

aEm General Information Manual

7030 Data Processing System

Preface

Modern civilization-wi th its finance, commerce, in-
dus try, science, and business-would be impossible
without calculations. From the time man found a
need for counting, the problems of adding, subtract-
ing, and recording the results have grown steadily.
T o cope with these problems, many devices have
been developed. Modern computers, electronic data
processing systems, have become invaluable to scien-
tist and businessman alike.

Data processing consists of planned actions and
operations upon data to produce a desired result.
Data processing systems find ever-widening applica-
tions in solving new and larger problems in every
phase sf science, business, m d ir?dustry. Rapidly
expanding scientific investigations involve billions of
complex calculations; increasing amounts of data are
required for control in industry, business, and gov-
ernment. The result is a demand for data processing
systems with vastly improved performance. The IBM

7030 Data Processing System is such a system.
This manual presents the operating principles of

the new IBM 7030. The manual is not intended for
detail work but to present an over-all approach to
the system.

0 1960 by International Business Machines Corporation

Contents

IBM 7030 DATA PROCESSING SYSTEM 5

System Organization 6

Operations . 11

Program Interrupt System 15

EXCHANGE AND INPUT-OUTPUT UKITS 16

IBM 7619 Exchange 16

Inpu t-Ou tpu t Units 17

SYSTEM RELIABILITY AND ACCURACY 21

APPENDIX . 22
Special Storage Location Assignments 22

Alphabetic Listing of Mnemonic Operation Codes 22
IBM 7030 Instruction Formats 24

IBM 7030 Data Processing System

IBM 7030 Data Processing System

The IBM 7030 Data Processing System is a high-speed,
general purpose data processing system that sub-
stantially exceeds the over-all performance of its
predecessors in both technical computing and busi-
ness data processing. Large storage capacity and
microsecond computing speeds allow increased effi-
ciency on present problems, combining small runs
into more efficient larger problems, and solving prob-
lems too vast to be practical on lesser systems.

An important component of the 7030 data process-
~ .ing system is the IBM 7302 Core Storage with a capacity
,:of up to 16,384 words. Multiple storage units may be

attached to the system and cycled independently to
-'J make several storage references simultaneously and

to achieve an effective data rate much faster than
the basic cycle. Space is provided in the instructions
to address 262,144 words.

A 7030 data processing system may also comprise
inultiple computers, either sharing the same storage
or coupled more loosely through their IBM 7619 Ex-
change units. In this way, the computing efficiency
of the system may be greatly expanded if the need
arises.

The 7030 system combines in one computer system
many desirable features found only independently
in its predecessors: high-speed binary fixed point and
floating point arithmetic; decimal and binary arith-
metic performed on fields of variable length; and
manipulation of data in virtually any desired char-
acter representation. Thus, the 7030 system may be
used to solve an unusually wide range of problems
in all data processing fields.

The instructions developed for this system exhibit
many new and powerful features. Fewer instructions
are usually required to write a given program. Most
instructions are half-word size. Fewer and shorter
instructions mean less storage space required for pro-
grams, fewer references to storage, and fewer instruc-
tions to be executed. These factors contribute to
the high performance of the IBM 7030 Data Processing
System.

A';

Most instructions may have their address part modi-
fied by automatic indexing in a separate index arith-
metic unit. Some instructions may be executed
completely within this unit while other arithmetic
operations are being executed in the main arithmetic
unit. This overlapping of instruction execution al-
lows a significant increase in over-all system per-
formance. The computer automatically adjusts the
flow of data between the input-output units, in-
struction processor, arithmetic processor, and core
storage despite the complexities of time sharing.

Emphasis is placed on efficient floating point, in-
dexing, and branching instructions (the core of many
programs in the technical field) and on data process-
ing on fields of varying length regardless of the word
boundaries. A set of instructions is available to
perform decimal or binary arithmetic as well as radix
conversion and logical operations on these variable
length fields. These instructions, coupled with in-
dexing and branching, offer a powerful tool for all
phases of business and commercial work. They may
also be applied to problems common to business and
technical fields, such as program preparation and
editing of input-output data.

The input-output system is flexible; almost any
device furnishing or accepting digital data may be
connected to the system. The IBM 7619 Exchange
controls all input-output devices and transmits data
between these units and core storage while computing
proceeds in the IBM 7101 Central Processing Unit.
An IBM 7612 Disk Synchronizer, capable of controlling
up to 32 disk storage units, may parallel the operation
of the exchange and transmit data to and receive data
from core storage at the same time as other input-
output devices.

Some devices that may be attached to the 7619 ex-
change are: card readers, card punches, printers, mag-
netic tape units, consoles, and console printers. The
exchange can control up to 32 data channels that
operate concurrently or independently, up to a maxi-

Introduction 5

mum data transmission rate of 100,000 words per
second between the exchange and core storage.

Automatic error detection and correction, auto-
matic means of localizing faults, and other mainte-
nance aids reduce the time required to identify and
correct any machine fault which may arise. All data
transmission is automatically checked for validity by
a unique combination of error check and correct
bits that is carried with each word. Any single bit
error within the word being transmitted is auto-
matically corrected. AIi double and most muitiple
bit errors are indicated for program interruption.
In all other areas of the system, extensive checking
is built in. This automatic checking provides con-
tinuous monitoring to insure system reliability.

Features that permit improved operating techniques
also contribute to performance. Routine operating
functions are, wherever possible, placed under direct
control of the stored program. Input-output units
require a minimum of manual setup. Control panels
are omitted entirely; all arrangement and control of
data is done by programming. Multiple inpu t-ou tpu t
channels, buffering, and multiprogramming facilities
make possible efficient conversion, code translation,
and editing on independent input-output units at-
tached to the system, with virtually no increase in

of units or manual transfer of tape reels is substan-
tially reduced.

A new concept is applied to the operator’s console.
Instead of being intimately associated with the central
processing unit, the console is separated from the
main computer and becomes an optional input-output
device. Keys, switches, lights, digital display, and the
console printer are all subject to programmed inter-
pretation and control. This interpretive approach
and an extensive, flexible program interrupt system
provide facilities for close communication between
man and computer when human intervention is de-
sired. These features are provided because intelligent
human intervention and supervision can often bring
a problem to completion more quickly than compu-
tation alone.

All console features are designed so that advantage
may be taken of the intervention techniques made
possible by multiprogramming (having a number of
problems available to the computer so that necessary
time waits in each problem are utilized by operations
on one of the other problems). When multipro-
gramming is used, the high-speed computer is not
required to wait for the thinking and reaction time
of its user. The economics of human intervention
are radically changed; the computer can go on with
useful work while the user ponders his next move.

major program execution time. Physical switching

System Organization

The 7030 system includes a central processing unit,
storage bus control, core storage, exchange, input-
output devices, and disk storage system.

To achieve maximum use of all components, many
computer sections can operate at the same time. Each
core storage unit, the instruction processor, look-
ahead, arithmetic and logical units, and each ex-
change channel is independent. Two or more of any
of these units (depending on the particular problem)
can operate concurrently and autonomously.

