COMPANY CONFIDENTIAL

PROJECT STRETCH

STRETCH MEMO NO. 51

SUBJECT:
. BY:
DATE:; .

Error-Correcting Codes Using Compatible Families
F. P. Brooks -
December 3, 1956 (release date)




ERROR-CORRECTING CODES USING COMPATIBLE FAMILIES

Introduction

Erroneoﬁs elements of a binary set can be corrected by in-

- version when they are identified. A iarge class of error-correcting codes are
based upoﬁ this principle and are designed to identify erroneous code elements.

A second class of codes are those, such as the Reed codé, in which the erroneous
elements ané not specifically identified, but which yield the proper information
from an error-disturbed configuration upon application of the decbding algbrithﬁ.

Codes of the first class only will be treated here.

Error-identifying codes in general can be considered as dividing

the space of code points into families of mutually exclusive and exhaustive subsets.
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Any bit will therefore lie in one, and only one, subset of each family, If
an indication of the subsets in which the error lies can be given, and if
families can be so constructed that each bit is the sole intersection of the sub-

sets in which it lies, single error identification and thus correction is possible.
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In general, however, if each bit is identified by‘ 8 such
families, the code points can be considered as members of an s-dimensional
finite space. If each subset contains the same number of points m and this

is equal to the number of subsets in each family, the space will be called

comglete and the families proper.

While f families of m subsets are sufficient to identify m!
points, multiple errors in general will give ambiguous identifications for the

erroneous bits, Consider a case for f = 2, m = 3:

o 1 2
o i
1 !

If the erroneous subsets are identified as 0, 1 of the vertical
family and 0, 2 of the horizontal family, this indicates that 0,0 and 1,2 or 0,1
and 2, 0 or any three or all four of bits 0,0; 0,1; 2,0: 2,1 are in error. In

short, the two errors belong to two subsets of each family, and these subsets

have four intersections.

Ambiguities of this sort can be resolved by reducing the number
of points by tW so that m families are used to identify the t™~W points. Let
m-w = 8. Then s families are sufficient to identify each point, and w

redundant families lie in the s-dimensional space for the resolution of ambiguities.
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The problem of choosing such families in a satisfactory manner is one of a
geométry of coincidence, for the goal i‘s to establish families so that all
erroneous bits are thé coincidences of the erroneous subsets, and all such
coincidences are erroneous bits, This permits one-step (non-sequential)

error correction with circuitry that operates on each bit independently.

Ashenhurst* has developed a suitable coincidence geometry
in connection with the related problem of improving switching and selection
ratios of coincident-current core memories. His results will be briefly re-

viewed.

The Commutative Ring with Unity.

Let a set of elements be given and let operatibns of addition and
multiplication be defined that every éair of elements a, b has a unique sum
a; # b and the product ab in the set. The resulting system is called avcommu-
tative ring if the 6rdinary commutati;ret’ (a'#b = b {a) associative;
{a $(bfc)=(aébdb)f c}kand distributiveﬁ!’a,ago {-c])aa:'- ab {ac, laws hold, and
a(bc) = (ab) ¢ )

if the equationa { x = b has solutions for all a and b. Consider a ring R with

a finite number of elements m.

There is then a unique element 0 which satisfies a { x = a for

each element in R. Further, there is a unique element x ==a such that

* Ashenhurst, R. L., the Structure of Multiple Coincidence Selection

Systems, Ph. D. Thesis Harvard University, Cambridge, Massachusetts,

1956,




a {x =0 for any a in R.

ta) (b) = —ab, (-2) (-b) = ab

(2) (0) 0

If ab = 0 for some b # 0, then a is called a divisor of zero. Zero is trivally a

divisor of zero, and there may be others.

A commutative ring need not have an element 1} that satisfies

ab = a. If it does, however, it is known as a commutative ring with unity.

»

Only such rings 'will‘ interest us here. There can be only one such unity element,
and if a is not a divisor of zero, ab = 1 has a unique solution a~l, R Fﬁrther,
ax = b has a unique solution x = ba~lif a is nof a divisor of zero. ax =b
has nd solution if a is a divisor of zero and b is not. If both are divisors of‘
zero, there is either no solution or at ltlaast two;

" An element a for which ax = 1 has solutions is called a divisor

of unitz. Thus, every element in R is either a divisor of zero or a divisor of

unity, but not both.

