
7030 FROGR.AMMXNG EXAMPLES

I c

FORWARD

The following programming examples are inkended to if%ustr;ete

the use of 7030 instructions as active tools in problem solving. It is

believed that the serious reader, equipped with the 7038 Reference

Manual (A22-6530) and a description of the STRAP assembler (say the

Reference Manual, 704-709-7090 Programming Package for the IkBM

7030 Data ‘Processing System (C22-6531)), can obtain a dynamic

knowledge of 7030 programming without extensive outsbde help.

Experience in computer programming, while certainly an ;itmet, i~ not

‘takenfor granted,

The subject mat ter is divided into four maim sections:

1. Instruction Arithmetic Unit Instructions,

2. Variable Field Length Instructions,

3. Floating-point Arithmetic,

4. Special Problems.

No attempt is made to cover the entire instruction set, to define every

t e rm nor to explain every programming step. There a r e however, a

number of comments to ass i s t the reader over rough spots or points of

ambiguity. Frequently programming alternatives a r e brought to the

attention of the reader to emphasize the fact that there a r e many ways of

doing the same problem. Efficiency in computer problem solving

involves the balancing of the following factor B :

11 e Accuracy of results,

2, Analysis effort,

3, Programming time,

4, Debugging time,

5 . Production run time,

6 , Effectiveness in repeated use of program (possibly by a stranger).

Thmnda$i,m)merits of these factors vary from problem to problem,

individual to individual and organization t o organization.

In the design of the programming examples a seventh factor,

pedagogical value, has received the primary stress , and no claim is

made for efficiency in terms of the other six.

T. C. C.

STRETCH PROGRAMMING EXAMPLES

Foreword

f , Instruction Arithmetic Unit Instruc tisn EI

1. 1 Transmittal of 2 full words. (3 examplee)

1, 2 Interchange of two word-pairs. (2 examples)

1, 3 Cyclic permutation of a group ofrull words, (4 examples),

1 .4 Replacement of full words by zeros. (3 examples)

1, 5 Replacement of isolated full word groups by zeroB. (4 examples)

11. 6 Subtraction of value fields,

1. 7 Interruption measure.

1 . 8 Simulation of RENAME instruction.

1.7 Transposition of a square matr ix with full word elemente, (2 examplee)W

2. 	 Variable Field Length Instructions

2, 1 Cyclic bit shifting.

2.2 Length of an unknown file, (3 examples)

2.3 Deletion of every 5th bit in a field, ‘(6 examples)

2.4 Bit reversal . (2 examples)

2. 5 Removal of key words.

2. 6 Sorting on the basis of subfielde, (3 examples)

2. 7 Sorting into reserved table areas.

2.8 Purchasing l is t arithmetic.

2. 9 Effective address creation.

2. 10 Fetch (e, ,q)th element of rectangular matrix,

2. 11 Simulation of &bit addition.

2, 12 Transposition of rectangular matrix.

3. 	 Floating - Point Arithmetic

3. 1 Separation into integer and fraction par ts .

3. 2 Integer part of floating-point word.

3.3 Polynomial evaluation, (2 examples)

3 .4 Modified trapezoidal rule. (2 examples)

3. 5 Continued fraction evaluation.

3 , 6 Scalar production of vectors.

3. 7 Cube root.

3 . 8 Normalized floating-point vectors f rom V F E data.

3.9, Double-precision compare. (2 examples)

3. 18 Integer par t of logz

4, 	 Special Problems

4, 1 V F L fraction square-root.

4. 2 Double-precision binary to decimal conversion.

4-. 3 Bit image of a sequence of numbers

4,4 Compression of sparse vector.

4.5 Scalar product of compressed spa r se vectors.

4.6 Transposition of an 8 x 8 bit matrix. (3 examples)

4.7 Transposition of a 64 x 64 bit matrix. (2 examples)

4 . 8 Product:of square matrices.

4.9 Cosine of 2nX

4,lO Natural logarithm.

4.11 Exponential of x.

4.12 Transcendental function evaluation.

4. 13 Numerical fntegr ation.

STRETCH PROBLEMS

&.
I_

Copy the contents of full words located in DOG, DOG + 0 into full words

located in CAT, CAT * l a 0 respectively,

f a

Method 1.b Use the immediate transmit instructisns.

TIj 2, DQG, CAT

or

TBIj 23 DOG + I m O j CAT + 1.0

Comments e

& 	NQ mare than 16 full words can be transmitted by TI or TBL Sf
16 words are to be transmitted h e J fields could be filled by

.

4rJ9 Q P E t e deither 16 or 0 in STRAP coding. ur"e t h a t 4 pour= < er *nsf l i
8. 	If the rrsource" and %ink" areas o v e r I a w T B 1 if CATI>DGG; \g_MPCr$/

use TI if CATdDOG. In the following we shall assume no overlap, -u---

Method 2.P Ude an index register to control the number of words transmitted,

Lcq, $1, 2.0

T, $1, DOG, CAT

Comments,
6.As many as 218 (262, 144)words can be specified this way,
b. 	 The programmer should be cautioned that direct transmit type

operations with the J field referring to an index regieter with a
zero count field means the maximum count possible.

Method 3 M Use index instructions,
LxJ $I# DOG
SXj $1, CAT

Jltx, l DOG + l a 0

SX, $1, CAT -B- 1.0

Commentst
d. Although data transmission is not the primary function of index

registers, the timing here is not too different from that of the more
concise transmit instructions.

$, 	 Two other ways are available: VFL load-store type operations and
floating poi t (unnorrnalized) Lbv'@*re. The latter is efficient but
may turn om,$XPFPLndicaCor.

d. 	The two "unused" bits (bits 27 and 28) of the index register are available
for data t r a n s m i e a t . They -serve no specific purpose otherwise,

ProblemU, ~ ~ + e r ~ L ~ ~ ~+wo ward-pa+s,
e 	 O-F

Interchange the content3 of full words DQGJ DOG + 0 with full wards CAT,l a

CAT + 1 . Q .

Method l,.# Use immediate swap instructions,

SWAPIj 2, DOG, CAT

c)r

SWAPBI, 2, D@G + L O , CAT -+ I. 8

mailto:Lbv'@*re

-2-

Cornmen&
&. 	 The swapping sf each word-pair inv two memory fetches

fallowed by two storea into the "fetc locations. Since the ~ a m ememory
unit mu*stwait 2,2 rnieroseccmds between reque&a, the execution time
of swap inatruetima generally takes more time than transmit,

&. he J f i e l d in swap instruetiom i s treated in exactly the same way aL1s
in transmit instructions.

Method 2 , ~U s e index instructions,
LxJ $ O J

Lx, $1, 9 1.0

LX, $2, CAT
%xJ$8, CAT 1.0

SXJ $0, CAT

sx, $1, CAT 4- 1.0

s x J $',

SX, $3, DOG * 1.0

CommentISe

a. The execution time of this sequence is not heavily dependeat on memory
delays, and Method 2 is expected to be faster than Method lpExtensive
use of this type af coding is clearly limited by the entailing te.d..iukn,
Other alternatives are again, VFL and floating point LwF+Sares.b4 $0 may be used for any index purpose except address modification and
progressive indexing. In address modification a zero 1 field
specffies no modification.

