
Multiprogramming Stretch: Feasibility Considerations / E. F. Codd, €3. S. Lowry,
-. \/rrnnnniigh, C . Scalzi / T_R.r]o. 719*I*----*--..

TR 00.719

May 12, 1960

MULTIPROGRAMMING STRETCH: FEASIBILITY CONSIDERATIONS

E. F. Codd
E. S. Lowry
E. McDonough
C. A. Scalzi

ABSTRACT

The tendency towards increased parallelism in computers is
noted. Exploitation of this parallelism presents a number of new
problems in machine design and in programming systems. Minimum
requirements for successful concurrent execution of several indepen-
dent problem programs are discussed. These requirements are met
in the Stretch system by a carefully balanced combination of built-in
logic and programmed logic. Techniques a r e described which place
the burden of the programmed logic on system programs (supervisory
program and compiler) ra ther than on problem programs.

(Note: Optimizing problems associated with multiprogramming a r e
not discussed in this paper.)

Product Development Laboratory, Data Systems Division

International Business Machines Corporation, Poughkeepsie, New York

M ULTIPROGRAMMING STRETCH: FEASIBLITY CONSIDERATIONS

E. F. Codd
E. S. Lowry
E. McDonough
C. A. Scalzi

INTRODUCTION

In recent years there has been a trend towards increased parallelism
in computer design. The pr ime a im of this parallelism is to allow
more of the component units of a computer system to be kept in
productive use more of the time. Two fo rms have clearly emerged.
The first, which we shall cal l local parallelism, consists of overlapping
the execution of an instruction with that of one or more of its immediate
neighbors in the instruction s t ream.

This form of parallelism was present in a very ear ly machine, the
IBM Selective Sequence Electronic Calculator, which was capable of
working on three neighboring instructions simultaneously. Such paral-
le l ism was later abandoned in the von Neumann type machines such as
the IBM 701. Now that we have once again reached a stage in which
the logical elements a r e much faster than the memories , the need for
this type of parallelism has returned and in fact, the Stretch system
is capable of working on as m a n y a s seven neighboring instructions
simultaneously.

The second form of parallelism, which we shall cal l nonlocal,
provides for concurrent execution of instructions which need not be
neighbors in an instruction s t r eam but which may belong, if desired,
to entirely separate and unrelated programs. It is this form of
parallelism upon which we wish to focus attention.

T o exhibit nonlocal parallelism, a computer system must possess a
number of connected facilities, each capable of operating simultaneously
(and, except for memory references, independently) on programs which
need not be related to one another. A facility may be an input-output
unit, a file unit, an ari thmetic unit, a logical uni$ or some assemblage
of these units. In a n extreme case each facility is a complete computer
itself.

-1 -

Stretch is a multiple-facility system. The following facilities
are capable of simultaneous operation on programs which need not be
related:

a. 	 One (or more) central processing units.

b. 	 Each channel of the basic exchange (a
switching and coordinating unit for
m oderate speed input-output activities).

c. 	 Each disk (seeking only).

d. 	 The read-write channel of the high-speed

exchange (a switching and coordinating

unit for high-speed input-output activities).

The multiple-facility computing system bears a close resemblance to
a job shop although the analogy can be taken too far. J u s t as the jobs
to be processed in a job shop a r e split up into tasks which can be han-
dled concurrently by the available facilities, so may programs be sub-

:-+-- ,.-at L - - I - -
u A v A u b u LLIbu 3uLll Laana. At any instant the tasks being executed simul-
taneously may belong to the same program or to different programs.
One object of concurrently running tasks which belong to different (per-
haps totally unrelated) programs i s to achieve a more balanced loading
of the facilities than would be possible if all the tasks belonged to a sin-
gle program. Another object is to achieve a specified real-time response
in a situation in which messages, transactions, etc., a r e to be processed
on-line. A third object is to expedite and simplify debugging and certain
types of problem solving by making it economically feasible for the pro-
grammer to use a console for direct communication with, and alteration
of, his program.

