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I. INTRODUCTION 

Early in the planning of the STRETCH computer it was seen 
that by using the latest solid state components in sophisticated circuits 
that it would be possible to increase the speed of floating point arith- 
metic by almost two orders of magnitude over that in existing computers. 
However, there seemed to be no possibility of developing on the same 
time-scale economically feasible large memories with more than a 
factor of ten or  perhaps twenty increase in speed. As a result, the 
proposed system appeared to be in danger of being seriously memory- 
access limited. 

Moreover, as the speed of the floating point operations in- 
creases,  a larger and larger percentage of the computer's time is 
spent on "parasitic operations", i. e .  , operations whose only function 
is program control and data selection. It was obvious that a radi- 
cally new machine organization was necessary in order to capitalize 
upon the possibilities opened up by the high arithmetic speeds in the 
presence of relatively slaw memories. 

A t  this time, the possibility of a tllook-aheadtt device was sug- 
gested in which an independent indexing arithmetic unit would prepare 
the effective addresee8 of instructions and initiate memory references 
to a multiplicity of memory boxes, 
in high speed buffer registers until needed by the arithmetic unit. 
device would serve two desirable purposes; (1) some of the parasitic 
operations would be done in parallel and thus not delay the principal cal- 
culations, and (2) several memory boxes could be sunning simultane - 
ously, giving the effect of higher memory speed. 

The data thus fetched would be held 
Thisl 

11. GENERAL DESCRIPTION OF THE SYSTEM 

The major logically-independent blocks of the STRETCH com- 

That is ,  each does its tasks as 

In practice, 

puter are 8hown in Figure 1. 
sidered as operating asynchronously. 
fast as possible independently of the others. 
have its own clocking circuits and still operate properly. 
for economy's sake they are all timed by the same master oscillator, 

Each of the units pictured may be con- 

In theory, each box could 

but this does not destroy their logical independence. 



. 

. 

The bus control unit serves as a routing agent between the 
memories and the various data processing units. 
units make a request simultaneously the control unit assigns prior- 
ities in the following order: ( I )  High speed Exchange, (2) Basic 
Exchange, (3 )  Virtual Memory, and (4) Indexing Arithmetic Unit. 

If two or more 

The Indexing Arithmetic Unit fetches inetructions, performs 
all necessary indexing operations and sends the inatructions to be 
executed to the Virtual Memory. 

The Virtual Memory fetches and receives the data required 
by the instruction and holds this data until the arithmetic unit is 
ready for it. The Virtual Memory also performs all store opera- 
tions. It holds the data generated by the Arithmetic Unit or Indexing 
Arithmetic Unit until the memory to which the data must be Bent is 
available. 
for instructions to be fed to the arithmetic unit, but also acts a s  a 
' k o k -  behind" storage buffer. 

Thus the Virtual Memory acts not only as dlPook-aheadll 

FIGURE 1 

SCHEMATXC OF SIGMA COMPUTER 

Many 110 
Units 



- 3 -  

The actual design of s u c h  a l'l.oak-aheadfl device posed a num- 
ber of logical problems , particularly in connection with conditional 
branches. In colaboratisn with John Griffi th,  a device was proposed 
later named I1virtual memoryIf, which answered these logical problems 
and served as guide lor  the actual organization of STRETCH. 

However, a machine organization of this complexity requires a 
detailed timing analysis in order to determine the value of adding hard- 
ware in the form of the flvir.tnnal memory". 
the sole function of the llvirtual memoryP1 is to increase machine speed, 
by increasing the efficiency of other devices. 
timing analysis could not be made on the basis of a few trivial examplea 
( e .  g. matrix multiply). 
can be extremely deceptive. Since a detailed timing analysis of a com- 
puter of this complexity is extremely tedious to carry out by hand, it 
became clear that i f  the job were to be done, it would be necessary to 
simulate the proposed machine on another computer. This prompted 
us to .write the simulation program dascribed below. 

This is especially true since 

It was also felt that the 

Machine performance obtained in this fashion 

With the above general organization in mind, let ua discuss 
some of the logical problems posed by such a system. 
lem is a result of the very concept which enables us to obtain such 
great benefits from the stored program computer-the ability to treat, 
instructions as data. In a system such as we have proposed there is 
a large amount of simultaneous operation. For  example, the indexing 
arithrnetic unit may be busy preparing an instruction before previous 
instructions have been completed or even started by the arithmetic 
unit. One of theae previous instructions may modify the instruction 
which is presently being indexed, The virtual m e m o r y  must recognize 
this situation and allow the intervening instructions to be completed 
before doing the modified instruction. 

The first prob- 

A similar problem exists with respect to ordinary data. In order 
to operate several memories simultaneously, it is necessary to s tar t  
obtaining data from these memories befare the preceding operations have 
been completed. Yet, one of theae operations may be a store into one of 
the data locations. The virtual memory must make provisions to insure 
that each instruction obtains the most up-to-date data a s  implied by the 
order of the program. 
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One of the novel features of the STRETCH cornputer is its 
elaborate interrupt system. 
expected occurrence arises, the program will be interrupted and con- 
trol will pass to a special routine which is designed to take care of the 
case in question, then return control to the original program. In this 
situation the virtual memory must have provisions to retain enough 
information so that when an interrupt occurs we can resume the corn- 
putation exactly where we left off. It muat be able to recognize which 
of the changes that have been made in advance are not desired and should 
be obliterated and which are exact solutions that must be restored. 

Under this system whenever some un- 

Another special case ar ises  when a conditional branch on arith- 
metic results occurs. Here we will not know which of the two branches 
we should have taken until the preceeding instruction i a  executed. 
the case the wrong path has been selected, the virtual memory must be 
prepared to drop the intermediate results which have been computed and 
pick up the correct branch in a way very similar to that of axr interrupt. 

In 

Summing up all these logical problems, we may state that the 
fundamental rule for the Virtual Memory is that it must make the asyn- 
chronous and non-sequential computer give results identical to those 
which wodd be obtained by performing the p r o g r m  one instruction at 
a time in the order in which they are written. 

Since our original work on the virtual memory and simulation 
in 1957-58, a large number of detailed changes have been made in the 
actual hardware design of STRETCH. These necessitated several mod- 
ifications in the simulation program to estimate their effect on the over- 
all system performance. 
changes for expository reasons since our purpose is to describe the vir- 
tual memory and timing simulation concepts not to describe the STRETCH 
hardware exactly. The result is that the! system described below imbodies 
a more geneaal system than that found in the Simulator which in turn is 
more general than that found in the actual cdmpute:r. 

In this report we are omitting many of these 

, 
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I11 DETAILED DESCRIPTION OF VIRTUAL MEMORY OPERATION 

A. General Conditions to be Considered 

The conditions which occur in the following situations must be 
considered in some detail: 

1. The fetching of instructions by the Indexing Arithmetic Unit. 

2. The indexing of instructions and modification of Index registers. 

3,  The loading of the Virtual M e m o r y  and the setting of its condi- 
tions by the WU. 

4. The action of the Virtual Memory in fetching data. 

5 .  The action of the Virtual M e m o r y  in storing data. 

6 .  The communication between the Virtual Memory and the main 
arithmetic unit. 

7. Special situations such as conditional branching on arithmetic 
results, etc. 

B Definitions 

1. 

Some of the terms w e  will use are defined a s  follows: 

Operations 

Operations are considered to be of three types: 

(1) Bring or fetch type - All instructions requiring data to be 
transmitted from external memory to the Virtual Memory 

( 2 )  Store Type - Instructions requiring the transmissinn of data 
from the Virtual Memory to external memory or index 
memory. 

(Note: W e  consider all indexing instructions to be of 
the Store Type, although the store may be to 
either external memory or index memory. ) 

(3) Immediate Type - All operations not requiring data transmission. 
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2. Virtual Memorv Quantities 

(1) Virtual  Memory  - A number of Virtual Memory (or look- 
ahead) levels (numbered 0 to N-I ) .  

(2) Level. of Virtual Memory - A collection of registere and 
The contents of the jth level is shown control bits. 

in F igu re  2. 

Figure 2 Contents of a Virtual Memory Level 

(3) Inatruetion Address Register (I$ - Contains the address of 
the instruction currently in the j th level. 

(4) Operation Code Register (OP ) - Contains the operation to 
be performed by the arit h metic unit. 

(5) Store Bit - (Sj) A one bit trigger which indicates the level 
contain8 a Store type instruction. 

( 6 )  Bring Bit - (Bj) -. A one bit trigger which indicates the level 
contains a fetch type instnmction for which the data access 
has not been started, 

(7) Forwarding Bit (Fj) .. A one bit trigger which indicates that 
the j th level maist transmit data to another level. 

(8) Forwarding Addresrs (FAj) - A register which contains the 
number of the level to which the data must be sent if 
Fj is set. 

(9) 8 . K .  Bit (OKj) - A trigger which when set indicates that 
the correct data for the instruction to be executed is 
preaent in the j th Data Field. 

( lo )  Data Field (Dj) - A register which contains the operand 
data for the instruction. 
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(11) Data Address (DAj) - The operand data address (already 
indexed by the TAU) for Dj. 

(12) Compare Bit (Cj) - A trigger which if not set  indicates the 
address in DAj should not be included in any address 
comparisons being made. 

3. Counters 

The Virtual Memory is controlled by a set  of counters which 
count mod (N), where N i e  the number of Virtual Memorylevels 

(1) Counter one (C1) - Indicates the level into which the next 
instruction may be placed. 

(2) Counter two (C2)  - Indicates the level from which the next 
bring type inetruction may be initiated. 

(3)  Counter three (Cg) - Indicates the level from which the next 
store type instruction m a y  be initiated. 

(4) Counter four (C4) - Indicates the level from which the arith- 
metic unit will get its next operation and data. 

4. Interlocks 

The above counters must be interlocked in the following manner 
to assure proper sequential operation of the computer (see figure 3): 

(1) Interlock one (11): C1 = C3 + N Prevents the IAU from placing 
the next operation into the level indicated by Cy because an 
unexecuted store is still in the level. 

(2) Interlock two (12): C1 y C3 Prevents a store from being in= 
itiated from the level. indicated by C3 because the store 
has already been done. 

(3) Interlock three (13): C1 - C2 Similar to 12. prevents a 
fetch from being initiated. 

(4) Interlock four(X4): C1 = Cq Prevents the arithmetic unit 
from executing an old instruction. 
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Interlocks Iq and I5 are as shown, the other interlocks axe 
done in a similar manner. 

Figure 3. Virtual Memory Interlocks 



(5) Interlock five (15): GI = C4 3- N Prevents the IAU from 
placing the next instruction into the level indicated by 
C1 because the instruction there has not been executed 
yet. 

c. Logic of the Virtual Memory  

1. General 

There axe two basic precepts which must be kept in mind to under- 
stand the operation of the Virtual Memory: 

The OK bit (Oj) being set  in the j th level indicate8 that the 
contents of Dj is the correct data called for by DA . 
logical decisions will be made in suc'h a manner as to make 
sure this is the case. 

