
P(3UGIIKEEPSIE:

Extension 221M
U e p t . 271 - Bldg. 446

Memorandum t o ; D r . S. G. Campbell

Subject: 12rogressive Indexing

The following i s a discussion of a new tyl3c of p rogress ive indexing schenie.
It is believed to be an imprroverncnt over the present 7030 scheme
(1) it is more consistent wrth usual progrnnmiing practices and is thus easier
ta master by new programmers, (2) i t i s sirrlplier to implement by hardware,
(3) it i s potentially faster, and (4) i t does not tend to slow down the I-box
processing of other f u l l word instructions.

in that

Extension of the m u scheme beyond the present f ramework is also discussed.

1 . 7 0 3 0 Progress ive Indcxink
progrcss ive indexing provides for continuous updating of index reg is te rs
a s t h e y a rc being used In the V F L ~ns t ruc t ions . The debugging of one-
shot V F L programs i s vast ly simplified b y its U S C , and in the hands of
experienced programmers, it can also Iie'Lp in the creation of optirriuni
p rograms .

One of the unic,ue powerfu l 7030 features ,
__cI-..-.. . .-- " - 1 ---_I-

I-Eowever, a s implemented on the 7 0 3 0 , progres s ive indexing entails the
following disadvantages.

a} The effective addres s generation scheme deviates f r o m standard
practice. In progres s ive indexing thc :index valuc f i e ld i s used as
the effective address, thc nurricrac address t'irzld is used to modify
the index value field in anticipation of future needs,
differs f rom the s tandard indexing practicc vhhere the effective ad-
d r e s s is obtained by addition between the address field and the index
value field. The coexistence in the maxhinc of m u r e than one schcrnc

^_--.-I-.- ..--..,.--* I-- -.-.__L--If-C..-.____-UI--U__-Y-----C

I-___.

This action

.
.

D r . S. G, Carnpbell -2- 7 -28-61

leads t o bewilderment and confusion among new 7030 programmer$,
to the extent that many of them str ive to avoid progressive indexing
and re ly solely on r e g d a r indexing techniques.

A minor inconvenience is that the index updating i s a lways ahead of
schedulet, W h e n thc schedule, so to sp'eak, is changed by an unex-
pected branch, the index regis ter modification f re :Iucntly has to be
undone by programming.

The present scheme requires additional hardware and special hasd-
ware sequencing MeCha1liSr~l6, 'rhc leading ha l f -word of a f d l word
instruction contains no information on how the specified index register
is to interact w i t h the numeric address f i c l d in the effective address
creation. A s ;I result , the second half-word has to be decoded first.

---*--.I- VI-- ---_- _--..-...*-,. I* -._"..-.-.--I-.- _--P-*_-^ I.,- L l . ----- .---I w . - ---..I..

I__-..--.---- -. - - - I------*.--- I_--

During the Y - 2 transfer within the I=box, either unusual a.ctioa is
taken to fetch, indax and decode the second half-ward first ('full-
w o r d s t ra ight" case), or the first half-ward and the specificd index
regis tcr contents are fetched f irst , but: nothing can be done unless
and until the second fialf-urord bas a r r i v e d in the Y' register.
this second ("full-word not s t ra ight") case , the P field of the second
half-word is decoded to enable the indexing of the first half-word to
procccd,

In

If progressive indexing is specified, action is taken to ensure the
address of thc first hal6-word remains ar is regenerated in Y, while
the index value field is placed in Z L as the cffectivc address. The
purpose is to a l h w the cxeciztion of a pseudo v ? I(cX) instruction
after the second half-word has been indexed, decoded and lookahcad-
loaded.
tinent index regis ter fs fetched, although it has been fctchcd and used
once before,

During the V 2 I (C ; R) pseudo instruction execution, the p e r -

'The unusual sequencing and the nccd ta provide fo r alternatives in
information routing naturally entails a hardware cost and maintenance
cost 0

c) The present schcrric is not fast.
not s t r a i g h t ' ' case if the arrival of the second half-word i a delayed
by memory traffic jams and/or logical interlocks,

I -box time is lost i n the "ful l -word - -. 1..--- - -- I___- -- -

Further, because the f irs t half-word remains in Y until the second
half-word is used up, the buffering in Y and Y' loses its effectiveness,
affecting the I-box pruccssing of future instructionso

D r . S. G. Campbell - 3- 7 - 2 8 - 4 1

Still another delay is due t o the execution of the p s e d o V + I f C R) in-
struction which has t o duplicate s a n e sf the earlier index actions,
such as the redundant index refetch.
loads an index- recovery level into the I.ooltnhead, influencing look-
ahead and E:-box timing.
without a camplcte re-examination of the recovery problem.

