- W

.

"’9

' PRODUCT PLANNING
Lechical Kepnt

DATE__June 12, 1959

NUMBER___P-17

The STRETCH Virtual Memory Concept and Timing Simu-
TTLE___ lation Program

~ AUTHOR—John Cocke¥ and Harwood G. Kolsky

LOCATION seepsie

*(Present location: IBM Research, Poughkeepsie)

;7454 w,oatt i3

TABLE OF CONTENTS

Page
L. Introduction 1
1I. General Description of the System 1-4
III. Detailed Description of Virtual Memory Operation 5-24
A. General Conditions to be Considered 5.
B. Definitions 5-9
C. Logic of the Virtual Memory 9-24
Iv. Description of Timing Simulation Program 24-28
A. General Considerations 24-25
B. Logic of the Simulator 26-28
V. Some Results of the Simulation Studies 29-60
A. vGeneral Description 29-32
B. Test Problems Used 32-33
C. Results of Simple Parameter Studies 33-48
D. The Effect of the Half-Microsecond Instruction Memory
on STRETCH Performance 48-55
E. A Study of Branching on Arithmetic Results in STRETCH 56-60

V1 APPENDIX: Details of Timing Simulation Program SIM-2 61-80

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

6B

6C

10
11
12
13
14
15
16
17
18

19

21

22

TABLE OF FIGURES

Title

Schematic of STRETCH Computer
Contents of a Virtual Memory Level
Virtual Memory Interlocks
Instruction Fetch Procedure

Indexing Procedure

Procedure for Placing Instructions into the Virtual Memory

Logical Conditions for Bring Type Operations
Logical Conditions for Store Type Operations
Logical Conditions for Immediate Type Operations |
Data Fetch Procedure

Data Store Piocedure

Procedure for Placing Data into Virtual Memoxry
Procedure for Removing Instruction from Virtual Memory
SIM -2 Simplified Flow Diagram

Listing of Simulator Print-Out

Listing of Simulator Summary Print-Out

Computer Speed v8. no. Levels of Virtual Memory
Computer Speed vs. no. of Main Memory Boxes
Computer Speed vs., Indexing Arithmetic Time
Computer Speed va. Average Arithmetic Time
Computer Speed vs. Instruction Memory Cycle Time

Arithmetic Unit Efficiency va. Average Arithmetic Time

Computing Speed va. I/O Word Rate
Computing Speed va. Number of Memory Units 1

Computing Speed V8; Number of Memory Units 2

Page

10

11

13
14
16
18
19
20
21
23
28
30
31
36
38
39
40
42

43
45
46
47

-1-

I. INTRODUCTION

Early in the planning of the STRETCH computer it was seen
that by using the latest solid state components in sophisticated circuits
that it would be possible to increase the speed of floating point arith-
metic by almost two orders of magnitude over that in existing computers.
However, there seemed to be no possibility of developing on the same
time-scale economically feasible large memories with more than a
factor of ten or perhaps twenty increase in speed. As a result, the
proposed system appeared to be in danger of being seriously memory-
access limited.

Moreover, as the speed of the floating point operations in-
creases, a larger and larger percentage of the computer's time is
spent on ''parasitic operations', i.e., operations whose only function
is. program control and data selection. It was obvious that a radi-
cally new machine organization was necessary in order to capitalize
upon the possibilities opened up by the high arithmetic speeds in the
presence of relatively slow memories.

At this time, the possibility of a '"look-ahead' device was sug-
gested in which an independent indexing arithmetic unit would prepare
the effective addresses of instructions and initiate memory references
to a multiplicity of memory boxes. The data thus fetched would be held
in high speed buffer registers until needed by the arithmetic unit. This
device would serve two desirable purposes; (1) some of the parasitic
operations would be done in parallel and thus not delay the principal cal-
culations, and (2) several memory boxes could be running simultane-
ously, giving the effect of higher memory speed.

II. GENERAL DESCRIPTION OF THE SYSTEM

The major logically-independent blocks of the STRETCH com-
puter are shown in Figure 1. Each of the units pictured may be con-
sidered as operating asynchronously. That is, each does its tasks as
fast as possible independently of the others. In theory, each box could
have its own clocking circuits and still operate properly. In practice,
for economy's sake they are all timed by the same master oscillator,
but this does not destroy their logical independence.

B

The bus control unit serves as a routing agent between the
memories and the various data processing units. If two or more
units make a request simultaneously the control unit assigns prior-
ities in the following order: (1) High speed Exchange, (2) Basic
Exchange, (3) Virtual Memory, and (4) Indexing Arithmetic Unit.

The Indexing Arithmetic Unit fetches instructions, performs
all necessary indexing operations and sends the instructions to be
executed to the Virtual Memory.

The Virtual Memory fetches and receives the data required
by the instruction and holds this data until the arithmetic unit is
ready for it. The Virtual Memory also performs all store opera-
tions. Itholds the data generated by the Arithmetic Unit or Indexing
Arithmetic Unit until the memory to which the data must be sent is
available. Thus the Virtual Memory acts not only as a''look-ahead"
for instructions to be fed to the arithmetic unit, but also acts as a
"look-behind" storage buffer.

FIGURE 1

SCHEMATIC OF SIGMA COMPUTER

Inatr. Instr. Data Data Data Data

Mem. Mem. | Mem. Mem Mem. Mem.
- l oy 1 R M
| ,
Indexing Virtual ; High Speed Exchange
Arith, Memory { Exchange ,
Unit P PN A— ';k e et it
R B l NERRRN
Arithmetic | Many 1/0
Unit Units

The actual design of such a ''look~ahead'’ device posed a num-
ber of logical problems, particularly in connection with conditional
branches. In colaboration with John Griffith, a device was proposed
later named ‘''virtual memory'", which answered these logical problems
and served as guide for the actual organization of STRETCH.

However, a machine organization of this complexity requires a
detailed timing analysis in order to determine the value of adding hard-
ware in the form of the ''virtual memory'. This is especially true since
the sole function of the 'virtual memory" is to increase machine speed,
by increasing the efficiency of other devices. It was also felt that the
timing analysis could not be made on the basis of a few trivial examples
(e. g. matrix multiply). Machine performance obtained in this fashion
can be extremely deceptive. Since a detailed timing analysis of a com-
puter of this complexity is extremely tedious to carry out by hand, it
became clear that if the job were to be done, it would be necessary to
simulate the proposed machine on another computer. This prompted
us to write the simulation program described below.

With the above general organization in mind, let us discuss
some of the logical problems posed by such a system. The first prob-
lem is a result of the very concept which enables us to obtain such
great benefits from the stored program computer--the ability to treat
ingtructions as data. In a system such as we have proposed there is

‘a large amount of simultaneous operation. For example, the indexing
arithmetic unit may be busy preparing an instruction before previous
instructions have been completed or even started by the arithmetic
unit. One of these previous instructions may modify the instruction
which is presently being indexed. The virtual memory must recognize
this situation and allow the intervening instructions to be completed
before doing the modified instruction.

A similar problem exists with respect to ordinary data. In order
to operate several memories simultaneously, it is necessary to start
obtaining data from these memories before the preceding operations have
been completed. Yet, one of these operations may be a store into one of
the data locations. The virtual memory must make provisions to insure
that each instruction obtains the most up-to-date data as implied by the
order of the program.

One of the novel features of the STRETCH computer is its
elaborate interrupt system. Under this system whenever some un-
expected occurrence arises, the program will be interrupted and con-
trol will pass to a special routine which is designed to take care of the
case in question, then return control to the original program. In this
situation the virtual memory must have provisions to retain enough
information so that when an interrupt occurs we can resume the com-
putation exactly where we left off. It must be able to recognize which
of the changes that have been made in advance are not desired and should
be obliterated and which are exact solutions that must be restored.

Another special case arises when a conditional branch on arith-
metic results occurs. Here we will not know which of the two branches
we should have taken until the preceeding instruction is executed. In
the case the wrong path has been selected, the virtual memory must be
prepared to drop the intermediate results which have been computed and
pick up the correct branch in a way very similar to that of an interrupt.

Summing up all these logical problems, we may state that the
fundamental rule for the Virtual Memory is that it must make the asyn-
chronous and non-sequential computer give results identical to those
which would be obtained by performing the program one instruction at
a time in the order in which they are written.

Since our original work on the virtual memory and simulation
in 1957-58, a large number of detailed changes have been made in the
actual hardware design of STRETCH. These necessitated several mod-
ifications in the Simulation program to estimate their effect on the over-
all system performance. In this report we are omitting many of these
changes for expository reasons since our purpose is to describe the vir-
tual memory and timing simulation concepts not to describe the STRETCH
hardware exactly. The result is that the system described below imbodies
a more general system than that found in the Simulator which in turn is
more general than that found in the actual computer.

III. DETAILED DESCRIPTION OF VIRTUAL MEMORY OPERATION

A. General Conditions to be Considered

The conditions which occur in the following situations must be
considered in some detail:

1. The fetching of instructions by the Indexing Arithmetic Unit.
2. The indexing of instructions and modification of Index registers.

3. The loading of the Virtual Memory and the setting of its condi-
tions by the IAU.

4. The action of the Virtual Memory in fetching data.
5. The action of the Virtual Memory in storing data.

6. The communication between the Virtual Memory and the main
arithmetic unit.

7. Special situations such as conditional branching on arithmetic
results, etc.

B. Definitions
Some of the terms we will use are defined as follows:
1. Operations |
Operations are considered to be of three types:

(1) Bring or fetch type - All instructions requiring data to be
transmitted from external memory to the Virtual Memory

(2) Store Type - Instructions requiring the transmission of data
from the Virtual Memory to external memory or index
memory.

(Note: We consider all indexing instructions to be of
the Store Type, although the store may be to

either external memory or index memory.)

(3) Immediate Type - All operations not requiring data transmission.

2.

Virtual Memory Quantities

(1)

(2)

Virtual Memory - A number of Virtual Memory (or look-
ahead) levels (numbered 0 to N-1).

Level of Virtual Memory - A collection of registers and
control bits. The contents of the jth level is shown
in Figure 2.

. lorp.l s:] B.| F.lra,|l ok c.| b. DA.]
) J\Bu’ Bit' | Bit 31 Bitd| Bid J\ j

(3)

(4)

(5)

(6)

(7)

(8)

(9)

{10)

Figure 2 Contents of a Virtual Memory Level

Instruction Address Register (Ij) - Contains the address of
the instruction currently in the j th level.

Operation Code Register (OP;) - Contains the operation to
be performed by the arithmetic unit.

Store Bit ~ (Sj) - A one bit trigger which indicates the level
contains a Store type instruction.

Bring Bit - (Bj) - A one bit trigger which indicates the level
contains a fetch type instruction for which the data access
has not been started.

Forwarding Bit (Fj) - A one bit trigger which indicates that
the j th level must transmit data to another level.

Forwarding Address (FAj) - A register which contains the
number of the level to which the data must be sent if
Fj is set.

O.K. Bit (OKj) - A trigger which when set indicates that
the correct data for the instruction to be executed is
present in the jth Data Field.

Data Field (Dj) - A register which contains the operand
data for the instruction.

(11) Data Address (DAj) - The operand data address (already
indexed by the JAU) for Dj.

(12) Compare Bit (Cj) - A trigger which if not set indicates the
address in DAj should not be included in any address
comparisons being made.

Counters

The Virtual Memory is controlled by a set of counters which
countmod (N),where N is the number of Virtual Memorylevels.

(1) Counter one (C]) - Indicates the level into which the next
instruction may be placed.

(2) Counter two (C2) - Indicates the level from which the next
bring type instruction may be initiated.

(3) Counter three (C3) - Indicates the level from which the next
store type instruction may be initiated.

(4) Counter four (C4) - Indicates the level from which the arith-
metic unit will get its next operation and data.

Interlocks

The above counters must be interlocked in the following manner
to assure proper sequential operation of the computer (see figure 3):

(1) Interlock one (I1): C] = C3 + N Prevents the JAU from placing
‘ the next operation into the level indicated by C] because an
unexecuted store is still in the level.

(2) Interlock two (I): €1 = C3 Prevents a store from being in-
itiated from the level indicated by C3 because the store
has already been done.

(3) Interlock three (I3): C]1 = C2 Similar to I2, prevents a
fetch from being initiated.

(4) Interlock four(l4): C; = C4 Prevents the arithmetic unit
from executing an old instruction.

& Counter C)

NOT | OR } W)eeveee ¥

Counter Cy4
Ig: C]1 = C4 + N (Output 1)
I4: C; =C4 (Output 2)

_Interlocks I4 and I5 are as shown, the other interlocks are
done in a similar manner.

Figure 3. Virtual Memory Interlocks

(5) Interlock five (Ig): Cj = C4 + N Prevents the IAU from
placing the next instruction into the level indicated by
C] because the instruction there has not been executed
yet.

C. Logic of the Virtual Memory

1.

General

There are two basic precepts which must be kept in mind to under-
stand the operation of the Virtual Memory:

(1) The OK bit (OJ-) being set in the jth level indicates that the
contents of Dj is the correct data called for by DA;. All
operations will be performed only under this condition and
logical decisions will be made in such a manner as to make
sure this is the case.

(2) Addresses can be compared by the IAU with every DA; address
simultaneously. DA; is not used for any level which Joes not
have its Cj bit set. If a comparison exists between a new DA
being placed in the Virtual Memory and an old DAk, the com-
pare bit Cy is turned off and the address of level j is placed in
FA)x. This insures a unique meaning for the comparison. If
this were not done, another instruction address DA, might
compare against two levels and thus cause an ambiguity.

Instruction Fetch Logic

Figure 4 is a flow diagram of the IAU Instruction Fetch Procedure.
The logic is as follows: If the JAU is ready to fetch another instruc-
tion, it compares the instruction address with all the DA;'s of Virtual
Memory. If there is no comparison, the instruction fetch is initiated.
If there is a comparison the IAU must take its instruction from the
Virtual Memory provided the OK bit is set, otherwise, it must wait
until the OK bit is set.

Note: This procedure prevents the logical difficulty mentioned earlier
which would occur if the Virtual Memory contained a store order into
the instruction presently being fetched.

For Example: a STORE Address a+2

a+l LOAD M, i

a+2 ADD N, i

a+3 --w-
The store to a + 2 must be done in sequence or the old value N would
be used for the address instead of the quantity being set by a.

-10-

Ll

Iboes IAU want ins]

Yes

|
No Wait

| 1

Does Address
compare with V, M,

Wait

I

register with which
it compares

l Ygs
Is O.K, bit set in

|
No
|

|
Yes

Take ins from
Virtual Memory|

A

- Start ins fetch

|
No

Hasg ins been
received

 ress

Set Return Add-

|
Yes

l

l Proceed to

process -

[Wait
e

Figure 4, Instruction Fetch Procedure

-11-

Is there an instruction
to be indexed

|

Yes

!

Has index value
I~ ""% been obtained

L,

i
Yes

o
\

Index

‘ L Instruction

Has mem. ref.
been started

by

{
No

Ye'za
|

Does index address

compare with an ad-

dress in a Virtual
Memory

No

I
Yes

I ———

Start Memory
Reference for
index value

Is O.K. Bit set in
Compared with
level

|

| !

Wait

Yes NP
4? [-
Obtain index
from V.M.

Figure 5, Indexing Procedure

12~

Indexing Logic

Figure 5 shows the flow for instruction indexing. After deter-
mining that an instruction is ready to be indexed, the IAU tests
whether or not the index value is available. If it is, the index-
ing operationis started, if notthe memoryreference is started
and the JAU waits until the data returns before proceeding. If
the index-fetch has not been started, the IAU compares the in-
dex address against all the data addresses in Virtual Memory.
If none compare, the index value is fetched normally. If one
does compare, the index fetch is held up until the QK bit is set
for the data. This value from the Virtual Memory is then used
for indexing the instruction. ’

Logic of Putting Instructions in the Virtual Memory

(1) Figures 6,6A,6B,6C represent the logical flow for putting
instructions into the Virtual Memory. If the indexing arith-
metic unit has an instruction prepared for the Virtual Mem-
ory, it may transmit the instruction into the Virtual Memory
if interlocks one and five do not forbid it. These interlocks
prohibit a new instruction from destroying an old one which
has not been executed as yet, whether an arithmetic opera-
tion (I5) or an unexecuted store (I3). The handling of the
instructions vary depending on whether they are of the bring
type, store type, or immediate type.

