SRR S —

REPORT ON THE SIMULATION PROGRAM
FOR THE BASIC COMPUTER SYSTEM

Peter Perkins

Any simulation progruﬁ may run and even produce an acceptable print

out without truly representing the given system. It is the primary pure

| pose of this paper te convince the reader that the Basic Computer, de-

fined as of this date, has actually been simulated on the 704, It will
also be seen that, as the result of employing Fortran Assembly, the

simulation program is extremely flexible and can readily be adapted to

+

_ ‘many, cinnges in the computer system, We shall first discuss on an

elementary level the basic concepts involved in representing a machine
of the future on an ulre’idy existing computer; they are the transfer of
information, bthe pé.ssing of time, and interlock in general. Finally, we
shall consider in detail the simulation of the Indexing Arithmetic Unit,
the Decoder and Main Arithmetic Unit, and the Buss system.

Transfer of Information

Probably the most basic idea is that of representing, in 704 language,

the flow of informatien throughout the computer system., For purposes

of illugtrating these general concepts we shall use mainly the buss system

portion of the pregram, but of course these methods are also used in

simulating the Indexing and Arithmetic Units. Consider the distinct

{general) locations in which a piece of information can exist, In the basic

system they are as follows: (1) $wo sending register (2) a fast memory-

in-buss (3) any one of four fast memory boxes (4) a fast memory out

buss (5) a slow memory-n-buss (é) any one of 16 slow memory boxes

gt R RS

«7‘133%;\5??3‘%‘1—13,»%«»4.2‘ e e R

R e

iy

(7) slow memory-out buss (8) twe return reghter (9) decoder and
arithmetic unit (10) indexing arithmetic unit. Each of these general
locations has a block of 704 memory associated with it. (Note that each
qf the 20 memory boxes has a block.) g'I'he first eight general locations
above comprise the busi system and t);eh' 704 blocks each contain a
sub-block of four addrewnen in which are stored the same type of informa-
tion. That is, each sub-block will cont;m:
(2) The S.ddreus in main inemory to which the data nmé o
in this vlocation is (was) trying to go.
(3) The' return or. deétixi#ﬁon address to which the inforinn- |
tion wants (will want) to»return after its memory cycle.
(4) The inltruc_tioh number of that instruction which is
(tyleg up) this location. |
(5) An address which diltinguilhés a store order from a
bring order.

_In Fortran la.ngua..ge it is now very easy to simulate the transfer or vinior-
matioh ‘around .the system. For example, in order to get a mémory |
cycle started from the sending register we first must find out if the
desired memory box ias free. This is accomplished by interrogatinﬁ the
704 memory cell raprﬁienting the instruction number tying up this
particular Basic Cempﬁter memory box, If there is nothing in this 704
address then we know the box is available and we should send it the &m

if we can catch a place on the memory in-buss (fast or slow.) The huss

-3-

availability is determineci in precisély the same manner. If we now
find the buss free we store the contents of the 704 sub-block assigned
to the register infa the’ 704 sub-block assigned to the memory~busse and
erase' the register sub-block. (It is tl"d; type of step ﬁich makes up
about 50% of ‘the progf#m and which is carried out comprehensively and
economically by Fortran with its lubiéripted variables.) We al:o.let
the buss clock (.diucuu‘.ed below.) On a succeeding pass through the
progra;m the clock will read zero and we:can mow; the informatibn into
the appropriate memory box without ;':t.gain checking its availability,
After a sufficient nﬁmbér of time uniﬁs ha.vé Bécn subtracted vfrom the
memory box clock, it will read zero a.nd we ca.n then move to the next
general location (ie n';e:ﬁxory out buui) etc,, etc.

Passing of Time

Evéry general location 704 storage Bleck‘(except the sending and return-
ing registers) ha»sz either one or two "clock' addresses in it. When infor-
mation i8 moved inte a hcw genar‘al loéation. for instance from the index-
ing A.#. into the decoder; the clock concept is of dual significance, First,
the only reason we moved the information on this ""pass' thxeugh the
program was becaus? the clock a.ddréu of the pi‘evieul location had been
interrogated and fou.nd to be zero. Secondly, we must now store in the
clock address of the m‘afw location that constazit equal to the number of time
units the information will be present in this location. Every time we make

a complete pass through the program, that is after we have moved things

e

from every 16cation timt i-uu ix;formation in it AND whose clock address
contents is zero AND whosé&ucceedﬁng location is free, then we sub-
tract one from the contents °£~m clock #ddrences that de not already
contain zero. We then again ask what locations are free and what infor-
mation wants to be mav§d¢ |
| : Interlock

