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The object of this primer is to answer two questions 

What are they? 
How do they work? 
The second question will take us inside Stretch, the Los 

Alamos Scientific Laboratory’s newest computer. Stretch 
has been described by its manufacturer, the International 
Business Machines Corporation, as ‘‘dramatically faster 
than the fastest in existence . . . the most powerful com- 
puter ever built.” 

Words 
All three words in “automatic digital computer’’ (a term 

that has certain advantages over anything with “brain” 
in it) are important and specific. Not all computing aids 
are true computers. Not all computers are automatic, and 
riot all are digital. Let’s begin by sorting things out. 

Digital and analog-the difference 

The two great families of computing aids are almost as 
old as the family of man. Picture Noah, if you will, on the 
first day of the big rain. He is sitting under a crude shelter 
on deck, watching the animals come aboard. The animals 
look hungry. Noah is wondering if he should send his sons 
into the field for one last load of hay. 

Each time two hayeating animals step on deck, Noah 
takes two dried beans from a heap beside his left knee and 
adds them to a growing pile of similar beans near his 
right foot. Later he’ll consult the beans and see if he 
needs the hay. 

The beans are a digital computing aid. They count, rath- 
er than measure. 

Noah’s worries are aggravated, of course, by the fact 
that he doesn’t want his boys to drown for the sake of one 
load of hay, even if he needs it. Therefore he gets his wife 
to put an empty stewpot by ‘his left foot, where a steady 
stream of rainwater from the shelter roof will fall into it. 
He hopes (maybe foolishly) that by watching the rising 
level in the stewpot he can get a useful notion of the speed 
with which the water is rising all over the world. 

The stewpot is an analog device. I t  measures, rather 
than counts. The worldwide water level is represented by 
an analogous physical variable-the level of water in the 
pot-rather than by signals that represent numbers. 

This difference stays essentially clear as we leave the 
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primitive computing aids and approach the true computers. 
Modern digital computers do more than merely count, but 
they always solve problems by working with discrete sig- 
nals that represent digits. Modern analog computers solve 
problems by measuring continuouslyvariable physical 
quantities-the voltage or amperage at certain points in 
the machine, the angle through which a certain shaft has 
been rotated, and so on, How much, rather than how 
many. 

Most analog computers can accept problems in numeri- 
cal form, of course, and produce numerical answers. (By putting marks on the stewpot, we can obviously make it 
count by quarts or inches.) The distinguishing fact re- 
mains that the operating quantities inside the analog device 
are variable in a continuous way, rather than by jumps 
across vacancy from m e  value to another. 

Notice, by the way, that each bean (except when it’s 
in Noah’s hand, taking its jump across vacancy) has only 
two significant positions or “states.” Each bean, by its 
presence in one pile or the other, says whether one animal 
has come aboard or not-yes or no. I t  is a two-state device. 

We’ll be seeing that term again. 

When is a Computing aid a ‘‘computer’’? 

Noah’s beans are markers only. They cannot be said to 
compute anything, since he still has to count them all when 
he’s through. 

A real computer not only takes in information (prob- 
lems and data). I t  performs reasonable operations on that 
information and produces an answer. If somebody were 
to hand Noah an abacus (probably a later invention, 
though very ancient), he could slide the captive beads in 
an appropriate way as the animals passed, and then he 
could read the total by noting the final positions of a rela- 
tively small number of beads. Or, if he knew that hay- 
eating animals had come aboard at the rate of 600 per 
hour for so many hours, he could use the abacus to multiply 
600 by so many. 

The abacus is a computer. I t  performs reasonable opera- 
tions on information given it, and comes up with an answer. 

The abacus is digital. It computes numerically, rather 
than by physical analogy. 

The abacus is not, however, an automatic digital com- 
puter. 



Where the “automatic’’ comes in 

Automatic computers are distinguished by their ability 
to execute a coherent sequence of instructions (called a 
program) without stopping. Att many points in the pro* 
gram, the next step to be taken may be determined by the 
results of previous steps in the sequence. Thus, in a sense, 
the machine may be said to select its own route to the final 
answer. 

This kind of thing is less eerie than it may sound. The 
point to remember is that every decision made by a com- 
puter is based on rules supplied to the machine by humans. 

Perhaps the best way to demonstrate the absence of 
magic in all this would be to follow a simple problem all 
the way through an automatic digital computer. What 
happens when a simple problem is brought to Stretch? 
What happens outside the computer and then what hap- 
pens inside? 

Getting the problem scheduled 

In real life, the story of what would happen if a simple 
problem were brought to Stretch is short: Somebody would 
take the problem away again. It would be solved on some 
slower computer, or with pencil and paper. Stretch has 
better things (see appendix on Page 8) to do with its 
time. 