All 
operations will be performed only under this cond i! tion and 

Addresses can be compared by the IAU with every DA address 

have its Cj bit set. If a comparison exists between a new DAj 
being placed in the Virtual Memory and an old DAk, the com- 
pare bit ck is turned off and the address of level j is placed in 
FAk. This insures a unique meaning for the comparison. If 
this were not done, another instruction address DAe might 
compare against two levels and thus cause an ambiguity. 

simultaneously. DAj is not used for any level which d oes not 

- 
2. Instruction Fetch Logic 

Figure 4 is a flow diagram of the IAU Instruction Fetch Procedure. 
The logic is as follows: If the IAU is ready to fetch another instruc- 
tion, it compares the instruction address with all the DAj * e  of Virtual 
Memory. I3 there is no comparison, the instruction fetch is initiated. 
If there is a comparison the IAU must take its instruction from the 
Virtual Memory provided the OK bit is set, otherwise, it must wait 
until the OK bit is set. 

Note: This procedure prevents the logical difficulty mentioned earlier 
which would occur if the Virtual Memory contained a store order into 
the instruction presently being fetched. 

For Example : a STORE Address at2 
a+X LOAD M, i 
a+2 ADD N, i 
a+3 - - - -  

I The store to a -t- 2 must be done in sequence or the old vdue N would 
'be used for the address instead of the quantity being set by a. 
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3. lndexing Logic 

Figure 5 shows thc flow for  instxuction indexing. After deter- 
mining that an instruction is ready to bc indexed, the IAU tests 
whether or not the index value is available. lf it is, the index- 
ing operation is started, if not the memoryreference is started 
and the IAU waits until the data returns before proceeding. If 
the index-fetch has not been started, the U U  compares the in- 
dex address against all the data addresses in Virtual Memory. 
l€ none compare, the index value is fetched normally. 
does compare, the index fetch irj held up until the OK bit is set  
for the data. This value from the Virtual Memory i s  then used 
for indexing the instruction. 

H one 

4. Logic of Putting Instructions in the Virtual Memoxv 

(1) Figures 6 ,  b A ,  6B , 6C represent the logical flow for putting 
instructions into the Virtual Memory. E the indexing arith- 
metic unit has an instruction prepared for the Virtual Mem- 
ory, it m a y  transmit the inetructian into the Virtual Memory 
if interlocks one and five do not forbid it. These interlocks 
prohibit a new instruction from destroying an old one which 
has not been executed as yet, whether an arithmetic opera- 
tion (15) or an unexecuted store (11). 
instructions vary depending an whether they are of the bring 
type, store type, or immediate type. 

The handling of the 

(2) The bring type, as described in Figure 6A,proceed~i as 
follows: If the effective data address of the instruction 
compares withthe DA address in some level, the instruc- 
tion, its op code, and effective data addre as are loaded into 
the level marked by C1. The compare bit for level C1 is 
set to one while the compare bit for the compared-with level 
is  set to zero. If the 0, K. bit in this compared-with level is 
Bet ,meaning that the data located there is correct, the data 
is transmitted directly to the C1 level and its 0, K, bit is also 
set. If the O.K. bit is not set, we must tag the compared-with 
level by setting its Forwarding bit and by putting the value of 
C1 into its Forwarding address, the bring bit for level C1 is 
also set  to zero since no further data fetch is required. 

If the effective data addresa does not compare with any Virtual 
Memorylevel, the instruction is put directly into level C1 ,its 
0.K. bit is set  to zero, and its bring bit is set to one, indicating 
that a fetch must be started. 
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Figure 6 ,  Procedure: for placing hertructione, 
into the Virtual Memory 
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From Figure 6 

with a level DA 
. . . - - ~ C . . . - ,  ---I- --.- 

Yi3B 
.IL.................,,ih* 
Set compare bit to one in (31 
level and to zero in compared 
with level. 
In the C1 level: put the inatruca 
tfon addresa in IA put the op co 
code in OP Put the data add- 
reas in DA. Set the bring bit, 
the ratore bit, and the foz- 
warding bit to aero 

NO 

In the CY, level: Pqt the inrstruc- 
tion addreipr in XA Put the op code 
in OP Put the data addrese in DA. 
Sat the bring bit to one, Set the 
forwarding bit, the compare bit 
and the 0. K. bit to aero 

Send data from the cornpared 
with level to D of level C1. 

one 
addreas of the 

Sat the forwarding bit to one 
and put C1 in the forwarding 

level. 
Set the O.K. bit to aero in 
the C1 level 

bft of level c1 to 

to next level 

return to top wf Figure 6 

Figure 6A, Logical Conditions for Bring 
Type 0perat:ions 
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(3) Figure 6B shows the Store type procedure. 
address of the instruction does not compare with the DA 
address in some level, the instruction is placed into the 
level marked by C1. 
that a store will be required. 
forwarding bit are set  to zero, its compare bit is set  to 
one. If on the other hand the addresses do compare,, the 
same procedure is followed but in addition, the compare 
bit in the level compared-with is  s e t  to zero so that future 
comparisons will not use it. 

If the effective 

The Store bit is set  to one indicating 
The levelbbring bit and 

The OK bit has not yet been set. 
ation is an index store and set  to zero if it is an ordinary 
store. 
should be zero since the data must come from the arithmetic 
unit after the preceeding instruction is executed. 

It is set  to one if the oper- 

For the ordinary store it is clear that the OK bit 

As was mentioned in the definition on page 5 ,  we treat all 
indexing instructianrs as store type and place the new value 
of the indexed quantitiy into the Virtual Memory, This is 
done because the hdexing Arithmetic Unit is going ahead 
of the normal order of instruction execution and an inter- 
ruption may occur before this indexing instruction should 
have been done. In this case, the old value of the index is 
still in the index register. On the other hand the Indexing 
Arithmetic Unit compares with the Vir tua l  Memory and 
extracts the m08t recent value of the index for indexing 
succeeding instructions. The OK bit isr set to one since 
the appropriate data is in the above level. Both the new 
and old index values must be carried along to give logically 
correct condition's in the c a m  of &n interrupt. 

A situation very similar to interrupt occurs in branches 
on arithmetic results where the Indexing Arithmetic Unit 
I'guesses" which branch will Be taken and proceeds with 
fetching and processing the instructions on this branch 
subject to being wiped out if the guess proved to be wrong. 
(See the discussion on "Wrong way Branchestt below. ) 
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(4) Immediate Type instructions are the simplest type be- 
cause they essentially carry their data with them. 
4C shows the logic in this case. 
in the Vir tua l  Memory level marked by C1. 
field of the 'instruction is placed in the data field of C1. 
The OK bit is set to one indicating the data is present. 
The bring and store bits a r e  both set  to zero. The corn- 
pare 'bit is set  to zero since the DA address field has no 
meaning for immediate type ops. 
the last instruction which occupied this level still remains 
in DA so it has no relation to the present D field.) 

Figure 
The instruction is placed 

The address 

(The data address of 

5 ,  Logic of Data Fetching 

See Figure 7: When an instruction of the bring type has been 
placed in the Virtual Memory, the data required by the ltnstruc- 
tion in general will not be present (unless a comparison exists 
as was described above) and thus the data must be obtained from 
care storage. The fetch cannot be started if interlock 13 holds 
which mean8 all the fetches corresponding to the instructions 
preaently in the Virtual Memory have been started. If a fetch 
is possible, the bring bit at level C2 indicates whether or not 
a fetch is necesaary. If necaarsary the fetch may be ertartsd if 
the memory bus and memory unit corresponding to the data ad- 
d r a w  are not already being used. 
the bring bit for level C2 is set to zero. The counter C2 is then 
stepped forward to the next level. 

When the fetch is srtartsd, 

6. Logic of Data Storing 

Figure 8 shows the Data Store logic, which is very similar to 
that for data fetching just described. The only significant dif- 
ference is that the O.K. bit must be set before the operation 
can be started. 

' 7. Logic for Placing Data into the Virtual Memory 

In Figure 9, we Bee the logical conditions which muBt be satis- 
fied by the data returning from Memory addressed to the Virtual 
Memory. The return address which waB supplied when the fetch 
wa& 8tarted selects the levo1 into which the data will be placed. 
The O.K, bit is then set  ta one indicating that the proper data 
is in the level. The operation is complete at this point unless 
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From Figure 6 

__.*a I ."T1*.(hl.-.l.*.*. *.--. .*"rn, . *.-.--...=- "- rr -a "'*".N ."r,~*-.rlm.-rr.l*.Dnl-nr?IUIIUrt I.llt", 

In the C1 Level: 
Put the inatruction address in U, put 
the op code in OP, Pnt the data addreas 
into 13 (Note thip1) Set O.K,  bit to one 
Set forwarding bit, the bring bit and 
and store bit to zero. 
bit to zero [Note) 

Set the compare 

Figure 6 C ,  Logical Conditions for Immediate 
Type Operations 
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Set for Level 
;5 

Nb 

YSBPJ p,& Wait 

Ia the memory 
carreaponding to 
DA far C3 free 

Figure 8, Data Store Procedura 
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w ;lit 
, lllm.....lll, * - 

responding to return 

Sat O,K,  bit to one 

in that level 

dicated by forwarding 
address and set O,K,  
bit in that level to one 

Figure 9 #  Procedure for Placing Data into 
Virtual Memory 
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the Forwarding bit is  set.  
warded to the levei designated by the Forwarding address. 
This procedure continues from level to level as long as the 
data continues to arrive into a level whose Forwarding bit is 
set. This procedure automatically supplies all operands 
present having 
without additional m e m o r y  references. 

In this case,  the data must be for- 

identical data addresses with the proper data 

8. Logic of Removing Instructions from the V i r t u a l  Memory 

Observing Figure 1 0 ,  we notice that as the a r i t h e t i c  unit 
completes an instruction i t  checks to see if the next instruc- 
tion in the V i r t u a l  M e m o r y  is ready to be executed (indicated 
by interlock 14). Note: The operation m a y  be an unconditional 
branch, a conditional branch# or  an index type store a8 well as 
a normal bring o r  store t ype  instruction involving the accumu- 
lator. Figure 10 shows only the cases which involve the uni- 
versal accumulator. The index and unconditional branches 
and the index store operations a r e  merely ignored at this point. 
They are carried along only to provide the data for recovery in 
the event an interrupt occurs. The execution of the conditional 
branches on arithmetic results are described in the next section. 

If the next instruction marked by counter C4 is ready, it is fed 
into the arithmetic unit. If i t  is a store type, the data is gated 
from the accumulator into the data field of level G4, and the OK 
bit is s e t  to one. If the Forwarding bit of the level is set ,  a 
forwarding procedure in this case is essential for the proper 
logical operation of the computer, whereas in the bring case i t  
is a time-saver only. 

If the instruction is not a store type, the arithmetic unit must 
hold up until the O . , K  bit far the level is set.  
bit is set ,  the instruction is gated into the arithmetic unit 
and executed. 

When the O,K.  

9.  Logic of Interrupt Procedure --- 
If for any cause an interrupt (or trap) from a special condition 
occurs, the instruction which is being executed in the arith- 
metic unit is completed. However, the next instruction is not 
executed in spite of the €act all the data preparation for it m a y  
have been completed. The address in the IA (instruction add- 
ress) fieldwill serve as the value to reset the instruction counter 
if it is desired. 
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I '  

Send 
leva1 designated by C4 

Place data in level in- 
dicated by forwarding 
address and set O,K,  bit 
in that level to one 

Figure 10, Procedure for Removing Instructions 
from Virtual Memory 
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The Vitual Memory is initialized, L e . ,  atet to the starting 
conditions of a.n interrupt,with the exception that all store 
orders which have already received data from the accumu- 
lators must be executed first. Note: If the interrupt is of 
such a nature that the normal flow of instructions is not re- 
sumed, the procedure of storing the modified values of the 
index registers in the Virtual Memory gives logically correct 
results, i. 0 .  , the same as if the interrupt had occurred 'be- 
fore the indexing took place. 

