
7030 DATA PROCESSING SYSTEM BULLETIN m
SMAC Language P rocesso r

INTRODUCTION

The Stretch MACro language, SMAC, can be freely mixed with STRAP.
This write-up describes the SMAC language, the processor for SMAC,
and the SMAC Generator Language.

A knowledge of STRAP is presumed.

SMAC LANGUAGE

A SMAC program is a mixture of SMAC and STRAP statements. A SMAC
statement consists of the following parameters: a card code, a tag, an
operation, and arguments.
literals or symbolic addresses plus or minus an absolute increment and
modified, i f necessary, by an absolute index register. Data capabilities
in a SMAC program are those of STRAP.

The arguments of a SMAC statement a re

SMAC Statement Card Forma t

Only one SMAC statement may appear on a card. The card format is:

a. Column 1: may contain a comment mark or a continuation mark
as in STRAP.

b. Columns 2-9 : tag field.

c. Columns 10-72: variable field. These columns have the form

O P consists of up to nine alphabetic characters the first of which is
M and none of which are Q. ARGi can be a literal or a symbolic
address plus o r minus an absolute increment and modified by an
absolute index register. Tags and symbolic addresses can be a
maximum of eight alphanumeric characters, the first of which is
alphabetic and none of which is Q.
cannot be split across card boundaries.
in STRAP statements may not contain Q.

Operations and symbolic addresses
Tags and symbolic addresses

The variable field of a continuation card is in columns 10-72.
other columns are examined by the processor.

No

@ 1961 by International Business Machines Corporation

If the preceding card contains a comment mark in columns 10-72,
the continuation card is a continuation of the comment field. A
maximum of nine continuation cards is possible. A card with a
comment mark in column 1 cannot be continued.

d. Columns 73-80: not used by the processor.

SMAC Operations

Except for a very basic set, the operations in SMAC are specified by the
user. A library tape and a library updating program are available so that
new operations and their generators can be added at any time. The library
updating program adds the generator to the library tape and updates the
table of acceptable SMAC operations.

8

PROCESSOR

The processor for the SMAC language, which requires only one pass over
the source program, consists of a processor shell, a branch table, proc-
essor subroutines, and generators.

Proce s sor Shell

The processor shell determines the sequence in which subroutines and
generators are executed to process a given SMAC program.
ments a re processed one at a time. Reading and identification of each
statement is done by subroutines, after which the generator for a particular
statement takes control. When the generator has been executed, the proc-
essor shell resumes control. There is an N to 1 relationship between SMAC
statements and generators where N 2 1. That is, more than one SMAC
statement may result in the calling of the same generator.

SMAC state-

Branch Table

The branch table consists principally of branches to subroutines, control
information, and locations of buffers.

The relative positions of entries in the branch table remain fixed. Thus
the relocation of a subroutine or a buffer requires only the changing of the
absolute address of the subroutine or buffer in the branch table, and not
the reassembly of any other part of the program. In order that the branch
table itself may be relocated, all references to branch table entries a re
modified by Index Register 2 , which contains the branch table address.

Processor Subroutines

Processor subroutines include 1/0 routines, scans, and list routines.
Entry to all subroutines or access to buffers is made through the branch
table.

2

-1
0

1

Genera tors

Generators are relocatable routines and may be roughly classified as being
of two types: a generator which produces a sequence of object code for a
given SMAC statement and a generator which performs some prescribed
function when a given SMAC statement is encountered, but which does not
produce any object code.

A generator of the first type consists of two parts: logic and skeletons.
The logic is written in SMAC Generator Language; the skeletons are the
coding which the generator substitutes for a given SMAC statement. Skele-
tons may contain both SMAC and STRAP statements. The skeleton portion
of a generator follows the logic portion and consists of one or more skeletons.
The selection of one or more of the skeletons is made by the logic portion.

SMAC GENERATOR LANGUAGE

Certain SMAC operations are specified as SMAC Generator Language
statements. These statements in no way differ from regular SMAC state-
ments as described in the SMAC Language section. However, the generators
for the Generator Language statements are stored on a special library tape
which is called in only when generators are being compiled. Statements
can be added to the Generator Language in the same way that statements
are added to the SMAC language.

The Generator Language presently consists of the statements outlined
below. A SMAC statement consists of a series of parameters where:

column 1 is a parameter,
columns 2-9 are a parameter,
the operation field is a parameter, and
each argument is a parameter.

Five pointers, whose symbolic tags are QPT1, QPT2, QPT3, QPT4,
and QPT5, may be used to point at any parameter of the subject statement.
Parameters are numbered relative to a given pointer. The parameter
pointed at is parameter 1 and succeeding parameters are numbered 2
through n.

