AB26 p 5

AB26,2, CDRREBPONDENQE
AB26,2,1, Retained data-objects

18 Ebury Street,
London 8 W 71,

May 12th 1967
To: Members of WG2,7 and Editor, AB,

An essential feature of ALGOL60O was the transience of all data to
the scope = extent in time ~ of the block in which it was declared,

Thus the notion of data whose scope is more extensive than the
program that created or referred to it is outside the universe in which
an ALGOL program lives and dies,

The purpose of the letter is to bring to the attention of WG2,1?
the need to be able to manage such data in universes in which we can hope
to be able to code in ALGOL67, I think specifically of parallel processes
cooperating and competing through a core of retained data-objects,

The following are the facilities I see required,

1) The ability to create retained objects.

2) The ability to control the later access of foreign processes to the
retained objects,
a) To read
b) To alter
c) To execute
d) To destroy

3) The ability of foreign processes to acquire access rights to retained
objects,

4) The ability of processes to assume temporary constancy or exclusive
access to retained objects and the sequencing of processes making
conflicting demands,

I do not believe that the semantics of what is required is yet
sufficiently well-understood for WG2,7 to lay down the syntax in which
these abilities should be expressed; however I believe it to be timely
to admit to ALGOL67 retained objects, leaving open for future work
specification of the commands that enable them to be managed,

J.G. Laski
supported by M, Woodger

AB26 p 6
AB26,2,2, Features essential for a workable ALGOL X

[The following letter from D,T. Ross to A, van Wijngaarden and B,J, Mailloux
is reproduced here at the request of its author, May 19th 1967, -Ed.]

Electronic Systems Laboratory,
Massachusetts Institute of Technology,
Cambridge, Mass. 02139,

October 20, 1966,

My primary activity since my return home last Friday, (except for
sufficient time to plow through the correspondence which had accumulated
during my absence), has been to try to collect and make explicit my suggested
modifications to Warsaw-2 [a working document of WG2,7 - Ed.] for possible
incorporation into the next draft of ALGOL X. As usual, it has been very
difficult to keep features which will be appropriate for ALGOL Y (or perhaps
ALGOL Z) from intruding, but I think I can summarize here for you those
features which I feel are not only appropriate but necessary for a successful
ALGOL X if it is to be more than a prettied-up version of some of the features
which now exist in our AED-O System with a few additions, I hope ALGOL X
can be much more,

As was apparent from the Warsaw meeting, the crucial question concerns
the explicit use of references or pointers in the language, and the implications
of this on the dynamic handling of free storage, In our present AED-0O system,
these features are quite explicitly present in raw form, and the net effect is
that the sophisticated user can do almost anything he desires, but there are
numerous pitfalls tor the average user, Although AED-0 is supposedly a high~-
level compiler language, being an extension of ALGUL60, nonetheless, it 1is
very much at the level of detailed, free-wheeling machine-code programming
with respect to the subject matter, I have been making the analogy that FAP
is to FURTRAN as AED-0 is to a true high-l.vel language for plex programming,
I would like to see if we could make ALGOL X be much more of a high-level,
reliable, pitfall-free language, at least for a proper subset capable ot doing
the basic record handling, 1 think it is unreasonable to expect the mass of
potential users to become sufficiently sophisticated to work properly with
anything less,

Although I have not yet plowed back through the material in Warsaw-2
for a re-check, I believe your description of the level process is exactly
the appropriate mechanism for the internal operation of any implementation
of this sort of system, Therefore, in the suggestions that follow, there is
no attack on the reference concept itself, but only an attempt to hide these
delicate matters in the sub rosa workings of the system, The intent is to
save the user from a great deal of intricate, complex, repetitive thinking,
and to protect him frem subtle and very-easy-to-make errors,

Principle features

In order to completely eliminate the concept of refereénce ffom the
language itself, it is necessary to have the entire system based upon the

AB26 p 7

concept of manipulation of "objects”, where an object may be an integer, a
real-number, a "person”, or a variable of the program, or a variable whose
value is a variable of the program, etc,., The only way in which an object
can be accessed or manipulated is by assigning it to be the value of some
appropriate variable or field, There can be no unassigned objects in limbo,
The system then is concerned with objects, variables, and procedures which
act on objects which are values of variables,