Assuming that an. exception has been made, and that 
we can schedule whatever we like, what shall we have 
Stretch do? Adding two and two wouldn’t illustrate the 
most interesting aspects of the machine. What we need is 
a sort of miniature problem, intricate but small. 

We.have such a pro.blem, as it happens, in Noah and his 
load of hay. 

To anyone who knows how different this problem is 
from Stretch’s usual.diet, the choice may seem unprom- 
ising. Nevertheless, Noah’s problem of whether or not to 
send his boys ashore meets important conditions: I t  is easy 
to understand, and ijs solution by Stretch can be made to 
illustrate each of the procedures we need to look at, both 
outside and inside the machine. 
’ Noah’s problem has just been- scheduled. Let’s follow 

its handling, step by step. 

Determining what data are necessary 

A great deal of preliminary work will have to be done 
by a man before the machine comes into the picture. The 
man who determines htow to ask Stretch about the hay 
will be a carefully trained human called a programmer. 

The programmer will begin work on the Noah problem 
(-just as he would on one less simple) by sitting down at 
his desk to do a little common-sense planning. 

He knows already that the desired answer is a simple yes 
or no to one question: Should Noah send-his boys for an- 
other had of hay? (Actual computer answers are some- 

The final yes or no will be determined by the answers to 
two questions: Is the hay needed? Can the boys get .it 
safely? Unless both answers are yes, the boys will. stay 
on the ark. (We have s-eep how Noah worked on the 
same two halves of the problem, using a digital approach 
to the “need’ question and an analog approach to the 
“safety” question. Stretch will handle both questions 
digitally, since it’s that kind of computer.) 

Having seen that Noah’s problem has two parts, the pro- 
grammer may reach for pencil and paper and start on the 
first half-the one about need. He might begin by making 
2-1 idealized list. What information would he like” to* be 
able to supply to Stretch? , *  
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times long enough to fill a book.) . - ”  
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fie might write: ‘ * -  

Data 
Tons of hay already aboard when question arises (A) 
Tons of hay the animals will consume per day (€I) 
Days the animals will spend on ark (D) 
That’s all he needs. If accurate numbers corresponding 

to A, H, and D can be supplied to the machine, the ma- 
chine can produce a yes-or-na answer to the question, “Is 
more hay needed?” 

Perhaps our programmer next makes a similar list for 
the “safety” half of his problem. It  might look like this: 

Data 
Water rise; in vertical inches per minute, toward low; 

est point on road between ark and hay* field (W) 
Vertical inches still remaining between water level 

and lowest point on road when boys set out (S) 
Minutes required for boys to get hay and return past 

lowest point (P)  
Greatest depth of water safely fordable by hay 

wagon (N) 
With this information, if all of it can be obtained, 

Stretch can figure out a yes-or-no answer to the question, 
“Can the boys get the hay safely?” 

The two lists together call for seven numbers. Let’s save 
time by making the barefaced assumption that most of this 
information turns out to be available. The programmer 
has access to a newly unearthed archeological treasure 
called “Shem’s Diary,!’ and it tells him everything except 
Item H-the tons of hay to be consumed on the ark each 
day. 

This little gap in the data makes quite a difference. 
If all seven numbers had been available, the problem 

could have been solved by the programmer’s nine-year-old 
daughter. With H missing, the problem can benefit by the 
services of a machine, 

The computing job has grown. It has three parts instead 
of two, the first part being to calculate H, the +daily.hay 
consumption on the ark. (The safety question, with all its 
data available, is now a cinch. It ought to be done first, 
since a negative answer to it would settle everything. Our 
man will ignore this possible shortcut, though he wouldn’t 
ignore it in real life. Let’s say he has grown interested in 
programming the whole problem for“its own sake, or for 
ours.) 

Calculating the tons ,of. hay consumed .each. day on the 
ark will require-a data list of its own. A- look at ,that list 
will give us a preliminary hint about the one ;big advantage 
Stretch has over a human arithmetic champion. 

Stretch is faster-several million times faster. Let’s see 
how that affects the data list. 

When last we saw Noah, he was about to count some 
beans. Presumably this count would give him an accurate 
“total number of hay eaters” for his mental dat(a list. After 
that, he would have to make a rough guess at how much 
hay would be eaten by that many animals each day. He 
might make this guess by intuition, or he might go so far 
as to take one middle-sized hay eater’s estimated daily con- 
sumption and then multiply by the total number of hay 
eaters. To refine the guess any further than tliat, he’d 
have to estimate daily consumption for each species and 
then add up.the estimates. This would give him a more 
-nearly accurate answer, but he certainly wouldn’t attempt 
to do it. Life is too short. 

The Stretch programmer can afford to take a different 
view, His machine is going to solve the problem in seconds, 
even if he complicates i t  quite extiavagantly. He is. free 
to cdnsider each species, and he needn’t stop even there. 