The Algebra of Integers Modulo m (J,,)

The algebra of integersvmodulo m is a good e‘xample of a com-
mqtative ring with unity. Let (P)p, - P modm stand for the remainder 0&jém
of the division P/km where k is an integer sufficiently large to satisfy the con-
dition on j. The modulo m algebra J,, has the following rules for addition é,nd
multiplication!

am,‘bm:(a,lb)m




o Soben * @By,
For example, for m = 3 the addition table ié

0 1 2

0 0 1 2
1 1 2 0

Y2 2 0 1

and the multiplication table is

- Such an algebra may have nontrivial divisors of zero. Consider the tables

form=4.‘

A DDITION
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MULTIPLICATION

0 1 2 3

0 0 0 0 0

The Galois Field (G)

A Galois field is a commutative ring with unilty that contains no
non-trivial divisor of zero. Such a field c‘ontains‘ m=p9 elements, wherep -
is prime and g2 0. There is only one such field for each p and q. For
q = 1, the field is equivalent to the algebra of integers modulo p, An éxample
is Gy, the field of order 22

ADDITION

0 1 2 3

0 0 1 2 3

MULTIPLICATION

0 1 2 3

ol o o o o




-7 -

There are still other examples of commutative rings with unity,

but these will be of primary interest.

The Coincidence Geometry of Two Dimensions, C,(R), Based on a Com-

mutative Ring with Unity

Let R cdntain m elements. A point of C,(R) is defined by

an ordered pair of elements (x, y) its coordinates. The space of Cz(‘R) is

the set of m2 points derived by letting x and y assume all positive values.

A subset consisting of the points for which one coordinate has

a fixed value is a coordinate subspace or coordinate line., Each such contains

~ m points. Any pair of coordinate subspaces S(x, y,) and S,‘(xo, y) intersect at

one point (xo, Y,).

A Hﬂg__ip CZ(R) is a set of points satisfying the equation
ax { by = c |
where a and b are its coefficients. A line is said to be proper if it contains
exactly m poinfs. The coordinate lines ar.e proper. A line is obligue‘if it
is proper, and if it has exactly one point in common with each horizontal

and each vertical coordinate line.

A‘line is oblique‘ if and only if its coefficients a and b are both
divisors of unity. An oblique line can thus be expressed by x { Py =y
where P. b/a and Y a c/a. (3 is called the orientation and describes t:g}e

family to which the line belongs. ¥ is the x - intercept of the line.
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There is one, and only one, oblique line of a given orientation
that containé a given_point. Therefore, a family of oblique lines divides the
Aspace into mutually exclusive and exhaustive subsets just as the coordinate lines
do. k‘

Since '3 may not be a divisor of zéro, there may be p families
- of y lines each,b where p is the numbér of divisofs of ‘unity in R. At any point,

there are exactly p obliqﬁe lines thr.ough the point.

For any R, £ u families of lines may be selected so that no
“two lines through a point have any other point in common. Such a set of

families is called cbmpatible‘._ A set of oblique lines is compatible with respect

to a given point if, and only if the pai-allel set is _compatibie with respect to

“the origin, This‘simplifies examinations for compatibility. A setof f > 1
oblique lines (families) through é point with orienta’;ioné {31, {3 oo e B g
is COmpatible' if, and only if, (3) i~ ‘33- is a divisof of unity for all i and j.

OVer a modulo m a’lgeBira, the largesf compatible set of oblique lines (families)

' 'whiéh may be found contains m' - 1 families, where m' is the least lprime

- factor of m. Clearly the line.s passing through (0, 0) and (1,1); (1, 2);.._. ceeenssnee
(1, m' - 1) are compatible, since any prime divisor of ’zero must'be a prime
factbr of m, The line:: through (0, 0) and (1, m') is not, and those through

(1, m'+1), @, m'+ 2) etc, havé(& differeing from the first set by m'. Including
the two co-ordinate families, m'+ l. compatible fainiliés can be found, of which
m' - 1 are oblique (redundant) and may be used for identifying higi'xer order

errors,
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These concepts can be extended,v and Ashenhurst derives a

similar geometry C

for s-dimensional spaces, where the coordinate sub-

spaces are hyperplanes, and oblique hyperplanes are added to provide redundancy

in selection, The conditions on compatibility are somewhat more complicated,

and considerably more work must be done before the direct application of the

s-dimensional coincidence geometry to error correction can be made.

