P g

A Method of Multiplexing Computers I Dec 1958
Part I ' : ' . John Griffith

Several years ago, Dr. Gene Amdahl proposed a method of interlacing
two instruction sets in the same computer. The scheme was originally pro-
posed for the Stretch machine, but was never used. This scheme, plus a
large measure of understanding supplied by Turing's v‘vork, has been trans-
formed into a method of controlling two or more computers which are work-
ing on the same problem.

This method of controlling multiplexed computers will not work for any
problem, bat it will work in many cases that are of present day interest.
Basically, it provides a means for allowing two computers td cooperate on, ,
the solution of a given problem. The technique itself is one that Turing used
in his famous ""Universal'' machine; namely, the technique of using a !'scratch
pad, " or eraseable memory, to make marks on,which serve to keep track of
one's place during the solution of the problem.

The effect of this method is to give two computers a little more feeling
of togetherness while they compute the answer to the given problem, and
this feeling is necessary to cooperation between two brains, as we all know.
As the Ladies Home Journal is the magazine of togetherness, &o is this
writing the memo of togetherness.

Pasaing now to the particular idea of accomplishing cooperation between
two computers, we will first outline an idea and some of the theory behind
its operation, then proceed to its execution and ramifications.

The usual method of causing two computers to talk to each other so that
- one computer may find out what the other is doing is to use binary triggers
which may be set or interrogated by either machine. These triggers, or
selectors, as they are usually called, are so arranged that some particular
piece of information is assigned to each one at some particular time, and the
process of interrogating and setting by either machine may be taken to be
completely general. The only trouble is that this method does not lend itself
easily to the real time aspect of cooperation between machines, and thus, it
is usually necessary for the computers involved to measure time in some
manner such that the information conveyed by the condition of the selectors
may be superimposed upon the demands of the programs being executed.

The idea herein presented varies from the selector approach by replac-
ing selectors, which can take on either of two values, by counters, which can
take on any of many values. An important distinction between the two is that
the counter method will allow the measure of relative time, as defined by two



-’

machine programs. It is difficult for selectors to measure time, "or anything
else that cannot be easily identified with two values. Let us now proceed to
a simple example of this idea.

Program #1 I Counter ! Program #2 (Counter cannot
count below zero)
1. 1.
. 23
3,
4.T
5 5

! FIGURE 1

72—
S U R lo.,. =
!

L R S :

Figure 1 shows the idea in its simplest form. We may assume that we
have two computers operating on the same data in the same memory box.
Furthermore, the program in machine #l must operate on the data before the
program in machine #2 gets to it. The two machines will be distinguished by
the Program 1 & 2 notation in the Figure. Suppose that, in addition, a
counter is connected between the two machines in such a manner that it is
counted up by one whenever a certain bit occurs in an instruction in Program
#1. Suppose also that the same counter is counted down by qpe whenever a
certain bit (reserved for this purpose, as in machine #1) occurs in an instruc-
tion in machine #2. Suppose, also, that this counter is constructed so that it
cannot count below zero; in other words, it can contain only positive numbers.
We now wish to make certain that machine #2 can never get ahead of machine
#1 in the execution of the program in machine #2.

This will be done by observing those places in the two programs where
it is absolutely necessary to prevent machine #2 running ahead of machine #1.
(We will assume in this example that there is no limit to the extent which '
machine #1 can precede machine #2). Wherever such places occur, we mark
the corresponding instructions with the special bit reserved for this purpose.
In the example shown, Program #l has instructions 3, 7, and 11 marked.
Program #2 has instructions 2, 5, and 10 marked. An arrow is used here
for the mark to indicate the direction of counting. We may now say that the
requirements for this example are that instruction 3 in Program #l must be
executed before instruction 1 in Program #2 is executed. The same is true
for instruction 7 in Program #l and instruction 5 in Rrogram #2; likewise for
instruction 11 in Program #1 and instruction-10 in Program #2.