Instead of just seven numbers;:he now needs a dozen 
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lists of numbers. The following version of what he might 
write is perhaps a little extreme, but it will make our point: 

Data 

Probable daily hay consumption, one adult pair, each 
species, when healthy (List No. 1) 

Same when seasick (List No. 2) 
Susceptibility to seasickness, each species-expressed 
as probable days seasick per 100 days at sea (List 
No. 3)  . . . 

And so on. Probable deaths from all causes, probable 
births, effects of seasonal changes in appetite-these and 
still other factors might be considered. Notice that the 
arithmetic isn’t really getting any harder; it’s just that 
there’s more of it. 

Stretch won’t mind that. 

Planning a program 

Let’s say that the programmer now sends a squad of 
assistants to the library to make up his lists, and let’s as- 
sume that all the facts (on appetites, death rates, and so 
an) turn out to be available. Our programmer gets his 
data (though still in a language Stretch wouldn’t under- 
stand); what else does he need? 

Along with the data, Stretch will have to be given in- 
structions about what operations to perform on the data. 
The full set of instructions for the Noah problem will con- 
stitute that problem’s “program.” 

As we shall see when we get inside the machine, each 
instruction covers 2 very small step in the program. For- 
tunately, the programmer doesn’t have to worry about 
every small step. All he has to produce is a general plan, 
plus a little specific guidance; then Stretch (or even some 
other computer) can assemble a complete Stretch program 
by putting together appropriate ready-made sets of instruc- 
tions selected from among those on file. 

The general plan for solving the Noah problem might 
go like this: Calculate H (tons consumed on ark per day). 
Then answer the “need” question, Then, if the answer is 
no (meaning no more hay is needed), print “no” and stop. 

wer the “safety” ques- 
aning the boys cannot 

print “no” and stop. If the safety 

Rather than write out, the preceding paragraph, the pro- 
grammer might jot down a preliminary “flow chart” that 
says the same thing.. For anyone who knows that “>” 

than,” the chart may be clearer than the 
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The job of, calculating H will be many thousands of 
times bigger than all the rest combined: 
wil€ have to give Stretch quite a lot tb go 
will begin by writing out a fairly involved equation, funda- 
mental to the determining of H. The eqziation will not 
be made of numbers; instead it will use symbols represent- 
ing “consumptim when healthy,” “consumption when sea- 
sick,” and so on. It  might end with “=Y,” Y standing for 
total hay consumption by one species of animals while on 
board. Stretch will have to solve this equation over and 

over again, once for each species, using appropciate num- 
bers from the lists each time and getting a different answer 
for Y each time. Then it will add all these answers togfither 
and get H, before proceeding ,to the easy:qxmtt$lrr 
problem. 

Stretch will perform its complicated task by steps-very 
small and simple steps, taken at the rate of hundreds of 
thousands per second. The flow chart is a handy way of 
summarizing these steps, but it is not the kind of thing 
Stretch can read. The programmer now puts his program 
into the forrri of a penciled list of commands, more detailed 
than those on the flow chart and less easily comprehensible 
to the layman. The steps on this list are still much bigger 
and less numerous than those the machine will ultimately 
take; each step still needs to be analyzed further, broken 
down into smaller components. But Stretch itself can do 
that job. 

Once the programmer’s pencil work is finished, can it 
be tossed into some kind of slot in Stretch? Not quite. 
Stretch has facilities for several modes of input, not in- 
cluding that one. 

Our programmer hands his program to a key punch 
operator. After a few minutes’ work at a keyboard similar 
to that of a typewriter, the operator hands him a deck of 
rectangular cards. What the programmer wrote, a moment 
ago, now appears as a scattering of rectangular holes, ar- 
ranged according to a pre-determined numerical code. 

The program cards could be fed into Stretch, but our 
programmer prefers to use magnetic tape, one reel of which 
can hold instructions for solving several problems in ad- 
dition to Noah’s. Therefore, the cards are now fed into a 
device that ccreadsyy their patterns of holes and “writes” a 
pattern of magnetized and unmagnetized spots in the metal- 
lic coating of a plastic tape. 

When the proper time comes, Stretch will “read” the 
magnetic tape, analyze the instructions on it, and form 
a detailed, step-by-step program to match. 

Preparing the data for input 
The program tape is now ready for use by Stretch. ‘The 

data lists are not. They consist mainly of numbers speci- 
fying the hay consumption, mortality rate, and so on, of 
each species. There are thousands of numbers in all. Be- 
fore the programmer made his program tape, he had to 
decide in detail how the input and storage of these num- 
bers would be handled. 

For input, he has decided to use one punched card for 
each species. (If one card wouldn’t hold all the necessary 
numbers, he could use two or more-but we’re keeping this 
simple.) 

He hands his data lists to key punch operators, who fol- 
low his instructions and produce one zebra card, one 
elephant card, and so on. The cards all look alike, the 
only difference being in the pattern of holes. This pattern 
represents, for each species, a single row of several dozen 
digits, specifying various characteristics of that species. 
Birth rate information, say, begins with the thirteenth 
digit and runs through the sixteenth, on each card. 

