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MULTIPROGRAM SCHEDULING 

by 

E. 	 F. Codd 

PART I - INTRODUCTORY REMARKS 

1.1 Scheduling Environment 

Scheduling requirements a r e  bound to vary a great deal from one computing 
installation to another. Factors which contribute to this variation are: 

a. the nature of the jobs to be processed 

b. 	 the amount of surplus capacity which the equipment 
possesses in relation to the normal load of work 

c. the pattern of arrival of workload ( e .  g. , is it heavily peaked?) 

d. operating and service policies 

In spite of these variations, it seems worthwhile to attempt to define a 
scheduling algorithm which can form a common foundation upon which many 
installations may build by adding routines oriented toward their particular 
needs. 

The reasonableness of such an objective is already recognized for large 
machines. I t  is doubly reinforced by the existence of machines capable of 
executing concurrently two or  more (related o r  unrelated) programs. The 
complexity of scheduling work for such machines is far beyond the capa- 
bilities of the normal operating staff. Further,  scheduling decisions must 
be made with great rapidity in order  to be useful; human beings by them-

A 

selves cannot make such decisions rapidly enough. 

We consider first several  concepts which appear to apply to numerous 
installations. Urgency is one of the most familiar of these concepts. At 
any particular t h e ,  it m a y  be more  urgent to process one job than some 
other. Each job would t h u s  have an urgency rating generated in a manner 



dictated by a particular installation's own requirements. The interpreta- 
tion, however, may be assumed to be fixed, providing the interpretation 
i s  sufficiently general. In the scheme proposed herein the urgency rating 
merely affects the order in which programs a r e  considered by the schedu- 
ling algorithm. The time taken to process a given set of programs may be 
prolonged i f  it i s  stipulated that certain ones a re  to be given urgent attention. 
An additional way in which urgency can be handled will become apparent later. 

Precedence is a second important concept. The completion of one prograrn 
m a y  be essential before some other can be started; results or  output from 
the f i rs t  become operands o r  input for the second. This kind of precedence 
which stems from causes external to the scheduling should be distinguished 
from precedence which i s  inevitably generated by the scheduling algorithm 
whenever a schedule is produced. Treatment of externally derived pre- 
cedence will  be described in Par t  4 of this paper. 

The arr ival  rate and consumption rate of work to be processed determine 
the extent to which a backlog of work builds up. This, in turn, places a 
limit on how far ahead one may schedule the machine. It i s  desirable that 
the scheduling algorithm be adaptable to extreme variations in the extent 
of the backlog, including the case of no backlog at all with in-flow of work 
at a mere  trickle. For  this reason, the scheduling algorithm can be exe- 
cuted in either of two modes. In the static mode, generation of a schedule 
i s  separated from its execution. Consequently, it i s  reasonable to consider 
generating a number of trial schedules, select the best one and then execute 
it. In the dynamic mode, the scheduling activity consists solely of aug- 
menting an existing schedule; this activity i s  quite intimately interleaved 
with execution. The static mode is clearly applicable only when an adequate 
backlog of unscheduled work exists. The dynamic mode, on the other hand, 
may be applied in all situations. 

Another kind of adaptability needed by a scheduling algorithm is the ability 
to cope with time information of varying degrees of reliability and, in the 
extreme case, with a complete absence of such information. In this con- 
nection, degraded versions of the algorithm will be discussed in Part 4. 

1 . 2  Class of Machines 

The algorithm i s  intended to be applicable to a wide class of rnachines, 
called multiple facility systems. Suck a system consists of Itanumber of 
connected facilities, each capable of operating simultaneously (and, except s 


for memory references, independently) on programs which need not be 
related to one another" ('1. The sharing of time o r  space on a facility must 
be controllable in a flexible way to insure that the scheduling effort will  be 
rewarding. 

A multiple facility system i s  quite likely to contain several facilities of the 
saxne kind - - for example, two similar arithmetic units o r  several  similar 
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tape channels. A group of similar facilities i s  treated a s  a single composite 
facility by the scheduling algorithm, It i s  assumed that the work scheduled 
for a composite facility is subdivided by a separate and subsequent alloca- 
tion algorithm. The special case of subdividing the work assigned to a set 
of tape channels and tape units is a sufficiently independent topic to warrant 
treatment in a separate paper. 

1 .3  Form of Programs 

Programs a r e  assumed to be fully relocatable prior to execution - - with no 
dependence on specific assignments of space (including input-output units), 
o r  necessary association with a specific member of a set  of interchangeable 
time-shared facilities. However, programs a r e  not required to be reloca- 
table during execution. 

