
TRANSLATION OF

COMPUTER PROGRAMS

December 30, 1958

W. Buchhols
S, G. Campbell
K, W . Kaeli
M. Kloomok
E, G. Newman

Product Development Laboratory
Poughkeepsie, N. Y ,

I .
'COMPANY C O N F I D E N T I A L

December 30, 1958

MEMORANDUM TO: Mr . H. T. Marcy

SUBJECT: Program Translation

The enclosed report represents the views of the Committee you appointed to
consider the possibilities of the automatic translation of existing 705 pro-
grams to different languages of other computers which might succeed the
705 line, in particular, a drift transistor version of the 7070 at three to five
times the speed (the 117070Xtt), and a lesser version of Stretch (the 117000X1t).
This, of course, involves the general question of whether program transla-
tion is even feasible, Our conclusions and recommendations a re summarized
below.

1. ItPurett simulation of one machine on another is well understood and
always possible. However, simulation generally takes excessive
running time on the Ilobject" machine,

2. ItPcrfect1' translation of a program for one machine into an equiva-
lent program for another machine appears theoretically possible.
However, the perfect translation would take an excessively long
time to run on even the fastest contemplated computer. We also
do not know of any hardware approach which will appreciably
simplify the present translation problem.

3. An approach combining simulation and translation programs is a
practical proposition subject t o a number of not unreasonable
restrictions.
the enclosed report.

These restrictions a re itemized in Section 6.2 of

4, Regardless of the immediate pressure t o provide a 705 replace-
ment, there is a fundamental need to develop a translation technique.
We recommend starting such a project, fully realizing that it will
be a'dcffieult pioneering effort requiring a high level of competence.

5. Our rough estimate is that a group of up to ten highly capable people
should take between one and two years to complete a working trans-
lator program.

M r . H, T. Marcy -2- December 30, 1958

6 . The efficiency of the translation approach will be considerably
enhanced by the continued improvement of machine-independent
languages. We recommend a continued and intensified effort in
this area.

7. We conclude that the 705TX is not a necessary addition to our
line of products; that, as successors to the 705, we can and
should offer the 7070X or 7000X computers with procedures for
translating production programs from the 705 I, 11, and II.

8 , In the future, design objectives for new machines must specify
means for converting the programs of all replaced machines. .

The 705 TX proposition rests almost entirely on the desire to give
present 705 customers a program-compatible successor. Without good
translation and simulation tools this trend will inevitably continue. IBM
would face a future of offering the same small group of customers an appa-
rently endless succession of derivatives of the early 701 and 702, first in
tubes, then in transistors, then in cryotrons, etc., all competing with each
other and with the newer machines. W e submit that this would seriously
endanger IBM's continued progress. An all-out attack on automatic trans-
lation of computer programs to more advanced computers would, in our
judgment, serve IBM and its customers better in the long run.

Y

W. Buchholz, Chairman

Encl.
cc: C. L. Christiansen

S, W. DunweU
J. C. Logue
H. A. Mussell

u

S, G. Campbell

C O M P A N Y C O N F I D E N T I A L

TRANSLATION O F COMPUTER PROGRAMS

1. Introduction

At Mr . H. T. Marcy's request, the following committee of Poughkeepsie
Product Development personnel convened on December 8, 1958:

W. Buchholz, Chairman
S. G. Campbell
K. W . Kaeli
M. Kloomok
E. G. Newman

The general question posed to the committee was this: W i l l we have to
continue to update existing machine organizations to protect present customers'
investments in existing programs, in addition to developing new machines for
new customers and new applications, or is there a satisfactory way to convert
existing programs to the new machines ? In other words , will we ever be able
to break away from admittedly obsolete machine organizations? How can IBM,
and thus IBM's customers, ever make progress?

More specifically, the committee was asked to consider the question of
a successor to the 7051-111 machines, Is a transistorized 705 necessary, o r
can we offer the customer a solid state machine representative of the best we
know how to build at this t ime?

