
Mernoraaurn to: Dr., S. G .  Campbell September 12, 1961 

I Subject:: Design of Floating Point Arithmetic 

The following consists of a n m b e r  of suggested improvements on 7030 
Floating Point Arithmetic. 
sys tem of three interconnected accumulators, an unuosuaIly.powerful instruction 
set and extremely fa& arithmetic. 
the 7030, and the additional hardware inverstment will be emall. 

If implemented, the machine will have a unique 

M o s t  ob t,he hardware needed is already in 

The present  memo will cover the following points: 

I .  Format  
2 .  The Multiplier Register 
3. The Triple-Accumulator System 
4. Postgressive Indexing 
5. Lmrnadia te Operands 
6 .  Data Flagging and Overflow 
7. Serting and Merging  

Other topics will be discussed by a different m e m o .  

This memo is more or  less a continuation of an  earlier one ("Floating Point 
Arithmetic", August 2 3 ,  19611, and relevant mater ia l  may be found in two 
other memo8 ("Xndex W o r d  Fo rma t  and Index Arithmetic", July 2 6 ,  1961 and 
"Pragrerimive Indexing'', July 2 8 ,  1961). 

The t r iple  accumulator concept evolved in severa l  discussion8 with Don Gibson 
(Kingston). I have benefited greatly discussions with Don Gibson and 
Robert Rockefeller (Kingston), and stimulating discussions with C. T. Apple, 
N. Hardy, G. Hi ra  and Gordon Took (KingBton). 



-2 -  

The 7030 floating point fraction is preceded by the exponent and followed 
by the 4 b i t  sign byte. 
the second order fraction adjacent to the first order fraction in &e 
double-length accumulator to accommsdake VFL data handling? In the 
7030 this is achieved by detaching the sign byte from the floating point 
number and placing it in a special sign byte register ($SB). 

It ies desirable in double precision work to have 

This arrangement has a number of drawbacks. 
floating point "load" or ("load with flag"), even if unnormalized, will not 
reproduce the bit configuration of the word in the accumulator area. 

First, tho result of a 

Secondly, any floating point instruction involving the left accumulator 
address (8.  0) will  be an unusual instruction, for which 60 bits from 
address 8. 0 plus 4 bits from address 10. 03 (fourth bit of sign byte 
register) must be mobilized by hardware. 

A third difficulty is that, again far VFL accommodation, the second order 
fraction begins immediately after the end of the first order fraction, 
namely at bit 60 of the left accumulator. 
the effect that, so far as floating point arithrnetic is concerned, the lower 
accumulator ceases to be an independent lentity, but mainly a slave of the 
upper accumulator* 

This artificial placement h a a  

It is more desirable to place the sign byte at the front of the floating point 
word, The exponent sign bit should also 'be the leading bit of the exponent 
field for the eake of uniformity. 
'!load with flag", the entire word can occupy the left accumulator without 
change of bit configuration. Floating point instructions involving the left 
accumulator address will  then be a nonexceptional operation, 

During ai floating point unnorrnalized 

The need for a separate sign byte register will be removed; there need 
only be a 4-bit ''zone byte register" preceding the left accumulator. 

An immediate consequence of this new arrangement is that the .fraction ends 
precisely with the loft accumulator. 
60th bit is thus avoided. 
position of the right accumulator. 

The rather unnatural partition at the 
Further, this enhances the semi-independent 

To ensure the fraction continuity of a double-precision number in the double 
precision accumulator, the ideal Sow order fraction ehould again be adjacent 
to the high order fraction, with the low order sign byte and exponent 
dileplaced to the extreme right, as seen in Figure 1 ,  



, 

ZYXW 

-3 -  

fraction i fraction 2 S 3 U V  expt 2 

It is important to allow the lower accmtxlator the frcedo'm. of having its own 
sign byte and exponent. It may not be eaay to emure  the low order sign byte 
and exponent to be compatible with the high order counterparts, nor is it 
rkally necemary. 
patibilize and store low order) which treats the low order fraction as the low 
order part of a double precisian ward, creates and inserts the correct sign 
byte and exponent before storing. 

- There should, however, be the instruction CSLO (eom- 

2.  THE MULTIPLIER REGISTER 

In the K-2 improvement program a multiplier register ($MR) is provided to 
facilitate the "multiply and add'' instruction. 
multiply arithmetic time by a factor of two. 