Programs and data a r e  not assumed to 'be segmented o r  organized into 
modules of any predetermined size. An installation may, however, super-
impose such a policy; some types of machines may dictate it. 

1.4  Explanatory Note 

The remainder of this paper i s  divided into three parts. Part 2 deals with 
a formulation of the scheduling problem, ignoring for the time being the 
dynamic mode and external constraints such a s  precedence, urgency, etc. 
From this formulation, four types of lower bounds a r e  derived for the 
execution time of the pending workload. These bounds a r e  used as a basis 
for the algorithm (essentially empirical) described in Part 3. External 
constraints a r e  introduced in Part 4 and the scheduling algorithm is extended 
to handle them. 
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PART I1 - THEORETICAL CONSIDERATIONS 

2. 1 The Problem 

Suppose we are given a multiple-facility system equipped with two kinds of 
facilities: those which may be time-shared and those which may be space- 
shared. A set  of programs i s  to be executed so a s  to minimize the time 
for the whole set. 

Each program i takes time ti to be executed when run alone, and for 
this length of time uses fractions Sik, rij, respectively, of the space and 
time available on apace facility k and time facility j . 
Let us further suppose that the adjacency constraint applies to every space 
facility: that is, for every program i and space facility k, it i s  necessary 
that the space fraction Sik be allocated so that program i occupies a set  
of adjacent locations on facility k . Normally, this constraint applies to 
core  and disk storage but not to tape unit allocation. 

Note that any subset of programs selected to be run concurrently must 
meet the requirement that the total space fraction used by the subset on 
each space facility does not exceed unity. The scheduling problem does not 
require that an upper bound be imposed on the total time fractions. Neither 
does it preclude such action. As we shall see, the procedure described 
herein treats space fractions and time fractions in a near-symmetric way, 
and an upper bound i s  imposed on total time fractions. 

2. 2 Accuracy of Scheduling Data 

We may assume the space fractions Sik to be exact. On the other hand, 
the time fractions rij and expected elapsed time ti a r e  very likely to be 
approximate. In supplying time information, the programmer may expect 
assistance from the supervisory system. Such assistance may take the form 
of time studies (made during a previous run) of selected sections of his pro- 
gram. For  many programs it would be reasonable to expect the time fractions 
to be accurate a t  least  to the nearest  quarter. 

Programs will  often deviate from their anticipated elapsed times. Because 
overrunning may seriously upset a schedule, a limit is placed an the extent 
of overrun. When this limit is exceeded, the program in question i s  set  
aside for external supervisory consideration or treatment by an installation-
oriented routine. 
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2.3 The Space Fraction Diagram 

Consider space facility k Take space fraction for this facility as ordi-
nate and elapsed time a s  abscissa. Then, the space-time provided by this 
facility is represented by the rectangular domain (0,0), (0, l ) ,  (00 l), 
( o 0 , O )  which is shaded in Figure 1. 

SPACE 
FRACTION tLOAD 

ELAPSEDTIME 

Fig. 1. Space Fraction Diagram. 

The demand of program i for space-time on facility k is represented by 
a rectangle of height 8ik and base ti . The corresponding rectangles for 
all programs of the given set  a r e  to be packed into the rectangular domain 
by a procedure which will be described later. An example of packing five 
programs on a single facility i s  illustrated in Figure 2. 

t 
SPACE 


FRACTION 

LOAD 


Fig, 2, Five Programs on a Space-Shared Facility. 
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2.4 

Qf course, the packing must be implemented simultaneously on all  facilities. 
In other words, i f  space is allocated to program i on facility k between 
time t and t t ti, then space must be allocated to this program on all 

_c 

other facilities between these same two times. 

The abscissa T of the rightmost edge of the rectangle which extends 
farthest to the right (i. e. , along the elapsed time axis) represents the least  
time in which the schedule represented by the diagram can be executed. 
Suppose that, instead of the loose packing indicated in the diagram, we have 
a perfectly tight packing into a rectangle of dimensions 1, Vk. Then, we 
may write, by summing areas,  

Clearly vk is a lower bound for the execution of the given s e t  of programs. 
There a re  as many lower bounds of this type as there a r e  space facilities. 

The Time Fraction Diag ram 

The time fraction loading of a time-shared facility may be represented by 
a diagram similar to the space fraction diagram for a space-shared facility. 
However, the total time fraction at any instant i s  limited only by the upper 
bound (if any) imposed by the scheduling procedure. 

An example i s  given in Figure 3 of a time fraction diagram for 5 programs 
on facility j with start-stop times a s  indicated in the example of a space 
fraction diagram. . 

