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Introduction 
The, system comes in three major pieces; namely the monitor, the exec and the subsystems. The monitor is

the guts of the system. It is mostly resident in core and it eventually takes care of all interactions between the
programs and the outside world: all input-output, scheduling, swapping, handling the drum or disc, handling 
teletypes etc., etc., etc. The exec is mostly non-resident, i.e., swapped; it runs as a user program. Its function is to
provide what you might call second level control. Namely, it takes care of implementing the command language
by which the user controls the system; it takes care of file naming, which allows the user to give symbolic name’s 
to his files and reference them afterwards, and it provides a ‘number of special services such as floating-point, 
input-output, string handling operations and one thing and another. This we will discuss perhaps in some detail.
The third component of the system is the subsystems. A subsystem is just some language or convenient facility
which has been programmed and inserted in the system in such a way that you can get at it by giving its name as a
command to the executive. A subsystem is regarded as a completely independent program, not closely connected
to any part of the system proper. It’s basically just like a user program. The only difference between a subsystem
and a user program is that the name of the subsystem is in an exec table together with information about the
location of the subsystem and its starting address. If a user types in its name the exec will find it in the table, bring
it into user core and start it up at the specified address. After that the user is talking to it just as though it was one
of his own programs. The subsystems include the debugging system, the assembler, the editor, Fortran, Cal, Lisp,
Snobol, etc., etc., etc. What we are going to be mostly concerned with is the monitor in this discussion, because
the monitor is the most complicated and the most essential part of the system. The executive is much simpler, it
interacts less with parts of itself, and it also is much easier to change since it runs as a user program. The errors
made in changing the executive are likely to be less disastrous than errors made in changing the monitor. 

That is the overall structure of the system. And as I say we’re going to be talking mostly about the monitor. 
We won’t be talking about subsystems at all except maybe to make a list of them.



Hardware 
The next thing we want to do is discuss all the hardware changes to the 940, everything which is different

from what it says in the 930 manual. These changes come more or less under the following headings: 

modifications to the instructions 

to the interrupt system 

to the memory addressing and bussing 

and finally, various new I/O devices 

We’ll take these more or less systematically in order. As far as instructions are concerned there are the 
following things. Two modes have been added to the standard 930. When the system is in normal mode it is
operating like a standard 930 and there are no changes at all. By doing an EOM you can put it into system mode.
In system mode it still works like a standard 930 except that some of the things that we’ll discuss in the memory 
system are enabled as well as a couple of new instructions which we’ll also discuss in a minute. You can get into 
user mode by doing a transfer with the sign bit of the instruction set. This way you get from system mode to user
mode. In user mode there are large number of instructions that are called privileged. This means that in user mode
they cannot be executed. If a privileged instruction is executed in user mode, it causes a trap. A trap is a forced
transfer to a particular location in lower core, 40 or 42, something like that. There are four traps, each one with a 
unique location. At this location the system will put a transfer to a little subroutine that will do something about
the trap. Namely, it will type out a little message “You made an error” or something like that. Or whatever you 
want it to do. Exactly what the system does do is something we will cover in more detail later on when we are
discussing the relevant parts of the monitor. What the hardware does when it sees a privileged instruction trying to
be executed in user mode is to force a transfer into this fixed location. The privileged instructions are all
input/output instructions and anything that might halt the machine (which includes not only the explicit halt
instructions but a whole lot of other instructions that are illegal for one reason or another). There are a lot of
undefined opcodes in the 930. 

Then, there are a couple of new instructions. There’s an instruction for clearing interrupts called BRI, which 
is exactly equivalent to branch indirect except for its effect on the interrupt system. In the normal 930 any branch
indirect clears an interrupt, in fact, clears one interrupt level, so that if you have three interrupts hanging and you
are sitting in the top priority one you do a BRU indirect which clears the top priority interrupt and also leaves you
sitting back in the routine which is processing the interrupt of next lower priority. See figure 1. Because of the
fact that the system sometimes wants to execute BRU indirect without clearing an interrupt, we’ve added a special 
instruction (BRI); which specifically serves to clear an interrupt and otherwise acts like a BRU indirect. BRU
indirect then no longer clears interrupts. This is effective only in system mode, of course. Another change: the
EAX instruction (effective address to index) has been modified. This instruction in the 930 computes its own
effective address and puts it in the bottom 14 bits of the X register. Since EAX may be indexed or indirectly
addressed, and in the latter case the indirect word may again be indexed or indirectly addressed, the computation
involved may be non-trivial. 

Example: if X contains 1212 and memory is 

1000 LDA*         1400, 2 
2612 BRU  (12 + 12 + 12 = 1224) 

then EAX* 1000 will put 01224 in the bottom 14 bits of X. This is a very important instruction. It has been
slightly modified in system mode so that in addition to setting the address part of the index register to the
effective address, it will set the sign bit of the index register zero or one, depending on whether the effective
address was relabeled, was mapped or not. The mapping is simply determined by whether the sign bit is turned on
or not, in system mode. If the sign bit of the instruction is turned on mapping starts right away. If it’s not, the first 
level will be done without mapping but if you go indirect you may again have the possibility that the sign bit is
on, in which case mapping will start at that point. So, again, its not too easy to tell whether the final address is
mapped or not. Consequently it’s very nice to be able to find out without explicitly running down the chain
looking at all those sign bits, whether the address is mapped or not. And in order to accommodate this, in system
mode EAX changes the top bit of the index register to zero or one depending on whether the final effective



address is or is not mapped. The reason for this is that the way you normally use EAX is that a link has been put
into location 0, a subroutine link essentially, and what you do is you say EAX* 0. And what this does is it goes
out to 0 and in 0 there will be a link that was left by a POP. (See Fig. 2) Everyone knows about POPs? 

What the EAX is going to do is to go back and pick up the effective address of this POP, namely ABC, 2.,
with the intention of using that as an argument. You do the EAX first, and that gives you the effective address in
the X register and then in order to pick up the argument word all you have to do is say LDA 0, 2. In order to pick
up the second word of the argument you say LDA 1, 2 and so on. The difficulty is that if you are in system mode
and the address was mapped, then you must not say 0, 2 but you must turn a sign bit on, and say 0, 6; otherwise
you won’t get any mapping. So you have to know whether you have mapping or not so you can decide whether to 
say 0, 2 or 0, 6. And this is the reason for this little gimmick. In some cases you don’t have to worry about this 
problem, in particular, if the only thing a POP needs is the first word addressed: ABC, 2 itself and not any
subsequent words. Suppose you want to get that word into the A register. Just say LDA* 0, and that sends you
indirect to 0, indirect to 2216 and off to ABC, 2 and gets it to you right away. The mapping problem is taken care
of automatically, because when you go to 0 mapping is turned on because the sign bit is set. All right, so if you
want to use a single word then you can get it automatically with LDA indirect, because the mapping will be
turned on automatically by the convention that it gets turned on when you go indirect through a word that has a
sign bit set. But if you need, say, ABC+1, 2 (for instance if you were doing a floating point POP and were
addressing a floating point number which takes up two words), then you want to get the effective address in the X
register so that you can do LDA 0, 2 and LDA 1, 2 and get both words. But in that case you need to know about
the mapping. The only way you can avoid worrying about the mapping is to just assume that the POP came out of
user mode. Then you always turn the sign bit on in the instruction. Or you assume it came out of system mode and
you never turn it on, But if you want to have a POP that works both ways then you need this gimmick. The
chances are good that you will be adding some SYSPOPs. Basically the reason for this is that, for instance, when
you get something all set up and want to make a disk reference, the way you will probably do this is by executing
a SYSPOP. Why? In order to make that disk reference you have to look up in a table, which is going to be
permanently resident in core. 

It probably will be nice not to have that table in the user’s own relabeling. The only time you need to 
reference that table is in this one case when you are actually ready to make a disk reference. So this means that
probably the way you want to reference that table is by having a SYSPOP, so that when you are all set to
reference it you put the relevant things in the A and B registers or whatever and execute the SYSPOP. The
SYSPOP then, running in system mode, can reference the table by changing the relabeling or in some other way. 

Now, what else is there about instructions? Oh yes, overflow instructions. The two basic input-output 
instructions on the 930 are called EOM (which stands for Energize Output M. Why M, I don’t know) and SKS. 
What EOM does is essentially to send signals to all the I/O devices and other miscellaneous hardware. Somebody
is supposed to recognize the signal and say “That’s for me,” and turn itself on. SKS stands for Skip on Signal. It 
looks at lines coming in from the outside world and the address field selects one of these lines and skips or
doesn’t skip depending on whether the line is on or off, up or down. Normally, of course, these instructions are
privileged. However, in the normal 930 these instructions have one non-privileged use. Namely, they are used to 
turn off and to test the overflow indicator. It is necessary for the user to be able to do this. So, originally what we
did is we had a whole lot of complicated logic to say EOM is privileged but if it is an overflow EOM it’s all right, 
it’s not privileged. Well, this was very messy. So in order to straighten out the situation we added a new
instruction, opcode 22. I guess it doesn’t have a mnemonic of its own. It can have three or four different addresses
corresponding to the three or four different overflow instructions that used to be handled by EOM and SKS. This
instruction I guess even works in normal mode, although there is no particular reason to use it in normal mode. As
a result of this change we have been able to make all EOMs and SKSs privileged. 

The next thing is the interrupt system. The normal 930 has a priority interrupt scheme and perhaps it would be
helpful it I describe it very briefly since most people will never get to the section of the manual in which the
priority interrupt scheme is described. Priorities work like this. You buy them in bunches of two, and you can buy
lots, so there are lots of priority interrupts. They are numbered: 1, 2, 3 up to 872 which is the most you can get.
The idea is this. Each priority interrupt has a line from the outside world attached to it. And each priority interrupt
also has an address in memory, starting at 201, so the first one has address 201 and the second one 202, etc.
Signals can come in on these lines. And if a signal comes in—suppose just one signal comes in, on line 4—the 
effect is that at the end of the execution of the current instruction, whatever it is, the normal flow of execution will
be stopped and the computer will instead be forced to execute the instruction in location (203) since this is the



fourth interrupt. This instruction will normally be a BRM which will store the location counter and transfer
off to some subroutine which is designed to process the interrupt. When the interrupt is processed you return from
the subroutine with the BRI instruction that I discussed earlier, which will clear the interrupt. This much is
common to all interrupt schemes. The priority thing comes in the following way. Suppose that while I’m 
processing interrupt number 4 a signal comes in on interrupt number 2. Now 2 is regarded as being of higher
priority than 4, and what this means is that I want to execute 2 right away regardless of whether I’m executing 4 
or not. So 2, being higher priority than 4, is able to interrupt 4, so that even though I am processing an interrupt on
level 4 I am forced to execute the BRM at ,202. And at this point, when I am in the routine specified by the BRM
in 204, I have two interrupts going. Interrupt 4, which is not executing, just hangs. When I exit from 2 with a BRI
I go back and start executing 4 again.  

Q       Does it start all over again? 

A       No. It starts wherever it was. Say you execute the instruction at 202, which may be BRM 1202. What
happens is that it stores the location counter in 1202 and goes to 1202+1, where there will be instructions that
save the central registers: STA, STB, STX. After the routine at 1202 has run, it will restore everything with
LDA LDB LDX, and then it’s going to say okay now I’m finished, so how do I exit? I exit by saying BRI 
1202. Now BRI is exactly like BRU indirect. Remember? So what it does is to transfer off to the location
specified in 1202, but it is exactly what was in the program counter when we executed the BRM 1202. It was
exactly the location of the instruction which was about to be executed when the interrupt came along and said,
No stop, don’t do that:’ So the effect is that I go back and continue executing whatever I was doing when the 
interrupt came along without any disturbance at all, provided, of course, the interrupt routine saves the central
registers, It has to do that. The only thing the BRI does is to clear the highest priority interrupt. So I come
back now from interrupt level 2 to interrupt level 4, which is restarted automatically. Eventually 4 gets
finished, and then its BRI sends me back to whatever main non-interrupt program was executing.  

Q       Did you say that the central registers are not preserved? 

A       Not automatically, but every interrupt routine of course should preserve them, and if it doesn’t horrible things 
will happen. 

Q       It is never interrupted during the storing? 

A       It might be, it doesn’t matter. Suppose it’s interrupted after, doing STA. All right, that means some other 
routine will go off to do its operation, which presumably will preserve the central registers since it also has
storing and loading instructions in it. When it comes back this one will just proceed with its storing and
there’s no disturbance. Okay? An interrupt routine is supposed to be completely invisible to whatever it is
interrupting, and if it’s not that means it wasn’t written right. 

Now suppose on the other hand that I was in interrupt level 2 and interrupt 4 came along. Since 4 is lower
priority than 2 I do not want to stop executing 2 when 4 arrives. What happens is that 4 just sits there and hangs.
It’s an interrupt which is unfulfilled,—until 2 is finished. As soon as 2 is finished, 4, which has been hanging
there, immediately gets in, and starts to execute. 

Q       How many things can we have hanging? 

A       As many as you want. You can have them all hanging, waiting for number 1, okay? Naturally, because of this 
priority scheme, you want to make a great effort to keep the high level interrupts short because they hang all
the lower ones while they are going. It may be worthwhile to point out that above these priority interrupts
there are several built-in interrupts in the computer, the ones relating to the TMCCs (2 for each), the clock
interrupt and power fail. They are really in the priority scheme in the same way, differing only in their
numbering and the fact that they come with specific devices. You can think of them as just being higher
priority interrupts above 200. 

Q       The higher priority ones are in the middle there some place? 

A       Power fail is highest. Then comes the clock. Its location is 75. Then comes the W-buffer at 31 and 33, then 
other TMCC’s and DACC’s, then the regular priority interrupts. 

Q       There’s another priority in the channel? 

A       That’s right, each TMCC has two interrupts. The channels are higher than any of these 200s although you can



get this rewired. You can make it go any way you want. 

This is what you buy on an ordinary 930. There is one other little goodie you can get which allows you to say
for each one of these interrupts whether you want anyone to pay any attention when the interrupt arrives or not. If
you are paying attention the interrupts are said to be armed, and if you are not paying attention they are said to be
disarmed. We use that feature in a couple of places. In addition, the whole interrupt system can be enabled or
disabled. If it is disabled, any interrupt that comes in just sits there and waits. Disabled is sort of equivalent to
saying, “Some really high priority thing has come along that is more important than anybody else. “ When you 
reenable the interrupts, any that are waiting immediately start trying to get in and the highest priority one does. 

A       Is there any possibility of losing an interrupt? No. 

Q       Suppose I made a 201 and is it possible 204 could get in twice? 

A       Yes, that is possible. If you have an interrupt coming up frequently, yes. Definitely. 

Q       Is this a normal occurrence? 

A       Never. That’s an absolute disaster. You arrange that device which generates interrupts so that it doesn’t 
generate them at such a high frequency. You can build a device so that it never generates an interrupt more
often than every 5 milliseconds.  

Q       What if you disable the interrupts for 5 milliseconds’? 

A       Then you’re a fool, and you deserve to lose! You may disable for a short period of time because if an
interrupt comes in during this time you may get badly confused. Particular reasons for disabling, which will
show up when you look at the system itself, are that you may be operating (outside of any interrupt routine, in
the main program) and you may want to fiddle a table that also gets fiddled by an interrupt routine. If you get
interrupted in the middle of the fiddling process the interrupt routine will get very confused. So what you do
is to turn interrupts off for the fiddling time. It must not be very long or you are likely to get yourself into
serious trouble. 

Q       This means that a routine can’t cause the same interrupt it is processing? 

A       External devices cause interrupts. The program is not an external device. A program is a program. It cannot
generate an interrupt. 

Q       But an interrupt routine may have I/O instructions in it? 

It depends on what the interrupt is. It may, yes. But the routine can’t cause an interrupt. The only thing that 
the handling routine can do is fire the device up again. If the device is constructed so that immediately when it’s 
fired up it generates the same interrupt again, probably there will be a mess. If you have just fired the device up,
there is no point in its causing an interrupt. You already know that you fired up. The significance of an interrupt is
to tell you something you didn’t know. 

A       No it doesn’t disarm itself. I don’t understand why you think that it should. 

Q       You said if something is mechanically wrong it could be hung up in that interrupt for hours. Why? 

A       Because the interrupt keeps coming through. 

Q       Why would the interrupt keep coming through? 

A       Because it’s being generated each time. Each time you leave the handling routine you get the same interrupt
again. 

Q       Why do you get an interrupt? What generates that interrupt?  

A       If the device is malfunctioning so that it has its interrupt line all the time, then you can get into trouble. You
can get into trouble if you take a soldering iron and put it on top of the B register. If the hardware is not
working then you’re in trouble. 

Q       How is that handled? 

A       When the hardware is not working you call a service man to fix it. 

Q       How do you find out what’s wrong? 



A       You have a diagnostic routine to run around and check everything. And this is, by the way, one of the
significant problems of this system, because the diagnostic routines are not adequate. 

We have modified the interrupt system slightly, in that it used to possible to shut out interrupts when you
were sitting in certain kinds of loop, particularly if you were sitting in a loop of the form BRU* or BRX*. Also,
something of the following form: 

A LDA* B 
B ZRO* A 

could shut out interrupts. If the LDA is executed, then in following the indirection we go from A to B, from B
back to A, from A to B and it’s an infinite loop. This is obviously an error, but any user can w rite this. 

All three of these conditions in the 930 will tie up the interrupt system. All these things go so fast that they
never allow the machine to get into a state in which an interrupt can occur. And this is obviously disastrous, since
it means that the user, by making an indirect loop, which is not at all impossible, can hang the whole system
forever. Once he starts there is no way to get out of it because there is no way to get an interrupt in to stop it. So
that’s very, very bad and the way we correct this situation is by jiggling the insides of the machine so that there is
no sequence of two instructions which don’t allow an interrupt in the middle, with one exception, which is EOM.
Between every two instruction executions in the 940 it is possible to accept an interrupt. This means that the
longest amount of time you could have to wait before an interrupt gets in is the longest amount of time for the
longest executing instruction, which happens to be divide, which is 10 cycles, or 17.5 microseconds. So much for
that. 

Q       Is time-slicing handled with interrupts? 

A       As we go through the system properly we will see all these interrupts and how they are handled one at a time,
but it might be helpful to make a list, of the important ones anyway: there’s the clock, the W-buffer (which 
has two interrupts), the teletype interface, power fail, and the drum. There is also a link to a subsidiary
machine, the PDP-5. This is driven through the DMC and if you drive displays through the DMC you will get 
an interrupt similar to this one. That’s all. 

Q       What about tapes, printer, etc.? 

A       They all go through the W-buffer. 

Besides interrupts there are also traps. Traps are caused by illegal (privileged) instructions, memory violations
(which we will discuss below), read only violations and something called the user mode trap. Those are the four
traps. We will discuss them all in detail later on. Overflow is not a trap. 

Overflow just occurs and sets an indicator which you have to look at. That’s an obsolete way of handling 
overflow, but that’s the way it’s handled in the 930, the 930 being more or less an obsolete machine.



Memory 
We have quite a lot of things associated with the memory and will start with the things in the bussing

hardware, which are less important. A 940 system always has at least two memory boxes. A memory box is some 
number of words of memory (4000, 8000, or 16000). Its significant property is that it operates independently of
all other memory boxes. This means you can have memory references going on in two separate memory boxes at
the same time. The CPU can’t have memory references going in two separate boxes because it needs to finish the
first reference before it can start the second one. But you could have one box being run by the CPU and one run
by the channel, for instance. For convenience, we’ll talk about a 32K machine which has two 16K memory boxes.
Normally the way things are arranged is with addresses zero to 37777 in one box and 40, 000 to 77777 in the
other. 

We have modified this arrangement in the following way: all even addresses are in one box and all odd
addresses are in the other box. This is called interleaving. The reason for this is the following: when you run I/O
at very high speed, and particularly when you run our core speed drum, it transfers information in blocks and this
means that if the drum starts to run out of this box, starts at location 4000 and wants to transfer from 4000 to 8000
say, it will take every memory cycle if it’s running at core speed, which means that nobody else will be able to get 
a cycle if you’re using the non-interleaved scheme. 

When the drum starts to run out of one box it will lock the CPU out of this box because it has priority and has
to get every cycle. It locks the CPU out of this box for 2000 memory cycles while it does the transfer. And that’s 
very bad, because it means the system can’t run at all, no interrupts can be processed, nothing. The CPU is
completely hung. If you have interleaving, on the other hand, the drum will take one reference out of the first box,
then one out of the second, t hen one out of the first, etc. , which means that the CPU can run at 50% of its normal
speed at least. Probably it will be better than that. Interleaving is very simple to implement. Suppose we have a
short address, six bits, a 64 word memory (See Fig. 3). You have address lines coming to the memory, the low
order bit on the right. As the address lines come out of the computer they go into the memory. The usual way to
arrange it is that they go straight into the memory. All you have to do to get interleaving is to interchange the low
order and high order lines. This means that it will be even or odd that decides what the first bit is going to be on
the lines coming into the memory. So where before it was the high order bit which decided which module you get,
now it’s the low order bit, which decides which module you are going to get. So it’s completely trivial. 

The second change in the memory itself is a little more subtle. Suppose we have the two modules and two
devices going. We have a CPU, which is generating memory references in some random way to the two modules,
and we also have the channels, say the RAD channel, which is also generating memory references. Now the RAD
is a synchronous device and every four memory cycles it generates a word while it’s running. If the word isn’t 
disposed of by the time the next word comes along, a disaster has occurred, because the word is lost. The RAD
has a buffer which sits there holding the word, and somewhere else the next word is being assembled. When the
next word is finished being assembled it comes into the buffer, because there is no room for it anywhere else, and
this means the first word has to be emptied out of the buffer by the time the second word comes along. The easiest
way to handle this problem is to say that the RAD has to have priority sometimes, so we’ll give it top priority all 
the time. When it asks for this memory module we’ll give it this memory module and during the first cycle I 
guarantee the word will be out of the RAD buffer as fast as possible. Now this has the following disadvantage: if
the CPU is asking for this box at the same time as the RAD, the CPU will get hung for one cycle while the RAD
is looking at the box. This is interference. In this particular case, with two modules and the RAD getting one cycle
out of four, there will be interference 1/8th of the time, so you get 12% degradation in CPU performance, simply
due to the fact that 12% of the time when the CPU wants a memory cycle it has to wait 

However, this analysis ignores an important point, namely, that when the RAD generates a memory request, it
can wait for three cycles because another word is not going to come along for four memory cycles. So when it
says, “I want memory, “ what it really means is, I’ve got to have one of the next four cycles, but I don’t care 
which one it is, just as long as I have one of those four cycles.” Each device using the memory sends it address 
lines and data lines, and a priority line or request line which says, “I want the memory”. 

Built in somewhere is a gadget that settles ties on the basis of built-in priorities for the various lines. What 
you do is to make the priority line for the RAD a little bit more complicated: you use two lines instead of one.
This means that the RAD can say either, “I want the memory with high priority, “ or, “I want it with low priority”. 



High priority means mine is higher than anybody else and low priority means mine is lower than lots of
people, anyway, lower than the CPU. So what the RAD does is to ask for the memory with low priority on the
first three cycles. If the CPU wants it the RAD has to wait. On the fourth cycle it asks for high priority, because
there’s another word coming along pretty soon. If the CPU still wants the same module after three cycles, it will
be hung on the fourth. In fact, the CPU almost never references the same module four times, because instructions,
for one thing, go in alternating modules because of the interleaving. Furthermore, if you take random instructions
and random addresses, it is 50-50 that the address will be in a different module than the instruction. So the chance
of the CPU wanting the same module four times in a row is less than 1%. This means that you effectively reduce
the RAD’s interference with the CPU from 12% to zero at the cost of putting in this very simple priority device. 

Q       How does the RAD buffering really work? 

A       There’s a buffer which holds the assembled word and this is the buffer that is connected directly with the 
memory. Then there is another buffer in which the RAD is assembling a word, six bits at a time, as it comes
off the disk. In this buffer there are control signals telling where to put the next six bits, and when the fourth
set of six bits is coming along that is the critical time. Probably, you can take one of those control signals
right off and use it for the priority lines. And this a $500 modification. Mel invented this, he told Schmidt
about it, and Schmidt asked SDS about it. They said they didn’t know anything about it and Schmidt went 
through the roof. So he made a tremendous row and got SDS to put it in. 

So much for the modifications to the memory. The other thing about the memory is the relabeling, and that’s 
complicated. We will discuss it in some detail. Built into the system are 8 six bit registers which we usually draw
like this. (see fig. 4) These are 48 flip flops. Each one of these six bit registers, which ‘e number zero to seven, is 
divided up into a five bit field and a one bit field, called A and R. When the computer addresses memory, it does
so by generating a 14 bit address field. It goes through all kinds of gyrations: direct and indirect addressing,
indexing, anything it wants, to generate these 14 bits. When it’s all finished it has the 14 bits which are the 
effective address and it ships them out to the memory 

In between is the relabeling box, or the map. These terms are synonymous. The function of the map to make
some kind of transformation on these 14 address lines and ship out some new address lines to the memory. In fact,
there are 14 lines coming in here, 14 bits of address, enough for 16K. We have 65K of real core, so 16 lines have
to come out of the map. Now the question is, how does this map work? It takes these 14 bits that come in and
does some transformation and ships out 16 bits. It could be any transformation. You could run the bits through a
random number generator and you could produce 16 new bits but that probably wouldn’t be good. You could add 
50 to the address. That wouldn’t be too good either because you could have done that in the computer already. 

Q       Is the 930 memory extension register involved? 

A       Memory extension has nothing to do with this scheme and is never used. What this box does is the following:
it takes a14 bit address and divides It up into eleven bits and three. The latter is called the page number P and
the former the word address W. Pages are called blocks too. So eleven bits are shipped off to the side for the
moment and we don’t worry about them. The top three bits of P give us some number from zero to 7. We use
this number to select one of the 8 relabeling registers over here. We take the A field out of the appropriate
register. Now we are going to make a new address which we are going to get by keeping the W field and
gluing on the front of it A., which is the five bit field. we get from the relabeling register. The situation we
have is a transformation yielding 11 bits of W field and 5 bits of A field, or a 16 bit address. We got these 5
bits of A field by using the 3 bit P field to select one of 8 relabeling registers. So we now have a 16 bit
address, and this is the address we feed to the memory. 

The significance of this is that there are 8 pages in the memory that the user can address, and we can make an
arbitrary transformation, we can say that each individual one of these 8 pages is going to some page of the
physical memory. In physical memory there are 32 pages of 2K each. In addressable memory, virtual memory we
call it, there are 8 pages. These 8 registers define the relationship between the 8 pages of virtual memory and
some combination of pages of real memory. 

Now, there are a couple of little points. If the A field is zero and the R field is 1, then that is regarded as an
error. The hardware generates a memory trap. That’s one of the four traps explained above. The second kind of
trap was for memory violations. And the way you get a memory violation trap is to go through a relabeling
register with 40 in it. That’s an error. 



The R field is used in the following way. When the CPU ships out the address, it also ships a signal which
says, “This is a load”, or, “This is a store”. And if it is a store and the R bit is on, that causes a read only trap.
Thus, the R bit is turned on in each page which you want to protect from being changed. Whenever a relabeled
memory reference for a store is generated and the R bit in the corresponding relabeling register is on, that causes a
read only trap, which again goes off to a special place in the system. So this means that when you set up the
relabeling, you can define for each virtual page whether it is protected from storing. 