(2) The bring type, as described in Figure 6A,proceeds as
follows: If the effective data address of the instruction
compares withthe DA address in some level, the instruc-
tion, its op code,and effective data address are loaded into
the level marked by Cj. The compare bit for level C; is
set to one while the compare bit for the compared-with level
is settozero. Ifthe O.K. bit in this compared-with level is
set,meaning thatthe data located there is correct, the data
is transmitted directly tothe C; level and its O,.K. bit is also
set. If the O.K. bit is not set, wemusttag the compared-with
level by setting its Forwarding bit and by putting the value of
C] into its Forwarding address, the bring bit for level Cj is
also set to zero since no further data fetch is required.

If the effective data address does not compare withany Virtual
Memorylevel, the instruction is put directly into level Cy,its
OK. bitis setto zero, and its bring bit is set to one, indicating
that a fetch must be started.

have an ins ready for
the Virtual Memory

——

Does the indexing A, U, Does I} prevent

-13-

Y & s‘iﬁiv - Operation

veos |

Does Ig prevent
n No [,

operation

Yes |

|
No Wait Wait
Wait SRI— ' {
[No
-)
| What type of
ﬁLO‘peration is it
Bring | Store Immediate
Type Type Type Operation
To Figure To Figure To Figure -
6}\.g 6B 6C

Figure 6, Procedure for placing Instructions
into the Virtual Memory

-14-

From Figure 6

|

with a level DA

Does Address Corhpare

Y'es

No
‘

Set compatre bit to one in C]
level and to zero in compared
with level.

In the C; level: put the instrucH
tion address in IA put the op co
code in OP Put the data add-
ress in DA. Set the bring bit,
the store bit, and the for-

In the C) level: Put the instruc-
tion addreds in IA Put the op code
in OP Put the data address in DA.
Set the bring bit to one, Set the
forwarding bit, the compare bit
and the O, K, bit to zero

warding bit to zero

Is O.K. bit set in
compared with level

| I
No Yes

l-mnmu-mm

Set the forwarding bit to one Send data from the compared
and put Cj in the forwarding | with level to D of level Cj.

addreas of the compared with Set O.K. bit of level C] to

level. one

the C} level

Set the O,.K, bit to zero in .

Advance Cj r\

to next level

|

return to top of Figure 6

Figure 6A, Logical Conditions for Bring

Type Operations

-15-

(3) Figure 6B shows the Store type procedure. If the effective
address of the instruction does not compare with the DA
address in some level, the instruction is placed into the
level marked by Cj. The store bit is set to one indicating
that a store will be required. The level's bring bit and
forwarding bit are set to zero, its corhpare bit is set to
one. If on the other hand the addresses do compare, the
same procedure is followed but in addition, the compare
bit in the level compared-with is set to zero so that future
comparisons will not use it.

The OK bit has not yet been set. It is set to one if the oper-
ation is an index store and set to zero if it is' an ordinary
store. For the ordinary store it is clear that the OK bit
should be zero since the data must come from the arithmetic
unit after the preceeding instruction is executed.

As was mentioned in the definition on page 5, we treat all
indexing instructions as store type and place the new value
of the indexed quantitiy into the Virtual Memory. This is
done because the Indexing Arithmetic Unit is going ahead
of the normal order of instruction execution and an inter-
ruption mziy occur before this indexing instruction should
have been done. In this case, the old value of the index is
still in the index register. On the other hand the Indexing
Arithmetic Unit compares with the Virtual Memory and
extracts the most recent value of the index for indexing
succeeding instructions. The OK bit is set to one since
the appropriate data is in the above level. Both the new
and old index values must be carried along to give logically
correct conditions in the case of an interrupt.

A situation very similar to interrupt occurs in branches
on arithmetic results where the Indexing Arithmetic Unit
"guesses' which branch will be taken and proceeds with
fetching and processing the instructions on this branch
subject to being wiped out if the guess proved to be wrong.
(See the discussion on '"Wrong way Branches' below.)

-16-

From figure 6

Does address compare with
. alevel DA
| |

Yes No

l

Set Compare bit in
compared-with level

to zero

In the C} level:

[put the instruction address in IA, put the
op code in OP, put the data address in DA,
Set the store bit to one, the bring bit to
zero, the forwarding bit to zero, and the
compare bit to one

I

Is the store to

an index
st No
Put the index value in Set O. K. bit to
D of the C) level. Set zero
0.K, bit to one -

l—$ return to top of Figure 6

Figure 6B, Logical Conditions for Store

Type Operations

5.

6.

1.

-17-

(4) Immediate Type instructions are the simplest type be-
cause they essentially carry their data with them. Figure
6C shows the logic in this case. The instruction is placed
in the Virtual Memory level marked by Cj. The address
field of the instruction is placed in the data field of Cj.
The OK bit is set to one indicating the data is present.
The bring and store bits are both set to zero. The com-
pare bit is set to zero since the DA address field has no
meaning for immediate type ops. (The data address of
the last instruction which occupied this level still remains
in DA so it has no relation to the present D field.)

Logic of Data Fetching

See Figure 7: When an instruction of the bring type has been
placed in the Virtual Memory, the data required by the instruc-
tion in general will not be present (unless a comparison exists
as was described abhove) and thus the data must be obtained from
core storage. The fetch cannot be started if interlock I3 holds
which means all the fetches corresponding to the instructions
presently in the Virtual Memory have been started. If a fetch

is possible, the bring bit at level C, indicates whether or not

a fetch is necessary. If necessary the fetch may be started if

‘the memory bus and memory unit corresponding to the data ad-

dress are not already being used. When the fetch is started,
the bring bit for level C2 is set to zero. The counter C32 is then
stepped forward to the next level.

Logic of Data Storing

Figure 8 shows the Data Store logic, which is very similar to
that for data fetching just described. The only significant dif-
ference is that the O.K. bit must be set before the operation
can be started.

Logic for Placing Data into the Virtual Memory

In Figure 9, we see the logical conditions which must be satis-
fied by the data returning from Memory addressed to the Virtual
Memory. The return address which was supplied when the fetch
was atarted selects the level into which the data will be placed.
The O,K, bit is then set to one indicating that the proper data

is in the level. The operation is complete at this point unless

-18-

From Figure 6

In the C; level:

Put the instruction address in JA, put
the op code in OP, Put the data address|
into D (Note this) Set O.K. bit to one
Set forwarding bit, the bring bit and
and store bit to zero. Set the compare
bit to zero {Note)

l

return to top of Figure 6

Figure 6C, Logical Conditions for Immediate
Type Operations

-19-

“Does 13 prevent
fetch i
' Wait
No Yizs
Igithe Bf
level C2
Yes No
Is the bus §4—~ 1
free "‘
' Wait
Yes No
‘Z[s Memory ’,W.,m
_free
[' ‘L Wait Advance fetch
Yes NL Counter (C»)

Start data fetch. Set
return address to level

C2. Set bring bit for
C, to zero

Figure 7, Data Fetch Procedure

-20-

!r
Yes

for level C3

[moxbma{h "

| Yq‘es‘ N!)

.

Doesly Prevent Store

Wait

[

Is the memory
corresponding to "*‘"
DA for C3 free T

a

I
Y‘es No

s 0 s oS

Perform Data Store and
set Store bit for Cj

it

Y

, Wait

js N-o ’J

Is the Store Bit
Set for Level
Ca

Nb

}:‘ci;ance Store
| Counter (C3)

becrupne

to zero

Figure 8, Data Store Procedure

-21-

Is Data coming from
| m‘:mory bus

J:N

responding to return
address. _
Set O, K, bit to one

Place data into level cor- _

1s F bit set
in that level

No Y‘e]

Set F bit to zero *‘

Place data in level in-
dicated by forwarding
address and set O.K,

bit in that level to one

¥

18 F bit set
in that level

No

Figure 9, Procedure for Placing Data into
' Virtual Memory

Yes

-22-

the Forwarding bit is set. In this case, the data must be for-
warded to the level designated by the Forwarding address.
This procedure continues from level to level as long as the
data continues to arrive into a level whose Forwarding bit is
set. This procedure automatically supplies all operands
present having identical data addresses with the proper data
without additional memory references.

Logic of Removing Instructions from the Virtual Memory

Observing Figure 10, we notice that as the arithmetic unit
completes an instruction it checks to see if the next instruc-
tion in the Virtual Memory is ready to be executed (indicated
by interlock I4). Note: The operation may be an unconditional
branch, a conditional branch, or an index type storeaswellas
a normal bring or store type instruction involving the accumu-
lator. Figure 10 shows only the cases which involve the uni-
versal accumulator. The index and unconditional branches

and the index store operations are merely ignored at this point.
They are carried along only to provide the data for recovery in
the event an interrupt occurs. The execution of the conditional
branches onarithmetic results are described in the next section.

If the next instruction marked by counter C4 is ready, it is fed
into the arithmetic unit. If it is a store type, the data is gated
from the accumulator into the data field of level C4, and the OK
bit is set to one. If the Forwarding bit of the level is set, a

forwarding procedure in this case is essential for the proper
logical operation of the computer, whereas in the bring case it
is a time-saver only.

If the instruction is not a store type, the arithmetic unit must
hold up until the O.K. bit for the level is set. When the O. K,
bit is set, the instruction is gated into the arithmetic unit
and executed.

Logic of Interrupt Procedure

If for any cause an interrupt (or trap) from a special condition
occurs, the instruction which is being executed in the arith-

metic unit is completed. However, the next instruction is not
executed in spite of the fact all the data preparation for it may
have been completed. The address in the IA (instruction add-
ress)field will serve as the value to reset the instruction counter

if it is desired.

b st s s W

-23-

wait

Is the arithmetic unit
doing an instruction

busy

1 I
Yes : NIO

Does interlock I4
prevent proceeding

Wait | ‘

Yes N
| i

Send instruction from
level designated by Cy4
to arithmetic unit

Is the ins truction

[' 'a store
Yes

contents in C4 level
and set O.K bitto one

type —-]

No

¢

Is B bit set in that

’Yles]\}o

Is the O, K, bit sej; w

ait

N

level

Y.e 8 Nlo

MSet F bit to ezo |

& 1

IExecute the instruction

Place data in level in-
dicated by forwarding
address and set O, K, bit
in that level to one

Sz

Is F bit sef B
in that level

Yes

next level

f

’f&dvance C4 to

No

Figure 10, Procedure for Removing Instructions

from Virtual Memory

24

The Vitual Memory is initialized, i.e., set to the starting
conditions of an interrupt,with the exception that all store
orders which have already received data from the accumu-
lators must be executed first. Note: If the interrupt is of
such a nature that the normal flow of instructions is not re-
sumed, the procedure of storing the modified values of the
index registers in the Virtual Memory gives logically correct
results, i.e., the same as if the interrupt had occurred be-
fore the indexing took place.

IV. DESCRIPTION OF TIMING SIMULATION PROGRAM

A. General Considerations

During the logical design of STRETCH it was neceasary
to prove the value of the Virtual Memory concept and to assist in
the selection of optimum values of various system design para-
meters. Examples of such parameters are: The number of mem-
ory boxes, interlace and allocation of memory addresses, and num-
bers of Virtual Memory levels. Also of interest were trade-off
factors for speeds of indexing arithmetic unit, arithmetic unit,
memories, etc.

In November 1957 the Timing Simulator (SIM-2) described
here was written for the IBM 704. This program attempted to answer
such questions quantitatively by simulating the time-wise operation
of STRETCH on typical test programs coded in STRETCH language.

The basic logic of the 704 program follows the principles
just described in the preceeding section for the Virtual Memory. It
should be stressed that the Simulator is a Timing Simulator and
does not execute the instructions in an arithmetic sense. It traces
the time-~wise progress of the inastructions through the components
of the computer observing all the interlocks and time delays neces-
sary for correct representation of the behavior of the machine.

One of the fundamental concepts in the STRETCH design
is that of asynchronous operation of the components. This means
" that there are a large number of logical steps being executed at
any one time in the computer, each of them proceeding at its own
rate. To simulate this flow of many parallel continuous operations,
.we have broken the continuous time variable into finite time steps.
The basic time step is taken as 0.1 microsecond in the Simulator.

-25 -

Several reasons prompted us to select this time interval. Some

are relatively simple, such as the desire to have the results come
out in microseconds and decimal fractions thereof. Taking a coarse
time interval makes a given problem run faster on the Simulator
since the running time is almost inversely proportional to the time
step being used.

More fundamentally, the '"matural' internal time scales of
the computer are represented on one hand by the cycle time of the
main memories (2 microsec) and on the other hand by the time re-
quired for signals to traverse one logical level in the circuits (5 to
20 millimicroseconds). The external time scale of the computer,
as given by the I/O devices, is in the order of milliseconds for
start up time and tens of microseconds for data flow rates.

Most internal macro logical processes require 0.1 micro-
seconds or more since they usually require at least 10 logical levels.
Theseé represent the scale of quantities we wished to study in this
simulator. Other scales could have been chosen. For example, one
could write a program which followed the operation of every logical
"and' and "or" circuit in the computer. (In fact, the authors have
written such a program for a small experimental study.) The simu-
lation program is simpler on this scale but the specification of a
computer such as STRETCH would be an enormous task-- equivalent
to laying out the whole circuit design. Another difficulty, would be
that changing a gross parameter such as the multiply time might re-
quire the changing of thousands of "and'' and "or" blocks in the circuit
specification.

By taking 0.1 microsec as our quantum of time, we are
automatically setting the scale of the smallest circuit entities which
we will consider as being those which accomplish complete functions
in a 0.1 microsec or few multiples thereof. Thus by using this phil-
osophy, and considering many of the components of the computer as
""black boxes'", we greatly simplify the details which must be con-
sidered without introducing serious timing inaccuracies.

Our experience has indicated that more information was
gained by making a large number of fast parameter studies using
different configurations and programs that could have been obtained
by a very slow, detailed simulation of a few runs with more precision
per run. Even so our time scale is too fine to make serious Input-
Output applications studies. These would require a simpler Simula-
tor having at least a factor of 10 coarser basic time interval.

26—

B. Logic of the Simulator

In the asynchronous organization of STRETCH there can
be many major components operating at any one time. To achieve
this parallel effect in the Simulator we essentially '"hold time still"
and scan the entire machine representation at each time step. Al-
though every major block of the program is traversed at each time
step, if there is no activity required in a given block, only a few
tests need be made by the code.

If in this process it is determined that a given logical unit
should do an operation, the time interval required for the operation
is obtained from a table of constants. The speed of the various log-
ical units can thus be changed parametrically by changing the values
. in the tables. A constant obtained from the tables is inserted into a
memory location called the time counter for that unit. At each time
step the program reduces this counter by one until it reaches zero.
Thus the fact that the counter is non-zero can be used to indicate
that the particular logical unit is busy and not available to service
other requests. When the counter is zero the unit can consider a
new input. ‘

In addition to the time counters many of the logical blocks
contain other conditions or interlocks which effect the operation of
the block. These conditions are stored in the program and tested
before action is undertaken. As an example, the'O. K. bit" described
in the previous section is stored as a '‘one' or ''zero' in a memory
location associated with each Virtual Memory level {called LAU6,1
in the program, where i is the Virtual Memory level). The "O.K."
bit indicates that the data in the level is the correct value for the
operation. In the program the "OK bit' is set by storing a one in
location LAUG6, i.

Each logical unit when it completes its operation may have
data available to start another unit. The other unit may be notified
that the data is available in two possible ways. Either (1) The sub-
routine corresponding to the receiving logical unit searches all pos-
sible inputs to determine if any of them has data for it, or (2) the .