IV. DESCRIPTION OF TIMING SIMULATION PROGRAM 

A. General Considerations 

During the logical design of STRETCH it was necessary 
to prove the value of the Virtual Memory concept and to assist in 
the rselection of optimum values of various system design para- 
meters. Examples of such parameters are: The number of mem- 
ory boxes, interlace and allocation of memory addrsssea, and nun-  
berb of Virtual Memory lavela. Also cxf intereat w e r e  trade-off 
factora for speeds of indexing arithmetic unit, arithmetic unit, 
memories, etc. 

In November 1957 the Timing Simulator (EM-2) described 
here waa written for the ZBM 704. 
such questions quantitatively by simulating the time -wi0e operation 
of STRETCH on typical test programs coded in STRETCH language, 

This program attempted to answer 

The basic Logic of the 704 program follows the principle@ I 

just deacribed in the preceeding section for the Virtual Memory. It 
ahould be stressed that the Sixnulator is a Timing Sixnulator and 
daeH not execute the instructlans kt an arithmetic sense, It traces 
the t h e - w i s e  progress of the instructions through the components 
of the computer observing all the interlocks and t h e  delays neces- 
sary for correct representation of the behavior of the machine. 

One of the fundmental concepts in the STRETCH design 
is that of asynchronous operation crf the components. This means 
that there are a large number of logical steps being executed at 
any one time in the! computer, each of them proceeding at its own 
rate. 
we have broken the continuauu t b e  variable inta finite time steps. 
The basic time step icr taken sa 0. 31 microsecond in the Simulator. 

To simulate this flow of many parallel continuous operations, 
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Several reasons prompted us to select this time interval. 
are relatively simple, such as the desire to have the results come 
out in microseconds and decimal fractions thereof. 
time interval makes a given problem run faster on the Simulator 
since the running time is almost inversely proportional to the time 
step being used. 

Some 

Taking a coarse 

More fundamentally, the 'lnat-uraltt internal time scales of 
the computer are represented on one hand by the cycle time of the 
main memories ( 2  microaec) and on the other hand by the time r e -  
quired for signals ta traverse one logical Level, in the circuits (5 to 
20 millimicroseconds). 
as given by the I/O devices, is in the order of milliseconds for 
start  up time and tens of microseconds for data flow rates. 

The external time scale of the computer , 

Most internal macro logical processes require 0 . 1  miero- 
seconds or more since they usually require at least 10 logical levels. 
Thesd represent the scale of guantitiet3 we wished to study in this 
simulator. Other scales could have 'been chosen. Far exaxnple, one 
could write a program which followed the operation of every logical 
%ndts and ttortt circuit in the computer. 
written such a program for a small experimental study. ) The simu- 
lation program is simpler on this scale but the specification of a 
computer such as STRETCH would be an enormous task- equivalent 
to laying out the whole circuit design. Another difficulty, would be 
that changing a gross parameter such as the multiply time might re- 
quire the changing of thousands of I'andI1 and % Y ' ~  blocks in the circuit 
spe cification. 

(In fact, the authors have 

By taking 0.1 microaec as our quantum of time, we are 
automatically setting the scale of the amallest circuit entities which 
we will consider as being those which accornplbh complete functions 
in a 0.1 microsec or few multiples thereof. Thus by using this phil- 
osophy, and considering many loif the components of the computer a a  
ttblaclk boxed', we greatly simplify the details which must be con- 
sidered without introducing serious timing inaccuracies. 

Our experience has indicated that more information was 
gained by making a large number of fast parameter studies using 
different configurations and prograrxis that could have been obtained 
by a very slow, detailed simulation of a few runs with more precision 
per run. Even 80 our time scale i s  too fine to make serious Input- 
Output applications studies. 
tor having at least a factor of 10 coarser basic time interval. 

- 
These would require a simpler Simula- 
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B. Logic of the Simulator 

In the asynchronous organization of STRETCH there can 
be many major components operating at any one time. TO achieve 
this parallel effect in the Simulator we essentially %old time stilltt  
and acan the entire machine representation at each time step. Al- 
though every major block of the program is traversed at each time 
step, if there is no activity required in a given block, only a few 
t a t s  need be made by the code. 

Lf in this process it is determined that a given logical unit 
should do an operation, the time interval required for the operation 
is obtained from a table of constants. The speed of the various log- 
ical units can thus be changed parametrically by changing the values 
in the tables. A constant obtained from the tables is inserted into a 
memory location called the time counter for that unit. At each time 
step the program reduces this counter by one until it reaches zero. 
Thus the fact that the counter is non-zero can be used to indicate 
that the particular logical unit i s  busy and not available to service 
other requests. When the counter is zero the unit can consider a 
new input. 

En addition to the time counters many of the logical blocks 
contain other conditions or interlocka which effect the operation of 
the block. 
before action is undertaken. A s  an example, theQ K. bit11 described 
in the previous section is stored as a %nett or ttzerott in a memory 
location associated with each Vir tual  Memory level (called mu6 , i 
in the program, where i is the Virtual Memory level). 
bit indicates that the data in the level is the correct value for the 
operation. In the program the W K  bittf is set  by storing a one in 
location L A U ~ ,  i. 

These conditions are stored in the program and tested 

The "0.K.  It 

Each logical unit when it  completes its operation may have 
The other unit may be notified 

Either (1) The sub- 
data available to start another unit. 
that the data is available in two possible ways. 
routine corresponding to the receiving logical unit searches all pos- 
sible inputs to determine if any of tllejm has data for it, or (2) the 
sending unit sets logical constants within the receiving unit which 
indicate that the data is available. 
is set for a given level by the memory in-bus subroutine, 
on the ather hand, the arithrnetic unit subroutine tests the O.K. 
bit to determine whether or not data is available for it. 

J?or example, the 'IO. K. bittt 
While 
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The simplified Flow Diagram in Figure 11, indicates the 

Using the types of techniques j u s t  des- 
order in which the subroutines for the various logical units are ex- 
ecuted at each time step. 
cribed above, the logical subroutines simulate the action of the 
components of the computer such as the Virtual Memory, arithmetic 
Unit ,etc. 

The details of the Simulator a re  described 'by Tables 1 
through 4 and in the detailed flow diagrams at the end of this re- 
port. These flow diagrams can be corrolatod in the obvious way.with 
those given in the section which. describes the Virtual Memory. 
The Simulator also contains several other subroutines which dQ 
such things as initialize the program at the beginning of a run, set  
up the timing diagrams and summarize the results of the run. (see 
discusaion in the Result Section), 

The STRETCH instructions being simulated are read into 
the 704from tape alq required. 
from cards at the beginning of a run. (The input quantities read in 
far each operation are listed in Table I, column 1. ) It is interest- 
ing tomote that since the Simulator simulates timing only, not the 
arithmetic or indexing functions , the sequence of instructions to; be 
executed murst be furnished as a "string" with all loops unwound. 
However to make the: computer behave as it actually would, the 
loops must be furnished with "wrong way'' paths given for the cases 
whore the computer would take such paths. Also one muat furnish 
more than enough information along auch paths since it is l  difficult 
to predict in advance how far the computer will get down the wrong 
path 'before it is called back. 

The instructions are put on tape 

-- 

Parameters are changed from one run to another by u8e of 
The control cards are set up in such a way that any control cards. 

number of parameters may be changed between runs. 

Results are given either as detailed timing charta or as 
summary listings for each problem. The uaual procedure has been 
to print only summary results while making a series of paramete.r 
studies. 
read in, the problem tape is rewound, and the Simulator reruns the 
problem with the new constants. 

At the end of each run the new control card or cards a re  
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hit ial 12; a ti on 
A r i t b a t i c  Unit 
Decode Operatione 
Virtual Memory 
Indexing Arithrnetic Unit 
Bus from Memory 
Bus to Memory 
1/0 References to Memory 
V.M. Stare References to Memory 
V. M. Fetch References to Memory 
I.A. U. References to Marnary 
Instruction Fetch References to Memory 
Count-dawn time 
Print detailed liating 
Summarize and print 

Figure 1 L  SiM - 2 Simplified Flow Diagram 
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V. SOME RESULTS OF THE SIMULATION STUDES 

A. General Description 

1 Introduction 

During 1958 a nwnber of roports were written giving 
results of runs made with the S M - 2  program. We will not 
attempt to record here all of the results thus presented be- 
cause many of them were superseded by later reports or were 
concerned with specific problems in the design of STRETCH. 
The results quoted here were chosen for their general interest 
as parametric studies and are not intended to represent STRETCH 
as it is actually designed. 

2. Output Listings of Simulator 

Figures 12 and 13 show examples of the type of output 
listings given by the Simulator. 
timing chart with each line ol printing representing 0.1 micro- 
second of time. The collwnns represent the various components 
of the computer. On the left and right are t h i n g  counts subdi- 
viding each microsecond. On the far right are conflict indicators 
(IICtt on the charts) and waiting indicators, ltW'l which indicate 
when interlocks prevent operstiana from proceeding. 

Figuse 12 is a piece of a long 

The 2nd column, 11, gives the number of the instruction 
being indexed. 
instruction using the arithmetic unlt. 
represent the instructions using the memory buses. 
labeled X- ,F- 
memories. 
cycle time sf the memory. 
tion using the memory and number of times which it is repeated 
gives the read-out time of the memory. 
which instruction i s  located in the Vir tua l  Memory levels. The 
other columns are for details in analysis and need not be con- 
sidered here. 

The 4th c o l u n ,  AU, gives the number of the 
The next four columns 

The columns 
and M- represent the index, fast, and main 

A string of ItXfst l  in the columns represents the 
The riumber indicates the instruc- 

The columns L- indicate 

Figure 13 gives an example of a series of summary 
listings. Each set of numbers represents a total problem run. 
The quantities listed are given in Tables XU: and IV. 
mentioned earlier, for most sf the runs made in the Simulator 
studies, only summary runs were made. 

