
..-. *  

PROJECT STRETCH 	 September 18, 1956 

LINK COMPUTER MEMO NO. 4 

TITLE: Core Shift Matrix and Arithmetic Operations 

BY: W. Wolensky 


The Operation of the core shift matrix, being considered for the Link Computer, 
is briefly, but specifically deecribed. The arithmetic operations a re  also 
briefly described, It is implied that the arithmetic qualities are  applicable to 
both binary and decimal modes ~f operation. Reetrictions presently considered 
are:  

a. 	 For addition and subtraction - none. 

b. 	 For multiplication - limited to a maximum of one word of multi- 
plicand, and one word of multiplier, rerulting in a two word 
produ c t 

C. 	 For division - limited to a two word dividend and a eingle word 
divisor, resulting in a one word quotient and a one word remainder. 

The actual organization and control of the register and logic system will be des- 
cribed in a rsubsequent memo. 

Core Shift Matrix Operation Definition 

1. 	 Contents of regietere drive down into vertical liner storing ones or zeros 
into the whole column of cores. The content6 of the register a r e  unchanged 
unlese a specific register reset is provided separately. 

2. 	 Information is driven out of the matrix (met to zero) by driving the appro- 
priate diagonals; sensing is done by the horizontal wires. 

30 	 Two methods of retting the matrix a re  poasible. 

a. 	 Reset the matrix, drive only one bit linee for a complete 
cycle. 

b. 	 Never reset the matrix, always use a bi-polar drive when 
setting e. g., drive to set deeired cores to ones and drive 
to set deeired cores to zeros. 

Therefore, every core will be driven on a "set  matrix opn, !I. 



Page - 2 -
PROJECT STRETCH September 18, 1956 
LINK COMPUTER MEMO NO. 4 

4, 	 Re-entry of data into regieters through core shift matrix. Two methods a re  
pos s ible. 

a. 	 Use the core matrix as a crosspoint switch, A diagonal is 
energieed, specifying through half select, the cores to be 
used; information travelling on horizontal line6 provides 
the eecond half select for cores on intereecting lines. The 
cores tranemit this one and zero coincidence and bi-polar 
drive into regieter area specified by half select diagonal. 

b. 	 Uoe the core matrix to store the zero6 and ones of coinci- 
dence. When entry to register is desired, the horizontal 
lines drive corer to zero (meet), outpute sensed by the ver- 
tical linee drive zeros or ones into the register depending 
upon the condition of the core associated with the register 
catage. 

- " - - " -
'I..i 

..,.. . 0 	
Link - Addition (Subtractioa) 

Add: Addend in A, Augend in B, Sum in C or B (at this point optional choice) 

1. 	 Drive both A & B into their respective core shift matrices, 

2, 	 Pulae read-out diagonale of respective shift matricee to provide first 
byte of each arithmetic field to adder. 

3, 	 Adder accepts and adds (or subtracto) with modifications according to 
system (binary or  decimal, etc. ) or carry frsm preceding cycle. 

4. 	 Carry out stored for subsequent cycle, and sum transmitted to first byte 
position of regieter C. 

a. 	 If sum ie  to be returned to regieter B then, Register B is 
reset after Step 1 above or sum i e  bi-polar driven into 
Regirter B through input matrix switch of Register B. 

; 1 

b. 	 Sum into Regirter B can either be rertricted to starting at 
least eignificant position or to starting at the least signifi- 

0 	 cant poeition of the augend word in Register B (which may 
not be the least significant byte porition of the Regirter B). 



Page - 3 -

5 .  	 Repeat stepping out successive bytes until: 

a, 	 The first (amallest) field is exhausted, than step only 
the larger field through the adder until it too is ex-
hausted. 

b, 	 Both fields are exhausted eimultaneously, 

4, 	 If a car ry  out remains after both fields are exhausted, indicate an 
overflow, or if the equivalent occur8 and an  actual subtraction was 
in progress, recomplement the sum (difference), f rom the least to 
the most significant digit. 

Link;- Multiplication 
Stepping Thru 

Multiplicand in A, multiplier in B, Product i n  Cdlow) to 13 (high). 

1. 	 Drive both A and B into their respective core shift matrices, Reset 
Register C (if C not initially reset ,  product can be added to content8I0 of C). 

2, 	 Pulse out f i r s t  least significant digit multiplier byte into analyzer 
and determine the cumulative addition sequence to be employed e. g. 
MPr 6, therefore, dec. might be plus 2 Md, plus 2 Mdplus 2 Md. 

3. 	 According to cumulative addition sequence, Step out progressively 
one byte at a time from the low order of Register C and Register A. 
Add the by-tes together after first modifying the byte f rom A a s  speci-
fied in Step 2. (e.g, through doubler). 

