
COMPANY C0NFLDENTIA.L

PROJECT STRETCH

FILE MEMO 934

SUBJECT: Multiple Precis ion Multiplication

BY: WeWolensky

DA.TE: A.pri1 23, 1956

Multiplication of two multiple precision numbers poses problems that
can readily be solved by programming once the peculiarities of the
operation a r e understood. The aspects of multiplication a r e discussed
briefly and the peculiarities encountered in multiple ,pieciaion operations
explained.

Multiplication of a four digit number by a three digit number can a t best
produce a seven digit product. The rule being that the maximum number
of digits in a product ii equal to the sum of the digits in the multiplier
and multiplicand. Digital computers a r e designed to provide for the
maximum number of digits possible. An interesting discussion can be
generated around the significance, or meaningfulness of the extra digits
acquired a s a result of multiplication, particularly when the numbers
involved a r e fractions. If two quantities a r e assumed, which a r e known
to be accurate only to the fourth decimal place, (hence a r e four digit
fractions) and.are multiplied together, the resulting product is composed
of up to eight digits. The significance of the extra four digits will not
be interpreted, but the approach followed in the illustrations of the memo
will be that the same degree of precision will be retained a t the conclusion,
a s was had a t the inception.

F o r discussion and illustration purposes, the multiple precision numbere
to be used will be A and B, where both a r e of precision three and can be
written as: A. E: A 1 t A2 t A.3. The notation A1 t A2 implies the sum of
'A1 and A2 where the value of A 2 is to a power smal le r than the power of
A.1 by the number of significant digit positions in the fraction of Al. If
the exponent of A1 is x and the number of digits comprising the fraction
equals 48, then the exponent of A2 is equal to x-48. Likewise, i f the
fraction of A2 contains 48 digits then the exponent of Ag is equal to x-48-
48 o r x-96,

Every word o r word section upon being multiplied will double its size.
The new double sized word section will be divided into two word sectione,
ultimately resulting (start ing with words of precision 3) in a product with
precision 6 (which will be rounded to precision 3 af ter normalization),
Eacb secticm of a divided word W i h be identified by the factors composing

FILE MEMO #34 - 2 - April 23, 1956

i t and a m a r k to designate wlietlier it is the most significant I1mt1o r9

l eas t significant “ s ” portion of the split word.

The multiple precis ion multiplication described in the program procedure
is symbolically represented here , s tar t ing with the given multiplier and
multiplicand words of precision 3.

X x -48A. = A 1 t A 2

Multiplying the individual sections of A. and B resul ts in the following table.

Fac to r s Resul ting Value of Resulting Value of
involved t e r m exponent t t e r m exponent

A B = A 3 B 3 m x t y - 1 9 2 t A B s x t y -2403--L I__... _. . - - __I - - 3 - 3 ” _ . ~ -

.. . -- _.......................... -..--.---_.I.I.- I.-.--

The eighteen words resulting from the multiplication and stored in memory
mus t he combined, o r summed according to the exponent of the fraction.
C a r r y outs must be propagated to t e r m s with the next higher exponent.
Final operations can include normalization and rounding off to the proper
degree of precision.

Special instructions o r special modes of instructions required for properly
executing multiple precision multiplication include:

1. A multiplication instruction that does not embody an automatic
rounding o r an automatic normalization feature.

2. A.n instruction that normalizes and counts the number of bit
positions shifted.

FILE MEMO #34 :3 - April 23, 195b

3. A rounding instruction which rounds off a word according
to specification, going to regis ter M i f necessary, to determine
the basis for rounding contents of regis ter L,

The procedure for programming a multiple precision multiplication is
demonstrated in a broad program outline, detail being added where
necessary to explain the individualities of multiple precision. Figure 1
should be used a s a reference for the program.

Given: Triple precision words A and B, with no regard a s to
s igns 'or relative value to each other necessary.

1. Check the signs pf words A 1 and B1, determine if they a r e
alike or different and store this information for la te r use. Remove
o r make a l l signs of word sections involved positive.

2, A.dd the exponents of words A.1 and B1, tes t for exponent
overflow and i f no overflow store this information for la te r use.

3. Adjust index regis ters to properly locate word sections f o r
program actions and execute necessary housekeeping operations.

4, Load A3 into regis ter L, multiply by B3 (with no automatic
normalization o r round off).

a. Store contents of L into memory a t A.3 B3 m.
b. Store contents of M into memory a t A3 Bg s (which is a lso P6),

5. Load A 2 into regis ter L, multiply by B3.

a , Store contents of L into memory a t A2 B3 m.
b. Store contents of M into memory a t A2 B3 s,

6. Load A1 into register L, multiply by Bg.

a. Store contents of L into memory at A l Bg m.
b. Store contents of M into memory a t A1 B3 S.