“sending unit sets logical constants within the receiving unit which
indicate that the data is available. J'or example, the "O,K. bit"
is set for a given level by the memory in-bus subroutine. While
on the other hand, the arithmetic unit subroutine tests the O. K,
‘bit to determine whether or not data is available for it.

~27<

The simplified Flow Diagram in Figure 11, indicates the
order in which the subroutines for the various logical units are ex-
ecuted at each time step. Using the types of techniques just des-
cribed above, the logical subroutines simulate the action of the
components of the computer such as the Virtual Memory, arithmetic
Unit,etc.

The details of the Simulator are described by Tables 1
through 4 and in the detailed flow diagrams at the end of this re-
port. These flow diagrams can be corrolated in the obvious way with
those: given in the section which describes the Virtual Memory.

The Simulator also contains several other subroutines which do
such things as initialize the program at the beginning of a run, set
up the timing diagrams and summarize the results of the run. (see
discussion in the Result Section).

The STRETCH instructions being simulated are read into
the 704 from tape as required. The instructions are put on tape
from cards at the beginning of a run. (The input quantities read in
for each operation are listed in Table I, column 1.) It is interest-
ing to.note that since the Simulator simulates timing only, not the
arithmetic or indexing functions, the sequence of instructions to be.
executed must be furnished as a '"string' with all loops unwound.
However, to make the computer behave as it actually would, the
loops must be furnished with "wrong way' paths given for the cases
where the computer would take such paths. Also one must furnish
more than enough information along such paths since it is difficult
to predict in advance how far the computer will get down the wrong
path before it is called back.

Parameters are changed from one run to another by use of
control cards. The control cards are set up in such a way that any
number of parameters may be changed between runs.

Results are given either as detailed timing charts or as
summary listings for each problem. The usual procedure has been
to print only summary results while making a series of parameter
studies. At the end of each run the new control card or cards are
" read in, the problem tape is rewound, and the Simulator reruns the
problem with the new constants.

15

-28-

Initialization

Arithmetic Unit

Decode Operations

Virtual Memory

Indexing Arithmetic Unit

Bus from Memory

Bus to Memory

I/O References to Memory

V.M. Store References to Memory
V.M. Fetch References to Memory
I.A.U, References to Memory
Instruction Fetch References to Memory
Count-down time

Print detailed listing

Summarize and print

Figure 11. SIM - 2 Simplified Flow Diagram

-29-

V. SOME RESULTS OF THE SIMULATION STUDIES

A. General Description

1. Introduction

During 1958 a number of reports were written giving
results of runs made with the SIM-2 program. We will not
attempt to record here all of the results thus presented be-
cause many of them were superseded by later reports or were
concerned with specific problems in the design of STRETCH.

The results quoted here were chosen for their general interest
as parametric studies and are not intended to represent STRETCH
as it is actually designed.

2. Output Listings of Simulator

Figures 12 and 13 show examples of the type of output
listings given by the Simulator. Figure 12 is a piece of a long
timing chart with each line of printing representing 0.1 micro-
second of time. The columns represent the various components
of the computer. On the left and right are timing counts subdi-
viding each microsecond. On the far right are conflict indicators
("C" on the charts) and waiting indicators, '"W" which indicate
when interlocks prevent operations from proceeding.

The 2nd column, II, gives the number of the instruction
being indexed. The 4th column, AU, gives the number of the
instruction using the arithmetic unit. The next four columns
represent the instructions using the memory buses. The columns
labeled X-,F-, and M~ represent the index, fast, and main
memories. A string of "X's'" in the columns represents the
cycle time of the memory. The number indicates the instruc-
tion using the memory and number of times which it is repeated
gives the read-out time of the memory. The columns L~ indicate
which instruction is located in the Virtual Memory levels. The
other columns are for details in analysis and need not be con-
sidered here.

Figure 13 gives an example of a series of summary
listings. Each set of numbers represents a total problem run.
The quantities listed are given in Tables III and IV. As was
mentioned earlier, for most of the runs made in the Simulator
studies, only summary runs were made.

M5 M6 M7 M8 L1 L2 L3 L4 LS L6 L7 LB FD MDD MC

-30A -

Figure 12
Listing of Simulator Print-Qut

NOV 57

COCKE. + KOLSKY

I1 IS AU IF IM OF OM X1 X2 F1 F2 F3 F4 M1 M2 M3 Ma

PROJECT 7000 SIMULATOR 2
1
1

1
2

3y i T 2T Ty e e e o] e S - - - =SS IS SIS NI X IINEXXIER EREE=E>= . =
H] Vi VIV ViV ViU v
- L 4 - - s

N ot e Nt N N e et o oies

™ N Nt N s S e Nfes N e [o e ol
Lk 2 I W WY ™~
[3t Ea R st L 1 O O bt il (Y
et ijed -t

X
7X
TX
X

X X XX XX XX XX X XX XX X P x

XX XX XX XX XX XXX XX X< X XX
S S T S
x| > > x| > 3¢5 X3¢ 3 xx x| x|x
s vt NN any ONON OVOr
XXX XX X XX XX XX X XX XX
€} OV () O ~~ ~i- et rijet
et et |
x x x x > >
<33 mn N ~{r~
~ | 0 ~l~ oo 4| o
it
3|~ w0 n ~-
et [en) 0 o ~r~ oo] ije
ﬁ e
-t o~ < < 3 W N nn O ~~
e NS 1.124112&.11224111122411241122411222411124112224111
el ot i et |5 i) =t N NN QM & &t 2 M N O OO Lndl 2 |l 2 DT oo & o o O CJo Cio
-t eifet eifet
56789”1734567 wi o 12345678901234567890\;2ﬂ456389 Cled e FN O~ CI ©fe N F 0 O
o 3 41

N Ui
o 'O

3

1&11111111111111111115555555555555555555599999999
. 22222222222222222222666666666‘666666666666600

T ST S S T ST S IS S I F S 010 oo oo oo oko ol «

-~30B-
Figure 12
Listing Of Simulator Print-Out

Y1 13 X 8 710 9 2 T W
8 11 2 13 X 8 710 9 1 8 Cw
9 11" 2 X 13X X g 710 9 "9 CW

10 11 2 13X X 8 710 9 2 10 Cw
111 4 VL X 87 109 5 I 1T W
2 1 13X X 8 710 9 8 2 CW
312 1 13 B X X g 11 10 9 0 2 3 W
412 2 13 8 X : 8 11 10 9 100 1 4 CW
17 & BX 51110 9 10 5 CW
6 1 10 8x 8 11 10 9 2 6 Cw
713 1 10 8X 8 11 10 9 15 1 7 CW
.8 113 1 10X 8X 8 1110 9 18 B CwW
9 13 1 18 10X 8X 8 11 10 9 2 9 Cw

10 131 15 10X 8X 8 1110 9 1 10 CwW
.13 1 15X 10X 8X 8 11 10 9 1 Cw
213 1 15X 10X 8X 8 11 10 9 2 2 ¢Cw
313 1 8 15X 10X X 8 11 10 9 1 3 Cw
4 131 8 15X 10X X 8 1110 9 4 CW
513 1 15 X 10X X 8 11 10 9 2 5 ¢C
613 1 815 10 X X X 12 11 10 9 1 6 C
713 2 8 10 X X 12 11 10 9 7 C
8 13_2 8 X X _ X 12 11 10 9 2 8¢
913 2 8 X X 12 11 10 9 1 9 C°

10 13 4 8 X__X 12 11 10 9 10 €
1 1 8 X X 12 11 10 9 2 1C
2 14 .1 X X 12 11 10 9 11 1 2 W
314 1 9 X X X 12 11 10 9 i1 3
4 14 1 11 X . X 12 11 10 13 13 2 &

5 14 2 10 11 X 12 11 10 13 13 1 5
6 14 2 10 X X11X 12 11 10 13 13 6
714 2 13 X11X 12 11 10 13 2 7 W
8 14 4 13 11X 12 11 1€ 13 1 8 W

) 1 13X 11X 12 11 10 13 9 W

o 15 1 13X 11X 12 11 14 13 17 14 2 10 W

1 18 2 13X 11X 12 11 14 13 17 14 1 1 W

P2 18 4 13X 11X 12 11 14 13 17 14 2 W
3 1 17 14 13X 11X 12 11 14 13 2 3 W

“ 4 16 1 11 17 14 _ 13X X 12 11 14 13 1 4 W
516 1 11 17X 13X 14X X 12 11 14 13 5 W
6 16 1 17X 13X 14X X 12 11 14 13 2 6
716 1 11 13 17X X 14X X 12 15 14 13 1 7
8 16 211 13 17X X 14X X 12 15 14 13 8
9 16 2 11 17 X X X 14X X 12 15 14 13 2 9

1016 2 11117 X X 14X X 12 15 14 13 1 10
1 16 3 11 X X 14X X 12 15 14 13 1
216 311 X 14X X 12 15 14 13 2 2
316 4 14 X X X 12 15 14 13 1 3 W
4 112 14 X X X X 12 15 14 13 4
517 1 X X X 16 15 14 13 19 2 5

L6 17 2 13 X X 16 15 14 13 19 1 6
7 17 2 13 X X X 16 15 14 13 19 7

817 2 19 X X 16 15 14 13 2 8
917 3 14 19 X ' X 16 15 14 13 1 9

10 17 3 14 19X X 16 15 14 13 10
117 4 14 19X X 16 15 14 13 2 1
2 1 14 19X X 16 15 14 13 1 2
318 1 14 19X X 16 15 14 17 3
4 18 2 14 19 X X 16 15 14 17 2 4
518 2 19 X 16 15 14 17 1 5 W
6 18 4 1% X 16 15 14 17 6
7 1 16 15 14 17 2 7
819 116 X 16 15 18 17 2118 1 8
919 2 16 15 18 17 21 18 9

10 19 2 17 21 18 X 16 15 18 17 210
119 4 21 18 16 15 18 17 1 1 W
2 - 1 21X 18X 16_15 18 17 2 W
320 1 21X 18X 16 19 18 17 19 2 3 W
4 20 2 21X 18X 16 19 18 17 19 1 4 W
5 20 4 21X 18X 16 19 18 17 19 5 W

- SR | 21 9 X 1BX 16 19 18 17 2 6 W
7 1 21 19 X 18X% 20 19 17 23 1 7T W

~-30C-
Figure 12
Listing of Simulator Print-Out

8 1 18X19X 20 19 18 17 8 W

9 21 1 23 18X19X 20 19 18 17 2 9 W
10 21 2 18 23 X19X 20 19 18 17 1 10 w

121 2 18 23X X19X 20 19 18 17 1™ W

221 & 23X X19X 20 19 18 17 2 2

3 118 23X X19X .20 19 18 17 1 3

4 22 1 18 23X X19X 20 19.18 21 21 4

5 22 2 23 X X19X 20 19 18 21 21 2 5 W

.22 2 23 .19 X X X 20 19 18 21 21 1 6 W

722 2 19 X X 20 19 18 21 21 7 W

8 22 4 ' 21 X__X 20 19 18 21 2 8

9 119 21 X X 20 19 18 21 1 9

0. 23 119 X X21X ¢J 19 22 21 22 0

123 219 X X21X 20 19 22 21 22 2 1

2.23 4 19 X21X 20 19 22 21 22 1 2

3 119 X21X 20 19 22 21 22 3

4 24 1 19 2% 22 X21X 20 23 22 21 2 4

5 24 2 25 22 X21X 20 2322 21 1 5 w

6 242 20 25X% X21X22X 20 23 22 21 6 C

7 24 2 28X X21X22X 20 23 22 21 2 7 W

824 2 21 25X X22X 20 23 22 21 1 8 W

9 24 &4 21 25X X22X 2023 22 21 9 W

(oM 1 25 X X22X% 20 23 22 21 2 10

1 1 21 25 X X22X 24 23 22 21 24 1 1

2 1 21 X22X 24 23 22 21 24 2

328 1 27 24 X22X% 24 23 22 21 2 3 W

4 28 2 22 27 24 X X 24 23 22 21 I 4 W

525 2 22 27X 24% XX 24 23 22 21 5 W

6 25 2 27X 24X X X 24 23 22 21 2 6

T 25 4 22 27X 24X X X 24 23 22 21 17

8 1.22 27X 24X X _X 24 23 22 21 , , 8

926 122 27 X 24X X X 24 23 22 25 25 2 ¢

026 2 22 27 X 24X X 24 23 22 25 28 1 10

126 2 22 24X X 24 23 22 25 25 1

2 .26 2 22 : 25 24X X 24 23 22 25 2 2

3 26 4 24 25 X X 24 23 22 25 1 3
4 1 23 24 X 25X X 24 23 22 25 4

527 1 X 25X X 24 23 26 25 26 2 B

6 21 2 24 X 25X 24 23 26 25 26 1 6

7217 2 24 X 25X 24 23 26 25 26 K

8 27 2 29 26 X 25X 24 23 26 25 2 8 W

9 27 & 29 26 X 25X 2423 26 25 19 W

0 1 29X X26X25X% 24 23 26 25 0 W
. 128 1 29X X26X25X 24 27 26 25 27 2 1 W

2. 28 2 25 29X X26X X 24 27 26 25 27 1 2 MW

3728 4 25 29X X26X X 24 271 26 25 27 3 W

4 1 29 27 X X26X X 24 27 26 25 2 4

) 17285 29 27 X 26X X 28 27 26 25 1 5

6 1 2% - 26X X27X 28 27 26 25 . 6

729 1 25 31 26X X27X 28 27 26 25 2 1

8 29 2 25 26 31 X X27X 28 27 26 25 1 8

9 29 & 25 726 31X X X2TX 2872726 25)

0 1 2% 31X X X27X 28 27 26 25 2 10

17361 TR X X2TH 282726 729 T 1

230 2 26 31X X X27X 28 27 26 29 2

330 42831 X X X2TX 28 27 26 29 2 3

4 1 26 31 27 X X X 28 27 26 29 1 &

5 1 28 27 —X X 268 27 30 29 5

6 31 1 26 X X 28 27 30. 29 2 6

¥ A o A X X 28 27 30 29 17

A.31 &) X X 2827 30 29 8

9 1 27 33 X X 28 27 30 29 2 9

0 32 127 33 X 28 31 30 29 1.10

1 32 2 27 33X X 28 31 30 29 1

2.32 4 27 33X X 28 31 30 29 2 2

3 1 27 33X X 28 31 30 29 1 3

4 1.27 33X X 28 31 30 29 4

5 1 33 X X 28 31 30 29 2 5

[128 23 X 32 31 30 29 1 6.

