 
language are forgotten or improperly used. 

Based upon my experiences, a language that is easily learned 
and seldom misused would: 

1 Be free from hierarchy, except for parentheses 

2 Be left-associative 

3 Use the right assignment operator “+” 

In other words, it would be much like APL except that it would 
execute left to right rather than right to left. 

References 

Hewlett-Packard [19681; Hewlett-Packard [19721. 



Section 4 

Evolution of Burroughs Computers 
From the inception of the B 5000, Burroughs' main-line comput- 
ers have maintained and enhanced the concepts of hardware 
support for block-structured high-level languages. Part 1, Sec. 3, 
traces the evolution of the Burroughs B 5000, B 65001B 7500, and 
B 670017700 machines. The evolution of the virtual to the physical 
addressing structure is outlined in Part 2 ,  Sec. 2 .  Finally, Chaps. 9 
and 16 discuss individual family members. 



Section 5 

The System/360 and 
System/370 Family 
The System/360 was the first planned computer family to cover a 
range of cost and performance. The System/360 predecessors, the 
IBM 7090 series and the business models, ran into a number of 
the same problems of limited growth potential later encountered 
by the PDP-8. Rather than continuing to tinker with the 
architecture, IBM opted for a totally new ISP planned right from 
the start to have growth potential for the future covering both the 
scientific and business market. Even the initial family plan called 

for a wide range of cost and performance implementations. 
Microcode was also extensively used to provide emulation support 
for prior IBM systems. 

Subsequently the System1360 ISP evolved into the Systemi370. 
Chapter 51 describes the problems with developing an upward- 
compatible ISP extension. 

Within one generation of technology, the Systemi360 and 
System/370 used various implementation techniques (e. g., wider 
data paths and processor-memory overlap) to provide a perform- 
ance range. But in the Systemi370 series, several models have 
been reimplemented for constant cost and increased performance. 
The 3030 series and, in 1979, the 4300 series were introduced as 
lower-cost, constant-performance models of the System/37O ISP. 
Chapter 52 discusses and analyzes the various family members. 

829 



Chapter 51 

Architecture of the IBM System/3701 

Richard P. Case / Andris Padegs 

Summary This paper discusses the design considerations for the archi- 
tectural extensions that distinguish SystemM’iO from Systemi360. It 
comments on experiences with the original objectives for System/360 
and on the efforts to achieve them, and it describes the reasons and 
objectives for extending the architecture. It covers virtual storage, 
program control, data-manipulation instructions, timing facilities, multi- 
processing, debugging and monitoring, error handling, and inpuvoutput 
operations. A final section tabulates some of the important parameters of 
the various IBM machines which implement the architecture. 

Introduction 

The years since the introduction of Systeml360 in 1964 have 
produced very substantial changes in most aspects of the design, 
manufacture, and use of information-processing systems. The 
hardware technology for realizing logic functions has evolved from 
semi-integrated circuit modules with single devices per chip to 
hundreds or thousands of circuits on a single silicon chip. The 
technology for high-speed storage has changed from magnetic 
cores to dense arrays of transistors on silicon chips. The growth in 
size and function of systems software has surprised even the 
practitioners. It is not surprising, therefore, to discover that 
extensions and refinements to the architecture’ of Systemi360 
were found to be necessary. 

This paper reviews the motivation for extending the Systemi360 
architecture and describes the design considerations associated 
with the extensions adopted for Sy~tem/370.~ It comments on 
some experiences with the original objectives and concepts of 
Systemi360. Finally, it summarizes the characteristics of IBM 
machines implementing the SystemM60 and the SystemM70 
architectures [Amdahl, Blaauw, and Brooks, 1964; Amdahl, 1964; 

’Comm ACM, vol. 21, no. 1, January 1978, pp. 73-96. 
*The term architecture is used here to describe the attributes of a system 
as seen by the programmer, i.e., the conceptual structure and functional 
behavior, as distinct from the organization of the date flow and controls, 
the logical design, and the physical implementation. 
This  chapter is not the definitive reference work for the specification of 
the features and functions discussed. For the official, and maintained, 
description, refer to the I B M  System1370 Principles of Operations, form 
GA22-7000, which is available through local IBM branch offices. 

Blaauw and Brooks, 1964; Blaauw, 1964; Padegs, 1964; and 
Stevens, 19641. 

Experience with System/360 

At the time the major decisions were made on the Systemi370 
architecture, a significant amount of experience was available with 
the initial implementations of System/360. The major conclusions 
from this experience were: 

Compatibility 

Compatibility really worked. It was in fact possible to transfer 
programs routinely from one model to another and expect them to 
produce the same results. Operational evidence was available that 
architecture and implementation could be separated; one need 
not imply the other. 

Compatibility also helped reduce development expense. The 
original plan called for verifying each element of software on each 
model. Because of the growing confidence that programs which 
ran on one model would also run on other models, it was possible 
to significantly reduce the amount of cross-verification to be 
performed. 

Implementation of a whole line of computers according to a 
common architecture did not take an undue amount of effort. It 
did, however, require unusual attention to detail and some new 
procedures, which are described in the Architecture Control 
Procedure section. 

Performance Range 

A greater performance range must be planned for. The original 
Systemi360 announcement included processors with a perform- 
ance range of about 25 to 1. Six years later this had increased to 
about 200 to 1, and plans were being made for even further 
extensions. 

Main Storage 

It was obviously necessary to plan for main-storage sizes of more 
than 2% bytes. The technological improvements in main storage 
which reduced the relative cost had happened at a rate greater 
than was expected. The result was that serious thought had to be 
given to the planned replacement of 24-bit addressing. 

The extension of the address size proved to be more difficult 
than firsbthought. Our experience in this respect agrees with that 
of Bell and Strecker [1976], who say: “There is only one 
mistake . . . that is difficult to recover from-not providing 
enough address bits. . . . ”  

The basic addressing mechanism of Systemi360 had anticipated 

830 



2 

Chapter 51 1 Architecture of the IBM Systemi370 831 

the eventual need and was well suited to the extension, since it 
depended on base registers that were already 32 bits wide. The 
interruption mechanism and the I/O control formats, however, 
did not have the required extensibility. (We knew in 1962 that this 
was the case, but the immediate cost and performance conse- 
quences outweighed the need to meet the eventual long-term 
requirements.) More importantly, the operating systems and 
compiler-produced application programs had used the extra bits 
in address words for control purposes and hence required 
extensive modifications. 

Operating Systems 

Machine architecture must be developed in conjunction with 
changes and extensions to existing operating systems. Whereas 
the original Systemi360 architecture was developed to provide a 
good basis on which a completely new operating system could be 
built, extensions to that architecture have to consider the specific 
usages and capabilities of the available operating systems. 

Architecture Control 

The design and control of system architecture must be an ongoing 
function that can never be considered complete. We found 
ourselves well into the 1970s making changes in the architecture 
of Systemi360 to remove ambiguities and, in some cases, to adjust 
the function provided. 

Objectives of System1370 

Motivation 

The motivation to extend the Systemi360 architecture for the new 
series of machines came from two main sources: 

1 	The experience with the Systeml360 architecture in writing 
application programs, in designing and using operating 
systems, and in debugging and maintaining both software 
and hardware had identified a number of bottlenecks and 
limitations in the efficiency of system use and had pointed 
out areas where additional machine functions were desir- 
able. 
The general lowering of the cost of technology for main 
storage and logic circuitry in relation to the overall system 
cost made it possible economically to include functions that 
did not appear justified in the original System/360 architec- 
ture. 

Specific Objectives 

The following were the specific objectives of the Systemi370 
architecture: 

Improving the level of detail, precision, and predictability 
of the Systemi360 architecture. These improvements were 
made primarily in the areas of interruptions, system 
control, and the order of storage references. They were 
motivated largely by reliability and serviceability consider- 
ations. 

Adding new instructions to enhance the performance of 
frequent functions in application programs. A total of 17 
new unprivileged instructions were introduced in the 
Systemi370 architecture. 

Extending the architecture to improve system reliability, 
availability, and serviceability. Extensions were included to 
assist diagnostics and recovery by software after a hardware 
failure (machine-check extensions), to assist in debugging 
software (program-event recording, monitoring, status 
storing), and to facilitate formation of multiprocessing 
systems with multiple CPUs sharing common main storage. 

Adding new facilities to enhance the performance and 
function of the operating system and to introduce uniform 
machine-implemented protocols in the system. Dynamic 
address translation, timing facilities, and a number of 
privileged instructions were the main extensions provided 
for this purpose. 

Constraints on System1370 

The Systemi370 architecture was developed subject to the 
following main constraints: 

1 	 Within the limitations described in the IBM System1370 
Principles of Operation, the architecture must be upward 
compatible with Systemi360 architecture as far as user 
programs are concerned; that is, user programs written for 
System/36O must run efficiently on Systemi370 models with 
no modification to these programs. These limitations are 
that the systems have the same or equivalent facilities and 
that the programs have no time dependence, use only 
model-independent functions defined in the Principles of 
Operation, and not use unassigned formats and operation 
codes. These limitations essentially mean that compatibility 
applies only to valid programs. 

2 	 It must be possible to run certain Systemi36O operating 
systems unmodified on System/370 models. Even though 
such operating systems could not fully benefit from the new 
functions available in Systeml370, and new support was 
planned, the ability to execute them was needed for the 
transition period. 

3 	 It must be possible to attach and operate most types of 
System1360 I10 devices on Systeml37O. 



2 

832 Part 4 1 Family Range,Compatibility, and Evolution 	 Section 5 ' The System/360 and Systemi370 Family 

4 The Systemi370 architecture must preserve and extend the Table 1 Architectural Extensions Incorporated in Sys-
open-endedness and generality of design characteristic of 
the Systemi360 architecture. 

Summary of Architectural Extensions 

Table 1 lists the major categories of architectural extension that 
have been added to the System/3601 architecture to form the 
Systemi370' architecture, including those that were originally 
introduced on the Systemi360 Model 85. The extensions are 
grouped in terms of architectural facilities, which are mechanisms 
provided in the machine for performing a specific function. The 
table also lists the number of new instructions associated with the 
facility. Note that many of the new facilities have no new 
instructions associated with them. Table 2 lists all new instruc- 
tions, which total 40. 

Additionally in a number of areas the System/360 architecture 
was made more specific and predictable within the freedom 
permitted by the original definition. The following are two 
examples: 

1 	The result of a decimal-arithmetic operation is made 
predictable when an invalid sign code is encountered. This 
is a common error in source data, and the change permits 
correction and resumption of the operation. 

The priority of recognizing program-interruption condi-
tions is specified to achieve repeatability and to make 
debugging easier. 

Compatibility with System/360 

Methods of Achieving Compatibility 

hlajor emphasis in the design of the Systemi370 architecture was 
placed on defining all changes and extensions so that a valid 
Systemi360 program, executed on a Systeiid370 machine, would 

'The Systemi36O Model 20 is not discussed in the referenced papers nor in 
this paper, as some of its architectural features are so specialized that it is 
not convenient to discuss them in the same context. 
2This paper covers only those facilities that are described in System/370 
Principles of Operation. It does not discuss certain extensions that were 
made available only on SystemMGO Models 44 and 67; nor does it describe 
the following special facilities that are available only on some models: 
virtual-machine assist (hardware assist for \'M/370), extended control- 
program support (hardware assist for OSATSIand for VM/370), APL assist, 
OSiDOS compatibility, the assist for optical character recognition, 
emulators for other machines, as well as the Systemi370 extended facility 
and recovery extensions first made available on the IBM 3033 Processor 
Complex. 

tem/370 

Instructions 

Facility Unpriu. Priu. 

Virtual storage 
Dynamic address translation 2 
Reference and change recording 1 
Channel indirect data addressing 

Program control and interruptions 
Control registers 2 

Extended control 

System-mask handling 2 

PSW-key handling 2 

Restart interruption 

Extended masking 


Data-manipulation instructions 
General instructions ' 

Decimal instructions 
Floating-point instructions 
Byte-oriented operands 

Timing facilities 
Time-of-day clock 1 
Clock comparator 2 
CPU timer 2 

Multisystem operation 
Synchronization and serialization 
Prefixing 2 
lnterprocessor signaling 2 

Debugging and monitoring 
Program-event recording 
Monitoring 
Status storing 

Machine-error handling 
Resets 
Error reporting 
Logout 
Command retry 
Storage validation 
Machine identification 2 

Input/output 
Block multiplexing 
Control 3 
Data-rate improvement 

17 23 


obtain the same results as specified in the I B M  System/360 
Principles of Operation. This compatibility was achieved by four 
devices : 

Restriction. Narrowing Systemi370 to a more specific operation 
in areas where the Systemi360 definition allowed unpredictable 



Chapter 51 1 Architecture of the IBM Systemi370 833 

Table 2 New Instructions Incorporated in System1370 

Name Mnemonic Type Op code 

ADD NORMALIZED (extended) AXR RR Unpriv. 36 
CLEAR I/O CLRlO S Priv. 9D01 
COMPARE AND SWAP cs RS Unpriv. BA 
COMPARE DOUBLE AND SWAP CDS RS Unpriv. BB 
COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS Unpriv. BD 
COMPARE LOGICAL LONG CLCL RR Unpriv. OF 
HALT DEVICE H DV S Priv. 9E01 
INSERT CHARACTERS UNDER MASK ICM RS Unpriv. BF 
INSERT PSW KEY IPK S Priv. B20B 
LOAD CONTROL LCTL RS Priv. B7 
LOAD REAL ADDRESS LRA RX Priv. B1 
LOAD ROUNDED (extended to long) LRDR RR Unpriv. 25 
LOAD ROUNDED (long to short) LRER RR Unpriv. 35 
MONITOR CALL MC SI Unpriv. AF 
MOVE LONG MVCL RR Unpriv. OE 
MULTIPLY (extended) MXR RR Unpriv. 26 
MULTIPLY (I ong to extended) MXDR RR Unpriv. 27 
MULTIPLY (long to extended) MXD RX Unpriv. 67 
PURGE TLB PTLB S Priv. B20D 
RESET REFERENCE BIT RRB S Priv. 821 3 
SET CLOCK SCK S Priv. B204 
SET CLOCK COMPARATOR SCKC S Priv. B206 
SET CPU TIMER SPT S Priv. 8208 
SET PREFIX SPX S Priv. 8210 
SET PSW KEY FROM ADDRESS SPKA S Priv. B20A 
SHIFT AND ROUND DECIMAL SRP ss Unpriv. FO 
SIGNAL PROCESSOR SlGP RS Priv. AE 
START I10 FAST RELEASE SlOF S Priv. 9c01 
STORE CHANNEL ID STIDC S Priv. 5203 
STORE CHARACTERS UNDER MASK STCM RS Unpriv. BE 
STORE CLOCK STCK S Unpriv. 8205 
STORE CLOCK COMPARATOR STCKC S Priv. B207 
STORE CONTROL STCTL RS Priv. B6 
STORE CPU ADDRESS STAP S Priv. B212 
STORE CPU ID STlDP S Priv. B202 
STORE CPU TIMER STPT S Priv. 8209 
STORE PREFIX STPX S Priv. 8211 
STORE THEN AND SYSTEM MASK STNSM SI Priv. AC 
STORE THEN OR SYSTEM MASK STOSM SI Priv. AD 
SUBTRACT NORMALIZED (extended) SXR RR Unpriv. 37 

results. This approach applied to the extensions in machine-check that is, letting a program observe a change or extension to 
interruptions, as well as to a number of minor improvements. Systemt360 operation only when it uses an operation code or 

specifies a value for a bit i n  the program-status word or in an 
Checking. Allowing new functions to be invoked only by a address that in Systemi36O is checked for validity and results in a 
program that would have been considered invalid in SystemiSGO, program exception. This device was used for the large majority of 



834 Part 4 1 Family Range, Compatibility, and Evolution 

extensions, including the byte-oriented-operand feature and 
virtually all new instructions. 

This approach was used also to ensure that all subsequently 
introduced extensions, such as dynamic address translation and 
program-event recording, are compatible with the System/370 
architecture as initially announced. An exception was that the 
unused positions in the 16 control registers introduced at the 
original Systemi370 announcement were not checked for zeros 
but instead were reserved for future extensions by an explicit 
warning in the Principles of Operation. This safeguard was chosen 
because only privileged programs can load and store control 
registers, because checking scattered bit positions in the 16 
registers is expensive and time-consuming, and because even 
greater cost would have been required for a predictable ending of 
an invalid loading operation. 

Mode Control. Defining mode-control and mask bits in control 
registers such that the reset state specifies an operation compati- 
ble with System/36O. The external, channel, and machine-check 
masks, as well as a number of other controls, were defined this 
way. 

Manual Switches. Introducing a manual switch for setting up a 
mode where the machine stops on encountering a deviation from 
Systemi36O operation. This approach was taken to handle CPU 
and channel diagnostic logouts. In Systemi360, the logout area 
starts with location 128 and, while no limit is set on its size, its 
extent is smaller than that on a comparable Systemi37O model. 
Since such a logout on a SystemM70 machine may overlay a 
program or data which assumes Systemi360 logout, stopping 
avoids continuation with invalid information. It was assumed that 
the stop-on-logout mode would be selected only for the rare 
situations when the machine is operated without the correct 
error-recovery program. 

Incompatibilities 

The extensions introduced for System1370 do not meet the 
compatibility objectives in the following five cases. In each case a 
program may exist that meets the Systemi360 validity require- 
ments but does not obtain the same results on Systemi370. These 
incompatibilities, however, are confined to programs that are 
either executed in the supervisor mode or are components of an 
operating system, and they were deemed justified, considering 
both the alternative solutions and the likelihood and difficulty of 
operational problems. The five incompatibilities are reviewed 
here in some detail to empahsize the kind of careful attention that 
compatibility requires. 

Use of USASCII-8 Bit for Control of EC Model. Systemi360 
anticipated the adoption of a proposal for,a “Decimal ASCII” in 
punched cards and of a technique for expanding the seven-bit 

Section 5 1 The Systemi360 and Systemj370 Family 

standard to eight bits. This data representation is referred to as 
USASCII-8 in the System/360 manuals. Both the card code and 
the particular expansion technique have since been rejected as a 
national standard. 

Systemi360 provides for USASCII-8 by a mode under control of 
PSW bit 12. When bit 12 of the Systemi360 PSW is one, codes 
preferred for USASCII-8 are generated for decimal results. When 
PSW bit 12 is zero, the codes preferred for EBCDIC are 
generated. 

In Systemi370, the USASCII-8 mode and the associated 
meaning of PSW bit 12 are removed, and all instructions whose 
execution in Systemi360 depends on the setting of PSW bit 12 are 
executed to yield the EBCDIC codes. PSW bit 12 is used instead 
to control the format of the PSW and of the information stored on 
an interruption. 

This incompatibility &ects only those Systemi360 programs 
that specify the USASCII-8 mode. Since the anticipated standard 
was never adopted, it is highly unlikely that any production 
programs ever used it. In fact, we are not aware of any instance of 
its use. 

The alternative for System/370 was to assign a control-register 
bit for controlling the PSW format. Such a definition would not 
have permitted changing at the same time both the mode and the 
PSW contents which the mode controls, and it would have 
precluded program control of the PSW format on initial program 
loading. 

Clearing Storage on Power Off. In Systemi360, main storage 
originally was implemented with magnetic cores, and the archi- 
tecture specifies that the storage preserve its contents when the 
power is turned off and on, provided that the CPU is in the 
stopped state. In Systemi370, with solid-logic technology, the 
power-on sequence normally clears storage to zeros. Incompati- 
bility exists to the extent that a program that depends on 
information stored before power was turned off (in order to dump 
storage contents, for example) will not operate on Systemi370. 

This change was mandated by the change from core to 
solid-logic technology, and it had minor impact on compatibility. 

A “power warning” interruption is available as a feature on 
some models of Systemi370 which, in conjunction with equipment 
that monitors line voltage, signals when loss of power is immi- 
nent. The timing of the signal should be such that the operating 
system can transfer the contents of main-storage (or at least critical 
sections) to a permanent medium before the system stops 
operating. This usually requires some type of stored energy 
supply. 

Operation Code for HALT DEVICE. The first eight bits of the 
operation code assigned to the new System/370 instruction HALT 
DEVICE are the same as those originally assigned to HALT IiO, 
the distinction between the two being specified by bit 15. In 



Chapter 51 I Architecture of the IBM System/370 835 

System/360, bit 15is ignored, and HALT I/O is performed in both 
cases. Incompatibility exists to the extent that a HALT IiO 
instruction of a Systemi360 program is executed on a Systemi370 
model as HALT DEVICE if bit 15happens to be one. 

This choice of the operation code was made to facilitate the 
attachment of the IBM 2880 Block Multiplexer Channel, which 
implements HALT DEVICE, to the Model 85 CPU, the design of 
which did not initially provide for this new instruction. The 
likelihood of a problem is minimal, because: 

1 	Normally bit 15 is zero, since it is set to zero by IBM 
compilers and assemblers. 

2 	 In many cases the function performed by HALT DEVICE 
may be substituted for and may even be preferable to that 
performed by HALT I/O. 

3 	 The occurrence of the HALT IiO instruction is infrequent. 

Command Retry. Most Systemi370 channels provide the 
command-retry facility, whereby the channel, in response to a 
signal from the device, re-executes a channel command. This 
re-execution is usually invoked when the device or control unit 
detects a malfunction. The following is a list of some of the effects 
of command retry: 

1 	An immediate command specifying no chaining may result 
in condition code 0 being set rather than condition code 1. 

2 	 Multiple interruptions may be generated for a single 
channel-command word (CCW) with the program-
controlled interruption flag. 

3 	 Since CCWs may be refetched, programs which dynami- 
cally modify CCWs may be affected. 

4 	 The residual count in the channel-status word reflects only 
the last execution of the command and does not necessarily 
reflect the maximum storage used in previous executions. 

These potential difficulties were not deemed to be serious 
enough to warrant the hardware and software cost of placing 
command retry under mode control. No problem exists with the 
compatibility of I/O devices announced prior to Systemi370, as 
they do not signal for command retry. 

Channel Prefetching. In Systemi360, on an output operation 
the channel may prefetch and buffer as many as 16 bytes; 
similarly, with data chaining specified, the channel may fetch the 
new CCW when up to 16 bytes remain to be transferred under 
control of the current CCW. In Systemi370, the restriction of 16 
bytes is removed. 

This incompatibility may affect programs that change data or 
command words during the execution of the operation. The 
change was needed for performance reasons and, as with com- 
mand retry, was not deemed to warrant a mode control. 

Extendability and Generality 

The compatible evolution of the System/360 architecture into the 
Systemi370 architecture was made possible largely by judicious 
reservation in System/360 of unassigned formats and operation 
codes. The System1370 architecture maintains and extends the 
principle of frugal and controlled allocation of architecture 
resources, so that System1370 can be extended in the future to 
meet new requirements. The following are some examples where 
provision is made for h ture  extension: 

I 	 blain-storage-address fields in the new PSW format, 
control registers, and the permanently allocated storage 
locations were assigned 32 bit positions, should they be 
needed for address expansion. 

2 	 The new EC-mode PSW format was defined to provide 
space for additional control bits. 

3 	 The control registers provide a general method of handling 
control information that is not contained in the PSW, and 
provide space for new facilities and for an expansion of the 
present facilities. 

4 	 The time-of-day clock format contains 12 unassigned 
low-order bit positions, which could be used for higher 
resolution. 

5 	 A new instruction format was introduced for instructions 
that need a single operand address. The unuse'd eight-bit 
field in this format is made a part of the operation code, 
thus expanding the number of available operation codes by 
255. 

Architecture Control Procedure 

Beginning with the development of Systemi360, and continuing to 
the present day, IBM has gradually adopted a process for the 
specification and control of architecture. This process has been 
largely successful in maintaining compatibility among many and 
varied machines developed in several laboratories around the 
world. The following are some important attributes of this 
process. 

Specification 

There is but one specification of the architecture. It tells IBM 
machine designers the functions the machine must provide, and it 
describes to IBM programmers how the machine operates. The 
same specification, called the Principles of Operation, is made 
available outside IBM and is the only authoritative specification 
that describes the architecture. 

The architecture specification covers all functions of the 
machine that are observable by a program. It either specifies the 



836 Part 4 I Family Range, Compatibility, and Evolution 

action the machine performs or states that the action is unpredict- 
able. The latter applies to the detailed functions for which neither 
frequency of occurrence nor usefulness of results warrants 
identical action in all models or at all times. Normally the 
specification of unpredictable operation is a considered architec- 
tural choice, since the architecture specification must anticipate 
future implementations and the potential cost of providing specific 
results of marginal value. Occasionally, it is introduced into the 
definition because the specific detailed function is overlooked in 
the initial stages of the architecture resoltuion process or because 
the designs of the machines initially implementing the architec- 
ture mandate different operations. 

A11 machine implementations are strictly monitored for compli- 
ance with the architecture specification. Affirmation of compliance 
with the architecture is a part of the internal IBM procedure for 
product-development control, and actual compliance is verified 
by formal and informal compliance audits and reviews of machine 
specifications. Deviations from the architecture must be correct- 
ed. In the rare cases when the cost to change the design or to 
retrofit installed machines is excessive in relation to the practical 
value of the compliance on that machine, deviations are permit- 
ted. Any deviation that is likely to affect the execution of a 
program is published in the IBM System Library manual for the 
machine. 

Most machines have a few deviations, covering such aspects as 
the precise meaning of the test light on the operator-control 
panel, the indication of access exceptions for an unused part of an 
instruction, or the precise instant during execution of the WRITE 
DIRECT instruction when serialization is performed. A deviation 
by one implementation does not necessarily lead to a specification 
of unpredictability, as compliance with the definition may be 
essential for other applications, and the specific definition better 
conveys the intended structure, making the architecture simpler 
and easier to understand. 

Development Procedure 

The architecture definition starts out with a proposal for extending 
or improving the function of the machine in a specific area. 
Extensions to the architecture normally are adopted as part of the 
development of a new machine or set of machines, and the process 
includes a number of steps: 

1 	Preliminary Review: Depending on the scope of the 
extension, the cost and performance implications of new 
ideas may be evaluated in various studies and reviews 
among the architects and the machine and software design- 
ers. A number of iterations of such reviews and architecture 
definitions may take place. 

2 	 Resolution Meetings: After an architecture definition has 
been produced and reviewed by all interested areas, the 
adoption of the definition is placed as an item on the agenda 

Section 5 1 The Systemi360 and System/370 Family 

of an architecture resolution meeting. These are periodic 
meetings where all interested and affected groups are 
represented by people with authority to commit their 
projects. Depending pn the need, the meetings may take 
place monthly, weekly, or even more frequently. A 
proposal may be adopted or rejected at the resolution 
meeting, or concerns may be identified that require further 
study. A proposal that is adopted at an architecture 
resolution meeting becomes part of the architecture specifi- 
cation. 

3 	 Resolution Conferences: In order to set the direction for a 
new product Iine, stop debate on some issue, or resolve all 
loose ends, a resolution conference is called. Such confer- 
ences may take place a few times during the development 
of a product. They differ from regular resolution meetings 
in that participation is wider, higher level of management is 
involved, and more use is made of executive decision 
making. 

4 	 Interpretation: The architecture specification occasionally 
leaves out some aspect of the operation, or the wording 
may not be quite clear. Implementers are instructed to 
question the architecture on any doubtful point rather than 
make assumptions. Most questions are raised and answered 
by telephone, and the architect then periodically docu- 
ments the questions and the answers for review by all 
implementers. These architecture interpretations supple- 
ment the original definition and are eventually integrated 
into the definition. Some questions demand further study 
or require action at one of the resolution meetings. 
Although the need for interpretation of the architecture 
normally diminishes after the initial implementation of the 
definition, some valid questions are raised and changes in 
the wording made years later. Continual maintenance and 
updating of the architecture specification are essential parts 
of the architecture control procedure. 

Responsibility 

Although the adoption of the architecture specification and 
compliance with it are based as much as possible on cost and 
performance analyses and on consensus among machine and soft-
ware implementers, final authority for the architecture defini- 
tion rests with the architecture group. Architecture is recognized 
within IBM as an autonomous function which analyzes the 
requirements of users and implementers and, in response, 
produces the specification of how the machine must appear to the 
program. It is an ongoing operation, as the definition must be 
maintained and extended across product cycles. 

One person, the chief architect, is responsible for the contents 
of the Principles of Operation. He must obtain the approval of the 
managers of each implementation before any change can officially 
be made, and he calls and chairs architecture resolution meetings. 
The architect’s decisions at these meetings are binding unless and 
until successfully appealed to high authority. 



Chapter 51 1 Architecture of the IBM System/370 837 

These procedures, especially the parts that result in less 
authority or autonomy for implementing engineers, were not 
accepted lightly or without considerable debate and management 
leadership. Most of this methodology was developed by Fred 
Brooks during the early days of the Systemi360 development, and 
it has survived to the present. It succeeds in large part because of 
the high competence and personal professional dedication of the 
architecture group. They win most of the arguments by being 
right, not just because they have nominal authority. The process 
also works because the architecture group has considerable 
experience and sympathy with the problems of practicing engi- 
neers and programmers. 

Architecture Extensions 

This section describes the main features of the Systemi370 
architecture extensions and provides some discussion of the 
motivation for them. It includes a brief summary of the architec- 
ture, the purpose of the function, the reasons for the architectural 
decisions, and some of the main alternatives considered. 

Virtual Storage 

Motivation 

The single item that most distinguishes the architecture of 
System/370 from its predecessor, System/360, is the availability of 
a dynamic-address-translation facility, which allows programming 
systems to efficiently implement a group of functions which are 
collectively known as virtual storage. This sytem incorporates 
paging from a backing store as introduced in Atlas [Kilburn et al., 
19621, and a second level of indirection, segmentation, as 
suggested by Dennis [1965] and as further detailed by Arden et al. 
[19661. 

The Systemi370 version of this facility was largely patterned 
after the Systemi360 Model 67[Gibson, 19661. Our experience 
with that machine and its operating system, TSS, had verified the 
value of many of the concepts and had given us actual usage data 
with which to judge design decisions for System/370. 

The motivation for virtual storage and some of its value can be 
understood by considering several somewhat overlapping topics: 

1 Roll-in and roll-out 

2 Fragmentation of real main storage 

3 Application-program development 

4 Dynamic size adjustment 
5 Compatibility of large and small storage sizes 

6 Protection and sharing 

7 Virtual-data access 

8 Virtual-machine simulation 

The following sections discuss each of these items. 

Roll-In and Roll-Out. Prior to the introduction of virtual 
storage, each application program was assigned real main-storage 
locations at the time it was initiated. Thereafter, the program, as 
well as its data, might be swapped out of main storage while 
waiting for terminal or 110 service. When the program was 
subsequently returned to main storage, it was constrained to 
occupy the same real locations as it did previously, since 
relocation to a different set of locations was extremely inconve- 
nient.' 

This restriction of programs and data to the initially assigned 
real-storage locations leads to conflicts, such as when a program 
that is ready for execution is barred from entering main storage by 
another program residing at the assigned locations, even though 
contiguous unused space of sufficient size is available at some 
other address, and even though the CPU may not be fully 
occupied. The overall result is that system throughput is reduced 
and response time increased. 

With virtual storage, any part of main storage is available for any 
application, regardless of the locations to which it had initially 
been assigned. By preventing conflicts for real-storage locations, 
the performance of the whole system may well be significantly 
improved.' 

Fragmentation of Real Main Storage. If the various application 
programs are of differing size, the storage-allocation problem is 
even more difficult. Not only may a program be blocked from its 
initially assigned locations, but even in batch operations, which 
run applications to completion after they are initially loaded, only 
part of the main storage can be utilized at any one time. As jobs 
are completed at various times, the available storage can be 

'It has been argued that this is not necessarily so. The basic System/36O 
architecture makes all problem-program main-storage references via a 
register. With appropriate programming conventions, an operating sys- 
tem might be built to allow the relocation of programs and data on 
arbitrary boundaries without dynamic-address-translation hardware. In 
practice, however, such a design would probably become too restrictive in 
the types of programs allowed, or too complex and too slow to be 
acceptable for a broad class of applications. It would be particularly 
inconvenient for programs that store base-register values for later use or 
for programs which do arithmetic on base-register values, as is often 
required for the use of SS-format instructions. Finally, because it would 
introduce new programming conventions, it is very unlikely that such 
relocation could be applied to existing programs. 
2This benefit could also be obtained by a system with a simpler relocation 
mechanism than the one described here. 



838 Part 4 1 Family Range, Compatibility, and Evolution 

assigned to new jobs only to the extent to which the waiting jobs 
can utilize the available contiguous spaces. As a result, relatively 
long-lived “holes” are formed in main storage which are individu- 
ally too small for any job, but which collectively are larger than 
needed for some or all waiting jobs. 

Virtual storage allows the efficient collection of fragments of 
main storage into one contiguous address space without moving or 
disturbing the programs in process. The result is a more efficient 
use of main storage and more throughput. 

Application-Program Development. Prior to virtual storage, the 
size of the installed main storage constrained application-program 
development. Often the effective upper limit of an application 
program had to be much less than the installed storage size in 
order to provide for a resident supervisor and IiO package, and 
because partitions for other applications were needed to ensure a 
reasonable level of multiprogramming. 

In many cases, a considerable programming effort was expend- 
ed in planning overlays or phases in processing. This was true 
even when the application program was such that most of the code 
was seldom executed, it being present only for unusual or error 
situations. Furthermore, sometimes modifications to a program 
which once fitted its allocated partition would cause it to just 
exceed the available space. Fitting this program into its previous 
space was likely to require substantial rework for little return. 

Virtual storage allows programs to run with an allocation of real 
main storage which is independent of the size of the application 
code. It allows many applications to be coded with little regard for 
absolute space limits. Space in real main storage is not assigned to 
seldomly executed parts of the program, and programs can 
continue to be properly executed even if they grow. 

It is, of course, misleading to suggest that developers of large or 
frequently executed applications should remain ignorant of their 
main-storage requirements or addressing patterns. Poor design 
can require extensive paging and thus result in poor system 
performance. 

Dynamic Size Adjustment. In many cases it has been observed 
that the dynamic allocation of storage to a program can be more 
effective than the best static allocation by a programmer. Thus, 
the effective size of an application may well be smaller under 
dynamic allocation than with preplanned overlays. This allows 
even more efficient use of main storage and may further increase 
system throughput. The functions of dynamic location assignment 
and dynamic size control interact with each other in a favorable 
way. The “working size” of the application changes with time, and 
the allocation capability allows more applications to be resident in 
a fixed memory space. Without dynamic size adjustment, contigu- 
ous storage was often reserved to meet the largest storage 
requirement for the application, part of the storage being unused 
for most of the execution time. 

Section 5 1 The Systemi360 and Systemi370 Family 

Compatibility of Large and Small Storage Sizes. The machine 
compatibility objectives of System1360 stated that valid programs 
on one model would also be valid programs on another model, 
provided (in part) that the second model was configured with at 
least as much main storage as the program required. On some 
models it was not possible to install a large enough main storage. 

The advent of virtual storage makes this condition obsolete. 
Since the available virtual storage of all models is now equal, 
programs written to run under a virtual-storage operating system 
may be freely transferred to another model, provided that it 
meets the real storage-size requirements of the operating system. 
Performance, of course, is significantly degraded on a model that 
has much less main storage. The ability to run a program on any 
model, even if at a degraded performance, may prove particularly 
useful in emergency situations where critical processing must be 
done when the normal equipment is unavailable. 

In addition, virtual storage allows, without reprogramming, an 
immediate increase in system performance when real main 
storage is enlarged. This may be important to installations with 
increasing workload where it is not desired to recode or restruc- 
ture the application set. 

Although usually the contrary is assumed, it is possible to 
consider systems in which the real main storage is larger than the 
virtual storage assigned to any one program. Several routines, 
multiprogrammed, then would reside to utilize the available main 
storage. Such a system would have the advantage that address 
constants in problem programs could be smaller. Only the 
supervisory program would need to have enough total addressa- 
bility to access the entire main storage. 

Protection and Segmentation. By appropriately managing the 
contents of the address-translation tables, an operating system 
may allow one problem program access to only a part of the total 
data in main storage, or, alternatively, may allow two or more 
programs to share the same data. This ability to share some but 
not the entire contents of main storage and to prevent all access to 
other contents is very useful in maintaining the integrity and 
security characteristics of an installation. 

This method of protection is more flexible and selective than 
the Systemi360 key-controlled protection because even routines 
with key 0 are restrained from accidental access to data that is not 
assigned to them by translation-table entries. (It may be possible 
for these routines to modify the tables.) Furthermore, whereas the 
keys permit up to 15 different concurrently resident programs to 
be isolated from each other, translation tables permit individual 
access control for any number of programs. Operating systems 
may well use a combination of storage keys and translation-table 
contents for maximum flexibility and control. 

Virtual Data Access. Normally I/O operations are used to 
transfer data between the data sets on an external storage device 



and the storage that can be directly addressed by the program. 
Virtual storage can be used to avoid these explicit I/O operations. 
This is accomplished by combining the mechanism used to 
manage virtual storage with that used for managing external files. 

Programs which implement virtual storage include tables, 
related to the address-translation tables, that identify, for pages 
not currently in main storage, the location of the page on the 
external storage medium, such as a disk. Analogous tables 
normally exist for external data files, which map data-set names to 
locations in external storage. With appropriate design of these 
tables and data formats, it is possible to “move” data between the 
virtual-storage area and the data-set area by modifying table 
entries, thus taking advantage of the paging mechanism to 
perform the I/O operation. 

Such data access improves efficiency, as actual data movement 
into main storage occurs only when the application program refers 
to the data; on output, movement may be avoided when the data is 
already in the external device. 

Viewed from another perspective, this approach provides a way 
of extending the size of the virtual storage to encompass all online 
data, with the restriction that any one program can have only part 
of the online data in its own virtual storage at any one time. 

This technique was advantageously used in the TSS operating 
system on System/360 Model 67, where it was known as VIO. 

Virtual-Machine Simulation. It has been found useful in many 
installations to use an operating system to simulate the existence 
of several machines on a single physical set ofhardware. The IBM 
VMI370 operating system is one example. This technique allows 
an installation to multiprogram several different operating sys- 
tems (or different versions of the same operating system) on a 
single physical machine. The dynamic-address-translation hard- 
ware allows such a simulator to be efficient enough to be used, in 
many cases, in production mode. 

Dynamic-Address-Translation Mechanism 

Address translation is achieved by treating the addresses supplied 
by and available to the CPU program as designating locations in 
virtual storage. The dynamic-address-translation mechanism 
translates these addresses to real addresses, which designate 
locations in real main storage. 

Translation Procedure 

Translation is performed by the use of two stages of tables in main 
storage. The high-order bits of the virtual address are used to 
select an entry from the segment table. This entry contains the 
origin of a page table, which is indexed by the mid-order bits of 

‘The actual reference to main storage may occur only after a further 
translation known as “prefixing.” This is described in the section on 
multiprocessing. 

Chapter 51 I Architectureof the IBM Systemi370 839 

the address. The low-order bits of the virtual address are 
concatenated with the real address contained in the page-table 
entry to form the real main-storage address. The origin of the 
segment table is designated by the contents of control register 1. 
The extent of virtual storage accessed through a segment-table 
entry and a page-table entry is referred to as a segment and a page, 
respectively. 

Controls are provided in the PSW to turn dynamic address 
translation on and off and in control register 0 to specify the size of 
segments and pages. The instruction LOAD REAL ADDRESS 
allows a program to explicitly determine the current real address 
corresponding to any virtual address. This is needed in several 
routines that translate channel programs or allocate and manage 
real main storage. 

The two-stage translation procedure was selected for several 
reasons: 

1 	It provides a convenient way for segments to be shared 
among different programs, using differing virtual address- 
es, without requiring multiple page tables and multiple 
table changes when the pages are replaced. 

2 	 It results in less total storage taken by the tables by 
permitting the tables to be abbreviated when the total 
possible virtual storage is only sparsely allocated. 

3 	 It limits the size of the largest table to less than a page, thus 
facilitating the allocation of main storage to the tables. 

4 	It provides a convenient way for a portion of the tables (the 
page tables) not to be resident in main storage at all times. 
The page tables themselves may be paged out, in which 
case the “invalid’ bit in the segment-table entry causes an 
interruption on an attempt to use the page table for 
translation. 

Translation-Lookaside Buffer. If translation tables in main 
storage were actually accessed for each storage reference, the 
number of storage references would be tripled, causing a totally 
unacceptable performance degradation. In order to avoid such 
degradation, all implementations in the System/370 line include a 
hardware facility called the translation-lookaside bu#er (TLB). 
The TLB is a group of fast-access registers that contain the results 
of recent references to translation tables. The access time to 
information in these registers is a small fraction of the main- 
storage access time, and they intercept about 99% of all the 
references to tables in storage. The TLB makes the peiformance 
degradation associated with table references minimal. 

The instruction PURGE TLB causes the TLB to be cleared ofall 
entries. It provides a way of informing the translation mechanism 
that the software has changed the contents of the current 
translation tables in main storage and that the tables must be 
reaccessed rather than relying on their previous contents as 
reflected in the buffers. 



840 Part 4 1 Family Range, Compatibility, and Evolution 

Segment and Page Sizes. The architecture, as well as its 
machine implementations, provides for any combination of two 
different segment sizes (64K bytes and 1M bytes) and two 
different page sizes (2K bytes and 4K bytes).l 

These parameters were provided to accommodate the range of 
expected main-storage sizes and disk characteristics. Small page 
sizes are needed for efficient use of the smaller main-storage sizes, 
while large pages are needed to reduce CPU and I/O time in 
main-storage to disk transfers. Large segment sizes allow conve- 
nient handling of large data and program files, while small 
segment sizes provide for easier storage allocation to translation 
tables and for more segment names. 

Each IBM operating system uses only one combination, the use 
being as follows: 

Segment Page Sqstem 
~ ~~ 

64K 2K DOSIVS, OS/VSl 
64K 4K OSlVS2, VM/370 
1M 2K 
1M 4K TSS 

Reference and Change Recording 

When a reference is made to a page not currently in main storage, 
the operating system must decide which currently resident page is 
least likely to be used next and hence should be replaced. For the 
page that is to be replaced, it must decide if the copy in main 
storage has been modified and hence needs to be saved or if it can 
be overlaid because the copy in external storage is still current. 
Two bits of information about each 2K-byte real-storage block, as 
well as the instruction RESET REFERENCE BIT, are provided 
to assist these decision processes. 

One bit, called the reference bit, is set by the machine to one 
whenever the block is referred to by the CPU or the channel. It is 
intended to provide the basis for selecting the page to be 
replaced. The other bit, called the change bit, is set to one 
whenever storing is performed into the block. This bit may be 
used by the software to determine if the copy of the page 
occupying the block must be transferred to external storage prior 
to reallocation of the block. The page-replacement algorithm may 
also select unchanged pages in preference to changed pages in 
order to avoid this transfer. 

Translation of Channel Programs 

After considerable analysis, it was decided not to include the 
address-translation capability in the Systemi370 channels but 
rather to provide a mechanism to assist software in performing the 

'In this chapter K stands for 2'O = 1024, and M stands for ern= 1,048,576. 

Section 5 The System/36O and Systemi370 Family ~ 

function. Several considerations were important in reaching this 
conclusion: 

The allowable channel data rates were limited in many 
cases by the main-storage accesses necessary during data 
chaining or command chaining. On some implementations, 
the extra storage accesses implied by a translation capabili- 
ty would have reduced the maximum data rates to unac- 
ceptably low values. 

Since the channels operate asynchronously with the CPU, 
and often on behalf of different tasks, a full channel 
relocation capability would have implied different transla- 
tion tables for the CPU and for each of the many subchan- 
nels. The resulting constraints on software paging and 
storage management were felt to be unnecessarily burden- 
some. 

The extra channel hardware cost, especially to retrofit some 
of the existing implementations, would have been signifi- 
cant. 

The performance penalty, of scanning each newly created 
channel program at START-IIO time and replacing the 
virtual addresses with real addresses, was reduced some- 
what by the need to scan the same programs anyway to 
cause the allocated page frames to be fixed (removed from 
the set eligible for paging) even if the channel were to 
contain hardware to perform the virtual-to-real translation. 

The design of new access methods, such as VSAM and 
\TAM, was expected to eliminate the need for software to 
translate I f0  data addresses in channel programs and hence 
cause this issue to disappear in the future. 

The channel-indirect-data-addressingfacility is provided to 
assist the operating system in the translation of channel programs. 
It permits a single channel-command word (CCW) to control 
transfer of data that spans several potentially noncontiguous pages 
in main storage. When a CCW specifies indirect data addressing, 
the data-address field of the CCW is not used directly to address 
data but rather contains the address of a list of indirect-data- 
address words. A new address word is obtained by the channel 
whenever a 2K-byte boundary is crossed in main storage. The 
address words, containing a 32-bit address field, provide also for 
the eventual extension of the storage address in conformity with 
the general Systemi370 objectives. 

Program Control 

PSW and Control Registers 

In System/360, all CPU state information (other than the contents 
of general and floating-point registers) is arranged in the 64-bit 



Chapter 51 I Architecture of the IBM Systeml370 841 

program-status word (PSW), which provides a convenient way of 
introducing a new CPU state by an instruction or an interruption, 
as well as a way of saving the old state on an interruption. The new 
facilities introduced by System1370 expanded the amount of 
information relevant to the CPU state, as certain additional 
control information had to be specified that spans the execution of 
a sequence of instructions; and, on encountering exceptions, 
additional status information had to be provided to the program. 
Since no unused bit positions were available in the PSW, the 
requirements for the additional control and status information 
were met by modifying the PSW format, by introducing a set of 
sixteen 32-bit control registers, and by assigning locations in main 
storage for control and status purposes. 

Additional space in the PSW is obtained by removing the 16-bit 
interruption code and the two-bit instruction-length code from 
the System/360 format and by replacing the six channel masks 
with a single I/O mask. Two new controls are placed in the 
PSW-one bit to turn program-event recording on and off and 
one bit to turn dynamic address translation on and off. 

All additional control information is placed in the control 
registers. The control registers are, in effect, an extension to the 
PSW, except that their contents are not changed by the machine 
on an interruption. Two instructions, LOAD CONTROL and 
STORE CONTROL, are provided for loading and inspecting their 
contents. The control registers are addressed similarly to the 16 
general registers, and multiple contiguous registers may be 
handled by one instruction. 

All information that describes the cause of an interruption is 
placed in specifically assigned main-storage locations. The infor- 
mation is arranged by interruption classes, with additional fields 
left unassigned for future expansion. 

For IiO, a four-byte location is also assigned in main storage 
that contains an address that specifies the storage area for diag- 
nostic channel logout. Additionally, a four-byte location is as- 
signed in main storage where channel identification is placed 
on execution of the instruction STORE CHANNEL ID. These 
IiO related fields are in main storage rather than a control regis- 
ter since they must be accessed or modified by the channel. The 
channel is, in effect, a separate processor sharing main stor- 
age but having otherwise a limited ability to communicate with 
the CPU. 

PSW bit 12 specifies the format of the PSW and the execution of 
interruptions. When PSW bit 12 is 0, the PSW has the System1 
360 format, and the CPU is said to operate in the basic-control 
(BC) mode; when bit 12 is one, the new PSW format and the 
extended-control (EC) mode are specified. It should be noted that 
the BC-EC mode distinction pertains only to information appear- 
ing in the PSW. Control registers, as well as the facilities 
associated with control registers (monitoring, machine-check 
controls, extended external masking, etc.), are operative in both 

modes, subject to the availability of PSW control bits. Pro-
gram-event recording is defined to be off in the BC mode, 
as is implicitly invoked dynamic address translation, but the in- 
struction LOAD REAL ADDRESS with the associated explicit 
use of the dynamic-address-translation facility is valid in the BC 
mode. 

The following observations guided the architectural decisions: 

On an interruption, as well as on a programmed transfer of 
control (LOAD PSW), the machine must indivisibly replace 
a certain amount of control information, including the 
instruction address, protection key, problem-supervisor 
mode specification, and masks to disable hrther interrup- 
tions. For performance reasons, changing of other control 
information should be optional and can be explicitly 
performed by the supervisory program. This applies partic- 
ularly to control information that pertains to system 
functions and that is changed infrequently (page size, 
controls for recovery from machine errors, etc.). 

Certain information in the BC-mode PSW is meaningful 
only for the determination of the cause of the interruption 
and is not used to control machine operation. Priority for 
PSW space should be given to control information. The 
interruption code and the instruction-length code, which 
for most interruptions is only a fraction of the total status 
information provided, can as well be placed with the rest of 
the status information in main storage. 

One alternative for handling the additional control information 
was to expand the size of the PSW. Such an approach leads to the 
temptation to define a program status block for the control of the 
machine containing all information for a dispatchable program 
unit, including the values of general and floating-point registers, 
timer values for accounting purposes, etc. This in turn requires 
some assumptions for operating-system procedures, such as 
conventions for passing parameters in subroutine linkages. Thus, 
it leads to further extensions of the control block with information 
required by the operating system. 

Such an approach would have increased the time for simple task 
switches, already too slow. Additionally, a number of considera- 
tions argued against incorporating operating-system structures in 
the machine architecture. A number of operating systems, with 
differing requirements, were anticipated for the System/370 line 
of machines, and no one set of formats and algorithms could satisfy 
them all. More importantly, the architectural extensions intro- 
duced a number of new concepts and facilities that had not yet 
been implemented in a total system design. As a result, the 
general design principle was adopted to include in the machine 
architecture only the essential primitives and elemental tools for 
performing the needed function. 



842 Part 4 1 Family Range, Compatibility, and Evolution 

System-Mask Handling 

Normally, on Systemi36O machines, the OSi360 operating system 
operated either entirely enabled or entirely disabled for 110 and 
external interruptions; accordingly, enabling and disabling was 
accomplished by setting PSW bits 0-7 to a byte of ones or zeros. 
With the change in the PSW format and the introduction of 
dynamic address translation, program-event recording, and other 
potential extensions having control bits in PSW bit positions 0-7, 
setting all bits to the same value was no longer appropriate, and 
the operating system had to be modified to treat the system mask 
accordingly. This required the identification of all places in the 
program where the mask is changed, including interruptions and 
execution of LOL4D PSW or SET SYSTEM MASK (SSM). 

Because of the dimculty of finding all occurrences of SSM and 
because in the EC-mode PSW bits 0-7 normally are not replaced 
in their entirety, a mode was introduced where the execution of 
SSM is suppressed and instead causes a program interruption. 
The interruption signals where the original program needs to be 
modified. 

The suppression of SSM is useful also for the conversion of the 
operating system from uniprocessor to multiprocessor operation. 
In a single-CPU system, the disabling of the CPU is a sufficient 
means for avoiding use of a serially reusable resource associated 
with IiO or external interruptions. When two or more CPUs share 
those routines, such disabling is not adequate, as the use of the 
resource by the other CPU also must be prohibited. Access to 
the serially reusable resource must be controlled by other means, 
and the interruption on encountering SSM aids the conver-
sion by signaling where the semaphore instructions should be 
placed. 

The tw7o new instructions STORE THEN AND SYSTEM 
MASK and STORE THEN OR SYSTEM MASK provide the 
means for turning any bit in PSW bit positions 0-7 off or on. 
Furthermore, these instructions save the original value of the field 
in main storage so that a service routine making these changes 
could, on exit, restore the field to its original value. In Systemi360 
the current value of the masks can not be determined without 
causing an interruption. 

