
A Method of Multiplexing Computers i D ~ c1958
Part I . John Griffith.

Several years ago, Dr. Gene Amdahl proposed a method of interlacing
two instruction se t s in the same computer, The scheme wae originally pro-
posedfor the Stretch machine, b u t was never used. This scheme,. plus a
large measure of understanding supplied by Turing's work, has been t rans-4
formed inta a method of controlling two or more computers which are work-
ing on the same problem.

This method of controlling multiplexed computers will not work for any-
problem, but it will work in many case6 that are of present day 'interest.
Basically, i t provides a means for allowing two computers td cooperate on.
the solution of a given problem. The technique itself is one that Turing used
in his famous TJniversal t lmachine; namely, the technique of using a h c r a t c h
pad, o r eraseable m e m o r y , to make mark8 on,which serve to keep t rack of
one's place dur ing the solution of the problem.

' The effect of this method is to give two computers a little m o r e feeling
of togethernese while they compute the answer to the given problem, and
this feeling is necessary to cooperation between two brains , as we al l know.
As the Ladies H o m e Journal is the magazine of togetherness, sa is this

'crrr writing the memo of togetherness.

Passing now to the particular idea of accomplishing cooperation between
two computers, we will f i r s t outline an idea and Borne of the theory behind
its operation, then proceed to its execution and ramifications.

The usual method of causing two computers to talk to each other so that
one computer m a y find out what the other is doing is to use binary t r iggers
which ma'y be set or interrogated by either machine. These triggers, o r
selectors , as they are usually called, ark so arranged that somet particular
piece of information i a assigned to each one at some particular time, and the
process of interrogating and sett ing by either machine m a y be taken to be
completely general. The only trouble is that this method does w t lend itself
easily to the real time aspect of cooperation between machines, and thus, it
is usually necessary for the computere involved to measure time in some
manner such that the information conveyed by the condition of the aelectors
m a y be superimposed upon the demands of the programs being executed.

The idea h e r e b presented varies from the selector approacfh by replac-
ing selectors, which can take on either of two values, by counters, which can
take on any of many values, An important distinction between thle two is that
the counter method will allow the measure! of relative time, as defined by two

machine programs. It is difficult for selectors to measure time, *or anything
else that cannot be e a d l y identified with two values. Let u8 now proceed to
a simple example of this idea.

Program (Counter cannot
count below aero)

1. 92. 2.

4.3*?
5.

FIGURE 1

* ao.,

?---
Figure 1 shows the idea in its simpleat form. W e may aE;%umethat we

have two computers operating on the same &ta in the same memory box.
Furthermore, the program in machine #l must operate on the a t a before the
program in machine #2 gets to it. The two machines will be distinguished by
the Program 1 k 2 notation in the Figure, Suppose that, in addition, a
counter is connected between the two machiaes in such a manner that it i s
counted up by one whenever a certain bit occurs in an instruction in Program
l . Suppose also that the same counter is counted down by qpe whenever a
certain bit (reservedfor this purpose, as in machine 91)o c c u i d in an instruc-
tion in machine #2. Suppose, also, that this counter is constructed so that it
cannot count below zero; in other words, it can contain only positive numbers.
W e now wish to make certain that machine #2 can never get ahead of machine .'

#1 in the execution of t he program in machine #2.

Thie will be done by observing those places in the two programs where
it i s absolutely necessary to prevent machine # 2 running ahead of machine #I .
(W e will a s ~ u m ein this example that there is no l imit ta the extent which
machine #1 can precede machine #2). Wherever mch places occur, we mark
the corresponding instructions with the special bit reserved f o r this purpose.
In the example shown, Program #1 has instructions 3, 7, and 1 1 marked.
Program #Z has instructions 2, 5, and 10 marked. An arrow is used here
for the mark to indicate the direction of counting. W e may now \say that the
requirements for this example are that instquction 3 in Program f l -must be
executed before instruction 1 in Program #2 ipi, executed. The dame is trQe
f o r instruction 7 in Program #1 and instruction 5 in Rrogram #2 ; likewiae for
instruction 11 in Program #1 and inatruction 10 in Program #2.

