CONFIDENTIAL SYSTEMS R & D CENTER
2670 Hanover Straet
Palo Alto, Callfornia

February 10, 1965

\

MEMO TOs Dr. David Sayre ~ Research, Yorktown
SUBJECT: Some ldeas Concerning Software Strategy

Enclosed Is the report you rdqumcd giving some of my random Ideas
conceming IBM's strategy In the softwore areo.

The report Is worded in the very general terms which one would use
in giving a survey of the fleld to top management. Following your
suggestion, | have emphasized what appear to be the basic problem
areas ond questions rather than technical accomplishments. | hope
it will be adequate for your requirements, considering the short
decdline.

| would appreciate being able to read the other consultants’ reports
sometime when they are available.
Harwood G . /

cc: Mr. Jﬂhﬂ w. Lu&’p Sk&&; P“o Alto
Dr. C. R. DeCarla, Corporate/White Plains

HGK:bj
Enclosure

18M Confidential

SOME THOUGHTS CONCERNING A STRATEGY FOR IBM IN THE SOFTWARE AREA

Harwood G. Kolsky
Systems Research and Development Center
Palo Alto, California

February 10, 1965

INTRODUCTION

Approximately one week ago I was asked to set down as quickly and clearly
as possible some thoughts which might be ugeful in forming an IBM strategy
{n the software area. The instructions given were deliberately meager,
but requested that I emphasize what appear to be future trends and prob-
Tem areas. I was also to give some of the questions the Company should

be asking {tself in this area, and perhaps my guesses as to the probable
answers.,

Of necessity the following comments are quite general, there not being

time nor space to go into details. No claim can be made as to complete-
ness nor to any accuracy beyond personal opinion. Without further apology,
Tet us go on with the questions:

1. IS SOFTWARE REALLY 1BM'S BUSINESS?

One of the first questions usually asked in discussions of management
strategy is, "What business are we in?* The answers or opinions expressed
in reply to this question (whether 1t is specifically asked aloud or not)
frequently are the main reasons for approving or disapproving actions.

This 4s particularly true in discussions concerning new business, divers-
ification, research or development projects, etc. Quite often the answer
may be, "Yes, the Corporation is in the business, but your partic-
ular department or laboratory is not." This complicates the picture

since the determination of the appropriateness of a given action is no
longer unique, but depends upon a set of varying circumstances and opinions,
The answer can be quite different, depending upon who within the Company 1s
facing the question and how he views his mission,

The guestion as to whether IBM as a total corporation is in the software
bustness must certainly be answered with a resounding "Yes!" The soft-
ware extensions of our hardware, or the software bridge between our
customers' applicatfons and our equipment, 1s certainly a very intagral

rt of our business. It is right {n the middle of our main business arena.

he quality of our software support in many fields 1s the only thing which
really distinguishes us from some of our better competitors. Our continu-
ing software support is often the one thing which makes the real margin

-2

between us and price-cutting technical “"scalpers", who are always ready
to turn out a less expensive gadget provided they can quickly walk away
and leave the customer with {t.

Having stated that we are definitely in the software business, with no
possibility of ever getting out of it as long as we are in the data
processing business, the next question should probably be:

2. WHAT IS INCLUDED IN THE TERM "SOFTWARE"?

Right away the picture gets cloudy. There are certain {tems, such as
compilers, report generators, etc., which people have come to expect as
being always delivered with IBM machines, There 1s an incraasin% 1ist of
other {tems which are questionable as to whether they really fall within
our definition of software or not, even {f they may fall within someone
else's definition, For example, recent technical meetings have had some
of the following topics listed as software ftems:

Compiler Technology Scheduling Algorithms
Simulation Techniques Memory Organization
Computer Aided Design Programming Languages
Coding Theory and Errors Linguistics

Data Structures Sorting Technology
Heuristic Processes Real Time Computer Control
Self-Organizing Systems Operating Systems

Data Reduction . Numerical Analysis

Hybrid Computation Automata Theory
Commercial Data Processing etc,

There are many other topics which can be classified as strictly applica-
tions~orfented, or strictly computer hardware organization topics, but
many of the above straddle the 1ine between hardware and software. An
honest answer to the above question is probably, "Almost anything in the
computer field has 1ts software aspects." Being less evasive, one can
{dentify a number of the {tems in the above list or in the classification
11st used by Computer Reviews as legitimate areas of software.