The 7030 system is capable of overlapping input
operations, output operations, and operations in the
central processing unit. The system can also overlap
the actual processing and execution of instructions
themselves.

Data Flow

Figure 1 shows the main sections of the IBM 7030 Data
Processing System. Information moves between the
input-output devices and core storage under control
of the exchange. The storage bus control acts like
a telephone switchboard to ac tml ly route the data.
The central processing unit consists of registers, arith-
metic units, and control circuits necessary to operate
on data taken from storage; the unit is controlled
by instructions also taken from core storage.

The following data fetching operation (Floating
Add) illustrates data flow and the instruction path
through the system:

1. An instruction counter requests the next in-
struction from storage by sending the location of the
instruction to the storage bus control.

2. The storage bus control decodes the address
and requests the instruction from the storage unit.

3. The instruction is sent from storage to the in-
struction processor where two identical, full-word
registers store up to four half-word instructions while
the instructions are being modified. Instruction
fetches (getting an instruction from storage) normally
alternate between these registers.

4. The instruction is sent through an Error Check
and Correct (ECC) check point; while the instruction
is checked, it is also decoded.

5. If the instruction is to be indexed, the proper
index word is combined with the address field of the
instruction to obtain an effective address.

6. If the contents of the effective address are riot
held in look-ahead, a data fetch operation (getting

6 IBM 7030

Core Storage Units (16,384 Words Each)

c
I 1 t

7
I

Disk Disk Synchronizer
Units

I Exchange
I I

Card Reader

Magnetic Printer
Tape Units

Card Punch
Console and
Console Printer Central Processing Unit

Figure 1. IBM 7030 Data Processing System, Data Flow

data from storage) is started by sending the effective
address to the storage bus control.

7. Before the data fetch is started, the instruction
is loaded into one of four look-ahead levels; these
levels are identical logically and contain the instruc-
tions to be executed and their data.

. 8. The appropriate indicators and the instruction
counter contents are also loaded into a look-ahead
position; in case of an interruption, enough informa-
tion is always present to allow the computer to auto-
matically recover data for a restart operation.

9. When the data requested by look-ahead return
from storage, they pass through an ECC check point
and at the same time are loaded into their corre-
sponding look-ahead level.

10. The instruction processor, meanwhile, has pro-
ceeded to the next instruction in sequence so computer
time is not wasted.

11. When the instruction is to be executed, its data
are loaded into a register in the arithmetic unit.

12. The data and the accumulator contents are
combined in the adders.

13. The result returns to the accumulator and is
again validity checked.

Other instructions follow slightly different pro-
cedures but all follow the rule that instructions are
handled logically as if they were being executed
sequentially.

Core Storage

The 7030 system is equipped with high-speed core
storage units as primary storage. The IBM 7302 Core
Storage is completely solid state and of modular con-
struction to maintain the high reliability and com-

The 7302 core storage is subdivided into 16,384
full word locations. Each location contains 6 4 in-
formation bits and 8 error check and correct bits.
As shown in Figure 1, a 7030 system may use multiple
core storage units. Multiple units may be used, for

word location may be expressed in the 18-bit location
address portion of an instruction. Six additional bits
are used to address any bit in any word (Figure 2).

A complete write operation (putting new data into
storage) or read operation (reading out data and
replacing it) is accomplished in a full core storage
cycle of only 2.18 microseconds. Each storage unit
operates independently and problem solution time

core storage units to the system. This increased per-
formance, due to the overlapping that occurs in the
various references to core storage, is in addition to
the usual advantages of larger storage capacity, such
as the ability to completely contain a large program
in storage at one time. T o take full advantage of
overlapping, successive addresses are cycled among
the core storage units. With four storage units, it is
possible to approach an effective storage cycle of .5
microseconds.

pactness of the system. , , $4 ,:*- i 2 1%- ’

I . Y .
4 t V - - a possible 262,144 full-word locations. Any possible c

m n r r l l l a y be significantly decreased by adding additional

I
I I

‘\O 17,y’\, 18 23,//24 63
‘\ \

Location ’ B i t *

Address Address

Figure 2. Instruction Address Bit Format

System Organization 7

Information Format

; +
I I

1 ,
E

One of the design goals for the IBM 7030 system is that
it perform equally well on large technical, business,
computational, and logical problems. Formerly, com-
puter design differed greatly, depending on whether
the computers were principally aimed at technical or
business applications. Experience has shown that each
design is restrictive, that these two areas do not ex-
haust the field, and that the computing load of a
single instzllation rarely falls into just one such class.

Examination of data handling within computers
and of the fundamental units of data in different
kinds of data processing tasks led to a new organiza-
tion which contributes greatly to the power and flexi-
bility of the 7030. In addition to a 96-bit parallel
arithmetic unit of very high speed and a 24-bit
parallel unit for address arithmetic, the 7030 system
has a serial unit which can handle up to 8-bits in
parallel for processing variable length data.

i +
I

I I -
I

sign and exponent flag, fraction with sign, and three
data flags. Floating point operations must proceed
with utmost speed, and a fixed format facilitates
parallel arithmetic. This format corresponds to the
capacity of a storage location with a length of 64-bit
positions. The word includes a 1-bit exponent flag,
10-bit exponent, 1-bit exponent sign, 48-bit fraction,
and 4-bit sign byte. (A byte is 1 to 8 bits that are
treated as a unit.) The three flag bits of the frac-
tion sign byte serve the entire word. Figure 3 shows
the data unit for floating point arithmetic.

I 6310 5 6

0 2 5 6 0 9 4
36

2 -

Figure 3. Floating Point Word Format

Unsigned Decimal

16 Bits

Data lengths

Signed Decimal

30 Bits

Five common types of operations may be associated
with automatic data processing tasks: floating point
arithmetic, fixed point arithmetic, address arithmetic,
logical manipulation, and editing operations. Each
operation uses data differing in length and internal
structure. An ideal computer would permit each
operation to address the required data length directly
and simply by using all properties of data that are
constant.

T o handle data that differ in structure and length,
the 7030 system provides the information about data
length in the instruction that uses the data. This
provides a logical and flexible means of treating dif-
ferent data lengths without loss of core storage capac-
ity or additional instructions. Each instruction that
can refer to variable length data contains the com-
plete address of the left-most (high-order) bit of the
field and the length of that field. Instructions that
do not refer to variable data lengths are not burdened
with defining them.

FLOATING POINT DATA LENGTH

The data length for most technical computation is
the floating point number because floating point
operations free the programmer from all details of
scaling analysis and decimal point alignment. This
data format has a rigid internal structure: the repre-
sentation of a single number includes exponent with

FIXED POINT DATA LENGTH

Fixed point arithmetic is used on problem data where
scaling analysis is negligible, such as data encountered
in business or statistical calculations. Numbers may
or may not be signed (Figure 4). If the arithmetic
is binary, the data have a structure of digits which
are individually coded into binary representations.
Whether the data have a simple structure or a com-
plex one, the natural length is variable; typical num-
bers vary from four to forty bits in length.