When the data cards are finished, they and the program 
tape are carried to the computer. Noah’s problem and 
Stretch are about to meet for the first time. 

t and output channels 
both directions between Stretch and 
ormally flow through eight electrical 
the channels handle flow in both 
one or the other. We are about to 

use two of the input channels. 



We mount the program tape on a tape reading device 
at the outside end of one of the channels that lead into the 
computer. We put the data cards in the rack of a card 
read.ingdevice at the outside end of a second input channel. 

Meanwhile the computer is going about its business, 
solving a problem for the man who was ahead of us on the 
schedule. A card punch and a rapid printer, both being 
fed by Stretch itself through two output channels, are re- 
cording answers to the computation now going on. The 
card punch is delivering 250 finished cards per minute. The 
printer is printing 132 characters at a whack, ten whacks 
per second. 

Stretch seems busy enough already. Does that mean we 
have to wait? Not at all. Stretch is no ordinary computer. 
We go ahead and press the button that starts the tape 
reader. 

(This account will include more than the normal amount 
of button-pushing, for the sake of keeping procedures clear- 
ly defined. In actual practice, the starting and stopping 
of various devices is more often handled automatically, 
through programmed commands.) 

The tape runs past a “reading head” and onto another 
reel. The reading unit translates the tape’s magnetic pat- 
tern into a pattern of pulses (sharp changes in voltage) and 
sends the pulses along an input channel to the Exchange 
unit of the computer. 
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The Exchange 
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The Exchange is the input-output routing center of the 
computer. In  addition to most of the characteristics of a 
telephone exchange, it has some of the characteristics of 
the distributor head on your car. Just as the distributor 
serves each sparkplug in turn, fast enough to keep them 
all working, Stretch‘s Exchange serves all input and output 
devices in such rapid sequence as to take care of them 
virtually all a t  once. 

F’ulses from the tape reader are now being received by 
the Exchange. These pulses carry, in numerical code, the 
programmer’s plan for solving Noah’s problem. The plan 
cannot yet be executed, because it isn’t stated in the right 
kind of detail and because it calls for data the machine 
doesn’t yet have. The plan will have to be passed along 
to another part of Stretch, where it can be stored (or 
“remembered”) until the proper moment. 

Storage 

How can hardware remember anything? It can’t, except 
in a fairly special sense. 

Flip a coin. I t  comes up heads. Unless you turn it over, 
it will still say heads tomorrow. I t  will remember “heads,” 
and divulge “heads” if consulted, for as long as you care 
to leave it in the “heads” position, or “state.’’ 

This gets more interesting with more coins, since the 
possible heads-tails combinations grow in number. Assign 
meanings to the combinations, in terms of any code you 
like, and a sufficient number of coins will remember your 
birth date or the Gettysburg Address. 

Each of the coins, like one of Noah’s beans, is a two- 
state device. Computer memories use two-state devices, 
with electronic ways of putting them into one state or 
the other, as well as of testing to see which state they are in. 

Such devices, when you have them in quantity, can store 
any kind of information at all. Modern digital computers 
store mostly numbers. Often, but not always, these num- 
bers are in a form called binary, which will be explained in 
a moment. Binary digits are called “bits” for short. 

The Stretch computer’s storage facilities are remarkable, 
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both for their capacity and for the speed with which in- 
formation can be put in or taken out. 

One part of Stretch’s memory contains millions of two- 
state devices called magnetic cores. These are tiny dough- 
nuts of iron oxide ceramic, each capable of being magne- 
tized in two different polarities. The magnetic core mem- 
ory can hold 98,304 “words” of 64 bits each, for a total 
of six million and some bits (not to mention eight extra bits 
per word, used for error detection). 

Another part of Stretch’s memory consists of 39 large 
discs, like oversize phonograph records, with space for mag- 
netic storage on both sides. The disc memory has a capacity 
of more than two million 64-bit words. I t  can deliver 125,- 
000 words per second. 

In less than a second, even while an arithmetic calcula- 
tion is proceeding, the core memory can dump ( a  technical 
term meaning transfer in perfect order) all its data into 
the disc memory. 

Is it still possible, among all these 64-bit words, to find 
the one that’s wanted? Absolutely. The trick is done by 
means of a system of addresses, just as in a big city. Each 
word-location in the core memory, for instance, has its own 
identifying number. This number serves as the address of 
whatever word may be roosting there. 

Much more should be said about computer memories, 
but perhaps not in this primer. Let’s get on with Noah‘s 
problem. 

The instructions from the program tape are passed along 
by the Exchange to the magnetic core memory, where they 
wait. The card reader is then switched on. I t  begins flip- 
ping cards at the rate of 1,000 per minute, reading the pat- 
tern of holes in each card and sending the data (again in 
the form of pulses) to the Exchange. The Exchange passes 
this information along to the core memory for storage. 