Examples :

1. subject statement :

parameter numbers :

2. subject statement:

parameter numbers :

IQPT1[
col. 1

1

col. 1

TAG MOP, argl, arg2, arg3, arg4

2 3 4 5 6 7

pE-1
TAG MOP, argl, arg2, arg3

1 2 3

3

Generator Language Statements

List of Generator Language Operations

Operation

MBGEN
MEXIT
MBSKL
MEGEN
MMVPT
MOUT
MGETL
MKPEQ
MKPNEQ
MKCEQ
MKCNEQ
MOUTF
MOUTY

Functions of Generator Language Statements

1. MBGEN
(Begin GENerator)

This statement must be the first statement of a generator.

It places the count of the number of parameters of the subject SMAC state-
ment in the count field af an index word in the branch table whose symbolic
tag is QCOUNT.

It initializes the pointer, whose symbolic tag is QPT1, to point at the first
parameter (i. e . , columnl) of the subject SMAC statement.

2. MEXIT

This statement must be the last statement of a generator to be executed.
It returns control to the processor shell.

3. MBSKL
(Begin SKe Leton)

This statement is used in the skeleton portion of a generator to indicate
that the statements which follow are to be put in skeleton format, i. e. ,
STRAP Data Definition statement with IQS entry mode.

A skeleton is terminated by another MBSKL statement or the MEGEN
statement.

4

4. MEGEN
(End GENerator)

This statement must be physically the last statement of a generator.

This statement inserts all the SYN cards necessary for branch table
reference.

5. MMVPT, QPTi, N , QPTj
(Move PoinTer)

This statement allows the generator programmer to create additional
pointers to point at particular parameters of the subject SMAC statement.

QPT1 is initialized by the MBGEN statement which sets it to point at column
1. Four additional pointers whose symbolic tags are QPT2, QPT3, QPT4,
and QPT5 may be created by using the MVPT statement, where QPTi is
any previously defined pointer, N is the positive number of parameters by
which the programmer desires to move the pointer along the subject state-
ment, and QPTj is the new pointer.

QPTi is not destroyed unless QPTi equals QPTj, e . g . , MMVPT, QPT1,
3, QPT1.

Example :

subject statement -1
before pointer is moved: col. 1 TAG OP, argl, argz, arg3, arg4

move pointer statement: MVPT, QPT1, 3, QPT2

subject statement after I=] I-Gq
pointer has been moved: col. 1 TAG OP, argl, arg2, argg, arg4

N may also be QCN, where QCN is a value field in the branch table in which
the generator programmer may store a computed value for N prior to en-
countering the MMVPT statement.

6. MOUT, QPTi, NAME1, NAMEz, . . . , Name,
(OUTput)

This statement may be used to output the skeletons indicated by NAMEi
where parameters are inserted in the skeletons according to the parameter
numbers determined by the pointer.

Example :

SMAC statement

NAME MADD,A,B, C

5

Generator

MBGEN
MOUT, QPT1, SK1
MEXIT

SK1 MBSKL
/2/ L, /4/

+, /5/
ST , /6/
MEGEN

output

NAME L, A
+, B
ST,C

7. MGETL, QPTi, N
(GET Literal)

This statement allows the programmer to access parameters of a subject
statement known to be literals. The literal indicated by the pointer and
the parameter number is converted to a binary integer and placed in the
value field in the branch table whose symbolic tag is QLIT.

8. MKPEQ, QPTi, N, AB . . . , TAGl
(Compare Parameter EQual)

MKPNEQ, QPTi, N, AB ..., TAGl
(Compare Parameter Not EQual) /

Either of these statements allows the generator programmer to compare
a whole parameter against any desired set of eight or fewer characters,
and to transfer control to TAGl depending on the result of the comparison.

QPTi is a pointer, N is a parameter number, AB.. . is the set of one to
eight characters (commas and blanks may not be used) to be compared with
the parameter indicated, and TAGl is the statement to which control may
be passed. If the parameter contains more characters than specified, the
result is not equal.

MKPEQ transfers control to TAGl if the result of the comparison is an
equality.

MKPNEQ transfers control to TAGl if the result of the comparison is an
inequality.

Example :

Subject statement: OP, R23 ?T, FGH, IJKL

6

8

/1
b

D

c

MKCEQ,QPTlY4,R23?T,NAME

MKPEQ, QPTl, 5, FG, NAME
Result: equal

Result: unequal

9. MKCEQ, QPTi, N, AB ..., TAGl
(Compare Characters EQual)

MKCNEQ, QPTi, N, AB ..., TAGl
(Compare Characters Not EQual)

Either of these statements allows the programmer to compare the first
one to eight characters of a parameter with an equal number of characters
specified in the compare character statement.