3. HOW MUCH EFFORT SHOULD IBM INVEST IN EACH OF THE IDENTIFIABLE FIELDS
OF SOFTWARE?

Should IBM really expect to be a leader in each one of these fields? Are
there certain of them which should be deliverately abandoned to our com-
petitors or our customers?

The answers to these questions are, I believe, also clear. Thetis no
area involving the extension of our equipment into any application area
which we can afford deliberately to {gnore or abandon to competitors.

3w

We may be a leader in a given field, or we may just barely be able to
monitor certain activities. Perhaps we may have people who are partici-
pating in related tagies bordering some field, and perhaps we are really
outclassed, but we should never deliberately rule any of them out as
areas which appropriately skilled IBMers must avoid, In other words,
we should have experts working in as many aspects of the software field
as we can afford. Where we cannot directly participate, we should at
Teast have people who are monitoring activities. Of course, we cannot
do other people's jobs for them, and we certainly cannot have all the key
paople in eny field, but we should participate, contribute and evaluate
work in most of them.

It also follows that there 15 a communication responsibility. In addition
to knowing, such specialists owe 1t to the Company to make their knowledge
available to all concerned by serving as internal consultants.

4, WHY ARE SOFTWARE PROGRAMS SO DIFFICULT FOR US TO DO?

This 1s a8 complex question. The basic reason 1s, of course, that the
tasks to be accomplished are technically difficult. They require very
great attention to detall and intimate knowledge of several demanding
disciplines, IBM's systems usually must include great generality because
of the widely differing demands of our customers. There {s also the time-
scale problem. We frequently have to do our systems first, against diffi-
cult schedules on new and unfamilfar machines. There are also some very
:ar{o:n managemant problems and personnel problems, which will be referred
o later.

One of the fundamental characteristics of software programs which make
them difficult 1s that they are never really finished, When a prngr@m
is "completed" and released to the field, the work may just be beginning.
If the program 1s well accepted and widely used, the problem of maintain-
ing 1t and adding fmprovements to it becomes a very serious continuing
effort. The influence of a good program can spread over great distances
g:ngraphie;!iy and in divers ﬁx of application, Many systems programmers

ve found themselves “chained" to their successful programs. Keeping
them updated, answering questfons, incorporating new improvements, or
even the effort of attempting to turn the programs over to someone else
who 18 willing to maintain them, becomes a seemingly endless task.

The Corporation thus continues to "snow-plow” a larger and larger load
of software efforts, because all of our past efforts vemain with us as
Tong as they are being used.

8. 1S THERE REALLY A PROGRAMMER SHORTAGE? IF S0, WHAT SHOULD WE
DO ABOUT IT?

It has become a truism that the main problems of software do not stem
from the computers but from the people who program and use them, (One

ol

can make a similar statement concerning almost every human endeavor.)

The position can be stated more positively by saying that there {s {indeed
a real problem 1n finding people who can do programming and do 1t well,
Obtaining properly trained and motivated people in the right positions

at the right times is one of our biggest problems, There has been a
continuing shortage of advanced, experienced programmers for several
years,

In all fairness, one should point out that some of the programmer short-

age 1s synthetic, More often than we realize, the job promised and

scheduled 15 probably impossible under the constraints established.

The use of "programmer shortage" to explain the inability to do the job
may be an acceptable reason, but it 1s not always the real reason.

There are three fundamental ways of increasing our supply of skilled
programmers. The first is that of recruiting more and higher quality
people into the ranks. The emphasis should be on bringing in people who
are better in actual accomplishments or potential than the average of the
people already on board. The second step 1s that of upgrading the
programmers now on the job., Programmers are 1ike any professionals,

if they are not continuously challenged and encouraged to think about
advanced problems within their fields, they will sink into ruts of doing
the same Job over and over again. Thefr skills will become more and
gern restricted and obsolete as the rapidly changing field passes them

