Wi e e B

A

A >

Ho dstty

STRAP 1

by
e SN Louis Gatt

Zane Motteler
Grover Lewis

ras
v 4

flcec = = [} Frank Evans

Dick Thomas

jt
2

[

!’5‘ B =
- - s = -

7
/1
&

c:z8'™

',

GENERAL

Strap 1 is a program for assembling symbolic programs for
Stretch, utilizing a 32K 704. It is a predecessor to Strap 2, which
will utilize the Stretch machine itself for assembly. All programs

which can be assembled by Strap 1 can also be assembled by Strap 2.

1. STRAP CODING FORM

The coding form and the card form are divided into L fields.

These fields and their positions are shown below.

1 2—-9 (10 : 71|72 - 80

Col. Class Name Statement Identification

The purpose of each field is:

1. Class (1 column) - to identify the card format (binary, decimal,
symbolic, etc.).

2. Name (8 columms) - to identify the statement by a symbol (optional)

3. Statement (62 columns) - to express a machine or pseudo-instruction

k., Tdentification (9 columns) - to identify the card or program (does

not affect assembly)

2. INSTRUCTION FORMATS

2.0. General

Machine instructions are written and punched symbolically in
the statement field of the form described above. A card may contain
seversl instructions separated by ‘ﬁl (The keypunchers will be instructed
to punch this symbol as 11-O double punch.) The number of instructions
which may be punched on a card is limited by the number of columns avail-
able in the statement field. The symbol in the name field of a card
having more than one instruction in fhe statement field is associated
with the first instruction. The remaining instructions are treated as if
they appeared on separate cards having blank name fields. (It is not
necessary to name an instruction unless it is referred to in the program.)
A single instruction cannot be continued from one card to another. A
comment may follow any instruction. A comment is initiated by the symbol
' (an 8-4 double punch) and terminated either by the end of the card or
a <. A ' in the name field causes the whole card to be treated as comment;
it will be printed on the listing but will not otherwise affect assembly.

Symbolic instructions are divided into subfields (e.g., operation,
address, offset, etc.) by commés. These subfields may in turn be sub-
divided or modified by expressions contained in parentheses, such as index
register specifications, secondary operations in progressive indexing,
etc. Three general classes of operations can be defined in Strap 1:
legal machine operations, data-entry psuedo-operations, and instructions-

to-the-compiler pseudo-operations.

201

Machine Instructions

Format Operation

1. OP(dds), AlB(I) Floating point

2. OP,A19(I) Miscellaneous, unconditional branch, SIC
3. OP, J, Al9(I) or OP, J, A18(I) Direct index arithmetic

4. op, J, A19 or OP, J, Ajg Immediate index arithmetic
5. 0P, J, 319(K) Count and branch

6. OP, Bl9(K) Indicator branch

7. OP, (OP2)(dds), AQM(I),OF7(I') VFL arithmetic, connect, convert
8. op, J, AlB(I), Ai8(I) Swap, transmit full words
9. OP, Jg, A19(I), Ai9(I') Transmit half words
10, OP, A2u(I), Blg(K) Branch on bit
11. op, 10(1I), CWi8(I') Input-output select
l2. Lvs, J, A, A', A", A™ e-. Load value with sum

2.2 Data Entry Instructions

Format Operation

1. (EM)DD(dds), D, D',D", ... Data definition

2. cw(opg), FWA, C, R Input-output control word
5. XW, V, C, R, O-7 Index word

4, VP, F Value field

5. CF, C Count field

6. RF, R Refill field

7. EXT(L, L') any legal instruction Extract

2.3 Instructions to Compiler

Format

Operation

1. syn(dads), A,

2. DDI(dds), D

3. SIC, A,
L. END, Big

5. DR(dds), (L, L', L",«-+)
6. CNOP, Al9(I)

7. TILB, B

19

Synonym

Date definition for immediate op
Set location counter

End of program

Data reservation

Conditional no-op

Terminate loading and branch

2.4 The format symbols used above are defined as follows:

1. OP or OP A fixed symbolic (hopefully mnemonic) representation

1

of a machine operation.

2. 0P A secondary operation in progressive indexing or

input-output.

3. A.n A dsta address of length n bits.
L, Bl9 A 19-bit branch address.
5. I A 4-bit index address in which O signifies no

indexing and 1 to 15 signifies indexing by the

corresponding index register.

6. K A single bit index address in which the choice

is O--no indexing, or 1--index with register 1.

7. J A 4 bit index address which refers to an index

register as an operand. In this case O refers to

index O, word 16. J = 5 bits in immediate transmits.

wmmuunmmnmmmunuuunnunuuunllnmMnl!MwuMMMﬁ-"'H"H"'"'H"'ﬂ"'HH"HUﬂlﬂﬂﬂﬂ"ﬂ"ﬂﬂlﬂlﬂﬂﬂﬂnﬂﬂﬂﬂﬂﬂ'“““'"““"”"“"”

8. CF Offset.

T
9. IO Input-output unit address.
10. CwW g Control word address.
11. EM Entry mode.
l12. D Numerical data.
13. FWA First word address of words to be transferred in
input-output operstion.
ih., ¢ Count field (18 bits, unsigned).
15. R Refill field (18 bits, unsigned).
16. V Value field (25 bits, signed).
7. L~ Symbolic or numeric integer.
18. dds Data description.
19. primes Used to distinguish otherwise identical fields

in a format. TIn transmit the data is transmitted

from A to A'.

3. Data Description

In the format specifications above, the symbol dds is added as
a modifier to certain operations and stands for the data description field.
It is specified by:
i. M the use mode,
2. FL the field length,
3. BS the byte size.
These three entries appear within parentheses in the above order, thus;

(M, FL, BS). A data description given with any of the four pseudo-ops,

DD, DDI, SYN, or DR, applies to the symbol in the name field of the card -
and is automatically assumed whenever that name appears in an address
field of an instruction. This data description may be overruled by writing
a different dats déscription explicitly as a modifier in the two machine
“instruction formats where it applies. There are seven fixed mode degig-
nators as follows:

l. N Normalized floating point,

2.‘ U Unnormalized floating point,

3. B Binary signed VFL,

4. BU Binary unsigned VFL,

5. D Decimal signed VFL,

6. DU Decimal unsigned VFL,

7. P A sbecial character designating "data properties of."
Within a data description field the byte size or field length may be
omitted, but never the mode. If byte size or field length,vor both, are
cmitted, the mode will imply the missing part of the data description as
follows: |

N fixed format of 64 bits; field length and byte size

} not appropriste,
B FL = 64 BS = 1,

BU FL = 64 BS = 8,

D
FL
DU

Note: Some pseudo-ops (e.g. DDI) imply FL # 64. See description of

64 BS

[}
=

individual pseudo-op for details.

Wmunmmnmunnmnnunnnwnnununnuuunnnnumumnnnmnnunnumn-nunn-mnu-nmunu-nnnTmmumnnmnmnnnnmnnnummwmnummnmmnn

A data description using P.is written as follows: (P, Symbol).
It means that the data properties associated with the given symbol are to
apply to the instruction with which it is written. P can be used only
with legal machine instructions, never with a pseudo-op.

In straightforward coding it 1s unnecessary to write a dats

description on machine operations. The data description associated with|
the definition of a symbol (in a data-entry or data-reservation pseudo-op)
is automatically applied to the machine operation in whose address the
symbol appears. If a data description is given on a machine operation,

it overrules any data descriptioﬁ derived from tﬁe symbolic address.

Cases can arise from programmer errors in which a data descrip-
tion and operation are not mutually consistent. 1In this case the opera-
tion will overrule. If there is no way to obtain a data description
from the symbolic address or from an explicit data description field,
three cases arise.

