
Stretch Memo #31

Suggested Memory Configuration

I. Rough Timing Principles

The basic aim of the memory design is to keep the arithmetic

unit in f u l l time operation. With present memory speeds, this is not

possible, i f one restricts oneself to strictly sequential decoding and

arithmetic functions. Hence, the asynchronous non-sequential decoding

technique must be used to overcome the shortcoming of long access times.

There a re , in general, four distinct types of information to be

stored in memory. These a re :

(a) Operation codes

(b) Fixed addresses and parameters

(c) Variable addresses and parameters

(d) Data

Let us denote the required access times for these,quantities by

t,,.t, tc f4 respectively. Then, in order to determine what values
b	 J

these quantities must have, we must examine the times taken to perform

arithmetic operations. We denote the time taken to perform a floating

add by r,q , that for rriultiply by T M, and that for division

. 	 by Tp Then, i f for every number obtained from memory we

perform f,?, adds, 4, tP multiplies and divides, then the ~

total time taken for arithmetic calculation, (denoted by c)
is given by:

2

Note that when several pieces of data a r e processed together,
I

the) Jmay not be integers. In any case, 7.really means the average

czlculation time per data fetch. Clearly, in order to keep the arithmetic

unit in operation, it i s necessary that:

Let us now denote the actual access times for the various types

of information by Ta ,Tb % Td respectively. These will in general be

different from the required access times, and may also be different from

each other, i f a different kind of memory is used for each kind of

information,

The difficulty in which we find ourselves at present is that:

for the majority of problems of interest. However, for almost all of
I

these problems, it is possible to obtain an effective access time 6 such

that:

i . e . , the effective access time for data is equal to the necessara access

time. Let the ratio be defined by:

Then J d may be thought of as a coefficientof- s i m u l t a n e a , which we

hope to achieve by using the asynchronous non-sequential control system. __ +-* " .

(Definitions similar to these apply to cases (L) , (b) a d (C) .)

3

a Let us assume the data memory to be divided into r/d boxes to

which it is possible to make simultaneous access. It is then possible

to call from memory MApieces of data in the time Hence, for this

case, the mean access time per data word is given by:

This means that a rate of flow of information from and to data

storage of L-wds/sec. may be achieved. If, however, a conflict G
occurs, so that the dd words available each $ a re not the rJd required

for the calculation in that time, then a repeated access must be made

to one or more of the b/d boxes, and the calculation must wait for the

accesses to be completed. Let the number of significant accesses made

in time be h!j , and let 0 4

be the coefficient of degradation of the simultaneity achievable under

ideal conditions. The value of this coefficient may range from I to

, in order of increasing degradation. With this definition, the

effective mean access time for a given data memory configuration

(dd) and a coefficient of degradation PA for a given problem, is:
J

Comparing (8) with (5) , we observe that:

The critical coefficient 15 must be obtained by a detailed

examination of the particular problem in question. It will naturally

4

4

vary from problem to problem on a given machine.

The asynchronous non- sequential decoding technique is used to

obtain the benefits of simultaneous access to different memory boxes.

This technique involves having the control unit look ahead of the point

I
in the program at whicb'the arithmetic unit is operating, in order to

obtain data in advance. To a lesser degree, the control unit will look

behind to store processed data. The amount of pre-and posf-vision
t

possible for the control unit depends on the number of words of data

which it can hold at any time during a problem.

Let us assume that the control unit can hold @d words of data,

and that at a given point in the problem R$' of these involve accesses

to the i *h box of data memory. Then we have:

c i +lij
Then i f we denote(Rd >,ax by R, , the minimum time for data

accesses.for this secticn of the program is equal to:

Since, in this time, we have made R.j accesses, the mean access%:time

per word for this set is:

Note that the best mean effective access time occurs when all

the R:) a re equal, and hence all equal to
4

fJ(by (10) 1. We see

then, that i f & 4 , then some k?.,'? must vanish, and hence we do not

have the optional ueeof an ?'+!--box stack of data memory. This fact sets a

5

0 	 feasibility restriction on the number of boxes with which a memory

may be divided, insofar as the holding of a very large number of words

of data by a control unit presents quite serious design problems.

All that has been outlined with regard to data applies with equal

force to program information. Here, however, the essentially

eequential nature of most of the control information enables one to

assume with greater assurance that the various program memory boxes ,

in a set will be called upon with approximately equal frequency, and

that there will be little conflict. The worst cases will occur when the

length of a loop is much less than the number of boxes of instruction

8torage.