Listing of Simulator Print-Out

-30D-

Figure 12

T 1 28 32 31 30 29 3% 7

8 33 1) 38 32 3) 30 29 2 8 W
9 33 2 29 35 X 32 3) 30 29 1 9

10 23 4 35X 32 3) 30 29 10

1 1 30 35X 32 31 30 29 2 1

2 34 1 30 X 35X 32 3) 30 33 12
334 2 35X 32 31 30 33 3

4 34 4 3] 35 X 32 31 30 33 2 4

[1 31 3% X 32 31 30 33 1 8

() 1 31 X 32 31 34 33 37 é

7 38 1 31 32 31 34 33 37 2 7

8 35 2 31 . 32 31 34 33 37 1 8

9 28 &4 31 32 31 34 33 37 9

10 131 37 32 31 34 33 2 10

1 36 1 31 37 32 35 34 33 1 1
2.3 23 : 37X 32 35 34 33 2

3 36 4 31 37X 32 35 34 33 2 3

4 1 31 37X 32 35 34 33 1 &

8 1 31 37X 32 35 34 33 39 5

6 1 37 X 32 35 34 33 39 2 6 W
7 1 32 37 X X 32 35 34 23 39 1 7

8 1 X 36 35 34 33 39 8

9 37 1 33 39 36 35 34 33 2 9

10 37 2 33 39 36 3% 34 33 110

1 37 & 39X 36 35 34 33 1

2 1 34 39X 36 35 34 33 2_2
338 1 34 39X 36 35 34 37 1 3

4 38 2 34 39X 36 35 34 37 4

§ 38 4 34 29 X 36 35 34 37 2 5

6 1 34 39 X 36 35 34 37 36

T 1 34 X 36 35 38 37 41 7

8 39 1 34 36 35 38 37 41 2 8

9 39 2 34 36 35 38 37 41 1 9

8 61 2 55X 57_60_59 &8 63 8

9 61 &4 59 63 X 55X 57 60 59 58 2 9
10 1 63 X 57 60 59 58 1 10

1 62 1 60 X 63X X 61 60 59 58 1

2 62 2 63X% X 61 60 59 58 2 2

3 62 2 61 63X X 61 60 59 58 1 3 W
4 62 4 63X X 61 60 59 58 4 W
5 1 63 X X .1 60 59 58 2 5 W
6 1 63 X X X 6l 60 59 62 98 1 6

7 1 X 61 60 57 62 98 7

8 63 1 62 98 X 61 60 59 62 2 8 W
9 63 2 98 X 61 60 59 62 1 9 W
10 63 2 98x X 61 60 59 62 10 W
1 63 4 98X X 61 60 59 62 2 1 W
2 1 98X 61 60 59 62 1 2 W
3 64 1] X 98X 61 60 63 62 3

4 64 2 ;) X 61 60 63 62 2 4

5 64 2 63 °8 X X 61 60 63 62 1 5 W
6 64 2 61 60 63 62 6 W
7 64 4 61 60 63 62 2 1T W
8 1 61 60 63 62 1 8 W
998 1 X 61 64 63 62 9

10 98 2 61 64 63 62 2 10
198 4 64 X 61 64 63 62 1 1 W
2 1 61 64 63 62 2 W
3 1 98 64 63 62 2 3

4 1 98 64 63 62 1l 4

5 1 98 98 64 63 62 5
PROJECT 700 STMULATOR “2° COCKE + KOLSKY NOV 57

LA FM MM IR IS TA TD M8 FB FD DY X1 X2 MD F1 F2 F3 ML M2 M3 15 14 13 12 11 10 9 & 1T 6 5 4 3 2 1 XMC
4 2 4 2 2 2 . 2 2 2 2 1 2 4 & & B8 17 20 50 18 20 18 12 B8 6 &4 2 110 &5 &4 2 1 3
T AU TAU ADLA LAF wl WM DLA 8 7 [5 4 3 2 1 0 IBF 1BM OBF OBM
1665 454 349 3310 5§35 28 266 - 535 335 64 36 29 144 76 144 86
15 &4 3 M12 M1l M10 M9 M8 N7 M6 MS M4 M3 M2 M1 MMC ~ FMC MBC FBC
141 9 250 590 7 . : 132 76 276 180 212 . 219 191 e)

~31-

Figure 13

Listing of Simulator Summary Print-Out

PROJECT 7000 SIMULATOR 42 COCKE + KOLSKY_ NOV 57_

1S 1A

1

oRF-- -

1 4

MRC-

1

ore
115
mac

0ORF
115

mMee
. 2

291
omm -
82

2&%
ORM

&0
Fnc

4513
onm

69
Fae

-422
0nM
- 69
Fre

252
. mM
60
FAC

235
orm

FRC

216

onrM

48

- FRe

LA FM MM ¢ 10 MB FB FD DY X] X2 MD F1 F2 F3. M1 M2 M3 15 14 13 12 11 10 9 8_7 6 8 4 3 -2 .} - ——
T & T2 47787 2 2 2 2 2 8 2 & 4 6 8172050272030 17 810 & 6 110 5 & 2
TT AU TAU ADLA ' LAF Wl WM DLA B 7 6 .5. .4 3 - 20 1. -8 —4RF 1AM
2296 6 3 250 2929 439 50 154 439 241 179 89 S0 14 58
— 1S4 3. 2 1 M2 M1] MIO M9 . MB__ MZ._.. M6. MS .. ML . M3.. M2 . MI . - MMC - - FMC
12 346 375 486 95 2 2 130 156 159 82
tsho q/ t‘* p} L -
TTLARM m« 1A ID MB FB FD DT X1 X2 MD F1 F2 F3 M1 M2 M3 15 13 12 1110 9 8 7 6 5 & 2 3
e B2 @ 2. ... 2..B.2_ 4 &_6. 83720 sozo 30 8lol &4 6 118 5 & 3
05 17 AU 1AU ADLA LAF 7 WM DLA 8 7 6 5 4 3 1 0 IRF 1BM
2362 586 289 278% & 2 _ 70._160 . . . ____ . 42 226-.195--314 .76 11 sS4
1% 3 2 1 M12 M1l M10 M9 M8 MT M8 UL M& M3 M2 M1 MMC FMC
99 44 43 452 —— e =93 194 104 127: 149 154 &R
LA FM MM 1S 1A ID MB FB FD DT X1 X2 MD F1 F2 F3 M1 M2 M2 15 151312 11 10 9 8 7 & 5 4 3 2
_4‘4?47442 22 2 '7a2446anzoso@zosod)s@a_sxmsaa
T AU AU ADLA LAF_ Wl WM DLA B8 7 = & 8 . __ 4 3 - 1 0 tRF 1RM
T 2076 143 328 1833 163 - 239 &41& . 163 191 187 248 118 61
Is4 3 2 1 MI2 & MI1 MI0 M. _MB____MT __ M& . M5 M4 M3 M2 My uMe FMC
T 38 482 365 15 221 22 144 170 176 01
TTTCAFM MM IS TA ID T MR FB FD DT X1 X2 MD F1 F2 F3 M1-M2 M3 15 13 12 10 9 8 7 6 5 & 3 2
4 2 & 2 & 4 2 2 2 2 2 8 2 & 4.6 817 20850 0 .30 @ 8 \3) 4-.6. 1105 4 2
8517 A TAU ~ ADLA LAF Wi WM DLA 8 7 6 5 4 3] 0 1IRF IRM
2073 287 329 1883 172 198 1. ___. . . .___ _ . _172 185 236 163 . 241 115 . 8%
T iS5 4 3 2 1 M12 M1l M10 M9 MR M7 1) us Ma M3 M2 M1 MMC MO
113 42 462 381 e . _1 6. 221 229 Va4 . 170 176 .61
g LA FM MM 1S 1A 1D MB FB FD ___ DT X1 X2 MD F1 F2 F3 M1 M2 M3 15 14 13 12 11 10 /q\ 8 7.6 5 & 3 2
103 472 4 2 & & 2 2 2 2 2 8 2 4 & 6 817 20 so@zo 30 8794 6 1190 5 a4 >
__JT AU JAU ADLA_ LAF Wl __ WM _OLAB T ___& _ & ___ 2~ 3. 6. $RF—- 1AM
2371 575 288 2768 397 73 169 26T 226 196 15 713 11 53
__1ss& 3 2 1 M12 _ MI1_ MIO_ MO - MB__MT __ M& __ MS MG M3 M2 M1 MMC FMC
99 37 47 a56 ¢ 92 19& 194 126 149 154 69
\ LA FM mu 1S 1A 1D M8 FB FD DT X1 X2 MD F1 F2 F3 M1 M2 M3 15 14 13 12 11 10 87 6 %5 4 13
6 4 2 &4 2 & & 2 2 2 2 2.8 2 & & 6817 20 zo 30 A2} & 8-32318 5 & 2
3 S 11 1AU “APUA ~ LAF Wi WM DLA 8 7 6 5 & 3 A 0 IRF IRM
2647 660 258 3020 56 49 128 e .. %6 189 170 .83 .49 %0 48
TS 4 3 2 1 M12° M1l M10 M9 M8 M7 M6 M5 M& M3 M2 M1 MMC FMC
__89 2% 366 519 e 83173 173 ..113 . - 133, 138 . 84
LA FM MM ISIA'ID MR FB FD DT X1 X2 MD F1 _F2 F3 M1 M2 M3 1% 3.12 10. 8 7.6 85 4. 3.2
—;—“—g SO 2T AT TS T 2 27T 2 8 2 4 4 6 81720 50 20 30 é&; @ 4 6 110 5 & 2
TT AU IAU ADLA LAF Wl WM DLA 8 7 6 % . 0 __ IRF __{AM .
T29987 711 227 3147 sés &7 95 17s 140 57 47 80 42
1S 4 3 2 1. M12 M1] M10 M9 MB - M7 M6 M5 M4 _ M1 _MMC . FMC
TTTTTTTYBTTES U310 T 565 73 1%3 183 1 122 s

118

-32.

The detailed timing charts for most problems would
be about 50 feet long for each run. Since over a 1000 cases
have been run, it is clear that only a few cases could be
printed in full detail. Nevertheless, the detailed timing
charts were essential for two reasons: (1) Debugging the
program with all its hundreds of conditional branches would
have been a staggering task without the detailed listings, and
(2) determining the causes of some of the anamolous summary
results required that one examine the listings in detail. Also
the authors found that studying the listings enabled them to get
a "feel" for the flow of information which was necessary to
locate bottlenecks in the processing speed.

B. Test Problems Used.

Five of the test problems used most frequently are des-
cribed below. Other test problems were used for specific studies
but since the results were similar for all problems of a given type,
we gradually discontinued using them. The following were origin-
ally selegted as being typical of different classes of problems. A
brief description of each is repeated here for completeness.

1. Mesh Problem - Part of an hydrodynamics problem from
Los Alamos. It contains a more or less ""average' mix-
ture of instructions for scientific problems: 85% Floating
Point instructions, 14% index modification instructions,
and 1% VFL. It is usually arithmetic unit limited.

2. Monte Carlo Branching Problem - Part of an actual Monte
Carlo neutron diffusion code. It represents a chain of
logical decisions with very little arithmetic in between. It
contains 47% Floating Point, 15% index modification instruc-
tions, and 36Y% branches of the indicator and unconditional
types. It is largely instruction-access limited.

3. Reactor Problem - The inner loop of a neutron diffusion
problem from Westinghouse. It consists of 90% Floating -
Point arithmetic (39% of which are multiplys) and 10% in-
dex modification instructions. It is almost entirely arith-
metic unit limited.

-33.

4. Computer Test Problem - The evaluation of a polynominal
using computed indices. It was prepared by I. Ziller to
compare various computers. It has 71% Floating Point,

10% index modification, 6% VFL and 13% indicator branches.
It is usually arithmetic unit limited but not for all configura-
tions.

5. Simultaneous Equations - The inner loop of a matrix inver-
sion routine 67% Floating Point and 33% index modification.’
Arithmetic and logic are about equally important. It is lim-
ited both by arithmetic and instruction-access speeds.

Results of Simple Parameter Studies

1. General

When the Simulator Program was first completed in
late 1957, we undertook a series of studies in which the main
parameters describing the STRETCH system were varied one
or two at a time in order to get a measure for the importance
of different effects. During this phase we spent much time study-
ing the detailed print outs described above to determine the exact
cause of some of the anomolous effects. ‘

After this we began to specialize the studies towards
answering specific questions in the STRETCH design and made
more use of the Summary listings. Two of these studies are
described in the following sections. In the present section the
major part of the material is taken from the first parameter
studies. The graphs reproduced below are in terms of an ar-
bitrary speed scale in which one of the first problems studied
(The Mesh Calc.) was taken as 100,

The table below summarizes the major effects studied.
The individual items are discussed in the following subsections.

Examples of STRETCH Timing Simulator Results

Description Mesh Calc. Monte Carlo
Speed % Change Speed 9% Change
1. Standard Design 100 0 45, 0
2. A.U, Times Doubled 73 -27% 43. - 4%
3. I,A.U. Times Doubled 67. -33% 26 -42%
4. Both AU and IAU doubled - 60. -40% 24. -469,
5. 2.0 us Instr. Memory 98. - 2% 35. -22%
6. Combining Instr.and Data in 4 MM 82. -16% 32 -29%
7. Combining Instr. and Datain 6 MM 86. ~-14% 33 -21%
8. 2 Levels of Virtual Memory 89. ~11% 38 ~15%
9.. 6 Levels of Virtual Memory 106. + 6% 46. + 39,

-34.

2. Standard Values of Parameters

The combination vof constants which was taken as the
standard reference values for the original parameter studies
is as follows:

a. Machine Components:

1. Levels of Virtual Memory 4

2. Number of Instruction Memories 2

3. Number of Main (data) Memories 4

b. Computer Speeds:

1. Indexing Time* 0. 6 usec

2. Arithmetic Unit Times
Floating Add 0.6 usec
Floating Multiply 1.2 usec
Floating Divide 1.8 usec
Fetch 0. 2 usec

usual 6-~6-3-1 average ~ 0.64 usec

#This is total time to index one order, includes instruction
decoding, index fetch, index addition, and storing modified
address. ‘

¢. Memory Speeds:
1. Fast (Instr.) Memory Times

Read out time 0.4 usec
End Signal Time - 0.4 usec
Memory cycle time* 0.6 usec

*(The actual effective cycle time is 0.9 usec, since the bus
clocking permitted successive references to the same mem-
ory box only in multiples of 0.3 usec and the memory box
must be free at the time of the reference not just finishing.)

2. Main (Data) Memory Times '
Read out time 0.8 usec

End Signal Time 1.7 usec
Memory cycle timex* 2.0 usec

~ ¥(The effective cycle is 2.1 us for same reason as above).

3. Index Core Memory Times
Read out time . 0.4 usec
Memory cycle time 0. 8 usec

The index cores are assumed tied directly to the JIAU,
so these figures include bus times.

-35-

4. Bus Speeds
a. Buses to and from Instruction and Data
memories 0. 2 usec slot (either read or
write) available every 0.3 usec.
b. Decode and switching time in central con-
trol unit 0. 2 usec to 0.4 usec (depending
on bus slots available.)

Note: A separate bus system to instruction and
Data mermories is assumed, but not necessary.

In addition there is usually a 0.1 usec delay between the
completion of any function and the beginning of the next one by the

unit, or in the transfer from one register to another.

3. Speed vs Number of Levels of Virtual Memory

Figure 14 shows the effect on computer performance of
varying the number of levels of Virtual Memory. Curves for the
Monte Carlo and Mesh Calculations with two sets of arithmetic
and indexing arithmetic speeds are shown. The AU times given are
the 6-~6-3-1 averages mentioned above.

A number of interesting results are apparent from these
curves:

(1) There is a tremendous gain to be had in going to the
Vitual Memory organization. The point for "0 levels"
means that the arithmetic unit is tied directly to the
ingtruction preparation unit, although simple Indexing -~
Execution overlap is still possible.

(2) The gain in performance goes up very rapidly for the
first two levels then rises more slowly for the rest of
the range.

(3) A large number of levels does the Monte Carlo problem
less good than the Mesh problem because constant branch-
ing in the former spoils the flow of instructions. Notice
that the curve for the Monte Carlo problem actually de-
creases slightly beyond six levels. This phenomenom is
a result of memory conflicts caused by extraneous memory
references started by the computer running ahead on the
wrong-way paths of branches.

(4) The computer performance on a given problem is clearly
less for slower arithmetic speeds. However, it is important
to note that the sensitivity of the performance is also less for

slower arithmetic speeds. The Virtual Memory improves the
performance in either case, but it is not a substitute for a fast

arithmetic unit.

SPEED

120
110
100
90
80
70
60
50
40
30
20

10

.

-36- Figure 14

SIGMA COMPUTER SPEED
vs, No, of levels of
Look-~Ahead Registers

4 Main Mems, 2,0 ps

2 Fast Mems, 0.6 ps

For two sets of Arith, Speeds

MESH CALC. WITH
AU TIME 064 us
IAU TIME O6us

MESH CALC. WITH
AU TIME 128 us
— —=— — 7 IAUTIME 1.4 us

— So—
U e e

-
7

MONTE CARLO CALC.

AU TIME 0.64ps

/ IAU TIME O6ps
| MONTE CARLO CALC.

e e e e _ AUTIME 1.28s

- IAU TIME 14 ps

| 1 L I | i i

2 3 4 5 6 7 8
NO. LEVELS OF LOOK-AHEAD

37-

4. Speed vs Number of Main Memory Units

Figure 15 shows how internal computer performance varies
with the total number of memory units for a particular problem.
The entire calculation is assumed to be contained in memory for
all cases. The speed gain from overlapping memories is quite
apparent from the graphs.