Y

The nature of the software field is that of change--change in equipment,
change in notation and techniques, and change in fashions. (The computer
field 1s gust as subject to fashion changes as any other active human
endeavor,] A programmer who does not keep up will in time be left behind
or become narvowly spectalized, unaware of the swaaeing changes in other
branches of his field. This "professional updating” problem is certainly
an expensive one for the Company, but {t is not unique to any one field.
It must be attacked by the usual combinatfon of education, seminars,
rotatfon of assignments, etc,

The third way of improving our programmer skill level {s that of removing
people that are not up to the quality we wish to have. This is also more
difficult than 1t may seem, because the natural tendancy is actually the
opposite. Really good programmers-~the ones who have really done well

on some large system or application problem--have & strong likelfhood

of being promoted into positions where they no longer actually do any
programming. They become managers of less skilled people, and spend all
thefr time worrying about schedules and attending meetings. Conversely,
the people who have not done very well on previous assignments tend to
stay on in simflar assignments. This {5 a universal problem, and i not
necessarily bad for the individuals concerned, but it 1s a fact of life
for the company trying to upgrade fts programming menpower. This form
of attrition of skilled programming personnel fnto management has been

wn

more serious in the past than {t should be in the future, simply because
ggere will be many more skilled programmers in existence than there have
en,

The programming field has tended to suffer onfall three of the fronts v,
mentioned, Because of the tremendous, sporaXic demands for programmors. -
there 13 a tendfincy %o bring in people who are not quite properly qualified.t“”
Secondly, the ones who are on board are never really encouraged to keep

up with the latest developments of their fields because of the crises of

the moment. And third, the really good people are the ones who tend to

Jeave the profession, as quickly as possible,

6. g?éngs THIS ISSUE OF "PROFESSIONALISM" WHICH SEEMS TO PLAGUE THE

This 1s a topic which has been a "hot one® among our systems engineers
for gsome time. This is another complicated {ssue which goes back to the
conflict between the goals of a research professional and the goals of
business. We should admit frankly these are disparate goals and that
we should never expect anything to exist other than a dynamic shifting
balance from day to day.

IBM needs people in many fields who think of themselves primarily as
professionals. Particular professionals who recognize and admire the
worth of individual accomplishments--particularly those of advanced or
novel areas. A professional views his own work as being important when
it can be identified as his. The respect of one's colleagues s important
to a professional, as well as the traditional academic rights, such as
the right to publish, the right to follow ideas where they lead regard-
less of previous intentions or promises, etc., These are always in con-
flict to the sharply defined deadlines and specifications charactaeristic
of commercial software activities. Another proposal or another compiler
is always due on a tight schedule. There 1s also a large amount of
repetitive work, such as doing the same job over for a different machine
configuration.

These types of jobs have to be done in our business, and quite often they
can only be done by persons who are also the sensitive professionals.

The answer to this problem seems to be one of equilibrium. The profes~
sfonal software specialist must expect to meet the deadlines on {mportant
tasks, 1f he is willing to take IBM's paycheck to do so. A professional
who wants to work in a field that 1s as fraught with deadlines as 1s
computing, must expect to encounter them {n his work. On the other

hand, the Corporation must realize that it is dealing with qualities
which cannot be measured by accounting procedures. Quite often in
professional activities, one real expert may be worth a whole room full
of dullards, and he should probably be paid accordingly.

Universities have faced this problem for years and have worked out a

-G

reasonably good balance. A professfonal faculty member has his time
divided between required "production-type" work--teaching classes, serv-
tng on committees, etc.--and free research time. The university takes
the attitude that as long as the employee meets his formal classroom
and other administrative dutfes, he 1s free to do as he pleases with

the rest of his time; provided, and this is an important point, he
continues to do research work which is recognized as high qualfty in his
field over the years.

7. HOW CAN THE CORPORATION TELL WHEN ITS SOFTWARE PEOPLE ARE REALLY
DOING A GOOD JOB?

This 1s the general problem of measurement, one of the most controversial
questions in the software field. How g%es one measure the output of a
software group? Or the output of a particular programmer, for that
matter? This is a subject on which there has been a great deal of
discussion and study.