The interlock faa;turu of the simuution are rather simple. One e:p.mple

is the use of & "bleck-bit" address in the 704 storage bleck assaciated with

the decoder ,aizd az.-ith}@tic unit. Intérrogatian of and conditienal tranifer
on the content;l-b of this address wul prevent the indexing arithmetic ﬁn,it
from proceu#ng the J‘th instruction l“a‘efau. the {J -t)th inltruetieﬁ is
througli the A, U v |

A second example is our appiicatian of 2 ""wait-bit" address for the arith-

: met!ci u.nit.‘ storage block. Discovery of a zero in the A, V. dock address,
in itself, will not justify an attempt ai putting the contents ef the A, V. ‘1’nto
the sending register and trying to get a momory cycla started, Actually
there are two posaible situations when samething is in the A, U. and the
A. V. clock reads zero. One is when the data has finished being processed
and the A, ¥, clock has run down, The other is when the A. ¥, is wiiting

for ﬁm from nﬁzhorymd the time é‘imst;nt has not yet been stored in
the clock addien. Each requires a different subsequent course of acfion.

Therefore it 18 neces sary to interro‘séte and conditional transfer on an

- 5-

auxilliary 704 address that tells us which of the two situations is the case.
In general, if we do not want to commence routine X until routine Y is in
state Q and if routine Y may be m state Q under more than tone conditioz;, i
then we introduce a supplementary 704 address, the contents of which

will distinguish between conditions.

Miscellaneous

Other addresses within the 704 storage _blécks are used for a variety of
purposes. For instance, in each 704 storage block associated with a
meémory box we have an address containing the "key' of that box. The
"I;ey" 704 address merely holds the highest address of the Basic Com-
puter memory box that this 704 block is representing. It is necessary
in order to make the proper box '"busy' with any given instruction.

Every block associated with one of the 4 registers (Zsending and 2 return-

ing) includes an address for the ''state bit" of that register. If the con-

tents of the ''state bit'' address of a sending register is a one, then the

program knows it wants to start a memory cycle, If a return register

""state bit'' is a one then the A.V, knows that data has arrived from

memory. | |

'rhe indexing A. V. is always in one of five states, The staie of existence

when interrogated will determine the subsequent course of action.

Detailed Description Using Fortran Symbols

For the sake of simplicity let us define all constants, basic ma.chine units,
and progra.ming devices, in the Fortran language. The following are the

704 symbolic locations which will be assigned absolute locations by Fortran

assembly.

Symbols connected with indexing A.M. IXAUT contains some constant

equal to the time for indexing IXAU (IXS):

When
When
When
When
When
When

When

'Wh en

IXS=1,
IXS =2,
IXS = 3,
IXS = 4,
IXS =5,
IXS =6,

IXS —17,

Ixs ’:.‘.".8,

IXAU (1)
IXAU (2)
IXAU (3)
IXAU (4)
IXAU (5)

s

IXAU (8)

contains the address of the instruction
contains the address of the index 1
contains the address of index 2

contains the address of index 3

contains the actual address of data

- contains the instruction number tying up

; mdexing unit

contains the instruction type tying up)
indexing unit -
contains the time left for indexing unit to run.

IXBB containg value of indexing A, V, "block bit" (1 or 0.) : i

Symbols Connected with Decoder and

Arithmetic Unit

IDK contains a constant which determine the type of instruction X~
Type No. { (IDK) -y store
. Type No. ((IDK) ——— bring
IT(I) where I takes on values 1 through 29, In each of the 29 addresses
is a different constant used to set the arithmetic unit clock accord-
ing to the type of operation to be performed,
JAUT is set equal to IT (I) after I has been determined and the A,V, has
started operation. One time unit is subtracted from this address
on each pass through the program. ,
"IAUW contains the value of the A, V, "waiting bit" (1 or 0.) - i
Decoder
IDR (I):
When I = 1, IDR (1) contains time left for decoder to run
I = 2, IDR (2) contains memory address to which we must go.
I = 3, IDR (3) contains value of decoder block bit (1 or 0.)
I = 4, IDR contafns instruction nurnber tying up decode;r. ’
I = 5, IDR (¢ contains instruction type tying up decoder. R
Symbols Connected with the Buss System
IBUXT contains that constant equal to the length
of time information will tie up the fast
memory out buss,
JBUXT same for fast memory in buss
IBUMT same for slow memory out buss
JBUMT same for slow memory in buss .