PrublemU, CqJ;r. p e r m--..---Ll;ka&;cz n-&:ft-amlp c7f M Lw-wcfs*

Given q G & t i t f & S A, b, 6 ,D, E, Fj C,13, I, in full words DOG through DOG -). 8. Oe

Cyclically permute the information such that the new contents will be in the

sequence DEFGHIAEC,

Method 1,

TI, 3, DOG, 27.0' ' 'store A, B, @, . in $1, $2,. $3, respectively
TIj 6, DQG + 3,qDCI)G " OpY!.L-* H-1ri.HX
TI, 3, 17.0, DOG -I- 6 e Q I' p 1; f GH 5 A P, C.

Method 2,
SWAFI, 8, DOG, DOG + 1.0 ' 'cyclic left shift one tanit
SWAPI, 8, DQG, DOG + 1.0 "shift. another unit
SWAPI, 8, DQG, DOG + l,d "axnplete the 3 unit cyclic left shift

Method 3,
SW.AP1, 3, DOG, DOG 3- 6,t7 ''WGH3iX: 'Akd.
SWAPI, 3, DOG, DOG + 3.0 "complete the permutation

Method 4,
SWAPI, 6$ Dm, DOG -I-3 .0

Comments, s. In order t~ permute N consecutive full wordsfi%(DG thru DOG * N-l)c t C - d S fl- 1 1 , / l 5 C I ' ' U c ~

cyclically left K placegithe single' ihstructkon
SWAPI, N-K, DOG, DOG + K

is adequate. If on the other hand N-K i s a divisor of N, the situation fs
e'quivdent t o that sf cyclically permbting right N-K placeg, and a back-
ward swap may be used:

S\rdAPBI, K, DOG + N-K-1 "N-Kdivides M
If neither M or M-K is a divisor sf N# nb single swap instruction will suffice,

I -3-

NewUess to ~ a y ,if the number sf ful l words to be swapped exceeds 16, the fmrnedfatt
awap Instructions should be replaced by equivdlsmt direct swap imtructions,

Flu'

ProbkmlA, ReEIa.c~men4of fuIlw~l,,I, (y ?.erose
Replace the co.&&&-off6li-woa>agG%hrou@ D-T+ 24.0 with zeros.

Method 1 W Set up a small loop using CB+ instructions.

__.

LX, $3, xw.3
A:
 :. A
2, DOG(@)

cB*, $3, 61: I --*A*

EL 	9. . BEW, Bi 8 ..I).

y w a XW, (AJL 25, xw.3
Comments I

aml. 	 The address field of the BEW instructions and the refill field of
the index word are being w e d for identification purposes,
While the system is "waiting", the numeric equivalent of B, v

being a branch, address, is in the instruction counter. During and
after the execution of the program, one can examine the refill field
a€ $3 to find out the source of the index information. These
identification tags can be useful debugging aids.

bu It I s gobd practice Lo use a decimal point in the value field of an
index word.

Methad 2,
L?L $3, XW3A
2, w#w
CJEk-, $3, $ 9 3 2
BEV6r.J $

xh'3Al XW, DOG -0- 24.0, 25, $

Comments

a.The use of $ to mean "the locatLon of this very instruction irs an efficient
symbolic programming device, Instruction insertion and/or deletion
in the vicinity of a symbolic instruction containing $, however, has to be
done with aome care . For instance, thetinsertion of a half word
instruction between the Z and CB- instructions without corresponding
change in the CR- instruction will cause branches to this new
instruction rather than. to the Z instruction.

Method 3 , W During a transmit instruction execution, storing of the Ktk f'sinkD'
word precedes the fetch of the (K -+ 1) th "source" word. This makes the following
concise program possible.

E,D m

TI# 92, DOC;, D@G + 1-0

TI, 12, DOG, DOG + 13.0

Comments,
L I	 I

d. 	The execution sequence is:
ZWWS --> C (D @ G) 4 C (D (l) G+ 1. O) ,
CCDOG+ I, O++>C(DOG + 2.01, et@. CCQ) -5 k

probled#5e ~ep lacernen& c r ~/so/m,+ec/ Fu.l/--worJ

Replace the following fu l l words by
w
t hough CAT + 15.0, CHICK through CHICK + 34.0.

L
-4-

Method I.# U s e chain indexingo

PRNID, JOE BkoWEJ DEPT. 333

PUNID, J. 1sLQ)WE

SLCJ 1000.8

LCI, $1, 3 . 8

LX, $2, LINK 1

E , 	o($a
CBR+, $2, &32

CB, $1, $ - L O

BEW, $

LINK f XW,, DGG, 25, LINK 2

LINK 2 XW, CAT, I€&LINK 3

LINK 3 XW, CHICK, 35, $

END, 3eooo.o

Comments

dl, -%'he PRNHP), PUNID, SLC, and END pseudo fnstructfona should be
included in every program intended for assembly, They are given
here as an example of correct usage.

b. 	 TMS is a simple dcimionstration of the utility of tlne automatic refill
feature In the 7030.

Method-----
2,R Use chain indexingand an XF to terminate the sequence,
LX, $2, LINK I
Z J 0($2)

@Em+,$2, $a32

WZXF, $ - l o o

BEW, $

LINK 1 XW, D$?l@, 25, LINK 2

LINK 2 XW, CAT, 16, LINK 3A

LINK 3!L XWJ cEPclI(, 35, $, 4

Csmments 0

1_1

cl. 	 The use eaf the index flag to terminate a sequence is especially
important when the exact length of the indexing c$ftNjcrt2~sunknown
or variable. The number in the fourth subfield@oncerns the
setting of bits 25, 26, 2'8 of the index word, The number 4 means that
only bit 25 (XF) is a 1.

#j.Remember that the settnng of the index flag indicator is done prior
to the refill.

Method 3, Use transmit imstretetions,
%# DOG

TI3 12, DOG, DOG f . 0

Ti, I.& DOG, DQG + 93,o

,'I&, CAT16, DOCS,

.TIs 12, .DOG, CHICK

TI, 12, DaG, CHECK 8 12.0

TI, 119 DaG, QXCK + 24,O

Method 4.a Use transmit and index refill,

--

-5-

xw5. XW, 0.0, 34, XWSA
x w u XWJ o*o, 25, $

trrrr, Comments,
a.The refi l l Instruction operand is not limited to index registers.

It i s possible for example to write
R, X W 2

and after its execution X W a will have the same contents a8 X W a A I .

ProbleunZ.6, Sa b-t, p a I ni.;an bf: f i e I&,

Subtract the value field of $1from that of $14 and put the result in the value field

of $14. It i s permissible to destroy $1in the procesa,

Method 1 - Change the sign bit of the value field of $1, then add value fields.

BBN, 9.7.24,NEXT

NEXT LVS, $14, $1, $14

Comments,

In the LVS instruction the index registers to be added together must
all be different from each other. The J field, however, may refer to any
index regis ter .