The pseudo instruction also

This last i tem, however , cannot be helped

On di rec t measurement on the LASL 7030, the cxcess time duc to
progressive indexing varies between 0 and 3 US, as seen in thc fol-
lowing tablcs for cxternal operands with left half indexed: (t ime in us.)

1
2
4
6
8

16

3 , 8 2 7.52
4 .96 7 .52
6. 16 7 . 5 2
7 . 3 6 7 . 5 2
8 . 5 6 8 .56

1 3 . 5 0 13 .49

Uiff

2070
2 .56
1. 36
0 . 16
0

(-0 .01)

-11 ..q --- Diff

2 . 4 1
2 . 1 0
1 .79
0.61
0 . 60
0. 58

" i b -

35
29
23

7
6
4

It shoiild be noted that the higher excess times occur f o r the critical.
areas of small nurribci- of bytes, and that. known tccliniques of improving
VFL sc:;uenciaig in I-box and LA will make the percentage excess much
more cr i t ical .

d) The present scheme tends to penalize other fu l l -word instructions.
Uecausc of the possibility of occurrence of progress ive indexing, all
"full word not straight: ' c a s e s of full w o r d instruct ions cannot proceed
until the second ha l f -word is ava i l ab le i n Y. ' T h i s places a penalty on
standard V F L instrnct ionc, I / O instruct ions, SIC-branchcs and branch
on bit instructions, This wai t ing delay does not seem to be p resen t fo r
"full word straight" situations. M o r e indirect time losses due to in-
creased logical complexity is h a r d to pin down.

---- -.-- ----IC..-._.----,. I-*----. - -w ..,- -..--.."I.-..-....---..Y-CI 4-*-- - l-..----.l.+...-----_.

-. - --. ---

2. A Kew Pro-ssive Indexinn Scheme, Much can be done to improve the
progressive indexing sequencing within the I-box to save time and hard-
ware.
between the index value field and thc addrcss f ie ld a s the effective address.
This is, of course, the standard indexing technique. The new progressive
indexing Bcheme dif fers from regular indexing essentially only in that the
cf€cctive address replaces the index value field i n question.

-..--.. - -__---_--.--A?- -I_.-̂- *

But sweeping simplification can bc made by aLways using the s u m

D r - 5 . €3. Campbell -4- 7 -28 -61

It niight be said that this cannat possibly handle the (V - I), (V - IC)
and (V - XCR) options, available in 7030 progressive i.nde:ting, The
answer is simple: usc the positive counterparts with complcz-rlcnt ad-
dresees to produce the ~ a m c cffect.
that a zero refill field means "do not refill' '# the (V+XC) aption can
again be dropped, its function Being adequately covered by the (V+ICR)
option. As a result , only 2 bits a re needed to spec i fy the four truly
useful secondary operations : regular indexing, immediate addressing,
(V+I) , and (V+ICR) .

Also by adopting thc convention

A comparison with the present progressive indexing sclierne shows that
the n e w scheme can do everything the present scheme can do, though
i n a s l igh t ly altered manner. The present scheme u s e s the index value
field as a pointer fo r operand address, thtcn advances the pointer in
anticipation for the next operation, The new scheme u s e s the index
value field as a pointer f o r the previous task, and advance only when
necessary.
and the name past-gressive indexing se:cms adequate.

-
In a certain sense, the index value f ie ld is always behind,

Clear ly p o s t - g r c s s i v e indexing is quite consistent with conventional in-
dexing pract ices , and programniing education w i l l be g r e a t l y enhanced
by its adoption.
operation, the new scheme avoids some of the slight inconveniences
(such as undoing the anticipation because of a condftionaf branch) and
is even eas ie r to code and debug.

