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1. IN’I‘RODUC TION

Recent nuinber-theoretic work ‘using computers has been of
mainly two types. Firstly, there have been calculations of spe-
cific numbers or sequences which'are of interest for their own
sakes; examples include the sequence of primes, particglar’l‘ar_ge _
primes, Mersenne primes and perfect numbers. Secondly,‘théré,‘
have been attempts to diéprove various Outsfanding conjectu-r.es .or .
at least to produce sufficient numerical evidence to suggest wheth-
er or not the conjecture is true; examples of this kind include the
work on Fermat's Liast Theorem and the Riemann hypothesis, Yet
another use for a computer, with even greatér potential value, is
as a conjecture-generatof rather than a conjecture-prover. The
computer can produce rapidly a large amount of data in which, by
a combination of human ingenuity and machine processing, one can
hope to recognize patterns. Most conjectures, of course, arise in
this way. fhe mathematician observes a pattern valid on a limited
possibly finite range of systems, hypothesises ’ghat this pattern
holds over a wider range and then attemﬁ;s to prove/fhat th/isi is so0.
To use a compuiter in this process requires a suitable mixture of
luck and mathematical ingight; supported hopefully, by a greater
understanding of the general problem of pattern recognitilon,V both

how humans do it and how we can program machines to do it.




2.  SPECIFIC PROBLEMS

The follbwixlg is a description of some outgtanding Number-
Theoretic problems and conjectures for which a computer may
serve as a useful tool, The 1t1,<‘.3t is by no means exhé,ustive‘, but
reflects the interest of the author,

(i) The Riemann hypothesis,

"The non-trivial zeros of the Riemann zeta-fur;ction ¢ (s)
lie on the line Re(s) = i/2". As early as 1935 a series of calcu-
lations was made by Titchmarsh (1) who showed the hypothesis to
be true for the first 195 zeros. Later calculations (2, 3, 4, 12)
- have verified the conjecture for the first 35,337 ZE€Tr08. At first
sight this appears'overwhelming‘evid‘ence for the truth of the hy-
pothesis, however, as pointed out in (4), there is an observed
tendency for the zeta function to behave more capriciously as |
t = Im(s) incAreaseAs, For example, Gram's Law, the truth of
which would have implied the truth of the Riemann Hypothesis,
is almost universally true for small t but is broken with increas-
ing frequency as t increases. This and other effects are coninect’-
ed with the nature of the asymptotic series generally used to ap-
proximate {(s) in the region 0 <Re (s) < 1. anch term of the

/2

series is a '"smooth" function of s and only O(tl ) terms are re-

quired to approximate ¢ (s) to the required ac_cura'cy., The large




initial tern;ls contribute the sort.of re*gqlar behaviour to é’ (s‘)‘~ o
which would make the Riemann Hypothesis true. When, if ever,
the hypothesis breaks down it must be whére contributions from
a‘large number of smaller terms mutually reinforce and oﬁtweigh
the larger terms. On rough heuristic arg’uments of this type one |
expects the hypothesis to be valid up to fairly large values of t
so that the numerical evidence already available s‘till leaves open
a reasonabie possibility that the "hypothesis is false. Furtherv
numerical work could be designed to either increase the present
known range of validity or to look in suitably chosen intervals
far along the line Re(s) = 1/2.

(ii) Fermat's Last Theorem.

"There are no non-trivial integral solutions of x‘n +y? o=
z for n > 2'". This, probably the most familiar unsolved prdB-
lem in the whole of mathematics, has been the subject of much
numerical work since the advent of fast computers. It is suffic-
ient to restrict one's attention to the case of n prime; now ’the
problem spli'ts naturally into two cases nkyxy z and n xyé. Re-
sults of computations (5,6, 7," 8) have shown thiat the hypoiﬁhésis
is true in the first case for n <253, 747, /889 apd in the ‘second
case for n <4002, (9, 10, 11,) Here the nume rig:'al evidence

overwhelmingly suggests the truth of the conjecture; future nu-




merical work should "pr‘obably ‘wait on new theoretical methods for
increasing the range of validity more rapidly.
A stronger form of Fermat's Last Theorem was conjeétured

by Euler, namely, that for no integral  SRECSERRNE N with k > 2,

Little numerical work has been carried out in an attempt to dis~-
prove this conjecture.
(iii) Fermat Primes,
n

Fermat conjectured that all F = 22

+1 areprime and ver-
ified this for n=1,2,3,4. Eﬁler, however, found in 173'2 that F‘5
is composite. It is now known that F7, FS’ F9 ) Fllo, Fll ) FlZ"
Fj; and several larger ¥ are composite. Fermat's conjecture
was singularlyy unfortunate in that not oné case of Fn‘ prime has
been found other than the first four. It is now of interest t’o ask
whether there are any further Fermat primes or whether Fl’ FZ’
F3, F4 form the complete set,

(iv) Mersenne Primes and Perfect Numbers.