A8 was 
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Figure 12 

Listing of Simulator Print-Out 
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Figure 12 

Listing Of Simulator Print -Out 
7 11 1 13 X 8 7 1 0  9 2 7 cw 
R 11 2 13 X 8 7 1 0  9 1 8 CW 

X 13x X 8 7 1 0  9 1 9 11 2 
30 11 2 1 3 X  X 8 7 1 0  9 2 10 cw 
1 11 4 19x X - 9  0 1 1 w  
2 1 13x X a 7 1 0  9 8 2 cw -m 1 13 8 X X 8 1 1 1 0 9  1 0 2 3 w  

10 1 4 cw 4 12 /L X 8 11 10  9 

2 6 CW 1 1 0  8X 8 11 10 9 

- L l L E i -  -1Ox- R 1 1  lfl 9 - 1 5  8 cw 
9 1 3  1 15 1 O X  8X 8 11 10  9 2 9 cw 

1* 13 1, 15X 1 O X  8X 8 11 10 9 1 cw l J u . 2 1  

1 O X  8X 8 11 1 0 9  2 2 cclr 
l o x  x 8 11 10 9 1 3 cw --2---=,A 

3 13 1 8 l 5 X  
8 15x l o x  x 8 11 1 0 9  4 cw 

5 13 1 E5 X l o x  x 8 11 10 9 2 5 c  
s 1  

7 c  
A x - L . L - A L  

7 1 3  2 8 1 0  x x  12 11 10 9 .*u-u X x x  12  11 1 0 9  2 a c  
9 1 3  2 8 x x  12 11 10 9 1 9 c  

1 1 8  x x  12 11 10 9 2 1 c  
2 1 4  . 1  x x  
3 1 4  1 9  X x x  12 11 10 9 il 3 
I 4 14  1 11 x x  12 11 10 13 13 2 4 

5 1 4  2 10 11 X 12 11 10 1'3 13  1 5 
6 1 4  3 10 X X l l X  12 11 10 13 13  6 
7 14  2 13  X l l X  12 11 10 13 2 7 w  
f! 14  4 A3 11x 12 11 1 C 13 1 8 Wc 
9 1 13X 11x  12 11 10 13 9 w  

17  1 4  2 10 W e 10 -- 1 5  1 1 ax 11x 12 11 1 4  13 
17  1 4  1 1 W 1 1 5  2 13X 11x 12 11 1 4  13 

7 15 4 13X 11x 1 2  11 1 4  13 17 14 2 w  
3 1 17 '114 13X 11x 12 11 14 13 2 3 w  
4 16 1 1 3  I7 1 4  13X X 12 11 1 4 13 1 4 w  
5 16 1 11 17X 13X 14X X 12 11 14 13 5 W  

. -" 6 16 1 I7X  13X 14X X 1 2  11 14  13 2 6- 
7 16 1 11 13 17X X 14X X 12 15 14  13 1 7  
8 16 2 11 13 17x X 14X X 12 15 14  13 0 
9 16 2 11 1 7  X X X 14X' X 1 2  1 5  14  13 2 9  

IO 16  2 1.1 17 X X 14X X 12 15 14 13 1 10 
1 16 '3 11 X X 14X X 12 15 1 4  13  1 

I _.- 2 16 3 11 X 14X X 13 15 14  1 3  2 2  
3 16 4 1 4  X x x  12 15 14  13 1 3 w  
4 1 1 2  1 4  X X x x  12 1 5  14  13  4 

2 5  5 17 1 X x x  16 15 1 4  13 19 
I 6 17 2 13 X X 16 1 5  14  13 19 1 6  

7 11 2 13 X X X 16 15 14  13 19 7 
F3 17 2 19 X X I_ 16 15 14  13  2 8  
9 17 3 14 19 X X 16 15 14 13 1 9  

19X X 16 1 5  14 13 10 
1 17 4 14 19x X 16 15 1 4  13 2 1  
2 1 14 19X X 16 15  1 4 1 3  1 2  
3 18 1 14  19)< X 16 15 14  17  3 

<- 4 1 R  2 14 19  -- X 16 15 14  17 2 4  
5 18 2 19 X 16 15 14  1.7 1 5 w  

. _ . _ S - 4 A - - -  X 2 L -  _-__ -.--.---A- I 

7 1 16 1 5  1 4  17 2 7  
8' 19 1 14 X 16 15 18 17  7 1  18 1 8 
9 19 2 16 15 18 17 2 1  18 9 

2 10 * 1 ? 2 - 1 7  ______-- 2 1  *I_ ' ( 8  x I_ 16 15 18 17 - __-- ~-.- 
1.19 4 21  18  16 15 18 17 1 1 w  
2 21x  18X ---- 16 15 18 17 2 w  

-I__ L-,.-.-.- ---....---------..-- _1_-----.. 

18X 16 19 18 17  1 9 2 3 W  3 20 1 2 1 x  
4 20 ? Zlf .asx 16 1 9 18 17 19 1 4 w 
5 3 0  4 21X 18X 16 19 18 17 19  5 w  

--- 6 - . I  - 2b-- - -  _" 19- _ _  - - - -Y .. . - lQX --..--&-&a* _--___-_-_ --,--.---2 6 v J 
19 X 18X 20 19 18 17 23 1 7 w  7 1 2 1  

- 
__-A 

-d8 R X  8 11 10 9 10 5 cw 

-43 1 10 8X 8 11 10 9 15 1 7  cw --I 

15  1 O X  8 X  8 11 10 9 1 10 

1 6 C _  

x x  1 2  11 10 9 10 c - 

12 11 10 9 1 1 1 2 w  

4 8 

"- --- 

-."--I - 

-- 

--.------..-- 

! - r r 1 1 3 I r r -  --- 
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Figure 12 

Listing of Simulator Print-Out 

8 W  
9 2 1  1 2 3  18X19X 20 19 1 8  1 7  2 9 w  

10 2 1  2 18 2 3  x 1 z  20 19 1 8  1 7  1 10  w 
1 2 1  2 18 23x X19X 20 19 18 1 7  1 w  
2 3 1  4 23L-.--- X19X 20 19 18  1 7  
3 I 18 23x X19X 20 19 18' 17 1 3  

----29x-_ __-- __..-.- x19x  20 19 1 8  2 1  2 1  4 
5 32 2 2 9  X X19X 20 19 18 2 1  2 1 2 5 w  
b 7 7  2 73 19 X X x .-& 20 19 1 8  2 1  2 1 1 6 W  
7 2 2  2 19 x x  20 19, 18  71 2 1  7 W  

2 1  - x x -  - 20 19 1 8  2 1  I 2 8  
9 1 19 3 1  x x  20 1 9  18  2 1  1 9  

e 2 2  4 ' 
- - L L L u - -  ---- x XZlX-..- 2 J  1 3  22 2 1  25 2 2  10  

1. 33 2 19 x x 2 1 x  20 19 22 2 1  2 5  2 2  2 1 
2 2 3  4 1  9 ~21..- 20 19-22 2 1  25 2 2  1 2 
3 1 19 x 2 1 x  20 19  22 2 1  25 2 2  3 '  

2 4  4 2 4 1  19  1 g i ! 2  -I--_c1- X 2 - L X  ~ 20 23 7 2  2 1  
5 24 2 25 2 2  x 2 1 x  30 2 9 - 7 2  2 1  1 5 w  
6 24 2 20 X x 7 1 x 2 2 x  70 2 3  z i !  2 1  6 C  25x -l-l__l _--___l__--.l _--._--- 

7 24 2 X 35x x 2 1 x 2 7 x  20 23 2 2  2 1  2 7 w  
2 1. 20 2 3  2 2  31. 1 R W  . --k?.2 L 

x22x  20 23 22 2 1  9 w  
R 24 2 .2% 
9 2 4  4 2 1  25x 

-.-_ .-u?.!..--1,.. . 25 x .------ x 2 2 x -  20 2 3  22 3 1  2 10 I 

1 1 2 1  2 5  X x 2 2 x  24 23 22 2 1  '27 24  1 1 
2 1 23, x 2 2 x  24  2 3  22  2 1  27 2 4  2 

2' 3 w 3 315 1 27 2 4  x 2 2 x  2 4  23 22 2 1  
4 2 5  2 22 27 24 - I x ,x_-."...--.-.- 2 4  2 3  22 2 1  1 4 w  
5 25 2 2 2  X 27X 2 4X x x  2 4  23  22 2 1  5 w  

2 6  6 1-- 2 5  _l___l.l_---l--l_- 2 I------ 27X ~ -----I. 2 4X ~ __..I_ x x  .-.- ----- 24 23 22 2 1  - -- 
7 25 4 2 2  27X 2 4X x x  24 23 2 2  2 1  1 7  
8 1 2 1  27X 2 4% x x  24 23 2 2  2 1  I 8  
9 26 1 3 2  37 X 2 4X x x  24 23 22 2 5  

10 16 2 22 27 % X 2 4  2 3  2 2  25 2 9  1 1 0 24x Mu- 
' 1 26 2 2 2  X 2 4X X 24 2 3  2 2  2 5  2 5  1 

2 26 2 22 2 5  X 2 4  2 3  22 25 2 2  2 4x -_-* -------- ---I-I__-- 

3 2 6  4 24 2 5  X X 24 2 3  2 2  2 5  11 3 w 
4 1 23 24 X X 25X X 24 2 3  2 2  2 5  4 
5 27 1 X 25X X 2 4  2 3  2 6  25 2 9  2 6  2 5 

x 25x 2 4  2 3  26 25 2 9  26 1 6 6 27 2 24 
2 24 X x 75x  24 2 3  26  2 5  29 2 6  7 z; 2 29 26 24 2 3  2 6  2 5  2 e w  

~ ___I______c_.I ". ". __ ."._"__ ---11---------.- ___x- -335 I 
9 27 4 29 2 6  x 2 5 x  24 2 3  26 2 5  1 9 w  

10 1 X26X 2 5X 24 2 3  2 6  2 5  10  w _____--_ __-- "."__I -_I --.- .. ------ 2 P X  _____---_-_ ~ ___-.-__---- *-- 
2 7 2 1 W  
2 7 1 2 W  

' 3 70 ' 4  2 5  29x X26X X 24 27 26 35 27 3 w  

1___- 
18x3 9x  20 19 18 1 7  23 L I  - ~ - - - -  ----- ._.- - - - - - --I- 

2 2  - 

- u '  

--- -- ----.I__.I_ -------_ ------ -cI--.l-.--.. 

I 

I 

' 2 1  2 3----d .-..,--..- "..----I--. --- .-I_--- --_-.--.- ---._--- - -.lll-__l 

l_.l_-_----- ---.---"----"-I- I----- I_ -_ 

-..---- .--- _.--_. -.. 
-_1__1- -.I".- -1----1-1. -------.- 

I__ I 

. 1 2 8  I 29x X26X25X 2 4  27 2 6  2 5  
29x X?6X X 24 2 7  26  2 5  2 5  -----I 

37 X X26X x-----, 24 27 26 25 2 4  
1 5  

1 29 __-_I _-- - - - - _  - --.-. 