The Committee wishes to acknowledge the advice freely given by Messrs.
J. Batchelder, I. Liggett, D. L. Mordy, J. F. Parson, C. B. Poland, and
J, Terlato, but the opinions expressed here a r e purely those of the Committee
members .

2. The Problem

At the present time, there a r e two new solid-state computers under active
development. The 7070 is intended to provide commercial customers with a
machine of the approximate 'capability of the 705 111, but at a substantially lower
cost. The Stretch Computer (Project 7000) i s primarily intended to provide
technical customers with a very much more powerful computer at a substan-
tially higher cost, though the organization is sufficiently general to permit
this type of machine to be applied to problems other than technical computing
where the performance needed justifies the cost.

Translation of Computcr Programs 12 130 158

It has generally been assumed that it will be possible to bridge the wide

The 7070X, a drift transistor version of the 7070 at three to
performance and cost gaps between the 7070 andStrctch by derivatives of
these machines.
five times the speed, should provide 7070 cuatomers who outgrow that machine
with a fully program-compatible successor. The 7000X, a l esscr but fully
program-compatible version of Stretch, should give customers who need the
powerful features of Stretch, but not its performance, a l e s s costly machine
from which they could step up to the senior version if and when needed. The
7070X and 7000X a r e not now under active development.
ably be rather close in performance or cost or both, but their separate juatifi-
cation would rest on fu l l program compatibility with their respective parent
machines.

They could conceiv-

The 7070 and Stretch programs would thus appear to provide complete
coverage for the near future in the 705 - 704-709 area and above.
Marketing has insisted that there is a strong need for additional successor
machiiies which a r e program-compatible with the 705 and the 704-709 lines.
The justification is that present customers have large investments in existing
programs and that the advantages of the newer machines are not sufficient to
justify spending large sums of money on reprogramming existing problems for
new machine organizations. Thus, projects to transistorize the 709 and the
705 a r e now active.
available has already been announced to the field.

Nevertheless,

The intention to make these compatible but faster machines

There is a distinct danger of generating a multi-headed monster. We now
have five different and incompatible lines of machines with wide a reas of over-
lapping application: The 650 (with tape), the 7051-111, the 704-709, the 7070,
and Stretch. None of these lines is showing any sign of disappearing. If a new
machine organization is developed in the future, it presumably becomes a sixth
line. While we will win some customers from competitors and gain new cus-
tomers who a r e not now using such machines, the market will clearly not be so
large as to require these many overlapping lines. The lines must inevitably
compete with each other. The sales, educational, customer engineering, and
programming support for each line will add up to a staggering amount. We
must also be conscious of the possibility that a competitor may find a good
answer to the conversion problem, possibly by inventing an entirely new organi-
zational approach which pays off in spite of conversion costs. Hence, IBM
cannot afford to coast along without developing new techniques.

-2-

Translation of Computer Programs 12/30/58

3. W i l l the Problem Disappear ?

There appear to be two possible alternatives to the necessity of pro-
viding program-compatible successor s for each line of computers IBM now
produces. The first is an automatic translation of customer programs from
one computer to another, regardless of dissimilarities in the organization of
the two machines. The second is the development of a Machinedndependent
Programming System which would permit the customer to express his prob-
lems in a language independent of the computer, present or future, on which
these problems will run.

To consider the second alternative first, some progress has been made
in the development of machine-independent languages. FORTRAN was a fir st
attempt, successful only over that part of the broad spectrum of computer
applications for which it was specifically designed. When modifications were
incorporated to make FORTRAN more generally applicable, it was done on a
basis of expediency and machine language instructions were incorporated.
COMTRAN, which ;Is not yet completed, is another attempt to develop a
machine -independent language, this time for the commercial customer . Another
project of this nature jointly sponsored by the ACM and their European counter-
parts is under way.