Binary

Byte Size

7 5

-42
Signed
Binary

7 Bits

1 6

Figure 4. Data Types, 7030 System

8 IBM 7030

ADDRESS ARITHMETIC DATA LENGTH
Address arithmetic operates upon data whose struc-
ture is similar to that of fixed-point data, whether
decimal or binary. Figure 5 shows the three major
instruction formats in the 7080.

Fu I I- Word Index Half-Word 2nd 1 s t
Address Operation Reg Address Index Operation Index

Word and B i t
Address

Index Index
Operation Reg Address Operation Reg

EDITING OPERATIONS DATA LENGTH
Editing operations include all operations in which
data are transformed from one format to another,
checked for consistency with a source format, or
tested for controlling the course of the program. Data
for such operations vary widely (Figure 7). All data
of the previous types of operations are subject to
and undergo certain editing operations in the normal
course of their processing. There are, however, other
data fields that are unique to editing operations. For
example, a group of data fields may be moved as a
unit within main storage to assemble records for
output.

Editing operations possess not only the most com-
plex data structures but also the most widely varying
field lengths. For some manipulations, field length
is a single character; for others, a field is many char-
acters.

Full-Word Instructions

Figure 5. Instruction Formats

Word Boundary

LOGICAL MANIPULATIONS DATA LENGTH

Logical manipulations-whether used as a main part
of a program as in data analysis or used to control
the course of the program-operate on a data structure
composed of a group of bits, each of which has an
independent meaning. This distinguishes such opera-
tions from arithmetic operations which use bits as
components of numbers. Each bit in a logical field
may represent parts of a mask, contents of certain
indicators, or other information used to obtain a
logical result. Figure 6 shows two logical fields, from
different words, which are to be combined and then
stored in a third field in another word. In the opera-
tion shown, each field position of the word 1000 is
combined with the corresponding field position in
word 1001. For each position in the result, the logical
operation places a I-bit when word 1000 had a 1
and word 1001 had a 0 for that particular position.
All other bit combinations result in a 0.

Word 1000 001 001 01 0
50 60

I
t

1 1 1

Resu I t 00000 101 0
26 36

Figure 6. Data Fields for Logical Manipulations

I 01 10001 01 000 I 1 I 1 101 001 oolil 01 101 0 101 00001 00001 1 1 1 01 I 1011 001 01 I000 (
41 I 1 52 153154 I 63 0 I I 25126 128 3z33

Man Number Sex Name Status Dependents

Figure 7. Data Fields for Editing Operations

Variable Field length

To obtain a high data rate from core storage, it is
necessary to define words having a large number of
bits which are read or written in parallel. The word
length is set at 64 information bits, plus 8 error check
and correct bits. This length permits word addresses
and bit addresses to be manipulated or indexed with
a single arithmetic operation. Carries from binary
operations on bit addresses are converted to proper
word addresses.

T o be practical, floating point number representa-
tions should be longer than 32 bits; a length of 64
bits is ample. With 64-bit floating point numbers,
multiple precision operations may usually be avoided,
improving performance on this type of problem.

The full word (64 bits) is also a convenient size
for instructions that must specify a variable length

System Organization 9

field. Instructions operating on the more rigid for-
mats of floating point and address arithmetic do not
need variable field specifications and are abbreviated
to 32-bit size. Providing both full-length and half-
length instructions leads to more efficient use of in-
struction bits and substantially improves computer
performance. A full-length instruction is not restricted
to a single word but may occupy adjacent halves of
consecutive words. Thus, no wasted core storage
positions occur when full-word and half-word instruc-
tions are intermixed.

The maximum size of directly addressable core
storage is 262,144 words. Addressing to the bit level
requires 24 address bits: 18 high-order bits to specify
word location and 6 low-order bits to refer to one bit
within the word.

For operations on variable length fields, it is usually
necessary to specify the inner structure of the field.
For alphabetic fields, this consists of the individual
letters or other characters. For numerical fields, the
structure includes the sign and the digits. These sub-
units are called bytes. Because the coded representa-
tion of a byte varies in size, byte sizes of one to eight
bits may be specified as shown in Figure 7.

Instruction Processing

In most stored program computer systems, the execu-
tion of an indexed, data fetching instruction goes
through the following sequential operations:

1.
2.

3.
4.
5.
6.

7.
8.

Advance the instruction counter.
Send a request to main storage for the instruc-
tion.
Main storage sends the instruction back.
Decode the instruction.
Perform index arithmetic, if required.
Send fetch request to main storage for the
operand.
Main storage sends the operand back.
Perform the arithmetic operation.

Each of these steps takes time, but only the last item
represents “useful” work. The other steps, although
necessary, should be considered as preparatory opera-
tions.

The 7030 system uses two sections of the central
processing unit, called the instruction processor and
the look-ahead, to accomplish this preparatory work.
The instruction processor has an independent index-
ing arithmetic unit. This unit prepares the effective
addresses of instructions and initiates storage refer-
ences to core storage units simultaneously with the
execution of preceding instructions. Fetched data

are held in look-ahead until needed by the arithmetic
and logical unit. This organization has two desirable
purposes:

1. Most preparatory operations are done in parallel
and do not delay the main calculations.

2. Several core storage units can operate simul-
taneously, giving the effect of faster core storage
speed.

An additional benefit is realized in instruction
execution time. Using the instruction processor and
look-ahead, the 7030 is able to differentiate between
the processing of housekeeping (program mainte-
nance) instructions and data-handling (problem solv-
ing) instructions. Housekeeping instructions can often
be executed directly in the instruction processor with
practically no execution time delay to the system.
For data-handling instructions, effective addresses are
already formed and data fetched from storage, so
minimum time in the arithmetic unit is required for
their execution.

Despite internal complexities arising from overlap-
ping instruction and data fetches, address modifica-
tion, and the actual execution of instructions, no
timing restraint is placed on the programmer. The
only difference in system operation due to these fea-
twes is a higher pregram executior, speed. Lock-zhead
takes care of the unusual timing conditions caused
by overlapping and makes the program appear to be
executed one instruction at a time, just as it is written.

Arithmetic Unit

The arithmetic unit consists basically of two sets of
circuitry. One set performs high-speed parallel float-
ing point arithmetic on full words. The other set
performs serial arithmetic and logical operations on
fields of variable length; bits may be operated on as
units or as numbers coded in decimal or binary
format. The adder section of the arithmetic unit
adjusts its mode of operation to the type of arithmetic
specified by the instruction.

For simplicity, the arithmetic unit may be thought
of as four one-word registers and a short register
(Figure 8).

Registers A and B constitute the left and right
halves of the accumulator register and are directly
addressable as locations 8 and 9 when programming.
Registers C and D serve as storage registers, receiving
words from storage and assembling results to be
stored. Registers C and D always hold copies of the
contents of core storage words and are not address-
able. The S register, addressable as location 10, stores

10 IBM 7030

To or from Core Storage

B S
0 63 0 7

Operations

Core Storaqe

Adder r3
Figure 8. Arithmetic and Logical Section, Unit Registers

the accumulator sign bit, data flag bits, and zone
bits; these bits, collectively, are called the accumula-
tor sign byte.

