
April 15, 1958

INTERNALNOTE # 30

Subject: Coding Examples for Baaic SIS

The preliminary specificationa of a Basic computer coding

syatem as propoaed in Internal Note #29 have furnished UI with a

general technique for expreaeing instructions. In this internal,

note we wish to illustrate the flexibility and potential of this pro-

posed coding system through aample instructions and programs.

First, though, we would like to point out that flexibility and
potential will be attained not only through the use of the propaeed
coding arrangements but also through the varity of terminology
that can be employed. However, as thie Basic coding rys tem termin-
ology and its syntax does not conform to any standard language, we
shall call the language for this system the SYNTHETIC language.
Then our system for preparing Baaic machine instructions becomes
the SYNTHETIC INSTRUCTION SYSTEM or SIS. Machine inter-
pretation of SIS terminology and syntax will be performed by a
SYNTHETIC TRANSLATOR, ASSEMBLER, and COMPILER, or
SYNTAC. SIS coding will be illustrated here but SYNTAC will be
explained in a subsequent internal note.

,

As our first .sa.mple, we choose the ADD operation. The

variations in the way the ADD instruction can be coded are as

follow1:

1. 	 Add (d) + 13.54 #, 6-4, (3).
S i x decimal number8 (001365)as indicated by the field length
(6) , the decimal modifier (d), and the number sign (#) will be
added to the accumulator. The two leading zero8 are implied
by the field length of 6 and the decimal byte aize is denoted by
the 4 following the 6 . The (3) indicates the offset and infers an
offset of 3 four bit bytes or 3 decimal characters.

2. 	 Add (b) t 13.54 #, (5)
The binary value of 1354 ae determined by SYNTAC will be
added to the accumulator in the binary mode. No length is

- 2 -

specified for the binary field because SYNTAC will de-b
termine this length. The (5) will mean a 5 bit offset and
since it is enclosed in parenthesis, it can not be confueed
with a possible field length specification.

3. 	 Add (a) -256.25, 3-4-
Decimal data in memory location 256 .25 will be aubtracted
from the contents of the accumulator. The bytre size will
be 4 bite and the field length is 3 bytes OT 3 decimal char-
acters. No offset i s specified.

4. 	 Add (b)256.25 (9 , ICR), 20
Twenty binary bite of a memory location specified as 256.25
but indexed by register 9 will be added algebraically to the
accumulator. The absence of a sign here meanu that the eign
of the data will be uaed. After indexing the addresa, the
index register's value field will be incremented, it8 count
will be reduced by oneS and if its count reacherr zero, the
regieter will be refilled with the contents of tho word de-
signated by its refill addresra.

5. 	 Add (b) Current Wages (9 , ICR), 20
Same instruction as 4 except that the symbolic m e m o r y
location 256 .25 is replaced by the t a g "Current Wagtit!.

6 . 	 Add (b) Current Wagee (250 -20 -250 .00 , ICR), 20
Same instruction as 5 except that index register 9 haa been
replaced by the contentr of an unspecified regiater to be
assigned by SYNTAC. The contents of this psueda regirter
will be stored in the location specified by the refill addreers
(250 .00) .

7 , 	 Add (b)Current Wager (Wage Record - # Records, IGR), 20
Same inetruction a a 6 except that "Wage Record" hau re-
placed 250 ae the record length in the value field alld '!# Records"
has replaced 20 ae the record count in the count fteld, The
refill address is unspecified and therefore SYNTAC is re=
eponeible for locating and setting-up the refill word. If inrtead
of ICR this had only been IC, a refill word would have been
unneceIsary.

8. 	 Add (b)256. 25 (9 #, I), 20
Same instruction as 4 except that 9 # ie the actual value of an
index register to be assigned by SYNTAC. This the onlyi p J

case where confusion between an index regiater deaignation
and an index value will occur.

http:-256.25
http:(250-20-250.00

- 3 -

Of course the ADD inetruction may be expressed with other variations
but by now these should be apparent and the way in which the other
operations can be expressed should be evident too.

As programing examples we have selected short routines from
t he Project 7000 Preliminary Manual of Operation. The first pro-
gram, found on page 6.21, is an FICA routine. The parameters in the
program are:

Current Gross Wage
C urrent FICA
FICA Balance (remaining FICA to be paid, rnax. = 94.50)

The FICA program is:

Load (d) Current Gross Wage, (2)
Multiply t .0225 # $ 3 - 4
Add t 5#, 1-4, (5)
Store (d) Current FICA, (6)

. Augment - FICA Balance, (6)
Add - Current FICA, (6)
Store (d) - Current FICA, (6)
Add M e m o r y - FICA Balance, (6)

The second program, found on page 6 . 2 5 , i s a continued compare.

Load (d)+ M, 12-5
Compare (d)t N, 12-5
Load (d) t M + 6 0 , 12-5
C. Compare (d) t N t 60, 12-5
Load (d) t M + 120, 6-5
C. Compare (d) t N t 120, 6-5

These examples should present a fair idea of the flexibility
and potential of SIS. Fur the r detailed elaboration on the coding method$
will be provided in the final specifications.

-
LaMar L. Briner

LLB/bb