In addition to the ability to define new types of objects as cartesian
projects of already-defined objects, it is necessary to group various types
of objects into classes, (i.e,, group sub-classes into classes to use Tony
Hoare' s terminology) so that a powerful, but fully-controlled and constrained
descriptive mechanism results, With this mechanism it is possible to assign
objects as values to variables or to fields of records, With ALGOL Y or Z
it will not be necessary to be explicitly concerned with how this assignment
takes place, but at this point in time it appears to be necessary to have a
new word 'cogx' in the language in order to indicate when a new and distinct
version of an object is to be created and assigned, Furthermore, although
for ALGOL Y this would not be necessary, for ALGOL X if the object is an entire
plex structure, i,e,, a whole network of inter-connected records, copying
of such structures must be performed by an explicitly-written procedure,

Finally, although its necessity is possibly debatable, an extremely
natural and useful adjunct to the entire system is a preset or initialization
facility, so that the initial values of all variables can be explicitly
controlled, This also allows elaborate initialized plex structures to be
incorporated directly into a progfam by the compiler rather than having progrem
statements which laboriously ygenerate the same initial structure each time the
program is begun,

These then are the features which I feel are necessary for ALGOL X
if it is to fulfill its intended role, There are many other topics which sre
natural extensions of the above basic ideas, but these can appropriately be
held for the successors to ALGOL X, I now will elaborate on each of the
above features,

Class and Type Definitions

Following the examples of Hoare' s summer session notes (pages 9 and 16)
but changing vocabulary words and sequence so that the notatidn for calling
a record is more parallel to the definition, we have the following notation,
To define a new type of record:

type person (integer date of birth; boolean male; (person) father,
elder sibling, youngest offspring);
Then T may be declared to be a person variable by writing
(person) T;
after which a particular person may be created as the value of T by
T := person (1908, true,,,);

(The empty argument positions are equivalent to Tony' s null,)

AB26 p 8

In order to define a class of types we write:
class expression is constant (real value) ora variable (string printname)
ora class pair is (sum ora difference ora product
ora quotient)((expression) left operand, right operand,
derivative);

after which we may declare new variables that are of type expression, constant,
pair, and product

(expression) X; (constant) Y; (pair) Z; (product) Q;
and create values to be assigned to those variables,
X := Y := constant (10.5);
Z := Q := product(variable(“ALPHA"), constant(2,), constant(2,));
In general if A is an identifier of a class name, B and C are types,

D through M are field declarations such as "real value”, etc,, and D’ through
M’ are actual expressions of the corresponding types, in general: we have

may be none tvpes may be none
s

,—H ’/"” i F—“ﬁ
class A is (D,E,F)(B(;,H) ora C(1,J))(K,L,M);

X := B(D,E°,F",G",H",K",L" ,M") <« calls
Y := C(D*,E",F",I",1°,K",L" ,M") -

Another feature which is quite essential if reasonable implementations
are expected, is some means for specifying the size of various fields so that

multiple fields may be packed into a single word on implementation, This could
be done either in terms of ranges,

_ type person (integer date of hirth from 1850 to 1966, ...
or number of bits
type person (integer 13 bits date of birth, ...

or best of all, by giving a transformation function to permit efficient encodingsi

type person (integer 7 bits (date of birth - 1850), ...

(It probably would be best to require that both the transformation and its
inverse be provided explicitly for storing and retrieving values of the field,)
This transformation feature may perhaps be an ALGOL Y feature, as is the
concept of "coupled” or “constrained” fields in which formulas are givem as part
of the record definition, which automatically set certain fields to be
functions of values in other fields, An example would be a geometric vector
record in which in addition to fields specitying the end points, another field
contains the length of the vector, You will recall our brief discussions in
Warsaw avout the difficulty of thinking of algebraic operations on records to
produce other records, I believe the concept ot coupled fields is a necessary
component of any such scheme (probably ALGOL 7).,

AB26 p 9

Parameter Mechanism

The key concept for a parameter machanism which is consistent with
the whole set of remarks in this letter is that when a procedure is called,
the actual parameters of the call provide objects which are used as values
wherever the formal parameters appear in the procedure definition, In other
words, the problem of reference versus non-reference which consumed so much
of our time in the Warsaw discussion is primarily a matter of implementation,
but as far as the user of the language is concerned, all actual parsmeters are
objects, In order to obtain the reference kind of actual parameter, then it
is necessary merely to enable the language to refer to the variables of a
program as objects, The introduction of a new vocabulary word, yar ,
allows the introduction of a meta language level in which program variables
are treated as objects in the same way as person objects, or real or integer
objects, Thus for example the procedure "inner product” of Section 12,2,2
of Warsaw-2 A might begin by:

let real proc innerproduct (int var i, int n, real proc xi,yi) be ...

