CLo
?_,-7.7- 7’

This fefr wos wyilom Aan jmm,, 1951
A‘f ﬁu.f /'Nm T wa QAAI;MG—V\ p)'o Tewm o% A
SHAnre 574/'% 0’23.1‘7& Emm T e ;'ﬂi’:‘r conum;Tee
hid fJou o M " Qhaster b Ao..scr« d priduce
on © iy 3 Ao Feua ﬁllu ﬂ\r%th.ﬁ? .ZéM 709
at wa/oas* SHMLE m.u;‘»y (f-,/// 195€). My
job ww b ovgani eqmmillee, Lind mfh“"&hlud'
QL\&!’;WMM ,O\MD s‘}m.‘\' ‘]Ll b&u Youl;«?. m C\'}Sf
mme q‘th ,a[ate ot RAMD M ZF&‘./ /7.('7/4.7'
whieh i I sabuilld +Fhiese Heounlds. As qou
kow du resalt-sevened y dovs Lot - 00 ZA
SHIE opunting Sppbews (So3) Jov T 209 /o0
UJL0.0L ww bw’c./f wsed C«» CM,l/ifN b TR JTYS —JL&

)M}7y,$ allewy].

Thie oof, Au #ﬂ'iu'% 's'ﬁmc‘fu.r;q“ 'S
A l‘ fcuu ,Aoﬂ“ mére .S’w‘ﬂimo'»w/ﬁ /l-m W//E:f7.
I wen ovsnn«.llv G.a(vdca:[i;? o= 5 f‘ﬂ«« /Zufm«lﬂ
/:7 A Yy natnt A pestuctard l@vcc St
stm‘tw:’»-, 4 /Zq sqyainm S, (/Uo/c, /Lx b stanca a/
r tnacays d() by /J—vbp 1’*7«07%"/207177(4»\/-
1956 won ;m;l, eu/., oud 1BMS Frvfran vévy n:ﬂ/z&
[“f"‘:/"ff am/w,l A khﬁc&i‘d /W (f/o/ a.;‘&,
)u‘imsﬁl‘cfluft. 4// Wweve /nmﬂ‘ln‘) auwd ”aﬁl/c'/imy 5'/1//
Yw7 much 1 Vo,wc e had e A /Mu Jo Lu'l(
o} n'mg:lfemiu " /LA W%‘V "7’}"“‘ ad
G.(c s mvﬂui! where 7 wea less mﬁc'-l/: ond
e H-Sflon.al /Lm ra AW l,njl.dlyu\ﬂ Q////h"qi. //n/)

cCeLo

®

qe mg auy S Feun &...s{o‘mc\b Miy“ M
vestvickim (even canramtions) ow mmiu.7 +¢¢ku§¥m
wiv e ro&/wu o doman nam ow.oss;“.lit(Eoo\c -YL%.
o oun M“‘*f)“; wihare du recep ‘n occevded 0T
woowad 'S¢, (Su ACM Q(wf, (voe, (IM'JJ(&:‘)). (f/}CT
Wos o cooKWe-*'l:nly» Qvoluu& "c.mé.len“ Sw ‘\N, 101 eshich
hed b ovoveont lode o} Sloatia- ot himdwant = it pre-deded
frtvor Jaund wea wal Tnhwgrdie — and wWds wae radev
\Ak‘\nH constvarmd)

Mu' CMMDW\'S Su»&ou oM ¢ 1% ,,lzu" aqfuma%,
A\.&M'*' ewt muds tea. So5 P!.HMA'S mosf)’ a& JLA
;Jlu w M eg,ea,/) bu-'l’,o.lu.s) WYY n’.wa.uf J—o
.S&kufwviwl .

o ol b S i’ s i e e

SOME THOUGHTS ON A PROPOSED ASSEMBLY-LOADER

The present symbolic assembly schemes are rather
inefficient for a number of reasons; this proposal 1s an
attempt to eliminate these deficlencles.’ First, the usual
procedure consists of working‘with«at least two decks simul-
tanecusly: The original symbalic deck with one instruction
per card, and the resulting blnary deck. Extensive changes
are usually made by going back to the criginal symbclic deck,
while minor changes are effected by the use of binary or cctal
cofrectcrs. Thus it usually happens that there are at least
three versicns cf a problém at ocnce: The symbolic deck which
was nct kept up to date, the bilnary deck with its change cards,
and the listing produced b; the assembly program.