TIME 

FRACTION 


LOAD 


p2 p3 

ELAPSED TIME 

Fig, 3. Five Programs on a Time-shared Facility. 
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Whenever the total time fraction on some facility exceeds unity, one o r  more 
of the programs using that facility will receive service from it at a reduced 
rate and the elapsed times of these programs will  accordingly be extended. 

Now program i requires of facility j an amount 1Jr..t. of service, regard- 
less  of the rate at which it receives this service. If this quantity is 
summed over all programs, we obtain a second type of lower bound for the 
execution time of the given programs: 

Again, there is a bound of this type for each time-shared facility. The 
space and time fraction diagrams a r e  referred to collectively as the load 
diagrams. 

2.5 Types of Mixes 

The term mix i s  applied to a set  of programs either planned to be in the -
execution phase together o r  actually being executed concurrently. A 
feasible mix is a set  of programs for which the space fraction s u m  on each 
space-shared facility is less  than o r  equal to unity. 

The fact that a given mix is feasible does not imply that it can be executed 
efficiently - - that is, in less  time than it would take to execute these pro- 
grams one at a time. Consider, for example, a mix consisting of two pro-
grams, which for some time-shared facility have time fractions each equal 
to unity. Clearly, there is no time advantage in running these programs 
together; there may actually be a disadvantage due to the extra supervisory 
overhead incurred. A mix is said to be profitable i f  it is feasible and 
contains no pair of programs each of which demands a time fraction of unity 
on some common facility. 

2 . 6  Pairwise Infeasible and Unnrofitable Subsets 

A pairwise infeasible subset consists entirely of programs, no two of which 
form a feasible mix. It i s  clear that programs belonging to a pairwise 
infeasible subset must be run one after the other. Hence, the surn of their 
elapsed times i s  a lower bound for the execution time of the whole set. 
Accordingly, there exists a lower bound of this type for every such subset. 

An improved set  of lower bounds is obtained by considering every pairwise 
unprofitable subset. Such a subset consists entirely of programs, no two 
of which form a profitable mix. For every such subset the sum of the 
elapsed times of the member programs is a lower bound. The greatest of 
these lower bounds clearly belongs to the longest pairwise unprofitable 
subset. 
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2.7 Summary of Lower Bounds 

We have seen that there exist the following types of lower bounds for the 
execution time of a given set  of programs: 

a. rij ti one for each j
i 

b. C Sikti one for each k
i 


c. execution time of each pairwise unprofitable subset. 

In addition to these, the execution time ti of each program represents a 
fourth type. All  four types of bounds a r e  independent: that is, any one of 
them may be the greatest lower bound of all. 

These bounds may be readily computed and the value ( T  say) of the greatest 
determined. While other lower bounds exist, they a r e  less  readily computed 
and will not be discussed here. 

2. 8 The Principle of Uniform Loading 

The greatest lower bound T for the execution time of a given set  of programs 
may be used to determine for each facility the degree of loading which is 
necessary i f  this greatest lower bound is to be attained. Qf course, this 
theoretical loading and the greatest lower bound itself may well be unattain- 
able. Fo r  a time-shared facility j and a space-shared facility k the 
necessary degrees of loading a re  respectively: 

c c 
i 'ii ti and i 'ik ti 

.I 

T T 

We shall refer to these quantities as target loadings. 

In generating the early part  of a schedule, it is possible through poor place- 
ment of programs to underload a time- shared o r  space- shared facility to 
such a degree that the bound T cannot possibly be attained even i f  a perfect 
packing is assumed for the remaining programs. It is also possible to over- 
load a time-shared facility to such an extent that the time for executing the 
given set  of programs is again unnecessarily prolonged. 

I t  is clear that, i f  the degree of loading of each facility remained at its 
target value defined above, the shortest possible schedule would be obtained. 
However, it i s  also clear that in practice such an ideally uniform loading 
will normally be unattainable. A less  stringent goal must be accepted. 

Accordingly, we set  lower and upper limits upon the loading of each facility. 
The upper limit for a space-shared facility should always be set to unity, 
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since any greater value is useless and any lesser  value may lengthen the 
schedule unnecessarily. Fo r  the same reason, the upper limit for a time-
shared facility should not be set  to a value less  than unity, but it certainly 
may exceed unity. Within these constraints it is  desirable that for each 
facility the mean of the lower and upper limits be as close as possible to 
the corresponding target loading. The remaining freedom in specifying 
values for these limits may be used to generate alternative schedules on a 
trial basis. These schedules may then be evaluated as described in 
Section 2 .  10. 

2.9 Load and Limit Vectors 

For convenience, we treat  the space and time fractions of a program as 
components of a single vector, known as the load vector for that program. 
The load vector for a given mix is then simply the sum of the load vectors 
of all the programs participating in that mix. 