QPTi is a pointer, N is a parameter number, AB. . . is the set of one to
eight characters to be compared with an equal number of characters of
the parameter indicated, and TAGl is the statement to which control may
be passed.

MKCEQ transfers control to TAGl if the result of the comparison is an
equality.

MKCNEQ transfers control to TAGl if the result of the comparison is an
inequality.

Example :

Subject statement: OP, R23 ?T, FGH, IJKL

MKCEQ, QJ?T1,4, R23 ?T, NAME
Result: equal

MKCEQ,QPT1,5, FG,NAME
Result: equal

10. MOUTF, SK1, n17 SK2, n . . . , SKm, nm
(OUTput Fixed numxer of parameters)

This statement is used in a generator to select a certain skeleton from a
group, depending upon the number of arguments in the SMAC statement.
SKi is the name of a skeleton and ni is the number of arguments which will
cause skeleton SKi to be put out. There may be as many as 15 different
selections. Parameters of the subject statement are numbered according
to a pointer which points at column one.

This statement may be used in a generator for one particular SMAC opera-
tion where different skeletons are put out depending upon the number of
parameters. It may also be used in a general type of generator which is
called by several different SMAC operations whose skeletons can be distin-
guished on the basis of the number of arguments in the SMAC statement.
This latter use is demonstrated in the following example:

7

SMAC statement 1 which always contains three arguments:

NAME MOP1, A l , A2, A3

Skeleton :

SK1
/2/

SMAC statement 2 which never has any arguments:

NAME MOP2

Skeleton :

SK2 MBSKL
/2/ B, $SUBRT

9 /3/

SMAC statement 3 which always contains five arguments:

NAME MOP3, C1, C2, C3, C4, C5

Skeleton :

SK3
/2/

SMAC statement 4 which always contains three arguments :

NAME MOP4, D1, D2, D3

Skeleton :

SK1
/2/

MBSKL
L, /4/
*, /5/
ST, /6/
B, $/3/

f d

8

A single generator for all four SMAC statements could be written in the
following manner:

SK1
/2/ 1

SK2
/2/

SK3
/2/

MBGEN
MOUTF, SK1,3, SK2,0, SK3,5
MEXIT
MBSKL
L, /4/
*, /5/
ST , /6/
B, $/3/
MBSKL
B, $SUBRT

MBSKL
9 /3/

L, /4/
+, /5/
-, /6/
*, /7/
ST , /8/
MEGEN

This generator will put out SK1 i f the SMAC statement has three arguments,
SK2 if the SMAC statement has no arguments, and SK3 if the SMAC state-
ment has five arguments.

11. MOUTV, M, NAME, K
(OUTput Variable number of parameters)

This statement will put out the skeleton indicated by NAME, M times, and
shift the parameter pointer K positions each time. A pointer which points
at column one is used as the initial pointer.

Example :

SMAC statement :

MADD,A,B, C,D,E, F,G

This statement is to load A, add B, C, D, E, and F and store the result
in G. Its generator could be written as follows:

MBGEN
MOUT, QPT1, SK1
MOUTV,5, SK2,l
MOUT, QPT1, SK3
MEXIT

SK1 MBSKL
/2/ L, /4/
SK2 MBSKL

+, /5/
SK3 MBSKL

ST, / lo /
MEGEN

9

However, the MOUTV statement can also be written with several sets of
arguments M , NAME, K as follows :

The pointer for the first set points at column one. The pointer for set
i+ 1 (i 2 1) is moved over L parameters from column one, where

L = 3 + Mj Kj.
j = l

By using this facility, the above SMAC statement generator could be
written as:

MBGEN
MOUTV, 1 , S K 1 , l , 5, SK2,1,1, S K 3 , l
MEXIT

SK1 MBSKL

SK2 MBSKL

SK3 MBSKL

MEGEN

/2/ L, /4/

+, /I/

ST, /I/

A third version of the MOUTV statement allows one of the M' s to be variable,
in which case it is written as N instead of a literal. This could be used in
the generator for the above SMAC statement if the number of arguments
could be variable and consequently the number of + instructions to be put
out is unknown until compile time. In this case, the generator would be
written as follows:

SK1

SK2
/2/

SK3

MBGEN
MOUTV, 1, SK1,1, N, SK2,1,1, S K 3 , l
MEXIT
MBSKL

MBSKL

MBSKL

MEGEN

L, A/

+, /I/

ST, /I/

The SMAC statement for this generator could be

MADD, A, By C, D

and the output would be
L, A
+, B
+, c
ST,D

10

11

The SMAC statement could also be

MADD,A,B

in which case the output would be

In other words, N is computed by the MOUTV statement according to the
following equation:

P

N = p r of parameters -3) - j = 1 J J j = i + 1 M j j K)]/K i

where Mi = N.