Note that real page zero cannot be made read-only, since 40 (100 000?) is interpreted as an error at all times. 
This particular convention is at variance with all the rest of the rules. So the number 40 is interpreted in a special
way. Zero is interpreted in the normal way, as referring to real page zero. 

For the pages of virtual memory that are unassigned the monitor will put 40 in the corresponding relabeling
register. There is no reason why you should have 16, 000 words of memory assigned to you if your program
doesn’t use 16, 000 words. It’s a big waste of real memory. You should have only as much memory assigned to 
you as you need. So what the system does is to assign as much memory as it thinks you need ( exactly what this is
will be discussed later). It will put 40 in all the other relabeling registers. Relabeling register, there will be a trap
generated by the hardware. The trap goes off to a specific routine in the system, and this routine will try to figure
out what to do, whether that really is an error or whether it should assign you some more memory. 

Q       If I put a zero in one of the relabeling registers is or is not that an error? 

A       No, that means that virtual page will correspond to real page zero. 

Q       I want to protect users from violating the monitor? 

A       Then I just never put zero in the user’s relabeling. 

Q       Is the user free to change it on his own? 

A       He can change his pseudo relabeling, and when he does we check to see that he is doing it legally. When we 
discuss pseudo-relabeling, which we will do in great detail, you will see exactly what the restrictions are and
how he can change this relabeling and what the relationship is between pseudo-relabeling and real relabeling. 
It is completely impossible for the user to ever get real block zero in his real relabeling. 

Q       How does he alter the monitor? 

A       Only by making a very special system call which causes very special things to happen. This machine has two 
instructions called POT and PIN (parallel output and parallel input). If you say POT OUTLOC it finds
location OUTLOC and takes the 24 bits from there and puts them out on 24 lines and that’s all it does. What 
happens to the 24 lines is someone else’s responsibility. PIN likewise looks at the 24 lines and sticks them in
the memory word addressed. What happens to these 24 lines after a POT is determined by what you do
immediately before the POT, and what you normally do immediately before the POT is an EOM. So before
the POT you specify the destination with an EOM. The EOM will have an address field which will be
interpreted by the hardware to set some flip flops, which will decide what happens to the information
provided by the POT. 

In particular there are two EOMs for setting relabeling register one and relabeling register two (relabeling
register one being the first four of the six bit relabeling registers and relabeling register two being the second
four). The way you set the relabeling registers is to say EOM 20400B; POT RR1; EOM 21000B; POT RR2,
and the contents of RR1 and RR2 will be used to set the relabeling. There is no way of reading the relabeling
registers; you are just supposed to remember what you put in them. 

Q       You said if you put 40 in a relabeling register you got a memory violation when you address it. How did you 
get that? 

A       When you do this POT, you are outputting a certain memory word which you address. So you put into that 
memory word whatever you want to have in the relabeling registers. 

Q       This is done by the system. 

A       Yes. The system sometimes sets up the relabeling with 40 in some of the relabeling registers. 

Q       Why? 



A       Because it doesn’t want you to have 16K of memory. If you have a 4K program it’s ridiculous to assign you 
16K of memory because this takes up 16K of valuable cores. 

Q       Just clear up one point. You never give the EOM and POT instructions to set the relabeling registers? 

A       Who’s “you”? 

Q       The user. 

A       The user can’t give an EOM—it’s privileged. Only the system sets the hardware relabeling. The next
question is we have all this glorious machinery, but when it it used? The answer is this: all memory references
generated by a program running in user mode are relabeled. Addresses generated by a program running in
system mode are not relabeled. However, if the instruction has the sign hit set then the address normally will
be relabeled. Furthermore, if the instruction goes indirect through a word that has the sign bit set addressing
will become relabeled from that point on. In the assembly language setting of the sign bit is indicated by a , 4:
LDA 0, 4. The thing following the comma is the number which tells what is supposed to go in the top three
bits of the instruction word. 0, 2 mean indexing, 0, 4 relabeling (in system mode only). You could write 0, 6,
which would be both. You can also set the third bit with 0, I, but that is the POP bit and you normally don’t 
set it this way, but with the opcode. 

Q       There was something about the sign bit indicating relocation in the 930 manual? 

A       The significance of that is that the standard 930 loader interprets that top bit as determining whether or not to
relocate the address. It’s strictly a software function. We do not use it that way. This is the explanation of how
you get relabeling in system mode. The sign bit of the instruction is set, or the sign bit of some word in the
indirect chain is set and soon as you see the sign bit on you switch over to relabeled addressing. In the indirect
chain you continue to relabel all the addresses after this point. 

Q       Why isn’t it possible for the system, the assembler, to set that bit for you? 

A       The assembler doesn’t know what you mean. If I am writing a system mode program, there is a definite 
difference between writing ABC and writing ABC, 4. And the assembler has no way of figuring out which
one I meant. 

Q       The assembler could do something like this: when the program exceeds the page then all references— 

A       That has nothing to do with it. The significance of the bit is whether the system wants to look in the user’s 
memory. For instance, when a SYSPOP is executed and you come out to the part of the system that is
executing the SYSPOP, you will have to look back into the user’s memory for the address of the argument of 
the SYSPOP. This will be done by invoking relabeling. That’s why we have this rule about indirection and 
sign bits which we discussed earlier when I was talking about EAX. When you do a SYSPOP the hardware
sets location zero to contain the address of the SYSPOP and turns the indirect bit on. If the call came out of
user mode it turns the sign bit on also. The same thing is true, by the way, of BRM. When BRM stores that
link in system mode (for instance after an interrupt) it stores one or zero in the sign bit depending on whether
it came out of user mode or not. So there is always this convention that an address which is relabeled has the
sign bit on; a full word which contains a relabeled address has the sign bit on. This means that whenever I
indirect through that word I automatically get relabeling activated without saying specifically that I want it.
This is very nice. You don’t have to think in the program about whether relabeling is being activated or not. 

Q       Do I have to set the sign bit in user mode? 

A       In user mode everything is always relabeled. No, it would be disastrous if the user addressed anything 
absolute. 

Q       What happens if I set the sign bit in user mode? Does it matter? 

A       No, it has no effect in a regular instruction. If the POP bit is set, then it becomes a SYSPOP. In user mode if 
you execute a POP with the sign bit on, that is the signal that says “ This is a SYSPOP , go to system mode”. 
Normally if you execute a POP in user mode everything is done in the normal way: you put the link in user
location zero and you transfer to user location 100 plus the address of the POP. If you put the sign bit on, this
is a signal that says SYSPOP, put the link in absolute location zero and transfer to absolute location 100 plus
the address. In those 64 words the system will put 64 links, 64 addresses which branch off to the 64 routines



which are handling the 64 SYSPOPs. From there on it will do whatever it sees fit. 

So the sign bit has two functions. The first thing it’s used for is to indicate relabeling in system mode. The
second thing it’s used for is to indicate a SYSPOP in user mode. The third thing this bit is used for, which is
really an adjunct of the first thing, is this: if I’m in system mode and I do any kind of transfer to a relabeled 
address, I automatically go into user mode. Suppose the user has executed a SYSPOP, which means that the
link has been put into location 0. I start executing the SYSPOP, the SYSPOP goes cruising along and
executes and finally it finishes and wants to return. The way a POP normally returns is with BRR 0 which
means transfer to the address given in 0 plus one, which is exactly what you want. So the SYSPOP does BRR
0. Now what happens? The BRR goes off to 0 and it says “I’m supposed to go to this address plus one”, so it 
figures that out. Then it looks at the sign bit and it says, “Is that address relabeled or not?” 

If it’s not relabeled, if the SYSPOP was called out of system mode it just goes off to the absolute address that 
was specified. If the SYSPOP was called out of user mode, then it will go back to user mode automatically,
because a transfer to a relabeled address sends you back into user mode. This means that the SYSPOP returns
immediately into user mode without any disturbance,, , with having to say explicitly to the hardware, “I want 
to go back to user mode. “ Everything is taken care of by this bit being on or off. A system mode routine can
also go into user mode explicitly, as it were, by writing BRU*+1, 4. 

Q       Where does the POP find the sign bit? 

A       The sign bit can be anywhere along the chain of words you go through to get the address. So that, in
particular, it can be in the instruction itself. For instance, I can do BRU AC, 4. The sign bit means that I will
take ABC as relabeled and when I transfer to ABC I will go into user mode. If I do BRR 0 and 0 contains an
address with the sign bit set, then the 0 will be taken as an absolute 0 since I’m in system mode and I go to 
absolute 0, BRR is similar to indirect addressing—so  it works the same as BRU indirect. The only difference 
from BRU indirect is that it adds one to the address. So I go to this word, (0) which is absolute, and I say
“Aha, I am still running down the chain”, so I have to add one to the address in O. Now I have to look to see
if the next step is to be relabeled or not. The sign bit in 0 being on means that I’m now relabeled. 

Q       So the address that you go to has the sign bit? 

A       The word containing the address has the sign bit. I called a SYSPOP. It’s definitely not necessary for the 
word I return to have the sign bit on. That has nothing to do with it. The word that has the sign bit on is
absolute. 

Q       You have your BRR indirect or whatever you have. It picks up the address and where the address is is where 
the sign bit is to be on? 

A       That depends. If it goes indirect the sign bit is anywhere in the addressing chain. It could be set in the
instruction. That is not the way it usually is, but it doesn’t matter how it usually is. The point is to understand 
what the hardware does. It is not helpful to try to understand what it usually does, because then if it does
something unusual you’ll foul up. What the hardware does is to look at the sign bits of all the words involved 
in the addressing chain, starting with the instruction and working down as many levels as is indicated by
whatever the instruction says and whatever indirect bits may be on. Anytime during this chain when it finds
the sign bit set, it switches to relabeled mode. When it’s all finished if it winds up in relabeled mode and if it’s 
a transfer instruction, then it transfers to user mode a t the time it does the transfer. 

Q       How does it know when it’s a transfer? 

A       Because if it’s BRU it says transfer. The transfer instructions are BRU, BRM, BRI, BRR. 

To summarize the action of relabeling, there are 8 six bit relabeling registers, customarily drawn as in fig. 4.
When I generate a relabeled address and the hardware ships it out to the memory, it ships it out along with a
line that says relabel this before you send it to the memory. That means it goes through the relabeling box.
What the relabeling box does is to separate the top 3 bits from the bottom 11 bits—11 plus 3 equals 14—take 
the 3 bits and use them to look up one of the 8 six bit relabeling registers. It takes the bottom 5 bits of those 6
bits and glues them on the front of the 11 bits, getting a 16 bit address. And this is the address it uses to
reference absolute, real memory. This means that these 8 registers can be regarded as defining a map. They
are explicit tabular definition of the map from the integers 0 through 7 to the integers 0 through 63. In this
way each of the user’s virtual pages which he can address with 16K of address space is associated with one of 



the 32 pages which exist in the real memory. This association is completely arbitrary. The fact that virtual
page 0 is associated with real page 23 has no connection with the lac* that virtual page 1 is associated with
real page 14 and that virtual page 2 is said to be illegal because 40 is in the relabeling register. Each one of the
8 pages operates completely independently of all the others. 

Q       You’ve got 5 there, 5 bits gives you 32 pages, each 2K long, so you have 32 chunks of 2K each and 2K 
address portion is the 11 bits, the real page number itself is 5 bits, the page number is the 3 bits which give
you 16K? 

A       Of virtual memory, right. Which is translated into 65 K of real memory. 

Q       The map is set up on a dynamic basis by the system itself? 

A       Correct. When the system finds a particular user it figures out from its tables which blocks of memory it has 
put the user’s program in and sets up the relabeling so that the user will see what he expects to see, regardless
of how much convolution has been going on in the memory since the last time the user was around. You see,
horrible things can happen, the user gets dismissed, he gets swapped out, lots of people come in and out and a
long time later he comes in and he is just not anywhere like the same place in memory that he was in before. 

Q       Also the program can be non-contiguous? 

A       Right. Obviously, there is no relationship between one page and the next. 

Q       It is non-contiguous as far as pages are concerned but it is also non-contiguous as far as memory banks is 
concerned? 

A       The memory banks are interleaved. Nobody sees that except way, way down in the hardware. It is even
possible to give two virtual pages to the same real page. You can do anything. What I’m trying to explain is 
the hardware, and you should understand it well enough so that you can understand all the things that can be
done with it regardless of whether they are reasonable or not. It’s hard to tell beforehand which ones are 
reasonable and which ones aren’t. If you understand the hardware then you will be able to figure out any
application regardless of whether it initially seems reasonable or not. If you try to understand it on the basis of
what you want to do now, then you are just going to get confused when you find somebody doing something
that is not what you originally had in mind. The hardware doesn’t care what you want to do. It says, “You 
give me certain bits and I’ll do certain things.” It’s very well defined and not too complicated and the most
important thing is to understand exactly what it is the hardware is doing in terms of bits received and bits
transmitted. 

Q       How long does relabeling take? 

A       It takes 20 nanoseconds but that’s slack. It’s 20 nanoseconds being wasted in the 930. In fact, there’s a lot 
more than 20 nanoseconds being wasted in the 930 at the moment. Relabeling is a trivial operation, a table
lookup, and you can do it very fast. There is no logic required and you are not comparing anything with
anything else, or doing anything the least bit complex. 

Q       How long does it take to set the register, about 7 microseconds? 

A       To do a POT takes 3 cycles, so the EOM plus POT takes 4 cycles. There is one more thing to be brought up 
which is a minor extension of what we already have. In addition to these 8 relabeling registers there are 2
more which are regarded as being part of another full word in which the other 2 registers don’t exist. This is 
called the monitor relabeling, the monitor map. The significance is the following: normally when the monitor 
addresses memory, if it has not been relabeled, it gets absolute memory. If the monitor addresses location
4720 it will get absolute location 4720 in the real absolute memory. We have put in the following little
gimmick, however: if the monitor addresses something in the top 2 pages of its absolute addressing space,
that is, if it addresses anything above 30, 000, it will be mapped automatically even though relabeling wasn’t 
specified, and it’s mapped through these additional registers. The reason for that is that the monitor can refer 
to memory which is neither absolute nor part of the user’s current relabeling without having to change the 
user’s current relabeling. For instance, the way these registers are used is that the top block is always defined
to be the temporary storage block for the current user, which means the monitor can get at the information in
the temporary storage block for the current user without having to do any relabeling twiddling. You can’t do 
that absolute, because that block is swapped like everything else. The way we used to handle this problem is
that the monitor would have to explicitly change the relabeling. We had to get a word which has the



relabeling for the temporary storage block, POT it out into one of the two regular relabeling words, and then fix
that back up before going back to the user. But that was most unsatisfactory and this is much better. 

Q       Is that the zero page in the user’s core? 

A       No, the temporary storage block is something the user himself never sees. It’s block in which the system 
keeps the information about the user which it needs, as well as the drum buffers. The user never has access to
that block. It’s a disaster if he gets access to it. It’s almost as bad as getting access to the system proper
because all kinds of pointers and things are there—the system, for instance, keeps in that block information
about what the user’s relabeling is, and a lot of other information like that. That block is sacred. 

Q       Another thing I don’t understand. You say the top 2 pages of the monitor itself are mapped, above 30, 000. If 
the monitor operates like a user, how does it have more than 16K? 

A       30,000 octal. Addresses are always in octal. Sizes of things are often in decimal but addresses are always in
octal. 

Q       Will you tell us exactly what goes into that monitor map? 

A       I’m talking about the hardware. You can put anything in it you want. These are two registers which operate
exactly the same way as the 8 user mode relabeling registers. The only thing is that what invokes them is a
little bit different. In particular, the way the hardware works, of course, it that it looks at an address coming
out from the monitor. The address is again divided up 3 and 11. We want to map the top 2 pages. That means
that we want to say, “If these 2 bits are one, then we are in the top 2 pages. Use the next bit to select a monitor 
relabeling register.” Instead of using all 3 bits to select one of 8 registers, the way it does in user mode, it only 
activates relabeling if the top two bits are ones, and uses the third bit to select one of the two registers. 

Q       What about the extension registers? 

A       They’re not useful. They’re much too difficult to handle and they can only address 32K and generally they’re 
not—they’re just very inflexible and confusing and not at all nice. 

By the way, the monitor registers don’t have read only capability. That’s not a fact of any great significance, 
because the monitor, which is the only person using them, is supposed to know whether it should clobber the
system or not. 

There’s one more thing to cover under modifications to the hardware. There were four traps which we listed
earlier, and we discussed three of them—illegal instruction, memory violation, and read only traps. There is
one more trap, which is called the user mode trap, and its significance is that if it is on (it can be turned on or
off by an EOM), whenever a transition occurs to user mode by way of a branch to a relabeled address (that’s 
the only way you can get a transition to user mode) the branch will be suppressed and the trap will occur
instead. 

Q       What was that again? 

A       The user mode trap can be turned on or off, and when it’s on whenever a transition occurs into user mode, 
which happens by way of a branch to a relabeled address, the transfer will be suppressed and the trap will
occur instead. 

Q       What is it for? 

A       If the clock interrupt occurs which says the user should be dismissed and you are in the middle of a SYSPOP
of some kind you can’t dismiss him right away because you may leave the system in a bad state. You have to
wait until the system is finished and goes back to user mode. In user mode you can dismiss him at any time,
but you can’t necessarily dismiss him in system mode because the system may be doing something, and the 
clock interrupt routine doesn’t particularly know what the system is doing. What this means is that when the
clock interrupts and figures out that it should dismiss the user, it looks to see whether it came out of system
mode or not, which it can do so by looking at the sign bit of the address stored by the BRM. If it came out of
user mode it dismisses him right away and if it came out of system mode it turns on the user mode trap. This
means that when the system finishes whatever it was doing and goes back into user mode, a trap will occur
and at that point the user will be dismissed. This sounds trivial, but it actually turned out to be quite
important. The way we were handling this problem before is that the clock would set a flag, and practically
every single exit from the system into user mode would check this flag, which was a damn nuisance,



somewhat wasteful of time and very inconvenient. 

Q       Does this guarantee a certain number of microseconds of processing time? 

A       That is not the idea. The system can continue in system mode as long as it wants. Unless there is a bug in it, it 
is controlled and it doesn’t stay in system mode for very long. That covers the modifications fairly
exhaustively. These things are all described in the paper which is referenced in the outline. Some of them
aren’t; the user mode trap and the monitor map were added since this paper was written, but most of the
things are described and many of them in some detail. 

We ought to conclude by describing the unusual pieces of hardware that are attached to the system. Interrupt
arming we already discussed. The clock is very simple, it’s a device which 60 times a second generates an 
interrupt, a very high priority interrupt, higher than anything except power fail. 60 times a second you get this
interrupt. What you do with it is up to you. 

Q       Doesn’t the system keep track of it? 

A       The system keeps track of lots of things. It increments various counters, and decides whether it should
dismiss people and one thing and another. But we will do that all in detail when we look at the system proper.
We are looking at the hardware at the moment. 

Q       There’s only one clock? 

A       There’s one clock. Right. It generates an interrupt 60 times a second. Every time an interrupt occurs the 
system does something. Usually it just increments or decrements a counter. Under some circumstances it will
do more things. 

There’s the teletype interface, which is a box called the CTE 11 which is provided by SDS. Its characteristics
are roughly the following: a lot of wires come into it. Something is on the end of these wires and this
something has to have certain properties; it sends things down these wires in the certain way. If it sends
10,000 volts down the wires it will blow up the teletype interface, so it’s got to do something reasonable! It 
doesn’t have to be a teletype; it just has to be something that looks like a teletype. On the other side is the
computer. There are the following connections: 24 lines, the POT-PIN lines, and there’s an interrupt line, or 
two interrupt lines. Whenever a character comes from the teletype, the teletype interface generates an
interrupt. The computer in processing this interrupt does a PIN which reads 24 bits from the teletype, from the
POT-PIN lines. These 24 bits contain two pieces of information: the number of the channel on which the 
character was input and the character itself, 8 bits o character. 

Q       There are eleven bits per character? 

A       Three bits are not part of the code, but are used for synchronization. Eight bits are the code. On output the
CPU does a POT out to the teletype in which it specifies a teletype number and a character to be output. This
character goes and sits in a buffer in the interface, and the interface does what’s necessary to output it. When 
the output is finished, after 100 milliseconds, there is a little timer, which causes the interface to generate an
output interrupt. The CPU can do a PIN and find out which teletype is responsible for the output interrupt.
The significance of the output interrupt is “I’ve finished outputting that character. You can give me another 
character if you want”. In this way the CPU can read input from the teletype interface and send output to the 
teletype interface. In both cases the teletype number as well as the character involved is sent. 

There are two interrupts which the teletype system generates, one to say “I’ve got a character ready for you to 
read”, and the other to say, “I finished outputting what you told me to output and I’m ready to output 
something else.” Individual channels on the teletype interface operate, from the computer’s point of view, 
complete independently. Any interrupt may come from any of the channels and the fact that output is going
on in another one. Those are the essential characteristics of the teletype interface hardware. 

Q       Do you have an interrupt for each teletype? 

A       No, two interrupts in all. It’s because there is only one interrupt for input and one for output that you have to
provide the teletype number in the POT-PIN operation. This is obviously better because with 64 teletype it is
ridiculous to have 128 interrupts. 

Q       Why is it that it works on a character basis than on a double character basis, for instance? 



A       Because you don’t want to work that way. You want everything character by character. That’s one reason. 
Another reason is that if you work on a double character basis, you have to twice as much buffering in the
interface. The buffering represents about 2/3rds of the cost of the teletype interface, and it would be expensive
to have more. If the interface has to collect—for instance, if you use the double character scheme for output—
you ship two characters instead of one to the interface—the interface has to have storage for those two 
characters instead of for just one. 

Q       Doesn’t it have 24 bits for the 24 lines? 

A       Oh, no that’s quite different, there’s no 24 flip flops there. 
The way these lines are set up is this: a lot of them are 
always zero, the ones in the middle. The 8 lines for the 
character come from a character buffer, and the lines for the 
tty number come from some unary to binary decoder which 
sees line such and such and encodes it into binary. When you do the POT you send out 24 lines, 24 bits.
When you PIN you read in 24 bits. Those 24 bits contain a character over on the left-hand side, the teletype 
number on the right-hand side and zeros in the middle. 

That’s the hardware. What you can do as a user is very involved and is one of the things we will spend quite a 
bit of time on. There’s a lot of machinery associated with making the teletypes work the way the user wants them
to work. 

There’s one more piece of significant hardware and that is the drum or RAD and I will probably call it drum
most of the time. This is primarily a swapping device. It operates at half core speed, full core speed, or one-
quarter speed depending on what it is. The RAD operates at quarter core speed, and it runs over a special direct
access to memory channel (DACC). Normally it is run with blocks of reasonable size, either 2000 words at a clip
or 256 words at a clip, depending on whether it is being used for swapping or for file storage. Physically I believe
the RAD can operate on units as small as 64 words. It is basically like any other I/O device with one exception.
The channel has a little gimmick in it called the channel map. Memory is divided up into 2000 word pages, so that
in the user’s relabeled memory absolute address 13777 may be right next to absolute 50000, because the pages are 
completely independent. If the user says, “I want output from 3700 to 4300, one 256 word block, this is normally 
read or written from one 256 word block on the RAD. The RAD channel works on absolute memory addresses,
not on relabeled addresses, and this means a serious problem here, because this 250 word block is not a single
block in absolute memory. If we start at 13700 and end at 50277 there is no way to tell the channel that we really
want 13700 to 13777 and 50000 to 50277. The way the situation is corrected is the channel has a small map in it
which essentially allows it to say, “When I cross the page boundary, I can switch from absolute addressing to 
addressing through the map, which allows me to get a different
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The Scheduler 
The scheduler is what decides when programs get run, when they don’t get run, what happens when they have 

to wait for I/O, what happens if they compute for too long, etc. ‘The relevant section of the working document is 
section 2. The relevant section of the listing is the huge package called SPAC. PAC stands for “program active”, 
and this section of the listings contains a large amount of code. It contains the scheduler code at the beginning
where it says “Scheduler” in the comment, and then it contains a lot of code associated with forks and a lot of
code associated with the swapper, which we will have occasion to discuss later. 

The idea is the following: there are these things in the system called processes. They are sometimes also
called forks. In fact, they are always called forks in the working document. I will probably call them both. A
process is a collection of information which suffices to allow a program to be executed. Looking at it in another
way it is an entity which can execute instructions. The way a process is defined is this: suppose a process has been
set running by some mystical process and we want to stop it. A process is defined by all the things we must save
when we stop it if we are to start it up again in such a way that it will not know it has been stopped. What
are ,these things? First of all, there is the map. Then there are the central registers, the A, B & X registers and the
program counter. Besides that there is some kind of status information which says why we stopped it and when
we should restart it. In actual fact there are some other things that are used to define a process besides these which
have to do with other features of the system. These will be discussed later on. 

All this information for each process is kept in a table called the PAC table or program active table, which
you will find in the working document immediately following page 2-1. 

Q       Is there one of these for every active process? 

A       There is one of PAC table entry for every process, every active program, every fork, every whatever you
want to call it. And it is this entry which essentially defines the program. If you have one of these you have a
process and you can run it. If you don’t have one of these you have nothing. That’s what an active program is 
and these active programs are the things with which the scheduler deals. Each one of them, as I have said, is
defined by a PAC table entry and is identified to the scheduler by its index in the PAC table, which is a
negative number called PACPTR, a number which you will find occurring throughout the system. The
significance of PACPTR is the following: that there is a bunch of symbols in the system called PX, PL, PB,
etc. , etc. which you find running down the left hand side of the page 2A, and if you write something like this 

LDA PL, 2 

and you have PACPTR in X, you will then get PL word for that particular program, for the program identified
by PACPTR. 

Now the meaning of this from the point of view of the PAC table is the following: if the PAC table is a
section of core, PL, PB, etc. are symbols whose values are addresses at the end of this section, and PACPTR
is always negative. The first program in PAC is the one in the earliest core locations and has the biggest
negative PACPTR. The smallest negative pack pointer is -12, since a PAC entry has 12 words. The size of 
PAC is a parameter; it is defined in MSYMS. Why the PACPTR is negative I’m not exactly sure, but we are 
now irrevocably committed to its being negative because there are lots of places where we do SKN. 

PACPTR is the handle on the program and whatever you do with this active program, whether it’s running or 
whether it’s sitting on some queue somewhere waiting for this or that it is always identified by this number. If 
you ever get an entry in the PAC table which has no PACPTR pointing to it, then that entry is lost for good;
you’ll never find it again. The next question is the following: suppose we have an active program—suppose 
we have lots of active programs—we have the following obvious problem. We can’t run them all at once, 
since we have only one CPU, so we have to run them one at a time. This means that first of all we have to be
able to start them up and stop them. Secondly, we have to have some sort of rule for deciding which one we
run next. 

Q       Where is the PACPTR kept? 

A       It depends. It’s just a number; you can put it anywhere. It may sit in some table or be in some queue entry, or
anything. There is a word in the system called PACPTR which holds the PAC address of the program
currently running. 



Q       How do you get it? 

A       Who is “you”? 

Q       The user. 

A       The user never sees a PACPTR. He has nothing to do with that. Remember, he doesn’t know that there’s 
time-sharing going on. He just has this big computer to himself. 

Q       This is set up in the beginning? 