2

.

b
It will be seen that in the execution of Program #1 the currater will be

counted up by one whenever a marked instruction is encountered and the
counter will be counted down by one whenever a marked instroctiion is en-
countered in Program #2. Suppose that we were to s t a r t up the two machines
simultaneausly with the two given programs in their reepective memories.
The value in the counter is z0ro. At this point, machine #2 w u t d do nothing
because the counter cannot be counted below zero, but there is nothing that
would prevent machine #1from proceeding normally. As sooh as machine #1
has executed instruction 3, the counter would be counted up b y one, th'areby
allowing machine #2 to count i t down to zero. This a c t will allow machine # 2
to proceed until it encounters instruction 5. If, at thi6 t ime, machine has exe-
cuted instruction 7, the counter will regiater a tount grekter tkan zero and
machine 82 will count it down a e it proceeds. I f , whcrr machine # 2 arrives at
instruction 5 , the counter is st i l l a t zero, machine #2 will stop and wait for
the counter to be counted up by one.

If machine proceeds much faster than machine #2, the counter will # l a

contain a value higher than one. This value is actmewhat of a measure of
how far machine #2 lags behind machine #I . Thie, is what was meant in the
previous reference to the ability of a counter rneasurin.3 the relative time
between the execution of two machine programs. Notice that in the example
given, machine #I is a free running machine and machine #2 is f r e e running
until i t threatens to pass up machine # f . The coupling between the two
machines is completely opecified by the marks on the appropriate instruc-
tions, and these marks allow any degree of coupling desired. Notice also
that if this idea were to be carried out with a selector iastead'of a counter,
it would be impowible for machine #I to precede machine #2 b y any grea t
amount. Thus, the value of the selector is limited because it cannot-contain
a variable measure of the lag between the two machin&

' At this point, it may be well to indicate the obviour analogy with con-
versation between machines. It car of sselerctore inbe seen that the U B ~
this example are nothing m w e than the narrow bandwidth camrnunication
channel between machines. The counter is nothing more than & ' w i d e rband-
pass channel, and thus,..it is not surprising that i t is ahre to provide better
communication between the machines.

W e will now proceed to: another example', this one a variation of the
previous example.! This example will be concerned with three machines
working on the same problem, but otherwise l ike the first example.
Figure 2 i l lustrates this variation.

3

.

Comp. 1 Ct r . 1 Comp. 2 C t r . 2 Comp. 3

I ---- --- i 	 1
4------ t

L

t
A
I

-	 +--,
This t ime we have th ree computers working in sequence c)n the s ime

data. Computers #1 and # 2 opera te a s before, and the additio:r of Coilnrer 2
allows Computer #3 to work on the data a f t e r Computer #2 is fmished with
it. Counter # 2 i s counred up b y m a r k e d instruct ions in Computer #2 and is
counted down by marked instruct ions in Computer #3, In addition, Counter
#2 can o n l y be counted up a s in the c a s e of Counter #1. Thus , Coun ie r #2
prevents Computer # 3 f r o m preceding Computer #2 in exactly ihe s a m e man-
n e r a s Counter #1 prevents Computer # 2 f r o m preceding Computer #1 in

vlrrr* 	 previous example. It m a y be seen that a m a r k e d instruction ill Computer #2
af fec ts two counters ; such an instruct ion causes Counter #1 to ae counted down-
at the same t ime it causes Counter #2 to be counted up. By extension, it may
be seen that this idea may be extended to any number of computers working
on the same problem if the conditions of the problem are as descr ibed in
Example # l . Next, we will take up a var ia t ion introduced b y a m o r e compli-
cated and m o r e rea l i s t ic example.

This example concerns the r ecu r s ive na ture of p rograms . F igu re 3
i l lus t ra tes the situation.