The core memory is plenty capacious for this problem. 
We are using only a fraction of Stretch, and it may be that 
somebody else is loading the disc memory (through other 
input channels and the same Exchange) while we proceed. 

S’torage discs of the Stretch computer. 



Essentially, we are storing the “image” of each data card 
in the core memory. The significmce of each hole in one 
of these cards depends eotirely on the location of the hole, 
since all the holes are alike. If *tihe zebra number begins 
6340952. , . ,, the card’s first column on the left will have 
a hole in the sixth vertical position, the second colymn from 
the left will have a hole in the third vertical position, and 
so on. To store the zebra number, using our two-state de- 
vices, we might assign one core to each possible hole locae 
tion on the card, then let one polarity represent “hole” and 
the other polarity “no hole.” 

This way is not very efficient, since it uses ten cores (one 
saying “hole” and nine saying “no hole”) for each digit in 
the number. We have chosen, in loading Stretch for the 
Noah problem, ta store the ’numbers in a form that is un- 
necessarily bulky. Before the actual computation beg’ins, 
we’ll have Stretch convert these numbers to a form in which 
they can be stored,more compactly. . 

Binary Notation 

Binary fiotation, in which every digit is either 1 or 0, 
is beautifully suited to machines that use two-state devices, 
I t  not only makes storage easy; it makes arithmetic easy. 

The kind of notation you use every day (and the kind 
in which we have just stored the Noah data) is called 
“decimal” notation, because it is based on the number ten, 
I t  uses ten distinct digits, from 0 through 9. A “place- 
value” procedure permits the writing of numbers larger 
than nine. In decimal notation, “~000” means exactly one 
thousand because it has a zero in the “ones” position, a 
zero in the “tens” position, a zero in the “hundreds” pol 
sition, and a one in the “thousands” position. The position 
values get ten times bigger with each step to the left. 

Binary notation works exactly the same way, but on a 
base of two. There are only two digits, 0 and 1. Position 
valiles get only twice as big with each step to the left. In 
binary notation, “1000” means exactly eight, since it has a 
zero in the “ones” position, a zero in the “twosyy position, 
a zero in the “fours” position, and a one in the “eights” 
position. 

Decimal notation uses a “decimal point,” with place 
e right of it continuing the progression set up 
becoming “tenths,” “hundredths,” and so on. 
tion uses a “binary point” in exactly the way 

you might expect, place values to the right being ‘‘halves ’’ 
“quarters,” “eighths,” and so on, To register “three and 
five eighths,” we write “1 l,lOl,” which means two plus 
m e  plus one half plus no quarters plus one eighth, 

That’s all there is to binary notation, though you may 
feel like trying it on some telephone numbers if you haven’t 
seen it before. Seven is 11 1 (four plus two plus one), and 
Sf you place three coins h hey’ll remember seven 
forever, The binary 10010 01010 is a longish num- 
ber, but much more conv r Stretch to remember 
than the equivalent 74,506. 

Not only storage, but arithmetic, gets easier with binary 
potation. We’ll see how in a moment, when the computa- 
tion begins. Before that happens, the program has to be 
put into the final form in which it will be executed. Neither 
this nor the conversion of data to binary notation can be 

the memory. Both operations could have been per- 
by some other computer, and the assembled results 
into Stretch, but we have preferred to leave it all 
tretch’s own Central Processing Upit, 

The CPU 
The part of Stretch. that does the arithmetic (and many 

other things besides) is called the CentraI Processing Unit, 

or CPU, While we were loading the core memory, the CPU 
was busy producing answers for somebody eke. 

Now the CPU has finished the other man’s problem. I t  
signals for more work. The Noah program is electrmically 
sent tQ the CPU, a piece at a time, from the core memory. 
Complicated circuits in the CPU, uiorkiri 
with an “assemblyyy program, analyze the 
grammer’s plan. Each step is broken down into a simple 
sequence of commands, put into appropriate numerical 
language, and returned to storage. When the whole pro- 
gram in final form has been thus assembled and stored, the 
CPU starts executing it. 

The first task on the program turns out to be conversion 
of the stored data into binary notation. Therefore, follow- 
ing a set of instructions it uses almost every day, the CPU 
converts the data. This does not mean that all the zebra 
information is converted at once, even though we stored 
it in a form equivalent to one long string of decimal digits, 
This string was really several items of information, What 
happens now is that the CPU calls for the number repre- 
senting “healthy zebra hay consumption,” converts it, and 
sends it back t~ storage. Then the number representing 
“seasick zebra hay consumption” gets the same treatment, 
and so on. All the information on all the animals is con- 
verted into binary notation in seconds. 