A       When the monitor establishes a process it finds an empty slot in the PAC table for it. Maybe I should explain 
about that. There is this thing called the free program list, FPLST, which is essentially a list chained through
all the empty entries in the PAC table. When you need a new entry in the PAC table, you pick one off the
front of FPLST. And in the very beginning of the world the monitor sets up FPLST by putting all the entries
in the PAC table on it. When you need an entry from the PAC table you take one from FPLST, and when one
becomes obsolete you put it back on FPLSTT. 

Q       How do you know which number is the number for PACPTR. 

A       For what? Which number? For what PACPTR? That depends on which program it is for. Suppose a program
is dismissed because it’s waiting for teletype 64, Then presumably somehow associated with teletype 64 there 
will be a word which contains the PACPTR of the program that’s waiting for teletype 64. When teletype 64 
comes along and says “O. K. , it’s time to go”, you can find in that location the PACPTR for the appropriate 
program. Exactly how these things are organized is the function of the various parts of the system. You’ll see 
lots of places where PACPTRs show up. I can take PACPTR and put it in cell 103 and then I can come back
later, take it out of cell 103 and do something with it. 

Q       But it’s usually kept in one place? 

A       No, it’s kept in lots of different places depending on what’s going on. The program will get dismissed for all 
kinds of different things, and PACPTR winds up in all kinds of different places. 

Q       Including the program? 

A       The program itself never sees its own PACPTR. It doesn’t know about that, remember? 

Q       Are there quite a number of these things, of PAC slots? 

A       It’s a system parameter how many there are. Look in MDBG and MSYMS. 

We now proceed to discuss the operation of the scheduler. First, activation and dismissal. First of all, if a
program is running how can it get dismissed? A dismissal occurs as the result of one of the following things: You
might be waiting for I/O. For instance, you ask for a character from a teletype and the character is not there yet
because the guy went for coffee. So there’s no character. Well, it’s ridiculous to leave you sitting there waiting for 
the character tying up the CPU while the guy gets his coffee. You get dismissed and eventually when the
character arrives you get reactivated. Or alternatively, maybe you have 350 characters to type out. If the teletype
output buffer is only 30 characters long, you ship 30 characters out one at a time to the teletype. Then you come
along with the 31st character and there isn’t any room for it. So you have to be dismissed until there is more
room. Again, you could request dismissal explicitly, usually on some specified condition like time or waiting for
another process, or some other thing like that. Finally, you could compute too long; that’s called quantum 
overflow. Those are the important things. 

So basically there are three ways to get dismissed: you could be dismissed if you asked for 40 that’s not 
ready, because of your explicit request or because you computed for a long time and the computer decided it was
somebody else’s turn. Of these three kinds of dismissal, two are produced by your explicit request to the system.
The other is produced essentially by an interrupt (the clock), and is involuntary. 

Q       What is the amount of time for which a program gets to run? 

A       It is defined in a very complicated way which I am about to explain. 

Q       How long can a program wait for a character, say, before it gets dismissed? 

A       If it asks for the character and the character is not there it gets dismissed immediately. You don’t sit there 



waiting for the character. That’s ridiculous because the time involved in getting the character is very long 
compared to the time involved in the CPU. At least 100 milliseconds, even if things are going full blast. 

You’ve gotten yourself dismissed. Now the next thing is how you get reactivated. That is controlled by a
word of the PAC table called PTEST. The exact details of how we get PTEST set up will be discussed in a
minute but significance of PTEST is the following: it contains essentially two pieces of information, the
activation condition and an address of some kind. The activation condition happens to be kept in the opcode
bits of the word, and the address is kept in the address field. This is not essential. 

Q       How do we reactivate? What do I have to do, look at PTEST? 

A       Somebody is going to look at PTEST to decide about reactivation. Now the exact way in which we do that 
we will get to in a minute, but I want to explain how activation works first.  

When the program is dismissed the thing that dismisses it will know why it’s being dismissed. Maybe the 
teletype routine is dismissing it because it asked for a character and none is there. Or maybe the drum routine is
dismissing it because it asked for drum I/O and there are already six other people waiting for the drum so it’s 
down in some queue somewhere waiting for the drum. Or maybe it’s being dismissed waiting for 3 o’clock. The 
routine to process dismissals waiting for 3 o’clock knows it’s until 3 o’clock that it’s supposed to be waiting. In 
any event, whoever is doing the dismissing knows why the thing is supposed to be dismissed. If the dismissal is
because of the quantum overflow there is no particular condition for reactivation. If the computer gets around to
the process, it should be reactivated There are lots and lots of dismissal conditions. There are dozens of different
things which can cause dismissal, many different kinds of I/O conditions and lots and lots of specific requests.
The idea is the following: you do not want the scheduler to be aware of all these details of different possible
conditions for reactivation. If it is, it has to know far too much about other parts of the system. We would like to
have the scheduler decoupled from other parts of the system as much as possible. In other words, we would like to
have a mechanism by which the scheduler really only knows that it’s supposed to go to some word and look at bit 
23. If bit 23 is on the, program is activated, otherwise not. 

Somebody else is responsible for how bit 23 gets turned on. If it’s the teletype dismissal, the teletype should 
be responsible for figuring out that “I should turn bit 23 on”, the scheduler is only responsible for looking at bit 
23. In fact, we don’t even have the ability to look at bit 23; we have much more simple—minded things than that. 
The activation conditions are listed on page 2-4 of the working documents—and you see that there are not very 
many. The most commonly used ones are 0, 1, 2, and 3, which essentially say “Go and look at the word in the 
address over here and find out whether it’s >0, ≤0, ≥0 etc 

For instance, the simplest possible way you could handle a dismissal would be the following: you dismiss the
program until a word is ≤0 and set the word to +1. Then when it’s time to reactivate the program the interrupt that 
gets it reactivated sets the word to -1. Then the next time the scheduler comes along and test the activation it will 
say, “Aha, time to reactivate the guy”. Is this mechanism clear to everyone? This is quite important. The 
significance of it is that scheduler which decides to activate is decoupled completely from the routine which
decides whether activation is permissible. Communication is achieved only through contents of certain memory 
cells. There are some activation conditions that are sort of funny and do have a little bit of relationship to the real
world, like number 3. which is word !’c teletype early warning, early warning being a system parameter which 
says essentially how many characters you should allow to pile up in the teletype input buffer before activating a
program. We’ll discuss that in more detail when we get to the teletype logic. And number 4, which refers to time
delay, has an explicit reference to the c lock. Number 6, which is sort of funny one, word equals address of word
plus 2, results from the conventions used in the I/O part of the system. All the I/O buffers have the form of 2
header words followed by the data words. The buffer is in some sort of initial state when the first header word
points to the first data word, i. e. , points to the second word after itself. That’s the reason for condition 6. 

Q       Why don’t you show what happens in a typical I/O operation? 

A       Okay, suppose I am a program executing a TCI. I go bouncing off to the teletype routine and the teletype 
routine looks to see if there are any characters. Now there’s a word somewhere that says how many characters 
there are in the teletype buffer, It looks at that word, that word is zero. No characters. So the teletype routine
sets up the activation condition, and the activation condition is this: there is a word in the teletype table which
essentially says “It’s time to run this guy now, because a break character has come in, “ when it is positive; 
every break character increments it by 1. So when the teletype routine recognizes that it is time to dismiss the



guy it sets the word to -1, and it sets up an activation condition which says activate on word non-negative. This 
means that every time the scheduler tests this condition it’s going to ask “Is this word > 0? “ and the answer is 
going to be “No”, as long as no break character comes in on the teletype. When the teletype interrupt routine 
is fired up by the arrival of a character and it observes that this character is a break character, it will increment
the word. 

Q       This allows you to completely decouple the scheduler from all the routines that might cause an interrupt in 
the program? 

A       Exactly and this goes both ways. The scheduler doesn’t have to know about them and they don’t have to 
know about the scheduler. All the teletype interrupt routine knows is that if a break character arrives there’s 
this magic word it’s supposed to increment. All the scheduler knows is that there’s this magic word it’s 
supposed to look at to see whether it is negative or not. That’s the extent of the communication. 

This, by the way, is a technique used throughout the system and explains many things which you otherwise
might find extremely puzzling. The system is not organized on the basis of a subroutine which calls 6 second
level subroutines each of which calls 6 third level subroutines etc. Very rarely do you call subroutines to more
than two levels. Communication is always accomplished through tables in memory, and what happens is that
one routine will set up a table and then it will go away. Later on some interrupt will come along and fire some
other routine which will look at that table and on the basis of what it sees it will decide something. This is the
philosophy on which the system is written. It is not the way most programs are written and is a little bit
difficult to understand. 

Q       What’s a break character? 

A       A break character is a character which essentially says that the program is supposed to pay attention to this
character right away. We’ll discuss that in more detail when we get to it. 

So enough on activation and dismissal. Now, the question now is how to organize all these programs? Say we
have three programs that are dismissed that are waiting to run. How do we organize them? Somehow the
scheduler will have to be able to find them so it can look at their PTEST words. The stupidest way to do it would
be to say “The scheduler will scan the PAC table, starting at the beginning and going to the end, and it will check 
the PTEST at each slot”. This is how we did it for a while and this system has the virtue of simplicity; there’s 
nothing to get out of order. There’s really a lot to be said for having a big table and just scanning it, because you
don’t have lists and queues and little pointers and things and there’s so many fewer littler pointers that can be 
pointing to the wrong place. If you just have this simple scan there’s no way for the scheduler to get into a loop, 
whereas if you have a list and the list becomes circular the scheduler will go round and round and round and never
gets out. And that, in fact, has happened. 

Unfortunately, this scheme is basically not satisfactory in spite of the advantage of simplicity. First of all, it
incorporates no mechanism for priority, because the position of the program in the PAC table is fixed and
consequently there is no way of saying “This program is more important” by looking at it first. The second 
objection is the PAC table is very large and many of the slots are empty or are devoted to programs which are of
no interest to the scheduler for. one reason or another. Consequently you waste a lot of time looking at things. 

So we established a somewhat more ingenious scheme which involves having three scheduler queues. This
mechanism is described rather compactly on page 2-5. The queues are called QTI, QIO and QQE. QTI stands for
teletype queue. QIO stands for input-output queue, and QQE is for quantum exceeded, meaning you computed too 
long, you got time sliced. Whenever a program is dismissed, it is put on one of these queues, and the queues are
organized in the following way: Each one has one word associated with it called the header word, and then the
queue entries, which are PAC table entries, chained through PNEXT. There will be some programs on the
teletype queue, and there will be some programs on the I/O queue and there will be some programs on quantum
exceeded queue. The first word of the header for next queue, which in turn points to the first program, which
points to the second program, which points to 0. And so it goes. Now we can define the priorities of the programs.
There are three priorities corresponding to the three queues. QTI has the highest priority, QIO is the next highest
priority, and QQE the lowest priority. You can always add more queues if you like. That’s not very hard.  

Q       For instance, if a guy comes out of QQE and executes and then is hung up on QTI? There’s no facility to scan 
QTI and give this guy higher-priority than someone already on QTI. 

A       No, there is not at the moment. However, there is a standard routine for putting people on queues and you 



could modify this routine quite easily. The routines called QPUT and QGET are responsible for putting people on
queues. 

Q       All they do is splice pointers? 

A       That’s right. At the moment there is no mechanism in the scheduler to establish priority. 

Q       To establish a new queue all you do is establish a new header word? 

A       That’s right. And you have to find the place in the system where the headers are initialized. After that 
everything should take care of itself. 

Q       You can establish a new queue just like that? 

A       You have to change the system to establish a new queue, but the point is that is not very hard. You cannot 
establish a queue at any time, definitely not. What I’m doing is explaining the mechanism which is used and 
pointing out that it’s not very difficult to add queues. 

So this is the queue mechanism and it’s obvious how people dismissed for the various conditions go on the 
various queues. The algorithm the scheduler uses is the following: when it decides that it ‘s time to look for a 
new program to run and how it decides that is something we haven’t discussed, but when it decides that it 
starts off on the teletype queue and goes cruising down the teletype queue looking for someone to be
activated. If it finds somebody to activate it takes him, since he is the highest priority guy. If it doesn’t find 
anybody, it goes right on, cruising down QIO looking for somebody to be activated. If it finds somebody
there it activates him, and if it doesn’t find anybody it goes right on cruising down QQE looking for 
somebody to activate. And if it doesn’t find anybody at all it goes right back to the beginning and starts over 
again because it has nothing better to do. 

Q       After a process has been run, do you run the next process in the queue? 

A       No, because in the meantime somebody earlier in the queue structure may have become activatible. 

When you put people on the queues you normally put them on the end, although there are a few places where
you put people on the beginning on a queue. So this is the queue mechanism. Now we should conclude by
discussing the timing, which controls how people get dismissed and reactivated. You may be dismissed for
I/O; that happens because you made an I/O request and the I/O’s not ready. Then you get put on the 
appropriate I/O queue, whether QTI or QIO, and you are then dismissed and the scheduler goes on to
somebody else. 

The mechanism by which it is handled, by the way, is almost always the following: suppose you do a TCI and
the character is not ready. It dismisses you, leaving in the entries of your PAC slot the contents of the central
registers, and in particular leaving in the entry for the program counter, the address of the TCI instruction.
When you get reactivated the scheduler doesn’t know that you were doing teletype input; that’s not in the 
picture at all. All it does is to set up your map and gets your memory into core, and then it transfers to the
specified location. So the way in which you finally get the character is that the TCI instruction is executed all
over again from the beginning. And this is normally the mechanism that’s used. 

This has serious implication for what TCI can do, for what the routine that implements TCI can do. In
particular it cannot do anything irrevocable before it figures out whether or not to dismiss the program,
because that irrevocable thing is going to be done a second time when the instruction is reexecuted. If the TCI
increments some counter, for instance, and then decides to dismiss the guy, it had better decrement the
counter, because the net effect on the guy who is dismissed is as though the TCI was never executed. It is as
though there had been an instruction that said “check” sitting immediately in front of the TCI and that it was 
the check instruction that caused the dismissal, because when the guy’s reactivated you come back and you 
redo the TCI routine from the very beginning. No information is available which says that you already did it
once and got dismissed. That information is completely lost. Is this clear? It is very important, if you add
dismissal conditions, that you understand this mechanism. 

There are some cases in which this restriction is intolerable, and for those cases there is a special gimmick
called the “phantom user” which is given the responsibility for doing things where you can’t just go back and 
start at the beginning. It is very horrible. 

Q       You’re worrying about doing something twice. Why can’t you naturally conclude one thing and then start 



where you left off? 

A       Because the difficulty is preserving information that tells where to start. If you get half way through the 
teletype input routine and decide, “Okay, it’s time to dismiss the guy, but there are 16 temporary storage
locations that I’ve used that I want saved, “ then somewhere there has to be space for saving those 16 
temporary storage locations, because somebody else is going to come along and use the teletype routine while
you are dismissed. And furthermore, it’s different for each routine that can cause dismissal. The storage
allocation becomes very messy. Also slow. Furthermore it’s very important to handle things so that all the 
dismissal conditions are treated in exactly the same way, because otherwise the scheduler will have to take
different action for each dismissal condition when it re-activates the program, finding the temporary storage 
locations that were saved here and restoring them. Each time I added a new condition I would have to add
more machinery and it would get out of control before you had a quarter of a system done. Hence the rule that
normally when you dismiss a guy, you dismiss  him in such a way that when he is reactivated the instruction
that caused the dismissal will be re-executed. This has implications about on what the routine processing this
instruction can do say, for instance, it might be convenient in the implementation to increment some counter
that says how many characters have been taken out, or something like that, before you actually find out that
there are no characters there. It’s hard to know without looking at the implementation what problems may 
arise. However, it’s important to be aware of the fact that when you do implement the TCI routine you don’t 
have complete freedom in how you do it because of the possibility that you may have to dismiss the guy. If
you do dismiss the guy you must make sure that everything is clean. 

Note that all of this is of course invisible to the user. As far as he is concerned, each instruction is executed
exactly once. 

Q       Is the TCI routine very long? 

A       A couple of hundred instructions. It has about six different special cases it has to look at. 

Q       Why don’t you make it reentrant? 

A       Then you’d have to remember the program counter of the location of the TCI instruction. That would be one 
more thing to remember. 

Q       Why are you discussing this in so much detail if the user never has to worry about it. Why do we care about 
the system problems? 

A       I realize you don’t care about our problems in the TCI instruction, but if you want to make an addition to the
system which involves dismissing somebody, you better be aware of what the situation is, because otherwise
your addition is not going to work. Worse, it’s going to not work in a very obscure way. The whole point of
these lectures is for you to understand the system, so that if you want to make some change you can make it.
Otherwise you could just read the working document That tells you all the external things you need to know. 

The next thing to discuss is the quantum overflow machinery. The details are quite complex, but the idea is
essentially the following: every process has associated with it two quanta called the short quantum and the long
quantum. These two numbers are both parameters. In fart, they are not only parameters in the system, but the long
quantum ran be different for different users. There is a little table of 16 possible long quant. If you look in the
PAC table picture, you will see that there is a word called PQU which contains a field called QUTAB, a 4 bit
number which tells which long quantum is being used. You could use this for the short quantum also. We haven’t 
chosen to do that but maybe we quantum will. At the moment there is only one short/and it’s set at 8 clock cycles. 
This choice very much depends on what kind of performance you want from the system. 

This arrangement gives you quite a bit of flexibility. You could change the long quantum on the basis of a
user request, or you can change it on the basis of a system calculation involving, say, the size of the user. If he is
really big, it’s a lot of work to bring him in, so he should run for longer once we do bring him in. There are lots of 
different things you can do which you can figure out for yourselves. 

The two numbers are used like this. Suppose that I have a user who is going to compute for many hours.
There is no possibility that he is getting dismissed for I/O or anything, he is just going to compute. I fire him up
and he is guaranteed that he will be allowed to run for the time given by his short quantum. He will definitely be
allowed that much time, independently of anything that happens in the outside world except for somebody coming
along with a hammer and smashing the computer. After that his life becomes considerably more problematical. In



particular, if anybody who is waiting for I/O becomes activatible at any time after the guy’s short quantum 
has run out, he will be dismissed right away, on the next clock cycle. If nobody waiting for I/O has become ready
to run, he will be allowed to continue running until his long quantum runs out. He always gets to run for a short
quantum. 

Q       After he’s in a short quantum the second time around... 

A       He doesn’t get into a short quantum the second time around. He runs for the short quantum and then he gets
into the long quantum. At any time during the long quantum he can be dismissed as the result of somebody
being ready to run who was on QTI or QIO. If that situation doesn’t occur, he will be allowed to continue 
running until the long quantum runs out. At this point he will be dismissed if there is anybody waiting for any
reason at all, in particular if someone else is waiting to compute. 

The implication of all this is the following: Suppose you have a system with no I/O going on at all, but lots of
people computing. Each person will be allowed to run for a time equal to his long quantum. Then he will be
dismissed in favor of the next person. There will be a pair round robin, with the length of the time slice for each
person being given by the long quantum. 

Now, if a person gets dismissed for I/O you save the amount of the long quantum that’s left in the QR field of 
PQU. When he is reactivated he will continue to use up this long quantum. Eventually he will be dismissed for
quantum overflow and the users waiting to compute will get a chance. The exact mechanism is sort of confusing.
We will look at it in detail when we go over the code. 

The following obvious question arises: how is it that we go about testing whether anyone is waiting for I/O
after a short quantum has run out. We can’t do it by running through the scheduler each time a clock interrupt 
occurs; that’s too slow. Instead, we have this word called ACTR (which by the way is described in the working
document). ,ACTR stands for activation counter. It is normally set to minus one. Whenever any interrupt routine
comes along which makes somebody activatible, it increments ACTR. This means that the only thing that the
clock interrupt has to do is to test ACTR. If it is still negative, there is no chance of activating anybody who is
waiting for I/O because the only way that somebody waiting for I/O can become ready to run is for some interrupt
routine to come along and make him ready to run. So that’s the mechanism, and it is described in gory detail 
towards the end of Section 2. 

Before we start talking about the PAC code, maybe I’ll say a few words about the organization of the system.
It comes in packages, each package being represented in the listings which you have by separate bunches of
pieces of paper stapled together and identified by a name beginning with S which you find at the top of each page
of the listing. There are several packages which consist of code: PAC which is the scheduler, fork structure,
swapper etc.; W, which contains the W-buffer logic; TTY, which contains the teletype logic; DRM, which
contains the drum I/O; and SIO, which contains the routines to handle the general user interface for I/O in the
system. Then there is a package called MSYMS which contains the constants and temporary storage locations and
tables for the monitor, and there is a package called MDBG which contains a large number of flags and OPD’s 
and macro definitions which are common to all the packages of the system. You will notice in the middle of Page
8 of MDBG there is in solitary splendor the word FREEZE. The meaning of that is that assembling MDBG will
caine the assembler to put itself into a state in which you can assemble the other packages of the system with the
assembler thinking that each one includes the portion of MDBG before the FREEZE. What the FREEZE does is
to convince the assembler that all the symbols and macros that have already been defined are permanently built in.
After having done this FREEZE we use the same copy of the assembler, without allowing it to reinitialize itself,
to assemble all the other packages. Thus they will all be assembled with the same collection of OPD’s, constants, 
etc. which we put in the 8 pages of MDBG which contains all system flags and parameters, together with a
collection of standard macros. So you’ll find throughout references to various things that show up in MDGB. You 
also find reference to lots of things in MSYMS, which are always storage locations of one kind or another. Things
in MDBO are mostly flags and operation definitions and things like that. MSYMS isn’t used like MDBG. It is 
assembled by itself and it uses the external linking facilities of the loader. MDGB is different. It has all these
parameters and things which are going to be used to control the assembly and to define table sizes and things like
that, so you can’t handle them with external linking. 

Another thing which should be explained is that these programs are listed on a 1401 which has 48 characters.
We have used the overprinting feature to generate the missing 15 characters in various obscure ways. In particular
semicolon is generated by a comma overprinted with a minus sign. Semicolon, by the way, in the assembler is



exactly equivalent to carriage return. 

We now begin looking at PAC. On page 2 there is a comment: trapped feature. Now TRP is a macro which is
defined in MDBG, and what it does is to make all those symbols equivalent to the symbol TRAP, which is the
address of a location which causes the system to generate an illegal instruction trap. The reason that these are
trapped features is that these are all the features that aren’t implemented. There are various tables which point to 
these symbols, which are supposed to be the beginning of routines to handle these features. The tables can be set
up as though the features were there, and if we simply equate all these symbols to TRAP, we can trap all the
unavailable features. As we implement them, we can take the appropriate symbols out of the argument list of TRP
without any change in the main tables. The heart of the scheduler is the code starting at POPX which is in the
middle of page 3, so we will look at that first and we will then go back and look at other things. The scheduler
starts there and it goes on right into the middle of Page 5. POPX is a routine which is the standard exit for system
program operators. It restores the central registers from locations called SS01, SSV2 and SSc3, which are the
standard pieces in which the central registers are put by system program operators. In particular, the operator 
called BRS, which is the sort of all-purpose operator whose address is used to indicate lots of different routines,
always puts the central registers in these locations. If you add BRS’s to the system, which you probably will, 
that’s something you should bear in mind. POPX then goes to XPOP, which is the standard exit for SYSPOP’s 
after the central registers have been fixed up. If the SYSPOP wants to change some of the central registers it can
just set them up and then go to XPOP. Once you get to this point you assume that the address in the user program
which you are supposed to return to is in zero, which is where it will normally be after the POP has been
executed. If zero gets clobbered the routine that comes back to POPX or XPOP is responsible for setting it back
up to this user program address before coming to one of these locations. TIME is the short quantum count, and if
it is not negative the short quantum has not run out, and you definitely exit with BRR 0, which takes you right
back to the user program because the link for the user program is in 0, as I just explained. If TIME has gone
negative, then the short quantum has run out, so we look to see if the long quantum has run out by saying SKN
TTIME, TTIME being the word containing the long quantum. If the long quantum has run out we do SKN 0
which tests whether we came out of user mode or not. If we did come out of user mode then the sign bit of the
link in 0 will be set. If TTIME has gone negative, in other words, if the long quantum is used up, then we test to
see whether we came out of user mode or system mode. If we came out of system mode we return, (since a
system mode program cannot be dismissed); if we came out of user mode we know that quantum overflow has
definitely occurred. If, on the other hand, the long quantum has not run out we test ACTR. If ACTR is negative,
then we know that even though we are in the long quantum, no I/O interrupt has occurred, and therefore we
return. If ACTR is not negative we know that some interrupt has occurred and that we should dismiss the guy
unless we came out of system mode. If we came out of user mode, then we come down where quantum overflow
occurred, and we know that we are supposed to dismiss the guy. So we save the central registers in SS01, SS02
and SS03. We then come to the location called SQO. Anytime you go there the guy you were running is going to
be dismissed for quantum overflow. There are two ways to get there. One is from XPOP or POPX which we have
just described. The other way to get there is by an explicit transfer to SQO, which is done by BRS 45. The user
can execute a BRS, namely, BRS 45, to simulate quantum overflow, to get himself dismissed as though his
quantum ran out. This is what he does when, for instance, he wants to check some external condition but not tie
up the CPU by testing all the time. He says, “Dismiss me on quantum overflow, which means that after everyone 
also gets a chance to run I’ll come back in and test the condition again. 

So we have come to the point where we are being dismissed on quantum overflow. We increment 0, the
reason being that what we are going to do now is to go into the main body of the scheduler, which expects to find
in 0, the address to which it will return control. Since we just came out of a POP we want to return control to the
location after the POP. This means we have to increment the link. If we were in the POP we would return with
BPI; which automatically does the incrementing. Now we are going into the main body of the scheduler, which is
going to return exactly to the address in 0, not to that plus one. In order to make the return go to that plus one, we
have to increment. 

Then we set TTIME to minus one which indicates that the long quantum has definitely overflowed. There’s 
two ways that could happen. The long quantum might not really have overflowed, because we might have gotten
dismissed on ACTR, but if we do get dismissed on ACTR we are going to pretend that the long quantum did
overflow. There are times when we preserve the long quantum, namely, if a guy is getting dismissed on I/O we
keep the long quantum around. If we didn’t do that he could devise the following strategy: compute for an amount
of time just less than a long quantum and get himself dismissed for some trivial I/O operation, which would get



him on a high priority queue. When that I/O is finished he could come back, and if we reset the long quantum
at that time then he would never get dismissed for quantum overflow. Whenever the guy’s dismissed for quantum 
overflow (on to QQE) he gets to start over again. 