"V+-, $14, 17.0" could also be used as1 an instruction at location
NEXT.

7	Che conditional branch is being used unconditionally. The computer
nevertheless still makes the tentative asaumption that the branch
will be unsuccessful while preparing the BBN instruction. Sdme
time i s lost if the assumption proves Incorrect during execution time.

dq The program above is therefore efficient If the bit 17. 24 is
probably zero. If this bit is probably 91, BBN should be changed to BZBN.

e. 	 The machine preparation of the following conditional branch
instructions involves the tentative assumption that the branch will not
be successful!
All EIB type of instructions (no exceptions)
All branches on indicator bits except the following:

XF (11.38)
XCZ (11.48)
XVLZ (11.49)
XVGZ (11,51)
xvz (11.50)
XL (11.52) --
XE (11.53)
XH (11.54)

Note that branches on index resu l t s o r index reg is te r conditions do
not involve tentative guesses. For exampleJ CBRX does no2 behave

+ ~i$zea,--,~,e,,+wty c.Pranchc.-QnnecCtivetnstrticd~onc M A g ooka5 31 17:J V ~n e 'e '51u e conditjonal e
P r o b l e m L I n e r r w p t ~ o r)m e a s a r e . 1 i0 5 t r ; u cfin.
$IA contains the addres'a 1000.0. It is desired that when a $TS interruption occurs
the instruction counter contents should be s tored in the first 19 bits of location

is to be continued. W r i t e a code to effect this.

TsFIx SIC, 20040; BR, 8
-w Commentsr

d. 	The SLC pseudo instruction indicates the instruction TSFIX is to a ta r t at
1004.0. . Since $TS is bit position 4 of the indicator register, a $TS inter-
ruption will lead to an automatic execution of the f ree instruction at
@($IA) + 4.0 = 1004.0.

I

b. The instruction counter is not changed during the epecutjesxn of the
.I-..c

"free instruction", hence the"bsanchrelative Its zero instruction will re turn
to the main program,

6. The interruption system is not disabled during the execution of the
I ! free instruction". In fact during the interruption only the $IF monitoring
I s relaxed temporarily to d l o w the fetching of the "free instruction".

d. The SIC atition i s n@t performed unless the ensuing branch is SUCCwiwfUPJ
and even then It i s performed after the execution of the branch.
Instructions such as SIC, $+ 8. 32; €3, ANYWH will lead to a branch to
ANYWH if the branch is executed. The instruction counter will not have
time t o alter the branch address before execution,

p r o b l e m ,- _I -_._ 	 R E N A M E insCruc4;on.__I_ _I-."".,.-----.I-S ; m u l a . t ; o n J
Create $he effect of the instruction RNX, $1, DQ)@($3), -7

~ ~ u ~ ~ € e ~ - ~ i n ~ ~ ~ ~ ~ ~ ~ g ~ ^ I - - - - - I I -
Method I,

RNAME SX, $2, X2 "save $2

SR, $0, f8 ,O

STOX 	 sx,$1, W$2)

EX, $2, x2 "restore $2

LvE, $1, Lox

LR, $0, 17.0

LOX =,$1, DQjG($3)
w BEW, $

x2 	 xw,0

Comments,

&, 	 It would seem that the SR instruction could be altered such that the
refill field of $0 is stored directly into the address field sf ST(DX,
and the use of $2u+d4'be avoided. This is not possible because in the
SR operation the rc f i l l field concerned i s right appended by zero bits to
create a 25 bit value field. The latter is then stored. The STOX
instruction would be seriouaaly altered if a direct SR operatfan is used.

Prsbleml.9, Transp~s&,nn __ s L,,cl, r e m d r i x wi- th f c J word J e m e n ka -g _--------
Am N x N matrix has full word elements and is stored row-wise GegimnEng at LQC,

Create the transpose of this matrix and store it in the same area.

Method 1#h Interchange rows and columns starting from the north and west borders

of the matrix.

TPOSE LX, $2, XW2; SX, $2, X W 2 2
F" 9wL, $3, xw3; sx, $3, x w 3 3
SWAP1 	 SWAPI, I, 0($2), 0($3)

V+ICR, $3, N

CBR+, $2, SWAPI

'9r+Ic,$2, N + l . ; SX, $2, xwga

V'IC, $3, N'1. SXJ $3, X W s 3

BZXCZ, SWAPI

-7-

N 	 SYN, 100.0 100 x 100 matrixIt&+"

w 	 LCbC SYN, 32768,O ''if matrix sttarts at 32768.0
Comrnents,

d o The program i s written in such a way as to be reusable,
Otherwise the temporary index word storage8 XWx13!2 and XWB3 could
be ornittfikl by a slight change of the program,

Method 2, Start from the upper and lower co-diagonals of the matrix and proceed
through the exchange of the north-east-most and the south-weat-moat elements.
TQgSE2 EX, $2, X W ~ ;SX, $2, X W Z ~

$3, x w 3 ; 	SX, $3, xw33
SWAPI 	 SWAPI, 1, 0($2), 0($3)

V*ICRj $2, N+1,

V+PCR, $3, N+1.

BZXCZ, SWAPI

V*IC, $2, 1.0; sx, $2, xwz2

V+IC, $8, N;sx, $3, xwB3

PZXCZ, SWAPI

BEWJ $

xw2 L O c + l , J N-1, xwa2

xw3 XW, LO)C*N, N-1, X W 3 3

x w z 2 ma0

xw33 xw, 0

N SYN, 100. "size of matrix

mc SYN, 32768.0 'Istar ting location

A

2. Variable Field Length Instructions.
I

Problem 2. L Cyclic bif shiftihg.

Cyclic left shift a full word in D@G by 7 bit positions,

Method 1.

''leave room far DOG thru DQ/G+O,6

Problem 2.2. Length of a n unknown file.

Information of unknown length is written in consecutive 7-bit bytes

beginning at IW@. Its end is signified by the first appearance of a special

character consisting of seven binary 1's. Write a program to find the file

length (including the special character) in bits, and put the answer in the

value field of $1.

Method 1. Byte-by-byte compare.

SEVN VF, 0.07

Comments.

0. The last VFL instruction serves mainly to perform the (V-I) operation,
+clr a , I t c J rnci.+i ve +e L X n I' f i e d o c 4 3.
tixxs-)~3ing-no-ot-her--simplr;vJi~-Z-ZL+ttmszme&ing.

b e ;ffrr binary unsigned operations the machine uses a byte size of 8

regardless of the data description, except for logical connectives.

STRAP inserts byte size 8 if unspecified.

C* A numeric bit address is signified by the appearance of a "point"

(whatever the radix). A number in the addressafield without the ''point"

i s sa id t o be an i n t i g e r address. The l a t t e r is acceptable to S T R A P , but

irrrr' SmAP..nlust translate it in to the equivalent numeric bit address before tho

program can be executed direc t ly by the machine.

The bit address equivalent of an integer address is determined

by the environment, which defines a subfield. The'integer oddraas is
non- e r o hi+ $ o r *Xe

treated as an integer of the subfield (e .g. , tho,lrt&gor iwould occupy

the*riglitzmopt posit ipo) $, then the left margin sf the subfiald.isr placed "in

juxtaposition with the leading bit 'of the address f i e l d , leading t o 'a,Bit-'

address identification.