1. The operation symbol can stand for either floating point or
variable field length operations (e.g., +, -, *, /). The operation is
assembled as VFL with data description (BU, 64, 8).

2. The operation symbol can stand for VFL only (e.g., M+l). Tt
is assigned a data description (BU, 64, 8).

3. The operation symbol can stand for floating point only
(e.g., +A, *NA). The operation is assembled as normalized floating
point, except E+I and its modified forms, which are unnormalized unless

overruled.

An error mark will be printed in any of these cases.

4. Strap 1 Location Counter

Cards are read in sequence, and the number of bits needed for
each instruction or piece of data is added to an assembly location counter
in order that each instruction or datas entry may be assigned an address.

A principle of rounding upwards is followed, guaranteeing that an in-
struction, value, count, or refill will begin exactly on a half-word
address and that index words, control words, and floating point data

will begin only on full-word addresses. The SLC pseudo-operation pro-
vides a means of setting the assembly location counter to any value at
any point in a code, and thus gives the programmer complete control of the
location of his code. Following an SLC, the location counter is advanced

in normal fashion until another SLC card resets it.

5. Symbols
A programmer symbol is any sequence of six or fewer alphabetic

and numeric characters, the first of which must be specifically alphabetic.
Such a symbol is defined by the programmer and may represent a mgchine
address of not more than 24 bits plus a sign, or a signed integer of not
more than 24 bits. A symbol is defined when it appears in the name

field of a card. Hence a given symbol may appear in the name field only
once. The name of an ordinary machine instruction or data entry pseudo-
operation is set equal to the value of the assembly program location counter
at the point of its appearance in a code. There exist special pseudo-
operations capable of defining a symbol as an address or an. integer

independently of the location counter.

A system symbol consists of a dollar sign followed by five or
fewer alphabetic and numeric characters. System symbols represent various
special registers, indicators and input-output units. Their meaning is
fixed by the assembly program and is not subject to programmer control.

A programmer symbolized field is a field which may contain
programmer symbols and/or system symbols. Of the fields shown in the
instruction formats above all may contain programmer symbols except OP,
OPl, OPé, EM, D, and the mode field of a data description. All others
may be symbolized by the programmer subjJect to the rules and restrictions

given below under the heading Address Arithmetic.

6. General Parenthetical Integer Entry

By means of the general integer entry any integer or arbitrary
pattern of bits may be stored in any position of an instruction or data
entry field. This type of entry may not be used with the pseudo-ops
classified as instructions to the compiler. The format for general integer
entry is: (‘n)Ah+l' It is a modification which may be appended to a D
field or to any programmer symbolized field (or in place of such a field)

which is not enclosed by parentheses. (Thus, for example, FL and BS

fields cannot contain a (.n) entry.) The integer n is the number of the
rightmost bit of the parenthetical field. The address An+l is formed as
an unsigned n+l--bit field and added to the instruction or dats field by
means of a logical "or" in the leftmost n+l--bits. Subfield boundaries
are ignored by general integer entry. The position of the entry is de-

termined by counting the bits of the whole instruction field no matter

which subfield the integer entry may happen to be appended to. Thus,

+1’ OF7

is exactly equivalent to OP, Agu(I)’ OF7(‘n)An+l' In the case of a DD °

for example, in a VFL instruction so modified, OP, Aéu(I)('n)Ah

pseudo~-op the position of the parenthetical field is determined by
counting the bits of the field, D, with which it is written. In any
case the general integer entry must follow all other information in the
field or subfield in which it appears, except for another general inte-
ger entry. Although one entry could be made to serve in any single
instruction, it is more convenient to write several differenﬁ integer
entry specifications when one wishes to place numbers in various places
in a field. Therefore no limit is set on the number of consecutive
entries which can be written together, except as imposed by the length
of the statement field of the cafd. Ir Ah+l is negative, an n+l--bit
2's complement is taken. The maximum size of n is restricted by the
total length of the instruction or data field,lm.‘ 0<€n<m. For example,
in a half-word instruction 0Sn<3l; in a fﬁll-word instruction 0<n<63.
The radix of A .1 may be specified as mentioned below under "Radix

Specification.”

T. Multidimensional Arrays

Strap 1 provides a convenient method of defining hultidimensional
arrays of data and of addressing individual elements of an array. All
indexing, of course, must be handled explicitly by the progremmer. A
symbol is defined as the first element of an array of n+l dimensions by

virtue of its appearance in the name field of a datd reservation statement

10

"‘Wm‘mm

of the following sort: DR(dds), (L, L', L",+s~, L'). This statement

is interpreted as reserving space for an L x L' x L" x «+s x rF array

of data fields. A number of bits equal to the field length of each

element multiplied by the product of the dimensions is set aside for

this array and the location counter advanced accordingly. (If the data
description specifies floating point words, the correct number of full
words is reserved, beginning at a full-word boundary.) In addition the
number and value of the dimensions is permanently associated with the
symbol so defined. Then in any address field a specific member of this
array may be addressed by writing: Symbol (g, q', q",---, aF). The

first element of the array is Symbol (O, O, Oye-, 0) = Symbol, and

the last element of the reserved space is Symbol (I-1, L'-1, L"-l,-v-,Lr-l).
The address of an arbitrary element is computed by means of the formula:
Address of [Symbol (g, q', @",-+, q")] = Address of [Symbol (0, 0, 0,-+-,0)]
+ FL x (q+q'L+q"LL'+q " LL'L"+ +-.), where FL is the field length of an
element in the array. Strap 1 will handle a maximum of fifteen dimen-

sions in this fashion. Such an array address may be used in any program-
mer symbolized field not in parentheses, except a general parenthetical

integer entry.

8. Bit Addresses and Integers

8.0 Definition
Two kinds of numbers have been defined for use in the program-
mer symbolized fields of Strap statements. A bit address is a style of

writing a machine address by specifying n., & number of full 64-bit words,

11

and n, a number of bits. The format is n - nb. The period separsating
the two integers distinguishes the bit address from an ordinary integer
N, which is the second kind of number allowed to appear in address fields.
As the name "bit address" implies, these numbers are converted to and
carried as 2Lh-bit binary integers such as are appropriate to the address
fields of VFL instructions. When used in the address field of instructions
for which a shorter address is appropriate a bit address is truncated to
the correct length and inserted. The location counter contains a bit
address. There i1s no limit on the size of the numbers n. and n, except
that 6ln_ + n must be less than 2%, |

Exsmple: 505.17 = 500.337 = 0.32337

Integers in programmer symbolized flelds are always converted
to binary. They are limlted in length to the length of the field into
which they are to be inserted, with the additional restriction that an
integer larger than 24 bits cannot be symbolized.

Bit addresses and symbols for bit addresses are intended pri-
marily for use in address fields of machine instructions. Integers and

symbols for integers are intended primarily for use in fields for which

they seem more appropriate, counts, shifts, field length, byte size, etc.

8.1 Addition of Integers and Bit Addresses

Although it is expected that integers and bit addresses will
generally be used in different fields, éddition of the two types. of
numbers is defined, the result being a function of the type of instruction

field for which the number is intended. Algebraic addition is permitted in

N

12

all fields which may be symbolized by the programmer. Symbols for both

bit addresses and integers are signed numbers. The number of terms which

may appear in a field is limited only by the space available on the card,

except for the case of SYN and DR, noted below in sections 10.0 and 11.0.