Then we fall down to PACQE which is where we go to dismiss somebody on to QQE. There are some places
in the system that transfer directly to PACQE having already taken care of all the things that we have now done.
There we do LDB PACDMB; LDX = QQE. In other words, we put into the B register a dismissal condition and
into the X register the address of a queue, namely the quantum overflow queue. Then we go to POPDMS which is
a location that dismisses somebody with the dismissal condition specified in B onto the queue specified in X.
PACDMB is defined at the very beginning of PAC on page 1 in about the sixth line. It is defined to be ZRO *, *
meaning the current location. In other words, it is a number with zero in the op field, and the address is the word
itself. Activation condition zero says “Activate on word )O,” which means that if we use PACDMB as an 
activation condition we will always activate. Therefore this is the proper activation condition to use for somebody
being dismissed on quantum overflow, because we want to always activate him. The significance of POPDMS,
which is not exactly explained by the comment, is that if we get to there we’re going to dismiss the program 
which we are currently running with the PTEST word specified in B and onto the queue specified in X. There are
several places in the system which come directly to POPDMS. In fact, I think all the places that dismiss programs
come to POPDMS after setting things up properly. PACLVL is a temporary storage location. What we do is to
pick up PACPTR which tells which progrzm we are running. We put that into A. We now have PACPTR in A,
the dismissal condition in B, and the queue in X. Now we call QPUT which is a separate routine which is
responsible for putting a program onto a queue. It is at the end of PAC and I don’t think we will look at it in detail 
because it is not particularly deep. We have now put the program on the queue, and we are guaranteed that
someday the scheduler will come around and pick it up again. Now before we start up the next program we have
to make sure that everything is set up properly in the PAC slot, the central registers and everything else. Thus
when the scheduler does come around to reactivate this program everything will be all right. The program counter
we expect to find in 0, which is why we have this LDA 0 at POPINS. We mask out in significant bits of this, and
we store it in PL, 2, namely, in the program counter location for this particular PAC slot. The reason for the 1;1R
and ADM is that if you look in the PAC table picture you will see that there are 6 bits in PL which are used for
something else, and we have to protect those 6 bits. We mask them out with this extract and put them back in.
Then we save the central registers by picking up SS01, SS02 and SS03 and storing them away in PA,2; PB,2; and
PX,2 at the top of page 4. 

Now we deal with the quantum. This is to make sure that in the QR field of PQU we set up the proper number
for the quantum remaining. So what we do is to pick up PQU and shift it enough to get the QUTAi3 field in the A
register. In other words, this allows us to get the index in the table which will tell us how big the long quantum
should be. Then we pick up TTIME and we ask if it’s bigger than minus one. If there is any long quantum
remaining we keep what’s remaining, otherwise we pick up a fresh long quantum from the table. Then we pick up
PACPTR again and we do the necessary fiddling to put this long quantum into the QR field PQU, which is
accomplished with the XMA, ETR and ADM. Now we are just about ready to start to try to find another program.
We have just about finished putting away the old program. The only thing we have still to do is to change TJOB,
which is a cell used for accounting. Everytime a clock interrupt occurs one of the things we do is MIN * TJOB.
This location is a counter of some kind, an elapsed time counter. We are incrementing somebody’s elapsed time 
counter. When a program is running TJOB is set to point to the elapsed time counter the user who owns the
program. When no program is running TJOB is set to increment the elapsed time counter for the system. What we
are doing now is to arrange that if a clock interrupt occurs while we are in the schedule we will charge the system
for it. This means we have a rather crude accounting scheme in which we charge people for elapsed time
essentially by charging a user 1/60th of a second if his program happens to be around when the clock interrupt
occurs. It’s obvious that over a period of one second this isn’t going to be very accurate. But over a period of an 
hour it’s going to be pretty good, because all the inequity is going to even itself out. Sometimes you get charged 
while the system is actually doing somebody else’s interrupt routine, but other times it’s doing your interrupt 
routine and somebody else is charged, so that it evens itself out pretty well. 

Q       If we are processing when this happens then we are charged for it but if we’re in any dormant state... 

A       We’re not, because TJOB is set to somebody else. However, I would like to point out that it’s possible that 
the work that is actually being done is not work for you, because it may be some interrupt routine. In that case
you get charged anyway, but it’s fair because some other time somebody else will get charged for work that is
set for you. 



Q       We change TJOB every time we change programs? 

A       Exactly, but not for interrupt routines. 

Q       Is there a header block or something set up some place which contains information relative to a job? 

A       Yes, there are lots of things. We’ll get to that too. The tables in the system are essentially indexed in three
different ways, by PACPTR for tables which contain information which is different for different processes; by
teletype number for tables which differ for different teletypes; and by job for tables which differ for different
jobs. The teletype tables and the job tables are quite closely tied together and we’ll look at them in detail 
when we look at the teletype logic. 

The last thing we do before leaving this program is a BRM DPT. This is a routine to make sure that
everything connected with the drum I/O is all right before we switch processes. It is in the drum package. 

Now we come to PACGO. This means, “Everything is all right, I’m supposed to find somebody to run.” The 
assumption is that by the time you got to PACGO everything from the last process is cleared up. There are a
couple of ways to get to PACGO other than going through all this logic for dismissing the previous guy. 

We are going to keep in the cell called PACLVL the number of the queue that we are working on now, and
that initially is QTI. The code that follows is going to run down QTI and when it finds the end it is going to know
from PACLVL which queue it’s working on. Thus it’s going to be able to go to the next queue. During the
scheduling process we are going to keep in PACPTR the address of the process for which we are currently trying
to decide whether it is okay to activate it or not. This PACPTR is going to move down the various processes
which occur on each queue. It starts out pointing to the header word. 

The main loop starts at PEST and it goes down to the comment “activate program”. If we get down to 
PACACT it means we have found an activatible program. If we don’t get down to PACACT then we will just run 
around in the loop indefinitely. We pick up PACPTR i.e. the program that we have been looking at and now we
are going to pick up the next program in the queue. The pointer to the next program in the queue’s stored in a 
word called PNEXT in the PAC slot. We look to see if PNEXT is negative. If it’s not negative then we have come 
to the end, since normally PNEXT is a (negative) PACPTR. We go to handle new queues at PACNXQ, which is
at the bottom of the page. If we have a new PAC slot we save the old PACPTR in a word called PPREV, and we
put the new PAC slot in PACPTR. Now we pick up PTEST for the new PAC slot and we get its activation
condition into X. We use the activation condition to index a list called CACLST (which stands for complete
activation condition list) which essentially contains a bunch of transfers off to the little routines which test the
various activation conditions. We put the word that we get out of CACLST into T. 

Each one of these little activation condition routines expects to find certain things in the central registers
when it is called: PACPTR in X and the word addressed by PTEST in A. The activation condition routines are on
page 5. CACLST is about the fifth line on page 5. It refers to activation routines 0, 1, 2, 3, 4 and 9. If the
activation number is 5 we will always activate and we go to PACACT. If it is 6, 

7 and 8 we never activate since we go to PEST which is the scheduler loop. Most of the CAC routines defined
in a rather obscure way with this macro called CACR which is defined in MDBG The result is always to go to
PACACT or PEST, depending on whether the activation condition is satisfied or not. If we get to PACACT we
are going to have to actually activate a program. The code to do this runs from PACACT to PACNXQ. Note that
the instruction just before PACNXQ is BRU* O. This is the instruction that starts up the program again, if we get
that far but very horrible things can happen before that, as we will now see in detail. We pick up PACPTR and we
go to this routine called PGET which is responsible for getting the program into core. This is actually a call on the
swapper. You will find the routine on page 7. You can assume that after PGET has been called the guy has been
brought into core and can ignore the fact that the swapper may have gone through horrible gyrations to get him
into core. 

PGET skips if successful. If it’s not successful that’s because you have a drum error, in which case we 
abandon the attempt to run this guy and go back to PEST to try to run somebody else. If we are successful in
bringing this guy in, we change his activation condition to 7 with an address of 1, which indicates the guy is now
running in case anybody should happen to look at the activation condition. 

Q       Do you give any indication that a drum error has occurred.



A       The assumption is that the drum error will be corrected later. If the drum error is irretrievable, then the guy
will never get in, but there’s this little counter that counts drum errors, and it will start counting up rapidly.
We can look at it and try to figure out what’s going on. We save the old value of the activation condition in 
FK04, which we don’t have to worry about for the moment, and we then have to take the program off the 
queue which it was on, because it is now about to be run and must not stay in the queue structure. If it does
stay in the queue structure then as we keep on dismissing it more and more copies of it will get into the queue
structure and eventually the thing will clog up. It is taken off the queue by the routine called QGET, which
expects to be called with the address of the previous thing in the queue in the X register. We saved that
address away in PPREV, you may recall, back at PEST. The address of the thing itself should be in the A
register. 

Now we pick up PACPTR again and get the quantum word. Remember, we put the quantum word away back
on the previous page. Now we undo what we did there and put QR in TTIME. That’s the long quantum word. 
We now set up the short quantum word, which is always NSQ, the current standard value for the short
quantum. That is a parameter which occurs in MDBG at the bottom of page 3. 

Q       You always give the user a full short quantum. 

A       Right. This is on the theory that if we went to the trouble of bringing him in, he should be allowed to run for
at least a short quantum; otherwise it’s just too expensive to bring him in. So we set up TIME, then we set up
UMTF, • which is a magic cell which says essentially whether user mode trap is enabled or not. Then we pick 
up T. What’s in T is what was left over from PEST, namely, the address of the word in CACLST which was
determined by the activation condition. If you look at CACLST on the next page you will see that most of the
opcodes are zero. But some of them are non-zero, in particular the one that says 1 PACACT. What we are 
going to do now is transfer on the opcode field of the CACLST word. We add = ACTLST + 1, and transfer
depending on whether the opcode field of the word in CACLST was zero or one. The significance of this is
that if the word was one that meant the activation condition really said, “An interrupt occurred for this 
process.” And for that we have to do a very special thing. If anything else happened we go to PACSRT,
which is just the next instruction on page 4 after the branch off. We are allowing with this device for the
possibility of having some funny kinds of activation conditions which cause the program to be activated in a
different way. At the moment the only one that’s in there is this one for interrupts. Now we pick up the
program counter and store it in 0, we restore the overflow bit, pick up the central registers from PA, PE and
PX, and branch through. 

Q       Have you any idea how long it—do you have any statistics on the amount of processing time associated with
activating the programs. 

A       It’s less than 5%. Definitely. Except when swap time begins to swallow things. This is very bad. The thing 
that’s slow is the swapper which has to decode the relabeling. At the moment that’s not done efficiently at all. 
We hope to improve that, but that’s much the slowest thing. 

Q       All the housekeeping and all the scheduling and all that business is less than 5% with the exception of the 
swapping. 

A       No, the whole thing is still less than 5%. But most of that overhead is the map computation. In other words, 
when the swapper writes somebody out it gets his pseudo relabeling and has to figure out what the absolute
relabeling is and what should be read onto the drum and set up the drum command list. 

Q       All this is included in the 5%? 

A       Yes, definitely. The scheduler is negligible. Now the only thing that remains is PACNXQ. This was where
we went when we ran off the end of a queue. What we do is pick up PNEXT, and test to see whether it is
QQE or not. What PACXQ does is the following: all it does is check to see whether the queue that it is going
on to is QQE or not. If it is, we reset ACTR, that magic counter that tells us whether we have somebody to
run on the higher queues. Then we go back to PACSCN, which picks up a new queue and goes cruising on.
That is the scheduler. You have now seen it. 

Q       Are interrupts disabled here? 

A       No. An interrupt routine never tampers with the scheduler.



Q       You get interrupts in this code? 

A       Yes. The only thing the interrupt routine can possibly do that the scheduler cares about is to change some 
word that’s being looked at by the activation routine. If the interrupt occurs before the activation routine is
called, then, that’s fine. If it occurs after, that’s too bad, but we’ll get it the next time around. In any case it 
doesn’t make any difference.  

There’s one more piece, the piece that actually causes program interrupts. Maybe I should explain briefly
about program interrupts at this point so we can understand this piece, as its a fairly simple idea. You will find it
described in section 4 of the working document. Every process has software implemented interrupts associated
with it and there are 20 of them. When one of these interrupts occurs, the process is forced to execute an SBRM *
200 + interrupt number. PACINT is doing the SBRM *. The next topic is going to be the memory allocation
system and the swapper, and we will operate on amore general level than we did yesterday. We will not look at
code. Before we go into this I want to say a few words about this thing called the “phantom user.” This code you 
will find starting on page 5 of SPAC . There are places within the system where you are sitting, for example, in an
interrupt routine and you discover you have to do something very complex. It may even be something which
requires a swap. You cannot just sit there in an interrupt routine while the swap takes place, because the swap will
take a long time. It may take several hundred milliseconds if there are other people waiting to be swapped. So this
means that the interrupt routine has to have some way of putting some information somewhere which says “do 
something as soon as you can but not with such absolute top priority as an interrupt routine.” Is this idea more or 
less clear? For example, one of the things that started it all off was the handling of the rubout button on the
teletype—a panic condition which causes all kinds of terrible gyrations in the system: information has to be read
from one part of memory into another and all kinds of other things have to happen. Furthermore, the person that
they are happening to is probably not in when the rubout button is pushed, because anybody could be in core and
there’s no reason why this particular person should be. This means that the reaction to the rubout button is a rather
complicated one which is not related to the program which is currently being run and, furthermore, which is too
complicated to do in an interrupt routine. Of course, there are lots of actions which are not related to the program
that’s currently being run. In fact, everything that’s done in interrupt routines is like that. Most of these, however, 
are fairly short and are just handled by interrupt routines right away. For instance, when a teletype character
comes in, a small amount of processing has to be done which is completely disconnected from whatever happens
to be going on the instant the teletype character 

This works fine for anything that can be handled in less than a millisecond, but for anything complicated it
works very badly because you can’t just sit there in the interrupt routine tying up everything else. Hence there has
to be some mechanism for getting system functions performed with high priority but not in the interrupt routine.
Furthermore, it seems desirable not to try to perform these functions within the framework of the scheduler. In
theory what you could do is say, “Okay, let’s make a new process to execute this rubout, and let’s give it a PAC 
slot and put it on some queue and eventually the scheduler will get around to running it.” This isn’t such a bad 
idea, in fact we considered it very seriously. The major objections to this idea are two: first of all, you use up a
whole PAC slot for this and have much more space than you really need, because a PAC slot has room in it for all
kinds of information that’s completely irrelevant to just getting the simple job of processing a rubout done.
Secondly, this involves going through all rigmarole of the scheduler, which is pretty complicated and time
consuming, and this is something you’d like to do quickly and efficiently. In order to avoid these problems we set 
up this thing called the phantom user. The phantom user consists of one queue of things to do and this queue
consists of a number of small entries. We’ll discuss the form of an entry in somewhat more detail when we start
talking about the W buffer logic. Each one essentially specifies an activation condition and someplace to gd and
one or two parameters. There is a permanent entry on the front of QTI for the phantom user, so that he is run
every time the scheduler is entered. If there are any entries on his queue, he is supposed to run down it and get all
the processing that is specified by those entries done. 

Perhaps it would be helpful if I gave a couple of fairly specific examples of just what’s involved here. One 
example is the rubout example I gave you before: the rubout arrives, the teletype input interrupt routine observes
that it is a rubout—it tests for that explicitly—and having found that it’s a rubout it generates this phantom user 
queue entry which says “This is a rubout. It came in on teletype such-and-such.” (that’s the parameter) The entry 
also contains the address of the rubout processing routine. The activation condition is “always activate” since you 
can process the rubout right away. Then the teletype input interrupt routine goes away. Now the next time the
scheduler is entered it will observe that the phantom user has something to do and it will start it up. user



The phantom code is at PUSCN, at the bottom of page 5. The first thing it will do is to pick up this entry
corresponding to the rubout and go to the rubout processing routine. That routine computes and figures out what
to do, and it may have to read in some of the user’s memory in order to leave some information for him about
what happened. When it has to do that it will generate a new phantom user entry, the function of which is
essentially to say “I’m waiting for a swap to finish, a swap which is going to bring in this memory on which the 
rubout processing routine is going to do some work, and when the swap is finished fire me up again so that I can
do what I wanted to do with that memory.” So then the rubout routine goes away again, and more time passes. 
When the swap is finished, the rubout routine is reactivated. Then it finishes the computation and exits. So what
the phantom user really is then is a scheduler in miniature. You will notice that it really is true that we could have
handled this problem by just making a new process and running it through the regular scheduler; the reasons for
not doing that are the ones that I outlined. 

Another example is the following: suppose that we have a W buffer (a TMCC) which has the card reader and
printer on it. Now the channel is fork up and it starts to run. It runs in the 2,000 words and everything is just fine
until suddenly the guy types in some unusual request, say for multiple regression. The program transfers to the
multiple regression routine which is in the infrequently used code, say in block 3. This of course causes a trap
since block 3 is not in the subsidiary fork’s map. The system receives the trap and it looks around and says, “This 
thing is running with the propagating option,” so it looks at its creating fork and finds an entry for block 3, say 12,
which is what the higher level fork has in that block. So it propagates the 12 down to block 3 for the lower fork, 
which starts going again. Everything is fine. It runs. So there is no difficulty. 

The lower level fork normally runs with only 8K of memory instead of 16 and therefore can be swapped in
and out twice as fast. Then it needs extra memory, When it needs parts of the bigger program, it simply goes
ahead and addresses them and it gets them automatically, if they aren’t there, brought down from a higher level 
fork. Now naturally, if this sort of program runs for a long time, it will probably eventually address all of these
blocks, and the map will then look exactly like the map of the creating fork and we are not getting any benefit.
This means that probably what you want to do with this program is that at suitable intervals you want to clear out
the pseudo-relabeling taking away the four blocks you don’t normally use. 

In this way, however, you have a mechanism by which the lower level fork can run with less memory than it
really needs without any thinking. It doesn’t have to keep a little table of subroutines which are not there, and do 
some special things whenever it wants to call one of them. Everything is being taken care of by the system. 

Q       The multiple regression routine runs in the original fork? 

A       The original fork has nothing to do with it. The original fork is dismissed the whole time. 

This thing is sort of a substitute for a partial paging out. What we have done is that instead of saying “The 
system will try to figure out which pages should be swapped in and which pages should not, we day, “I will give 
the user a mechanism for defining for we a set of pages which he needs and then I will make it automatic that if
he forgets some things or occasionally needs other pages, I will get them, so he doesn’t have to worry about it.” 
Basically, this transfers the load of partial paging from the system to the user, which for us seems to be quite a
reasonable thing to do, since our pages are so large and the user is better informed. In most cases it will not be a
great burden on the user to do this because it will be done in some higher level language, where it is appropriate
for the programmer of the language to think about this question, and the actual user of the language will not be
thinking about it. So much for the option bits. Now we have explained about the pointer structure, we should now
consider how forks get terminated. That is the next thing. A creating fork is connected to its subsidiary fork in
several ways, which are outlined starting on page 3-3. First of all, there are some operations which the creating 
fork can execute. which will have some influence or provide some information about the subsidiary fork. BRS 30
will read the status of the subsidiary fork into the panic table. BRS 31 will dismiss the creating fork. That means
the creating fork will go away, it will no longer be on any scheduling queue in fact, it will be in limbo. And it will
stay gone away until one of its subsidiary forks terminates. At this point, the creating fork will be  operation
reactivated. So BRS is the kind of operation you use, for instance, when you have DDT and you are starting up a
user program. When the user program has been started up, DDT has no reason to run anymore. It wants to dismiss
itself until the user program is finished. By finished is meant that it did something illegal or that it said in some
specific way that it is finished. Whether it came to a breakpoint or whatever doesn’t really matter. You want to 
dismiss DDT until the user program stops running, at which point you want to come back and start running DDT
again, so that the user at his teletype can debug.



BRS 32 is what you use when one of your forks has gone wild. It says, “STOP,” Each one of these operations
must identify the subsidiary fork which it is working on, and the way it does that is by putting the panic table
address in A. If that address doesn’t correspond to any panic table, then it is an error. The panic table is one of the
entries in the PAC table. 

Q       Isn’t BRS 31 a swapping operation 

A       BRS 31 is really a scheduling function and not a swapper function for the following reasons. Suppose that I
am running and I don’t execute the BRS 31„ what am I going to do? I have to do something, since I am 
executing instructions all the time. I could write a little loop that says, “‘. Did the subsidiary fork terminate? If 
so, go off, otherwise loop.” This is obviously bad; it means I am computing and wasting machine time in this 
little loop, which actually does me no good at all. So this is really a scheduling function and not a swapping
function. The relationship of the swapper is just incidental to the fact, which is primarily important in
scheduling, that this program is no longer running. If it’s no longer running, it doesn’t have to be in core. 

When the program goes into limbo it isn’t even on any schedule queue. There is no activation condition for it.
The reason there doesn’t have to be an activation condition is that the only way it can get reactivated is by the
subsidiary fork doing something, and there is a direct pointer from the subsidiary fork up to this fork, so that when 
the subsidiary fork does something, the system will arrange to put the fork that was dismissed at the beginning,
back on a queue. This has an advantage in the sense that it tends to keep the scheduler queues somewhat less
cluttered than otherwise. 

In addition, there are some more operations. BRS 106 is sort of a global BRS 31. The later says, “Dismiss me 
until this particular subsidiary fork terminates.” BRS 106 says, “Dismiss me until any of my subsidiary forks 
terminate.” BRS 107 and BRS 108 are more global operations, namely they read the state of or terminate all of 
the subsidiary forks, not just a particular one. These are very valuable operations. For instance, if you lose the
panic table address of some fork, which can happen, you can never identify the subsidiary fork, There has to be
some way to get you out of this situation. You can execute the global operation, which works on all forks. 

The next thing we will discuss is how forks get terminated. And after that we’ll talk about interrupts. How can 
a fork get terminated? There are the following possibilities. It can do something illegal, it can ask to be terminated 
or it can get involved with the rubout button. We will discuss these three possibilities carefully. 

First of all, it can do something illegal. It can execute an illegal instruction, or it can cause a memory 
violation, (i.e. address something which is not assigned to it and which for some reason cannot be assigned to it).
Those correspond to status conditions 1 and 2. A fork may also terminate itself in the ‘normal’ way by executing 
BRS 10, which essentially says to the system, “Terminate me and I’m a good guy, so transmit a 0 status word to 
the controlling fork, which can then recognize this is being a normal termination.” The third possibility is the 
rubout button. 

We now have to explain about the rubout button; this is the appropriate place to do it. There is a button on the
teletype labeled rubout, which transmits the character 377 and which has the following characteristics in our 
system. There is for each user one fork which is designated as the fork which will receive rubouts. When a rubout
occurs, it is directed to this fork and one of two things will happen. Either an interrupt will occur , and we’ll 
discuss that in a minute, or the fork will be terminated. So, (ignore the interrupt for the moment,) there is one fork 
which is designated as being the fork which receives rubouts, and when a rubout comes in that fork is terminated
with a status word of zero, so it looks like a BRS 10 termination. The difference is of course, that if you look at 
the location counter in the panic table it will point to a BRS 10 if it is a BRS 10 termination and will notify it was
a rubout termination. 

Now some more things about termination. When a fork is terminated, all of its subsidiary forks are also
terminated, regardless of what they are doing. Whenever a fork is terminated, its status is always written into its
panic table. There is an explicit instruction for setting the target of the rubout button, I.E. for specifying which
fork is terminated by the rubout. If nobody has said anything about it, the highest level fork which is not executive
is the one which will be terminated. However, a fork may declare that it is the one to be terminated by executing
BRS 90. The rubout button has the following characteristics. If it causes the fork to be terminated, it always clears
the teletype input buffer and furthermore, if the fork being terminated is executive, it clears the output buffer as
well. Clearing the input buffer means that anything the guy happens to type before the rubout which has not yet
been processed will be lost. Clearing the output buffer means that anything the program has output which has not



actually been typed out yet will he lost. The reason for this is that the idea of rubout is to stop what you are
doing. In particular, if I gave you a command it was probably a mistake, so I don’t want you to see it; if you are 
typing out, I don’t want to see anymore. One of the things rubout is nice for is that it allows the user to signal the
program without the program having to look for the signal. There are several ways to get the same effect without
using the rubout button. One of them is to set up a subsidiary fork which will just do a TCI, which means that it
will wait for teletype input. When the input arrives, the subsidiary fork will start up again and then it can do 
whatever it wants, e.g. send a signal to the main fork. But this involves setting up the subsidiary fork, which is
tiresome. 

The second thing you can do is to sit in the main fork and test at intervals to see whether the input buffer is
empty. If it isn’t empty, then the guy has typed something and you can look to see what it is. 

But what you can not do of course, is execute a TCI in the main fork without checking that characters are
present in the buffer, because that will cause the main fork to be dismissed. The rubout button is nice because it is
automatic. It is a method which is already built into the system. 

By the way, there is another special bonus feature attached to the rubout button, which is that when you push
it twice in very rapid succession, like within a tenth of a second, which may not be too easy to do by hand, but
always easy to do by holding down the repeat key, you can get directly back to the executive, regardless of what
you were doing. The reason for this feature is that it is very easy to write a program which, as soon as it
recognizes the rub out button, takes immediate action to neutralize it, like setting up again the fork which was
terminated. This would be a bug in the program. It is a very bad type of bug because it is a kind of bug I can never
recover from. I have no way to get to the system, because what I happen to be talking to is my program and it’s 
not listening. 

There has to be some sure way of getting back to the system, and the sure way is to push down the rubout
button very rapidly twice. You go right back to the executive, no matter what’s going on. 

You don’t have to create a fork to process a rubout. There are other ways to do it, with interrupts. This is
discussed below. In many cases, by the way, when you receive a rubout the appropriate thing to do is to keep
executing the program, for a while anyway. For example, suppose you have a list processing program and when
the rubout occurs you happen to be right in the middle of inserting a word on the list. It is clear that if you just
stop at this point, you’ve left the list structure in a very bad state. If you want to keep things in good shape you 
must keep going to a point where all tables are in an acceptable form. 

Suppose, for instance, that CAL is running, and in the middle of a computation it gets a rubout. CAL has been 
interrupted in the middle of building a list. Now what you want rubout to do is to cause CAL to tell where it was
interrupted and to wait for instructions. If it does that without ever completing the operation on the list, the list
will be unusable. So you have to make sure that the fork goes back and finishes whatever it was doing. The way
this is handled in CAL is that each time CAL starts to execute a statement it checks to see whether the rubout was
pushed during the execution of the preceding statement. In other words, pushing rubout starts a higher fork, which
does two things. First of all it checks to see if rubout was pushed twice in a row. If it was, this is an indication that
the running program got into some kind of a loop. If it hasn’t been pushed twice, all the higher fork does is to turn 
on the panic flag. It then restarts. Each time the program starts executing a new statement, it checks to see if the
panic flag is turned on. 

There are two more things about termination. See pages 3-6 to 3-8. BRS 73, which is sort of a super BRS 10, 
turns off lots of forks at once. Then there is another mechanism which we will not discuss in detail which is
specifically designed for DDT. If you don’t understand it, it is not important. As you all know, there exist
hardware interrupts which are handled by hardware; the machine is forced to execute an instruction at location
200 + interrupt number instead of doing whatever it was going to do next. These hardware interrupts are of course
not available to the user. Instead, he has software interrupts. A process has in its PAC table a 20 bit field mask
called the interrupt mask. It may read this with BRS 49 and set it with BRS 78. Each bit is regarded as an arming
bit for one interrupt. The first four interrupts are reserved by the system and the remaining 16 are available to the
user. He may do whatever he wants with those 16. Let’s consider the user interrupts first. If the user arms any one 
of the 16 user interrupts, nothing happens at that time. At a later time, some other fork may generate this interrupt.
The way you generate an interrupt is to put the interrupt number in the A register and execute BRS 79. This
causes the interrupt to be generated. The program continues to execute after the BRS 79 as though nothing has
happened. It’s exactly like a CPU sending signals to other CPU’s. Of course, the interrupting fork may dismiss 



itself after generating the interrupt if it wishes, but it need not. What happens to the signal is the following. It
runs around in the fork structure, passing first of all through each of the forks parallel to the one which generated
the signal and after that going up to the hierarchy along the PFORK pointers, i. e. looking at each of the creating 
forks in turn. To make this precise, look at the diagram on page 3A. If fork 8 generates an interrupt, it will go first
tip 7 and then to 2 and then to 1, not to 4 and 5. It goes around the forks parallel to the one generated by the signal
and then goes directly up to the hierarchy. For each fork it goes through, it looks at the arming bit corresponding 
to the interrupt. If the bit is off, it just keeps going. If the bit is on, the specified interrupt occurs in that fork and
the signal then dies. If none of the arming bits are on, the signal has no effect. When the interrupt occurs, the
following thing happens. The fork in which the interrupt occurs is forced to execute an SBRM* through location
200 + the interrupt number. In other words, you must put in locations 200 to 224, (if you intend to use the
interrupts) the addresses of 20 interrupt routines. Because of the SBRM* the location at which the interrupt
occurred is Available to the interrupt routine and in fact the whole operation is entirely analogous to that of
hardware interrupts. Note that the SBRM* does not actually exist; it is simulated by the system. 

