AB16 p.14

A SIMPLE MECHANISM MODELLING SOME FEATURES OF ALGOL6&0D

E, W, Dijkstra

The purpose of this note is to describe an abstract machine, which has
been designed primarily for explanatory purposes, As such a machine responds
in a unique way to any given input character sequence one may hope that such
a machine may serve a useful purpose as a tool for language definition, This
does not pretend to provide an adequate tool for the definition of an
arbitrary programming language, The presentation offers a clarification of
some of the mechanisms essential for the understanding of ALGOL60, These are
evaluation of an expression, assignment to a variable, the block structure,
the possibly recursive call of a procedure and the parameter mechanism, It
does not deal with labels and arrays,

In the following operators, constants, and what we usually call
identifiers are all treated as single characters, individually recognizable,
Inside the machine distinguishable characters of a further category will be
generated; they may not occur in an input text and we call them "references”,
There will be a special reference, called the "dummy reference”,

The machine can be visualigsed as containing three stacks, The first one
is called "the working stack”, the second is called "the correspondence stack”,
The third one is only used to control the sequencing of the character reading
process, since this is defined recursively, We will not refer to it any
further,

The basic cycle of the machine consists of "reading the next character?,
i,e, passing it by and reacting to it, This holds whether the character is
read from the input text or internally, The machine begins by reading the
first character of the input text, its three stacks being empty,

In addition to the stacks the machine has a store, in which may be held
finite sequences of characters, A reference gives access to the first character
of a stored sequence, The remaining characters of such a sequence can only be
read in succession, just as is assumed for the input text,

For simplicity we shall deal only with the case that in the input text
no identifier is declared more than once, We shall moreover assume that at
the beginning of each block just one identifier is declared, Evidently this
entails no loss of generality,

The machine is at any moment in one of two states, called "the active
state” and "the passive state” respectively, The machine begins in the active
state, .

We shall now define the machine by describing its reaction to the
various characters; first we shall do so for the active state,

AB16 p.15

[This acts as a "block begin”, and also the next character will
be read, If the next character is not an identifier, the machine
gives a failure indication (and stops), In the case that the
next character is indeed an identifier a new reference, unequal
to the dummy reference, is generated and a new element is put
on top of the correspondence stack, This element consiste of the
identifier paired with this reference; furthermore a single
character sequence is generated, consisting of the single
character "undetermined”. Until further notice the reference
will give access to this single character sequence,

] This acts as a"block end”, If the correspondence stack is not
empty, its top element will be removed; furthermore the sequence
to which the reference in question refers is replaced by the
character "undetermined”, If the correspondence stack is
already empty, or if the element removed contained the dummy
reference, failure indication is given,

undetermined Failure indication is given,

" a reference Read actively the sequence of characters referred to by the
reference up to the special character "T'”, then return to the
character next to the reference in question, (The special
character "I - apart from underlining I shall use capitals
to denote special characters = acts as an end marker for
linear sequences, All sequences in store will be terminated
by the character "T", apart from a pathological one like
"undetermined”, where this is pointless,)

an identifier The correspondence stack is searched, starting at the
(not following "T”) top side, for the occurrence of the identifier in the
elements, This search ends as soon as the identifier
has been found, otherwise because the correspondence stack
has been exhausted, In the latter case the failure indication
is given, in the first case the machine continues as if it had
read the reference passed with occurrence of the identifier
detected in the correspondence stack,

Note 7 The distinction between "identifier” and "reference” is

: necessary because even without the "redeclaration” excluded,
an ALGOL60 identifier does not identify a unique object: the
local variables of a procedure, which is activated recursively,
exist in multiplo during inner activations and an additional
rule must specify to which copy the identifier refers, The
correspondence stack and the way in which it is used, supplies
such an additional rule,

a constant Constants are put on top of the working stack,

AB16 p.16

an operator The operator is performed, Usually this implies some operations
on the top of the working stack, Some examples of possible
unary operators are:

"neg" the unary minus sign: if the top character of the
working stack is a numerical character, its sign is
inverted, otherwise a failure indication is given,

“non” the logical negation: it the top character of the
working stack is a logical value, it is replaced by
its inverse, otherwise failure,

"sqrt " if the top characker of the working stack is a
non-negative number, it is replaced by its square root,
otherwise a failure indication id given,

Examples of possible binary operations are:
o.v if the top two characters of the working stack are
numerical, the top character is subtracted from the
top character but one, The answer replaces the top
character but one, the top character itself is

removed from the working stack, If not both top
clements are numerical, a failure indication is given,

= Numerical equality, If the top character of the working
stack and the top character but one are not both
numerical, a failure indication is given, Otherwise
they are removed; if the two characters removed are
equal, the character "true” will subsequently be put
on top of the stack, otherwise the character "false",

etc,, etc,,
k Put “(” on top of thé stack,
3 Put ")" on top of the stack,
S Put "T" on top of the stack,