2



It will be seen that in the execution of Program #1 the counter will be
counted up by one whenever a marked instruction is encountered and the
counter will be counted down by one whenever a marked instruction is en-
countered in Program #2. Suppose that we were to start up the two machines
simultaneously with the two given programs in their respective memories.
The value in the counter is zero. At this point, machine #2 would do nothing
because the counter cannot be counted below zero, but there is nothing that
would prevent machine #1 from proceeding normally. As soor as machine #1
has executed instruction 3, the counter would be counted up by one, thereby
allowing machine #2 to count it down to zero. This act will allow machine #2
to proceed until it encounters instruction 5. If, at this time, machine has exe-
cuted instruction 7, the counter will register a éount greater than zero and
machine #2 will count it down as it proceeds. If, when machine #2 arrives at
instruction 5, the counter is still at zero, machine #2 will stop and wait for
the counter to be counted up by one.

If machine #1 proceeds much faster than machine #2, the counter will
contain a value higher than one. This value is somewhat of a measure of
how far machine #2 lags behind machine #1. This is what was meant in the
previous reference to the ability of a counter measurmg the relative time
between the execution of two machine programs. Notice that in the example
given, machine #1 is a free running machine and machine #2 is free running
until it threatens to pass up machine #1. The coupling between the two
machines is completely specified by the marks on the appropriate instruc-
tions, and these marks allow any degree of coupling desired. Notice also
that if this idea were to be carried out with a selector instead of a counter,
it would be impossible for machine #1 to precede machine #2 by any great:
amount. Thus, the value of the selector is limited because it cannot contain
a variable measure of the lag between the two machines.

At this point, it may be well to indicate the obvious analogy with con-
versation between machines. It cam be seen that the use of selectors in
this example are nothing more than the narrow bandwidth communication
channel between machines. The counter is nothing more than a wider band-
pass channel, and thus,.it is not surprising that it is able to prowde better
communication between the machines.

We will now proceed to another example, this one a variation of the
previous example.: This example will be concerned with three machines
working on the same problem, but otherwise like the first example.
Figure 2 illustrates this variation, .-

A




FIGURE 2

A vV

This time we have three computers working in sequence on the same
data. Computers #1 and #2 operate as before, and the addition of Counter 2
allows Computer #3 to work on the data after Computer #2 is finished with
it. Counter #2 is counted up by marked instructions in Computer #2 and is
counted down by marked instructions in Computer #3, In addition, Counter
#2 can only be counted up. as in the case of Counter #1. Thus, Counter #2
prevents Computer #3 from preceding Computer #2 in exactly the same man-
ner as Counter #1 prevents Computer #2from preceding Computer #l in
previous example. It may be seen that a marked instruction iniComputer #2
affects two counters; such an instruction causes Counter #1 to oe counted down
at the same time it causes Counter #2 to be counted up. By extension, it may
be seen that this idea may be extended to any number of computers working
on the same problem if the conditions of the problem are as described in
Example #1. Next, we will take up a variation introduced by a more compli-
cated and more realistic example.

This example concerns the recursive nature of programs. Figure 3 -
illustrates the situation.

Prog. 1 Prog. 2
>

Counter

P S— pGeon2

FIGURE 3

L . TIX X TIX



The complication included here is that the two programs are formed as
loops and it is desired to control the two machines so that Computer #2
follows Computer #1 by one execution of the loop in Computer #1. In
other words, we desire that Computer #2 work on the data used by
Computer #1 only after Computer #1 is through with it. There is nothing
new about this requirement, but the fact that the programs are in the form
of loops and not open-ended sets of instructions puts an additional require-
ment on the counter system. This new requirement comes about in the
starting procedure,.

If, in this example, the two compuiers were already running, the
situation would not be greatly different from that of Example #1. However,
in order to get the situation displayed in Figure 3 going from scratch, it
is necessary to introduce a special command. This command is indicated
at the beginning of Program #2. The command is ""Go on 2. '" This com-
mand is obviously a variation of the indicator bit - which occurs on the
instructions themselves. Except that this command affects the time at
which the succeeding program steps will be allowed to proceed. In this
case, the '""Go on 2" command will not allow Computer #2 to proceed until
the count of 2 (or other specified value) appears in the Counter. When the
specified count is reached, the Counter is counted down by the amount of
the count, and by this means the lag between Computers 1 and 2 is main-
tained at one loop execution. If the value specified by the instruction in
Computer 2 were 6, the relative lag between the two machines would be
five loop executions.