Note the parallelism between "int var"” and "real proc”, This is really the
point of it all, As far as the user of the language is concerned, he has
objects, variables, and procedures with which he may work, Example 12.,2.3
would read

let real proc inprod (real array [7:n] a, b) be ..,

because an array is itself a suitable object, (I,e, the use of ref here in
Warsaw-2 is redundant when arrays are objects,) Note that since arrays always
must be arrays of some type of thing, I recommend moving the word real to come
first, Also the fact that n is an integer need not be explicitly stated,

Note that full type control as described in the previous section
applies to all formal parameters of procedure definitions, so that when a
procedure is called, it is necessary merely to write the expression or identifier
which specifies the object being transmitted,

In the proper subset of ALGOL X, the word yar would be permitted only
as illustrated above in the specification of formal parameters, whereas in the
full ALGOL X, with its "user beware” potential pitfalls, it would be possible
to declare variable~valued variables such as

int var X; int var var Y;

I.e., an integer variable may be assigned as value of X, and X, being an integer-
variable variable, is suitable as a value for Y,

Zones, Declarations, and Copies

As I tried to explain several times in Warsaw, there is a fundamental
distinction between zone structure which concerns the physical space of existence
of objects, and block structure which concerns the scope of identifiers, Zone
structure and block structure are complementary, and may in fact be confused
and identified if objects are restricted to single word lengths as in ALGOL6O,
but they must be recognized as distinct as soon as "large” objects, such as
records, arrays, and multiple long values, and plex structures are considered,

AB26 p 10

Otherwise efficient implementation becomes impossible, and the richness of the
language suffers, Although I suspect that in ALGOL Z (or perhaps it should be
ALGOL omega) zone structure could itself be treated entirely sub rosa, and
only as part of the implementation, for ALGOL X it seems to be necessary to be
aware of it when the features of the language are described, I do not propose
that explicit zone terminology be included in ALBOL X, although it should be
included in ALGOL Y because it yields much more elegant and efficient problem
representation in many cases, For ALGOL X, however, it seems sufficient only
to be concerned with zone structure as it relates to the block structure,

Another simplification for ALGOL X is to continue to treat definition
and declaration as one and the same thing, although as I tried to describe in
Warsaw, I believe the distinction is very important for ALGOL Y., It is in
preparation for such distiction that the above examples of procedure definition
begin with "let real proc” rather than merely "real proc”, When the distinctieén
is made, we can declare and define a procedure separately or together (a feature
which is needed for separate compilations and useful in other ways as well),

real proc inprod(... declaration
let inprod be definition
let real proc inprod(...) be ... definition and declaration

For ALGOL X only the latter case would be allowed for procedure, type, and
class definitions, (In AED-O we now say define.,, to be instead of the
shorter let be .)

A variable or field of a given type can only be declared within the
scope (in the tlock structure sense) of that type' s definition, for ALGOL X,
The simplest implemcntation would also create all records for objects of that
type in the zone associated with the definition block, Since the previous
suggestions provide complete type and class constraint, however, it appears
to be a fairly straightforward task for an implementation to associate with
each record generator call (which I prefer to think of as a call on the record
type itself, without the concept of a generator being involved) the outermost
zone to which actual assignment of that object need be made, Even though a
type may be defined in the outermost block, an individual record of that type
may only be used as value (however indirectly) in an inner block, in which
case the zone of the inner block should be the place of residence of that
particular object,. The compiler can quite easily trace through all possible
assignments in which that object appears on (or participates in) the right-
hand side to determine the required zone,

Although as I mentioned before, ALGOL Y or Z may not require it,
ALGOL X appears to require the vocabulary word copy in order to specify when
a fresh copy (using the record generator) should be made for assignment as
value, The idea is that each unique object exists in the zone structure
exactly once, so that an explicit copy command is required if duplicate copies
are desired, If X is a person variable, then

Y = copy X; .
would merely assign to Y a duplicate copy of the person record (possibly in a
different zone, if Y is subsequently assigned in a more restricted scope than
that of X), In a similar way,

AB26 p 11

Z := copy X (1906; Fs 5 »);

would make 7Z be a female person born in 7906 with the same father, elder
sibling and youngest offspring as X, (In copying, a null space specifies
no change in value,) Note that copy only will copy single records, Copying
of entire record structures would have to be done by an explicit program
written by the user,