The lower and upper limits for each facility may be treated similarly as 
components of a lower limit vector b and an upper limit vector B, respec--
tively. 

For every mix we now require that each component of its load vector be 
less  than o r  equal to the corresponding component of the upper limit vector 

-B. If at any time during the generation of a mix every component of the 
mix load vector equals o r  exceeds the corresponding component of the lower 
limit vector b, no more programs a r e  added to that mix.-
2.10 Evaluation of a Schedule 

W e  may expect that the execution time of any given program will be extended 
when run concurrently with other programs due to delays in getting service 
from time-shared facilities. These delays become significant when the time 
fraction load on one o r  more facilities exceeds unity. 

Fo r  the sake of simplicity, schedules may be generated ignoring these delays. 
However, in comparing two schedules, allowance should be made for them; 
otherwise, an erroneous result may be obtained. Such allowance cannot be 
anything but approximate due to inadequacies in the information available 
concerning the behavior of each program. 

Consider the time interval between successive mix changes (amix change 
occurs whenever a program begins o r  ends). Letthis time interval be of 
magnitude A t  before allowance is made for extension. Let h be the maxi- 
mum time fraction load which the pertinent mix places on the time-shared 
facilities. Then an approximate value for the extended time interval for the 
mix is: 

A t  max (1, ) 
By summing the extended time intervals for all mixes, we obtain an approxi- 
mate execution time for the schedule. 
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3.1 

PART I11 - THE SCHEDULING ALGORITHM 


The scheduling algorithm examines the programs to be scheduled one by one 
and places their component rectangles in the corresponding load diagrams 
according to a set  of placement rules. 

The sequence in which programs a r e  selected for placement is determined 
by their position in a list of unscheduled programs known as the U list. In 
the absence of external constraints, the preferred ordering for this list is 
by elapsed time, the longest program being first on the list. The reason 
for this is that delay in placing long programs in the schedule can cause one 
o r  more  of these programs to project unoverlapped at the end of the schedule, 
thus yielding an unnecessarily long schedule. 

The Placement Rules 

The placement rules a r e  designed with a view to generating short, compact 
schedules and making the scheduling program simple, concise, and capable 
of rapid execution. 

Rule 1: Fitting Criteria 

A program P is said to f i t  in a given position in the schedule i f  all three of 
the following criteria a r e  satisfied: 

1. 	 Pr ior  to the addition of P I S  load vector, none of the 
affected mixes has a load vector which equals o r  exceeds 
the lower limit vector b (see Section 2.9).-

2.  	 After the addition of P I S  load vector, none of the affected 
mixes has a load vector which exceeds the upper limit 
vector B . 

3. 	 Its elapsed time i s  sufficiently short that none of its com-
ponent rectangles intersects any rectangles already placed 
in positions with later starting times. 

Rule 	2: Left Justification 

Each program is placed in the schedule in the leftmost eligible position in 
which it will f i t .  Oneconsequelnce of this rule i s  that no program may start 
at a time other than the termination time of some other program. Expressed 
in terms of mix changes, this means that there a r e  only two types: the 
dropout, in which one o r  more programs leave the execution phase and no 
new program enters; and the pickup, in which one o r  more programs 
leave the execution phase and one o r  more  enter. A third type in which one 

10 




o r  more programs enter and none leaves is prohibited by this rule. 

An important objective of the left justification rule is to make schedules 
shorter. It also tends to make the early portion of the schedule more 
densely packed than the later - - a result which is clearly desirable in situ- 
ations in which schedules a r e  subject to augmentation by newly arrived 
workload o r  to outright abandonment. Further advantages of this rule will 
become apparent when we deal with precedence and urgency. 

Rule 	3: Single-Mix Test 

Generally, the placement of a single program entails testing to see whether 
it fits in first one position, then another, until a position is found in which 
a successful fitting i s  achieved. Two important measures to reduce the 
amount of testing are: 

1 .  	 The maintenance of a list of eligible positions - - the 
steP list. 

2. 	 The adoption of a rule that no position is eligible which 
would require the testing of a candidate program in 
more than one mix for that position. 

As we shall see, the single-mix rule does not prevent any program P from 
participating in more than one mix - - for that matter,  in any number of 
mixes. It simply means that after P has been placed in the schedule -- and 
before any further programs a r e  placed - - P participates in more than one 
mix i f  and only if  these mixes a r e  consecutive in time and all mix changes 
involved a r e  of the dropout type. 

Later placements in the schedule may result in the occurrence of any 
number of mix changes of the pickup type during the time for which P 
is scheduled. 