When the interrupt is generated and arrives at a fork and finds the bit armed and decides that it can interrupt
this fork, then it changes the activation condition from whatever it was to the special activation condition that says 
interrupt number n occurred. When the scheduler finally gets around to activating this fork, it will, recognizing 
the special activation condition, simulate the execution of the SBRM*, which means that the location counter will
be stored and execution of the interrupt routine will be started. The interrupt routine may do whatever it likes.
When it finishes, it has the location counter available so that it can go back and continue executing a main
program in exactly the same manner as a hardware interrupt. 

All this action takes place in the fork which is being interrupted. The fork which generates the interrupt does
nothing except to execute the BRS 79. Then it just goes cruising on. It has generated the signal. It then has no
further responsibility. The signal goes off into the blue and eventually it may hit something. 

Q       Is it possible for an interrupt routine to transfer control to a different fork? 

A       The interrupt routine may do whatever it likes. If, for instance, the fork that got interrupted was the 
controlling fork of the one that generated the interrupt, it may, of course, terminate the fork that generated the
interrupt. Or the fork that generated the interrupt may terminate itself. It doesn’t have to do that but it can, 
since it is a free agent. Again, the fork which is being interrupted may say, “To hell with you, I see this
interrupt but I am not interested,” and just return to its main program. Anything can happen.  

Now, what might you use this facility for? Well, the most obvious use is if you have two forks proceeding on
a more or less independent basis, but you want to have some communication between them. Now, there are lots of
ways to do this. For instance, one fork can write out a file and the other fork can read it in. Or, they can share
memory. One fork can put a flag somewhere and the other fork could test it. But if you want to have the kind of
interaction which is commonly associated with interrupts, which essentially means you are not wasting any time
of the process that is being interrupted unless the interrupt occurs, then you really want an interrupt. This is what
interrupts are for. It is a substitute for a lot of superfluous flag testing. Suppose, for instance, I have a program that
is doing a lot of computation, and it has a fork which is doing some subsidiary computation for it and which also
does some I/O. I have a big matrix inversion program and over here on the side, I have a subsidiary fork of it
which is doing some little calculation which the matrix inversion is going to need some day—or perhaps the fork 
on side is receiving instructions from the user at his teletype which might suggest to the matrix inversion that it
should change its policy. Perhaps the user is watching the progress of the iteration and it seems that some iteration 
constant should be changed. Okay. The fork that is receiving the, information from the user will eventually
acquire enough information to do something and at that point, it may wish to interrupt the main fork that is doing
the computation in order to cause the main fork to actually change its policy somewhat. The device is very simple.
What you might use it for is something you might have to turn over in your mind. 

Q       Is there a limit to the number of forks? 

A       That is subject to table size limitations. You can change those by changing a parameter when you assemble
the system. 

Q       What happens to subsidiary forks when the main executive fork is dismissed? 

A       Dismissal has nothing to do with subsidiary forks. Forks interact with each other only in the ways which have 
been described. A fork is terminated. Subsidiary forks get terminated.



Q       What is the relationship between the number of forks and the time-slicing algorithm? 

A       Every process is time-sliced, not every user. The processes are completely independent and act as 
independent users in all ways except the ways we have discussed. 

Q       So that a subsidiary fork is like a user all by itself? 

A       That’s correct except for the things that have been described, like the rubout button. Also files go with the
user. 

There are limits to the total size of the PAC table. Furthermore, there is a little thing in the system which
checks how many forks you are creating, and if you create too many it stops you on the theory that you probably
made a mistake. But you can tell it, ee, you can create a whole lot of forks and fill up the PAC . table and that
tends to paralyze any other activity that is going on. 

There are four special purpose interrupts which are treated in special ways, and they are described, along with
the whole interrupt facility, in Section 4, on page 4-1 and, in particular, 4-2. 

If you (a fork) arm interrupt 1, and if the rub out button is directed to you, and rub out is pushed, then instead
of your being terminated, interrupt 1 will be caused. Termination is pretty drastic and I may not want it, If the rub
out button is going to cause termination and I want to maintain control of it, then I essentially have to make a
special fork whose sole function is to be terminated by rubout. I would have to have a higher fork over the special
one to catch it when it gets terminated. If I don’t want to do that, I just want rubout to give me information, it’s 
much nicer to have an interrupt occur. 

Q       This is a real interrupt? 

A       What do you mean by real? 

Q       Well, a hardware interrupt. 

A       No, this is a software interrupt. The rubout button, of course, has hardware involved in it in the sense that 
when I push the key, the interface causes he hardware interrupt. This is a software interrupt generated by the
system. So if interrupt 1 is on, the rubout button will cause an interrupt rather than termination if it is directed
to that fork. In particular, it will cause an execution of SBRM* 201. 

If interrupt 2 is armed, a memory violation will cause an interrupt, instead of a termination. 

If interrupt 3 is armed, it will cause an interrupt whenever any subsidiary fork terminates. There are lots of
other mechanisms we have already described for waiting for subsidiary forks to terminate and for finding out
whether they terminated or not, b Y reading their status and looking to see whether they are still running or not. In
many cases, however, you start all your forks going and you want to compute yourself, and you just want to know
when something happens to one of these subsidiaries. Then you can turn this interrupt on and you will be 
interrupted. 

Finally, interrupt 4 will be caused if it is armed whenever you get any unusual condition on input-output. It is 
exactly analogous to the hardware unusual condition interrupts. If, for instance, you’re doing an input-output 
operation and get an end of file, various flag bits are turned on which allow you to find out where the end of file
is. You may not want to test these bits every time on the ground that the end of file only occurs once every 20,000
words. If interrupt 4 is armed, you can just get an interrupt when the end of file occurs and then, at that point, take
whatever action is appropriate. 

Q       What is the relation between the hardware EOF on tape, say, and the software signal provided to the user by 
the system? 

A       If you see EOF on the tape, it will be a long time between the time the hardware sees the EOF and the time
the program gets a signal that EOF has occurred. I will digress briefly into the discussion of the tape format to
make this point clear. 

Tape is handled in fixed-length records of 200 words. Each one of these records contains an initial word
which tells how many data words there are in the record. This word will always be 199, except for the last record.
So when you’re reading the tape, suppose you read with WIO, you read one word at a time from a tape file. Every
199 words the tape will be activated to read the new record, and then 199 words will be fed to you out of the tape



buffer. When you get to the end of the buffer a new record will be read,, but you won’t see any of this, of 
course. These are physical records and they have nothing to do with logical record structure. There isn’t a logical 
record structure on the tape. Well, I take that back, there is a logical record structure on the tape but we won’t 
discuss it. So when you get to the EOF, what happens? The hardware reads off the last record and sees the EOF
mark, The hardware is now sitting just after the file mark and the system is aware that an EOF has occurred. 

So what the software does is to turn on this little bit somewhere in the file structure which says, “Look, there 
really aren’t 199 words in this record, there are only 120 and then an EOF.” The user program keeps on doing 
WIO’s long, long after the hardware activity has occurred. It eventually uses up the 120 words of the last record
and then, at that point only, when it tries to get to the 121st word, the system recognizes that there is no 121st
word and that what there really is is an EOF. At that point, it will generate the software EOF interrupt. 

Q       To make it clearer: When you read the tape, you are not reading the information right from the unit? 

A       Certainly not. No. It is being buffered. So when you go to read a record from the tape, you are really reading 
the data from memory. There is some marker at the end of that buffer in memory that says, an EOF occurred a
long time ago. 

There seems to be a fundamental point that hasn’t quite come over, and it is this: that people keep thinking
there’s some direct connection between all these software things I am talking about and the hardware conditions.
Well, there is no direct connection. Hardware always goes through the monitor, and the chain of instructions
which is executed between the time the hardware generates a signal and the reaction on the user program is a long
and complex one. There is no direct connection at all. A user program can never connect itself directly to a
hardware interrupt (except by a very special mechanism which is not entirely thought out and is altogether special
and different). 

Q       There is no hardware interrupt with a direct effect on the user program?  

A       True, a hardware interrupt has no direct effect on the user program. It has direct effect on pieces of the 
system, of course, but not on the user program. Usually, it won’t even have a direct effect on the scheduler. 
For instance, the clock interrupt occurs and what happens is that it goes up to the clock interrupt routine
which almost never goes directly to the scheduler. Usually, it just increments a bunch of counters and flags
and then turns things on and off. At some later date, someone else will look at these things. Other interrupts 
never go directly to the scheduler. When a drum interrupt occurs, it may cause some more drum I/O, or it may
cause an activation condition to be changed, a word to be changed, which will eventually cause some program
to be activated. There is no direct connection there with the scheduler.  

By the way, there are some things which sort of come under the general heading of the areas we have already
discussed that I have not mentioned, for instance, there are these timer BRS’s, and some other items like that. 
These things are pretty trivial and they are in the working document so that when we finish these lectures,
everyone should read the working document again and try to pick up some of the features that are not being
discussed. You can get some sort of idea of all the features in the system in the following way. When the lectures
are finished, you should be able to read the BRS table, which is in Appendix A, and the SYSPOP table, which is
in Appendix B of the working document. You should be able to recognize what each one of those BRS’s and 
SYSPOPs are. For any one which hasn’t been mentioned, there is a reference to some page in the manual which
describes what it does. If there is any confusion, then you should come and ask questions. Don’t try to do that 
now because there is a lot that will still be incomprehensible. 

Q       These locations where the interrupts go (201 etc.) are obviously relocatable locations? 

A       They’re not. Virtual locations, not relocatable. 

Q       Can they be absolute locations? 

A       Certainly not. This is entirely a user operation. The user, remember, doesn’t know anything about absolute 
locations. 

Q       Each user program has its own set of interrupt routines? 

A       Each process can have its own set of interrupt routines if it has a different block zero from other processes. If
it has the same block zero, of course, it will have the same interrupt routines. 

We want to look at the clock interrupt routine now, which is short. I just want to give you some idea of what



actually happens. The clock routine is on page 19 of SPAC, where it says CLINT. 

What it does is the following: It comes in. It increments REAL, which is a word which is always incremented
at every clock interrupt. It essentially keeps track of real time for the system. Then it increments indirect through
TJOB, which contains the address of the word being used to count elapsed time for somebody. That is used for
billing purposes and also for keeping track of the actual computer time used by various people. Maybe they are
interested in knowing; whether they used computer for a minute or six minutes. We saw TJOB already in the
scheduler. Then, it tests the sign bit of CLINT to see whether the clock interrupted out of system mode or user
mode. If the SKN doesn’t skip, it came out of system mode and so we increment STINE which is a counter which
tells how much time is spent in system mode. It is only for information. Then we count down TTIME, which is
the long quantum counter. If the SKR skips, then TTIME has gone negative and in that case we go to CLOUT.
This means that we want to dismiss the guy. The way we do that is we look to see if the user mode trap is on—the 
flag is on—and if it’s not, we execute UMTN macro defined on page 1 of MDBG. Don’t bother to look at that. 
The reason that it is a macro is it is going to be changed when we get the real user mode trap in. Then it will turn
on the user mode trap. This will cause the user mode trap, which will send us to the scheduler to occur as soon as
we return to user mode. This means that the user will be dismissed as soon as possible. When we get to CLOUT,
we want to dismiss the guy for quantum overflow, but we don’t want to dismiss him until he comes back into user 
mode because when he is in system mode, the system may be doing something which it can’t be interrupted out 
of. 

If TIME has not run out, then we do the SKR TIME, TIME being the short quantum time. If the short
quantum hasn’t run out either, then we just return. (If neither the long quantum nor the short quantum has run out,
then we definitely do not want to dismiss the guy.) If the short quantum has run out, then we want to test ACTR.
If ACTR is still negative, we want to exit, because that means that even though the short quantum has run out,
there is nobody who can be activated on the I/O queues. If ACTR is positive, it is possible to activate somebody
on an I/O queue and we want to do that, so again we go to CLOUT.



Teletypes 
We will now turn to the section on teletypes, and we will begin by essentially reading out of the working

document what the user can do. Then we will go and look at the code, and see how he is able to do it. We are
looking at Section 7 of the working document. 

The most fundamental straightforward thing you can do with the teletype is to use two instructions caused
TCO and TCI. 

TCO stands for teletype character output and TCI stands for teletype character input. One of them prints a 
character from memory on the teletype, and the other one brings the character in from the teletype and puts it in
memory. 

Now, before we go on and explain the other I/O operations, it is worthwhile to discuss the many ways in
which the operations TCI and TCO can be modified by various things you can do to the teletype. Teletypes have 
certain properties. They have echo tables associated with them, and they have links associated with them. They
also have owners and various status bits. When you type the character in on the teletype, as you know, the system
operates in full duplex. The character is not printed by the teletype hardware on to the piece of paper sitting in the
teletype. The way the character gets on that piece of paper is that the system looks at the character which is input ,
figures out what to echo back to the teletype, and echoes it. There are several different modes that are possible for
echoing. Which mode you use for echoing, depends on which echo table we are using. An echo table is each  is a
collection of 32 words each divided up into three bytes, for a total of 96 bytes, corresponding to the 96 ASCI E
characters which in internal code are 0-77 and 140-177. These are all the printing characters and all the characters 
that you can get by holding down the control button and pushing various keys. These characters, by the way, are
not the same as external ASCII. External ASCII is obtained by subtracting 140 from internal mod 28. 

Q       The system does not use the teletypes characters as they are? 

A       That’s right. The system makes a transformation on the characters to convert in them from external form to a 
convenient in external form to a convenient internal form in which the printing characters range from 0 to 77. 

There is an echo table which contains 96 entries for these 96 characters. When a character comes in, the
appropriate byte corresponding to that character is collected from an echo table and something is echoed,
depending on what the bottom 7 bits of that byte are. The 8th hit is for something else. If the bottom 7 bits are
zero, the character is discarded completely as though it never existed in the world. (except that it might be a
break) 

If the bottom 7 bits are one, then the character is put into the input buffer but there is no echo generated.
Otherwise, the character which shows up those bottom 7 bits is echoed in place of the character which was typed
in. Now, the 8th bit is used to perform a different function. When a TCT is executed, if there is a character in the
input buffer of the teletype, it will be delivered immediately to the program. If there is no character in the input
buffer, the program will be dismissed waiting for teletype input. When it will be reactivated depends on exactly
what is typed on the teletype. Whenever a break character, which we will define in a minute, arrives on the
teletype, the program will be reactivated. If the input buffer comes within some fixed number of characters of
being filled, the program will be re-activated anyway, regardless of whether any break characters have been typed
in or not. This fixed number is called the early warning margin. It is currently 6. This is to make sure that the 
program has time to take some characters out of the input buffer before enough other characters come in to 4
overflow it. Whether a character Is a break character as determined by the top bit of its byte in the echo table. If
that bit is on, it is regarded as a break character, otherwise not. In theory, the user can provide his own echo table
and he can set up any echoes he wants. In actual practice, we don’t allow this because the echo table must be 
resident. 

We provide four standard echo tables in this system, identified by the numbers 0, 1, 2 and 4 and they provide 
for the following: The first three tables will echo everything, exactly as it was typed in, except, of course, the con-
trol characters which take no action (and the only control characters which do take any action in our standard echo
tables are bell, carriage return and line feed). This means, for instance, that if a teletype is equipped with it cause
the system will never echo it. So those three tables have the same echo characteristics, they differ only in the
break characters. In table 0, everything is a break character. In table 1, everything is a break character except
letters, digits and space. In table 2, the only break characters are control characters. These three tables are for 



applications in which you require steadily decreasing amounts of interaction with the program. Table 2, in
particular, is suitable when you are interacting with the program on a line by line basis. 

The fourth possible echo table is one in which everything is a break character and nothing is echoed. Because 
nothing is echoed, the program may figure out for itself what it wants to echo, and echo it. 

The user may set the echo table by executing a system call. In particular what he does is, he puts an echo table
number in the A register, and a teletype number in the X register and he executes BRS 12. That sets the echo table
to the number specified in the A register. For convenience, he may specify his controlling teletype, the one which
he is entered on, with teletype number -1, so he does not actually have to know its number. If, however, he is
controlling other teletypes explicitly through mechanisms we will describe in a minute, he must then specify the
number of the teletype. One more thing, and that is the matter of deferred echos. It is possible, because the system
is full duplex, for the user to type in while the system is typing out. If he does this, a question is raised about what
should be done Wiry the echo. The simplest end stupidest thing you could do is just tack the echo on the and of
the output buffer, which means that somewhere randomly interspersed with the characters being typed out will be
the echos of the characters being typed in. This, however, is probably not what you have in because probably the
system is typing out some connected string of characters. 

Q       What is 8 level mode? 

A       8 level mode is a mode in which a teletype operates by transferring 8 bits from somewhere to somewhere else 
with no conversion, no checking for the possibility that an input character might be rubout, no echos, no
nothing. It turns the teletype input routine into a completely transparent thing which makes no changes
whatsoever in the data which is coming in from the teletype. In other words, 8 bits come in from the teletype
and the same 8 bits are shipped out to the program. 

Q       What happens if it is converted? 

A       A transformation is made which changes standard ASCII into the internal form, in which the printing 
characters are in the range from 0 to 77. When conversion is done a check is also made for the possibility that
a rubout was typed in, in which case drastic actions are taken. Finally, an echo is usually generated in the
normal mode. All of these things are suppressed in 8 level mode. 

Q       8 level mode takes no cognizance of break characters? 

A       That is correct. The early warning margin however, is increased in 8 level mode, since it is likely that 
characters are coming from the paper tape reader. This means that the stuff is coming in pretty fast and it is
advisable to leave a little extra warning margin to make sure that the program comes in time. It is worth
pointing out that if by some chance the input buffers should overflow, you normally get an unmistakable
indication of this, because if the input buffer overflows, no echo is generated. This means that if you are
typing you get a clear indication of what went into the input buffer. Anything that doesn’t get typed out got 
lost; either it got lost because of input buffer overflow or the program changed the echo table and omitted to
echo anything. 

In 8 level mode you do not have this protection since there is normally no echo in 8 level mode. 

Next we wish to discuss teletype links, which work in the following way. Associated with each teletype there
are four bit tables called the absolute and the relative link control words, for input and output. In our system, each
one of these is one word in length, since there are less than 24 teletypes. In a link control word there is one bit
corresponding to each teletype. The basic idea of a link control word, say the output link control word, is that if a
character is being output to a teletype (which we may call the source teletype) it will also be output to all teletypes
for which the corresponding bit is turned on in the output link word for the souse teletype. A character being
output to a teletype means any character which the computer causes to be printed; that includes echos. This means
that if I am typing and I am linked to somebody, both the echos which the computer generates for me and the
things which my program outputs will appear on his teletype. Furthermore, if he is linked back to me anything
typed out on his teletype will also appear on mine. There are some slight complications to this idyllic picture;
having described the basic idea, I will now proceed to consider the complications. 

First of all, it is not necessary for you to be linked to yourself. If you are not linked to yourself then you do
not get your own output. Normally, of course, you are linked to yourself. Secondly, the reason that these words
are called relative link control words is that there are also words called absolute link control words. The reason for



these is the following. Suppose that teletype 1 has a relative link control word saying, “I want to be linked to 
teletype 2” and that teletype 2 has a relative link control word saying, “I want to be linked to teletype 3.” Since 
the rule is that anything output on teletype 1 will appear on teletype 2 and that anything output on teletype 2 will
appear on teletype 3, it follows that anything output on teletype 1 will also appear on teletype 3. There are two
ways of handling this problem. One way is to follow down the chain of links explicitly each time a character must
be output. This has obvious disadvantages in terms of efficiency. Furthermore, if 2 is linked back to 1, there will
be a slight tendency for the character to be typed out an infinite number of times on both teletypes, and the routine 
following down the chain must check for this explicitly. Instead of that we do the following: whenever anybody
changes any relative link control word, we recompute all absolute link control words, and the absolute link control
words for a teletype have a bit turned on for each teletype linked to the source teletype or for each teletype which
is linked to a teletype which is linked to the source teletype, etc., etc. In other words, the bits in the absolute link
control word are turned on for all the teletypes to which the characters should go. This computation is made once
and for all, every time a relative link control word is changed. It is then the absolute and not the relative link
control words which are used in generating characters through a link. 

For those of you who are mathematically inclined, you may recognize that the process of computing the 
absolute link control words is essentially generating the infinite Boolean product of the Boolean matrix of the
relative link control words. That is, you take the Boolean product of the relative link control word matrix with
itself and continue doing this until it ceases to change. There is a cute little algorithm in the system for doing that,
taken from a J. ACM paper by Irons. 

So much for output links. There are also input links. If a teletype is input linked to another teletype, every 
character typed in on the first teletype, will appear in the input buffer of the teletype which it is linked to. To
summarize, output linking refers to characters which show up on the paper of a teletype; they will also show up
on the paper of every teletype to which the original one is output linked. Input linking refers to characters which
show up in the input buffer of a teletype; they will also show up in the input buffer of every teletype to which this
one is input linked. 

It is clear that running through this linking machinery all the time is rather time-consuming, and consequently 
it is only done when necessary. There is therefore a single bit in the teletype table (by the way, there is a picture of
the teletype tables on page 7A of the working document) which indicates that there is something funny about the
teletype. This bit is the top bit of the word labeled TTYTBL. Funny things include 8 level input or 8 level output
and anyikind of linking. If there is nothing funny about the teletype, the link word Es never examined. This means
that you don’t have to pay for this machinery when you are not using it. 

It is clear that it is intolerable for teletypes to be randomly linked to other teletypes, since this offers entirely
too much scope for inadvertent error or deliberate mischief. The protection against this works in the following
way: there are two bits associated with each teletype called the accept messages bit and the accept input bit. When
the accept messages bit is off, it is illegal for anybody to output link to that teletype. If the accept input bit is off, it
is illegal for anybody to input link to that teletype. 

These are separate, because input linking is regarded as more serious than output linking. With output linking
all you can do is look at and interfere with the output. With input linking you can actually affect the operation of
the program. 

There is an operation called read echo table, BRS 40, which accepts a teletype number in the X register and
reads back into the A register the following information: the echo table currently being used, the 8 level input and
output bits and the accept messages and the accept input bits. This allows you to find out about all these things.
Then there is another BRS which essentially accepts all these bits. The normal setting of the accept messages bit
is on, of the accept input bit is off. Executive commands as well as BRS’s are available for changing the setting of 
these bits. The normal organization of this system with regard to all these funny features is that they are
implemented through BRS’s which the user program may execute if it has the proper authorization. The executive
then has commands whose programs essentially do nothing but execute these BRS’s. 

There is one other feature which sort of goes along with linking, and this is described at the very end of
section 7 on page 7-8. It is called simulate teletype input. When you do STI, you put a character in the A register
and address a teletype. The effect of this is to simulate the typing in>of that character on the specified teletype. It
is legal only if the program is executive or the accept input bit for the teletype is on. In other words, if you put the
character M in the A register, and do STI=14, you simulate the effect of pushing the key labeled M on teletype 14.



There are still some more things associated with teletypes. In particular, there is a lot of machinery for dealing
with teletypes other than your own controlling teletype. First of all, if you want to own a teletype, you can attach
it. You do this by putting its number in some register and doing the appropriate system call. If you are authorized
to attach teletypes and that teletype is not owned by anyone else, the teletype is attached to you. This means that
you own it; you may set its echo table and all of its funny bits and do any operation to it regardless of whether the
permissive bits are set or not. Generally, you have complete control of that teletype. You keep this control until
you explicitly give this teletype up or are logged out. 

Q       Does this mean that we here internally will be able to attach any teletype from this system, regardless of 
where it is? 

A       Yes. If somebody is already logged in on the teletype, of course, it is not attachable. 

Q       Only dormant teletypes are attachable then? 

A       Yes. 

Then, there are operations for reading input from and directing output to specified teletypes. These are called
OST and IST, Output to Specified Teletype and Input from Specified Teletype. They take the character from the
A register or leave it in the A register and address the teletype which you wish to read from or write on to. You
are not allowed to do IST or OST unless the teletype has the accept messages bit turned on. This provides a
facility which in some sense is complementary to that provided by linking. Linking arranges that automatically
any characters going out on one teletype go out on another one. This facility allows a program to specifically
direct a character to a specific teletype. 

You might use these operations to communicate with your own attached teletype or to talk specifically to 
some other teletype belonging to some other user. 

There are actually three ways in which OST can be legal. a) if the teletype is attached to the user; b) if its
accept messages bit is on; c) if you are executive. All of these conditions must fail for the OST to be illegal. 

Finally, there is one more thing in the teletype user interface. One can also address the teletype using the
standard system input-output operations, of which the most important is CIO. CIO stands for Character Input-
Output and you address a file number with it. The I/O takes place to and from the A register. Whether the
operation is to be input or output is determined by the nature of the file. Normally a file has to be opened before it
can be used. The teletypes are however, permanently open files. In particular, there are file 0, which refers to
input,)on the controlling teletype; file 1, output to the controlling teletype; file 1000 ; teletype number, input from
a specified teletype; and file 2000 + teletype number, output to the specified teletype. These provide an alternate
set of instructions which you can use instead of TCI, TCO, OST and IST to do teletype I/O. 

They have the following advantage: a program using these instructions can easily be changed to use another 
I/O device. It is normally possible to use CIO for input-output rather than a specific: teletype instruction. This
leads to the obvious question: “why do we provide the specific teletype instructions at all?” Which is a good 
question and has the following answers: 

That the specific teletype operations are somewhat faster since they have to do less error checking. 

That the teletype instructions were designed long before CIO was invented. 

If we get through all this we have a valid rubout. We save the value of the clock and then we check to see
whether the clock differs from its old value by more than 8 clock cycles. If it does not, then we set some indicator
which will cause the rubout to go directly back to the exec instead of simply terminating a single fork. 

Q       What exactly is going on with TTYTIM? 

A       Every time a rubout occurs, the current value of the clock is saved. It is also compared with the previous 
saved value, and if they differ by 7 cycles or less the rubout causes all forks lower than the executive itself to
be terminated. This matter is discussed in more detail in the sections on fork structure. The clock value is
saved in the TTYTIM table. 