MULTIPROGRAMMING REQUIREMENTS

Several problems arise when concurrent execution of programs
sharing a common memory is attempted. For example, it is almost
certain that sooner or la ter , unless special measures a r e taken, one
program will make an unwanted modification in another due to a
programmer's blunder. Then again, when some unexpected event
BCCUI:S, it is not merely a matter of deciding whether it w a s due to a
machine malfunction, a programming blunder, or an operator e r ro r ,
It i s necessary to know which of the several programs may have been
adversely affected and which one (if any)w a s responsible,

Such questions make it desirable to establish a set of necessary con-
ditions which a rnldtiprogrzzming system must satisfy if it is to be
generally accepted and used. W e propose the six conditions described
below.

Q 2-

a. Independence of Preparation: The multiprogramming scheme
should permit programs to be independently written and compiled.
This is particularly important if the programs a r e not related to one
another. The question of which programs a r e to be co-executed with
which should not he prejudged eveE at the compiling stage.

b. Minimum Information from Programmer: The programmer should
not be required to provide any additional information about his program
for i t to be run successfully in the multiprogrammed mode. On the
other hand, he should be permitted to supply extra information (such
as expected execution time if run alone) to enable the multiprogramming
system to run the program more economically than would be possible
without this information.

C. Maximum Control by Programmer: It may be necessary in a
multiprogramming scheme to place cer ta in of the machine's features
beyond the programmer 's direct influence (for example, both clocks
in Stretch). This reduction in direct control by the problem programmer
must not only be held to an absolute minimum, but must also result in
no reduction in the effective logical power available to the programmer.

d. Non-Interference: No program should be allowed to introduce e r r o r
o r undue delay into any other program. Causes of undue delay include
a program which gets stuck in a loop, and failure of an operator to
complete a requested manual operation within a reasonable time.

e. Automatic Supervision: The multiprogramming scheme must
assume the burden of the added operating complexity. Thus, instruc-
tions for handling cards, tapes, and forms should originate f rom the
multiprogramming system. Sirnilarly, machine malfunctions, p ro -
gramming e r ro r s , and operator mistakes should be reported to the
responsible party in a standard manner by the multiprogramming
system. Again, all routine scheduling should be handled automatically
by the system in such a w a y that the supervisory staff can make coarse
o r fine adjustments at will . Further responsibilities of the system
include accounting for the machine time consumed by each job and
making any time studies required for operating o r maintenance
purposes.

f. Flexible Allocation of Space and Time: Allocation of space in core
and disk storage, assignment of input-output units, and control of
time-sharing should be based upon the needs of the programs being exec-
uted (and not upon some rigid subdivision of the machine).

These requirements a r e met in the Stretch system by a carefully
balanced combination of built-in logic and programmed logic. The
hardware for multiprogramming would be far too cumbersome and

-3-

expensive if an attempt were made to meet these requirements by built-
in logic alone, Further, the method of meeting certain of these require-
ments (particularly the automatic scheduling requirement) must be
variable from user to user due to variations in their objectives,

First, then let us consider those mu~tipscrgrarnming features xhkh
are provided in hardware in Stretch,

MULTIPROGRAMMING FEATURES IN STRETCH

Before mentioning some specific features, i t is important to note
that extensive use of programmed logic in a multiprogramming scheme
can easily prove self-defeating because the time taken by the machine
to execute the multiprogramming program may offset the gain from
concurrent execution of the problem programs, However, the r a w
speed and logical dexterity of Stretch a re such that i t is possible to
employ quite sophisticated programmed logic.

We now describe four major features in Stretch which facilitate
I-fiultipr0graimx,ing.

a. The Program Interruption System : This system was described
in some detail at the 1957 EJCC by F. P. Brooks, Jr. Briefly,
the system permits interruption of a sequence of instructions
whenever the following four conditions are satisfied:

(i) 	 the interruption system is enabled,
(ii) 	no further activity is to take place on

the current instruction,
(iii) an indicator bit is on,
(iv) the corresponding mask bit is on.

The indicators reflect a wide variety of machine and program
conditions which may be classified into the following five types:

signals from input-output units, other central
processing units, etc. ;

data exceptions such as data flags, zero divisors,
or negative operands in square root operations;

result exceptions such as lost carries, partial fields,
or floating point exponents within certain ranges;

instruction exceptions such as instructions which should
not or cannot be completed or should signal when they
a r e completed; and

When several problem programs a r e being executed concurrently,
certain of these conditions a r e of private concern to the particular
program which caused their occurrence. Other conditions, particularly
types (i) and (v), a r e of general concern. Each of the indicators for
conditions af private ~ i i ixernhas a variable mask Z i t -which allows the
current program the choice of suppressing or accepting interruption for
the respective condition. On the other hand, each of the indicators
for conditions of general concern possesses a fixed mask bit (perman-
ently set in the on position). This feature combined with appropriate
control measures respecting the disabling of the entire interruption
system virtually eliminates the possibility that an interruption of
general concern is suppressed and lost.