Although techniques have improved considerably since FORTRAN was
first planned, it is too early to predict whether a truly universal language is
feasible. More likely, there will be a family of machine-independent languages,
each oriented towards a specific class of problems. Furtheymore, there will
probably be new generations for each family as programming techniques im-
prove and computer applications will become more sophisticated. So we return
to the problem of translation once again, this time from the viewpoint of convert-
ing programs written in obsolete machine-independent languages.

Applied Programming is inclined to minimize the magnitude of the trans-
lation problem by the following reasoning: 75% of the dollar invested by the
customer in computer programs is for problem definition and system modifi-
cation (which would presumably not be wasted in going to a new machine) and
only 25% is for machine coding. It i a further claimed that 4070 of this 25% can
be eliminated with packaged 1/0 programs. Thus, only 15% of the original
investment is wasted in reprogramming for a new computer. This argument
has convinced many 705 customers who have indicated their intention of convert-
ing to the 7070. There remain, however, customers whd refuse to reprogram
and insist on a program-compatible 705 replacement. The Committee feels
that the reasoning advanced by Applied Programming makes a good deal of
sense but this does not eliminate the desirability of automatic translation.

"3"

T ranslation of Computer Programs 12/30/58

The feasibility of automatic translation was treated in a recent letter
to the field*. The following statement attributable to Applied Programming
appeared: "After considerable investigation, it has been determined that it
is very nearly impossible or impractical to translate from one machine
language to another machine language, or from one Autocoder language to
another. Some assistance is available in the changeover process through
the use of simulation programs.

The Committee disagrees. We believe that, subject to a number of not
unreasonable restrictions, automatic program translation is an economically
f ea sible proposition.

4. ' Simulation and Translation

A now famous theorem, proved by Turing in 1936, states categorically
that the simulation of any "Turing Machine" on any other "Turing Machine" i8
theoretically possible. Since all of the machines we are discussing fall within
the definition of Turing Machines, simulation is always a possible, though not
necessarily efficient, process.

The program which precisely imitates (simulates) one machine on
another is relatively easy to produce, The practical difficulty is that simula-
tion means a great loss in performance. The time to execute the original
program on the object machine, by forcing the object machine to simulate the
subject machine, is very much longer than the time to execute an equivalent
program written efficiently in the language of the object machine**. To justify
economically the replacement of the subject machine by a simulation procedure
on the object machine, the performance-to-cost ratio of the object machine
should be higher by at least the same factor as the drop in performance effec-
tive during simulation.

Assuming that simulation reduces the effective performance by a factor
of 10 and that cost increases as the square root of performance, two fairly
reasonable assumptions, then the object machine would have to be 100 times
as fast as the subject machine in order to run its programs economically,
Where the performance goes up by a factor of around 2, as appears likely in
going from a 705 to a 7070, then simulation would not be a good economic
proposition. The senior Stretch machine will, on the other hand, have a
performance great enough to make 705 simulation practical.
point is somewhere between the two machines.

The bkeakeven

* Letter to Branch Managers by C. Garrisan, Jr.
IBM - '7070 Automatic Programst1; December 5, 1958.

If the object machine is aufficiently faster than the subject machine,
simulation on the object machine m a y actually be faster than running the
original program directly on the subject machine. Thus, 650 simulation
programs exist for the 704 which can run programs in 650 language on
the 704 four to eight times faster than the 650,, and more cheaply too.

on IIProgress Report

**

-4 -

Translation of Computer Programs 12 / 3 0 /58

Since simulation is possible and is, indeed relatively easy to do, there
can be only one reason for going to the much more difficult process of trans-
lation; and that reason is efficiency. So far as translation is concerned, the
following results can be proved:

A, Given any computer C, any properly defined computing job Ji,
and any unambiguous definition of efficiency, there exist s at
least one program Pi which performs job Ji on computer C
with optimum efficiency, Given two different computers, C and
C ' , the same computing job Ji, and the same definition of effi-
ciency (which is assumed to be machine-independent), there
exists a set of optimum programs Pi on C, and a set of optimum
programs Pi" on C1. Furthermore,

B. there exists at least one translator Tk(C, C1, Pi) which trans-
lates any of the programs Pi on C into one of the equivalent
optimum programs Pi' on C ' .