Rule 	4: No Fragmentation 

As programs a r e  introduced into a space-shared facility to which the adja- 
cency constraint applies, there is a tendency for the vacant space to be 
broken up into an increasing number of small fragments. Consider an 
example (Figure 4) in which a long program P occupies an inner position. 
Let SI, S2 be the space fractions available respectively above and below P. 
Then, for the entire duration of P, it is impossible to f i t  any program into 
the machine which requires on this facility a space fraction greater than the 
larger  of S1,S2 . On the other hand, with P in an extreme position (top 
o r  bottom) the available fraction of adjacent space i s  S1 t S2. 
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SPACE 

FRACT1ON 


ELAPSED TIME 

Fig. 4, Fragmentation. 

The available space on a facility may be fragmented by a right o r  left hand 
projection of one program over another a s  in Figure 5 and 6. 

FRAGMENTATION FRAGMENTATION 
4 4 

Fig. 5. R.H. Projection. Fig. 6. L.H. Projection. 

In order  to avoid fragmenting available space on a given facility, it is neces-
sary and sufficient that each program be so placed that throughout its whole 
elapsed time the space between i ts  component rectangle and either the lower 
o r  upper boundary i s  solidly booked by the component rectangles of other 
programs. 

Another way of expressing this is obtained by looking a t  the load diagram 
for a complete schedule. If a vertical section i s  made of the schedule at 
any point on the elapsed time axis, the programs for which space is reserved 
at this instant fall into two classes: the lower-level programs which hold 
contiguous space reservations starting at the lower boundary and proceeding 
upwards; and the upper-level programs which hold contiguous space r e se r -  
vations starting a t  the upper boundary and proceeding downwards. (Ofcourse, 
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one o r  both of these classes may be empty.) All available space at this 
instant is then seen to lie in a single uninterrupted a rea  which separates the 
two classes of programs. 

By avoiding fragmentation of available capacity on all facilities (space- 
shared and time-shared), it becomes possible to represent a schedule in a 
very concise way, Fo r  each mix change the time is recorded together with 
two ordered lists: one of the lower-level programs, ordered by proximity 
to the lower boundary; the other of the upper-level programs, ordered by 
proximity to the upper boundary. 

Rule 5: No In-Process Relocation 

Space is reserved for each scheduled program on the assumption that the 
program will not be relocated at any time during its execution phase. Al-
though the schedule i s  generated on this basis, this constraint may be lifted 
by the supervisory program during execution time i f  unexpected circum- 
stances a r i se  which make relocation desirable (assuming the machine 
permits such relocation). 

Adoption of this rule i s  virtually mandatory for machines which a r e  incap- 
able of directly executing a program in relative form. However, for any 
machine this rule considerably simplifies the scheduling algorithm. 

3 . 2  Pyramids and Steps 

The method of applying the five placement rules is based on two concepts: 
the pyramid concept and the step concept. 

Suppose that in the load diagram for a given facility the component rectangles 
of several mixable programs A, B, C, etc. , a r e  stacked vertically in that 
order, one immediately on top of the other. Further,  suppose that in each 
of the remaining load diagrams the corresponding set  of rectangles is simi-
larly stacked: that is, the order  A, B, C, etc., is preserved in each stack- 
ing; contiguity is preserved; and start and stop t imes for each of the rec-
tangles belonging to any given program a r e  held constant. If such a vertical 
stack satisfies the following conditions, it i s  a pyramid: 

a. 	 the start times of A, B, C, etc. considered in that order  
a r e  nondecreasing; 

b. 	 the stop times of A, B, C, etc. I considered in that order  

a r e  noninc reasing. 


Note that these two conditions imply a third: the elapsed t imes of A, B, C, 
etc., considered in that order a r e  nonincreasing. Several pyramids a r e  
illustrated in the sample schedule shown in Figure 12. For example, pro-
grams 	PI,  P6,  P8, P12 form a pyramid. 
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Whenever a program P forms par t  of a pyramid D, it is convenient to 
regard all of the component rectangles of P taken collectively as a layer 
of D. 

Under certain circumstances, pyramids a r e  built in an upward direction 
(that is, toward the upper boundary in each load diagram). Such pyramids 
form the lower level of the schedule. In other circumstances, pyramids 
a r e  built in a downward direction and these form the upper level of the 
schedule. 

The base of a pyramid res t s  upon: 

a. the lower horizontal boundary of every load diagram 
(the elapsed time axis in every case);  

o r  b. the upper horizontal boundary of every load diagram; 

o r  c. an uncovered segment of a layer of an already established 
pyramid. 

UPPER HORIZONTAL BOUNDARY 
SPACE 

TIORME t 
FRACTION 

LOWER HORIZONTAL BOUNDARY ELAPSEDTIME 

Fig. 7. Positions for Pyramid Bases. 

