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1, INTRODUCTION 
0 

1 T N T R  On11 

Recent number- theoret ic  work using computers  has  been of 

mainly two types ,  

cific numbers  or sequences which a r e  of i n t e re s t  for  the i r  own 

sakes ;  examples  include the sequence of p r i m e s ,  par t icu lar  l a r g e  

p r i m e s ,  Mersenne  p r i m e s  and perfect  numbers .  Secondly, t h e r e  9 

have been a t tempts  to  disprove var ious outstanding conjectures  or  

F i r s t l y ,  t he re  have been calculations of spe- 

0 

a t  l ea s t  t o  produce sufficiont numer ica l  evidence to  suggest wheth- 

er or not the  conjecture  i s  t rue ;  examples  of th i s  kind include the 

work on F e r m a t ' s  L a s t  Theorem and the Ricrnann hypothesis. Y e t  

another  u s e  for  a computer ,  with even g r e a t e r  potential value,  i s  

as  a conjecture-generator  r a the r  than a conjecture-prover .  

computer  can  produce rapidly a l a r g e  amount of da ta  in which, by 

a combination of human ingenuity and machine process ing ,  one can 

hope to  recognize pa t tc rns .  Most conjec tures ,  of c o u r s e ,  a r i s e  in  

th i s  way. The mathematician observes  a pa t te rn  valid on a l imited 

The 

possibly finite range  of s y s t e m s ,  hypothesises that th i s  pa t te rn  

holds over a wider range and then a t t e m g s  t o  prove that th i s  i s  so.  

To u s e  a computer  i n  th i s  p r o c e s s  r equ i r e s  a suitable mixture  of 

luck and mathematical  insight; supported hopefully, by a g r e a t e r  

understanding of the genera l  problem of pa t te rn  recognition, both 

0 
how humans d o  i t  and how we can p r o g r a m  machines  to  do  it, 
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PROBLEMS 
0 

The following is a description of some outstanding Number- 

Theoretic probloms and conjectures for which a computer may 

se rve  a s  a useful tool. 

ref lects  the in te res t  of the author,  

The list is  by no means exhaustive, but 
'i 

0 

(i) The Riemann hypothesis. 

* 
The non-trivial zeros  of the Riemann zeta-function b ( s )  I 1  

l i e  on the line R e ( s )  = 1/2". As ear ly  a s  1935 a s e r i e s  of calcu- 

lations was made by Ti tchmarsh (1)  who showed the hypothesis t o  

be t r u e  for the first 195 zeros .  La te r  calculations ( 2 ,  3 ,  4 ,  12) 

have verified the conjecture for the f i r s t  3 5 , 3 3 7  zeros .  At f i r s t  

sight this  appears  overwhelming evidence for the t ruth of the hy- 

pothesis,  however,  a s  pointed out in (4)' there  is an observed 

tendency for the zeta function to  behave more  capriciously a s  

t = Im(s) inc reases ,  For  example,  G r a m ' s  Law, the t ruth of 

which would have implied the truth of the Riemann Hypothesis, 

i s  a lmost  universally t rue  for small  t but i s  broken with increas-  

ing frequency a s  t increases  e This and other effects a r e  connect- 

+ ed with the nature  of the asymptotic s e r i e s  generally used to  ap- 

proximate 1; ( s )  i n  the region 0 < Re ( s )  < 1.  Each term of the 

s e r i e s  i s  a "smooth" function of s arid only O ( t l i 2 )  t e r m s  a r e  r e -  

0 
quired to  approximate t (8 )  t o  the required accuracy,  The l a rge  
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initial t e r m s  contribute the s 

which would make the Riemann Hypothesis t r u  

the hypothesis breaks down i t  must  be where contributions f rom 

a l a r g e  number of smal le r  t e r m s  mutually reinforce and outweigh 

0 

the l a r g e r  t e r m s .  

expects the hypothesis to  be valid up to  fairly l a rge  values of t 

s o  that the numerical  evidence already available st i l l  leaves open 

a reasonable possibility that the hypothesis is  false.  