The difficulty arises because, with present input-cutput
equipment, there is a tendency to avcid reading the symbolic
deck whenever pcssible--1t seems reascnable to assume that if
there was no reading cor listing time assoéiated with an
assembly, it would be perfecély feasible to assemble and run
fcr each pass cf the prcblem. There 1s still the cbjection
made b, scme pecple, hcwever, that there are really-too many
symbolic cards toc ccnveniently handle each time it 1is desired
to run a prcblem. The binary deck takes care cf this prcblem
by ccmpressing the instructicns to (cn the 704) 22 per card,
tut, unfcrtunately, destrcys the symbolic information criginally

written dcwn, and requires cross-reference to be made via

i e e . " o O R I P

-2-
consultaticn of the assembly listing. It is felt that a
number of these problems are eliminated by the prcpcsed scheme.
Ncte also that a high percentage cf runs on a machine are
"first time" runs in that at least a small change has been made
in the cocde since the previous run. The time ccnsumed in
assembly--both machine time and elapsed time--is a deterrent
to the to-be-preferred methced of making all changes and
corrections symbolically and assembling fcr each pass.

It might be mentioned at this point that the trend (at
least of the more sophisticated programmers) is away from any
kxncwledge cf actual machine lccaticns and stcrage assignments,
even during the debugging stage of the coding. BACAIC, of Bceing,
has been doing this for at least a year, and it 1s to be
presumed that few people will actually make reference tc elther
the SAP format ccding produced by‘FOR?ﬁéﬁ»or the assembled
equivalent therecf. In PACT, fcr example, the usefulness cf
this informaticn lies princirally in the fact that this 1s the
cnly way that we can tell what still isn't wcrking in the
ccmpiler itself. (Provision should be made in every system,
it is felt, fcr cbtaining machine language equivalents cf a
prcblem, principally for the purpcse cof dilagnosing machine
failures.)

Let's start cut with a brief description of hcw the

prcpcsed system might operate. A prcblem has been ccded (say

R

in SHARE language) and the symbolic cards are sent to the

-3-
machine for processing. The programmer recelves back a
binafy deck, much smaller than the original symbclic deck,
which, hcowever, contains ALL of the information of the
symbclic deck, including the comments on.the right hand side
of the page. We hope that the symbolic deck gets thrcwn
away--perhaps this is a duty of the cperator. The new deck
1s called the Alpha deck, and is all that the programmer
works with from this point on. (Undcubtedly scmecne would
eventually code a rcutine tc reverse this process; whether
cr not it wculd be desirable is doubtful.) The exact amcunt
cf ccmpression in this deck may be estimated as follows.
First of all, if a card consisted of eighty random Hollerith
characters, at the minimum it could be represented in 13 1/3
words of BCD infcrmaticn or abcut a little mcre than half the
criginal space. On the cther hand, if the card ccntained an
instructicn such as LBT, nct much mcre than eight bits cf
infcrmation (assuming a machine such as the 704 with about 100
cperations in the extended order list). This is a saving cf
abcut 100 to cne; that is, 100 such orders cculd be punched
cn cne card. In the actual case, cn the average, it 1is felt
that more than 22 instructicns, in symbolic fcrm, cculd be
punched cn cne card, assuming nc ccmments have been written.
This is mcore efficient than punching the instructicns in
assemobled binary form!! When ccmments are added, we might

expect that an average of 12 Hollerith characters per

4o
instruction would suffice, and that abcut eight symbolic
instructicns might be punched on cne card.

The above conclusicns are a direct result of the fact
that the information punched cn one symbclic SHARE instruction
card is a very small amount of the possible infcrmation which
could be put cn one card, and that, in addition, the informa-
ticn written down 1s highly redundant. Encoding schemes
have been propcsed many times fcr information which have these
characteristics--we are just making one mcre. Later paragraphs
will talk about this in mocre detail. The only ccmment to be
made at this point 1s that probably the instruction part of
the deck and the comments part of the deck wculd be physically
separable, so that comments need nct be lcaded when they
aren't going to be read.