Where the environment seems t o suggest more than one s u b f i e l d ,

the atnalJest subfield is to be used.
I

A VFL instruction normally implies a subfield of 24 'bit$. Zn the

second instruction of the present program, the "immediater' rrature, p l u s

the field l ength suggests a srmller (7 b i t) subfield. The l a t t e r is adopted

during the S T R A P assembly as the defining subfield, and the bit address

,equivalent i$ therefore

0 , (127*2'7) 0 , (127*217)

(127*2'').0 = 260096.0

The convenience entailed by the use of integer addre8se8 I s
dwv

apparent: 260096.0 is not only d i f f i c u l t to obtain, but * p o t contribute

t o understanding.

Method 3. Use connective and branch on $RZ.

V

-

L

-9-

Comments,
d. The LVE instruction loads themagnitude of the d u m m y SIC inetruction
8. 	@TO1110 will lead to $ R Z = l if the memory field and the accumulator

field a r e equal. In reality the 7-bit memory field is left-appended
with a zero bit and is connected with eight bits left of the offset.

G . 	The V*,$l W a R D instruction in reality performs a subtract dnce
bit 2 y of the SIC instruction is a 1,

d. 	The progressive indexing secondary operation can precede the (dda).
e. 	The CNOP forces the next two half-word branchinstructions to be

packed in the same full word. Tbis has a beneficial effect OA

Instruction Unit t iming .
P rob led ,3 I Df&t ic. 11 y ~ ' ~ c . $6 t h / , 'A -!!-?-----.--y& _ -_ _ _ 5 -6dd , ____--

Given a string of 60 bits starting a t FIELD, delete every 5th bit starting at

FIELD t 0. 04 and put the 48 bit result consecutively starting at FIEL,

Assume that there is no overlap between (FIELD- FIELD a 5 9) and (FXEL,- FIEL+@;Y7/

Method l 0 Lo'aad 5 signed bits and s tore 4 unsigned bits at a time,

LV, $2, VFIELD

LX, $3, VFIEL

LaAD 	 L(Bj5, l)(VtI) , 0. 05($2)
ST(EU,4) (VtIC) , 0.04($3)
B Z X C Z , LOAD

VFIELD VF, FIELD
VFIEL X W , FIEL, 12, $
Comments,

c2. B Z X C Z is not considered to be a conditional branch instruction since
the instruction arithmetic unit knows the index conditions during
decoding time.

Method 2. Load 5 unsigned bits and s tore 4 bits with offset 1.
L V , $2, VFIELD
LX, $3, VFIEE

L@ADA 	 L(BU, 5)(V+I), 0. 05($2)
ST(BU,4)(V+IC), 0. 04($3), 1
BZXCZ, $ 4 . 0
BE%$

VFIELD VF, FIELD

VFIEE X W , FIEL, 12, $

Method 3, Other variations of the s a m e theme, Instead of LaADA and LaADA 9 1. 0

above, one may write any of the following instruction paira:

E(BU,4)(V+I), 0.05($2)

ST(BV,4)(VtIC) , 0.04($3)

o r

L W F (B , 5, 4)(v*I)J0 . 05($2)

ST(B, 4,3)(V+I)) 0. 04($3)

Method 4., Remembering decimal information is processed in the accumulator in
4 b i t bytes, it is possible to write just two instruction8 to erolvo this pra'trlPm
under restrictions stated below. The decimal load operation behaves like
a decimal 	s'add to zero" operation,

-	 10 -

E(DU, 6 0 , 51, FIELD-0.01

ST(BU, 48), PIEL

Of:

L W F (D , 60, 5)# FIELD-0.01

STYIB, 48, 41, FPEL

6omment6.

a, The lead bits in the 5-bit bytea are deleted to five 4-bit bytes,

b. 	 In the decimal load the $-bit bytes will not be altered if they

contain what appears to be decimal information. Otherwise

ca r ry propagation and assimilation will occur. The byte

(1 P 1 1)2, for instance, will become (0101)2 with a carry to

t o the higher byte.

c . 	The method fails if FIELD -0. 01 happens to be in a protected

memory a reae To avoid this difficulty, use say, L(DU, 59, 51,

FIELD instead.

Method 5

LX, $1, X W 1 ; LV1, $2, 56

L(BU, 6O), FIELD

STaRE 	 W B U , 4) (V 4- I), 0.64($1), om)
v - I, $2, 5

BZXVLZ, S T ~ R E

BEW, $

xw1 XW, FIEL, 0, $

Comments

Zk. 	 The integer 5 in the V - I instruction means 5 units in the 19 bit

address subfield of the instruction half -word.

e

Method 6 . Use logical connectives.

COO11 (BU, 6 0 , 51, FIELD "LF

CMOlOl (BU,48, 4)) FIEL, 1 "SF

Comrnents.

a, The accumulator always uses 8 - bit bytes. Each memory

byte is left-appended by enough zero5 to become $-bit bytes

for the connect operation. In the LF operation true me m o r y

bytes are expanded to &bit bytes; in the SF operation the 8-bit

bytes are truncated to the specified byte size (in the dds).

b. 	For operations @abed, CMabcd, CTabcd (abcd can be any

combination of 0% and 1 ' s) the result of the operation can be

~ e e nfrom the truth table:

-11-

Cabcd: result goes t o the accumulator

CMabcd: r e s u l t goes to memory

CTabcd: result discarded

Where m refers t o a memory bit and a refers to an accumulator b i t ,

If a m 1 and 150, for instance, the r e s u l t would be c . If the instruetiens

for this case WPP COOlO, c equal8 l L

C . 	 of the connective operations are, mong other#,

$RZ ''E8 tho result zero? Or, doe8 the r e s u l t contain no ansa?"

$A@C '%HOWmany ones are there i n the result?"

$LZC Where fa9 the leading one b i t ? "

The CTabcd operation allms the user to examine thaab bfpmdactr
h

without affecting the accumulatsr or the memory.

de 'The only acceptable encry mode for connective operatiana'irr BU.

B I D # and DU are cansidered il1cgal by the STRAP assembler.

Problem 2.4, B i t ravarsalk

The 6 4 - b i t full word starting at: WgRD contains a binary mesaago which

would be easily interpretable when every bit in the word i a reversed

(WQ1~Dt0.63becomes W g R D i O . 0 , etc ,) . Perform the b i t reveraal and put the r e s u l t

i n 'DR&.

Method 1. Load the entire word and store a b i t at a time.

LX, $1, xw1

. Iix, $2,.xw2

CBH, $2, ST@R

I

BEW, $

XWE xw, DR&, o , $W

xw2 XW, 0, 6 4 5 , $

Method 2. Load & & b i ta t a time and stbra the entire word,

Problem 2,5. Removal of key words,

t

Given a string of 100 s ix-bi t bytes beginning at OATA, remove any 4

consecutive bytes which match P given "key word'' KEY, Pack the result

atarting a t WSW.