PSW-Key Handling 

In the original design, most parts of the OSi360 operating system 
operated with a protection key of zero, thus having access to all 
parts of main storage. In the design of the OSNS:! operating 
system, one step taken to catch programming errors was to use a 
nonzero protection key for the various components of the control 
program, thus protecting one component from inadvertent stor- 
ing by another component. 

Two instructions are provided for inspecting and setting the 
protection key in the PSW: INSERT PSW KEY (IPK) and SET 

Section 5 I The Systemi360 and Systemi370 Family 

PSW KEY FROM ADDRESS (SPKA). The first one places the 
protection key into a general register, and the latter replaces the 
key in the PSW with the four low-order bits of the operand 
address. 

These instructions permit the key in the PSW to be set and 
subsequently restored when a component is entered with an 
unknown key and subsequently left, or when a routine must 
modify data having a different storage key. When a supervisor 
routine which normally uses a key of zero is called to perform a 
service that involves storing in a user region, SPKA is also useful 
for verifying that the requestor is authorized to perform the 
storing. In this case, the supervisor can use SPKA to set up the 
user's key for the duration of the operation. 

Interruptions 

Systemi370 expands the five Systemi360 interruption classes 
(machine check, supervisor call, program, external, and 110) by 
introducing a new class-the restart interruption. This interrup- 
tion occurs in response to the externally initiated restart signal 
and is intended for the manual debugging of the machine and for 
intervention by another CPU. In view of the intended purpose, no 
mask bit is provided for disallowing the interruption. 

The control of interruptions is made more flexible by providing 
mask bits in control registers for each type of external condition, 
for each IiO channel, and for the different types of machine-check 
conditions. For any specific source, an interruption can occur only 
when both the corresponding mask in the control register and the 
class mask in the PSW allow it. 

By means of the masks in the control registers, the supervisory 
program can disallow interruptions for some sources within a 
class, such as for machine-check recovery reports. They also allow 
the enabling for conditions of higher priority after an interruption 
for a lower-priority condition within the class has occurred, but 
before other interruptions from the lower-priority condition can 
be permitted. Thus, the program can simulate an interruption 
mechanism with a priority hierarchy. 

Data-Manipulation Instructions 

\\'ell over a hundred instructions were considered for inclusion 
in Systemi370 architecture to improve the cost effectiveness of 
the machine for the apphcations and data structures that had 
evolved with the use of Systemi360 or that were anticipated for 
Sys temi370. 

Out of these, seven general instructions, one decimal instruc- 
tion, and seven floating-point instructions were adopted for 
Systemi370. The floating-point instructions provide for arithmetic 
on the new extended-precision format, as well as for rounding 



Chapter 51 I Architecture of the IBM Systemi370 843 

from extended to long precision and from long to short precisi0n.l 
The extended-precision format has a fraction of 28 hexadecimal 
digits, and the considerations associated with the design of the 
architecture are described by Padegs [19681. 

The following is a summary of the operation and design 
considerations for the general and decimal instructions. 

Justification Methodology 

The value of a new instruction can be expressed in terms of an 
increase in CPU performance and a reduction in the program size, 
the performance gain being a function of the gain per occurrence 
of the instruction and its frequency of use. On the other hand, 
each instruction has a machine implementation cost that can be 
expressed in terms of additional circuits and control storage 
locations. A serious attempt was made to express the cost 
effectiveness for the more promising proposals in terms of specific 
value and cost numbers. However, the decision was ultimately 
based largely on judgment because of the following difficulties: 

1 	The performance of a new instruction depends on the 
extent to which it is integrated in the machine. A specific 
estimate for an addition to the architecture can be made 
only when the basic design of the machine is already laid 
out, and such an estimate normally is made assuming the 
least perturbation of the design, yielding lower perform- 
ance. 

2 	 An instruction is used depending on its performance, and 
its performance in a new machine design is a function of its 
frequency of use. A new instruction without a proven value 
is likely to be implemented at minimum cost and perform- 
ance. 

3 	 When the function performed by a new instruction is a 
concatenation of functions performed by a sequence of 
more primitive instructions, the cost and performance 
considerations differ in large and small machines: 

The elimination of the instruction fetching time may 
yield some performance gain in a medium-speed ma- 
chine but is likely to be insignificant in a very small serial 
machine or in a large machine that overlaps phases of 
execution. 

In a large machine, frequent simple instructions may be 
performed in their entirety in hardware as part of the 
instruction decoding phase. If such a simple function is 
made a part of another more complex instruction, either 
the execution of the composite function is made slower 
by implementation in microcode, or additional cost in 
hardware is incurred. 

‘The extended-precision floating-point capability was also available on 
System/360 klodels 83 and 195. 

Some instructions, such as those for conversion between 
fixed- and floating-point formats, are used only in specia- 
lized environments, and an average number for their 
frequency of use is not meaningful. The potential usage of 
other instructions, such as those for setting and testing bits, 
is so pervasive that it is not possible to determine a 
meaningful usage frequency. 

For some instructions, such as those for moving bit strings 
or for operations on list structures, justification cannot be 
based on where the new instructions could be used in 
programs currently written but rather on what new applica- 
tions or program structures the instructions would make 
attractive. 

The final choice of the new instructions was strongly moderated 
by such somewhat subjective attributes as consistency of design, 
generality of function, and simplicity of use. It was made subject 
to the rule that a new instruction can be adopted only if it will 
appear in the object code compiled from a high-level language 
or if it will be used within a programming system in a signifi- 
cant way. 

Movement and Comparison with Long Operands 

The two instructions MOVE LONG (MVCL) and COMPARE 
LOGICAL LONG (CLCL) are enriched versions of the basic byte 
movement and comparison operations, respectively. They pro- 
vide for operand sizes of up to 16,777,215 bytes, true‘ length 
designation, padding, marking the byte of mismatch (for CLCL), 
and test for destructive overlap (for MVCL). 

Many users had asked for “move” and “compare” instructions 
with long operands, and the padding function in MVCL is 
valuable for clearing storage to zeros, blanks, or any other code. 
The specific attributes of these instructions, however, were 
established largely to permit convenient byte-string manipulation 
in programs generated by the PL/I compiler. At the time a 
byte-string operation is compiled, the size and relation of the two 
operands is not known, the specific parameters being bound in 
the program only at execution time. Hence, the object code must 
provide for various special cases of overlap, length mismatch, etc. 
It was estimated that MVCL could eliminate as many as 1,000 
bytes in the PLiI object-code library. 

Because the processing of an operand of 16 million bytes would 
take much longer than the execution time of any other Systemi370 
instruction, execution of MVCL and CLCL was made interrupti- 
ble, thus avoiding the loss of real-time responsiveness due to the 
potentially long operands. If a condition is due to cause an 
interruption, the execution of the instruction is suspended, 
operand addresses and counts in the general registers are adjusted 
by the number of bytes processed, and the instruction address is 
left to point to the MVCL or CLCL instruction. When control is 



844 Part 4 I Family Range, Compatibility, and Evolution 

returned to the interrupted program, execution of the interrupted 
instruction is resumed. To the machine, the initial start and the 
resumption of execution are identical. 

Handling of Bytes in Registers 

The three instructions INSERT CHARACTERS UNDER MASK, 
STORE CHARACTERS UNDER MASK, and COMPARE LOGI- 
CAL CHARACTERS UNDER MASK are provided to increase 
the convenience of manipulating a variable number of bytes 
between general registers and storage. The instructions select 
the bytes in the designated register by means of a four-bit mask, 
with the bits corresponding to the four bytes. The storage oper- 
and contains the bytes in a contiguous field. Among other func- 
tions, the instructions permit loading and testing %-bit address-
es. 

Conditional Swapping 

The two instructions COMPARE AND SWAP (CS) and COM- 
PARE DOUBLE AND SWAP (CDS) are intended for use by 
programs sharing common storage areas in either a multiprogram- 
ming or multiprocessing environment. They may be used to add 
or delete elements in chained lists or to identify the holder or 
requestor associated with a lock for a serially reusable resource. 
They are System1370 primitives which can be used to control 
access to critical regions in a manner similar to Dijkstra’s 
semaphores. 

These two instructions designate a storage operand and two 
register operands. They cause the storage operand to be com- 
pared with the first register operand: if they are equal, the storage 
operand is replaced with the second register operand; if not, the 
first register operand is replaced with the storage operand. The 
result is indicated by the condition code. When an equal 
comparison occurs, no access is permitted to the storage location 
between the fetching of that operand and its replacement. The 
two instructions are the same except that for CS the operand 
comprises one word and for CDS a doubleword. 

The following is an example of a procedure using CS, whereby a 
program can modify the contents ofa storage location even though 
the possibility exists that the program may be interrupted by 
another program that will update the location or that another CPU 
may simultaneously update the location. 

First, the storage operand is loaded into a general register, 
which then contains the first register operand. Next, the updated 
value is made the second register operand. Then CS is executed. 
If condition code 0 is set, the update has been successful. If 
condition code 1 is set, the storage location has been found to 
contain a ddferent value, the update has not been successful, and 
the first register operand has been replaced by the new current 

Section 5 I The Systemi360 and System/370 Family 

value of the storage operand. The program in this case can repeat 
the procedure, bypassing the first step. 

Decimal Shifting 

The SHIFT AND ROUND DECIMAL instruction is provided for 
the convenience of decimal shifting, which is common in commer- 
cial applications and in the simulation of the decimal floating-point 
forinat. To permit “late binding” in the object code generated by a 
compiler, both left and right shift are included in one instruction. 
Rounding is accomplished by adding a specific digit specified in 
the instruction. 

Byte-Oriented Operands 

System1370 removes the original Systemi360 requirement that 
halfword, word, and doubleword operands in storage must be 
aligned on the natural boundary for the size of the operand. 
Instead, it permits the operands of virtually all nonprivileged 
instructions to start on any byte boundary.’ 

This change was made to allow direct processing of all fields 
obtained from external sources without knowledge of whether 
they are properly aligned. The primary motivation was to make it 
easier for users to determine record lengths and to allow 
compilers to provide a consistent alignment algorithm and 
therefore to permit convenient data exchange among programs 
written in different languages. The principal compiler problem 
occurs when sub-parts of data structures are passed as parameters 
to separately compiled procedures. In this situation the receiving 
program cannot assume the starting alignment position, and no 
universal padding convention can be established to shift the field 
to its natural boundary. In addition, the change may assist in 
processing records which are obtained from or destined for 
equipment not in the System1360-370 families. 

The use of operands which are not aligned on natural bounda- 
ries will result in considerable performance penalties on some 
models, especially the faster ones. All machines, however, are 
designed with the guideline that the performance penalty should 
be less than the time required to move the operand to an aligned 
location and then move the result back. 

Timing Facilities 

Summary 

The new timing facilities are introduced as a replacement for the 
System1360 location-80 interval timer. The 31-bit format of the 
interval timer provided for a resolution of 13 microseconds and a 

‘The byte-oriented-operand capability was also available on Systemi360 
Models 85 and 195. 



Chapter 51 1 Architecture of the IBM SystemM70 845 

period of about 15.5 hours and did not meet some of the more 
demanding timing requirements. Furthermore, the need to share 
the single timer for the various timing needs introduced signifi- 
cant software overhead. 

Systemi370 offers three new facilities for measuring time: a 
time-of-day clock, a clock comparator, and a CPU timer. These 
facilities jointly provide the time measurements which a program 
may need. Systeml370 continues to provide the interval timer at 
location 80 in main storage, which is included for compatibility 
with System/360. It meets no requirements not already met by 
the other three facilities. 

The time-of-day (TOD) clock is a binary counter with a period of 
about 143 years and a resolution, depending on the model, that is 
on the order of one microsecond. The doubleword format allows 
for an extension of the resolution to one-quarter nanosecond. 
Operating in conjunction with the TOD clock, the clock compara- 
tor causes an interruption when the TOD clock has advanced to a 
value greater than that in the clock comparator. The CPU timer is 
also a binary counter, with a format the same as that of the TOD 
clock, except that it is considered to have a signed value. The 
contents of the timer are decremented, and an interruption occurs 
when the value is negative. 

Three “setting” instructions are provided whereby the program 
can place a specific value in each of these timers, and three 
“storing” instructions allow for placing the current contents of the 
timers into main storage for subsequent inspection. The STORE 
CLOCK instruction is not privileged so that any program can have 
access to the TOD clock; the other five instructions are made 
privileged to ensure integrity of the timer values and to permit 
sharing the clock comparator and CPU timer among programs. 
Additionally, the SET CLOCK instruction is interlocked with the 
operation of a console switch, so that the program can alter the 
clock setting only when such alteration is allowed by the operator. 
This interlock ensures that the clock value does not get changed 
accidently because of an error in the operating system, which is 
helpful for recovering and debugging system operation. 

To provide a compatible recording of time among systems, 
January 1, 1900, 0 am GMT is established as the standard time 
origin, or epoch, that is the calendar date and time to which a 
clock value of zero corresponds. This date permits retroactive 
assignment of TOD clock values to transactions. The enforcing of 
this convention is the responsibility of the operating system. Local 
time is calculated when needed by subtracting an offset from the 
TOD clock value. It is only this offset that needs to be changed for 
different time zones, daylight-savings time, etc. 

Design Considerations 

The interaction of several design considerations was involved in 
the final specification. 

Timing Functions. The new timers are provided to meet four 
distinct timing functions. Two of these needs related to real time: 

The current real-time ualue, which is needed for labeling 
events and transactions with the time of their occurrence 
(time-stamping) and for measuring elapsed real time. Time 
stamping is needed, for example, to record the time when an 
exceptional condition is detected or when a transaction request 
is received. Elapsed real-time measurements, obtained by 
taking the difference between two real-time values, are 
needed for such purposes as determining the duration of 
real-time processes and establishing charges for use of the 
system’s storage media or terminals. This need is met by the 
TOD clock. 

An interruption at a spec& real-time instant, which is needed 
for the control of many real-time processes. Applications may 
include sampling a sensor, changing traffic light patterns for an 
approaching rush hour, or polling a terminal. This need is met 
by the clock comparator. 

The time which accrues only when the CPU is actually 
executing a particular program is referred to as the process time 
for that program. The following two needs must be met in relation 
to process time: 

The current process time value, which is needed for establish- 
ing elapsed process time for performance evaluation and 
accounting for the use of the CPU, and related functions. 

An interruption at a specijic process-time instant, which is 
needed for such functions as checking a program to protect 
against unending loops and rotating the use of the CPU among 
different programs, referred to as “time-slicing.’’ 

The system must maintain as many accumulators of process 
time as the number of independent programs that concurrently 
reside in the system. However, since the CPU executes only one 
process at a time, only one of these times can be running at one 
time, and hence only one machine timer is needed. The CPU 
timer is provided to satisfy both needs associated with the process 
time. 

Long TOD-Clock Period. In order to permit direct problem 
program access to the TOD-clock value and to avoid the need for 
special software procedures for handling of clock overflow, the 
period should span the lifetime of the environment using the 
format and algorithm for time measurement. As a minimum, it 
should cover a number of hardware and operating system 
generations. A period of 143 years provides this, even with a time 
origin set to the year 1900. 

Unique TOD-ClockValues. The clock should provide nonrepet- 
itive readings, so that the time-stamp labels provided by the clock 



846 Part 4 1 Family Range, Compatibility, and Evolution Section 5 1 The Systemi360 and System/370 Family 

can serve as unique serial numbers for the identification and 
cataloging of system objects. In view of this, the STORE CLOCK 
instruction is defined such that no two references to the TOD 
clock of a CPU, or to any of the TOD clocks of a shared-main-
storage multiprocessing system, provide the same value. Either 
the clock has a high enough resolution to be updated between two 
such instructions, or references to the clock are specifically 

' 

interlocked to ensure the uniqueness of readings. 

Synchronization with External Signals. For the accuracy of the 
TOD clocks real-time indication to be comparable to its resolu- 
tion, it must be possible for the program to set the clock to a 
specific value and then start its operation in response to an 
external signal. This function is particularly essential for synchro- 
nization N f  the clocks of two CPUs and is provided by the 
TOD-clock synchronization control, which is included in the 
multiprocessing feature. When the control bit is one and SET 
CLOCK is executed, the clock stops. It resumes incrementing 
only after a synchronizing signal from the other CPU arrives. This 
signal is generated by a carry into bit position 31 of a running 
clock, and is defined so that, with zeros in bit positions 32-63 of 
the stopped clock, the low-order words of the two clocks are 
subsequently incremented in synchronism. The high-order words 
of the clocks, approximately corresponding to counts of seconds, 
can be synchronized by the program. 

Format. For interpretation by people, a TOD clock format of 
such form as year-month-day-hour-minute-second-fraction is most 
convenient. Such a format, however, was rejected because of the 
difficulties it would present for arithmetic operations. The specific 
format was adopted because of the efficiency of binary encoding 
and by observing that the external formats may have to meet 
different operating-system or installation requirements and hence 
should be under software control. 

Implementation. In spite of the need for the functions, inclusion 
of three 64-bit timing facilities would appear rich if each actually 
required a hardware register. It is possible, however, for a 
microprogrammed machine to implement the clock comparator 
and the CPU timer with a small counter and two doublewords of 
local storage. This is, in fact, the implementation used on most 
models. Further savings are permissible by implementing most 
high-order bytes of the TOD clock in local storage. 

Multiprocessing 

Systemi370 architecture includes a number of facilities that 
permit formation of a system where two or more CPUs share 
common main storage and are controlled by a single copy of the 
operating system. Such a system has a number of advantages: 

It offers higher processing power and throughput. 

It improves reliability by making an alternate CPU availa-
ble and by increasing the redundancy of other system 
components. 

It permits more flexibility in sharing I/O and external 
storage devices. 

It provides a larger pool o f main storage, channels, and I/O 
equipment for allocation of these resources in response to 
demands by various jobs. 

This section reviews the facilities included in Systemi370 for 
multiprocessing. 

A rudimentary form of some multiprocessing facilities was 
available also on Systemi360 Models 65 and 67, which offered a 
shared-main-storage multiprocessing capability. Prefixing on 
these models was provided using a manually settable prefix. A 
limited interprocessor signaling capability was made available 
through the use of the channel-to-channel adapter. Instructions- 
stream synchronization and serialization were left mostly unspeci- 
fied by the architecture; the action of the machine was determined 
by the implementation. In addition, configurations of modified 
Model 50 CPLk, designated the IBM 9020, were built as part of a 
special system for the Federal Aviation Administration. 

It should be noted that although current implementations offer 
multiprocessing systems comprised of two CPUs, the architecture 
allows for a multiplicity of CPUs. 

Synchronization and Serialization 

In a uniprocessor, the execution of a single instruction, as well 
as of a disabled routine, can be considered instantaneous in that 
no other program can observe or change any intermediate re- 
sult values, and all references to main storage can be considered 
to occur in the sequence specified by the program.' In a multi- 
processing system, the results of all communication between 
CPUs through main storage are based on the actual storage ac- 
cesses. When these accesses are observed by another processor, 
they may differ from the expected operation in the following 
ways : 

A single instruction may make a number of distinct 
addresses to main storage, and accesses associated with 
single instructions may be interleaved by CPUs. 
The accesses due to a single instruction and due to any two 
instructions are not necessarily performed in the specified 
order. 

'This statement is not strictly true with respect to channels which may 
access an area of storage concurrently with the CPU. The  ihannel may see 
intermediate or out-of-sequence result values if the CPU changes the 
contents of the IiO data areas during channel operation. 



3 	 Accesses within a field, such as for an instruction or an 
operand, may be made piecemeal. 

4 	 Multiple accesses may be made to a storage location for a 
single use of its contents. 

Results become unpredictable, and the conventions of a 
uniprocessor communications protocol become inadequate when 
one CPU is changing the contents of a common storage location 
while the other is observing it, or when both CPUs are updating 
the contents of the location at the same time. 

System/370 architecture includes a number of specific rules and 
extensions to make a multiprocessor communications protocol 
more flexible and efficient. Included are constraints on the 
concurrency, multiplicity, and order of storage accesses. Specific 
instructions are defined to serialize and synchronize events. A 
detailed discussion of those considerations is beyond the scope of 
this paper. 

”Prefixing 

The control and status information associated with a CPU (PSWs, 
interruption codes, b‘0 control words, etc.) reside in fixed 
low-order locations of main storage. When storage is shared by 
multiple CPUs, each CPU must have a private control and status 
area. This is accomplished by providing in each CPU a prefix 
address, which specifies the storage block to which references 
with addresses 0 to 4,095 are relocated. In order for each 
processor to have access to all of the attached storage, and for one 
processor to access another’s fixed addresses even if they are 
prefixed with a value of zero, reverse prefixing is employed: that 
is, references to the 4K-byte block identified by the prefix address 
cause access to block 0. Prefixing, as well as reverse prefixing, is 
applied after dynamic address translation, and it applies to all 
storage references by the CPU. Two instructions, SET PREFIX 
and STORE PREFIX, are associated with the facility. 

Prefixing is not applied to storage references associated with I/O 
data transfers. This decision was made to avoid any logical affinity 
between a channel and a CPU, thus permitting any CPU to start 
an I/O operation on any channel in a multiprocessing configura- 
tion. It also avoids some additional cost for the relocation 
hardware in standalone channels and for keeping the prefix 
address in each subchannel. 

Interprocessor Signaling 

To fully utilize the potential advantages of a multi-CPU system, 
some explicit ability for programmed communication among the 
CPUs is necessary. Such communication is needed for initial 
startup of the operation, to dispatch jobs because of changes in 
priority or because of an imbalance of I/O equipment, to recover 
operations after software or hardware failure, and to diagnose a 
machine or program problem. 

Chapter 51 1 Architecture of the IBM Systemi370 847 

All program-initiated CPU-to-CPU communication is per-
formed by means of the SIGNAL PROCESSOR (SIGP) instruc-
tion, which designates the addressed CPU and indicates an order 
specifying an operation to be performed. The instruction can be 
addressed to the issuing CPU. The orders provide for the 
following types of functions: 

Start; Stop. These two orders are the same as the correspond- 
ing operator-console functions. 

Stop and Store Status. A sequence of operations is performed 
comprising the corresponding two operator-console functions. 
Restart. A restart interruption is initiated at the addressed 
CPU, which can be used for initial startup or for dispatching a 
job. 
External Call; Emergency Signal. These two signals cause the 
corresponding type of external interruption at the addressed 
CPU, each type of interruption being controlled by a separate 
mask. They can be used to establish a communications protocol 
of two priority levels, covering general and unusual conditions. 
Sense. The signaling CPU is informed whether the addressed 
CPU is stopped, still has an external call pending, is in 
check-stop state, etc. 

Reset. Four types of orders are provided for resetting the 
addressed CPU, permitting a choice in whether channels must 
be reset and in whether some program-addressable registers 
must be initialized. 

When a CPU enters the check-stop state or loses power, it 
implicity generates a malfunction alert. This signal is broadcast to 
all other CPUs in the system and causes an external interruption in 
those CPUs that are enabled for it. This mechanism provides for 
an automatic error alert if and only if programmed communica- 
tions are no longer possible; at any other time, signaling of all 
exceptional conditions is under explicit control of the program. 

The address assigned to a CPU may be determined by issuing 
STORE CPU ADDRESS on that CPU. The CPU address may be 
used to associate with the CPU any facilities that are unique to it, 
such as an emulator or I/O devices accessible only by it. 

Debugging and Monitoring 

Two facilities are introduced in System/370 for selectively passing 
control to a supervisory program on the occurrence of specific 
events during program execution: program-event recording and 
monitoring. Additionally, the status-storing facility provides an 
operator control for recording program status. 

Program-Event Recording 

The program-event-recording (PER) facility extends and places 
under program control functions that previously have been 



848 Part 4 I Family Range, Compatibility, and Evolution 

available only to the console operator. It is a debugging tool that 
can be invoked without any preplanning in the design of the 
program. 

The PER facility causes a program interruption on the occur- 
rence of one or more of the following events: 

Successful execution of a branch instruction 

Alteration of the contents of designated general registers 

Fetching of an instruction from a designated main-storage 
area 

Alteration of the contents of a designated main-storage area 

The information concerning a program event is provided by 
means of a program interruption, with the cause of the interrup- 
tion being identified in the interruption code. The occurrence of 
the event does not affect the execution of the instruction, and the 
PER interruption is taken after the execution of the instruction 
responsible for the event. The supervisory program has control 
over the conditions that are considered events for recording 
purposes and specifies the registers and the storage area involved. 

The PER facility does not affect CPU performance when it is 
completely disabled by means of the PSW mask, but on most 
models it reduces performance when the machine is instructed to 
search for some events. Its primary use is under conditions when 
the program is suspected of having a bug. In order to reduce the 
frequency of PER interruptions, the debugging procedure can 
select events hierarchically, the initial monitoring being only for 
instruction fetches or storage alteration occurring outside (or 
within) a designated area. Recording successful branches or base 
register alterations should be invoked only when the fault is 
localized to a particular routine. 

Monitoring 

The monitoring facility causes an interruption when the MONI- 
TOR CALL (MC) instruction is encountered. Each MC instruc- 
tion identifies itself as belonging to one of 16 separately maskable 
classes and provides a 24-bit code. On a monitor-call interruption, 
both the class number and the code are stored to identify the 
condition. 

The MC instruction takes very little execution time when the 
class is not enabled for interruption; it is useful for signaling 
critical points in a program, such as dispatching, procedure 
entries, queue access, and page faults. It is expected that 
potentially useful points will be identified as part of the design of 
the program, and that the instruction will be a permanent part of 
many routines. These instructions then could be used to assist in 
debugging the system, as well as to record frequency and path 
information for system performance analysis. 

Section 5 1 The System/360 and Systemi370 Family 

Status Storing 

The status-storing facility consists of an operator control that 
causes the contents of the current PSW and of all addressable 
registers to be stored at preassigned locations in main storage. It 
provides a means of preserving the essential status information, 
upon the failure of a program, for subsequent dumping and 
analysis. This facility makes it possible for a standalone dump 
program to record the status of the failing program, without the 
dump program destroying the status that is to be saved. 

Machine-Error Handling 

Systemi370 implementations provide extensive checking for 
equipment malfunction and include a number of steps for 
automatic recovery by the machine. The architecture includes 
extensions that permit reporting of error conditions to assist 
maintenance and repair and to help with programmed recovery. 
It provides model-independent structure for the initial response 
and damage assessment and permits passing additional informa- 
tion for model-dependent analysis. This section reviews the 
architecture extensions and outlines the characteristics of the 
implementations that motivated the architecture extensions. 

Model independence, or compatibility, in the context of 
machine-check handling has objectives and constraints somewhat 
different from those applying to the rest of the system. First, the 
architecture specifies machine actions in the case when the 
machine is failing, and hence absolute compliance cannot be 
guaranteed. Second, the architecture has to reflect the physical 
structure of the machine, and thus has to provide for some model 
dependence. As a result, the architectural definition permits a set 
of actions and alternatives, allowing the machine to choose among 
them and requiring that it indicate the action it has taken. For 
virtually all error situations, the machine must, however, comply 
with certain basic rules. 

One of the fundamental rules of both Systemi360 and System/ 
370 architecture is the separation of programming and machine 
errors. Specifically, it must not be possible either inadvertently or 
by deliberate programmed action to cause an indication of 
machine malfunction. (This excludes the use of the instruction 
DIAGNOSE, which is intended for diagnostic and maintenance 
functions.) Any condition indicating that the operation of the 
equipment deviates from that normally expected is brought to the 
attention of the program either via a machine-check interruption 
or by turning on the corresponding equipment-error bit in the 
statusword stored by the channel or the SIGNAL PROCESSOR 
instruction. Conversely, all invalid program situations that are 
detected by the machine are reported by condition codes, status 
bits, and interruptions that are distinct from those used for 
machine errors. In order to ensure that the machine is in a known 



Chapter 51 1 Architecture of the IBM Systemi370 849 

valid state at the initiation of processing, Systemi370 architecture 
defines and introduces a hierarchy of specific reset functions. 

The machine-check architecture assumes a rather extensive 
recording and analysis program as a part of the operating-system 
facilities. In many cases it is possible to limit the bad effects of a 
malfunction to just one user, and it should usually be possible to 
perform an automatic restart so that newly submitted jobs can 
run. Some solid failures, of course, prevent any useful work from 
being done. In these cases information must be recorded to 
expedite diagnosis and repair of the fault. 

Recovery Mechanisms 
Systemi370 implementations provide some or all of the following 
five mechanisms to minimize the destructive effect of machine 
malfunctions and to ensure integrity of system operation. 

Data-Error Detection. Most data and control paths in the CPU, 
in channels, and on the IiO interface include redundant bits to 
verify correct transmission and readout of information. The 
redundancy typically is one bit per byte, or 12.5%.The redundant 
bit is so chosen as to provide an odd parity for the nine-bit field, 
thus requiring that at least one bit always have a nonzero value. 
This organization is capable of detecting any single-bit error. 

Data-Error Correction. Main storage for all models except 
Model 195 is organized into blocks of eight bytes, with eight 
redundant bits included with the block. The redundant bits form 
an error-correction code capable of correcting any single-bit error 
and detecting any double-bit error. When a single-bit error is 
detected on readout, the error is corrected in the storage array, 
correct parity is provided to the CPU, and an alert condition is 
generated. On double-bit errors, an error indication is generated. 
Error correction may be used also in other parts of the system. 
Checking and correction is accomplished typically in a fraction of a 
machine cycle. 

CPU Retry. Recovery from transient errors can be accom-
plished by reexecuting the sequence of steps in which the error 
occurred. On some models such reexecution, or retry, is invoked 
automatically by the machine whenever an error is detected, and 
the steps typically cover the execution of one or a few instructions. 
CPU retry requires that the machine periodically establish points, 
referred to as checkpoints, with a known machine-state informa- 
tion. Whenever changes to the machine-state are subsequently 
made, the previous value for the changed attribute is recorded. In 
the case of an error, the machine-state is restored to that at the 
checkpoint, and reexecution is attempted. If the error persists, 
retry from the same check-point typically may be performed eight 
times. If the retry is successful, an alert condition is generated; if 

not, an error is indicated. The time for CPU state restoration and 
error analysis may be a millisecond or significantly more. 

Unit Deletion. On some models, malfunctions of certain trans- 
parent units of the system can be circumvented by discontinuing 
the use of the unit while still continuing processing. Examples 
include the disabling of all or a part of the cache, translation 
lookaside buffer, or the high-speed multiplier. When such 
automatic reconfiguration has occurred, a special signal indicating 
degradation of operation is generated. 

Command Retry. The command-retry facility, which permits 
recovery from errors detected by the IiO device, is described in 
the section “Incompatibilities.” 

Error Reporting 

Systemi370 architecture groups machine errors by type and 
severity and provides model-independent means for their identifi- 
cation. All machine-check interruptions are subject to the control 
of PSW bit 13. Additionally, masks for specific conditions permit 
control over the causes that are to be reported. 

Two major types of machine-check conditions are identified, 
repressible and exigent. The indication of repressible conditions 
can be delayed without affecting the integrity of CPU operation. 
They include recovery indications, alerts of degradation or 
imminent power loss, and indications of damage to timing or 
external facilities. 

For exigent machine-check conditions, the execution of the 
current instruction or interruption cannot safely continue and 
normally is terminated. If the CPU is disabled for machine-check 
interruptions, the CPU enters the check-stop state. The machine, 
however, may choose to proceed with processing when the 
check-stop-control bit so permits. This option is desirable for 
some real-time applications. 

When a machine-check interruption occurs, extensive model- 
independent information is provided describing the cause of the 
error. In addition to the machine-check old PSW and source 
identification, contents of control registers, general registers, 
floating-point registers, TOD clock, clock comparator, and CPU 
timer are stored, and, for storage errors, the address of the 
suspected location is provided. Such automatic saving avoids the 
need for programmed storing, which may be impossible because 
of the error condition. Because of the check-point capability in 
models with CPU retry, the interruption resulting from an exigent 
machine-check condition may identify a point in the recovery 
cycle which is prior to the point of error. For this reason a number 
of bits are stored to describe the validity of the status information 
and the relation between the points of error and interruption. 
Finally, extensive model-dependent logout information may be 



850 Part 4 1 Family Range, Compatibility, and Evolution 

provided at permanently-assigned locations in main storage or in 
an area designated by an address in a control register. 

Storage Validation 

Since the block size for error correction may be larger than the 
bus width of the system, only part of the checking block may be 
replaced in any one CPU cycle. In the case of an uncorrectable 
storage error, such replacement cannot force valid checking-block 
code on the entire storage block, as no information is available as 
to which part of the block is invalid. Furthermore, on some 
models validation of storage contents can be performed only when 
the entire "cache line" is replaced, which may include a number 
of checking blocks. 

To permit validating storage, that is, replacing storage contents 
with a valid checking-block code, the instructions MOVE and 
MOVE LONG are defined to force valid checking-block code on 
the destination operand when the operand designation meets 
certain size and alignment requirements. 

Machine Identifkation 

The instruction STORE CPU ID provides information that 
identifies the particular CPU executing the instruction by type, 
model number, version, and serial number. It also provides the 
length of the model-dependent status and error-logout fields for 
this model. The instruction STORE CHANNEL ID provides 
analogous information for the addressed channel. These instruc- 
tions make it possible to invoke model-dependent recovery 
programs and help a general-purpose analysis routine to record 
essential information about the physical unit for diagnostic and 
repair purposes. 

Input/Output 

Systemi370 architecture adds several facilities and functions in the 
area of inputioutput (110) operations to -improve channel utiliza- 
tion, to make the control of operations more efficient and flexible, 
and to increase the maximum data rate on the IiO (channel-to-
control-unit) interface. This section discusses some of the more 
important additions. 

Utilization ofChannel Facilities 

The System1360 architecture provided for two channel types, a 
selector channel capable of operating with relatively high data 
rates but with only one device at a time, and a byte-multiplexer 
channel capable of simultaneously operating many devices but at 
relatively low data rates. Systemi370 adds the block-multiplexer' 

'The IBM 2880 Block-Multiplexer Channel included most of the System/ 
370 IiO architecture extensions and was available on System/360 Models 
85 and 195. 

Section 5 1 The System/BIO and System/370 Family 

channel with both high-data-rate and multiple-device capabilities 
[Brown, Gibson, and Thorn, 19721. 

The block-multiplexer channel is similar to a byte-multiplexer 
channel in that both have a number of subchanoels, each 
asociated with an IiO device or a group of UO devices. The 
subchannel is the logical entity that controls an 1 /0  operation and 
contains the addresses, count, and control bits associated with the 
operation. The channel provides the data paths and controls for 
communicating with the CPU, main storage, and IiO control units 
and for associating the proper subchannel with each communica- 
tions sequence. The main difference between the block- and 
byte-multiplexer channels is in the level of multiplexing: whereas 
the byte-multiplexer channel can interleave the transfer of 
individual bytes for different subchannels, the block-multiplexer 
channel, being designed for high data rates, is limited to 
interleaving complete blocks of data. 

The block-multiplexing capability is particularly advantageous 
when used in conjunction with rotational position sensing on 
rotating-storage devices, such as disks and drums. This feature 
allows the device to disconnect from the channel during the 
period of rotational delay, thereby releasing the channel for 
operation with other devices. When the addressed sector is 
approaching on the track, reconnection is attempted for the 
transfer of data. In case the channel is-so busy that the connection 
cannot be established by the time the sector is reached, another 
attempt is made after a delay of one rotation time. 

Rotational position sensing is availabIe, for example, on the 
IBM 2305 fixed head file. The control unit for this file can appear 
to have 16 devices, each associated with its own subchannel and 
able to sustain an I10 operation. 

In the absence of the block-multiplexing capability, efficient 
utilization of I/O facilities required separate START 110 instruc-
tions to specify the position of the arm on the disk and the 
subsequent reading or writing. On the block-multiplexer channel, 
these commands are chained, thus avoiding the interruption of 
the CPU at the completion of the positioning operation. The 
number of START IiO instructions is also reduced. 

Control 
Since the periods when the block-multiplexer channel is busy 
transferring blocks of data are asynchronous to CPU operation, a 
new interruption, the channel-available interruption, is provided 
to indicate when the channel is free to process a CPU instruction. 
The block-multiplexer channel generates this signal when the 
busy condition ceases to exist that had previously caused rejection 
of an 110 instruction. 

The new HALT DEVICE instruction also is introduced largely 
because of the block-multiplexer channel. It is similar to the 
previously available HALT I10 except that, when the channel is 
busy, only the operation on the addressed subchannel is affected. 



HALT I/O terminates the current burst operation on the channel, 
ignoring the device address. 

The new CLEAR I/O instruction is provided to permit freeing 
the subchannel associated with the addressed device without such 
freeing being contingent on the completion of the current I/O 
operation at the device. This function is useful for situations 
involving machine errors or reconfiguration of I/O devices and 
control units. 

Finally, an extension is provided to reduce the CPU time to 
start an I/O operation. When START I/O (SIO) is issued, the 
channel signals the device as part of SIO execution to ascertain the 
device’s ability to execute the command. This involves a number 
of signal sequences and the associated propagation delays and 
logic delays in the channel and the control unit. According to the 
IiO interface specification [IBM, 1978a1, the portion of the total 
delay introduced by the circuitry in the control unit can be as high 
as 32 microseconds. Additional delays may be introduced by the 
channel. On a CPU that can perform a few million average 
instructions per second, the delay due to the communications 
with the device can be equivalent to a hundred or more 
instruction executions. 

The new instruction START I/O FAST RELEASE (SIOF)allows 
the acceptance to be signaled and the CPU to be released as soon 
as the channel has fetched the channel address word from main 
storage. The channel subsequently initiates the operation at the 
device and verifies the validity of the command information. Any 
exceptions are signaled by means of an interruption. Normally 
such exceptions are infrequent, and thus, overall, little time is 
spent processing the interruptions. 

Some channels do not currently implement the early release on 
SIOF and instead execute SIOF as SIO. Such implementations are 
compatible and permit early conversion of programs to the use of 
SIOF. 

Data Rates 

The original Systemi36O IiO interface specification was adequate 
for data rates up to about 1M bytes per second. In special cases for 
disk devices and for very short channel cable lengths, a rate up to 
1.25M bytes per second could be supported. With the advent of 
storage technologies employing higher recording densities, it was 
necessary to increase this limit. A higher limit was desirable also 
for certain buffered devices. Changes to System/36O were made in 
both the width of the interface and in the interface signaling 
protocols. 

The fully interlocked signaling protocol on the Systemi36O IiO 
interface allowed one channel cable connection to sustain data 
transfer at a very wide range of rates, with both the channel and 
device having complete control over the timing of each byte 
transfer. It did, however, require an electrical signal to be 
propagated between the channel and the control unit four times 
for each byte transferred. 

Chapter 51 I Architecture of the IBM Systemi370 851 

The Systeml37O channels modify this signaling protocol, with 
two additional wires in the interface, to provide the same level of 
transfer interlocks at the expense of only two propagation times 
per byte transferred. It depends on the control unit if the new 
facility is used, so that control units implemented to operate with 
the System1360 protocols can be attached to System1370 channels. 

The basic interface bus is one byte wide, comprising eight data 
bits and a parity bit. On some Systemi37O models the bus width 
can be extended optionally to two bytes, thus doubling its data 
transfer capacity. 

As a result of these two additions, the System/370 IiO interface 
can sustain a data transfer rate of over 1.5M bytes per second in 
the one-byte version and over 3.OM bytes per second in the 
two-byte version. Concurrently with the data rate improvement, 
the allowable cable lengths have been increased. 

implementation 

While this chapter is concerned mainly with the logical structure 
of the system as seen by the programmer, some of the parameters 
of the realizations are important for practical and efficient use 
of the equipment and to understand the motivation behind some 
of the features. This section summarizes some attributes of the 
Systemi370 models. For convenience of comparison, it includes 
also the corresponding values for the models of System/360. Only 
the most recent characteristics are listed; some of the models were 
improved after initial announcement. 

Central Processing Units 

Variation in the cycle time and data-flow width of the central 
processing unit (CPU) and in the characteristics of its control 
storage is one important way of obtaining cost and performance 
differences in a compatible family of machines. Table 3 shows 
these factors for the various models of System/36O, and Table 4 for 
Systeid370. 

Depending on the CPU, a different amount of “work  is 
accomplished per CPU cycle. Hence these numbers cannot be 
used directly as a measure of relative speed. CPU data-flow width 
is given in bytes and indicates the largest field that can be handled 
in one cycle time. Instruction fetches and a limited set of 
operations may be handled by wider paths, as indicated by 
footnotes. 

Control storage, which contains the microprogram, is described 
in terms of the following attributes: capacity (in K words, where 

’In this chapter, capacities and widths are usually given in bytes. A byte is 
composed of eight bits. Physical implementations include additional bits 
for error detection and correction. This redundancy in CPU data flow and 
in processor storage typically is one bit per byte. 



852 Part 4 I Family Range, Compatibility, and Evolution Section 5 , The System/36O and SystemB70 Family 

~~ ~~ ~ 

Table 3 

Model 

Svstem/360 CPU and Control Storage Characteristics 

CPU 

Cyclc Width 
(nsec) (bvtes) 

Control storage 

( K  words) (bits) (RWIRO) 
Cycle 
(nsec) Entries 

22 750 1 4 50 + 5 RO 750 none 
25 900 1 8 16 + 2 RW 900 none 

30 750 1 4 50 + 5 RO 750 none 

40 625 2" 4 52 + 2 RO 625 none 
44 250 4 none none 

50 500 4 2.75 85 + 3b RO 500 none 

65 200 8 2.75 87 + 4" RO 200 none 
67 200 8 2.75 87 + 4c RO 200 8 

75 195 8 none none 

85 80 8 2 105 -t3d RO 80 none 
0.5 105 + 3d RW 80 

91 60 8 none none 
195 54 a none none 

aCertain registers and paths are 17 or 18 bits wide where a main-storage address is processed in one 
cycle. 

bExtended to 90 + 3 for the 1410 emulator, or 92 + 3 for the 7070 emulator. 

"Extended to 94 + 4 when any emulator is installed. 

dExtended to 122 + 4 when any emulator is installed. 

K = 2" = 1024), word size (in bits), and cycle time (in the width of the data path from the storage controller to the 
nanoseconds) as used by the processor. The type of storage is also instruction processor or channels. The interleaving factor indi- 
indicated: read-write (RW) or read-only (RO). cates the number of accesses to sequential locations that can be 

A range in the capacity is given for those models where the made in one cycle. Thus, the storage of the Model 168 is 
amount installed depends on the selection of certain optional implemented in four sections, each eight bytes wide. Each section 
features. The word size is expressed in terms of two numbers. The contains every fourth doubleword, and their clocks are offset by 
number before the plus sign is the number of bits used for logic or of the storage cycle time, so that the total available transfer rate for 
control purposes. The number after the plus sign is the number of sequential locations is 8 x 4 = 32 bytes per 320-nsec cycle. For 
additional bits used for checking the parity of the control-storage the 3033 the effective transfer rate is limited to eight bytes per 
contents. CPU cycle. The cycle time shown is the minimum time between 

As explained in the section on virtual storage, the dynamic- successive references to the same location. 
address-translation mechanism includes a translation-lookaside Some models employ a high-speed buffer, referred to as the 
buffer (TLB) to improve performance. The number of entries in cache [Conti, Gibson, and Pitkowsky, 1968; Liptay, 19681, to 
this buffer is indicated in the last column. reduce the average access time to processor storage. The cache 

contains copies of recently accessed data in processor storage, and 
Processor Storage its existence is not apparent to the program.' The tables list the 

'This means that the cache does not appear in Systemi370 architecture, Another set of key attributes that distinguish various implementa- 
and the operation of the machine is completely described withouttions is the size and speed of processor storage. Table 5 shows the reference to the cache. Although the cache is not architected, the decision 

options available for the System/360 models, and Table 6 de- not to do so is a significant architectural conclusion. It means that, except 
scribes Systemi370. The range of sizes shows the smallest and for performance considerations, the program can ignore the existence of 
largest total capacity available on that model. Intermediate values the cache. On the other hand, the designer of the machine must ensure 
are usually also offered. The width is expressed in terms of two that in no case can the existence of the cache affect the logical appearance 
numbers: (basic width) x (interleaving factor). The basic width is of the machine. 



Chapter 51 I Architecture of the IBM Systemi370 853 

CPU Control storage TLB 

Cycle Width Capacity Wd size Type Cycle 
Model (nsec) (bytes) ( K  words) (bits) (RWIRO) (nsec) Entries 

115 480 1 20-28 20 + 2 RW 480 8 
115-2 480 2 12-20“ 19+3 RW 480 16 

125 480 2 12-20 19+3 RW 480 16 
125-2 320 2 16-24 19 + 3 RW 320 16 

135 275 - 1485b 2” 12-24 16 + 2 RW 275 8 
135-3 275 - 1485b 2” 64 16 + 2 RW 275 8 
138 275 - 1430b 2” 64 16 + 2 RW 275 8 

145 203 - 315b 4d 8-1 6e 32 + 4 RW 203 8 
145-3 180 - 270b 44 32 32 + 4 RW 180 8 
148 180 - 270b 4d 32 32 + 4 RW 180 8 

155 115 4 6 69 + 3 RO 115 none 
155-11 115 4 8 69 + 3 RO 115 128 
158 115f 4 8 69 + 3 RW 115 128 
158-3 115‘ 4 8 69 + 3 RW 115 128 

165 80 8 2 105 + 3 RO 80 none 
2 105 + 39 RW 80 

165-1I 80 8 4 105 + 34 RO 80 128 
1 105 + 39 RW 80 

168 80 8 4 105 + 3g RO 80 128 
1 105 + 34 RW 80 

168-3 80 8 4 105 + 39 RO 80 128 
2 105 + 39 RW 80 

195 54 8 none none 

3031 115‘ 4 8 69 + 3 RW 115 128 
3032 80 8 4 105 + 3 RW 80 128 
3033 58 8 4 105 + 3 RW 58 128 
“The 115-2 contains a separate I10 processing unit for some functions that were executed on the CPU in a 115; 
hence the smaller CPU control storage capacity. 

bVariable, depending on the type of operation performed. 

CA 4-byte wide path is used for instruction fetch and for data access for some instruction types 

dAn 8-byte wide path is used for instruction fetch. 

‘This capacity is physically a part of the main-storage array. Increments above 8K words subtract from the 145 
processor-storage capacities listed in Table 6. 

’57.5 nsec for the execution of some instructions. 
gExtended to 122 + 4 when any emulator is installed. 

total cache size in K bytes. The two-number notation for the cycle which is waiting for data may proceed as soon as the first unit has 
time indicates the minimum time between successive read been transferred. 
accesses and the total cache access time. The line-width column Usually, a particular virtual address may be represented in the 
gives the number of bytes in the cache which are considered as cache in a subset of the available cache locations. The column 
one unit for addressing and replacement purposes. The first labeled “Assoc.” shows the number of different locations in the 
element of the product notation is the minimum transfer unit from cache that may contain a particular virtual address. The set of 
processor storage to cache; the second element is the number of virtual addresses that share a group of cache locations is known as 
such transfer units required to make a line. A CPU instruction an equivalence class. The replacement algorithm (usually LRU or 



Processor storage Cache 

Model 
Size 
{ K bytes) 

Width 
(bytes) 

Cycle* 
(nsec) 

Size 
(K bytes) 

Cycle 
(nsec) 

Line width 
(bytes) Assoc. 

22 
25 

24-32 
16-48 

1 
2 

1500 
1800 

none 
none 

30 16-64 1 1500 none 

40 
44 

32-256 
32-256 

2 
4 

2500 
1000 

none 
none 

50 
65 
67 

128-256 
256-1024 
256-1024 

4 
8 X 2 
8 X 2 

2000 
750 
750 

none 
none 
none 

75 256-1024 8 X 4  750 none 

85 512-4096 16 X 4 960 16-32 80-160 256 X 4b 16 

91 
195 

2048-6144 
1024-4096 

8 x 16 
8 X 16 

780 
756 

none 
32 54-1 62 8 x 8  4 

Processor storage Cache 

Model 
Size 
( K bytes) 

Width 
(bytes) 

Cycle 
(nsec) 

Size 
(K bytes) 

~ 

Cycle 
(nsec) 

Line width 
(bytes) Assoc. 

115 
115-2 

64-1 92 
64384 

2 
2 

480 
480 

none 
none 

125 
125-2 

96-256 
96-51 2 

2 
2 

480 
480 

none 
none 

135 
135-3 

138 

96-51 2 
256-512 

51 2-1 024 

4 
4 

4 

935 
880 R 
935 w 
880 R 
935 w 

none 
none 

none 

145 

145-3 

148 

160-2048 

192-1 984 

1024-2048 

8 

8 

8 

540 R 
608 W 
405 R 
540 W 
405 R 
540 W 

none 

none 

none 

155 

158 
155-11 

158-3 

256-2048 
256-2048 
51 2-61 44 

51 2-6144 

8 
8 

16 

16 

2070" 
2070" 

920 R 
1035 W 
920 

8 
8 
8 

16 

11 5-230 
1 15-230 
1 15-230 

1 15-230 

16 
16 
16 

16 x 2 

2 
2 
2 

4 

165 

168 
165-11 

168-3 

512-3072 
51 2-3072 

1024-81 92 
1024-81 92 

8 x 4  
8 x 4  
8 x 4  
8 x 4  

2000" 
2000a 

320 
320 

8-1 6 
8-1 6 
8-1 6 
32 

80-1 60 
80-1 60 
80-1 60 
80-1 60 

8 x 4  
8 x 4  
8 x 4  
8 x 4  

4 
4 

4-8 
8 

195 1024-4096 8 x 16 756 32 54-1 62 8 x 8  4 

3031 
3032 
3033 

2048-61 44 
2048-61 44 
4096-81 92 

8 x 4  
8 x 4  
8 x 8  

920 
320 
290 

32 
32 
64 

11 5-230 
80-1 60 
58-1 16 

8 x 4  
8 x 4  
8 x 8  

8 
8 
16 

aMagnetic core bDepends on cache size used. 



Chapter 51 1 Architecture of the IBM Systemi370 855 


Table 7 Announcement and Shipment 
Dates 

Model Announced First shipped 

22 

25 

30 

40 

44 

50 

65 

67 

75 

85 

91 

195 


115 

1 15-2 

125 

125-2 

135 

135-3 

138 

145 

145-3 

148 

155 

158 

158-3 

165 

168 

168-3 

195 

3031 

3032 

3033 


System1360 dates 

71-4 71 -7 

68-1 68-10 

64-4 65-5 

64-4 65-4 

65-8 66-7 

64-4 65-8 

65-4 65-11 

65-8 66-6 

65-4 66-1 

68-1 69-8 

66-1 67-11 

69-8 71-4 


System1370 dates 

73-3 74-3 

75-11 76-4 

72-10 73-4 

75-11 76-2 

71-3 72-5 

76-6 77-2 

76-6 76-11 

70-9 71-8 

76-6 77-4 

76-6 77-1 

70-6 71 -2 

72-8 73-4 

75-3 76-9 

70-6 71-4 

72-8 73-8 

75-3 76-6 

71 -6 73-5 

77-10 

77-10 

77-3 


a close variant) is executed separately for each equivalence class. 

Announcement and Shipment Dates 

Table 7 lists the year and month when the various models of 
System1360 and Systemi370 were announced and first shipped. 

References 

Amdahl, Blaauw, and Brooks [1964]; Amdahl [1964]; Arden et al. 
[1966]; Bell and Strecker [1976]; Blaauw and Brooks [1964]; 
Blaauw [1964]; Brown, Gibson, and Thorn [1972]; Conti, Gibson, 
and Pitkowsky [1968]; Dennis [1965]; Gibson [1966]; IBM [1978al; 
IBM [1978b]; Kilburn et al. [1962]; Liptay [1968]; Padegs [1964]; 
Padegs [1968]; Stevens [1964]. 