Clearly, this command is nothing more than a bias mechanism which
introduces a measure of control on the contents of the counter. In the last
case, where the '""Go' instruction specified a value of 6, Computer 1 would
be working on the sixth execution of its loop while Computer 2 would be
working on the first execution of its loop; thus we say the lag is five, the
difference between the cycles of execution of the two computers. It isalso
clear that the lag between the two machines can never be less than five, al-
though it may be as much more as necessary, and would be lirnited, in this
example, only by the size of the counter.

Another way of accomplishing the same thing would be to have the
value specified by the "Go' command retained by the Counter in such a
manner that the lowest possible value which would be allowed would be the
value specified, in the last case, 6, until another instruction were en-
countered which changed the value up or down. This method of introducing
bias lavel on the counter may be better, for it allows one to manipulate the
counter contents in a more general fashion by allowing the programmer to
set the virtual zero of the system at any real value of the counter he pleases.

5



L

When we mention the possibility of manipulating the contents of the
Counter, we may also guess that we will wish to add to our system com-
mands which increase and decrease the contents of the Counter independ-
ently of any other action taken by the Computers. We will likewise want
the ability to compare, test, and read out the contents of the Counter as if
it were any other register of the system. At this point, the reader may
wonder what is different about the Counter if all of these things may be done
to its contents. The answer is nothing, of course. The Counter merely
serves as a scratch pad so that one computer may know where it is rela-

tive to its precedent computer.

We will now pass on to Example 4, which is the extension of Example
3 to the case of three 6r more machines. The conditions of the problem
are the same, and we wish to give nothing more than the illustration of

the starting procedure for this case.

Prog. 1 Ctr. 1 Prog. 2 Ctr. 2

] ]

| S

|

TIX TIX

e —————————— o st

Proyg. 3

> ’F———-—————-—— S bﬁ'——-—ﬂ-a" 2} T l-, > \bﬁikb__é_

TIX

FIGURE 4

When Computer 1 starts, it will cause Counter 1 to be counted up by
one. The "Go" instruction at the start of the routine in Computer 2 will

prevent Computer 2 from starting until the count in Counter 1 is two.
When Computer 1 begins the second pass of its loop, the contents of

Counter 1 will be counted up by one, making the total two.

The '"Go on 2"
command in Computer 2 will therefore subtract two from the contents of

" Counter 1 and allow the execution of the program in Computer 2 to proceed.

At the same time this action occurs, Computer 2 will cause Counter 2 to
be counted up by one. When Computer 2 starts its second pass, the contents

of Counter 2 will be counted up by one, making the total two.

Computer 3

will therefore start up, and at the same time, two will be subtracted from
the contents of Counter 2. At this time also, some indication must be made,
either in the instruction itself, or in hardware that the '""Go' instructions are

to be executed as '""No Op' until the indication has been reset.

The counting

function of the "Go' instructions will, however, continue (as usual for any

6



other instruction).

between each machine's execution cycle.

counter will hold up the rest of the chain until it is safe to proceed.

The net result, will be that the three computers will
be executing their respective programs (loops) with a lag of at least one
Note also, that it is quite impos-
sible for the machines to overrun each other, for the zero count in either

For the example shown, it is also clear that as many computers may
work on the data as is possible, if a counter is inserted beiween each pair
in the chain. It should also be noted that the lag between any two machines
may be set at any value, or number of loop executions, that is desired.
The bias, mentioned above, will remain at the lowest value sect, and this
will effectively prevent the various loops being executed in the various

machines from getting too close to each other.

A praciical example of

the case chosen here is the usual I/O operation where one wishes to read
from a tape, operate on the data, and write the updated data back out on a
new tape without worrying about synchronizing the program loops.
is more to be said about such an example, but we will defer it for a later

memo.

