FILE MEMO ' June 11, 1957

SUBJECT: The Primitive Instruction Approach to Editing
'By: H. C. Montgomery
Introduction

This memorandum discusses the problem of editing as treated using

an approach first suggested by W. Buchholz, in May 1957. The des-
cription given here is not made with a particular machine in mind.

As a result of the description, however, certain desirable characteris-
tics for a machine which could advantageously use the scheme become
obvious. Hence, in addition to introducing the new system, the dis-
cusssion should also serve to aid in deciding whether the system is
well suited for use in a particular machine.

Three desirable characteristics for a machine using this approach are
given here. As the discussion develops the reasons for these should
become apparent. ‘

1. The data flow within the machine should be seritl in nature, in
terms of increments of bits called bytes. Thus, & field would
be operated on one byte at a time.

2. The machine should have a set of variahle fisld length instruc-
tions, preferably both arithmetic and utility (LOAD, STORE,
etc,).

3. The machine should have at least three full word capacity re-
gisters. It is highly advisable that one of these registers have -
an automatic loading facility and another have an sutomatic
storing facility. (These facilities will be described in some
detail below.) 4

The properties which distinguish this approach are all related to the
definitions of the instructions which are used, the implications they
have with respect to hardware functions, and the manner in which the
instructions are applied to solve editing problems.

For all of the instructions, the field upon which the operations are
performed, the operand field, is understood to be the next byte or
bytes in an input data register. Thus, the programmer need not ex-
plicitly identify the operand field; part of the normal execution of
the instructions is to take the field from the register and operate on
it. If the input data register does not contain the field upen which
editing operations are to be performed, the programmer must load
the word containing the field into the input data register before using
the editing instructions.

File Memo _
The Primitive latruction oy 2 June 11, 1957
Approach to Editing

The special editing instructions (called primitive instructiens), can
be used in two ways. The first is to use them as ordinary variable
field length instructions as part of the main program. This would
be the case when the operations which they are to perform would be
applied to but one or two fields of input data.

The second method of application would be to use them in a raanner
similar to the usual way in which subroutines are used. Suppose
that 2 sequence of operations is to be applied to & number of fields,
all of the fields being similar in nature but varying in leagth. A
subroutine is constructed which would perform these operations on
the largest field which is anticipated. R is comstructed, however,
in a way such that shorter fields may use the same subroutine by
transferring to the appropriate place in the sequance. Then each
time a field upon which this sequence of operations is to be perfor-
med is encountered, a transfer is effected to the suitahle place in
the sequence. Examples illustrating the use of the primitive instruc-
tions in this way are given below.

The Equipment Required

The equipment required for editing using this system is shewn in
Figure 1. This represents only the components directly involved in
editing and represents them in their minimum form. Greater execu-
tion speed could be achieved by duplicating components like the MAR
to avoid delays caused by simultaneous requests for aorvice from
several sources.

It is further true that the utility register and the data path from the
instruction register to the adder could be eliminated if a table look-
up facility is provided elsewhere in the machine.

Finally, the description of this equipment perteins to its functions.
The particular method of implementing these functions will depend
on the machine involved.,

The system uses three data registers, the input data reg(ster {IDR),
output data register (ODR), and utility data register (UDR). All
three have a length equal to that of mne memory word.

The IDR can receive half words in parallel from memory, and can
send serially its contents in bytes to any one of three pli¢es: the
ODR, the match register, and the memory address register (MAR).

fro

AMOOP

INSTR-
UCTION

EXECLUTION

CONTROL

BRriing

o-ApcoANZ -

[}

vy
memo‘rg
(a SR |
INPUT DATAH REGISTER
QUTPUT DOATA REGISTER
|2 1
|
‘ tQ i
"\“Qm()\’tj 2
UTILITY DATA REGILTER

)

from
™MemoY 4

fiqura 1.

NOTE
=2 wndicaRa, Fol) waxdd on hatf
word T‘h().\\f;«n--.'.'&;\(:y,\ wm 'PUJ'\Q‘-\Q\

— b»\h NGNS TSSO iy ponoliiel

Flle Memo : ‘
The Primitive Instruction L =3e June 11, 1957
Approach to Editing : : “

The ODR can recieve in serial fashion bytes from any ane of three
sources: the instruction itself, the UDR and the IDR, and e¢an send
its contents parallel-wise to memory.