On rough heuris t ic  arguments  
this type one 

Fur ther  

0 

numerical  work could be designed t o  either increase  the present  

known range of validity or t o  look in suitably chosen intervals  

far along the l ine Re( s )  = 1 /2 .  

(i i)  F c r m a t ' s  Las t  Thsorem, 

"There a r e  no non-trivial integral  solutions of xn $- yn 

zn for n > 2", This ,  probably the most  famil iar  unsolved prob- 

lem in the whole of mathematics ,  has  been the subject of much 

numerical  work since the advont of fast  computere. 

ient t o  r e s t r i c t  one's attention to  the c a s e  of n pr ime;  now the 

problem spl i ts  naturally into two c a s e s  

sul ts  of computations ( 5 ,  , 7 ,  8 )  have 

It i s  suffic- 

y z  and n l x y z ,  Re- 

is  t r u e  in the first c a s e  for n < 253 ,  74 

case  for n < 4002, (9 ,  10, 11, ) Here  

overwhelmingly suggests the t ruth of the conjecture; future nu- 
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m e r i c a l  work should 

increasing the range of validicy m o r e  rapidly, 

0 

A st ronger  form of Fe rma t ' s  Las t  Theorem was conjectured 

by Euler  , namely, that fo r  no integral  x l ,  x2,  . , x with k 2 ,  k 

k -  1 
1 

i = l  
xi k -  - XkO k 

Litt le numerical  work h a s  been car r ied  out in an attempt to  d is -  

prove this conjecture,  

( i i i )  Fc rma t  P r i m e s .  

Fc rma t  conjectured that a l l  Fn = 2 2 n  f 1 a r e  p r ime  and ve r -  

ificd this  for n = 1 , 2 , 3 , 4 ,  Eu le r ,  however, found in 1732 that F5 

is composite. It i s  now known that F7, Fa, F9, F lO,  F l l ,  F12, 

F13 and severa l  l a r g e r  Fn a r o  composite. F e r m a t ' s  conjecture 

was singularly unfortunate in that not one case  of F 

been found other than the f i r s t  four,  

whether there  a r e  any further Fe rma t  p r imes  or whether F1 I F2#  

Fj, F 

pr ime  has  

It is  now of in te res t  t o  a s k  

n 

f o r m  the complete set, 4 

(iv) 

A perfect  number is a number n the sum of whose d iv isors ,  

A Merssnne p r ime  is a p r i m e  

Mersenne P r i m e s  and Per fec t  Numb 

including 1 but excluding n ,  i s  n.  

1 
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3 0  

n that  a n  eve e r f e c t  number m u s t  be o 

e re  2'-1 is  a Mersenne  p r i m e ;  whether 

o r  not t h e r e  ex is t s  an odd per fec t  number is  an  unsolved problem,  

Severa l  au thors  ( 1 3 ,  14, 15, 16 ,  1 7 ,  18)  have extended the list of 

Merseniie p r i m e s  by using computers  and a l s o  l i s ted  f ac to r s  of tho 

composi te  Marsenne  numbers  2p- 1. The p resen t  count of Mer-  

senne p r i m e s ,  and hence the count of perfect  numbers ,  s tands at 

2 0 ,  all candidates up to  2 5000- 1 having been tested, 

(v ) Gold bach' s C onj ec  tu r  e . 
"Every even number > 2 is the  sum of two pr imes" .  Tho 

t ru th  o r  falsi ty of th i s  conjecture  is  s t i l l  an  open question, Since 

numer ica l  evidence and probabilist ic argument  suggest strongly 

that the conjecture  i s  t r u e ,  a computer  might well  be used in  a 

s e a r c h  for  a s t ronger  f o r m  of the  conjecture ,  such as  "every 

even number n > 2 is  the s u m  of two p r i m e s  each  g rea t e r ' t han  

n / 2  - f(n)" fo r  some f(n).  On arguments  of probabi l is t ic  type,  

which usually give the c o r r e c t  o rde r  of magnitude in  p rob lems  of 

t h i s  type,  the best  possible  f (n )  should be O(1og n),  2 

(vi)  Kummer 'a  Conjecture, 

K u m m r  (19) showed that 
p--l 

3 
) 