0 Some general remarks may be in order about the various types

of p r w a m infamation, The information which is most invariant in

conteat and sequence is the operation code information. In additim, at

least lmlf of the address information is of a f6xed variety, each unit of

which may be associated permanently with an operation code, (e. g . , many

tranofer addresses, origins of data blocks, etc.). These addresses should,

from the point of view of coding convenience, be attached to their operation

codes. The effect of this is that types (a) and (b) of information should

be stored in the same memory, d i g , instruction memory.

0

However, there are many variable addresses (mainly index

register contents) to which access must be made in a highly repetitive

and non-sequential manner. These addresses should properly be

dissociated from operation codes and should be stored in a separate

6

memory, which we may call, modifier memory, or index memory.

11. 	 Some Coding Examples and Their Memory Requirements

Let us consider a few simple examples:

(1) The inner product of two vectors; (2) Division of a row of a

matrix by a fixed number; (3) Elimination of a matrix element by

subtracting a multiple of one row from another row. In what follows,

we assume each instruction to contain an operation, an address, and
*

a tag.

(1) Inner Produci

We wish to compute.
N

(13) $ C Ai13,:
1 * I

Let the locations of @; begin at L8a and be consecutive, and

le t those of A; begin at L i and differ by M Then the program

would be roughly as follows:

The references to various memories h a y be tabulated as

follows :

7

LOC Data Instruction Modifier

o(1 - A 1 1 - A

d t l . 1 - B ;1 1 - B

2
2
1 2 - B
1 2 - A

The number of multiplies is equal to 1; of adds, also 1 , There

a re 2 data references, 8 instruction references (Sis assumed stored

in instruction memory) an& 6 modifier references. Hence:

Let T, 2 , b
)

Th (=

andlet Td = Q M C C .

no data access conflicts, so tha

Referring now to equ, (2),we see that

This shows that there must be at least 9 boxes of data storage

if memory limitation is to be avoided.

0

8

Let us now assume that there a re 7 instruction storage boxes

so that each instruction of the loop of six may go into one box and the

partial sum into the seventh box. This is the most favorable case.

Then:

Hence, we see that ~ ~ x c , m e m o r yis not adequate for

instructions, even under the most favorable conditions. If we set

77, = r 5 then t,/
becomes / y and this satisfies

condition,(2).

Since only 2 modifiers a r e used in this problem, let us

assume two modifier memory boxes with 73 6 5 to which we make

6 accesses. We have:

CAI) R y 1 3 t ' s 4 2 L> J
A

hence, Jc. From this, we obtain:
= = &

also,

0

9

Henceo + r t memory is just adequate for*modifiers' y b

in this problem,

(2) Row Division

We wish to compute:

A loop for this is:
t

LOG OP ADR TAG

W assume /?~,q to be in instruction memory. Then the

access count is as follows:

Data Instruction Modifier

2 6 4

also:

A

and all others axe zero. Also /?,:I s R,j / N j hence,
J

hence N must again be about 8 . A glance at the relative numbers of

10

instruction and modifier accesses shows that the same arrangements

for these memories would suffice

3. Row Elimination

W e wish to compute:

A loop for this is:

OP ADR

The access count is as follows:

Data Instruction Modifier

3 7 5

The values are:

a

11

W e note that, in this problem, two out of every three

accesBes on record in the control unit must be to the Same box, This
A (t)

means that: TC d

Thus :

In order for t d
/

to be not more than

we see that 8

Again, the program and modifier situations a re similar to

those of the first problem.

We see then, that i f one wishes to us an 8p M C r access

data memory, that at least 8 boxes would be necessary to keep the

arithmetic unit busy while doing the quite important kinds of

operations outlinet2 above. This, howewr, neceesitates keeping

track in the control unit of at least 8 data references and/or words

of data. Approximately the same number of instruction memory

boxes of * 5-/&G. memory a r e required.

These requirements imply severe complications in the

control unit, Moreover, the circumstances outlinad a r e the most

favorable insofar as it was assumed that the mode of data storage

permitted of conflict free access. In general, one may not expect

n *

12

the minimum required data flow with 8 boxes of 8 r k c) memory.

Calculations similar to those above would show that 4 boxes of

$/da,dpc+ memory would be more than adequate. This is not to

say that 8 boxes would be a superfluous or harmful division of memoryp

but simply *at the control unit would be required to keep account of

only four pieces of data.

Finally, if we asgume that accesses must be made to data

memory for input-output operations at a rate commensurate with

that required for computation (in the examples given this is

obviously SO), then even 8 boxes of 8 y C O memory would

be completely inadequate. Even 4 boxes of ,$/ccrO-piC6 memory

would just suffice.

c