1 25 3 6 X  x27x-  28 27  26 2 5  3 1  6 
2 7  

8 29 2 25 26 3 1  __,__ x x 2 7 x  28 27 26 2 5  1 8  
7 9 9  4 2 5  26 -73x - x x z T x - - 2 9  9 

- 1 3 0  1 

2 2P 2 

4 
5 1 25 29  37 X 26X X 28 27 1 6  35 3 1  

+Tn I_---- - _ -  - - 
3 1  36X x 2 7 x  28 27 26  2 5  

31x x x27x  28 :: 2 E 2 10  1 25 _- -L^-- - -~4-1 ~- --11-._- -..-.--x7T2 _____I_._-_ 2TIz7Tm------- 
10 

2 30 2 26 31x X X27X 28 2 7  26 29 l : :  " 

?i---------x-mr 3-1-- - .-- 
28 27 2 6  2 9  2 3  

4 1 26 3 1  27 X X X 2 8  27  26 79 1 ,  4 
5'1-26-77-T--- - - 33 5 

6 3 1  1 2 6  --"_- - - _ _  _______ - -_-I_ _______-_- X X 28 2 9  30 29 33 2 6  
-71 7 7 h  X X 3 R  7 4  30 79 3 3  i r  
L - g l B - -  _---- - - __ __ - _- LX 3 7 7  70 29 81 a 

9 1 27 33  X X 28 27 30 2 9  2 9  
1 10  

33x X 2 8  3 1  30 2 9  1 
33X x ~-~ 28 3 1  30 29 2 2  

3 1 2 7  33x X 28 3 1  30 2 9  1 3  
4 - , 1 2 9 . - - - - . , - - ~ - - a x - - -  X 28 3 1  30 29 35 4 
5 1 33  X X 28 3 1  3 0  29 3 5  2 5  
6 1 28 t 3  X 3 2  31 30 29 35 1 6  -- 

7 33 .x- X 28 3 1  3 0 29 -%; ; :7 
- . - 2 - 3 2 u  ------ "___ _ _  "___ ___-__-_---l_l 
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Figure 12 

Listing of Simulator Print-Out 

35 7 
2 8 W  
1 9  

10 

1 2  
3 

2 4  
1 5  

6 
37  2 7  

7 4 37 1 8  

2 10 
1 1  

2 
2 3  
1 '4 

39 5 
39 2 6 W  
39 1 7  
39 8 

2 9  
1 10 

1 
2 7  
1 3  

4- 
2 5  
1 6  

4 1  7 

4 1  1 9  

7 1 28 32 3 1  30 29 6 3 3  1, 

10 39 4 -.-- -3B_X--- ____ 32 31 30 29 
2 3 4  1 30 
3 34 2 3 5x 32 3 1  30 33 

_I_ X -I- .__ 32 3 1  30 33 4 3+ 4 31  5 5  
8 1 31 35 X 32  3 1  30 33 

33 3'1 34 33 
FI 35 2 31 8 

9 35 4 31 
3 2  31 34 33 

2 36 2 31 I 37x - 32 35 34 33 

4 1 3 1  37x 32 35 34 33  

6 X 3 2  3 5  34 3 3  1 37 

x 3 36 3 5  3 4  3 3  8 

9 37 1 33 39 36 35  34 3 3  36 3 5  34 3 3  33 
39x 36 3 5  34 33 36 35 34 33 39x 2 1 34 

3 38 1 34 39x 36 35 34 3 7  
4 30 2 34  39x 36 35 34 37  
5 38 4 34 ? 9  X 36 35 3 4  37 

7 1 34 X 36 3 5  38 37 36 35 38 37  8 39 1 34 

9 79 7 3 0  36 35 313 37 

3 5  32 31  90 39 
9 33 2 29 35 X 3 2  31. 30 2 9  

1 1 30 35x 
x 22.8- -.----- 32 3 1  3 0 33  

32 3 1  30 29 2 1  

-x-- 32 3 1  34 33  37 + ::: 
10 1 91  37 :* 33:. ;4 E 3 7  9 - 

1 36 1 3 1  37 37 3 5  34 33 

3 3.6 4 31  37x 32 35 34 33 

5 1 31 3 f X  3 2  35 34 3 3  

7 1 32 37 X X 3 2  3 5  54 3 3  

39 

- 
*: 

6 1 34 39 X 36 35 34 37 

I___- 
4 1  2 8 -  -_ _ _ _ ~  

-I--- - - - - J S x I i 7 6 - -  * : 59 6 3  X 55x 57 6 0  59 58 
10 63 X 57 60  59 58 
1 62 1 60 X 63X X 6 1  60  59 58 2 62 2 
3 62 2 6 1  6 3X X 6 1  60 59 58 

6 1 63 
---.L€&4 63X X 6 1  6 0  59 58 

1 10 
1 

1 3 w  
4 w  

6 3X - X 61  6 0  59 58 2 2  

X X X X u *  60 59 5 8  2 5 w  5 1 63  X 
6 ~ . A L U .  62 98 1 6  

9 8  7 
7 1 X 6 1  60 5 3  62 

98 X 6 1  60 59 6 2  2 8 W  
62 

*: 98 X 6 1  60 59 6 2  1 9 w  X 6 1  60  59 62 10  w 

98X 6 1  60 59 62 1 2 w  

X 6 1  60 63 62  2 4  
X 6 1 . 6 0  63 62 1 5 w  

10 63 2 -_- 98X 

I 1 2 1 w  
3 6 3  4 

3 6 4  1 
4 64 2 Os' 
5 64 2 63 ?8 X 
6 6 4  2 

1 
7 64 4 
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The detailed timing charts for most problems would 
Since over a 1000 cases be about 50 feet long for each run. 

have been run, it i s  clear that only a few cases could be 
printed in full detail. Nevertheless, the detailed timing 
charts were essential for two reasons: ( 1 )  Debugging the 
program with all its hundreds of conditional branches would 
have been a staggering task without the detailed listings, and 
(2) determining the causes of some of the anamoloua summary 
results required that one examine the listings in detail. Alao 
the authors found that studying the liatings enabled them to get 
a %eltr for the flaw of information which was necessary to 
locate bottlenecks in the processing speed. 

B. Test ,Problems Used. 

Five ai the test problems used moat frequently are des- 
cribed below. Other test problems were used for apecific studies 
but since the results were  similar for all problems of a given type, 
we gradually discontinued using them. The following were origin- 
ally seleited a s  being typical of dif€erent classes of problems. A 
brief description of each i s  repeated here for completeness. 

1. 

2. 

3. 

Mesh Problem - Part of an hydrodynamics problem from 
Loa Alamoe. It contains a more or less ttaveragee'e' mix- 
ture of inatructiona for scientific problems: 85% Floating 
Point instructions, 14% index modification instructions, 
and 1% Y F L  It is usually arithmetic unit limited, 

Monte Carla Branching Problem = Part of an actual Monte 
Carlo neutron diffusion code. It represents a chain of 
logical decisions with very little arithrnetic in beween. It 
contains 47% Floating Paint, 15% index modification inatruc- 
tians, and 36% branches of the indicator and unconditional 
types. 

__c. 

It it3 largely instruction-access limited. 

Reactor Problem - The inner loop of a neutron diffusion 
problem from Westinghouse. It consists of 90% Floating 
Point arithmetic (3970 of which are multiplys) and 10% in- 
dex modification Instructionu. 
metic unit limited. 

It is almost entirely srith- 

i 



-33- 

' 

4. Computer Test Problem - The evaluation of a polporninall 
using computed indices. 7 t  was prepared by I. Ziller to 
compare various computers. It has 7170 Floating Point, 
10% index modification, 6% VFL and 13% indicator branches. 
It is usually arithmetic unit limited but not for all configura- 
tions. 

5. Simultaneous Equations - The inner loop of a matrix inver- 
sion routine 67% Floating Point and 3370 index modification.' 
A r i t h e t i c  arid logic are about equally important. 
ited bath by arithmetic and instruction-access speeds. 

It i s  lim- 

C.  Results of Simple Parameter Studies 

1. General 

When the Simulator Program was first completed in 
late 1957, we! undertook a series of studierJ in which the main 
parameters describing the STRETCH aystem were varied one 
or tvvo at a time in order to get a rnoamne far the importance 
of different effects. During thia phase we spent much time study- 
ing the detailed print outs described above to determine the exact 
cause of 80 m e  of the anornolous effects. 

After this we began to specialize the studies towards 
answering specific questions in the STRETCH design and made 
more use of the Summary listings. Two of these studies are 
described in the following sections. In the present section the 
major part sf the material is taken from the first parameter 
studies. The graphs reproduced below are in terms of an ar- 
bitrary speed scale in which one of the first problems studied 
(The Mesh Calc. ) was taken as 200, 

The table below summarizes the major effects studied. 
The individual items are discussed in the following subsections. 

Examples of STRETCH Timing Simulator Results 

Description Mesh Calc. Monte Carlo 
Speed 70 Change Speed ($0 Change 

1. Standard Design 100 0 45. 0 
2. A . U ,  T h e f t  Doubled 73 
3 .  I .A.U.  Times Doubled 67. 
4. Both AU and IAU doubled 60. 
5. 2 . 0  us Instr. Memory 98. 
6 .  Combining Instr.and Data in 4 MM 82. 
7 .  Combining Instr. andDatain 6 MM $6, 
8. 2 Levels of Virtual  Memory 89. 
9. 6 Levels of Virtual Memory 106. 

43. 
26 
24. 
35. 
32 
33 
38 
46. 
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a 2. Standard Values of Parameters 

The combination of constants which waa taken as the 
standard reference values for the original parameter ratudies 
is as follows; 

a. Machine Components; 
5 .  Levels of Virtual Memory 
2. Number of Instruction Memories 
3. Number of Main (data) Memarlea 

1 .  Indexing Time* 
2. Arithrnatic Unit Time8 

Floating Add 
Floating Multiply 
Floating Divide 

usual 6-6-3-1 average 

b. Computer Speeds: 

1 Fetch 

4 
2 
4 

0 . 6  usec 

0 . 6  usec 
1.2 uaec 
1 . 8  usec 
Q,2 usec 
0.44 u ~ e c  

*This is total time to index one order, includes in8truction 
decoding index fetch, index addition, and storing modified 
addrerrs. 

e. M ~ ~ O T Y  Speeds: 
1. Fast (Inatr. ) Memory Time8 

Read out t ime  
End Signal Time 
Memory cycle time* 

0.4 uaec 
0.4 usec 
0 .6  ueec 

*(The actual effective cycle time is O e  9 uaec, since the bus 
clodcing permitted succesaive references to the same mem- 
ory box only in multiples of 0 . 3  uaec and the memory box 
must be free at the time of the. reference not just finishing.) 

2. Main (Data) Memory Times 
Read out t ime 
End Signal Time 
Memory cycle time* 

0.8  usec 

2.0 ueec 
1 . 7  U8%C 

*(The effective cycle is 2. 1 ut3 for same reason a8 above), 

3. Index Core Memory Time8 
Read cnzt time 
Memory cycle time 

0.4  uaec 
0 .8  usec 

The index cores are as~llumed tied directly to the WU, 
so these figures include 'bus times. 



4. Bus Spaeds 
Bunafil ta and from Instruction and Data 
mernorfee 0. 2 UBBC slat (either rsad or 
write) available every Q, 3 UBBC. 

b. Decode and @witching time in central con- 
trol unit 0. 2 uwc to 0 .4  u s ~ ~  (dspsnding 
on bua slots available. ) 

Note: A separate bus system ta fnatruction and 
Data rnemorles is a~aumed, but not necemary. 

In addition there i s  ueually a 0 . 1  usec delay between the 
completion of any function and the beginning of the next one by the 
unit, or in the transrfer from one regirster to another. 

3. Speed vs Number of Levels of Virtual M s m o q  

Figure 14 shows the effect on computer psrfolrmance of 
varying the number of levels of Virtual Memory. Curves far the 
Monte Carla and Mesh Calculations with two sets of arithmetic 
and indexing arithmetic speeds are shown. The AU t ima  given are 
the 6-6-34 averagea mentioned above. 

A number of interaetfng results are apparent from these 

There i s  a trernendoue gain to be had in going to the 
Vitual Memory organhation, The point for "0 levels11 
me4anB that the arithmeMc unit is tied directly to the 
instruction preparation unit, although simple Indexing - 
Execution overlap i s  etill poeelble. 

The gain in performance goes up very rapidly for the 
fir& two levels then rhea more slowly for the rest 01 
the range. 