Prog . 1 	 Prog . 2*

FIGURE 	3
4

I

I 	 iL , TIX 	 t TIX

4

* *

'V
The complication included here i s that the two programs are farmed as
loops and it is des i red to control the two machines so that Computer #2
follows Computer #1 b y one execution of the loop in Computer # I .
o ther words, we des i re that Computer # 2 work on the data used b y
Computer #1 only a f te r Computer #1 i s through with it.
new about tnis requirement , but the fact that the programs a re in the form
of loops and n o t open-ended s e t s of instructions puts an additional requi re -
ment on the counter system.
start ing proce dure.

In

There i s nothing

This new requirement comes about in the

If, in this example, the two computers were already runiiing, the
situation would nor: be great ly different f r o m that of Example #l .
in order to get the situation displayed in F igure 3 going f rom scra tch , it
i s necessa ry to introduce a special command.
a t the beginning of P r o g r a m #2. This com-
mand is obviously a variation of the indicator bit which occur s on the
instructions themselves.
which the succeeding p rogram s teps will be allowed to proceed.
ca se , the I'Co on 2" command will not a l low Computer #2 to proceed until
the count of 2 (or other specified value) appea r s in the CouEter.
specified count i s reached, the Counter i s counted down b y the amount of
the count, and b y this means the l a g between Computers 1 and 2 is main-
tained a t one loop execution. If the value specified b y the instructiori in
Computer 2 were 6, the relative l a g between the two rnachiries would be
five loop executions.

However ,

This command is indicated
The command is IrGo on 2.

Except that t h i s command affects the time at
111 this

When the

Clearly, this command is nothing m o r e than a b ias mechiinism which
introduces a m e a s u r e of control on the contents of the counter- In the l a s t
case , where the IrCo'' instruction specified a value of 6 , Computer 1 would
be working on the sixth execution of its loop while Computer 2 w o u l d be
working on the f i r s t execution of its loop; thus we say the-lag is five, the
difference between the cycles of execution of the two computers.
c l ea r that the lag between the two machines can never be l e s s than f ive , h1-
though it may be as much m o r e as necessary , and would be l imited, in this
example, only b y the s&e of the counter.

It i s a l s o

Another way of accomplishing the s a m e thing would be to have the
value specified b y the "GO" command retained by the Counter in such a
manner that the lowest possible value which would be allowed would be the
value specified, in the last case , 6 , until another instructiozi were en-
counrered which changed the value up o r down. This method d intr,oducing
bias level on the counter may be bet ter , fo r it allows one to manipulate the
counter contents in a more general fashion by allowing the p rogrammer to
s e t the virtual zero of the system at any real value of the counter he pleases.

5

---- -- 1

i
t
f
ie,,

When we mention the possibility of manipulating the contents of the
Counter, we may also guess that we will wish to add to our svstem com-
mands which increase and decrease the contents of the Counter independ-
ently of any other action taken b y the Computers. W e will l ihewise want
the ability to compare, tes t , and r ead out the contents of the Counter as if
i t were any other reg is te r of the system. At this point, t h e r eade r may
wonder what is different about the Counter if all of these things may be done
to i t s contents. The answer i s nothing, of course. The Couriter mere ly
serves as a scra tch pad so that one computer may know where it is rela-
tive to i t s precedent computer.

W e will now pass on to Example 4, which is the extension of Ekample
3 to the case of three or m o r e machines. ?he conditions of thie problem
a r e the same, and we wish to give nothing m o r e than the i l lustration of
the s tar t ing procedure for this case .