Note 2 The above three rules are only a trick, Reading a character "
or "T" in a text will have other effects, so I need other means
if I want to generate them on top of the working stack,

sel The selection operator is a ternary operator, If the top
character of the working stack is not a logical value, a
failure indication is given, If the top character of the working
stack is true, the two top characters of the working stack are
removed from it, If the top character of the working stack is
false, the three top characters are replaced by the middle one,

e

AB16 p.17

Thus the execution of the operator sel transforme the working
stack top

¥eee a b ¢ true” into " oo a b”
vhereas

Yeeo @ b c false” is transformed into ",., a ¢"

The removing sequence assignment, If the top character of the
working stack is not a referemce, failure indication is given,
Otherwise, the stack is scanned downwards until the first
terminating character T is encountered, The characters passed
are taken to be the new sequence to which thé reference in
question will refer until further notice (i,e, a new

assignment or removal of the reference from the correspondence
stack,), The new sequence "assigned to the reference” will be
terminated by a T at the other end, the previous sequence
referred to by the reference is deleted, and the top characters
of the working stack are deleted "down to and including” the
terminal T in the working stack, This may be clarified by the
following example, giving the state of the top of the working
stack and the referencing before and after the execution of the
removing sequence assignment,

Before: ",..abcTdef" and f-> "pqrT”
After: ... a b c” and f > "deT"

under the assumptions that "f" is a reference and d and e are
both unequal to "T",

The retaining sequence assignment, As above, but for the fact
that only the top character of the working stack is removed,
Under the same initial conditions as above, the execution of
the ":-" will give the final situation

YeoabcTde" and f > "defT"

The removing character assignment, Here the length of the new
sequence to be referred to by the reference is by definition a
two character sequence, closing T included, The two top
characters of the working stack are removed, Under the same
assumptions as above, the "i=" creates

Yeeo ab c T d" and f > %T"

The retaining character assignment, As the previous operation
but for the fact that only the top character will be removed
from the working stack, Under the same assumptions the emecution
of ":=" creates

Yvee abcTde" and f > "eT"

AB16 p.18

T Reading will be resumed at the character following éncthe occurrence
of the reference (or paired identifier) on account of the reading
of which the now terminating reading of the sequence in question
has been initiated, '

) Closing passivity bracket, When read while in the active state,
a failure indication is given,

(Opening passivity bracket, When read while in the active state
a "passivity bracket counter” is set to one and the transition
to the passive state takes place, The stacks remain unaltered,

We shall now describe the actions of the machine in the passive state,

All characters except "(", ") ", "T", "[", "]" are put unaltered on top
of the working stack,

T If "T” is read in the passive state a failure indication is given,

{ If "[" is read the next character is also read, If this is not
an identifier, a failure indication is given, otherwise a next
elemeny is added to the correspondence stack, consisting of the
identifier in question paired with the dummy reference,

] If the correspondence stack is not empty and the top element
pairs an identifier with the dummy reference then the top element
of the correspondence stack will be removed, Otherwise a
failure indication will be given,

identifier If an identifier is read in the passive state the stack
(not following [) of correspondences is searched as in the active state, If
it is not found, a failure indication is given, If it is
found, paired with a“true reference, this reference will be put
on top of the working stack; if it is found paired with the
dummy reference, the identifier itself is put on top of the
stack,

(The "passivity bracket counter” will be increased by one and
the opening passivity bracket just read will be put on top of
the working stack,

) The "passivity bracket counter” will be decfeased by one, If
the result is positive, the closing passivity bracket will be
copied on top of the working stack, otherwise the working
stack will remain unchanged and the trahsition to the active
state takes place,

Note 3 As can be seen from the above description the passivity brackets
show enough resemblance to string quotes - reading implies

Note 4

Note 5

AB16 p.19

the removal of the outer pair! - that it is worthwhile to

point out the difference, During passive reading the identifier-

reference replacement will take place whenever the identifier

is found in the correspondence stack, but not paired with the

dummy reference, This mechanism is used for two purposes,

When an ALGOL60 block is entered, in which a procedure is
declared, this procedure may refer to quantities global and
local to its body, It is intended to make at this moment a new
copy of the procedure body in which
{a) all global identifiers are replaced by the correct referen ces

in so far as this has not already happened,

(b) all local identifiers remain unchanged, which is achieved
by the trick of the dummy reference, This reflects the
attitude that the moment to introduce references for its
local quantities will come whenever it is activated, i.e,
whenever its character sequence will be read in the active
state, '

The other purpose is closely resembling: it enables us to
specify actual parameters just prior to entry of the procedure
body, but ehsuring that the identifier-reference replacement is
performed in accordance with the situation at call side,

Characters in the working stack are never "read” in the sense

in which we used the word reading, The only characters which can
be read in this sense are those of the input sequence and in
sequences referred to by a reference, Sequences of such “readable”
characters we have called text, The working stack does not

contain text, it contains material out of which, finally, an
assignment operation can construct a piece of readable text,

When adding a new element. with a non-dummy reference to the
correspondence stack we said a "new” reference is generated,
Intended is a reference not used before, ¥hen an element with

a non-dummy reference was removed from the correspondence stack
we took pains to ensure that from now on it would point to the
single character "undetermined”, We had to take this precaution
because we have not excluded a priori that the sequence
referenced by "a” contains as element the reference "b", where
reference “b” will be removed earlier than reference "a”,