Back to the process. The ccder now desires a ccde
check run. He sends the ALPHA deck to the machine room, alcng
with his data, and a "Load and go"assembler is added in front
cf his deck. The card reading time 1s relatively small--it
cculd turn cut to be less than required at present with
absolute binary decks--and the assembly process is likewise
rather insignificant. (Unless, of course, we make the
encoding scheme so complicated that the time necessary to
deccde gets tc be long--in which case we don't try to be so
efficient cf space and start thinking of time.) The fact that

the assembly is made at lcad time dcesn't restrict the machine

-5-
available to the prcgram to be run in any way, except perhaps
in the rare case when there are no drums available on the
machine and all tape units are taken up by permanent file
tapes. (Someone will always be around fo dream up a case in
which the system will fall flat on its face.)

His prcgram having been assembled and executed, the
- pregrammer starts to lcck for his mistakes. (Admittedly,
if it runs right the first time, and never needs any revisions,
we probably have wasted our time.) He finds a few of them,
makes the ccrrections he feels necessary in symbolic fornm,
and punches them up. These new cards, in additicn to having
a regular SHARE symbolic instruction, wculd contain the
following information, for example: "This 1s a change to the
instruction at ABQ+4", "This is the first of a series of
instructicns to be inserted follcwing SUM-3", "This is the last
of the series", "Delete the instruction at PQR", "Delete a
blcck cf N instructions starting at ERROR+7". Abbtreviated
notatlicn would be used to designate what the change card means,
prcrtably requiring about nine or ten card columns at the most.
In additicn, comments cculd be put cn the cards.

The changed cards are now put in frcnt cf the ALPHA deck, .
and shipred back to the machine room. The "Lcad and go" proccess
reads and makes all changes in the deck as requested, lcoking,
cr course, fcor obvious errors in the process, and dces the

prcblem. This procedure is repeated until the problem is

checked cut.

There 1s one other frill to be added to the process,
however, and that is that the coder may recelive, at any code
check pass, a new, up-to-date ALPHA deck.with all cf his
changes inccrpcrated. This is probably an absoclute necessity,
as few cf us can resist the temptation to make changes cn
chahges on changes, etc., until we are rather confused as to
what'we really do have. At the same time, for those who
feel that it is absclutely necessary to know where and what
everything turns cut to be inside the machine, a new listing
cf the assembled ccde could be produced. Peripheral equipment
could be used for making the 1listing, giving the prcgrammer
time to see that the code didn't work, the ALPHA deck, and
hence the listing wcould be nc good, and it wculd never have
tc be made.

Scme other benefits accrue under this system. It is
relatively easy, and we feel highly desirable, to set aside
part.cf the memory for information about the code to be used
by any of several debugging programs which cculd then procduce
their ocutput alsc in the symbolic language of the prcgrammer.
Certainly any problem which comes close to using all of the
high speed memory available will certainly cverflow the
memcry abcut three or four cocde check passes later.

| We have, 1n the abocve paragraphs, propcsed a system

which, we feel, has a number cf advantages over our present

S f

_7-
method of operation. At any one time there 1s only cne deck
to contend with, and, likewise, cnly cne listing. If at any
time the coder is in doubt as to what his deck contains, he
caﬁ call for a new listing and get this in his original
symbolic form, with comments. If, as so often happens, the
criginal program beccmes a source for another, the "source"
deck may be reprcduced on the 519, and this will evclve into
the new prcgram.

A few comments ncw about the mechénization cf the
encoding and assembly process. Scme sort of "optimum" (?)
encoding scheme would require as few bits as possible per
symbolic instruction card. What follows has not been thought
out entirely, as will tecome obvicus. Let's treat the symbols
themselves first. On cne pass through the original deck,
each of the symbols is extracted, and placed in a table in an
crder which depends upon the number of characters in that
symbol. In additicn, a count would be keptkof the number of
symbcls with each number cf characters, and this infcrmaticn
would precede the symbol table itself. Thereafter, each
symbol would be replaced by the relative lccation within the
table at which it would be found. Silnce few ccdes have more
than a few hundred symbols, about eight bits would suffice.
The follcwing technique here would save quite a bit cf this
eight bits cn the average. Let the lack of any symbcl be

dencted by a single zerc bit--then the space normally required

-8-
by the eight bits would not need to be used at all. (It
should have been remarked that a problem with 200 symbols cf
an average length of three characters woculd require about
five binary cards.) '