These theorems can be proved under conditions which a re quite general
and realistic. Further, for any existing computer, the translating program T
can be written in a reasonable time, Since, then, it is possible and reasonable
to write a translator which will translate an optimum program on machine C
into an optimum program on machine C1, we must say that translation is
possible in the same way that simulation is possible.

But the fact that we can write a translator, which will perform an opti-
mum translation within any reasonable definition of tloptimumll, does not mean
that we have solved the problem; it only shows that the translation problem,
like the simulation problem, does have a solution.

The difficulty with translation lies in the time of execution of the trans-
lator program itself. It is not a difficult program to write, but it is a'difficult
program to execute, The "perfect" translator which we know how to write
would require literally years of running time, on the average, on a super-
Stretch computer to translate any but the most trivial program, A special..
purpose computer could be defined t o execute it more efficiently, and it could
be further improved by more careful theoretical considerations, but the
amount of work involved would still be staggering,

-5 -

Translation of Computer Programs 12 /30 158

The main point to be derived from theoretical considerations is that
simulation and optimum translation a re both possible; but both a re usually
too expensive: the simulator in running time on the object machine, and the
translator in time required to perform the translation. A practical solution,
if there is one, would have to lie somewhere intermediate between the simu-
lator and the optimum translator. As the translated program is allowed to
be less optimum, the translation times become smaller but the operating
times on the object machine become larger. Eventually the program becomes
a simulator, the translation time goes to zero and the operating time loss
approaches the factor of 10 or more mentioned previously,

The question as to whether there is a point at which a reasonably good
translation can be achieved in a reasonable amount of time depends upon the
three machines in question: the subject machine, the object machine, and
the machine upon which translation is performed. Considering the machines
which a re available for the translation (the 704 for example) it appears that
considerably less than optimum translations can be obtained with reasonable
translation costa. The object machine, then, could be expected t o run the
translated-eimulated program with a decrease in performance probably
greater than 2 and less than 10. This makes the chances of economical
translation of 705 programs to the 7070 quite doubtful, to the 7070X better,
and t o the 7000X quite good.

Translation of Computer Programs 12 / 30 /58

5 . Some Problems in Translating 705 Programs

The difficulty of translating at the machine language level lies in the
characteristic idioms of any computer which a re related to its internal
structure and which have no direct counterpart in another dissimilar com-
puter. In the 705 such idioms appear in both the data format and the in-
struction set *

5 , I Data Format Translation

In any 705 program there exists a marked interdependence between
the data to be processed and the instructions which carry out the processing
function. The data format is arranged in a manner which best suits the
operational characteristics of the machine. In like manner instruction
sequences occur which take advantage of the organization of the data. This
implies a translation of both the data and the instructions.

The 705 enjoys the advantage that, unlike the 7070 for instance, alpha-
betic characters and pure decimal digits a r e distinguished by unique codes
and a re easily translated t o any other code, The 705 code has the disadvan-
tage, though, that signs of numeric fields a re indicated by zone bits on the
units digit which make this digit indistinguishable from an alphabetic charac-
te r , Translating to machines with explicit sign coding (7070 and Stretch)
requires a knowledge of the nature of the 705 instructions which operate on
the field. Such knowledge is also required to change from the variable length
field format of the 705 to the much more rigid format of the 7070 with its
limited word packing capabilities. Although Stretch can handle variable
length fields with even greater ease than the 705, it does have an upper limit
on the field length which is less than the limit in the 705, 80 that a knowledge
of the data layout is still required. The limits of maximum field length which
the 7070 and Stretch machines can handle will require a change to multiple
precision type of operation.