Example: SAM - JOE + FRED - 72.386 + 5,
where SAM and JOE are defined as bit addresses and FRED is an integer,
will in general be a legal address. The data description of the final
symbol, FRED, will apply to the whole combination. In computing such an
address, the sum of the bit addresses is obtained separately from the
sum of the integers; the bit address sum is then trunceted on the right
if necessary and the result added algebraically to the integer sum. If
the field for which the address is intended is signed, the sign will be
placed in the correct bit. If the final result is negative and the n-bit
field for which it is intended is unsigned, a 2's complement is
formed and inserted, except in the case EXT (L, L') where ILI and |L'
are used. A positive final result, of course, is inserted as a true
figure. The programmer is reminded that a 2's complement must be used
with care on Stretch in order not to get an "address invalid" indicsation.

Either a bit address or an integer or a combination of the two

may aeppear in any programmer symbolized field with only four restrictions:

1. The "I" or "K" index fields must contain at
least one bit address term.
2. The entries in an array specification must

not contain any bit address terms. (In

13

EXT (L, L'), (L, L') is not considered an
array specification.)

3. A period may not éppear in the field of a
general integer entry. A symbolic bit
address appearing in such a field is treated
as a 24-bit integer.

k., No arithmetic can appear in the name field,

which is reserved for defining symbols.

.2 Rules for Combining Integers and Bit Addresses

The following rules describe the method by which bit addresses
and integers are truncated and added. The numbers are assumed to be signed
ol-bit integers before the operation. Addition is algebraic. An error
indication will be given if non-zero bits are discarded, except for the
"16" bit of an index field. In the diagrams below integers and bit addresses
are drawn shifted with respect to each other by the proper amount. The
numbers are algebraically added with the offset shown, complemented (if
necessary), truncated (if necessary) to the correct final length, and
inserted into the correct position in the operation word. Although the
diagrams show the final sum field truncated to the appropriate length, the
bits are not actually discarded unless they would fall outside the addrecss
field of the instruction. Some operations do not use all the space available
in their address fields (e.g. transmit, input-output select), and in these

coses bits may be placed in the unused portions by this means.
I

1. AQ“ Bit address: B.A. 24 bits
= |

I. 2 bits

Sum 24 bits

Note: Integer counts bits. , |

1L

Al9 Half-word address: B.A. 19 bpits 5 bits

I. 2k bits

Sum 19 bits

Note: Integer counts half words.

A18 Full-word address: B.A. 18 bits 6 bits
{
I. 24 bits
Sum 18 bits

Note: Integer counts full words.

Allt Signed 11 bit address: B.A. 24 bits
I. | 2k bits
Sum | 11 bits <1 bit sign
OF7 Offset: B.A. 24 bits
I. 24 bits
, !
Sum T bits

Note: Bit address 1.32 = .96 = integer 96

FL6 Field length: B.A. 24 bits
1

I. 24 bits
|

Sum 6 bits

Note: 1.0 = .64 = 64 = 0 not error marked

15

T BS3 Byte size: B.A. 24 bits

I. 24 bits

Sum | 3 bits

Note: .8 = 8 = O not error marked

8. I, J 4 bit index fields: B.A. 18 bits | 6 bits
I. , 24 bits
|
Sum L4 vits

Note: A "1" in the bit position irmediately to the left of the
final sum field is discarded with no error indication.

9. K single bit index field: B.A. 18 bits 6 bits
I. 2k bits
Sum 1 bit —~]:l

. {
Note: A "1" in the bit position which corresponds to "16" in the

sum is discarded with no error indication.

10. T0 input-output address: B.A. 19 bits 5 bits
§ : .
I. | oubits |
Sum ‘ 7 bits

Note: Integers count tape units, channels, etc.

16

mmmUHMNIMHMHHUllIMﬂHﬂMUHﬂmlnm-mmmnmun-nmn-qmwununmum-ninmnﬂmMIMInmnmmmmmmnmmmummnmmww

9. Radix Specification

In any programmer symbolized field not enclosed by parentheses,

numerical integers and bit addresses may be written in any radix from

2 to 10. The radix is specified by simply enclosing the appropriate inte-

ger (written in decimal) in parentheses at some appropriate point in the .

subfielld. The radix applies to the entire subfield unless reset before

reaching the end. If no radix base is specified, base 10 is assumed.
Some examples:

a. (8)573 - 34 + 50 (all numbers are octal)

b. (2)11011011100011.11110 (bit address written in binary)

c. (5)SaM - 342 (The symbol SAM is not affected by the radix, having
been previously converted to binary. The integer 3L2 is
written in the number system of base 5.)

d. (8)7436.(10)60 + 9 (The full word portion of this bit address is
written in octal, whereas the bit portion and the integer 9

are written in decimal.)

When writing a general parenthetical integer entry, the radix
base may be sgpecified within the same parentheses as the .n and in any
order, thus, (.n, R) or (R, .n).

Examples:

a. (.50, 8)17 - JOE + (10)4203(L, .22) - 33303(.60)1030
b, (7)(.30)1265(.20)(10)138 - (6)43(.10)553
Note that the radix does not have to be specified with .n. If

no radix is specified, the current operative one is continued; it is not

17

reset to 10. Tt will be understood to be 10 if no radix has been pre-
viously specified in the field to which the general parenthetical integer

entry is appended. The radices which apply in the above ex_amples are:

Example Number Radix

1 17 8

1 JOE does not apply
1 4203 10

1 33303 L

1 1030 I

2 1265 7

2 138 10

2 43 6

2 553 6

All the control integers (within parentheses) are interpreted as decimal

numbers.

10. Synonym
Format: Na.me | syw(aas), A,),
The pseudo-operation SYN is uséd to define a symbol in terms of
a bit address, an integer, or a combination of the two. The a.ddress A22+
is evaluated and its value is attached to the symbol in the name field..
The dds is attached to the name. If no data description is given, the
data properties of the final symbol not in pa.rentheses are transfered to

the name. If this symbol has multidimensional properties, they are

18

Wmmmmmmm

transfered to the name symbol. Specifically, one may use a SYN to define
a symbol as an interior element of a multidimensional array and have the

dimensional addressing properties carried along.

Example:
Name Statement

A DR(N), (10, 20)
B SYN, A(5, 5)

In the example the rectangular array A goes from A(O, 0) to
A(9, 19); B goes from B(-5,=5) to B(k, 14), A and B using identical
storage. A(0, 0) = B(-5, -5); A(1, 0) = B(-4, -5); A(L, 1) = B(-L, -4);]|
ete. A symbol defined as a sum of bit addresses and integers will have
its two parts combined at the time when it is entered into the field for:
which it is intended and will therefore produce the same result that would
be produced if its components were explicitly written in the instruction.
field.

The difficulty of évaluating addresses on SYN cards imposes
certain restrictions on the forms of addresses which can be allowed. In .
the general case (where SYN cards may be in any order) the address of a
SYN may contain only one programmer symbol outside of parentheses. The
integer portion of any symbol must be completely defined by a chain of
SYN's or DDI's. The bit address portion may be completely defined by a
chain of SYN's, or by a chain leading to a symbol which is defined by the
location counter as a name of an instruction or of data. A symbol in
the address field of a SYN card may not be preceded by a sign. For

a fuller discussion of SYN cards see Appendix A.

19

Programming note: An example of the use of SYN and the data properties

of a final symbol is the following:

Name Statement
SAM SYN(N), 1000.0
FLAG syn(Bu, 3, 8), .61

(intervening code)

L, SAM + FLAG

The "Load" instruction loads only the flag from the floating point word

"SAM" preparatory to some VFL arithmetic or tests on the flag.

11. Other Restrictions on Address Arithmetic

11.0 DR

Format: Name I DR(dds), (L, L', L",---)

A DR reserves space for data and specifieé the dimensions of
multidimensional arrays (see section on multidimensional arrays). The
amount of space reserved is equal to the field length, as specified or
implied in the data description, multiplied by the préduct of the integers,
L, L', L", etc., that is, FLx L x L' x L" x ... bits. DR is error-marked
if it has no data description, and normalized floating point is assumed.
Each of the programmer symbolized fields, L, L', etc. may contain at most
one programmer symbol. A minus sign preceding the programmer symbol is
ignored. If evaluation of the complete field L produces a negative result,

the absolute value will be taken.