But we seem to be in danger of going so fast that nothing 
gets explained. Let’s make the assumption (unlikely but 
possible) that when the conversion to binary is finished, 
the next command on the program is to stop and wait for 
the operator to push a button. 

This ‘gives us a chance to. emphasize an important paint. 
Stretch has no information on the meanings of the num- 

bers it is juggling. Stretch is hardware. We have fed into 
it certain complex patterns of electrical pulses. These pat- 
terns travel about within the machine, changing one an- 
other in ways determined by the machine’s designers and 
our programmer. Stretch cannot be said to know what 
the programmer is up to. Stretch lives in a sublime and 
abstract world of ones and zeroes. Like all other digital 
computer‘s, Stretch has total freedom from the concrete 
meanings df” the problems it solves. This is the seoret of 
its versatility. 

Computation 
The operator will soon press a button. The CPU will 

consult the stored program and cause itself to perform the 
next step, followed by the rest in order. 

What are these steps? 
They are numerous and small. One conceivable series 

of commands might go as follows (though this language 
is not the machine’s): “Fetch the word at address 86957 
and put it in Register 8 (part of the CPU’s arithmetic 
unit). Ignoring the first nine digits of the word, divide 
the next six digits, treated as a single number, by the cor- 
responding bits of the word whose address is 00050. Store 
the unrounded quotient in Memory Location S.” 

Those commands, detailed though they sound, involve 
yet smaller operations. The command to  divide, for in- 
stance, entails a great many steps in itself. 

Must one step end before the next can begin? In most 
computers, yes. In  Stretch, no. One reason for Stretch’s 
unrivaled speed is that steps can often overlap. For in- 
stance, as soon as one step is begun, Stretch %oks ahead” 
and performs the “fetches” (and sume other types of ac- 
tivities) necessary for the next. 

How hard is the arithmetic th 
quite easy. 

In most ways (includin 
binary arithmetic is exac ecirnal arithmetic. Mul- 

Q 



tiplying 11 by 101 requires exactly parallel procedures, 
whether it means “eleven times one hundred one” or “three 

e radix (base) of notation determines the 
ing of the marks, but doesn’t change the 

rules for operating on the digits. (The rule about “carry- 
ing” is not a real exception. You carry whenever the high- 
est digit in your system of notation is lower than the quan- 
tity you want to write.) 

So binary arithmetic resembles, procedurally, the arith- 
metic you do yourself. What makes binary arithmetic so 
much easier is that it never involves digits higher than 1. 

Let’s see what this means to an electronic computer 
(which can be thought of as using built-in “tables” of mul- 
tiplication and addition) : 

When a human being multiplies any string of digits by 
another string of digits, he does it by dealing with two 
digits at a time, following a memorized procedure and using 
memorized tables of multiplication and addition. The 
tables state the results of multiplying or adding all possible 
two-digit combinations. As you may remember from the 
weeks when you were learning them, the tables used in the 
decimal system are formidable. Each of them has to ac- 
count for dozens of possible combinations. 

The combinations in binary notation are 0 and 0, 0 and 
1, 1 and 0, 1 and 1,-and that’s all. 

The whole binary multiplication table can be reduced to 
a single rule: “One times one is one; any other product 
is, zero.” Electronic circuits that will produce an “on” 
response when confronted with two “ons,” and an “offYY 
response otherwise, are correspondingly simple. Circuits 
for subtracting, adding, or dividing are more complicated 
(those for. dividing, especially), but they are far simpler 
than those that would be required for decimal numbers. 

One neat trick deserves special mention. Frequently the 
effect of one binary. number acting arithmetically on an- 
ather is simply to. shift the position of the “binary point” 
(equivalent, you’ll remember, to the decimal point) in the 
number being acted on. This effect can be useful. The 
binary point, of course, can’t be registered as such in the 
machine anyway, since it’s not a digit. If its position in 
a given number is specified by certain digits stored with 
the number, as it is in “floating point” operation, then its 
positionxan be changed by changing those bits. 

Stretch, unlike some computers, can operate in either 
the “floating point” way or the “fixed point” way. Floating 
point operation not only permits automatic “point shift” 
arithmetic; it also makes it easy to retain the most signifi- 
cant part of any number that grows so long as to need 
“rounding off .” 

All right. Let’s get the operator to push that button. 
This is the moment to which all the programming, cod- 

ing, and data preparation have led. Stretch is now ready 
to start plodding through the millions of successive tasks 
involved in solving Noah’s problem, 

The, operator.presses a “start” button, steps to an output 
printer a few feet away, and tears off a sheet of paper. 
There is a ‘‘yes,’’ or a “no” on the paper. I t  got there about 
the time he did. 

How can anything work so fast? 