7. Load A g into register L, multiply by B2,

a. Store contents of L into memory a t A3 B2 m.
b. Store contents of M into memory a t A3 B2 8 .

FILE MEMO #34 -4 -	 April 23, 1956

Load A.2 into register L, multiply by B2" 80

a. Store contents of L into memory at A 2 B2 m.
b, Store contents of M into memory at A 2 B2 S.

9, Load A.1 into register L, multiply by B2.

a. 	 Store contents of L into memory at A1 B2 me
b. 	 Store contents of M into memory at A1 B2 s.

10. Load A.3 into register L, multiply by B1"

a. 	 Store contents of L into memory at A 3 Bl m.
b. 	 Store contents of Id into memory a t A 3 B1 S.

11. Load A.2 into register L, multiply by Ble

a. 	 Store contents of L into mernQry at A 2 B1 me
b. 	 Store contents of M into memory at A 2 B1 8 .

12. * Load A1 into register L, multiply by B1.

a. 	 Store contents of L into memory at A1 B1 m.
b. Store contents of M into memory at A1 B1 8 .

13, Load A.3 B3 m into register L, add A.2 B3 s o

a. 	 Test for carry out (no carry out).
b. Add A 2 B3 8 , and tes t - for carry out (no car ry out),
c, Store contents of L in memory at P5.

Load A 2 B3 m into register L, add A1 B3 8 .

a , : 	 Test for carry out, there is a carry out, therefore clear
.the carry'out indication count and remember -(;hefact

I that there was a c a r r y out.
be Add A 3 B2 m, and test for carry out (no car ry out).
c. 	 Add A 2 B2 s, and test for carry out (no car ry out).
d, 	 Add A 3 B1 s, and test for car ry out. There is a

car ry out arid this should be bounted with the car ry out of
14a. (as well a s car ry outs a f '14b0 c. 'if,they existed).

ee 	 Store contents of L in memory a t Pqe

FILE MEMO #34 -5 -	 April 23, 1956

15. Load the count of ca r ry outs f rom step 14 into regis ter L
and r e se t to zero the count word.

a. 	 Add A1 B3 m; if c a r ry out, count then proceed (no c a r r y out).
b. Add A.2 B2 m; if c a r r y out, count then proceed (c a r r y out).
c, Add A1 B2 s; i f c a r r y out, count then proceed (c a r r y out).
d. 	 Add A3 B1 m; if c a r r y out, count then proceed (no ca r ry out).
e. 	 A.dd A 2 B1 s; i f c a r ry out, count then proceed (no c a r r y out).
f . 	 Store contents of L in memory a t P3,

16, Load the count of c a r r y outs from step 15 into regis ter L
and rese t the count word to zero. I

f

a. 	 Add A B m; i f c a r r y out, count then proceed (no c a r r y out). 1 2
b. 	 A.dd A 2 B1 m; i f c a r ry out, count then proceed (no c a r r y out).
c. Add A 1 Bl s; i f c a r r y out, count then proceed (ca r ry out).
d, Store contents of L in memory a t P2.

17. Load the count of ca r ry outs f rom step 16 into regis ter L
and rese t the count word to zero.

a. 	 Add A1 B1 m; if c a r ry out there is an e r r o r , stop the
machine (no c a r r y out).

The multiplication is now complete, there remains only the
job of normalizing, rounding and correctly eigning the product.

18. Normalize and count the number of insignificant zeros removed
from word P1 in regis ter L, (the illustration shows one insignificant
z e r o removed)

a, 	 F o r every ze ro removed, subtract one from the exponent
sum created in step 2; attach cor rec t sign to word section
PI. (as determined in step 1)

b,, 	 The product word sections P1 to P 6 should be shifted to
compensate for the normalization,

The procedure for propagating the word shifting caused by
normalizing is shown in Stretch Memo #30. After bit shifting, a l l
that remains is to round off the product to precision three and attach
the proper sign (f rom step 1) to each word section i f it was not done
during the word shifting procedure,

19. Load P4 into regis ter M, load P3 into regis ter L.

~

I

--

_ _

r\ ,

E X ~ * Fract. Exp.
+ A II 0 10
t B a 011-
t 101

101 t -
011 t -

I

010 P A ,
x 111 =Bs

100011 A.1 Bg

101 FA^
i i n R-

101 S A ~
x 011

E B1
001111 = A , B,

110 t -

111 “ A 2

x 111 5: B,

3

110001 5: A2 B 3

111 = A 2
x 110 t f B 2

1O101O s A2 B2

111 a A.2
x 011 = B 1
010101 ss A2 B1

010 DC A3
x-111 g B 3

010
0 10

010
OO111O A3 B 3
”m””TI

010 E A3
x 110 t~ B 2

001100 AI A 3 B,
c

1
000110 A3 B1

Step 13

Fig. 1
4