Method 1,

Ex, $1, xw1; Lx, $2, xw2

L ~ D E L(BU,24) WI), 0.6($1)

K (BU,24), KEY

B A E p AE
yrru'

ST(BU,6)(V+I), 0.6($2), 18

CAB CB, $1, LQDE

"atare remaining 3 bytcr

"skip 3 more byte8

xw2 XW# ANSW,

X18 VF, 0.18

Comments.

OA $

w

1. The integer 3 in the C-I-
18 b i t s (a i m of ceunt f ie ld) ,

instruction meam 3 unit8 i n a rubfield of

PrcJem 2 . 6 . Sorting on the basis of subfields,

6iven I6 consecutive fields beginning at DATA, each of the

following appearance:
.(

(4Abit9 S (L 0 bas)

15. Assume all A subfields are different in content, sort on the b a d e of A

eubfielde and put the correspondent B subfields together in a rstring beginning

at ANSe

Method 1. Take advantage of the fact that there are exactly 16 A subfieldre

and that these subfieldEs have different content%,

ASCbRT LX, $2, xwz

LOCbP fr;(BU, 4) (ST 9 I)# 8 , 04($2)

"answer at offeet 20

ST(B, 25, 1),17*O, 20 "store into index regieter
value field

L (BU, 20) (V t I), 0.20($2)

ST(BU, 20)# ANS($l)

* (BU,2A),VF20

xw2 XW, DATA, 16, $

VF20 VF, 20

ANS DRZ(BU, ZO), (16)

- 11. c . 1 -

w
Comments;;

a, If the A fields are not all different mis-s tores will be made.

Method 2, A slight modification of Method 1,

ASrbRT2 LXa$2, XW2A

t (B U , 4),-0.4($2), 20 t 4

ST(B, 25, l) , 17.0, 20

L(BU, 20) (V t IC), 0,24($2)

ST(SU, 201, ANS[$1)

BZXCZ, LOOP

B E W , $

XW2A XW, DATA t 0.4, 16, $

ANS DRZ(BU, ZO), (16)

Comments,

a, The multiplication by 20 is replaced by judicious placement

of data in the load and add operations,

b, The following s e t s of inetructions lead to th; same results,

and other variations are possible.

= l l . d -

'($2 has X in value field) ($2 has X in value field) ($2 hae X t 0.4 in value field)

U(BU,4) (V t I), 0,04($2) L(BU, 4)(V t I), 0,24(,$2) L(BU, 41, -0.04($2)

LjBU, 2Q)(Vt I), 0. 20($)

ST(SU, Z O) , ST(BU, ZO), ANS($l) ST(BU, 20), ANS($l)

CB, $2, 	 CB, $2, LOOP BZXCZ,

c . 	A negative numeric address is assembled by STRAP a8 its

two's complement, thus - A will be assembled as 2**18-A,

-12-

VPC
STIX

K D M F

.AGAIN

PACK

FIXMIN

XWP
xw I P

unJ 	 xw2
XWIIA
V F B
V F 2
ANS

€3, STIX
V t C , $1, VF1
sx, $1, X W I 1
UmJ,24) 9 O W)
K(DU, 4)(VtICR),o. 24($1)8 20
FAH, FIXMIIV
R Z X C Z , K@MP
S F (P U ,24)(V+IC),0.24($2)
F Z X C Z , VPC
L X , $1, X W I A ; LV, $2, VF2
L(DpJ, 20)(V+I),0. 24($2),
ST(UU, 20)(VtIC),O. 20 ($1)
BZXCZ, PACK
1B 7::w $
L.F(PU,24) , 41 24($1), 24
SF(J2*U,24), i!24($1)
L F (D U , 24), 9. 16
E3, AGAIN
X W , DATA 90.24, 15, XW-1 I
xw, 0
X W , DATA, 14, $

X W , A M , 16, $

V F , 0 . 2 4

VF, DATA i-0.04

"outer Poop,res ta r t with changed $1
"save $1 contente for la ter refill u R e

'"load assumed minimum
jSinner l o p , test against assumed rnin
"usually ,succee eful

"itore proven minimum

%kip A field
%tore sorted B field

"'fixup routine ,load new minimum
"store old quem in its place
"position new min. in accumulator
!!return to inner loop

"will be changed during computation

bj .
deemed undesireable, one could transmit the information to a
temporary area and do the permutation there, leaving the original
information unaltered.

C. The code is written under the reasonable assumption that the
provisional minimum stands a good chance of being no l a rger than

d. 	
an average entry.
For the sake of clarity the packing of the sorted fields is done
separately a t the end. By uering an extra index regis ter this
packing action can be performed whenever a new proven minimum Wfound.

Method 	3, R ~ ~ (I c ? c L + ~ J ma ximum and Tp,cnimum,cumpares - f o p bo+h
LX, $1, XWP
tz, $2, xw2
E X , $3, xw3; sx, $3, xw33

L@DE L(BU, 24)# 0($1)
LF(BU, 241, 0($2), 64
KF(BU,4Ll 0($2), 20
BAH, SINICH

TEST
BAH, FIXMIN
KF(BU,4)(VtICR), 0.24($3), 20 "test against a s e w n e d minimurn

K F (B U , 4) , -.24($3), 64t20 "test against assumed maximum

- 13 -

BAL, FIXMAX

AGAIN BZXCZ, $ 3 , TEST

STtBU, 24) (V t I), 0. 24($1) "store minimum

ST(BU, 24)(V - I), 0. 24($2), 64 "store maximum

VtC, $ 3 , VF3; CB,$3, LODE-1

PACK LV, $ 1 , XWll;LX, $2, x w 2 2

LgAD2 L (B U , 24)(V+I),0. 24($1)

ST(BU, ZO)(VtIC), 0. 20($2)

BZXCZ, &@AD2

BEW, $

SWICH SWAP, $L, $R

-w B, TEST

FIXMIN LF(BU, 24),-00 24($3), 24

ST(BU, 24), -0.24($3), 64

ST(BU,24),9. 40, 24 "new minimum

B, AGAIN

FIXMAX LF(BU, 24), -0.24($3), 644-24

STtBU, 24), -0.24($3), 64

ST(BU, 24), 8040, 64t24 "new maximurn

B, AGAIN

XW1 XW, DATA, 16, $

xw2 XW, DATA -t 0 .360 , 0 , $

- 13.a -

xw3 XW, DATA + 0.24, 14, XW33

xw33 xw, 0

xw22 XW, ANS, 16, $

xw11 VF, DATA t . 4

VF3 VF, 0.24

ANS DRZ(BU, 20), (16)

Comments. a. This method applies even if the A fields are not all,different

in content,

Problem 2. 7. Sorting into reserved table areas,

Given the s a m e field description as in Problem 3 above, a8

well agl reserved table areas beginning at TABL 0 , ,, TABL 15, each
U

of which is capable of holding the entire string [in this case 400 bits), Put

the proper B fields in successive entry areas of the TABL areas a8 dictatbd

by the contents of the A fields. A s s u m e the A field$ are not all different,

Method 1

LX, $2, xwz
v

LQSAD 	 L(BU, 4&-1), 0.24($2), -18

LVE, $3, MTABL($l)

L(BU, 2 0)) -0. 20($2)

ST(BU, 20)(vt1),0,20($3)

SVA, $3 , MTABL($1)

CB, $2, LOAD

- 13.b -

xw2 	 XW, DATA, 0,8

MTABL 	 SIC, TABLO;SIC, TABL1; SIC, TABL'-2; SIC, TABL3 "Master Ta&

SIC, TABL4; SIC, TABLE;;SIC, TABL6; SIC, TABL7

SIC, TABLS; SIC, TABL9; SIC, TABL10; SIC, TABLll
SX?