Another aspect of the interruption system which is of importance to
multipxogramming is the interrupt table. When an interruption is
taken, control is passed (without changing the contents of the instruction
counter) to one of the instructions in an interrupt table. The base
address of this table is variable so that several such tables may exist
simultaneously in memory; for example, one table for each problem
program. However, only one is active at a time. The relative location
within the active table which supplies the interjected instruction is
determined by the indicator (and hence by the particular condition)
causing interruption.

Exploitation of this interruption system depends upon programmed
interrupt procedures. This aspect will be taken up when we deal with
programmed logic for multiprogramming .
b. The Interpretive Console : It has been customary in general-purpose
computers toprovide a single console at which an operator can exercise
sweeping powers over the whole machine. For example, by merely
depressing the STOP button the operator has been able to bring the
entire activity of the machine to a halt. The normal requirement in
multiprogramming on the other hand is to communicate with a particular
program and at the same time allow all other programs to proceed.
Pursuing the same example, we now desire to stop a program rather
than stop the machine.

For this reason and because it is required that several consoles be
concurrently operable with varying objectives, the Stretch console is not
directly connected to the central processing unit. Instead, it is treated
as an input-output device. Its switches represent so many binary digits
of input and its lights so many binary digits of output. N o fixed meaning
is attached to either. By means of a console defining routine one can
attach whatever meaning one pleases to these switches and lights..

--

c. Protection System: References by the central processing unit t o
memory a r e checked. If the address falls within a certain fixed a r e a or
within a second variable a r e a , the reference is suppressed and an
interruption occurs. 'I'he boundaries or' the variable area are
specified by two addresses stored within the fixed area. These
addresses may be changed only if the interruption system is

disabled.

This n3,stet.n allows any number of programs sharing memory to be
efieetively protected frorri each sther. At any instant, the central.
processing unit is servicing only one program (logically speaking).
Suppose this is a problem program P. The address boundaries a r e
set s o that P cannot make reference outside of i ts assigned area.
Before any other problem program Q acquires the CPU, the address
boundaries a r e changed to values which will prevent Q f rom making
reference outside of the a r e a assigned to Q. The task of changing
address boundaries is one of the programmed functions of the Stretch
multipr ogramming sys tem.

UI t%7C= The Clocks : There are clccks in S t r e t c h which zre usable by
programs. The f i r s t , re fe r red to a s the elapsed-time clock, is a 36-
bit binary counter which is automatically incremented by unity once
every millisecond. This clock may be read by a program under
certain conditions but cannot be changed by a program under any
conditions. It is intended for measuring and identifying purposes,
particularly in accounting for machine use, logging events of special
interest , and identifying output. It takes more than two years for this
clock to go through a complete cycle.

The second clock, re fer red to as the interval t imer , is a 19-bit binary
counter which is automatically decremented by unity once every
millisecond. Under certain conditions the interval t imer may not only be
consulted but also be set to any desired value by a program. Whenever
the interval t imer reading reaches zero, an interruption occurs (i f the
interruption system is enabled). The main purpose of this device is to
provide a means for imposing time limits without requiring programmed
clock-watching: that i s , frequent inspection of the elapsed-time clock.

There are several other features in Stretch which facilitate multipro-
gramming. To avoid going into too much detail, we shall merely make
a brief reference to one of these. The exchanges assume all the
burden of word assembly on input and disassembly on output, Once
an input-output operation has been started, the responsible exchange is
sufficiently autonomous that i t does not need to interrupt the central
processing unit in order to borrow some of i ts logical abilities (and
t ime) for the purpose of completing the operation. It i s capable of

conducting the ent i re operation itself even though, for example,
t ransmiss ion of s eve ra l variable-length blocks f r o m tape is involved
and the channel instructions a r e scat tered in memory. As a resu l t
of this degree of autonomy, the frequency of input-output interruptions
is cslisideralRly reduced.