In floating point addition, an operand from storage
may be considered to be in register C. I t is then
added to the contents of register A and the result
is placed back in register A. When using the built-in
double precision facilities, register B would be coupled
with register A to expand its capacity.

In floating point multiplication, one factor comes
from core storage to register C, and the other is
taken from register A to register D. The product is
developed in the cleared accumulator. In cumulative
multiplication, one factor comes from storage to regis-
ter C while the other comes from a factor register
(not shown in figure 8) to register D. The two factors
are multiplied and added to the accumulator contents.

In variable field length operations, the storage word
or words containing the operand are placed in C and
D. The operand is selected a few bits at a time and
processed. In some operations, the result replaces the
accumulator operand; in others, the result replaces
the storage operand; in others, only certain indicators
are affected, and both operands remain unchanged.
Binary integer mu1 tiplica tion and division operands
are stepped into the parallel circuitry a few bits at a
time, but the actual operation is performed in parallel.

In division the quotient appears in the accumulator
and the remainder is developed in C and D. At the
conclusion of the divide operation, the remainder
returns to the remainder register. The remainder
and factor registers are assigned core storage locations
13 and 14 respectively.

The operations available in the 7030 system may be
divided into the following broad categories:

Floating Point Arithmetic
Integer Arithmetic
Radix Conversion
Index Arithmetic
Branching
Data Transmission
Input-Output

The arithmetic instruction set includes the ele-
mentary operations load, add, store, multiply, and
divide. Modifier bits are available to manipulate
the operand sign. Thus, the operations subtract or
add absolute are obtained by use of sign modifiers
with the add instruction and are not provided as
separate operations. The sign modifiers also permit
changing the sign of a number to be loaded, stored,
multiplied or divided.

A feature of the multiply operation is that one
of the factors is taken from the accumulator rather
than a separate register. Thus, this factor may be
the resul t of previous computation. Similarly, divide
places the quotient in the accumulator and makes it
available for further arithmetic steps.

Extensions of the basic set of arithmetic operations
permit adding or counting in storage, rounding, cumu-
lative multiplication, comparison, and other varia-
tions of the standard add operation. One variation
is an add-type operation called add magnitude. This
operation is like add when numbers of like signs are
involved. With numbers of unlike signs, the opera-
tion is different from a subtraction (adding with un-
like signs) in that it does not allow the sign to change.
Instead, the result is set to zero. This operation is
useful when dealing with non-negative numbers.

Most arithmetic operations are available in the
floating point mode as well as in the fixed point or
integer mode. The floating point set includes addi-
tional instructions to handle portions of a floating
point number and double length numbers. A floating
point square root operation is also provided.

Floating Point Arithmetic

Most specifications of floating point arithmetic have
been explained. In summary: floating point arith-
metic is done in binary using a specialized data for-
mat which occupies a full 64-bit word. The emphasis
is on high-speed computation of large mathmetical

Operations 11

problems. The binary radix makes available tech-
niques which greatly speed multiplication and divi-
sion.

The 48-bit fraction and the storage efficiency of
the binary system make it possible to compute in the
single precision mode a large number of problems
that were done in the multiple precision mode on
other systems. When required, however, direct mul-
tiple precision mode may be programmed using the
floating point instructions.

Floating point, arithmetic may be performed in
either a normalized or unnormalized mode. The
latter mode also provides a method of doing fixed-
point binary arithmetic.

Integer Arithmetic

Integer arithmetic encompasses all data arithmetic
on other than specialized floating point numbers.
The emphasis is on versatility and economy of stor-
age. The integer arithmetic instruction set is similar
to the floating point set; most operations have the
same names and analogous meanings.

Integer arithmetic may be performed directly in
either decimal or binary radix. Individual numbers
or fields may be of any length, from 1 to 64 bits.
Fields of different lengths may be assigned to ad-
jacent locations in storage, even if a field lies partly
in one storage word and partly in the next. Each
field may be addressed directly by specifying its posi-
tion and length in the instruction; the computer
takes care of selecting the storage words required
and alters only the desired information.

Individual characters or bytes in a field may also
be varied in length. Thus, a decimal digit may be
compactly represented by a binary code of 4 bits,
or it may be expanded to 6 or more bits when inter-
mixed with alphabetic information. Decimal arith-
metic may be performed directly on a decimal num-
ber, regardless of how many bits are used to code a
digit. Because decimal digits, alphabetic characters,
and other single symbols may be coded in several
ways, the term byte is used to denote a single group
of bits processed together. A field may consist of one
or more bytes. Considerable latitude may be used
to specify the coding of alphabetic data through use
of zone bits. The coding may conform to the 6-bit
binary coded decimal representation, as used in the
IBM 705 Data Processing System, or other convenient
representations may be used.

The name integer arithmetic is derived from the
fact that in division the result is normally aligned
as if the operands were integers. I t is possible, how-
ever, to specify that operands be offset to obtain any

desired alignment of the radix point. An offset may
be specified in every instruction; there is no need
for separate instructions to shift the contents of the
accumulator. Numerical data may be signed or un-
signed. For unsigned data, the sign is omitted in
storage, saving space and avoiding the task of assign-
ing signs where there were none. Unsigned numbers
are treated arithmetically as if they were positive.

A significant feature of integer divide is that it
will produce meaningful resul ts regardless of the
magnitude of the dividend or diviscr (provided the
numbers are of proper register size). The only ex-
ception is a zero divisor which will turn on appro-
priate flag indicators. This fezture elinhates much
of the scaling previously required before a divide
instruction could be accepted.

Alphabetic and nonnumerical fields of various
length may be handled by integer arithmetic opera-
tions as if they were unsigned binary numbers, re-
gardless of the character code or the number of bits
used for each character; there is no fixed character
code built into the computer. Alphameric high-low
comparisons are made by a binary subtraction of two
fields. The only requirement is that the binary
numbers representing each character fall into the
comparing sequence desired for the application. An-
other use of integer arithmetic operations is to per-
form general arithmetic on portions of floating point
words, instruction words, or index words.

All integer arithmetic operations are made avail-
able in either decimal or binary form by setting one
modifier bit. Decimal multiplication and division are
not built into the computer directly; their operation
codes are used to cause automatic entry into a sub-
routine that takes advantage of high-speed radix
conversion and binary mu1 tiplication or division.
Decimal multiplication and division are thus as con-
venient to program as if they were buiIt in.

Radix Conversion

Radix conversion operations provide for decimal
input-output while retaining the advantages of binary
operation within the computer. These operations
are also used in the decimal multiplication and divi-
sion subroutines mentioned in the preceding section.

Several operations are provided to allow a variety
of locations for the operand and the result. A field
from storage may be converted and placed in either
the accumulator or a transit register. Alternatively,
a field from the accumulator may be converted and
the result returned to it. In these operations the
operand is an integer and may be converted from
binary to decimal or from decimal to binary format.

12 IBM 7030

Connectives

L
Va I ue

Instructions which logically combine bits by AND, OR,

and EXCLUSIVE OR are included in the connective
instruction set. This set also provides logical facilities
not previously available.