2 TTU 
2 

v=1 
X = l t 2 z C O 8 ( ~  

P 
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for  all p 5 1 (mod 

ze ro  of f (x)  and conjectured that the alsymptotic frequencies for 

these c l a s ses  a r e  1 /2 ,  1 / 3 ,  1/6. Kummer tested this  conjecture 

by evaluating the first 45 of the x P 
.3111, .1556. A la t c r  computation (20) indicated a depar ture  f r o m  

the conjectured densi t ies  and a trend toward rand 

only the first 611 x were  calculated; a m o r e  sx 

could now be performed on high speed machines 

m o r e  significant evidence a s  to  the t ruth or  falsi 

tu r  e . 

and finding densit i  

P 

- 

(vii) Ramanujan's Function T (n), 

xn-'. It wa 

noted by Ramanuja 

T(m)T(n) = 7(mn) for  coprime ia tegers  m ,  n,  

r ecu r rence  relation (21) connecting 7 (p), 7(p 

Hence T (n) may be found readilyance 7 (p) i s  

As to  T(p), no explicit formula for  it ha6 yet been discovered. 

The 



t e n  c a s e s r  L e h m e r  (22 )  verified the conjecture  for  the  f i r s t  46 

p r i m e s ,  

A fur ther  interest ing question connected with T (n) i s  wheth- 

er or  not T (11) = 0 for  any 1 1 .  In (23 )  i t  i s  shown that ~ ( n )  # 0 

fo r  n f 3 ,  316, 799. 

(vii i)  The S e r i e s  of Primes. 

Conjectures  connected with the distribution of p r i m e s  a r e  
% 

legion, It is  known (Dir ichlet)  that  any ar i thmet ic  sequence which 

does  not exclude p r i m e s  t r ivial ly  contains infinitely mapy p r i m e s ;  

ve ry  l i t t le  is known of the distribution of p r i m e s  in  a quadrat ic  s c -  

quance ( 2 9 ) .  * 

A conjecture  of a purely numer ica l  nature  still outstanding 

is the point at which 

is  the  number of p r i m e s  less than o r  equal t o  x and t i@)= 

It i s  known that 

IT (x) - 1  i(x) f i r s t  changes s igns ,  where  IT (x) 

6"** 
~ ( x )  - I i(x) changes sign infinitely often and it 

h a s  been computed (24 )  for  x a s  l a r g e  a s  10 10 , no sign change 

having been found yet. An upper  bound for  the f i r s t  sign change 

was  deduced in  (25 )  and is the r a the r  discouraging figure of 

1 0 1 0 ~  o3 . The actual  point i s  cer ta inly much lower than th i s  . 

and may well be within the  range  of t h i s  o r  the next gencration of 
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Wilson's Theorem s ta tes  that (p - I ) !  3 - 1  (mod p); Fer- 

s Theorem states that,  for  p I f  a ,  aP - l  5 +I (mo 

natural  t o  a s k  for  what values of a , p  can (p - I ) !  I - I  (mod p 2 ) or  

2 
9 ap-' - L 1 (mod p ) e  

the first case  of Fe rma t ' s  Last Theorem, 

The second possibility has  applications to  

It is know that 

41 I - 1  (mod 5 2 ) and 12!  5 - I  (mod 13 2 ). Coldberg (26)  computed 

4 Wilson Remainders  for  all p < 10 

ample ,  562! 5 -1  (mod 563 ). Frb'berg (27) found no fur ther  ox- 

and found just  one fur ther  ex- 

2 

ample in lo4  < p < 3 .  lo4 ,  In the la t te r  paper a l l  solutions of 

2p-' ii -I (mod p ) in p < 5 , l O  

such, 1093 and 3 5 1 1 ,  

2 4 were computed; there  are  two 

Kravitz (28) found no further example in 

5 p < 1 0 .  

\ 
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