These positions a r e  examples of steps (see Figure 7). A precise definition 
of step is rather complicated. Fo r  the time being, we may regard it a s  a 
position in the schedule at which a program may be placed without violating 
any of the placement rules. 

3 . 3  The Step List 

The step list serves  the function of reducing the amount of searching needed 
to find a place in the schedule for a given program. It not only reduces the 
average nurnber of positions which a r e  examined, but it also provides for a 
much simpler tes t  of horizontal fitness than the schedule table would allow. 
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Each entry consists of the start time of the step, i ts  length (i.e . ,  elapsed 
time), and an indication of its level (lower o r  upper). Steps a r e  ordered by 
their s tar t  times, the earliest  being first. When two steps have identical 
start times, the shorter is placed ahead of the longer; when the lengths 
a re  equal, the ordering is arbitrary.  

Before the first program is placed in the schedule, the step list contains 
two entries: one for the lower horizontal boundary, the other for the upper. 
As each program is placed in the schedule, one o r  more  steps may be intro- 
duced into o r  removed from the l ist ,  according to circumstances. 

3.4 The Schedule Table 

The schedule is built up in the form of a table, which not only serves  finally 
as the output, but also as the means of determining vertical fitness of a 
candidate program for a selected position, whenever the step list has indi- 
cated its horizontal fitness for that position. 

Before the first program is placed in the schedule, the schedule table is 
empty. As each program is placed, 'its terminating time will normally 
define a new change of mix. Only when the terminating time of a program 
just placed happens to coincide with that of a previously placed program will 
there be no new mix change introduced, 

F o r  every new mix change, an entry is created in the schedule table. Each 
entry consists of the time for the mix change together with the following 
information for the mix due to begin at this time: 

a. A list of lower level programs ordered by proximity to the 
lower horizontal boundary; 

b. A list of upper level programs ordered by proximity to 
the upper horizontal boundary; 

C .  The load vector for this mix. 

The entries a r e  ordered by mix change time, the ear l ies t  being first. 

Placing a program in the schedule normally entails more  than the creation 
of a new entry in the schedule table corresponding to the new mix change. 
Fo r  each of the mixes in which this program participates: 

a. 	 The load vector must be updated; 

b. 	 Either the lower o r  upper l evd l i s t  must be augmented by the 
program just introduced according to its placement (lower 
o r  upper) in the schedule. 
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3 . 5  Placing a Program 

Suppose that a partial schedule has  been developed,the schedule table and 
step list a r e  up-to-date, and the system i s  ready to find a position in the 
schedule for the next program from the U list. 

The step list is searched for the first step upon which the candidate program 
fits horizontally (that is, with respect to elapsed time). When such a step 
has been located (and there a r e  always a t  least  two such steps - - the infinite 
ones - - in the list), the schedule table is inspected beginning at the entry 
which has a mix change time equal to the s ta r t  time of the step. The load 
vector for the corresponding mix is tentatively incremented by the load vector 
of the candidate program, and the result  is compared with the upper-bound 
vector. If no component of the incremented load vector exceeds the cor res -  
ponding component of the upper-bound vector, the program is known to 
f i t  on this step, because a step is constrained not to straddle mix changes 
other than the dropout type. This i s ,  indeed, the technique by which the 
single-mix rule is observed. 

If, however, *e upper-bound vector is exceeded (in the component by com- 
ponent sense), then a new position is  sought on the same step. To do this, 
the next entry in the schedule table i s  inspected, providing the remaining -
segment of the step under consideration is still sufficiently long to accom-
modate the program. These inspections continue until either an acceptable 
position i s  found o r  a segment remains which i s  too short (see Figure 8). 
In this latter case, the step-list search i s  resumed and the next entry of 
sufficient length is treated in a similar way. The process is repeated until 
the earliest  step is found upon which the candidate program fits horizontally 
and vertically. 

1st 2nd 3rd 

SPACE 
OR 


TIME 

FRACTION 

-+ELAPSED TIME 
Fig. 8. Successive Trial  Positions on a Step. 

16 



Having found a place in the schedule far the candidate program, the schedule 
table is updated as described in Section 3.4. The step list must also be 
updated; a description of this procedure will help to clarify the notion of 
step. 

3.6 Updating the Step List  

The alterations necessary to bring the step list up to date after a program 
P has been placed in the schedule depend upon two considerations: 

a. whether or not P was placed so that its start time coincided 
with that of the step upon which it rests; 

b. whether or not the lower limit Ib was reached in any of the 
mixes in which P participate& 

In what follows we shall assume that P has been placed on a lower-level 
step. The arguments apply with equal force to placement on an upper-level 
step by simply interchanging lower and upper wherever they appear. 

