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ERROR- CORRECTING CODES USING COMPATIBLE FAMILIES 

I 

Introduction , 

Erroneous elements of a binary set can be corrected by in- 

version when they a r e  identified. A large class of error-correcting codes a re  

based upon this principle and a r e  designed to identify erroneous code elements. 

A second class of codes a r e  those, such as the Reed code, in which the erroneous 

elements ar,e not specifically identified, but which yield the proper information 

from an error-disturbed configuration upon application of the decoding algorithm. 

Codes of the first c lass  only will be treated here. 

0 

Error-identifying codes in general can be considered as dividing 

the space of code points into families of mutually exclusive and exhaustive subsets. 

Family 2 

0 1 2 

2 

I 

I 

Any bit will therefore lie in one, and only one, subset of each family. 

an indication of the subsets in which the e r ro r  lies can be given, and if 

families can be so constructed that each bit is the s o h  intersection of the sub- 

sets  in which i t  lies, single e r ro r  identification and thus correction is possible. 

If 

0 
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In general, however, if each bit is identified by s such 

families, the code points can be considered a s  members of an s-dimensional 

finite space. I€ each subset contains the same number of points M and this 

is equal to the number of subsets in each family, the space will be called 

complete and the families p o p e r .  

I 
While f families of m subsets a r e  sufficient to identify m f 

points, multiple e r r o r s  in general will give ambiguous identifications for the 

erroneous bits. Consider a case for f - 2, m - 3: 

0 1 2 

If the erroneous subsets a r e  identified as 0, 1 of the vertical 

family and 0 , 2  of the horizontal family, this indicates that 0, 0 and 1, 2 or 0 , l  

and 2, 0 or  any three or  all fQur of bits 0, 0; 0 , l ;  2, 0. 2 , 1  a re  in e r ro r .  In 

short, the two e r r o r s  belong to two subsets of each family, and these subsets 

have four intersections. 

I 

I 
I 

Ambiguities of this sor t  can be resolved by reducing the number 

of points by tW so that m families a re  used to identify the tmmw po.ints, 

maw :8 .  

Let 

Then s families a re  sufficient to identify each point, and w 

redundant families lie in the s-dimensional space for the resolution of ambiguities. 
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The problem of choosing such families in a satisfactory manner is one of a 

geometry of coincidence, for the goal is to establish families so that all 

erl'oneous bits a r e  the coincidences of the erroneous subsets, and all such 

coincidences a r e  erroneous bits, This permits one-step (non-sequential) , 

e r r o r  correction with circuitry that operates on each bit independently. 

Ashenhurst* has developed a suitable coincidence geometry 

in connection with the related problem of improving switching and selection 

ratios of coincident-current core memories. His results will be briefly re -  

viewed. 

The Commutative Ring with Unity. 

Let a set of elements be given and let operations of addition and 

multiplication be defined that every pair of elements a, b has a unique sum 

a 4 b and the product ab in the set. Theiresulting system i s  called a commu-

tative 

fa J (b + c )  

if the ordinary commutative! (a # b :b 1( a)[!ab = ba }
distributive:a (b J c )  = ab 4 ac,  laws hold, and 

-.
 associative: 

(a b)  
a(bc) = (ab) c 

if the equation a J x Ib has solutions for all a and b. Consider a ring R with 

a finite number of elements m. 

There is then a unique element 0 which satisfies a J x = a for  

each element in  R. Further, there is a unique element x --a such that 

* Ashenhurst, R. L., the Structure of Multiple Coincidence Selection 

Systems, Ph, D, Thesis Harvard University, Cambridge, Massachusetts, 

1956. 
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a x = 0 for any a in R. 

fa) (b) :-ab, (-a) (-b) = ab 

If ab = 0 for some b # 0, then a is called a divisor of zero. Zero is trivally a 

divisor of zero, and there may be others. 

A commutative ring need not have an element b that satisfies 

ab :a. If it does, however, it is known as a commutative ring with unity. 

Only such rings will interest us here. There can be only one such unity element, 

and if a is not a divisor of zero, ab = 1 has a unique solution aol. ,Further, 

ax  = b has a unique solution x = ba’l if a is not a divisor of zero. ax = b 

has  no solution if a is a divisor of zero and b is not. If both a r e  divisors of 
I 

zero, there is either no solution or at least two. 

An element a for which ax = 1has solutions is called a divisor 

of unity. Thus, every element in R is either a divisor of zero or a divisor of 

unity, but not both. 