This reduces the vector 

The multiplier register in K-2 i e  accsssible to only three instructions: 
LMR (load multiplier register), *t (multiply and add) and STM (store 
multiplier). It has no address. 

It is important that this register be given an address, for there is a genuine 
need for addressable transistor registers; in the accumulator area serving 
as temporary storages to avoid unnecessary interaction with memory. 

In the "double divide" instruction instead of sending the remainder to location 
13.0 in the memory, it would be much more expedient to put it in $MR for 
rapid reaccess, 

3. THE TRIPLE-ACCUMULATOR SYSTEM 

The 7030 employs the universal accumulator concept: the most important 
results of arithmetic are always placed in the accumdator. This, plus the 
addressability of the accumulator, removes much need for using temporary 
storagers. 

It is a t i l l  necessary to protect a result from being destroyed by the next few 
instructione. Since the forwarding implementation is uneconomical, it is 
neceasary to have high speed registers f o r  temporary etorage. 
accumulator and the multiplier register, <when given high speed linkage to 
the upper accumulator, clearly will @ e w e  the purpoae. 

The lower 

One can proceed a step farther to Have tho reaccessing the temporary 
storage, by endowing these two registers the property of universal 
aceumulatoxs. 



-4- 

The universal accumulator in the 7030 is achieved by performing arithmetic 
with special hardware outside the accumulator. It i s  thus extremely simple 
fo r  the hardware to pick up operands from, and submit results to,  any of the 
three % cerumula tor s ". 
It turns out that the linkages, through the nBed for "double" operations and 
"multiply and add" are already present, although a little strengthening may 
lead to higher speed. 

A single accumulator i s  not really enough to  demonstrate the power of 7030 
arithmetic, since the storing and refetching from temporary storages are 
redundant operations. M o r e  than four accumulatora would lead to  another 
type of redundancy, namely redundancy of hardware. 
of performance with hardware calls fo r  about three ar four accumulators, 
The natural expansion of 7030 facilities with little increase of hardware leads 
t o  the near optimum number of three. 

The optimum balarnck 

There should be a more powerful instruction set to help bring out the potential 
of the triple accumulator scheme. 
instructions, (add, multiply, etc. ) available to all three accumulators 
separately, 
double" "multiply and add'') to allow the accumulators to pool their resourceis 
together. Finally there could be automatic "filing" and "retrieving" echemcs 
to reduce the number of redundant operations to a minimum. 

There! should be elementary arithmetic 

Then there should be cooperative instructions (such as "add 

The triple-accumulator possibility changes the entire complexion of floating 
point arithmetic. Not only will programming be vastly simpler and easier to 
debug, but the acheme allows great improvement in arithmetic speed. 
instance, if two consecutive instructions refer to different accurnulators, the 
second instruction can be started long before the first one finishes. 

For 

4. POSTCRESSIVE INDEXING 

Index arithmetic on the 7030 is relatively slow. 
instructions take 5. 7ps each, a sequence of ':add to value" instructions 
take 5 . 2 ~ ~  each. 
tion is "add to value immediate" a sequence of which takes 3. 3 ~ s  each. 

A sequence of Yoad index" 

For floating point inne:r loops the most important instruc- 

W h e n  interlaced by floating point instructions, much of the time can be over- 
lapped. P o  The amount dead time which cannot be overlapped is 1 . 5  to 1 . 8  

There a re  various ways to improve the index arithmetic 8peed. 
by refraining from loading index recovery levels into the lookahead, the dead 
time can he reduced to zeroo if ther is enough arithmetic action to cover up 
the I-box index arithmetic time. 

For instance 



However, it is not easy to cover up several microseconds of I-box time 
by concurrent floating arithmetic, particularly if the latter i e  made faster. 

The solution is to make useful index arithmetic an automatic secondary 
operation on floating point instructions. This gavere instruction space and 
can allow overlap (within the I-box) of decoding time. Further if the index 
arithmetic is similar to routine effective reddress creation, the I-box time 
will be cut dragtically, to the extent that overlapping with E-box time i 8  

practically as sur ed. 

0 

In 7030 V F L  arithmetic, progressive indexing is a powerful secondary 
index arithmetic operation. 
different from usual effective address creation, and is therefore not too 
fast and is hard for new programmers to ].earn. 