Chapter 52 

The IBM System/360, System/370, 
3030, and 4300: A Series of Planned 
Machines That Span a Wide 
Performance Range 

C.G.Bell / A.Newel1 / M. Reich / D. Siewiorek 

Introduction 

In this section, besides making some general comments on the 
IBM Systemi360 and Systemi370 series and Systemi370 follow- 
ons, we will attempt an analysis of the performance and costs of 
the series. Performance is notoriously difficult to measure, as we 
noted in Chap. 5, and costs are even more so. With respect to the 
latter, what is publicly available is price data, not manufacturing 
cost data. 

These prices reflect not only marketing policies but also 
accounting policies within the organization for the attribution of 
cost to product lines. Nevertheless, the 360 and 370 series provide 
two things which make a comparative analysis worthwhile. First, 
the common ISP makes simple performance measures more 
comparable; second, the common manufacturer makes relative 
prices more a reflection of relative costs than would otherwise be 
the case. Neither of these aspects is perfect, as we will note at 
several points in the discussion. Nevertheless, the 360 and 370 
series provide as good an opportunity to attempt costiperformance 
analysis as we know. 

Analyses of the type we attempt here produce only rather crude 
pictures and are subject to question if all the input data are not 
very carefully checked. We have not done this, depending instead 
on published sources. For the purpose of this book, illustration of 
the style of analysis seems sufficient. In addition, using a 
performance measure based only on Pc power measurements 
leaves many questions unanswered because it does not address 
the soft areas of analysis relating to throughput, task environment, 
and the operating-system software. 

Figure 1depicts the family tree of IBM computers as a function 
of introduction date and relative processing power. It can be used 
as a concise summary and reference for the following discus- 
sions.The reader is encouraged to follow the procession of this 
chapter on Fig. 1. 

The IBM Systemi360 architecture was introduced in Chap. 40. 
The series has been superseded by the IBM Systemi370, 3030, 
and 4300 series. Each series is upward-compatible with the 
Systemi360 so far as the user problem state is concerned. The 

series also share an upward-compatible ISP, as outlined in Chap. 
51. The various models differ in interpreter speeds and PMS 
structure. Many PMS elements are used in common, particularly 
K’s, Ms’s, and T’s. The 3030 and 4300 series constitutes the 
currant primary IBM product line. 

The Systemi360, Systemi370, 3030, and 4300 series are pre- 
sented both because IBM’s market dominance makes it the most 
prevalent mainframe computer and because its impIementations 
span the largest performance and price range of any series. The 
various models are compared in Table 1. 

This chapter will open with a discussion of the various 360, 370, 
3030, and 4300 series models. Finally, the Systemi360-
System/370 series will be evaluated in terms of cost and perform- 
ance. 

The IBM System/SBO Family 

Figure 2 illustrates the introduction dates of the various System/ 
360 models. Chapters 40, 41, and 12 discuss the logical structure 
of the Systemi360, the implementations,’ and the microprogram- 
med Mode1 30, respectively. 

A succinct description of the design goals and innovations is 
given in the abstract of Amdahl, Blaauw, and Brooks [1964]. The 
architecture2 of the newly accounted IBM Systemi360 featured 
four innovations: 

An approach to storage which permits and exploits very 
large capacities, hierarchies of speeds, read-only storage for 
microprogram control, flexible storage protection, and 
simple program relocation. 

An inputioutput system offering new degrees of concurrent 
operation; compatible channel operation; data rates ap-
proaching 5 million characters per second; integrated 
design of hardware and software; a new, low-cost, multiple- 
channel package sharing mainframe hardware; new provi- 
sions for device status information; and a standard channel 
interface between central processing unit and inputioutput 
devices. 
A truly general-purpose machine organization offering new 
supervisory facilities, powerful logical processing opera- 
tions, and a wide variety of data formats. 

Strict upward aad downward machine language compatibil- 

’Chapters 40 and 41 are from I B M  Systems Journal, vol. 3, no. 2, 1964, 

which was devoted exclusively to the Systemi360. Other articles, listed in 

the bibliography at the end of this chapter, are recommended for 

additional details. 

*The term architecture is used here to describe the attributes of a system 

as seen by the programmer, i.e., the conceptual structure and functional 

behavior, as distinct from the organization of the data flow and controls, 

the logical design, and the physical implementation. 


856 



Chapter 52 1 The IBM System/36O, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 857 

-lo3 

-102 

10 -

10 -
1950 

Years of introduction I 
Organization 

change 
(7813) 

Fig. 1. Family tree of IBM computers. (Courtesy of Gnostic Concepts, hc.) 

ity over a line of six models having a performance range 
factor of 50. 

The above four featured innovations are all stated as IBM 
Corporation design results. It seems better to analyze them in 
terms of design constraints and implementation results. It appears 
that the design constraints, from marketing and management 
directions, were compatibility (item 4 above) and the use of 
common peripheral equipment (item 2 above). Thus we can 
measure the 360 design in terms of how well it meets these 
constraints. With some minor exceptions, all the peripheral 

components existed i the time of the design and had been used 
with other IBM computers; thus a goal was already realized. A 
difficult and important constraint, though not mentioned above, is 
the necessity of program compatibility with almost all earlier IBM 
computers. 

It should be noted that, at the outset of the IBM System/360 
announcement, another company, RCA, adopted most of the 360 
ISP as a design constraint for its own future computer develop- 
ment. Although some priceiperformance characteristics appear to 
be better in the RCA series, the implementation scheme is 
similar. The lower RCA prices do not reflect entirely implementa- 



Table 1 S m a w  of IBM Processor Characteristics 
~ 

'runsaction-
>okaside 

CPU Control store uffer (TLB) Main memory 
~ 

Size Wordsize Type T. cycle lumber of SizelKbytes) T. cycle Number bytes 
Model ( K )  (bits) (RWIRO) (ns) entries Technolonu min. to max. (ns) fetched Interleavinr 

22 750 1 4 50 + 5 RO 750 None Core 24-32 1500 1 None 
25 900 1 8 16 + 2 RW 900 None Core 16-48 1800 2 None 
30 750 1 4 50 + 5 RO 750 None Core 16-64 1500 1 None 
40 625 2 4 52 + 2 RO 625 None Core 32-256 2500 2 None 
44 250 4 None . . . .  . . . .  . . . .  None Core 32-256 1000 4 None 
50 500 4 2.75 85 + 3 RO 500 None Core 128-256 2000 4 None 
65 200 8 2.75 87 + 4 RO 200 None Core 256-1 024 750 8 2 
67 200 8 2.75 87 + 4 RO 200 8 Core 256-1 024 750 8 2 
75 195 8 None . . . .  . . . .  . . . .  None Core 256-1024 750 8 4 
85 80 8 0.5 105 + 3 RW 80 None Core 51 2-4096 960 16 4 

2 105 + 3 RO 80 
91 60 8 None . . . .  . . . .  . . . .  None Core 2048-61 44 750 8 16 
95 54 8 None . . . .  . . . .  . . . .  None Core 1024-4096 756 8 16 
115 480 1 20-28 20 + 2 RW 480 8 MOS 64-1 92 480 2 None 
11 5-2 480 2 12-20 19 + 3 RW 480 16 MOS 64-384 480 2 None 
125 480 2 12-20 19 + 3 RW 480 16 MOS 96-256 480 2 None 
125-2 320 2 16-24 1 9 + 3  RW 320 16 MOS 96-51 2 320-480 2 None 
135 275-1 485 2 12-24 16 + 2 RW 275 8 BIP 96-51 2 770 R 2 O r 4  None 

935 w 
135-3 275-1485 2 64 16 + 2 RW 275 8 BIP 256-51 2 880 R 2 o r 4  None 

935 w 
138 275-1430 2 64 16 + 2 RW 275 8 MOS 51 2-1 024 880 R 2 None 

935 w 
145 203-31 5 4 8-16 32 + 4 RW 203 8 BIP 160-2048 540 R 4 o r 8  None 

608 W 
145-3 180-270 4 32 32 + 4 RW 180 8 BIP 192-1 984 405 R 4 or 8 None 

%OW 
148 180-270 4 32 32 + 4 RW 180 8 MOS 1024-2048 405 R 4 None 

540 W 
155 115 4 6 69 + 3 RO 115 None Core 256-2048 2070 8 None 
155-11 115 4 8 69 + 3 RO 115 128 Core 256-2048 2070 8 None 
158 115 4 8 69 + 3 RW 115 128 MOS 51 2-61 44 1035 R 8 or 16 None 

920 W 
158-3 115 4 8 69 + 3 RW 115 128 MOS 51 2-61 44 1035R 8 or 16 None 

920 W 
158 MP 115 MOS 1035 R 8 or 16 None 

920 W 
158-3 MP 115 MOS 1035 R 8 or 16 None 

920 W 
165 80 8 2 105 + 3 RO 80 None Core 512-3072 2000 8 4 

2 105 + 3 RW 
165-11 80 8 4 105 + 3 RO 80 128 Core 51 2-3072 2000 8 4 

1 105 + 3 RW 
168 80 8 4 105 + 3 RO 80 128 MOS 1024-81 92 320 8 4 

1 105 + 3 RW 
168-3 80 8 4 105 + 3 RO 80 128 MOS 1024-81 92 320 8 4 
168 MP 80 MOS 2048-1 6384 8 4 
168-3MP 80 MOS 2048-1 6384 8 4 
195 54 8 None . . . .  . . . .  . . . .  None Core 1024-4096 756 8 16 
3031 115 4 6 69 + 3 RW 115 128 MOS 2048-6144 345 8 4 
3032 80 8 4 105 + 3  RW 80 128 MOS 2048-61 44 320 8 4 
3033 58 8 4 105 + 3 RW 58 128 MOS 4096-81 92 290 8 8 
4331 900 4 64 RW 900-1300 None MOS 51 2-1 024 1300 4 
4341 150-300 8 RW Yes MOS 2048-4096 600 8 



Relative Relative Relative Muximnn 

lSPs implemented performance performance performance 110 rate 


Model in microprogram (COBOLbenchmarks) [Phister,19791 (Data Pro) (Mbytesls 


22 None . . . .  . . . .  . . . .  
25 None . . . .  . . . .  . . . .  140Ia 
30 None . . . .  . . . .  . . . .  140Ia11620 1.o 1.o 
40 None . . . .  . . . .  . . . .  l40laJ1410b 2.0 1.8 
44 None .... . . . .  . . . .  
50 None . . . .  . . . .  . . . .  141Ob17070C 4.5 3.9 
65 None . . . .  . . . .  .... 707OC(709Od 10.0 13.7 ulN
67 None . . . .  .... . . . .  707OC1709Od 

75 None . . . .  . . . .  . . . .  19.3 

85 16-32 80-160 256 X 4 16 7O9Od 


91 None . . . .  . . . .  
95 32 54-162 8 x 8  4 Yrnln 
115 None . . . .  . . . .  . . . .  140Ia 1.o 1.o 0.9 
115-2 None . . . .  . . . .  . . . .  1401a 1.7 1.4 0.9 
125 None . . . .  . . . .  . . . .  1401 1.4 1.95 1.45 0.9 P 
125-2 None . . . .  . . . .  . . . .  1401a 2.7 1.8 0.9 

al0 

135 None . . . .  . . . .  . . . .  140Ia 1.8 3.9 2.9 2.4 rn 
3 
iii135-3 None . . . .  . . . .  . . . .  1401a 5.1 3.8 2.6 3 
P 
0138 None . . . .  . . . .  . . . .  1401" 5.1 3.9 2.6 -4 

w 
145 None . . . .  . . . .  . . . .  140181141Ob 4.0 7.9 5.45 5.3 00

0 

I 

145-3 None . . . .  . . . .  . . . .  1401a~1410b 7.1 5.3 3Q 

0P 
148 None . . . .  . . . .  . . . .  1401a11410b 10.4 7.7 5.0 w 

0 
155 8 115-230 16 X 2 2 1401a/1410b~7070c 10.0 13.5 10.0 5.4 

155-11 8 115-230 16 X 2 2 140la~14IOb17070C 10.0 5.4 

158 8 115-230 16 X 2 2 1401a1141Ob)7070C 24.2 17.8 15.0 


158-3 16 115-230 16 X 2 4 1401a~1410b~7070C 24.1 19.6 16.4 

158 MP 1401a~1410b~7070c 21.8 27.0 7.5 

158-3MF 1401a 1141Ob17070C 29.4 7.5 

165 8-1 6 80-1 60 8 x 4  4 7070c~7080~7090d 31.7 38.7 34.5 8.0 

165-11 8-16 80-1 60 8 x 4  4 707OC1709Od 34.5 8.0 

168 8-1 6 80-1 60 8 x 4  4-8 7O7O01709Od 47.4 41.8 16.0 rn
P 


168-3 32 80-160 8 x 4  8 707OC1709Od 51.4 53.9 45.5 16.0 m 
168 MP 707OC1709Od 75.3 28.0 s
1683 MP 707OC1709Od 57.6 81.8 28.O h 
195 32 54-1 62 8 x 8  4 39.9 73.0 86.4 3.0 U
3031 32 I 15-230 8 x 4  8 23.5 19.7 s 
3032 32 80-1 60 8 x 4  8 53.9 45.1 a 
3033 64 58-1 16 8 x 8  16 97.0 77.4 2 
4331 None . . . .  . . . .  . . . .  140ld 4.8 4.0 2.3 3 
4341 8 50-225 8 1401" 16.1 17.0 9.0 m 

"CIIBM 140 1Oll4601. 'CCIIBM MP17010J,CC[lBM707017074], <lBM 1 9~7040~7090~70941. P 
0 

!! 




860 Part 4 1 Family Range, Compatibility, and Evolution 

Model 

1130’ 
i aoo l  
20 

25 
30 
40 
44 
50 
60 
62 
64 
65 
66 
67 
TSS Isoftwarel 
70 
75 
85 
91 

A--92 W 
95 A -

A1.2RCA Spectra 7 

1964 1965 1966 1967 1968 1969 1970 

A-announced; D-delivery; E-exhibited; W-wilhdrawn 

‘Not part of Systerni360 

*Uses same ISP 

Fig. 2. IBM Systemi360 model introduction dates. 

tion and technology but include RCA marketing and profit 
strategy. In addition, of course, there should have been lower 
development costs. RCA’s exit from the computer business when 
it sold its user base to UNIVAC also may be indicative of the fact 
that the 360 costs were not out of line with the product and service 
costs. 

An interesting aspect of the design is the method used to 
implement the individual computer models (of the range) and 
their associated costs. From the standpoint of innovation, the 360 
was the first computer series to cover a wide range. The more 
basic P’s (Models 20 - 65) were implemented via a micropro-
grammed processor. This is based on a computer program within 
an M[read only], i.e., a read-only storage (ROS), to interpret the 
common ISP. A payoff from this implementation strategy is a 
solution to the “compatibility design constraint,” which is the 
ability to provide compatibility with the customer’s previous 
(IBM) machine, which, of course, was not a member of the 360 
series. This is undoubtedly the most difficult constraint to meet in 
the P designs, and probably the most significant real innovation. 
From the marketing viewpoint, it provided the user with a crutch 
to go from a former IBM computer to the System/360. This is 
accomplished through “emulation,” which (as defined by IBM) 
means the ability of one C to interpret another’s programs at a 
reasonable performance level. These emulations are realized by 
various microprogrammed P’s designed to interpret both the 360 
ISP and one or more of IBM 704, 709, 1401, 1410, 1440, 1460, 
1620, 7010, 7040, 7044, 7070, 7074, 7090, and 7094. 

Section 5 1 The System/360 and Systemi370 Family 

Most of the above ISPs have a different structure from the 360 
ISP. For example, the 1401 series instructions and data [Bell and 
Newell, 19711 are variable-length character strings; the 1620 has 
variable-length data strings; the 704 series process fixed- and 
floating-point data with single-address instructions; and the 7070 
is a fixed-word decimal computer. Thus the 360 C’s represent the 
first machines to be two logical processors in the same physical 
implementation. 

The emulated speeds are often better than that of the original 
hardwired computer. This is not surprising, considering the 
change in technology; it is a very attractive feature. The 360 Mp 
performance is often a factor of 5 to 10 times the “emulated” 
computers; and the M[ROS] data rates are a factor of 25 times the 
Mp’s. For example, the Model 65 emulating a 7090 runs faster 
than a hardwired 7090. Note, by way of contrast, that the 
hardwired models 91 and 44 have the lowest cost/performance 
ratios in the series. 

There are minor deviations in the particular models, but all 
implementations belong to a common ISP subset. The Model 22 
and the Model 91, the extremes of the series, deviate most from 
the standard 360 ISP. The range of models shows the comparative 
effects of implementation on the actual processing times. For 
example, the designers of the various C’s were constrained by 
memory bandwidths. Since the core memories have about the 
same cycle time (0.75 - 2.5 ps), variation in bandwidth is 
obtained by increasing the data-path width from 8 to 64 bits and 
by increasing the number of independent Mp’s. By looking at just 
Mp bandwidth, for models 30 - 65, we obtain a range of 5.3 to 
133.5 Mbitis, corresponding to a performance range of about 1to 
25. By doubling the number of independent memories, this factor 
can be increased to 50. These models correspond to a Pc 
performance range of 1 to 50. Although we might expect a 
narrower range (based on Mp speed), the range can be increas- 
ed by performance suppression (at the low end). Power range can 
be increased by lowering the absolute performance o f  Model 30. 
This is accomplished by making performance tradeoffs to lower 
cost. 

Logic Technology 

The logic of the 360 series is realized in a hybrid technology, 
composed partly o f  integrated-circuit techniques and partly of the 
solid-state techniques standard in second-generation machines. It 
is a “thick-film” technology, which deposits the circuitry on a 
ceramic substrate. This i s  called Solid Logic Technology (SLT) and 
is used solely by IBM. This production technique allows only for 
the fabrication of passive circuit elements on the substrate. The 
semiconductor elements (diodes and transistors) are produced 
independently, using standard semiconductor production tech- 
niques on a wafer. The semiconductors are then cut and bonded to 
the substrate, and the complete SLT logic unit is encapsulated. 



Chapter 52 1 The IBM SystemWBO, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 861 

The substrates correspond roughly to logic elements (gates, 
inverters, flip-flops, etc.). The SLT units are placed on larger 
printed-circuit boards. 

Although SLT differs fundamentally from integrated-circuit 
technology, the overall size of the final printed-circuit boards is 
about the same. At the time the decision was made to develop the 
technology, it was unclear that integrated-circuit technology 
would reach mass-production state. Thus the SLT program was an 
intermediate design prior to integrated-circuit technology. The 
two approaches are about the same from the standpoint of 
reliability, especially when one considers the soldered printed- 
circuit mounting. The number of connections to the printed- 
circuit board are about the same. The production technology of 
the 360 series is outstanding, perhaps surpassed only by the 360 
marketing plan. 

PMS Structures and Implementations of the Compufer 

The PMS structures of the various models in Systeml36O are 
basically similar, except for the upper end of the series and for the 
Model 44 (complete compatibility can be purchased as an option). 
We take up the main group first and then discuss the others 
individually. 

Models 30, 40, 50, and 65. The PMS structures of blodels 30, 
40, and 50 are all very similar. Figure 3 shows the tree-structured 
Mp-Pc of the Model 50.' They all use a P.microprogram, although 

'The structure of the Mp's does not include the local M's used for access 
control, i.e., the storage protect key mechanism, which it is hoped the 
student will forget about (forever). 

1 3 

Pc and i lo 

2 4 

[ t o :  external C l  Pio[fOMultiplexor 

5 
Pi0 [#1:3; Selector 

Channel] 

dotes 

. Mp[128-256 Kbyte; core; 2 ~ s i 4consecutive bvte l  

'. Mp"2361-2 Large Capacity Store/LCS: 8 psiw: t.access: 3.2 p s ;  262 Kw; 8 byteiword, 


8.1 parity b i t iby te l  
I. Pc[!Time multiplexed between central processing and l l O ! l  
1. Pio[Byte Mult iplexor Channel: t o :  8 Kio max: address capability: 192 I10 Devices1 
D. Pio[Selector Channel] 

Fig. 3. IBM System1360 Model 50 PMS diagram. 

with different ISPs. Some gross characteristics are given in Table 
1. The Pc of Model 65 is also microprogrammed, but it has 
hardwired Pio's. A PMS diagram of Model 65 is given in Fig. 4. 

The C structures with M[ROS] use a single physical 
P.microprogram to realize the Pc, the Pi0 [Multiplexor Channel], 
and the Pi0 [Selector Channel]. This technique of using a 
single shared physical P.state is the same one that PioE'Multi- 
plexor] uses. The Pio['Multiplexor] is equivalent to multiple Pio's. 
Within the physical P, interrupts are used to switch among 
the P's. 

The interpretation cycle for the 360 ISP starts by fetching the 
instruction, proceeds to fetch the operands, executes the instruc- 
tion, and then returns results to Mp. The instruction-interpreta- 
tion process takes only a few Mp references for most instructions. 
The P tests for interrupt requests during instruction fetch. 
Pending interrupts are serviced by processor microcode. Pio 
hardware handles data transmission by breaking in (interrupting) 
for memory service and updating channel information. 

A few instructions require a long (or indefinite) interpretation 
time---e.g., character translate and edit-since the operations are 
on character strings. Here, the iterative program loop which 
operates on each character of the string must test the attached K's 
to detect when the Pi0 interpreter is to be run for data transfers. 
The long instructions can take several hundred microseconds and 

Tconsole 

4l l  K[=0.71 

1 4  
L[to: external Cl 

Notes 
1. Mp"2365-3; 256-1024 Kbyte; core; .75 psi8 consecutive byte1 
2.  Mp"2361-2 Large Capacity StoreILCS; 8 psiw; t.access: 3.2 us:262 Kw; 8 bytelw; 

8.1 parity b i t lby te l  
3. S18 M;4 ?;time multip1exed:concurrency : 1) 
4. K[Address capability: 1921 
5. K[ '2870 10Selector Subchannell 
6. K('2860 10 Selector Subchannell 

Fig. 4. PMS structure for IBM System1360 Models 65 and 75. 



862 Part 4 1 Family Range, Compatibility, and Evolution 	
Section 5 I The System/BBO and System/370 Family 

Read Only Storage 

Micro-Coded Sequencing 


t 


* -

0 - G I  


Selector Channel - Buffer 

Mu1 t i  plexer Channel -
0 


General registers 

Floating-point registers 

Adder 

Local Storage 

Read only storage 

Basic machine cycle 

Multiplexer channel 

Burst male 

Mult iplex mode 


Selector channel 

Data tmnsfen 
Processor to storage 
Storoge to storage 
Selector channel to processor 
Multiplexer channel to processor 
Control unit  to channel 

-

Control 

Working Registers and 

Electronic Swi tches 


Logic Unit 

CaDacifv/Number Data Width 

16 4 bytes 

4 8 bytes 

4 bytes 

1 byte 
1 byte 

4 bytes 

4 bytes 
4 bytes 
4 bytes 
1 byte 

Main Storage 

Multiplexer Channel 

I Local Storage 

I 
General Registers 
F looting-Poi nt Registers 
Selector Channel 

Control Storage 
Working Registers 

A = One byte wide data path 
@ B = Four byte wide data path 

Accerr/Speed/Rote 

0.5 microsecond 

R / W  cycle/4 bytes 


0.5 	microsecond 

R / W  cycle/4 bytes' 


0.5 microsecond 

0.5 	microrecond 

R/" cycle/4 bytes 


0.5 	microsecond 

Rd cycle 


0.5 microsecond 

1 byte 

Fig. 5. IBM Systemi360 Model 50 data-flow diagram and system characteristics. (Courtesy of lnternational 
Business Machines Corporation.) 



Chapter 52 I The IBM SystemR60, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 863 

cannot be interrupted; thus the response time for an interrupt can 
be very poor. Figure 5 gives a simplified picture of the register 
organization of a Model 50. 

The actual Systemi360 ISP interpretation program in each of 
the models is difFerent. In addition, each model has micropro- 
grams for interpreting other ISPs through emulation. Tucker 
[1967] discusses how the models were changed as the emulation 
constraint was added. Table 1gives the computers which each of 
the models can emulate. A register structure ofthe C[’30] and the 
operation for the P.microprogram ISP are given in Chap. 12. Tables 
2 and 3 in Chap. 41 give the additional parameters which 
influence the instruction interpretation rate of the P.micropro- 
gram. The significant parameters for a P.microprogram are the 
M[ROS] hardware characteristics (speed, size, and information 
width); the number of fields in the M[ROS] instructions, which 
gives an indication of the number of control functions performed 
in parallel; the M[general register] rates and their location in the 
structure; the Mp data rate; and the characteristics of M[tempor- 
ary] within P. The activity of transferring data from a K, via the 
Pio[’Selector], is done concurrently with normal instruction 
interpretation in Models 30, 40, and 50. A program in M[ROS] 
sets up the data transmission with Mp, and transmission is 
controlled by an independent hardware control. 

Model 25. The Model 25 is an interesting C. Perhaps some of 
the interest of the authors is caused by the mystery (to the authors) 
as to what its ISP is. Its ISP is no doubt described in maintenance 
manuals. We can make the following observations based on its 
characteristics taken from its manual of Functional Characteris- 
tics. The observations are: 

1 	 It has a very high-performance Mp, namely, Mp[core; 
.9 Fslw; 16 (24(32148 kby; 2 by/w]; the Mp power is almost 
that of a Model 50. 

2 	 There is a relatively straightforward Pc which is micropro- 
grammed. The Pc uses Mp for its memory. The Systemi360 
ISP is defined in conventional M[read, write]. Of the 
Mp[48Kby] 16 kilobytes are reserved for a microprogram. 

3 	 Its performance is between that of Models 20 and 30, 
performing a 360 ISP instruction in about 80 ps. 

4 	 The penalty paid (slowdown factor) to interpret the 360 ISP 
is therefore 8011.8 = 45. 

5 	 A small 180-ns local store is used for operands. 
6 	 The Pc cost appears to be about the lowest in the series. 

We should ask ourselves: 

1 	Why do we want an intermediate-level P. microprogram 

with its own M.read-only, as in the otherprocessors? These 
P’s just seem to waste power. 

2 	 Why should we bother to implement an intermediate-level 
360 ISP? We know the final user will write programs in a 
much higher-level language. Thus two levels of interpreta- 
tion are required instead of one. It is assumed that to 
program a given task will take, say, x ~s if we are using the 
360 ISP. We assume the same task programmed directly in 
the Pc could take as short a time as x/45 ps if the Pc were 
used directly. 

We assume that if the P.microprogram, which is used to define 
the Systemi360 ISP, were used to interpret a FORTRAN ISP, the 
speed for a Model 25 FORTRAN ISP might easily approach that of 
the Model 50. 

Model 44. Model 44 does not use M[ROS], but its Pc and Pi0 are 
hardwired (Models 75 and 91 are also hardwired). The PMS 
structure of the Model 44 is given in Fig. 6. Model 44 (and Model 
91) stand out as having better performance per unit of cost than 
their nearest neighbors, which are implemented with M[ROS]. 

It must be noted that Models 44 and 91 are not strictly 
compatible with the 360 ISP, since they do not process variable- 
string and variable-decimal-data formats, although Model 44 
options can make it completely compatible. (Subroutines will 
probably perform satisfactorily for most applications.) 

The PMS structure of the Model 44 (Fig. 6) is a tree. The C[’44] 
structure indicates 2-Pio“High Speed Multiplexor Channels/ 
HSMPX], which is between a P[’Selector] and P[’Multiplexor] in 
power, since a single physical P[’HSMPX] with four subchannels 

&Tconsole 

2 

Pi0 “2870 Multiplexor] K [+0:71 

3 

Pio[#1:4 ’HSPMW K[+U: l l  

3 

Pio[ ir l  :4 ’HSPMXI K[dO: l l  

Notes 
1. 	 Mp[32-256 K byte; core; 1 psl4 consecutive byte1 
2.  	 KCAddress capacity: 641 
3. 	 Pi0 i‘High Speed Multiplexor Channel\HSPMX] 

Fig. 6. IBM System/360 Model 44 PMS diagram. 



864 Part 4 1 Family Range, Compatibility, and Evolution Section 5 I The Systeml360 and System/370 Family 

E44 32,768 8,192 
F44 65,536 16,384 

Processor Storage GM 131,072 32,768 
H44 262, 144 65,536-

Manual Dota Entry from System Control Pone1 

Data Out to 
Channels 

Check/Gen 

I I I I 

II 
Function 

FPR #O 374

I 

--u-Dota Entry 

From MPX 

Address Entry i 
Data 1 From HSMPX 

O p  = Operotion Code 21-23, etc. = B i t  numberr 
FPR = Flooting-Point Register SAR = Storoge Address Register * Includes parity 
GR = General Register SDR = Storage Data Register I High-speed General Registerr 
IC = I".hYCtiO" Counter B,4,32,etc. = Bit width of the circuit +Con be dirplaved on system control pone1 



Chapter 52 1 The IBM Systemi360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 865 

can behave as four independent Pio’s. The organization of the 
Model 44 Pc registers is given in Fig. 7, which reveals a 
straightforward implementation. The heavy lines in Fig. 7 
indicated an ORing of register outputs to form a single data bus 
(usually 16 or 32 bits wide). The 16-bit crossover function box 
allows the right and left halves (16 bits) of the input to be 
exchanged when output. Almost all the units are registers (except 
the adders, parity generators, and ORers). The A, Ax, B, and Bx 
registers are used as the M. working for performing instructions, 
where the .r indicates an extension register used in the 64-bit 
floating-point operations. The C register is a second operand 
register used for arithmetic and logical operations. 

Model 75. The PMS structure of Model 75 is given in Fig. 4. 
Models 65, 67, 75, and 91 all use the same basic Mp”2365; core]. 
The S[n Mp; mP], which switches between the n Mp modules and 
the m Pc and Pio’s, varies with model, however. C[’65] and C[’75] 
use a simple time-multiplexed S in Pc, called the S[‘Bus Control 
UnitiBCU]. This S makes decisions about which P is to use which 
Mp, rather than having each Mp arbitrate the P requesting 
service locally. When the memories are all about the same speed, 
such an S is all right; however, it has severe limitations when 
slow-speed (8 ps for the large core store) and high-speed 
memories (0.75 ps) are intermixed. The principal difference 
between Models 65 and 75 is that C[’75] is hardwired and, 
depending on the size of the configuration, may have lower 
cos tiperformance. 

The simplified functional unit diagram of C[’75] (Fig. 8) is more 
abstract than the register interconnection diagram of a C[’44](Fig. 
7). From this description (Fig. 8)of the logic design, one is able to 
conjecture what is necessarily within the instruction, execution, 
variable-field length, and decimal functional units. The diagram is 
presented at a nonuniform level at both the PMS and register- 
transfer levels. There is somewhat more detail than in the PMS 
structure (Fig. 4). The Model 75 is possibly the first System/360 to 
require an intermedite-level diagram between a PMS structure 
and a register-transfer diagram. The instruction unit contains the 
instruction location counter (part of the ISP) and is responsible for 
obtaining the next instruction and the operands. Since there can 
be overlap in the instruction fetching process, this unit is 
responsible for holding a number of instructions and stores up to 
128 bits (2  doublewords) of instructions at a time. The execution 
unit and the variable-field and decimal units carry out operations 
on data. The execution unit processes floating-point and fixed- 
point data. 

Model 67. The Model 67 was introduced in April 1965 for the 
purpose of timesharing. The entry was prompted by MIT’s project 

MULTICS. MIT had ordered a GE 645 for experimental research 
in timesharing. IBM formed a group for the development of a 
time-shared computer and responded with the Model 67. The 
Model 67 is essentially a Pc[’65] with adequate S’s for multipro- 
cessing and a K between Mp and Pc for multiprogramming and 
memory mapping. Because of the software uncertainties, the 
Model 67 ran as a Model 65 in most installations (in 1968). The 
University of Michigan and MIT’s Lincoln Laboratory, the first 
two customers having considered the h4ULTICS proposal, were 
instrumental in outlining the specifications [Arden et al, 19661. 
The hardware (Fig. 9) is interesting from several aspects. First, 
there are adequate facilities for memory mapping and program 
segmentation. This general scheme is outlined in Fig. 10. In the 
Model 67 a user’s segment and page maps are in Mp, and these 
maps point to physical Mp blocks of the program. Each time a 
reference is made, the map is checked for the actual reference. In 
order to avoid the accesses to Mp for each Mp reference, a K, with 
an M[content address], is located between Pc and Mp to 
transform a 24- or 32-bit virtual address in Pc into an actual 19-to 
22-bit physical address in Mp. This K is not shown in Fig. 10 
because it is not logically necessary. The scheme suggested in Fig. 
10 uses control bits in the map to determine legal Mp accesses. In 
the Model 67 the storage key mechanism holds the information 
whether a given page can be accessed by a given numbered user 
(instead of associating the control with the mapping as shown in 
Fig. 10). 

Second, the Model 67 is the first acknowledgment by IBM 
of multiprocessor computers, since it provides adequate switch- 
ing to allow multiple Pc’s. The C[’65] multiprocessing configura- 
tion has been introduced based on Model 67 structure. Multipro- 
cessors are necessary for reliability, not solely for performance 
reasons. 

The PMS structure of C[’67] in Fig. 9 does not have to use the 
S[’Bus Control Unit/BCU],’ as in the C[’S5]. The C[’67] can have 
an S in each ivlp, so that four P’s can communicate with an Mp, as 
shown in Fig. 9. Each Mp makes the decision about the P request 
to be honored next. Thus the problem of having an “all-knowing” 
S[’BCU] is solved by allowing each Mp to do local scheduling, 
rather than having a dialogue with another component (with time 
delays). The S[’BCU] in a duplex C[’67] is still present, but with 
less power, in the form of the S[’2846 Channel Controller]. It is 
used to arbitrate the Pi0 accesses to Mp. 

Without multiprocessing, the Pc seems very badly mismatch- 
ed with respect to Mp. Consider, for instance, the data rates on 
the C[‘67]. From Fig. 9 its maximum possible Mp data rates 
are: 

‘A system with only one port at Mp, controlled by BCU, is called a 
simplex. A system with multiport Mp is called a duplex 



I 

866 Part 4 1 Family Range, Compatibility,and Evolution Section 5 I The Systemi360 and System/370 Family 

OneOne Bvte EachEach One Byte One ByteOne ByteByte 

9 ? 
Mult ip lexor Selector 

Channel 

Eight Bytes Eight Bytes t 
I

I 23652365 ProcessorProcessor StOrOge 
(Main(Main Storage)Storage) 

Storage 

1 

tzl
Eight 
Bytes 

I Eight IByter 

Storage 
ControlControl 

Unit 
st::: 

I 

Eight Bytes 
tEi7. t  Byte;.


16 General 

Bytes 

lnrtrvction Unit 

* One byte address bypass 

2365 Processor Storage 

2361 Core Storage 

General regirterr 

Flaoting-point registers 

Addressing adder 
Porallel odder 
Exponent adder 
Seriol adder 
Boric machine cyc le  

2860 selector channel 

2870 Multiplexor channel 


Bust mode 

Mult ip lex mode 

Selector rubchannel 


i 

i 
1 Variable Field 

Execution Uni t  Length and 
Decirnol Uni t  

) re  I One 1 
Bytes Bytes 

V 
Porallel 

Exponent 

Adder 

Data Width 

8 bytes 
8 bytes 
i word 
2 words 
3 bytes 
8 bytes 
I byte 
1 byte 

1 byte 

I byte 

I byte 

I byte 

I byte 


L 
One Byte 

Accers/SpeedBote 

.75 microsecond rtoroge cycle 
8 microsecond storage cycle 
200 nanoseconds 
200 nanoseconds word 
200 nonoseconds 
200 nonoseconds 
200 nanoseconds 
200 nanoseconds 
200 nonoseconds 
I .3  mi l l ion bytes per second 
I10  kb to 450 kb 
50-1 10 kb 
50-1 10 kb 
I00 kb. each 

Ser,al 
Addcr 

I
Ooe Byte 

Comment 

A l l  models  

Al l  models 

16 Gene101 reg8iteir 

4 Floating-point I-egiiteir 


8 bytes to stol-oge 
8 bytes to rtoroge 

Fig. 8. IBM Systemi360 Model 75 data-flow diagram and system statistics. (Courtesy of International Business Machines 
Corporation.) 



Chapter 52 1 The IBM System/360, System/370, 3030, and 4300: A Seriesof Planned Machines That Span a Wide Performance Range 867 

Tconsole 

1 3 I 
K [;;0:1, 'Dynamic Address Translat io~] 

2 4 

5 

KiaO:71 

6 

7 

IUotes 
1 .  Mpf'2365-12; 256-1024 K byte; core; .75 psi8 consecutive byte1 
2. Mp"2361.2 Large Capacity StorelLCS; 8flslw; t.access: 3.2 ps; 262 Kw: 8 bytelw; 8+1 parity 

bit lbytel 
3. S18 M;(4 - 61 P; crosspoint; concurrency: 8; t.delay: . 1  psl 
4. S14 M; 2 P; crosspoint; concurrency: 2; t.delay: 1 psi 
5. KfAddress capacity. 1921 
6.  KI'2870 10Selector Subchannell 
7. K i '286010 Selector Subchannell 

Fig. 9. IBM Systemi360 Model 67 PMS diagram. 

For 1Mp"2365-121: 

and  for 1Mp"2361 Large Core Store]: 

Thus the total data rate is 

171 x 8 + 8 x 4 = 1,368 + 32 Mbit/s 

= - 1,400 Mbit/s 


The  processing rate is approximately 

64 bits 29 Mbit/s-= 
2.2 ps 

An Ms.drum rate is approxim'ately 

Thus, for the several P's, an effective Mp request rate of 100 
Mbitis might be needed. The data-flow mismatch (between Mp 
and the P's) occurs because of the P's, the S (the L's connecting P 
and Mp), the lack of P's, and the fact that t.access = - l/Z t.cycle. 

The Pio['2870], used in Model 65 and above, is described at 

two structural levels in Fig. 4.The Pi0 includes a large M.working 
to store the state of each of the logical Pio's. This Pi0 state includes 
the instruction location counter, the control state bits (active, 
running, interpreting an instruction, processing data, etc.), and 
buffering (one 8-byte word). By having an M.buffer, the demands 
on Mp from the Pio's are reduced by a factor of 8. Although the 
expected data rate from many K's does not require the extra M, 
there are possible times when the uncertainty of the access times 
for Mp might cause data loss. Since the M.working is necessary to 
store the Pi0 state, the additional space for buffering is not 
expensive. An alternative design might use Mp for this buffering. 

The four Pio['2860 Selector Channell's are implemented as 
independent Pio's, using conventional hardwired logic and buffer- 
ing. However, they are packaged as one unit. 

Model 85. The model 85 was announced in February 1968, with 
the goal of being the highest-performance Model 360 in produc- 
tion. The performance is about 3 to 5 times that of the Model 65 
and in some cases outperforms a Model 91 [Conti, Gibson, and 
Pitkowsky, 19681. 

The PMS diagram of the Model 85 is shown in Fig. 11.The Pio, 
T, Ms structure is identical to that of Models 65 and 75 (Fig. 4). 
The two interesting aspects of the structure in Fig. 11 are the 
M[content addressable; 'Buffer Storage; 16/32 page; 1024 byipage] 
and the Pc. The pages are filled in groups of 64 bytes. as 



- - - - - - 

1 

868 Part 4 I Family Range, Compatibility, and Evolution 	 Section 5 1 The System/BBO and Systern/370 Family 

Logicol (v i r tuoi)  address from processor 

Segment Page number Word !cell) 1 	 1number I w t h i n  segmentlwithin poge 


Processor component 

t-- 


User segment table register 1 I L
I 

y2Seoment table2 I 1 

I L  I i i  i 

Segment 

table 

length


I 
 - I t . / / 
I

TZTfi 
Control' Origin of page 

-Address- translation- - !user mops) - - -

Primary memory component 

within poge 

1 

4 

2 

M.buffer 

6 

Notes 
1. 	 Mp1512 -4096 K byte; core: . 96p /16  consecutive byte;single error 


correctionidouble error detection] 

2. M. buffer "cache; 16 -32 K byte; 80 ndword: content addresriblel 
3. Pc[t.cycie: 80 ns: instruction prefetch: "2w; 16 bytelwl I 
4. KLAddress capability: 1921 
5. KL'2870 10Selector Subchannel] 
6. KY2860 10Selector Subchannell 

Fig. 11. IBM Systemi360 Model 85 PMS diagram. 

Mp[l kdw] and a small Mp[80 nslw]. The CDC 7600 has a similar 
structure, but the Mp-Ms migration is under programmed 
control. 

The P. microprogram used for controlling the Pc[K['Execution 
Unit]] allows for great flexibility in the definition of ISPs. An 
Mp[500 w] is available for the user; this may be loaded by a 

v_--iprogram, and it specifies an ISP. One standard option is to 

"+"an addition operation
' access and act iv i ty information(read,write.reod only, etc.). 


located in primary memory during execution 

Fig. 10. Memory allocation using pages and segments. 

references to a particular physical block in Mp.core are made. 
Conti, Gibson, and Pitowsky [1968] give running times for various 
programs as a function of buffer memory size. Multiprogramming 
may degrade the performance more than any other case. This 
process, which has been referred to as look-aside, or a slave 
memory, was suggested by Wilkes [1965]. It is completely 
analogous to the Model 67 M[content.addressable; 8w] which is 
used to hold the segment-page map for a multiprogrammed 
timesharing system. It is also analogous to a one-level storage 
system (Atlas; see Chap. 10) formed from two physical M's whose 
performance differs significantly. Here, the effect is to try to 
approximate a computer with a large Mp[80 nslw] by using a large 

emulate the 704-7094 series. 
The Model 85 removes the restriction of aligning words at 

particular boundaries. Thus any logical word, independently of its 
length, can be located at any physical location addressed in bytes. 

The Pc's data operation performance is impressive. A fixed-
point multiply is done in 0.4 ps ,  and a floating-point multiply 
takes 0.56 ks (not including accesses). 

The data-type extendedpoating-point number is used in Model 
85. Thus a 24-, 56-, or Il&bit fraction part can be used. 

Model 91. This model has a very low costiperformance ratio. 
Only about 20 Model 91's were produced before it was withdrawn 
from the market. It has the highest performance of the series. The 
hlp is 0.75 ps, but 16 are overlapped to provide a theoretical 
maximum bandwidth of 16 x 6410.75 = 1,370 Mbitis. About 2.5 
mega-instructions per second are executed; thus, a total of 70 
Mbitis of Mp is absorbed by Pc. 

There are other interesting models in the '90 series; the Model 
92 was a paper machine, and the Model 95 was unannounced but 
produced, a version of the Model 91 with an Mp[integrated cir- 
cuit; 60 ns/w; 8 by/w]. The Model 91 is covered in detail in Chaps. 



Chapter 52 I The IBM Systemi360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 869 

18 and 19. It is similar to other very large computers in that many 
techniques are employed to obtain parallelism. The January 1967 
I B M  Journal of Research is devoted to design issues of the Model 
91. 

Models 1130 and 1800. These computers are presented as 
reference points and have nothing to do with the C[’360]. They 
are implemented outside the Systemi36O framework but use its 
technology, and so cost comparisons are still somewhat meaning- 
ful. These computers are straightforward, and for a given task 
which does not use floating-point arithmetic, they should perform 
as well as any Systemi360 model. The arguments we use for the 
intermediate Pc for the Model 25 apply equally well here, too, 
namely, Why have such a complex ISP when simple ones will do 
just as well? 

The programmed floating-point arithmetic times for 4-ps 1800 
and the “hardwired (microprogrammed) Systemi360 Model 30 
are compared in Table 2. We would expect the 2-ks 1800 to be 
better by a factor of 2. Note that the times are about the same for 
Model 30 and the slower 1800. The costiperformance is especially 
low with the 1130. It is interesting to speculate why the 1130 and 
1800 cannot be implemented within the Systemi360 framework. 
Are they “loss leaders”? Are they in response to more sophisticat- 
ed, performance-oriented users? 

The PMS Structure of the Controls, Terminals, Secondary 
Memories, and Special Processors 

There are many common components which attach to the C’s 
(Figs. 12 to 17). Most of the components which attach to a Pi0 are 
not especially interesting, but they give an idea of the behavior 
and parameters. For example, the expression T[’1403 Model 3; 
line printer; 1100 lineimin; 132 chariline; 8 bitskharacter; 64 -
240 character set] pretty well describes a typical line printer. 
From the above description one can deduce the data rate of a 
T[line printer]. It is 132 chariline x 1100 lineimin x 1/60 minis x 
8 bitslchar = 19.4 Kbitis. 

Table 2 IBM 1800 (4 ps) and IBM System/360 Model 
30 Floating-Point Arithmetic Timing 

Operation times (ps} 

OzJerution 1800 (4us) SustemI360 Model 30 

+ [sf}; + [df] 460; 440 75;115 
x (sf]; (df) 560; 790 320; 1060 

766 600 
sin [f] 4500 29653 


3000 3876 
exponential if} 2000 41 73 

KI‘Channel t o  Channel Adapter] 

a. 	 Interconnection of two computers (or within a computer) for 

traiismission of information. 


Pio[’Selector Channel] 

I 
P[’Storage to  Storage Channel; block transfer] 

b. Processor for the transmission of information (vectors1 within Mp. 

1 

Pi0 K [#A; ”2903 Special Control UnitiSCU] 

I 

c.  Interconnection to  other controls and computers 

I

I 	 IP“2938 Array Processor] 

d. Array Processor 

Notes 
1.  X := (CIKlTIMs) 
2. 	 P[operations: (vector move, vector multiplication, vector inner product, sum of 

vector elements, sum of squares, convolution, difference equation, fixed-floating 
conversion; data types: fixedlfloatingl 

Fig. 12. IBM System/360 Special P’s and K s  diagram. 

The Channel-to-Channel Adapter Control. The most interest- 
ing group of components (outside the C structures) are the special 
components shown in Fig. 12. The K[‘Channel to Channel 
Adapter] allows two P’s, on either the same or a different C, to 
communicate with one another. This K is used in the construction 
of a dual C system or the “’Attached Support Processor/ASP]. A 
C[’40[’50] is attached to a C[’65/’75]. The C[’40(50] is used as a Cio 
with file processing capabilities. The K has M.buffer. Data can 
flow in only one direction at a time. 

The Special Control Unit. The K”2903 Special Control Unit/ 
SCU] consists of two independent K’s which are physically 



870 Part 4 1 Family Range, Compatibility, and Evolution 	 Section 5 1 The System1360 and System1370 Family 

Ms[#l:8; '231 1 Disk Storage Drive; 
removable: moving head disk; 
t.ave.access: 68 + 12.5 ms; 
transfer rate: 156 Kbytels; 
capacity: 7.25 Mbytel 

~ 

Ms[#l:4; '2302 Disk Storage; 
moving head disk; 
t.ave.access: 90 + 17 ms; 
transfer rate: 156 Kbytels; 
capacity: 112 Mbytel 

Ms[W :2; '2303 Drum Storage; 
t.ave.access: 8.5 ms; 
transfer rate: 312 Kbytels; 
capacity: 7.8 Mbytel 

s Ms[i;l:lO;'Data Cell; 
removable: magnetic card; 
t.ave.access: 325 t 25 ms; 
transfer rate: 55 Kbytels; 
capacitylcard: 40 Mbytel 

Ms[X1:4; '2301 Parallel Drum; 
t.ave.access: 8.5 ms; 
transfer rate: 1.2 Mbyteis; 
capacity: 4 Mbytel 

~-~ 
Ms[#l:8; '2319 Direct Access 

Storage Facility; 
removable: movina head disk: 

Votes 	 t.ave.access: 68 + 12.5 ms; 
1. 	 Pio[Selector 1 Multiplexor] transfer rate: 312 Kbytels; 

2 .  	 Pio[Selectorl 

Fig. 13. IBM System/360 M s  [drum; disk; data cell] PMS diagrams. 

packaged together and allow users to interface with the Pio's. 
Although it has not been discussed, the actual interconnection 
with a Pio, via the S[Pio; K]; is via a physical I/O bus which is 
arranged in a bus (or chained) fashion. Such a single interface to 
handle a wide range of needs (high and low response and data 
rates) via a single set of electrical conductors requires a great deal 
of control information to be passed along the link. Therefore a K 
must have a great deal of knowledge of the dialogue in order to 
communicate. The hardware to attach to the I/O bus at a K is 
costly and must be designed carefully. The K['SCU] provides a 
rather simplified interface to the Pio. All IiO bus synchronization 
control, communication protocol control, buffering, and electrical 
isolation are within K['SCU]. The K['SCU] is fairly flexible, in that 
devices connected to it can communicate with one another 
without Pi0 (see Fig. 12). 

Storage-to-Storage-Channel Processor. The P['Storage to Stor- 
age Channel] i s  a special processor which performs the sole 
function of transferring data blocks (a word vector) between one 
location in blp to another in blp. It qualifies as a P, since it takes 

models: 11213141 51 6;  
drives/unit: 112; 
density: 800 1800 180011600 11600 11600 

bits per inch; 
transfer rate: 30160190l6011201180 

Kbyte/s; 

density: 1511 13022 bits per inch; 
transfer rate: 170 1340 Kbyte/sl 

1 Ms"2415 Magnetic Tape Unit and Control; 
models: 1 12 13 14 15 16: 
drivedunit: 2 14 16 12 14 16; 
density: 8001800180011 600 I1600 11600 

bits per inch; 
transfer rate: 15115115130130 130 

Note: 	 Kbyte/s;
1. 	 Pio[#1:2; 'SelectorlMultiplexorl format: 7/9 trackl 

Fig. 14. IBM Systeml360 M s  [magnetic tape] PMS diagram. 

an instruction from Mp containing the location and length, and 
once the instruction is executed, another is fetched and executed 
(if it exists). Thus the component has a well-defined interpretation 
cycle and set of operations. This P is useful in a multiprogrammed 
environment requiring programs to be moved. 