The most serious problem is probably the specification of the lengths
of individual records and of groups of records, The 705 generally requires
a record mark to indicate the end of a record and a group mark to indicate
the end of a group. None of the object machines being considered handle
records and groups quite the same way. If the records and groups have fixed
lengths, andyzing the 705 program to detect the location of the respective marks
will be sufficient. When the lengths a re variable, it may become necessary to
trace the program with sample data so as t o detect the instructions which place
the record and group marks into their new position,

When translating from the variable field length 705 to any fixed word
length machine, it is to be expected that the new data format will require mote
space in memory and on tape,

Translation of Computer Programs 1,2 / 30 / 5 8

5 . 2 Instruction Translation

Generally, each operation built into a computer, particularly of the
single address variety, does only a small piece of the "macro-operationll
which the programmer is trying to accomplish. The difficulty is that the
intent of the programmer is not readily apparent after a macromoperation
has been spread out over a series of basic machine instructions. Given a
list of machine instructions, it is hard to discover the beginning and end
of the set which makes up a macro-operation, This is complicated by the
fact that the programmer may have interspersed the instructions making up
one macro-operation with instructions belonging to another. The program-
mer himself is conscious of this difficulty and he frequently adds explanatory
comment to guide himself. Unless these comments a r e in a formal symbo-
l ism which a computer program can interpret they a re of little help to the
automatic translation process

Another difficulty is more peculiar to some computers, the 705 included,
and it is one we would prefer to get away from, The interpretation of a single
operation may depend in a major way on the data it encounters. Thus, the
Add to Memory operation in the 705 performs a purely decimal addition if
the first character in memory is a signed digit, but it is modified to include
a special binary zone addition if the fir st character was an unsigned digit.
It would have been better if these operations had been given separate codes,
(In fact the 705III required the inclusion of an extra code, though the old
ambiguous one had to be retained t o maintain compatibility with other 705's.)

Yet another difficulty arises from the fact that the programmer may
make deliberate use of the incidental results of an instruction (e ,g . , overflow,
sign of zero) which a re incidental to the basic operation (e. g., Add), .and may
have no direct counterpart in another computer,

As a final example, the ability of the computer to modify its own instruc-
tions (which is really the foundation for the power of the stored program comr
puter) leads t o programming operations which a re highly dependent on the
structure of the specific computer. Instruction modification is used a great
deal on the 705, which lacks index registers.

It i e worth noting that a human programmer , not completely familiar with
the original program, would have analogous problems in manually rewriting the
program for another computer. He would have to analyze the program and
guess the intent of each portion so as to formulate suitable macro-operations
in his mind if not on paper, He has a substantial advantage over a computer
because he can read the comments and he is better equipped to generalize from
the particulars. On the other hand, the computer may have an advantage in
analyzing the structure of an existing program, which can be a very laborious
job,

.

0

0

a

Translation of Computer Programs

6 . A Translation Procedure and its Restrictions

12 / 30 /58

-

6.1 Procedure

In the formulation of this report we have visualieed in general t e rms a
practical simulation-translation procedure involving the following steps:

A,
B. Explicit Identification of Operands
C. Generalization of Machine Operations
D.
E, Debugging on New Machine

Translation from 705 Machine Language to 705 Autocoder

Conversion to Language of New Machine

' F. Conversion of Fi les

Most 705 programs are now written in Autocoder which is a machine-
oriented language but much more useful to translation than actual 705 machine
language. Instructions in Autocoder a r e clearly distinguishable f rom data,
memory locations a r e referred to by symbolic rather than absolute addresses,
and macro-operations a r e incorporated as desired. However, once an Auto-
coder program is assembled into a machine language deck, correction cards
are very often inserted in machine language and the original Autocoder deck
becomes obsolete. Aft er a program is debugged, the Autocoder deck is often
discarded entirely, As a result, the only program certain to be correct $a
the one currently being run on the machine in machine language.