20

«uuuunnuululnnuln-un-nn--n-uu-u-uu-ununuuununummuunnuuu-nnm-u-unpuu-unnn-nunnununmunnmuumnunmn

Example:

Name Statement
legal SAM DR(B, 20), (12, K+k4, L-6) !
illegal JOE DR, (12-K, K+L, =-14)
11.1 EXT

Format: Name | EXT(L, L')OP, A

The instruction which follows the parentheses after EXT is
completely formed. Then bits L to L' inclusive are extracted from it
and compiled in the position in the code where the EXT occurs. The re-
mainder of the subject instruction is discarded. The name symbol is
assigned a data description of (BU, L'-I+l, 8). The fields L and L' may
contain any number of symbolic integers but any bit addresses they contain
either must not depend on the location counter or else must be defined by
a preceding card.

Example: EXT(18, 47) + (B, 18, 7),73.16

First the full-word instruction + (B, 18, 7), 73.16 is formed. .
Then bits 18 to 47 inclusive (the first bit is numbered "O" according to |
Stretch custom) are extracted and stored in the program being compiled.

dds = (BU, 30, 8). The location counter is advanced 30 bits.

11.2 8LC

Format: SLC, AEM

The assembly location counter is set to the value of the address

of this pseudo-op. The next instruction compiled will be at this address,

21

subject to the various rounding upwards conventions. If Azh contains
symbols which depend on the location counter for their value, they must
be defined by preceding cards. A symbol in the neme field of SLC is

ignored.

12. Notes on Special Operation Formats

1. LVS: "Load value with sum" Name | LVS, J, A, A', A",***
J represents the index register whose value field
will be filled. A, A', A", etc. are index-type addresses
each of which causes a one to be placed in the correct
position in the machine address. The index field "I"
may be specified in parentheses of the end of any A
field. If more than one "I" is entered they will be
combined by means of & "logical or."
2. CW: "Control word" Name |cw(01=2), FWA, C, R
Intended for the entry of input-output control
words. The location counter will be rounded to guaran-
tee that the control word will begin on a full-word
address. dds = (BU, 64, 8). The secondary operation,
2

OP., provides for eight possible variations of the input-

output function as follows:

22

i WWMWWWWWWWWM‘MM

Multiple Chain
Bit Bit
a. CR: '"Count within record" 0 0
b. CCR: "Chain counts within record" 0 1
c. CD: '"Count, disregarding record" 1 0
d. CDSC: "Count, disregarding record,
skip, and chain" 1 1
e. SCR: "Skip, count within record" 0 0
f. SCCR: "Skip, chain counts within
record" 0 1
g. SCD: "Skip, count, disregarding
record" 1 0
h. SCDSC: "Skip, count, disregarding
record, skip, and chain" 1 1

XW: "Index word" Name |XW, V, C, R, 0-7

The index word will begin at a full-word address.
dds = (BU, 64, 8). The integer 0-7 locads bits 25-27.
VF: "Value field" Name |VF, V

The value field will begin at a half-word address.
dds = (B, 25, 1)
CF: "Count field" Name |CF, C

The count field will begin at a half-word address.

dds = (BU, 18, 8)

23

Skip
Flag

6. RF: "Refill-field" Name |RF, R
The refill field will begin at a half-word address.
dds = (BU, 18, 8)
7. CNOP: "Conditional no-op" Name | CNOP, Ag
CNOP may or may not enter a NOP, depending on the velue
of the assembly location counter. This pseudo-op guarantees
that the instruction following CNOP will begin at a full-
word address. If a half-word NOP is required to advance the
location counter to the next full word, it will be inserted.
8. Progressive indexing. OP(OPQ)(dds), AEM(I)’ OF7(I')
The six operations which can appear in the OP2 field
in this instruction are:
1. V+I, "Add immediate to value"
2. V-I, "Subtract immediate from value"
3, CV+I, "Count, add immediste to value"
4., CV-I, "Count, subtract immediate from value"
5. CRV+I, "Count, refill, add immediate to value’
6. CRV-I, "Count, refill, subtract immediate from value"
9. END: "End" END, By,
An END card signifies the end of the program. Its
location gives the starting point for assigning locations

to undefined symbols. If it has an address, , & transi-

B19

tion card to By will be punched. A symbol in the name

9
field is ignored on this pseudo-op.

2l

10. TLB: '"Terminate loading and branch" TLB, B19
When this pseudo-op is encountered a transition card is
punched immediately to transfer control of the machine to the
location Bl9' The effect is the same as with an END card
except that the assembly continues uninterrupted and the re-
meindexr of the program is loaded under program control. A

symbol in the name field is ignored on this pseudo-op.

25

13.

Miscellaneous Notes

1.

Instruction data description.

Reference to a machine instruction by another instruction
requiring a data description will give a dds of (BU, 6L, 8) or
(BU, 32, 8) depending on whether the operation referred to occupies

a full or a half word. This dds can, of course, be overruled.

Blanks.

Blanks are ignored in all fields except in entering
alphabetic information. They have no meaning vhatever in any
other field. Blank cards are ignored. An END card must be ﬁsed
to signify the end of the program.

Parentheses within Parentheses.

In Strap 1 it 1s a general rulé that parentheses may not
appear within parentheses. Programmer symbolized fields appearing
within parentheses are therefore restficted somewhat in that théy
must always have radix 10, may not contain array specifications, nor
may they have general parentheticel integer entries appended to
then. |
Null fields.

Certain subfields in any operation format may be omitted, and they
are then said to be null fields. A right to left drop-out feature
operates in assembly. If the rightmost subfield for a format is‘
omitted it is compiled as a zero field. If the two rightmost
fields are omitted they are both compiled as zero, etc. A sub-

field in the interior of a format is made null by writing only

26

ummmummmmmunnlumlnmuullnuununuununmunnwuunu-uunuuuunu-lnulnnununnﬂnunnmnnuuunnunmmnunumlﬂlﬂlﬂﬂﬂﬂ

the comma which ends the field thus: OP, , A. Index modifiers
I and K are made null by simple omission.
5. Supression of error marks.

Error marks, except for mispunch indications, can be
suppressed for any statement by prefixing the op symbol with a
dollar sign. Thus $0P, A(I) will suppress error marks which would
otherwise be printed in connection with compiling that operation,
but ohly that one.

6. Name with blank statement field.

If a card contains only a name, the statement field being
left completely blank or containing comments only, it is treated
as a data reservation for one normalized floating point word.

That is, the statement DR(N), (1) is assumed in this event by
Strap 1.
T. Undefined symbols.

If a symbol appears in a programmer symbolized field, but
never appears in the name field of any card, it is undefined. Un-
defined symbols are assumed to represent normalized floating point
words and are assigned succeeding full-word locations beginning

with the first one after the END instruction.

14, System Symbols

System symbols are symbols whose values are fixed in the compiler.
They are identified in programmer symbolized fields by the fact that the

first character of a system symbol is a dollar sign, which is a character

27

that can never appear in a programmer symbol. Note that a dollar sign
prefix in the operation field is a signal to. suppress error marks and
that the indicator symbols, when inserted into the "branch on indicatof”
instructions, do not have the dollar sign prefix. System symbols which
represent special registers in memory or special bits are bit addresses;
all others are integers. ©System symbols may appear in arithmetic ex-
pressions 1h programmer symbolized fields, where in cases to which
restrictions apply, they can be considered in the same class as numeric
entries since their values are immediately available whenever needed.
The system symbols are:
1. $0 to $15, identical to $XO to $X15, are index registers O to 15,
addresses 16.0 to 31.0. For example, $5 (or $X5) will produce the
correct index field of 5 in an I-or J-field or the address 21.0 in an
A-field.