There

Before we leave this example, we will discuss a variation on the

hardware logic used.

The reader may have noticed that the values given

in the ""Go'" instructions were relative to the Computer cycle preceding
One may ask, is this the best way? Why not use an
absolute value system starting with the first machine in such a chain?
There is no way to determine the best way, for it depends on the exact

the given machine.

nature of the problem being solved.

also be implemented, and we will refer to it in Example 5.

- Prog. 1 Ctr. 1

—> [‘—_

TIX

Prog. 2

TIX

Ctr. 2

I

Progé. 3

In any case, the absolute systerm may

FIGURE 5

It will be noticed that the only change has been to change '""Go on 2" in

Computer 3 to '"Go on 3. "

that of Example 4.

The hardware works somewhat different from

At the beginning, when Computer 1 starts, Counter 1

7



is counted up by one. Computer 2, which is waiting, immediately counts
Counter 1 down by one and Counter 2 up by one. When Computer 1 begins
its second pass, Counter 1 is counted up by one. Computer 2, which is
still waiting, immediately counts Counter 1 down by one and Counter 2 up
by one. At this time, since Counter 1 has been counted up and down a total
of two, Computer 2 proceeds. When Computer 1 has begun its third pass,
it will count Counter 1 up by one, and when Computer 2 begins its second
pass, it will count Counter 1 down by one and Counter 2 up by one. At this
time, a total of three will have been counted up in Counter 2, and Computer
3 will proceed. If the computers are to maintain the given relationship,
Counter 1 must not be counted below one, and Counter 2 must not be counted
below two. This implies that some additional hardware would be needed to
establish and hold bias levels in the counters. However, this alternative
_may be justifiable for some problems. ‘

One might also notice a slight difference between the operation of the
two alternatives illustrated in Examples 4 and 5. In the case of Example 4,
each machine must wait until its precedent had started before it could
start. In Example 5, each time a machine starts up, there is an immedi-
ate rippling of the count across all the counters in the system. This implies
that any computer in the chain may start up on any cycle after the initial
Computer has begun its cycling; however, it is still necessary that the ma-
chines execute their cycles after the preceding Computer, therefore, the
effect is still the same as if the values used were relative to the precedent
Computer instead of the starting Computer. However, there is a variation
of this arrangement which is somewhat more flexible and powerful, and
this variation requires the absolute, or relative to the starting Computer,
values to be used in the Counters. At this point, however, the excursion
would be too far from our present line of thought, and it must wait for a
later discussion.

To summarize briefly, Examples 4 and 5 illustrate the logic of start-
ing and maintaining a minimum lag between Computer execution cycles for
the case of simple recursive programs in each machine and for the case of
more than two computers in the chain. A variation in the method of speci-
fying lag was covered: there are two ways of specifying the lag, either spe-
cifying it relative to the precedent computer (Example 4) or specifying it
relative to the starting, or first computer in the chain (Example 5).

We will now extend the line of thought indicated by these two examples
to a more complicated case. This case has as its salient feature a higher
level of recursiveness than either'of the two preceding examples. We may
take the case shown in Example 5 with the additional requirement that the
programs in each of the computers have both inner and outer loops.

8



In particular, the loops pass over the data used by the precedent computer.
The important change in this example is that the chain of computers is a
closed loop, not an open loop, as in all of the previous examples. In other
words, Computer 1, in this example, will have Computer 3 as its prece-
dent, once started, and the effect will be that of a clased loop of computers
operating in order on a closed loop of data. In the previous examples, the
chain of computers was an open loop of machines operating on an open loop
of data. In this example, we have the additional condition that; Computer 1,
when it arrives at the end of the data, will then start over on the same data,
but we must provide means for preventing Computer 1 from o;jerating on
the data before Computer 3 is through with it. This example iB somewhat
more realistic, than some of the past examples, as the reader will realize,
for when Computer 1 starts the second pass on the data, the data may have
been replaced, with new data, and it is still necessary to make sure that
Computer 1 does not overtake Computer 3. In any case, the process
described is a common one, although the exact treatment of the data between
Computer 3 and Computer 1 passes may vary. We may easily modify this
example to take into account the replacement of the data between passes by
Computer 3 and Computer 1, by proposing a fourth Computer to be inserted
between Computer 3 and Computer 1 whose function is to replice the data
after Computer 3 is through with it. But input-output discussions will be
held for a later memo, as promised above.

