
Er ich Bloch

Sigma Divide Simulation

As a resul t of consultation with Joseph Stewart and Chorlcre Freirn

provide needed verification of theoretical coneluriono . This decision was

were /drawn up to se rve ao a n outline from which a 704 program might Be.

g r a m . Werner Schanzenbach was chosen as the programmer. Caneu

with this effort was a similar one by the author - oince thir part icular

of different approaches from the Schanzenbach program, it wab COn8idel.cPd

cription of the Sigma Divide method is outside the scope of this repor t and

i t is assumed t he reader has a general familiari ty with the method. The

following report is mere ly a brief explanation of those p a r t s of the Lsimula-

tion programs that would be considered of special in te res t to those seeking

a more complete understanding of the simulation program differences and

Erich Bloch suggested you might
like to look at this.

F. Bielawa

The information given a t the end of this ?eport is that obt

f rom on13 a par t ia l reduction of the available data. The origi

t requirements covered the informatio-n needs of both J . R , Stswar

C. Fre iman and a t this point, only that of interest to J, Stewart has * .
t

been preeented. When further arrangements can be made to discuss

the data with C. Freiman, an additional report can be given on the

information peculiair to his needs.

Operands

1. Dividend

* a. Generation
I

In the B program, use w a s made of an existing l ib rarb

sub-routine known as PE RANG. This routine generates pseudo-ran-

dom numbers modulo N, by an extended "mid$le of the square" method. .

It was found that the routine w a s incapable of producing one of the poa-
.

sible full length (35 bit) numbers, namely t 3 b ,and a modification

was made to r e s to re this number, Since a 48 bit dividend w a s required,

two 35 bit random numbers were used together and were car r ied in tvdo

s torage cells (A- word contained 35 bits, -B contained remaining 13 bite.)

The S program made use of s imi la r techniques in the generation of

random numbers and construction of operands. A major difference w a i

evident, though, in the actual method of random number generation.

While the l ibrary sub-routine used in B program consisted of essentially

a "middle of the squares" method, it w a s modified by the random selection

I

of one of 16 p rese t random multipliers which, during each routine cyc

operated on the previously generated random number - the S program

only used the "middle of thee equarc of 'the previously generated random

number. It should be noted that both of the generators a r e assumed non-

degenerate and non-cyclic for a t least the f i r s t one million numbers,

While a thorough tes t of the randomness of either sub-routine w a e

not attempted, a tes t of the l ibrary sub-routine used in the B program

w a s made of the positional probability of each of the 35 bits of 100,000

numbers. The occurrence of a 1 in each position is listed in included

print-out and generally exhibits the expected probability of 1 / 2 . This,

of course, only indicates that of n eramples, approximately n /2 of them

were 1'0. This does not imply anything about the joint probability of

two o r more bits.

b. Normalization:

Normalization i n the B program occurs immediately

af ter 70 bits of dividend a r e formed, The entire 72 bits a r c shifted

left until a 1 is encountered - 0's a r e inserted in vacated position8 on

right, At thie point, the right most 22 positionr (of the 70) a r e masked

out which yields desired 48 bit number. Radix point is coneidered a t 4

the left.

Normalization in the S program is accomplished by eimply placing

a 1 i n the left most position of the 48 bit random dividend., While this

method is fas te r , the above more closely approximates the actual method

2. Diviror :

a. Generat ion & Mask:

In the B p rogram, the same genera tor as mentioned above

is used to genera te 70 additional bi ts of random divisor , r igh t m o s t 2 2

posit i6ns (of the 70) a re masked out which yields required 48 bit num-

ber . Since i t is des i r ed to r e s t r i c t d iv isors to specific ranges , the f i r s t

5 high o r d e r bits are masked and 5 new bits ranging incremental ly f r o m

10000 to 11 11 1 a r e inser ted . This then a l l o w s for 16 ranges of d iv i so r s

with 243 possible d iv isors in each range without repetition.