For ALGOL Y I will propose that the concept of type be augmented to
include entire plex structures rather than merely single records, Thus for
example, a plex of type family could be defined in terms of the father,
sibling, and offspring fields of person-type records, Then entire families
can also be manipulated as single objects. A family might be defined by
some such notation as

plex family is person (, , not null, not null, not null);

in which the notation “not null” indicates that in the process of recursively
copying or otherwise scanning to determine the boundaries of a plex of type
family, the values of those components are to be elaborated as long as they
are not null, i,e., a null value in one of those fields would terminate the
recursive elaboration. R richer terminology than this is required for the
full job, however,

As to the destruction of records, the zone structure coupled with
block structure provides the basic mechanism, but considerably more efficient
schemes may be implemented by putting a reference count in the physical
record itself and destroying that record whenever the count becomes zero,

Or one can do a standard LISP type garbage collection (at much greater
expense than in LISP, however, due to the more complex data structure),

It may also be possible to have the compiler automatically insert individual
destruction commands at appropriate places on the basis of the scan of usage
mantioned above,

Preset Facility

A final feature for ALGOL X concerns augmenting the constant
declaration feature of Warsaw-2 by the ability to preset or initialize
the value of any type of variable, For example:

real pi = 3,14159;

permits one to write the short identifier “pi" instead of the longer string
of digits, but the "pi” always has the same constant value,

preset real X := 3,14159;

on the other hand would make X be a real variable whose initial setting is the
indicated value, Other values may, however, be assigned to the variable X
in the operation of the program,

This feature becomes particularly important in the case of record
variables since anexpression such as

preset T := person(1908, true,,, person(1937, false, T, J:person
(19550 true, T, person(1934, true, T,,),
person(1964, true, J,,),);

AB26 p 12

would create at one whack [ouch!] the entire plex structure on page 11 of
Hoare' s summer notes, Note that J is a label attached to a particular call
for a person record, and used only within the preset statement range for
establishing the necessary connection, The person variable T which is
actually a variable of the program cen serve the same role within the present
statement,

In general, preset blocks may contain arbitrary declarations and
variables, so that the right-hand sides of preset statements may be arbitrary
expressions in the language, Preset Llocks obey the same block structuring
as the same program itself by implication, For example

begin
preset begin
end pres et ‘\
begin nested
preset begin i
— - &-———- ""—’
end preset
end
end

80 that a full but independent block~structuring is availal'le for the right-
hand sides of preset statements, Identifiers appearing within a preset block
but not declared within the preset block structure are variables from the
program block structure,

Conclusion

These then arc the features which I feel at present are essential for
a workable ALGOL X, I am indeed sorry that I must present these ideas to you
in this informal fashion, but my profound unfamiliarity with the fine rigor
of Warsaw-2, coupled with the fact that I already have expended much mofe time
than I should in thinking through these various ideas, makes it impossible
for me to attempt a rigorous formulation, Even if I had the time to spend, I
suspect it would take me so long to achieve facility with your techniques that
the transmission of the ideas themselves would be delayed far too long to be of
any use , My impression in Warsaw was that the actual incorporation of most of
these ideas into the modified Warsaw-2 would not be terribly difficult for one
who knew how tc go about it, so that I hope vou will be able to follow through
on the incorporation of these ideas into ALGOL X,

I am sure that the presentation here contains some obscure points,
and I hope that you will feel free to bombard me with questions, complaints,
and suggestions to further clarify the concepts,

Douglas T. Ross,
Head, Computer Applications Group,

AB26 p 13

AB26,2,3, Comment on AB25,3.2,

3375 Alma Street, Apt. 354,
Palo Alto, Calitornia 94306,

June 5th 1967

In AB25,3,2 I,D, Hill discusses the for statement proposal of
Wirth and Hoare which treats the controlled variable as a dummy implicitly
declared local to the for statement, Hill's claim that this notion destroys
the copy rule concept for procedures with name parameters is in error,
The controlled variable can simply never be affected by application of the
copy rule,

It is true that Hill' s Program 7 does not in the Wirth and Hoare
language perform the sum that it does as an ALGUL60 program, But neither
does Hill® s Program 2 result from his Program 1 by applying the copy rule,
if the controlled variable is a dummy., Application of the copy rule to
Program 1 results in a program with the same performance, and so no conflict
with the copy rule as a semantic device arises,

Larry L, Bumgarner

AB26,2,4 Collection of tested algorithms

Chelsea College of Science
and Technology,

Computer Centre,

Manresa Road, London SW 3

August 1967

I am enclosing a list of our current holding of tested algorithms,
It would be most helpful if you could draw AB readers’ attention to our
collection, and our desire to enter into exchange arrangements,

As a general rule we test algorithms for theoretical correctness,
limitations and performance, A master file is then written which indicates
the scope and use, with examples, I would welcome hearing from people
interested in a collaborative effort in this field, and we would put them
on our mailing list for new material and changes, Of course we would
expect a reciprocal arrangement !