What happens next is the following: The teletype interrupt routine is a high priority interrupt, so we cannot 
afford to spend a long time fiddling around in it. What we are going to do in order to process rubout is to fire up
the 207 interrupt. This is done in the following way: the 207 interrupt is permanently tied on; it is normally,



however, disarmed. We intend to use this interrupt to process things which we do not have time to process in
a high priority interrupt. 207 is the lowest priority interrupt we have, which means that it is OK to spend as much
time in 207 as you want, since no other interrupt can be hung by your sitting in 207, only the main program. What
we do when we wish to activate 207 is to arm it. As soon as it is armed, the interrupt will occur. Since we are in 
the 201 interrupt routine, no interrupt will occur until we leave the 201 interrupt. At that time, if no interrupts
between 201 and 207 are waiting, the 207 interrupt will occur and the rubout will be processed at leisure. Rubouts
are processed in the 207 interrupt routine because of the considerable 

All of the little tables labeled ATIS are designed to tell the 207 interrupt routine what is going on. The way
the 207 interrupt routine is worked is that it has a ring buffer called ATTBUF which is used to hold the things for
the 207 interrupt to do. ATIS4 is a pointer which tells the 207 interrupt where to read out the next thing to do, and
ATIS5 is a pointer which says where to put the next thing to be added to the buffer. ATIS2 tells us how many
things there are in the ring buffer. When this number is zero, the 207 interrupt knows that all of the currently
scheduled work is complete. The rub out logic then is incrementing the write-in pointer and then checking to see 
whether the word pointed to by the write-in pointer is negative. The reason for this is that the word following the 
thirty words of ATTBUF is -30. All entries in that buffer will be positive, which means that if the SKN skips, we 
have run off the end of ATTBUF. To wrap around the ring buffer, we need only add the minus 30 to the pointer.
This will suffice to reset the pointer to the beginning of the ring buffer. 

By the way, it may be as well to comment briefly on what a ring buffer is. A ring buffer is a block of core
which is used to maintain a linear list of things which is being added to on one end and taken off on the other. In
this case the teletype interrupt routine is doing the adding and the 207 interrupt routine the taking off. The two
pointers, to the last thing added and the next thing to be taken off, precess around the buffer. This is why it is
called a ring buffer. When the pointers run off the end of the buffer, we wish to reset them to the beginning, since
the end of the buffer is not a significant point. 

This is what is going on at this point. Exactly the same device is used in the teletype input and output buffers.
Ring buffers are very useful devices, although because of this wrap around business they are a little bit more
difficult to manage than ordinary buffers. There are many applications in which they are invaluable. 

Q       What do you do when the pointers collide? 

A       That varies. In the case of teletype input you simply throw the character away. In the case of teletype output, 
we dismiss the guy. In this particular case of the 207 interrupt routine, the collision condition is not checked
for. This is unfortunate. 

To return to the code under consideration on page 4 at TII6A+6, the second instruction is an SKN* ATIS5. If
that skips, then ATIS5 is looking at the minus 30 and it must wrap around the buffer, as explained above. We now
proceed to put the teletype number, which we get from TIIS2, into the 207 buffer. Then we arm the 207 interrupt
with this AIR and POT sequence. The AIR is an EOM which says that the next POT will be an interrupt arming
word. After arming the 207 interrupt, we exit immediately. We have now transferred responsibility for the rubout
to the 207 interrupt. As soon as it gets a chance, it will come in and process the rubout. 

We have now dealt with rubout, and we won’t look at the 207 interrupt. We will go on to cover all the rest of
the teletype input interrupt routine; there are a couple more pages of it. 

TII1 is where we go when we have decided that there is nothing special about a character and we are going to
treat in a perfectly normal way. We say SKN TTYFLG, 2; this word will be negative if the teletype is alive and
otherwise it will be non-negative. In other words, if the STN does not skip, this teletype is dead and we want to
ignore the character completely. So we go to TII4. We will see later how TTYFLG gets set. Otherwise, we do this
multiplication by this obscure number which happens to be one third in octal. The reason we multiply by one third
is that we want to get into the echo table which is organized three characters per word. The multiply leaves the
word address for the echo in A and the character address in the top two bits of B. We add the word address to the
echo table address in TTYTBL and get the echo table word. Then we do some shifting and some masking whose
net result is to get the echo table byte we want into the top of the B register. Then we pick up the character and tty
number into X from TIIS 2. 

We send it to A, and we add X3. This constant is defined in SIO, It is three in the top octal digit of the word,
which is 140 in the top character. 

We are therefore adding 140 to the character mod 28; this is the transformation from external to internal. .



And then we mask so all we have is the seven bits of the character at the left end of the A register. Now we do
two SKB’s, which are designed to isolate the possibility that the echo character is zero or one, which are the 
special cases that we mentioned. If the first one skips then the character must be either zero or one. If the second
one does not skip, then the character must have been one; we put it into the buffer, but we don’t echo it, so we go 
to TIIO, skipping over the echo logic. 

In the third case, it is 0 and we ignore it completely except, that we have to check for the possibility that it is a
break character, which we do by going to TII1A. 

If we get to TII1B we have to generate an echo, and the echo character is sitting in the B register where we
put it as a result of our machinations with the echo table. 

The register change instruction has the E bit turned on, which says, “Only manipulate the bottom 9 bits in 
doing the operation.” 

The bottom 9 bits of X replace the bottom 9 bits of B, which now contains a word which can be used to
output the echo, since the tty number is in the bottom 9 bits. Then we save away the echo in TIIS4 for the
moment. Now, we look to see if TTYTBL is negative. The bit that is being tested is the funny bit; if there is
anything funny about the teletype, we will defer the echo. This is obsolete code, but its effect is to defer the echo
if there is a link. The reason is that the link computations are too long to be done in the 201 interrupt, and the
defer guarantees that they will be done in the TCI routine. We now handle links in the 207 interrupt, however. 

If there is nothing funny about the teletype, we look at TOS2 and see if it is negative. TOS2 tells us how
many characters are left to be typed, and if it’s negative the teletype is not typing out anything. Consequently, if
the SKN doesn’t skip then we know it is typing and we have to defer the echo. If it does skip, we don’t have to 
defer it. We still have to check for the possibility that we deferred some previous echo, in which case we have to
defer the current one. The way we do that is to pick up TIS2, the number of characters sitting in the input buffer,
and compare it with O. If there are no characters in the buffer, we definitely don’t have to defer. We immediately 
output the echo by doing the teletype EOM and PCT. Then we MIN TOS2. 

If on the other hand TIS2 is not 0, we go to TII3A which checks whether the preceding character was deferred
TIS4 points to this character, so we load indirect through it and look to see whether any of the deferred echo bits
are non-zero. If all are zero, we go back and output the thing. 

When we’ve made it through all of this, we have arrived at TIIO, which is going to put the character away in 
the input buffer. We increment TIS4, which is the write-in pointer of the input buffer. If the 200 bit of the word it 
is pointing to is on, then that word is the one after the end of the, input buffer, and it is necessary to wrap around
the buffer. 

Having taken care of this possibility, we store A into the first and third characters of the buffer word (the
input and echo fields). Then we increment the character count, check and /o see whether it is bigger than the
length of the input buffer. This is a test for collision. If the buffer is full, then we are going to make TTYFLG
positive. TTY ELG was tested way back and if it was positive we just ignored the character completely. It can be
positive under two circumstances: if the teletype is dormant, or if it gets set positive because of collision. Every 
time a TCI is executed it is set negative. 

Then we pick up the character count and test for early warning. TTY early warning is a number which is
currently equal to 6. If you get within six characters of filling up the buffer, you want to pretend that you saw a
break character, even if you really didn’t. If we don’t have early warning, we check the top bit of the echo 
character, which is still in the B register, to see if we are processing a break character. In either case we go to
TII7, which is responsible for doing the right thing about break characters. Otherwise, we go to the standard exit 
at TII4 which restores the A, B and X registers and returns. 

So we’ve now made it through the main sequence of this routine. There are still a number of things to clean 
up. The first is the break character handler at TII7. Here we MIN location TTYBRK, which is negative if no break
characters have come in. Every time we see a break character, we increment it. The activation condition will be
TTYBRK Then we increment ACTR, since now we have someone to activate, and we go to T114. 

Next is TII6, where we will check for 8-level input. We pick up TTYTBL and look at the 8-level bit. 8RB is 
just a number which has one bit on, namely the bit corresponding to the 8-level input bit; it is defined in MDBG. 
If the bit is off, we go back to TI16A. If we do have an 8-level input, then we proceed quite differently, checking 



the possibility that the character might be the 8-level EOF character, which is kept in TTYTBL. If it is, we are 
about to leave 8-level, so we go through a lot of rigmarole whose function is to turn off the 8-level mode and also 
to turn off the funny bit if there is no reason to leave it on. Having disposed of that possibility, we go on to TII2,
which is where we have an 8-level character which is not an end of file. In that case we pick up the character from 
TIIS2, we mask everything else out, clear the B register (no break) and go off to TIIO, where we file it away. 

I think we will pass over the rubout handling logic, which is in the 207 interrupt, and go on to consider the
TCI routine, which actually processes a user request for a teletype character. This routine starts on page 12 where
it says TCI. It begins by storing away the B and X registers; it doesn’t need to save the A register. 

It picks up the user teletype number into X and calls TI, which is to be found in the middle of page 11. What
this routine does, is to pick up TIS2, which is the character count, and look to see if it’s bigger than zero. If not, it 
goes to TI3 and dismisses the program, because there aren’t any characters. Otherwise, we increment the read 
pointer TIS5 and pick up the character out of the buffer (testing to see whether the 200 bit of that word is on, in
which case we have to wrap around). Then we get the character into the bottom of A and check for a deferred
echo. If there is one, we go off to TI1. Otherwise, we count down the character count of the buffer, put minus one
into TTY FLG and exit. 

Next, we look at the place where we do the dismissing, which is TI3. Send -1 to TTYBRK, which is the word 
that is going to be tested by the dismissal condition, which we now proceed to construct. We copy the teletype
number into A, mask it, and add in 200000 + TTYBRK. This 2 gives dismissal condition/and the address of the
TTYBRK corresponding to this teletype in the address field. TI returns with a skip, leaving that dismissal 
condition in the B register. 

If we have to print a delayed echo (TI 1 on the top of page 12) we get the echo character and call TO, which is
the routine which is responsible for outputting characters. If we are successful in outputting it, we go to TI 6,
which restores the character and goes back to what we were doing before. If TO is not able to output the
character,( because the output buffer is full), then it returns with a skip and the dismissal condition in B, and we
have to dismiss the guy. We have to move the read pointer back down because we already incremented it.
Remember, what is going to happen when the programs reactivated is that the TCI will be re-created. 

Going back to the place where we call TI, if it does not skip, we go to TCIP1, otherwise to TIODMS, which is
where we are going to dismiss the guy, putting QTI in X and going to POPDMS in the scheduler. So then the guy
is gone and we won’t see him again until we start him up again at the TCI. 

If we get to TCIP1, we pick up the X register, we pick up the B register, we store theA register indirect to
zero (because TCI sends the character not only to the A register but also to memory) and we return. 

I would like to go on now by going through the teletype code and pointing out what all of the routines do and
any peculiarities they may have, without actually looking at any of the code. We have already gotten ourselves as
far as page 6, which is where the 207 interrupt routine is. On page 6, we see the logic to process rubout which is
tedious. Then on page 7 there is a routine called TIP which is called from the phantom user and which is
responsible for doing the final job on rubout. The way rubouts are being handled now is that in the 201 routine we
immediately activate the 207, in the 207 routine we set up a phantom user request and the phantom user then
comes along and executes TIP, which is responsible for actually processing the rubout. There are the following
cases. It may be an ordinary rubout, which goes to RPAN; it may be a catastrophic rubout, (one in which rubout
was pushed twice within seven clock cycles); or it may be an initial rubout. 

Furthermore, if it is ordinary, it may be one which is going to cause an interrupt, if the interrupt is on (we
discussed interrupts and rubout when we talked about the fork structure) It will also be necessary to clear the input
buffer and it may be necessary to clear the output buffer if the program is executive. 

If the teletype is not attached to anyone, the significance of the rubout is that a new user has arrived and we
must initialize him. You remember when we talked about forks, we said there was a mystical process which got 
the user started up. Well, here it is, TSON. We find the user a job number and we go through all kinds of
rigmarole to get him started up. So much for rubouts. 

Now, at the bottom of page 9 there is a routine called TSOF which is responsible for turning off a teletype. I
don’t think it has any particular peculiarities. The teletype is a controlling teletype, which means that there is a job 
number that has to be released and a PAC slot which has to be released in the course of turning off this teletype.
This is the routine that essentially performs the function of LOGOUT and it is called by a BRS. It is possible to



cause the logging out of a different teletype than your own. Notice in the middle of page 10 it says, BRU
PAGGO (suicide). If this routine discovers that the teletype it is logging out is its own controlling teletype, it goes
straight to PACGO and the schedule will activate somebody else. 

Now there is the teletype output interrupt routine, TOI, which is pretty trivial. It is started by the interrupt
which says: “I have just finished output of the characters”, so it looks to see if there are any more characters to 
output. If there are, it picks one up and outputs it. Otherwise, it POTs out to the teletype interface a standard word
which say: “I am through with you, go away. “ In the case where it actually outputs something, it will consider the
possibility that maybe it should indicate that the guy can be activated, if the output buffer is nearly empty. 

On the bottom of page 12 and page 13 there is a routine called STI, which is responsible for processing the
STI SYSPOP, simulate teletype input. This routine duplicates a lot of the things in the interrupt routine; it is not
possible to call on the interrupt directly, because if an interrupt came along in the middle there would be a terrible
mess. 

Then there is TO, which is responsible for teletype output. This is a fairly complex routine, which has to
consider the possibility that the buffer might be full, in which case it will return with the dismissal condition. If it
didn’t have to dismiss the guy, it goes right into the buffer, just the way the teletype input interrupt routine does, 
putting the character to be output into the buffer. It also has to check links, which it does down here at T06. If it
finds links, it goes into the link code, which starts at the bottom of page 14 and goes on for some time. The rest of
the link logic is to be found starting at the middle of page 19 and going on page 21. That part computes link
words. Here is the part that actually does the linking, in this routine called TLOM, and the way this works is that
at TIM3 (toward the beginning of page 15) it is picking up the 410 link control word and doing this NOD, which
essentially shifts the word to the first one bit. It takes action on that teletype and it goes on to the next one. The
link logic has the following peculiarity: it goes through all the linked teletypes twice, once to make sure that there
is room in all the out-buffers and a second time actually to do the outputting. If it finds, in looking through the
output buffers, any that are full, then it abandons the whole process and dismisses the guy. When you are
outputting a character to a single teletype, you check whether its buffer is full and if it is, you dismiss. If you are
outputting to linked teletypes you must make sure that all the buffers are free. TLOM is not a routine which 
actually does any work. What it does, is to go scanning through all the teletypes, finding all the ones that are
linked to the one we are looking at. For each one it calls a routine so that is given to it as a parameter/ that you can
call it with several different routines, depending on what you want done. 

The next thing is teletype output, which is in TOF, in the middle of page 15 (the actual teletype output POP is
TCO, at the bottom of page 15). Then OST is handled at the top of page 16. In the middle of page 16 there is a
routine called TTYSET which is responsible for initialization of the teletype tables and clearing out the teletype 
interface. It has no peculiarities except the funny rigmarole that it goes through to set up the word consisting of
minus the length of the teletype buffer at the end of each teletype buffer, which is the thing that makes the wrap-
around work. 

On page 17, there are routines to implement several BRS’s dealing with things like clearing input buffers, and 
then on page 18 there is a routine to handle accept message bits and attaching and releasing teletype and also there 
is a routine to turn a teletype off, that is to empty out all of its buffers and set all its counters to standard values. 
On page 19 are the routines that turn on and turn off 8-level mode, 

The most obscure part of it, I think is the part we looked at, namely the teletype input and output routines.



INPUT-OUTPUT 
Today we’re talking about I/O. 

First we’re going to describe the sequential file machinery, and then we will go to see how it works inside. A 
sequential file is the most general kind of file in the system. Any I/O device may be thought of as a sequential file.
A sequential file is identified for the purposes of doing input-output on it by a file number. Some sequential files 
are always available for input-output: that is, they are always open. In this case they have permanently assigned 
file numbers. Other sequential files must be opened explicitly by the user when he wishes to use them. At the time
when the user opens the file, the system will give him a file number which he can use to identify it while he does
his input-output, and which he also uses to identify it When he closes it. 

The files which are permanently open are the teletype and a file called nothing which simply absorbs any
output directed to it and returns no indication whatsoever of anything. It is a convenient file to have around when
one has a program tat generates output and one doesn’t want the output. 

The teletype files which are permanently opened are described in Section 9. They are the user’s own 
controlling teletype which is 0 for input and 1 for output, or any particular teletype which he may choose to
specify which is 1,000 + tty number for input and 2,000 + tty number for output. All other files do not have
permanent file numbers and must be explicit)), opened. 

You can open a file by using an operation called BRS 1 and what this does is to accept some identification of
the file from you, cause the file to be opened and return a file number to you. In general, a user is not allowed to
execute BRS 1; only the executive is allowed to execute BRS 1, and if the user wishes to open a file, he must
supply to the executive the name of the file. The executive will then figure out where the file is and obtain the
necessary information to supply BRS 1.What you give to BRS 1 is something called a device number and in the
case of some devices a unit number in A. For a drum file, this would be the location of the first index block,
which then identifies the file to the world. The device numbers are listed on page 9-6 with the exception of those 
for sequential drum files, which are listed on page 9-1. BRS 1 skips if it is successful and if it returns without 
skipping this means that for some reason it was unable to open the file. When it returns without skipping, it
returns some kind of status word which explains why it was unable to open a file. 

And after that it’s up to you to hold onto the file number, since you can’t do anything with the file unless you 
have the file number. 

In the case of a device such as paper tape or mag tape, when the file is opened by one user it is denied, of
course, to all other users. This can be one reason why BRS 1 could fail. The other reason which would cause BRS
1 to fail would be an illegal device number. In that case, however, it will not return at all, but will generate an
illegal instruction trap. 

Now, once you open the file, you can do I/O, which we’ll describe in a minute, and you can also close it. You 
do that by putting the file number A and executing BRS 2. In case you forgot about your file numbers. you can
close all your files by executing BRS 8. Whenever you go back to the exec, it closes all the files. for 

Now, input-output to sequential files is done through three instructions called CIO, WIO and BIO. CIO takes
a character from the A register and outputs it to the file; or it is working on input, it reads the character from the
file and puts in the A register. WIO does the same thing except for a word. BIO takes a core starting address in tt 
and a count in and inputs or outputs a specified number of words to memory. These are the three sequential file
operations. You notice they work indifferently for input and output; the reason for this is that whether the file in
input or output is determined by the way it is opened. You use different numbers for files depending on whether
they are being used for input or output. 

Q       With BIO, is output in words or characters? 

A       It takes words out of core. 

The success of a CIO or WIO does not depend on whether the device involved word or character oriented,
because the system will do all necessary packing and unpacking. It is, for instance quite legal to do a WIO on the
teletype. The result is that three characters will be typed on the teletype. If you say BIO with a block length of 5
(output 5 words), this ‘ray involve transmitting 5 words, to the device or 15 characters, depending on whether it is 



a character or a word oriented device. In any case, all 120 bits will be written out. 

Now, it is often convenient to be able to switch between input and output in a sequential drum file. It doesn’t 
make sense on paper tape to switch between input and output, but in a drum file it often does. Consequently there
is this operation called BRS 82 which allows you to do this switch. There is machinery provided, which is
discussed in Section 12, for making a file read only. If the file is made read only then, of course, it’s not legal to 
switch it to output; you get an illegal instruction trap if you try to do that. 

There are a couple of other things to know. (All these things are written down in Section 9.3). Certain flag
bits are set on every I/O operation. The flag bits are 0, 6, 7 and 8 in the file number, which is the thing addressed
by CIO. Bit 0 is turned on whenever any flag is set and the other bits indicate end of record, end of file and error
conditions on the file. So you can find out whether some funny thing happened by looking at the flag bits in the
file number. In addition there is a convention for what the system sends back when it sees end of record or end of
file on input. End of record sends back 134 characters and end of file sends back 137 characters. 

There’s two more ways of finding out if you’ve got unusual conditions on the file. One is that BIO will skip if 
it didn’t see any unusual conditions and fail to skip if it did see an unusual condition. The second is that you can
get interrupt 4, if it is armed, whenever any flag bit is turned on during an I/O operation. 

Some files have additional structure; they are more than just being strings of bits. Among these are mag tape
files and drum files. Drum files have a lot of structure, mag tape files have less. So I think I’ll dispose of mag tape 
and other funny device files before taking up the drum. 

The mag tape is organized in the following way. The system writes 200 word physical records on the mag
tape. You(the user) write logical records on the mag tape and read them, and you can do this disregarding the
physical records completely; the system takes care of all necessary conversion. A two word logical record is quite
inefficient, because it takes at least one physical record to hold each logical record. There are a certain number of
operations provided for doing things to the mag tape other than just reading or writing. They are called control
operations and they are defined on page 9-6. 

To do a control operation you address the file number and put the control you want to do in the A register.
The following ones are available: 1 = end of record, 2 = back space record, 3 = forward space file, 4 = back space
file, 5 = write three inches of blank tape, 6 = rewind and 7 = write end of file. So this allows you to move the tape
around and do other funny things on it that you might want to do. 

Q       These are logical records? 

A       Everything refers to logical records, right. 

Q       Is there any way to read the physical records? 

A       No. 

Q       Say you have an 80 character record. Can you read it? 

A       No. The only kind of mag tape records the system can handle are the 200 word ones that it writes itself. 

Q       So how can we read a tape with card images on it? 

A       There are two possibilities. I’m not sure what would be the best thing to do. One way to handle the problem
would be to modify the system to handle more general records. The other way would be to write a special
program to run out of time-sharing and convert the tape to TSS format. It might be worthwhile to indicate 
specifically what the format of a record is on the tape. It consists of 200 words. The first word contains a
word count—how many data words are significant of the 199 data words actually written. Following that
there are the 199 date words. The records on the tape are 200 words, one word count word and 199 data
words. The sign bit is turned on for the last physical record of a logical record. There is no numbering of the
records, 

Now, there are some other devices. There is the paper tape reader which also has logical records. 

These are exactly the same as the physical records on paper tape and are simply defined by gaps (sections of
blank tape). There is also the paper tape punch. These devices have no control operations, except for a single end
of record. one for the punch: write/ This simply generates a gap on the tape by punching an inch of leader.



Then there is the card reader. Substantial transformations are made on the card reader input. First of all, code
conversion is done (which is not on any other device) to convert the SDS code that the card reader sent to the
CPU into ASCII. Our card reader driver, the one that’s built in, reads BCD cards but does not read binary cards.
To put in a binary driver wouldn’t be very hard. 

There are some other transformations made on the card reader input (see page 9-7). A carriage return and a 
line feed are generated after each card. If you read characters from a card with 80 zeros on it you’ll get 80 zeros 
followed by carriage return followed by line feed, 82 characters in all. Secondly, any trailing blanks on the card
are suppressed. Any embedded blank strings of more than 2 blanks are converted to a 135 character followed by
the number of blanks. This is the system convention for storing multiple blanks and it also used by the teletype
output routine. Finally, the card is not regarded as a logical record; there is no possible way to get an end of
record from the card reader. You can get an end of file from the card reader if you push the end of file button.
That takes care of all the devices other than the drum files, which I will now proceed to explain in a little bit more
detail than the manual. 

A sequential drum file consists of logical records. Operations within one logical record are just the CIO, WIO
and BIO that I have already described. 

You can also, however, perform controls on drum files and they are considerably more flexible than those for 
any of the other devices. They are described on page 9-4. You can write end of record, you can back space a
specified number of records you can forward space a specified number of records, you can delete a specified
number of records, you can space to the end of the file and back apace or you can space the beginning of the file
and forward space. These are controls 1 through 6. Control 7 is insert logical record, which inserts a new logical
record at the point that you are now sitting at. These operations allow you to move around freely on the drum file
and to treat the logical records as independent or interdependent, whichever you choose. 

Then there are a lot of other piddling operations. You can read the amount of information in your file. If you
are executive you can set up an index block, give up an index block, or you can read an index block explicitly into
core. 

The drum is physically organized into 256 word blocks. The user, however, never sees this organization. He
only sees what I have already talked about. The way this miracle is accomplished is that associated with each
drum file, in addition to the data blocks which hold the actual information in the file, are things called index
blocks. Any index block contains two pointers to the preceding and following index blocks. A file can have any
number of index blocks, which are chained together by these pointers. The first index block, of course, has zero
im the backwards pointer and the last index block has zero in the forward one. In addition to these two pointers,
the index block contains the addresses of 78 drum blocks. Each word of the index block corresponds to one 
physical drum block and points directly to it. The bottom 15 bits are used to hold the address of the drum block
which is being pointed to by the word in the index block. 

The top bit of the index word is turned on if it points to the last physical block of a logical record. The
remaining bits are used to specify the number of data words in this block. This, of course, will always be 256
except for the last block of a logical record. The convention, in other words, is very similar to the mag tape
convention. For a logical record consisting of 700 words, there will be three index block words. The first one will 
point to a full 256 word data block, the second will point to a second full 256 word date block and the third one
will have the sign bit turned on and will have a word count of 700 minus 512. 

When you insert new logical records, the system takes care of moving the pointers in the index block. In a
sequential file, the pointers in the index block are always compact. Each word points to a physical block. By
scanning down the pointers, you can find all the words of the file. Now, this should make it reasonably clear how
these control operations are actually implemented. 

The reason for this mechanism, by the way, the reason that we just didn’t put in something more simple 
minded is that this provides a facility which very many user programs need. Of course, a user could simulate the
whole thing by having a big file and explicitly keeping pointers to the logical records. It’s nice to have the system 
do it, first of all because the system can do it more efficiently than you can do it; and secondly, because it means a 
lot less for the user to worry about. He has a very nice and flexible piece of machinery built. It will be satisfactory
for many of his applications without any modifications at all. 

Q       If the record is written out with CIO, does he have to read it back in with CIO?



A       Definitely not. Remember, a record is not written out by a single command. A single command writes out 
one character or word. The only way an end of record can be specified is by explicitly giving the control
operation which says end of record, or by closing the file, which implies end of record. If you mix CIO and
WIO, somewhat peculiar things will happen; that should be avoided. But certainly you can write the file out
with one of the operations and read it in with another. 

I think that more or less covers the user interface for sequential files. I would like now to talk about the
implementation. In the Tymshare system, and I presume in yours also, there will be a mechanism for actually
keeping files on the disc and only bringing them onto the RAD when they seem to be needed, since the RAD isn’t 
big enough to hold them all. Half the disc space is reserved for your fixed data and the other half is available for
files. The block operation, BIO, is done directly out of the user’s memory in units of 256 words. In other words, if 
there is any 256 word block which falls within the scope of one BIO, it will be done directly out of the users core
and will go much faster. In all other cases, I/O is done through a drum buffer. Drum buffers are kept in the users
TS storage block, where there is room for 4 of them. A drum buffer consists of a 256 word area for a data block, a
78 word section for an index block, (only 78 words are used in the index block, although it occupies a full 256
word drum sector), and about 15 words of pointers and things which the system needs in order to keep track of
what’s going on in the file. All of these things constitute a drum buffer. Now, all files that are not permanently 
opened have associated with them things called file control blocks. 