Step A is necessary, then, to reconstruct an Autocoder program f rom
a machine language program. This procedure has already been proven for
the 704. A 704 program* has been written which translates
a deck of 704 binary machine language cards into the standard symbolic
assembly program (SAP) language. This 704 program, although it is by no
means a perfect translator, has been applied successfully to several quite
large programs, This existing program is offered as partial. evidence that
practical translation schemes a r e possible.

The Autocoder language (o r other symbolic language such as SAP) still
contains much of the idiom of the subject machine. Step B expands the source
program now in Autocoder language to identify more explicitly the character-
ist ics of the operands and such functions as:

Numeric or alphabetic character of data.
Numbers being signed or unsigned,
Length of data fields,
Re-use of accumulator and ASW contents and indicators.
Iteration (counting) loops,
Addr e s s modification.
Program switches,
Subroutine entrie s ,
Location of record and group marks,

* SHARE program PKDSMB, "Binary Card Disassembly Program1I, by
A. L, Samuel and W. H. Burgin, September 9, 1956,

-9-

Translation of Computer Programs 12/30/58

Step B may require a static tracing of all branches of the program or,
i f the data definition is not available, a dynamic tracing on the subject ma-
chine with sample data. In the course of the analysis, tables a r e constructed
to tag each instruction and each data field with all the identifying information
necessary. Any apparent contradiction detected during this analysis, for
which no procedure has been specified, will be flagged and brought to the at-
tention of the programmer, even th0ug.h the program may make a simplifying
assumption and proceed. At the end of the tracing, all instructions will be
checked to see that none have been overlooked. Any discrepancy will be
flagged.

The analysis w i l l be simplified, and therefore less subject t o error,
if the data layout is explicitly provided by the programmer (assuming it is
not already part of the Autocoder program), Such information may be optional
or unnecessary in the simpler programs. It may or may not prove essential
to successful translation of really complex programs with highly variable
data layouts.

The expanded program resulting from Step B is still formulated in terms
of the specific operations built into the subject machine. Step C proceeds to
another and more general set of operations which can be readily converted t o
the object machine language. Ideally, Step C would restate the program in a
truly universal programming language from which it would be easy to convert
to any of many different machine languages. This would avoid the formidable
task of creating a multiplicity of specific machine-pair translation programs.
A good programming language equally applicable to a number of computers
may well be a by-product of the development of translation programs.

If the operand identification (Step B) and the operation generalization
(Step C) a re completely successful, the remaining translation steps should
not be too difficult. If success is not complete, subroutines will be inserted
to simulate on the object machine untranslatable functions peculiar t o the
subject machine. These insertions will be flagged to permit manual re-
programming, i f and when desired, for greater machine efficiency.

Step D, the conversion to the language of the new machine, is routine
inasmuch as going from the .general t o the specific is a straightforward task.
Difficulties could' possibly be introduced by limitations of the new machine,
such as insufficient memory, but insurmountable problems a re not*&nticipated,

Given enough memory (and perhaps auxiliary storage), Steps A and B
can be readily done on the subject machine, or one like it, without interfering
with production runs. Steps C and D a re better done on the object machine
aince it is presumably faster and more flexible. Possibly a third computer,
one more powerful than either, could be called on for this one-time job.

-10-

Translation of Computer Programs 12/30/58

Most of the debugging of the translated programs (Step E) might take place
on the new machine before it is put into regular use.
active files to the language of the new machine (Step F) and the final transition
to production runs on the new machine a re difficult tasks requiring careful
planning so as not t o disrupt production schedules. It would seem very de-
sirable for the new machine to be able to process the files in their original
format, at least temporarily, so as not t o require an unproductive pass of
many reels of tape.