2. Other special registers.

Location Word No. Mnemonic Name
0 $z Word number zero
1.0 | $IT Interval timer
1.28 $1c Time clock
2.0 $1A Interruption address
3.0 $uB Upper boundary
3.32 $1B Lower boundary
3.57 $BC Boundary control
L.32 $MB Maintenance bifs
5.12 $cA Channel address

28

S O T TS o0 1 D oy oy s s S S P FFAFOS SSs s S oo So oS SO ot B0 5 SO

2. Other special registers (continued)

Location Word No. Mnemonic Name
6.0 $CPUS CPU signal
T.17 $L.ZC left zeros count
T.14 $A0C A1l ones count
8.0 $L Left helf of accumulator
9.0 $R Right half of accumulator
10.0 ' $sB Sign byte
12.21 $MASK Mask
.13.0 $RR Remsinder register
14.0 $FR Factor register
15.0 $TR Transit register

3. Indicator bitg. The symbol for an& indicator bit may be prefixed
with a dollar sign and placed in a programmer symbolized field, where
it will represent the correct bit address in word 11.
4, ILocation counter. Whenever the dollar sign by itself appears in a
programmer symbolized field, it represents the value of the location
counter at the beginning of that instruction. In effect this is ‘the
location of the instruction in which it appears if that instruction
actually compiles space in the program. Example: the instruction,
B, $-2. means branch to the instruction which begins two full words
before. Note that B, $+.32 means branch to the next instruction,
effectively no operation.

Note: All of the system symbols in classes 1, 2, 3, and L

are bit addresses and are assigned standard data descriptions with mode

29

binary unsigned, byte size eight, and field length depending on the
length of the register.

5. Input-output addresses. Some of the system symbols for input-output
addresses may have different values at different instellations, since
the channel to which a particular plece of equipment is connected is
arbitrary. The symbols maey represent either channel addresses or unit

addresses, depending on the configuration of the input-output system.

System Symbol Meaning
$PCH Punch
$PRT Printer
$RDR Reader
$DISK Disk unit
$co, $c1,--,$Ck Channel O, Channel 1,:-.,Channel k

$T0, $T1,...,$Tk Tape O, Tape 1,°°*, Tape k
$1QS Insuiry station

$CNSL Console

If more than one punch, printer, console or any other output
unit is attached to the machine, the same numbering convention used in
channel and tape addresses is adopted,‘where $CNSL = $CNSLO, and so on.

For example one may have $PRTO, $PRT1, $PRT2, etc.

15. General Data Entry

The use of the pseudo-operation DD (Data Definition) enables

the programmer to enter data into a program in a variety of forms.

30

Among the possibilities which exist are decimal to floating binary
conversion, either normglized or unnormalized, conversion of decimal
fraction to binary fraction in fixed point, integer to integer conversion
from any radix from 2 to 10 to a radix of either 2 or 10, and conversion .
of alphabetic information to binary-coded forms. The pseudo~-operation
DDI (Data Definition Immediate) is intended for defining data to be

used in the address of immediate operations. All the features listed
above, with the obvious exception of the floating point conversion,

are also available with DDI. The method of use of the DD will be
described first, and then the minor differences between DD and DDI will

be listed.

15.1. DD

Format: Name | (EM)DD(dds), D, D', D",---.

The address fields D, D', D", etc. are all equivalent to each
other. They are compiled sequentially as separate pieces of data, each
having the data description specified, but only the first having a name.
The effect produced is exactly the same as if the entry mode, op, and
data description were repeated on separate cards with only one D-field
per instruction and blank name fields. If one wishes to name the separate
entries D, D', D", etc., indeed it is necessary to write each one on s
separate card since the name of a DD is given the address value of the
first bit of the first D-field. Programmer symbols may not appear in
the main body of a D-field, but only in general parenthetical integer

entry fields which are attached to the ends of D-fields. (Note: Since

31

each D-field is essentially a separate major field, the parenthetical
entry counts bits from the beginning of the D with which it 1s written.)
Tn the main portion of a D-field various letters and symbols have fixed

meanings not subject to programmer control.

15.2. Entry Mode
The entry mode gives information about the form in which the

data appears on the card; it may also have some implications about the
form to which it is converted and stored. An entry mode may appear before
the DD as shown in the format. Those not concerned with entry of alpha-
betic information may also be used at the beginning of individual D-fields.
Tt is not always necessary to specify the entry mode explicitly.
There are four different entry modes:

1. (R) Radix. The radix has already been explained for the case of

address arithmetic. In the case of data entry it can be used with

integers only; a decimal point or a floating point notation implies

a radix of 10. The entry mode radix specifies the radix in which an
integer is written on the card, but says nothing about the one to
which it is converted.

2. (Fn) (Fn) implies that the data is written with a decimal radix and
is to be converted to binary, and may include a decimal fraction
portion to be converted to a binary fraction of length n bits.

The (decimal) integer n following F specifies the number of
fractional bits to be left to the right of the binary point when the

number, or numbers, which follow are converted.

32

e e

3. (Az) Alphabetic conversion. This entry mode must precede the DD,
and only one address field "D" is allowed per statement. The Hollerith
characters beginning with the one after the comma which ends the op
field are converted to IBM tape BCD until the character "z" is
reached. Note that tape BCD is somewhat different from internal TO4
BCD. The byte size of converted characters may range from 1 through 12
in a DD, 4 through 12 in a DDI, and is specified by the dds. Leading
zeroes are inserted in each byte for BS > 6, and leading bits are truncated
from each byte for BS € 6. The byte size compiled in an operation
referring to the data is set to either the specified byte size or 8,

n_ 1

whichever is smaller. The tefminating character "z" itself is not in-
cluded. It may be any legal Hollerith character except blank,), Ak
or ' . Blanks occurring within the field to be converted are retained
and correctly stored. The characters are counted by Strap 1 and the
location cbunter properly advanced. |

4. (IQSz) TInquiry station conversion. This entry mode operates exactly
as (A) except that the Hollerith characters are converted to the 7-bit
inquiry station code, and therefore 7 is the magic number separating
truncation from addition of leading zeroes. Although the IQS code
includes a large number of special characters, Strap 1 is limited to
the ones which can be entered by means of IBM off-line card and tape

equipment.

15.3%. The Form of Decimal Numbers

- Decimal numbers may be written in fixed or floating point form,
>with or without a decimal point. The general form is

T XXXXs XX XX XX Ertyyy .

33

In this form E means that the number which precedes 1t is multiplied by

10 raised to the power which follows it. That is, 572 .34E-57 means

57234 x 10-57. Parts of the genersl form which are not necessary for

writing & number may be omitted, thus:

a. = xxxxxx~--xx integer
De £ XAeo XXXXe XX decimal fraction

¢, t xxXe°.-xx Etyyy integer times power of 10

A plus sign is understood if omitted. The decimal point can be
in any position in tﬁe number. The portion of the number symbolized above
by x's is limited to 20 digits; that symbolized by y's to 3 digits (but
recall that floating point numbers in Stretch are limited to a range of

10826 4o 107616y,

15.4. Insertion of Specific Fields

1. Exponent Entry: X £ n

The letter "X" may be used to enter any arbitrary exponent

into a floating point unnormalized word. n 1s a decimal integer which is

converted to binary and which replaces any exponent previously calculated.