Our current efforts are confined to ALGOL versions of algorithms,
but we would also be delighted to receive material in other languages with
a view to its hand translation into ALGOL and subsequent evaluation,

Richard F, Shepherd,
Director,

[The current list contains 349 algorithms from sources including CAM,
Regnecentraler Copenhagen, Stanford University, Mathematisch Centrum
Msterdm’ NPL. TH MuniCh' esce Ed.]

AB26 p 14

AB26.2.5 Integer Representation for ALGOL Basic Symbols

General Electric Company
Information Systems Equipment
13430 N, Black Canyon Highway
Phoenix, Arizona 85029,

9 August 1967

AB25,.3.4 noted with much interest. This problem has been considered
for some time, and in a sphere somewhat larger than that evidenced by the
contents of the Bulletin, For example, the minutes of the 1959 May 1 meeting
of the SHARE IAL Committee state:

"Green (Julien): Rematked that the group (1BM) had decided on an
Tnternal representation using 8 bits for IAL symbols (256 character
set).”

This stemmed from an earlier paper (enclosed) from me to that body on 1959
February 18, which states "let us ignore the exterior symbols until SHARE
or the Committee can compromise suitably.....The Reference Language,,..
contains at least 106 symbols, Let each of these be represented internally
by bit groups of a length to be determined by the fabricators,,.”

I also enclose my document ISO/TC97/¥G E(USA-11)56, Stockholm
meeting 1562 May 9, Programming Languege:Implications on Coded Character Sets,
which reads:

"For example, single characters for ALGOL word symbols,,...It is
proposed that a tentative group of characters (to follow the escape
characters) be reserved to indicate special alphabets for programming
languages, Further, work should brgin at once on a specific alphabet
for interchange of ALGOL and COBOL programs,,.It is advisable that a
generally agreed upon nucleus of graphic assignments (e.g., common to
the ECOMA, BSI and ASA draft codes) be retained in the progremming set,
Also those ALGOL and COBOL graphics defined in any of these sets
should be preserved,’

I trust this gives me sufficient antiquity to say that your correspondents are
all way off base in their proposals, as far as specific assignments are
concerned, How anyone could propose seriously an adaption of ATLAS or KDF9
codes when the above-mentioned interchange code is in its final stage as an
I1SO Draft Standard, corresponds to CCITT Working Alphabet No, 5 and the USA
Standard (and perhaps many other national standards) is quite beyond me,

The character set people worldwide have also, for some time, decided against
any checking of the Hamming type in the coded representations,

My purpose is not to complain, I want to ensure that:

1) The proposals in the AB and any momentum that might ensue are in
correspondence with international standard codes for information
interchange, since what is proposed falls in this category,

2) The character set people in IS0, ECMA, and national bodies learn that
the matter is being discussed seriously,

AB26 p 15

3) The programming language people in IS0, etc,, are aware that they had
better get around to following my 7962 preposal, and

4): The IS0 code must be an invariant subset of the ALGOL interchange code,

P R,¥,. Bemer

Copies to:

D, Hekimi, ECMA

P.B. Goodstat, BEMA

L. Griffin, USASI X3,2

.Co Grove, USASI, TC97 Secretariat
.B. Steel, Jr,, USASI X3.4

[First enclosure]

February 18, 1959
Mr Frank Engel
Chairman, JAL Committee
SHARE

Dear Frank:

Since your committee has had difficulty in agreeing upon hardware repreeentation
to implement IAL for the 704 and 709, I make the following proposal:

1. The main difficulties of hardware representation are those created by
external communicative equipment, No difficulties exist internally for
the 704 or 709 (binary) machines,

2, Let us ignore the exterior symbols until SHARE or the Committee can
compromise suitably, This may be deferred for a reasonable period of time
without damaging or setting back any effort to create processors,

3. The Reference Language should be construed as the ideal language for
internal manipulation, It contains at least 106 symbols, Let each of these
be represented internally by bit groups (or bites) of a length to be
determined by the fabricators of the processor, with the restriction that
they should be the lowest binary representations in these groups, It
should be borne in mind that, for internal purposes, variables and identifiers
may all be represented by simple single symbols, as Professor McCarthy has
pointed out, The only restriction here shall be that the basic symbols of the
JAL shall form a contiguous set,