The conversion of the

Provision must be made in the translation procedure for the possibility
that two or more separate programs to be translated may use the same data.
The output of one program may be the input to one or more others, or a file
may be used by more than one program. Obviously, the data layouts must
match, One way to do this is to allow pre-assigned data definitions as an
optional input to the translator, these definitions being supplied either by the
programmer or a s an output from an earlier translation.

6 .2 Restrictions

The above procedure would appear to imply a number of restrictions
which m y be summarized here:

1.

2,

3,

4.

5 ,

6 .

The subject program must have been debugged and must be
meaningful on the subject machine.

The translation will not be perfect. Human aseiatance may be
requested by the translating program. The translated program
will require debugging on the new machine.

The translator will have to interpret idiomatic programming pra-
cedures considered standard on the subject machine, but some
colloquialisms will prove uninteuigible t o the translator ,

The translated program will not take f u l l advantage of all the
features of the object machine since this may require replanning
of the application.

Since the translation will not be perfect and probably will include
elements of simulation, the translated program will require more
time and more memory than an equivalent program written directly
for the new machine.

The translation process will be lengthy, and its cost must be added
to the cost of doing business on the new machine,

Translation of Computer Programs 12/30 / 5 8

These restrictions imply that translation will not be practical unless
the object machine has a performance-to-cost ratio that is enough greater
than that of the subject machine t o overcome the loas in efficiency.
would, of course,expect any translator to be improved over the years, so
that the efficiency should gradually be increased and the human effort reduced.

One

7. Conclusions

If the object machine is very much faster than the subject machine,
simulation can be a practical way to make the transition to the new machine.
It has the advantage that no time or manual effort is required to convert pro-
grams or files. A considerable improvement in performance can be obtained
by a slight departure from pure simulation to pre-edit the original instructions
and simplify their interpretation. No knowledge of the meaning of the program
and data is assumed in such a pre-editing step.

At the opposite extreme, it is clearly possible to provide programming
aids which would greatly simplify manual r epr ogramming . These might in-
clude programs t o convert from 705 machine language to 705 Autocoder, to
analyze the subject program for loops, to identify classes of operands, to
print suitable listings, and to draw flow charts. Trial translations can be
made and printed side-by-side with the original program. An advanced pro-
gramming language for the object machine would facilitate writing the new
program.

We feel that these programming aids can be carried far enough so that,
combined with partial simulation, they become, in effect, an automatic transla-
tion procedure. The translation will not be perfect, and human assistance for
specific sections of the subject program may be required. The final program
may contain some er rors which can be found only by debugging. However, the
sum total of human effort should be very much less than with manual repro-
gramming, and this effort will be reduced further as the translation procedures
a r e improved over the years.

The Committee considered possibilities of constructing special trans-
lating equipment and hardware modifications to our new computers to facilitate
program translation. Translation is a sufficiently complex process, however,
so that nothing short of a full-fledged computer with a large memory can begin
$0 do the job. Nor is it evident that any changes to the new computers already
under way would attack a large enough portion of the overall problem to make
a great deal of difference. We do feel strongly that the translation problem
should be carefully considered at the start of any new computer project.

- 12-

L.

Translation of Computer Programs 12/30/58

Because of the importance of helping our customers bridge the gap
to more advanced equipment, we recommend that a strong effort be started
to develop translation methods. Real progress in program tranalation
depends on getting top-notch, inventive people, to work on it. A routine
attempt by a large crowd may only serve to discredit translation a s a valid
tool.
result, not to develop a theory.

0

W e look on this job primarily a s a practical effort to accomplish a

It is our estimate that a group of up to ten highly competent people
would be able to come up with a working translator program in a period of
one tto two years. We do not know whether this effort should be undertaken
by Applied Programming or by Product Development. Since a theory is
also badly needed, we further recommend that Research back up the effort
as part of their work on general language translation. We feel that the
subject deserves the best IBM has, since our future in the computer busi-
ness may depend on it.

WB:SGC:KWK:MK:EGN/pkb

-13-