Aside frbm the special features already mentioned (the 
huge fast-access memory and the ability to “look ahead”), 
one other feature helps to account for the speed of Stretch. 
I t  is called “indexing.” Many modern computers have it, 
but nme in so powerful or flexible a form as Stretch. “In- 
dex registers” in the CPU, using a relatively simple suc- 
cession of subtractions or additions, make possible a great 
reduction in the number of coded steps necessary when 

the same equatioa (like the one we used for finding H) 
has to be used over and over again. 

Aside from all these features, one fact is central in ac- 
counting for Stretch’s speed, and for that of most other 
giant computers: There are (with exceptions in the input- 
output areas) no moving parts. 

Early calculating machines used hand-propelled gears 
and ratchet wheels. More recent kinds used electricity 
(fast enough in itself) but controlled it by mechanical 
switching (very slow). Then came electromagnetic relays, 
which were still metallic switches of a sort, but faster. 

Real speed in computing began with the employment 
of vacuum tubes. Electron traffic could now be controlled 
by other electron traffic. Nothing mechanical had to move. 

By using transistors instead of vacuum tubes, “solid- 
state” machines like Stretch and others have made a fur- 
ther improvement in computing speed-becoming more 
compact and easier to cool at the same time. 

, 
The sources of error 

How much faith can we put in answers so hastily arrived 
at? Several factors (not including the haste of the ma- 
chine) are legitimate reasons for skepticism. 

Stretch, like other computers, has no facilities for imb 
proving the accuracy of the data given it. Errors in the 
reference books from which the data came, like errors in 
the transcribing of such data, cannot be detected. 

Moreover, if the programmer makes a mistake, specify- 
ing a procedure that will produce a wrong answer, Stretch 
cannot be expected to set him right. 

Finally, a number in the computer sometimes grows so 
long that it has to be “rounded off.’” This can often be 
prevented by careful programming or by letting the num- 
ber spill over into a second word, but there are times when 
an infinitesimal “rounding-off ’’ error must be accepted. 

Stretch has various ways of checking on its own cor- 
rectness. For instance, each 64-bit word is accompanied 
by eight “checking bits.” Stretch will detect, and often 
automatically correct,, almost any error resulting from mal- 
function. 

Is Stretch a brain? 

Stretch is a tool for solving problems similar to some of 
those solved by the human brain. Though the popular nick- 
names are bound to catch up with it, Stretch is not a brain. 

The analogy is a fascinating one, all the same. It  has 
been considered in some detgl by the late John von Neu- 
mann (The Computer and the Brain, Yale University 
Press, 1958), as well as by A. J. Turing, who wrote Can 
Machines Think? 

Turing says they can, potentially, but his definition of 
thinking should be examined. 

Both in what they are and in what they do, brains and 
computers have points of similarity. An obvious one is that 
they both “remembe~” information. Another is that each 
nerve cell in the brain likes to respond in the “all or none” 
fashion characteristic of two-state devices. Computers (fol- 
lowing programs devised by ingenious humans, of course) 
have succeeded in composing music, translating prose and 
poetry, playing chess and checkers (the first rather badly) , 
and so on-, They are unquestionably the most brain-like 
tools man has ever devised. 

Fascinating problems of consciousness, initiative, im- 
agination, emotion, esthetics, and even religion pop up 
when the analogy between brain and computer is pursued. 
Since this is no place to pursue it, the best thing to say is 
that there is a similarity and a difference. This primer will 
stop there. 
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‘ ’ APPENDIX: SOME COMPUTER APPLICATIONS AT LOS ALAMOS 

With three IBM 704s and the 
M A N I A C (Mathematical Analyzer, 
Numeric and Computer) 
running uously, night and 
day, for era1 years, LASL 
has earned a reputation as one of the 
most advanced computer centers in the 
nation. Now, with the recent addition of 
an IBM 7090 and the super computer 
Stretch, the Laboratory has become 
one of the most advanced electronic 
computer centers in the entire world. 

Why does Los Alamos require such 
remarkable computing facilities? 

What impact will Stretch really have 
on Los Alamos programs? 

MODELS 

Electronic computers frequently work 
with what is called a “mathematical 
model” of something in the real world 
-a mathematical model being a system 
of numerical relationships that approxi- 
mates the actual physical relationships in 
a real-life state of affairs. By means of 
mathematical models, a computer cap 
be made to predict, o r ,  “imitate,” the 
functioning of anything from an egg- 
beater to a thermonuclear bomb. The 
imitation can be more or less crude, 
more or less acurate, more or less use- 
ful to the designers of actual eggbeaters 
or‘ bombs-depending on how detailed 
the mathematical model is. Computer 
speed and memory capacity are import- 
ant because the more details the 
machine can handle, in a reasonable 
time, the more refined the mathematical 
model can be, and the more useful the 
results. 

Studying real or hypothetical hard- 
ware by means of a computer is a little 
like gfydying physical events with a 

in that a great deal depends on 
ch detail our picture shows. The 

word “resolution” is used, in both pho- 
tography and computing, to mean 
clarity of details. One way of describing 
the differenee Stretch will make in 
LASL computing facilities is to say that 
Stretch will make possible at least a 
*threefold improvement in resolution. 