The connective operations are called connect, con-
nect to storage, and connect for test. Each connective
operation specifies a storage field of any length from
1 to 64 bits, as in integer arithmetic. Each bit in
the storage field is lcgically combined with a ccrres-
ponding bit in the accumulator. There are 16 pos-
sible ways to combine, or connect, two bits. Each
of these connectives m2y be specified with each of
the three connective operations. Besides the connec-
tives AND, OR, and EXCLUSIVE OR, there are connectives
to match bits, to replace bits, to set bits to zero or
one, and to invert either or both operands.

Two counts describing the result field are available
after a connective operation. The 7-bit all ones
counter contains a count of the ones in the result
field. The 7-bit left zeros counter contains a count
of the number of zeros to the left of the most signif-
icant I-bit in the result field. These counts are
positioned so that they can be readily used for in-
dexing.

These logical Operations are neither modifications
of arithmetic nor auxiliaries to it, but are equal to
arithmetic in importance. The logical operations
combined with the variable field length mechanism
permit conversion of data formats and analysis of
the resulting data and constitute a complete and
powerful system for operating on groups of inde-
pendent bits rather than on numbers.

Refill
i Count

Index Arithmetic

Index functions may be divided into four groups:
address modification, index arithmetic, termination,
and initializing. The first group is used to address
operands and justifies the existence of index quanti-
ties. The other groups concern changes of index
quantities, tests for end conditions, and set up pro-
cedures; these operations are often called housekeep-
ing. All index arithmetic is performed in a separate
index arithmetic unit. Many of the housekeeping
operations are also executed directly in this unit.

The address part of most instructions may be modi-
fied by adding a number in a specified index register
before using the address. Normally, both the instruc-
tion and the index register remain unchanged. Alter-
ing index registers is the function of the index
arithmetic operations. The instruction set includes
operations for loading, storing, incrementing, and

comparing index values. The index value is a signed
number and the additions are algebraic. One of the
instructions allows up to 16 index values to be added
together for use in further indexing. Another index-
ing instruction provides the function of indirect
addressing.

Each time an index word is altered by index arith-
metic, a test may be performed to determine when
the last element of the array is addressed. This
process is called termination. The form of test used
in the 7030 system allows the test to be independent
of the base address and increment, so that even an
increment of zero is permissible. This is done by
reducing a count field by one every time a loop is
traversed. Each index word contains a count field,
and counting may be coupled with incrementing the
index value. A third field in each index word speci-
fies a refill address with which another index word
may be loaded automatically. Together these three
fields provide a convenient indexing technique. The
index word format is shown in Figure 9. At each
traversal of a program loop, a signed increment is
added to the index value and the count stepped
down by one. When the count reaches zero, the
index register is reset by refilling it from the storage
location which contained the original value and
count. All this may be done with one indexing in-
struction at the appropriate point in the program

The instruction set permits many other indexing
techniques. An important one is the use of the refill
address to indicate the next index word in succession
in an indexing chain. Such chains permit the compu-
tation to progress through a series of items or records
which are not stored in the order in which they are to
be used. Chaining can greatly simplify insertion, de-
letion, and sorting of items by not requiring re-
arrangement of the data in storage.

loop.

Sample Program

The following example, multiply vectors A and B,
illustrates the use of count and refill in a technical
computation. Each vector has (n) elements. Vector A
has its first element at (Ao), vector B has its first

0 25 28 45 46 63

Figure 9. Index \.\'ord Format

Operations 13

Location Instruction Comments

START LX, $ X2, EYEO
LX, $ X3, EYEO

L, TRUZERO

Load index register 2'from index word EYEO
Load index register 3 from index word EYEO

Load accumulator with true zero value

LOOP
.

LFT(N), AO($ X2) Load cumulative multiplicand from AO, indexed by reg2 I Load Mult ip l ier and Multiplicand
*+(N), BO($ X3) Mult ip ly cumulatively by BO, indexed by register 3

Y
Increment Index Registers I

Test Register 2 for Zero Count

V+ICR, $X3,P
CBR+,$X2,LOOP

Increment reg 3 by P; count and ref i l l when G O .
Increment reg 2 by 1; count and re f i l l when C=O
branch to LOOP when count i s not zero

1

ST(N), CO Store cumulative product at C O

EYEO XW, 0, N, EYEO Index word
TRUZERO DD(U), OE-610 Constant true value

Figure 10. Vector Multiplication, Sample Problem

element at (Bo). The product is to be stored at (Co).
A is stored in successive storage locations while B is a
column vector of a matrix whose rows have (p) ele-
ments and are also stored successively. Therefore, the
elements of B have locations which are (p) apart in
storage.

The problem is shown in both flow chart and Strap
program coding in Figure 10. (A complete list of all
7030 instructions with their symbols is included in the
Appendix.) The product is added to the contents of
the accumulator that contains the sum of the previous
products. This operation is called cumulative multi-
plication. When the count in the index registers 2
and 3 goes to zero, they are automatically refilled
from the contents of the storage location specified by
their address (refill field). The count in index word 2
also controls the termination of the cumulative multi-
plication.

Instructions generally specify one of a set of 15
index registers for address modification; the number
of available registers may be supplemented by other
index word locations in storage by a rename oper-
ation. This operation identifies one index register
with one storage location and does the work necessary
to cause this storage location to reflect changes in the
index register. While indexing instructions are pro-
vided primarily to change index values and counts,
it is possible to use these instructions in a manner by
which the index quantities may be advanced each time
they are used. This mode may be used advantageously
to step along a string of data of various lengths without
requiring a separate incrementing instruction at each
step.

"Yes"

Store Cumulative Product

Control Words

Control words specify an area in core storage, the
number of words to be transferred, and a refill ad-
dress. This information is used by the exchange. Con-
trol word format (Figure 11) is identical to index
word format; a control word may be used, therefore,
for both input-output operations and for indexing
functions.

Several flag bits are available to control input-out-
put operations. These flag bits have corresponding
usefulness in indexing operations. For example, the
chain flag in the control word occupies the same posi-
tion as the index flag in an index word. Thus, it can
be used to automatically signal the last section of data
during reading or writing and, when the control word
is used as an index word, the flag may signal the end
of data by an appropriate branch instruction.

Data Transmission

Data transmission instructions transmit data from one
storage location to another. One word or a group of
words may be transmitted in a single operation. The
number of words to be transmitted is specified by a

Figure 11. Control Word Format

14 IBM 7030

count field; full core storage capacity may be trans-
mitted in one operation.

Data transmission operations may act in two ways.
When specified by the transmit instruction, a data

transmission instruction moves data from one storage
location to another. After this operation, the data
in the original storage locations remain unchanged.
The data that were in the receiving storage locations
are destroyed.

When specified by the swap instruction, a data
transmission instruction interchanges data. Both sets
of data are preserved, but they have interchanged
their storage locations.

Branching

Branching operations either conditionally or uncon-
ditionally alter the instruction counter to change the
course of a program. The number of branching in-
structions is not large, but modifiers provide great
flexibility. A modifier specifies if branching is to
occur when an indicator is either on or off. Another
modifier may cause the tested indicator to be reset to
zero. A second operation, branch on bit, permits
testing a single bit anywhere in storage. The tested
bit may also be modified. This instruction places an
almost unlimited number of indicators under the
direct control of the program.