Let the elapsed time of P be dp,  the start time of the step upon which P 
is placed by xO, its length do . The subscripts -1,1 denote the imme-
diately preceding and succeeding steps. A prime denotes the opposite level. 
Thus xll xi denote the s ta r t  times of the immediately preceding and 
succeeding steps on the opposite level. We now consider the case in which 
the start time of P coincides with that of the step upon which it res t s  
(Figure 9). 

UPPER LEVEL -

C 


LOWER LEVEL -

A E B 

Fig. 9. Start Time of P Equals that of Step. 
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--- 

Program P (represented by the rectangle ACDE) res t s  on step AB. The 
entry (xo do) in the step list for step AB must  now be removed and replaced 
by two entries: 

(xo dp) for step CD; 

(xo t dp do - dp) for step EB 

Note that if AB is the lower boundary of the load diagram,d, 00,do-dp =oo;2 

and the two new steps a r e  still specified correctly by the statements above. 

On the upper level, there may exist a step FG which straddles the new mix 
change of pickup type at time xo . If so, this step must  also be split into 
two steps to comply with the single-mix rule. The existence of such a step 
is decidable by inspecting the upper-level step immediately preceding 
(xo , do) in the step list. If its start time X I  plus length d1  strictly ex- 
ceeds xo , the existence of a straddling step FG is confirmed. This 
entry is accordingly replaced by the two entries: 

for step FH; 

xd , dLl - xo txL1 for stepHG 

The alternate case may now be considered: the start time of P is la ter  
than the start time of the step upon which it res t s  (Figure 10). In this case, 
due to the adoption of the left justification rule, the s ta r t  time of P 

X'
I----UPPERLEVEL 

v 
D 

-7P 

LOWER LEVEL 

F E B 


Fig. 10. Start Time of P Later than that of Step. 
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must necessarily be the s tar t  time ( X I  say) of an upper-level step. . Accord-
ingly, we replace the entry (xo , do) in the step l is t  by the following two 
entries: 

(xo x '  -xo) for step A F  

for step CD 

together with a third entry: 

( X I  t dp xo t do -x' -dp) for step EB 

providing xo +- do - X I  - dp does not vanish. 

To complete the updating of the step list,  the earliest  mix in which P 
participates is examined to ascertain whether all components of its load 
vector have equaled o r  exceeded the corresponding components of the lower- 
limit vector b . If so, the entry in the step list for the step CD is adjusted 
a s  follows: iG star t  time i s  incremented and its length decremented by the 
duration of the mix just examined. Siimilar action is taken on steps on the 
opposite level. The next mix i s  then examined in a similar way until either 
a mix i s  found in which the lower limit is not attained (in the all-component 
sense) o r  all the mixes in which P participates have been exhausted. Note 
that once a mix has been found in which the lower limit i s  not attained, suc-
ceeding mixes need not be examined since all mix changes for a given step 
a re  of the dropout type. 

3.7 Current Step 

It may be observed that the algorithm does not generate pyramids one by 
one; it tends instead to build a layer on one pyramid, then a layer on another, 
and so on. This i s  partly due to the fact that, for reasons of economy, only 
one sweep is made through the U list. 

Actually, a further economy in effort may be made with some loss in com- 
pactness of resulting schedules by weakening the left justification rule in the 
following way: let  the program most  recently placed in the schedule be P; 
that segment of i ts  uncovered horizontal side which survived the lower limit 
test  i s  defined as the current step; the next program to be placed in the 
schedule is tested for horizontal and vertical fitness 09 the current  step 
first ,  and only i f  this step proves unacceptable i s  a search made through the 
step list,  This modification biases the algorithm ta continue building the 
pyramid upon which it las t  placed a layer. This bias is of doubtful value 
unless the U l ist  is strongly biased toward the preferred ordering (by 
elapsed time). 



3.8 An Example 

A set  of scheduling data is provided in Figure 11, below, for an example 
in which 1 2  programs a r e  to be scheduled on a single, space-shared facility. 
The schedule which results from treating them in the preferred order  is 
shown in Figure 12 and the final state of the schedule table and step list 
tabulated in Figures 13 and 14. The reader who wishes to acquaint himself 
with the details of the algorithm is advised to generate the schedule step by 
step and check the result. 