As was suggested above, the eighteen BCD bits cf the
cperation part cf the instruction would be replaced by a
maximum cf seven bits representing one of the 100 or so
possibilities, and even this number might be reduced, on the
average, by assigning a shorter representation to the mcre
prcbable instructions--say add——and a lcnger representation
to the less probable cnes--say store left quctient. The
address, tag, and decrements could be broken up into their
symbolic and absolute parts, and represented in a similar
fashicn. Very likely each instruction shculd carry a tag
telling which of the five parts were present and which were
absent; there are sixteen pcssibilities (every instruction,
we hcpe, has an operation part) and the tags for 9 such
encoded instructicns would fit in one word. No information
need thus be carried in an instructiocn's final enccding for
any part which did not appear.

It is propcsed tc have a single bit in each instructilon
signifying whether or not that instruction card contailned a
comment. The comments themselves would be punched as a
separate deck, and cculd be thrcwn away if the cocder was

ccnvinced that his memory was good enocugh--or if he didn't

-9-
want to give any clues to the pocr fellcw who has to decode
the prcblem. Then, too, these need not be lcaded when they
would be of no use--such as a pass which did not produce a
1isting cr a new ALPHA deck.

It locks as if the above scheme--apart from the
possibility that the "Locader-and goer" might be a dilly to
code, and apart frcm the fact that this whéle thing is new and
unfamiliar and hence prcbably unattractive--could form the
basis for a systam of using.a machine. (It is probable that
the gains from ccmpacting the code into the ALPHA deck would
be less marked on a machine other than the 704, which 1s rather
wasteful of instruction space.) Althcugh most of thé above
discussion has been mcre cr less along the lines of a
modificaticn of the assembly process as applied to the
existing SHARE language, the work involved wculd be of such
magnitude as tc require a careful scrutiny of language cf the
system as a whole. Scme thoughts on this will follcw.

The admitted purpcse cof an assembly-ccmpiler-what-have-
ycu system is to cvercome some cf the deficiencliles inherent
in the modern high-speed digital computer. The assembly
programs of the past have adequately handled many cf these,
but a large area cf difficulty--namely that associated with
the debugging process, fcr example--has been ccmpletely
neglected. Let us review what seem to be scme of these

unattacked deficiencies.

-10-

Early in our experience in coding for a stored prcgraﬁ
ccmputer, we find that there are many sequences of instructions
which are repeated over and over again throughcut the ccurse
of a prcblem, and indeed, are commcn to ﬁany different
problems. At this point we lock for a'means cf using the
ccde that we wrcte yesterday to do the same Job today, and in
the prccess ccme up with the idea c¢f constructing a closed
subroutine. By closed is meant the property which the
routine has which allows us to transfer to it from various
parts cf cur cwn code and have it doc our Job fcr us, after
which the sequence of ccntrol ccmes back tc ocur code at the
prcper point.

It is easy to fall into the trap c¢f thinking that this
is the cnly advantage of the clcosed subrocutine. If this were
the case, the efficiency of many of the prcblems now being run
could be imprcved markedly by actually inccrpcrating the
subrcutine as an copen rcutine at the point at which it was
called for, eliminate the bcecikwcrk asscciated with the
"calling sequence decipherment", and go cn doing so till we ran
cut of memcry. (This is of course based on the assumption
that there 1s some memcry space left cver when the Job is
dcne, and is prctably truthful a gced part of the time.) A
more impcrtant feature which 1s a property of the clcsed
subrcutine lies in the fact that we use it to process varying

pleces cf data in scme standard way, and go cn to give the

-11-
subroutine a name by which we can easlly refer to a rather
complex process. Originally the device by which this was
accomplished was a programming "trick" (xxx Reset add xxx),
but, in the 704, at least, this is built intc the hardware
(TSX YYY,4). Once we have debugged the subrocutine (which may
be none tcc easy) we can more or less fcrget about the means
by which it does its job, and only have to make sure that we
have supplied it with the right data and used the cutput
properly. (This is a big help in debugging the program which
uses the subrocutine, as 1s soon disccvered by the neophyte
prcgrammer.) Ccnversely, if at some later stage in the
evclution of cur final code we discover an error in the
subrcutine, we can go ahead and change 1t knowing that so
long as the task the rcutine dces 1is unchanged (that is, what
we thought it was supposed to dc--not what it actually ended
up doing) we will nct have tc wcrry abcut changing any other
parts of the code. This in itself shculd be enough to make us
lock more clcsely at the subroutine ccncept as a device for
doing not only all of cur standard functions, but all of the
computing which we have to do.