Now we turn our attention to the programmed logic and discuss how we
propose to exploit the built-in logic by programming techniques in order
t,o m+eet the rerrii;remente for a c c ~ p t a b l ~ r- b ---*--*--- Threema~lt j r r r~aramrning.1"" --**-*---

tools a r e at our disposal: the supervisory program, the compiler, and
the source language.

The supervisory p rogram is assumed to be present in the machine
whenever multiprogramming is being attempted. It is assigned the job
of allocating space and t ime to problem programs.

A l l - - - & : - - -1: - - -__: - - l - - J - - 2-4.- . . --.L:-L - - - - - - f -..-,...-- - - A
fiIIucciLIuii ui space: uiciuucs U ~ L C LL l i A i i A i i g CLL c a a UL aiiuw i i ~ ~ i i iiiciiiui y
disk s torage and which input-output units a r e to be assigned to each
of the programs. The space requirements (including the required
number of input-output units of each type) a r e produced by the compiler
as a vector whose components a r e quantities dependent in a simple way
upon one o r more pa rame te r s which may change f rom run to run. Any
space requirements depending on pa rame te r s a r e evaluated a t loading
t ime when the particular values of the run pa rame te r s are made available.

The supervisory program uses i t s p rec ise knowledge of the space
requirements of a problem program together with any information i t may
have regarding the expected execution t ime and pat tern of activity to
determine the most opportune t ime to bring that program into the
execution phase. It is not until the decision to execute is made that
specific assignments of memory space, disk space, and input-output
units a r e put into effect. By postponing space allocation until the las t
minute, the supervisory p rogram maintains a m o r e flexible position and
is thus able to cope more effectively with the many eventualities and
emergencies which beset computing installations no matter how well
managed they a r e .

Allocation of t ime includes not only determining when a loaded program
should be put into the execution phase but a l so handling queues of requests
for facil i t ies f rom the var ious programs being concurrently executed.
The fact that both pre-execution queueing and in-execution queueing
a r e handled by programming ra ther than by special hardware resu l t s in a
high degree of flexibility. Thus, a t any t ime the supervisory program
is abie to change the queue discipiine in use on any shared faciiity
and so cope m o r e effectively with the various types of space and time

bottlenecks which may arise. On interruptable facilities, such as the
Stretch CPU, which d1.0~one program t o be displaced by another, changes
in queue discipline may be expected to have very considerable effect upon
the individual and collective progress of the programs being co-executed.

These allocating powers of the supervisory program have several
implications. Most important of these is that the compiler must
produce a fully relocatable program-relocatable in memory and in
disk storage, and with no dependence on a specific assignment of input-
output units. A further consequence is that the supervisory program
is responsible for all loading, dumping, restoring, and unloading
activities, and will supply the operator with complete instructions
regarding the handling of cards, tapes,and forms.

In order to meet the requirements of independent preparation of
problem programs and non-interference with one another, it is
necessary to assign the following functions to the supervisory program:

a. Direct control of the enabled/disabled status of
the interruption system.

b. Complete control of the protection system and
clocks.

The transformation of 1/0requests expressed in
terms of symbolic file addresses into absolute
1/0instructions (a one-to-many transformation)
followed by the issuing of these instructions in
accordance with the queue disciplines currently
in effect.

d. 	 The initial and, in some cases, complete
handling of interruptions from 1/0 units and
other central pr oces sing units.

By convention, whenever a problem program is being serviced by
the central processing unit, the interruption system is enabled. On the
other hand, when the supervisory program is being serviced, either the
enabled or the disabled status may be invoked according to need. Adher-
ence to this convention is assisted by the compiler which:

a. 	 refrains from generating in problem programs
the instruction BRANCH DISABLE(an instruction
which completely disables the interruption
system); and

b. 	 whenever it encounters this instruction in the
source language itself, substitutes a partial
disable (a pseudo instruction) in its place,
flagging it as a possible error .

-8-

So long as the interruption system is enabled, the protection system is
effective, Problem programs are therefore readily prevented from making
reference to the areas occupied by other programs (including the super-
visory program itself), They a re further prevented from gaining direct
access to the address boundaries, the interrupt table base address, and
the clocks, all of which a r e contained in the permanently protected area.