The following example demonstrates this statement in another generator.

Example :

SMAC statement

General form : TAG MADMY, argl, arg2, . . . , arg,

Definition : The first argument is loaded, the first member of
each pair from arg2 to argn,2 is added, the second
is multiplied, and argn,l and argn are stored.

Specific use:

example 1: NAME 1 MADMY,A, B, C,D,E, F,G,H, I

example 2: NAME 2 MADMY,A, B, C,D,E, F,G, H,I, J , K

example 3: NAME 3 MADMY, A, B, C

Generator:

MBGEN
MOUTV, 1, SKELl, l ,N, SKEL2,2,2, SKEL3,l
MEXIT

SKE L1 MBSKL

SKE L2 MBSKL
/2/ L, /4/

+, /I/
*, /2/

ST, /I/
SKE L3 MBSKL

MEGEN

Output: example 1. N = 3

NAME L,A
+ 7 B
* 7 c
+ 7 D
* 7 E
+, F
*YG
ST, H
ST, I

example 2. N = 4

L7 A
+ 7 €3
* 7 c
+7 D
* 7 E
f 7 F
*, G
+ 7 H
* 7 1
ST, J
ST, K

example 3. N = 0

L7 A
ST, B
s?’, c

Writing SMAC Generators

The following sections contain the rules to be followed and methods to be
used in writing SMAC generators.

Order of Statements in Generators

All generators must begin with the MBGEN statement and end with the
MEGEN statement. In the logic portion of a generator the generator
programmer cannot use the STRAP SLC and END pseudo-ops. Except
for this restriction, STRAP and SMAC statements may be freely intermixed.

The statement which follows the MBGEN statement will be the first state-
ment of a generator to be executed. The last statement of the logic portion
to be executed must be the MEXIT statement, which returns control to the
processor. In the skeleton portion, each skeleton is preceded by the
MBSKL statement and foilowed by either another MBSKL statement o r the
MEGEN statement. The MEGEN statement is physically the last statement
of a generator.

Skeletons

A skeleton is written as a sequence of STRAP and SMAC statements, in
accordance with the SMAC language restrictions specified above.

At generator execution time, the parameters of a SMAC statement a re
inserted into the skeleton statements of a generator exactly as they appear
in the SMAC statement.
is indicated by use of the symbol /n/7 where n i s the number of a parameter
in the SMAC statement to be inserted. Tags for statements within skeletons
can be made unique by using /Q/ in the tag. When a generator is executed,
a unique tag is inserted wherever /Q/ occurs in any skeletons contained in
this generator. The programmer may vary the generated tags by preceding,
surrounding, or following /Q/ by a maximum of any three alphanumeric
characters except Q. To insert a / into the card image, a // is used in
the skeleton.

The field in which a parameter i s to be inserted

12

Use of Index Registers in Generators

1. Index registers are never used in Generator Language statements.

2. All references made by STRAP statements in the logic portion of
a generator to statements within that generator must be modified
by index register one, which allows for generator relocation.

3. Any references made by STRAP statements in a generator to routines,
buffers, o r control information outside the generator must be modified
by index register two, which provides for linkage through the branch
table.

4. Index register fifteen is used for subroutine linkage.

5. Index registers 3, 4, 5, 6, 7 and 8 are reserved for use in the
skeletons of the generators for the Generator Language statements.

6. Index registers 9, 10, 11, 12, 13 and 14 may be used freely in
STRAP statements in the logic portion of a generator.

Use of Branch Table

Many of the branch table entries are useful to the generator writer. There-
fore, this section contains a list of these entries and their functions.

ENTRY FUNCTION

QDBUGB A bit which is set to 1 when processor is running in
the debug mode.

QGUB Generator usage bit. This bit equal to 0 will indicate
that a particular generator is being executed for the
first time during a compilation. The bit equal to 1
indicates that .the generator has been executed previously.

QMIBIT Set to one if previous processed statement was a macro.
It remains set to one until first non-continuation card is
processed by statement identified.

QCIBIT If set to one, previous source statement was a macro.

QMACBIT If set to one, macro is being expanded.

QINBIT If set to one, inner macro is being expanded.

QERRBIT If set to one, a major e r ror has occurred and compilation
will be terminated at the end of this pass.

13

J28-6128

International Business Machines Corporation
Data Processing Division, 112 East Post Road, White Plains, N. Y. Printed in U. S. A. J28-6128 6/61