The speed differential between having and not having instruc-
tions separated from data arises from delays in instruction fetches
caused by the memory units being busy with data. The size of
this effect varies from problem to problem, being less pronounced
for problems which are arithmetic limited and more for logical
problems.

Since memory units for STRETCH are attachable only in
pairs after the first and are interlaced only in powers of two,
some of the points on the graph do not represent physically attain-
able combinations,e.g., 5 memories all interlaced. (The simu-
lation program has no such restrictions.)

The "X's' on the graph show the effect of replacing the
0. 6 usec instruction memories by a pair of 2. 0 usec memories.
The resulting performance change is small for the Mesh Problem,
which is arithmetic limited, but large for the instruction-fetch
limited Monte Carlo problem.

5. Speed vs Arithmetic Unit and Indexing Arithmetic Unit Times

Although everyone realizes the importance of arithmetic
speed on overall computer performance, it was not until the 8im-
ulator results became available that the true importance of the
indexing arithmetic speeds was recognized. Figures 16 and 17
show a two parameter family of curves giving the computer speed
as a function of the AU and IAU times.

Figure 17 in which the arithmetic time is the abscissa .
shows an interesting ''saturation'' effect where the computer per-
formance is independent of AU speed below some critical value.
Thus it makes no sense to strain AU speeds if the IAU is not im-
proved to match. The curves in Figure 16 show the same effect
i.e., the IAU speed serves as a ''ceiling' on performance beyond
which the AU speed cannot pass. .

SPEED

~38-
Figure 15

SIGMA COMPUTER SPEED
vs, Number of Mainv
Memory Boxes

4 levels LA

0.6 ps IAU time

0.64 ps AU time

120 | MESH CALC. WITH REGULAR

o | | o /SEPARATE 0.6us FAST MEM.

100 L R
PARATE

STR. MEM.
90} ~

4 : ¢ e =~
8oL \MESH CALC. WITH DATA

AND INSTR. SHARING SAME |
2.0us MAIN MEM. BOXES

601 MONTE CARLO WITH REGULAR

| | | / SEPARATE 0.6us FAST MEM.

40L / MONTE CARLO
: SEPARATE 2.0us INSTR. MEM.

301

e | N _MONTE CARLO WITH DATA
| AND INSTR. SHARING SAME
201 | 2.01s MAIN MEM. BOXES
oL |
0 1 L1 L | | { L

O I 2 3 4 5 6 T 8
| NO. MAIN MEMORY BOXES

110 vs, Indexing Arith, Times
' for vaious Arithmetic Unit
100 =0.64
times,
90 4 Main Mems, 2,0 ps
=096
80 _ 2 Fast Mems 0,6 ps
20 =|.28 4 levels of look~ahead
=.50
60
50 } MESH CALC.
\\
40 \\
~
30 N~ ~
20 S
~ } MONTE CARLO CALC.
10 }
O i L | | -]
(0 05 10 .5 20 25

~-39- Figure 16

SIGMA COMPUTER SPEED

INDEXING ARITHMETIC TIME (usec)

- (Average time to index one instruction incl. decode and

storing modified addr)

SPEED

120
1o
100
90
80
70
60
50
40
30

20

10

~40- | Figure 17

SIGMA COMPUTER SPEED
vs, Arithmetic Times

for various Indexing
Arithmetic Unit Times

4 Main Mems, 2,0 ps

2 Fast Mems, 0,6 ps

4 levels of look-ahead

IAU=1.4ps5

TAU=18pus \ FOR MESH CALC.
—

JAU=06ps _

""“_ = FOR MONTE CARLO CALC.

o

05 10 15 20 25

AVERAGE ARITHMETIC TIME (pusec)
(Execution time for ‘average"operation)

-4~

The Monte Carlo problem is much less sensitive to
arithmetic speed than is the Mesh problem. Their roles are
reversed for the indexing arithmetic speed since the indexing
arithmetic unit controls the rate of instruction preparation and
the Monte Carlo problem is instruction-access limited.

6. Speed vs Instruction Memory Speed and Instruction Buffering

Figure 18 shows the effect on overall performance of the
instruction memory cycle time. The most striking result shown
is the reduction in speed of the Mesh Problem with the removal
of the indexing arithmetic unit instruction buffer.

Not only as the speed of the problem cut almost by a
factor of two, but it clearly assumes the behavior of an instruc-
tion-access-limited problem instead of a compute-limited problem.
This instruction buffer (called Y, in STRETCH) really serves as
a 2 level Virtual Memory for the indexing arithmetic unit and
gives many of the same advantages to instruction preparation
which the regular Virtual Memory does to data preparation.

For more detail concerning instruction memory speed
see the section on the Half microsecond memory below.

7. Arithmetic Unit Efficiency

One fallacy which is frequently quoted is that the goal of
improved computer organization is to increase the arithmetic unit
efficiency. Actually there are two reasons why this is not the goal
in itself. 'The first is that arithmetic efficiency depends strongly
on the mixture of arithmetic and logic in a given problem so that
a general purpose computer cannot hope to give equally high per-
centage utility to all.

The second reason is apparent in Figure 19 which shows
that the best way to increase the arithmetic unit efficiency is to
slow down the arithmetic unit!

The real goal of improved organization is maximum over-
all computer performance for minimum cost. One will tend to
increase the arithmetic unit speed as long as its percent efficiency
is reasonable for a variety of problems. One will stop this process
when the overall performance gain no longer matches the increase
in hardware and complexity. Thus the arithmetic unit efficiency
is a by-product of this design process not the prime variable.

SPEED

120

110

100

90

80

70

60

50

40

30
20

10

42 Figure 18

SIGMA COMPUTER SPEED
v8, Instruction Memory Time
4 Main Mems, 2,0 ps

2 Fast Mems, - (varied)
. 4 Levels of look-ahead
0.6 IAU time

0.64 AU time

MESH CALC. WITH

/_IAU BUFFER

MESH CALC. WITHOUT

IAU BUFFER
N\\\s |

\~

MONTE CARLO WITH

/— IAU BUFFER

0.5

1.0 1.5 2.0 25

FAST (INSTRUCTION) MEMORY
CYCLE TIME (usec)

ARITHMETIC UNIT EFFICIENCY

100%.

80%-

60%|-

40%#.

20°/or_

-43 -
4 Figure 19

SIGMA ARITHMETIC UNIT EFFICIENCY
vs, Ave, Arithmetic Time

for various cases

1 Index Mem. 0,8 ps

4 Ma.in‘Mems 2,0 ps

2 Fast Mems 0,6 ps

4 levels of look-ahead

Time A, U, is operating x 100
Total Time for Problem

%Efficiency =

| s REACTOR PROBLEM

¢°° } MESH CALC

COMPUTER TEST PROB

o< MATRIX INVERSION
oe— MONTE CARLO

0.5 1.0 1.5 20

AVERAGE ARITHMETIC TIME (usec)
(EXECUTION TIME FOR "AVERAGE" FLOATING OPERATION)

7 .

8. Speed vs Concurrent Input-Output Activity

Because of the relative time scales of I/O activity and
the CPU processing speeds the Simulator cannot take in account
the availability or non-availability of data from I/O on the pro-
gram being run. However, we can observe the effect on the
computation of the I/O devices operating at different rates sim-
ultaneously with computing.

Using the STRETCH control word philosophy it is possible
to have a number of input-output units operating at the same time
the Central Procesasing Unit is running. The Basic Exchange can
reach a peak rate of 1 word every 10 microseconds. The high
speed disk normally operates at 1 word every 4 microseconds.
Since the mechanical devices take priority over the CPU in add-
ressing memory, the computation slows down because of memory-
busy conflicts.

Figure 20 shows an example of how internal computing
speed is slowed as the I/O word rates are varied continuously.
At the theoretical '"choke off'’ the I/O devices take all the memory
cycles available and stop the calculation. Notice that this condition
can never arise for any 1/O rates presently attainable.

9. Speed vs Number of Memory Units with and without High Speed
Disk Running

Because there are fewer memory cycles available when
there are fewer memory units, the High Speed disk unit will cause
a larger percentage slow-down for a smaller STRETCH system.
Figures 21 and 22 show this effect for two typical problems--one
which is normally arithmetic limited and one which is instruction-
fetch limited. The former is less gensitive to such interference
mainly because the Virtual Memory has more of an averaging effect
on its data memory references.

The following table shows the approximate quantitative re-
duction in internal computing speed caused by the disk running
at the same time, using the speed without 1/0O as 100% for each
configuration.

Number of Memories For Monte Carlo Problem For Reactor Problem

6 - 5% - 2%
4 -15% - 4%
2 ~24% «22%
1 -55% -55%

S L

SIGMA INTERNAL COMPUTING SPEED
Percentage Reduction in Speed caused by
Input-Output devices referencing memory
at different rates while the calculation is
proceeding.

Figure 20

ol - BASE: DATA &INSTRS. MIXED IN4 MEMS. _ _ _ _ _ _ _ _ _ _ _ __
| : : 4 MEMORY UNITS
! | |
~10%+ |
J |
- |
N 2 MEMORY UNITS
-20%+ e ——
(4] : _ +_ —
- l l
|
o I 1N]
3 30% L7 ,
o I |
% v ,
=2 ' / |
= -40%t / |
£ /! l
= . |
T | | |
© '50°/o‘1" ' l |
e I | IMEMORY UNIT . — ——
L J—
(vl -60%+ —_— w——
E 60% | | -
. 1 | | 7 I
0 L7 !
TO%t [: py |
I l/ '
80% L/ |
- | I ! «—nieH sPEED |
ti | v/ 1 DSk RATE 4“BASIC EXCHANGE
Q11! | PEAK RATE
0%t Y11 |
! | FOR MONTE CARLO PROB.
= ::I | !
100%+—+—t—————
5 10 15 20 28

WORD RATE-MICROSECONDS BETWEEN CONSECUTIVE WORDS

PERCENT CHANGE IN SPEED

-10%-

4~ Figure 2|

SIGMA Internal Computing Spced
va. Number of Memory Units with -
and without Disk running

DATA &
K INSTR.
SEPARATED

w—— o

— .
/ WITH DISK RUNNING

-20%T / @ 4us PER WORD
/ AT SAME TIME
/ CALCULATION IS
// BEING DONE,
30%+ ,"
/
/
-40%+ /
/
/
/
B0, /
50% |
/ FOR REACTOR DIFFUSION
/ PROB. DATA & INSTRUCTIONS
o | / MIXED IN MEMORY.
-60%+ /
/
(NOTE. THE REACTOR PROB.
. " iS LARGELY
“70%+ ARITHMETIC UNIT
LIMITED.)
2 4 6

NUMBER OF 2 psec MEMORY UNITS

PERCENT CHANGE IN SPEED

-47- Figure 22

 SIGMA Internal Computing Speed
ve. Number of Memory Units with
and without Disk Running

DATA &
INSTR.
K SEPARATED

O - —m m e e e e e e - D - - - —
-10%+
- 20%+
-30%+ WITH DISK RUNNING
/ @ 4 ps PER WORD
yd AT SAME TIME
/ CALCULATION IS
-40%-+ / BEING DONE.
x/ _ '
/
/
/
-50%+
/
L / FOR MONTE CARLO BRANCHING
-60% / ~ PROB. DATA 8 INSTRUCTIONS
ll MIXED IN MEMORY, \
/ (NOTE. THE MONTE CARLO IS
20%4 / LARGELY INSTRUCTION-
/ ACCESS LIMITED.)
!
J
-80%+
t | ; ; : :
| 2 4 6

NUMBER OF 2 upsec MEMORY UNITS

-48 -

The user of a small STRETCH system is thus penalized
three times compared to a large system user: (1) The top speed
of his system is reduced by the loss of memory overlap, (2) He
has a larger 1/O penalty when it is run concurrently with the
computation, and (3) the smaller amount of data which he can
hold in the memory at one time increases the amount of I/0
activity he needs to do the job.

Looking at it more positively, the user who in the past
purchased larger memories for his 704 obtained only the bene-
fits of the third effect, while a STRETCH user also gets a '"bonus"
of the first two as he expands his system.

The Effect of the Half-Microsecond Instruction Memory on STRETCH

Performance

1. Introduction:

During July and August of 1958 a series of Timing Simu-
lator runs were made to evaluate the status of the SIGMA and
HARVEST computers. One parameter studied was the speed of
the instruction memory. Several runs were also made in which
there was no separate instruction memory but instructions and
data were stored in the same boxes.

The results of these runs proved to be quite important
in evaluating the importance of the half-microsecond memory
to the STRETCH program. The following analysis is taken
from Project 7000 File Memo which was published at that time.

2. Advantages and Disadvantages of the H;a,lf—Microsecond Memory:

A. The primary advantage of the half-microsecond methory is,
of course, its speed. This speed is beneficial in the following
two cases:

(1) Programs can be instruction access limited either be-
cause they consist of a series of short operations, or
because they contain many branch orders. If the half-
microsecond memory is used for instructions it will
help reduce the limitation by furnishing the instructions
at a faster rate.

(2) In programs which are data-access limited, putting
the data in the faster memory will cut down the time
reguired for fetching the data. VFL operations with
short fields are in this category. These are of par-
ticular importance for HARVEST applications.

-49-

In both of the above cases it is the speed of the memory
compared to the arithmetic speed which is the important
ratio--the faster the arithmetic speed the faster the memory
required to service it properly. .

B. The main disadvantage of the half-microsecond memory
is its size. Each memory box contains only one-sixteenth
as many words as a comparable two microsecond memory
box. This decreased size certainly must result in reduced
performance because more time will be spent reallocating
programs. Unfortunately this reduction cannot be evaluated
quantitatively by simulation since it depends on the nature of
the future problems, and on the nature of future methods of

scheduling machine use.

There is another advantage in larger memories which is even
harder to evaluate and that is the removal of programming re-
strictions which exist when programs must be cut to fit a small

memory.

3. Simulator Input Data:

The test problems were run with most of the recent design
changes simulated, including the 0.8 microsecond I-Box repetition
rate and the 0.2 microsecond bus slots. The arithmetic speedsused
for the runs were:

STANDARD SIGMA. HARVEST
Load, Store 0.2 us 0.4 us 0.4 us
Floating Add 0.6 1.0 1.0
Floating Multiply 1.2 2.5 7.5
Floating Divide 1.8 7.0 7.5
6-6-3-1 average 0. 64 1.43 2.40

_ The average times listed on the laat line are used for
convenience of plotting only. These arithmetic speeds are not
intended to represent present STRETCH values.

4. Results:

Results of some of the runs are given in Table V. A short
summary of the pertinant results are given in Table VI.

~50-~

Straight averages of the percentage losses do not tell the
whole story. There are abrupt changes in behavior for some of
the problems from one case to another. Upon examination, the
reason in each case was due to the problem becoming instruction-
access limited where it had previously been arithmetic limited.
Each problem crosses over under different circumstances because
of its own particular combination of instructions.

Table VI also lists the programs which seem to be instruc-
tion-access limited for each memory and arithmetic speed configur-
ation. '

The phenomena which has been observed so many times
before, still holds here---the higher the machines overall per-
formance, the more sensitive it becomes to each individual com-
ponent's performance. Thus, all of the problems are prone to
become instruction-access limited at STANDARD speeds, where
only the faithful Monte Carlo code is limited at HARVEST speeds.

The magnitude of the losses must be considered as well as
the pattern. Clearly the memory interferences caused by not
having a separate instruction memory is as large or larger than
the speed of the memory. ‘The average percentages are given in
table VIIL.

5. Rough Estimate of the Effect of Having a Larger Instruction
Memory on Computer Speed:

As was mentioned in section 1, the favorable speed ad-
vantage gained by having a larger instruction memory is hard
to assess quantitatively. The following is intended to be a rough
order-of -magnitude estimate only.