To aldow for possible new operator symbols, at least the lower 256 or 512
representations should be reserved, An obvious corollary of this is that
those IAL symbols which exist in the Navy collating sequence (as given for
the 705 computer) should be preserved in that internal sequence, A certain
flexibility of assignment should be reserved to match future computers

with eight-bit representations,

AB26 p 16

4, The processors should have many other design criteria but for purposes of
standard dissemination the format of the exchange medium should be a
binary tape (or the equivalent thereof) containing programs in the internal
representation, This will allow one or many hardware representations as
SHARE pleases or as individual installations may prefer,

5. Obviously all processing from original card input must be done in a single
module which has as its only function the creation of the binary tape
mentioned in Item 4, in an umambiguous mapping from the external symbols
on a one-for-one basis.

R.N, Bemer
[Second enclosure]
International 1S0/TC 97/WG E (USA-11) 56
Organization for]
Standardization 9 May 1562
TECHNICAL COMMITTEE 97 COMJ'UTERS AND INFORMATION PROCESSING
Working Group E Programming Languages
Reference: IS0/TC 97/WG E (USA-3) 22.
Subject: Programming language implications on coded character sets
Gentlemen:

A. The following points of consideration are proposed as a basis for study of
character sets, as proposed by WG B and others, with regard to their suitability
from a programming language viewpoint:

1.. Are the sets capable of graduated size by means of regular and clearly
defined rules of expansion ?

2 Whét sizes are of particularly concern to programming language needs 7

4 - BIT 16
5 - BIT 32
6 - BIT 64
7 - BIT 128
8 - BIT 256
others ?

3., What is the preferential ordering of graphies for inclusion in sets of
varying size ?

4, Are there natural orderings of Sub Groups of graphics which should be
reflected in the coded representations ? Are there artificial orderings which
have caused unnecessary constraints ?

5. Are control characters the concern of programming languages, as well as
information characters ?

AB26 p 17

6., Are there defined correspondences between multiple character symbols used
with smaller sets and the single characters available in larger sets ? Is there
a controlled pattern of replacement with increasing set size ? For example,
cimgle chara;}::s for ALGOL word symbols, or multiple symbols such as <«<- for
=, a for .

7. Are criteria specified for controlled future expansion and addition ?

8, Is an "escape character” provided to allow for usage of alternate,
specialised character sets ? What graphic subsets should remain in commen
positions in alternate sets so that they may be uniquely recognisable ?

9. What values following the escape character (see section B of this document)
should be reserved for specialized character sets for programming languages ?

10, What control considerations are necessary to utilize alternate or graduated
equipnments ?

:11, Are sufficient data delimiters included in sets (of sufficient size) to
adequately indicate set membership in data groups ?

12, Are sufficient data delimiters included in sets (of sufficient size) to
adequately indicate syntactic grouping ?

13, What characters are required to map two-dimensional flowcharts into one-
dimensional string languages ? For example, a character signifying "is inside of"”
and characters for the shaped elements and flow lines,

14, Are the character sets equally applicable to conventional von Neumann
machines and streaming (or other types of non-von Neumann) machines ?

B, From the [proposed] IFIP definition of "escape character” it may be seen

that it is possible to have many compatible alphabets within the framework of an
international charecter set and code, The imminence of such a standard
interchange code and the existing problem of interchange of algorithms suggest
that the time is proper for some advanced planning in the area of characters
used in programming languages,

It is proposed that a tentative group of characters (to follow the escape
characters) be reserved to indicate special alphabets for programming languages,
Further, work should begin at once on a specific alphabet for interchange of
ALGOL and COBOL programs,

It is advisable that a generally agreed upon nucleus of graphic assignments
(e.8., common to the ECMA, BSI, and ASA draft codes) be retained in the
programming set, Also those ALGOL and COBOL graphics defined in any of these
sets should be preserved, Consideration should then be given to adding the

rest of the ALGOL characters, in particular reserving positions for the "complete
word” characters of ALGOL, Among the further graphics which may be considered
are those likely to have special usage stemming from mathematics and légics,
delimiters which imply set membership hierarchy, delimiters for syntactic
entities such as phrases, flow chart symbols, etc,,

R.¥, Bemer
Howard Bromberg
U.S, Representative

1S0/TC 97/WG E