Somewhat unfortunatelyr the feature is quite 

In an earlier memo (Progressive Indexing, July 28, 1961) a scheme to 
replace the: present progressive indexing has been suggested. 
"postgreasive indexing" scheme the effective address i s  generated in a 
etandaxd fashion (address field plus index value field), but the effective 
address may or m a y  not replace the index value field,  dependent on the 
specification by the programmer 

In the new 

The poetgressive indexing scheme save8 EL good bit of hardware, is just a s  
powerful as progressive indexing, is potentially faster, and is easlier to 
learn and uBe by programmers. 

A method to avail the poetgressive indexing feature to practically all 
instructions was ale0 described in the same memo. 
tions of the four options (normal, immediate, V+I and V+ICR), are 
relegated to the two unused index register bite, and only one bit per instruc- 
tion ira needed to apecify whether the specifications are to be ignored or not. 
This greatly generalizes irnmediate index arithmetic (by taking the immediate 
option i~ direct index ar i the t i c .  
indexed, but will  now be! fully indexable), and makes bug-free floating poht 
arithmetic particularly easy to  program. 

The precise specifica- 

Such instructions previously cannot be 

5. IMMEDIATE OPERANDS 

A side-effect of the postgressive indexing scheme is that all floating point 
batructions now can have opti~nal  immediate operands. 
address field can be ueed to contain the agerand, rather than an address 
which refers to the operand. 

Namely, the 

The use of immediate operands reduces memory accese, hence trends to 
cut down the number and durations of mernory conflicts in the machine, 



- 6 -  

E 
Of much greater importance is the forthright nature of coding achievable 
through immediate operand addressing. 
"multiply the quantity in the accumulator by 13" directly in one instruction, 
rather than "mdtiply the accumulator contents by the contents of 25724. 0''. 
By the time the instruction is being executed the contents of 25724. 0 may 
no longer contain the number 13. 

It will now be pot3sibls to say 

The instruction "add to exponent immediate" will now be a special cam 
of the inetruction "add to exponent", and can be removed. 

6 .  DATA FLAGGING AND OVERFLOW 

The data flagging feature in 7030 floating point arithmetic is extremely 
convenient for boundary value problems and matrix manipulations 11 

The preaence of threo flag bits (TUV) per floating paint word, however, 
may be a luxury. It turns out that the presence of one flag is very helpful, 
but there are few instances calling for two data naga and virtually no need 
far all three f lags  at all. It seems desirable to turn f i e  lower flag bits to 
better use e 

Unnormalized floating point arithmetic OR the 7030 may lead to overflows in 
the fraction field. This overflow may only be intended by the programmer 
to be a temporary phenomenon to be. retrieved in subsequent operations. A 
case in paint is (0.5 4- 0.5) - 0. 5, where the result should be +O. 5. On the 
7030 this leada to a "lost carry'' indicator being turned on, and the result i s  
minus 0.5, becauee the machine does not allow retrievable overflow of the 
fraction field for mnormalized floating point arithmetic. 

Because floating paint arithmetic i a  much faster on the 7030 than VFL, it 
is advantapma to do unnormalized floating point arithmetic on VFL 
quantities to gain speed. The lack of proper overflow retrieval is a handicap. 

It i e  therefore suggested that in the floating point word the V flag bit be used 
as an axteneion of the high order bits of the fraction, such that fractions 
twice as large a s  normal can be allowed to exiet. Alao the U €lag should be 
made into a double overflow flag which is turned an whenever a fsation 
double overflow occurred. 
without explicit bit-setting instructions, and a U-flag interrupt can be mads. 
as an indication for double?, fraction ovegflow. 
flagson the other hand, is not really crucial, 

Such double overflow should not be retrievable 

The interruptibility of the V 

The! new floating point word format would place the U, V flags ahead of the 
fraction, and the: overflow interpretation is quite natural. 
a floating point word to carry its own overflow indications should be an 
added arssset, 

The, ability for 

Y 



-7- 

It i s  extremely important that the fractian overflow condition be retrievable 
on unnormalized add operations. 
V-flagged" quantities is not of grave concern. 