-

¢ IBUX (1)

sod IBUX (I

W IBUM (I)

sk IBUM (1)

-7-

When I-1, time left on this buss section

When 1=2, memory address to which we are going

When =3, return register address to which we are coming
back :

When 1=4, instruction number tying up this buss section

When 15, distinguishes a store from a bring

Symbols Connected with the Sending and returning Registers

IR (I,J)

IMTI(I)
IMT2(I)

IK

IM(1, J)

concerns the Jth register (we deal here only
with registers (3, 4, 13, 14) ;

When 1=2-5, this is the same sub block as we defined for
the buss sections

When 1-6, IR (6,J) contains the value of the sending
""state bit'" (1 or 0)
When I-=-7, IR (7,7J) contains the value of the returning

"gtate bit'" (1 or 0)

Symbols Connected with the Memory Boxes

contains the constant equal to read out time of the Ith memory box
contains a constant equal to the read out time plus the read in
time of the It memory box, This method allows us to set both
clocks at once.

contains a constant equal to the highest address in the fast
memory. This enables us to determine onto which buss (to
fast or slow memory) information should be placed,

concerns the Jth memeory box,

When I=2-5 this is the same sub-block as we defined for
bues sections and registers

When 1=6, Im (6,J) contains the "key' of the .Ith box that is
it will allow us to pick out this box when we
have information headed for it. ﬁ

When I=7, IM (7,J) contain the amopnt of read in plus read

. out time left for this J memory box.
When I-1, IM (1,3} same for read in time above

An intuitive grasp of the program, obtained by following through the flow

diagram, (Appendix II), may be desiraﬁle before a detailed study of the

actual program step by step, is made. Then, with the definition of a few

Fortran statement the reader should be able to make his way through the

8=

whole situation.

'I‘hree'i:ypes of Fortran statements make up about 90% of ou.i program.
They are “If" statements, '"Do' statements, and statements of the form

A - B, An "If" statement, which is of the form "If (KOW} A, B, C'" means
that if the contents of location"KOW'" is negative tranafer to A, if zero
transfer to B, if positive transfer to C,

- A "Do" atatement‘. which is ;:f the form "Do N I = 2y, a_ " is a looping

instruction., It says to perform the succeesing instructions as far as,
and including instruction numbered N and then begin the loop again, Each
time the program loops back the value of the subscript will be increased
by one, until the inatructions have been darried out with the value of I = a,.
The statement of the form A = B simply sets the content of A equal to the
contents of B,
Let us consider the following portion of our program:
10 Do l0l11I=2,5
IM (I,J) = JBUX (I)
IM (1,J) = IMTI (J)
IM (7,J) = IMT2 (J)
101 JBUX (I)= 0
12 Do 162 J= 1,4
- IF (IR(6,J)) 500,162,122
When we transfer into statement 10 the value (J) has already been deter-
mined as the number of the memory box we are locking for. Also, the
‘clock address of the memory in buss must have been zero. The '""Do loop'
now sets the 704 sub-block associated with this particular Jth memory
box equal to the sub-block associated with the in buss, JBUX (I). It also

clears the in buss during the fifth instruction. The '"do' loop does not

effect the third or fourth instructions because their only subscript is a

v
(3
I}

-9~

J which has been fixed, These two instructions, however, start the
read-in and read-out time clocks by setting the contents of the clock
addresses equal to the cycle times for this particular box. '.’B-’hen this
"Do'' loop is satisfied control proceeds to statement 12, another '"Do''
loop. "I‘he firsi statement in this loop asks if sending registers 1, 2,

3, or 4 want to start a memory c¢ycle (In this progr#m only 3 or 4 could
possibly want to.) That is, if the contents of the state bit address is
negative transfer is made to 500, a étop inﬁtruction. for this address
should never be negative, If it {8 zero tranafer is made to 162 the last
statement of thg loop, which will in turn send control to the beginning
of the loop with the value of the subscript increased by one (unless it

is aiready 4, in which, éase it goes to the next instruction outside the
loop. If the cox;f;:nta of the "atgte bit" address is a one and thus posi-
tive, transfer is made .to 122 and steps t9 instigate a memory cycle are
taken; etc., etc. As the reader can undoubtedly obae‘rve, the use of
'Fc.)rtranv gr'eatly clarifies and facilitates simulation programing especially

through the self-explanatory nature of its instructions.

PRINT OUT

The print out (see appendix IV) is read as follows: Each of 26

columns reérese_nta one of 26 general locations (20 memory boxes,

4 buss sections, indéxing A.V., decoder). Each row represents the
passing of . 1 micrdsecond. The number printed at the intersection of
column L and row T is the nmber of the instruction which is tying up
location L at time T. Thus, glancing across any row we can immediately
see which units are tied up with Qhat instructions at any given time., Also,
we may skim down a column and see how often a given unit i- busy. The
one remaining column giveg the '"state'" of the indexing unit at . 1 micro-

second intervals,