4. 	 Store the resulting sum (partial product) in low to high order of Re- 
gister C. 

a. 	 Cycle Stepe 3 and 4 through every multiplicand byte of 
R egister A. 

b. 	 Carry over partial product into Register B if necessary. 
c. 	 Since Regirter B cannot be reset ,  any partial product to  

be stored fln Regirter B will blank out or  replace a mul-
tiplier digit, The entry of the partial product into Regis- 
te r  B, must be from a bi-polar drive. 



~ 

...' 
Page 	- 4 -

5 ,  	 If the multiplier digit calls for a repeat or another cycle, reset  all 
stepping to their original setting, Drive A, B and C into their re-
epsctive shift matrices and repeat Step8 3, 4 and 5. 

a. 	 Since partial products entering Register B are required 
to be bi-polar, it is advirable and beneficial to have 
partial product entering Register C, be bi-polar al80. 

6. After completing the multiplier digit specified sequence (of step 2): 

a. 	 Drive Regirter A, B, C into their relepsctive core ehift 
matric e 8 .  

b. 	 Advance counter controls on Register B and Register C. 
c. 	 Drive out a new multiplier digit and have ianalyser deter- 

mine new sequence. 

7. 	 Repeat operations above until all multiplier digite a r e  exhausted. 
Then, the product will be found in Reginters B and C and the retained 
multiplicand in  Register A. 

8. 	 Sign conventions to be determined, automatic skip over multiplier 
digit of m r o  is implied. 

Link - Division 

Divisor in A. Dividend in B, C. Quotient in B, Remainder in C .  

A. Drive A, B and C into their respective core shift matrices. 
r 1 


1. 	 From known or  identified starting pointe, step through dividend and 
divisor to find most Significant digit (byte) of each. 

a, 	 In fixed word Operations, it may be poasible to automati- 
cally start with the most eignificant byte position and rtep 
toward the least eignificsnt byte position until the firrt 
non zero digit is located. 

b. 	 From the identified starting point, rtep toward the most 
significant byte, then when limit of length is reached, 
etart stepping back until first non riero digit is located. 

c. 	 From the identified rrtarting point and given field lengths, 
go right to the moat significant byte, step toward least 
significant byte until first non eero digit ie  located, 

2, 	 Feed the most significant dividend and divieor digits to the divide 
analyeer . 



Page - 5 - k 

3. Execute a divide cycle: g.Q?. sample indicated here in generation of 
quotient digit 8 2, smalyzer indicated an operation of - 2  Dr. from Dd. 
Therefore, 

a. 	 Step thrsugh divisor and dividend simultaneously, one time 
for each digit in the divieor. 

b, 	 Feed tho divisor digit through the doubler (apccificsd by 
analyzer) and subtract it from the dividend digit. Store 
the result of Ithe digits subtraction in the location of tha 
upred dividend digit (into the ragistar), 

c. 	 Shift to u r e  the next most significant dividend and divisor 
digits, repeat steps 3b and 3c, 

d. 	 Continue items in step 3 until the most significant digit 
of the divisor hae bean proceseed, (Thir implies that 
the moat raignificant digit of the dividend has gradually 
been reduced to zero, and a divide cycle completed. 

4. 	 Control functions relative to a divide? cycle, 

a. 	 If remainder is / add 2 (in this case) to quotient digit 
generator, and analyee new significant dividend digit 
{remainder) vs divisor most aignificant digit. 

b, 	 It' remainder is - (assuming new method of divide control, 
it cannot be minus in this illustration), shift dividend one 
position to left, (no actual shift i e  involved, The newly 
establiehad relationship appears aa though the Dd was 
shifted), start negative remainder type of operation (add 
4 1 Dr. to Dd shifted to return remainder to plus. 

c. 	 When quotient digit is  determined, and a dividend digit 
effectively reduced to zero, drive the quotient digit into 
the register (through the core matrix and bi-polar drive) 
in the position originally occupied by the moat significant 
dividend digit. 

d, 	 The divide procedure is completed when the number of 
dividend digits equal in number to the difference of num-
ber of digi ts  in original dividend and divieior has been re- 
duced to zero. 

eo 	 Tho dividend remaining after step 4d is the remainder, 



Page - 6 -

f. 	 After a aubtractlon cycle, and re-analyois of the most signifi- 
cant dividend v0 diviaor digit, the contents of tlm Regiotere A, 
63 and C are again driven into their respective core shift ma-
trice s. I 

g. 	 The core shift matrices can be operated as defined in Item 1. 

WW:gmp 	 w, Wolonsky 