The 2938 Array Processor. The P.arrayC'29381 is an extremely 
interesting special P (Fig. 12). It can be connected to Model 44, 
65, or 75. It has a limited instruction repertoire, but the 
instructions it interprets are more complex than those in the ISP 
of the Pc. The instructions are algorithms for operating on an array 
(a vector or a matrix). These instructions include: 

1 	Vector move, similar to the P['Storage to Storage] de- 
scribed above, with conversion either way between fixed 
and floating point 

2 	 An element-by-element vector sum 

3 	 An element-by-element vector multiplication 

4 	 A row-by-column vector inner product 

5 	 A convolution multiply 

6 	 The solution to a step in a difference equation 

The P.array is microprogrammed, using an M[ROS], which makes 
it possible to construct complex algorithms in a flexible manner. 
The hardware logic is capable of doing a combined floating-point 
multiplication and addition in 200 ns. The impressive results this 
P achieves in the interpretation of the algorithms are principally 



Chapter 52 The IBM Systemi360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 871~ 

KTr1442-Nl; card reader: 400 cardlmin: 

card punch: 160 col ls ;  

operation: half duplexl 


KT1'1441-NZ: card punch: 160 collsl 

KT1'2501-81; card reader 600 cardlminl 

'2501.62; card reaaer: 1000 cardlm~nl 
 1 

KTI'2520-81, card reader: 500 cardlmin; 

card punch: 500 cardlmin; 

operation: half duplexl 


KTr2520-82; card punch: 500 card/minl 

'2520.83: card Dunch: 300 cardlminl 


Tl'2540: card reader: 1000 cardimin; 
card punch: 300 card/min; 
operation: full duplexl 

Kr28211 Tl'2671-1; paper tape reader: 1000 

charls; 5161718 bitdcharl 


K 1'282 1 1 T[#1:3;'1401 Line Printer; 

width: 132 columns; 

character set: 240 symbols; 

Model 2: 600 linelminl 

Model 3: 1100 linelminl 

Model 7: 600 linelminl 

Model N1: 1100 linelminl 


TV1445 Line Printer; 
width: 113 columns; 
characterset: 56 symbols; 
Model N1: 190 linelminl 

width: 120 columns: 
character set: 63 symbols; 
ModelA: 300 linelminl 

KT"1053 character printer: 14.8 char/sl I 
KTl'Magnetic Bank Check Character Reader; 


'1412: 950 documents/minl 

'1419: 1600 documentslminl 


KTr1445-Nl Magnetic Character Printer; 

190, 240, 525 lin/minl 


KTP1231-Nl Optical Marker Reader- 

pencil marked documents; 1.8 s/pagel 


KTl'1285 Optical Reader; printed documents; 
300.. charlcl,-,. . I 

KT1'1287 Optrcal Reader; 

nandprinred documents: 665 doc~mcntshin]  


KT"14181'1428 Optical Reader- 

typewritten documents: 288 -420 documents1 

minl
gate 


I L~'Selectorl'Multiplexorl 


Fig. 15. IBM Systeml360 T [reader; punch; printer] PMS diagram. 



872 Part 4 1 Family Range, Compatibility, and Evolution 	 Section 5 1 The Systemi36O and Systemi370 Family 

1 	 2 I 

I I 

Notes 
1. L[‘Selectorl‘Multiplexorl 
2. 	 K := [KTi’Bit Synchronous Data Adapter; 1 2 - 40.8 Kbitisl 1 

KTi’Telephone Line Adapter; 0 - 600 bit!$] 1 
KT”Paral1el Data Adapter: 16 - 48 b/wordl 

3. L[’Multiplexor] 

Fig. 16. IBM SystemR60 communications PMS diagrams. 

because the time to access the algorithm has gone to zero. A 
measure we might apply to a P is the ratio of the time it spends 
fetching the algorithm’s data to the total time it spends executing 
the algorithm. In a conventional computer Pc we suggest that a 
ratio of nearly 1/z is very good. Two fetches are usually required- 
one for data, one for the instruction. This P has a ratio near 1,as it 
is always accessing data (and rarely instructions). 

Secondary-Memory Structure. Figures 13 and 14 present the 
Ms PMS structures. All the K’s have an. optional S, which can be 
placed between the K and the S[P;K] to allow two Pio’s to access a 
common K (from either of two C’s or two Pio’s of the same C). The 
K[’2841 Storage Control] is interesting only in being able to 
control a series of quite disparate devices, on a one-at-a-time 
basis. 

Figure 14 presents all the Ms[magnetic tapel’s. The switch is 
interesting, as it can be used for up to four K’s to access 
simultaneously any of 16 M.tapes. (The vast array of very similar 
devices is due undoubtedly to marketing rather than production 
or engineering reasons.) It should be noted that there are two 
distinct M.tapes: conventional magnetic tape and Hypertape. 
Hypertape is explicitly addressed and has built-in error-correction 
coding. 

Terminal Structure. The structure of the vast array of printing 
devices that can attach to the C[‘360]is shown in Fig. 15. Some of 
the devices are interesting, such as the one that reads pencil- 
marked or typewritten paper. The main parameters of significance 
to PMS are the rate at which the device reads paper and the kind 
of paper it reads. 

The T and th8 K’s that connect to external processes are given 
in Fig. 16. The K[’2701] and K[’2702] are built to transform 
unsynchronized parallel data from the C into the synchronized 
serial form required by the telephone line. The K[’2701] controls a 
small number of lines of high data rates; the K[’2702] controls a 

1 	 1 

KS 

Txs 

1 

S 

1 

Notes 
1. System1360 I/O Interface Bus 
2. X := (TIMs) 

Fig. 17. ISM System/BBO peripheral-switching PMS diagram. 



Chapter 52 1 The IBM Systemi360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 873 

large number of lines at low data rates. The K[’2702] is actually an 
array of up to 31 K’s that are time-multiplexed, using an M.core to 
hold the state of each K. 

Peripheral Switching. For performance, communications, and 
reliability reasons it is necessary to provide access to K’s, M’s, or 
T’s from several C’s or Pio’s. A sample structure of a possible 
configuration, using the above components, is given in Fig. 17. 
The PMS diagram also shows the physical structure of S[from:Pc; 
to:K]. 

The IBM SystemR70 Family 

The first Systemi370 model was introduced in the summer of 
1970. During a period of 7 years, a total of 23 different prqcessor 
models were realized. Chapter 51 explains why IBM expanded 
the System/360 architecture into the Systemi370 and it also 
highlights the main differences between the two architectures. 
Figure 18 illustrates the introduction dates of the various System/ 
370 models. 

As in the System/360 series, microprogrammed processors 
were used extensively for processor implementation. In fact, only 
the Systemi370 Model 195 is a hardwired implementation. 
Control store words varied from 16 to 105 bits wide with a 
capacity of 1to 64 kilowords. It is interesting to note that the total 
number of control store bits is relatively constant in all models of 
the Systeml370 series. The total number of bits ranges from 380K 
to 1,024K. If the models with support for 0s in microcode are not 

3032’ 
3033’ 

A--D-
A--D-

L - -
-

3838’ A 
4331’ 
4341 ’ A-D-

A-D 

Fig. 18. IBM Systemi370 model introductiondates. 

considered, the range is only 380 to 560 Kbit, with an average of 
476 Kbit. This might indicate a basic complexity for representing 
the semantics of the Systemi370 ISP. The basic semantic complex- 
ity also holds for the Systeml36O ISP,’ where the range of control 
store size is 128 to 263 Kbit. If the Model 25 and the high- 
performance Model 85 are ignored, the range is 200 to 240 Kbit, 
with an average of 220 Kbit. The Systemi370 implementations 
require generally twice the number of control store bits required 
by the System/360. Does this suggest that the semantic content of 
the Systeml370 ISP is twice that of the Systemi360 ISP? 

Emulation of prior-generation ISPs is also a major feature of the 
370 implementations. Emulators exist in one or more 370 models 
for the following: IBM 709, 1401, 1410, 1440, 1460, 7010, 7070, 
7074, 7080, 7090, and 7094. 

CPU cycle time varies from 54 to 480 ns, a 9:l range. Memory 
cycle time ranges from 320 to 2,070 ns, a 6:l  range. Performance 
variations between models are also provided by varying the width 
of Pc data paths (1to 8 bytes), the width of Pc-Mp data paths (2 to 
16 bytes), the memory interleaving factor (1to 16), the size of 
address translation buffers (0 to 128), the size of main memory 
cache (0 to 32 Kbyte), and the number of Pc functional units. 
These variations produce a performance range of 40:l from the 
Systeml370 Model 115 (70 K instructions per second) to the 
Systemi370 Model 168-3 (2 to 7 MIPS). Inclusion of the 3030 
series and multiprocessors pushes the performance range to over 
1 O O : l .  

Logic Technology 

Whereas the Systemi360 models are implemented in Solid Logic 
Technology (SLT) as described previously in this chapter, many 
370 models are implemented in Monolithic System Technology 
(MST). An SLT chip usually contains one type ofcomponent (e.g., 
transistors or diodes), with multiple chips and resistors assembled 
in one package (i.e., a half-inch ceramic substrate with intercon- 
nections). MST is similar to SLT but integrates many elementary 
components (e.g., transistors, diodes, and resistors) on single 
chips which in turn are mounted several to a package. MST 
circuits in the Systeml370 Model 145 are about twice as fast as SLT 
circuits in the System/360 Model 40. MST logic takes up less 
space than SLT because of a higher packing density per chip. In 
the Systemi370 Model 145, an MST logic chip is about one- 
sixteenth of an inch square and contains over 100 components. An 
SLT chip contains only one component. Also, MST logic requires 
fewer off-chip interconnections than SLT logic and thus is more 
reliable. 
‘The PDP-11 series implementations ranged from 9,960 bits to 23,42Abits 
of control store, with an average of 15,942 bits. The VAX-11/780 requires 
about 390 Kbit. 



874 	 Part 4 1 Family Range, Compatibility, and Evolution 

PMS Structures and Implementations of the Computer 

The PMS structures of the System/370 family members fall into 
three main classes. The Models 115 through 125 are low-
performance distributed systems. The Models 135 through 158 
are medium-performance machines that have the CPU and the 
channels sharing certain data paths and contending for micropro- 
gram control. The Models 165 through 195 are high-performance 
machines that have a great amount of overlap in CPU functions. 
They also have separately packaged channels. See Fig. 19 for a 
genealogical Systemi370 family tree. Each main trunk of the tree 
will be discussed individually. 

Mid-Range Machines: Models 135, 138, 145, 148, 155, and 
158. The medium-performance machines are the 135, 138, 145, 
148, 155, and 158. These models have similar PMS structures. 
(See Fig. 20.) 

The Models 155 and 165 were introduced in June 1970. These 
were the first 370 models to appear on the market. The 153was 
marketed as a general growth system for Systemi360 Model 50 
and large Systemi360 Model 40 users. Thus users could upgrade 
to the better priceiperformance ratio of the 155 with minimal 
software changes. 

Although the 155 does not incorporate any technological 

Jan ‘70 
Apr ‘70 155 165 
July ’70 1A 6  
Oct ‘70 
Jan ’71 
Apr ‘71 
July ‘71 
Oct  ’71 
Jan ‘72 
Apr ‘72 
July ‘72 
Oct ‘72 
Jan ‘73 
Apr ‘73 
July ‘73 
Oct ‘73 
Jan ‘74 
Apr ‘74 
July ‘74 
Oct ‘74 
Jan ‘75 
Apr ’75 
July ‘75 
Oct ‘75 
Jan ‘76 
Apr ’76 
July ‘76 
Oct ‘76 
Jan ‘77 
Apr ‘77 
July ‘77 
Oct ‘77 

1 
3031 

L 
3032 

Fig. 19. IBM Systemi370 family tree. 

Section 5 1 The Systemi360 and Systemi370 Family 

PiolPO; Byte MPX Chl 

Pia[#l :3: Block MPX Chl Kio[m):71 

I 3 	 4.5 

r l  	 5 

M.cache 

Notes 
1. 	 M[write through cache; setsize: 128; no. of sets: 2: block size: 32 byte; 


CPU access rate: 4 bytei230 ns; channel accesses: [bypass cache; 

readlwrite Mp only; invalidate cache when appropriate1 I 


2. Mp1256 Kw - 2048 Kw; core; ECC (SEC/DEDl; 2.1 ~ s / 8consecutive byte1 
3. Pc[!time multiplexed between central processing and l/O!l 
4. 	 Pio[lntegrated Byte Multiplexor Channel; to :  8 Kio max; Address Capability: 

256 I/O devices1 
5. Piollntegrated Block Multiplexor Channel1 

Fig. 20. IBM System/370 Model 155 PMS diagram. 

breakthroughs, it is a relatively high-performance machine (see 
Fig. 21) on account of the following features: 

As do the Systed360 Model 85and the Model 195, the 153 
has a cache memory of 8 Kbyte with a cycle time of 115ns. 
This 8-Kbyte write-through cache has a set size of 128, an 
associativity (number of sets) of 2, and a block size of 32 
bytes.’ The channels never access the cache. When a 
channel writes to Mp in a location which is valid in the 
cache, the cache data are invalidated. 

The processor-memory data path is 8 bytes wide. Mp is 
core, with a 2-ps access time. 

When possible, instruction fetch and instruction execution 
are overlapped. However, operands are not prefetched. 

The Pc and the channels share the Pc data paths and contend for 
microprogram control. The data paths are shared (time-
multiplexed) by switching control between the Pc and the 
channels at well-defined points in the microprograms. F5’hen 
switching (called break-in) occurs, the current microprogram is 
stopped and the new one is given control. For example, once the 
channel is started, Pc and IiO operations can run concurrently 
until an I/O storage request occurs. Since the data path from 
storage is shared, the Pc microprogram stops and gives control to 
the channel microprogram. 

’Since the basic Mp fetch is 16 bytes, blocks are loaded 16bytes at a time. 
The second 16-byte half block is loaded upon demand, hence the 16x2 
notation in Table 1. 



Chapter 52 1 The IBM Systeml360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 875 

AII axes. x103 
MP (byte) 

(bytels) 

Fig. 21. IBM Systemi370 Model 155. 

As shown in Fig. 22, the three basic data paths in the Pc consist 
of the following: 

A 4-byte path. This path includes adders, shifters, scratch- 
pad registers, and Pc and I10 local storage. Fixed-point, 
floating-point, and enhancement instructions (i. e., those 
peculiar to the 370 architecture) use this data path. 

A 1-byte data path. This path is used by variable-field-
length instructions and single-byte operations. It is also 
used by certain emulations. Note that the 155 has the 
capability of emulating the 14011144011460, 141017010, and 
707017074 ISPs. 

An i-fetch path. This path is used for instruction pre- 
fetching. It includes buffers, counters, incrementers, and 
backup registers. Every data path in the Pc has byte parity. 

The System1370 Model 145 was introduced in September 1970. 
It was marketed as a growth system for System/360 Model 40 and 
large System1360 Model 30 users. The medium-performance 145 
was the first 370 to use monolithic (bipolar-semiconductor) main 
memory. This monolithic storage is similar to the monolithic logic 
previously described. Both 128-bit and I-Kbit MST chips are used 
in the 145 memory. 

It is interesting to note that a single, writable storage is used for 
both Mp and Mmicroprogram, the two memories being differen- 
tiated by their addresses. Eight bytes can be accessed at a time 
from Mp (540 ns for read, 608 ns for write) with no interleaving. 
The basic Pc data paths are 4 bytes wide, although an 8-byte path 
is used for instruction fetch. The Pc has a variable-length cycle 
time (203 to 315 ns). 

As in the 155, the Pc and the channels share control storage, 
Pc-Mp data paths, and the Pc’s ALU. 

The microprogram can emulate the 14011144011460 and 14101 
7010 ISPs. The 145 provides for substantial flexibility in channel 
configuration. The 145-0 and 145-2 differ in their main storage 
capabilities (2,048K maximum for the Model 2, as opposed to 
512K maximum for the Model 0). The Model 3 is an accelerated 
Model 2, the microcoding of many high-level operating-system 
functions being a standard feature. The Model 3 has 128 Kbyte of 
control store as standard, while the Models 0 and 2 have only 32 
Kbyte. 

The System1370 Model 135, a scaled-down version of the 145, 
was introduced in 1971. It was marketed as a growth system for 
360 Models 20, 22, 25, and 30. Like the 145, the 135 uses 
monolithic (i. e.,  bipolar-semiconductor) Mp and blmicropro-
gram. 

Four bytes (as opposed to 8 bytes for the 145) can be accessed at 
a time from Mp (770 ns for read) with no interleaving. The basic 
CPU data paths are 2 bytes wide, although a 4-byte path is used 
for instruction fetch (no prefetching) and data access for certain 
instructions. The Pc has a variable-length microcycle time (275 to 
1,485 ns). As in the 145 and 155, the Pc and the channels share 
control storage and some data paths. 

The microprogram can emulate the 14011144011460 ISPs. The 
135 allows for a flexible I/O configuration, with direct attachment 
of various disk storage drives via an integrated file adapter, and 
direct attachment of up to eight communication lines. 

The 135Model 3 is an accelerated Model 0. The acceleration is 
basically due to larger Mp, larger Mmicroprogram, and certain 
high-level operating-system functions implemented in microcode. 

The 158and 168were introduced in August 1972. Although the 
158 is similar to the 155, it provides more processing power in 
smaller cabinets. It has a larger and faster Mp, and has an 
Integrated Control Storage (ICS) as an option. The ICS provides 
two data and control paths, each of which can attach to thirty-two 
IBM 3330, 3340, or 3350 series disk drives. Also, the 158 and 168 
were the first System1370 machines to use MOS main memory 
(the 155and 165 use core). It is interesting to note that the older 
145 and 135 processor used bipolar Mp, the only two models in 
the 370 family to do so. 

However, the main claim to fame and the real raison d’&treof 
the 158 (and 168) is “virtual storage.” The concept of virtual 



Chapter 52 I The IBM SystemBBO, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 881 

Floating-point 
oneration stack 

Reservation Reservation 

station 2 station 1 


t V I  I 4) 


Reservation 
station 3 r ‘I

I 	 Muit iplyldivide Extended 
execution uni t  execution uni t  

Fig. 28. IBM SystemW70 Model 195 floating-point execution ele- 
ment data-flow diagram. (Courtesy of international Business Ma-
chines Corporation.) 
concurrently by offsetting them by one cycle. The third reserva- 
tion station can acquire data while the other two operations are 
executing. The multiplyidivide execution unit has two reservation 
stations. Only one multiply or divide operation can be executed at 
a time. The extended execution unit, with one reservation station, 
handles extended-precision floating-point operands. 

The FLOS has its instructions decoded serially. The FLOS 
issues operations provided that an appropriate reservation station 
is available. Since several operations may be executing concur- 
rently, dependent operations are sequenced through the use of 
tagging on the common data bus. 

The 168 was introduced in August 1972. It has the same 
advantages over the 165 that the 158has over the 155, i.e., more 
processing power in smaller cabinets, larger and faster Mp (MOS), 
and an Integrated Storage Controller as an option. At the same 
time that the virtual-storage 168 was announced, Dynamic 
Address Translation (DAT) hardware became available as an 
expensive option for the 165. 

In March 1975 the 168-3 was announced. The 168-3 has twice as 

many channels as the Model 168 (22, as opposed to 11)and has a 
cache twice as large (32K, as opposed to 16K). 

February 1973 brought forth the 168 MP. The 168MP is similar 
to the 158 MP previously described. Two 168’s or 168-3’s 
are connected via a 3068 Multisystem Communication Unit 
(MCU). 

In February 1976, the 168 Attached Processor System (APS) 
was introduced. Similar to the Model 158’s 3052 AP in configura- 
tion, the 3062 AP (with an 80-ns cycle time) can execute all 
Systenii370 instructions except those involved with the “direct 
control” facility. The 168 AP yields only from 1.5to 1.8times the 
performance of one 168-3. It is possible that the 168, being a 
high-performance machine with a great amount of prefetching and 
buffering, is not well suited for use in a very tightly coupled 
system. 

Low-Range Machines: Models 115 and 125. The low-
performance machines consist of the Models 115and 125. 

The 125was announced in October 1972. It was marketed as a 
growth system for System/360 Model 20 users. The low-
performance 12.5 is implemented in a distributed fashion. (See the 
discussion of the Model 115.)TWO bytes are fetched at a time from 
the MOS hlp, with no memory interleaving. Data paths are 2 
bytes wide. There is no cache. The 480-ns WCS can emulate the 
1401/1440/1460 ISPs. 

The Systetni370 Model 115 was introduced in the spring of 
1973. It was marketed as a growth system for users of Systemi360 
Models 20, 22, and 25. It bridged the gap between the IBM 
Systemi360 and the higher-performance SystemM70 machines. 

The virtual-storage Model 115, a distributed system, is very 
similar to the 125. The 115, being the lowest-performance 370, 
has 1-byte data paths (the 125 has %byte paths). 

As shown in Fig. 29, the system contains three independent 
subprocessors. They are the Machine Instruction Processor 
(MIP), the InputiOutput Processor (IOP),and the Service Proces- 
sor (SVP). Each subprocessor has its own storage, working 
registers, ALU, and microprogram (MOSFET WCS). 

hlp (which is MOS, and requires 480 ns for readlwrite, and 
from which 2 bytes are fetched per access, with no interleaving) is 
controlled by a hardwired Main Storage Controller (MSC). The 
MSC regularly checks requests for Mp access by the subproces- 
sors, and grants the request with the highest priority. The MSC 
and the subprocessors communicate via a data bus, a control bus, 
and direct control lines. 

The hfIP basically fetches and executes program instructions. 
The 1OP executes IlO commands and supervises the data transfer 
between the MSC and IiO devices. The interface between the 
operator and the rest of the system is the SVP. It loads microcode 
into the subprocessors and boots itself from the console file. 

The 115 does not support any block multiplexor or selector 
channels. However, a byte multiplexor channel can be imple- 



Chapter 52 I The IBM Systemi360, Systemi370, 3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 877 

Both the 8K and the 16K caches have a set size of 128. However, 
the 16K cache has an associativity of 4 while the 8K cache has an 
associativity of 2. Block size is 32 bytes. 

In June 1976 the 138 and 148 were introduced. The 138 was 
announced to have a 29 to 36 percent internal performance 
increase over the 135, while the 148 was announced to have a 28 
to 43 percent internal performance increase over the 145. Data 
Pro Research Corporation reports that the 138 and 148 cost about 
45 percent less for purchase and approximately 22 percent less for 
rental than the 135 and 145. These machines use MOS Mp, 
whereas the 135 and 145 use bipolar. However, the MOS 
memories, created in 1976, of the 138 and 148 are faster than the 
bipolar memories created in 1971, of the 135 and 145. Also, 
during June 1976 the 135-3 and 145-3 were announced. They are 
upgraded versions of the 5-year-old (at that time) 135 and 145 
models, and have internal performance equal to the newer 138 
and 148, respectively. 

Later, in October 1976, the 158 Attached Processor System 
(APS) was announced. Whereas the 158 MP of 1973 is a tightly 
coupled system, the 158 AP is even more tightly coupled. The 
IBM 3052 APU (Attached Processing Unit) and a 158 (or 158-3) are 
connected to form a dual-processor system, with shared memory 
and shared IiO. The 3052 APU (with a 115-ns cycle time) is a 
bare-bones instruction processor with no Mp and no channels. 
However, it does have a cache. The APU’s writable control store 
(WCS) can execute all of the Systemi370 instructions, plus the 
1401/1440/1460 and 141017010 ISPs. Although an AP system is less 
expensive than an MP system (because it has less hardware), it has 
lower performance. Contention for memory and I/O results in 
decreased throughput. The 158 AP yields only from 1.5 to 1.8 
times the performance of one 158-3. 

High-Range Machines: Models 165, 168, and 195. The high- 
performance machines consist of the 165, 168, and 195. See Fig. 
23 for a PMS diagram of the 165. 

The System1370 Model 165, introduced at the same time as the 
155 (June 1970), was originally marketed as a high-speed growth 
system for Systemi360 Model 65 and 75 users. The 165 is a 
higher-performance machine than the 155 because of its wider 
data paths, greater concurrency of operations, and larger and 
faster memory. 

Whereas the 155 has an 8-Kbyte cache, the 165 cache can be 
extended to 16 Kbyte. The 8 K  cache of the 165 is set-associative, 
with a set size of 64 and an associativity of 4. The 16K cache is 
simply an 8K cache with the set size increased from 64 to 128. 
Block size is 32 bytes. The channels write into the cache (i.e., 
cache write-through to Mp) but do not read from it. 

An 8-byte data path between Pc and Mp with four-way 
interleaving yields 32 bytes fetched per Mp reference cycle (as 
opposed to 16 bytes for the 155). 

The 165 has a greater amount of instruction fetch-execute 

Pioi#0:4; Block MPX Chl 

MP 3.4 

pc Kbtorage 
control]  

Piol$5:9; Block MPX CHlSelector CHI 

5 

Pio[#lO;Byte MPX Chl 

M.cache 3.4.5 

overlap than does the 155because it uses larger buffers, operand 
prefetching, and more logic. 

The 165uses separate IBM 2860 Selector Channels, IBM 2870 
Byte Multiplexor Channels, and/or IBM 2880 Block Multiplexor 
Channels (as opposed to having the channels share CPU logic, as 
in the 155).These channels contain the hardware to control their 
l/O operations. The 165 extended-channel feature provides a 
maximum of 12 channels. 

The main elements of the Pc are the “Instruction Unit” and the 
“Execution Unit.” (See Fig. 24.) The hardwired Instruction Unit 
performs fetching, decoding, and buffering of instructions, ad- 
dress calculation, and operand fetching and has partial control of 
the execution unit. The Instruction Unit contains two 16-byte 
instruction buffers, a 4-byte instruction register, three 
instruction-queue registers, a 24-bit, three-input adder, four 
24-bit address registers, an incrementer, and a decoder. Two 
16-byte instruction buffers are used, so that when a branch 
instruction is encountered, one buffer continues to prefetch 
sequential instructions (i.e., assumes the branch will be unsuc- 
cessful) while the other buffer prefetches instructions from the 
branch target location (i.e.,  assumes the branch will be success- 
ful). 

The Execution Unit is capable of executing a new instruction 
each microcycle. It contains two 8-byte buffers for prefetched 
operands, four 8-byte data registers, and an 8-byte result register. 
There is a 64-bit parallel adder used for binary and floating-point 
arithmetic, a 32-bit ALU, a 64-bit shifter, and a 1-byte serial 
adder, which is used for SS-format instructions, floating-point 
exponent calculations, and packed decimal arithmetic. The basic 
data-path width in the execution unit is 8 bytes, with byte parity. 
While the microprogram controls the Execution Unit most of the 



I 

878 Part 4 I Family Range,Compatibility, and Evolution 	 Section 5 The Systemi360 and Systemi370 Family 

110 units 	 I10 units I10 unit 

Multiplexor Block multiplexor Selector 
channel channel channel 

8 bytes 	 8 bytest 	 f t 
8 bytes 

8 bytes Storage
Processor storage 	 control 

I 
unit 

II .  	 I 
Buffer storage 

8 bytes 
4 bytes 

Instruction unit Execution unit 

A A A A 
8 bytes 

v V 
Addressing 

adder 

V 
Parallel 
adder 

v 
Serial 
adder 

Shifter 

3 bytes 8 bytes 1 byte 8 bytes 

Data width 
Element lbvtsrl Performance Comments.-,---. 

Processor storage 8 .. Two-microsecond cycle (Note 11 .... 
Buffer storage 8 80-nanosecond cycle 8,192 byte capacity (Note 3 
Basic machine cycle 80 nanoseconds .... 
General registers 4 Once per machine cycle 16 general registers 
Floating-point registers 8 Once per machine cycle 4 floating-point registers 
Addressing adder 3 Once per machine cycle .... 
Parallel adder 8 Once per machine cyle .. 
Serial adder 1 Once per machine cyle .... 
2860 Selector Channel 1 1.3 million bytes per second 8 bytes to storage 
2870 Multiplexor Channel 1 110 kb t o  670 kb (aggregate) 8 bytes to storage 

Burst mode 1 110 kb (Note 21 .... 
Multiplex mode 1 l lOkb(Note21 
Selector subchannels 1-3 1 120 kb each .... 

Selector subchannel 4 1 100 kb (kb = 1000 bytes per second) .... 

2880 Block Multiplexor Chanr 1 1.5 million byteslsecond (Note 4) 8 bytes to storage 

Notes 
1. Processor storage effective cycle time is greatly reduced by the buffer storage function. 
2. Aggregate 192-subchannel rate for first or second 2870;reduced by concurrent selector subchannel operation. 
3. May be expanded to 16,384 bytes. 
4. Three million bytes per second when optional two-byte interface is  used. 

~ ~ 

Fig. 24. IBM System/370 Model 165 data-flow diagram and system characteristics. 
(Courtesy of International Business Machines Corporation.) 

time, hardwired control is used when data results determine the Unit overlap, yields a great amount of concurrency in CPU 
execution sequence (e.g., conditional branches). operations. 

The Pc can read four genera1 registers and write into a fifth all in The 80-ns control store contains both read only (ROS) and 
one microcycle. This, coupled with Instruction Unit and Execution read/write memory. The WCS is well suited for microdiagnostics 



Chapter 52 The IBM Systemi360, Systemi370, 3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 879~ 

and various emulations. The 165 can emulate 7070i7074, 7080, 
and 709/7090/7094 ISPs. 

The year 1971 also saw the introduction of the System/370 
Model 195, a slightly upgraded version of the powerful System/ 
360 Model 195. (See Fig. 25.) The 195 contains a 32Kbyte cache 
memory with a set size of 128, a block size of 8 doublewords (64 
bytes), and an associativity of 4. 

A storage control unit (SCU) controls all fetching and storing 
from Mp, M.cache, and the channels. Sixteen-way memory 
interleaving, coupled with an 8-byte-wide data path from Mp to 
SCU, results in 128 bytes accessed per reference cycle. The SCU 
also contains much of the circuitry for cache control. A processor 
store always updates Mp, and updates M.cache if the location has 
previously been valid in the cache. However, VO fetches and 
stores completely bypass the cache, invalidating cache data if 
necessary. 

This hardwired machine (which has a 54-ns CPU cycle time) 
realizes a high degree of concurrency of operations. The central 
processing element (CPE) consists of the Instruction Processor, 
the fixed-pointlvariable-field-length (VFL)/decimal execution ele- 
ment, the floating-point execution element, and the Systemi370 
execution unit. 

The Instruction Processor (IP) fetches both instructions and 
operands, controls the other execution units, handles interrupts, 
and executes all branch, status-switching, and IiO instructions. 
(See Fig. 26.) The IP has an 8-doubleword instruction stack (4 

times larger than that of the 165), three instruction-control 
registers, two doublewords of temporary instruction buffer, a 
decoder, and a three-input adder for effective-address calculation. 
The fixed-pointlVFLidecimal execution element contains the 
general registers, which the IP uses. 

The 8-doubleword instruction stack normally contains the 
current instruction to be decoded, a few doublewords of instruc- 
tions already decoded (i.e., instruction history), and a few 
doublewords of instructions yet to be decoded. Three stack 
pointers, called the instruction-control registers, keep track of the 
stack. The instruction register (IR) points to the instruction being 
decoded. The upperbound register (UB) points to the most recent 
doubleword brought into the stack, and the lowerbound register 
(LB) points to the least recent doubleword in the stack. 

The 8-doubleword stack allows tight loops to be executed totally 
within the stack (in what is called the loop mode). This is much 
more efficient than the 2-doubleword buffer of the 165, whose 
hardware does not provide for the execution of tight loops totally 
within the buffer. 

Conditional mode is entered when a conditional branch is 
decoded for which the condition code has not yet been evaluated. 
When this occurs, the IP continues to fetch sequential instruc- 
tions into the 8-doubleword stack. The sequential instructions 
prefetched still result in orders to the fixed-point and floating- 
point execution elements. However, these orders are specially 
tagged as being conditional, so that they cannot be decoded or 

PlFloating Point 
Execution 
Element] 

P[Fixed Point- 
Variable Field- 
Decimal Execution 

P [S/370 
Execution Uni t ]  t 

Processor] 

Notes 

1 

4
KISelector Channel; #3] K i o [ W : 7 1  

3 
KLStorage 

’ Control 

Unit1 


1. 	 Piol’2860 Selector Channel, Model 3: 1.31 2.6 bytels; !Models 1.2 and 3 have 1,2 and 3 Selector Channels 
respectively! I 

2. Piof’2870 Byte Mult iplexor Channel; interleaved mode: 4 1  Kbytels; brust mode: 149 Kbytels] 
3. Pio1’2880 Block Mult iplexor Channel; 1.51 3 Mbytels] 

Fig. 25. IBM System/37O/Model 195 PMS diagram. 



880 Part 4 I Family Range, Compatibility, and Evolution 

Processor 
Temporary buffer 1storage 

I I ITemporary buffer 2 

truct ion 

General 
registers 

Three~input 
adder (32 bits1 

StorageI + control 
unit 

+instruction processor execution circuits 
-t 

Fixed-pointlVFLidecitnal execution element 
+ 

Floatina-Doint execUIiOn element 

Fig. 26. IBM System/370 Model 195 instruction processor data-flow 
diagram. (Courtesy of International Business Machines Corpora- 
tion.) 

executed until the IP signals to do so. Two doublewords from the 
branch target location are also prefetched and stored in buffers. 

In the highly concurrent 195, the various execution units can 
simultaneously execute different instructions. Therefore an excep- 
tional condition cannot always be identified with the specific 
instruction causing it, since the PSW may be pointing to another 
instruction. This kind of program interruption is called imprecise. 
Imprecise interrupts are identified as such by setting certain bits 
in the PSW to a known state. Since all instructions decoded prior 
to the signaling of an imprecise interrupt are executed, more than 
one exception can occur for a given imprecise interrupt. Also, 
because instructions may be executing concurrently and out of 
sequence, the exceptional condition that causes the interrupt may 
not be the one that should be logically recognized first. In any 
case, each type of exception that takes place is identified in bits 16 
through 27 of the old PSW, with bits 28 to 31 set to zero. There 
are certain instructions that are executed only after all previousIy 
decoded instructions are fully executed. Among these instructions 
are the six I/O instructions, LOAD PSW, SUPERVISOR CALL, 
SET STORAGE KEY, DIAGNOSE, STORE CHANNEL ID, 
LOAD CONTROL, and STORE CONTROL. Also, a special 
branch on condition (BCR) instruction (usually implemented as a 

Section 5 I The System/BBO and System/370 Family 

NOP on other 360 and 370 models) causes all previously decoded 
instructions in the stack to be executed before the decoding of the 
next instruction. 

See Fig. 27 for a diagram of the fixed-poinb'/VFL/decimal 
execution element. As its name implies, it executes fixed-point, 
logical, variable-field-length, and decimal instructions. Opera- 
tions from the six-position fixed-point operation stack (FXOS)are 
decoded serially and issued to the appropriate execution units. If 
the data are available and the execution hardware is free, then the 
operation can be performed. After completion, the IP is notified 
that the FXOS position and associated operand buffers are free. 

The floating-point execution element is highly efficient because 
it uses operand and instruction buffering and because it contains 
multiple execution units linked via a common data bus similar to 
that of the Systemi360 Model 91 (Chap. 19). (See Fig. 28.) The 
floating-point element contains an eight-position operation stack 
(FLOS), four floating-point registers (FLR), six operand buffers 
(FLB), and three execution units. The add unit, preceded by 
three reservation stations, can perform two add operations 

General registers Fixed-point 	 Storage control unit 

FLPT buffers 

Fixed-point 


4 buffers (FLB) 


113 I 
14 

15 

Instructiont I I 	 processor 

Fixed-point VFL  Decimal 
IFXEU) ( VF 'LEU) (DEUI 

Execution Units * 

Fig. 27. IBM Systemi370 Model 195 fixed-pointNFLidecirnal execu- 
tion element data-flow diagram. (Courtesy of International Busi- 
ness Machines Corporation.) 



Chapter 52 I The IBM SystemB60, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 881 

Floating-point 
oneration stack 

Reservation Reservation 

station 2 station 1 


t V I  I 4) 


Reservation 
station 3 r V

I 	 Muit iplyldivide Extended 
execution uni t  execution uni t  

Fig. 28. IBM SystemW70 Model 195 floating-point execution ele- 
ment data-flow diagram. (Courtesy of International Business Ma-
chines Corporation.) 
concurrently by offsetting them by one cycle. The third reserva- 
tion station can acquire data while the other two operations are 
executing. The multiply/divide execution unit has two reservation 
stations. Only one multiply or divide operation can be executed at 
a time. The extended execution unit, with one reservation station, 
handles extended-precision floating-point operands. 

The FLOS has its instructions decoded serially. The FLOS 
issues operations provided that an appropriate reservation station 
is available. Since several operations may be executing concur- 
rently, dependent operations are sequenced through the use of 
tagging on the common data bus. 

The 168 was introduced in August 1972. It has the same 
advantages over the 165 that the 158has over the 155, i.e., more 
processing power in smaller cabinets, larger and faster Mp (MOS), 
and an Integrated Storage Controller as an option. At the same 
time that the virtual-storage 168 was announced, Dynamic 
Address Translation (DAT) hardware became available as an 
expensive option for the 165. 

In March 1975 the 168-3 was announced. The 168-3 has twice as 

many channels as the Model 168 (22, as opposed to 11)and has a 
cache twice as large (32K, as opposed to 16K). 

February 1973 brought forth the 168 MP. The 168MP is similar 
to the 158 MP previously described. Two 168’s or 168-3’s 
are connected via a 3068 Multisystem Communication Unit 
(MCU). 

In February 1976, the 168 Attached Processor System (APS) 
was introduced. Similar to the Model 158’s 3052 AP in configura- 
tion, the 3062 AP (with an 80-ns cycle time) can execute all 
Systenii370 instructions except those involved with the “direct 
control” facility. The 168 AP yields only from 1.5to 1.8times the 
performance of one 168-3. It is possible that the 168, being a 
high-performance machine with a great amount of prefetching and 
buffering, is not well suited for use in a very tightly coupled 
system. 

Low-Range Machines: Models 115 and 125. The low-
performance machines consist of the Models 115and 125. 

The 125was announced in October 1972. It was marketed as a 
growth system for System/360 Model 20 users. The low-
performance 12.5 is implemented in a distributed fashion. (See the 
discussion of the Model 115.)TWO bytes are fetched at a time from 
the MOS hlp, with no memory interleaving. Data paths are 2 
bytes wide. There is no cache. The 480-ns WCS can emulate the 
1401/1440/1460 ISPs. 

The Syste~d370 Model 115 was introduced in the spring of 
1973. It was marketed as a growth system for users of Systemi360 
Models 20, 22, and 25. It bridged the gap between the IBM 
Systemi360 and the higher-performance SystemM70 machines. 

The virtual-storage Model 115, a distributed system, is very 
similar to the 125. The 115, being the lowest-performance 370, 
has 1-byte data paths (the 125 has %byte paths). 

As shown in Fig. 29, the system contains three independent 
subprocessors. They are the Machine Instruction Processor 
(MIP), the InputiOutput Processor (IOP),and the Service Proces- 
sor (SVP). Each subprocessor has its own storage, working 
registers, ALU, and microprogram (MOSFET WCS). 

hlp (which is MOS, and requires 480 ns for read/write, and 
from which 2 bytes are fetched per access, with no interleaving) is 
controlled by a hardwired Main Storage Controller (MSC). The 
MSC regularly checks requests for Mp access by the subproces- 
sors, and grants the request with the highest priority. The MSC 
and the subprocessors communicate via a data bus, a control bus, 
and direct control lines. 

The MIP basically fetches and executes program instructions. 
The 1OP executes I/O commands and supervises the data transfer 
between the MSC and IiO devices. The interface between the 
operator and the rest of the system is the SVP. It loads microcode 
into the subprocessors and boots itself from the console file. 

The 115 does not support any block multiplexor or selector 
channels. However, a byte multiplexor channel can be imple- 



882 Part 4 1 Family Range, Compatibility, and Evolution 

4 

K.tape 

5 

TLdiskettel _-_--_ K.printer------ 1
I II 
!l 2 6 

T[console 
printer] K.disk 

I 
I 

Tcrt I 
I 
I 
I 
I 
L--

Notes 
1. .P.sup['Supervisorl 
2. 'X.mscL'Main Storage Controllerl 
3. P.mip['Machine Instruction Processor] 
4. K.tape[I/O; '341 1 Magtape Control 1'3803 Tape Control] 
5. K.printer"5213 Printer Controll 
6. K. disk[l/O;'3344 Disk Controllerl 
7. K.ica['lntegrated Card If0Attachment] 
8. K.ipa['lntegrated Printer Attachment] 
9. K.mc['Multiplexor Channel; 32 Subchannels max; 8 shared channels] 

10. K.icma['lntegrated Communications Adpaterl 
17.  L I5  synchronous lines1 [4 synchronous; 8 asynchronous tines1 1 

Fig. 29. IBM System/370 Model 115 PMS diagram. 

mented by using an IOP. Also, some IiO devices can be connected 
to the MIP with direct attachment features. 

The 115-2 and 125-2 were announced in November 1975. The 
115-2 split the 115's Machine Instruction Processor into two 
separate units: a dedicated 110 processor for 3340 disks, and an 
Instruction Processing Unit. 

The 115-2 and 125-2 have higher performance, greater I/O 
capabilities, and bigger Mp's than the 115and 125, respectively. 

3030 Series Machines 

In March 1977, the Model 3033 processor was introduced, and in 
October of that same year, the Models 3031 and 3032 were 
announced. The 3030 processors have enhanced priceiperform- 
ance characteristics over their predecessors. High-level operat- 
ing-system functions are supported in microcode. The 3031 can be 
configured as an AP system, while the 3033 can be configured as 
either an MP or an AP system. 

Section 5 1 The SysternMGO and Systern/370 Family 

The 3031 has a 115-ns Pc microcycle time, a 32-Kbyte cache, 
and six integrated channels (one byte multiplexor and five block 
multiplexors). The 3031 yields approximately 1.2 times the 
performance of a Systemi370 Model 158-3 [Data Pro, 19781. 

The 3032 has an 80-ns Pc microcycle time, a 32-Kbyte cache, 
and six integrated channels. The system can be extended to 
include 12 integrated channels. The 3032 yieIds approximately 
2.75 times the performance of a Systemi370 Model 158-3 [Data 
Pro, 19781. 

The 3033 is a performance-enhanced Systemi370 Model 168-3 
[Connors, Florkowski, and Patton, 19791. Technology improve- 
ments reduced gate delays from 1.7 ns to 1ns, cache access time 
from 32 ns to 27 ns, Mp access time from 210 ns to 185ns, and Pc 
cycle time from 80 to 58 ns. Cache size, block size, and 
associativity were all doubled, yielding a 92 percent hit ratio. 
Memory interleaving was increased from four-way to eight-way. 
Instruction prifetch buffer (branch and no branch cases) size was 
increased from two to four doublewords, operand address and 
data buffer were increased from two to six doublewords, and a 
third buffer was added for the situation where a second branch is 
encountered prior to the resolution of a previously encountered 
branch. Instruction decoding and address generation was de-
creased from two cycles to one. The 3033 provides 12 channels as 
standard, divided into two groups of six, and four optional 
channels. Unlike the 168's stand-alone channels, those of the 3033 
are accessible by the service processor, and the group concept 
allows maintenance, including microdiagnostics, to be performed 
on one group of channels while the other group is being used for 
customer work. Each byte multiplexor channel is capable of a data 
rate of from 40 Kbyte to 75 Kbyte per second, while a block 
multiplexor channel is capable of up to 1.5 Mbyte. The 3033 
system requires one-half of the space and 30 percent less power 
than a similarly configured 168. Performance is 1.8 to 1.9 times 
that of a 168. Both the 3033 MP and 3033 AP are rated at 1.6 to 1.8 
times the performance of a uniprocessor 3033. 

4300 Series Machines 

In January 1979 the models 4331 and 4341 were announced, thus 
launching the 4300 series. The series is implemented with IBM's 
bipolar gate arrays, with up to 704 gatesichip at 3-ns switching 
speeds and 64-Kbit MOS memory chips. The 4300 series added 12 
new instructions to the System/370 ISP. 

The 4331 is rated at 0.88 to 0.99 times the performance of, 
requires 70 percent less power than, and costs approximately 28 
percent as much as the System/370 Model 138. The 4331 features 
a 64K writable control store, dynamic address translation, storage 
protection, a time-of-day clock, support for remote diagnostics, 
and a support processor for monitoring and recording environ- 
mentally caused problems such as power variances. The Pc aIso 
requires from 16 to 53 Kbyte of main memory for extra control 



1 

Chapter 52 I The IBM System/360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 883 

store capacity. An integrated DASD (Direct Access Storage 
Device) adapter a l l o ~ s  the direct attachment (without controllers 
or channels) of four strings of disk storage. One byte multiplexor 
channel and one block multiplexor channel are provided for 
attachment of a variety of Systemi360 and Systemi370 peripherals. 
The channel data rate for the byte multiplexor channel is 18 
Kbytes in byte mode and 500 Kbyte in burst mode. The block 
multiplexor channel has a 500 Kbyteis maximum data transfer 
rate. A Communications Adapter allows for attachment of up to 
eight communications lines operating from 75 bitsis to 56 Kbitis. 
Two of the following line protocols can be supported simulta- 
neously: Synchronous Data Link Control (SDLC), Binary Syn- 
chronous Control (BSC), and asynchronous line. 

The 4341 has two modes of operation (corresponding to 
whatever microcode is loaded): (1)Systemi370-compatible mode 
with Extended Control Program Support for VMNS software and 
(2) Extended Control Program Support: Virtual Storage Extend- 
ed. The latter mode is unique to the 4341, yet is basically 
compatible with the Systemi370. The 4341 is rated at 3.2 times 
the performance of the Systemi370 Model 138 while costing 6 
percent less. Figure 30 depicts the overall organization of the 
4341. A portion of Mp, ranging from 14 to 108 Kbyte, is required 
for dynamic table storage. A separate support processor controls 
initialization (initial microcode loading), error analysis and log- 
ging, and the display console. The Remote Support Facility (RSF) 
provides the capability of remotely controlling the 4341 from an 
IBM service center. Diagnostics can be executed remotely and 
error information sent back to the service center. RSF, ECC 
(SECIDED) Mp, Pc parity checks, instruction retry, channel 
command re tq  , and internal-state logout provide a comprehen- 
sive reliabilityimaintainability environment. 

The 4341 IiO channels, with a few variations, are identical to 
those of the Systemi360 and Systemi370. One byte multiplexor 
and up to five block multiplexor channels can be configured. The 

M [diskette] TIconsoleI 

2 


Pio[#l :5;Block Multiplexor Channel] 

Motes 
1. Mp[MOS;2-4 Mbyte; ECC (SEC/DED)I 
2. PLSupport Processor; error analysis, display console, initial microcode loading1 
3. L[!Remote Support Facility for remote diagnostics] 

Fig. 30. IBM 4341 PMS diagram. 

byte multiplexor channel operating in byte-interleaved mode 
permits several low-speed devices to operate concurrently at up to 
32 Kbyteis if no block multiplexor channels are operating. It can 
also operate in burst mode, allowing one high-speed device at a 
time to function at a maximum rate of 1 Mbyteis. Two block 
multiplexor channels are standard and three more are optional. 
Each block multiplexor is capable of a maximum data rate of 1 
Mbyteis. The total system data rate is limited to 9 Mbyteis. 

The PMS Structure of the System 370 Pio, K, Ms, and T 

The Systemi370 peripheral structure has resulted from a slow 
evolution of the System/360 peripheral structure. The PMS 
diagrams for the Systemi370 have been laid out to allow a quick 
comparison with the Systemi360 PMS diagrams. In many cases, 
the Systemi370 PMS diagrams are a superset of the Systemi360 
diagrams.' Thus while some peripherals have been discontinued, 
IBM continues to support other Systemi360 peripherals. 

'The rate of change of the PMS diagrams is directly related to the rate of 
change of the major technology composing the PMS structure. Thus, as 
indicated in Part 1, Sec. 2, the Pc, based on electronic technology, 
changes fastest. Ms, composed of electronic, magnetic, and mechanical 
technologies, changes at the next highest rate. Indeed, there is only one 
carryover between the System/360 and System/370 Ms PMS diagrams. 
The rate of change of magnetic tape, which has a large component of 
mechanical technology, is slower still than Ms technology. The slowest 
rate of change is exhibited by paper-handling peripherals (e.g., paper-tape 
devices, card readedpunches, and line printers), which are essentially 
mechanical technologies. Thus technologists seek higher performance by 
seeking ways to replace mechanical technology by electronic technology 
(e.g., electrostatic units for printing, charge-coupled devices or magnetic 
bubbles for Ms). 

3 

LIRemote Support Facility] 

I 



884 Part 4 1 Family Range, Compatibility, and Evolution 	 Section 5 1 The System/360 and Systemi370 Family 

The major I/O port for the Systemi360 processors above the integration of controllerichannels at the high end and adapters at 
Model 50 was either a 2860 Selector Channel (for high-speed the low end into the Pc cabinet, which eliminates cost and 
devices) or a 2870 .\\\\\\\\\\\\\\\\\\\ultiplexor Channel (for low-speed devices). performance penalties of stand-alone cabinets. 
The SystemiS'iO added the 2880 Block Multiplexor Channel to Figure 31 depicts secondary storage for Systemi370 processors. 
support even higher-speed, block-data-oriented peripherals. A The multipurpose 2841 Storage Control has given way to the 
major departure from the System/360 I/O architecture is the 3830. The System/370 utilizes high-speed fixed-head disks for 

K "28351 Ms[#O:l; '2305 Fixed-Head Storage; 
nonremovable: fixed-head disk: 
models: 112; 
t.ave.access: 2.515 ms; 
transfer rate 311.5 Mbyte/s; 
capacity: 5.411 1.2 Mbytel 

2 
K 1'231 41 Ms[#l:8, '2319 Direct Access Storage 

facility; removable: moving-head disk; 
t.aue.access: 60 t 12.5 ms: 
transfer rate: 312 Kbytels: 
capacity: 29 Mbytel 

K"38301 	 Ms[X1 :4; '3333 Disk Storage and MslB1:3; '3330 Moving-Head Disk Storage Moduie; 
Control: IStoraae Eauivalent of 	 no. of drives. 112; 

removable: moving-head disk; 
models: 1 I2  I1 1 ; 
t.ave.access: 30 t 8.4 ms; 

K "38301 K [ i i l  :4; '3340 -Ms[#l  :8; '3348 Data Module: Removable transfer rate: 806 Kbyte/s; 
Direct Access pack and heads: moving-head disk; capacity: 100 I100I200 Mbytel 
Storage Facility] models 35'70; 

4 K['3830] HK[41:2;'3340 HMslrYl :3; '3344 Direct Access Storage: 
no. of drives: 112; Direct Access ~~~ 

Storage Facility] remcvable: moving-head disk; 

4 
K "38301 Ms"3350 Direct Access Storage; 

t.ave.access 25 ms, 
transfer rate: 1.2 Mbytels: 
capacity: 280 Mbytel 

5 
K"38801 Ms[# :32: '3370 Direct Access Storage: 

nonremovable: moving-head disk; 
t.ave.access: 20 ms; 
transfer rate. 1.86 Mbytels; 
capacity. 571 Mbytel 

Ms[# :16; '3310 Direct Access Storage; 
nonremovable: moving-head disk: 
t.ave.access: 27 ms; 
transfer rate: 1.03 Mbytels; 
capacity: 64.5 Mbytel 

1. Pio[Block Multiplexor Channel i Selector Chl 
2. Ms 1 K[!Can attach directly t o  Integrated File Adapters without need for controller1 
3. 	 K[!Can attach directly t o  Integrated File Adapters or '3145 or '3345 Integrated 


Storage Control1 

4. Ms[!Can attach directly t o  a Byte or Block Multiplexor Channel1 
5. KI!Programmable contrcller for use with 4341 processor!l 

Fig. 31. IBM System/370 Ms [disk] PMS diagrams. 



Chapter' 52 1 The IBM System/360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 885 

swapping store rather than the high-speed drums used in the 
Systemi360. Hence drum storage has been discontinued. The 
increased storage capacity of disks partially fulfills the require- 
ment for online archival memory as represented by the discontin- 
ued System/360 Data Cell magnetic card technology. Disks thus 
evolved as the dominant MS technology, as graphically indicated 
by comparing Figs. 31 and 13. New technologies, such as 
charge-coupled devices or magnetic bubbles, may eventually 
replace disks as the dominant Ms technology, just as the disks 
replaced drums. However, disks will remain the dominant Ms 
technology for at least the next several years. 

Figure 32 depicts the growth in magnetic tape peripherals over 
those of the Systeid360. The System/36O Hypertape was discon- 
tinued. 