Generat ion and masking of the divisor in the S p r o g r a m is a c c o m -

plished in the same manner as in B program.

b. The 3 /4 divisor multiple required is obtained by adding

(! / 4 t 1/2) div isor , T h e r e is no overflow for rn-aximum value. To ob-

tain 3 / 2 div isor , the number obtained for 3/4divisor is shifted left 1

i n S p r o g r a m is obtained ae in B program. The 3/2 div isor is obtained

by ehifting left one pobition. In this case , the overflow is retained.

3 . Subtraction

and c a r r i e d as a 2 ' s complement number. This was necessi ta ted by the

fact that each t tadd-complementt ' operat ion consis ted essent ia l ly of a

double -precis ion subtract ion and the 704 Add -Subtract operatior) would,

'because of i t s inherent cha rac t e r of represent ing a number as a s ign and

absolute value, present logical problems when performing double p re *

cirion operatione,

b. Detection of Complement Result

In the B program, the radix point for the divisor and

dividend are always considered to be to the left of the left mos t digit.

The radix point of the result of an add-type operation is put in same re la -

tive yoeition as that of operands. It is characterietic of this program

to per form the add-type operation only on the digits to right of radix

point. This means that add operations wi l l involve 48 bit operands in

the basic scheme and up to 50 bit operands i n the Multiple scheme. The

overflow bits to the left of radix point, incurred i n the case of adding

3 / 2 x divisor a r e ignored during a n add-type operation, In the Basic

echeme, the c a r r y out of the f i r s t position to right of radix point indicates

sense of resul t af ter add operation - 0 indicates complement result ; 1

- indicates true. In the Multiple scheme, the statusof the f i r s t position -
'to right of radix point indicates sense of result for add operations (of any

of the possible operands) - 0 indicates t rue result , 1 indicate8 comple-

ment, This latter complementation detect method is well known and

w a s used in this program for the sake of uniform computer functioning

and has been verified by successful use in the program.
1

In the S program, the radix point for the divisor (1X) is 'considered

a s two poslitions to left of highest o rder bit. The radix point for 3/2 and

3/4divisor as well as that of the resul t of add-type operations is placed
I

in same relative position to that of lx divisor . . Complement detection i r

accomplished in e i ther scheme by means of sensing the c a r r y out of the

position left of radix point-where a 1 indicates t rue resul t and 0 indica-

t e s complement.

Rounding Procedure :

The t ime both programs were written it was felt that the divide oper -

ands should consist of a 48 bit divisor and a 96 bit number o r actual d iv ided

which consisted of 48 bits of original dividend and an additional 48 o r 49bits

which would produce a rounded quotient. It was decided that initially the

divisor would be subtracted from the'48 bit original dividend and the sense of

the resul t would be detected. If this operation produced a t rue resul t , the

divisor would be placed to right of f i r s t partial remainder with no separation,

forming 96 bits of actual f i r s t par t ia l remainder . If the resul t was comple-

men t the divisor would be placed to right of f i r s t par t ia l remainder with a one

position separation, this position being made 0 forming 97 bits of actual

first par t ia l remainder .

Normal Cycle Operation:

It is beyond the purpose of this report to descr ibe the exact opera-

tion of e i ther divide method. I t is sufficient to s ta te that both p rograms ,

when executing a problem solution by means of the Basic scheme,

duplicate the actual machine operations a f te r the init ial subtraction;

the program continues by shifting a c r o s s on s imi la r leading bits of

par t ia l remainder (normalization) and performing on add-type opera-
,'

tion when normalization i s complete. This cycle is repei ted until p ro -

blem te rmina tes . The quotient is concurrently generated and its con- '

struction i s dependent on the type of normalization and the resul t of

I
I . CI

I - (-
*a

’ .

a’ each add operation.

Likewise, in both p rograms , when executing a problem solution

by,means of Multiple scheme, actual machine behavior is a l so duplicated
,

in that a f t e r the init ial subtraction, the p r o g r a m continues by ahifting

across on similar leading bits of pa r t i a l remainder (normalizat ion)

and per forming an add -type operation when normalization is complete.