Unfcrtunately, there is a large amount cof inertia on
the part cf the coder which keeps him from ccnstructing his
entire problem on the above scheme, and this will continue
to be the case until the system in which he writes his ccde

allcws him to do this with little, if any, additional effort.

S L o e

-12=
If it is done, the process cf coding boils dowh, in the main,
tc assembling the data for a process, Jjumping to the routine
which does the process, and getting rid cf the data produced--
which probably means sending it on as inbut to another routine.
The code for the process itself is one or two crders which
make up a calling sequence; 0) 4 course it will eventually be
necessary to code the process routines themsélves, but if at
any time a task locks toc difficult to code, or if it will
interrupt cur train cf thought to code it as it arises, then
it can again be relegated to a subrcutine. By the tlme wé
get dewn to the bottom "level" of‘the prccess, the routines
probably are so simple that the individual time spent ching
them will be small. There might be an awful lot of them to
code, but past experience seems to dictate that the time spent
in checking out a lcng sequence of crders gces up far faster
than at a linear rate, sc that in the long run there may be a
tremendous gain in cverall time spent. 1In fact, the debugging
prccess can be explained fairly simply if the code 1s
censtructed in this fashicn. First, put in the data for the
ccde, and see if the right answers ccme out. Nc? Check the
data into the first subroutine and the answers it gives cut.
Sti1l no go? Check the data into each of its subroutines in
turn, and ccntinue the process until we get down to the lcwest
level, at which pcint there will presumably be a simple set of

crders to debug. (The temptaticn for the coder tc "cheat"

F

-13-
and do scmething rather complex Jjust to relieve the monotony
will be great, but should be resisted at all ccsts.) Checkout,
if not a "snap", at least 1s orderly and logical.

In the above discussicn fundamental assumptions were
made. First, that each routine 1is self ccntained and dces
not clobber any other portion of the code, and that, in fact,
it can be writtéﬁ without any kncwledge of the detaills of the
routines elther above it c¢r belcw it in the hierarchy. This
is where present-day machines fall dcwn, since once inside the
machine cne routine cannct be told frcm another, and
instructicns of the "clcbbering' type are executed along with
all the rest. It may be pcssible to ccnstruct hardware that
isn't restrictive as to length of program, etc., to do this,
but unpil it 1s dcne we have to rely on our assembly-compiler
toc dc it for us.

Hcw are references made within such a routine? There are
only a few types of these necessary, as fcllcws. One, references
to cther 1nstructiohs within the rcutine, as fcr example
transfers. Two, references to the input data. Three, references
to the output data. Four, references toc constant data which is
probably carried along with the subrcutine. (If it isn't there
right with the rcutine, chances are it will be fcrgctten at
some time or another.) Five, the references tc the common
or working stcrage that the routine requires. Finally, the

references to the cther routines which it uses. (Only

AV,

-14-

references to the routines themselves, and not to the input
and output of these 1s meant, as these latter two classes shcw
up as requirements cf the lecwer routine.)

Since we dcn't like to use machine.language locaticns
cr addresses (when we're coding we don't know them and when
the prcblem is running we couldn't care less, except for
pcssible machine difficulties. Let's not discuss debugging
right now), we use symbols to represent the addresses cf the
instructions to which we are referring. We should be able
to use any symbcl within the allcwed set for this purpcse,
and with no kncwledge of the symbols used by either higher cr
lcwer level routines. That is, what is desired is a class of
symbels which carry different meanings from routine to
rcutine. The present 7C4 assembly rcutine makes this sort of
thing fairly difficult at test (the coders who can use the HED
cperation with facility on several levels seem to be few and
far tetween.) Any number of devices might be used to acccmplish
this end, but whichever is finally emplcyed shculd be an
automatic functicn cf the assembler cr of writing down the
ccde, and should not rely on separate indications which can
be fcrgotten.