The Algebra of Integers Modulo m (J,) 

The algebra of integers modulo m is a good example of a corn-

mutative ring with unity. Let (P)m = P mod m starid for the remainder 015 jLm 

of the division P /km where k i s  an integer sufficiently large to satisfy the con- 

dition on j. The modulo m algebra Jm has the following rules for  addition and 

multiplic ati on!. 
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For example, for m :: 3 the addition table i s  

0 1 2 

0 1 2 

1 1 2 0 

' 2 2 0 1 

and the multiplication table is 

0 1 2 

O1 

2 0 2 

Such an algebra may have nontrivial divisors of zero. Consider the tables 

for m :4. 

A DDITION 

0 1 2 3 

1 1 1  2 3 011 
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MULTIPLICATION 

0 1 2 3 

0 0 0 0 0 

‘ 1 0 1 2 3 

2 0 2 1 0 1 2  

3 0 3 2 1 

The Galois Field (G,) 

A Galois field is a commutative ring with unity that contains no 

non-trivial divisor of zero. Such a field contains m :p q  elements, wherep  8 

i s  prime and q > 0. There is only one such field for each p and q. For  

0 
q :1, the field is equivalent to the algebra of integers modulo p. An example 

is Gq, the field of order Z 2  

ADDITION 

0 1 2 3 

MULTIPLICATION 

0 1 2 3 -___., . 
0 0 0 0 0 

1 0 1 2 3 

2 1 0  2 3 1 

3 0 2 1 2 
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e There a re  still other examples of commutative rings with unity, 

but these will be of primary interest. 

The Coincidence Geometry of Two Dimensions, - -C2(R), Based on a Com- 

mutative Ring with Unity 

Let R contain m elements. A point of Cz(R) is defined by 
, 

an ordered pair of elements (x,y) i ts  coordinates. The space of C2(R) is 

the set of m2 points derived by letting x and y assume all positive values. 

A ciubset consisting of the points for which one coordinate has 

a fixed va ue is a coordinate subspace or coordinate line. Each such contains 

m points. Any pair of coordinate subspaces S(x, yo) and !?(xg,y)  intersect at 

one point (xo, yo). 

A -line in C2(R)is a set of points satisfying the equation 

ax  / by = c 

where a and b a r e  its coefficients. A line is said to be proper if it contains 

exactly m points. The coordinate lines a re  proper. A line is oblique if it 

is proper, and if it has exactly one point in common with each horizontal 

and each vertical coordinate line. 

A line is oblique if and only if its coeffiaients a and b are both 

divisors of unity. An oblique line can thus be expressed by x # p y  8 

where (3. b / a  and XI  c/a .  (3 is called the orientation and describes qt? 

a family to which the line belongs. Y is the x - intercept of the line. 
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There is one, and only one, oblique line of a given orientation 

that contains a given point. Therefore, a family of oblique lines divides the 

space into mutually exclusive and exhaustive subsets just as the coordinate lines 

do. 

Since p may not be a divisor of zero, there may be +I families 

of rp lines each, where )z is the number of divisors of unity in R. At any point, 

there a re  exactly p oblique lines through the point. 

Fo r  any R, C &  u families of lines may be selected s o  that no 

two lines through a point have any other point in common. Such a set of 

families is called compatible. A set of oblique lines is compatible with respect
--" I . 

' 
to a given point if, and only if the parallel set is compatible with respect to 

the origin. This simplifies examinations for compatibility. A set  of f > 1 

oblique lines (families) through a point with orientations P 2 -. . . , . . . . .B1, P f '  

is compatible if, and only if, @ - pj is a divisor of unity for all i and j. 

Over a modulo m algebra, the largest compatiblenset of oblique lines (families) 

which may be found contains m t  - 1 families, where m1 is the least prime 

factor of m. Clearly the lines passing through (0, 0) and (1,l); (1,2);. . . . . . . . . . . . 
(1, mt - 1) are compatible, since any prime divisor of zero must be a prime 

factor of m, The line,. through (0,O) and (1,ml) is not, and those through 

(1, m t  + l), Q , m1f 2) etc. have 0 differeing from the first set by ml. Including 

the two co-ordinate families, m1f 1compatible families dan be found, of which 

m'  - 1are oblique (redundant) and may be used for identifying higher order 

errors.  
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These concepts can be extended, and Ashenhurst derives a 

similar geometry Cs for s-dimensional spaces, where the coordinate sub- 

spaces a r e  hyperplanes, and oblique hyperplanes a r e  added to provide redundancy 

in selection. The conditions on compatibility a re  somewhat more complicated, ’ 

and considerably more work must be done before the direct application of the 

s-dimensional coincidence geometry to e r r o r  correction can be made. 

