
An Application Development Comparison
INGRES vs. Sybase

Strategic Marketing

July 1988

Author: David Kellogg
Contributors: Aaron Zornes, Shelby Thornton

Application Development Comparison -- INGRES vs. Sybase Page 1

Intended Audience

This document is intended to provide technical staff with an
example of application development in INGRES and Sybase. This
document is moderately technical and an understanding of
Embedded SQL, INGRES/IGL, and the C programming language is
beneficial, but not required.

This document is intended for internal use only. It may be
shown to clients or prospective clients, but should not be
distributed to them.

Objective

This document provides a brief overview of today's application
development technologies and presents sample programs which
display the power of INGRES's application development tools.
This document also demonstrates how cumbersome call-level
interfaces are relative to more modern programming methods.
This document is not intended as a general comparison of INGRES
and Sybase. Neither is it intended as a full scale comparison
of the two systems' application development tools.

Copyright (c) 1988 by Relational Technology CONFIDENTIAL b PROPRIETARY

Application Development Comparison -- INGRES vs. Sybase

Introduction

Page 2

Fourth generation languages (4GLs) like INGRES/4GL currently
offer the highest application development productivity seen in
data processing . Regularly, INGRES customers report
productivity gains of 500, 600, and sometimes 1000 percent after
switching from traditional third generation languages (3GLs),
like FORTRAN, COBOL, or C.

Less productive than 4GLs, yet still a great improvement over
3GLs, are embedded programming interfaces where standard SQL
statements are embedded into 3GL programs. In Embedded SQL
(ESQL), SQL statements are prefaced by the words "EXEC SQL" in
an application's source code, and a pre-processor is used to
convert these SOL statements into subroutine calls. In ESQL,
all file input/output (I/O) is done using SOL commands rather
than the host's native file system. Using SOL to perform file
1/0 is both easier and more portable than using the host file
system. For example, coding an application using VAX RMS
(Record Management Services) is not trivial, and the resultant
application is not portable to a UNIX-based system. In
addition, host file systems lack many benefits, such as physical
data independence, which are offered by the relational model.

Standard embedded SQL (ESQL) provides only the capability to
manipulate data in a database. It does not provide any facility
for screen painting or forms control. INGRES extends ESQL by
adding the power of a Forms Runtime System (FRS) to the standard
Embedded SQL interface. Just as regular ESQL statements are
identified by the keywords "EXEC SQL," forms runtime statements
are prefaced by "EXEC FRS." The combination of ESQL with an
embedded forms system is found only in INGRES, and it adds
greatly to programmer productivity. Because the same E'RS is
used in all INGRES interfaces, all of INGRES (and all
user-written applications written in 3GL, 4GL or both) have a
common "look and feel."

Systems which lack a pre-processor often offer call-level
interfaces instead. Rather than pre-processing SQL,. users of
call-level interfaces must make calls directly into
vendor-supplied subroutine libraries. Using a call-level
interface causes program code to expand, increases both
developent and maintenance costs, and raises the probability of
coding errors during development. In general, call-level
interfaces yield the lowest productivity gains.

The next section of this paper presents source code for a simple
banking program. The examples clearly show the differences
among the three previously mentioned environments: 4GL,
embedded pre-processor, and call-level.

Copyright (c) 1988 by Relational Technology CONFIDENTIAL 6 PROPRIETARY

Application Development Comparison -- INGRES vs. Sybase Page 3

INGRES/IGL Code, Bank Deposit or Withdrawal

initialize = (cur-bal = integer4, rows = integer4;)

"Enter" = (
begin transact ion;
form := select cur-bal = balance from account

where act-id = act;

inquire-ingres(rows = rowcount) ;
if rows ! = 1 then

callproc badaccount();
endif;

update account set balance = (cur-bal - dbt) where act-id = act;
update teller set cash = (cash - dbt) where tlr-id = tlr;
update branch set total > (total - dbt) where brn-id = brn;

insert into history (account, branch, teller, debit, time)
values (act, brn, tlr, dbt, "now");

end transaction;

"Exit" = { exit;)

Notes

INGRES/QGL is tightly integrated with the INGRES Forms Runtime
System and thus the above code performs more than just the
simple banking transaction. The above code creates two scree,n
menu items, "Enter" and "Exit"; takes the desired account,
teller, branch, and debit from the screen; and then executes the
simple banking transaction when the user selects the "Enter"
menu item or FRS key.

-- -
In the next two examples, the simple banking transaction is
implemented without the implicit form handling that is native in
the INGRES/QGL. The next examples implement only database
startup, transaction execution, and database shutdown.

