
THE EXECUTE OPERATIONS-A FOURTH
MODE OF INSTRUCTION SEQUENCING

1
J

L-I \ /

F. P. Brooks, Jr.

RESEARCH CENTER

INTERNATIONAL BUSINESS MACHINES CORPORATION
YORKTOWN HEIGHTS, NEW YORK

RC -213

THE EXECUTE OPERATIONS - A FOURTH
MODE OF INSTRUCTION SEQUENCING

F, P, Brooks, Jr.

International Business Machines Corporation
Research Center

Y o r k t o m Heights, New York

ABSTRACT: Instruction sequencing modes include normal sequencing,
bra~iching, interruption, and use of Execute operations whereby an
addressed instruction i s executed out of its normal sequence, Execute
operations essentially serve as calling sequences for one-instruction
subroutines, and this property suggests a variety of applicatiohs. The
two Execute operations provided in the Stretch computer a r e described,

Research Report
RC-213
J U l Y 15, 1959

Printed in U. S. A.

INS TRUC TION SE QUE NCING MODES

Classically, digital computers have had two basic modes of

In the fir s t , normal sequencing , each in- sequencing instructions,

struction has a unique successor which may be defined by an instruction

counter o r by a next instruction address within the instruction itself.

The second mode i s the selection of an alternate sequence by a branching,

skipping , o r suppression operationo

A th i rd mode of sequencing, program interruption, has been

recognized more recently, ' although computers a s ear ly a s UNIVAC I

contained rudimentary interruption provisions. In this mode , execution

of a sequence of instructions may be interrupted at an a rb i t ra ry point,

and specification of the next instruction in this case i s completely in-

dependent of the l a s t instruction executed. Provision may or may not

be made f o r saving the cur ren t location in the interrupted sequenceo

Zn branching, the selection of an alternate instruction implies

the selection of a new sequence -- the alternate instruction specifies

o r implies (through an instruction counter) i t s own successoro

same may be t rue of interruption; o r , an interruption sys tem may be

defined so that the interrupting instruction does not change the instruc-

tion counter.

1. Jules Mersel , '"Program Interruption on the Univac Scientific Computer , "

The

In this case , the interrupting instruction may, if a branch,

Proceedings Of the WJCC, p. 52 (1956).

specify i t s own successor , but if it does not, the successor i s implied

by the l a s t instruction of the interrupted sequence. 2

It i s often desirable for an instruction sequence to execute a

single, non-interruption instruction which does not specify or imply

its own successor. F o r this purpose the Execute operations have been

independently developed by severa l groups. These may be considered

a fourth mode of instruction sequencing.

The four modes can be summarized briefly by stating the four

possible relationships between an original sequence A and a second

sequence B:

Normal sequencing A keeps control

Branching A gives control to B

Zn t e r r upti on

Executing

B takes control f r o m A

A lends control to B

-
-

In an Execute operation, the address specifies, directly o r in-

directly, an instruction to be executed. Wherl the object instruction has

been completed, the instruction next in o rde r af ter the Execute instruc-

tion itself is performed. Thus, the location of the object i n s t ruc t im

does not imply the location of its successor . This i s equivalent t o
"

2, F, P. Brooks, "A Program-Controlled P r o g r a m Interruption System, 'I
Proceedings of the gJCC, p. 128 (1957).

2

indirect addressing except that the whole instruction, not just the

address , i s selected f r o m the specified location.

It may be fur ther desired to prevent the object instruction

f r o m specifying i t s successor explicitly -- i .e., f r o m changing the

instruction counter by branching. The Execute operation developed

for the IBM Stretch computer has this property. The Execute opera-

tion la te r but independently developed f o r the IBM 709 computer does

not.

described Soviet LEM-1 computer.

3 Neither does the Execute operation provided in the recently

4 The branch-inhibiting property

i s helpful for some uses of the Execute operations and is inconvenient

for other uses.

APPLICATIONS O F E m C U T E OPERATIONS

The uses of the Execute operations a r i s e directly f r o m the

fact that they do not imply their own successors . In effect, an Execute

operation cal ls a one-instruction subroutine and specifies its return.

In the LEM-1, fo r example, there a r e 1024 words of e rasable s torage

and 7168 words of read-only storage.. The Execute operations permit

programs in the read-only storage to use modifiable instructions in

the regular storage,

3.
4. Yu, A. Makhmudov, Radioteknika, No, 3; pp. 44-57 (March, 1959);

Reference Manual, IBM 709 Data Processing System, p. 37 (1958).

in English, Communications of ACM, Vol. 2, No, 10 (Oct, 1959), pa 3.

3

I .

In machines with explicit instruction addresses fo r normal

sequencing, such as the IBM 650, many efficient programming tech-

niques depend upon instructions which a re developed and executed in

the accumulator. These techniques have not heretofore been applicable

to counter-sequenced computers, but become possible when such com-

puters a r e provided with Execute operations and addressable ar i th-

metic reg is te rs .

The provision of Execute operations in the IBM 709 simplifies

modification of non-indexable and non-indirect-addres s operations

such a s those for input-output,

The one instruction subroutines provided by the Execute op-

erations a r e especially useful in linkages between a main program

and ordinary subroutines, F o r example, a subroutine may need

several pa rame te r s such a s character s ize , f ield length, index speci-

fication, e t cetera.

m e t e r s in actual machine instructions which the subroutine t r ea t s

as second-order subroutines,

for th between calling sequence and subroutine, should permi t

many new techniques to be developed for subroutine l inkages.