For  other instructions the precise action on 

7. SORTING AND MERGING 

The 7030, because of the highly overlapped nature, i a  relatively slow on 
branches on the basis of E-box conditiongi. 
can be tested only by proceeding on an assumption with provision to back- 
track, 

The indicator bits AL, AE, AH 

The asmmption OR X - l  and K-1 is that the branch is probably uneuccessful. 
In the K-2 and subaequent machines the assumption is that the condition af 
these indicators will probably remain zmcbaged bemeen the decoding and 
the execution of the branch inatruction. 

The K-2 scheme can be quite effective if the "compareF1 instruction which 
sets the indicator@ AL, A E  and AH i a  Beveral instructions ahead of the 
conditional branch, 
maintained, and the conditional branch is very faat. 

For many situations this ''instruction distance" can be 

There are, however situations which involve extremely ahort conditional 
branch inner loops, and the ''inetruction distance" can be maintained o d y  
through t h e  consuming artifice@. 
a given collection of numbers are rearranged in numeric sequence, and 
merging, in which two or more presorted aequences combine to form a 
longer sorted sequence. 

Outstanding cases are sorting, in which 

The sort-merge problem is important particularly in commarical data 
processing. 
be sorted may well  have been recorded in floating point format to gain spatd. 

Usually the data may be! in 'VFL format, but the key items to 

The solution to  the sort-merge problem lies in giving the E-box high rapeed 
facilities to do the right thing automatically without testing by conditional 
branches. 

For the 7030 a new instruction, tentative1.y call K L  (compare load) allow8 
high speed automatic "anchor" sorting, arad a new KC (cornpare atatus change) 
indicator bit with interruption facilities aLlowB high sp&d merging. .I 

In the compare load instruction, the m e m o r y  operand is compared with the 
quantity in the upper accumulator. 
accmdator,  and the smaller quantity is baded into the lower accumulator. 

Whichever is larger goes to the upper 

The instruction produce# automatically a sorted pair of numbers without any 
conditional branch inrrtructictns. 



I - 8 -  

% For a collection of N numbers, 
accumulator, Then, (N-1) pairs of KL,  SLO instructions later tAe largest 
entry will be found in the upper accumulator. The ("1) smaller numbers, 
now partially sorted, ; 2 ~ e  stored in the memory ready to repeat the process 
with one fewer member. 
heftiest quantity i s  always found at the bottom after one sweep, is here done 
completely without any conditional branch instructions. 

number i s  placed first in the upper 
t 

This "anchor" sorting process, in which the 

A s  a result of a compare instruction the AL, AE, AH bits are oet. If the 
resultant status is different from the previous status, the KC bit is e e t  to 
1 ,  otherwise it is set to zero. W h e n  the KC bit is further endowed with 
interrupt abilities, it can allow the merging process to proceed in a speedy 
IYlX%M@ r. 

Suppose there are two presorted sequences (p,,) and (sa). 
into the sequence (r  
members of (q-k). EA) can therefore be Bent to the accumulator, be compared 
against p, and stored into (rm). 
po, nothing will happen to disrupt this prc~cess. 
found by the compare instruction, KC will be turned on, causing an interrupt. 
Then #ke  exceptional qA ia assumed to be larger than m e m b e r s  of (p ), and k 
the process continues. When both (p,) and (9, ) are exhausted, (r ) will be 
a sorted merged sequence. 

To merge the two 
) one may a13sume (p,) is larger than many leading 

A s b n g  as these quantities are leas than 
When an exceptional case i e  

L m 

The KC indicator bit has other useful properties. It can allow the removal 
of the "compare for range" type of instructions, can can give indication when 
the '!anchor sort'' scheme i s  completed ahead of expectations. 

Suppose one wante to  find out if C l ies  within the interval ( A , B ) .  It is only 
necessary to compare C againat A,  then (3 against B and interrogate the KC 
bit. If the bit i6 a I ,  the comparison statu8 with A must be difhrent from 
the comparison status with B, and C must either lie in the middle, or  i a  
equal to one of the comparands. 
whether B is greater than A or not. 

Note that it  i s  not neceosary to know - 
It suf€ices that I3 is different from A. 

During the m e  of the KL instruction for anchor sorting not only the largest 
quantity is found at every sweep, but the sequence is partially sorted a8 well. 
If after a certain number ob sweeps the probability of completion is high, it 
i s  possible to switch to KC interrupts to complete the sorting. If no inter- 
ruption occurred during the aweep, the scquence must already be well ordered. 

111, 

Tien Chi Chen 