In this ca se , the ru les of quotient construction and divisor (multiple)

select ion are those i l lustrated in c h a r t by J.R. Stewart dated July 28,

1958. The cycle is repeated until problem te rmina tes .

It is of i n t e re s t to note that the S program considered the Bas ic

s c h e m e norma l cycle operation ru l e s as a aubset of the Multiple n o r m a l

cycle operat ion se t .

Tcrmindtio n :

The terminat ion cycle, which is a function of the rounding operat ion,

is handled in the same manner as actual machine termination. The ru l e s

for adjusting both quotient and remainder are der ived from those s ta ted
I

in Notebook #3514 by J . R . Stewart (page 28). Since the Multiple s c h e m e

r e v e r t s to Basic- type cycles when 3 o r lese quotient bits r ema in to be

1

generated, the terminat ion ru les a r e the s a m e for both echemes. Both

p r o g r a m s te rmina te identically.

Checking:

In o r d e r to in su re p rope r operat ion of simulated divide schemes , a

method for checking the problem re su l t s , i. e. the quotient, wa$ devised

for the B program. After each Bas ic scheme problem solution, the

generated quotient w a s multipled by the original divisor to produce ,
a double length product; the high order 48 bite of which should have

been the original 48 bit dividend, This reconstructed dividend war then

compared, bit wise, with original dividend and computer wa@stopped

when a dir-s imilar i ty w a s detected. Thie obviously, neglected to com-
e

pare the round portion of 96 bit actual dividend but i t w a s felt that thir

particular check would catch all the probable e r r o r s . After a success-

fu l run through all problems i n the Basic mode, the checking device

w a s then replaced with another that, essentially only compared the re-

sul ts , f rom a given se t of operands, that were produced by operation

in Baric and Multiple mode. Since the Basic scheme resul ts were pro-

ven correct , they served as a standard for Multiple mode results.

. The S program undertook 60 check resul ts a lso ind it is under-

stood that much the same method w a s used as that given above with the

exception that, additionally, the "round" portion of reconstructed actual

dividend w a s checked.

In both programs, i t w a s assumed that the statist ical data obtained

during the course of problem solutioqs would be accurate i f the above

tes t procedures indicated co r rec t solutions .
Data Collection:

In the B program, data was collected for 1024 problems (a problem

is defined as the generation of a 48 bit quotient from two 48 bit operands)

i n each of the 16 sub-groups of divisors making a total of 16,384 problems.

The S prog tam solved ' 0 0 problems per diviror sub-group which yielded

' 	a total of 1600 problems, The specific information obtained from both

programs wa8 fundamentally the l a m e and is lirted below.

,* 1. Problems using the n-th loop.

Since each problem consisted of a number of iterations

of the add-shift sequence, i t is of interest to &.now how many problem8

of each divieor sub-group used a particular i teration during the course

of each problem solution. There a r e 48 possible iterations a problem

may take before termination and each problem that requires the u s e

of the n-th iteration, o r loop, wi l l add 1 to the sum accumulated for

that iteration. By this means, data can be acquired which indicater,

of r problems, what fraction, S, used the n-th look during the process

of problem solution.

It can be seen la ter , that the information given by this data impl ies .

the information to be presented by data in (4). Since each data group

w a s generated by an essentially unrelated meanr , the concurrence of

the two provides a check on the inherent data.

2. Sum of Shifts Taken bn Iteration .
P a r t of the loop procese~ conrsiets of simply normalizing

(either normal or inverted) the partial remainder and, a t the same time,

ehifting quotient bits into the partial quotient. During each loop, the

number of shifts utilized in each normalization is rsensed and added to tho

accumulated sum of shift8 for that particular diviror sub group, It is

J

important to realize that in both programs, the normaliza,tion was not

l imited and the amounf of shifting w a s determined, in a l l ca ses except

termination, by the leading bits of partial remainder . In the case of

termination, normalization ceased a t the point of generating the 48th

(o r 49th, in special case of initial subtraction yielding complement r e -

sult) bit of quotient. The shifts taken up to this point in this particular
\

loop a r e then added to the previous sum for that loop.