In a given time T, assumed to be long enough to do several
problems, the computer will divide its activities between the time
spent on useful calculation and the time spent on swapping codes in
and out of instruction memory. We may write

=
1

= nte+nRie = nte (1 +R)
where n = the number of useful instructions executed

the ratio of the number of words swapped per useful
instruction executed. (R should be much less than 1)
= average time per calculation executed.

- »
z

ot
e}
#

(For simplicity the time for swapping an instruction is taken
the same as tg.)

-51-

The speed of the computer, S, is proportional to n/T,
the number of useful operations per unit time. So we may write
the ratios of the speeds of two systems as:

S ny tcl (1 + Ry1)
S; n1 te2 (1l +R3)

The tcy/tep factor is the regular speed-up caused by the
faster memory. The term involving the R's is the new factor re-
sulting from the effect of swapping codes. As a guess, we can
take R as being inversely proportional to the memory size, so that

N2
Ry =Ry —°
N1

also since the R's are both much less than 1, we may write

S tc
=2 . 2L s (1+Ry N2 .Rry)
S]_ tcz NI

In the present case, consider a 10% computer speed dif-
ferential on tc's between the half and two-microsecond memories,
which differ in size by a 1 to 16 ratio. We can ask what value of
Ry will be necessary to make the half microsecond memory result
in an increase in speed over the two microsecond memory. The
answer is approximately:

That is, each instruction in the half microsecond memory must
be used at least 10 times in an average program before it is re-
placed in order that the half microsecond memory show a net
increase in speed over the larger, slower 2 us memory.

Very roughly apeaking, each instruction must be used at
least once for each percent loss in speed under the configurations
tested here to break even. It seems likely that this condition will
be easily satisfied in practice, so that the faster memory will in-
deed result in a faster computer even though part of its advantage
is lost.

-52-

The other factor mentioned which favors larger mem-
ories is the effect of being able to write less complicated codes
when they need not be cut to size. One can express this factor
as a (1 + f) term times the speed of the computer to gives its
effective speed. This speed gain is because the machine has
to do a fraction f fewer instructions to accomplish the same
job with a larger memory as it would take with the smaller.
Since this fraction is so strongly a function of the problem in-
volved, one can only guess what it will be as an average for
all SIGMA problems. It should be in the 0 to 10% range, how-
ever.

6. Conclusions:

(a) Whether a problem is instruction-access limited or not
is the main property which determines its behavior under
changes in instruction memory.

(b) The property of being instruction-access limited depends
considerably on the individual sequence of instructions in
a problem itself, and on the relative speeds of the arith-
metic unit and the instruction memory.

(c) The higher the performance of the computer, the more sen-
sitive is its speed to changes in instruction memory con-
figuration. At the SIGMA speeds, replacing the two 0.6
us memory boxes by two 2.0 us memories results in an
average of 2.5% loss in performance in the cases tested.

(d) At SIGMA speeds, intermixing data and instructions
causes an average loss of 3.9% in performance over
having a separate 2.0 us instruction memory. This is
because conflicts between data and instructions delay
instruction accessea. MNote that this is larger than the
effect of memory speed itself.

(e) The speed gains from having a faster memory are reduced
somewhat by the fact that it is smaller and more time
must be spent swapping codes. This seems to be a small
éffect timewise, however.

The effective performance increase possible because
bigger programs may be put into the larger memory at
once is hard to assess. It is probably also in the 1 to
10% area.

TABLE YV

Computer Performance as functions of Memory Configurations and Arithmetic Unit Speeds.

SPEED OF TEST PROBLEMS (times 704 Speeds)

| |
Computer ' Simultaneous ,
Configuration Mesh Monte Carlo Reactor Test ! Equations
Instruction Memories|| Speed| % Speed % Speed | % Speed! % | Speed %
STANDARD | .
1. 2 0.6us Mems. 85.9 | 0 | 45.5 0 12224 0 8.5 0 487 0
2. 2 2.0us Mems. 82.9 | -3.5! 4lI.2 -9.5 1 121.3 -0.9 | 87.6 -2.1 | 47.5 -2.5
3. No. Instr. Mem. 747 {-13,1] 36.3 ~20.2 97.5 .-20.3 | 73.2 -18.3 45,0 @ -7.4
SIGMA
1. 2 0.6us Mems. 59.2 | 0 41.9 0 | 75.9 0 581 0 451 O
2. 2 2.0us Mems. 59.0 -p.4! 38.2 -8.8 . 175.7 -0.3 57.9 -0.4 43.8 -2.8 o
3. No. Instr. Mem. 55.2 | -6.8 35.4 -15.4 75.6 -0.4 1 55.0 | -5.3 (43,2 | -4.2 i
HARVEST
1. 2 0.6usMems. 39.3 | 0 38. 8 0 . 380 | 0 408 0 B31.7 | 0
2. 2 2.2usMems. 39.2 |-0.2 35.6 -8.2 | 37.9 -0.1 {40.7 {-0.3 31.6 -0.4
3. No. Instr. Mem. 37.5 | -4.6 33.8 -12.9 37.9 -0.2 40.7 1-0.3 31.3 |-1.2

0.6 microsecond total cycle instruction memory

Each has 4 2.0 microsecond total cycle data memories

-54-

TABLE VI

Summary of Results: Average Computer speed changes caused by In-
struction memory speeds and Arithmetic Speeds, straight averages for
all five test problems.

Problems*which are
STANDARD AU Speeds Average Percent Decrease Instr.- access limited

1. 21/2us Mems. 0 (2)
2. 2 2us Mems -3. 7% (2) (4) (5)
3. No. Instr. Mem. -15.9% (1) (2) (3) (4) (5)

SIGMA AU Speeds

1. 21/2us mems 0 : (2)
2. 2 2us Mems -2.5% (2) (5)
3. No. Instr. Mem. ~6. 4% (1) (2) (4) (5)

HARVEST AU Speeds

1. 21/2us Mems. 0 (2)
2., 2 2us Mems. -1.8% (2)
3. No. Instr. Mem. -3.8% (1) (2)

*The Problem numbers are those given in Section VB.

-55.

TABLE VII

Average Percentage Losses for all problems.

Arithmetic Speeds

STANDARD SIGMA HARVEST
Ava loss caused by
replacing 0.6 us Instr. -3, % -2.5% -1.8%
Memory by 2.0 us Mem- :
ory.

Average additional loss
caused by having no sep- -12,2% ~3.9% - 2. 0%
arate Instr. Memory.

Maximum loss caused

by replacing 0. 6 us «9.5% -8.8% -8. 2%
Instr. Memory by 2.0

us Memory

Max. additional loss

caused by having no -19.5% -6,6% -4.7%
separate Instr. Mem- |

ory.

~-56-

E. A Study of Branching on Arithmetic Results in STRETCH

1. Introduction:

The asynchronous organization of STRETCH allows many
of the components of the Computer System to be operating at the
same time on different jobs and thus by overlapping greatly in~
creases the overall efficiency of the system.

Unfortunately this organization also has its drawbacks.
In particular, one of the curses of the non-sequential prepara-
tion and execution of instructions is that if there is a Branch in
the problem code it spoils the smooth flow of instructions to the
Indexing Arithmetic Unit. Any branch in a program will cause
some delay, but the ones which hurt the most are the branches
on arithmetic results which cannot be detected by the Indexing
Arithmetic Unit in advance.

2. Ways in Which Arithmetic Result Branches can be Handled:

There are two fundamental ways in which branches on
Arithmetic Unit results can be handled by the computer:

(1) The computer can stop the flow of instructions until
the Arithmetic Unit has completed the preceeding op-
eration so that the result is known, then fetch the next
correct instruction. This places a delay on every AU
result Branch whether taken or not.

(2) The computer can '‘guess' which way the branch ia
going to go before it is taken and proceed with fetch-
ing and preparing the instructions along one path with
the understanding that if the guess was wrong, these
instructions must be discarded and the correct path
taken instead.

Under the second alternative there are four possible ways
in which the guessing can be made. The branches in question are
indicator branches on the Arithmetic Unit result indicators. These
operations have a modifier which allows the branch to be taken either
if the specified indicator is on or off. Since one can guess that the
indicator is on or off for each, the four combinations are:

57

Case Name Operation Guess Assumed Result of Operation
I NN-FF Ind Branch on Ind on branch
off off branch
I NF-FN Ind Branch on Ind off no branch
off on no branch
III NN-FN Ind Branch on Ind on branch
off on no branch
Iv NF-FF Ind Branch on Ind off no branch
off off branch

3. Simulation Results:

To study the effects of wrong-way branches on the SIGMA
Timing Simulator, the Monte Carlo Branching Code was chosen
as the guinea pig. The code was rewritten so that every arith-
metic result branch was a wrong guess and again so that every one
was guessed correctly. (Note that neither of these extremes is
actually possible in a program with branches unless they are
essentially unconditional,)

Several runs were made varying the instruction memory
speed and the AU and IAU times. The regular (NF-FN) case had
two wrong branchea out of thirteen encountered in one loop of the
program which consists of fifty-nine operations executed per loop.

By examining the timing charts drawn by the Simulator for
many of the individual branches, the average time delays listed in
Table VIII were derived.

Table VIII: Average Time Delay per Individual Branch

assumed Guessed For 0.6 us Instr. Mem. For 2.0 us Instr. Mem.

no branch right 0 us Ous
no branch wrong 2.5 us 3.2 us
branch right 1.5 us 3.2 us
branch wrong 3.7us 4,8 us

For "Standard" Times (AU = 0.64 us, IAU = 0.6 us)

~5H8..

If one takes the actual times to complete the problem
in each case and divides the total delay by the number of wrong-
way branches, one obtains the times listed in Table IX. The
approximate delay due to the memory interferences, etc., caused
by starting the processing of the wrong instructions, can be es-
timated by comparing the times in Table VIII with those in Table IX.
These interference times are listed in Table IX.

Table IX. Average Time Delay in Total Problem per Wrong-way Branch
Oifambetr Culinsts.
For "Standard Times'" (AU=0.64 us, IAU=0.6 us) 2.9 us 3.5 us
For "Recommended Times''(AU=1, 09 us,IAU=0.9us 3.6 us 4.3 us
Extra Delay due to memory Interferences 0.5 us 1.0 us

Presumably if one holds up on every branch (Case O) the
time loss will be about that of assuming no Branch and guessing
wrong. (line 2 in Table VIII). If one guesses according to one of
the four other cases, the time loss will depend on (1) the percent-
age of branches which are Br-ons, (2) the percentage of Br-ons
which are actually taken, and (3) the percentage of Br-offs which
are actually taken.

The calculation will be delayed by each branch taken even
when they are guessed correctly, however, since we are interested
in examining the additional time lost due to guessing wrong or hold-
ing up, the delays due to correct branching should be removed. The
following times in Table X may be used to compute actual combina-
tions of branches.

Table X: Average Time Delay per Branch

Computer Should Have 0.6 us Instr. 2.0 us Instr.
Guessed Guessed Memory Memory
Hold up no branch 2.2 us 1.6 us

Hold up branch 2.5 us 3.2 us

no branch no branch 0 us 0us

no branch branch 3.0 us 4.2 us
Branch branch 0 us 0 us
Branch no branch 2.7 us 2.6 us

-59.-

The temptation in evaluating the individual cases is to
assume 50% for all the combinations and essentially average
the time losses. Actually, by examining a few problems super-
ficially, we have found that considerably fewer than half the
arithmetic result branches encountered in a code are actually
taken. About 20% seem to be more typical. This seems to be
due to the tendency of coders to think of the branches as being
exceptional cases. They normally write the main flow of the
code continuously and the exceptions elsewhere.

There seems to be a tendency to link indicators turning
on with exception cases. In time this would result in fewer Br-
ons being taken and more Br-offs being taken. These generaliz-
ations are admittedly uncertain mainly because very few relevant
statistics are available.

There is also a "feedback" in such statistics because the
way in which the machine guesses the branches will influence
future programmers to write their codes to take advantage of
the speed gain, so that the statistics of the future will be biased
in favor of the system chosen nowl!

Table XI compares the five cases for several assumed
values of percentages. The last two lines are my guesses as

to the averages to be expected.

Table XI: Average Time Delays per Branch for the Different Cases

% % %
Br-ons Br-ons Br-offs Case 0 Case] Casell Case Ill Case IV
taken taken Holdup NN-FF NF-FN NN-FN NF-FF

for 0.6 us. Instruction Memory

50% 50% 50% 2.35us 1.30us 1.45us 1.38us 1.38 us

50% 20% 20% 2.26 2.14 0.54 1.33 1.42 us

80% 20% 80% 2.30 1.69 0.89 1.19 0.47
for 2.0 us Instruction Memory

50% 50% 50% 2.40us 1.00us 1.80us 1.40us 1.40 us

50% 20% 20% 1.92 1.96 0.36 1.16 1.64

80% 20% 80% 2.11 1.45 0.84 2,22 0.10

4, Conclusions:

(1) The performance variation in a problem with a lot of
arithmetic data branching can vary by approximately
¥ 15% depending on the way in which the branches are
handled.

60-

(2) Holding -up on every branch seems to be less desir-
able than any of the guessing procedures.

(3) It is very unlikely that one ever get fewer than 15% or
more than 85% wrong-way branches regardless of his
procedure.

(4) It seems possible to get a fairly low loss by picking
Case IV, provided the percentages on the last line of
Table IX really are correct. However, if the per-
centages should be different, Case IV is much more
sensitive to them than Case II.

(5) To be really effective Case IV needs the existance of
the indicators 2 0, < 0 to make the distinction be-
tween off and on precise. At present one must code
"Br-on ¥ 0", as "Br-off » 0," so that the equating
of "on'" to "exceptional case" is spoiled somewhat.

(6) The highest performance would be obtained if each
branch had an extra '‘guess bit" which would permit
the programmer to specify which way he estimates
each branch will most likely go. This seems to be
impossible in the present format schemes. It also
would place a considerable extra burden on the pro-
grammer for the gains promised.

5. Recommendations Finally Presented as a Result of the Simulator Runs
Case II (NF-FN) should be adopted as the guessing scheme.
This means that for any branch for which the IAU cannot compute
the correct outcome, it should guess that the branch is not taken
and proceed with the processing of the next instruction.
Case II was chosen over case IV because:

1) Its time loss is low (at least second best)'

2) It does not require special controls for deciding whether
to assume a branch is taken or not

3) It does not require that new indicators be defined.

4) It should not confuse the progranimer with complicated
rules of coding the way Case IV might.

-61-

VI. APPENDIX: Details of Timing Simulation Program SIM-2

The following pages give detailed symbol definitions and flow
diagrams for the SIM-2 code. The diagrams accurately represented
the code at the time they were drawn. There have been some addi-
tions to the program since then, particularly in the I/O simulation
section, but they do not change the main logic of the flow.

The simplified flow diagram, Figure 11, shows the major
sections of the program. The following pages elaborate upon this
figure. The logic of the Virtual Memory operation is described in
Section III. The logical diagrams given there have direct counter-
parts in the flow diagrams which follow.

