
PROJECT7000 -1- H.G.Kolsky

FILE MEMORANDUM

SUBJECT: Simplified Timing Rules for SIGMA

I. 	 Introduction:

Quite often a s part of the programming of a new problem for SIGMA

it is desirable to make rough estimates of the running time of various sections

of the code. Sometimes these estimates are for comparing the running time on

STRETCH vs some other computer, but usually they are for estimating the amount

of machine time needed o r for comparing alternate ways of programming the

same job to see which runs faster.

Because most applications do not require the precision of a detailed

timing chart or Simulator run.# I have listed two simplified methods of estimating

approximate running times. The methods a re in the order of increasing complexity.

The user should pick the one which is commesurate with the accuracy of the

estimate needed.

The times listed are averages obtained from Simulator runs assuming

ttnormaltlsequences of instructions and memory conflicts and have only indirect

relationships to the hardware speeds.

11. 	 Method One - - Simple Averaging

1. 	 Form a total counting all the instructions executed in the program

as one except the following.

(a) Omit all simple index type instructiona which are followed by

Floating Point or V F L instructions.

(b) 	Omit all branches xdxibc which a re not taken.

-2-

(c) Count TRANSMIT orders q t i m e s , where n is the number

of words transmitted.

(d) Count SWAP orders 3_&s gimes.
/p

2. 	 Multiply the total thus obtained by I . 4 microseconds. This is the

approximate total time for the program not counting start-up or

run-down times. An additional 10 microseconds should be added

for these if the program is not imbedded in another program.

III 	 Method Two - - Averaging by Classes of Instructions

1. 	 Count the number of instructions to be executed in the program in

each of the following types:

(a) 	Floating Point

(b) 	V F L

(c) Indexing

(d) Branching

(e) 	Miscellaneous (TRANSMIT, etc)

2. 	 For Floating Point, form a sum of the following:

(a) 	Count each add type instruction as 1.0 usec, Multiply instructions

2 . 0 us, Divide 7 .0 usec, Square Root 20 usec,

Loads and Stores 0 .6 usec.

(b) 	Add 0 . 5 usec for each case of memory conflicts (data coming from

the same box 2 instructions in a row.) Lf the exact number isn't

known - assume one quarter of consecutive main memory references

a re conflicts.

- 3 -

3. For V F L Instructions, multiply the number of Add or Connect Type

instructions by:

(a) 	1.0 usec for 1-8 bit field data

(b) 	0.5 usec for each additional byte in the data

(c) Add 	1 . 0 usee for each croes-word-boundary case.

assume one tenth of references cross boundaries)

(d) Add 1 . 0 usec iiix for each “To Memory ‘Q type.

(as an estimate

(e) 	Add 0 .5 usec for each memory conflict as for floating point

(f) 	For binary Multiply add 2 . 0 usec to the correaponding ADD case

(g) 	For binary Divsion add 7 . 0 usec to the corresponding ADD case

(h) 	For Decimal Multiply and Divide, add 3.0 usec to the corresponding

binary case.

43 For Indexing Instructions (except branches)

(a) Count as zero time if followed by a V F L or Floating Point

Instruction.

(b) Count as 0. 8 usec if followed by anotheT ndex operation o r ab
branch order.

(c) Count each step in LVS, LVE, and RN as 0 . 8 usec.

(d) Add 0.5 usec for each memory conflict.

5. 	 For Branching Instructions

(a) For all branches not taken count as zero time if followed by a

V F L o r Floating Point Instruction

(b) 	Count other branches not haddzx taken as 0 . 8 usec.

(c) 	Count unconditioned branches and index branches which a re

taken as 2.0 usec.

-4-

(a) Count arithmetic result branches which are taken a8

5.0 	usee

6 - 	 For Miscellaneous:

Each special instruction has its own time. Some of the more

common cases are:

(a) 	TRANSMIT:Count 1 . 6 usee per word transmitted

(b) 	SWAP: Count 6 .0 usec per pxk pair of L words swapped

(c) CONVERT: Count 15.0 usec.

Other repetitive type instructions such as EX, EXIC,MPYC should

be broken into their component parts and these summed as above.

7. 	 If the program is isolated (not imbeddded in another program) add

10 usec for -a initial start-up and final run-down times.

-5-

Method I - Example: Mesh Problem
No. of Ops 2 2 6
Covered - 2
SWAP + 2

(226) (1.4) = 3.16 us
Start-up = 10

326. us

Method 11 - Example: Mesh Problem

Floating Point Number

L & S 112
ADD 52
Mu1tipl y 28
Divide 8

Memory Conflicts (est) 10

VFL- 0

Indexing (Except Branching)

Followed by FP or VFL P
Not followed 11
LVS 8 x 2

Memory Conflicts 0

Branching :

Branches not taken 1
Index Branches Taken 4
Arithmetic Branches Taken 0

Miscellane ous

SWAP 1 x 1

Startup Time

Actual t h e from SIMULATOR

Time

67.2

52.0

56.0

5 6 . 0

5.0

0

0

8.8

12.8

0

0

8 . 0
0

6..0

1 0 . 0
281.8 usec.

= 286.2