All computer indicators such as: sign, overflow,
error, and input-output conditions, are collected in
one 64-bit indicator register. The branch on indicator
instruction may then specify any one of these 64 indi-
cators as the condition to be tested.

Program Interrupt System

The 7030 program interrupt system permits the com-
puter to respond rapidly to extra or multiprogram
demands which occur at arbitrary times. These in-
terrupts are most often signals from the exchange
that some external signal has been received or that
an input-output operation has been completed. The
computer may also make rapid selection of an alter-
nate sequence of instructions when program activated
indicators signal that special circumstances have
occurred.

The interrupt system uses a continuously moni-
tored indicator register. When an indicator comes
on, the computer selects an instruction from a corre-
sponding location in a table of correction instructions.
This instruction is sandwiched into the program
being executed when the interrupt occurs. Means are

provided to select which indicators may cause inter-
rupts and when the interrupt will be permitted. Pri-
orities may thus be established. If more than one
interrupt signal occurs at the same time, the system
accepts them in the order of their priority.

The desirability of having the interrupt system
monitor exceptional conditions becomes apparent
when the problem of determining arithmetic overflow
is considered. Formerly, it was necessary to program
a test of every arithmetic operation whose execution
could result in an overflow condition. The alternative
was usually a costly machine stop or useless processing
with inaccurate data.

In the ISM 7030 system, the pr~grammer can select
indicators that are monitored automatically at no loss
of program execution time. If overflow or underflow
conditions arise, a correction routine may be entered
and the condition corrected or, if this is impossible,
the processing ha1 ted without meaningless computing.

With a high performance computer system, wasted
seconds, or even microseconds, are costly. Such waste
occurs when the computer asks for a reaction or indi-
cation from a control system or an operator. Another
source of wasted time occurs during any input-output
operation. The best way to avoid these wasted sec-
onds is through multiprogramming - having a num-
ber of problems available to the computer so that the
necessary time waits in each problem are utilized by
operations on one of the other problems. The main
requirement for satisfactory mu1 tiprogramming is an
efficient interrupt system. The interrupt system is also
necessary for efficient operation of an independent
input-output system, such as the 7619 exchange.

Another feature of importance for multiprogram-
ming is address protection, which permits areas of
storage used in one problem to be protected from
another problem. Thus, if the computer is solving
severa1 problems at the same time, each one may be
protected from change by any of the others. The high
and low limits of the storage area being used by the
program are monitored by indicators. If another pro-
gram attempts to store new data within the limits of
the first program, an interrupt occurs because the
original data would be destroyed by this type of
operation. However, a data fetch operation may be
allowed (from within the limited storage area) be-
cause the stored data would not be destroyed by the
fetch. This is at the programmer’s discretion.

The programmed approach to mu1 tiprogramming
is used to maintain the flexibility of the system. The
programmer has the ability to allocate all facilities
freely; if one program needs all of core storage, it may
have it. Only by giving the programmer this ability
to control computer facilities, can he obtain full use
of the computer’s power.

Program Interrupt System 15

Exchange and Input-Output Units

I B M 7619 Exchange

The iBM 7619 Exchange directs information between
input-output units, other external units, and core
storage. The exchange enables data processing and
input-ou tpu t operations to proceed simultaneously.

The 7619 exchange provides a means of connecting
many different units to the computing system. System
organization is for input-output units physically near
the computer as well as for direct data input from
remote sources, output to remote stations, and com-
munication with other computers which may or may
not be a direct part of the system. A common method
of program control applies to all units (Figure 12).

The 7619 exchange contains common control facili-
ties for input-output and external units. This time
sharing of controls keeps the input-output and ex-
ternal units as simple as possible for the programming
effort, yet maintains fully overlapped operation. The
exchange also does address housekeeping and assem-
bles or disassembles information without tying up
computer or core storage time. The only computer
time involved is that needed to start and interlock
the operation. The only core storage cycles required
during external operations are those needed to trans-
fer fuIl words of data to or from locations in core
storage. These cycles are fitted between computing
operations without interfering with the computer
program, except for a possible slight delay for the
actual storage cycles.

The basic exchange configuration provides 8 data
channels, with the ability to expand to 32 channels,
in groups of 8, as the need arises. Each data channel
can transmit data at a nominal rate of 500,000 bits
per second. The exchange can reach a peak rate of
one word every 10 microseconds (100,000 words per
second) transmitted to or received from core storage.
The information rate of all input-output devices is
controlled by their control units connected to the
channels.

Read or write instructions are used to transfer data
between the external units and core storage. T o
initiate an operation, a read or write instruction is
issued by the stored program. This instruction speci-
fies the external unit affected and the location of a
control word. The control word defines the beginning
of the storage area to be used for the data transfer and
a count of the number of words to be transferred.
These two pieces of information are sent to the ex-

change where they are held, and the computer pro-
ceeds to the next instruction in the program. When
the desired input-output unit is available, it is started
by the exchange, and reading or writing proceeds
using the storage area indicated by the control word.

As each data word is transferred to or from storage,
the control word in the exchange storage is modified.
The data word address is advanced by one and the
count is decreased by one. The control word in the
exchange always contains the current data word ad-
dress and a count of the number of words remaining
to be transferred. The control word in the main
storage is not affected during the data transfer; this
control word retains the initial data word address
and count and may be used repeatedly to transfer
data to and from the same storage area.

The control word also contains a refill address that
can specify the address of another control word. In
this way, control words may be chained together to
define storage areas that are not adjacent. Control
words, thus, may be used first for reading, then for
indexing while processing, and finally for writing the
data from the same storage area.

All instructions for operating external units are
issued by the computer program but are executed
independently of the program. A number of data
transfers can take place simultaneously, all sharing
access to storage. The external device signals the
program when the process is complete.

Because of the inflexible data rate from magnetic
tapes, the exchange takes priority over the central
processing unit in requesting core storage cycles. The
over-all effect on processing is quite small, even with

Figure 12. The Exchange in the Computer System

16 IBM 7030

the exchange operating at peak rate (which is greater
than the simultaneous reading rate of sixteen IBM
729 IV Magnetic Tape Units). For example, internal
computing speed on a computer system with four units
of core storage would be slowed less than 10 per cent
with the exchange operating at maximum rate. As
the number of core storage units decreases, computing
speed is slowed somewhat more.

There are four basic variations of the reading or
writing operations, depending on the setting of cer-
tain flag bits in the control word. These are:

SingZe BZock Operation. The external unit may
terminate reading or writing if it reaches the end of a
b i d before the entire storage area defined by the
control word has been used. A block of data is de-
fined for each type of external unit as the amount of
information recorded between adjacent starting and
stopping points of the unit. The length of a block
depends on the unit used and may be a card, a line of
printing, or the data between two consecutive record
gaps on magnetic tape.

MuZtipEe Block Operation. More than one block
may be read or written with one instruction, until
the specified storage area is exhausted.