Investigations into Applications of the Coincidence Geometry

The application of the two dimensional geometries C, (R) to

error correcting codes has been investigated in some detail,

It appears that k ¢ 8 - 1 compatible families {(or k -~ 1 redundant

families) are necessary and sufficient for the bitwise correction of the kth

order errors in an s-dimensional space, although this has not yet been proved.

Several examples may hélp make this palnsible:

8:2-
k=1
K=2

0 1 2
7
0
1
2., C\
0 1 2
4 ¥
0s-6
1
: 2»_’ o-

f = 2 families are necessary
and sufficient

f = 3 can be considered as f=2
and f - 3 families are
necessary and sufficient




Ambiguous Specified

f = 4 families are
necessary and
sufficient

sufficient for s =2 k=1, 2, 3, 4, 5.

Fors=3, k= 2. consider , | "X

x ' .
(0 3 O)C— mia o o)y,0 o 1
Iz
& ;
(0 0)LO 1 1 0))(1 1 1)
then planes z = 0, x = 0, 1, y=0,1 give eiror indications and a family of

oblique planes is nécessary. It can also be shown to be sufficient. Thus,

fzd4z=zk})s-~ lfa.milies are needed.

‘ )

For s = 4, k = 2 the same holds, as can be seen by conceiving
of the previous example as constituting one of the two 2 x 2 x 2 cubes in a

2 x2x2x 2 hypercube (tesseract)‘.‘

1

A second unproved but intuitively obvious theorem is that any
error of order lower than k can be bitwise corrected in a system that contains
- enough compatible families to provide kth order correction, Howevér,' an
error of order r ¢ k cannotalways be corrected@n a k x 'k space that will

not contain r 4 8 - 1 compatible families even if r { s - 1 compatible families could

be placed in an r x r space. For example, for 8 = 2, k = 4, only 3 compatible
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families can be drawn. If a fdufth in CZ(J4) the other diagonal, is drawn
it will not be compatibie, and the four families will not give unambiguous cor-

rection of all triple errors,even though in a 3 x 3 space four compatible families -

could be drawn and triple errors corrected.

A consideration of some two dimensional systems will show
the implications of Ashenhurst's requirements for a line (family) to be

oblique and for a set of such to be compatible.

" Consider a 3 x 3 system with families according to 'CZ(J3). )

00 01 02
00 11 1 22 |
10 11 12
| 20z 10
20 21 22
12 - 20 01

Each elerr;ent can be identified by two coordinates, and two
other coordinates can be attached indicatin_Lg the subset of the redundant families
to which the element belongs. The redundant families havé the equations
X-yz % ‘ (3:- -1=22 the principal diagonal and the
| -liﬁes paréllel to it

andxfy=% ' p=1 The other diagonal and the lines

parallel to it.
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x¢zy=x o y=0 ¥=1 ¥ =2

x4y-=

Both of these families are oblique and they are compatible
with each other. By the definition of obliqueness, the whole set of redundant
and coordinate lines will always be compatible if the redundant lines are com-

patible .

In a 4 x 4 system of two dimensions, the potential oblique lines
‘through the origin (‘6 =0, &5’-' 1, 2, 3) can be used to represent the families

created by Cp (J,).
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o 1 2 3 xdy=0
0 x{2yz0
1 x43y=0
2
3

m - 1 pass through 0, 0 and each of the points (1, y)other than (1,0) . The line for
(5 = 2 does not satisfy the definition for obliquity, since it includes the point
2, 0 that iieé on the coordinate line through the origin. This is in accordance

with the theorem, since 2 is a divisor of zero in J'4.

The lines other than (5 = 2 are oblique, and they constitute the
families of the two diagohais. They do not satisfy the definition for compatibility,
however, since (5 : 1 and (5 = 3 cross at the origin and again at 2,2. This

agrees with the theorem for (5 i -V(bj- =1=-3z.2=2, adivisor of zero in .]'4.'