Figure 33shows the two card punches, the card reader, and the 
three card readerlpunch units of the Systeml360, which were 
augmented for the Systemi370 by the addition of three reader/ 
punch units. A lower-performance paper-tape reader has been 
added to the 1000 character per second 2671. A wider range of 
line printer models (six instead of one) is offered with the 
Systeml370, including an electrostatic printer that is 8 times faster 
than the highest-performance System/360 mechanical line print- 
er. The Systemi370, like the Systemi360, offers a range of 
commercial-document readers, including magnetic character 
readers, optical readers (for printed, marked, and hand-printed 
documents), and document-processing units (for semiautomatic 
document-information input). 

Finally, Fig. 34 illustrates that front-end processors have 
replaced the Systemi36O's simple controllers for communication 
lines. 

Performance and Cost 

The IBM Systemi360 and System/370 series provide a number of 
data points in the implementation space for a common ISP. 
Furthermore, being marketed by a single organization. they are 
probably constrained by a common corporate profit goal. In this 
section, we will focus on Pc-Mp cost, performance, and cost/ 
performance. Costs vary over time as technology and marketing 
competition change. However, we can plot cost as a function of 
time. Performance is more difficult to determine, since it depends 
on system configuration, software quality, and work load. IBM 
will announce relative performance ratios for Pc's but will not 
divulge absolute measures such as mega-instructions per second. 
Finally, costiperformance is extremely difficult to calibrate be- 
cause of the many variables impacting both cost and performance. 

Price 

Figure 35 depicts the price of IBM memory per byte as a function 
of year. The slope of the line indicates an average decrease in the 

Ms[#l:8;'2401 Magnetic Tape Unit; 
models: 1 l213l415l6; 
densitv: 80018001800~ 160011 60011600 

bits per inch; 
transfer rate: 3016019016011201180 

Kbytels; 
format: 719 trackl 

model:8; 

density: 200 -800 bits per inch; 

transfer rate: 15 - 60 Kbyteis; 


Control; 

models: 1 12 $3 14 i5 16; 

drivesiunit: 214161214l6; 

density: 800 1800 1800 11 600 11600 I1600 


bits per inch; 
transfer rate: 1511 511 5 130 130130 Kbytels: 
format: 719 trackl 

K "28031 Ms[#l:8; "2420 Magnetic Tape Unit; 
models: 517; 
density: 160011600 bits per inch; 

I transfer rate: 1601320 Kbvteis; Iformat: 9 trarkl 

Ms"3411 Magnet Tape Subsystem; 
models: 11213; 
number of drives: 41616; 
density: 16001160011600 bits per inch; 
transfer rate: 20140 180 Kbyteir; 
format: 9 trackl 

Ms[#1:8; '3420 Magnet Tape Unit; 
models: 31517; 

1 
densitv: 16001160011600 bits per inch; 
transfer rate: 120~2001320 Kbvteis; 
format 9 trackl 

K"38031 Ms[#l.8; '3420 Magnetic Tape Unit; 
models: 416 18; 
densitv: 62501625016250 bits Der inch: 

!De.nsity reduced to 800 bits per inch 
for 7 track operation!; 

transfer rate: 470l78011250 Kbyteis; 
format: 917 trackl 

Fig. 32. IBM System/370 Ms [magnetic tape] PMS diagram. 

cost of memory per byte of 19 percent per year from the 
introduction date of the first System/36O. Figure 36 plots the price 
of disk storage, indicating a 21 percent decrease per year in cost. 

Unlike memory, where there is essentially one dominant 
technology at any given time, a plot of processor cost is not very 
meaningful, because of the wide range in processor Performance. 
Processor evaluation must wait until we discuss performance. 

Performance 

As indicated, determining the performance of a processor is very 
difficult because of all the variables that determine performance. 



KT"1442-Nl: card reader: 400cardlmin; 
card punch: 150 mlls: operation: half 
duplex1 Section 5 1 The System/36O and System/370 Family 

KTI'2501-81:eard reader. 5Wcaidlminl 
'2501-82; card reader: 1000 cardlminl 

KTl'252081;card reader: 500 cardimin. 
card punch. 500 cardimin: 
operation: half duplex) 

TF2520.02:card punch: 500 cardimini 
'2520.B3;card punch: 30Dcadlminl 	 K1'3705 Communications Controller; 

KT1'2540; card reader: 1000 cardlmin: 
25E Kbytes ..32processor;Front.end 

card punch. 300 cardimin: 
operation: full duplexl 

~ 

KT1'2560 M ~ l t i . F ~ n c t i ~ n  Card Machine 

KTW425.Al Multi-FunctionCard Unit 
IMFCU): card reader: 250 cardimin: 
card punch: 50 eardlminl 
'5425-AZ: card reader: 500 eardimin: 
Card punch. 120 cardlminl 

K L'28261 TIWI:1:'101711018: 
paper tape reader: 120 charhl 

T"2671:paperfa~read~1:1000K1'28221 
charlrl 

- T"1403 Line Printer: chain: 
K1'28211 	 width: 132columns: 

character set 240 rymbolr: 
Model 2:  600 Ilneiminl 
Model 7: 500 Ilnelminl 
Model N1. 1100 lineiminl 

width: 120 coIumns: 
character let: 52 rymbalr: 
M d e i.~7.17lll...lineiminl.~ 

Male14. 1200 linelm~nl 

chaiacterrer: 48i240rymbois: 
Model 1: 600linelmini 

K1'38111 

character set: 481120 ryrnbolr, 
speed. 20W12500 Iinelminl 

speed' 300 linelmln] 

KTl'3800 Printing Subiyrtem' eiectrorIat8c. 
7 Character sets; 10 paper widthr: 5 
paper length$:518 Ilneriineh: priming 
rate.  8180-13880 linelminl 

Ll'4331 KT"3252 Line Printer. 

Integrated character wt'48164194 rymboli: 

Adamell speed: 65014671364 linefmtnl 


KT"32035 Printer. train. 
character set. 48; 
rpeed' 120 linelminl 

KT1'3289 Pnnier: 
character set '  48164194rymbalr: 
rpaed'40013001230 linelminl 

-- - KTr3890 Bank Document Procerring Unit: - 2080documentslminl 
-

KTl'1287 Optical Reader: handprinted 


-- documents: 565documentriminl 

-

KT"3881 Optical Marker Reader. 
documents. prinredihand marked: 
2480 mark pmitionrldocurnent. 
w e d .  3700 - 6000documentdhl 

KTI'3885 Oplical Charamel Reader; 
documents: printedlhandprinted; 
speed' 300 pagerlhl 

1.NoteLl'selectar I'Multiplexor I'lnregrated AdaPCorl 

Fig. 33. IBM Systeml370 T [reader; punch; printer] PMS diagram. 

Mp; 1 ps processor cycle time; 
line data rates: 0 - 56 Kbit isl  

K1'3704 Communications Controller; L[#0:31 communication lines] 
Front-end processor; 16 - 64 Kbyte Mpl  

Note 
1. LI'Selector I'Multiplexorl 

Fig. 34. IBM System/370 communications PMS diagrams. 

This is especially true if only one performance number is sought. 
Table 3 indicates the different results of measuring performance 
that are quoted in the literature. Both Electronics and Dean 
Witter Reynolds present raw performance ranges in unspecified 
environments and work loads. Data Pro presents relative proces- 
sor model performances, again in unspecified situations. Comput-
er World (February 5, 1979) provides both raw and relative 
performance. The COBOL benchmarks represent a synthetic 
benchmark composed of 11operations typically found in COBOL 
application programs. Each test is executed 100,000 times. The 
COBOL Analysis System (CAS) has been run in 125 different 
hardwareisoftware environments representing 13major manufac- 
turers. The first test was run in 1965. Distributed by U.S. Steel, 
the CAS results allow relative comparisons between various 
hardwareicompilerioperating-system environments on a uniform 
task. Figure 37 is a compilation of the relative performances of 
most of the IBM models. 

We have attempted to model SystemiSGO and Systemi370 
performance by a simple model relating performance to microcy- 
cle time and memory pause time per byte: 

where ti is the time for one microcycle and t z  is the memory pause 
time per byte. The time for t z  is the memory access time minus 
the microcycle time, increased to the next higher multiple of a 
microcycle and then divided by the number of bytes fetched per 
memory reference cycle. The same model has been applied to the 
PDP-11 and resulted in a good fit (see Chap. 39). 

Three sources of relatively complete performance data were 
available: the average instruction time, as used in Bell and &ewe11 
[1971](add up all instruction times and divide by the number of 
instructions); the relative performance from Data Pro; and the 
COBOL benchmarks. The average instruction time was not used, 
since it varied significantly from the more detailed sources (see 
Table 4). 

The data for each machine are given in Tables 5 and 6 .  The 
performance is relative to the SystemM60 Model 30. Where a 

886 



Chapter 52 I The IBM SystemR60, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 887 

Fig. 35. IBM memory price history. (11 years = factor of 10.) 

model is found in both tables, the relative performances agree 
within a factor of 1.5.A linear regression was applied to both sets 
of data to determine the coefficients kl and kz and to find out how 
much of the variance was explained by the model. 

The first question to answer is, Do the Systemi360 and 
Systemi370 constitute one or two families? Figure 37 plots the 
relative average instruction time versus the microcycle time for 
both the COBOL benchmark and Data Pro data. It can be seen 
that the curve through the Systemi360 processors is substantially 
displaced with respect to the Systemi370 curve. The regression 
analysis upheld this observation. 

10 2311 

l"' 


Fig. 36. IBM disk storage price history. 

Applying the regression model to the four Systemi360 proces- 
sors in Table 5 yielded kl = 8.32 x lo4, kz = 1.19 x 1W, kllkz = 
7 ,  and R2 = .88. R2is the amount of variance accounted for by the 
model, or 88 percent. The large ratio of kllkz indicates that the Pc 
microcycle time is the dominating factor in determining System/ 
360 performance, almost to the exclusion of memory system 
performance. Thus Systemi360 models are processor-bound, or 
memory subsystems are overdesigned with respect to the process- 
ing engine. This mismatch was observed in a different way in the 
prior discuisions on the Systemi360 Model 67 and the System/360 
Model 91. 

The regression model was applied to the six Systemi370 models 
in Table 5 (the Model 125 was excluded to give a better fit), 
yielding kl = 4.8 x lo4, kz = 2.1 x 103, kllkz = 0.2285, and R2= 
.99. In the Systemi370 series the processor is no longer the system 
bottleneck. 

The regression model was also applied to the fifteen System/370 
models in Table 6, yielding kl = 7.34x lo4, kz = 6.51 x lo4, kllkz 
= 1.13, and R2 = .SO. The differences between the two 
Systemi37O models represent variation in Systemi370 perform- 
ance in different task environments. Indeed, the smaller k, (less 
processor-bound) and larger kz (more memory-bound) for the 
COBOL benchmarks seem to indicate that the Systemi370 is 
tuned to the COBOL task. This observation corresponds to the 
consistently higher relative performance of the COBOL bench- 
marks in Table 3. 

PricePerformance 

The Systemi360 cost is based on dollars per second to rent the 
equipment. The figures were derived at one point in time from 



888 Part 4 1 Family Range, Compatibility, and Evolution 	 Section 5 1 The Systemi360 and Systemi370 Family 

Table 3 Measures of Performance of System/370 Models 

COBOL 
Dean Witter Electronics Data Pro Computer World benchmark 

Electronics Computer World Reynolds performance performance performance performance 
Model performance performance performance relative relative relative relative 
number (mips)" (mips)b (mips)" to Model 135 to Model 135d to Model 135 to Model 135" 

135 0.1 2-0.1 6 .I8 . . . .  1 .o 1 .o 1 .o 1 .o 
138 0.1 5-0.20 .2 . . . .  1.28 1.34 1.11 . . . .  
145 0.23-0.3 .3 0.4 2.0 1.87 . . . .  2.29 
148 0.33-0.43 .4 0.5 2.86 2.66 2.28 . . . .  
1583 0.7-0.9 . . . .  0.9 5.72 5.65 4.27 13.38 
168-3 2.5-2.7 . . . .  2.5 18.57 15.68 . . . .  28.53 
3031 . . . .  . . . .  1.1 . . . .  . . . .  5.1 3 . . . .  
3032 . . . .  . . . .  2.5 . . . .  . . . .  . . . .  . . . .  
3033 4.5-4.9 . . . .  5.0 33.57 . . . .  21.18 . . . .  
4331 . . . .  .2 0.2 . . . .  . . . .  . . . .  . . . .  
4341 . . . .  .5 . . . .  . . . .  . . . .  . . . .  . . . .  
"FromA. Durniak, "Soviet Computers: Better than Expected," Electronics, Sept. 28, 1978, pp. 85-86. 

bComputerWorld, Feb. 5, 1979. 

'Dean Witter Reynolds, Inc., Random Access Monthly, June 1978, p. 4.: March 1980, p. 5. 

*Data Pro [19781. 

W.S. Steel 119781. 

the IBM monthly rental prices. The computer prices are based on 
A 	 30 


1.0- (750,750) estimates of minimum, average, and maximum configurations in 
the Adams Computer Characteristics Quarterly [Adams Associ- 

-	 ates, 19601. The conversion factors are 
0.9 


1month = 1month x 173.3h/month x 3,600 s h  
0.8 - /. / . = 0.625 x 10% 


The price to buy, in dollars, is approximately 

0.7 - (480.0) 


Purchase price ($) = 45 x price($/month)t 


0.6 -	 = 45 x 0.625 x lo6 x price($/s)
135 

(275,206)o / .^ I


I I 4u I = 2.82 X lo' X price($/s) 

a 0.5- (625,937) 


Three costs are calculated: 

0.4 -
Pc(price: ($hi$)): = c.Pc: = price of Pc alone 

Mp(price.avg): = c.Mp.avg: = price of average-size Mp 
0.3- 145 	 for a model 

(203.50) 


C(price.min:): = c.C.min: = price of minimum-size0.2-
computer configuration 

155 

0.1 4115.24) 	 C(price.avg:): = c.C.avg: = price of average-size com- 

puter configuration 

The relative Systemi360 Pc powers (in instructions per second) 
microcycle time (nr) 

?As of 1977 the purchasellease ratio on some Systemi370 systems was as 
Fig. 37. Relative performance as a function of microcycle time for low as 35:l. 
the IBM Systemi360 and IBM Systemi370 series. 



Chapter 52 1 The IBM Systemi360, Systemi370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 889 

Table 4 Relative Performance as Computed from Table 6 Data Pro Evaluation of the 
Average Instruction Time and COBOL Benchmarks System1370 

Performance relative t o  the Model 30 
~ 

Model  Bell and Newell T19711 COBOL benchmarks 125-2 1.8 0.55 320 160 
135 2.9 0.34 275 206


30 1 1 135-3 3.8 0.26 275 206

40 3 2 138 3.9 0.26 275 206

50 7.5 4.5 	 145 5.45 0.18 203 50

65 	 31.5 11.5 145-3 7.1 0.14 180 45 


148 7.7 0.13 180 45 

155 10 0.1 115 24
and prices are given in the graph of Fig. 38. The most significant 155-2 10 0.1 115 24

fact from the graph is that the price/power ratio is roughly constant 158 15 0.07 115 5 
for each of the Pc’s (especially if we ignore Model 44 and Model 158-3 16.4 0.06 115 5 
50). Figure 38 gives the relative computing power versus price for 165 34.5 0.03 80 6 
various configurations. 165-2 34.5 0.03 80 6 

The performance of C[’20] is inaccurately high, since it is a 168 41.8 0.02 80 0.7 
limited subset of the 360 ISP. (C[’20] does not have floating-point 168-3 45.5 0.02 80 0.7 
or fixed-point multiply and divide instructions, and it has only 
eight 16-bit general registers.) The hardwired Model 44 has a better priceipower characteristic than any of the other C’s, by any 

measured criteria (see Fig. 38). In the case of the Model 44, the Pc 
Table 5 COBOL Benchmarks price also includes Ms.disk. Perhaps the Model 44, designed 

initially for real time scientific problem solving, is priced more 
Model p 1IP t d 4  tP competitively with similar machines (DEC PDP-10 and SDS 
30 1 1 750 ~2.41 750 [3.461 Sigma 5 .  7), whereas the other models compete in a 
40 2 0.5 625 L2.01 937 [9.32] performance-insensitive, competition-free market for general- 
50 4.5 0.22 500 [1.GI 375 [1.73] purpose business data processing. Thus its anomalous position 
65 10 0.1 200 [0.641 375 [0.173] may be due to external market pressures and not manufacturing 125 1.4 0.71 480 U.51 0 

135 1.8 0.55 275 [0.88] 206 L0.9491 cost. 

145 4 0.25 203 [0.65] 50 [0.231 The design of the IBM Systemi360 models is undoubtedly 
155 10 0.1 115 L0.371 24 [0.111 predicated on the basis that performance or computing power is 
158-3 23.7 0.04 115 [0.371 5 L0.0231 proportional to the price raised to some power g:power =k x priceg, 
165 31.7 0.03 80 L0.261 6 E0.0281 where g > 1. Almost all models follow the above relationship with 
168-3 50.5 0.02 80 [0.26] 0.7 [0.003] g > 1. When g > 1, there is an advantage to having large 
l l p  = c,tp, f C& configurations, since the price/computation will decrease. If g I1, 

then an alternative implementation for the 360 C’s would simply 
Bracketed quantities are normalized wrt average use multiple C’s or Pc’s to obtain the same power. Unfortunately, 
For twC,tPnormalized: such an approach does not provide for the interconnection of the 

components to function as a single unit. In many cases, a single 
= ‘40} 360 & 370 R2 = .87 task cannot be broken into a number of parallel and independent 

c2 = .05 subtasks. If the performance for the system varied by a factor of 
c1 = .31 360 & 370 R2 = .85 100, then 100 Pc’s or C’s would be placed together. 
c2 = .0038 without 125 The following discussion takes computing power to be mea- I 

sured by instructions per second and Mp [size; t.cycle]. Prices are 
c1= .15I 370 R2 = .99 measured in dollars per second of rental time. The graph (Fig. 39) 
cz = .46 without 125 shows the relationship to computing power p and prices. The 
c1 = .26 360 R2 = .88 power (actually p. Pc) is taken from the measures of instruction 
cB = .026I 


lHerb Grosch [Grosch, 19531first noted this relationship and estimated g
t,, = time for one micro cycle to be 2; thus we use g for this exponent. Adams suggested g = lh [Adams,
t p  = memory pause time per  byte 19621. See also Sharpe [1969]. 



t113 

0.0001 1 
0.0001 0.001 0.01 0.1 

Price ($/set) 

Fig. 38. Graph of IBM System/360 cost/processing power ratio versus rental price. 

Model # 

1000 


! 

Price. P c  
0 Price. (Pc + Mp)


(911 + Price. C.rnin. 

(851 x Price. C avg: 


100 
(75) 

a 

-i- (6518 
.F
j (44) 

2 


9 -3 (50)
d 

10 

i401 

(1 800) 


2 us 


(1 130)

(1800) 
-

(30) us 

I251 

l (20)  

Fig. 39. Graph of IBM System/36O relative processing power versus price. 



Chapter 52 1 The IBM Systemi360, System/370,3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range 891 


times for certain fixed work. Solomon [1966] observed Groschs 

law to hold for Models 30, 40, 50, 65, and 75. This line is drawn in 

Fig. 39 for C(price.average). Considering Models 20, 25, 44, 85, 

and 91, a line with a less steep slope might fit the points better. If 

we consider C(price.minimum), g >2; considering only Pc, a g = 1 

might be appropriate (see Fig. 39) for which the Pc poweriprice 

is essentially constant with cost. 


Pc(price)/Mp(price.avg): = c. Pciavg. Mp = - 1.1, the ratio of 
processor to memory price 

C(price.min)/C(price.avg):= c.min.C/avg.C = - 0.47, the 
ratio of the smallest computer configuration to an aver-
age configuration 

Pc(price)/C(price.avg): = c.Pc/c.avg.C = - 0.23, the ratio of 
processor to computer price 

These are averages over all the series and can be rather 
misleading. For example, in higher-numbered models the 
C(price.min)/C(price.avg): = c.min.C/c.avg.C is about 0.6, 
whereas in lower-numbered models the ratio is 0.3. We might 
have expected this, since it indicates that a higher proportion of 
system cost is in Ms and T on lower-number models. 

The price for the System/370 series is based on purchase price. 
Figure 40 gives the relative computing power versus price for a Pc 

145 


1 MP 

165 


I I I 1 I I I 1 

2 4 8 lo6 2 4 8 lo7 


Purchase price ($) 

Fig. 40. Graph of IBM System/370 cosffprocessing power ratio 
versus purchase price. 

with average Mp size. Again, the priceipower ratio is almost 
constant with at most a 3:l variation. The best-performing models 
seem to be the replacement models (i.e., the 138 for the 135, the 
148 for the 145). Presumably, newer technology and packaging 
yielded an increase in performance. Models 165 and 168 are clear 
priceiperformance leaders. 

Figure 41 plots the relative performance to purchase price for 
various processor models and minimum to maximum memory 
size. Grosch's law is also plotted. It appears that the Systemi370 
series follows a power law with g - 1.6. 

168-3MP 8o I
168MP I
-

Price (Pc+ Mp.avgl I 


- + Price (Pc + Mp.rnin) I 

x Price (Pc + Mpmax) I 


-
168-3 

168--40 


165 


158-3MP -

158-MP 


20 -

2 158-3 

- 1.58 _ ._ 
m I
V
s I 

e / I


i 

I 

I 


I 

I 

I 


I 

I


I 

I 


138 I 

135-3 I 


I / i 


i law 

I Power = k X priceg
I w i t h g = 2

125 I 

1152 I 


I 

I 


115-+ I I I f I I I I 


lo5 z 4 8 lo6 2 4 8 10 

Purchase price If) 

Fig. 41. Graph of IBM System/370 relative processing power versus 
price. 



892 Part 4 Family Range, Compatibility, and Evolution ~ 

Conclusions 

The IBM Systemi360 and Systemi370, by achieving a production 
record, have fulfilled this principal design objective. The techni- 
cal goals, however, are of interest to us here. The most interesting 
aspect of the design is achieving a performance range and a 
primary memory size range each in excess of 1OO: l  for both series. 
Thus a user is given a very large set of configuration alternatives. 

There is a vast array of secondary memory and terminal devices 
to couple with almost any other system. The Systemi360 is the 
first computer to make extensive use of microprogramming. 
Microprogramming is used for the definition of the System/360 
instruction-set processor, but more important, microprograms 
define previous IBM computers so that a user can operate 
satisfactorily during the interim period when older programs are 
being updated to use the System1'360. Microprogramming also 
plays a major role in the Systemi370. There are provisions for 
multicomputer structures. Within a single computer structure 
there is adequate means of peripheral switching so that reliable 
and high-performance structures can be assembled. 

References 

Adams [1962]; Amdahl, Blaauw, and Brooks [1964]; Arden et  al. 
[1966]; Bell and Yewell [1971]; Connors, Florkowski, and Patton 
[1979]; Conti, Gibson, and Pitkowsky [1968]; Data Pro [1978]; 
Grosch [1953]; Sharpe [1969]; Solomon [1966]; Tucker [1967]; 
U.S. Steel [1978]; WiIkes [1965]. 

Section 5 The Systemi360 and System/370 Family ~ 

Selected Bibliography 

Architecture and logical structure: Amdahl, Blaauw, and Brooks 
[1964]; Blaauw [1964]; BIaauw and Brooks [1964]. General 
implementations: Amdahl [1964]; Carter et  al. [1964]; Padegs 
[19641; Stevens [19641. Microprogramming: Greene, Dean, and 
Updike [19641; Tucker [19671; 'Ilieber [19671. Formal description 
of Pc: Falkoff, Iverson, and Sussenguth [1964]. Performance and 
reviews: Hillegass [1966]; Solomon [1966]. Model 40 modifica-
tions for multiprogramming: Lindquist, Seeber, and Comeau 
[1966]. Model 67: Arden et  al. [1966]; Fikes, Lauer, and Vareha 
[1968]; Gibson [1966]; Lauer [1967]. Model 85: Conti [1964]; 
Liptay [1968]; Padegs [1968]. Model 91architecture and technolo- 
gy: Anderson, Sparacio, and Tomasulo [1967]; Anderson et al. 
[1967]; Boland et al. [1967]; FIynn and Low [1967]; Langdon and 
Van Derveer [1967]; Lloyd [1967]; Sechler, Strube, and Turnbull 
[19671. Servicability: Carter et  al. [1964]. IBM reference manuals: 
SystemI'360 and Systemi370 functional characteristics manuals for 
each model; Systend360 and Systemi370 configurator (diagram) 
for each model; Systemi360 Principles of Operation; System1360 
System Summary; processor facts folders for the 4331 and 4341; 
Guide to the Systemi370 Model 135; Guide to the Systeml370 
Model 145, 6th ed.; Guide to the Systmni370 Model 155, 1st ed.; 
product announcements for the Systemi370 Models 135and 145, 
Systemi370 Model 138, Systemi370 Model 148, and Systemi370 
Model 168; 4341 Processor Functional Characteristics and Proces- 
sor Complex Configurutor. 



Section 6 

Evolution of CDCERAY Computers 
The evolution of the CDC 660017600iCYBER series and the 
CRAY-1 is described in Part 3, Sec. 4.Chapters 43 and 44discuss 
the CDC 6600 and CR4Y-1, respectively. 

893 



Bibliography Sources 

Abbreviations 

ACM 
AFlPS 

Comm 
Comp. 
Compcon 
Con$ 
Dig. 
EJCC 
Elect. 
FJCC 
IEE 
IEEE 

I F I P  

IRE 
1. 

NBS 

NCC 
Proc. 
Rel. 

Res. and Dev. 

SIGPLAN 


SJCC 

Soft. 
SUPP. 
SYmP 
Tech. Den 
Trans. 
WJCC 

Association for Computing Machinery 
American Federation of Information 
Processing Societies 
Communications 
Computer(s) 
Computer Conference 
Conference 
Digest 
Eastern Joint Computer conference 
Electronic 
Fall Joint Computer Conference 
Institute of Electrical Engineers, London 
Institute of Electrical and Electronic 
Engineers 
International Federation for Information 
Processing 
Institute of Radio Engineers 
Journal 
National Bureau of Standards 
National Computer Conference 
Proceedings 
Reliability 
Research and Development 
Special Interest Group on Programming 
Languages 
Sprint Joint Computer Conference 
Software 
Supplement 
Symposium 
Technical Developments 
Transactions 
Western Joint Computer Conference 

Abramson [1970]: Abramson, N.,“The ALOHA System,” Proc. 
AFIPS FJCC, vol. 37, 1970, pp. 281-285. Also in Abramson and 
Kuo [19731. 

Abramson [1973]: Abramson, N., “Packet Switching with Satel- 
lites.” Proc. AFIPS NCC, vol. 42, 1973, pp. 695702. 

Abramson and Kuo [1973]: Abramson, N., and F. F. Kuo, 
Computer-Communication Networks, Prentice-Hall, Englewood 
Cliffs, NJ, 1973. 

Adams [19601: Adams Associates, Computer Characteristics 
Quarterly (summary of the characteristics of computers currently 
being manufactured), Cambridge, MA. Specific issues used: vol. 
6, no.1 (1966); vol. 7,nos. 1, 2 ,  and 4 (1967); vol. 8, no. 1 [(1968) 
first published in 19601. 

Adams [19621: Adams, C. W., “Groschs Law Repealed,” Datama-
tion, vol. 8 ,  no. 7, July 1962, pp. 38-39. 

Adams and Smith [1978]: Adams, W. T.,  and S. M. Smith, “How 
Bit-Slice Families Compare, Part 1: Evaluation Processor Ele- 
ments,” Electronics, August 1978, pp. 91-98. 

Alexander and Wortman [1975]: Alexander, W. G., and D. B. 
Wortman, “Static and Dynamic Characteristics of XPL Pro- 
grams,” Compute;, November 1975, pp. 4146.  

Allard, Wolf, and Zemlin [19641: Allard, R. W.,K. A. Wolf, and 
R. A. Zemlin, “Effects of the 6600 Computer on Language 
Structures,” Comm. ACM, vol. 7, no. 2 ,  February 1964, pp. 
112-119. 

Allmark and Lucking [1962]: Allmark, R. H., and J. R. Lucking, 
“Design of an Arithmetic Unit Incorporating a Nesting Store,” 
Proc. I F I P  Cong., 1962, pp. 694-698. 

Allsen [1978]: Allsen, J. K., “Systemi38 Common Code Genera- 
tion,” IBM Systemi38 Tech. Dev., IBM GS80-0237, 1978, pp, 
100-103. 

Almes and Robertson [1978]: Almes, G.,  and G. Robertson, “An 
Extensible File System for Hydra,” Proc. 3d IEEE Con$ on 
Software Engineering, 1978. 

Amdahl [1964]: Amdahl, G. M., “The Structure of Systemi360, 
Part 111: Processing Unit Design Considerations,” IBM Syst. J . ,  
vol. 3, no. 2, 1964, pp. 144-164. 

Amdahl, Blaauw, and Brooks [1964]: Amdahl, G. M., G. A. 
Blaauw, and F. P. Brooks, Jr., “Architecture of the IBM 
Systemi360,” ZBM J.  Res. and Dev., vol. 8,  no. 2, April 1964, pp. 
87-101. 

Anacker [1979]: Anacker, W.,  “Computing at 4 Degrees Kelvin,” 
IEEE Spectrum, vol. 16, no. 5, May 1979, pp. 2W7. 894 



Bibliography 895 

Anderson [1961]: Anderson, J. P., “A Computer for Direct 
Execution of Algorithmic Languages,” Proc. AFIPS FJCC, vol. 
20, 1961, pp. 184-193. 

Anderson et al. “621: Anderson, J .  P., S.  A. Hoffman, J. 
Shifman, and R. J. Williams, “D825; A Multiple: Computer 
System for Command and Control,” Proc. AFIPS FJCC, vol. 22, 
1962, pp. 86-96. 

Anderson et al. [1967]: Anderson, S. F., J. G. Earle, R. E. 
Goldschmidt, and D. M. Powers, “The IBM System/360 Model 91 
Floating-point Execution Unit,” IBM J. Res. and Dev., vol. 11, 
no. 1, 1967, p. 34. 

Anderson and Jensen [1975]: Anderson, G. A , ,  and E. D. Jensen, 
“Computer Interconnection Structures: Taxonomy, Characteris- 
tics and Examples,” Comp. Surv., vol. 7, no. 4,December 1975, 
pp. 197-213. 

Anderson and Macri [1967]: Anderson, J. E., and F. J. Macri, 
“Multiple Redundancy Applications in a Computer,” Proc. Annu- 
al Symp. Rel., Washington, 1967, pp. 553-562. 

Anderson and Metze [1973]: Anderson, D. A., and G. Metze, 
“Design of Totally Self-checking Check Circuits for m-out-of-n 
Codes,” IEEE Trans. Comp., vol. C-22, no. 3, pp. 263-269. 

Anderson, Sparacio, and Tomasulo [1967]: Anderson, D. W., F. J. 
Sparacio, and R. M. Tomasulo, “The IBM System/360 Model 
91: Machine Philosophy and Instruction-Handling,” IBM J. 
Res. and Dev., vol. 11, no. 1, 1967, pp. 8-24. Chapter 18 of 
this book. 

Arbuckle [1966]: Arbuckle, R. A., “Computer Analysis and 
Thruput Evaluation,” Computers and Automation, January 1966, 
pp. 12-19. 

Arden et al. [19661: Arden. B. W., B. A. Caller, T. C. O’Brien, and 
F. H. Westervelt, “Program and Addressing Structure in a 
Time-sharing Environment,” J.  ACM, vol. 13, no. 1, January 
1966, pp. 1-16. 

Ashenhurst and Vonderohe [1975]: Ashenhurst, R. L., and R. H. 
Vonderohe, “A Hierarchical Network,” Datamation, vol. 21, no. 
2, February 1975, pp. 40-44. 

Astronaut. [1970]: “TOPS Outer Planet Spacecraft,” Special issue 
of Astronaut. Aeronaut., vol. 8,  September 1970. 

Auerbach [n.d.]: Auerbach Computer Technology Report on 
CRAY-1, Pennsauken, NJ 

Ault et al. [1964]: Ault, C. F., L. E. Gallaher, T. S. Greenwood, 
and D. C. Koehler, “No. 1ESS Program Store,” Bell Syst. Tech. 
J . ,  September 1964, pp. 2,097-2,146. 

Ault et al. [1977]: Auk, C. F., J. H. Brewster, T. S.  Greenwood, 
R. E. Haglund, W. A. Read, and M. W. Rolund, , “1A 

Processor-Memory Systems,”Bell Syst. Tech. J;,February 1977. 

Aupperle [1973]: Aupperle, E. M., “MERIT Network Re- 
examined,” in Seventh Annual IEEE Comp. Soc. Int. Con$, Dig. 
Papers, 1973, pp. 25-30. 

Austing et a1 [1979]: Austing, R. H., B. H. Barnes, D. T. 
Bonnette, G. L. Engel, and G. Stokes, “Curriculum ’78, Recom- 
mendations for the Undergraduate Program in Computer Science: 
A Report of the ACM Curriculum Committee on Computer 
Science,” Comm. ACM, vol. 22, no. 3, 1979, pp. 147-166. 

Aviiienis [1967a]: Aviiienis, A. A., “Design of Fault-Tolerant 
Computers,” Proc. AFIPS FJCC, vol. 31, 1967, pp. 733-743. 

Aviiienis [1967b]: Aviiienis, A. A., “Concurrent Diagnosis of 
Arithmetic Processors,” Digest 1st Annual IEEE Comput. Con$, 
1967, pp. 3497. 

Aviiienis [1968]: Aviiienis, A. A,, “An Experimental Self-Re- 
pairing Computer,” Proc. IFIP Cong., vol. 2, 1968, pp. 872-877. 

Avii.ienis [1971]: Aviiienis, A. A., “Arithmetic Error Codes: Cost 
and Effectiveness Studies for Application in Digital System 
Design,” IEEE Trans. Comp., vol. C-20, no. 11, November 1971, 
pp. 1,322-1,331. 

Aviiienis [19751:Aviiienis, A. A., “Architecture of Fault-Tolerant 
Computing Systems,” Znt. Symp. Fault-Tolerant Computing, 
1975. 

Aviiienis [1976]: Aviiienis, A. A., “Approaches to Computer Reli- 
ability: Then and NOW,” Proc. AFZPS NCC, vol. 45, 1976, pp. 
401-41 1. 

Aviiienis et al. [1969]: Aviiienis, A. A., F. P. Mathur, D. 
Rennels, and J. Rohr, “Automatic Maintenance of Aeroqpace 
Computers and Spacecraft Information and Control Systems,” 
Proc. AIAA Aerosp. Comp. Syst. Con$, 1969, pp. 1-11. 

Aviiienis et al. [1971]: Aviiienis, A. A., G. C. Gilley, F. P. 
Mathur, D. A. Rennels, J. A. Rohr, and D. K. Rubin, “The STAR 
(Self-Testing and Repairing) Computer: An Investigation of the 
Theory and Practice of Fault-Tolerant Computer Design,” ZEEE 
Trans. Comp., vol. C-20, no. 11, November 1971, pp. 1,312- 
1,321. Chapter 27 in this book. 

Baecker [1976]: Baecker, R. M., “A Conversational Extensible 
System for the Animation of Shaded Images,” Computer Graph- 
ics, vol. 10, no. 2, 1976, pp. 32-39. 

Baran [1964]: Baran, P., “On Distributed Communication Net- 
works,” IEEE Trans. Comm Syst., vol. CS-12, March 1964. 

Baran, Boehm, and Smith [1964]: Baran, P., S.  Boehm, and P. 
Smith, “On Distributed Communications,” Rand Corporation 
Memorandum RM-3420-PR, Santa Monica, Calif., August 1964. 



896 Bibliography 

Barnes et  al. [1968]: Barnes, G. H., R. M. Brown, M. Kato, D. J. 
Kuck, D. L. Slotnick, and R. A. Stokes, “The Illiac IV Comput-
er,” I E E E  Trans. Comp., vol. C-17, no. 8, August 1968, pp. 
746-757. 

Bartlett [1977]: Bartlett, J. P., “A ‘NonStop’ Operating System,” 
Tandem Computers, Inc., 1977; also printed in Proc. Hawaii on 
System Sciences, 1978, and in Chap. 29 of this book. 

Barton, [1961]: Barton, R. S. ,  “A New Approach to the Functional 
Design of a Digital Computer,” Proc. WJCC, 1961, pp. 393-396. 

Batcher [1968]: Batcher, K. E., “Sorting Networks and Their 
Applications,” Proc. AFlPS SJCC, vol. 32, 1968, pp. 307-314. 

Batcher [1974]: Batcher, K. E. ,  “STARAN Parallel Processor 
System Hardware,” Proc. AFIPS NCC, 1974, pp. 405-410. In 
Chap. 21 of this book. 

Batcher [19761: Batcher, K. E., “The FLIP Network in STARAN,” 
Proc. 1976 Int. Con$ on Parallel Processing, Waldenwoods, 
Mich., 1976. 

Batcher [1977]: Batcher, K. E., “The Multidimensional Access 
Memory in STARAN,” IEEE Trans. Comp., vol. C-26, no. 2, 
February 1977, pp. 174-177. 

BBN [1969a]: Bolt Beranek and Newman, Inc., Initial Design for 
Interface Message Processors for the ARPA Computer Network, 
report no. 1763, 1969. 

BBN [1969b]: Bolt Beranek and Newman, Inc., Specificationsfor 
the Interconnection of a Host and an IMP, report no. 1822, 1969. 

Becker et al. [1977]: Becker, J. O., J. G. Chevalier, R. K. 
Eisenhart, J. H. Forster, A. W. Fulton, and W. L. Harrod, “1A 
Processor: Technology and Physical Design,” Bell Syst. Tech. J . ,  
February 1977, pp. 207-236. 

Belady [1966]: Belady, L. A., “A Study of Replacement Algo- 
rithms for Virtual Storage Computers,” IBM Syst. J . ,  vol. 5, no. 2, 
1966, pp. 78-101. 

Bell et al. [1970]: Bell, C. G., R. Cady, H. McFarland, B. Delagi, 
J. O’hughlin, R. Noonan, and W. Wulf, “A New Architecture for 
Mini-computers: The DEC PDP-11,” Proc. AFIPS SJCC, vol. 36, 
1970, pp. 657-675. Chapter 38 in this book. 

Bell, Mudge, and McNamara [1978]: Bell, C. G., J. C. Mudge, 
and J. E. McNamara, Computer Engineering: A DEC View of 
Hardware System Design, Digital Press, Bedford, Mass, 1978. 

Bell and Newell [1971]: Bell, C. G.,  and A. Newell, Computer 
Structures: Readings and Examples, McGraw-Hill Book Compa- 
ny, New York, 1971. 

Bell and Strecker [1976]: Bell, C. G., and W. D. Strecker, 
“Computer Structures: What Have We Learned from the 

PDP-ll?” in Proc. 3d Annual Symp. on Computer Architecture, 
1976. 

Bellis [1978]: Bellis, H.,  “AUTOFAIL: Automatic Failure Rate 
Calculator User Manual,” Carnegie-Mellon Univ. Dept. of Com-
puter Science Technical Report, Pittsburgh, May 1978. 

Berglund [1978]: Berglund, N. C., “Processor Development in 
the LSI Environment,” IBM Syst. I38 Tech. Dev. GS80-0237, 
1978, pp. 7-10. 

Bernwell [1975]: Bernwell, N., ed. Benchmarking: Computer 
Evaluation and Measurement, John Wiley & Sons, Inc., New 
York, 1975. 

Berstis [1978]: Berstis, V., C. D. Truxal, and J. G. Ranweiler, 
“System138 Addressing and Authorization,” IBM Syst. 138 Tech. 
Deu. GS80-0237, 1978, pp. 51-54. In Chap. 32 of this book. 

Beuscher et al. [1969]: Beuscher, H. J., G. E. Fessler, D. W. 
Huffman, P. J. Kennedy, and E. Nussbaum, “Administration and 
Maintenance Plan,” Bell Syst. Tech. J., October 1969. 

Bhandarkar [1972]: Bhandarkar, D. P., Analytic Models for 
Memory Interference in Multiprocessor Computer Systems, 
Ph. D. thesis, Carnegie-Mellon Univ., Pittsburgh, September 
1972. 

Bbandarkar and Juliussen [1978]: Bhandarkar, D. P., and J. E. 
Juliussen, “Semiconductor Technology: Trends and Implications,” 
ACM Comp. Architecture News, vol. 7, no. 1, 1978, pp. 4-14. 

Binder, Lai, and Wilson [1974]: Binder, R., W. S. Lai, and M. 
Wilson, “The ALOHANET MENEHUNE: Version 11,” Univ. of 
Hawaii ALOHA SYSTEM Tech. Rep. B74-6, September 1974. 

Binder et al. [1975]: Binder, R., N. Abramson, F. Kuo, A. 
Okinaka, and D. Wax, “ALOHA Packet Broadcasting: A Retro-
spect,”Proc. AFIPS NCC, vol. 44, 1975. Chapter 25 ofthis book. 

Blaauw [1964]: Blaauw, G. A., “The Structure of Systed360, Part 
V: Multi-System Organization,” IBM Syst. J., vol. 3, no. 2, 1964, 
pp. 181-195. 

Blaauw and Brooks [1964]: Blaauw, G. A., and F. P. Brooks, Jr., 
“The Structure of System/360, Part I: Outline of the Logical 
Structure,” IBM Syst. J., vol. 3, no. 2, 1964, pp, 119-135. 
Chapter 40 of this book. 

Blake [1977]: Blake, R. P., “Exploring a Stack Architecture,” 
Computer, vol. 10, no. 5, May 1977, pp. 30-39. 

Bloch and Galage [1978]: Bloch, E . ,  and D. Galage, “Component 
Progress: Its Effect on High-speed Computer Architecture and 
Machine Organization,” Computer, April 1978, pp. 64-76. 

Bock [1963]: Bock, R. V.,  “An Interrupt Control for the B5000 



Data Processor System,” Proc. AFIPS FJCC, vol. 24, 1963, pp. 
229-241. 

Boehm and Mobley [1966]: Boehm, B. W., and R. L. Mobley, 
“Adaptive Routing Techniques for Distributed Communication 
Systems,” Rand Corporation Memorandum RM-4781-PR, 1966. 

Boggs et al. [1980]: Boggs, D. R., J. F. Shoch, E. A. T&, and 
R. M. Metcalfe, “Pup: An Internetwork Architecture,” IEEE 
Trans. Comm., vol. COM-28, no. 1, January 1980. 

Boland et al. [1967]: Boland, L. J., G. D. Granito, A. U. 
Marcotte, B. U. Messina, and J. W. Smith, “IBM Systeml360 
Model 91 Storage System,” IBM J. Res. and Dev., vol. 11, 1967, 
p. 54-68. 

Bouknight, et al. [1972]: Bouknight, W. J., S. A. Denenberg, D. 
E. McIntyre, J. M. Randall, A. H. Sameh, and D. L. Slotnick, 
“The Illiac IV System,” Proc. ZEEE, April 1972, pp. 369-379. 
Chapter 20 of this book. 

Boulis and Faiss [1977]: Boulis, R. L., and R. 0. Faiss, “STARAN 
E Performance and LACIE Algorithms,” Proc. 1977 Int. Con, on 
Parallel Processing, 1977. 

Bouricius, Carter, and Schneider [1969]: Bouricius, W. G., W. G. 
Carter, and P. R. Schneider, “Reliability Modeling Techniques 
for Self-Repairing Computer_Systems,” Proc. 24th ACM Natl 
Con , ,  1969, pp. 295409. 

Boutwell and Hoskinson [1963]: Boutwell, E.,  Jr., and E. A. 
Hoskinson, “The Logical Organization of the PB 440 Micropro-
grammable Computer,” Proc. AFZPS FJCC, vol. 24, 1963, pp. 
201-213. 

Bowman et al. [1977]: Bowman, P. W., et a!., “1A Processor-
Maintenance Software,” Bell Syst. Tech. ]. ,February 1977. 

Bressler, Kraley, and Michel [1975]: Bressler, R. D., M. F. 
Kraley, and A. Michel, “Pluribus: A Multiprocessor for Commu- 
nications Networks,” in 14th Ann. ACMINBS Tech. Symp. :Com-
puting in the Mid-70’s: An Assessment, 1975, pp. 13-19. 

Brinch Hansen [1970]: Brinch Hansen, P., “The Nucleus of a 
Multi-programming system,” Comm ACM. vol. 13, April 1970, 
pp. 238-2cii. 

Brooker [1960]: Brooker, R. A., “Some Techniques for Dealing 
with Two-Level Storage,” Comp.J . ,  vol. 2, 1960, pp. 189-194. 

Brown, Gibson, and Thorn [1972]: Brown, D. T., R. L. Gibson, 
and C. A. Thorn, “Channel and Direct Access Device Architec- 
ture,” ZBM Syst. J., vol. 11, no. 3, 1972, pp. 186199. 

Brown, Miller, and Keenan [1967]: Brown, G. W., J. G. Miller, 
and T. A. Keenan, EDUNET Report of the Summer Study on 

Bibliography 897 

Information Networks Conducted by the Interuniversity Commu- 
nications Council, John Wiley & Sons, Inc., New York, 1967. 

Brown and Walden [1972]: Brown, C. D., and J. M. Walden, 
“Model 10 Maintains Compatibility, Expands Capability,” Hew-
lett-PuckardJ., vol. 24, December 1972, pp. 5-8. In Chap. 49 of 
this book. 

Browne et al. [1969]: Browne, T. E., T. M. Quinn, W. N. Toy, 
and J. E. Yates, “No. 2 ESS Control Unit System,” Bell Syst. Tech. 
J. , October 1969, pp. 2,619-2,668. 

Buchholz and Ballance [1962]: Buchholz W., and R. S. Bauance, 
PZanning a Computer System, McGraw-Hill Book Company, New 
York, 1962. 

Bucy and Senne [1978]: Bucy, R. S., and K. D. Senne, “New 
Frontiers in Nonlinear Filtering,” MIT Lincoln Labomtory, Tech. 
Rep. 1978-16, May 1978. 

Budlong et al. [1977]: Budlong, A. H., B. G. DeLugish, S. M. 
Neville, 3. S. Nowak, 3. L. Quinn, and F. W. Wenland, “1A 
Processor: Control System,” Bell Syst. Tech. J., February 1977, 
pp. 135-179. 

Burks, Goldstine, and von Neumann [1962]: Burks, A. W., H. H. 
Goldstine, and J. von Neumann, “Preliminary Discussion of the 
Logical Design of an Electronic Computing Instrument, Part 11,” 
Datamation, vol. 8, no. 10, October 1962, pp. 36-41. 

Burroughs [19641: Burroughs Corporation B5500 Information 
Processing System Reference Manual, 1964. 

Burroughs [1965]: A Narrative Description of the Burroughs‘ 
B5500 Disk File Master Control Program, Burroughs Corpora- 
tion, 1965. 

Buzen and Gagliardi [1973]: Buzen, J. P., and U. 0. Gagliardi, 
“The Evolution of Virtual Machine Architecture,” Proc. AFIPS 
NCC, vol. 42, June 1973, pp. 291-299. 

Bylinsky [1975]: Bylinsky, G . ,“Here Comes the Second Comput- 
er Revolution,” Fortune, November 1975. 

Cagle et al. [1964]: Cagle, W. B., R. S. Menne, R. S. Skinner, 
R. E. Staehler, and M. D. Underwood, “No. 1ESS Logic Circuits 
and Their Application to the Design of the Central Control,” Bell 
Syst. Tech. J., September 1964, pp. 2,055-2,095. 

Calahan, Joy, and Orbits En.d.1: Calahan, Joy, and Orbits, 
“Preliminary Report on Results of Matrix Benchmarks on Vector 
Processors,” System Engineering Laboratory, Univ. of Michigan, 
Ann Arbor, Mich. 

Carlson [1963]: Carlson, C. B.,“The Mechanization of a Push- 

down Stack,” AFZPS Proc. FJCC, vol. 24, 1963, pp. 243-250. 




898 Bibliography 

Carr, Crocker, and Cerf[1970]: Carr, S., S. Crocker, and V. Cerf, 
“HOST-HOST Communication Protocol in the ARPA Network,” 
Proc. AFIPS SJCC, 1970. 

Carter et al. [1964]: Carter, W. C., H. C. Montgomery, R. J. 
Preiss, and H. J. Reinheimer, “Design of Serviceability Features 
for the IBM Systeml360,” IBM J. Res. and Dev., vol. 8, no. 2, 
April 1964, pp. 115-125. 

Carter et al. [1971]: Carter, W. C., D. C. Jessep, P. R. Schneider, 
A. B. Wadia, and W. G. Bouricius, “Logic Design for Dynamic 
and Interactive Recovery,” IEEE Trans. Comp., vol. C-30, no. 11, 
November 1971, pp. 1,300-1,305. 

Carter and Schneider [19691: Carter, W. C., and P. R. Schneider, 
“Design of Dynamically Checked Computers,” Proc. IFIP Cong., 
vol. 2, North Holland Publishing Company, Amsterdam, 1969, 
pp. 878-883. 

Casale [1962]: Casale, C. T., “Planning the CDC 3600,” Proc. 
AFIPS FJCC, vol. 22, 1962, pp. 73-85. 

Case and Padegs [1978]: Case, R. P., and A. Padegs, “Architec- 
ture of the IBM Systed370,” Comm ACM, vol. 21, no. 1, 
January 1978, pp. 73-96. Chapter 51 of this book. 

Cerfand Kahn [1974]: Cerf, V. G., and R. E. Kahn, “A Protocol 
for Packet Network Intercommunication,’’ IEEE Trans. Comp. , 
vol. COM-22, no. 5, May 1974, pp. 637-648. 

CFA [1977]: “Selection Methods for a Computer Family Architec- 
ture,” series of articles, Proc. AFIPS NCC, vol. 46, 1977, pp. 
131-200. 

Chang, Smith, and Walford [1974]: Chang, H. Y., G. W. Smith, 
and R. B. Walford, “LAMP: System Description,” Bell Syst. Tech. 
J . ,  October 1974, pp. 1,431-1,449. 

Chesley and Smith [1971]: Chesley, G. D., and W. R. Smith, 
“The Hardware-Implemented High-Level Machine Language for 
SYMBOL,” Proc. AFIPS SJCC, vol. 38, 1971, pp. 563-573. 

Chu and Cannont [1976]: Chu, Y . ,  and E. R. Cannont, “Interac- 
tive High-Level Language Direct-Execution Microprocessor Sys- 
tem,” IEEE Trans. Soft. Eng., vol. SE-2, no. 2, June 1976, pp. 
126-134. 

Clark [1957]: Clark, W. A., “The Lincoln TX-2 Computer 
Development,” Proc. WJCC, 1957, pp. 143-145. 

Clayton, Dorff, and Fagen [1964]: Clayton, B. B., E. K. DO&, 
and R. E. Fagen, “An Operating System and Programming 
Systems for the 6600,” Proc. AFIPS FJCC, vol. 26, pt. 2, 1964, 
pp. 41-57. 

Cleary [1969]: Cleary, J. G., “Process Handling on Burroughs 
B6500,” Proc. 4th Australian Comp. Con . ,  1969, pp. 231-239. 