Chaining. After the storage area defined by the
control word is exhausted, the exchange can substitute
another control word and continue data transfer with-
out stopping, using the storage area defined by the
new control word.

Skipping. During reading, it is possible to suppress
entry into storage of selected portions of the informa-
tion being read.

Input-Output Units

Magnetic Tape Units

The IBM 729 IV Magnetic Tape Unit (Figure 13) is
used with the 7030 system as intermediate or long
term storage. The tape may be recorded at either of
two character densities under program control. The
density may also be changed by depressing a change
density switch on the tape unit.

The higher density gives a maximum information
rate of 62,500 six-bit bytes per second. This cor-
responds to 5864 64-bit words per second, or 170
microseconds per word. Tape speed is 112.5 inches
per second.

The lower density gives an information rate 01
22,500 six-bit bytes per second; tape speed is 112.5
inches per second. This density permits the system
to handle rnagrietic tape that is fully compatible with

other IBM data processing systems or auxiliary equip-
ment operations such as off-line printers.

All tape units are connected to the exchange
through a tape control unit. Up to eight tape units
may be attached to one control unit, but only one of
the eight can operate at one time. Simultaneous tape
unit operation requires additional control units, and
each control unit requires a different channel on the
exchange. Tape units connected to different control
units can operate independently of one another.

The six infermation tracks on the tape are labeled
BA 8421. When these bits are placed in storage, the
B bit is in the lowest-numbered, or left-most, bit
position. Successive bytes are stored: BA 8421. BA
$421 B . . . in the order in which they are read. The
tapes are normally operated with odd parity. Because
some other systems use the same physical tapes with
an even count parity method of checking, a mode of
writing and reading even parity tapes is provided for
communication purposes. Even parity tapes cannot
be used for binary data.

Figure 13. IB?! 728 I V Ilagnetic Tape Vnit

Exchange and Input-Output L'nits 1 7

Card Reader

The IBM 7503 Card Reader (Figure 14) operates at
1000 cards per minute. Cards are loaded in the hop-
per face down, 9-edge first. They feed past a first
reading station for checking, past a second reading
station for data entry and to a drum type stacker. A
clutch permits intermittent starting and stopping as
far as the second reading station; from there the
cards feed continuously to the stacker.

The card contents are transferred from the second
reading station to a 960-bit core buffer in the reader
control to change from a row-by-row representation
to a column-by-column representation before entering
the exchange and main storage. A complete 960-bit
card image is thus transferred to storage, with a l-bit
representing a punch and a O-bit representing no
punch.

For greater simplicity and flexibility in data edit-
ing, the control panel is omitted from the card reader.
The stored program has complete control of all
editing functions.

When the card reader is initially loaded, the first
card is read and the card image is stored in the buffer.
A read instruction from the computer causes the
buffer contents to be transferred to storage. As soon
as the buffer is emptied, a new card cycle starts to
place the next card in the buffer. Disagreements be-
tween the first and second reading stations cause a
unit check indication to be given.

Card Punch

The IBM 7553 Card Punch (Figure 15) operates at
250 cards per minute. Cards are loaded in the hopper
face down, 9-edge first. They feed past a punching
station, past a reading station for checking, and to
a drum type stacker. A blank station precedes the
punching station so that, when the punch is loaded,
there are two unpunched cards between the hopper
and the punching station. A clutch permits inter-
mittent starting and stopping as far as the reading

Figure 14. IBM 7503 Card Reader

18 IBM 7030

Figure 15. IBM 7553 Card Punch

station; from there the cards feed continuously to the
stacker.

The information to be punched must be assembled
in storage as a card image occupying up to 15 full
words. The card image is transferred from storage to
a 960-bit register in the punch control to change from
the column-by-column representation to a row-by-row
representation for punching. After the contents of
the register are punched into a card, the card is read
at the reading station to verify that the card contains
the same punching as the buffer contents.

The control panel is omitted from the card punch
for greater flexibility and, as with card reading, the
stored program has full control of ali data editing
functions.

Each write instruction given to a card punch causes
the buffer to be filled from storage. A card cycle is
then started to punch the buffer contents into the
card waiting just ahead of the punching station. An
end of operation indication is not given until the end
of the card cycle. At this time, the preceding card will
have been checked at the reading station and a unit
check signal given in case of an error.

Printer
Figure 16. I B M 1403-2 Printer

The IBM 1403-2 Printer (Figure 16) is an electro-me-
chanical printer using engraved type. The alphabetic,
numeric: and special characters are assembled in a
chain (Figure 17). As the chain travels horizontally,
each character is printed as it is positioned opposite a
magnet-driven hammer which presses the form against
the chain. Average speed is 600 lines per minute.

The printer unit consists of the chain printing
mechanism, hydraulic carriage, paper and ribbon
feeds, and magnetic drum. The control contains the
control and interlock circuits and a buffer storage
register capable of holding the data for one line of
printing. Up to 132 positions may be printed on
one line.

The chain printing mechanisms for the printer are
in magazine form and are interchangeable to provide
a wide choice of type fonts. The chains are composed
of character sets called arrays. The standard chain
has five arrays of 48 characters each.

The choice of type fonts might include Fortran
type and mathematical or chemical symbol type. Even
a limited Arabic language type could be used with the
proper program control. All type fonts are quickly
and readily interchangeable, giving a wider range
of characters and symbols than ever before available
on a data processing system printer. All information
and data to be printed must be coded in an 8-bit code
before being sen1 to the prhter and will be printed

&-Character
Sections

Figure 17. Printer Type Chain

Exchange and Input-Output Units 1 9

with one line containing up to 17 words. A write
instruction then transfers this block of words from
storage to the print buffer, which stores one complete
line of printing at a time. All characters printed are
checked at the time of printing. Other than loading
the carriage with the proper forms and control tape,
no operator set-up time is
gram has full control over
greater flexibility; there is

High-speed Magnetic Disk

required. The stored pro-
the printing operation for
no control panel.

St brag e

High-speed magnetic disk storage provides large exter-
nal capacity to supplement internal core storage. Each
disk unit can contain 2,097,152 full words. Data may
be transmitted between disk storage and internal
storage at an average rate of one full word every eight
microseconds. I t is possible to address up to 32 disk
units.

A high-speed disk storage system consists of one IBM

7303 Disk Storage and its associated IBM 7612 Disk
Synchronizer. Within the disk unit, the total storage
area is divided into 4096 addressable locations called
arcs. An arc contains 512 words and is the smallest
addressable portion of disk storage. Eight arcs form
a track which is identified by the nine high-order bits
of the arc address.

A disk storage unit consists of 39 magnetically coated
disks for data storage. Both sides of each disk are
used for recording, making a total of 78 disk faces.
Each I'ace has its own access arm ji-ead-write head).
One set of 39 disk faces covers all even numbered
tracks while the other set covers all odd numbered
ones. Thus, two consecutively numbered tracks are
never located on the same set of disk faces. This
arrangement enables one set of heads to be positioned
and ready to read or write while the previous set of
heads are reading or writing.