The UDR can receive full words in parallel from memory, and can
send serially fts contents in bytes to but one destination, the ODR.

It is understood that the operand upon which the primitive instructions
operate consists of a part of the current contents of the IDR. The
programmer thinks of the operands as the next byte of input data,
This next byte is identified by 2 bit address control and a byte sise
control which are associated with the IDR. The bit address gives

~ the bit position of the left-most bit of the byte, and the byte sise
indicates how many bits aze to be in the byte.

During the time when the machine is operating under cantrel of the
primitive instructions, the IDR and the ODR communicate with memory
in a special way. As the input data are read out from left to right by
bytes frem the IDR, and the mid-point of the IDR is passed, the left
half of the next higher-addressed memory word is automatically loaded
into the left half of the IDR. ‘Then, when the byte containing the right-
most bit of the IDR is read out, the right half of the next higher addres-
sed memory word is automatically loaded into the right half of the IDR.
If, during read out from the IDR, a byte extends past the boundary of

a word into the next word, the remaining bits of that byte are taken
from the left end of the IDR (since the left half of the next word will
have been loaded into the IDR by this time.) Ia analogeus fashion the
ODR sends i{ts contents to memory, thus enabling the ODR $0 be cons-
tantly ready to receive another byte and relieving the programmer from
having to concern himself with when the register becomes full and needs
to have its centents stored.

The UDR need net have this sutomatic loading (or storing) facility for
editing., Since its main rele in editing is to remove certain fields from
full memory words during table look-up operations, it need only be able
to receive full words from memory, and send bytes to the ODR. A bit
address control is used to identify the left-most bit of the field to be
read out. The byte size control fixes the bits in sach byte to be read
out and the length of the field to be read out is given in the table look-up
in-trucﬂm

File Memo
The Primitive Instruction -4- June 11, 1957
Approach to Editing

A single memory address register (MAR) and adder are used for
computing the correct megnory address in table look~-up operations.
The capacity of the MAR is the same as the length of the word ad-
dress field in the primitive instructions. The capacity of the serial
adder is not critical.

An eight bit match register is used to identify certain input charac-
ters. When the appropriate gates are open, the next byte of input
data is compared with the character given in the primitive inatruc-
tion (the right-most bits of the instruction match charactsr). A
match or no match signal is sent to the instruction execution control.

Both the IDR and ODR have a word address register associated with
them which records the memory address of the right half word which
they contain. As mentioned above, a bit address register for each
of them provides the bit address of the left-most bit of the byte being
processed. When the processing of this byte is completed, the bit
address will usually be advanced by the number of bits in the byte so
that it will then give the address of the left-most bit of the next byte.
The bit address mechanism for both the IDR and ODR {3 designed so
that it operates on an arithmetic which is modulo the mumber of bit
positions in the registers. Thus, when a byte begins near the right
end of the register and extends past the right end of the register, ad-
vancing the bit address will cause it to count off the remaining bits
from the left end of the register, giving the effect of having a circu-
lar register which is byte-wise continuous.

The instruction control box shown in Figure 1 is the same equipment
as that used for controlling the execution of the standard instructions
of the machine. Rs function is to effect the opening and closing of
the correct gates in appropriate sequence in order to perform the
operations defined for the imstructions being executed.

The format for the primitive instructions should as clesely as pos-
sible be identical to the standard instruction format. The fields re-
quired are shown in Figure 2. Their relative positions in the word
are not critical. The number of bits in each field depends upon the
overall machine characteristics, such as word length, number of
memory words, etc.

WORD ADDR MATCH | pepeTimiong | O] JTILITY | BYTE)
' ESS CHAR - N e CHAR- |
ACTER ODEH | “acrew z2e|T

Figure 2

File Memo
The Primitive Instruction -5- June 11, 1957
Approach to Editing

The word address fleld, as was pointed out above, does net give the
address of the operand. It is rather used to give the address of an >
alternate instruction when a transfer is possible, and in the table
look-up instruction to give the base address of the table,

The match character is the model with which the input bytes are com-
pared when it {s desired to detect a special character whose location
in the input data is not known, as far instance, leading geras in a
numerical field,

The utility character is used as a subatitute for unwanted input charac-
ters and for ingertion directly into the ocutput for such use¢ as punctua-
tion.