(In ALGOL60 ve have variables with a limited life-time: if they
are normal variables, their values must be constants, the
life-time of which embraces the life-time of the whole program,
Formal parameters will be treated as variables, the value of
vhich - viz, the corresponding actual parameter - may be
built up from mortal components, But the structure of ALGOL60O
ensures that the life-time of these components embraces that of
the formal variable, Therefore the situation noted will not
occur in ALGOL6O0,)

AB16 p,20

Note 6 In the above we have spoken about "the deletion from store of
sequences of text”, viz, when a reference will refer to a new
sequence, We have to envisage the situation, however, that the
third stack points to a character in this sequence, and that
therefore the machine will try to continue reading it at some
later moment, The most elegant solution is to keep the sequence
in store anonymously as long as the third stack contains
returns to it, A "usage counter” per sequence in store will do
the job,

-In the following examples small letters will be used as identifiers; a
dash will be added - as long as no confusion arises =~ to denote the
reference associated with it, Only under exceptional circumstances will we
use the character assignments,

Example 1
Let us consider the following ALGOLS0 program,
"begin integer x; x := 5; x = x + 2 end”
This will be represented as follows:
[x8S5(x) :=8Sx2+ (x) :=]

We give the stack contents at successive characters,

1 and 2) Establishment of the correspondence x - x* x’ —> undetermined
3) T

4) TS5

5) transition to passive state

6) T5 x*

7) transition to active state

8)) x* > 5T
9) T

10) TS5

11) T52

12) T7

13) transition to passive state

14) T 7 x°

15) transition to active state

16) x> 77T

L4

17) removal of correspondence X - X x’ - undetermined

AB16 p.21

Example 2
A type prbcedure with value actual parameter,
"begin integer y;
integer procedure sq(u); value u;:integer u;

sq = u X u;
y = sq(3)
end”

The top of the stack will be used to transmit the actual parameter to the
procedure and to receive the result, Our text will be (with two superfluous
passivity brackets):

[¥y sq

S(lu(u):i=uux]) (sq) :=

SS3sq(y) :=1]

The first line introduces two new references, the second line is the equivalent
of the procedure declaration, the last line represemts the function call and
assignment, followed by two block ends, Explanatory pictures are:

y-y y’ = undetermined
sq - sq° sq” —> undetermined
T[u . u -~ dummy '
Tlu(u) i=uux] sq
stack empty but: sq¢” [u(u)izuux]T
TT 3 u-u’
TT 3u’
‘ o u’” = 37T
T33
TO9 removal u - u’ u’ —> undetermined
T9y’
stack empty y > 9T
Example 3 .

In future we shall need the operator.E which is applicable when the top
character of the working stack is a reference, which removes this reference,
and reads the sequence it refers to before going on, It amounts to reading
the top character of the working stack in the active state after removing it,

AB16 p.22

We can accomplish this if we have in store the reference
EE=[f(f):=f]T

From now on we shall regard E as one of our primitives, i,e, each program
should be viewed as embedded in between

"TES([f(f):=f]E) =" and o
Example 4
In ALGOL6O:

"begin integer b;
procedure nega(u); integer u; u := -u;
b = 35
nega(b)

end *

Our text will be as follows (to be embedded as described above) :

[b[nega
S([u(u) :=SuEpegu:=]nega) :=
Sj(b)::

S((b)) negal]
After the reading of thc second line we have created:
nega® > [u(u) :=SUuE negu:=]T

and the procedure declaration has been processed,
The next line creates:

b* -» 3T

The last line starts by putting on the working siack:

T (b) |

and then the text referenced by nega’ will be read, giving:

T (b’) v

empty u’ - (b") 7T
T b’

T3

T -3 b’

empty b* = =~3T

AB16 p.23

Example 5

The conditional action: We consider what could be loosely written as

if B then "A1" else "A2"
"A1” and "A2" here represent alternativc pieces of text, B represents a Boolean
expression which according to the usual rules generates true or false on top
of the stack, In the case that both A7 and A2 have matching activity brackets
we can express this by means of ’

BS ("A1") S ("A2") if
provided the reference ir’ points to
if* > [b at [a2 (a2) :=(at) :=(b):i=(ala)bsel E]]]T
In the above call it will create the relations

a2’ - "A2' T al® - "AI* T

Example 6

Partial evaluation of an actual parameter, The well known example, of
course, is that in the case of an ALGCL6O call like "nega(A["E1"]) " we cannot
prevent the expression "E1" from being evaluated once for each occurrence of
the formal parameter, One would like to express that the value of E?7 at the
moment of call should be substituted in the actual parameter, As I do not deal
with subscription at present I shall show how to transmit the actual parameter
derived from "a + b" but where b should be replaced by its value at the
moment of call

At call side we write:

S(a)b(+)

which generates on top of the stack, say,

Ta 7+

The consuming procedure may start with

[u(u) =

generating the initialisation of the formal parameter in the form

L4

uw - a’ 7+ 7T

Eindhoven,
April 1964,

