POUGHKEEPSIE
Dept. 271 - Bldg. 946
Extension 221M

July 28, 1961

Memorandum to: Dr. 8. G. Campbell

Subject: Progressive Indexing

The following is a discussion of a new type of progressive indexing scheme.
It is believed to be an improvement over the present 7030 scheme in that

(1) it is more consistent with usual programming practices and is thus easier
to master by new programmers, (2) it is simplier to implement by hardware,
(3) it is potentially faster, and (4) it does not tend to slow down the I-box
processing of other full word instructions.

Extension of the new scheme beyond the present framework is also discussed.

1, 7030 Progressive Indexing. One of the unigue powerful 7030 features,
progressive indexing provides for continuous updating of index registers
as they are being used in the VFL instructions. The debugging of one-
shot VFL programs is vastly simplified by its use, and in the hands of
experienced programmers, it can also help in the creation of optimum
programs,

However, as implemented on the 7030, progressive indexing entails the
following disadvantages.

a) The effective address generation scheme deviates from standard
practice. In progressive indexing the index valuc field is used as
the cffective address, the numecric address field is used to modify
the index value field in anticipation of future needs. This action
differs from the standard indexing practice where the effective ad-
dress is obtained by addition between the address field and the index

value field. The coexistence in the machine of more than one scheme

Dr.

S.

b)

G. Campbell -2~ 7-28-61

leads to bewilderment and confusion among new 7030 programmers,
to the extent that many of them strive to avoid progressive indexing
and rely solely on regular indexing techniques.

A minor inconvenience is that the index updating is always ahead of
schedule. When the schedule, so to speak, is changed by an unex-
pected branch, the index register modification frejuently has to be
undone by programming.

The present scheme requires additional hardware and special hard-

ware sequencing mechanisms. The leadingﬁgfftword of a full word

instruction contains no information on how the specified index register
is to interact with the numeric address ficld in the effective address
creation. As a result, the second half-word has to be decoded first,

During the Y-Z transfer within the I-box, either unusual action is
taken to fetch, index and decode the second half-word first (‘full-
word straight' case), or the first half-word and the specified index
register contents are fetched first, but nothing can be done unless
and until the second half-word has arrived in the Y' register. In
this second (''full-word not straight") case, the P ficld of the second
half-word is decoded to enable the indexing of the first half-word to
proceed.

If progressive indexing is specified, action is taken to ensure the
address of the {first half-word remains or is regenerated in Y, while
the index value field is placed in ZL as the effective address. The
purpose i5 to allow the execution of a pseudo V * I{CR) instruction
after the sccond half-word has been indexed, decoded and lookahead-
loaded. During the V% I{CR) pseudo instruction execution, the per-
tinent index register is fetched, although it has been fetched and used
once before.

The unusual sequencing and the need to provide for alternatives in
information routing naturally entails a hardware cost and maintenance

cost.

The present scheme is not fast. I-box time is lost in the "full-word

not straight' case if the arrival of the second half-word is delayed
by memory traffic jams and/or logical interlocks.

Further, because the first half-word remains in Y until the second
half-word is used up, the buffering in Y and Y' loses its effectiveness,
affecting the I-box processing of future instructions.

Dr. S. G. Campbell v - 3- 7-28-61

Still another delay is due to the exccution of the pseudo V4 I{CR) in-
struction which has to duplicate some of the earlier index actions,
such as the redundant index refetch. The pseudo instruction also
loads an index-recovery level into the lookahead, influencing look-
ahead and E-box timing. This last item, however, cannot be helped
without a complete re-examination of the recovery problems.

On direct measurement on the LASL 7030, the cxcess time due to
progressive indexing varies between 0 and 3 us, as seen in the fol-
lowing tables for external operands with left half indexed: (time in us.)

No. Bytes 4+ #{PX) Diff Yo ST ST(PX)| Diff %
1 4,82 7.52 2.70 56 6.92 49,33 2.41 35
2 4.96 T.52 2.56 51 7.23 $.33 2.10 29
4 6.16 7.52 1.36 22 7.84 9.63 1.79 23
6 7.36 7.52 0.16 2 $.03 9. 64 0.61 7
8 8.56 8.56 0 0 9,62 10.22 0. 60 6
16 13.50 13.49 [(-0.01)| 0 || 14.41 14.99 | 0.58 4

It should be noted that the higher excess times occur for the critical
areas of small number of bytes, and that known techniques of improving
VFL seguencing in I-box and LA will make the percentage excess much
more critical,

d} The present scheme tends to penalize other full-word instructions.

Becausc of the posilgni_l_ll;z of occurrence of progressxve 1ndex1m,. . all
"full word not straight” cases of full word instructions cannot proceed
until the second half-word is available in Y. This places a penalty on
standard VFL instructions, I/O instructions, SIC-branches and branch
on bit instructions. This waiting dclay does not seem to be present for
"“full word straight" situations. More indircct time losses due to in-

creased logical complexity is hard to pin down.

2. A New Progressive Indexing Scheme. Much can be done to improve the
progressive indexing sequen::i_r?é within the I-box to save time and hard-
ware. DBut sweeping simplification can be made by always using the sum
between the index value field and the address field as the effective address.
This is, of course, the standard indexing technique. The new progressive
indexing scheme differs from regular indexing essentially only in that the

effective address replaces the index value field in question.