2. Bign Byte Entry: ©Sn

The letter "S" is used to enter a sign byte into data. n is an
octal integer which is evaluated and which is "OR"ed in with any sign byte
previously calculated. The sign byte generated depends on the byte size

according to the following table:

34

Byte Size Si Byte

1 S

2 ST

3 STU

L STUV

5 ZSTUV

6 ZZSTUV
T ZZ.ZSTUV
8 Z27ZSTUV

where Z is a zone bit,
S is the sign bit,

T, U, V are the flag bits.

15.5. Rules for Entering Data

The legal formats for entering data can be classifiled according
to the use mode written in the data description field of the DD state-
ment. In general an element listed in the general format may be omitted

if it is not needed to specify the data.

1. Normelized Floating Point

Format: Name | DD(N), #xx---xx.x-*-xxBtyyySn

The number is converted to normalized floating binary form
according to the standard Stretch 6L-bit format. A four-bit sign byte
is formed and stored. If none is entered by means of an "8", the sign

before the number is used and the flag bits are set to zero.

35

Examples:
a. DD(N), 5L.T3E 4
54.73 x lOu is converted to floating binary. The sign bit is
zero (= plus), and the flag bits are zero (i.e. entire sign byte is
zero).
b. DD(N), -54.73 E 4, or DD(N), 54.73 E 4 8 10
In this case the sign bit is set to one (negative) and the
flag bits are zero.
c. DD(N), =-5L.T3E LSS
The sign bit 1s one, since the number is negative, and flag
bits T and V are one. U is zero.
d. DD(N), 1, 3E-5, -45.7, 12 S 17
This example illustrates the multiple entry feature. This
single DD statement compiles four 6L-bit floating point words and

advances the location counter accordingly.

In normalized floating point a special feature is available
for use in any D field, meking the entry of rational fractions and certain
irrational numbers much easier. Arithmetic involving several numbers may
be written using the standard Fortran symbols. Strap 1 will perform the
arithmetic and compile a single normalized constant. The operations
availasble are addition(+), subtraction (-), multiplication (*), and
division (/), only relatively simple expressions are allowed--that is,
they must contain no parentheses. Multiplications and divisions are per-

formed first (and in a series of multiplications and divisions they are

36

done in order from left to right) and then the additions and subtractions.
The arithmetic is done among absolute constants, and a sign byte may be
used at the end. It will be "OR"ed in with the final result.

Examples:
a. DD(N), 1/3, 472%351, L-T%5/21 S 4

Note sign byte entered in last D field.

b. DD(N), 27.9/3L.4/12/14 E 5, 4+3%7/5%

The number produced in the first case is 27-2 5
3l.4 x 12 x 1k x 10

in the second L4 + 5135%93312 .

c. DD(N), 1/7 - 3/11 + 1.4%1 E - 2, .12 + 1/14k

As an extra convenience certain system symbols are defined by which con-

stants involving irrational numbers can be entered. They are:

1. $PI T
2. $E e
3. $M log, 4e
b, $N log 2

Thus one can enter a number such as bn x 10-7 by writing

DD(N), 4 * $PT * 1E - 7.

It is to be especially noted that in Strap 1 this arithmetic feature is

available with the normalized floating point mode only.

37

2. Unnormalized Floating Point

Format: Name |(Fn)DD(U), + Xx**°X.X** xXE+yyySn Xtn

or DD(U), (Fn) * xx-..xX.X---XBtyyySnXtn, (Fn)txx..-etc.

The number is converted to binary with the correct number of
binary fractional places as specified by the (Fn) entry mode, and a correct
exponent is computed and entered. This exponent is overruled and re-
placed by that following the "X" if "X" is used. (It is necessary only
if for some reason, the programmer desires an incorrect exponent.) The
entry mode (Fn) can come before the DD, in which case it applies to all
D-fields of the statement, or it may form the first element of a D-field,
in which case it overrules one given before the DD. Either the X or the
S or both may be omitted or their order may be interchanged. Omitting
S has the same effect here as in the normalized case. Omitting X simply
allows the correct exponent to remain as computed. Ieaving out the sign,
decimal point or E is permitted as in normalized numbers.

Examples:

a. DD(U), (F2l) - 343.7, (F10) L32
Two numbers are compiled. In the first 343 is converted as an
integer and .7 is converted to a 21-bit fraction. They are joined
and placed in the rightmost bits of the fraction portion of the floating
point word, and the correct exponent (in this case 27) and sign are
supplied. In the second D field, 432 is converted to & binary integer.
Since ten fractional bits are specified, but no decimal fraction is

written, the ten rightmost bits of the fraction field are set to zero

38

l:wmmmnmmnmumu!llMlumMmﬂunHluuHMIHnlulmmunnnnumnumuunnu--lul!!lﬂln-ulﬂIlllmllnmlﬂmnnlmImumnmuMﬂl!l!n

and the number is entered with its rightmost bit in position 50.
b. (F15)DD(U), T767.52, T67.52 X-12 S11
The (F15) applies to both D fields. In the second the computed |
exponent is overruled by the specified one and the number is made
negative by means of the specified sign byte.
c. (F15)DD(U), 76752, (F20) 767.52 S11 X-12
This example is identical with example 2 except that in the
second field the op entry mode (F15) is overruled by a field entry
mode (FEO), and the order of S and X is interchanged, which makes
no difference.
If the entry mode is omitted; two cases arise.
a. If the number is entered is an integer, (FO) is understood
b. If the number entered is a decimal fraction, it is converted tc a
normalized floating point number, but will be used as though unnormalized.
Examples:
a. DD(U), 17, 17X-35
In the first case 17 is converted to binary, placed in the
fraction with its rightmost bit in position 60 and an exponent of 48
supplied. 1In the second field the same thing is done except that
the exponent is set to -35.
b. DD(U), 17.5
In this example 17.5 is converted to normalized floating binary
and stored as such. However, instructions whose normelization bits

depend on the symbol in the name field of this pseudo-op will have

39

them set to "unnormalized."
Note: 1T E S5 is an integer and will be recognized as such.
17 E-5 is a decimal fraction and will be normalized.
17.5 E 5 is an integer but will be treated as a fraction and
normalized. Hence a normalized integer can be
assigned use mode "unnormalized."

An integer greater than 2”8 is stored as s normalized number.

3. Binary Signed VFL

Formets: (Fn)DD(B, FL, BS), * xx°:-X.X**-xBtyy Sn
DD(B, FL, BS), (Fn) txx-:--x.x:--xE+tyy Sn
(R)DD(B, FL, BS), #xx---xx Sh
DD(B, FL, BS), (R) #xx xx Sn
A data definition of binary signed data may have either (Fn)
or (R) entry modes, but not both at the same time. (Fn) implies that
the data following it are written inra decimal radix, whereas (R) implies
that the number following it is an integer. An integer subject to a radix
entry mode must be written without the aid of E since E is not defined for
a radix other than 10. A decimal fraction must heve a controlling (Fn)
entry mode. There is no oﬁvious way to convert to.a fixed point number
without specifying the binary scaling. In the data description either
the field length or byte size or both may be omitted. The implied field
length in this case is 64; the implied byte size is 1. As usual the sign
byte need not be specified unless the programmer desires to have flag or

zone bits different from zero. Note that the sign bit position changes

40

for byte size less than 4. To make a number negative specify the sign

byte as:
BS =1, 51,
BS = 2 s2,
BS = 3, sk,
BS = L, S10.

If a number has no entry mode at all, it must be a decimal integer but

may in this case be written with the aid of the "E" notation.
Examples:

a. (F7)DD(B,,L4), .005E3S13, -17, 143.2511, (8)77760
Implied field length is 64. Octal specification in last D fidld

overrules (F7) written before DD.

b. (2)pp(B, 16, 8) 1101018377, (10) -972, 111011108201
Binary entry, overruled in second D field.

c. (F12)pD(B, 24), 1.324E3, -T2.1E-k4, 3.LE-LS1
Implied byte size is 1.

a. DD(B), 1489, -1272, 1491, (F13) -972.16, 1394881, 12E5

Decimal integers except where a field entry mode is written.