The file control blocks are taken from a standard table in the system which has room for some reasonable
number of file control blocks—50 or 60. It’s a system parameter whose value depends on how many users you 
expect to run the system with. The file control block format is depicted on page 9-8. It is essentially indexed 
directly by the file number, so when you deliver the file number to the system, it goes immediately to the file
control block which is suppose to tell it everything it needs to know about the file: first, who the user is who owns
the file. This is very important because the first thing it does is to check that the user who is trying to use the file
is the same guy who owns it. If he isn’t, then that’s an error. 

Q       How are users identified? 

A       By the I/O number which is not quite the same as the teletype number. Normally it is. Normally one 
controlling teletype equals one job. However, background jobs are possible, and they don’t have teletypes.  

Then there is a number which is essentially identifies the file if it’s one which is not sufficiently identified by 
the device number. This number is the index block address, the tape unit number, or the address of the subroutine
for a subroutine file (which we have not yet discussed). Next is a word which is used for packing and unpacking
operations, followed by a word called FD which has a whole slew of little bits telling one thing and another and
also the device number. Finally there is a word which contains the character count for the packing and unpacking
operation and the drum buffer address in the case of drum files. I think it will be fairly clear to you superficially
what the significance of the various fields in the file control block are. When we come to places in the system
where they are used, you won’t be so baffled. 

All right, with this introduction, I would like to start looking at some of the code for input/output. Now, this
code comes in three major sections. There’s a package called IO which is essentially responsible for the user
interface for sequential files. There’s a package called W which is responsible for the W buffer, and there’s a 
package called DRM which is responsible for the drum. I think that most of our attention will be concentrated on
the first two packages. 

I direct your attention to the beginning of the package labeled IO. It starts out with a large number of tables.
First of all there are four words labeled ERRBIT, EOTBIT, EORBIT and EOTBIT, which have the appropriate
bits turned on corresponding to the flag bits which can be set by these conditions. Then there’s a whole bunch of 
symbols called X0 through X7 and XN7 through XN1, which are just the numbers 0 through 7 in the top octal
digit of the word. Then some more words with useful bits, then the file control block area, which I just finished
discussing and finally the device dispatcher, which is called DEV and which has one entry in it for each of the
possible device numbers. The exact significance of the entry is obscure as hell—the table called DEV is not 
written in a way which makes it very clear what’s going on. There is a number in the address field which is either 
just the device number or is the address of a special routine for the file. In the latter case, bit 1 will he turned on
(,2 tag). The bottom bit of the op code field is turned on if the device is an output device. The top bit of the
opcode field is turned on for drum files and the second opcode bit for random drum files. The 2 bit is used to
indicate a character-oriented device. 



Q       Why the funny opcodes? 

A       These words are definitely not instructions. It’s unfortunate that Peter chose to set the opfield bits with 
specific opcode mnemonics; it’s very confusing because you can’t tell what’s going on. This DEV table also 
contains entries for the permanent teletype files. It is indexed by the device number which you normally get
out of the file control block. In the case of the permanently opened files, you get the device number from the
file number by a little computation which we’ll see. 

The next table, BUF, contains the addresses of the buffers for various devices. The buffers themselves are
mostly defined in the package labeled W. This table is also indexed by the device number. Then there’s a 
dispatcher mostly for W buffer devices called the driver dispatcher. You go indirect though this table when you’re 
actually ready to activate the routine which does the I/O. Finally, there’s a BIU driver dispatcher which you go 
indirect through in activating the routines to do BIO. 

Then there is ACTR, a word we all know well, and AIRWD, which is the word the system uses to arm
interrupts. 

Before we look at any code in detail, I want to go briefly over this whole package and explain what
everything is. The first thing is the CIO driver, followed by the BIO driver. These are somewhat interconnected.
Then there is the kludge BIO driver which is used to handle block I/O for devices such as the paper tape reader
which do not lend themselves to efficient handling of block I/O. Next is a routine called IO1 which is used to
check legality of the file number. You get back from it various information which you need about the file, as
indicated in the comment in front of it (this is at the bottom of page 3). 

Then there is a glorious routine called GPW (on page four) which is essentially responsible for activating
device drivers. You feed it the device number and the word or character on output. It takes care of dismissal, if
that is necessary, and of sorting out the various kinds of devices. That is all the basic I/O stuff there is. The drivers
themselves are in other packages, the drum drivers in DRM and the W buffer drivers in W. 

Now there is some more stuff in this package. There is the routine to handle controls, which is on page 5.
Then on pages 6, 7 and 8 there is the PDP5 link I/O, which we will definitely not look at in detail. It is significant
because it is an example of how to program a DMC (date multiplex channel) within the framework of the system. 

At the top of page 6 there’s a routine called IOPSET which is the initialization routine for the tables in this
package. Then there are some things that haven’t anything to do with I/O SBRM and SBRR SYSPOPs and the 
BRS table, and the code for BRS 3, 43 and 44. 

The BRS dispatch table contains one entry for each BRS in the system. It is called BST and is at the bottom
of page 8. Each entry contains the address of the routine to be called in the address field. In the opcode field it
contains one of three things depending on what kind of BRS it is. If it is a monitor BRS which does not execute
ant SYSPOPs, the opcode is BRU. What you do, by the way is to execute this instruction with EXU. The BRU
will therefore send control immediately to the BRS. If it doesn’t have BRU in the address field, there are two 
other possibilities, namely it could be a swapper BRS, or it could be a BRS which is resident and runs in system
mode but calls other SYSPOPs (usually to do I/O). 

BRS’s of this last kind are, for instance, the one which reads numbers, BRS 38. It does a TCI and at that point
will get dismissed if the guy hasn’t typed a character. This means that special action has to be taken to see to it
that when it gets reactivated, everything i3 still all right. For instance, the return location must be explicitly saved
from BRS’s of that type have EAX in the opfield. 

Those which have NOP in the outfield are swappable and run in user mode. They require special treatment.
Appropriate machinery surrounds the BST tables to take care of these three possible cases. 

Finally, there are two routines called MONOPN and MONCLS which are responsible for handling BRS 1 and
BRS 2, i.e. for opening and closing files. I will now try to explain more or less the sequence of events involved in
getting a CIO executed. It puts the character it is supposed to be handling in T and checks explicitly for the
possibility are that the file number is zero or 1. Those are the controlling teletype files. If it’s one of those two, 
then CIO is essentially going to simulate TCI or TCO. It does that explicitly by transferring off to FTCI or FTCO,
depending on which one it was. Otherwise it comes down to CI1, where it calls IO1 which guarantees that the file
number is good and sets up the device number in DEV, the file number in FILE and the buffer address (which it
gets out of the buffer table that we looked at earlier) in BUFF.



Let’s turn to IO1 briefly, IO1 has to check the file number for the possibility that it refers to a teletype file i.e. 
if it’s equal to 1000+ teletype number or 2000+ teletype number. If it is a teletype file, it checks that the teletype 
number is legal. Otherwise it checks that the file number is not too big for the file control block table. 

If not then we pick up the first word of the file control block and check that the job number is the same as the
number of the guy who executed the instruction. If it’s not, then it’s illegal for the guy to use that file and he gets 
an illegal instruction trap. That’s taken care of at IO14 at the top of page 4. 

The next thing we do is to set up BUFF and to check for a drum file, in which case we consider the possibility
that it is a random drum file. If it’s a random drum file we go out to DIODMS, otherwise set up BUFF from the 
file control block. 

We now return to CIO. The main thing CIO is responsible for is doing the necessary packing and unpacking
of characters to accommodate itself to whether it is working on a word or a character oriented device. This fact is
determined by the setting of CHRBIT in the DEV table, as we have already seen. If it’s a word oriented device, 
then CIO either packs the character away in the FW word, of if the word is full it calla GPW to get the I/O done.
If it’s a character oriented device, then the CIO transmits the character directly to GPW: Note that input files are
treated differently than output files in the packing and unpacking for obvious reasons. If CIO is called for output
and only one character has been provided, then that’s not enough to fire the device up; you have to get two more
characters before you fire the device up. If on the other hand, the device is a character oriented device, then you
do the I/O directly by calling GA1. 

We haven’t nearly gotten to the point of doing physical I/O’s yet, you realize. We’ve only gotten to the point 
of calling GPW, which is still pretty far away from doing physical I/O. 

The function of CIO is simply to accomplish the character to word conversion that may be necessary. 

Now, WIO is a very similar operation which has similar problems. If it is working on a word oriented device,
it transmits the word directly to GPW or gets it from GPW. If, on the other hand, WIO is working on a character
oriented device, then it calls WIT, which is just after WIO and is essentially responsible for doing the character to
word conversion. In other words, if you deliver an output word to WIO it has to break that word apart into three
characters and call GPW three times to get the three characters output. On input, it has to collect three characters
to make into a word before it can give the word to you, since you asked for a whole word. 

Q       Does GPW stand for something? 

A       It stands for Get and Put Word. 

Then there’s BIO, which is essentially like WIO except that it has a loop. It does the job the necessary number 
of times. Notice that the BIO either calls GPW directly, for word oriented devices, or it calls WIT. 

Q       What’s the BRU* BSEL2? 

A       There’s a BIO dispatch table which we saw a little earlier, BSEL. The first thing the BIO does is to branch 
through the dispatch table. That will send it in most cases to BIO which handles the normal BIO. In the case
of the drum it will send it off to an entirely different place which handles drum BIO. 

Now we come to GPW. It puts the device number in Y, picks up the word out of the DEV table and looks at
the X2 bit. If the X2 bit is turned on, the word has a special driver. This is the case for most devices. The special
drivers perform a wide variety of functions, as we shall see. If we don’t have any special driver, we just go to 
these three very interesting instructions which test whether the contents of the word BUFF is bigger than the
contents of the word addressed by BUFF. To explain why we’re making this test, I will have to explain the 
structure of the system I/O buffers. Such a buffer consists of n plus 2 words. The first 2 words are the header and
the remainder of the buffer is data. The convention is that the first word of the buffer points to the currently active
word of data and the second points to the end of data. If the first word of the header is less than its own address,
i.e. if it does not point into the data, then the buffer is busy; that means you are not allowed to perform operations
on it. If the buffer is busy, normally I/O is actually being done on it and driver has been called/the channel is
reading out of or into the buffer. 

During that time, it is obviously not acceptable to allow programs to write into the buffer or read from it
because the state of the buffer is unknown. 



Q       You’ve only got one buffer? 

A       One buffer for each device. 

Q       Why not more? 

A       More complicated than it’s worth. We considered having double buffers, but we decided the amount of 
overhead and miscellaneous junk added were just far too big to be worthwhile. You can do your own double-
buffering with forks, so we save a lot of energy in the system as a result of not having to do that. 

So the function of CXA; SKG 0, 2 is to test whether the buffer is busy. BUFF, of course, has been set up by
IO1 to have in it the address of the first word of the buffer, so whenever the buffer is not busy, the first word of
the buffer is pointing into the buffer, to the currently active word in the buffer. So if the buffer is busy, we have to
dismiss the program and the way we do that is to set up activation condition 6 with the contents of BUFF in the
address field. We go to POPOMS with QIO in X, which means the guy is going to be dismissed on to the I/O
queue. Activation condition 6 is a screwball activation which says “Test whether the word is equal to the address 
of the word plus 2.” That is the normal state in which the buffer will be left when the channel is finished whatever
it’s doing. When the interrupt routine comes along and sees that the buffer should not be busy anymore, it will set
up the first word of the buffer to point to the third word, which is the first slats 

If the buffer is not busy, we go to GPW3 (near end of the page), which is actually going to do the I/O. It picks
up the second word of the buffer, subtracts the first pointer, and looks to see whether the address field is O. If so,
then the buffer is empty. The top of the second word is used to hold flags, the flags that I mentioned in connection 
with CIO. This is why we test for 0 with SKA. If the buffer is empty, we test to see whether any flag bits are on.
If there are no flag bits, we start the device. If there are flags, we go to CPW 8, which is responsible for
transmitting the flags back to the file number and generating an interrupt if that’s necessary. Here we test for the 
error bit and the end of record bit and go off to GPW 8A or GPW 8E depending on which one is on. If it’s not 
error or end of record, it must he end of file, in which case we go through all the gyrations at GTW 12. When you
come to GPW 12 the situation is like this: you have in the L3 register either a word full of 134 characters (for end
of record) or a word full of 137 characters (for end of file) and in the A register the appropriate flag bits. GPW 12
puts the flag bits into the top of the file number and stores the result in the word addressed by the I/O pop. 

Then it sends B to A and extracts with GPWC which will contain either 377 in the case of character I/O or -1 
in the case of word I/O. The resulting word or character will be transmitted back to the user if input is taking
place. That’s what all the machinations with FC and FD are. Next we call IIR which is the routine which
generates an interrupt. The 2000E tells what interrupt to generate (4 for unusual I/O condition). If the IIR
succeeds in generating an interrupt, we return immediately, because the program will be suit off to the interrupt
location. If the interrupt is not caused, we just return to GPW in the normal way. 

If we get to GA48B, then we have an end or record rather than end of file. We make sure that the only flag
which is turned on is the end of record flag, because we’re not interested in the others. Then we proceed as we do
with end of file. If we get to GA48A, then we have an I/O error and go through similar but slightly different
machinery which can also generate an interrupt and do various other things, but doesn’t generate the 134 and 137 
words. We won’t look at that in detail. Note that all the physical machinations involved in the error have already
been taken care of long ago. For example, if it was a mag tape error, the system has already made all reasonable
attempts to correct the error. The user sees the error only when the system hat; decided that there is no longer any
hope for correcting it. This can happen after many attempts to correct in the case of mag tape, or it could happen
after no attempts to correct if for instance it’s a card reader which the system has no chance to correct. 

Now let’s return to the normal case at G AW3 at the bottom of page 4. We have just succeeded in convincing 
ourselves that there aren’t any flags, so we’re going to start the device up in the normal way. 

This is actually what is going to get us down to the driver. What we do is to pick up the file number into A,
and the old original contents of the X register, which was saved away in SSO 3 this whole time, into X. Tjen we
look to see whether 0 has the indirect hit on or not. If it has the indirect bit on, then GPW was called out of CIO or
WIO, and we want to clear the flag bits in the file number. So we store the file number with no flag bits, indirect
through zero. We restored X to allow for the possibility that the POP was indexed. If on the other hand, GPW was
not called directly out of a PUP we avoid this step. We are now ready to call the device. We pick up the device
word into B and check to see whether it is a drum file. If it is a drum file we go to GPW 7. Otherwise we move
the device into X and pick up the proper word of SEL, which is the driver dispatcher table in the middle of page 2.



We pick up BUFF into X and call EDS. EDW is the W buffer device driver and it is found in the W buffer
package, which we will look at later. It has three possible exits, depending upon the degree of disaster which
occurred in the attempt to activate the W buffer. The idea is that in all cases when you activate the W buffer, you
get the guy dismissed, because always you have to wait for the I/O to finish. The way you get him dismissed can
vary. If EDW doesn’t skip, it means that everything went through, and you go to IOQDMS which generates the
dismissal condition which says wait for buffer to become non-busy. Otherwise you would go to IOQDMS which 
means that EDW has generated its own dismissal condition which it’s put into B already. This will be some 
different dismissal condition which will have been generated because the W buffer was tied up in some obscure
way. We’ll see what these things are in more detail when we look at EDW, but is the idea clear? 

If it was a drum file, on the other hand, GPW 7 goes either to DRMSO or DRMSI, depending on whether it’s 
an output or an input file. Those routines are in the drum package. 

Now there are some other things in GW which are worth pointing out. GPW is equipped for handling
subroutine files, and when we come to discuss subroutine files as part of the user interface, we’ll look and see 
how it’s done. In addition, GPW has special drivers in it to handle mag tape and to do a couple of special things
about the drum. 

These special drivers are accessed through the address field of the words in the. DEV table. 

You’ve now seen I/O carried down to the point where we are actually ready to activate the physical device
and I think now that rather than go and look at controls, which are the other important thing in SIO, we will go
and actually look at the W-buffer code. 

The W buffer has two interrupts, 31 and 33, one of which is happens to be for end of word and one for end of
transmission. We just used 31 exclusively except in the mag tape routines. Now, the difficulty with the W buffer
arises basically because when an interrupt comes in, you don’t exactly know what to do with it because it could 
have been caused by a lot of things, depending on what it was that last set up the W buffer. The way this problem
is handled is that there is a cell called BLK 31 which contains the address of the subroutine which is responsible
for the next 31 or 33 interrupt, or 0 if no interrupt is expected. An 131 interrupt always comes to INT31 at the top
of page 2, and you notice that INT 33 is equated to INT 31 so the 33 interrupt comes there too. What this routine
does is to store the central registers, pick up the contents of BLK 31 and do BRM* through it after setting BLK 31
to 0. 

On to returns from the 131 interrupt. Before returning, however, it looks at BLK31, which was set to zero
before the subroutine was called, but which may have been changed by it. If BLK31 was changed, namely if it  as
made bigger than zero, then that essentially means that nothing interesting happened. The W buffer is still being
used by the same device that was using it before. If it was left equal to zero, the interrupt routine decided it didn’t 
want the W buffer anymore. In that case, ACTR is incremented, since the I/O operation is complete and the
program waiting for it can be activated. 

Q       What is the significance of the skip? 

A       We’ll see that when we look at these routines. It has to do whether you need to call the phantom user or not. 

Now, the W buffer is always activated through the routine called EDW. It looks to see whether the W buffer
is busy and if it’s not, it starts the device. If it is, it puts the request on the phantom user queue. EDW is called
with the buffer address in X and the contents of the appropriate word of the EEL table, which is the device driver
address, in B it stores the driver address in EDWD. Then it tests to see whether the buffer is busy. If it is, we go to
EDWB and dismiss with activation condition 6; EDW returns with one skip. If we get pest the buffer busy test,
we compute the distance between the contents of the first word in the buffer and the beginning of the data part of
the buffer, which is the third word. I.e.; we compute the number of data words, and put it back in the first word of
the buffer. Now, we check to see whether B31 is zero or not. If not, there is some interrupt pending on 131; in
other words someone is using the channel. 

In that case, we go up to EDWS. Otherwise we call the driver with BRM* FDWD. If this returns without a
skip, the device has been started successfully. Otherwise we also wind up at EDWS; this happens if the driver
decides that the device cannot be used, e.g. because the tape is rewinding or the card reader is not ready. EDWS 
puts something on the phantom user queue. It sets up the file number in A. Then it disables the interrupts and calls
EPU and then it MINs EDW so that in this case EDW will skip twice on returning. EPU is simply a routine which
you will find around the middle of PAC which puts something on the phantom user queue. 



To summarize, there are three possibilities. The first is that we call the driver and return normally. The second
is the buffer was busy, in which case we come down to EDWB, set up a dismissal condition to wait for the buffer
not to be busy and return with one skip. The third is that we cannot initiate the operation for some other reason in
which case we come to EDWS, put an entry on the phantom user queue and skip twice. 

We will now proceed to look at some devices and interrupt routines in detail. I think a good one to start with
is the paper tape reader, because it’s so simple. It is at the beginning of page 3. First is the reader buffer. It 
contains RTCNT + 2 words. Next is the reader driver, RTX, at the top of page 3. It says SETINT RTI—You will 
find the macro defined in MDBG; what it does is to put RTI into BLK31—and does the necessary EOM’s to fire 
up the W buffer for paper tape. Then it returns. RTI is the interrupt routine. It does this A CW which tells how
many words got read in off the paper tape. It initializes the buffer by putting the address of the first data word of 
the buffer into the first pointer word. It tests for error and end of record and sets the bits in the second pointer
word of the buffer, which as you will remember from GPW, is where the nest bits are kept. Then it returns. You
notice that it does not tamper with BLK3I. This means it is always assumed in the case of paper tape that one
interrupt equals one operation and the paper tape reader routine releases the W buffer after performing one
operation. The W buffer will not be grabbed again until the guy who had the paper tape does some more CIO’s, 
since he must exhaust the characters which have just been read in first. 

Next we look at the paper tape punch driver; it is a good example of an output driver. The whole thing is
enclosed by this IF PN7F, which means you can suppress it if you don’t have a paper tape punch. Then comes the 
paper tape punch buffer, which is called PNBUF. It is preceded by a magic word which contains the address of
the word immediately following the punch buffer. An output buffer always has this wore preceding it. The paper 
tape punch driver is called M, and you notice it’s a little more complex than the paper tape reader driver. The tail
of it is the same: It fires up the punch and exits. But before that, it computes the word to be filled out and stores it
in PNI. This is necessary because the number of words to be written depends on the number supplied by the user,
whereas, a full block is read on input. PENOR is a routine which is called by control one for the paper tape to
punch an inch of leader 

The other routines are more complicated because of idiosyncrasies of particular I/O devices. The card reader
has a conversion table which converts SDS internal code into ASCII. It also does a number of other interesting
things which we have already discussed. This is all done in the card reader interrupt routine, and that is why the
card reader interrupt routine is so complicated. The driver is still pretty simple. It’s pretty much the same as the 
paper tape. 

The difference is that it starts by executing CRTW, the test for card reader ready. If the card reader is ready, it
skips and goes on to set the interrupt. If the card reader is not ready, it goes to CRX1 where it tests for end of file.
If it doesn’t find end of file, CRX returns with a skip without doing anything. This causes the program to be 
dismissed and a phantom rear entry to be made. The function of the PU entry will be to keep testing for card 
reader ready at suitable intervals. If there is an end of file, then we normalize the buffer, turn on the end of file bit
and return without doing any I/O. That just transmits back to OR the information that end of file was received.
The interrupt routine we won’t look at because it’s sort of complicated, and the complexity arises entirely from 
these transformations it’s performing. 

Next thing we come to is the glorious mpg tape routines which start on page 6. We’re not going to look at 
those too carefully because they are not simple, but we’ll go ever all the routines and point out what they all do. 
First of all, there’s this big table of things each consisting of one call of TDT, which is another one of the system
macros. Its function is to make two the sane EOM for two different tape units, zero and one. The SDS method 6or
driving tapes has a serious drawback; the tape unit number is embodied in the I/O instruction itself. This means
that you actually have to physically change the instructions to handle different units. Whenever the tape routines
want to do anything with the tape, instead of directly executing an EOM, they put the tape unit number in the X
register and do an 2XU on one of these little two word tables. Then there are some odds and ends like the proper
word for writing file marks; TNO which tells which tape number is currently being used; and TXS1, which is
where the system reads in how many words were actually transmitted by the W buffer. 

TXS2 and TXS3 are obvious. Then there is the tape buffer, TBUF. There a special routine for opening the
mag tape called MT POPN, which is called from the BRS1 routine which is in SIU. Its function is to test a
number of things untested by the normal opening routine. Among them are the fact that a program must be
executive in order to open the mag tape; that there are various conditions like the tape not being ready under



which the attempt to open it may fail, and that the monitor has in it A cell called MTFL which keeps track of
how many words have been written on or read from the tape, and it forcibly prevents you from writing or reading
any more words than that. This call is initially set up to be the largest possible number. It is usually reset by the
exec. Next is a little routine called MTDI which I don’t pretend to understand, whose function is to turn off a
runaway tape unit. Then there’s the tape reader driver, TRX. It checks for tape not ready and end of tape. If 
neither condition is present we do the read. We don’t do it directly, but call T21 which is one of the routines that’s 
also used by an interrupt routine. 

You see, life for the mag tape is a lot more complex than it is with other devices, because of the fact that in
the interrupt routine you may wish to re-initiate something. For instance, if the read takes place and the interrupt
routine sees than an error has occurred, what you want to do is to initiate a backspace followed by an attempt to
read again, all in the interrupt. This means the tape unit is run through lots of tittle tiny subroutines, all of which
call each other. These are explained by the comments. A noise record is a record in which you read less than some
fixed number of words. Such a record is ignored. 

Then there’s a lot of machinery to enable you to backspace the tape correctly to try again on read error or 
write errors. 

The write driver, TJX, is in the middle of page 8. It has special features which allow you to write a three inch
gap at the load point, because it turns out that if you try to write on the tape at the load point, it gives
unpredictable errors. Then there is another routine to write a three inch gap anywhere. It is used to make the
spaces between files. There is a routine to write file marks, and all kinds of machinery to clean up after errors.
That takes us down to the middle of page 9. 

We write a lot of extra space after each file. This is to make our overwriting scheme work. The way we have
been handling our mag tape is that when you write a file on the tape you write a fixed number of words, followed
by a good deal of blank tape, followed by a file mark. When re-writing the file, you write the same number of 
words, followed by a smaller amount of blank tape, and space forward to the file mark. The logic to do this is in 
the exec, but it makes use of the control operations implemented here. The function of MTFL is to prevent too
many words from being written. When a tape file is closed, the exec writes out enough zero words to bring MTFL
to O. You never overwrite the file mark; it stays there forever. Using this device we have successfully been able
to overwrite an IBM format mag tape. 

At the bottom of page 9 is the routine to change the mag tape, unit number. It checks to see whether the tape 
is busy and whether the user is executive. In either case, the request is illegal. Otherwise the tape unit number is
set as requested. Then there are the mag tape control routines on page 18. These are responsible for taking care of
forward spacing and back spacing. You see a lot of commands. about 131’s and I33’s. I don’t think we’ll look at 
these too carefully; they’re complicated. 

There’s also rewind and write end of record and erase and all kinds of things—all pretty straightforward. I 
should probably describe the operation of forward space and back space file. The forward space file routine scans
forward until it sees the file mark and leaves the tape positioned immediately after the file mark, before the firm
record of the file. Backspace file backspaces over one record which it ignores—it doesn’t matter whether it’s a 
file mark or not. After that, it backspaces until it sees a file mark, and then forward spaces over it, positioning the
tape immediately after the file mark. That exhausts the W buffer routines. 

Q       What about the disc? 

A       I don’t know anything about this since I never programmed it and we don’t have one, but it seems to me that 
the following considerations are relevant. The disc, first of all is a device which will be running all by itself
on its own channel. Secondly, it is always accessed through several levels of system routines. And thirdly, it’s 
always accessed in the same way. In the case of our file system, you always read 256 word blocks; and for
your fixed data you always reed 64 word sectors. There’s nothing funny going on at all. You don’t have 
requests raining in on you from all kinds of strange places. 

Furthermore, the disc doesn’t provide you with a whole lot of unorthodox conditions like backspace and 
rewinding and all these strange things that the mag tape requires you to do. Finally, it has seeks, and it has
these eight independent arms. It is highly likely that over a fairly short period of time, like a second, you will
get a lot of disc requests. It seems to be extremely desirable to optimize the disc, because if you just sort of go
seeking around at random, accepting and processing each request as it is arrived, you will waste a lot of time.



When you have to move the arm a long distance, you’d like to be able to service more than one request, since 
you’re going to tie everything up for a pretty long time.



Subroutine files 
I think then that I will discuss some things that I haven’t yet mentioned about the user file interface. After that 

we will look at the drum I/O if we have time. There are two kinds of files that I haven’t described. There are 
things called subroutine files, which are a special kind of sequential file, and there are also random drum files,
which are not like sequential files at all. Subroutine files and described in section 12 of the working document.
The idea is pretty simple. It is possible to open a file explicitly with BRS1 and specify that the file, instead of
being associated with a physical device or with some index block on the drum, it is to be associated with a
subroutine which you yourself provide. You must specify whether this subroutine is an input file or an output file,
and you must also specify whether it is a character oriented or word oriented subroutine. There after, whenever
input/output is done to this file, it will result in an error in the subroutine. If, for instance, it’s a character oriented 
subroutine, and I do a CIO to it, the subroutine will be called with the contents of A, B and X exactly as they were
when t did the CIO. It will be expected to return whatever it likes, and in particular, it’s suppose to return the 
character I asked for in the A register. If it’s a character oriented operation to a character oriented subroutine, 
there will be no transformation done on the A, B and X registers. That character will be just shipped right back to 
the tty. If, on the other hand, the subroutine was word oriented and the call was CIO, the first CIO would cause
the subroutine to be called, and the word the subroutine returned in the A register would be unpacked into three
characters, which would be delivered to three successive CIO’s. 