Also needed in the way cf symbols for crders are the
symccls which stand for the whole grcup of instructions within
a code. These again shculd be separately distingulshable

frcm other symbols, and this process should be automatic.

-15-

(This cne isn't toc difficult--if it shows up as the address
of a TSX order, it is cne of these. Let's not get to a
routine without going through a TSX). |

The symbols used fcr the transmiséicn cf data must
again be separate from either of the above classes, and in
addition, must have scme sort of "relative" property
assoclated with them; that 1s, a symbol fcr a block of data
1s used yith ancther symbol or number to identify the particular
pilece of data within the block. Just how the data itself is
transmitted from blcck to block may be accomplished in
variocus fashicns, and all of them should probably be allowed.
First, we can send the data 1tself, by means of scme standard
cell within the machine. The Accummulator is most often used
fcr this purpose, but scme schemes require standard lccations
such as 0000 or scme specified part cf the temporary storage.
Alternatively, we can transmit the location at which the data
can.be fcund, and if there is lcts of it, hcw much there is
there. This can te carried tc extreme by transmitting, for
example, L(L(L(L(L(X))))), but confusicn quickly sets in. In
the process of transmitting data from one level routine to
the next, we must make sure that we don't affect any of the
data sent to cor from it by ancother level routine; Right at
this point we ccme tc one of the cbjections to using the sort
of scheme which we have teen describing. A lérge amount of

time, 1t is argued, is spent shuffling data arcund, and finding

-16-
out what we want to do, rather than actually doing it. The
situation really isn't as bad as it seems, however, as the
machine is actually spending most of its time executing the
bottcm level of subrcutines, and at this level it 18 not the
case that most of the work is shuffling data. It seems
faifly obvicus that a five or ten percent reduction in
efficlency 1s mcre than compensated for by the gains made by
knowing what is going on.

When we get to the problem of the working (temporary)
storage required by the rcutines at various levels, we find
a great disparity of prejudices. Some systems put all the
intermediate working storage in one gréat big pit, to which
the name "COMMON" is given. This has the advantage of
reducing the stcrage required, but many has been the times
that something thrown into COMMON Jjust wasn't there when it
was supposed to be, and the process of finding the offending
instructicn, which can be at any of numercus levels, can be
tedious at best. Other schemes use one level of working
stcrage for the lowest level c¢f code, and another level of
working storage fcr all the cther routines. This helps the
situation scme, but if the number of levels 1is large, trcuble
can still arise in a hurry. Perhaps the btest scheme wculd be
to have each routine have its cwn private stcre of working
stecrage, and, as with the references made tc instructions

within a routine, the symbol used for this working stcrage

e et e o L mtttan i i e v St S e e e e P L o i S

el e o ateonian SRRPERIRLESPLN S S-S OT I SRR EA

iy e L e

R ks,

:
%
;
,‘.‘]
3
;

-17-
should be interpreted separately from routine to rcutine.
A1l through the past few pages the trend has been to
ignore two of the basic tenets of "Good Coding" which have
been adhered to in the past; i.e., that the code shculd be as
short as possible and as efficient as possible. This was
probably a fairly good~1dea when the machines were relatively
slcw and stcrage was limited, but as prcblems grow in complexity
and machings in capacity and speed it is rapidly beccming cut-
mocded. It is even possible to get a good argument going as to
what extent thése properties should be included in the basic
subrcutines that are going to be used again and again. Perhaps
someday scmecne will do a study to ccmpare the coding and
checkcut ccsts of eliminating one instruction or a few micro-
seccnds from a square root routine against the actual cost cf
the machine time saved. The results would probably be
enlightening.
. While the actual details cof an‘assembly—compiler
notaticn and format have been completely put aside, the
system as a whcle shculd allcw the routine-subroutine concept
descrived above to be used in a problem with great facility.
For those die-hards who insist on large ccmplicated codes which
are not brcken dcwn into manageable secticns, it would be
certainly pcssible tc treat the whole thing as cne big sub-
routine, and even go as far as to ccde the whole thing in

& actual cctal--cr even binary. The fact that a system permits

s

-18-
sophistication need not restrict it in any way.