4. Binary Unsigned VFL

Formats: (Fn)DD(BU, FL, BS), xx---x.x---xEtyy
DD(BU, FL, BS), (Fn) xx-:-X.X-+-XBtyy
(R)DD(BU, FL, BS), XX--:XX

DD(BU, FL, BS), (R) xx**-xx

L1

(Az)DD(BU, FL, BS), alphsbetic information to "z"
(1Qsz)DD(BU, FL, BS), alphabetic information to "z"

Numerical entry is exactly the same as in binary signed data
except that no sign byte is formed and if the byte size is left out of
the dds, it is set to 8. Any sign or sign byte (with "S8") written with
mode BU is ignored. The two alphabetic modes are permitted here; they
are explained in the section under "Entry Modes." Note that the alpha-
betic entry mode must precede the DD, that there can be only one D field
per statement end that if the field length is omitted 1t is set equal to
the byte size.

Examples:

a. (F13)DD(BU, 30), 17.2, 183, (8) 70707
b. (A%)DD(BU, 48, 6), GLORIOUS FRIDAY, THE 13TH.*

The mode and field length have no effect on the conversion and
storage; they are used in compiling instructions which refer to the name
of this statement. Field length 48 indicates that the programmer wants
to process these characters in groups of 8.

c. (1IQss)pD(BU, 32, 8) DOG EAT DOG S

5. Decimal Signed VFL

Formats: (R)DD(D, FL, BS), * xxX...xxx Sn
DD(D, FL, BS), +(R) xx+++xx Sn

DD(D, FL, BS), t xx-:-xxEyy Sn

The two decimal modes in DD and DDI statements represent the

Lo

only cases in which Strap 1 converts numbers to an internal decimal radix.
This conversion is limited a bit more in being available only from integers
to integers. The radix entry mode indicates the radix in ‘which the numbers
are written on the card. Thus it is possible to write an integer in binary
or octal and have it converted to decimal for machine use. If no entry mode
is given, decimal to decimal is implied and the E notation can be used to !
multiply an integer by positive powers of 10. If either the field length '
or byte size is omitted, the implied values are FL = 64, and BS = 4.

Examples:
a. DD(D), -953u4812, +173E5, 18E10SL3

Field length = 64; byte size = 4. A four-bit sign byte is

formed. Decimal to decimal conversion.

b. (2)pp(D, 20), 11101000110187

Binary to decimal conversion. BS = L.
c. DD(D, , 8), L3E3

Decimal to decimal conversion. FL = 6L. Four binary zeros are

inserted in the zone positions of each byte.

6. Decimal Unsigned VFL

Formats: (R)DD(DU, FL, BS), xx-- -xx
DD(DU, FIL, BS), (R) xx---xx
DD{DU, FL, BS), xx-- -xxxEyyy
(Az)DD(DU, FL, BS), alphabetic informastion to "z"

(1Q8z)DD(DU, FL, BS), alphabetic information to "z"

L3

The numerical conversion is Just as In decimel signed mode
except for the omission of the sign byte. Alphebetic conversion is
exactly as in the binary unsigned mode except that instructions refer-
ring to this data will be compiled as decimal operations. For alphsbetic
entry implied field length is equal to byte size.

Examples:

a. DD(DU), 8430051, (8) T724l, 82E10

FL = 64, BS = 4. An octal to decimel conversion is inserted
between two decimal to decimal conversions.
b. (1Q83)DD(DU, , 8), PUSH PANIC BUTION 3

FL = 8.

Il

SUMMARY OF RULES FOR DD STATEMENTS

Entry mode Appropriate use modes
Fn U, B, BU
R B, BU, D, DU
A BU, DU
AN BU, DU

Note: Use mode N should have no entry mode.

Special field entry Appropriate use modes
S N, U, B, D
X §)

The floating decimal notation, using E to designate multipli=-
cation by powers of 10 is appropriate to all modes although it is always
restricted to a decimal radix and in the decimal use modes, is restricted .
to increasing the magnitude of decimal integers.

If the field length is omitted from the dds, it will be assigned
a value of 64, except in the case of alphabetic entry where it is set
equal to the byte size. The maximum permissible field length for a DD
statement is 6.L.

The following examples illustrate the use of general parenthe-
tical iggeger entry with DD.

a. DD(N), 572(.59)1, 347.89E12(.63, 2)1011
In the second case the sign byte is specified by means of (.n)

entry.

b. DD(B), (F9) -35.7(.24) sAM + L
The address SAM + 4 1is placed in the first part of the 6L-bit
field, followed by the converted number -35.7.
c. (8)pD(BU), W762(.10)707(10, .20)3L

T07 is written in octal, 34 in decimal.

15.6 DDI

Format: Name | (EM)DDI(dds), D

DDI is used to define a symbol which is used at some other
point in the program as the address of an immediate operation. It com-
piles no space at its location in the program, and in fact its position
in the program is of no importance whatever. It may have only one D
field, as shown in the format. The rules for writing the date field are
the same as for DD with some obvious and relatively minor changes. Neither
of the floating point modes can be used with DDI. The upper limit on
fleld length is 24 instead of 64, and in every case where a field length
of 64 is implied for s DD, a field length of 24 is implied for a DDI.‘ A
general parenthetical integer entry may not be appended to the end of the
date field as it can in DD statements.

If a DDI has a field length of less than 24, the number which
it defines will appear in the leftmost portion of the address of the oper-
ation when it is compiled in an immediate operation. Unused bits in the
right end of the address will be zero; but they may be loaded by means of

a. general parenthetical integer entry in the operation itself. If the

L6

' B e L

address field of an immediate operation contains arithmetic among symbols
or symbols and integers, the arithmetic will be done in binary regardlessg
of how the symbols were defined or what the mode of the operation itself |
is. All numeric entries in such an address field are handled exactly as |
other addresses and converted to binary, never to decimal. Therefore,

the only way to get a decimal number into the address field of an immedigte
op, without writing it in the Stretch BCD code explicitly, is to symbolige
it and use a DDI. Care should be exercised in address arithmetic among
signed numbers, since the sign byte is compiled as such and does not

participate in the arithmetic as a sign.

Examples:
1. Name Statement

JOE DDI(DU), 9478

SAM DDI(DU, 12), 342

BILL ppI(DU, 24), 12
LI, JOE
+I, SAM
-I, SAM + BILL

The sequence above is an example of slightly tricky coding to
show what is possible. JOE has field length of 24 implied. All three
symbols have a byte size of 4. The address SAM + BILL is added in binary,
but since the addresses do not overlap they produce a legal decimal numbeéer,

342012. The result is 9478 + 342 - 34012 = -332192.

LT

2. Name Statement

AIF DDI(B), 1k2
JIM SYN(B, 24), 389
RIP - SYN(B, 24), -210
LI, ALF
+I, JIM
+I, JIM + RIP

In this sequence the sum -142 + 389 + 389 - 210 = 426 is obtained.
Since JIM and RIP are defined by SYN cards the address arithmetic JIM + RIP
is done correctly, yielding an answer of 179. If they had been defined by

DDI, the address arithmetic JIM + RIP would have produced a result of -599.

48 '

APPENDIX A

Restrictions on Addresses in SYN, DR and SLC

In order to finish assembling a program in a finite length of
time using a finite storage, some generality has been sacrificed in the
address srithmetic which can be allowed with the three pseudo-ops, SIN,
DR and SLC. The underlying reason for their different treatment is that
their addresses must be evaluated sooner in the progrem than those of
other operations. Strap 1 is a three pass assembly in which the first
two passes are concerned primarily with assigning values or addresses to
symbols and the last with forming the machine code and revealing it to
the outside world in some form of a listing and stretch column binary
cards.