-62-

STRETCH Timing Simulator Program SIM-LZ

List of Quantities Used in Flow Diagram

Table 1

Quantities Concerning Instructions fed through Simulator

Look-
Instr. |ahead (Look- Instr, Arith, Indexing
Input [Ready ahead Fetch Unit Arithmetic
Reg. levels Unit
Instr, Number | II1 | LR3 | LAUS RS I eaul (1)
Op. Code 112 LRI LAU2 ICAN NRAUZ | (IST = "STATE")
Instr. Location| II3 LAU1L ICR1
R2
#1 Index Addr. 114 IRO
#1I Index Addzx. 115 RO
Data Address 116 LR2 LAU3 IBUG2 IRO
Special Desig. 117
Return Tag 118
Sp. Sp. Desig. 119
Compare Bit LAU4
Forward Addr. LAUS
O.K. Bit LAU6 IRO1 (Fetch)
o IRI (Return)
Forward Bit LAUY
Mem. Bring Bit LAU9 ,
Unit Clock JAUT INS
Mainojr Index | Central Busto | Bus
Instr. Core | Control Mem., From Exchanges
Mem. Mem. | Decode Mem.,
Instr. Number IMM2 IXM4 IBDI(or 6)| JF1 NFl1 (90,91,92,93)
" Return Addr. IMMI1l IXM2 | IBD (or 5)| JF NF 32
Bring Bit IMM3 IXM6 IBD2(or 7)| JF2 loro
Read out Clock IMM4 IXM8
End Sig.Clock IMM5
Mem.Cy.Clock || IMM§ IXMI10 | IBD4(or9)| JF4 NF2 CLC
Mem. Res. Bit IMM 7
Mem. Box No. IBD3(ox 8)| JF3 IOM
J¥-fast| NF=Fast
memory memory
JM~main{ NM=main
memory memory

-63-
List of Symbols

TABLE II

Control and Tally Quantities

1. Look-Ahead Symbols:

NCTRA Instruction Fetch Counter
NCTRB , Data Fetch Counter

NCTRC Data Store Counter

NSTOB Store Bit (an unexecuted Store)
NLH Number of Look~Ahead levels
NBFR Modular value of NCTRC

2. Conflict Counters, and Tallys:

CTT Total Time Tally

CAU Arithmetic Unit Tally

CIAU Indexing Arithmetic Unit Tally
CADLA Average depth of Look-Ahead Tally
CLAF Look-Ahead Full Tally

CwWI Arithmetic Unit Waiting on Instruction Tally
CwWM Arithmetic Unit Waiting on Data Tally
CDLA Look-Ahead level use Tally

CIF In-Bus from Fast Memory Tally

CIM In-Bus from Main Memory Tally
COF Out Bue (Read) to Memory Tally
coM Out Bus (Write) to Memory Tally
CIST : Index State Tally

CIMM Memory use Tallys

CMMC Main Memory Conflict Tally

CFMC Fast Memory Conflict Tally

CXMC Index Memory Conflict Tally

3. Miscellaneous Symbols:

MARK Time Counter for Listing

BIB Break-in Bit on Wrong-Way Branches
SKIP Signal to "Run-Dry'' at End

TALLY Count of Number of Executed Ops.

A,B,AD,THINK Temporary Locations
IDR,IDW,LDA Pseudo-op Controls, ete.

LASCB Look-Ahead, Self Compare Bit
PBIT,CBIT,PHDB

TBIT, WBIT Controls for Printing

IB Block for Input from Control Cards

IP,RP,SIP,8SP Various Printing Blocks

-64-

List of Symbols
Table III

Input Constants Appearing on Summary Listing

Symbol Name
on in Description
Listing Code

LA NLH No. levels of loock-ahead
FM NUFM No. of fast memory boxes
MM NUMM No. of main memory boxes
IR. INX-4 Index reset IAU State 4
IS INX-3 Index store-1 IAU State 3
IA INX-2 Index add-1 IAU State 2
ID INX-1 Index Decode IAU State 1
INX (not used)
MB NMBT Main (or write) bus time
FB NFBT Fast (or read) bus time
FD IDMT Fast Memory bus decode time (CCU)
HM IDMT+1 Hamming check time
HE IDMT+2 High Speed Exchange word rate
X1 IDMT+3 Index Memory read-out time
X2 IDMT+4 Index Memory cycle time
MD IDMT+5 Main Memory bus decode time (CCU)
Fl MFT 1 Fast Memory read-out time
F2 MFT 2 Fast Memory end signal time
F3 MFT3 Fast Memory Total cycle time
Ml MMT 1 Main Memory read-out time
M2 MMT 2 Main Memory end signal time
M3 MMT 3 Main Memory Total cycle time
15 JT-15 Op. Code 15 Square Root
14 JT-14 14 Divide
13 JT-13 13
12 JT-12 12 Cumulative Multiply
11 JT-11 11 Multiply
10 JT-10 10
9 JT-9 9 Add
8 JT-8 8
7 JT-7 7 Load
6 JT-6 6
5 JT-5 B
4 JT-4 4 Immediate Ops.
3 JT-3 3 Immediate Ops.
2 JT-2 2 Immediate Ops.
1 JT-1 1 Immediate Ops.

)
o]

JT Low Speed Exchange word rate

-65-

List of Symbols
Table IV

Output Results on Summary Listing_

Symbol Name
on in Description
Listing Code

XMC (CXMC) Index Memory Conflicts (in % of total time)
TT CTT Total Time of problem (XXX.X microseconds)
AU (CAU) Arithmetic Unit busy (in % of TT
IAU Indexing Arithmetic Unit busy
ADLA Average depth of look-ahead
LAF Loook-ahead full
WI1 Arithmetic Unit waiting on instructions
WM Arithmetic Unit waiting on data _
DLA - % Time Look-ahead has depth specified
IBF In bus from fast Memory busy
IBM In bus from Main Memory busy
RB Read bus to Memory busy
WwB Write bus to Memory busy
IS- IST Time spent in Indexing State specified
M- Time Memory Box specified is busy
(M12 to M5 are Main Memories, M4 to Ml are Inatr. Mems.
MMC Main Memory conflicts
FMC Fast Memory conflicts
WBC Write bus conflicts
RBC Read bus conflicts

Op codes: (1) 1 thru 4 Immediate (1= wrong-way branch)
(2) 5 thru 34 bring type (See Table III)
(3) 35 indexing type
(4) 36 to 97 store type
(5) Instruction No. 98 Stop in AU and Tr to Summary

Return Addresses: (1) 20 = IAU data
(2) 21 = Instruction fetch
(3) 1,2,3,...8 = Look-ahead levels
(4) 32 = Exchange

-66-

pa qe 7
AO SIM-2 Flow Diagram
ﬂ (1) Tnitializge
nitindy . 0
AO‘ e (2) Arithmetic U
Rewmd Ta e -z ,
clear Dafa Mem. (8) Load Look-Ah ead
set 9-rMark : (75) Summary Printeout
STCAV)
START=> TCKE
[=» ZTST
Test for halt qeble
=0 (<, ("0'
Ip ~98 SUMMARY st oK
t if v
- 169 t A
4o / ufd
- . A A¥ ¥ AlS / NCTRC MM((”I—”)""XI Tae ,,,_%u
et~ Tnsth s
Mo NRAUY W m J LAUVB,] > ’vRAVL f:;ckf;hfgpm
: S LAVZ, | —> NFAVZ ta AV
*0 . 0)
7
W e L
op, Cede MRAVZ =35)= Al3
+010 ST0KE on
L f%fé?k
Tast #0 [
Ston Bit Nsrog Al ?7'-?{72
A1z VO sraRrAu Alo ARl
NCTRC Mod (WH) =9 NBFR Tw,* ‘;r T (VRAVZ =1 Yl NCTRC Mod (W) > X1
| > rAVT fransf” =0
NRAVL~Y IR, 1 , Test oI bit
> NRA (
0 -» MRAUL Ngraﬁ,m; Al3
Acrke+t-»werke | _ /N -
l = Al4 #o Start AU
A3 NCTRC Mod(ew) > X 1 NRAV2Z -» XA
LAU3y | —> TR TTHl = JAUT
@ L TeRit| Y ITCRZ NRAVL~> TP,
oad '
Look-Mead | >7FIT O INAVL
ars ; J METRC+ | =) MCTRC
- Test =
wody (LRL)ES arr CAclo
9 . To wipe out Look- Ahead Al3 Summrty Frogram.
#o ¥ Srarrever
Al8 ¥
$o NCIRA 7 g
T = - NeTRC 2> Al Prepare and Print
e ble
gl \ Summary Ta
Nsroﬂ x'1 NBFR Osarr aed
) Read New Control
Cards
- =7
Putin L‘m-") ""”‘2’ / E;;doi:f yes
Lovk~ LR2 > LAV, / 3> AP23 Prob, [lasT?
Abead |y 3> Lavg, | Seric s - HEK
| SUTRISTTURPP]
O ~PLAV4,/ Marll'se
AO
Start Next

Problem

-67-

@ Pecodde

AB23 pan TC
NCTRA+I->NCTRA| PP
| ~» IST Reset IAL
6" 5
+ AZ+
425 Immeed inte
I;ILH - » X2

Conprrg Deta Addr

page R

SIM-2 Flow LDiagram

) Decode

Cperation

() Set Llook-Ahcad Bifs

Bring
Self - compare

A3 29

o—i/—Rz

! = LAVG, |
| ~» LAV,]
! > LAvq,/

> o =
“T=o =0
N’ compare Pecade %‘/’nrc v Pecorle
A
~(LR1-35)1 =(Lr1-35 P+
=0
ARY A30 A3l A32 A33 A4 AB29 A30 A3l
Bring Zndex Stere Bring Irdex stere Bring Index store
Zmednrfe Jp.
A24
1 for .
7;,/:”. LRI-98) > 3KIP) Zring Fndex srere
No Compare No compare WNo Compare
24 A29 A70 A3l
o YR 0 ¥ LR o~» LRI o= LR1
| => LAVE, | O —wLAVE, | O ¥ LAVE, [O ~»hAVEy |
O ~» LAV4,] |~ LAU4 |
| = LAUS, | | =>LAv4y |
O-24ave, 1)= LAV (
0 =P LAVY; | O “$LAVY, |
Al"Lr AI? A7 Al7
Bring
Compare
AI2 Test oN bit
Inele x Shre
Compareé Comparre
A6\ ok ser A3S) cwwor ser AI9 l A o
o-wiRY o-» LR1 - LR o-2LR1
1= LAVS, | @ ~phAVE, | | ~wiAUly / L Oy
| =P LAV | | -9 LAV4y 1 | =veAvty)) ~p LAV
O-»LAV9, | O PLAVY, I O WLAUD, | O -4V, |
O PLAVHZ O PLAV4, 2 O LAY, 2 O LAVEZ
‘ - LAV, 2 ‘
J/ b-.mw-«*mm,wml...w..«-..‘.‘,_..‘, s vy ;
Al7 Al7 Al7 ALY

NGA"
maril)s
e/ 5%

-68-

page 3

Al7 - . L
<,) SIM-2 Flow- LDiagram
7 .
Al (6) HKeadtn Lnstrs,
<5KIP>-«> A200 " from Tape.
; Read pewr tnstr, o
et i A38 | N <R AlSS (7) Move Tnstrs, Apurn
est If room N g TR TAPE DPROM by MEmer.
for another (12" 13 >—”—'—°———: READ 14 WRITE th Memoty
instr, — RouTIVE _ROUTINE © wipe out ¢ strl
#o @ Test Spec, weg,:, *o over on Wreng-way B
A37 ‘(
G E I
oo 2))
Tnstr. Meve dour .
@
- s
‘ L oo
3’14-/-5.2'2]]../ _ﬂ.{xz 3
vy u-mijwm.
G[j’ 2 >"“’.¢../1\M X241 X2
N
b 4
Ad2 fﬁ
Move Lpstr, Fouwn
K, 2w ILK,1
0> 1,2
A39
Xi+)->» X1}
A37
Ew) [eEL
N TRR
=0
11'1_3 ACI, 12,13, 14
ot s g Lt e o _, "
L#fo 4P TCAN
st for Y. AO“’ |1-»rsr
Wrong-weYy +#0 - wipe cuwl
Branch (B/Z ”3 rerd)=22_) Lock-Ahead. —> Al
““ clear Mems,
erc,
Ad4 Py
(TcrRt =2{ zeR2 205 A49
o o
ALY y A4T7 /
stepup I€ L zerie)=» TeR2 o] TCKL -2 2CRE.
Test /f Y. AZe
Znstr. Fereh G?uv-z IMRS V225 451
I's possi — R
- J#o HGK
A47 A¥l Mar 12, 58

Test L nstr, AdAr.
v ze r—»@—rcx’i

Does not
comprre.

-69-

prge 4
sencl For C > - a4 ”
Tnstre) I/V] s ‘i f’ 4 ,[//,:?yrmlﬂ
a2l (9 Send for Tnstrections
0-X1 (0) <hecic for Frarsfers
compares with IC (14} Instriction Keturnt
As3
=L S MK~ X2
Test Inity, Loc.
+*0 \L vs Look-chend Dot Aklra
Xi+->X1 =0

——-)@-UU.?,I

A2 . AA #o
| g:@.g x2-1> X2
+ !
ME AS?
: ' Set refin
ZCR1 -» IL 3y ﬂ(;/’-’ l—’IZ'B,/ *f‘a:)
o ~» rcrd N o ->ITckt
O »ITCR2 A5 - . l
Z1,1 > MRS | “Sainr A
\ TCAN~Z ~»LCAN
O —>Ick1

'mo Al;’7
o

a Fransfer ops

Error Stop.
Znstre Not tn
rIght order

o Mo Transfer

Al A€2 ReturnToy
= it ”
A A Znsrt
“ hot a @ i “ Return
Trnser Test Spec. Wc":w‘-}. Py
Aé3 ‘s K
or j
'tl 7 e 4 IA’IPS ‘:;""}/1; UM
ZCAN =2 “DLCAN st
0 >IRIM | =0
A4t TCAN+2 D ICAN TRUM~97
.44»5"9 /sy T
(4]
J * AT
o-5X1
AL9
Ready Reglster Ast /| >1r8, |
X1+I>X1 =0
LK1 J-IRO
Az00 RDQ_—_ /el | (E fg
Y. .. .A70 Retien Yo ,
on- 4 X1+19X]
{)'/I s LG e
State 1 e Lo | acs
Index -
Y 472 Gtk X1-3 ‘
AT3 \.1."5 ~4 }(—-—-——-—4,472) +
Stute Zor3 N g e " Error SVop.
ont Wrong Znstrvction
A4 L o

State 4 Mar(2,58

P

-70- page 5
INPEX ") .
art) srATE SIM-Z Flow Dsiegram
.‘ 0 . ’ ’ . -
l A:O et FAV (12) Zudexing Arith. init Siaved,
Test for s | clock A77
npider” C j—{fmﬂ -] = NLH=-» X1 cation
/ : str. 105" Addri
[mer] l compel, ,gk_fhem‘ datd ARe
Test I?,:;’" A6 N - A’:Z@ N Aloy “10d N =0
-0 ‘ Fo =0 = Tev
Znstr Addr. ¥_at06 St T4y *?‘ e
IIr3-1 #0 5 a00 |\YJ-I-»I1 Yox1 [>IL8
“““““ e B Z37-»X2
[: INKy A»INVG
1) (
AB = clear ""h“”y“*'fil”‘l/ f.'gpr compare ':f:fn addr)
0 > Engre Jall T l
L1 | | TH D 1elyd w3-me 4;9____7 |
: l S g A Aaoo
Test Spec. =0 -
Desly, A200 N ‘ LAVE,] =05 ALOO
U6 »ITEAYE N
%o 418
el v Ao N AUS rcm/v«_z-? ANV
> g
LB SPett
A200 #+0 _@3 m‘fg‘ IST-» XZ z_:;ur
INXy 2 =P TN,
=0 3::91/1/7:"9 ofF =0 #0 2 s
[Al54- poseuado- 20 N1 3O
. cra Sequcice
ICA -
N+ < TCAN A200 &——Gr‘,? /3 A200
l Alo3 i \[=0A’79 .
A200 VA yxns ' | Start | TOT X2
(ed TAC \ INX,2 > INS
//}v/mn/ﬂj
;/s'wk 1
" a Compariwh
A200 A200 eu’!f‘s
y aug
NLH~ -» XA
Test-Geppare AR00
V-
K ' 4132V
D
~ start | msT»x2
=0 MI,Z'PINS
Erior- Srop \L
Right Tastr
Not sl Lovk.-Ahead Al00
//ﬁ/\