A perfect number is a number n the sum of whose divisors,

including 1 but excluding n, is n. A Mersenne prime is a prime




of form 2P-1. It is known that an even perfect number must be of

the form 2P-1), where 2P-1 isa Mersgenne prime; whether

2Pt
or not_theré exists an odd pérfect number is an unsolved problem.
Several authors (13, 14, 15, 16, 17, 1‘8) hav‘t\a extended the list of
Mersenne primes by using computers and also listed factors of the
composite Mersenne numbers 2P-1, The present count of Mer-
senne primes, and hence the count of perfect numbers, stands at

5000_} paving been tested.

20, all candidates up to 2

(v) Goldbach's Conjecture.

"Every even number > 2 is the sum of two primeé”. The
truth or falsity of this conjecture is still an open que‘stion° Since
numerical evidence and probabilistic argument suggest strongly
that the conjecture is true, a computer might well be used in a
search for a étronger form of the éonjecture, such as '"'every
even number n > 2 is the sum of two primes each greatef(than
n/2 - f(n)" for some £f(n). On arguments of probabilistic type,
which usually give the correct order of magnitude in problems of
this type, the best possible f(n) should be 0(log2n).

(vi) Kummer"a Conjecture;

Kummer (19) showed that
Bl
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for all p = 1 (mod 3) satisfies
| g :f(k) & x3 - 3px -,p:A = vO,
where A is uniqﬁ;ely determined by
ap = A2 +2>B%, A s 1 (mod3).

f(x) has three réal roots for each p. Kummleflc.laésified the p,fimeé
p 1 (mod 3) according as xp is the largest; rn‘i,ddle or ‘s,mallest
zero of f(x) and conjéctured that the asymptbtic f.réquencies for
these classes are 1/2, 1/3, 1/6. Kummorvtested this conj“ec't,u,re
by eyaluating the first 45 of the Xy and finding densitie‘sh of . 5333,
.3111, .1556. A 1a,te;~ computation (20) indicatea a departure from
the conjectured densities and a trend toward randomness. However,
© only the first 611 xp were calculated; a more exte’nsi‘v',e calculationf’
could now be performéd on high speed machines and would give
more significant evidence as to the truth or falei‘;y of the conjec-
ture. M o |

(vii) Rama‘nujan’s.‘ Function 7T (n),

o . _
This is defined by 1 (1 - x")2* :nz;l r(a) <L It was
noted by Ramanujan that 7 (n) is multiplicative; that is,
"T»(fn)T(n) = T(mn) for coprimé integers m, n. There is also a
L X ' o, ol
recurrence relation (21) connecting T(p)y Tp ) and T(p i)

Hence 7 (n) may be found readilyonce 7 (p) is known foy all p.

As to 7{p), no explicit formula for it has yet been discovered,




Ramanujan ’c‘onjectured’thayt'v ‘ T(p) ) < ’p,ll/VZ and regarded the
truth of this é.é "highly probable;' tho‘ﬁgh he verified only the fir.%;t :
ten cases, Lehmer (22) verified the conjecture for the first 46
primes.

A further interesting question co‘nnected with T {n) is wheth-
er or not T(n) =0 for any n. In (23) iﬂt’is shown that 7(n) # 0
for n<3, 316, 799.

(viii)  The Series of Primes.

¥

Conjectures connected with the distribution of primes are

~legion, It is known (Dirichlet) that any arithmetic sequence which

does not exclude primes trivially contains infinitely mapny primes;
very little is known of the distribution of primes in a quadratic se-

quence (29).

*

A conjecture of a purely numerical nature still outstanding

is the point at. which w(x) -£i(x) first changes signs, where ‘ m(x)

dt
logt

X
is the number of primes less than or equal to x and fi(x)=l; .
It is known that w(x) - £ i(x) changes sign infinitely often and it
has been computed (24) for x as large as 1010, no sign change
having been found yet. An upper bound for the first sign change
was deduced in (25) and is' the rather discouraging figure of

1010 , - U :
1010 . The actual point is certainly much lower than this

and may well be within the range of this or the next generation of




computers.
(ix) Wilson's Theorem and Fermat's Theorem.

. Wilson's Theorem states that (p - 1)! = -1 (mod p); Fer-

| {3

mat's Theorem states thét, for p ,l/ a, apf L +1 (mod p). It is
natural to ask for. whaf valueé of a,p éan p-1)t=-1 ’(‘m_§d pz’) ér
aP-1 _=_ 1 (mod pz)., The second possibility‘haé applicatioﬁs to

the first cése of Fermat's Last Theorem. It iskknow that

4! = -1 (mod 52) and 121 = -1 (mod’ 13%). Goldberg (26) computed
Wilson Remainders for all p < 10% and found just one further ex-
ample, 562! = -1 (mod 5632)‘ Fr¥berg (27) found no further ex-
ample in 104 <p <3.10%, In the latter paper all solutions of

2p-1 5 -1 (mod pz) in p <5, 104 were computed; there are two
such, 1093 and 3511, Kravitz (28) found no further exa‘mple iﬂ

p<10°,
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