Another aside has been introduced by the previous sentence. The
reader may have noticed that the theory underlying the idea presented in
this memo may be illustrated by imagining that a complete computer is
available to solve each of the various parts of a problem to be done. For
instance, we may propose whole computers assigned to the function
actually taken by a subroutine. The problem is then: how does one con-
nect the various computers so that the problem will be solved correctly ?
The answer to this question cannot be given in this memo, as it is probably
an unsolvable problem. Another question: Can a complex of computers be
devised that will solve a given problem ? The answer to this is yes, as
long as the complex satisfies certain conditions. But we are driftingaway
from the example at hand, and must defer questions of this sort until later.

To return at last to the example promised, Example 6, we see in the
diagram that an extra Counter has been added.



— ig'_"__‘i'_"__Q_T ’ﬁM) Qo on 2 /r —p JI&'Q owé

P 5 T
{ e

e R,

—— FIGURE 6

TIX TIX _ TIX |

This example assumes the same conditions as before with the Counters
retaining values (lags) in the '"absolute'' system or referred to Computer 1
as the origin. It should be noticed that Computer 1 now counts Counter 3
down as it counts Counter 1 up. This feature closes the loop of machines,
and allows the whole chain to operate on data in a recursive fashion. The
starting commands operate as usual, except that "Go on 0" in Computer 1
refers to the contents of Counter 3. In this Example, the contents of the

Counters are held as bias levels or lags between respective xﬁachine cycles.
Thus, when Computer 1 starts its second pass, Computer 2 will start its
first pass. When Computer 1 starts its third pass, Computer 2 will start
its second pass, and Computer 3 will start its first pass. This will get the
chain started, and as Computer makes its passes over the data Counter 3
will be counted up. When Computer 1 gets ready to operate on the data .
finished by Computer 3, Computer 1 will count down Counter 3 as it does so.
Notice that Computer 1 may not start its fourth pass until Computer 3 has
finished its first pass. Thig is an interpretation of the present Example,
for we assume, for simplicity, that there are only three batches of data to
be worked on, and that the order for each machine will be batches 1, 2, 3,
1,2,3. . . etc. Thus, Counter 3 interlocks the chain such that Computer 1
cannot start its second pass over data batch 1 until Computer 3 has fin-
ished its first pass over the same batch. If there are more than three
batches of data, ten batches for instance, the lag between Commputer 3 and
Computer 1 will be large, but in any case, Computer 1 will never be able
to overrun Computer 3. When all passes have been made through all the
data, the exit from each of the loops must provide for one last count which
will allow the f@llowing machines to pass over the same data.

10



At this point, we have introduced the basic method by which a complex
of computers may be brought to bear on a given problem if the problem
satisfies certain conditions. The principal condition that such a problem
must satisfy is that it must be possible to solve the problem by dividing up
the work of the solution such that the various parts follow each other in a
fixed sequence. If this is possible, then a computer may be assigned to
compute each part of the work, and the sequence of the compuiers will be
the same as that of the various parts of the work. Therefore, in order to
guarantee a correct solution, it is only necessary to make sure that suc-
ceeding computers do not overrun each other. It is not necessary to keep
the lag between machines to a minimum, but it is desirable to do so. The
method outlined in this writing will not minimize the time required for a
solution, but it will guarantee the correctness of the solution.

-If one has a problem whose solution cannot be broken into a sequence
of parts, there is an extension of the method described here that will
relax certain of the requirements imposed here, but it still will not allow
the general case to be solved. This variation will be covered in Part II,
along with a discussion of multiplexed Input/Output considerations.