The byte size field specifies the number of bits in each byte of input
data, A second byte size field for table look-up specifies the read out
byte size of the table entry, This field occupies the three right-most
bit positions of the utility character fleld,

The repetitions field gives the number of times the instruetion is to be
repeated, using new input data for each repetition,

Since the format for the table lock-up instruction is considerably dif-
ferent, it iz shown here.

FIetD |FIELD OPERATION BYTE|8YTE|]
WORD ADDRESS |LENGTH|LENGTH| REPETITIONS| o SIZE |SIZE |y
INPUT [ouTPUT OUTPUT] N PUT]

Figure 3

The Primitive Instructions

1. TMT (Test for Match and Transfer).

The next byte of input data is sent to the match register where
it is compared with the match character sent there from the instruction.
If the two bytes are identical, the utility byte from the instruction is
sent to the ODR and the bit address controls of the IDR and ODR advan-
ced. If the bytes are not identical, the bit address controls of the IDR
and ODR are left unchanged and control transferred te the instructien
whose address is given by the word address field of the present instruction.

File Memo
The Primitive Instruction b~ Juse 11, 1957
Approach to Editing

-s:fm“w 2. TMN (Test for a Match and No Transfer).

The next input byte and the match character are campared
as in the TMT instruction, If the bytes are identical, tha input byte
is passed unaliered to the ODR and the bit address controls of the
IDR and ODR advanced by ane byte, I the bytes are net identical,
the bit address controls of the IDR and ODR are not advanced and
control is transferred to the instruction whose address ia given by
thi‘} word address field of the present instruction. :

Ew 3, TMS (Test for a Match and Skip).

The next input byte and the match charaeter are compared
as in the TMT instruction. If they are identical, the bit address
control of the IDR is advanced, the bit address control of the ODR
left unchanged, and the next instruction in the present sequence is
taken., If they are not identical, both bit address conirols of the IDR
and ODR are left unchanged and control transferred to the instruction
whose address is given by the word address field of the present ins-
truction.

4. ICH (Insert Character).

The utility character is sent to the ODR a number of times
equal to the number in the repetition field of the instruction. The
bit address of the ODR is advanced by one byte for each insertion,
while the bit address control of the IDR is left unchanged,

5. PBY (Pass Byte).

The next input byte is sent unchanged to the output area,
The bit address controls of both the IDR and ODR are advanced by
one byte for each repetition of this instruction.

6. BSP {Backspace).

The bit address control{for read-in) of the ODR is backed up
by one byte length.

7. SBY (Skip Byte).

The bit address control of the IDR is advanced by one byte

reRREnL LRI

File Memo
The Primitive Inatructzon wTe : June 11, 1957
Approach to Editing ‘

8. TLU (Table Look-Up).

The input field specified by the instruction , the controls of
the IDR, and the contents of the IDR is added to the word address given
by the instruction. The output field defined by the contents of this ad-
dress and the instruction is sent to the ODR. The bit address of the
IDR is advanced by the amount of the input field length and the bit ad-
dress of the ODR is advanced by an amount equal to the output fiald
length. These operations are repeated a number of times equal to the
number in the rcpotition fleld of the instruction.

Nate: When the repetitions of the BSP and SBY instructians cause the
bit addresses of the IDR and ODR to pass through the bit positions which
normally cause automatic loading or storing action, the contents of the
IDR t#nd ODR are adjusted appropriately. That is, the previous contents
of the ODR are brought back and the next words for the IDR loaded in as
needed,

Sample Problems

In the examples which follow, the model field will {1lustrate
the desired output format; the primary primitive sequence (PPS) will
be the instruction list which is used to begin the sditing process; and
the alternate primitive sequence {APS) will be the instructinn list to
which control is transferred when certain conditions have been satisfied.
The results these progu.ms produce for various inputs appear at the
right,

The instructions in the PPS list contain in their alternate ins-
truction address field the address of the alternate primitive instruction
which appears on the same row, and therefore, which applies to the
same input byte. It so happens in the examples shown here that the
transfers are always from the PPS to the APS and never in the opposite
direction. This i3 a characteristic of the chosen examples and not a
general property of the system. The APS could effect a transfer to
the PPS or to some other instruction list.