SIC, TABL12;SIC, TABL13;SIC, TABL14; ,TABLl5

C omrn e nt s.
a. 	The "master tablet1 a rea is updated constantly to avoid conflicts

in the storing of entries with equal A fields.

b. 	 The SIC operation by itself is meaningless as an instruction,

kbwever,itspecifies a 24-bit address, and this fact i e noted

by L V E and SVA instructions.

Problem 2.8. Pur chasing List Ari t h e tic.

"

A purchasing l ist consists of a string of fields, each of which ,

has the following structure

Subfield A is an 8-bit byte ,consisting of 1 's .

Subfield B has 2 &bit bytes (item no.).

Subfield C has 6 $-bit bytes (coded name of product).

Subfie1d.D has 3 8-bit bytes, and contains the no. of units of the product

desired in decimal (DU,24, 8).

Subfield E has 6 8-bit bytes, and contains the unit price in cente of the

product in decimal (DU, 48, 8).

Subfield F has 12 8-bit bytes, and is blank (to be the total price field).

Subfield G is an unknown number of 8-bit bytes. It contains the remarks

concerning the product and/or the entire purchase. The first 3 8-bit bytee

of the subfield G in the last "product f ieldfg contains the 8-bit

V

V

* 14 -

IQS expression END. None of the &bit bytes in G are all 1 's .

If the complete s t r ing begins at LIST, write a program to f i l l in the eotal

price for each product in (DU, 1196",8). For simplicity of programming

do repeated additions instead of decimal multiplications. Create the grand

total also, and put i t \(DU, "128: 8) in the pseudo accumulator 13. 0 through

14.0 ($RM and $FT).

Method

z, $FT

L C ~ N LCV(DU, 24, 8)(_VtI), 0.24+0.48($2), 128 - 18 It$, cleared too

LG, $1, $L;BXCZ, NEXT "binary count field

ADD +(ID, 481 8), -0.48($2)

CB, $1, ADD

NEXT 	 ST(DUI 64, S)(VtI), 0.64($2), 16 %tore total

ST(DU, 32, 8)(V+I), 0,32($2)

M t (D U , 64, 8) , $IF" "update grand total

U B U , 32) , TESTW

KF(BU9 24)s 	 o w "test for end of string

BAE, LAST

KOMF KflBU, 24), 0.8($2) "test for beginning 6f new field

BAE, KOMF

MORE Vt f , $2, 1.0 'Ibypass 64 more bits to new D field

B, LCON

- 14.a -

LAST L(DU, 64, 4), $FT

ST(DU, 64, 8) , $FT

ST(DU, 64, 8) , $RM, 64

TESTW

xw2

(IQsQ)DD(Du, 24, S),ENDQ

DD~2)11111111
@u, 8,a),

XW, LISTtO. 72, 0 , $

"end mark for atrfng

"beginning mark for field

C

W

a, Decimal quantities with more than one digit must be converted into

binary before a binary arithmetical operation (gay index count down) is

attempted.

b, It is convenient to load one test quantity to be compared regainet

many. T h f ~eliminates a number of m e m o r y fetch operations, In the present

program two kinds of t e s t s are performed, but the test quantities can be made

adjacent to each other, and loaded simultaneously, Note the K F ' e cannot be

replaced by simple K operations,

c . The 4-bit bytes are expanded into 8-bit bytee in the final store

of the grand total,

Problem 2.9. Effective Address Creation,

Find the effective addrees of the fnetruction beginning at the

19 bit addrerse ENST without using the LVE ingtruction, Put the anmmp: in

the value field of $1,

Method 1.

vtas8ume4 bit index field

s s a s s u m eindexing needed

%tore in J field of SV instructian

"index value field now in $1

Frr

"test if floating point

FP

MPLUS

NOTFP

VFL

NQ~TVFL

-(BU, 32-18), $R.32t0.18

M+(B, 25, I) , l? . 0 , 32-24

BEW, $

KFP(BU, 4), (Z)XOOO, 4

BZAE, NQ)TVFL

&(But32-24), $R.32+0,24

13, MPLUS

KFS(BU, 3) , (2)100,4

BAE, KTYPE

KFI(BU, 9),(Z)111000000, 4

BAE, KTYPE

KFI(BU, 5), (2)10000, 4

"floating point measure ,

"25 bit add

''teat if VFL left addreee

WFL meaeure

"teert if K type indexing, CB,BIND

"teat if K type indexing, BB

"teat if immediate indexing

1000 mean8 a 24,bit nuenersc address f ie ld;

,BIQmeans on 18 b i t numeria address field;

othlerwim a 5.9 bit numeric address f i e l d i 8 meanta

The instruction MY allow no Indexing at all (imediizts indexing instructions),

m y allow a one-bit K-type of indexing apecificatioa (CB,B$ad, and BB) but

general ly n l l ~ w s a 4-bit: I-type indexing specification.

Xf b i t 8 23-27 hawelOOOOt no indexing allowed;

I$ bits 25-27 ham 100: K-type (CB, Bind);

ff b i t s 19*27 have ~ ~ ~ 0 0 0 0 0 0 : (BB);
K-typo

atberwiao t 1-type

b e The reader should write d m the b i t combination of aevsrlrl

fnstructions and follmw the program ClQl3tefy.

In many instance8 the symbolic instructions 0hdtnld be written fat: the

emsvenicnca of the pxogramer. fn the inetruction FP, the f i e l d

length 32-18 ie evidently 14, but clarity is gained by rctainiw the longer

eb

expre8don. The same f s true for the laddrerss field of TEST. The

extra asac3mhly time is tr ivial .

Problem 2.10, Fetch (p2q) th2 element of rectangular matrix.

Given a matrix A stored row wise in consecuthraand N column^
f u l l words beginning with All in lactation MTRIX. Given also are binary

integere p , q in the leading 18 bite of $1 and $2. Put the element %q

in $R.

Method 1.

"p-1 generated

"$1

%m~lthas 20 offset

"(p-l)*B

"(p-l)*N*q

"N is assumed defined elsewhere

ac The clement A is in MTRIXt(p-l)Ne The element ~p~ is thcrefore
PI

in MTRIX+(p-l)N-+(q-l) or MTRfX-l~(p-l)N+q.

b e After a binary VFL multiply the answer i a placed in the cleared

accumulator with ,offsat 20.

