'COMPANY CONFIDENTIAL

PROJECT STRETCH

FILE MEMO #34

- SUBJECT: Multiple Precision Multiplication

BY: W. Wolensky
DATE: April 23, 1956

Multiplication of two multiple precision numbers poses problems that
can readily be solved by programming once the peculiarities of the
operation are understood, The aspects of multiplication are discussed
briefly and the pecuha rities encountered in multiple precigion operations
explained,

Multiplication of a four digit number by a three digit number can at best
produce a seven digit product, The rule being that the maximum number
of digits in a product is equal to the sum of the digits in the multipliezf,
and multiplicand. Digital computers are designed to provide for the
maximum number of digits possible, An interesting discussion can be
generated around the significance, or meaningfulness of the extra digits
acquired as a result of multiplication, particularly when the numbers
involved are fractions, If two quantities are assumed, which are known
to be accurate only to the fourth decimal place, (hence are four digit
fractions) and.are multiplied together, the resulting product is composed
of up to eight digits. The significance of the extra four digits will not

be interpreted, but the approach followed in the illustrations of the memo
will be that the same degree of premswn will be retained at the conclusion,
as was had at the inception,

For discussion and illustration purposes, the multiple precision numbers

to be used will be A and B, where both are of precision three and can be
written as: A= A] + Ay + Aj. The notation A} + A, implies the sum of
Aj and A2 where the value of A, is to a power smaller than the power of
Aj by the number of significant digit positions in the fraction'of A,. I

.. the exponent of A is x and the number of digits comprising the fraction

equals 48, then the exponent of A, is equal to x-48., Likewise, if the
fraction of A, contains 48 digits then the exponent of A3 is equal to x-48-

48 or x-~96,

Every word or word section upon being multiplied will double its size,
The new double sized word section will be divided into two word sections,

~ultimately resulting (starting with words of precision 3) in a product with

precision 6 (which will be rounded to precision 3 after normalization),
Each. section of a divided word will be identified by the factors composing

FILE MEMO #34 ' -2 _ April 23, 1956

it and a mark to designate whether it is the most significant "m", or
least significant '"s'' portion of the split word.

The multiple precision multiplicatioh described in the program procedure
is symbolically represented here, starting with the given multiplier and

multiplicand words of precision 3.

X - 48 AE" -96

A= A + A A3
. uy y-48 -96
B = BY + B) + Bg

Multiplying the individual sections of A and B results in the following table.

Factors =~ = Resulting Value of . Resulfing Value of
involved term : exponent + term exponent
AgBy = AyBym myl9z ¢ AyBys xby-240
Aj B, = A, B3 x+y-144 + AZ By s x+y 192
Ay By = A B3 m x+y-96 + Al B3 s xty-144
A.3 B, = A3 BZ m x+y 144 + A3 BZ 8 x+y-192
A, 5, - N‘Az B, o . x+y T8 e A~2~B2 B x+y_144
A B = A BZ m x+y-48 + A Bz FR x+y-96

A.3« B, = A3 Bl m x+y-96 e WA3 Bl s o x+y—1421:
A, B == A.2 B, ‘m xty-48 + A, B;s x+y-96

Al B, = A B ‘m x+y + Aj; By s - x+y-48

The eighteen words resulting from the multiplication and stored in memory
must be combined, or summed according to the exponent of the fraction,
Carry outs must be propagated to terms with the next higher exponent,.
Final operations can include normalization and rounding off to the proper

degree of precision.

. Special instructions or special modes of instructions required for properly
executing multiple precision multiplication include:

1. A multiplication instruction that does not embody an automatic
rounding or an automatic normalization feature,

2, An instruction that normalizes and counts the number of bit

positions shifted,

FILE MEMO #34 . =3 April 23, 1955

3. A rounding instruction which rounds off a word according
to specification, going to register M if necessary, to determine
.the basis for rounding contents of register L,

The procedure for programming a multiple precision multiplication is
demonstrated in a broad program outline, detail being added where
necessary to explain the individualities of multiple precision. Figure 1

should be used as a reference for the program.

Given: Triple precision words A and B, with no regard as to
signs'or relative value to each other necessary.

1. Check the signs of words A) and B, determine if they are
alike or different and store this information for later use. Remove

or make all signs of word sections involved positive.

2, Add the exponents of words Al and By, test for exponent
overflow and if no overflow store this information for later use.

3. Adjust index registers to properly locate word sections for
program actions and execute necessary housekeeping operations.

4, Load Aj into register L, multiply by B3 (with no automatic
normalization or round off),

a. Store contents of L. into memory at A3 B3 m,
'b. Store contents of M into memory at A3 B, s (which is also Pé)'

5, Load A, into register L, multiply by Bj.

a. Store contents of L. into memory at Ay By m,
b. Store contents of M into memory at A, B, s,

6. Load Aj into register L, jmulti'jply by B,.

a, Store contents of L into memory at A, B3 m,
b. Store contents of M into memory at A; B s.

7. Load A, into register L, multiply by B,.

a. Store contents of L, into memory at A3 B, m.
b. Store contents of M into memory at Aj B, s.