Cochran [1968]: Cochran, D. S.: “Internal Programming of the 
9100A Calculator,” Hewlett-PackardJ . ,  vol. 20, no. 1,September 
1968, pp. 14-16. In Chap. 48 of this book. 

Cohen and Jefferson [1975]: Cohen, E., and D. Jefferson: 
“Protection in the Hydra Operating System,” Proc. 5th Symp. on 
Operating Systems Principles, 1975, pp. 141-160. 

Computer [1974al: “The Shrinking World: Computer Networks 
and Communications,” special issue of Computer, vol. 7, no. 2, 
February 1974. 

Computer [1974b]: “Distributed-Function Computer Architec- 
tures,” Special issue of Computer, vol. 7, no. 3, March 1974. 

Computer [19761:Computer World, August 1976. 

Computer [1977]: “Military Computer Architectures: A Look at 
the Alternatives,’’ special issue of Computer, vol. 10, no. 10, 
October 1977. 

Computer Review [19751: Computer Review (formerly Computer 
Characteristics Review), GML Corp., Lexington, Mass., 1975. 

Computer Review [1977]: Computer Reuiew, vol. 1, GML Corp., 
Lexington, Mass., 1977. 

Connors, Florkowski, and Patton [1979]: Connors, W. D., J. H. 
Florkowski, and S. K. Patton, “The IBM 3033: An Inside Look,” 
Datamation, vol. 25, no. 5,  May 1979, pp. 198-218. 

Connors, Mercer, and Sorlini [1970]: Connors, W. D., V. S. 
Mercer, and T. A. Sorlini, “S/360 Instruction Usage Distribution,” 
Rep. IBM-SDS TR 00.2025, May 8, 1970. 

Conti [1964]: Conti, C., “System Aspect: Systeml360 Model 92,” 
Proc. AFIPS FJCC, vol. 26, pt. 2, 1964, pp. 81-95. 

Conti, Gibson, and Pitkowsky [1968]: Conti, C. J., D. H .  Gibson, 
and S. H. Pitkowsky, “Structural Aspects of the Systed360 
Model 85, Part 1:General Organization,” CBM Syst. J., vol. 7, no. 
1, 1968, pp. 2-14. 

Corbato and Vyssotsky [1965]: Corbato, F. J., and V. A. Vyssot-
sky, “Introduction and Overview of the Multics System,” Proc. 
AFIPS FJCC, vol. 27, pt. 1, 1965. 

Cornyn et al. [1977]: Cornyn, J. J., W. R. Smith, W. R. Svirsky, 
and A. H. Coleman, “Two Life-Cycle Cost Models for Com- 
paring Computer Architectures,” Proc. AFIPS NCC, vol. 
46, 1977. 

Cosserat [19721: Cosserat, D. C., “A Capability Oriented Multi- 
processor System for Real-Time Applications,” Proc. Int. Con$ 
Comp. Comm., 1972. 

Cowart, Rice, and Lundstrom [1971]: Cowart, B. E., R. Rice, and 
S. F. Lundstrom, “The Physical Attributes and Testing Aspects of 



the SYMBOL System,” Proc. AFZPS SJCC, vol. 38, 1971, pp. 
589-600. 

Crocker et al. [1972]: Crocker, S.  D., J. F. Heafner, R. M. 
Metcalfe, and J .  B. Postel, “Function-Oriented Protocols for the 
ARPA Computer Network,” Proc. AFZPS SJCC, vol. 40, 1972, pp. 
271-279. 

Crowther et al. [1975]: Crowther, W. R., F. E. Heart, A. A. 
McKenzie, J. M. McQuillan, and D. C. Walden, “Issues in 
Packet-Switching Network Design,” Proc. AFIPS NCC, vol. 44, 
1975, pp. 161-175. 

Cuadra [1968]: Cuadra, C. A., Chapters 7 and 10, in Annual 
Review of Infomt ion Science and Technology, Interscience, 
1968. 

Curtis [1978]: Curtis, H. W., “Integrated Circuit Design, Pro- 
duction, and Packaging for System/38,” I B M  Systed38 Tech, 
Deu., IBM GS80-0237, 1978, pp, 11-14. 

Dahlby et al. [1978]: Dahlby, S. H., G. G. Henry, D. N. 
Reynolds, and P. T. Taylor, “Systeml38: A High Level Machine, 
I B M  System/38 Tech. Dev., IBM GS80-0237, 1978, pp. 47-50. In 
Chap. 32 of this book. 

Data [1978]: Data Pro Research Corp., 1978, pp. 70c-491-04a 
through 7Oc-491-05p. 

Davidson [1972]: Davidson, J., “An Echoing Strategy for Satellite 
Links,” Stanford Research Institute NIC Document 10599 (RFC 
357), June 1972. 

Davies [1968a]: Davies, D. W., “The Principles of a Data 
Communication Network for Computers and Remote Peripher- 
als,” Proc. IFZP Cong., vol. 2, 1968. 

Davies [196817]: Davies, D. W., “Communications Networks to 
Serve Rapid-Response Computers,” Proc. ZFZP Cong., vol. 2, 
1968. 

Davies [1972]: Davies, P. M., “Readings in Microprogramming,” 
I B M  Syst. J., no. 1, 1972, pp. 1640. 

Davies et al. [1967]: Davies, D. W., K. A. Bartlett, R. A. 
Scantlebury, and P. T. Wilkinson, “A Digital Communication 
Network for Computers Giving Rapid Response at Remote 
Terminals,” Proc. ACM Symp. on Operating Systems Principles, 
1967. 

Davis [1960]: Davis, G. M., “The English Electric KDF9 
Computer System,” Comp. Bull., December 1960, pp. 119-120. 

Dean [1973]: Dean, L. C., “Texas Instruments Advanced Scientif- 
ic Computer,” Infomt ie  Jrg., vol. 15, no. 4, April 1973, pp. 
191-193. In Chap. 45 of this book. 

Bibliography 899 

DEC [19711: Digital Equipment Corp. PDP-l1/20/15/Fi20 Proces- 
sor Handbook, 1971. 

DEC [1972]: Digital Equipment Corp. KD11-A Processor Main- 
tainence Manual, 1972. 

DEC [1973]: Digital Equipment Corp. PDP-11 Peripherals 
Handbook, 1973. 

DEC [19751: Digital Equipment Corp. LSI-ll/PDP-11/03 Pro- 
gramming Reference Card, 1975. 

DEC [1976u]: Digital Equipment Corp. PDP-11/04/05/10/35/ 
40145 Processor Handbook, 1976. 

DEC [1976b]: Digital Equipment Corp. PDP-11/04/34/45/55 
Processor Handbook, 1976. 

DEC [1976~1: Digital Equipment Corp. LSI-11 Microcomputer 
Handbook, 1976. 

DEC [1976d]: Digital Equipment Corp. PDP-11 Peripherals 
Handbook, 1976. 

DEC [1976e]: Digital Equipment Corp. PDP-11 Programming 
Reference Card, 1976. 

DEC [19771: Digital Equipment Corp. PDP-11/60 Processor 
Handbook, 1977. 

Demers [1978]: Demers, R. A., “The Generalized Message 
Handler in System/38,” I B M  System/38 Tech. Deu., IBM GS80- 
0237, 1978, pp. 97-99. 

Denenberg [1971]: Denenberg, S. A., “An Introductory Descrip- 
tion of the ILLIAC IV System,” Center for Advanced Computa- 
tion, Univ. of Illinois Tech. Memo Doc. 225, File 850, Urbana, 
Ill., July 1971. 

Denning [19671: Denning, P. J., “Effects of Scheduling on File 
Memory Operations,” Proc. AFZPS SJCC, 1967. 

Denning [19701: Denning, P. J., “Virtual Memory,” Comp. Suru. , 
vol. 2, no. 3, September 1970, pp. 153-189. 

Dennis [1965]: Dennis, J. B., “Segmentation and the Design of 
Multiprogrammed Computer Systems,” J. ACM, vol. 12, no. 4, 
October 1965, pp. 589-602. 

Deutsch [19791: Deutsch, P., “Experience. with a Micropro-
grammed Interlisp System,” IEEE Trans. Comp., vol. C-28, no. 
10, October 1979. 

Dijkstra [1968a]: Dijkstra, E. W., “Co-operating Sequential 
Processes,” In F. Genuys, ed., Programming Languages, p. 43, 
Academic Press, London, 1968. 

Dijkstra [196817]: Dijkstra, E. W., “The Structure of the ‘THE’ 



900 Bibliography 

Multiprogramming System,” Comm. ACM, vol. 11, May 1968, 
pp. 341346. 

“Distributed-Function Architectures” [1974]: “Distributed Func- 
tion Computer Architectures,” special issue of Computer, vol. 7, 
no. 3, March 1974. 

Doll [1974]: Doll, D. R., “Telecommunications Turbulence and 
the Computer Network Evolution,” Computer, vol. 7, no. 2, 
February 1974, pp. 13-22. 

Dolotta et al. [1976]: Dolotta, T. A., M. I. Bernstein, R. S. 
Dickson, Jr., N. A. France, B. A. Rosenblatt, D. M. Smith, and 
T. B. Steel, Jr., Data Processing in 1980-1985, John Wiley & 
Sons, Inc., 1976. 

Donofrio, Flur. and Schnadt 119781: Donofrio, M. N.,  B. Flur, 
and R‘ T’ Schnadt, “Memory for System/38,”
I B M  System/38 Tech. Dev., IBM GS80-0237, 1978, pp. 16-19. 

Doran [1975]: Doran, R. W., “The ICL 2900 Computer Architec- 
ture (Compared with the Burroughs B6700),” Computer Architec- -

ture News, vol. 4, no. 3, 1975, p. 24. 


Dorn [1974]: Dorn, P., “ICL’s Brand of ‘Me-too-ism,’’’ Datum-
tion, December 1974. 

Downing, Nowak, and Tuomenoksa [1964]: Downing, R. W., J. S. 
Nowak, and L. L. Tuomenoksa, “NO. 1ESS Maintenance Plan,” 
Bell syst. Tech. J . ,  vol. 43, no. 5, Pt. 1, September 1964, PP. 
1,961-2,019. 

Dumstoa  “781: Dumstod, E. F., “Application of a Micro-
processor for I/O Control,” IBM Systemi38 Tech. Dev., IBM 
GS80-0237, 1978, pp. 28-31. 

Durniak [1978]: Durniak, A., “Soviet Computers: Better Than 
Expected,” Electronics, September 1978, pp. 8 H 6 .  

Eckhouse [1975]: Eckhouse, R. H., Minicomputer systems: 
Organization and Programming Inc. (PDP-Il), Prentice Hall, 
Englewood Cliffs, N. J., 1975. 

EDUCOM [n.d.]: EDUCOM EIN Software Catalogue, 100 
Charles River Park, Boston. 

Edwards, Lanigan, and Kilburn [1960]: Edwards, D. B. G . ,  M. J. 
Lanigan, and T. Kilburn, “Ferrite-Core Memory systems with 
Rapid Cycle Times,” Proc. IEE,  vol. 107, pt. B, November 1960, 
pp. 585-598. 

Egan [19721: Egan, G. L., “Versatile Input/Output Structure 
Welcomes Peripheral Variety,” Hewlett-Packard J., vol. 24, 
December 1972, pp. 24-27. In Chap. 49 of this book. 

Elliott et al. [1956]: Elliott, W. S., C. E. Owen, C. H. Devonald, 
and B. G. Maudsley, “The Design Philosophy of Pegasus, a 

Quantity-Production Computer,” Proc. IEEE,  vol. 103, pt. B, 
SUPP. 2, 1956, pp. 188-196. 

English, Englebart, and Berman [1967]: English, W. K. ,  D. C. 
Englebart, and M. L. Berman, “Display-Selection Techniques for 
Text Manipulation,” IEEE Trans. H F E ,  vol. HFE-8, no. 1,March 
1967, pp. 5-15. 

Enslow [1974]: Enslow, P. H., Jr., ed., Multiprocessors and 
Parallel Processing, John Wiley & Sons, Inc., New York, 1974. 

Enslow [1977]: Enslow, P. H., Jr., “Multiprocessor Organization: 
A Survey,”Comp. Surv., vol. 9, no. 1, March 1977, pp. 103-129. 

Everett, Zraket, and Benington [1957]: Everett, R. R.,  C. A. 
Zraket, and H. D. Benington, “SAGE: A Data-Processing System -
for Air Defense, Proc. E f c C ,  1957, PP. 148-155.~-

Fagg et al, [1964]: Fagg, p., J,  L. Brown, J. A. Hipp, D. T. 
Doody, J. W. Fairclough, and J. Greene, “IBM System/360 
Engineering,” Proc. AFIPS FJCC, pt. 1, vol. 26, 1964, pp. 
205-231. 

Faggin [19771: Faggin, F., “Trends in Microcomputers” (speech), 
in ACM Sigarch Workshop on Future Directions in Com-
puter Architecture, Austin, Tex., 1977. Chapter 36 of this 
book. 

Faggin et d. [1972]: Faggin, F., M. Shims, M. E. Hog, Jr., 
H. Feeney, and S. Mazor, “The MCS4: An LSI Micro Computer 
System,” I E E E  Region 6 Con. 1972, pp. 8-11. 

Falk [1976]: Falk, H. “Reaching for a Gigaflop,” IEEE Spectrum, 
vol. 13, no. 10, October 1976, DD. 64-69.

~ 

Falk and McQuillan [1977]: Falk, G., and J. M. McQuillan, 
“Alternatives for Data Network Architectures,” Computer, vol. 
10, no. 11, November 1977, pp. 22-29. 

Falkoff, Iverson, and Sussenguth [1964]: Falkoff, A. D., K. E. 
Iverson, and E. H. Sussenguth, “A Formal Description of 
System/360,” I B M  Syst. J.,VOI. 3, no. 3, 1964, pp. 198-261. 

Farber [1975]: Farber, D. J., “A Rng  Network,” Datamation, vol. 
21, no. 2, February 1975, pp. 44-46. 

Farber et al. [1973]: Farber, D. J., et al., “The Distributed 
Computing System,” Proc. 7th Annual IEEE Comp. SOC. Int. 
Con . ,  1973, pp. 31-34. 

FCC [19661: Federal Communications Commission “Policies and 
Regulatory Procedures Relating to Computer and Communication 
Services”, Notice of Inquiry, Docket No. 16969, 1966. 

Feierbach and Stevenson [1979]: Feierbach, G., and D. Steven- 
son, “The Illiac IV,” in Infotech State of the Art Report on 
Supercomputers, Maidenhead, England, 1979. 



Feldman [n.d.]: Feldman, J. D., “RADCAP: An Operational 
Parallel Processing Facility,” Goodyear Aerospace Corp. 

Ferrari [19781: Ferrari, D., Computer Systems Performunce 
Evaluation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1978. 

Feustal [1973]: Feustal, E. A., “On the Advantages of Tagged 
Architecture,” IEEE Trans. Comp., vol. C-22, no. 7, July 1973, 
pp. 644-656. 

Fiala [1978]: Fiala, E. R., “The MAXC Systems,” Computer, vol. 
11, no. 5,  May 1978, pp. 57-67. 

Fikes, Lauer, and Vareha [1968]: Fikes, R. E. ,  H. C. Lauer, and 
A. L. Vareha, Jr., “Steps toward a General-Purpose Time-sharing 
System Using Large Capacity Core Storage and TSSl360,” Proc. 
23d ACM Natl. Con$. 1968, pp. 7-18. 

Fleckenstein [1974]: Fleckenstein, W. O., “Bell System ESS 
Family: Present and Future,” ISS Rec., Munich, 1974. 

Flehinges [19581: Flehinger, B. J., “Reliability Improvement 
through Redundancy at Various Systems Levels,” IBMJ. Res. and 
Dev., vol. 2, April 1958, pp. 148-158. 

Flynn [1966]: Flynn, M. J., “Very High-speed Computing 
Systems,”Proc. IEEE,  vol. 54, December 1966, pp. 1,901-1,909. 

Flynn [1977]: Flynn, M. J., “The Interpretive Interface: Re- 
sources and Program Representation in Computer organization,’’ 
in Kuck, Lawrie, and Sameh, eds., High Speed Computer and 
Algorithm Organization, Academic Press, Inc., New York, 1977. 

Flynn and Low [1967]: Flynn, M. J., and P. R. Low, “The IBM 
System/360 Model 91: Some Remarks on System Development,” 
I B M  J .  Res. and Dev., vol. 11, 1967, pp. 2-7. 

Flynn and MacLaren [1967]: Flynn, M. J., and M. D. MacLaren, 
“Microprogramming Revisited,” Argonne National Laboratory, 
Applied Mathematics Div. Tech. Memorandum 134, Argonne, 
Ill., 1967. 

Ford and Fulkerson [1962]: Ford, L. R., Jr., and D. R. Fulkerson, 
Flows in Networks, Princeton University Press, 1962. 

Forrester [1951]: Forrester, J. W., “Digital Information Storage in 
Three Dimensions Using Magnetic Cores,” J. Appl. Phys., vol. 
22, January 1951, pp. 44-48. 

Fotheringham [19611: Fotheringham, J., “Dynamic Storage Allo- 
cation in the Atlas Computer, Including an Automatic Use of a 
Backing Store,” Comm ACM, vol. 4, no. 10, October 1961, pp. 
435436. 

Fralick et al. [1975]: Fralick, S. C., D. H. Brandin, F. F. Kuo, and 
C. Harrison, “Digital Terminals for Packet Broadcasting,” Proc. 
AFIPS NCC, vol. 44, 1975, pp. 253-261. 

Bibliography 901 

Frank, Frisch, and Chou [1970]: Frank, W.,I. T. Frisch, and 
W. Chou, “Topological Considerations in the Design of the ARPA 
Computer Network,” Proc. AFIPS SJCC, vol. 36, 1970, pp. 
581587. 

Frank, Van Slyke, and Gitman [19751: Frank, H., R. M. Van Slyke, 
and I. Gitman, “Packet Radio Network Design: System Consider- 
ations,” Proc. AFIPS NCC, vol. 44, 1975, pp. 217-231. 

Fraser [1975]: Fraser, A. G., “A Virtual Channel Network,” 
Datamation, vol. 21, no. 2, February 1975, pp. 51-53. 

French, Collins, and Loen [1978]: French, R. E., R. W. Collins, 
and L. W. Loen, “System138 Machine Storage Management,” 
IBM System138 Tech. Dev., IBM GS80-0237, 1978, pp. 63-66. 

Froemke, Heise, and Pertzborn [1978]: Froemke, J. W., N. N. 
Heise, and J. J, Pertzborn, “System/38 Magnetic Media Control- 
ler,” I B M  System138 Tech. Dev., IBM GS80-0237, 1978, pp. 
4144. 

Fuller et al. “761: Fuller, S. H . ,  G. T. Almes, W. H. Broad- 
ley, C. L. Forgy, P. L. Karlton, V. R. Lesser, and J. R. 
Teter, “PDP-l1/40E Microprogramming Reference Manual,” 
Carnegie-Mellon Univ. Dept. of Computer Science Tech. 
Rep., 1976. 

Fuller et al. [1977]: Fuller, S. H., P. Shaman, D. Lamb, and 
W. E. Burr, “Evaluation of Computer Architectures via Test 
Programs,” Proc. AFlPS NCC, vol. 46, 1977, pp. 147-160. 
Originally in “Computer Family Architecture Selection Commit- 
tee Final Report,” Naval Research Laboratory, Washington, 
December 1976. 

Fuller, Stone, and Burr [1977]: Fuller, S. H., H. S. Stone, and 
W. E. Burr, “Initial Selection and Screening of the CFA Candi- 
date Computer Architectures,” Proc. AFIPS NCC, vol. 46, 1977, 
pp. 130-146. 

Fuller and Harbison [1978]: Fuller, S. H., and S. P. Harbison, 
“The C.mmp Multiprocessor,” Carnegie-Mellon Univ. Dept. of 
Computer Science Tech. Rep., October 1978. 

Fuller et al. [1978]: Fuller, S. H., J. Ousterhout, L. Raskin, 
P. Rubinfeld, P. Sindhu, and R. Swan, “Multi-Microprocessors: 
An Overview and Working Example,” Proc. IEEE,  vol. 66, no. 2, 
February 1978, pp. 216-228. 

Fulmer and Meilander [1970]: Fulmer, L. C., and W. C. 
Meilander, “A Modular Plated Wire Associative Processor, Proc. 
IEEE Comp. Group Con$, 1970. 

Gear [1974]: Gear, C. W., Computer Organization and Program- 
ming, 2d ed., McGraw-Hill, New York, 1974. 

Genke, Harding, and Staehler [1964]: Genke, R. M., P. A. 



902 Bibliography 

Harding, and R. E. Staehler, “No. 1 ESS Call Store: A-AO, 2- 
Megabit Ferrite Sheet Memory, Bell Syst. Tech. J., September 
1964. 

Geschke, Morris, and Satterthwaite [1977]: Geschke, C. M., 
J. H. Morris, Jr., and E. H. Satterthwaite, “Early Experience 
with Mesa,” Comm ACM, vol. 20, no. 8, August 1977, pp. 540- 
553. 

Gibson [1966]: Gibson, C. T., “Time-sharing in the IBM Sys- 
tem/360: Model 67, Proc. AFIPS SJCC, vol. 28, 1966, pp. 61-78. 

Gibson [1970]: Gibson, J. C., “The Gibson Mix,” Rep. TR 
00.2043, IBM Systems Development Div., Poughkeepsie, N.Y., 
1970. Research done in 1959. 

Gilley [1970]: Gilley, G. C., “Automatic Maintenance of Space-
craft Systems for Long-Life, Deep-Space Missions,” Ph. D. thesis, 
Univ. of California at Los Angeles, September 1970. 

Glaser, Couleur, and Oliver [1965]: Glaser, F. L., J. F. Couleur, 
and G. A. Oliver, “System Design of a Computer for Time 
Sharing Applications,” Proc. AFIPS FJCC, vol. 27, pt. 1, 1965. 

Goetz [1974]: Goetz, F. M., “CompIementary Fault Simulation,” 
Proc. 3d Annual Texas Con$ Comp. Sys. ,Austin, Tex., 1974. 

Goldberg [1975]: Goldberg, J., “New Problems in Fault-Tolerant 
Computing,” in Int. Symp. Fault-Tolerant Computing, 1975, pp. 
29-34. 

Gonter [1969]: Gonter, R. H., “Comparison of the Gibson Mix 
with UMASS Mix,” Publication No. TN/RCC/004, Univ. of 
Massachusetts Research Computing Center, 1969. 

Green [19661: Green, J., “Microprogramming, Emulators and 
Programming Languages,” Comm. ACM, vol. 9, no. 3, March 
1966, pp. 230-231. 

Greene, Dean, and Updike [1964]: Greene, J. E . ,  R. F. Dean, 
and B. M. Updike, “Microprogrammed Implementation of the 
IBM System/360 Machine Organization,” IBM General Products 
Div., Development Lab., Engineering Publication, Dept. PTP 
792, Endicott, N.Y., April 1964. 

Greene and Pooch [1977]: Greene, W., and U. W. Pooch: “A 
Review of Classification Schemes for Computer Communication 
Networks,” Computer, vol. 10, no. 11, November 1977, pp. 
12-21. 

Gregoretti [19781: Gregoretti, F., “The 8048 Microcomputer 
Family,” Microscope, vol. 2, no. 14, November 1978, pp. 6-19. 

Gregory and McReynolds [19631: Gregory, J., and 
R. McReynolds, “The SOLOMON Computer,” IEEE Trans. 
Electronic Computers, vol. EC-12, no. 6, December 1963, pp. 
774-781. 

Griesmer, Miller, and Roth [1962]: Griesmer, J.  E., R. E. Miller, 
and J. P. Roth, “The Design of Digital Circuits to Eliminate 
Catastrophic Failures,” in Redundancy Techniques for Computing 
Systems, Spartan Press, Washington, 1962, pp. 328-348. 

Grosch [1953]: Grosch, H. R. J., “High Speed Arithmetic: The 
Digital Computer as a Research Too1,”J. Optical SOC. ofAmerica, 
vol. 4, no. 4, April 1953, pp. 306-310. 

Gudz [19771: Gudz, R. T., “Application of the Pluribus Multipro- 
cessor in a distributed Data Collection and Processing Network,” 
Con$ Rec. OCEANS 77, 1977. 

Habermann [1972]: Habermann, A. N. ,  “Synchronization of 
Communicating Processes;” Comm. ACM, vol. 15, no. 3, March 
1972, pp, 171-176. 

Hamblin [1962]: Hamblin, C. L., “Translation to and from Polish 
Notation,” Comp. J., vol. 5, October 1962, pp. 210-213. 

Haney [1968]: Haney, F. M., “Using a Computer to Design 
Computer Instruction Sets,” Ph. D. thesis, Carnegie-Mellon 
Univ., May 1968. 

Hargraves [1974]: Hargraves, R. F., Jr., “The Dartmouth Time 
Sharing Network,” in N. Abramson and F. F. Kuo, eds., 
Computer Communication Networks, Prentice-Hall, Inc., Engle- 
wood Cliffs, N.J., 1974. 

Harr, Taylor, and Ulrich [1969]: Harr, J. A., F. F. Taylor, and 
W. Ulrich, “Organization of the No. 1 ESS Central Processor,” 
Bell Syst. Tech. J.. September 1969, pp. 1,845-1,922. 

Harrahy [1977]: Harrahy, I. I., “Assessment of Plastic, Commer- 
cial Grade IC Failure Rates Achieved in Field Operation,” in 
IEEE Annual Spring Reliability Seminar, 1977. 

Hartley, Landy, and Needham [1968]: Hartley, D. F., B. Landy, 
and R. M. Needham, “The Structure of a Multiprogramming 
Supervisor,” Comp. J., vol. 11, no. 3, November 1968, pp. 
247-255. 

Harvey and Conway [1978]: Harvey, D. G., and A. J. Conway, 
“Introduction to the System/38 Control Program Facility,” I B M  
System/38 Tech. Dev, , IBM GS80-0237, 1978, pp. 7477. 

Hauck and Dent [1968]: Hauck, E. A.,  and B. A. Dent, 
“Burroughs’ B6500/B7500 Stack Mechanism,” Proc. AFIPS SJCC, 
vol. 32, 1968, pp. 245-251. Chapter 16 of this book. 

Hayes [1978]: Hayes, J. ,  Computer Architecture and Organiza- 
tion, McGraw-Hill, New York, 1978. 

Hayn, McDonough, and Bellay [1981]: Hayn, J., K. McDonough, 
and J. Bellay, “Strip Architecture Fits Microcomputer into Less 
Silicon,” Electronics, vol. 54, no. 2, January 27, 1981, pp. 
107-111. 



Heart [1975]: Heart, F. E., “The ARPA Network,” in R. L. 
Grimsdale and F. F. Kuo, eds., Proc. of the NATO Advanced 
Study Institute of September 1973, Sussex, England, Noordhoff 
Int. Publ., The Netherlands, 1975, pp. 19-33. 

Heart et al. [1970]: Heart, F. E., R. E. Kahn, S. M. Ornstein, 
W. R. Crowther, and D. C. Walden, “The Interface Message 
Processor for the ARPA Computer Network,” Proc. AFIPS SJCC, 
vol. 36, 1970, pp. 551567. Reprinted in W. W. Chu, ed., 
Advances in Computer Communications, Artech House, Dedham, 
Mass., 1974, pp. 300-316; in P. E. Green and R. W. Lucky, eds., 
Computer Communications, IEEE Press, New York, 1975, pp. 
375391; and in R. P. Blanc and P. W. Cotton, eds., Computer 
Networking, IEEE Press, 1976, pp. 60-76. Chapter 24 of this 
book. 

Heart et al. [1973]: Heart, F. E., S. M. Ornstein, W. R. 
Crowther, and W. B. Barker, “A New Minicomputer-
Multiprocessor for the ARPA Network,” Proc. AFIPS SJCC, vol. 
42, 1973, pp. 529-537. 

Heart et al. [1976]: Heart, F. E., S. M. Ornstein, W. R. 
Crowther, W. B. Barker, M. F. Kraley, R. D. Bressler, and 
A. Michel, “The Pluribus Multiprocessor System,” in Multipro-
cessor Systems: Infotech State of the Art Report, pp. 307330, 
Infotech International Ltd., Maidenhead, England, 1976. 

Henry [1978]: Henry, G. G., “Introduction to IBM System138 
Architecture,” I B M  System138 Tech. Dev., IBM GS80-0237, 1978, 
PP. 5-6. 
Herbst, Metropolis, and Wells [1955]: Herbst, E. H., 
N. Metropolis, and M. B. Wells, “Analysis of Problem Codes on 
the MANIAC,” MTOCA 9, January 1955, pp. 14-20. 

Hewlett-Packard [1968]: Hewktt-Packard Journal, September 
1968. 

Hewlett-Packard [1972]: Hewlett-Parkard Journal, December 
1972. 

Hillegass [1966]: Hillegass, J. R., “Auerbach on Equipment IBM 
System 360:The First Two Years,” Data Processing,vol. 8, no. 5, 
May 1966, pp. 44-51. 

Hoagland [1979]: Hoagland, A. S.,  “Storage Technology: Capabili- 
ties and Limitations,” Computer, vol. 12, no. 5, May 1979, pp. 
12-18. 

Hodges [1964]: Hodges, D., “IPL-VC: A Proposal for a Com- 
puter System Having the IPS-V Instruction Set,” Argonne 
National Laboratory, Applied Math. Div. Tech. Memo 66, January 
1964. 

Hoff [1972]: Hoff, M. E., Jr., “The New LSI Components,” 6th 
Annual IEEE Comp. SOC. Int. Con$, 1972. 

Bibliography 903 

Hoffman and Soltis [1978]: Hoffman, R. L., and F. G. Soltis, 
“Hardware Organization of the Systeml38,” ZBM System138 Tech. 
Dew., IBM GS80-0237,1978, pp. 19-21. In Chap. 32 of this book. 

Holt and Lenas [1974]: Holt, R. M., and M. R. Lenas, “Current 
Microcomputer Architecture,” Computer Design, February 1974, 
pp. 65-74. 

Hopkins, Smith, and Lala [1978]: Hopkins, A. L., Jr., T. B. 
Smith, 111, and J. H. Lala, ‘‘FTMP; A Highly Reliable Fault- 
Tolerant Multiprocessor for Aircraft,” Proc. IEEE, vol. 66, no. 10, 
October 1978, pp. 1,221-1,239. 

Houdek and Mitchell [1978]: Houdek, M. E., and G. R. Mitchell, 
“Translating a Large Virtual Address,” IBM System138 Tech. Dev., 
IBM GS80-0237, 1978, pp. 22-25. 

Howard and Borgendale [1978]: Howard, P. H., and K. W. 
Borgendale, “System138 Machine Indexing Support,” I B M  Sys-
tem138 Tech. Dev., IBM GS80-0237, 1978, pp. 67-70. 

Howarth [1963]: Howarth, D. J., “Experience with the Atlas 
Scheduling System,” Proc. AFIPS SJCC, vol. 23, 1963, pp. 59-67. 

Howarth, Jones, and Wyld [1962]: Howarth, D. J., P. D. Jones, 
and M. T. Wyld, “The ATLAS Scheduling System,” Computer, 
vol. 5, no. 3, October 1962, pp. 238-244. 

Howarth, Payne, and Sumner [1961]: Howarth, D. J., R. B. 
Payne, and F. H. Sumner, “The Manchester University Atlas 
Operating System, Part 11: User’s Description,” Comp. J., vol. 4, 
no. 3, October 1961, pp. 22G229. 

Ibbett and Capon [1978]: Ibbett, R., and P. C. Capon, “The 
Development of the MU5 Computer System,” Comm ACM, vol. 
21, no. 1, January 1978, pp. 13-24. 

IBM [1970a]: IBM Corporation: IBM System/360 Principles of 
Operation, GA22-8821-4, 1970. 

IBM [1970b]: IBM Corporation: IBM System1360 System Summa- 
ry, GA22-6810-8, 1970. 

IBM [197Oc]: IBM Corporation: I B M  Systed370 Model 165 
Functional Characteristics, 1st ed., GA22-6935, June 1970. 

IBM [1970d]: IBM Corporation: IBM System1370 Model 165 
Functional Characteristics, 1st ed., GA22-6935-0, 1970. 

IBM [1970e]: IBM Corporation: A Guide to the I B M  System1370 
Model 155, 1st ed., GC20-1729-0, 1970. 

IBM [1972al: IBM Corporation Technical Publications Depart- 
ment: A Guide to the IBM SystemJ370 Model 145, 3d ed., White 
Plains, N.Y., 1972. 

IBM [l972b]: IBM Corporation: IBM System1370 Model 155, 



~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ 

904 Bibliography 

Functional Characteristics, 3d ed., GA22-6942-2, file no. S370- 
01, 1972. 

IBM [1974]: IBM Synchronous Data Link Control: General 
Information, Publication Center, IBM Systems Development 
Div., Research Triangle Park, N.C., 1974. 

IBM [1975a]: IBM System Network Architecture: General Infor- 
mation, Publication Center, IBM Systems Development Div., 
Research Triangle Park, N.C., 1975. 

IBM [1975b]: IBM Corporation: IBM System/360 and System1370 
Model 195, Functiod Characteristics, 5th ed., GA22-6943-4, file 
no. S/360 51370-01, 1975. 

IBM [197%]: IBM Corporation: ZBM Systed370 Model 158, 
Functional Characteristics, 4th ed., GA22-7011-3 file no. S/370- 
01, 1975. 

IBM [1976al: IBM Corporation: A Guide to the IBM System1370 
Model 145, 6th ed., GC20-1734-5, file no. S370-01, 1976. 

IBM [1976b]: IBM Corporation: IBM System/370 Model 168, 
Functional Characteristics. 5th ed., GA22-7010-4 file no. Sl370- 
01, 1976. 

IBM [1976c]: IBM Corporation: Data Processing Division: prod- 
uct announcement, “New Accelerated Processors of Systemi370 
Models 135 and 145,” June 1976. 

IBM [1976d]: IBM Corporation: A Guide to the I B M  SYstm/370 
Model 165. 5th ed.. 1976 

IBM [1976cl: IBM Corporation: IBM Systm/370 115, 
Functional Characteristics, GA33-1510, 1976. 

IBM [1978a]: IBM System/360 and System/370 I/O Interface 
Channel to ControZ Unit Original Equipment Manufacturer’s 
Information, IBM Corp., GA22-6974, 1978. 

IBM [1978131: IBM Systemi370 Principles of Operation, IBM 
Corp., GA22-77000, 1978. 

IBM [1979a]: IBM Corporation, Data Processing Division: IBM 
4331 Processor Facts Folder, G520-3388-0, 1979. 

IBM [1979b]: IBM Corporation, Data Processing Division: IBM 
4341 Processor Facts Folder, G520-3387-0, 1979. 

IBM [1979~1: IBM Corporation: IBM 4341 Processor Functional 
characteristics and Processor Complex Configurator, 1st ed., 
GA24-3672-0, 1979. 

IBM [n.d.a]: IBM Corporation: A Guide to the IBM System1370 
Model 135. 

IBM [n.d.b]: IBM Corporation, Data Processing Division: prod- 

uct announcement, “System 370 Model 168 Attached Processor 
System.” 

IBM [n. d.c]: IBM Corporation: product announcement, “Sys- 
tem/370 Model 138, A Growth System for Model 125 and Model 
135 Users, Offers a New Level of Price/Performance and Func- 
tion.” 

IBM [n.d.d]: IBM Corporation: Data Processing Division: prod- 
uct announcement, “System 370 Model 148, Offers Increased 
Price/Performance and Function to Intermediate System Users.” 

IBM [n.d.e]: IBM Corporation: IBM System/360 Functional 
Characteristics Manuals for each Mod.el. 

IBM [n.d.fl: IBM Corporation: I B M  System1360 Configurator 
(diagram)for Each Model. 

Ingalls [1978]: Ingalls, D. H. H.,  “The Smalltalk-76 Programming 
System: Design and Implementation’,” in 5th ACM Symp. on 
Principles of Programming Languages, 1978, pp. 9-16. 

Intel 8080 [1975]: Intel 8080 Microcomputer Systems User‘s 
Manual, September 1975. 

Intel MCS-8 [1975]: Intel MCS-8 User’s Manual, April 1975. 

Intel MCS-40 [1976]: Intel MCS-40 User’s Manud, 3d ed., March 
KX’6. 

Intel MCS-85 [1977]: Intel MCS-85 User’s Manual, March 1977. 

Intel MCS-86 [1978]: Intel MCS-86 User’s Manual, July 1978. 

Irland and Stagg [1974]: Irland, E. A., and U. K. Stag,  “New 
Developments in Suburban and Rural ESS (No. 2 and No. 3 
ESS),” in I S S  Rec., Munich, 1974. 

Israel, Mitchell, and Sturgis [1978]: Israel, J. E. ,  J. G. Mitchell, 
and H. E. Sturgis, “Separating Data from Function in a Distribut- 
ed File System,” Proc. 2d Int. Symp. on Operating Systems, 1978; 
reprinted in D. Lanciaux, ed., Operating Systems, North-Holland 
publishing 

Jackson and Stubbs [1969]: Jackson, P. E.,  and C. D. Stubbs, “A 
Study of Multiaccess computerc ~proc. AFIPS ~ 
SjCC, vol. 34, 1969, pp. 491504. 

Jain “781: Jain, N, “Measurements of KMPS Semaphores,” 
Carnegie-Mellon Univ. Dept. of Comp. Sci. Tech. Rep., 1978. 

James [19661: James, R. T., “The Evolution of Wideband Services 
in the United States,” IEEE Int. Conv. Rec., Pt. I :  Wire and Data 
Communication, 1966, pp. 180-185. 

James and Yockey [1972]: James, R. L., and. F. 3. Yockey, 
“Interactive Model 20 Speaks Alaebraic Language, ” HewZett-
PackardJ., vol. 24, December 1972, pp. 8-13.In Chap. 49. 



Kaha [1972]: Kahn, R. E., “Resource-Sharing Computer Commu- 
nication Networks,” Proc. I E E E ,  vol. 60, no. 11, November 1972, 
pp. 1,397-1,407. 

Kahn [1975]: Kahn, R. E., “The Organization of Computer 
Resources into a Packet Radio Network,” Proc. M I P S  NCC, vol. 
44, 1975, pp. 177-186. 

Kaplan [1968]: Kaplan, S. J., “The Advancing Communication 
Technology and Computer Communication Systems,” Proc. 
AFIPS SJCC, vol. 32, 1968. 

Katsuki et al. [1978]: Katsuki, D., E. S. Elsam, W. F. Mann, E. 
S. Roberts, J. G. Robinson, F. S. Skowronski, and E. W. Wolf, 
“Pluribus: An Operational Fault-Tolerant Multiprocessor,” Proc. 
IEEE, vol. 66, no. 10, October 1978, pp. 1,146-1,159. Chapter 23 
of this book. 

Katzan [1971]: Katzan, H., Jr., “Storage Hierarchy Systems,” 
Proc. AFIPS SJCC, vol. 38, May 1971, pp. 325-336. 

Katzman [19771: Katzman, J. A., “System Architecture for 
Nonstop Computing,” Tandem Computers, Inc., 1977; also print- 
ed in Compcon, 1977, pp. 77-80. In Chap. 29 of this book. 

Kay [1977]: Kay, A., “Microelectronics and the Personal Comput- 
er,” Scienti$c American, September 1977, pp. 230-244. 

Kay [1978]: Kay, A., “Programming Your Own Computer,” in 
Science Year, The World Book Science Annual, 1979, World 
Book-Childcraft International, Inc., Chicago, Ill., 1978. 

Kay and Goldberg [1977]: Kay, A., and A. Goldberg, “Personal 
Dynamic Media,” Computer, vol. 10, no. 3, March 1977, pp. 
3141. 

Keedy [1976]: Keedy, J. L., “The Management and Technological 
Approach to the Design of System B,” in Proc. 7th Australian 
Comp. Con$ at Perth, vol. 2, 1976, p. 997. 

Keedy [1977]: Keedy, J. L., “An Outline of the ICL 2900 Series 
System Architecture,” Australian Comp. J., vol. 9, no. 2, July 
1977, pp. 53-62. Chapter 17 in this book. 

Keister, Ketchledge, and Love11 [1960]: Keister, W., R. W. 
Ketchledge, and C. A. Lovell: “Morris Electronic Telephone 
Exchange,” in Proc. IEE,  vol. 107, pt. B suppl., no. 20, 1960. 

Keister, Ketchledge, and Vaughan [1964]: Keister, W., R. W. 
Ketchledge, and H. E. Vaughan, “No. 1 ESS System Organization 
and Objectives,” Bell Syst. Tech. J.. September 1964, pp. 
1,831-1844. 

Keller [1975]: Keller, R. M., “Look Ahead Processors,” Comp. 
Sum., vol. 7, no. 4, December 1975, pp. 177-195. 

Keller [1976.]: Keller, T. W., “CRAY-1 Final Evaluation,” Los 
Alamos Scientific Laboratory’Rep. LA-6456-MS, 1976. 

Bibliography 905 

Kenney et al. [1979]: Kenney, G. C., D. Y. K. Lou, R. 
McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. G. Wagner,. 
and F. Zernike, “An Optical Disk Replaces 25 Mag Tapes,” IEEE 
Spectrum, February 1979, pp. 33-38. 

Kilburn [1948]:Kilburn, T., “A Storage System for Use with 
Binary Digital Computing Machines,” Ph. D. thesis, Univ. of 
Manchester, England, 1948. 

Kilburn et al. [1961]: Kilburn, T., D. J. Howarth, R. B. Payne, 
and F. H. Sumner, “The Manchester University Atlas Operating 
System, Part I: Internal Organization,” Comp. J., vol. 4, October 
1961, pp. 222-225. 

Kilburn et al. [1962]: Kilburn, T., D. B. G. Edwards, M. J. 
Lanigan, and F. H. Sumner, “One-level Storage System,” IRE 
Trans. Electronic Computers, vol. EC-11, no. 2, April 1962, pp. 
223-235. Chapter 10 of this book. 

Kilburn, Edwards, and Aspinall [1960]: Kilburn, T., D. B. G. 
Edwards, and D. Aspinall, “ A  Parallel Arithmetic Unit Using a 
Saturated Transistor Fast-Carry Circuit,” Proc. I E E ,  vol. 107, pt. 
B, November 1960, pp. 573-584. 

Kilburn, Edwards, and Thomas [1956]: Kilburn, T., D. B. G. 
Edwards, and C. E. Thomas, “The Manchester University Mark 
I1 Digital Computing Machine,” Proc. I E E ,  vol. 103, pt. B, supp. 
2, 1956, pp. 247-268. 

Kilburn and Grimsdale [1960]: Kilburn, T., and R. L. Grimsdale, 
“A Digital Computer Store with a Very Short Read Time,” Proc. 
IEE, vol. 107, pt. B, November 1960, pp. 567-572. 

Klein [1976]: Klein, M. R.,  “Microcircuit Device Reliability 
Digital Detailed Data,” MDR-4, Reliability Analysis Center, 
Griffiss Air Force Base, New York, 1976. 

Kleinrock [19641: Kleinrock, L., Communications Nets-Stochastic 
Message Flow and Delay, McGraw-Hill Book Company, New 
York, 1964. 

Kleinrock [1969]: Kleinrock, L., “Models for Computer Net- 
works,” Proc. Int. Comm C o n . ,  1969. 

Kleinrock [19701: Kleinrock, L., “Optimization of Computer 
Networks for Various Channel Cost Functions,” Proc. AFZPS 
SJCC, 1970. 

Kleinrock and Naylor [1974]: Kleinrock, L., and W. E. Naylor, 
“On Measured Behavior of the ARPA Network,” Proc. AFIPS 
NCC, V O ~ .43, 1974, pp. 767-780. 

Kleinrock, Naylor, and Opderbeck [1976]: Kleinrock, L, W. E. 
Naylor, and H. Opderbeck; “A Study of Line Overhead in the 
Arpanet,” Comm ACM, vol. 19, no. 1, January 1976, pp. 3-13. 

Kleinrock and Tobagi [1975]: Kleinrock, L., and F. Tobagi, 



906 Bibliography 

“Packet Switching in Radio Channels, Part I: Carrier Sense 
Multiple-Access Modes and Their Throughput Delay Characteris- 
tics,” IEEE Trans. Comm., vol. T-COM. 23, no. 12, December 
1975, pp. 1,400-1,416. 

Knight [1966]: Knight, K. E., “Changes in Computer Perform- 
ance,” Datamation, vol. 12, no. 9, September 1966, pp. 40-54. 

Knight [1972]: Knight, J. R., “A Case Study: Airline Reservation 
Systems,” Proc. IEEE, V O ~ .  60, no. 11, November 1972, pp. 
1,423-1,430. 

Kohoutek [19721: Kohoutek, H. J., “9800 Processor Incorporates 
8-MHz Microprocessor,” Hezulett-PackardJ.,vol. 24, December 
1972, pp. 19-22. In Chap. 49 of this book. 

Kolence [1979]: Kolence, K. W., “The Software Physics Hand- 
book,” Institute for Software Engineering, Palo Alto, Ca., 1979. 

Kruus [1963]: Kruus, J., “Upper Bounds for the Mean Life of 
Self-Repairing Systems,” Coordinated Science Lab., University of 
Illinois R-172, AD-418 174, Urbzina, Ill., July 1963. 

Kuck [19681: Kuck, D. J., “Illiac IV Software and Applications 
Programming,” IEEE Trans. Comp., vol. C-17, no. 8, August 
1968, pp. 758-770. 

Kuck [1977]: Kuck, D. J., “A Survey of Parallel Machine 
Organization and Programming,” Comp. Suru., vol. 9, no. 1, 
March 1977, pp. 29-59. 

Kuck [1978]: Kuck, D. J., The Structure of Computers and 
Computations, VoL 1 ,  John Wiley & Sons, Inc., New York, 1978. 

Kuehn [1969]: Kuehn, R. E., “Computer Redundancy: Design, 
Performance and Future,” IEEE Trans. ReL ,vol. R-18, February 
1969, pp. 3-11. 

Kulzer [1977]: Kulzer, J. J., “Systems Reliability: A Case Study of 
No. 4 ESS,” in System Security and Reliability, Infotech State of 
the Art Report, 1977, pp. 186-188. 

Lam [1974]: Lam, S. S . ,  “Packet Switching in a Multi-access 
Broadcast Channel with Application to Satellite Communication 
in a Computer Network,” Univ. of California at Los Angeles, 
Computer Science Dep., UCLA-ENG-7429, April 1974. 

Lampson and Sproull[1979]: Lampson, B. W., and R. F. Sproull, 
“An Open Operating System for a Single-User Machine,” Operat-
ing Syst. Reu., vol. 13, no. 5, November 1979. 

Langdon and Van Derveer [19671: Langdon, J. L., and E. J. Van 
Derveer, “Design of a High-speed Transistor for the ASLT 
Current Switch,” I B M  J. Res. and Dev., vol. 11, no. 1, January 
1967, pp. 69-73. 

Lauer [1967]: Lauer, H. C., “Bulk Core in a 360/67 Time-sharing 
System,” Proc. AFIPS FJCC, vol. 31, 1967, pp. 601-609. 

Lavington [1975]: Lavington, S., “A History of Manchester 
Computers,” NCC Publications, 1975. Excerpted in Chapter 7 of 
this book. 

Lawson and Magenhagen [1975]: Lawson, H. W., Jr., and B. 
Magenhagen, “Advantages of Structured Hardware,” in Proc. 2nd 
Annud Symp. on Comp. Arch., University of Houston, 1975, pp. 
152-158. 

Levin et  al. [1975]: Levin, R., E. Cohen, W. Corwin, F. Pollack, 
and W. Wulf: “Policy/Mechanism Separation in Hydra,” Proc. 5th 
Symp. on Operating Systems Principles, 1975, pp. 132-140. 

Levin and Schroeder [1979]: Levin, R., and M. D. Schroeder, 
“Transport of Electronic Messages through a Network,” Xerox 
Palo Alto Research Center 79-4, 1979. 

Levy and Eckhouse [1960]: Levy, H. M., and R. H. Eckhouse, Jr., 
Computer Programming and Architecture, The VAX-11, Digital 
Press, Bedford, MA, 1980. 

Lewis [1963]: Levis, T. B., “Primary Processor and Data Storage 
Equipment for Orbiting Astronimical Observatory,” IEEE Trans. 
Ekctronic Computers, vol. EC-12, December 1963, pp. 677- 
686. 

Lewis, Reed, and Robinson [1978]: Lewis, D. O., J. W. Reed, 
and T. S. Robinson, “System/38 I10 Structure,” IBM System/38 
Tech. Dev., IBM GS80-0237, 1978, pp. 25-27. 

Linden [1976]: Linden, T. A,,  “Operating System Structures to 
Support Security and Reliable Software,” Comp. Surv., vol. 8, no. 
4, 1976, p. 409. 

Lindquist, Seeber, and Comeau [1966]: Lindquist, A. B., R. R. 
Seeber, and L. W. Comeau, “A Time-sharing System Using an 
Associative Memory,” Proc. IEEE, vol. 54, no. 12, December 
1966, pp. 1,7761,779. 

Liptay [1968]: Liptay, J. S., “Structural Aspects of the System/360 
Model 85, Part 11:The Cache,” I B M  Syst. J., vol. 7, no. 1, 1968, 
pp. 15-21. 

Lipton [19731: Lipton, R. J., “On Synchronization of Primitive 
Systems,” Ph. D. thesis, Carnegie-Mellon Univ., May 1973. 

Lloyd [1967]: Lloyd, R. H. F.,  “ASLT: An Extension of Hybrid 
Miniaturization Techniques,” I B M  J. Res. and Dev., vol. 11,no. 
1,January 1967, pp. 86-92. 

Locks [1973]: Locks, M. O., Reliability, Maintainability, G 
Availability Assessment, Spartan BooksIHayden Book Company, 
Inc., New York, 1973. 



Lonergan and King [1961]: Lonergan, W., and P. King, “Design 
of the B 5000 System,” Datamation, vol. 7, no. 5, May 1961, pp. 
28-32. Chapter 9 of this book. 

Long [1969]: Long, J. E., “To the Outer Planets,” Astronaut. 
Aeronaut., vol. 7, June 1969, pp. 3247. 

Lonsdale and Warburton [1956]: Lonsdale, L., and E. T. Warbur- 
ton, “Mercury: A High Speed Digital Computer,” Proc. IEE, vol. 
103, pt. B., supp. 2, 1956, pp. 174183. 

Lowerre [1976]:Lowerre, B., ‘The HARPY Speech Recognition 
System,” Ph. D. thesis, Carnegie-Mellon Univ., 1976. 

Lucas [1971]: Lucas, H. C., “Performance Evaluation and Moni- 
toring,’’ Comp. Surv., vol. 3, no. 3, 1971, pp. 79-91. 

Lunde [19771:Lunde, A, “Empirical Evaluation of Some Features 
of Instruction Set Processor Architecture,” Comm. ACM, vol. 20, 
no. 3, 1977, pp. 143-153. 

Lyons, and Vanderkulk [1962]:Lyons, R. E., and W. Vanderkulk, 
“The Use of Triple-Modular Redundancy to Improve Computer 
Reliability,” IBM J. Res. and Dev., vol. 6, April 1962, pp. 
200-209. 

Maher [19611:Maher, R. J., “Problems of Storage Allocation in a 
Multiprocessor Multiprogrammed System,” Comm ACM, vol. 4, 
no. 10, October 1961, pp. 421-422. 