33 P,QrR each define a two-bit nonooverlapping f i e l d , using logicsrP

connectives only , create the lowest: two b i t s of the sum C @) + - @ (Q)

oxad put f t i n $K9 (C (X) means cmtsnts of X)

"or any other address

.-emments I/- 5 c A

Sfl&
1, This ie, actually a simulation o f the parallel. addition in binary

A

digital machineb.

-18-

with the elements stored rowwise , Create the transpose of the matrk,
also stored r~w-wistg~occupying the same area. Keep the number of
temporary storage locations small f w this purpose.
Analysis: Counting from the (1,l) element # if MATRX begins the storage area
for a PjrQ matrix, then we may say the location MATRX + L aontains the (r, 8)-

element, i f
L=(r-l)*Q $. (s-1) r e , s$Q.

The transpose of an MxN matrix is an NxM matrix, The (i,j)-element
of this NxN matrix is in location, say, MATRX + K

K=(i-l)*M+(j-1) i6N8 jdM
The contents of this location, however, has to be fetched from the original
MxN matrix 8 the (j, i) -element. The fetch location is@say MATRX +Kt with

K'=(j-l)*N+ (i-1)
= integer remainder of (K*N)/(M*N-l)

The algorithm is therefore to save one element (the lead element) from
location MATRX +K, d i l l the latter with the contents of MATRX+K', the&%fin the
latter with the contents of M A m + K " etc.., until, the fetch location is the same
as that of the lead element, The last store is performed with the lead element
to complete the permutation cycle. As the cycle invariably has fewer elements
than the matrk itself, care must be exercised to avoi+ltering elements which
have already bean parmutad, This can be done by using flag; bits as identification,
at the same time ensuring that the lead element of every cycle has the
smallest (or alternatively largest) address possible, The method is essentially
that of MJ?.Berman, J.*A,C,M, !5, 383(1958). For similar techniques see
P,F, Windley, Computer J. 47-48(1959); G,Pall and E, Seiden, Math. of821

Computation, 14,189-192 (5960).
For square matrices each of the cycles have W only one (diagonal)

or two (Qff-diagonal) elements#> and t b r o exiSt methods much more efficient
than the present one. Rectangular matrices offer few direct hinta about the
nature of the cycles, %iwg& except that the first and last elements are
unaltered by the transposition process.
Mathod 1. Use V- flag for permuted elements. Assume the matrix elements
do not contain V-flags originally. Advantage is taken also of $VF interruption,
TKANSP W,$+O.32

Lv, $1, $LA 'f$IA assumed to have meaningful value
v2, $1,370 0
SVA, $1, SWAP2
SWAPI,1,o ($11, INST
TI, 1,$IND+1. o,IN'ST+l. 0
CM1111(BU, I), $INDtl.37
LVI, $1,0
LI(BU, 18), M
*I(Bu, I@>>#N
-I(BU,B8), 1 , Z O II'M*N-I
ST(BU, 25)#20. 0,20-7 I1 at full-word position of $4 value field
Lc@$1,200 0 h o p y into $1 count field
CB&,$1, Bm

"to ensure CYCLE will start at full word

-19--
CYCLE

ENDCYC
SZM

sww2

B E W

INST
TEMP
MATRX
M

N

w w

TI; 1, MATRX($2), TEMP
L(U'), 18.0
*I(BU, 18)#N, 128-18
/(Bu818), 200 0,2 0
L(BW,18),$RMt. 60-.18,128-18

u,$3#$L

LWF (U), MATRX($3)
CM111l(BU, I), $SB+O. 7
ST(U), MATRX(S2)
fx,$28190 0

B, CYCLE

TI,1, TEMP, MATRX($Z)
BZBN, MATRX+O. 63($1), NUCYCL
CB&,$1, BZBZ
SWAPI, 1,O,INST
TI, 1,]CNST+l.0, $IND+l. 0
B m , $;CNOP
B, ENDCYC;NOP
DRZ(N), 1
SYN(BU, 24), 1000.0
SYN, 20
SYN,5

fl file away leading elemetxb sf cycle
I' location of old element
Ianswer i s at 20 offset
divide by M*PJ-l

It location of new element

if operand has V flag, interruption ensues
11 ureate V-flag

store into vacated location
"new address modifier
endless loop dependent on $VF exit

@"transmitlead element of cycle.1t has a Vflarg

user specified starting address
''user specified, No. of rows
''user specified, No. of columns

_Comments,
a. To avoid conflicts, all but the leading members of each permutation

cycle are given a V-flag d d n g the permutation, and the end of 'cycle is sensed
by the fetching of an element already with a V-flag. Tho BZBN instruction tests
elements of the entire matrix proceeding from the lowest addresses. If a n
element has a V-flag, it must have been an element of some previous permubttion
cycle. The flag is removed and test is made on the ne* element. If an element
is encountered without a V-flag, it has not been in any permutation cycle before,
and i.t m u s t be the leading element of &t new permutation cycle. The first and
last elements of any rectangular matrix are not affected by permutations.

bo 	The judicious use of interruption to exlt from an otherwise endlsss
loop can lead to much saving of programming and execution t ime,
Usually, however, interruption should be donea th the help of
the master-control or other supervisory programs, to ensure that
other interruptions are also handled properly. Here one entry of the
interrupt table has been changed at the beginhing and restored at the end.

6. 	 There exist numerous ways to improve the present program. In
particular the replacement of VFL operatdons by proper floatring point
counterparts may be recommended.

- 21 -

3, Floating-point Arithmetic.

Problem 3. 1. Separation into Integer and Fraction Parts .

The floating point number N in location DOG hae a mnaU (48)

exponent magnitude. Create two normalized floating point nurnbera 1, F in

GAT, CAT 3- 1 respectively such that H = an integer;

IF\4 1.9 sign of F=aign of N;

and I t F = N.

Method 1.

ST(N), CAT

SL@(N), CAT t 1.0

B E W , $

X48 IDDCN), O.OX48 "binary exponent of 48

Comrnents

a. The number X48 forces the fraction of N to shift right the

proper amount.

b. For better understanding, the reader should illustrate the

program for himself using, for exarnple, N = 2. 5.

C e In dealing with normalized numbers, the (N') modifier is needed

only for arithmetical operations which may otherwise generate an unnormalized

result. The (U) modifier mean8 "do not perform normalizationfg, not

"denormalize". L(U) and ST(U), when applied to an operand which has already

been normalized will leave the number still normalized.

Problem 3, 2. Integer Part of Floating-point Word

The floating point number N in location DOG is defined as in

the previous problem. Put the lowest 118 bite of the VFL i e g e r corresponding

to 1 into the first 18 bits of the count field of $1.

Method 1

D+(U), X48

I 1 $ L 28 is a h s acceptable

"binary exponent of 48

Problem 3 . 3 . Polynornia1 Evaluation,

Evaluate the polynomial

Fqx) = akxEt,%
k= 6

where x is located in X, ak i s located in A + K, K = 0. o (L O) 2 O e C b

Store the result (single precision) in Prt>LY,

Method 1, Term-by-term evaluationc

Pe3LW WJL A

ST(N9, POLY

LX, $2, xw2

- 21.b -

STOR "new power of x

"new partial BW

xw2

XK

ar This i s a relatively inefficient way t o evaluate a pdynmial but

the technique appliaa to any f in i te eeries.