A1l the standard accounting-type procedures, such as measuring the number
of debugged instructions produced per day, etc. are for the most part
very misleading 1f used to tmply quality. Attempts to raise "produc-
tivity" as measured by any such accounting procedures usually result in
an increase in the quantity being measured, and a decrease in quality

of the output, A cutting of corners in one area can cause serious mop~
up effort at a later date. The maintenance effort or the bad reputation
which results from such false economy, can far outweigh the benefits,

This doesn't mean that 1t 1s impossible to measure the productivity of
8 good software group or individual professional. Any professional in

8 given field can usually tell whether another 18 really doing good work
or not. The same 13 true of research work in general., There i no real
difficulty in telling whether a given physicist §s doing work, or
whether a given mathematician's publications are solid. The problem
comes rather in who 1s doing the measuring and for what purpose.

Accountants, or business managers who tend to use accounting-type proce-
dures for measuring everything, have difficulty in assessing whether a
given scientist's work 1s worthwhile or not. This results in attempts
to use the number of papers, or the number of lines of code written as
measures of quality. -

In other cases, managers resort to some form of the "jury system". In {t,
a group of people are asked to vote on the quality of the technical job
in question. This has certain desirable features, but 1t will work only
{f the members of the jury are professionally qualified, and 1f they are
unblased, Obtaining unbiased, impartial opinfons within a business-
professional atmosphere 1s almost impossible. Anyone in the business

who knows enough about the given topic to really judge it is practically

ﬂ7*

always alveady fnvolved in the effort, or is a member of a rival group
which stands to gatn by the other's demise.

The problem of measuring s thus not in the accumulation of statistics,
but §n who 1s doing the nnasuring and for what purpose. A program may
be very good from the programmer’'s view of technical excellence, but may
be a net loss from the business point of view 1f 1t cannot show any
influence on the werketplace., The solution seems to 11e along the
academic 1ines mentioned in Paragraph 6-~some jobs should be clearly
laid out and closely checked, others should bas long-term {nvestigations
measured only by prefass!onai excellence.

8. WHAT IS THE OPTIMUM SIZE FOR A PROGRAMMING GROUP? CAN LARGE GROUPS
REALLY DO &OOD WORK?

This 1s another question to which there 1s no exact answer, Good work has
beean done by large grougs and good work has been done in similar areas by
quite small groups, A larger number of people can certainly do a bigger
Job than a smaller number, but the payoff is probably less than linear.
The smaller group can “"stay loose" and make changes during the develop-
ment of a system by mutual congent, whereas & large group must resort to
formal change procedures and documentation.

The requirement to subdivide jobs among & large number of people puts

heavy emphasts upon the formatting of programs in terms of the data trans-
mission from one part of the system to another-~frequently from one machine
to another, It is only by putting this emphasis on data formats that the
controllfing parts of a program can be isolated. For exampie, this enables
a person working on one part of a program to assume that all data will be
presented to him ¥n a certain format under certain conditions. The condi-
tions themselves c¢an also be considered as the values of a formatted
condition~-table. His program then has the task of generating certain
output data which 1s to be put in given formats for other programs to use,
This technique allows many people to work on really large programs without
requiring each to know exactly what goes on inside all of the other sec-
tions of the program, This technique of formalizing data formats and the
separation of the logic from the data in software systems should make

much larger and more complicated systems possible in the future. This
trend will be helped greatly by the development of higher level descriptive
Janguages, and better techniques of documentation,

There is the danger that such a compartmenting approach may not result

in a very efficient program, This {s particularly true 1f the standard
formats are not "natural® to the problem involved. An individual writing
programs in one “compartment” may spend much effort converting data from
a given input format to that which s more convenfent, not realizing that
the person who was furnishing the data had it in that form originaliy, but
spent considerable effort converting 4t to the standard format. Thus, a
transformation and its inverse were performed for no reason at all,

‘8“

A great deal of the efficiency of the approach depends on how carefully
the original structure has been thought through. The best way {s to go
through iterative design, in which the whole system {s reworked
several times by the same people. Very few planners are capable of the
fnsight required to lay out a set of formats and data flow conditions in
the most efficient way the first time.

The tandﬁﬁcy to write out volumes of programming specs before ever puttingce—
an fnstruction down on paper is a symptom of trying to avoid the fterative
design and come out with a “one-pass® development schedule. This 1s an
exgected mode of operation when a very large effort must be made in a
relatively short time. “Man-decade" or “man-century" jobs which are

being done in a year or two are almost doomed to come out this way.