The routine-subrcutine concept, if recognized (and not

merely handled) by the assembler, allcwg a great number of
debugging aids to be incorporated easily and automatically

at any time during the checkcut process. The varicus ramifi-
cations of this have nct been explored to a gfeat extent, but
the fact that information abcut the cocde is carried alcng at
all times with the code itself (which has been assumed to be
in symbolic form right up to the time it is lcaded in for
execution) permits us to carry on the debugging process at a
much higher leQel than ever before pcssible with non-interpre-
tive schemes.

While the fcregoing remarks have purpcsely been directed
away from the 1dea cf a restrictive system, a purely personal
belief is that such a system should indeed be rather restrictive.
It should not, hcwever, be impcssible to "beat the system”;
but certainly the path of least resistance for the coder to
take 1in preparing his prcblem shculd be alcong the lines cutlined
abcve. Perhaps the ingenuity and inventive talents of the
imaginative ccders would be applied to the tasks of fitting
scme seemingly "impossible" functicns intc the system as it
stands.

An assembly system, cuch as the one proposed above, shculd
have some means cn inccrpcrating "standard" subroutines into

cur problems with a minimum of effort on the part of the coder.

i e o e T

-19-
(What we call a standard subroutine is to a 1apge extent, at
present, dependent upon'the secondary stcrage capabilities
of the machine, and the ambunt of paper one must lcok through
to find the specifications for the desired routine. The main
objection raised because of the secondary storage access time;
a tape unit probably can hold at least as many routines as
haQe been generated by SHARE, but the access time to get to
these may be high. The questicn of the trouble it takes to
find the write-up fcr the routine in questicn can be solved
by the use of standard indexing schemes, or the like. This
may, in fact, require the full time services con the part cf a
"librarién", and some installations have Just this sort of
person to take care of the paperwork.) Regardless of the size
of ocur subrcutine library, hcwever, there are three methods
currently in use for incorpcrating these into the problem.
The first methcd is just to pull these from a file of
symbolic cards and read them along with cur cwn symbeclics.
The seccnd methcd has the assembler inccrporate them from a
library tape and produce them in binary along with the rest
of the ccde. The third scheme, 1n 1its mcst refined form
(which has never ccmpletely been done) would have the assembly
(cr the coder) insert a small routine which would pull these
in Jjust pricr tc the actual execution of the code as a whole.
(A fourth method ccmes tc mind, which, while not being efficient

(prbbably), will be mentioned. Assume an interpretive mode of

-20-
operation in which a subrcutine is placed in memcry the first
time it 1s actually called for--the code may have been running
for some time. Thereafter it is assumed to be in memcry.
Other subrcutines are called in as needed, but the first
time only. When space runs cut, cne of the least used
subroutines would be wiped out in deference to the newly
desired routine. The scheme cculd undcubtedly be applied to a
non-interpretive mode also, but it would be easy ta concelive
of times when the program wculd spend all of its time shuffling
subroutines in and cut.)

The first-mentioned method will prcbably always be
with us, as there are a great number of routines which would
be used so seldcm that it would scarcely be worthwhile to
carry them arocund in the system. Also, new routines wculd be
put into a program in this way at least as long as their-
criginator isn't confident encugh of their correct operation
to commit them to the "black box." But it doesn't seem to
require any effort cn cur part to have the assembler do this
for us. (This, by the way, is cne of the weakest points in
our present-day ccmpilers such as PACT and FORTRAN, since in
this instance we are dealing, while coding, with two mutually
incompatible languages.)

The main difference between the second and third method
is twcfold. PFirst, we may be unwilling to read in the sub-

routine from some secondary stcrage device (which is then lost,

-21-
presumably, tc the coder) because of the time 1n#olved.
Secondly, we are confronted with the matter of changes to
subrcutines. This 18 really a pertinent.point to consider,
as almost all "checked out" subroutines develcp bugs at scme
stage in their career. If we 1lncorporate them at assembly
time aqd hence make them a parf of cur program which will nct
be changed when the library 1is changed, we are reascnably
assured that we know what cur problem is doing. Hcwever, we
may have to go through all of our active or potentially active
programs to put in a ccrrected versicn when one shcws up.