Mandigo [19761:Mandigo, P. D., “No. 2B ESS: New Features for 
a More Efficient Processor,” Bell Syst. Tech. J . ,  February 1976. 

Mann, Ornstein, and Kraley [1976]: Mann, W. F., S. M. 
Omstein, and M. F. Kraley, “A Network-Oriented Multi-
processor Front-End Handling Many Hosts and Hundreds 
of Terminals,” Proc. AFIPS NCC, vol. 45, 1976, pp. 
533540. 

Marathe [1977]:Marathe, M. V. ,  “Perfomname Evaluation at the 
Hardware Architecture Level and the Operating System Kernal 
Design Level,” Ph. D. thesis, Carnegie-Mellon Univ., 1977. 

Marill [1966]:Marill, T., “Cooperative Networks of Time-shared 
Computers,” Computer Corporation of America preliminary 
study, 1966. Also private report, Lincoln Laboratory, Massachu- 
setts Institute of Technology, Cambridge, Mass. 1966. 

Marill and Roberts [1966]: Marill, T., and L. G. Roberts, “Toward 
a Cooperative Network of Time-shared Computers,” Proc. AFIPS 
SJCC, 1966. 

Mathur [1971a]: Mathur, F. P., “On Reliability Modeling and 
Analysis of Ultra-reliable Fault-Tolerant Digital Systems,” IEEE 
Trans. Comp., vol. C-20, no. 11, November 1971, pp. 1,376-
1,382. 

Bibliography 907 

Mathur [1971b]: Mathur, F. P., “Reliability Estimation Proce- 
dures and CARE: The Computer Aided Reliability Estimation 
Program,” Jet Propulsion Lab. Quarterly Tech. Rev., vol. 1, 
October 1971. 

Mathur and Aviiienis [1970]: Mathur, F. P., and A. Aviiienis: 
“Reliability Analysis and Architecture of a Hybrid-Redundant 
Digital System: Generalized Triple Modular Redundancy with 
Self-Repair,” Proc. AFIPS SJCC, V O ~ .36, 1970, pp. 375-383. 

Maurer [1966]:Maurer, W. D., “A Theory of Computer Instruc- 
tions,”]. ACM, vol. 13, no. 2, April 1966, pp. 226-235. 

Mazor [1968]: Mazor, S., “Programming and/or Logic Design,” in 
Dig, 1968 Comp. Con$, Los Angeles, Calif., 1968. 

McCalley and Barrett [1978]: McCalley, R. D., and K. J. Barrett, 
“Network Design Allows Diverse Gear Access to Host,” Data 
Comm., February 1978. 

McDaniel [1977]: McDaniel, G., “METRIC: A Kernel Instru- 
mentation System for Distributed Environments,” Operating 
Syst. Rev., vol. 11, no. 5, November 1977, pp. 93-99. 

McGehearty [1980]: McGehearty, P., “Performance Evaluation of 
a Multiprocessor under an Interative Workload,” Ph. D. thesis, 
Carnegie-Mellon Univ., 1980. 

McKenzie et al. [1972]: McKenzie, A. A., B. P. Cosell, J. M. 
McQuillan, and M. Thrope, “The Network Control Center for the 
ARPA Network,” Proc. 1st Int. Con$ Comp. Comm, 1972, pp. 
185191. Also in R. P. Blanc and I. W. Cotton, eds., Computer 
Networking, IEEE Press, New York, 1976, pp. 319-325. 

McKevitt and Bayliss [1979]:McKevitt, J., and J. Bayliss, “New 
Options from Big Chips,” IEEE Spectrum, vol. 16, no. 3, March 
1979, pp. 28-34. 

McLean [19771: McLean, J., “Univac Disbanding Future Systems 
Plan,” Electronic News, December 1977. 

McQuillan et al. [1972]: McQuillan, J. M., W. R. Crowther, B. P. 
Cosell, D. C. Walden, and F. E. Heart, “Improvements in the 
Design and Performance of the ARPA Network,” Proc. AFZPS 
FJCC, V O ~ .41, pt. 2, 1972, pp. 741-754. 

Meade [1970]: Meade, R. M., “On Memory System Design,” 
Proc. AFIPS FJCC, vol. 37, November 1970, pp. 3343. 

Mennie [1978]: Mennie, D., “Personal Computers for the Entre- 
preneur,” IEEE Spectrum, vol. 15, no. 9, September 1978, pp. 
30-35. 

Mercer [1957]: Mercer, R. J., “Micro-programming,”J. ACM, 
vol. 4, no. 2, 1957, pp. 151-171. 



908 Bibliography 

Metcalfe [1972a]: Metcalfe, R. M., “Strategies for Interprocess 
Communication in a Distributed Computing system,” in Proc. 
Symp. Comp. Comm. Networks and Teletrafic, Polytechnic Press, 
New York, 1972. 

Metcalfe [1972bl: Metcalfe, R. M., “Strategies for Operating 
Systems in Computer Networks,” Proc. ACM Natl. C o n , ,  1972, 
pp. 278-281. 

Metcalfe [1973a]:Metcalfe, R. M.,  “Packet Communication,” 
Project MAC, MIT MAC TR-114, July 1973. 

Metcalfe [1973b]: Metcalfe, R. M., “Steady-State Analysis of a 
Slotted and Controlled Aloha System with Blocking,” Proc. 6th 
Hawaii Int. Con$ Sys. Sci., 1973, pp. 375-380. 

Metcalfe [1974]: Metcalfe, R. M., “Distributed Algorithms for a 
Broadcast Queue,” talk given at Stanford Univ., November 1974, 
and at Univ. of California at Berkeley, February 1975. 

Metcalfe and Boggs [1976]: Metcalfe, R. M., and D. R. Boggs, 
“Ethernet: Distributed Packet Switching for Local Computer 
Networks,” Comm. ACM, vol. 19, no. 7, July 1976, pp. 395-404. 
Chapter 26 of this book. 

Mil 217A [1965]: U.S. Dept. of Defense, Military Standardization 
Handbook 217A “Reliability Prediction of Electronic Equip- 
ment,” 1965. 

Mil 217B [1974]: U.S. Dept. of Defense, Military Standardization 
Handbook 217B: “Reliability Prediction of Electronic Equip- 
ment,” 1974. 

“Military Computer Architectures” [19771: “Military Computer 
Architectures: A Look at the Alternatives,” special issue of 
Computer, vol. 10, no. 10, October 1977. 

Minker [1971]: Minker, J., A Bibliography of Associative or 
Content-Addressable Memory System: 1956-1971, Auerbach 
Corp., Philadelphia, 1971. 

Mitchell, Maybury, and Sweet [1979]: Mitchell, J. G., W. 
Maybury, and R. E. Sweet, “Mesa Language Manual,” Xerox Palo 
Alto Research Center CSL 79-5, 1979. 

Molnar, Omstein, and Anne [1967]: Molnar, C. E., S. M. 
Omstein, and A. Anne, “The CHASM: A Macromodular Comput- 
er for Analyzing Neuron Models,” Proc. AFZPS S]CC, vol. 30, 
1967, pp. 393401. 

Monnier [1968]: Monnier, R. E., “A New Electronic Calculator 
with Computerlike Capabilities,” Hewlett-Packard]. ,vol. 20, no. 
1, September 1968, pp. 3-9. In Chap. 48 of this book. 

Morris, Sumner, and Wyld [1967]: Morns, D., F. H. Sumner, 

and M. T. Wyld, “An Appraisal of the Atlas Supervisor,” Proc. 
ACM Natl. Meeting, 1967, pp. 67-75. 

Morse, Pohlman, and Ravenel [1978]: Morse, S. P., W. B. 
Pohlman, and B. W. Ravenel, “The Intel 8086 Micropocessor A 
16-Bit Evolution of the 8080,” Computer, June 1978, pp. 18-27.- _  

Morse [1980]: Morse, S.  P: ‘The 8086 Primer,” Hayden Book 
Co., New York, 1980. 

,Mudge [19771: Mudge, J. C., “Design Decisions Achieve 
Price/Performance Balance in Mid-range Minicomputers,” Com-
puter Design, vol. 16, no. 3, August 1977, pp, 87-95. 

Mullery, Schauer, and Rice [1963]: Mullery, A. P., R. F. Schauer, 
and R. Rice, “Adam: A Problem-Oriented Symbol Processor,” 
Proc. AFIPS SJCC, vol. 23, 1963, pp. 367480. 

Murthy [19751: Murthy, P., “Analysis of a Carrier-Sense Random- 
Access System with Random Packet Length,” Wniv. of Hawaii 
Aloha System Technical Report B75-17, May 1975. 

Myer and Sutherland [1968]: Myer, T. H., and I. E. Sutherland, 
“On the Design of Display Processors,” Comm ACM, vol. 11, no. 
6, June 1968, pp. 410-414. 

Myers [1977]: Myers, G. J., “The Case against Stack-Oriented 
Instruction Sets,” Sigarch News, August 1977. 

Myers et al. [1977]: Myers, M. N., et d., “Maintenance 
Software,”Bell Syst. Tech. I.,  vol. 56, no. 7, September 1977, pp. 
1,139-1,167. 

National Library of Medicine [1968]: National Library of Medi-
cine, “Biomedical Communications Network,” Tech. Dev. Plan, 
June 1968. 
Needham [1972]: Needham, R. M., “Protection Systems and 
Protection Implementations,” Proc. AFIPS FJCC, vol. 41, pt. 1, 
1972, pp. 571578. 

Needham and Walker [1977]: Needham, R. M., and R. D. H. 
Walker, “The Cambridge CAP Computer and Its Protection 
System,”Proc. 6th Symp. on Operating Systems Principles, 1977. 

Nelson and Ricci [1972]: Nelson, G. E., and D. W. Ricci, “A 
Practical Interface System for Electronic Instruments,” Hewlett-
Packard]. , October 1972. 
Neumann, et al. [1973]: Neumann, P. G., K. N. Levitt, J. 
Goldberg, and J. H. Wensley, “A Study of Fault-Tolerant Com- 
puting: Final Report,” Stanford Research Institute, July 1973. 

Newcomer et al. [1976]: Newcomer, J., E. Cohen, D. Jefferson, 
T. Lane, R. Levin, F. Pollack, and W. Wulf, “Hydra: Basic Kernel 
Reference Manual,” Camegie-Mellon Univ. Dept. of Computer 
Science Technical Report, 1976. 



Bibliography 909 

Newman and Sproull[1979]: Newman, W. M., and R. F. Sproull, 
Principles of Interactive Computer Graphics, 2d ed., McGraw- 
Hill Book Company, New York, 1979. 

NOC Symp [1968]: National Security Agency, “Networks of 
Computers Symposium NOC-68,” in Proc. Invitational Workship, 
Fort Meade, Md., 1969. 

NOC Symp [1969]: National Security Agency: “Networks of 
Computers Symposium NOC-69,” in ibid. 

Now& [1976]: Nowak, J. S . ,  “No. 1A ESS: A New High Capacity 
Switching System,” Int. Switching Symp. Rec., Japan, 1976. 

Noyce [1977]: Noyce, R. N., “Large-Scale Integration: What Is 
Yet to Come?,” Science, vol. 195, no. 4,283, March 1977, pp. 
1,102-1,106. 

O’Loughlin [19751; O’hughlin, J. F., “Microprogramming a 
Fixed Architecture Machine,” in Znfotech State of the Art Report, 
Microprogramming and Systems Architecture, pp. 205-224, 
1975. 

O’Murphy and Wade [1970]: O’Murphy, J., and R. M. Wade, 
“The IBM 360/195,” Datamation, April 1970. 

Okumura et al. [1968]: Okumura, Y., E. Ohmori, T. Kawano, and 
K. Fukuda, “Field Strength and Its Variability in UHF and VHF 
Land-Mobile Radio Service,” Rev. Electrical Comm Lab., vol. 
16, nos. 9-10, September-October 1968. 

Oleinick [1979]: Oleinick, P. N., “The Implementation and 
Evaluation of Parallel Algorithms on C.mmp,” Ph.D. thesis, 
Carnegie-Mellon Univ., 1979. 

Oleinick and Fuller [1978]: Oleinick, P. N., and S.  H. Fuller, 
“The Implementation and Evaluation of a Parallel Algorithm on 
C.mmp. ,” Carnegie-Mellon Univ. Dept. of Computer Science 
Technical Report, 1978. 

Organick [1972]: Organick, E. I., The Multics System: An Exam- 
ination of Its Strmcture, MIT Press, Cambridge, Mass., 1972. 

Organick [1973]: Organick, E. I., Computer System Organization: 
The B5700/6700 Series, Academic Press, Inc., New York, 1973. 

Ornstein et al. [1972]: Ornstein, S. M., F. E. Heart, W. R. 
Crowther, S.  B. Russell, H. K. Rising, and A. Michel, “The 
Terminal IMP for the ARPA Computer Network,” Proc. AFIPS 
SJCC, vol. 40, 1972, pp. 243-254. Also in W. W. Chu, ed., 
Advances in Computer Communications, Artech House, Dedham, 
Mass., 1974, pp. 317328;andinP. E. GreenandR. W. Lucky, 
eds., Computer Communications, IEEE Press, New York, 1975, 
pp. 354-365. 

Ornstein et al. [1975]: Ornstein, S. M., W. R. Crowther, M. F. 

Kraley, R. D. Bressler, A. Michel, and F. E. Heart: “Pluribus: A 
Reliable Multiprocessor,” Proc. AFZPS NCC, vol. 44, 1975, pp. 
551-559. 

Ornstein and Walden [1975]: Ornstein, S.  M., and D. C. Walden, 
“The Evolution of a High Performance Modular Packet-Switch,” 
1975Znt. Con .  Comm ,vol. I, 1975, pp. 6-17 to 6-21. 

Osborne [1968]: Osborne, T. E., “Hardware Design of the Model 
91OOA Calculator,” Hewlett-Packard J.  ,vol. 20, no. 1,September 
1968, pp. 10-13. In Chap. 48 of this book. 

Padegs [1964]: Padegs, A., “The Structure of System/360, Part IV: 
Channel Design Considerations,” ZBM Syst. J., vol. 3, no. 2, 
1964, pp. 165-180. 

Padegs [1968]: Padegs, A. ,  “Structural Aspects of the System/360 
Model 85, Part 111: Extension to Floating-Point Architecture,” 
ZBM Syst. J. ,  vol. 7, no. 1, 1968, pp. 22-29. 

Papain [1957]: Papian, W. N., “High-speed Computer Stores 2.5 
Megabits,” Electronics, vol. 30, no. 10, October 1957, pp. 
162-167. 

Parnas [1972]: Parnas, D. L., “On the Response to Detected 
Errors in Hierarchially Structured Systems,” Carnegie-Mellon 
Univ. Dept. of Computer Science Technical Report, 1972. 

Patzer and Vandling [1967]: Patzer, William J., and Gilbert C. 
Vandling, “Systems Implications of Microprogramming,” Com-
puter Design, vol. 6, no. 12, December 1967, pp. 62-66. 

Peacock [19??]: Peacock, A., “Read-only Memory and Computer 
Control.”1 

Perry and Plugge [1961]: Perry, M. N., and W. R. Plugge, 
“American Airlines ‘Sabre’ Electronic Reservations System,” 
Proc. AFIPS WJCC, 1961. 

Peterson [1961]: Peterson, W. W., Error Correcting Codes, MIT 
Press, Cambridge, Mass., 1961. 

Peterson and Weldon [1972]: Peterson, W. W., and E. J. Weldon, 
Error Correcting Codes, MIT Press, Cambridge, Mass., 1972. 

Phister [1979]: Phister, M., Jr., Data Processing Technology and 
Economics, 2d ed., Santa Monica Publishing Co. and Digital 
Press, Maynard, Mass., 1979. 

PIC [1979~1:PIC Series Microcomputer User’s Manual, General 
Instrument Corp., Hicksville, N. Y., 1979. 

PIC [1979bl: PIC Cross Assembler User’s manual, General 
Instrument Corp., Hicksville, N.Y., 1979. 

‘To the authors’ knowledge, this article has not been published. However, 
Tucker covers the material that should be in Peacock. 



910 Bibliography 

Pinnow, Ranweiler, and Miller [1978]: Pinnow, K. W., J. G. 
Ranweiler, and J. F. Miller, “System138 Object-Oriented Archi- 
tecture,’’ ZBM System138 Tech. Dev., IBM GS80-0237, 1978, pp. 
55-58. In Chap. 32 of this book. 

Popek and Goldberg [1974]; Popek, G. J., and R. P. Goldberg, 
“Formal Requirements for Virtualizable Third Generation 
Architectures,” C o r m  ACM., vol. 17., no. 7, July 1974, pp. 
412-421. 

Presser [19751: Presser, L., “Multiprogramming Coordination,” 
Comp. Surv., vol. 7, no. 1,March 1975, pp. 21-44. 

Queyssac [1979]: Queyssac, D., “Projecting VLSI’s Impact of 
Microprocessors,” ZEEE Spectrum, vol. 16, no. 5, 1979, pp, 
3841. 

Raichelson and Collins [1966]: Raichelson, E., and G. A. Collins, 
“A Method for Comparing the Internal Operating Speeds of 
Computers,” Comm ACM, vol. 7, no. 5, May 1966, pp. 30M10. 

Ramamoorthy and Li [1977]; Ramamoorthy, C. V., and H.F. Li, 
“Pipeline Architecture,” Comp. Sum.,vol. 9, no. 1,March 1977, 
pp. 61-102. 

Randall and Russell [1964]; Randall, B., and L. J. Russell, ALGOL 
60 Implementation, Academic Press, Inc., New York, 1964. 

Randell and Kuehner [1968]: Randell, B., and C. J. Kuehner, 
“Dynamic Storage Allocation Systems,” Comm. ACM, vol. 11,no. 
5, May 1968, pp. 297-306. 

Rao [1974]: Rao, T. R. N., Error Coding for Arithmetic Proces- 
sors, Academic Press, Inc., New York, 1974. 

Reed and Brimley [1962]: Reed, I. S., and D. E. Brimley, “On 
Increasing the Operating Life of Unattended Machines,” RAND 
Corporation Memorandum RM-3338-PR, November 1962. 

Reeves [1975]: Reeves, R. E., “Computer Architecture Issues in 
Large-Scale Systems,” in 9th Asilomar Conference, Naval Post- 
graduate School, Monterey, Calif., 1975. 

Retz [1975]: Retz, D. L., “Operating System Design Considera- 
tions for the Packet Switching Environment,” Proc. AFIPS NCC, 
vol. 44, 1975, pp. 155-160. 

Reynolds [1978]: Dean Witter Reynolds, Inc., Random-Access 
Monthly, A1 437120, June 1978, p. 4. 

Rice [1967]: Rice, R., “Impact of Arrays on Digital Systems,” 
IEEE J. Solid-state Circuits, v01. SC-2, no. 4, December 1967. 

Rice and Smith [1971]; Rice, R., and W. R. Smith, “SYMBOL: A 
Major Departure from classic Software Dominated von Neumann 
Computing Systems,” Proc. AFZPS SjCC, vol. 38, 1971, pp. 
575-587. In Chap. 30 of this book. 

Richards [1969]: Richards, M., “BCPL A Tool for Compiler 
Writing and System Programming,” Proc. AFIPS SJCC, vol. 35, 
1969, pp. 557-566. 

Ritchie et al. [1978]: Ritchie, D. M.,  S. C. Johnson, M. E. Lesk, 
and B. W. Kernighan, “The C Programming Languige,” Bell 
Syst. Tech. J. ,  vol. 57, no. 6, July-August 1978, pp. 1,991-2,019. 

Roberts [1967]: Roberts, L. G., “Multiple Computer Networks 
and Intercomputer Communication,” Proc. ACM Symp. on 
Operating Systems Principles, 1967. 

Roberts [1968]: Roberts, L. G., “Access Control and File 
Directories in Computer Networks,” in IEEE Int. Conu., 1968. 

Roberts [19691: Roberts, L. G., “Resource Sharing Computer 
Networks,” in IEEE Znt. Con$, 1969. 

Roberts [1973]: Roberts, L., “Capture Effects on Aloha Chan- 
nels,” Proc. 6th Hawaii Znt. Con$ Sys. Sci., 1973. 

Roberts and Wessler [1970]: Roberts, L. G., and B. D. Wessler, 
“Computer Network Development to Achieve Resource Shar- 
ing,” Proc. AFZPS SJCC, vol. 36, 1970, pp. 543-549. 

Roberts and Wessler [1973]: Roberts, L. G., and B. Wessler, “The 
ARPA Computer Network,” in Abramson and Kuo, eds., Comput-
er Communication Networks, Prentice-Hall, Inc., Englewood 
Cliffs, N.J., 1973. 

Robertson and Ramakrishna [1977]: Robertson, G., and K. 
Ramakrishna, “ZOG: A Man-Machine Communication Philoso- 
phy,” Carnegie-Mellon Univ. Dept. of Computer Science Techni- 
cal Report, August 1977. 

Rosen [1969]: Rosen, S . ,  “Electronic Computers: A Historical 
Survey,” Camp. Surv., vol. 1, no. 1, March 1969, pp. 7-36. 

Rosin [1969]: Rosin, R. F., “Contemporary Concepts of Micropro- 
gramming and Emulation,” Comp. Surv., vol. 1,no. 4, December 
1969, pp. 197-212. 

Rothman [1959]: Rothman, S . ,  “R/W 40 Data Processing System,” 
International Conference on Information Processing and Auto- 
Math 59, Ramo-Wooldridge (a division of Thompson Ram0 
Woodridge, Inc.), Los Angeles, Calif., June 1959. 

Rowe [1975]: Rowe, L. A., “The Distributed Computing Operat- 
ing System,” Dept. of Information Science, Univ. of California at 
Irvine, Technical Report 66, June 1975. 

Ruben et al. [1976]: Ruben, S., R. Faiss, J. Lyon, and M. Quinn, 
“Application of a Parallel Processing Computer in LACIE,” in 
Proc. 1976 Int. Con$ on Parallel Processing, Waldenwoods, 
Mich., 1976, pp. 24-32. 

Rubin, Guggenheim, and Bihary [1978]; Rubin, S . ,  R. Guggen-



heim, and D. Bihary, “Graphics Display Processor Users Manu- 
al,” Carnegie-Mellon Wniv. Dept. of Computer Science Technical 
Report, 1978. 

Rudolph [1972]: Rudolph, F. A., “A Production Implementation 
of an Associative Array Processor: STARAN,” Proc. AFIPS FJCC, 
1972, pp. 229-241. Excerpted in Chap. 21 of this book. 

Rudolph, Fulmer, and Meilander [1971]: Rudolph, J. A., L. C. 
Fulmer, and W. C. Meilander, “The Coming of Age of the 
Associative Processor,” Electronics, February 1971, pp. 91-96. 

Russell [1978];Russell, R. M., “The CRAY-1 Computer System,” 
Comm. ACM, vol. 21, no. 1, January 1978, pp. 63-72. Chapter 44 
of this book. 

Rustin [19701: Rustin, R., ed., Computer Networks: Courant 
Computer Science Symposium 3, Prentice-Hall, Inc., Englewood 
Cl&, N. J., 1970. 

Scantlebury, Wilkinson, and Bartlett [1968]:Scantlebury, R. A., 
P. T. Wilkinson, and K. A. Bartlett, “The Design of a Message 
Switching Centre for a Digital Communication Network,” Proc. 
IFIP Cong., vol. 2, 1968. 

Schroeder [1972]: Schroeder, M., Cooperation of Mutually 
Suspicious Subsystems in a Computer Utility, Ph. D. thesis, 
Massachusetts Institute of Technology, September 1972. 

Schroeder and Saltzer [1972]: Schroeder, M. D., and J. H. 
Saltzer, “A Hardware Architecture for Implementing Protection 
Rings,” Comm ACM, vol. 15, March 1972, pp. 157-170. 

Schwartz [19771: Schwartz, M., Computer-Communication Net- 
work Design and Analysis, Prentice-Hall, Inc., Englewood Cliffs, 
N.J., 1977. 

Sechler, Strube, and Turnbull [1967]: Sechler, R. F., A. R. 
Strube, and J. R. Turnbull, “ASLT Circuit Design,” I B M  J. Res. 
and Deu., vol. 11, no. 1, January 1967, pp. 74-85. 

Seley and Vigilante [1964]: Seley, E. L., and F. S.  Vigilante, 
“Common Control: For an Electronic Private Branch Exchange,” 
IEEE Trans. Comm and Elect., July 1964, pp. 321429. 

Shannon [1948]: Shannon, C. E., “A Mathematical Theory of 
Communication,” Bell Syst. Tech. J . ,  27, 1948, pp. 379-423, 
623-656. 

Sharpe [1969]: Sharpe, W. F., The Economics of Computers, 
Columbia University Press, New York, 1969. 

Shaw [1974]: Shaw, A. C., The Logical Design of Operating 
Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974, p. 74 

Shaw et al. [1958]: Shaw, J. C., A Newell, H. A. Simon, andT. 0. 

Bibliography 911 

Ellis, “A Command Structure for Complex Information Process- 
ing,’’ Proc. WJCC, 1958, pp. 119-128. 

Shima, Faggin, and Mazor [1974]: Shima, M., F. Faggin, and S. 
Mazor, “An N-Channel 8-Bit Single Chip Microprocessor,” IEEE 
Int. Solid-State Circuits Con$, February 1974, pp. 56-57. 

Shoch [1977]: Shoch, J. F., “An Overview of the Programming 
Language Smalltalk-72,” in Convention ln fomt ique ,  Paris, 1977; 
and in SIGPLAN NOT., 1979. 

Shoch and Hupp [1979]:Shoch, J. F., and J. Hupp, “Performance 
of an Ethernet Local Network: A Preliminary Report,” in Proc. 
Local Area Communication Network Symposium, NBS, Boston, 
1979. 

Short [1968]; Short, R. A., “The Attainment of Reliable Digital 
Systems through the Use of Redundancy: A Survey,” IEEE 
Computing Group News, vol. 2, March 1968, pp. 2-17. 

“Shrinking World [19741: “The Shrinking World: Computer 
Networks and Communications,” special issue of Computer, vol. 
7, no. 2, February 1974. 

Shustek [1978]: Shustek, L. J.,  “Analysis and Performance of 
Computer Instruction Sets,” Stanford Linear Accelerator Center 
205, STAN-CS-78-658, Stanford, Calif., May 1978. 

Siewiorek and Barbacci [1976]: Siewiorek, D. P., and M. R. 
Barbacci, “The CMU RT-CAD System: An Innovative Approach 
to Computer Aided Design,” Proc. AFIPS NCC, vol. 45, 1976, 
pp. 643-655. 

Siewiorek et al. [1978a]:Siewiorek, D. P., V. Kini, H. Mashburn, 
S. McConnel, and M. Tsao, “ A Cdse Study of C.mmp, Cm* and 
C.vmp, Part I: Experiences with Fault Tolerance in Multiprocess- 
or Systems,” Proc. I E E E ,  vol. 66, no. 10, October 1978, pp. 
1,178-1,199. 

Siewiorek et al. [1978b]: Siewiorek, D. P., V. Kini, H. Mash- 
bum, and R. Joobbani, “A Case Study of C.mmp, Cm*, and C. 
vmp, Part 11: Predicting and Calibrating Reliability of Multi- 
processor Systems,” Proc. IEEE, vol. 66, no. 10, 1978, pp. 
1 ,UNI-1,220. 

Simpson et al. [1978]: Simpson, W. D., G. Luecke, D. L. 
Cannon, and D. H. Clemens, 9900 Family Systems Design and 
Data Book, Texas Instruments, Inc., 1978. 

Slade and McMahon [1957]:Slade, A. E., and H. 0. McMahon, 
“The Cryotron Catalog Memory System,” Proc. EJCC, vol. 10, 
1957, pp. 115-120. 

Slotnick [ 19671:Slotnick, D. L., “Unconventional Systems,” Proc. 
AFIPS SJCC, 1967, pp. 477481. 



912 Bibliography 

Slotnick [1971]: Slotnick, D. L., “The Fastest Computer,” Scien-
tijic American, February 1971, pp. 76-87. 

Slotnick, Borck, and McReynolds [1962]: Slotnick, D. L., W. C. 
Borck, and R. C. McReynolds, “The SOLOMON Computer,” 
Proc. AFIPS FJCC, 1962, pp. 97-107. 

Smith [1963]: Smith, W. R., “Associative Memory Techniques for 
Large Data Processors,” Ph. D. thesis, Iowa State Univ., 1963. 

Smith [1968]: Smith, W. R., “System Design Based on LSI 
Constraints: A Case History,” in Dig. 1968 Comp. Group Con$, 
Los Angeles, Calif., 1968. 

Smith [1972]: Smith, D. J., ReEiabiZity Engineering, Barnes &~ 

Noble, Inc., New York, 1972. 

Smith et al. [1971]: Smith, W. R., R. Rice, G. D. Chesley, T. A. 
Laliotis, S. F. Lundstrom, M. A. Calhoun, L. D. Gerould, andT. 
C. Cook, “SYMBOL: A Large Experimental System Exploring 
Major Hardware Replacement of Software,” Proc. AFlPS SJCC, 
1971, pp. 601-616. In Chap, 30 of this book. 

Smith et al. [1977]: Smith, W. R., J. J. Cornyn, A. H. Coleman, 
W. Svirsky, R. Estell, and P. Sabin, “Life Cycle Cost Models for 
Comparing Computer Family Architectures,” Proc. AFIPS NCC, 
vol. 46, 1977. 

Snow and Siewiorek [1978]: Snow, E. A., and D. P. Siewiorek, 
“Impact of Implementation Design Tradeoffs on Performance: The 
PDP-11, A Case Study,” Carnegie-Mellon Univ. Dept. of Com-
puter Science Technical Report, Pittsburgh, 1978. 

Solomon [1966]: Solomon, M. B., Jr., “Economies of Scale and 
the IBM System/360,” Comm. ACM, vol. 9, no. 6, June 1966, pp. 
435-440. 

Spangler [1972a]: Spangler, R. M., “A New Series of Programma- 
ble Calculators,” Hewlett-Packard J., vol. 24, December 1972, 
pp. 2-4. In Chap. 49 of this book. 

Spangler [1972b]: Spangler, R. M., “BASIC-Language Model 
30 Can Be Calculator, Computer, or Terminal,” Hewlett-
Packard J . ,  vol. 24, December 1972, pp. 14-18. In Chap. 49 
of this book. 

Spencer andvigilante [1969]: Spencer, A. E., and F. S. Vigilante, 
“No 2 ESS: System Organization and Objectives,” BeZE Syst. Tech. 
J . ,  October 1969. 

Sproull [1979]: Sproull, R. F., “Raster Graphics for Interactive 
Programming Environments,” Computer Graphics, summer 
1979. 

Staehler [1977]: Staehler, R. E., “1A Processor: Organizations and 
Objectives,” Bell Syst. Tech. J., February 1977, pp. 119-134. 

Staehler and Watters [1976]: Staehler, R. E., and R. J. Watters, 
“1A Processor: An Ultra-dependable Common Control,” in Znt. 
Switching Symp. Rec., vol. 2, Japan, 1976, pp. 1.1-1.7. 

Stieglitz, Weiner, and Kleitman [1969]: Steiglitz, K., P. Weiner, 
and D. J. Kleitman, “The Design of Minimum Cost Survivable 
Networks,” IEEE Trans. Circuit Theory, vol. CT-16, November 
1969. 

Stevens [1964]: Stevens, W. Y., “The Structure of System/360, 
Part 11: System Implementations,” ZBM Syst. J., vol. 3, no. 2, 
1964, pp. 136-142. Chapter 41 of this book. 

Stillman [1972]: Stillman, N. J., ‘‘Associative Processing and 
Computer Graphics: A Feasibility Study,” USAF RADC-TR-72- 
57, April 1972. 

Stone [1971]: Stone, H. S., “Parallel Processing with the Perfect 
Shuffle,” l E E E  Trans. Comp., vol. C-20, no. 2, February 1971, 
pp. 153-161. 

Stone and Siewiorek [1975]: Stone, H. S.,  and D. P. Siewiorek, 
Introduction to Computer Organization and Data Structures: 
PDP-11 Edition, McGraw-Hill, New York, 1975. 

Storey [1976]: Storey, T. F., “Design of a Microprogram Control 
for a Processor in an Electronic Switching System,” Bell Syst. 
Tech. J . ,  February 1976, pp. 183-232. 

Strecker [1971]: Strecker, W. D., “An Analysis of the Instruction 
Execution Rate in Certain Computing Structures,” Ph. D. thesis, 
Carnegie-Mellon Univ., 1971. 

Strecker [1976a]: Strecker, W. D., Personal Communication, 
1976. 

Strecker [1976b]: Strecker, W. D., “Cache Memories for PDP-11 
Family Computers,” Proc. 3d Symp. Computer Architecture, 
1976, pp. 155-158. 

Strecker [1978]: Strecker, W. D., “VAX-11/780: A Virtual Address 
Extension to the DEC PDP-11 Family,” Proc. AFIPS NCC, vol. 
47, 1978, pp. 967-980. Chapter 42 in this book. 

Sumner, Haley, and Chen [1962]: Sumner, F. H., G. Haley, and 
E. C. Y. Chen, “The Central Control Unit of the ‘Atlas’ 
Computer,” Proc. IFZP Cong., 1962, pp. 657-662. 

Sung and Woodford [1969]: Sung, R., and J. B. Woodford, “Study 
of Communication Links for the Biomedical Communication 
Network,” Aerospace Report ATR-69 (7130-06)-1, 1969. 

Swan [1976]: Swan, R. J., “K.mon: The Cmmp Hardware 
Monitor,” Carnegie-Mellon Univ. Dept. of Computer Science 
Technical Report, 1976. 

Swan, Fuller, and Siewiorek [1976]: Swan, R. J., S. H. Fuller, and 



D. P. Siewiorek, “The Structure and Architectures of Cm*: A 
Modular, Multi-Microprocessor,” in Computer Science Research 
Review, Carnegie-Mellow Univ. Dept. of Computer Science, 
1976. 

Swan, Fuller, and Siewiorek [1977]: Swan, R. J., S. H. Fuller, and 
D. P. Siewiorek, “Cm”: A Modular, Multi-Microprocessor,” 
Proc. AFIPS NCC, vol. 46, 1977, pp. 637-644. 

Swinehart, McDaniel, and Boggs [1979]: Swinehart, D. C., G. 
McDaniel, and D. R. Boggs, “WFS: A Simple Shared File System 
for a Distributed Environment,” Operating Syst. Rev., vol. 13, 
no. 5, November 1979. 

Tandem [19761: Tandem Computers, Inc., Tandem/l6 System 
Description, 1976. 

Teitelman [19771: Teitelman, W., “A Display-Oriented Program- 
mer’s Assistant,” Proc. 5th Int. Joint Con$ on Artijicial Intelli- 
gence, 1977, pp. 905-917. 

Teitelman [1978]: Teitelman, W., Interlisp Reference ManuaE, 
Xerox Palo Alto Research Center, October 1978. 

Teitelman and Kahn [1969]: Teitelman, W., and R. E. Kahn, “A 
Network Simulation and Display Program,” Proc. 3d Annual 
Princeton Con$ on Information Sciences and Systems, 1969. 

Tennant and Chesley “6.51:Tennant, J. R., and G. D. Chesley, 
“Design and Layout of Large Integrated Circuit Boards,” in 2d 
Annual Seminar on Integrated Circuits, 1965. 

Thomas [1973]: Thomas, R. H.,  “A Resource Sharing Executive 
for the ARPANET,” Proc. AFIPS NCC, 1973, pp. 155-163. 

Thomas and Siewiorek [1977]: Thomas, D. E., and D. P. 
Siewiorek, “Measuring Designer Performance to Verify Design 
Automation Systems,” Proc. Design Automation Con$, vol. 14, 
1977, pp. 411418. 

Thornton [19641: Thornton, J. E., “Parallel Operation in the 
Control Data 6600,” Proc. AFIPS FJCC, vol. 26, pt. 2, 1964, pp. 
33-40. Chapter 43 of this book. 

Thornton [1970]: Thornton, J. E., “Design of a Computer: The 
Control Data 6600,” Scott, Foresman & Company, Glenview, Ill., 
1970. 

Thurber and Wald [1975]: Thurber, K. J., and L. D. Wald, 
“Associative and Parallel Processors,” ACM Comp. Sum. special 
issue on computer systems architecture, vol. 7, no. 4, December 
1975, pp. 215-255. 

TI [1975]: Texas Instruments, Inc., TMSlOOO Programmer’s Ref- 
erence Manual, 1975. 

Tomasulo [1967]: Tomasulo, R. M., “An Efficient Algorithm for 

Bibliography 913 

Exploiting Multiple Arithmetic Units,” I B M J .  Res. and Dev., vol. 
11, 1967, pp. 25-43. Chapter 19 of this book. 

“TOPS” [1970]: “TOPS Outer Planet Spacecraft,” special issue of 
Astronaut. Aeronaut., vol. 8, September 1970. 

Toy [1978]: Toy, W. N., “Fault-Tolerant Design of Local ESS 
Processors,” Proc. IEEE,  vol. 66, no. 10, October 1978, pp. 
1,126-1,145, Excerpted in Chap. 28 of this book. 

Tsiang and Ulrich [1962]; Tsiang, S. H., and W. Ulrich, “Auto- 
matic Trouble Diagnosis of Complex Logic Circuits,” Bell Syst. 
Tech, J., July 1962, pp. 1,177-1,200. 

Tucker [1967]: Tucker, S. G., “Microprogram Control for Sys- 
tem/360,” IBM Syst. J., vol. 6, no. 4, 1967, pp. 22%241. 

Turn [1974]: Turn, R., Computers in the 1980s, Columbia 
University Press, New York, 1974. 

U.S. Dept. of Defense [1965]: U.S. Dept. of Defense, Military 
Standardization Handbook 217A: Reliability Prediction of Elec-
tronic Equipment, 1965. 

U.S. Dept. of Defense [1974]: U.S. Dept. of Defense, Military 
Standardization Handbook 21 7B: Reliability Prediction of Elec- 
tronic Equipment, 1974. 

U.S. Patent 4,035,766 [1977]. 

U.S. Steel [1978]: U.S. Steel, COBOL Analysis System (CAS) 
Timing Test, May 1978. 

Vadasz et al. [1969]: Vadasz, L. L., A. S. Grove, T. A. Rowe, and 
G. E. Moore, “Silicon Gate Technology,” I E E E  Spectrum, 
October 1969, pp. 27-35. 

Vance, Dooley, and Diss [1957]: Vance, P. R., L. G. Dooley, and 
C. E. Diss, “Operation of the SAGE Duplex Computers,” Proc. 
EJCC, 1957, pp. 160-163. 

Vocar and Faiss [1977]: Vocar, J. M.,  and R. 0. Faiss, “WARP 
Processing Using STARAN,” Proc. 1977 Picture Data Description 
and Management Workshop. 

Von Neumann [1956]: Von Neumann, J., “Probabilistic Logics and 
the Synthesis of Reliable Organisms from Unreliable Compo- 
nents,” in C. E. Shannon and J. McCarthy, eds., Automata 
Studies, Princeton University Press, 1956, pp. 43-98. 

Wagner et al. [1977]: Wagner, J. B. Lieblein, J. Rodriguez, and 
H. S. Stone, “Evaluation of the Candidate Architectures for the 
Military Computer Family,” Proc. AFIPS NCC, vol. 46, 1977. 

Wakerly [19791: Wakerly, J. F.,“The Intel MCS-48 Microcomput- 
er Family: A Critique,” Computer, vol. 12, no. 2, February 1979, 
pp. 21-31. 



914 Bibliography 

Walden [1972]: Walden, D. C., “A System for Interprocess 
Communication in a Resource Sharing Computer Network,” 
Comm. ACM, vol. 15,no. 4, April 1972, pp. 221-230. 

Watson [1972]: Watson, W. J.,  “The TI ASC: A Highly Modular 
and Flexible Super Computer Architecture,” Proc. AFIPS FJCC, 
vol. 41, pt. 1, 1972, pp. 221-228. In Chap. 45 of this book. 

Watson and Aberle [1978]: Watson, C. T., and G. F. Aberle, 
“SystemI38 Machine Data Base Support,” I B M  System138 Tech. 
Deu., IBM GS80-0237, 1978, pp. 59-62. 

Weber [1967]: Weber, H., “A Microprogrammed Implementation 
of EULER on IBM System/360 Model 30,” Comm ACM, vol. 10, 
no. 9, September 1967, pp. 549-558. Excerpted in Chapter 12 of 
this book. 

Wensley et al. [1978]: Wensley, J. H., L. Lamport, J. Goldberg, 
M. W. Green, K. N. Levitt, P. M. Melliar-Smith, R. E. Shotak, 
and C. B. Weinstock, “ S I R  The Design and Analysis of a 
Fault-Tolerant Computer for Aircraft Control,” Proc. IEEE,  vol. 
66, no. 10, 1978, pp. 1,240-1,255. 

Wichmann [1973]: Wichmann, B. A., Algol 60 Compilation and 
Assessment, Anderson Press, New York, 1973. 

Wichmann [1976]: Wichmann, B. A., “Ackermann’s Function: A 
Study in the Eficiency of Calling Procedures,” BIT, vol. 16, 1976, 
pp. 103-110. 

Wilkes [1951]: Wilkes, M. V., “The Best Way to Design an 
Automatic Calculating Machine,” in Manchester Uniu. Comp. 
Inaugural Cons, Ferranti, Ltd., London, 1951. 

Wilkes [19581: Wilkes, M. V., “Microprogramming,” Proc. 
EJCC, 1958, pp. 18-20. 

Wilkes [1965]: Wilkes, M. V. “Slave Memories and Dynamic 
Storage Allocation,” I E E E  Trans. Elect. Comp., Vol. EC-14, no. 
2, February 1965, pp. 270-271 

Wilkes and Stringer [1953]: Wilkes, M. V., and J. B. Stringer, 
“Microprogramming and the Design of the Control Circuits in an 
Electronic Digital Computer,” in Proc. Cambridge PhiEosophical 
Society, vol. 49, 1953, pp. 230-238. Chapter 11of this book. 

Willard [19731: Willard, D. G., “Mitrix: A Sophisticated Digital 
Cable Communications System,” in Proc. National Telecommuni- 
cations Conference, 1973. 

Williams and Kilburn [1948]: Williams, F. C., and T. Kilburn, 
“Electronic Digital Computers” letter, Nature, vol. 162, Septem- 
ber 1948, p. 487. 

Williams and Kilburn [1949]: Williams, F. C., and T. Kilburn, “A 

Storage System for Use with Binary Digital Computing Ma- 
chines,” Proc. IEE,  vol. 96, pt. 2, no. 30, 1949, pp. 183ff. 

Williams, Kilburn, and Tootill [1951]: Williams, F. C., T. 
Kilburn, and G. C. Tootill, “Universal High-speed Digital 
Computers: A Small Scale Experimental Machine,” Proc. I E E ,  
vol. 98, pt. 2, no. 61, February 1951, pp. 13-28. 

Wirth and Weber [1966u]: Wirth, N.,  and H. Weber, “EULER: 
A Generalization of ALGOL, and Its Formal Definition, Part I,” 
Comm. ACM, vol. 9, no. 1, January 1966, pp. 13-25. 

Wirth and Weber [1966b]: Wirth, N., and H. Weber, “EULER A 
Generalization of ALGOL, and Its Formal Definition, Part 11,” 
Comm. ACM, vol. 9, no. 2, February 1966, pp. 89-99. 

Wolf [19731: Wolf, E. W., “An Advanced Computer Communica- 
tion Network,” in AZAA Computer Network Systems Cons Rec., 
1973. 

Wulf and Bell [1972]: Wulf, W. A., and C. G. Bell, “C.mmp: A 
Multi-Mini-Processor,”Proc. AFIPS FJCC, vol. 41, pt. 2, 1972, 
pp. 765-777. 

Wulf et al. [1974]: Wulf, W. A. ,Cohen, W. Convin, A. Jones, R. 
Levin, C. Pierson, and F. Pollack, “Hydra: The Kernel of a 
Multiprocessor Operating System,” Comm. ACM, vol. 17, June 
1974, pp. 337-345. 

Wulf and Harbison [1978]: Wulf, W., and S. P. Harbison, 
“Reflections in a Pool of Processors: An Experience Report on 
C.mmp,” Proc. AFIPS NCC, 1978. 

Wulf, Levin, and Harbison [1980]: Wulf, W., R. Levin, and S. 
Harbison, HydrdC. mmp: An Experimental Computer System, 
McGraw-Hill Book Company, New York, 1980. 

Wulf, Levin, and Pierson [1975]: Wulf, W. A,,  R. Levin, and C. 
Pierson, “Overview of the Hydra Operating System Develop- 
ment,” Proc. 5th Symp. on Operating Systems Principles, 1975, 
pp. 122-131. 

Wulf, Russell, and Habermann [1971]: Wulf, W., D. B. Russell, 
and A. N. Habermann, “Bliss: A Language for Systems Program- 
ming,” Comm ACM, vol. 14, December 1971, pp. 780-790. 

Yau and Fung [1977]: Yau, S. S., and H. S. Fung, “Associative 
Processor Architecture: A Survey,” Comp. Surv., vol. 9, no. 1, 
March 1977, pp. 3-27. 

Yourdon [1972]: Yourdon, E., Design of On-line Computer 
Systems, Prentice Ha& Inc., Englewood Cliffs, N. J., 1972. 

Zadeh and Desoer [1963]: Zadeh, L. A., and C. A. Desoer, Linear 
System Theory, McGraw-Hill Book Company, New York, 1963. 



Acknowledgments 
Advanced Micro Devices, Znc.: “Am2910 Microprogram Control- 
ler,” AMD Technical Data Bulletin, January 1978, pp. 1-12, 
copyright 1977 by Advanced Micro Devices, Inc. Reproduced 
with permission of copyright owner. 

Advanced Micro Devices, Znc.: “Am2903 Four-Bit Bipolar Micro- 
processor Slice,” AMD Technical Data Bulletin, January 1978, pp. 
1-22, copyright 1977 by Advanced Micro Devices, Inc. Repro- 
duced with permission of copyright owner. 

D. W. Anderson, F.  J .  Sparacw, and R. M.  Tomasulo: “The IBM 
SystemD60 Model 91: Machine Philosophy and Instruction- 
Handling,” IBM Journal of Research and Development, January 
1967, pp. 8-24, copyright 1967 by and with permission of 
International Business Machines Corporation. 

ARPANet, ARPANet Logical Map, ARPANet Geographic Map: 
ARPANet Directory, December 1978, by permission of ARPANet 
Project Manager. 

A. AviZknis, G. C.  Gilby, F. P. Mathur, D. A. Rennels,]. A. 
Rohr, and D. K. Rubin: “The STAR (Self-Testing And Repairing) 
Computer: An Investigation of the Theory and Practice of 
Fault-Tolerant Computer Design,” IEEE Transactions on Com- 
puters, C-20, no. 11, November 1971, pp. 1,312-1,321, copyright 
1971 by and with permission of the Institute of Electrical and 
Electronics Engineers, Inc., and the authors. 

M .  R. Barbacci: “An ISPS Primer for Instruction Set Processor,” 
by permission of Digital Equipment Corporation, Maynard, 
Mass., and the author. 

J .  P.Bartbtt: “A ‘NonStop’ Operating System,” Tandem Comput- 
ers, Inc., copyright by Tandem Computers, Inc., and reprinted 
with the express permission of Tandem Computers, Inc. 

K .  E .  Butcher: “STARAN Parallel Processor System Hardware,” 
Proceedings AFIPS NCC, 1974, pp. 405410, by permission of 
AFIPS. 

G. Bell, R. Cady, H. McFarland, B. Delugi, J .  O’Loughlin, and 
R. Noonan: “A New Architecture for Mini-Computers: The DEC 
PDP-11,” Proceedings AFIPS SJCC, 1970, pp. 657-675, by 
permission of AFIPS. 

C. G. Bell, J .  C. Mudge, and J .  E. McNamara. The authors 
acknowledge permission of Digital Press/Digital Equipment 
Corporation to reprint excerpts of pp. 3-6, 9-13, and 15-17 from 
Chap. 1;pp. 28-34 from Chap. 2; and pp. 201-202 from Chap. 7; 

abstractions from Chap. 7, pp. 175-208, and Chap. 16, pp. 
379-408; Chap. 8, pp. 209-228; and Appendix 1, pp. 519-535 
from Computer Engineering: A DEC View of Hardware Systems 
Design (Bedford, Mass., 1978). 

V.  Berstis, C. D. Trurrrl, and J .  G. Ranweibr: ‘‘System138 
Addressing and Authorization,” IBM S y s t d 3 8  Technical Devel- 
opments, 1978, pp. 51-54, copyright 1978 and reprinted with 
permission of International Business Machines Corporation. 

R. Binder, N .  Abramson, F. Kzro, A. Okinuka, and D. Wax: 
“ALOHA Packet Broadcasting: A Retrospect,” Proceedings AFIPS 
NCC, 1975, pp. 203-215, by permission of AFIPS. 

G. A. Blaauw and F. P. Brooks, Jr.: “The Structure of Sys- 
tem/360, Part I: O u t h e  of the Logical Structure,” IBM Systems 
Journal, vol. 3, no. 2, 1964, pp. 119-135, copyright 1964 by and 
reprinted by permission of International Business Machines 
Corporation. 

W. J .  Bouknight, S. A. Denenberg, D. E. McZntyre, J .  M. 
Ran&& A. H. Sameh and D. L. Slotnick “The Illiac IV System,” 
Proceedings of the IEEE, April 1972, pp. 369-379, copyright 1972 
by and printed by permission of the Institute of Electrical and 
Electronics Engineers, Inc. 

C. D. Brown, J .  M .  Walden: “Model 10 Maintains Compatibility, 
Expands Capability,” Hewlett-Packard Journal, no. 24, Decem-
ber 1972, pp. 5-8, by permission of Hewlett-Packard Company. 

Burroughs Corporation: B7700 Information Processing Systems 
Reference Manual, Section 1, Chapter 111, page 3-2. Copyright 
1976 Burroughs Corporation. Reproduced with the permission of 
Burroughs Corporation. 

R. P. Case and A. Padegs: “Architecture of the IBM System/370,” 
Communications of the ACM, vol. 21, no. 1,January 1978, pp. 
73-96, copyright 1978, Association for Computing Machinery, 
Inc., reprinted by permission, and by permission of the authors. 

S. H.  Dahlby, G. G. Henry, D. N. Reynolds, and P. T .  Taylor: 
“SystemI38: A High-Level Machine,” IBM Systed38 Technical 
Developments, 1978, pp. 47-50, copyright 1978 by and reprinted 
with permission of International Business Machines Corporation. 

L. C. Dean: “Texas Instruments Advanced Scientific Computer,” 
Infomutie Jrg., vol. 15, no. 4, April 1973, pp. 191-193, by 
permission of Informatie Jrg. and the author. 

William D. E d ,  Jack M .  WaEden, and Edward L. MiUer: “A 
Dual-Processor Desk-Top Computer: The HP 9845A,” Hewlett- 

915 



916 Acknowledgments 

Packard Company, by permission of Hewlett-Packard Company 
and the authors. 

G .  E .  Eagn: “Versatile Inputloutput Structure Welcome Periph- 
eral Variety,” Hewlett-Packurd Journal, no. 24, December 1972, 
pp. 24-27, by permission of Hewlett-Packard Company. 

F.  Faggin: “Trends in Microcomputers,” Data Show, ’77 Interna- 
tional Symposium Proceedings, October 4 ,  1977, Tokyo, pp. 
51-66, by permission of the author. 