The examples which appear here illustrate the use of the pri-
mitive instructions in the subroutine philosophy application. The pro-
grams for applications in which the primitive instructioas are inciuded
as part of the main program are obvious.

File Memo
The Primitive Instruction -8- June 11, 1957
Approach to Editing '

1. Suppose it is desired to edit a ten digit numerical field to

put it in a dollar field format.

RESULTS
MODEL ‘ Input Output Input Output Input Output
FIELD PPS APS
x TMT PBY
x TMT PBY
x TMT PBY
, ICH(b) ~ ICH(,)
x TMT PBY
x TMT PBY 5 5 0 b 0 b
X TMT PBY 4 4 0 b 0 b
. ICH(b) ICH(,) , b b
x TMT PBY 5 9 0 b 0 b
x TMT PBY 7 7 7 7 0 . b
x TMT PBY 3 3 o o 0 b
. ICH(b) ICH(,) , , b
x TMT PBY 6 6 0 0 0 b
x TMT PBY 4 4 3 30 b
x TMT PBY 2 2 5 5 0 b
. ICH(.) ICH(.) ., | | - 4’ b
x TMN PBY 8 8 1 1 0 0/b
x TMN PBY 1 | 2 2 0 0 b
BSP(3)
ICH(b)
ICH(b)

ICH(b)

File Memo
The Primitive Instruction -9- June 11, 1957
Approach to Editing ' :

2. The inverse problem to the preceding is to produce from an
input field like $xx, xxx, xxx, xx an output field like xovoooekxx. The
problem here is simpler because one can assume that non~significant
zeros have already been removed, :

POSSIBLE . ' ;
INPUT PPS APS INPUT OuUTPUT
($) x - SBY —+» PBY
($) x SBY -—» PBY
($) x " SBY —» PBY

» , SBY)
($) x SBY —»= PBY ~

‘ $

($) x SBY —» PBY x x
($) x : SBY — PBY x x

» ' SBY ’

') ' The gaps will
($) x SBY — PBY x x not appear in
_ : the output

($) x ' SBY —» PBY Py x field.
($) x SBY —» PBY x x

PR SBY) ’
($) x SBY — PBRY x x -
($) x SBY —» PBY X x
($) x SBY —» PBY x x

. SBY —» SBY) | .

x) PBY x x

x ' PBY , x x

File Memo

The Primitive Instruction

Approach to Editing

3.

-10-

June 11, 1957

Another permutation of this class of problems is that which re-

 duces fields of the form bbbxx, x%x. ¥x t0 XXXXXAK by deleting leading

blanks and punctuation. The unknown quantity in this cese is the number
of leading blank characters.
(This is necessary to know where in the PPS to transfesr initiaily.)

The overall length of the field is known.

POSSIBLE

INPUT PPS_ - APS ___ Input Output Input Output _Input Output

(b) x TMS PBY |

(b) x TMS PBY -

(b) x TMS PBY
. SBY, SBY

(b) x TMS PBY)

(b) x TMS PBY 2 2 b b

(b) x TMS PBY 8 8 b b
. SBY) SBY) , b b

(b) x TMS PBY 7 7 b b

(b) x TMS PBY 3 3 1 1 b

(b) x TMS PBY 5 5 9 9 b
. SBY) SBY) , . b

®) x TMS PBY 5 5 3 3 b

(b) x TMS PBY 4 4 7 7 b

(b) x TMS PBY 6 4 4 b
. SBY) SBY) b
x TMS PBY 7 7 5 5 b
x TMS PBY 9 9 2 2 b

Since the length of the output field from this problem cannot be pre-
dicted, the programmer must exercise more care in ite use to avoid
confusing results.