The calling sequence may include these para-

This ability to lend control back and

One useful special case of this f o r m of subroutine technique

occurs in interpret ive routines where machine instructions can be

4

intermixed with pseudo-instructions in the argument program.

in te rpre te r can then execute these directly without transplanting them

into itself.

The

F o r all of the foregoing purposes it i s desirable for the Execute

operation to have any machine instruction as i t s object.

desire to execute an ari thmetic instruction, a branching instruction,

or even another Execute instruction.

however, the object instruction of an Execute operation should be

prevented f r o m changing the instruction counter which controls the

monitoring routine

Thus, one may

For program monitoring,

Consider, for example, a supervisory program A, such a s a

t racing routine, which i s to monitor the execution of an object program

B, perhaps with testing or printing of the instructions of B as they a r e

executed-

effect such monitoring i s quite clumsy,

be moved f r o m i t s normal place in memory to a place in the sequence

of A,

struction, o r if so , that the branching condition i s not met , for the

execution of such an operation would t ransfer control of machine f r o m

the supervisory program to some point within the object program.

Finally, after the transplanted B instruction has been executed, A

With an ordinary set of operations, the programming to

Each instruction of B must

Then it must be tes ted to insure that it is not a branching in-

5

must update i t s pseudo-instruction-counter that keeps t rack of the

progress of B, and repeat the whole process with the next B instrucd

tion,

rev ise the pseudo-instruction-counter.

i s common to all monitoring routines, and must be executed in addition

to the actual monitoring desired,

If the B instruction i s a successful branch, A must appropriately

This programmed machinery

EXECUTE OPERATIONS IN THE IBM STRETCH COMPUTER

Two Execute operations with propert ies suited fo r this appli-

cation a r e provided in the IBM Stretch computer. These a r e called

EXECUTE and EXECUTE INDIRECT AND COUNT, Each causes a

single instruction to be fetched f r o m an addressed location and ex-

ecuted, except that execution may not change the instruction counter.

If the object instruction specifies a branching operation (which would

cause such a change), branching i s suppressed, and an indicator i s

actuated which may interrupt the (monitoring) program,

In the EXECUTE operation, the address specifies the object

instruction directly. In the EXECUTE INDIRECT AND COUNT

operation, the address specifies a pseudo-instruction-counter, whose

contents specify the object instruction.

i s performed, the pseudo-instruction-counter i s incremented accord-

ing to the length of the object instructioh,

After the object instruction

T h i s l a s t fea ture i s

6

particularly convenient in a computer which has instructions of

different length.

operation a s i ts object.

execution of an overly long chain (several hundred operations) of Execute

operations (or indirect addresses).

Any Execute operation may have another Execute

A special interruption signals the attempted

I .

I .

The Stretch Execute operations, then, provide not only the

ability to execute an isolated instruction with an automatic re turn of

control, to the monitoring routine, but also provide fo r (a) suppression

of branching, and (b) signalling the monitoring routine when branching

is attempted.

routines.

the instructions of the object program into the monitor.

pression of branching ensures that the monitor can retain control

without detailed testing of the object instruction.

attempted branching permits the monitoring program to update the

p s e udo -in s t r uc ti on - c oun te r fo r the ob j e ct p r ogr a m without de t aile d

testing,

branching and skips occupies a la rge par t of conventional monitoring

programs, the Execute operations make such programs more efficient.

The EXECUTE INDIRECT AND COUNT operation gives fur ther

efficiency because it automatic ally incr erne nts the ps eudo-instr uction-

counter.

These properties considerably simplify monitoring

The automatic r e tu rb obviates the need fo r transplanting

The sup-

The notification of

Since this detailed testing o€ the object instruction for

7

A simple monitoring loop for performing a control t r ace in the

Stretch computer reduces to:

Lo c ati on Operation Address

EXECUTE INDIRECT
AND COUNT'

pseudo -in s t r uction -
c o unte r

BRANCH

When a branch occurs in the object program, this loop i s interrupted,

and a suitable routine records the tracing data and changes the pseudo-

instruction -counter *

The suppression of branching, as mentioned above, slightly

r e s t r i c t s the generality of the Execute operations ifi the i r non-monitor-

ing uses.

performed indirectly by an interpretive routine.

res t r ic t ion i s not onerous, and the additional applications of the safe-

In effect, the object instruction which is a branch must be

In pract ice , this

guarded Execute operations appear to justify the provision of the safe-

guards *

The Execute operations can in theory be put into any s tored

program computer. Their mechanization is somewhat s impler and
I '

m o r e justifiable in computers that use an instruction counter f o r normal

sequencing.

be used for monitoring is greatly simplified in computers which have

program interruption systems. In other computers, attempts by the

Provision of the safeguards that permit the operations to

8

object program to change the sequence must be signalled by setting

conditions that stop the machine or a re tested by branching instruc-

tions.

An obvious extension of the Execute operations would be to

have the EXECUTE INDIRECT AND COUNT operation automatically

change the pseudo-instruction-counter when the object instruction i s

a branch. In this case there would still need to be an a l a rm to the

monitoring program, however

In summary, the Execute operations provide an effective means

by which ah instruction sequence can temporar i ly tend control of a

computer to an instruction not in that sequence, Safeguards can be

provided to guarantee the re turn of control to the original sequence;

and, on balance, these safeguards make the operations more powerful,

The Execute mode of instruction sequencing has many uses in sub-

routine linkages, in special programming devices, and in monitoring

routine s ,