S .  H .  Fuller, P .  Shaman, D. Lamb, and W. E .  Burr: “Evaluation 
of Computer Architectures via Test Programs,” AFIPS Conference 
Proceedings, vol. 46, 1977, pp. 147-160, by permission of the 
publisher, AFIPS Press, and the authors. 

S .  H .  Fuller, H .  S .  Stone, and W. E. Burr: “Initial Selection and 
Screening of the CFA Candidate Computer Architectures,” AFIPS 
Conference Proceedings, vol. 46, 1977, pp. 139-146, by permis- 
sion of the publisher, AFIPS Press, and the authors. 

Goodyear Aerospace Corporation: “STAWN Apple Instruction 
Set,” in STARAN: A New Class of Computer, pp. 14-15, by 
permission of Goodyear Aerospace Corporation. STARAN is a 
registered trademark of Goodyear Aerospace Corporation. 

F. M. Gruppuso: “PIC1650 Chip Architecture and Operation,” 
General Instrument Corporation, March 1979, by permission of 
the author. 

E .  A. Hawk and B. A. Dent: “Burroughs’ B6500fB7500 Stack 
Mechanism,” AFIPS Conference Proceedings SJCC, 1968, pp. 
245-251, by permission of AFIPS. 

R. L. Ho$mn and F.  G .  Soltis: “Hardware Organization of the 
System138,” I B M  System138 Technical Developments, 1978, pp. 
19-21, copyright 1978 by and reprinted with permission of 
International Business Machines Corporation. 

F .  E .  Heart, R. E. Kahn, S. M .  Omstein, W. R. Crowther, and 
D. C. Walden: “The Interface Message Processor for the ARPA 
Computer Network,” AFlPS Proceedings SJCC, vol. 36, 1970, pp. 
551-567, by permission of AFIPS. 

ZBM: Figure 1, “Model 165 Data Flow and System Statistics,” 
I B M  System1370 Model 165, Functional Characteristics, first 
edition, June 1970, p. 6, copyright 1970 by and reprinted with 
permission of International Business Machines Corporation. In 
Chap. 52. 

ZBM: Figure 2, “Model 155 Data Flow,” GA22-6942-2, File No. 

Sl370-01,IBM System1370 Model 155, Functional Characteristics, 
third edition, May 1972, p. 9, copyright 1972 by and reprinted 
with permission of International Business Machines Corporation. 
In Chap. 52. 

ZBM: Figure 7, “Instruction Processor,” GA22-69434, File No. 
S/360/370-01,IBM System/360 and SystemJ370 Model 195, Func-
tional Characteristics, fifth edition, October 1975, p. 12, copy- 
right 1975 by and reprinted with permission of International 
Business Machines Corporation. In Chap. 52. 

ZBM: Figure 10, “Fixed-PointNFWDecimal Execution Element,” 
GA22-6943-4, File No. S/360/S/370-01, I B M  SystemI360 and 
SystemJ370 Model 195, Functional Characteristics, fifth edition, 
October 1975, p. 20, copyright 1975 by and reprinted with 
permission of International Business Machines Corporation. In 
Chap. 52. 

ZBM: Figure 11, “Floating-Point Execution Element,” GA22-
6943-4, File No. Sl3601370-01, IBM Systeml360 and System1370 
Model 195, Functional Characteristics, fifth edition, October 
1975, p. 22, copyright 1975 by and reprinted with permission of 
International Business Machines Corporation. In Chap. 52. 

R. L. James and F. J .  Yockey: “Interactive Model 20 Speaks 
Algebraic Language,” Hewlett-Packard Journal, vol. 24, Decem-
ber 1972, pp. 8-13, by permission of Hewlett-Packard Company. 

D.  Katsuki, E .  S .  Elsam, W. F.  Mann, E .  S. Roberts, J .  G .  
Robinson, F.  S .  Skowronski, and E .  W. Wo& “Pluribus: An 
Operational Fault-Tolerant Multiprocessor,” proceedings of 
the IEEE,  vol. 66, no. 10, October 1978, pp. 1,146-1,159, copy- 
right 1978 by and printed by permission of the Institute of 
Electrical and Electronics Engineers, Inc., and the authors. 
The authors are with Bolt, Beranek, and Newman, Inc., 
Cambridge, Mass. 02138. 

J .  A. Katzman: “A Fault-Tolerant Computing System,” Tandem 
Computers, Inc., copyright by Tandem Computers, Inc., and 
reprinted with the express permission of Tandem Computers, Inc. 

3. L. a e & :  “An Outline of the ICL 2900 Series System 
Architecture,” Australian Computer Journal, vol. 9, no. 2, July 
1977, pp. 53-62, by permission of the Australian Computer 
Journal. 

T .  Kilburn, D.  B. G .  Edwards, M. J .  Lanigan, and F. H .  Sumner: 
“One-Level Storage System,” IRE Transactions, EC-11, vol. 2, 
April 1962, pp. 223-235, copyrighted 1962 by and by permission 
of the Institute of Electrical and Electronics Engineers, Inc., and 
the authors. 



Acknowledgments 917 

H .  J .  Kohoutek “9800 Processor Incorporates 8-MHz Micro- 
processor,” Hewlett-Packard Journal, vol. 24, December 1972, 
pp. 19-22, by permission of Hewlett-Packard Company. 

J .  J .  Kulzer: “Systems Reliability: A Case Study of No. 4 ESS,” 
Infotech State of the Art Report, 1977, pp. 186-188,,by permis- 
sion of Infotech International Limited and the author. 

S .  H .  Lauington: A History of Manchester Computers, National 
Computing Centre, Manchester, England, pp. 7-11, 1975, by 
permission of the author. 

W. hnergan and P .  King: “Design of the B 5000 System,” 
Datamation, vol. 7, no. 5, May 1961, pp. 28-32. Reprinted with 
permission of Datamation magazine. Copyright by Technical 
Publishing Company, a division of Dun-Donnelley Publishing 
Corporation, a Dun and Bradstreet Company, 1978. All rights 
reserved. 

H .  H .  Mashburn: “The C,mmp/Hydra Project: An Architectural 
Overview,” Department of Computer Science, Carnegie-Mellon 
University, Pittsburgh, Pa., by permission of the author. 

R. M. Metcalfe and D. Boggs: “Ethernet: Distributed Packet 
Switching for Local Computer Networks,” Communicationsof the 
ACM, vol. 19, no. 7, July 1976, pp. 395-404, copyright 1976, 
Association for Computing Machinery, Inc., reprinted by permis- 
sion, and by permission of the authors. 

R. E .  Monnier, T .  E .  Osborne, D.  S .  Cochran: “The HP Model 
9100A Computing Calculator,” Hewktt-Packard Journal, vol. 10, 
no. 1,September 1968, pp. 3-9, 10-13, and 14-16, by permission 
of Hewlett-Packard Company. 

S. P.  Morse, B. W. Ravenel, S. Mazor, and W. B. Pohlman: “Intel 
Microprocessors: 8008 to 8086,” Intel Corporation, copyright 
1978 by and printed by permission of Intel Corporation, and the 
authors. 

R. N. Noyce: “Microelectronics,”Scient@c American, September 
1977, figure on page 67, by permission of the publisher, W. H. 
Freeman and Company. Copyright 1977 by Scientific American, 
Inc. All rights reserved. 

T .  E .  Osborne: “Hewlett-Packard Calculator Architectures,” 
1978, by permission of the author. 

K. W. Pinnow, J .  G.  Ranweiler, and J .  F. Miller: “System138 
Object-Oriented Architecture,” IBM Systed38 Technical Devel- 
opments, 1978, pp. 55-58, copyright 1978 by and reprinted with 
permission of International Business Machines Corporation. 

R. Rice and W. R. Smith: “SYMBOL: A Major Departure from 
Classic Software Dominated von Neumann Computing Systems,” 
Proceedings AFIPS SJCC, 1971, pp. 575-587, by permission of 
AFIPS. 

J .  A. Rudolph: “A Production Implementation of an Associative 
Array Processor: STARAN,” AFIPS Conference Proceedings 
FJCC, 1972, pp. 229-241, by permission of AFIPS. 

R. M.Russell:“The CRAY-1 Computer System,” Communications 
of the ACM, vol. 21, no. 1, January 1978, pp. 63-72, copyright 
1978, Association for Computing Machinery, Inc., reprinted by 
permission, and by permission of the author. 

W. R. Smith, R. Rice, G.  D. C h e s b ,  T .  A. Laliotis, S. F.  
Lundstrom, M .  A. Calhoun, L. D. Gerould, and T .  C .  Cook: 
“SYMBOL: A Large Experimental System Exploring Major 
Hardware Replacement of Software,” Proceedings AFlPS SJCC, 
1971, pp. 601-616, by permission of AFIPS. 

E .  A. Snow and D. P .  Siewiorek: “Implementation and Perform- 
ance Evaluation of the PDP-11 Family,” by permission of the 
authors. 

R. M. Spangler: “A New Series of Programmable Calculators,” 
Hewlett-Packard Journal, vol. 24, December 1972, pp. 2-4, by 
permission of Hewlett-Packard Company. 

R. M. Spangler: “BASIC-Language Model 30 Can Be Calculator, 
Computer, or Terminal,’’ HewZett-Packard Journal, vol. 24, 
December 1972, pp. 14-18, by permission of Hewlett-Packard 
Company. 

W. Y .  Stevens: “The Structure of Systeml360, Part 11: System 
Implementations,” IBM Systems Journal, vol. 3, no. 2, 1964, pp. 
136-143, copyright 1964 by and reprinted by permission of 
International Business Machines Corporation. 

W. D. Strecker: “VAX-11/780: A Virtual Address Extension to the 
DEC PDP-11 Family,” Proceedings AFlPS NCC, June 1978, pp. 
967-980, by permission of AFIPS. 

Texas Instruments, Znc.:  extractions from “TMS1000/1200 Chip 
Architecture and Operation,” TMSlOOO Programmer’s Reference 
Manual, 1975, copyright 1975 by and printed by permission of 
Texas Instruments, Inc. 

C.  P.Thacker, E .  M. McCreight, B.  W. Lumpson, R.  F. Sproull, 
and D. R. Boggs: “Alto: A Personal Computer,” 1979, copyright 
1979 by Xerox Corporation and reproduced by permission of 
Xerox Corporation. 



918 Acknowledgments 

J .  E .  Thornton: “Parallel Operation in the Control Data 6600,” 
AFIPS Conference Proceedings FJCC, part 2, vol. 16, 1964, pp. 
33-40, by permission of AFIPS. 

R. M .  Tomsulo: “An Efficient Algorithm for Exploiting Multiple 
Arithmetic Units,” IBM Journal of Research and Development, 
January 1967, pp. 25-33, copyright by and reprinted with 
permission of International Business Machines Corporation. 

W .  N .  Toy: “Fault-Tolerant Design of Local ESS Processors,” 
Proceedings of the IEEE,  vol. 66, no. 10, October 1978, pp. 
1,126-1,145, copyright 1978 by and printed by permission of the 
Institute of Electrical and Electronics Engineers, Inc., and 
Prentice-Hall, Inc. 

M .  Tsao: “A PDP-8 Implemented from AMD Bit-Sliced Micro- 
processors,” Department of Electrical Engineering, Carnegie- 
Mellon University, Pittsburgh, Pa., by permission of the author. 

W. J .  Watson: “The TI ASC: A Highly Modular and Flexible 
Super Computer Architecture,” AFIPS Proceedings FJcc, 1972, 
pp. 221-228, by permission of AFIPS. 

M .  V. Wakes and J .  B. Stringer: “Microprogramming and the 
Design of the Control Circuits in an Electronic Digital Comput- 
er,” Proceedings of the Cambridge Philosophical Society, part 2, 
vol. 49, April 1953, pp. 230-238, by permission of the publisher, 
Cambridge University Press. 

H .  Weber: “A Microprogrammed Implementation of EULER on 
IBM System/360 Model 30,” Communications of the ACM, 
September 1967, vol. 10, no. 9, pp. 551-4556, copyright 1967, 
Association for Computing Machinery, Inc., reprinted by permis- 
sion, and by permission of the author. 

Many of the chapters in this book first appeared in print 
elsewhere. The following are the acknowledgments that accompa- 
nied these chapters when they were originally published. 

Chapter 16: Recognition for the stack concepts and operating 
philosophy of Burroughs’ B6500/B7500 system must be extended 
to many system designers engaged in both the B5500 and 
B6500/B7500 programs. Among the contributors, special mention 
should be made for B. A. Creech, Burroughs Corporation, and 
R. S. Barton, W. M. McKeeman, consultants. 

Chapter 17: In addition to indebtedness to the original designers 

within International Computers Limited, thanks should also be 
given to International Computers (Australia) Pty. Ltd. for its 
invaluable assistance in the prepartion of “An Outline of the ICL 
2900 Series System Architecture.” 

Chapter 18: The authors wish to thank Mr. R. J. Litwiller for his 
interest, suggestions and design effort, and Messrs. J. G. Adler, 
R. N. Gustafson, P. N. Prentice, and C. Zeitler for their 
contributions to the design of the instructions units. 

Chapter 19: The author wishes to acknowledge the contributions 
of Messrs. D. W. Anderson and D. M. Powers, who extended the 
original concept, and Mr. W. D. Silkman, who implemented all of 
the central control logic discussed in ‘the paper. 

Chapter 22: This research was sponsored by the Defense Ad- 
vanced Research Projects Agency (DOD), ARPA Order No. 3597, 
monitored by the Air Force Avionics Laboratory under Contract 
F33615-78-C-1551. 
Many people have contributed to the project, and special mention 
must go to Bill Wulf, Sam Fuller, Roy Levin, Fred pollack, Bill 
Convin, David Jefferson, Ellis Cohen and Chuck Pierson, the 
original design group; Bill Broadley for designing the hardware, 
which was built and maintained by Jim Teter, David Babcock, and 
the CMU Computer Science Department Engineering Lab,; 
other workers on Hydra: Guy Almes, Rick Gumpertz, Sam 
Harbison, Tom Lane, Joe Newcomer, Pete Schwarz, Mary 
Thompson; for providing the measurements and most of the 
figures: Pete Oleinick, Pat McGehearty, Madhav Marathe, and 
Navindra Jain. 

Chapter 23: Much of the initial development of the Pluribus 
computer was supported by the Information Processing Tech- 
niques Office of the U.S. Defense Advanced Research Projects 
Agency, under Contract Numbers DAHC15-69-C-0179, F08606- 
73-COO27, and F08606-75-C-0032, and by the Defense Communi- 
cations Agency under Contract DCA200-C-616. Additionally, a 
number of the applications systems were developed under 
contracts from various branches of the U.S. Government. Many 
people have contributed to the Pluribus project; Frank Heart has 
led the effort since its inception. 

Chapter 24: The ARPA Network has in large measure been the 
conception of one man, Dr. L. G. Roberts of the Advanced 
Research Projects Agency; we gratefully acknowledge his guid- 
ance and encouragement. Researchers at many other institutions 
deserve credit for early interactions with ARPA concerning basic 
network design; in particular we would like to acknowledge the 
insight about IMPS provided by W. A. Clark. 
At BBN, many persons contributed to the IMP project. We 



Acknowledgments 919 

acknowledge the contributions of H. K. Rising, who participated 
in the subnet design and acted as associate project manager 
during various phases of the project; B. P. Cosell, who participat- 
ed significantly in the software implementation; W. B. Barker and 
M. J. Thrope, who participated significantly in the hardware 
implementation; and T. Thatch, J. H. Geisman, and R. C. 
Satterfield, who assisted with various implementation aspects of 
the project. We also acknowledge the helpful encouragement of 
J. I. Elkind and D. G. Bobrow. 

Finally, we wish to acknowledge the hardware implementation 

contribution of the Computer Control Division of Honeywell, 

where many individuals worked cooperatively with us despite the 

sometimes abrasive pressures of a difEcult schedule. 

This work was sponsored by the Advanced Research Projects 

Agency under Contract No. DAHC 15-69-C-0179. 


Chapter 25: Supported by the Advanced Research Projects 
Agency of the Department of Defense and monitored by NASA 
Ames Research Center under Contract No. NAS2-8590. 

Chapter 26: Our colleagues at the Xerox Palo Alto Research 
Center, especially Tat C. Lam, Butler W. Lampson, John F. 
Shoch, and Charles P. Thacker, have contributed in many ways to 
the evolution of Ethernet ideas and to the construction of the 
experimental system without which such ideas would be just so 
much speculation. 

Chapter 27: The research and development of the STAR computer 
has been performed in the Spacecraft Computers Section of the 
JPL Astrionics Division, and recognition is due to most of the 
Section’s members for support in their respective specialties. The 
STAR concept of computer architecture is due to A. Aviiienis, 
who has directed the overall research effort. The hardware design 
is directed by D. A. Rennels, the software effort by J. A. Rohr, 
reliability analysis by F. P. Mathur, and the implementation of 
peripheral automatic maintenance by G .  C. Gilley. Technical 
contributions to the design have been made by P. H. Sobel and 
A. D. Weeks, and consultation has been contributed by R. K. 
Caplette, E. Greenberg, G. R. Hansen, E. H. Imhy, G. R. 
Kunstmann, J. Nievergelt, J. J. Wedel, and L. J. Zottarelli. The 
STAR effort has been administered by J. R. Scull, W. F. Scott, and 
J. J .  Wedel. The power switch has been developed by the 
Stanford Research Institute, Menlo Park, CA., and a fault-tolerant 
READ-ONLY memory has been designed by the M.I.T. Instru- 
mentation Laboratory, Cambridge, MA, under subcontracts from 
JPL. Construction of the computer was performed by J. Buchok, 
J. L. Cline, N. B. Funsten, J. C. Schooler, and B. Stall. The 
design of the TOPS Control Computer is due to D. K. Rubin, with 
technical contributions by N. Deo, G .  Milligan, and M. Vineberg. 
A special acknowledgment is due to R. V. Powell of the JPL 
Research and Advanced Development Program Office, and F. J. 

Sullivan, Director, Electronics and Control, J. L. East, J. I. 
Kanter, T. S. Michaels, and G .  A. Vacca of the NASA Office of 
Advanced Research and Technology, Washington, DC, for their 
continued support and encouragement of the STAR computer 
effort. 

Chapter 28: The author would like to acknowledge the kind 
assistance of Pat Loprete, Jr. 

Chapter 29, An operating system is the work of many people. In 
particular I would like to acknowledge the contributions of Dennis 
McEvoy, Dave Hinders, Jerry Held, and Robert Shaw in its 
design, implementation, and testing. 

Chapter 30: In addition to the authors of this paper, many others 
contributed to some aspect of the SYMBOL project. Critical to the 
completion of the system was the team spirit and devotion 
displayed throughout the project by all members of the staE. The 
authors wish to acknowledge George Powers, Stanley Mazor, and 
Ruse1 Briggs for their contributions to the hardware development 
and Hamilton Richards and Mrs. Hilma Mortell for their contribu- 
tions to the early software development. 
The authors wish to express their thanks to the Fairchild Camera 
and Instrument Corporation for the opportunity to do this 
research. 
Special thanks are due to Professor Robert Stewart, Professor 
Arthur Pohm and Professor Roy Zingg of Iowa State University for 
their constructive help and support. We are most grateful to the 
National Science Foundation for the grant which made it possible 
for the SYMBOL IIR system to be delivered to Iowa State 
University for evaluation and continuing research on this technol- 
om. 
Finally, we are deeply indebted to the past and present members 
of this Digital Systems Research Department at Fairchild. Their 
hard work and enthusiasm made this research project result in a 
real and operating system. 

Chapter 33: The concept and structure of the Alto are due 
primarily to Chuck Thacker, Ed McCreight, Butler Lampson, and 
Alay Kay. The hardware described in this paper w a s  designed by 
the authors together with Roger Bates, Tat Lam, Bob Metcalfe, 
and Severo Ornstein. The working environment, network, soft- 
ware, and microcode that grew on the Alto are due to hard work 
and fine craftsmanship contributed by many members of the 
Computer Science laboratory and System Science Laboratory of 
the Xerox Palo Alto Research Center. 

Chapter 37: Many people played significant roles in the develop- 
ment of these processors and it is not possible to single out a few to 
take all the credit. However, if forced to choose those people who 
played the most significant roles on each, the following names 



920 Acknowledgments 

stand out: M. E. (Ted) Hoff was the architect and Federico Faggin 
the chip designer of the 4004. Stanley Mazor contributed to the 
4004 architecture as well as to the architectures of the 8008 and 
8080. Hoff, along with Hal Feeney, were the major contributors to 
the 8008 development. Faggin managed the development of the 
8080 and participated in defining the architecture, with Masatoshi 
Shima doing the logic and circuit design. Roger Swanson defined 
the new instructions for the 8085 while Peter Stoll and Andrew 
Volk performed the 8085 logic and circuit design. The 8086 
architecture was defined by Stephen Morse and refined by Bruce 
Ravenel, with James McKevitt and John Bayliss responsible for 
the logic and circuit design. William Pohlman managed both the 
8085 and 8086 activities. 
The authors would like to thank Stephen Hanna for reviewing this 
material and for his many suggestions and comments. 

Chapter 38: The authors are gratehl to Mr. Nigberg of the 
technical publication department at DEC and to the reviewers for 
their helphl criticism. We are especially gratehl to Mrs. Dorothy 
Josephson at Carnegie-Mellon University for typing the notation- 
laden manuscript. 

Chapter 39: This research was supported in part by the National 
Science Foundation under grant GJ-32758X and by an IBM 

Fellowship. Engineering documentation was supplied by Digital 
Equipment Corporation. 

Chapter 42: Although the final architecture is the result of several 
design iterations involving many hardware and software engi- 
neers, the author would like to acknowledge the other members of 
the initial architectural group: Gordon Bell, Peter Conklin, Dave 
Cutler, Bill Demmer, Tom Hastings, Richy Lary, Dave Rodgers 
and Steve Rothman. Mary Janes Forbes and Louise Principe 
deserve special thanks for typing this manuscript. 

Chapter 44: Acknowledgments are due to my colleagues at Cray 
Research, G. Grenander, R. Hendrickson, M. Huber, C. Jewett, 
P. Johnson, A. LaBounty, and J. Robidoux, without whose 
contributions this paper could not have been written. 

c h p t e r  45: Although it would not be possible to acknowledge all 
of the contributors to the ASC program, particular recognition 
should be given to Messrs. H. G .  Cragon, W. D. Kastner, E. H. 
Husband, D. R. Best, C. M. Stephenson, C. R. Hall, F. A. 
Galindo, and E. C. Garth, all of whom contributed immeasurably 
to the architecture of the ASC system. Many other members of 
the Texas Instruments Equipment Group st& have also made 
significant contributions in the development of the ASC system. 



Index 


Absolute addressing, 521 
Abstractions, 9, 110 
Accumulator, 23 
Ackermann's function, 77 
Address extension in HP 9845A, 526-530 
Address relocation in C.mmp, 353 
Address translation: 

in Systemi360, 839 
virtual memory, 229 

Addressing, 70-78 
absolute, 521 
auto indexing, 23, 26 
capability, 233 
direct, 73 
immediate, 73 
indirect, 26, 73, 519 
relative, 521 

Addressing modes: 
in Intel 8086, 626-629 
in PDP-11, 656-659,667 
in System/360, 701 -702 
in VAX-llI780, 718-721 

Air traffic control with STARAN, 326-330 
ALGOL language, 14 
Alias, in ISP, 23 
ALOHANET (ALOHA Network), 337,346, 

400-401,416 -428 
Alto, 16, 548-572 
Am2900, 154 -157, 168 
Am2901, 168-179,185 

used in PDP-8,219-226 
Am2903, 186-205,216-218 
Am2909, 180- 184 
Am2910,205-215,218 

used in PDP-8,219-226 
Amdahl, G. M., 16 
Amdahl's rule, 46 
Analysis of Variance (ANOVA), 59 
AND instruction, 27, 30 
APPLE computer, 547 
APPLE language, 322-323, 547 
Architecture: 

definition of, 16 
duplex, 460 -462 
(See also under specijic systems) 

Arithmetic assignment, 31 
ARPANET (ARPA Network), 337,346, 

396-400,402-415,565 
Array modules in STARAN, 319-321 
Array processor, 91, 166,269-275 

Illiac IV, 40,45, 91,267-269,306-316 
STARAN, 91, 269-275, 317-331 
in System/360, 870-871 
TI ASC, 91,690-693, 753-762 

Associative array processor, STARAN, 91, 
269-275,317-331 

Atlas, 6, 104- 106, 135- 148, 242 
drum transfer learning program, 

143- 145 
Attached Processing Unit (APU), 877 
Attribute, 19 
Authorization for operation, 541 -543 
Auto indexing, 23, 26 
AUTODIN network, 389 
Availability, fault-tolerant systems, 439 

B 5000,6,76,77,96-105,129-134,230, 
242 

character mode, 134 
descriptor call, 133 
operand call, 133 

B 5500, 97,241 
B 6500/B 7500,97,98, 105,244-250 

cactus stack, 249 
display registers, 247-248 
indirect reference word, 245 
mark stack control word, 250 
program control word, 244 
stuffed indirect reference word, 245 

B 6700, 77, 99- 104, 106,230 
Edit operators, 101 
Maintenance and Diagnostic Processor, 

104 
Primary operators, 101 
Variant operators, 101 

B 7500 (see B 6500/B 7500) 
B 7700, 99-104, 106 
B lines, 136-137 
Bank registers, 550 
Barrel in CDC 6600, 685-686, 730 
Base page, 520 
BASIC language, 486,487,509-512 

in HP 9830, 811-812 
BCD (binary-coded decimal) numbers, 

arithmetic operations, 639-642 
Benchmark program, 44 
Bit slice: 

Am2901,168-179, 185 
Am2903,186-205,216-218 

BitBlt (bit boundary block transfer), 558 
Bitmap, 556-558 
Blaauw, G. A., 16 
Block: 

home, 527-530 
working, 527- 530 

Bolt Beranek and Newman, Inc. (BBN), 
403 

BPCL language, 550-551,569 
Broadcasting in networks, 389 
Brooks, F. P., 16 
BRT (Bus Receive Table), 475-476 
Buffer: 

frame, 556 
instruction, 161 
translation-lookaside, 839 

Buffered I/O, 516-517 
Buffering in System/360 Model 91, 279 
Bus, 83, 84 

common data, in System/360 Model 91, 
293-302 

serial, 333-338,346 
Bus couplers, 375 -376 
Bus link, 333-340,346 
Bus protocol, 521 -522 
Bus switch, 333-341,346 
Bus window, 333-342,346 

CBPDF, 547-548 
Cache, 232 -234,240-242 

hit ratio, 241 -242 
in PDP-11, 675-676 
set-associative implementations, 

232 
Call store (CS) in ESS system, 460 
Capabilities, 359, 365-366, 534-540 
Capability addressing, 233 
Capacitor, 10 
CARE (computer-aided reliability 

estimation) program, 455 
Carry, ripple, 176, 195 
Carry generate, 170, 175, 177 
Carry lookahead, 170, 175, 177,195 
CDC 160,647 
CDC 3600,54 
CDC 6600,8,22,40,74,90,240,682-687, 

730-742 
CDC 7600,687 
CDC CYBER, 687-689 
CDC STAR, 45 
Central (Pc) processor, 18,90-91 
CFA (Computer Family Architecture) 

Project, Army-Navy, 49 
absolute criteria, 50 
initial screening, 50-53 
quantitative criteria, 50-53 
test programs, 57-60 

Chaining in CRAY-1, 749 
Channel, 91 

(See also IBM System/360, channel) 
Channel command word (CCW), 705-706 

921 



922 Index 

Character string, 264 

in VAX-11/780, 722 


Checkpointing, task, 441 

Circuit level, 10, 121 -124 

Circuit switching, 343-345,389 

Cm*, 335,346 

C.mmp, 84,347,350-370 

CMOS-8, 116, 768-770 

Cobol language, 14 

Collision consensus enforcement, 433 

Collision in networks, 431 -433 

Combinational circuits, 10 

Commodore Pet, 547 

Common data bus (CDB) in System1360 


Model 91, 293-302 

Communication: 


forms of, in computer system, 83-84 

interprocess, in Hydra, 358 


Compatibility mode in VAX-L1/780,716, 
725 


Complement operator, 29 

Compucolor 11, 547 

Computer classes, 4-6, 573-579 

Computer generations, 35 

Computer space, 33-38, 149 


(Seeulso specific regions of computer 
spuce, f o r  exumple: Memory 
hierarchies; Networks) 

Concatenation, 30 

Concurrency, 153,260-275 

Conditional flip-flop, 159 

Consensus mechanism, 379-380 

Constants, 29 

Contention in networks, 431 -433 

Control, 17 

Controllers, dual-port, 472, 477-478 

Conversion, Am2903,197 

Cooling in CRAY-1,745,752 

Core, 139-141, 145-148 

costs: 


per bit, 614 

per gate, 614 


Couplers, bus, 375-376 

Coverage, concept of, 448 

Cray, Seymour, 683 

CRAY-1,6,45, 74,689-694, 743-752 

CRC (cyclic redundancy check) in 


Ethernet, 434 

Current page, 520 

C.vmp, 336,346 

CYBER, CDC, 687-689 


D825,97 

Data Break, 111 

Data channel, 91 

Data Descriptor (DD),, 245 -246 

Data-operation, 17 

Data-types, 23, 68-70 

DCA (deposit and clear accumulator) 


instruction, 28, 115 


Deadlock, 344-345 

in ARPANET, 398 -399 


Decimal arithmetic in Intel 8086,639-642 

Decimal instructions in Intel 8086, 630 

DECODE operator, 26 

DECtape, 113 

Descriptor(s), 256-257 


Data, 245 -246 

Segment, 245-246 


DIP (dual inline package), 63 

Direct addressing, 73 

Disk in Alto, 561 -564 

Display: 


in Alto, 556 

in HP 9845A, 530 -532 

in PIC1650, 609 

in TMS1000,598 


Display processor, 81, 91, 111 

Display registers, 77 


in B 6500iB 7500,247-248 

Division, hardware, 200-204 

DMA (direct memory access), 7, 339 


in Alto, 552 

in HP 9845A2, 524 


Drum transfers, 138- 139, 143 -145 

Dual-port controllers, 472, 477-478 

Duplex architecture, 460-462 

Dynabus, 471, 474-476 

Dynamic Address Translation (DAT), 876 


EBCDIC (ExtendediBinary-Coded-Decimal 

Interchange Code), 699 


ECL (emitter-coupled logic circuit) 

technology in CRAY-1, 743-744 


EDSAC, 38 

EDVAC, 38 

Effective address, 24, 26 

EFTP (Ethernet File Transfer Protocol), 


436 -438 

Emulation, 168, 860, 875 

Encapsulation, object, 538 

ENIAC, 38,39 

Eqv operator, 30 

Error: 


definition of, fault-tolerant systems, 440 

handling of, in Systemi360, 848-850 


Error-correcting codes, 473 

Error-detecting codes, 451 

ESS (Electronic Switching Systems) 


processors, 41, 442-445, 459-470 

NO. 1,463-465 

NO. lA, 443,466-68 

No. 2,465-466 

NO. 3A, 468-469 


Ether, 433 

Ethernet, 337,346,401,429-438,549, 


565-566 

implementation, 565 -566 


EULER language, 486 

Exponential backoff algorithm, 434, 566 


Extended Core Storage (ECS) in CDC 

6600, 685 


Extracodes, 135, 235 


Failure, definition of, fault-tolerant 

systems, 439 


Fairchild: 

F-8, 610 

9400, 611 


Family: 

PDP-8, 766 -775 

PDP-lI,666-679,766, 776-784 

System/360,856-873 

System/370,873-882 


Family range, compatibility, and evolution, 
763 


Faraday's law, 10 

Fast-fourier transform (FFT), 320-321 

Fault, definition of, fault-tolerant systems, 


439-440 

Fault correction, 441 

Fault detection, 440 

Fault diagnosis, 441 

Fault dictionary, 462 

Fault simulation, 462 

Fault tolerance in Pluribus, 381-383 

Fault-tolerant systems, 92, 439-447 


(See also specific fuult-tolerant systems) 
File system in Alto, 560-561 

Fire code, 478 

Flip network, 319-321 

Flip-permutation network, 270 

Flow control: 


in ALOHA Network, 422 -424 
in networks, 391-392 


Font table, 567 

FORTRAN language, 14 


in TI ASC, 759-762 

Frame buffer, 556 

FTMP, 336,346 

Full-duplex, 345 

Full-multiplexed, 345 

Function, system, 33, 39-42 


commercial, 40-41 

communications, 41 -42 

education, 42 

home, 42 

manufacturing control, 41 

office, 41-42 

publication, 41 -42 

scientific, 39-40 

transportation, 42 

(See ulso Processor function) 


Gate array, 63 

Gateways in Ethernet, 435 

GE MARK I11 computer network, 393-395 

General register, 45,71, 74-78 

Gibson mix. 54 




Index 923 

Granularity of access, 334 
Graphics display, 81-82 
Grosch’s law, 60-61,889-891 
Guardian, 481 -485 

H-800,71 
Half-duplex, 345 
Half-multiplexed, 345 
Hamming code, 439 
Harpy Speech Understanding System, 

360-361 
Heterogeneous network, 388 
Hierarchical network, 388 
History of computer systems, 34,37-38 
Homogeneous network, 388 
Honeywell, 71,407-408 
HP 2114 and HP 9100A, 826 
HP 2116,648 
HP 3000,54,77,96 
HP 9100A, 548,787-800,824-826 

microprogramming, 825 
stack, 825 

HP 9800: 
instruction set, 820-823 
microprocessor, 814 -817 

HP 9810,801 -805 
HP 9810/20/30 series, 548,801 -823, 

826-827 
HP 9820,801-802,805-810 
HP9830,801-802,810-814 
HP 98454, 487-488, 508-532 
HP calculators, 785-786 

architectures, 824 -827 
(See ulso .specijic H P  culculutors) 

Hydra, 356-370 

IBM 650,54 
IBM 702,40 
IBM 704, 54 
IBM 1401,41, 74 
IBM 1800,240 
IBM 3030 series, 882 
IBM 4300 series, 882-883 
IBM 7040,240 
IBM 7090,69 
IBM family tree, 857 
IBM System/38,488, 533-546 
IBM System/360,6,41,67,90,240, 

680-682,829 
array processor, 870-871 
channel,695,704-706,714-715,861, 

863,865, 867 
channel-to-channel adapter, 869 
emulation, 860 
family, 856 -873 
Model 25,863 
Model 30, 153-154, 164, 167 
Model 44,863-865 
Model 50,861 -863 

IBM Systemi360 (Cont.): 
Model 67, 865-867 
Model 75, 865-866 
Model 85, 867-868 
Model 91,16,40,266-267,276-305, 

868-869 
performance, 885-889 
pricelperformance, 885-891 
RCA Spectra 70, 857, 860 
secondary storage, 870-872 
slave memory, 868 
Solid Logic Technology (SLT), 711 -712, 

860-861 
storage-to-storage channel processor, 870 
structure: implementations, 711 -715 

outline, 695-710 
System/370 compatibility with, 832-835 
tapes, 870-872 

IBM System/370,59-60,77,829-855 
address translation, 839 
architectural control, 835- 837 
architectural extensions, 832 -833, 

837-847 
Attached Processing Unit (APU), 877 
compatibility with System/360, 832 -835 
Dynamic Address Translation (DAT), 876 
emulation, 875 
error handling, 848 -850 
family, 873 -882 
implementation summary, 851 -855 
imprecise interrupts, 880 
inputloutput, 850- 851 
memory price, 885-887 
Model 115,881-882 
Model 125,881 
Model 135,875 
Model 138,877 
Model 145, 875 
Model 148, 877 
Model 155, 874-876 
Model 158,877 
Model 165, 877-878 
Model 168, 881 
Model 195, 879-881 
Monolithic System Technology (MST), 

873 
multiple processor, 876 
multiprocessing, 846 
objectives, 831 
performance, 885-889 
price/performance, 885-891 
protection, 838 
PSW (program-status word), 840-842 
retry, 849 
secondary storage, 883-885 
secondary-storage price, 885-887 
serialization, 846- 847 
synchronization, 846-847 
tapes, 884 -885 
time-of-day (TOD) clock, 844 -846 
translation-lookaside buffer, 839 

IBM System/370 (Cont.):  
virtual machine, 839 
virtual storage, 837-840 

ICL 2900,242,251-259 
Illiac IV, 40, 45, 91, 267-269, 306-316 
Immediate addressing, 73 
IMP (interface message processor), 371, 

396-398,402-4 15 
Implementation, definition of, 16 
Imprecise interrupts: 

in System/360 Model 91,286 
in System/370, 880 

Index registers, 71, 72 
Indirect addressing, 26, 73, 519 
Information base, 67 
Information format in SYMBOL, 494-496 
Input/output (Pio) processor, 91 
Instruction buffer, 161 
Instruction prefetch, 241 
Instruction times, 141 -143 
Intel: 

3000, 155 
4004, 610,615 
8008,610,615-619,638-639 
8080,237, 610, 615-646, 765 
8085,622 -623 
8086,68, 95, 610,615-646 

Interdata 8/32, 49, 59-60 
Interleaving (see Memory interleaving) 
Interlisp, 570 
Interlocks: 

on condition code, 281 
on registers, 280 

Interpretation cycle, 23, 26 
Interprocess communication in Hydra, 358 
Interprocessor interrupt in Cmmp, 355 
Interrupt, 24,234-235, 260-261 

in C.mmp, 355 
in CRAY-1, 749 
in HP 9845A, 521 -524 
in Intel 8086,633 
in PDP-8, 116 
in PDP-11, 661 
in System/360, 702 -703 
in VAX-11/780, 724 -725 
(See ulso Imprecise interrupts) 

Interrupt table in HP 9845A, 523 
Intersil 6100, 22, 611 
IOT (input/output trap) instruction, 28 
ISP (instruction-set processor), 14, 23, 33 

in PDP-8, 113-116, 125-128 
performance measures, 49-53 

ISPS language, 23-32 
ISZ (increment and skip if zero) instruction, 

27-28,116 
I-unit, 17 

JMP (jump) instruction, 28 
JMS bump to subroutine) instruction, 28, 

116 



924 index 

Keyboard matrix, 589 -590 

Kirchhoffs law, 10 

Kiviat graph, 46-49 


LAMP, 462 
Language-based computers, 91,486-488 

(See ulso specific language-based 
compu ters) 

Large-scale integration (LSI), 65 
LEAVE, in ISP, 26 
Levels in a digital system, 9- 16 
Lexicographical level, 248 
LINC, 767 
LINC-8,20 
Link, 17, 23 

bus, 333-340,346 
LLL OCTOPUS network, 393-394 
Local network, 430 
Logic level, 10, 120 
Logical assignment, 31 
Look-aside memory, 264 
Loop, 337,346 
LSI-11, 611 
LSI-11/23, 611 

Mailbox, 237 
Maintenance and Diagnostic Processor, 104 
Maintenance in Pluribus, 383-385 
Manchester Mark 1,96, 107- 109 
Master Control Program (MCP), 99, 129 
Master slice, 63 
Match access, 463, 465 
Maxicomputers, 4, 573,579, 680-694 

(See ulso specific muricomputers) 
Maxwell’s equation, 10 
MCS-48, 584-585 
Memory, 17 

look-aside, 264 
multi-dimensional access, in STARAN, 

318-321 
multiported, 333-342 
virtual (see Virtual memory) 

Memory access, 92 -95 
associative, 95 
content-addressable, 95 
cyclic, 92 -94 
queue, 92 
random, 94 -95 
stack, 92 

Memory contention in C.mmp, 363-364 
Memory hierarchy, 228-234 
Memory interleaving, 263 

Atlas, 147- 148 
in System/360, 711 
in Systemi360 Model 91,278,293-305 

Memory protection, keys, 256 
Memory reclaimer, 490 
Memory state, 23 
MENEHUNE, 416-428 

MERIT computer network, 386 
Mesa language, 569 
Message switching, 343-345, 389-390 
Messages in Tandem, 482 
Micro Nova, 611 
Microcomputers, 4,573-579,611-614 

(See ulso specific microcomputers) 
Microinstruction in Alto, 553 
Micromachine, Alto, 555-556 
Micro-operations, 158 
Micro-order, 158 
Microprocessors, 4 

(See ulso specijic microprocessors) 
Microprogram, 158 

for PDP-8, 221 -223 
Microprogrammed processors, 4, 90 

examples of, 154 -157 
(Seeulso specijic microprogrammed 


processors) 

Microprogramming, 12, 151-163 

concurrency, 153 
in HP 9100A, 825 
in PDP-11, 671-672 
in System/360, 164-167, 713-714 

Micro-subroutine, 162 
transfer to, 109-211, 213, 214 

Mil Model 217, 65 
MIMD (Multiple Instruction, Multiple 

Data), 265 
Minicomputers, 4, 573-579, 647-648 

(See ulso specijic minicomputers) 
Monolithic microcomputers, 4,573-579, 

581-586 
(See also specijic monolithic 


microcomputers) 

Monolithic System Technology (MST), 873 
Monolithic systems, 6 
Moore plot, 64 
MOS (metal-oxide semiconductor) 

technology, 612-613 
Motorola: 

6800,65,610 
10000 Logic, 155 
68000,610 

Mouse, 559-560 
MTTF (mean-time-to-failure), 461 
Multi-dimensional access (MDA) memory 

in STARAN, 318-321 
Multiple control units, 265 
Multiple function units, 265 

in Systemi360 Model 91,278 
Multiple processors, 80, 573-579, 876 

(See also Multiprocessors) 
Multiplexer, 172, 180 
Multiplication: 

hardware, 178, 198 
2 s  complement, 199-201 

Multiported memory, 333-342 
Multiprocess environment, 95 
Multiprocessors, 332 -349 

in Intel 8086, 633-634 

Multiprocessors (Cont.):  
in PDP-11, 653 
(See also Multiple processors, specific 

multiprocessors) 
Multiprogramming, 71, 227 
Muse, 136 
Mutual exclusion, 512 

NAND gate, 11 
National IMP 8, 610 
Native mode in Vax-11/780, 716 
Negation operator, 29 
Network Control Center (NCC), 399,442 
Network Measurement Center (NMC) in 

ARPANET, 399 
Networks, 387-401 

examples of, 392-401 
(See also specific networks) 

NOR gate, 11 
Normalize in Am2903, 196 

Object, 533-534, 537 -540 
Ohm’s law, 10 
Omnibus, 768 
On-line maintenance, 479 
One-level store, 137- 141 
(1 + r ) address, 72-73 
1’s complement, 30, 69 
Operation codes, 24 -32 
OPR (operate) instruction, 28 
Or operator, 31 
Overflow, 172, 186 
Overlap, 260-261 

Packet broadcasting, 416 -425 
repeaters, 420 

Packet switching, 389-390,402-415, 
416-428,429-438 

Page Address Register, 138 
Page lists, 492 
Paging, 230 

demand, 233 
Parallel operation, 730- 742 
Parity, Am2903, 188- 196 
Parity flag in Intel 8008, 617,638-639 
PASCAL language, 14 
PBX (private branch exchange), 465 
PDP-5, 647, 767 
PDP-8, 16,20,49, 96, 110-128, 647 

AMD implementation, 219-226 
bus structure, 84 
circuit level, 121 -124 
Data Break, 111 
DECtape, 113 
family evolution, 766 -775 
ISP, 113, 125-128 
ISP level, 113-116 
levels of abstraction, 110 
LINC-8, 111 



PDP-8 (Cont.):  
logic level, 120 
Model 338 Display Processor, 111 
PMS level, 111-113 
register transfer level, 116- 120 

PDP-B/A, 769 
PDPWE, 768 -769 
PDP-10, 54, 77 
PDP-11, 16, 59-60,68, 77, 647-661 

architecture management, 779 
bus structure, 84 
family evolution, 766, 776 -784 
family implementation and performance 

evaluation, 666 -679 
PDP-11/70,49,662-665,778-784 
Performance, 33,42 -61 

benchmarks, 55-57 
M, 59 
R, 50 
s, 59 

hardware, 43-49 
ISP, 49-53 
system, 53-54 
typical instructions, 54-55 

Peripheral and control processors: 
in CDC 6600, 730-732 
in TI ASC, 757-758 

Peripheral processor, 91 
Personal computing systems, 547 -548 

(Seealso specific personal computing 
systems) 

PIC1650, 16,584,602-609 
Pipeline, 168, 194, 262-263, 307 

branching in, 286 "- .iq ,$ystem/360 Model 91, 277-292 
in T~':Asc,755-757 

Pipeline regiiter, 219 
PLA (programmable.lo,gic array), 63, 168, 

. a ,595-598 
Plessey 250, 346 
Pluribus, 41, 335,346,347, 371 -386,442 
PMS (processor-memory-switch) notation, 

15, 17, 19, 33 
PMS structure, 78 -83 
PMT (permanent magnet twister), 464 
Policy modules in Hydra, 356-357 
Polish notation, 132, 495, 498 

in HP 9820, 807 
Price as classification metric, 4 
PRIME, 334,346 
Procedures in VAX-11/780, 722 
Process, definition of, 251 
Process Control Bloc (PCB), 514-515 
Process pairs, 446, 483 
Processing element in Illiac IV, 308-314 
Processor, 18 

(See also specific processors) 
Processor function, 89-92 


array, 91 

display, 91 

fault-tolerant, 92 


Processor function (Cont . ) :  
language, 91 
microprogram, 90 
Pc (central), 90-91 
Pi0 (inputloutput), 91 
special algorithm, 91 
vector-move, 91 

Processor state, 23-24, 70-78 
1address, 71, 72 
2 address, 71, 74 
3 address, 71, 74 
index registers, 71, 72 
( n+ 1)address, 74 
zero address, 71, 75-78 

Producer-consumer synchronization, 235 
Product code, 452 
Program counter, 24 
Program level, 13 
Program Reference Table (PRT), 133, 

231 
Program store (PS) in ESS system, 460 
PROM (programmable read-only memory), 

168 
Protection and relocation register, 240 
Protocol, 133 

bus, 521 -522 
Ethernet File Transfer, 436-438 
in networks, 390-391 

Pseudointerrupt device (PID), 237, 377 
PSW (program-status word), 840-842 

in System/360, 702 -704 
in VAX-11/780, 717 

Pulse-code modulation in ESS, 444 

RAM (random-access memory), 169 
Raster-scanned printer, 566 -569 
RCA COSMAC, 610 
RCA Spectra 70, 857, 860 
Read-only Storage (ROS), 164 
Realization, definition of, 16 
Register transfer level, 12, 116- 120 
Registers (see specific registers) 
Regression analysis in PDP-11, 674 
Relational operations, 30 
Relative addressing, 521 
Reliability, 65 -66, 439 

in C.mmp, 366-370 
REPEAT, in ISP, 27 
Reservation station in SystemlSBO Model 

91,296-302 
Residue code, 451 
Resistor, 10 
RESTART, in ISP, 28 
Rollback, 453 
ROM (read-only memory), 168 

in HP 9810, 805 
in HP 9820,809 
in HP 9830,812 -814 

ROS (Read-only Storage), 164 
Rotate operator, 30 

Index 925 

Routing : 
in ARPANET, 405-406 
in networks, 391 

Routing network in Illiac IV, 310-314 

SABRE I, 392 
SBI, 726 
SCAP (star computer assembly program), 

456 
Scoreboard, 733 
SDLC, 390 
SDS 940,105 
SDS Sigma 2,240 
Segment Descriptor, 245 -246 
Segmentation, 230-231, 252 

linear, 230,252 -253 
symbolic, 230-231 

in B 5000,230 
in B 6700,231 

Segments in Intel 8086,623-626 
Semaphore, 236-237,258,482 
Sequential circuits, 10 

asynchronous, 10 
synchronous, 10 

Serial bus, 333-338,346 
Serial line, 333-338,346 
Shift operator, 30 
SIFT, 335,346 
Sign extension, 29 

Am2903,196 
Sign magnitude, 29,69 
SIMD (Single Instruction, Multiple Data), 

265 
SISD (Single Instruction, Single Data), 265 
Smalltalk programming environment, 570 
SNOBOL language, 70 
Solid Logic Technology (SLT), 711 -712, 

860-861 
SOLOMON, 267 
Special algorithm processors, 91-92 
Speed-power product, 612 
Stack, 45,75-78,92,131- 132,181-182, 

207,655 
in B 6500lB 7500,244 -245,249 
comparison to general register, 76-78 
in HP 9100A, 825 
in ICL 2900,254 -255 
in Intel 8086,628 
in PDP-11, 655,659 
in VAX-11/780, 722 

STAGE operating system, 378 
STAR, CDC, 45 
STAR (self-testing and repairing computer), 

JPL, 92,442,448-458 
STARAN, 91,269-275,317-331 
State-system representation, 12 -13 
Storage hierarchies, 95 
Storage-to-storage-channel processor, 870 
String instructions in Intel 8086,630-632 
Structure, system, 33,62-95 



926 Index 

SVC (supervisor call) instruction, 105 

Switch 17, 78-89 


bus, 333-341,346 

control-secondary-memory, 89 

control-terminal, 89 

processor-control, 89 

processor-memory, 88 


SYMBOL, 78,486,489 -507 

SYMBOL IIR, 502-504 

Synchronization, 235 -237 


in C.mmp, 361-362 

semaphore, 236 

in System/370,846-847 

test and set, 236 


System/360 (see IBM System/360) 

System/370 (.see IBM System/370) 


TAD (2's complement add) instruction, 27, 

115 


Tag, 100, 244 

in System/360 Model 91,298-302 


Tandem, 336,346,445-447,470-485 

TARP (test and repair processor), 449-453 

Technology dimensions, 62 -65 

Teletype, 42 

Telex, 42 

TI  9914, 547 

TI  9900,585 -586,611 

TI  ASC, 91, 690-693, 753-762 

Time-of-day (TOD) clock, 844-846 

Timesharing, 227 


TLM (trouble locating manual), 462 

TMR (triple-modular-redundant) 


computers, 448 

TMS1000, 16,548,581-584,587-601 

TOPS (thermoelectric outer planet 


spacecraft) 449,457 

Transducer, 17 

Transistor, 10 

Translation-lookaside buffer, 839 

Trap, 234 


in PDP-11, 658 

TRS-80, 547 

True complement, 69 

T/TAL language, 473 

2's complement, 30, 69, 199-201 

TWX, 42 

TYMNET, 389,395-396 


Unibus, 660-661, 668, 778, 780-782 

U.S. Steel COBOL data, 56, 58 

Univac: 


1103,41 

1103A, 75 

1107, 75 

1108, 75,240 


Unsigned magnitude, 29 


Variable length string, 490, 493, 498 

VAX-11/780,6,68,78,243,682,683, 

716-729, 766, 778 


Vector-move processors, 91 

Virtual address, 4,70 

Virtual machine, 52,227,251, 258, 839 

Virtual memory, 227 -228,233-243 


address space, 228 

address translation, 229 

capability, 233 

demand paging, 233 

external fragmentation, 233, 253 

FIFO (first in, first out), 233 

internal fragmentation, 233, 254 

LRU (least recently used), 233 

name space, 228 

prefetching, 233 

protection and relocation register, 240 


Virtual storage system, 370, 837-840 


Watchdog timer, 441,445 

Wheel of reincarnation, 7, 34, 81-83 


for input/output, 7 

Williams tubes, 4, 107 

Word length, 67-68 


Xor, in ISP, 30 


Zilog: 
2-80, 610 

2-8000, 95, 610 


ZUSE, 38 