‘ FILE MEMO #34 -4- April 23, 1956

8. Load A, into register L, multiply by B,.

‘a, Store contents of L into memory at A.2 BZ m,
b, Store contents of M into memory at Ap B, s,

b 9. Load A; into register L, multiply by B,.

i a. Store contents of L into memory at A; B, m.
b b. Store contents of M into memory at A} B, s.

J 10, ‘L.oad A.3 into register L, multiply by By,

a, Store contents of L into memory at A, B1 m,
b. Store contents of M into memory at A3 B s.

11, ° L.oad A.2 into register L, multiply by B,.
a, Store contents of L. into memory at A2 B, m,
‘ : - b. Store contents of M into memory at A, B s.

} 12., Load A into register L, multiply by B;.

. a, Store contents of L into memory at A} B} m,
b, Store contents of M into memory at A B1 8.

13, Load A3 B3 m into register L, add A, Bj s.

‘ » a, Test for carry out (no carry out).
b. Add A; B, s, and test-for carry out (no carry out).
¢, Store contents of L in memory at Ps, '

14, Load A, B, m into register L, add A} Bj s.

a., Test for carry out, there is a carry out, therefore clear

: the carry out indication count and remember the fact

: that there was a carry out.
' b, "Add A3 B, m, and test for carry out (no carry out).
c. Add A, B; s, and test for carry out (no carry out).
’ d. Add Aj Bj s, and test for carry out, There is a
carry out and this should be ¢ountéd with the carry out of.
. 14a, (as well as carry outs of 14b,, c. if'they existed).
e. Store contents of L in memory at P,

e e e

FILE MEMO #34 - -5 April 23, 1956

15, Load the count of carry outs from step 14 into register L
and reset to zero the count word,

a, Add A1 B, m; if carry out, count then proceed (no carry out),
b, Add A, B, m; if carry out, count then proceed (carry out),

c. Add A1 B, s; if carry out, count then proceed (carry out),

d. Add Aj B1 m; if carry out, count then proceed (no carry out),
e, Add A, Bj s; if carry out, count then proceed (no carry out),
f. Store contents of L. in memory at P,, :

16, Load the count of carry outs from step 15 into reg].ster L

and reset the count word to zero, : f
a, Add A B2 m; if carry out, count then proceed (no carry out).
b, Add A By m; if carry out, count then proceed (no carry out).
c. Add Ay By s; if carry out, count then proceed (carry out),
d, Store contents of L in memory at P,.

17, Load the count of carry outs from step 16 into register L
and reset the count word to zero,

a, Add A, B1 m; if carry out there is an error, stop thq
machine (no carry out).
The multiplication is now complete, there remains only the
job of normalizing, rounding and correctly signing the product,

18, Normalize and count the number of insignificant zeros removed

from word P, in register L, (the illustration shows one insignificant
zero removed) '

a, For every zero removed, subtract one from the exponent
sum created in step 2; attach correct sign to word section
Pi. (as determined in step 1)

b, The product word sections P; to Py should be shifted to
compensate for the normalization,

" The procedure for propagating the word shifting caused by
normalizing is shown in Stretch Memo #30, After bit shifting, all
that remains is to round off the product to precision three and attach
the proper sign (from step 1) to each word section if it was not done
during the word shifting proéeduvre. -

19, Load P, into register M, load Pj into register L.

Fract,

101+
011 +

Exp.

+A = 010
+B = 011
+ ‘ 101

Exp.

010 =A1
‘x 111 = B3
100011 = Ay B3

101 = Ay
x 110 = B,
011110 = A, B,

x0ll =B
001111 ::Al Bl

Step 15

010 Ciaa—=~ =~ . _

100 A} By m

110

101 101 A, B m
1011

Co 110 Ay B, s
S T
000 A3 Blm
001
101 AZ Bl
T10 = P,

Co

Exp. P P, Py = P4
110 + 010 + 110 + 110

+P =101 010 + 110 +
normalized. ‘
+P =100 101 + 101 +
normalized and rounded

+P =100 101 + 101 + 101

Fig. 1

Exp.

. Fract,

“Fract, .
111 + — - .0l0
110 + — 111
010 = A
x 111 = B3
010
010
010
111 = Ap 001110 = A, B
: S] 3 23
x1lll= B3 m?
110001 = A, B3
| 010 = A,
XllOnBz

x110 = B

101010 = A, B,

x 01l =B
0T0101 = A, B,

Step 14
110 A, B, m
3
Y011 A1 Bs
Y™ 1001 ,
, 010
! +010 010 A, B
i
(B
]

100
+110 A3 Bl 8
‘4‘\.'1010 ::P4

Step 17
601 C1
001 A) By m

Py Py

100 + 101 + 101 + 10O

Co

007100 = A3 B,

010 = A
x 011l =B,

000110 = A3 B, -

Step 13
001 Ajg B, m
+100 100 A, B
101
*P_Q.LAZ B3 8
110 = PS; "

Step 16

010 Ci

011 A B, m
101 178
111

111 Ay By s
1110 = P