On the other hand, a small group also has 1ts dangers. The main ones are
the tndividuals may have "blind spots" or tricky methods which may not be
good for the project at hand. Surprisingly enough, intelligence and lack
of experience can often go together on a particular job. There s also

a serfous problem in sustaining a program after 1t has been written by a
few {solated genfuses. The cleverer they have been, the harder the
documentation and maintenance becomes.

9. #gg;YgO YOU THINK IS THE MOST SERIOUS PROBLEM IN THE SOFTWARE AREA

If 1 had to vote on the most serious pasic problem in the software area
today, I would pick the general problem of documentation. This 1s a

rea) problem to users and to originators alike, a1tﬁeug% it s perhaps
more apparent to the users. Anyone who has tried to fight his way through
our manuals trying to find out what happens in some obscure particular
case, usually ends up completely frustrated or resorts to experimentation
on the computer to find out what really happens.

Documentation of programming systems, of applications programs, and of
the computers on which they are based, are a1l almost without exception
very difficult to read. If they are written with a real attempt to
describe exactly what will happen under all combinations of circumstances,
they bacome almost unreadable and legalistic. If they are written to be
readable and give concepts only, then they are useless for answering
detailed questions.

Certainly the problem of kaepin? systems documentatfon updated 1s a
tremendous drain on the Company's resources. It 1s not only costly in
materials and distribution expense, but a large number of people are
required to fight this almost hopeless battle of keeping all our manuals
and write-ups current and consistent, At the recefving end, a user
almost needs a librarian to keep track of the series of changes and
modifications received every month, The problem is equally serious

Qe

when users do receive the changes, so that they are relying on out-
dated manuals unknowingly. It fs also a fact of 1ife that the decumenta-
tion 13 always the most fragmentary and inaccurate just when 1t 18 needed
the most--on new systems, or during large mod{fications,

10. WHAT CAN BE DONE TO SOLVE THE DOCUMENTATION PROBLEM?

The detatled description of either the hardware or software of a computer
system 1s not a task for which ordinary English prose 1s perticularly well
suited. One of the matn premises of COBOL, for Instance, 1s that one can
describe a complicated commercial program in stnruo:gpnd English phrases
which "anyone can understand”. My feeling 1s that this premise s prob-
ably fundamentally wrong. Complicated things are complicated and require
complicated descriptions. If they appear simple, it 18 because they are
not really being described in detail,

Of course, one can and should describe a given system at many diffevent
levels of detail, but this 1s one of the basic problems of documentation
~~ﬂo? ?‘"{71'"‘1' can we afford to write, and how do we keep them
consisten

A simple answer to the documentation problem fs not an easy one to come
by. One of the goals of the ALGOL movement has been the documentation
of algorithms for use fn applications programs. In this goal, it has
been fairly successful. ALGOL presently serves as an international
medium for transmitting ideas in a fairly concise form between profes-
sionals who use {t--mostly {n university circles. Similarly, the
FORTRAN programs which have been made available through SHARE and other
organfzations have helped a great deal in transmitting {deas with a high
1avglfoft recisfon. Indicatfons are that this approach can be carried
much further.

A much better descriptive language, or perhaps a set of descriptive
Tanguages, seems to be close at hand, Certainly we csn hope that the
new programming language, NPL, will serve as & natural successor to
FORTRAN, ALGOL, and others of that level--although this 1s probabl
wishful thinking, Vested interests in all fields are hard to displace.

Personally, I place 2 Tot of stock in the future of the Iverson notation,
It s a very well designed descriptive notation for recording in very
przgzs:«form exactly what 1s done in a given program or computer
mechanism,

Iverson notation has been very successful in descridbing the varfous levels
within & computer, The recently published description of the System/360
in Iverson notation was a real tour-de-force, and may well mark the begin-
ning of a new standard of computer documentation., Experiments show 1t

=10~

equally good for problem descriptions. This field of powerful descriptive
languages and notations {5 one in which IBM needs to maintain a continuing
effort, because the potential payoff is so great.