By s t a y i n g behind rather t l z n n anticipating the next

Much of the unusual. I-box s c q ~ c n c i n g of fu13-v~ord instructions can now
be removed, o r replaced by rniich simpler ones due t o the removal of
unneeded alternativc: information routes.

There is no longer need to process the second half-word ahead of
schediile,
in hardware and servicing cos t .

It is expected that the new scheme will. lead t o l a r g e savings

The time delay in the "full-word not s t ra ight ' ' case wil l be removedg
for the treatment of the leading half of a full word instruction wi l l now
be the sameg independent of the second h a l f . There is probably no
longer need t o ''save" the left ha l f -word in the Y reg is te r .
cution of the pseudo V+I(CR) instruct ion can, however, be done ahead
of the operations dictated by the second half-word, f reeing the Y reg is te r
at a much carlicr time, Even the pseudo instruction itself can be speeded
up, as the V + I part 1 s already performed during effective address creat-
ian, and the redundant index fetch is probably no longer required.

The cxe-

*

The penalty on other full-word instructions wil l be reduccd to zero, as
the effective addrcss creation wi l l be standard,

D r . S. G. Campbell. - 5 - 7-28-61

3. A Simple Example. Suppose cone wants to add 301 binary unsigned &bit
fields with lead bits 100 bit positions apartd If in $ 5 the value field con-
tains the address of the leacling hit of the Left-most field, the count f i e ld
caiztains 100, and the rcfi,ll f i e ld contains zero, the two types of pro-
gressive indexing can be contrasted below:

---I -- ,----..-̂ _- -.--_1

a) Progressive Indexing b) 7- Past-gressive Indexing

c) Progress ive Indexing,
faster vers ion

d) -- Post-gressive In.dexing,
faster version

It itl Seen that the poet-grcssive indexing code is more natural and is
certainly no less efficient.

4. Extensions. It i s natural to Inquire whether one can avail other in-
structions with the powerful progress ive indexing fcatitre.
-

In the 7030
when three bits are needed t o specify it., there is
instritctions.

room in half-word
The s lower speed is also an impediment.

With pos t -gress ive indcxfng, the operations a re expected to be faster ,
par t icular ly if the 1-box sequencing is re-cxa~riined, and i f somehow
index recovery can bc made fast, or non+existent. The fact that only
2 bits are really needed instead of 3 w i l l a l s o made a difference.

It is even possible to let the index registers to c a r r y the secondary
operation bits,
and tlic installment of th i s feature leads to no logical difficulties

There a re already two unnsed bits in the index word,

If optimum f'lexibility is demanded, it is possible to i n s t a l l one extra
bit per instruction wliict-1 w~cans "carry out' ' (1) or '5gnore' l (0) the post-
gressivc secondary operation 6pecified in the index value f i e ld .

D r , S . G. Campbell = 6- 7-28 -61

The impact of fu l l post-gressive indexability on most instructions in
a machine is likely to be profound. F o r I-box instructions LX, S X
will behave like automatic fi l ing operatioris, removing much of the
need for the S ~ O W KNX (rename) instruction, The entire class of
immediate indexing arithmetic instruct ions can now he deleted, their
function being automatically provided by secondary options on direct
indexing instruct ions, Floating vector and matrix multiply programs
wil l bo even easier to write and debug. A new point of view wi l l be
added to systematic mesh calculations X'hc possibility of performing
€loating arithmetic without referring to memory will entail savings in
programming efficiency and speed, The number o€ rneniory interlock
occurrences wi l l also decrease,

5. Acknowledgements. Discrissions with C . T , Apple, J. L. Gs r r i ty ,
C . L a Gerbcrich, D. f i e Gibson (Kingston), N. I-lardy, G. R. Hira,
and Ro Lo Rockefeller (Kingston) have clarified much of the issues
involved in the new post-grcssive indexing schemeo

*crit icism from C. T. Apple, De 1 1 . Gibson and N. Hardy is par t i -
cularly appreciated.

---- I --_- --- .-- I

The constructive

'Ticn Chi Chcn
Special Studies

7: C C / ini g