If one pfoceeds to use the three redundant familiés for
error correction without regard to oﬁliquity and compatibility, it will be found
that all error bits are inverted, gnd foi" some errors, some correct bits are .
made wr§ng by the correcting pr‘oéess. It is not known whether the numbe;r made

wrong is always smaller than the number corrected. If it is, correction could

be done in steps.
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"This is not ..a. profitable investig?.t_ion to continug, however,
since compatible families would yield éne-step bit@ise correction, and for
any m = p‘q where p is prime and g > 0, a geometry on the Galois field
can be constructed. ‘Becéuse the Gaiois field contains no nontri‘viél
divisors of zero, all of the oblique families (m. - 1) will be compatible, so
m-order- errors can be correctedina s z 2 space, Form =z 4 = 22, the

lines through the origin are

They are indeed compatible with themselves and the coordinate lines, and

do provide for one-step bitwise correcting of all quadruple errors.

This whole investig"ation has assumed that the families are
proper: each contains m subsets of exactly m points, Further investi-

gation may properly examine families for which this is not the case.

order correction

A more basic set of assumptions is that in a kiP

system all the subsets containing 1 £ r £ k errors are always indicated as
erroneous, and that this indication itself is never in error. For k > 1,

simple one bit parity checks fail to suffice for indicating erroneous subsets,

' ¢
since they do not satisfy either assumption, much less both.
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The Problem of Embedding Error Indications Within Checked Arrays

If the error indications are transmitted over the same noisy
channel as the information bits, the second assumption is unrealistic for
practical use. To overcome this difficulty, the error indicator bits must be

embedded in the space which is checked. We shall next consider this problem.

A series of sums of any s-dimensional array of numbers along

the coordinate lines will yield the same final result regardless of the

7 TR

I R I i '
order of the summations. That is, E i ki n \ - EQZ nes v)
: B ' [N ) “... (3N} o fgtes
. i '5;‘ YY) :)"l “ v ' 3:[ v J

|

for any number of indices. This property guarantees that a parity check can

be imbedded in an array, for ( Zm'-) ) mod 2 = z (nij) mod Z-J

By the same token,- .s—-dimensional arrays may be consistently Hamming
checked along all coordinate dimensions, since s‘uch' al Hamming check is a
set of multiple summations mod 2 over various subsets of the space. ."Now
can the error iﬁdiéating bits for redﬁndant families be consistently

embedded in an array which is to be checked? This is not in general

_possible; Consider a 2 x 2 information array, parity checked in both coordinate

dimensions so that it‘is a 3x 3 array. The -err'oneou»s subset will only be
positively identifie‘d-:forl a single error by a simple parity check, so oniy
single error correction is possible. Only tWo families are needed, and the
coordinate families suffice. However, a consistently parity checked diagonal

family cannot be constructed.
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Positive identification of an erroneous subset that may contain
two errorvs can be done with no codé more. cheaply than the Hamming code
used for double error detection., Thus, 4 x 4 information bits must be em~-
bedded in a 7 x 7 array to identify double errors in a coordinate line.
However‘, none of the six possible compatible oblique families in the 7 x 7
array permit consistent I-Iamming checking, so a third family cannot be used

for double error correction.

It is worth noting that even had such a consistent family been
found, the scheme would have guaranteed correction of only double errors,
while the same number of bits used according to Elias' scheme would have

guaranteed triple error correction.

It is possible that additional consistent families can be constructed »
by using more unconstrained bits for error indication along the coordinate lines.
Thus, in the 7 x 7 array, the number of information bifs was reduced to 3 x 3,
leaving 7 bits unconstrained for the éat‘isfaction of Hamihing checks on a -
third problem. This has not been pursued to the end, but no general way to con-

struct such a third family is apparent.

Conclusions

The compatible family apprach does not appear apt to prove
profitable for direct application where the error-indication bits are directly

embedded in the checked array and where proper families are used.
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Further investigation may prove the desirability of using
weaker familiés, and while direct application of the theory in the obvious
manner does not appear profitable, the notion of compatible families may
p rove a useful concept for the‘ general theory of error correcting anvd de-

tecting codes,

H ks

F. P. Brooks
September 13, 1956

FPB:bl