One possible solution to a phase of the documentatfon problem would be
to develop self-documenting programs which will themselves document other
programs. There have been a number of experiments involving successful
flow-diagram-drawing programs, and other forms of self-documenting
programming languages. This development 13 another which IBM should
support internally from our own point of view, because we stand to gain
most from 1t. Programs which can translate from older, less well-
documented versions to newer systems should also be pushed. These have
been quite successful in particular cases in the past. A major effort
to afd customers to convert to System/360 by such automatic or semi-
automatic methods should be high on our 1{st of software projects. If
the conversion can also result in {mproved documentation, then there will
be a much bigger incentive to make the conversion.

11, WILL USERS REALLY FOLLOW IBM TO OUR NEW PROGRAMMING SYSTEMS?

The Corporation has probably become “gun shy" from listening to its very
vocal critics at some installations., The answer 15 that the majority of
our customers will indeed follow our lead, vided our Systems Engineers
can break trail for them on a Yocal program~by-program basis.

One of the problems which any computer user faces every day 1s that of
making changes in an error-free consistent fashion. However, systems
programmers themselves are much more willing to make changes in formats,
procedures, notation, and syntax, than the programmers who are applica-
tions oriented are willing to follow these changes. Applications
programmers and users generally are willing to learn new procedures and
notations 1f there 1s an obvious benefit to them to do so. However,
they become very unhappy 1f such changes happen too often, even {f they
are beneficial. Users will generally rebel 1f they are expected to
follow the week-by-week gyrations of the systems programmers. Their
patience is very short when {1t comes to making changes for the benefit
of the system only,

This resistance to change on the part of applications programmers should
be 1isted as one of the basic problems of gsoftware systems. This does
not mean changes will not eventually be accepted, nor does 1t say any-
thing about the magnitude of the changes. A small change may be more
{nfurfating than a really big change. Users are more likely to make
{nfrequent large changes rather than many small changes. It may, for
fnstance, be easfer to encourage users to switch to NPL than to get them
to reprogram to another brand of FORTRAN, For example, many FORTRAN II
programs are still being written (or at least being updated) rather than
being converted to FORTRAN IV. Human factors seem to favor large changes
passe:sing large enough advantages to overcome the {nertta of habit and
experience,

g
2. HOW IMPORYANT WILL TIME-SHARING AND REAL-TIME SYSTEMS BE TO IBM?

Although they are often discussed together, these days real-time systems
and time-sharing systems are veally quite different concepts.

Real-time systems imply the collection, analysis, and presentation of
results directly from experiments or processes while they are going on.
They may or may not include elements of feed-back control.

Time-sharing i3 also an important new development which allows a number
of different programmers to use a single computer system by means of
separate consoles, Such a system 18 a real-time system of sorts in that
it Interacts with the human programmers in real-time, but the intent
and details are quite different from process control real-time systems.

It seems to me that much of time-sharing's present {mportance arises

from the fact that it is the fashionable thing to do. Everyone seems

to be rushing to emulate Project MAC, because it 13 "dernfer) cri" in 7
computing. A more evolutfonary approach based on extending the trans-
wission of data to queues for a more traditional batched-processing
monitor seems 1ikely to give much better economics for the average user.
Professor Miller of Stanford has {deas for implementing such a system
which sound very promising.

Of course, IBM should follow the fashion designers and develop one or
move time-gsharing systems, but it should put more emphasis on systems
which show better utility and allow for easier evolutionary development
and modification,

One thing we can be sure of is that real-time systems of all sorts are
going to become increasingly important all through industry, including
management data systems,

One of the big problems which faces the software strategist in this area
is that the borderline between hardware and software becomes much more
complicated and difficult to distinguish. The computer 1s no longer an
isolated device under the control of computation center personnel. The
measuring devices connected to the physical process befing monftored,

the analog-to-digital converters, the intarrupt or sampling system, are
now really inside the computer system like the proverbial camel in the
tent, Questions of relfability of the equipment are quite serfous, but
the relfability of programs is just as important--and even harder to
define. What happens 1s that large trade-offs become possible between
hardware and software fn such real-time control systems. The programmer
must understand engineering or, perhaps more fmportantly, the engineer
must understand programming to achieve the bast systems solution.

oy /
%@ 45