Console

The IBM 7152 Operator's Console is separate from the
main computer and is an optional input-output de-
vice. The keys, lights, and digital display (Figure 18);
two sets of program switches (Figure 19); and the con-
sole printer are all subject to programmed interpreta-
tion and control. An IBM 7623 Console Control is
used for both the console and the console printer.
The interpretive program may give these devices

sophisticated control functions or may ignore them.
This interpretive approach to the console gives excep-
tional flexibility and makes possible console facilities
that remain adequate as new operating techniques are
developed.

The console contains a printer for input and out-
put, a number. of toggle switches and columnar
switches for input, and lights and digital displays for
output. Also available are three variable controls to
permit the entry of analog information. The switches
are scanned on receipt of a read instruction from the
computer and their content stored in core storage.

Various customer engineering control consoles are
used throughout the system to assist in localizing
malfunctions and program errors. These consoles are
widely used during diagnostic programming sessions
to locate questionable machine components before
they become troublesome. Error indicators are also
under constant monitoring, and a recording is made
of all error conditions.

Figure 18. Keys, Lights, and Digital Display

Figure 19. Program Switches, Left Side

20 IBM 7030

The power and speed of the IBM 7030 system is de-
rived from a balanced system design in which every
component operates at its optimum rate. Important
facets of the 7030 design are reliability and self-
checking. Solid state design results in increased re-
liability, a lower cost system, and decreased mainte-
nance requirements. To insure circuit reliability, all
electronic components operate at a level below rated
capacity.

The physical arrangement ol sys tem components
also offers an important benefit in operating efficiency.
Components requiring operator attention may be situ-
ated for accessibility and convenience. Control and
arithmetic components are consolidated into a single
set of modular cabinets which may be located less
prominently.

The self-checking features built into the 7030 are
designed to insure the maximum degree of error de-
tection with minimum operator interruption. The
use of error check and correct (ECC) bits permits auto-
matic correction of any single bit errors within a
given word without loss of computer time or expendi-
ture of programmer effort. Double bit errors are
detected and indicated to the operator.

The transmission of data, on any move through the
system, is continually checked for validity. Three

System Re1 ia bil ity

types of data checking are used in

1. Error Check and Correct.

2. Parity.

3. Residue.

At. least one of these methods is

and Accuracy

the 7030 computer:

used with any given
data transmission, and in some cases, a combination
of methods is used.

ECC checking is perforned on all data transfers
between core storage and the exchange, and between
core storage and the central processing unit.

Parity checking is used to check data transfers
which do not involve the main core storage unit. This
method is basically a computed check in which an
original parity, carried with the data, is compared
against a computed parity and then checked for
validity .

Floating point operations are checked on an over-
all basis by residue checking. A computed method is
used, as with parity checking, but a different code is
used.

Duplicate circuitry is also used as a checking
method in the 7030. The entire serial arithmetic
unit is composed of duplicate circuits to further in-
crease the reliability of the system.

System Reliability and Accuracy 21

Appendix

Special Storage Locution Assignments

LOCATIOIV NAME LENGTH

0 Zero 64

1 (P,b) Time Clock 36
2 (P) Interruption Address 18
3 (P) Upper Boundary 18
3 (P) Lower Boundary 18

Maintenance Bits 64

1 (P,a) Interval Timer 19

(P) Boundary Control Bit 1

5 (b) Channel Address 7
6 Other Central Processing Unit 19
7 Left Zeros Count 7
7 All Ones Count 7
8 Left Half of Accumulator Register 64
9 Right Half of Accumulator Register 64

10 Accumulator Sign Byte 8
Indicator Register 64

14 Factor Register 64
15 Transit Register 64
1631 Index Registers 0-15 64

ii f:\ Mask Register 64
Remainder Register 64

NOTES:
P = Permanently protected area of storage.

BIT
ADDRESS

0-63
0-18

28-63
0-17
0-1 7

32-49
57

0-63
12-18
0-18

17-23
44-50

0-63
0-63
0-7
0-63
0-63
0-63
0-63
0-63
0-63

a = Read-only; except for Store Value, Store Count,
Store Refill, and Store Address instructions.

b = Read-only.
c = Bit positions 0-19 are read-only.
d = Bit positions 0-19 are always ones, and positions

48-63 are always zeros.
(Read-nly means that these positions cannot
be written into.)

Aiphgbetic Listing of Mnemonic
Operation Codes

+
+ MG

"f

x

I

B

BB

BD

BE

BEW

BI

BR

C

c f
CB

CBR

CCW

CM

22

Add
Add to magnitude
Mu1 tiply
Add product
Divide

Branch
Branch on bit
Branch disabled
Branch enabled
Branch enabled and wait
Branch on indicator
Branch relative

Connect
Add to count
Count and branch
Count, branch, and refill
Copy control word
Connect to storage

IBM 7030

cv
CT

CTL

D f

D+MG

D*

D I
DCV

DL

DLWF

E f
EX

p:s-c

F +

K

KC

Convert
Connect for test
Control

Add double
Add double to magnitude
Multiply double
Divide double
Convert double
Load double
Load double with flag

Add to exponent
Execute
Execute indirect and count

Add to fraction

Compare
Compare count

KE

K F

KFE

KFR

KMG

KMGR

KR

KV

L

LC

LCV

LFT

LOC

LR

LTRCV

LTRS

LV

LVE

LVS

LWF

LX

Compare if equal
Compare field
Compare field if equal
Compare field for range
Compare magnitude
Compare magnitude for range
Compare for range
Compare value

Load
Load count
Load converted
Load factor
Locate
Load refill
Load transit converted
Load transit and set
Load value
Load value effective
Load value with sum
Load with flag
Load index

M f Add to storage
M + M G Add magnitude to storage
hi+ 1 Add one to storage

NOP No operation

R

RI
RCZ

RD
REL

RNX

sc
SHF

SIC

SEO

SR

SRD

SRT

ST

sv
SVA

SWAP

SX

T

v f
v+c
V+CR

W

Z

Refill
Reciprocal divide
Refill on count zero
Read
Release
Rename

Store count
Shift fraction
Store instruction counter if
Store low order
Store refill
Store rounded
Store root
Store
Store value
Store value in address
Swap
Store index

Transmit

Add to value
Add to value and count
Add to value, count and refill

Write

Store zero

Appendix 23

IBM 7030 Instruction Formats

I

Address 1000 I P Length BS Offset Integer and
Connective

I Oper

Input-
output

I

Transmit

I

Address 1000 I

Branch On B i t

Address I op I loo00 I

Floating Point

I

M i x e l laneous

I

Address 1000

Direct Index

Address I

Address 1000 I Address

Address
I

Normalized
Unnormalized

Address

18 28 31 0

o p 00000 I
I

Invert Leave} B i t) \

I I

Address J O p 1
I

Set B i t to Zero
Leave Bit Y

I

o f f 1 Branch If {on)

Count and Branch Address
I I

Address I I Ind 11000
I I

Value ?IFw Count
I I

Branch On
Indicator

Refil I
Index and
Control Word

-[.Set Indicator to Zero

I I l l h A I 1

4/60: 3M--AG

24 IBM 7030

\

Data Processing Division, 112 East Post Road, White Plains, N.Y. Printed in U.S.A. 022