Prog. 1 Ctr . 1 Prog. 2 Ctr . 2 Prag. 3

FIGURE 4
9

-- t---
j --.----A

TIX TIX1
When Computer 1 s t a r t s , i t will cause Counter 1 to btt counted up by

one. The 'IGo'' instruction a t the s t a r t of the routine in CompLzter 2 will
prevent Computer 2 from start ing until the count in Counter 1 is two.
W h e n Computer 1 begins the s e c o n d q a s s of i t s loop, the contents of
Counter 1 will be counted up by one, making the total two. The IIGo on 2"
command in Computer 2 will therefore subtract two from the contents of
Counter 1 and allow the execution of the program in Computer 2 to proceed.
At the same t ime this action occur s , Computer 2 will cause Counter 2 to
be counted up by one. When Computer 2 s t a r t s i t s second pass, the contents
of Counter 2 will be counted up by one, making the total two. Computer 3
will therefore start up, and a t the s a m e time, two will be subtracted from
the contents of Counter 2. At this t ime also, s o m e indication mus t be made,
e i ther in the instruction itself, o r in hardware tha t the rIGol' inistructions are
to be executed as "No Opt' until the indication has been r e se t . 'The counting
function of the l lGol ' instructions will, however, continue (a s usual fo r any

6
v

--

other instruction). The net resul t , will b e that the three computers will
be executing the i r respective p rograms (loops) with a lag of a t l ea s t one
between each machine ' s execution cycle. Note a l so , t h a t it is quite impos-
sible for the machines to over run each other , f o r the zero coiint in e i ther

-counter will hold up the r e s t of the chain until it is safe to proceed.

F o r the example shown, it i s a l so c l ea r that as many computers may
work on the data a s is possible, if a counter i s inser ted between each pa i r
in the chain. It should also be noted that the lag between aay two machines
may be set a t a n y value, o r number of loop executions, that is desired.
The bias , mentioned above, will remain a t the lowest value sttt, and this
will effectively prevent the var ious loops being executed in the var ious
machines f r o m getting too close to each other. A practical example of
the case chosen he re i s the usual I / O operation where one wi shes to r ead
from a tape, operate on the data, and write the updated data back o u t on a
new tape without worrying about synchronizing the p rogram Inaps. There
is more to be said about such an example, but we will defer it for a l a t e r
memo.

Before we leave this example, we will d i scuss a variation on the
hardware logic used. The r eade r may have noticed that the values given
in the IrGottinstructions were relat ive to the Computer cycle preceding
the given machine. One m a y ask, is this the bes t way? W h y not u6e an
absolute value sys tem start ing with the f i r s t machine in such a cha in?
There is no way to determine the best way, for i t depends a n the exact
nature of the problem being solved. In any case , the absolute sys tem m a y
also be implemented, and we will r e f e r to it in Example 5.

Prog. 1 Ctr . 1 Prog. 2 Ctr. 2 Proal. 3

f -d

! FIGURE 5

- TIX

It will be noticed that the only change has been to change "Go on 2" in
Computer 3 to ''GO on 3. I t The hardware works somewhat different f r o m
that of Example 4. At the beginning, when Computer 1 s t a r t s , Counter 1

7

c

i s counted up by one. Computer 2 , which i s waiting, immediately counts
Counter 1 down by one and Counter 2 up by one. W h e n Computer 1 begins
i t s second pass , Counter 1 is counted up by one. Computer 2 , which is
st i l l waiting, immediately counts Counter 1 down by one and Counter 2 up
by one. At this time, s ince Counter 1 has been counted up and down a total
of two, Computer 2 proceeds. W h e n Computer 1 has begun its th i rd pass,
i t will .count Counter 1 up by one, and when Computer 2 begins i t s second
pass, it will count Counter 1 down by one and Counter 2 up by ane. At this
t ime, a total of th ree will have been counted up in Counter 2 , and Computer
3 will proceed. If the computers a r e to maintain the given relationship,
Counter 1 m u s t not be counted below one, and Counter 2 m u s t not be counted
below two. This implies that s o m e additional hardware would be needed to
es tabl ish and hold b i a s levels in the counters . However, this a l ternat ive

- m a y be justifiable f o r some problems.