Program Space Fraction (Units = 1/32) Elapsed Time 

p1 8 100 

p 2  
p 3  

4 
8 

70 
50 

p4 6 40 

p5 10 35 

p6 8 27 

p7 
p8 

2 
4 

25 
22 

p9 5 17 

p10 4 14 

p1 1 14 12 

p1 2 7 10 

Lower Limt = 28 (Units = 1/32) 


Figure 11 . Table of Scheduling Data. 
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Lower Level Upper Level Load 
Time List  List Vector* 

I)--.0 P1n p2n P3’P4’p7  28 


25 p lo  30 


67 P1’ p 2  p5 22 

70 p5  30 

.--I- 27 
-.I...- 20 

pl 1 30 

p11 22 

100 p1 1 14 

_ _  

Figure 13: Final State of Schedule Table 

Time Length Lower /Upper 

39 1 L 

39 1 U 

50 17 U 

50 20 L 

67 3 U 
75 10 L 

75 17 U 

85 7 L 

97 3 L 
97 7 U 

100 00 L 
104 00 U 

Figure 14: Final State of Step List  

* A scalar in this example due to treatment of one facility only. 
Units for the Scalar a r e  1/32. 
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PART IV - EXTERNAL CONSTRAINTS 

4.1 Urgency 

The scheduling algorithm provides two ways for handling urgency; each com- 
plements the other, The f i rs t  method consists of excluding f rom the U list 
all programs of urgency less  than a specified degree. Programs excluded in 
this way a re  guaranteed inclusion in some subsequent scheduling operation 
by an automatic advance in their urgency ratings. The second method con- 
sists of ordering those programs included in the U list first by urgency rating 
and then by elapsed time, Both the membership and the ordering of the U 
list a r e  assumed to be determined by an installation-oriented routine. 

4, 2 Group Service 

Where several groups of users a re  sharing a large central machine, it is 
likely that a policy will be established under which each group is guaranteed 
some measure of service, even though on occasions this may prolong the time 
taken to process the whole workload, As with urgency, such a policy may be 
implemented by controlling membership and ordering of the U list, 

4 . 3  Precedence 

If program P is to precede program Q in the schedule, it is necessary to 
place P ahead of Q in the U list. However, this action alone is not sufficient, 
because the ordering of the U list has only an indirect effect upon the order -  
ing of programs in the schedule. A direct constraint is required upon the 
placement procedure. This constraint employs the notions of next predecessor 
and next successor. 

P is said to be a next predecessor of Q (and Q a next successor of P) if P 
precedes Q and there exists no 2 such that P precedes Z and %precedes Q, 
A program may possess more than one next predecessor, In the example of 
a precedence chain in Fig. 15, program F has 3 next predecessors C, D, E. 

A' Fig. 15 Precedence Chain 

Not until all three of these programs have been placed in the schedule can the 
earliest  starting time of F be determined. It must then be given the value of 
the latest terminating time of C, D, E. 

Accordingly, the U- l i s t  entry of each program is expanded to include a l ist  

2 3  



of its next successors together with an earliest  starting time. All earliest  
starting times a re  initially set to zero. Whenever a program is placed in 
the schedule, the l ist  of its next succelssors is consulted. For each next 
successor the earliest starting time is replaced by the terminating time of 
the program just scheduled if  this action results in a la ter  earliest  starting 
time. Placing a program now involves a search starting with the earliest  
position which has a starting time equal to o r  la ter  than the earliest  starting 
time of the given program. 

4 * 4  Immediate Precedence 

Often it is desired that execution of the next successor of a given program 
should s tar t  a s  soon a s  that program has been completed. This is very likely 
to be the case whenever a single program consisting of several phases which 
have significantly different space and time fractions is presented as though 
each phase were a program in its own right. In such a case, the phasee 
would be linked together by precedence statements of the immediate type. 

A flag is added to each entry in the U list to indicate whether o r  not the suc- 
cessors  (if any) of the given program a r e  immediate. The scheduling of such 
programs is considerably simplified if they a re  considered as a single, long 
program while the search for a position is in progress, However, as soon 
a s  a satisfactory position has been found, the schedule table is updated by the 
individual program load vectors. 

4.5 The Dynamic Mode 

In the dynamic mode, the unexecuted part  of the schedule is augmented f rom 
time to time by incoming load, and the executed part is dismissed. Essen-
tially, the same algorithm may be employed, except that, since some part  
of the schedule is always being implemented, there is little scope for evalu- 
ation and regeneration of alternative schedules. 

4,6 Degraded Versions 

The criteria of fitness of a program with respect to a position in the schedule 
a r e  readily relaxed in case little o r  no information is supplied concerning the 
time requirements. As an example, suppose that the precision of time f rac-  
tions is reduced to one bit for each time-shared facility indicating whether 
100% of its time o r  less  is required. Vertical fitness would be reduced to 
ascertaining whether the relevant mix was profitable o r  unprofitable in the 
sense defined in Section 2. 5. 

When elapsed times a re  not available, scheduling necessarily becomes very 
primitive. 
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