Copyright (c) 1988 by Relational Technology CONFIDENTIAL h PROPRIETARY

Application Development Comparison -- INGRES vs. Sybase Page 4

INGRES ESQL Code, Same Transaction, No Forms

EXEC SQL begin declare section;

int cur-bal, act, brn, tlr, dbt;

EXEC SQL end declare section:

EXEC SQL connect database;
EXEC SQL whenever sqlerror stop;

/* get information about withdrawal */
get-values(hact, &tlr, hbrn, 6dbt);

EXEC SQL begin transaction;
EXEC SQL select cur-bal = balance from account

where act-id = :act:

EXEC SOL update account set balance = :cur-bal - :dbt
where act-id = :act;

EXEC SQL update teller set cash = cash - :dbt
where tlr-id = :tlr;

EXEC SQL update branch set total = total - :dbt
where brn-id = :brn;

EXEC SQL insert into history (account, branch, teller,
debit, time)
values (act, brn, tlr, dbt, "now");

EXEC SQL end transaction;

EXEC SOL disconnect;

Copyright (c) 1988 by Relational Technology CONFIDENTIAL h PROPRIETARY

4

Application Development Comparison -- INGRES v s . Sybase Page 5

I

Sybase Call-Level Code

include <stdio. h>
include <sybfront.h>
include <sybdb. h>
include "app. hn

main(argc, argv)
int argc;
char *argv[] ;
(

DBPROCESS *dbproc;
LOG I NR EC *login;

DBINT
DBINT
DBINT
DBINT
DBINT
DBINT
DBINT

1-account;
delta;
teller;
1-branch;
acc-balance;
t r an-num ;
acc-t id;

long cnt ;

/* Login to the database */
login = dblogin() :
DBSETLPWD(login, " ") ;

DBSETLUSER(Login, "sa");

if ((dbproc = dbopen(login, (char *)NULL)) == NULL)
C

printf("Can8t connect with server\n8');

/ * get the right database * /
dbuse(dbproc, "database");

/* start the transaction */
dbfreebuf (dbproc) ;
dbcmd(dbproc, "begin transaction"):
dbsqlexec(dbproc);

/* get the record to update */
dbfreebuf(dbproc);
dbfcmd(dbproc, "execute get-acc %dm, 1-account);
dbsqlexec(dbproc):

if (dbresults(dbproc) ! = SUCCEED)
E

printf("Cou1dn't retrieve account %d\nn, 1-account);

Copyright (c) 1988 by Relational Technology CONFIDENTIAL L PROPRIETARY

Application Development Comparison -- INGRES vs. Sybase Page 6

dbbind(dbproc, 1, INTBIND, 0, hacc-balance);
dbbind(dbproc, 2, INTBIND, 0, htran-num);
dbnextrow(dbproc);

acc-ba lance + = de 1 t a :

while (dbresults(dbproc) ! = NO ,WRE RESULTS); - -

/ * update accounts * /
dbfreebuf(dbproc):
dbfcmd(dbproc, "execute rep-account %d ad",

acc-balance, tran-num);
dbsqlexec(dbproc);
while (dbresults(dbproc) ! = NO MORE-RESULTS); -

/* update cash * /
dbfreebuf(dbproc1;
dbfcmd(dbproc, "execute rep-cash ad %dm,

teller, delta);
dbsqlexec(dbproc);
while (dbresults(dbproc) ! = NO MORE-RESULTS); -
/* update branch */
dbfreebuf(dbproc);
dbfcmd(dbproc, 'execute rep-branch %d %d",

1-branch, delta);
dbsqlexec(dbproc);
while (dbresults(dbproc) != NO - MORE-RESULTS):

/* append to history * /
dbfreebuf(dbproc);
dbfcmd(dbproc, "execute app-history $d %d %d %d %d $d %dm,

1-account, tran-num, delta, teller, 1-branch,
"09/20/87", 0);

dbsqlexec(dbproc);
while (dbresults(dbpr0c) ! = NO - MORE-RESULTS):

/* end the transaction */
dbfreebuf(dbproc);
dbcmd(dbproc , "end transact ion") :
dbsqlexec(dbproc);
while (dbresults(dbproc) ! = NO - MORE-RESULTS);

/* close the database */
dbclose(dbproc);
dbexito;
exit(0);

Copyright (c) 1988 by Relational Technology CONFIDENTIAL L PROPRIETARY

	ingres.application_development_comparison_sybase.1988.102655289.p01.src.tif
	ingres.application_development_comparison_sybase.1988.102655289.p02.src.tif
	ingres.application_development_comparison_sybase.1988.102655289.p03.src.tif
	ingres.application_development_comparison_sybase.1988.102655289.p04.src.tif
	ingres.application_development_comparison_sybase.1988.102655289.p05.src.tif
	ingres.application_development_comparison_sybase.1988.102655289.p06.src.tif
	ingres.application_development_comparison_sybase.1988.102655289.p07.src.tif