F o r the sake of efficient use of the machine, one further demand is made
of the programmer or compiler, When a point is reached in a problem
program beyond which activity on the central processing unit cannot proceed
until one or more input-output operations belonging to this program (or
some related program) a re completed, then control must be passed to
the supervisory program so that other problem programs may be serviced.

It is important to observe that w e do not require the programmer or
compiler to designate places in the p r G r a m at which control may be
taken away if some higher priority program should need servicing. We
believe this to be an intolerable requirement when unrelated programs a re
being concurrently executed, especially if all arithmetic and status
registers at such places must contain idormation or’rm further value.

It is the interruption system (particularly as i t pertains to input-output)
which makes this requirement unnecessary, It allows control to be
snatched away at virtually any program st’ep, and the supervisory
program is quite capable of preserving all necessary information for
the displaced program to be resumed correctly at some later time,

In removing certain features of the machine from the direct control of
the problem programmer, we may appear to have lost sight of the
requirement that he should have a maximum degree of control. However,
for every such feature removed, we have introduced a corresponding
pseudo feature. Take for example, the pseudo- DISABLE and pseudo-
ENABLE instructions, When a problem program P issues a pseudo
-DISABLE, the supervisory program effectively suspends all inter-
ruptions pertaining to P (by actually taking them and logging them
internally) until P issues a pseudo-ENABLE. Meanwhile, the inter-
ruptions pertaining to other programs not in the pseudo-disabled state
a re permitted to affect the state of the queue for the CPU,

Another example of a pseudo feature is the pseudo interval timer: one
of these is provided for each problem program, The supervisory
program coordinates the resulting multiple uses of the built-in interval
timer.

The need to detect that a program has become stuck in a loop, o r that
an operator has not responded to an instruction from the supervisory
program, is met by allotting a reasonable time limit for the activity in
questicn, When tb is interva? expires withorrt the supervisory p3;?0grtim1

-9-

receiving a completion signal, an overdue signal is sent to an appropriate
console. The interval t imer is, of course, used for this purpose and
expiration of the interval is indicated by the time-signal interruption.

CONCLUDING REMARKS

In order to provide a practical demonstration of the feasibility of multi-
progra,mrming Stretch, the authors a r e developing an experimental super-
visory program with general multiprogramming capabilities. The exper-
iments to be performed with this system a r e aimed at exploring conditions
under which multiprogramming is profitable to the user.

-10-

R E F E R E N C E S

S . W . Dunwell, "Design Objectives for the ZBM Stretch
Comqm&erll,Proceedings of EJCC (December l 9 G A jd y J

F,P. Brooks, Js. , "A Program-Controlled P rogram Interruption
Systemll, Proceedings of EJCC (December 1957).

W. Buchholz, "The Selection of a n Instruction Languagell,

Proceedings of WJCC (May 1958).

F. Po Brooks, Jr. G. A. Blaauw, W. Buchholz, I'Processing

Data in Bits and Pieces", IRE Transactions on Electronic

Computers (June 1959).

G,A, Blaauw, lIIndexing and Control Word Technigues~',

IBM Journal of Research and Development (July 1959).

H.K. Wild, "The Input-Output Devices of the Stretch Computersi.
pager presented a t Auto-Math 59 Exhibition, Paris (June 1959).

S. Gill, I1ParallelProgramming11, The Computer Journal

(April 1958).

C, Strachey, '!Time Sharing in Large F a s t Computersll,
Proceedings of International Conference on Information
Processing (June 1959).

W, F, Schmitt, A. B. Tonik, llSympatheticdlyProgrammed
ComputersI1, proceedings of ICIP (June 1959)

J. Bosset, l*Sur Certains Aspects de la Conception Logique du

Gamma 60", Proceedings of ICIP (June 1959).

A, L.Leiner, W,A. Notz, J.L. Smith, ROB. Marimont,
lvConcurrently Operating Computer Systems1f, Proceedings
of KIP (June 1959).

J, W, Forgie, "The Lincoln TX-2 Input-Output System",

Froceedings of ttrJCC (1957;.

Prepared by Laboratory Communications, Data Systems Division, Product Development Laboratory

International Business Machines Corporation, Poughkeepsie, New York Printed in U. S. A. 1959