A large number d levels doae the Monte Carlo problem 
lesrrs p o d  than the Menh problem because constant branch- 
ing in the former Elpoila the flow of inatructlons. Notice 
that the curve for the Monte Carlo problem actually de- 
c r e a ~ e s  slightly beyond a ix  levels. This phenomenom i s  
a result of memory conflicts cauaed by extraneous memory 
references started by the computer running ahead on the 
wrong -way paths of branches 

- 

The computer performance on a given problem is clearly 
less for alower ar i tbe t i c  speeds. How6v8rl it i p 1  important 
to note that the sensitivity of the performance i r s  also lese fo r  
slower arithmetic spseda. The Virtual Memory improves the 
performance in either ease, but it i s  not a substitute for a fast 
arit'lunetic unit. 
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4. Speed v s  Number of Main Mexnorv Units 

Figure I5 showa how internal computer performance varies 
with the total number of memory units for a particular problem. 
The entire calculation is assumed to be contained in memory for 
all caaes. 
apparent from the. graphs. 

The speed gain from overlapping memories is quite 

The speed differential between having and not having instruc- 
tions separated from data arises from delays in instruction fetches 
caused by the memory units being busy with data. 
this effect varies from problem to problem, being less pronounced 
for problems which are arithmetic limited and more for logical 
problems. 

The size of 

Since memory units for STFUGTCH are attachable only in 
pairs after the first and are interlaced only in powers of two, 
some of the pointa on the graph do not represent physically attain- 
able combinat€ons,e. g. $ 5 memories all interlaced. (The sirnu- 
lation prograan has no rsuch restrictionjs. ) 

The ltXWr on the graph show the affect of replacing the 
0. b uaec inrstructian memories by a pair of 2 . 0  u8ec memories. 
The reaulting performance change is smdl for the Meah Problem, 
which is arithmetic limited, but large for the instruction-fetch 
limited Monte Carlo problem. 

5. Speed vs Arithmetic .+. 1.1 Unit and Indexing Arithmetic Unit Times 

Although everyone realizes thc importance of arithmetic 
speed on overall computer performance, it waa not until the Sim- 
ulator result8 became available that the true importance of the 
indexing arithmetic speeds waa recognized. Figures 16 and 17 
show a two parameter family of curves giving the computer speed 
a8 a function of the AU and XAU timea. 

Figure 17 in which the arithmetic time i s  the abscissa . 
shows an interesting 'tsaturationll effect where the computer per-  
formance is independent of AU speed below some critical value. 
Thus it makers no Bense to strain AU speeda if the L A W  i s  not h- 
proved to match. The curve@ in Figure 16 show the aame effect 
i. e. I .the IAU speed ~erves as a %eilingfl on perfurmance beyond 
whish the AU speed cannot pass. 
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The Monte Carlo problem is much less  sensitive to 
arithmetic speed than is the Mesh problem. Their roles are 
reversed for the indexing arithmetic speed since the indexing 
arithmetic unit control$ the rate of instruction preparation and 
the Monte Carlo problem is instruction-access limited. 

6 .  Speed vs Instruction Memory Speed and Instruction Buffering 

Figure 18 shows the effect on overall performance of the 
instruction memory cycle time. The rnarrt striking result shown 
i r s  the reduction in speed of the Mash Problem with the removal 
of the indexing arithmetic unit instruction buffer a 

Not only a s  the speed of the problem cut almost by a 
factor of two, but it clearly assumes the behavior of an instruc- 
tion-acces s-limited problem instead of a compute-limited problem. 
Thia instruction buffer (called Y2 in STRETCH) really serves as 
a 2 level Virtual Memory for the indexing arithmetic unit and 
gives many of the same advantages b instruction preparation 
which the regular Virtual Memory does to data preparation. 

For more detail concerning instruction memory speed 
see the section on the Half microsecond memory below. 

7. Arithmetic Unit Efficiency 

One fallacy which ia frequently quoted fa  that the goal of 
improved computer organization iar to increase the arithmetic unit 
efficiency. Actually there are two reason8 why this is not the goal 
in itself. The first ia that arithmetic efficiency depends strongly 
on the mixture of arithmetic and logic in a given problem so that 
a general purpose computer cannot hope to give equally high per- 
centage utility to all, 

The second reaaon is apparent in Figure 19 which shows 
that the best way to increase the arithetic- unit efficiency is to 
slow dawn the arithmetic unit! 

The real goal of improved organization i s  maximum over- 
all computer performance for minimum cost. 
increase the arithmetic unit speed as long as ita percent efficiency 
ia reasonable for a variety of problems. 
when the overall performance gain no longer matches the increase 
in hardware and complexity. 
is a by-product of this design procesa not the prime variable, 

One will tend to 

One will stop thie process 

Thua the arithmetic unit efficiency 
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Figure 19 
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8. Speed VB Concurrent bput-Output Activity 

Because of the relative t h e  scales of 1/0 activity and 
the CPU processing speeds the Simulator cannot take in account 
the availability or non-availability of data from I/O an the pro- 
gram being run. However, we can observe the effect on the 
computation of the I/U devices operating at different rates aim- 
ultaneously with computing. 

Using the STRETCH control word philosophy it is paasible 
to have a number of input-output units operating at the same time 
the Central Proceebing Unit i s  running. The Basic Exchange can 
reach a peak rate of 1 word every 10 microseconds. The high 
Bpeed disk normally operates at 1 word every 4 microseconds. 
Since the mechanical devices take priority over the CPU in add- 
ressing memory, the computation slows down because of memory- 
busy conflicts. 

Figure 20 shows an example of how internal computing 
apeed is slowed aB the I/O word rates are varied continuously. 
At the theoretical ''choke off'' the I/O devices take all the memory 
cycles available and stop the calculation. 
can never arise for any I/Q rates presently attainable. 

Notice that this condition 

9 .  Speed vs Number of Memory Units with and without High Speed 
Disk Running 

Becauae there are fewer m e m o r y  cycles available when 
there are fewer memory u n i t s ,  the High Speed diak unit will cause 
a larger percentage slow-down for a smaller STRETCH system. 
Figurers 21 and 22 show this effect for hro typical problems-one 
which is normally arithmetic limited and one which is instruction- 
fetch limited. The farmer is l e s a  sensitive to w c h  interference 
mainly because the Virtual Memory has more of an averaging effect 
on ita data memory references. 

The following table shows the approximate quantitative re - 
duction in internal computing speed caused by the disk running 
at the same time, using the speed without 1 / 0  as 100% for each 
configuration. 

Number of Memories For Monte Carlo Problem For Reactor Problem 

6 
4 
2 
1 

- 2% 

-22% 
-59% 

- 470 
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The user of a small STRETCH system is thus penalized 
three times compared to a large system user: (1)  The top speed 
of his system is reduced by the loss of memory overlap, (2) He 
has a larger I/O penalty when it i s  run concurrently with the 
computation, and (3 )  the smaller amount of data which he can 
hold in the memory at one time increases the amount of I/O 
activity he needs to do the job, 

Looking at it more positively, the user who in the past 
purchased larger memories for his 704 obtained only the bene- 
fits of the third effect, while a STRETCH user also gets a !'bonus" 
of the first two as he expands his system. 

D. The Effect of the Half-Microsecond Instruction Memory on STRETCH 
Performance 

1 Introduction: 

During July and August of 1958 a series of T b i n g  Simu- 

One parameter studfed was the speed of 
Several rune  were also made in which 

lator runs were made to evaluate the statue of the SIGMA and 
HARVEST computers. 
the instruction memory. 
there was no separate! instructian memory but instructions and 
data were stored in the same boxes. 

The remlts of these runs proved to be quite important 
in evaluating the importance of the half-microsecond memory 
to the STRETCH program. 
from Project 7000 File Memo which was published at that time. 

The following analysie is taken 

2, Advantages and Disadvantages of the Half -Microsecond Memory: 

A. The primary advantage of the half-microsecond memory is, 
of course, its speed. This speed is beneficial in the following 
two cases: 

(1) Programs can be instruction access limited either be- 

If the half- 
cause they consist of a series of short operations, or 
because they contain many branch orders. 
mieroaecond memory is  used for instructions i t  will 
help reduce tho limitation by furnlshing the instructions 
at a faster rate. 

(2) In programs which are data-access limited, putting 
the data in the faster memory will cut down the time 
required for fetching the data. VFL operations with 
short fields are in this category. These are of par- 
ticular importance far HARVEST applications a 



In both of the above casea it is the speed of the memory 
counparcd to the arit1nmc;tic speed which is  the important 
ratio--the faster the aritkmctic speed the faster the memory 
required to service i t  properly. 

B.  
is its size.  Each memory box contains only one-sixteenth 
as many words as a comparable two microsecond memory 
box. 
performance because more time will be  spent reallocating 
programs. Unfortunately this reduction cannot be evaluated 
quantitatively by aimulation since it depends on the nature of 
the future problems, and on the nature of future methods of 
scheduling machine use. 

The main disadvantage of the half-microsecond memory 

This decreased size certainly must result. in reduced 

There is another advantage in larger memories which is even 
harder to evaluate and that i s  the removal of: programming re- 
strictions which exist when programs must be cut to fit a small 
memcmy. 

3. Simulator Input - Data: 

The test problems were run with most of the recent design 
changes simulated, including the 0,8 microsecond 1-BOX repetition 
rate and the 0 . 2  microsecond bus slots. 
for the run8 were: 

The arithmetic speedsused 

STANDARD S I G U  HAR'VEST 

Load, Store 0.2 us 0 . 4  us 
Floating Add 0 . 6  1 . 0  
Floating Multiply 1. 2 2 .5  
FJoating Divide 1. 8 

6-6-3-1 average 0.64 
7 .0  
1.43 
- 

0.4 us 
1 . 0  
7 .5  
7.5 
2.48 
_1_ 

The average times listed on the last line are used for 
convenience of plotting only. 
intended to represent present STRETCH values. 

Theare arithmetic speeds are not 

4. Results: 

Results of some of the runs are givsn in Table V. A short 
summary of the pertinant results are given in Table VI.  
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Straight average8 of the percentage losnas do not tell the 
whole story. There art9 abrupt changes 9tn behavior for some of 
the problemis from one case to anathar. Upon examination, th0 
reason in each case W ~ R I  due ta the problem becoming instruction- 
ascess limited where it had previously been arithmetic limited. 
Each problem crosses over under different circurnstancee because 
of its own particular combination of instructions. 

Table VI also: lists the programs which seem to be hstruc- 
tion-access limited for each memory and arithmetic speed configur- 
ation 

The phenomena which has been observed so many times 
before, still holds here - - =the higher the machines overall per- 
formance, the more sensitive it becomes to each individual com- 
ponent's performance. Thus, all of the problems are prone to 
become instruction-access limited at STANDARD speeds, where 
only the faithful Monte Carlo code i a  limited at HARVEST speeds. 

The magnitude of the lossefe must be considered as we11 as 
the pattern. 
having a aeparats instruction memory I s  as large or larger than 
the speed of the memory. The average percentages are given in 
table VH. 

Clearly the memory interferences caused by not 

5 .  Rough Estirnate of the Effect of Having a Larger Instruction 
Memory on Computer Speed: 

A s  wag mentioned in section 3 1 ,  the favorable speed ad- 
vantage gained by having a larger instruction memory is hard 
to a a s e a s  quantitatively. 
order -of -magnitude estimate only. 