3 . 	 Sum of the (Shifts)2 Taken per Iteration

The data gathered for this set i s essentially the same a s for

(1) with the exception that the sum of shift amount squared i s accumu-

lated for each i teration (loop) instead of only the shift amount. This

data was extracted with the anticipation that it would be useful in d e -

termining the standard deviation of the average shift per loop.

4, Prob lems Terminating in n-th loop

Wheneve'r a problem termination occurred , a 1 was added

to the accumulated sum of previous problems that terminated in that

par t icular loop. As mentioned before, this information i s implied a l so

in the data taken for (1) , but it m o r e clear ly presents the distribution

of density of termination for each particular loop,

5. Shift Amount Distribution

In orde r to dete rmine what percentage of the normalization

is lost by placing a restr ic t ion on the maximum allowable shift amount,

data was taken, whereby, for ud imi ted normalization (as stated) the

shift amount taken for a par t icular loop during a problem solution is

-11-

t

sensed and a 1 is added to the accumulated sum of previous loops r e -

quiring a shift of that par t icular amount. All 48 possible sums , indica-

ting a shift amount Qf a i l e a s t 1 to a t mos t 48, a r e extracted fo r each

divisor sub group. The sum of each sum included in the f i r s t n sums

compared to the s u m of a l l s u m s indicated the percentage .of ca ses capable’

of unrestr ic ted shifting with a maximum shift l imited to n:

P rocessed Data:

Included a t the end of this section a r e two char t s giving the

computed averages for two basic parameters that a r e of par t icular in-

t e r e s t . The f i r s t is a l i s t of the average loops taken, by both the Basic

and Multiple scheme, to terminate an average division problem. F o r the

Multiple scheme with a shift limited to 6x, the average number of loops

to terminate is 14.43. F o r the same conditions, i t has been found that

-94.37uof the shifts required will be a shift of 6 o r less, which demon-

s t r a t e s that a shift limited to 6 i s justified, in a theoretical sense , on

the bas i s of i t s high effectiveness.

Conclusions :

Inherent in a study such as this a r e always a few doubts a s to

the usefulness of such inexact techniques to extract , m o r e o r l e s s . exact

information. The author acknowledges the need for understandable

vedfication of the methods used and a more adequate proof of the p r e s -

ent assumptions that the s ta t is t ics drawn from the programs a r e valid,

will be given in a la te r report .

-12 -

\

Two genera l a spec t s of the simulation p rograms will be inves-

t igated - a m o r e extensive ana lys i s mus t be made of the random number

gene ra to r s in both p rograms to in su re that the random var iab les a r e not

biased (to an unreasonable deg ree) . Another point that needs to be

clar i f ied i s whether the method fo r obtaining the Average Loops to T e r -

mination i s valid for extabllshing this average for the total population of

random var iab les - i t is not unreasonable to a s k if i t i s valid to a t t r ibute

to the total population cha rac t e r i s t l c s , evident in a sub group, i f the

sampling technique i s biased. It will be the aim of fu r the r s tudies to un-

cover what bias might exis t in the data gathering methods.

F r a n k R . Bielawa

\

!

y.. ...-

-i-tt-
.
01 3

LLL

-\

I
!

F

I f
 t -I

0

--
-r
--
-

!'

Section omitted pertains to SAP program written for 704 Computer.

I .

7 z 5 i!
-*! 1 ! 9
/ 9 r.
3 l74

5 4 3 6

ifqsrf -

33-76

L

V

- - - - - 0-

i -1. .Q -

0 0 ii

L, 0 3 _ _ 13_.iL-.A-.----_-_ ir ..--- -- &-
......... __ G..

u C Cd 0 0 ci 0 0 0 '0
0 CI- --c

.... --. 0. -
...

0
__

'J
_ _

0 0 0

99 _ -

9?

1 2 7 4

_I,... --. 2273 7027- - - 0. 5 5 7

1024 2362 7 7 3 6 0 781

.. 97-1

9 3 8

1 3 3 14

1 3 9 1 2

7 L! 14

13 3

I

- . _ _

Q- .. -

0

I .

..

v -

'd

i'-