Investigations into Applications of the Coincidence Geometry 

The application of the two dimensional geometries C2 (Ti) to 

e r r o r  correcting codes has been investigated in some detail, 

It appears that k 4 s - 1compatible families (or k - 1 redundant 

families) a r e  necessary and sufficient for the bitwise correction of the kth 

order  e r r o r s  in  an s-dimensional space, although this has not yet been proved. 

Several examples may help make this palnsible: 

s : 2  0 1 2 
4 

k = l  0 f :2 families a r e  necessary 
and sufficient 

1 

K z 2  Oh..*43--- f :3 can be considered a5 f=2 
and f :3 families a r e  

1 necessary and sufficient 

+ - ”  ---+ 20 

’ 4  


I 
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Ambiguous Specif ied 

k = 3  

= 4 families a re  
necessary and 

It has s - 1 families a r e  necessary and 

sufficient for s = 2 k 1, 2, 3, 4, 5. y I  

X Y 

then planes 2: ~i 0, x 0, 1, y i~ 0, 1 give e r ro r  indications and a family of 

oblique planes is necessary. It can also be shown to be sufficient. Thus, 

f 4 :k { s - 1families a re  needed. 

For  a = 4, k :2 the same holds, as can be seen by conceiving 

of the previous example a s  constituting one of the two 2 x 2 x 2 cubes in a 

2 x 2 x 2 x 2 hypercube (tesseract). 

A second unproved but intuitively obvious theorem is that any 

e r r o r  of order lower than k can be bitwise corrected in a.system that contains 

enough compatible families to provide kth order correction. However, an 

e r r o r  of order r < k cannot alwaya be correctedin a k x k space that will 

not contain r J s .,1compatible families even if r 4 s - 1compatible families could 

a be placed in an r x r space. For example, for  s = 2, k = 4, only 3 compatible 
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families can be drawn. If a fourth in C2(J4) the other diagonal, is drawn 

it will not be compatible, and the four families will not give unambiguous cor- 

rection of all triple error5,even though in a 3 x 3 space four compatible families 

could be drawn and triple e r rors  corrected. . 

A consideration of some two dimensional systems will  show 

the implications of Ashenhurst's requirements f o r  a line (family) to be 

oblique and for a set of such to be compatible. 

Consider a 3 x 3 system with families according to C2(J3). 

00 01 02
00 I 11 22._." ___._ -~--1 -~ - - *  ---.- - - 1- - - 


10 12 

-.-- 21 I 02 . -1I ._- 10.-

' 20 I' 21 I 22 


12 20 01 


Each element can be identified by two coordinates, and two 

other coordinates can be attached indicating the subset of the redundant families 

to which the element belongs, The redundant families have the equations 

p y = d  . (I" - 1 2  2 the principal diagonal and the 

lines parallel to it 

and x I y 3 p:1 The other diagonal and the lines 

parallel to it. 
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Both ok these families a re  oblique and they a re  compatible 

with each other. By the definition of obliqueness, the whole set of redundant 

and coordinate lines will always be compatible if the redundant lines a r e  com- 

patible. 

In a 4 x 4 system of two dimensions, the potential oblique lines 

through the origin (5 :  0, e=1, 2, 3) can be used to represent the families 

created by C2 (J4)' 



0 1 2 3 x l y = O  

0 x l 2 y = 0  

1 x / 3 y = o  

2 

3 

a 

It will be seen that the potential oblique lines Q 1, 2, .  . . . , , 
m - 1pass through 0, 0 and each of the points (1, y)other than (1 ,O)  . The line for 

2 does not satisfy the definition for obliquity, since it includes the point 

2,O that lies on the coordinate line through the origin. This is in accordance 

with the theorem, since 2 is a divisor of zero in J4. 