The fallowing is intended to be a raugh 

In a given time T, assumed to be long enough to do several 
problems, the, computer will divide its activities between the time 
spent on useful calculation and the time spent on awapping codes in 
and out of instruction memory. W e  may write 

T = n t, + n Rt, - ntc (1 + Et) 

It - the ratio of the number of words swapped per useful 

t, = average time per calculation executed. 

where n the number of useful instructiana executed 

instruction executed. (R ahould be much lese than 1) 

(For simplicity the time for swapping an instruction is taken 
the same as t c . )  
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The speed of the computer, S ,  is proportional to n/T,  
the number of useful operations per unit time. 
the ratios of the speeds of two systems as: 

So we may write 

The t c l / t q  factor is the regular speed-up caused by the 
faster memory. 
sulting from the effect of swapping codes. AB a guess, we can 
take R aa being inversely proportional to the memory ~ i z e ,  so that 

The term involving the K's  i s  the new factor re- 

also since the R's  are both much IelsEj than 1, we may write 

In the prewnt caae, consider a 10% computer speed dif- 
ferential on tds. betwoen the half and two-microsiecond memories, 
which differ in size by a 1 to 16 ratio. We can a& what value of 
Et2 will1 be necessary to make the half microsecond memory result 
in an increarjre in speed over the two microsecond memory. The 
anzawer is approximately: 

That ii, each Inatiuctio3.1 in the half microsecond memory muat 
be used at leaat 10 Limes in an average program before it is re- 
placed in order that the half microsecond memory show a net 
increase in a p e d  over the larger, slower 2 ua  memory. 

Very roughly speaking, each instruction muat be used at 
least once for each percent loss in speed under the configurations 
tested hers ta break even. It seema likely that thia condition will 
be easily satisfied in practice, so that the faster memory will in- 
deed result in a faster computer even though part of ita advantage 
iax loblt. 



-52- 

The other factor mentioned which favors larger mem- 
ories is the effect of being able to write less complicated codes 
when they need not be cut to size. One can express this factor 
as  a (1 + f )  term times the speed of the computer to gives ita 
effective apeed. This 8peed gain is because the machine has 
to do a fraction f fewer inatructions to accomplish the same 
job with a larger memory aa it would taka with the smaller. 
Since this fraction is so strongly ir function of the problem in- 
volved, one can only guess what it will be as an average for 
all SIGMA problems. It should be in the 0 to 10% range, how- 
ever. 

60 Conclusions: 

Whether a problem is instruction-access limited or not 
irs the main property which determines its behavior under 
chanlgea in inatruction memory. 

The property of being instruction-access limited depends. 
considerably on the individual sequence of instructiona in 
a problem itself, and on the relative speeds of the arith- 
metic unit and the inrrrtruction memory. 

The higher the performance of the computer, the more sen- 
sitive is its speed to changes in inatruction memory con- 
figuration. At tha SIGMA apeede, replacing the two 0 . 6  
u8 memory boxes. by two 2 .0  urg memories results in an 
average of 2.570 loa8 in performance in the cases tested. 

At SIGMA speeds intermixing data and instructions 
causes an average loss (sf 3 .9% in performance over 
having a separate 2.0  u8 inatruction memory. This is 
because conflicts betwerm data and instructions delay 
instruction accelsaeiit. Note that thie is larger than the 
effect of memory speed ftsrelf. 

The speed gains from hrving a faster memory are reduced 
somewhat by the fact that it i a  smaller and more time 
muat be spent swapping code8. 
effect timewiae , however. 

This aeems to be a small 

The effective performance increase possible because 
bigger programs may be put into the larger memory at 
once is hard to assem.  It is probably a b 0  in the 1 to 
10% area. 
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TABLE VI 

Summary of Results: Average Computer 
atruction memory speeds and Arithmetic 
all five test problema. 

STANDARD AU Speeds 

1. 2 1 /2  us Mems. 
2. 2 ZusMerns 
3. No. Instr. Mem. 

SIGMA AU Speeds 

1. 2 1121.38 m e m e  
2. 2 2usMeme 
3. No. IInatr. Mem. 

HARVEST AU Speeds 

1. 2 112 us Meme. 
2. 2 2 u s  Mema. 
3. No. Instr. Mem. 

epeed changes caused by In- 
Speeds, straight average8 for 

Average Percent Decrease 

0 
-3,770 

-1 5.9% 

Probleme*which are 
hstr.  - access limited 

*The Problem numbera are thoae given in Section VB. 
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TABLE VII 

Average Percentage Loaaea for all problems. 

A r i that ic  Spee de 

STANDARD SIGMA 
lorre caused by 

Memory by 2.0 us Mem- 
ory. 

replacing 0 . 6  u8 Instr. -3 ,7% -2.570 

Average additional loss 

arate hs tr .  Memory. 
caused by having no eep- -12,2% 

Maximum lose caused 
by replacing 0 . 6  us 5% 
Xnstr. Memory by 2.0 
US Memory 

Max. additional lose 
cauesd by having no 
rreparats Instr, Mem- 
ory. 

- 1 9 e  5% 

a,, 9 % 

-8 . ai% 

HARVEST 

-1.8% 

- 2.0% 

-0. 2% 

-4.7'16 



E. A Study of Branching on Arithmetic ResultrP in STRETCH . 
X . Introduction: 

The asynchronous organization of STRETCH allows many 
of the components of the Computer System to be operating at the 
tsame time on different jobs and thus by overlapping greatly in- 
creases the overall efficiency of the system, 

Unfortunately this organization also has ita drawbacks, 
In particular, one of the cursea of the non-sequential prepara- 
tion and execution of inmtruetions is that if there is a Branch in 
the problem code it apoils the smooth flow of instructions to the 
Indexing Arithmetic Unit. Any branch in a program will cause 
aorne delay, but the ones which hurt the most are the branches 
on arithmetic results which cannot be detected by the Indexing 
Arithmetic Unit in advance. 

2. Ways in Which Arithmetic Reault Branches can be Handled: 

There are two fundamental ways in which branchea an 
Arithmetic Unit rersults can be handled by the computer: 

(1) The computer can atop the flow of instructions until 
the Arithmetic Unit has completed the preccseding op- 
eration so that the reeult ia  known, then fetch the next 
correct instruction. T h h  places a delay on every AU 
reault Branch whether taken or not, 

(2) The computer can "guess" which way the branch i8 
going to go before it ie taken and proceed with fetch- 
ing and preparing the instructions along; one path with 
the understanding that if the guess was wrong, them 
instructiona muat be dimarded and the correct path 
taken instead. 

Under the second alternative there are four posaible waya 
The branchera in question are in which the guerasing can be made. 

indicator branches on the Arithmetic Unit result indicators. Them 
operations have a modifier which allows the branch to be taken either 
bf the rapscified indicator i a  on or  off. 
indicator is on or off for each, the four combinations are: 

Since one can guesa that the 



.*-L.113- Case N a m e  Operation Guesa Assilmed Rasiult of Operation 

X NN-FF Ind Branch on Ind on branch 
off off branch 

11 NF-FN Ind Branch on Ind off no branch 
off on no branch 

E1 NN-FN lizd Branch on h d  on 
off on 

branch 
no branch 

IV NF-FF Jhd Branch on Ind off 11.0 branch 
off off branch 

3. Simulation Results: 

To study the e€fects of wrong-way branches on the SIGMA 
Timing Simulator, the Monte Carlo Branching Code was chosen 
as the guinea pig. The code was rewritten BO that every arith- 
metic reeiult branch wae a wrong guess and again BO that every one 
was guesaed correctly. (Note that neither af theae extremes is 
actually poaeible in a program with branches unlearr they are, 
eesentially unconditional, ) 

Servtmal run8 were made varying the instruction memory 
speed and the AU and IAU times. The regular (NF-FN) c a m  had 
two wrong branchea out of thirteen encountered in one loop of the 
program which conaistlrr of fifty-nine operations executed per loop. 

By examining the timing charta drawn by the Simulator for 
many of the individual branchea, the average time delays listed in 
Table VI11 were derived. 

Table VUI: Average Time Delay per Jjldivldual Branch 

no branch right 0 ua 0 U B  
no branch wrong 2 . 5  us 3 . 2  us 
branch right 1 . 5  UIJ 3 . 2  urn 
branch wrong 3.7 UI 4.8  us 

For 1lStandard'f Times (AU 0.64  us, IAU a 0 . 4  UB) 



1% one takers the actual times to complete the problem 

The 
in each case and divides the total delay by the number of wrong- 
way branches, one obtainls the times listed in Table IX. 
approximate delay due to the memory interferences, etc. , caused 
by starting the processing of the wrong instructions, can be ea- 
timated by comparing the times in Tabla VI11 with thoae in Table JTX. 
These interference times are listed in Table IX. 

us, IAU=O. 6 UEI) 289 6s 3. 5 u's 
For "Recommended Times"(AU4 09 us I IAUmO. 9 us 3 . 6  us 4 . 3  us 
Extra Delay due to memory Interferences 0 . 5  U8 2 . 0  us 

Presumably if one holds up on every branch (Case 0) the 
t i m e  rosa will be about that of assuming no Branch and guesaing 
wrong. (line 2 in Table VUI). If one guegirres according to one of 
the four other cases, the time loeia will depend on ( I )  the percent- 
age of branches which are Br-ana, (2) the percentage of Br-ons 
which are actually taken, and (3)  the percentage of Br-offs which 
are actually taken. 

The calculation will be delayed by each branch taken even 
when they are guessed correctly, however since we are interested 
in examining the additional t h e  last due to guesaing wrong or hold- 
ing upJ the delays due! to correct branching should be removed. The 
following timess in Table X may be ueed to compute actual combina- 
tions of branches. 

Table X: Average Time Delay par Branch 

Computer Should Have 0 . 6  ulg Inartr. 2.0 U8 hstr.  
Guessed Memory Memory Guessed 

1 

Hold up no branch 2 . 2  us 
Hold up branch 2 . 5  us 
no branch no branch 8 us 
no branch branch 3.0 Ul 
Branch branch 0 ua 
Branch no branch 2. T ue 

1 .6  ua 
3.2 us 

0 us 
4 , 2  us 

0 UI 
2.6 UB 



-59-  

The temptation in evaluating the individual cases is to 
assume 50% for all the cambinationa and essentially average 
the time losses, 
ficially, we have found that considerably fewer than half the 
arithmetic result branches encountered in a code are actually 
taken. About 20% seem to be more typical. This seems to be 
due to the tendency of coders to think of the branches as being 
exceptional case~f. 
code continuously and the exceptioncl elsewhere. 

Actually, by examining a few problems super- 

They normally write the main flow of the 

There seem8 to be a tendency to link indicators turning 
can with exception cases, 
ons being taken and more Br-offs being taken. These generalie- 
ationa are admittedly uncertain mainly becauaet very few relevant 
atatiatics are available. 

In time this would result in fewer Br- 

There is also a llfeedbackbl In such statistics because the 
way in which the machine guesses the branchea will influence 
future programmers to write their codes to take advantage of 
the apeed gain, 80 that the statistics of the future will be bisrsed 
in favor of the ayetern choaen now[ 

Table XI compares the five cases for several aasumad 
values of percentages. 
to the averages to be expected. 