In addition to this improvement in 
quality, the quantity of Stretch’s pro- 
duction in any given time will be at 
least ithree times that of all the rest of 
the computers at Los Alamos put to- 
ge ther. 

NECESSARY 

In terms of LASL programs, what 
akes Stretch necessary? 
Both military and nonmilitary aspects 

of Los Alamos work will benefit from 

(reprinted from LAiSL NEWS, May 4, 1961) 

Stretch. A single design study for a new 
thermonuclear warhead, as performed 
on the existing 704 computer, requires 
something like a billion arithmetic cal- 
culations. I t  takes about ten hours. On 
Stretch, a higher-resolution (more real- 
istic) study of the same device, involv- 
ing perhaps thirty times as many arith- 
metic operations, can be performed in 
the same time. The usefulness of higher 
resolution is obvious, but the usefulness 
of the greater speed may be less so, at 
first glance. We needn’t design a new 
warhead every ten hours; what good is 
the extra speed? 

The answer lies in the fact that for 
every hypothetical warhead that be- 
comes an actual device in the nation’s 
defense arsenal, dozens of not-quite-so- 
good designs have to be studied and re- 
jected. The whole direction of research 
and development on weapons will al- 
ways be heavily influenced by the kind 
of mathematical trial-and-error that is 
made possible by the existence of fast 
computers. Even in the absence of the 
current ban on nuclear test detonations, 
it would not be feasible or desirable to 
obtain all the necessary information by 
experimenting with actual b o m b s. 
Mathematical models will always be 
used extensively, for the purpose of sav- 
ing time and money in guiding experi- 
mentalists toward areas where experi- 
ments will do the most good. 

PROJElCT ICIOVEB 

In its many peaceful programs, LASL 
finds fast computers an equally indis- 
pensable tool. One good example is 
Project Rover. 

A rocket reactor must be extremely 
powerful for its weight, and therefore 
must operate at very high temperatures. 
I t  must also be capable of rapid and 
delicately controlled changes of power. 
In the face of these and other require- 
ments, designers have to answer such 
questions as these: How big should the 
fuel volume be, and what shape? What 
kind of fuel should be used? What re- 
flector? and so on. 

The answers depend on the tiny par- 
ticles called neutrons, some of which will 
remain in their parent atoms and some 
of which will fly about inside ithe reac- 
tor, in all directions, at various speeds, 
by the billions. The designers need to 
know how many neutrons will be where, 
under certain conditions, and what their 
speeds will be. 

The factors that will determine the 
*neutrons’ behavior are known, but they 
are very complex and pumerous. De- 
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tailed predictions of neutron traffic at 
given points in the reactor entail a huge 
number of calculations. No single step 
in these calculations would be difficult 
for a good arithmetician with a pencil, 
but he might need several lifetimes to 
do them all. If there were no machines 
for performing such calculations, the 
only feasible way of getting the answers 
would be .to build the reactor without 
the help of detailed predictions, and 
then study the neutrons. Perfecting a 
reactor design by these build-and-study 
methods would be a lengthy and far 
more expensive process. 

DOLLAR SAVER 

Reactor design studies have been per- 
formed at Los Alamos as .a matter of 
routine for years. The advent of Stretch 
will make it possible to improve. the 
realism of such studies and to increase 
their number, with a consequent saving 
in the taxpayers’ dollars that might 
otherwise have to go into experimental 
hardware. 

In Pro.ject Shenvood, the behavior of 
high temperature plasmas under the 
influence of strong magnetic fields pre- 
sents problems so complicated that the 
equations for solving them have, in 
many cases, still to be created. I t  is 
likely that such problems in magnetohy- 
drodynamics will become a part of 
Stretch’s diet in due time, and that the 
high degree of resolution possible with 
Stretch will turn out to be as useful in 
Sherwood as elsewhere. 

The Laboratory’s Health Division has 
made frequent use of LASL computing 
facilities, notably for data reduction in 
connection with experiments on labora- 
tory animals. Interspecies correlations 
by which experimental data from ani- 
mals can be extrapolated to humans are 
made more meaningful by mathematical 
techniques involving electronic comput- 
ers. One long-range plan (f o r t h e 
establishment of radiation dose contours 
throughout the body of a life-size plastic 
man) will almost certainly require ithe 
extreme speed and capacious memory 
of the Stretch computer itself. 

The applications mentioned above are 
examples only, and numerous others 
could be listed. The present and ex- 
pected quantity and complexity of com- 
puting jobs at Los Alamas are such (that 
further expansions of the machine facili- 
ties, after the arrival of Stretch, are al- 
ready being considered. In  a vigorous 
scientific institution, there can never be 
a shortage of problems. 