Dr. 5. G. Campbell -4~ 7-28-01

It might be said that this cannot possibly handle the (V ~ 1), (V - IC)
and {V - ICR) options, available in 7030 progressive indexing. The
answer is simple: use the positive counterparts with complement ad-
dresses to produce the same effect. Also by adopting the convention
that a zero refill field means "‘do not refill', the (V+1C) option can
again be dropped, its function being adequately covered by the (V+ICR)
option. As a result, only 2 bits arec needed to specify the four truly
useful secondary operations: regular indexing, immediate addressing,
(V+I), and (V+ICR).

A comparison with the present progressive indexing scheme shows that
the new scheme can do everything the present scheme can do, though
in a slightly altered manner. The present scheme uses the index value
field as a pointer for operand address, then advances the pointer in
anticipation for the next operation. The new scheme uses the index
value field as a poinm—for the previous task, and advance only when
necessary. In a certain sense, the index value field is always bechind,
and the name post-gressive indexing seems adequate.

Clearly post~gressive indexing is quite consistent with conventional in-
dexing practices, and programming education will be greatly enhanced
by its adoption. By staying behind rather than anticipating the next
operation, the new scheme avoids some of the slight inconveniences
{such as undoing the anticipation because of a conditional branch) and
is even easier to code and debug.

Much of the unusual I-box sccuencing of full-word instructions can now
be removed, or replaced by much simpler ones due to the removal of
unnecded alternative information routes.

There is no longer need to process the second half-word ahead of
schedule. It is expected that the new scheme will lead to large savings
in hardware and servicing cost.

The time delay in the '"full-word not straight'' case will be removed,

for the treatment of the leading half of a full word instruction will now

be the same, independent of the second half. There is probably no

longer need to ''save'' the left half-word in the Y register. The exe-
cution of the pseudo V+I(CR) instruction can, however, be done ahead

of the operations dictated by the second half-word, freeing the Y register
at a much earlier time. Even the pseudo instruction itself can be speeded
up, as the V+I part 1s already performed during effective address creat-
ion, and the redundant index fetch is probably no longer required.

The penalty on other full-word instructions will be reduced to zero, as
the effective address creation will be standard.

-

Dr. 5. G. Campbell -5~ 7-28-61
¢

3.

A Simple Example. Suppose one wants to add 301 binary unsigned 8-bit
fields with lead bits 100 bit positions apart. If in $5 the value field con-
tains the address of the leading bit of the left-most field, the count field
contains 100, and the refill field contains zero, the two types of pro-
gressive indexing can be contrasted below: ‘

a) Progressive Indexing b) Post-gressive Indexing
L(BU, 8)}(V+I), 100($5) L{BU, 8), 0($5)

PX +(BU, 8{V+1), 100($5) PGX +(BU, 8)(V+I), 100($5)
+{BU, 8)(V +I1), 100($5) +(BU, 8}(V<+I), 100($5)
+(BU, 8)(V+1), 100($5) +(BU, 8)(V+1), 100(3$5)
CB, $5, PX CB, $5, PGX

¢) Progressive Indexing, d) Post-gressive Indexing,

faster version faster version
1(BU, 8)(V+I), 100($5) L{(BU, 8), 0($5)

PXF +(BU, 8(V+IC), 300($5) PGXF +(BU, 8), 10C($5)
+(BU, 8), ~200($5) +(BU, 8), 200(%$5)
+{(BU, 8), -100($5) +(BU, 8)(V+ICR), 300($5)
BZXCZ, PXF BZXCZ, PGXF

It is secen that the post-gressive indexing code is more natural and is
certainly no less efficient. '

Extensions. It is natural to inquire whether one can avail other in-
structions with the powerful progressive indexing feature. In the 7030
when three bits are needed to specify it, there is no room in half-word

instructions. The slower speced is also an impediment.

With post-gressive indexing, the operations are expected to be faster,
particularly if the I-box sequencing is re-examined, and if somehow
index recovery can be made fast, or non-existent. The fact that only
2 bits are really needed instead of 3 will also made a difference.

It is even possible to let the index registers to carry the secondary
operation bits. There are already two unused bits in the index word,
and the installment of this feature leads to no logical difficulties.

If optimum flexibility is demanded, it is possible to install one extra
bit per instruction which means "carry out" (1) or '‘ignore' (0) the post-
gressive secondary operation specified in the index value field.

Dr. S. G. Campbell -6- ' 7-28-61

t

The impact of full post-gressive indexability on most instructions in
a machine is likely to be profound. For I-box instructions LX, SX
will behave like automatic filing operations, removing much of the
need for the slow RNX (rename) instruction. The entire class of
immediate indexing arithmetic instructions can now be deleted, their
function being autornatically provided by secondary options on direct
indexing instructions. Floating vector and matrix multiply programs
will be even easier to write and debug. A new point of view will be
added to systematic mesh calculations, The possibility of performing
floating arithmetic without referring to memory will entail savings in
programming efficiency and speed. The number of memory interlock
occurrences will also decrease.

Acknowledgements. Discussions with C. T. Apple, J. L. Garrity,
C. L. Gerberich, D. H. Gibson (Kingston), N. Hardy, G. R. Hira,
and R. L. Rockefeller (Kingston) have clarified much of the issues
involved in the new post-gressive indexing scheme. The constructive

scriticism from C. T. Apple, D. IlI. Gibson and N. Hardy is parti-

cularly appreciated.

———

Tien Chi Chen
Special Studies

TCC/img

