Example of Use of Hamming Error Correcting Code

Given an 8 bit number with 4 checking bits

 $X_0X_1X_2X_3X_4X_5X_6X_7$

C₀C₁C₂C₄

The four check bits are parity checks selected in such a way that an error in any bit (including the check bits) gives a unique pattern.

For 8 bits the check bits are chosen to give odd parity for the following combinations:

Co for bits	$x_0 x_1 x_2 x$	3 X4 X5	X6 X7
C1 for bits	$\mathbf{x_1}$ \mathbf{x}	3 X5	x_7
C ₂ for bits	x ₂ x	3	X6 X7
C4 for bits		X4 X5	X6 X7

For Example take the word: 10110100

The check bits are

 $C_0(10110100) = 1$

C1(0110)

C₂(1100)

C4(0100)

Suppose that bit 2 is in error so that the number is read 10010100 with checks bits 1110, the parity yields:

 $C_0'(10010100) = 0$

C1'(0110)

C2'(0100) = 0

= 0

C4'(0100)

on comparing these against the check bits, the fact that the Co's differ indicates that there is an odd number of bit-inversions in the word. If there is only one, the pattern of C's changed gives the number of the bit which is to be corrected is as follows:

Check bits differing				
C4	c ₂	C ₁	c	Bit Wrong
0	0	. 0	0	no error
0	0	1	1	\mathbf{x}_1
0	1	0	1	x ₂
0	1	1	1	$\mathbf{x_3}^-$
1	0	0	1	$\mathbf{x_4}$
1	0	1	1	x ₅
1	1	0	1	x ₆
1	1	1	1	$\mathbf{x_7}$
0	0	0	1	Cn
0	0	1	0	C ₁
0	1	0	0	C_2
1	0	0	0	C ₁ C ₂ C ₄
0	1	1	0	<u> </u>
1	0	1	0	Double
1	1	0	0	(Errors
1	1	1	0	J

The double errors are detected but cannot be corrected.

The same scheme used for the 64 bit words in STRETCH requires 8 check bits.