Mart7)58

ZADEX
STATE
7w o) TR

-7 -

-/;’::7(:7' or 6

SIM-2 Flow Diagram

(13) Zntex State 2 »3

ael .. ne3 (04) Zndex Staie 4-
IW%:Z:>:1-m~ .IWO.;>fi2-»~mn~ 10(X57)+20 ~» AD
1
ABZ A"‘ «\t J Afla
O>INS . =0) =0 |
SRIL >-*—> A200 e -; e
LT +1->15T R (C(AD) LITHPIST (> AT2.
‘ ol e .
i l ARS IR et
Q-2 IRT LH ~
A72 PG NLH~| -» X4
oYL ROL 2 .
TSrSXZ AR /,.J/ Aszf.'.':.’ffﬂ{' iakadd
INXy2 >INS _um,,.@p)-moagi‘.’{,aw,; uuaDﬁi’» A200
i g ..
AROO ART . . =0 A92, #o
1-1->X4 |+ PE— IST X2 | st
- { f 1 INX,2PINS | FA¢
=0 L
c(av)->zR0| Azoo
A200
A93
IST-»X2
ZMH, 2p NS > A200
STar¥ ¥V
wo o Tansfer
x1
4 A100 AV
0 ; Jmorz-»Lr1
3 -1 T35 [P IR rg wire
=0 I} -» 468
LN J o~ X
Xiri-> X4
Test dor pseadlo-ep,
=0 -
Iz9 ‘
Ot udp-0p9-
: xi-3 rest end of P
to
" ;& Al0d
y
Error Stip I9-2
res ROUTINE
No®1" Address s ,
A0} - ‘|;
__al ICAN 41 > TCAN ‘) -» TST
' .-+ ISr .,.,.‘_.‘4.,...”1
T NGA ,
2260 A200 Mar13,'s9

-72-

zn-bos flom

Fay ¥ /’”ﬁ'ﬂ'-”l'

£a9¢ 7
SIM-Z Flow Dia gram
(18) In-bus Fast Hem.
f¢) ra- bus Main HMem.

ey A2Of
Test Clock I A
Fo
(NFE2 Azel
Louk eAhead S— Zndex
Set oK bit A208 A204- =0 A205
A 223 VE-5X1 Y n-mlco (>R
1-»1AV8, | O SNF 4——'-—(7/:»@———) 0> NF +—>A20|
' 0 -» ¥F1 N g 0 -yNF1
l+
A206
A20| NEL~» TRYM| Tnstr
Oo-»NE
O > NMF1
O LAY,/ '
LAVS,) >X 4 Azo|
In-bus From
@ /"tﬂb Mfm.
-> AR
25 AN
sot 0K wt A21S x
2 19 LRI
1= LAVS, | O=INM Led p21)
e o-yymd
Fbit
LAVT, | Y225 a2 MM=32 }-=2
IR fad A2l6 | *0
O -wLAUY, | Fostn | wmMIL ->2RUM I/0 Resu
Hoern
LAVS, | > X4 O > #Mm °© = MM
O > MM o —»mmd
Azl A2N

WaKk
Mar 13,58

-73-

aqg¢e
Puten bus Fut-on bus : 49 &
| @ From Han Alem, Srom Fas/ Mm-m@ S I M- Z F /c) wr D/agmm
0D 75 bas from Main Mem,
A2 4237 (&) 7o bus from Fastsvem.
5>X1 /=>X1 (19) 7o Frst Mem., From bus
p0) 76 Maih dem. £rom bus
Test clock = Test Clock
v A222 A232
) V=o O -»IMN3,y | ' 0> TMM3, |
A2 LMLy | —>HM TAMdy) ~ W E
@3’/ 2 IMMRy | ->NMY Tmm2, | > NFL
=0 AMBT —» NMZ. NFBT = NF2
A220 .
Xi+1>X4 Xi+1-> X1 | J
A229 A240
Y. ' y
.."_ﬂ;éj -~z L"_—_@ -4
T+ T+

Start Main Mem.

@ Start Fasp Mem.
A

TF4 —| A242 A252.
=0 =0
¥ 42¢]
{ 7F1 =y 42¢42. (JMDEE-» A252
*0] #0
A243 N A23%
TF3 -» X4 ' IM3 > X1
TP -» THMY, | TM > 1,1
TEL ~> Mg, | TIML > EHM2, |
TRR > TAMT, | IMA P TNNG, |

MEPS S TMM by |

MMTL > LM |

MEBTR > My | MNTR > T4, |
MEYZ ~> LN E, ! MNTZ —> ITMME, |
o-» IJF 0> TM
o-> JF1 0 >Imi
A242 A252

Har
alari?, S&

T4 -

c.c.U.
‘“/D
Fas?Mem,

» AGe|

=0 4301

A0
(rFe)Tw» Az

s s mant?

wyn
P-4+

A906

B ->JF

zerl-» IJF1
IFPL =P TFR
ZBD3 ~»IF3
o ~» T8I

o

=25 4303

+0

y
LOM Mod (WUMN)+5 -» X4

Tn 5,4 Y22

g L)
SIMN-72 Flow Dicgram

@an (((/, o Fast AMlem, Bus
(22) c.e.v. ty Main Hem. Sus
%)) :pmr .Z"/;,wd' Section

/Maln AMem.
A Jo!
T P14

s ms?

AR07
ITEDE ~» TM
TEDE > IMNS
I8y ¥ IMA
rape »Im3
0 -~» IBDE

72

o - TBDS
70 -» L 8DE
o >xupy7
X+ 2808
TBMTS > LTBDP
ToMwt »ToM
O -y CLRIT

—3> A303

HGK
./ 13/68

(A)
STON L

Referiilces 1o Alem,

-75-~

(24) Store Keferences o Memory
A313
a3 w=a*=()
NVBFR->X 4
set
bt 1> LAVE, |
.re:.rr Ajo‘l Pecode Aemory Tiype a2
F
- Ado# maiin As07]/ frst
Mus X ,
2/>X2 ~55>X2 N o->X2
LAVZ, | Mo VoG | | LAV, e (NOFM)+ |
oprLode a8 P X /] _;2/:{4_)
LAUZ 2"3 on+. g ->LAV?Z,
? d pom Zndey 4609),
- zprdeX oFr
A¢ 1 Store op. an+ LAVS, 1 ~50 :Z'AWD—#L% Abgé (Immé, 4 #0 A687
Io-::.‘: v ;z.' Erig T= B
2> P 4 A&l 4695 4475)
b =0 =0
I @1) Cr)
goit =0
LAV 2 #0 #0 ,
Y A=z AL ,
#‘0 0 . =0 =0
A ZXM142 X4-gM3 }—>nése] (X4-TF3 ABE7
X2»X1 ,
=0)
ALR4
"@2——»«” 7821
confhét counters [
A68L y A3I8
| CHMEAL D OAMC LAV, | ~> TxMd, 2 5(,”, o..; Ep2 Sont
0 ~PIaM2,2 | "o " LAVS,| >ZT¥D1,2. | 4o
BEE7 0 3 TN 2L | pgm, O > IFDZ,2 |0
—— ¢ FMC) ~PCFMC IDMT3 ~» TAME, 2 Xt > LEP3Z
: FDNT b TIN05 2 ZBNT 2% XUD4, 2
AL8E Oy pSTO8 O ~p NITOB
CMBOH| ¥ oMEBC
W71 4 M. AZ13 A3
— Y Y R Tl (7R S |
AL/ Aé7¢
---)| CAMCH| P CXNC 1¥ CBIT |~—>43513
HGA

frage 10
SIM-=-72 Flow D N

Marlt, 5"

(B)
L OOK ~AHE. u:: DATA

Referenece

NCTRB Mod (Wek) ~> X1

LAVY

A
.'\#:o

-76-

o b dem.

Pevo e Memory Type.

__J

A3zl
NCTRB+| -» McTRB

il CMME] = CHMNC

b & EMC] =y CFME

W CFBCt] PCFBC

e CXMC | ~P CXMC

fiﬂf._@g,,..so>

Ihdex
A324 F

28/

19X 2

O X7

cenflied counters

-1 2.{ S——

P487

Tess
i CHICH > CHBC

3529 ,

Y

W[1/ 1 S———

ATAR
o)==

g 11
SIM-2 Flow Diagram

25) Look-Abead DPata Keferomes +o sHemn.

LAVE, | —> Tk
! ~>» TAHE,E
X1 -» LM gy, 2
TINTT > TXMB, 2
ZDHT 42 ThM 10, 2.
O > LAV,

AFIT?

v LXid

1 2eBIT b3 A319

AF2S
ol LAV, | l000 get
Béo8 ey BE0? Lors
~5 3 X2 0 X2
LAVS,) Nod (Nor)+ S LAUZ, | Atool (MeFH) 4 |
e ‘}‘C'4~ iy R
Kooy

AR
L o BERY

=0

PS5 _ N
oo gni
_) A
&;sta_—» Bsé
L
T80, 2 %2 5ess
anr«:;
XL
X4 > TEP 2
LAVE, | > TBP1, 2
! > IEDR, 2.
" X#-» TEDH, R
TIONT, &P LBV &
O ~LAVY, |
A319

Hesh
Aty 19,58

g

FO

-7
«)

TAC Lefenee
To menery

A33Z

page 12
SIM-2 Flow Lircgram
(.6) TAUV References #o MHem.,

Pecady, /}lo:,u/,;'/y 73}/’“{‘&

=0
3 N333 #4375
rﬁ’ﬁ, %2 NETTTTY T — 2R 10000} L
=0 - [+ y
cCeos Mearn ceoy Fast”
—53>X2 O -3
A3IIZ LR Aod (A + § R0 A‘ia,;%i‘?"i)‘f“l
- X4 ~» X4
Zndex
X AT Y Y
ot] Fo T\ Ho
I:‘ ITRO~ S0 LHMé,4- 686 2 b4 cey
- [od -4 4 =0 =0
' ce75 475
/ “'?X 2 ag “2X';'? =0 ' =0
TM e < JFL
I #0 #o
s /
0 .) =0 " =0,
C69 &t TMIC 2. E4--IM3Z CoBS X4-JF3 c687
=0 Fo0 F0
cé84 '
o
zzawb-—» c6¥8 7821, 2 }¥2 cs89
) ! “o (=0
\ c2I® ¥
20> LaH2, 2 20-3T8D 2
L - Trng, 2 X1 ~>XBVIL, 2
| = TROd) > ZrRod
1 >Ximé; 2 S ILEDE, 2
EDMTS > LN 8,2 Pt
’ ZONT4 oIS X4 -» T8D2,2
eonflict LDAITy 2 > TBDPA, L
con)ers
486
— CAMCH = cmme AF32Z A33Z
£e87
0 CFNCH| ~PCFNC
L4588
—D| CMBCH| DHFC 3
C689
— CEFBC+ PCHEC
¢l 690
———d CAMCH| =D XML Rl [FCEIT |y 4372,

HGan
MNear /4,58

-78-
(D)
@3’ I nstructIon
feftch
"
(IMRS Y225 4345
+
o-»Xx1
3
v %46 2346 Y A7
X1+ -»X1 551
A
: —
o_n:_@ -3)
T+
Irndex
@5.. L - — ot -
o0
a2, 150
%o 2
Error Stop B P
Wropg Znstr, 2 =
19X 2 0 »X2
TEZ
2691 X2 M 10,2
=0
) A
confle t counlers 2)=y TRy E
IMRS = LxMdy 2
DES
é | “»Zxne, 2
3] eANC+l-> cmme IRNTZ > TINg, 2
Désy LB A =VTIMIY 2
O PIMRY
v CENCHI D & FMC \
v |
e CHECH| =2 CNBE A3B45
2481
~——M ¢ FBCH ~PCFEC >
U P60
e CUMC H]DCXME) CBIT | 4346

page |3
SIM-Z Flow Ly P1am

(27) Znstructren Felch
References ro NMewmeory

Decede Memary Type

p X274

Af?‘?

i \ OeL—
- I 3,|-1e0 ——-—t—————ﬂnzl—mw.,
."Q_J:DJ S

——

/ﬂalln P6o7

Fas?

—5~-»X2
TE 3y | ModWutm)+§
e X

a-»X2
ZZ 3, | Mocl(wvfn)+ |
-—p

X

DEY.
=0

Y.
@M,-f—
=0
5 o
__G 1)
“T#e
R
=0
@‘-;/@—aum

D ks ‘L

.-—)@;ﬂ,af—g?dﬂ

#0, 2486

X4-

3407“

C #0
17114;;4-\/'—-) 87
=0

-——Cmi)

I—_

=0

Np—_

+0

;ﬂ—ﬂmﬂ

-

#0

=0

p3/¥ |
Al > LBDy R
IMRE > T8DL,R
| D>rrrz,2
Xty 303, 2
ZINTHE > THDH, 2
O~ TMNRS

A34S

£2DL,2

* o.Péd"?

-0

HEXR
Alar 14,58

-19-

Date Aetures
Froin

Zndex Aem,

0>X2

#o

[1X 3

Lovk-ahead

DMZ,2 »Xd |

Set oxbit |

T2

11406, |

Y

=Q
(rxm@fﬁ-)

40

O >IXMby2

PDecode

SIM-2Z2 Flo

page 14
w Diagram

(2 #) Data Ketarn Srem Inder Hem,
(29) Count bus clocks
(30) Count AL+ TAL. Clecks

&

A36R

Adranee bus S/cre

(TE4+NVFBT)Mod (NFBT+)

| (oma-+NMEBT) Mod (VBT +])->Tme

>JF4

TInstr,

IAM4, 2 >TRUM

P bit
(LAV, =2

#0

O LAV,
LAVS,) > X1

Zudex Alem,
clocks

T8, 2~ | > 1ING, 2.

LIN2 = TPy, 2

0 IIR,,2

EE] v
(‘zami0,2) =25

«*0

IXMI0,2~1 <> Tin1o,2
) > TPy 2

EEQ

X241 -5X2

£0

X2~
+
A3b2

X 2

advapce bus

A40(cloek s
{ N@iﬂq-wz-/emﬂz
=0
A400___ N Ato3
(amz YE2slwmz-1swmz
=0
NE1 —> IF,
MNAL - TP
TFE1 - TP
omd > 1Py
AU C,
TJAUT = Clock
*o0
A405 Heéo4-
TAVT = | - JAVT 0 - IP,
XAV Clock
AM‘ N Ado8 X
ING ING =1 9IVG

HGK
Ala) 14,58

N page 15

() S STM-7 Flow Dicaram

{ 3/) (wgenn P Alasit o Foos P tlegi. Clecks

A%10 (32) Coun? C.C.U) Clocks
0> LR 2 (33) Frepare Zada for Prink
T GV FPrint Paka Lines
IMmay | =] -5 T 4s;)
TN 251 =3 TP, 2
y _B903
o > (LAVE+), 2 ~> LF,)
A2 .
s, | S _
\"J/_;:o X1+1->X1
X2~ |-2KE
ITANS, | =1-> ITnns
0
ABHZ Ny S
(MARKH) Mod (10) =5 AR
Adld Prepare first
, Time~Chart Uatn
TMM By | = | =>TmN6y | word for Print
| ~> P, 4
(TN HD), || > (T +12),) SMIO |
count o1 Test
J and Ceunt Summary
X4+29 X 4 Data |
X242 X2 print smal ; 2o print
K up doton :
X1+l5 x4 I>PBIT | SW#1 | 0> PBIT
2 | T
éO Yl ___'2 tape 70 fope
- Count dom O21BIT 1 TEIT
mq + c.e. U I
P =0
(1809 . " " ’;1"""7
T4 nex
A102 #0 *ime
IBDY-1->TBDq srep
Prepare e mainin g
e Time-chart Data
a0l . Warcds For Print
>0 i)
a9-» CEIT.
AY02 o»>wpIT
TYD4 -1 - TEP4 gnz 2ot
)] =0 | Print Title Lines
BN - PHDB | 1> PHDB
32>X4 R
NLH->XZ B #o J,'”“""‘“‘J
Print Time-Chart
; Data Ling
B103 70 He Kk
Al start next May 15,58

tine Gtep

	Contents
	I. Introduction
	II. General Description of the System
	III. Detail Description of Virtual Memory Operation
	IV. Description of Timing Simulation Program
	V. Some Results of the Simulation Studies
	VI. Appendix: Details of Timing Simulation Program SIM-2