The lines other than P:2 a r e  oblique, and they constitute the 

families of the two diagonals, They do not satisfy the definition for compatibility, 

however, since (3 :1and P 3 cross  at the origin and again at 2,2.  This 

agrees  with the theorem for - p j  2 1 - 3 :- 2 2 2, a divisor of zero in J
4' 

If one proceeds to use the three redundant families for 

e r r o r  correction without regard to obliquity and compatibility, it  will be found 

'I 	 that all e r ro r  bits a r e  inverted, and for some e r ro r s ,  some correct bits a r e  

made wrong by the correcting process. It is not known whether the number made 

wrong is always smaller than the number corrected, If it is, correction could 

e be done in steps. 
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This is not a profitable investigation to continue, however, 

since compatible families would yield one- step bitwise correction, and for 

any m = pq where p is prime and q > 0, a geometry on the Galois field 

can be constructed. Because the Galois field contains no nontrivial 

divisors of zero, all of the oblique families (m - 1)will be compatible, so 

m-order e r ro r s  can be corrected in a s = 2 space, For p = 4 = Z2,  the 

lines through the origin a r e  

0 3 

They are  indeed compatible with themselves and the coordinate lines, and 

do provide for one-step bitwise correcting of all quadruple errors .  

This whole investigation has assumed that the families a r e  

proper: each contains m subsets of exactly m points, Further investi- 

gation may properly examine families for which this is not the case. 

A more basic set  of assumptions is that in a kth order correction 

system all the subsets containing 1,I r 1 k e r ro r s  a r e  always indicated as 

erroneous, and that this indication itself is never in error .  For k > 1, 

simple one bit parity checks fail to suffice for indicating erroneous subsets, 
P 


since they do not satisfy either assumption, much less both. 
0 
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0 The Problem of Embedding Er ro r  Indications Within Checked Arrays 

If the e r r o r  indications a r e  transmitted over the same noisy 

channel a s  the information bits, the second assumption is unrealistic for  

practical use. To overcome this difficulty, the e r r o r  indicator bits must be 

embedded in the space which is checked. We shall next consider this problem. 

A ser ies  of sums of any s-dimensional a r r ay  of numbers along 

the coordinate lines will yield the aame final result regardless of the 

fo r  any number of indices. This property guarantees that a parity check can 

be imbedded in an array,  for  ( Z n q  ) mod 2 z zcni j )  mod 23
0 

By the same token, s-dimensional a r r ays  may be consistently Hamming 

checked along all coordinate dimensions, since such a Hamming check is a 

set  of multiple summations mod 2 over various subsets of the space, Now 

can the e r r o r  indicating bits for  redundant families be consistently 

embedded in an a r r ay  which is to be checked? This is not in general 

possible. Consider a 2 x 2 information array,  parity checked in both coordinate 

dimensions so that it is a 3 x 3 array. The erroneous subset will only be 

positively identified for a single e r r o r  by a simple parity check, so only 

single e r r o r  correction is possible. Only two families a r e  needed, and the 

coordinate families suffice. However, a consistently parity checked diagonal 

family cannot be constructed. m 
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Positive identification of an erroneous subset that may contain 

two e r r o r s  can be done with no code more cheaply than the Hamming code 

used for double e r r o r  detection. Thus, 4 x 4 information bits must be em- 

bedded in a 7 x 7 ar ray  to identify double e r r o r s  in a coordinate line. 

However, none of the six possible compatible oblique families in the 7 x 7 

a r ray  permit consistent Hamming checking, so a third family cannot be used 

for  double e r ro r  correction. 

It is worth noting that even had such a consistent family been 

found, the scheme would have guaranteed correction of only double e r ro r s ,  

while the same number of bits used according to Elias' scheme would have 
~ 

guaranteed triple e r r o r  correction. 

It is possible that additional consistent families can be constructed 

by using more unconstrained bits for e r r o r  indication along the coordinate lines. 

Thus, in the 7 x 7 Brray, the number of information bits was reduced to 3 x 3, 

leaving 7 bits unconstrained for the satisfaction of Hamming checks on a 

third problem. This has not been pursued to the end, but no general way to con- 

struct such a third family is apparent, 

Conclusions 

The compatible family apprmh  does not appear apt to prove 

profitable for direct application where the error-indication bits a r e  directly 

B embedded in  the checked ar ray  and where proper faxmilies a r e  used. 



.. 17 -

Further investigation may prove the desirability of using 

weaker families, and while direct application of the theory in the obvious 

manner does not appear profitable, the notion of compatible families may 

p rove a useful concept for the general theory of e r ro r  correcting and de- 

tecting codes. 

F. P. Brooks 
September 13, 1956 
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