There are two points to be aware of. The first one is that the map is not changed between the execution of the
CIO and the calling, of the subroutine. This makes the whole feature not quite as nice as one would like. What we
would really like to be able to say is, “Look, I’m making this fancy program that’s doing I/O and I want it to be 
completely separate of whatever calls on it.” Unfortunately the overhead of changing the map is too great. But 
aside from that restriction, the subroutine is really independent of the things that call it, and it car do any amount
of computation it wants including calling other subroutine files or doing any other. I/O that it wants, before
returning. The significance of this is that you can write a program that accepts as one of its parameters the file that 
it works with. You may originally have in mind that those files were to be the teletype, for input end output, but
later on you may decide that you’d like to drive it with another program. Well, rather than go through the program 
and find all the I/O instructions, you can simply change the file to a subroutine file, so that in effect, whenever 
this program wants I/O it will call a driving program. 

The effect of a subroutine file is to make a CIO equivalent to an S’BPM except for the packing and unpacking 
operations involved. Random Drum Files 

There is another kind of drum file called a random drum file. It is to be regarded as an extension of core. Its
structure is quite different from that of a sequential file. For referencing random drum files, there are four pops
called drum word input (DWI), drum word output (DWO), drum block input (DBI) and  drum block output
(DBQ). All of this is discussed in detail in section 10 of the working document. A random drum file I/O operation 
requires a file number, which you provide by addressing it with the POP as usual. It also needs the address in the
file of the word that you want to read or write, and possibly a core address. Drum word input and drum word
output do not require a core address, they go through the A register. In other words, if you put in*b the B register
an address in the drum file and do a DJI, this causes that word of the drum file to be brought into the A register. If
you do drum word output, the contents of the A register is stored in the file at the address specified by the B
register. It is also possible to do block transfers on a random file, and you do that with the drum block input and
drum block output operations, which take the file address in B, the initial core address in X and the number of
words in A. 

Q       That is the address? 

A       A drum file is to be thought of as a very large core memory, the addresses starting at zero and extending as
far as you want, so you can, for instance, address word 10, you can address word 6420, or you can address
word 4 296 504. The storage allocation scheme for drum files is the same as it is for core memory, namely a
particular 256 word block in the file is not assigned to you unless you address that part of the file, so that for
instance, if you have addressed word 10, word 1000 and word 10000, exactly three blocks will be assigned, 
namely the block containing word 10, the block containing word 1000 and the block containing the word
10000. All the intervening space will have words allocated for it in the index block, but the index block words
will be zero, indicating that no physical drum block is assigned.



So the index block is used to keep track of things. In order to at word 10000, the system divides 10000 by
256. This tells it what block to use, and it goes and picks up that word of the index block. If that word is non-
zero, then it knows where on the drum to find that block and it brings it in and uses the remainder of the
division by 256 to select the word within that block you addressed. If, on the other hand, the index block entry
is zero, then it must create a new block, which is zeroed out, of course, before it can do the operation. The
significance of this is clearly that you can have a random file in which you have built tables in several
different places, which relieves you of storage allocation problems, without your having to worry about
wasting a lot of space in between, because these spaces are not actually assigned. The only space that’s 
wasted is the space in the index block, which is 1/256 of the total amount of space and therefore pretty
negligible. 

Q       How efficient is this? 

A       How long does it take to write or read one word? I don’t know—about 100 microseconds, something like 
that. The block operations are very efficient, especially the large ones because they go directly through core
the way BIO does. 

There’s an additional frill: namely, it is possible for you to specify that one random file is to he your
secondary memory. What this means is that you have available two more operations: load A from secondary
memory (LAS) and store A in secondary memory (SAS) which are described on page 10-3. These operations 
are essentially equivalent to LDA* and STA* except, of course, that they refer to the drum file. You can use
indexing, if you want, and indirect addressing. Needless to say these operations are slower than LDA and 
STA. I think that they take something on the order of 100 microseconds whereas the DWI and DWO take
about 150. Of course if you bounce around in the secondary memory, it will be a lot slower than that because
you will have to keep swapping blocks in and out of the one buffer that’s available. 

Q       What about interference between users. 

A       Everything is going on within one particular drum file. When you declare a file to be secondary memory,
then you are addressing words within that file, which is disjoint not only from everybody else’s files but from 
all of your other drum files. 

It’s also worth pointing out (see the bottom of page 10-3) that it’s possible to release space in a random drum 
file. If you release whole blocks they are explicitly thrown away. This operation is essentially equivalent to BRS 4
logically. Naturally they are handled quite differently.



Drum I/O code 
We will now pass on, I think, to look at DRM, rather casually. All the drum EOM’s are to be found in 

MDBG, by the way. The repeats after DBUF are being used to set up words which contain the addresses of the
various drum buffers and index blocks in the user’s TS block. The repeats are controlled by how many drum 
buffers and index blocks there are supposed to be. There is a thing called DRQ, which is a queue for drum I/O
requests. 

On page 2 DRMSET initializes the drum I/O by clearing everything out. DRMOPN and DRMCLS are
routines called by BRS 1 and BRS 2 when drum files are being opened or closed. DRMOPN is essentially
responsible for finding a free buffer somewhere and initializing it and reading in the initial index block. 

On page 3 we have LAS and SAS, which are the code to implement those two SYSPOPs. Then comes IDM,
which is the drum, interrupt routine. The drum is set up with a list of drum commands, and there are two words at
the top of page 4 which essentially specify the list. Then there is a whole lot of rigmarole to deal with drum errors,
setting the next command and one thing and another. DPU on page 5 is where the drum I/O goes when it has to
dismiss itself onto the phantom user queue. This happens mostly in cases having to do with multiple index blocks.
The guy qc for an I/O operation and you need several drum references before you can carry out what he wants.
For instance, suppose that he asks to read in a logical record. If the logical record you have in there now has been
changed (this would be for random files) you have to write it out, and you may have to get a new lade;: block to
find the next thing, and then you have to read in the data for the next thing. In the course of doing all these
gyrations you may have to dismiss the guy several times. The way you do this is by going on the phantom user
when you have to wait. 

DRMSI and DRMSO on page 5 are the sequential I/O drivers. They are called from GPW when GA is ready 
to transmit a word to or from the drum. Starting on page 6 there is a whole slew of drum routines which do what it
says in the comments. These routines are called on by the other parts of the drum I/O. On page 9 we see DTA,
which is responsible for acquiring a new drum block. The logic for acquiring an optimal block is the same as that
we described for getting an optimal block for swapping. We have this bit table which keeps track of which blocks
on the drum are assigned and which are not assigned. The table is larger than the swapper table of course. 

On page 12 we see the random drum file routines which are responsible for taking care of DWI and DWO, 
and on page 13 is the code for fast block I/O to the drum, both BIO and DBI-DBO. It is quite messy because it 
has to allow for the possibility that the block transfer is not even. If the block transfer is an even. number of 256
word blocks, then there’s no difficulty; you just start the drum up in the user’s core, reading or writing 256 words 
blocks. The only tricky thing is you have to compute the absolute core address corresponding to the relabeled
address. The drum does not go through the relabeling. Unfortunately, there are several complications. It is
possible that the I/O can start and end not on an even 256 word block, in which case you have to go through one
of the drum buffers to take care of the starting and ending sections, since the drum always works in 256 word
blocks. 

Another possible complication is one we discussed in connection with hardware, namely that a 256 word
block may overlap page boundaries and possibly may not he contiguous in absolute memory. If that happens, you
have to invoke the drum channel map, and the code at the top of page 14 is doing that. It’s got an IF in it which 
decides whether it uses the map or forces the I/O to go through the buffer. 

On page 15 we have an important routine which is essentially responsible for getting a data block into core.
DTG is called whenever any part of the drum I/O wants to get a new data block. It’s responsible for cleaning up 
the old state of the buffer, whatever it is—this may involve writing out an old data block if it has been changed—
for getting a new index block if necessary, and for getting the new data block in. It may call on the routine to
create new data blocks if it needs to get a new one. Then on page 16 there’s some miscellaneous junk—routines 
for declaring random files to be secondary memory, changing the mode of sequential files. 

On page 17 are the routines to for handling index blocks. Then you have on page 18a routine to delete the
contents of a drum file and one which counts the length of a drum file. 

On page 19 CBRF deletes information from a random file; that’s the operation equivalent to BRS 4. On page 
20 there are operations for inserting and deleting logical records from sequential files. These routines call on the
bunch of routines that we passed over earlier to do the actual work of moving the pointers around, as do the



routines to implement the control operations for sequential files. All the things on page 20 are called on by the 
various drum controls, and to see exactly how that is done you should go back and look in SIO. 



SPS 
SPS comes in the following pieces. There are some basic things that can be used by themselves, the stuff for

hash tables, and the stuff for input/output. We’ll start with the basic things and go systematically. We already
discussed what a string pointer is—it’s a two word, object, the first word containing the character address of the
character before the first character of the string, and the last word containing the character address of the last
character of the string. A character address is the word address multiplied by three plus zero, one or two.
Characters are 8 bits long and are stored three per word. 

The following wonderful operations are available LDCP and STP, which are double word load and store , are
of course used whenever you have double words, not just for string pointers. They take much longer than LDA;
LDB, about six times as long. Then there are operations for reading and writing strings. There’s GCI—get 
character and increment—this is sort of basic. If there are any characters in the sting, i.e. if the second character 
address is greater than the first character address, it reads out the first character of the string and puts it in the A
register, increments the first character address by one, and skips. In other words, it reads out the first character and
takes it out of the string. If the string pointer is null, that means if the second character address is equal to or less
than the first character address, GCI returns without skipping. It preserves the X register and clobbers the B
register, and takes 84 microseconds. 

Then there is WCI, which is sort of complimentary to GCI. It writes the character on the end of the string
which is pointed to by the pointer addressed by the WCI. It doesn’t look at the first word of the string pointer at 
all, but simply writes at the character address specified by the second word and increments the second word by
one. Now there’s a little goody called GCD, which is exactly like 

GCI except that it reads from the end of the string rather than beginning. This means that a WCT followed by 
a GCD leaves you right hack where you were. 

Then there are the string comparison operations—skip on string equal and skip on string greater. They 
shouldn’t cause any great problem. And that’s all of the basic things. Next, there are the string input/output
instructions. For output you have BRS 34, which has an elaborate convention which is described in the manual
and which I Won’t describe in detail; and you have BRS 35 which outputs strings. For input there is BRS 37; you
give it a string pointer and a terminating character and it reads characters until it comes to the terminating
character and appends them to the string that you gave it. 

Finally there is the stuff that has to do with hash tables. A hash table is a table of three word entries; the first
two words are the string pointer and the third word is a so-called value word and is at the disposal of the 
programmer. A hash table is used for putting strings away in such a manner that we can look them up afterwards.
The exact mechanism which is involved is this: you can look a string up in a hash table by using BRS 5 in a
manner which I will describe in a minute. You give BRS 5 a string and from this string it computes a more or less
random number. The algorithm actually used that it takes is/the first four character, adds them to the last four
characters, folds the result into a 12 bit number by adding the two halves of it together and multiplies by the
length. The precise. algorithm is not critical—it is only necessary that it produce more or less uniformly 
distributed numbers. Then you take this number, modulo the length of the hash table, you make sure that it’s an 
even multiple of three and start at that point in the hash table looking for the string. If you find the string before
you find an empty entry in the hash table, then it is in the table. If you find the empty entry first it’s not in the 
hash table, because when a string is inserted in the hash table, it is always inserted in the empty entry which you
find when you discovered it wasn’t there, using BRS 5. When you insert a string in the table, you insert it with
BRS 6, which puts it exactly in the empty entry found by BRS 5. To make it convenient, BRS 5 skips if it finds
the string. It doesn’t skip if it doesn’t find it and you can put the BRS 6 right after the ERS I if you want to insert 
it. This means it will automatically execute the BRS 6 immediately if it doesn’t find the string. If you don’t want 
to automatically insert it, of course you don’t have to. There is one thing to bear in mind you can’t delete entries 
arbitrarily from the hash table. 

If, say A, B and C have been inserted and have wound up in sequential locations, and you delete B, then when
it searches for C it will find the empty entry you left by deleting B first, and will assume that C is not in. An
empty entry is indicated by zero in the first word. What you do instead in order to delete an entry is to put -1 in 
the first word. Then it will skip over it during the scan, but if you insert something, it will put it in a -1 entry if 
possible. After a successful BRS 5 or a BRS 6, you get back two useful pieces of information: the third word of 



the three word entry, which is the value; and the address of the first word, so you know where the entry is. To
call BRS 5 or 6 you put into Y the address of a three word table and into AB the pointer to the string you want to
look up. The three word table contains the address of the beginning of the hash table in the first word, the address
of the word after the end of the hash table in the second word, and anything you want in the third word which is
used for temporary storage. 

Now, in addition to BRS 5 and BRS 6, there is BRS 37, which is a little bit different and is used for command
recognition. I’m not going to describe it in detail because it explains it in the manual exactly how it wor:ca. BRS 
37 takes the address of a control table identical to the one used in BRS 5 and BRS 6. It should be pointed out,
however, that if you are going to use BRS 5, you can only look up what was entered by BRS 5 and 6. Otherwise
the hash table algorithm obviously isn’t going to work. BRS 37, however, will work on any table. Because it has 
to scan a table linearly, it doesn’t use the hash coding algorithms. Therefore, you may construct the table to be 
used by BP$ 37 explicitly in the assembler by simply setting up the string pointers properly. 

You cannot construct the table to be looked up with BRS 5 that way. 

OK, that covers SPS with one exception, which is WCH, which addresses a little table which essentially
defines the boundaries of the string storage. It works like WCI except for what it does when there isn’t any more 
room in the string storage. See the manual for details. Summary 

The monitor features we have discussed fall into the following categories. There are things having to do with
the scheduler, things having to do with fork structure, things having to do with memory, things having to do with
teletypes, and things having to do with input-output generally. The significant characteristics of the scheduler are
its three queues; one for teletypes, one for I/O, and one for compute limited processes. The entries on these
queues are slots in the program active or PAC table. Each entry has associated with it all the information 
necessary to define a process i.e. in the contents of the central registers and the reap, together with a lot of other
information, such as the user number and the fork structure and the interrupt mask and other things that you will
find in the picture on page 3A. Also a word called the activation word, which tells under what circumstances the
process should be activated, and a word which contains information as to how long it should be allowed to run.
An activation word consists of an opcode field which specifies which activation condition is involved, and an
address field which tells where you go to actually find the thing to be tested. Activation conditions are usually
pretty simple-minded, They allow you to test for things like negative words;, positive words, words bigger than
the value of the clock and simple things like that. 

When the scheduler is entered, it starts at the top of the teletype queue and runs through all three queues in 
order looking for a process which can be activated. You will notice that a process on the bottom queue can always
be activated, since the only reason it was dismissed was because somebody else wanted to run. The processes on 
the teletype and I/O queues cannot necessarily be reactivated; they can only run when whatever input-output 
operation it was dismissed for is complete. 

When the scheduler reactivates the process, what it does is to simply start it executing at the location specified
by the program counter word in the PAC table entry. This means in the case of input-output operations, that the 
instruction which caused the program to be dismissed would be re-executed when the program is reactivated. This 
means that this instruction must be organized in such a way that it doesn’t mind being re-executed. To give a 
specific example from the things we have been discussing the last couple of days, with reference to the new disc
interface, the only instruction which could cause dismissal is the one which says, “Wait until all my disc 
references are finished.” So what this instruction will do is very simple. It will look at the disc reference counter
and if it is bigger than zero, it will merely dismiss the guy waiting for the counter to become less than zero. Where
it is reactivated, it will test the counter again. This time it is bound to be less than zero. 

These are the characteristics of the scheduler. We have these three queues which allow you to determine the
priority of a process by the queue you put it on. Apart from that it works essentially on a round robin basis. It is
worth noting that there can be processes which are not on any scheduler queue, in particular the running process.
Processes which are dismissed waiting for subsidiary forks to terminate are not on any scheduler queue either.
They do not need to be. They are pointed directly by the PFORK pointers of the subsidiary fork. 

The scheduler has timing mechanisms built into it. A program has a short quantum and a long quantum, each
of which is variable. It is always allowed to run for the full length of the short quantum unless it dismisses itself,
and whenever it is reactivated it is given a new short quantum. The process is allowed to continue to run for its
long quantum if no process waiting for input-output is ready to run. If any such process is ready to run, then the



process running in its long quantum is dismissed. In this case it will be given a new long quantum when ut is
restored. If the process running in long quantum is dismissed because it does I/O, it will continue with the same
long quantum that it had before when it is restarted. 

Than there is fork structure. The user is able to create essentially an unlimited number of processes, each one
being morn or less independent of the others, with its own central registers and its own map. A process can create
subsidiary processes by executing the appropriate system call BRS 9 and specifying the location of a table which
contains initial settings of the central registers and the mask. The subsidiary process commences to execute and 
proceeds more or less independently of the .main (creating, controlling) process. The controlling process can
specify the way in which memory is allocated to the subsidiary process. A controlling process may read the status
of the subsidiary process, which includes the contents of the central registers, the map and a status word
indicating *hat the subsidiary process is doing. It may dismiss itself waiting for the subsidiary process to
terminate and it may kill the subsidiary process. 

The subsidiary process runs, except for these operations, independently of the controlling process. 

It can terminate if it executes an illegal instructions, causes a memory violation or executes a BRS 10, the
third being considered a normal means of termination. It can also be terminated if its controlling process is
terminated. Finally, it can be terminated by rubout. 

The rubout button on each controlling teletype (that is, each teletype on which a user is entered as opposed to
teletypes which are attached), is connected to one of the user’s forks. When a rubout occurs, it causes this fork to 
be either interrupted or terminated. The fork will be interrupted if interrupt 1 is armed; otherwise it will be
terminated. The termination looks exactly like the termination produced by BRS 10, except of course that the
BRS 10 instruction is not actually executed. In the absence of specific action by the user, the highest user fork
will be the rubout target, because when the executive fires up the highest level user fork it will propagate the
rubout to it. There is an option bit in the word which specifies the initial state of a fork which allows you to
propagate the rubout button, if you had it before. 

The other important thing about the fork structure is the interrupt mechanism. Every process has associated
with it 20 interrupts, 1 reserved by the system and 16 available to the user. It may arm or disarm any or all of
these interrupts. A fork may also generate an interrupt by putting the interrupt number in the A register and
executing an appropriate system call. The interrupt signal is propagated to all the parallel forks and then up to all
of the creating forks or ancestors of the fork causing the interrupt. If in the course of its wandering, the interrupt
signal encounters a fork which has the appropriate arming bit on, it will interrupt that fork and die. If it doesn’t 
encounter any such fork, it will just die without doing anything. 

The fork causing the interrupt will proceed undisturbed. In the interrupted fork an SBRM indirect through
location 200 + interrupt number is simulated by the system. This is essentially equivalent to what happens in a
hardware interrupt. 

Interrupts 1 through 4 are reserved by the system. Interrupt 1 is generated by the rubout button, 2 by memory
violation, 3 by termination of any subsidiary fork and 4 by any unusual I/O condition. The idea behind the 
interrupts is that they allow programs to execute without having to test for any unusual conditions. If any unusual
conditions occur the program will be sent automatically to the appropriate routines. 

The idea behind fork structure is that you can make yourself independent processes. You can use them in any 
way to expand the amount of memory that is available to you at one time; to buffer I/O; to perform parallel
computations; to receive interrupts from unusual conditions or whatever. There are many possibilities. You can do
whatever you want with them. Because of the flexibility of this facility, many other features in the system are not
quite as general as we would otherwise wish them to be. One can usually get the effect desired by using one of the
general system facilities in a fork, which is independent of the rest of the computation. 

For example, normally when you do an I/O operation in the system, you are dismissed until the operation is
complete. You many not want to be dismissed, you may want to continue computing, if you do not need the result
of the operation for some time. You can get this effect by doing the operation=in a fork. The fork will get
dismissed but the main program can keep running. Then when the fork is reactivated it can set a flag or interrupt
the main program or whatever it wants to signal he fact that the operation has been completed. It is because this
facility is available that we do not think it necessary to have explicit mechanisms by which a program can declare 
that it wants I/O buffered. By using the fork structure you may set up your own buffering scheme and you can



make it just as simple or just as complicated as you choose. 

Then there is memory. I think I will pass over the hardware relabeling. Each fork has associated with it
mapping or pseudo-relabeling registers which define the relationship between the 8 virtual pages of the process
and the actual pages of memory which the user may possess. A page of memory is defined by an entry in a table
called PMT, which gives essentially the location of the memory, either in core or on the drum. The relabeling
registers consist entirely of pointers to PMT, or possibly to a table called SMT, which consists of memory which
is shared between the users. The user may acquire memory by addressing a block of virtual memory which
corresponds to a zero in his pseudo-relabeling. When it does this, new memory will be assigned to it according to
one of three algorithms; which algorithm is applied will be determined by the creating fork: a) the subsidiary fork
is not allowed to acquire new memory. It must make do with the memory it was given when it was started; b) the
subsidiary fork will acquire a brand new memory block cleared to zero whenever it addresses a block which was
formerly unassigned; c) the subsidiary fork will acquire memory which is propagated from corresponding blocks
in the changing (adding to) the creating forks. In addition to this automatic mechanism for/ relabeling, a fork can
also change the relabeling explicitly, reading it with BRS 43, and setting it with BRS 44. 

Basically, between the memory allocation algorithm and 13R8’ 43 and 44 the user is given the ability to 
select at any given time any combination of 8 or fewer blocks of memory out of the larger number of blocks of
memory assigned to him. This is obviously an extremely important facility, for any large scale subsystem consists
of many pieces which do not reside all in core at the same time. It should be pointed out that this mechanism is
not a panacea for all ills, because the time required to change the pseudo-relabeling is not negligible. 

Then there is the I/O system, which essentially comes in two major sections, one dealing specifically with
teletypes and one dealing with I/O in general. The most important I/O interface is the sequential file interface.
Such a file can properly he described as a string of bits. The user may read from this string of bits or add to it in
units of either 8 bits (1 character) 24 bits (I words or some multiple of 24 hits (a block of words). The operations
involved are CIO, character input-output; WIO, word input-output; and BIO, block input-output. The first two of 
these go through the A register, the third goes directly to or from the user’s memory. The system is responsible 
for taking care of all packing and unpacking which may be required to make the input-output operation 
compatible with the nature of the device on which the I/O is taking place. Naturally, for some devices it is more
likely you would want to read character by character: for instance, the teletype. Other devices you are more likely
to read by blocks. However, you can use any operation with any device. Files are identified by things called file
numbers. A considerable number of teletype files are built in, particular files. Zero and one always refer to the
user’s controlling teletype for input end output respectively. 

File 2 is an output file which simply forgets about the data. All other files must be explicitly opened by the
user. This can he done by execution of BRS 1, which is given information specifying the file. That is, a device
number telling what device is involved, and possibly an address within’ the device, for instance the address of an 
index block on the drum. BRS 1 is normally restricted to executive type programs, and users are required to go
through the executive naming machinery which we have not discussed. Once the file is open, the file number is
used to identify it during input and output operations, and also when it is closed by BRS 2. 

Unusual conditions which arise during I/O are signaled in several ways: they cause BIO not to skip and they
may cause interrupt four to be generated if it is armed. In some instances, such as the teletype, it is impossible for
any unusual condition to occur. The system of course makes whatever efforts it considers reasonable to recover
from an error before notifying the user that an error has occurred. Sequential files are of the following kinds:
There is the teletype; there are various minor devices: tape, cards and mag type; there is the drug; and there are 
subroutine files. A subroutine file is device which allows the user to turn an I/O instruction into a subroutine call,
The user specifies the nature of the subroutine file, whether it is input or output, word or character, and the system
thereafter calls on the subroutine essentially as through it were a device. The significance of this mechanism is
that it allows you to take a routine which was written expecting to use a file of a certain kind, and give it a
subroutine file which convinces it that it really looking at that special kind of file, while actually it is looking at a
quite different file. 

Sequential files on certain devices have control operations associated with them which allow you for instance
to write end of record, rewind, and back space or forward space records and files. The paper tape punch has one
write end of record. Sequential drum files have a considerable number, since they have a logical record structure.
Within these logical records I/O is sequential. However, one may space past logical records and insert or delete
logical records more or less freely. 



The random file interface for drum files is quite a bit different. It essentially regards a file as a large block of
addressable memory. When you do I/O on a random file, you must specify not only the file number but also the
address of the word within the random file which you are reading or writing. You can read or write a single word
or a block. In the case of a block, you must specify initial address on the random drum file, initial address in core,
and the number of words to be transmitted. There are four operations here, drum word input, drum word output,
drum block input and drum block output. It is worth noticing that data blocks are assigned only for the memory
which is actually referenced. If a 256 word block which is not referenced occurs among those which are, it will
not have any space on the drum. This is exactly analogous to the memory allocation mechanism for core. All
blocks have space in the index block, of course. 

It is possible to declare a random file to be the secondary memory file, and the operations load A from
secondary memory and store A into secondary memory are available. These operations work in the following
way. The effective address of the POP is computed in the normal way. That word is then interpreted as follows:
The bottom 22 bits are taken as an address and the index bit is checked. If it is on, the contents of the index
register is added to this address. 

The resulting address is then taken as an address in the drum file. Naturally, if you insist on using an address
which has a one bit in the 22nd bit, you will generate a lot of index blocks, and this should be discouraged. 

Finally, we come to teletypes. There are two operations called TGI and TCO to read characters from the
teletype and print them on the teletype. They are essentially equivalent to CIO 0 and CIO 1, although the
conventions as to what goes into memory and what goes into the A register are a little bit different. The latter
operations are normally preferable, since you can make them more general by changing the file number, which
cannot be done with TCI and TCO. In addition there are the operations for typing out characters on specified
teletypes and reading characters from specified teletypes, and an elaborate linking mechanism for linking
teletypes either for output or for input. There are protection bits to prevent you from getting output on your
teletype, kind to prevent other people from reading your teletype if you wish to prevent these things. There is an
operation called simulate teletype input which allows a program to generate a character as though it had been
typed in on other program. 

It is important to understand a little bit about how teletype I/O is actually handled through input and output
buffers. When you do output, characters are piled up in the output buffer and are fed out to the teletype at the
maximum rate in which it can accept them. When you do input, characters arrive from the teletype and go into the
input buffer, even if the program is not there. Echos are generated, the choice of each echo depending on what
echo table the program has specified. The alternatives are: echo everything as it is, or don’t echo anything at all. 

Whether a program which is waiting for teletype input will be reactivated when a particular character comes
in depends on whether or not the character is a break character. The break characters are also determined by the
choice of echo table, and there are three possibilities: everything; everything except letters, digits and space; and
nothing except control characters. 