During pass 1 any SYN .address containing only numerical
entries, or numerical entries plus system symbols, can be evaluated
immediately. A SYN address which contains symbolic informabtion cannot
be. Strap 1 can, however, store the symbol from the name field and one
symbol from the address (always the one on which the mode of the name
symbol will depend if not overruled) for future reference. No sign is
stored for the symbol, but a symbol for a negative quantity is all right.
The same restriction applies to each of the elements of the address of a
DR (each "L" in the notation of this paper). The restriction on DR
addresses is really the crucial one at this point, because the DR address

is completely evaluated at the end of pass 1. Therefore, each element of

k9

the DR address and the SYN chain of SYN's defining the symbolic portion

plus a single symbol (algebraic addition, but not subtraction of a symbol,
€, : 5 + symbol or symbol : 5). Since all of this information is
stored in tables permsnently and is always avaellable to the assembly
program, the order of the cards is of no importance. At the end of

rass 1 an evaluation is made of all symbols defined in this simple
manner, and as stated above & DR must be completely defined at this

point.

During pess 2 locations are assigned to all symbols which
depend on the location counter for their value, and & new attempt is made
to evaluate SYN addresses not eveluated in the first pass. At this point
the order of the cards can play an important role. If all of the symbols
appearing in an address have appeared previously in the name field and if
they in turn are defined by symbols which have appeared previously (or by |
the location counter) then the address cen be evaluated no matter how
meny programmer symbols it céntains or what signs they may be preceded by.
If there are two or more symbols in a SYN address still not evaluated
when the card is encountered in pass 2, the name symbol may never be com-
pletely evaluated and will elicit an error indication whenever it is used.
If only one symbol remains not evaluated at this point then eventual success
depends on the sign which precedes it as well as its position in the address

and lgter evaluation. At the end of pass 2 an attempt is made to tie up

50

all the loose ends still dangling from this particular rats' nest. If
any symbols remain not evaluated after this procedure, a last try will be
made when the SYN card is encountered in pass 3. But this may be too late,
depending on the order of the cards.

From the preceding discussion it is clear that the address of an:
SLC card must be evalusble when it is encountered in pass 2. The same ruleés
apply to it as to the address of a SYN card which can be completely evalu-
ated at that point. However, if the address of an SLC cannot be evaluated,
all is lost and no attempt is made to tidy up at the end of the pass. This
last point also applies to the L and L' of EXT(L, L'). Since they are used
to compute +the amount to advance the location counter, they must be avail-

able when the card is encountered in pass 2.

51

< e

" L

AN;@V\A\Q?,S DB« C

M 152 N6

\

APPENDIX D -

Strap-1 prints error marks in the right-most columns of the
assembly listing, showing actual or probable coder and/or machine errors.
These error marks, constituting the twenty-six letters of the alphabet,
and some special characters (given at the end of the 1list) are explained
below:

A 1. No cheracters are given with an A or IQS entry mode in a DD
statement.

2. Too meny eddress flelds were given.
B 1. Theeyyte size of this instruction 1s > 8, and has been set
to O.

2. The byte size of a decimal instruction #£ L, but hes been
left at the specified value.

3. A og IQS byte size in DD statement is»12, and has been set
to C.
o A negetive field (address, index, field length, etc.) has been
complemented. g
This complementing tskes place prior to the truncetion
described under "V", if any.
D Date error in DD or DDI.
The date hes been set to zero.

B Entry mode error in DD or DDI.
Entry mode (10) is assumed.

F 1. The given field length is > 6L, and has been set to 6L.
2. Field length of a VFL binary multiply - or divide-type order
is > 48, but has been left at specified value.

G A "go-to" type order, i.e., a branch or END card, hes a
trensfer address « 32 and I index O.

H This card has an 1llegal name (e. non-alphanumeric character
is present, the character has been ignored).

I A branch on indicator, with indicator numerically specified,
has indicator numeric > 63.

The indicetor has been computed modulo 6k.

-2-

J 1. There is an illegsl punch on this cerd.

2. There is an 1llegal character in some field on this card.
(1f an 1llegal numeric occure in & redix entry from R = 2
through R = 9, the fleld 1s set to zero; in all other cases '
the illegel punch or character is ignored)

K A RTT-errof has been detected in reading tepe 2 on this card.

L 1. The location counter is out of range as a result of this
instruction. If < 32, it has not been changed; if =-777777.778,
1t hes been teken modulo 1000000.008.

2. An SIC sddress contains an integer.
M 1. The given mode is not consistent with the given operation or

vice versa, e.g., M + 1 (N),... The mode, FL, and BS are
ignored.

2. No mode given with DD or DR -- N is assumed.
3. No mode given with DDI -- (BU, 24, 8) is assumed.
4, An operation which could be either VFL or floeting point
has no overruling mode and a numeric address. VFL 1s assumed.
N Error in integer 1i.e., (.n) entry.
0] 1. Offset + field length - byte size (if signed) on this op is
> 128, .None of the three gquantities is changed.
2. Decimal offset is not divisible by 4, but is left unchanged.

P Conditional branch has K field 1.
' The given K field is taken modulo 2.
Q 1. Illegal OPl or OP2 in progressive indexing. In either case,
OP2 is ignored. '
2. TIllegel OP3 in CW. OP3 is ignored.
3. Pseudo-op has been specified in an EXT field. The requested
field has been set to O.
R Radix is out of range R = 10 is used.
8 Tllegel OP after an SIC order. (Only half-word branch orders
are permlitted.
The OP has, however, has been asserbled as requested.

T An index 1s glven with LVS, or an immediste index OP, which
are non-indexable.

L U VFL decimal multiply or divide has been specified. (There are -~
no such OPs,)

The OP has been assembled as requested but it must be remembered
that 1t acts as a LFT order.

ﬁmmm-u I "

-3-

Overflow in an address fleld; the field has been truncated if
necessary to fit the number of bits available.

A DD with entry mode A or IQS has a byte size which 1is too
small, i.e., <6 or «8 respectively.

The operation specified here is non-existent. The full-word
instruction SIC, $15; BE, O has been inserted here.

An address field on this card cannot be completely evaluated.
E.g., due to a too-compliceted chain of SYN cards, etc.
The computation has been completed as far as possible.

A symbol specified on a PVNSYM card does not occur in the
program.

There is a symbol on this card containing more than six
characters.

Only the first six are used.

No address or neme field has been specified on a SYN or DDI
card; or a SIN card 1s not computable by pass 3.

The second half word address of an Input-Output op is < 32.

No right parenthesis in a field; 2 or more left parentheses
before first right parenthesis.

Arithmetic has been used in the address field of a VFL immediate
OP (not allowed); or, a symbol defined by a DDI has been used
in an arithmetic expression in a VFI, immediate address field.

The arithmetic was performed im binary unsigned.

A symbol on this card has six characters and cannot be tailed.

Note: The coder is reminded that the printout of all except
certain non-coder error marks (viz., K, J) can be suppressed
by prefixing the OP field with the symbol $. In case duplicate
error marks appear, more than one error of the same type has
been made. Individual error marks A, B, C,... may be
suppressed by use of the instruction

SEM,A,B,C, ...

All may be suppressed by SEM alone.

Any of the suppressed error marks may be restored by the instruction
REM vwhich works in a similiar menner. Again, J, K. and illegal
punches cannot be suppressed by SEM.

) ?M",~W‘ L?m.n-

e TR N ; 3 :

-

lo 263494 4