One might a l so no"cce a slight difference between the operat ion of the
two a l te rna t ives i l lus t ra ted in Examples 4 and 5. In the case of Example 4,
each machine m u s t wait until its precedent had s t a r t e d before it could
s t a r t . In Example 5, each t ime a machine s t a r t s up, there is an immedi-
a t e rippling of the count a c r o s s all the counters in the s p t c m . This impl ies
h a t any computer in the chain m a y s t a r t up on any cycle a f t e r the initial
Computer h a s begun i t s cycling; however, it ie, st i l l cecessaz-1 that the m a -
chines execute the i r cycles a f t e r the preceding Computer , Lherefore, the
effect is st i l l the s a m e as if the values used were relat ive to the precedent
Computer instead of the s ta r t ing Computer. However, there is a variat ion
of this a r r angemen t which is somewhat m o r e flexible and powerful, and
this var ia t ion r equ i r e s the absolute , o r re la t ive to the s ta r t ing Computer ,
values to be used in the Counters. At this point, however, thc excursion
would be too far from our present line of thought, and it m u s t wait f o r a
l a t e r d i sc us:sion.

To summar ize br ief ly , Examples 4 and 3 i l lus t ra te the logic of s t a r t -
ing and maintaining a minimum lag between Co*mputer execution cyc les f o r
the c a s e of s imple r ecu r s ive p r o g r a m s in each machine andfo r the c a s e of
m o r e than two computers in the chain. A variat ion in the method of speci-
fying l ag was covered: there are t k o ways of specdying the lag, e i the r spe-
cifying i t re la t ive to the precedent computer (Example 4) or specifying it
re la t ive to the s tar t ing, o r f i r a t computer in the chain (Example 5).

We will now extend the l ine of thought indicated b y these two examples
to a m o r e complicated case. This c a s e h a s as i t s sal ient feature a higher
level of r ecu r s iveness than e i t h e r o f the two preceding examples. W e may
take the c a s e shown in Example 5-with the additional requirement that the
p rograms in each of the computers have both inner and outer laops.

8

W'
In par t icular , the loops pas s over the data used by the precedarit computer.
The important change in this example i s that the chain of computers i s a
closed loop, not an open loop, as in a l l of the previous examples. In other
words, Computer 1 , in this example, will have Computer -3 as i t s p rece -
dent, once s tar ted, and the effect will be that of a closed loop iof computers
operating in o r d e r on a closed loop of data. In the previous examples, the
chain of computers was an open loop of machines operating OE an open loop
of data. In this example, we have the additional condition that! Computer 1,
when it a r r i v e s a t the end of the data, will then s t a r t over dn the s a m e data,
but we must provide means f o r preventing Computer 1 f r o m operating on
the data before Computer 3 is through with it. This example i s somewhat
m o r e real is t ic , than some of the past examples, as the reader will real ize ,
f o r when Computer 1 s t a r t s the second pass on the data, the data may have
been replaced, with n e w data, and i t is st i l l necessary to make sure that
Computer 1 does not overtake Computer 3 . In any c a s e , the process
descr ibed i s a common one, although the exact treatment of the data between
Computer 3 and Computer 1 passes may vary. W e may easilx, modify this
example to take into account the replacement of the data betwrben passes b y
Computer 3 and Computer 1 , by proposing a fourth Computer tb be inser ted
between Computer 3 and Computer 1 whose function i5 to repl ice the data
a f t e r Computer 3 i s through with it. But input-output discussions will be
held fo r a later memo, a s promised above.

Another as ide h a s been introduced by the previous senter-Ice. The
reader m a y have noticed that the theory underlying the idea presented in
this memo may be i l lustrated by imagining that a complete computer is
available to solve each of the various parts of a problem to be done. F o r
instance, we m a y propose whole computers assigned to the function
actually taken b y a subroutine. The problem is then: how does one con-
nect the var ious computers so that the problem will be solved cor rec t ly?
The answer to this question cannot be given in this memo, as it is probably
an unsolvable problem. Another question: Can a complex of computers b e
devised that will solve a given problem? The answer to this is yes, a6
long as the complex sat isf ies cer ta in conditions. Bu t we a r e dr i f t ingaway
from the example a t hand, and mus t defer questions of this s o r t until l a t e r .