The last two Lines are m y  guessers as 

Table XI: Average c Time Delayer per Branch for the Different Cases 

70 70 Y O  

Br-ons Br-ons Br-of€s Case 0 Case 1 Case 11 Case I11 Case IV 
taken taken Holld-up NN-FF NF-FN NN-FN NF-FF 

507' 50% 50% 2.35118 1.3Qurn 1 . 4 5 ~ 8  1 . 3 8 ~ 8  1.38ua 
50% 20% 2070 2. 26 2.14 0 .54  1.33 1.42 us 

for 0 . 6  us. Instruction Memory 

80% 2070 80% 2.30 1.69 0. $9 1.19 0.47 
for 2.0 us Instruction Memory 

50% 50% 50% 2 . 4 0 ~ 3  leOOus 1 . 8 0 ~ 8  1 . 4 8 ~ ~  1 . 4 0 ~ s  
50% 2070 20% 1 . 9 2  1. '96 0.36 1.16 1.64 
80% 20% 8070 2.11 1.45 0.84 2. 22 0.10 

4. Concludons: 

(1)  The performance variation in a problem with a lot of 
arithmetic data branching can vary by approximately 
f 15% depending on the way in which the branches are 
hand1 e d . 
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(2)Holding-up on every branch seems to be l e s a  desir- 
able than any of the guessing procedurea. 

(3)It  i a  very unlikely that onti? ever get fewer than 15% or 
mare than 85% wrong-way branches regardless af his 
procedure. 

(4)It seems possible to get a fairly low loss by picking 
Case IV, provided the percentages on the last line of 
Table IX really are correct. 
centages should be different, Case XV is much more 
sensitive to them than Case 11. 

However, if the per- 

( 5 )  To be really effective Case IV needs the exiatance of 
$ 0 to make the distinction be- the indicators 

tween off asld an precise. At present one must code 
'IBr-on < Oil, as *'Br -off ;r 0 ,  180 that the equating 
of Iton" to "exceptional case" ia Bpoiled somewhat. 

5 0 ,  

( 6 )  The highest performance would be! obtained if each 
branch had an extra "guess bit'@ which would permit 
the programmer to specify which way he eatimates 
each branch will mast likely go. This Seems to be 
impossible in the present format schemes. It also 
would place a considerable extra burden on the pro- 
grammer for the gains promised. 

5. Recommendations Finally Preerented as a Result ~f the Simulator Runs 

Caae I1 (NF-FN) should be adopted aIj the guessing acheme. 
This means that far any branch for which the IAU cannot compute 
the correct outcome, it should guess that the branch ia not - taken 
and proceed with the processing of the next inirtruction. 

Case II waa chosen over c a m  IV because: 

1) Its time lass is low (at least second bast) 

2) It doea not require special controls for deciding whether 
to assume a branch i a  taken or not 

3) It does not require that new indicators be defined. 

4) It should not camfuatu the programmer with complicated 
rules of catting the way Case JX might. 



VI. APPENDIX: Details of Timing Simulation Program S'IM-2 

The following pages give detailed symbol definitions and flow 
The diagrams accurately represented diagramis for the SIM-2 code. 

the code at the time they were drawn. 
tions to the program since then, particularly in the 1/0 simulation 
section, but they do not change the main Logic of the flow. 

There have been some addi- 

The simplified flow diagram, Figure 1 1 ,  shows the major 
The following pages elaborate upon thia sections of the program. 

figure. 
Section 111. 
parta in the flow diagrams which follow. 

The logic of the Virtual Memory operation is described in 
The logical diagxams given there have direct counter- 
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STRETCH Timing Simulator Program SM-2  
List of Quantities Used i<Fiow ~ i i g r a m  

' 

Table 1 

Quantities Concerning Instructions fad ,t)lrough Simulator 
I 

Instr, Number 

Ins tr . Location 
#a Index Addr. 
#11 Jhdex Addr 
Data Addreiss 
Special Desig. 
Return Tag 
Sp. Sp. Desig. 
Compare Bit 
Forward Addr, 
O.K. Bit 
Forward Bit 
Mem. Bring Eli1 
Unit Clock 

op. Code 

4 

Inatr. Number 
Return Addr. 
Bring Bit 
Read out Clock 
End Sig.Clock 
Mem.Cy.Clock 
Mem.RemP. Bit 
Mem. Box No, 

Inatr. 
hput 

_y 

111 

112 
113 
114 
II5 
116 
a7 
I18 
XI9 

Main o 
Instr. 

Mom, 

IMMi 
IMM1 
M M 3  
IMM4 
IMM! 
IMMi 
XMMS 

Look- 
ahead 
Ready 
Reg . 

LR3 

LRL 

LR2 

Index 
Core 
Mem. 

m 1 0  

Lo~ lk -  
ahead 
,evals 

LAU8 
LAU2 
LAU 1 

LAU3 

LAW4 
LAUB 

L A U ~  
LAU9 

Central 
Control 
Der coda 

I[BDI(or 6 )  
LBD (or 5) 
XBD2(or 7) 

DD4(0r 9 )  

I€3D3(ox 8) 

IMRS 
IRUM 
ICAN 
ICRI 
ICR2 

B U G 2  

Bus to 
Mem. 

3Fl 
JF 
JF2 

YF4 

YF3 
YF-  fast 
memor; 
JM-main 
memarl 

Arith, 
Unit 

IPI 
NRAUl 
NRAU2 

JAUT 

BUls 

From 
Mem, 

N F I  
NF 

NF2 

NP WFas t 
memory 

NMSmain 
memory 

Indexing 
Arithmetic 
Unit 

IRO 
YRO 
IRO 

Et01 (Fetch) 
=I (Return) 

INS 

Exchanges 

(90 ,91  92,93)  
32 
1 or 0 

CLC 

IOM 



List of Symbols 

TABLE 11 

Control and Tally Quantities 

1 Look-Ahead Symbolpl: 

NCTRA Instruction Fetch Counter 
NCTRB Data Fetch Counter 
NCTRC Data Store Counter 
NSTOB 
NLH Number of Look-Ahead levela 
NBFR Modular value of NCTRG 

Store Bit (an unexecuted Store) 

2. Conflict Counters, and Tallya: 

GTT 
CAU 
CUUT 
(CADLA 
CLAP 
C W I  
CWM 
CDLA 
CZF 
(CIM 
@OF 
COM 
GIST 
CIMM 
CMMC 
CFMC 
CXMC 

Total Time Tally 
Arithmetic Wnit Tally 
Indexing Arithmetic Wnit Tally 
Average depth of Look4head Tally 
Look-Ahead Full Tally 
Arithmetic Wnit Waiting on Inejltruction Tally 
Arithmetic Uni t  Waiting an Data Tally 
Look-Ahead level u ~ e  Tally 
h-33~6 from Fast Memory Tally 
h-Bus from Main Memory Tally 
Out Burp (Read) to Memory Tally 
Out BUB (Write) to Memory Tally 
Index State Tally 
Memory ume Tallys 
Main Memory Conflict Tally 
Faat Memory Conflict Tally 
Index Memory Conflict Tally 

3. Mia callaneous . Symbols: 

MARK Time Counter for Lieting 
BIB 
ISKIP 
TALLY" 
A,B,AD, THINK Temporary Locations 
DR, D W  LDA 
U S C B  Look-Ahead, Self Compare Bit 
PBIT , CBIT PHDB 
TBXT, WBIT Controle for Printing 
I[B 
%P, RP, SlP, SSP 

Break-in Bit on Wrong-Way Brancher 
Signal to ttRun-Dry't at End 
Count af Number of Executed Ope. 

Faeudo-op Controls, ate. 

Block far Input from Control Carde 
VariouPr Printing Blocke 
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List of Symbols 

Table IY.1 

Input Constants Appearing on Summary Listing 
* '  

Symbol Name 

c Lirrting Code 
on in Description 

A + .  " ' ' 

LA 
FM 
MM 
ut 
IS 
IA 
ID 

M B  
FB 
FD 
HM 
HE 
x1 
X2 
MD 
F1 
F2 
F3 
M1 
M2 
M3 
15 
14 
13 
12 
11 
10 

9 
8 
7 
6 
5 
4 
3 
2 
1 
LE 

NLH 
NUFM 
NUMM 
INX 4 
INX - 3 
INX-2 
mx-1 
INX 
NMBT 
N F B T  
IDM T 
IDMT-I-1 
U>MT+2 
IDMT+3 
D M T + 4  
IDMT+5 
M F T  3 
MFT 2 
M F T  3 
MMT 1 
MMT 2 
MMT 3 
YT-15 
ST-14 
JT-13 
YT-12 
3"-11 
JT-10 
JT-9 
JT-8 
J'T-7 
5's-6 
JT -5  
YT-4 
J T - 3  
3"-2 
JT=I  
JT 

No. levels of look-ahead 
No, of falst memory boxes 
No. of main m e m o r y  boxe8 
Index reset U U  State 4 
Index ertore-1 U U  State 3 
Index a d d 4  W U  State 2 
Index Decode W U  State 1 

Main (or write) bugl time 
Fast (or read) bus time 
Fast Memory  bus decode time (CCU) 
Hamming check time 
High Speed Exchange word rate 
Index Memory read-out t w e  
Index Memory cycle time 
Main Memory bus decode time (CCU) 
Fast Memory read-aut time 
Farst Memory  end signal time 
Faat Memory  Total cycle t h e  
Main Memory read-out time 
Main Memory end signal t h e  
Main Memory Total cycle time 
Op. Code 15 Square Root 

(not used) 

14 Divide 
1 3  
Xt Cumulative Multiply 

10 
9 Add 
8 
7 Load 
6 
6 
4 Immediate Ops 
3 Immediate Ops. 
2 Immediate Ops 
1 Immediate Ope 

I 1  Multiply 

Low Speed Exchange word rate 



Liat of Symbols 

Table IV 

Output Results on Summary L i n t i s  

Symbol Name 
on in Description 

Linting Code 
b ' .  1' ' ' .  - " ' *  

XMC 
TT 
AU 
'SAW 
ADLA 
LAF 
WI 
W M  
DLA- 
IBF 
IBM 
RB 
W B  
Is- 
M- 

MMC 
FMC 
WBC 
RBC 

(CXMC) 
CTT 
(CAW 

Index Memory Conflicts (in 70 of total time) 
Total Time of problem (XXX. X microseconde) 
Arithmetic Unit busy (in 70 of TT 
Indexing Arithmetic Unit bulsy 
Average depth of look-ahead 
Look-ahead full 
Arithmetic Uni t  waiting on imatructionrrr 
Arithmetic Unit waiting on data 
% Time Look-ahead has depth specified 
In bus from farrt Memory busy 
h bus from Main Memory busy 
Read bus t.o Memory buey 
W r i t e  bus to Memory busy 
Time spent in Indexing State specified 
Time Memory Box specified i s  b w y  

Main Memory conflicts 
Farnt Memory conflicts 
Write bue conflicts 
Read bu8 conflicts 

TST 

(M12 to M5 are Main Memoriee, M4 to M1 are hsltr. Mems. 

Op coders: (1) 1 thru 4 Immediate (1.1 wrong-way branch) 
(2) 5 thru 34 bring type (See, Table 111) 
(3) 35 indexing type 
(4) 36 to 97 atore type 
(5) Instruction No. 98 Stop in AU and Tr to Summary 

Return Addreeaets: (1)  20 - U U  data 
(2) 21 a InwtTuction fetch 
(3) 1 , 2,3, . 8 = Look-ahead lilsvels 
(4) 32 Exchange 
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