It would be hard to say hcw much the time lost here is
compensated for by other consideraticns. Also, it causes no
problem at all when we remcve a routine from the library, if
we are careful abcut telling ocur coders.

If, cn the other hand, we inccrporate the subroutines
into all programs at lcading time, any change made in a
library routine will automatically show up in its ccrrected
versicn in all cur programs. But, unless we have designed
arcund'it, any lengthening cf the rcutine may give us trcuble,
and if the new calling sequence does not include the old cne
as recognizable, we again face the difficulty cf having toc
change all of our'prcgrams. The space situation isn't tco
difficult unless weare beginning tc run cut of memcry; the
routine which reads them cculd take care of the problem of

fixing up the cross references. The calling sequence questicn

i~

-22-

1s just a rephrasal of the cld problem cf "Just when is a
new subroutine really new and when is it a mcdification?"”
It may be that with careful attention to the problem of a
general format for acalling sequence forﬁat that this
weculdn't be as bad as it firét seems.- Finally, we wculd
have to be careful about removing a routine from the library.
This might cause the library to get out of hand rapidly.

In the assembler-lcader described above, it is hard
to determine which we should do. Either cne is possible,
though the seccnd method first ccmes to mind. If we wished
to incorporate the subrcutines "cnce and for all", this
could be done during the initial pass to convert cut symbolics
to the ALPHA deck, putting in the subroutines in symbolic form.
If there really is a dilemma, both methods could show up as
opticns, leéving it up to the coder or individual installation
to use his cwn discretion. |

‘Ancther question nct altogether alien to the first
concerns the ccnvention of references to standard subrcutines
by other subroutines. Here we can either disallow it completely,
make references to other subroutines through the calling
sequence, cor allow complete freedom cf references. (In the
latter case, of course, the assembly would take care not to
put the same subroutine intoc cur program twice. Here too,
scmebecdy can lcuse up the situation by making modifications to

the subrcutine at execution time, presuming he knows what it

-23-
looks like cn the inside. The same questions arise here with
regafd to changes and deletions cf subroutines referred to by
cthers, and one decision will affect the other cne too.

Cne las£ word about subroutines concerns the method of
incorporating them into the code. Few of the presently used
assemblers autcmatically insert them for us. In SAP, fcr
example, the LIB cperation must be inserted in the code, and
what is worse, 1t must be inserted at a pcint remcte from the
point in coding at which we TSX to the subroutine. Most
compilers, on the cther hand, reccgnize that when a subroutine
is transferred to it had better be}somewhere in the machine,
and the compiler takes appropriate steps to see that this 1s
dcne. This is really such a trivial task for the assembly
prcgram that it should always be a feature, if cnly an
optional one.

Completely aside from the subroutine question, this last
pcint brings to light a principle which should always be
follcwed if we want to cut dcwn errcrs in coding. This is:
There should be as little remote indication of what we want
to do as 1s possible. Numerous examples of this are
scattered in all cur codes. The LIB operation is one; the
LXD situation is ancther (cn the 709 this has been taken care
of by the AXT instruction). Any effcrt which we spend to
eliminate the necessity of our referring tc some cther

instruction, to another piece of paper, to eliminate the need

l,m:mk.w.;,w»_ L W O I

Y

TR TP | S T T o S P S T N T LI L 3 T W S S R L

~24
for remembering to do scmething later on, is all time well
spent, and should be a guiding principle in constructing any

éystem of coding for a digital computer.

C. L. Baker
2 February 1957

Wt

e gl 2 e e o i R R S e TS e L e e T S e e e Ry
NN CoRIAG o AR TR SRR S P IV UUR RS SIS BN M - SR ACE 4 3 : - e i %

	c 0001.tif
	c 0002.tif
	c 0003.tif
	c 0004.tif
	c 0005.tif
	c 0006.tif
	c 0007.tif
	c 0008.tif
	c 0009.tif
	c 0010.tif
	c 0011.tif
	c 0012.tif
	c 0013.tif
	c 0014.tif
	c 0015.tif
	c 0016.tif
	c 0017.tif
	c 0018.tif
	c 0019.tif
	c 0020.tif
	c 0021.tif
	c 0022.tif
	c 0023.tif
	c 0024.tif
	c 0025.tif
	c 0026.tif