To return a t last to the example promised, Example 6, we see in the
diagram that an ex t ra Counter has been added.

9

c

V' Cornp. 1 Ct r . 1 Comp. 2 Ctr . 2 Con1p. 3 Ctr . 3

+-.!-------I .*II

---*-

I ---
I FIGURE 6-.L--

--c-i
f

-1_
1 TIX TIX-

This example assumes the same conditions as before w:ch the Counters
retaining v a l u e s (lags) in the ' labsolute ' ' s y s t e m o r r e f e r r e d to Computer 1
as the origin. It should be noticed that Computer 1 now cc)unw Counter 3
down as i t counts Counter 1 up. This f ea tu re closes the loop of machines,
and a l l o w s the whole chain to opera te on data in a recursi l -e fashion. The
s ta r t ing commands operate as usual , except that ''GOon 0 iii Computer 1I

refers to the contents of Counter 3, In this Example, the coiltents of the
Counters a r e held a s bias l eve l s o r lags between respec t ive machine c y c l e s .
Thus, when Computer 1 s t a r t s i t s second pass, Computer 2 will s t a r t i t s
f i r s t pas s . W h e n Computer 1 starts its th i rd pass, Computer 2 will s t a r t
i t s second pass, and Computer 3 will s t a r t i t s f i r s t pass. This will get the
chain s t a r t ed , a n d a s Computer makes its p a s s e s over the data Counter 3
wil l be counted up. When Compurer 1 gets ready to operate od the data
f inished by Computer 3 , Computer 1 will count down Counter 3 as i t does so.
Not ice that Computer 1 may not s t a r t i t s fourth p a s s until Computer 3 has
f inished i t s f i r s t pass. Thig is an interpretat ion of the present Example,
f o r we a s s u m e , f o r s implici ty , that t he re a r e only three batches of data to
be worked on, and that the o r d e r for each machine will be batches 1, 2,3,
1, 2 , 3 . . . etc . . Thus, Counter 3 in te r locks the chain such that Computer 1
cannot s t a r t i t s second p a s s ove r data batch 1 until Computer 3 has f in-
ished i t s f i r s t pass over the same batch. If t h e r e are more than three
batches of data, ten batches for instance, the lag between Corrlputer 3 and
Computer 1, will be l a r g e , bu t in a n y c a s e , Computer 1 will never be able
to ove r run Computer 3 . When all p a s s e s have been m a d e throbgh all the
data, the exit from each of the l o o p s mus t provide f o r one l a s t count which
will allow the fQllowing machines to pass over the same data.

10

At this point, we have introduced the bas ic method 6q which a complex
of computers may be brought to bear on a given problem if the problem
satisfies cer ta in conditions. The priricipal condition that such a problem
mus t satisfy is that it m u s t be possible to solve the problem by dividing up
the work of the solution such that the various p a r t s follow each other in a
fixed sequence. If this is possible, then a computer m a y be assigned to
compute each pa r t of the work, and the sequence of the computers will be
the same as that of the various parts of the work . Therefore , in o r d e r to
guarantee a c o r r e c t solution, i t is only necessa ry to make sure that suc-
ceeding Computers do not overrun each other. It is not necessa ry to keep

----t--.--

the lag between machines to a minimum, bu t i t is desirable ta do so. The
method outlined in this writing wil l not minimize the time required €o r a
solution, but it will guarantee the correctness of the solution.

-If one has a problem whose solution cannot be broken into a sequence
of p a r t s , t he re is a n extension of the method descr ibed here t ha t will
relax cer ta in of the requi rements imposed he re , but it still will not allow
the general case to be solved. This variation will be covered in P a r t 11,
along with a discussion of multiplexed Input/Output consideratiions.