Method 2. Uere the nesting technique,

XWdRD2 XW, 19.0, 20, $

Comments.

a. 	 The nesting technique for polynomials i s Wiwe 18 f o a t , more

iceurate, and requires fewer instructfane than the term-by-term

method.
Method 3. Use nesting technique and double operations for extra accuracy.

CB-, $2, DMULT

ST(U), PGLY

BEW, $

w3 xw, 19.0, 28, $

Garnrnents.

a, The double operations are essentially no slower than the

corresponding regular operations,

- 2 2 L -

w

a

- 22.c -

-w- Comment a

a, The E ik I insrtructions m a y be used for multiplying the floating-point

number in the accumulator by powers of 2. They are more efficient than

multiplications ~r divisions.

b, For a floating point instruction the addreses 8.0 or $E meam

the leading 60 bitrs of the accurnulator plus the lowest 4 bits of $SB,

Method 2. Separate the function evaluation from the s m m i n g action

in the'loop.

"new x

"branch to f(x) evaluation

"new partial s u m

- 22.d -

ANS

TEMP

H

FUNCT "function evaluator

XWP

A I tlower limit

B "upper limit

N DD(N), 20,O "no. of strips

Comments.

a, The present program requires two additional branch imtructions

per loop, and i r s slower than that of Method 1, What it loaes in speed i a offset

by the gain in clarity, however, and if a new integral is to be evaluated, only

the lower portion of the program needs to be replaced.,

Problem 3, 5. 	 Continued Fraction Evaluation.

Evaluate the continued fraction

1 - X

X2
3 -

7 * *
e

with x = ~ / 4 .
W

--a-

- 23 *

W

"x 1* 2

"39

8'37 -x*x/39

X

NUM

awo
xw2

TEMP

TEMPI

TEMP2

- 23 -

L(U), NUM

- t TWO

ST(U), N U N

t, TEMP1

CB, $2, LODP

R/,x
STILT), TEMP2

BEW, $

X DDYN), $PI/4

NUM DD(N), 3 9 . 0

TWO DD(N’), 2.8

xw2 XW, 0 . 0 , 19, XW2

TEMP DR“ (3)

TEMP1 SYN(N), TEMP-kP. 0

TEMP2 SYWN), T E M P t 2 . 0

- 24 -

Comments,

a. The most efficient way to evaluate a continued fraction

is to s ta r t from below.

b. The R / N instruction should not be confused with R/(N) ,

The reverse divide feature in the 7030 is convenient for continued

fractions o

c. Where the dds is not explicitly given in an instruction,

STRAF will, inser t the dds of the right p o s t symbolic address. If theI

latter has no meaningful dds, the next-to-the-right most symbolic

address will be used, etc. If the collection of symbolic addresses for

the instruction i a exhausted without a proper dds having been foundo

STRAP will use the (N) modifier for instructions which a r e unimn-
W'

biguously floating point in nature. The exception being E+I and variants.

An operation which c a l d be either VFL or floating point is a s s u m e d VFL,

Problem 3 . 6 , Scalar Product of Vectors,

Find the following vector scalar product

16
(a#b, = "kbk

k=O
where ak is in A t K, bk in B t K , K=O.O (l . 0) 1 6 e Put the result in c.O e

Method 1. Use LFT, *-to

LX, $3, SXTEEN

LOFT

SRDIN), C

SXTEEN XW, 1.0, 16, $

Comrnent B

a. The *t operation i e ideal for vector and matrix producte,

b. The LFT operation is a Itmemory to memory" operation,

,4ince $ FT is a bonafide memory location. Since it does not involve

the'mecution arithmetic unit (the E-box) and since the temporary

ator $M@P is turned on only for E-boxdto-memory operatione,

$M@P 1 ~ lturned off - by LFT.

c. While the LFT opekand is on its way to $FT (location 14.0 in

memory) it 1.8 also made available in the look-ahead to facilitate the *t

operation. This llforwardingtl operation allows the *t operation to proceed

before $FT is actually loaded, freeing the program from memory a c c e m

delays due to the store and a subsequent fetch (for the *+). Forwarding is

always done when information needed for the execution arithmetic unit is

known to be available in the Lookahead.

\

- 25.a -

Problem 3. 7 Cube Root

Program to compute the cube root of a nornialized floating

point number N by the following iteration formua:
X3L -I-2N

U s e it to compute the cube root of 8, with Xo = 2. 5. Ten iterations will

give full-length accuracy except for the round-off error in the last iteration.

Method 1,

CBRT L(W , EN
E - 1 , 1

-W2
+(N), E N

ST(u), TEMP I13N/2stored in TEMP

LX, $2, xw2

L, GUESS

ST, XK

*, XK
'3, XK

E t I , 1

t, E N "2 X ** 3 t N

R!, TEMP

t , HALF

*, XK "new XK created

xw2 xw, 0 . 0 , 10, xw2

HALF DD (N),0*5

XK SYN (N),T E M P t 1 b O

-25b-

EN DD(N), 8,O

GUESS DD(N), 2 . 5

Comments,

This is a third order process: if xk has a rdative errore,
I

one iteration later X F + ~has a relative error of CG3 . Here,C=2/3.

See E.G. Kogbetliantz, IBM Journal of R. and D,8 2,147-152(1959).

Problem 3.8, Normalized floating-point vectors from WL data.

Given a string of 25 fields beginning at STRNG. Each field contains

9x1 integer with the description (D, 48,6). Write a program to:

a i , Change each number Nk into a normalized floating-point

number Fk.

be Create the'sum of the squares of Fk, then take the square root.

C. Divide each Fk by the square root, and store in FL/ZSAT through

FL#AT+24.0.

d. The sum of the squares of the resultant set of floating-point

numbers should now be unity (barring4small round-off error). The vector a

composed of the set is said to be normalized. Note vector normalization is

not re1a.b e d to the machine hardware normalized floating-point arithmetic.

Method 1.

N a M V 2, SUM

"number I s now unnofnE FP integer

- 25.d -

LOOP2

xw1

xw2

SUM

ROOT

C0m.ments

a. A word full of zero bits is being used a s the vrzeroth pat t ia l BUM''.'

Note that a sequence of zero bits is !only an "order of magnitude '' zero, not

a'krue zero's. A true zero is approxirnable by a number with what looks like

w
a verylarge negative exponent. An order of magnitude ze ro has a meaningful

/r

exponent, and can he interpreted as a number with no significant fraction digits.

In addition - type operations, an order of magnitude zero, by

virtue of i ts exponent, m a y force the fraction of a nonzero number to shift

towards the right before the addition, In the present case the nonzeros all

have la rger exponents and the use of order of magnitude zero to start a

s u m will not lead to difficulties.

-b. The EPLUS instruction could be removed from the loop without

causing any da.mage; the e r r o r s introduced would exactly cancel in the

normalization process.

c . The leading instruction is not really needed unless the program

is to be re-used in the machine.

d-a The DRZ pseudo-operation leads to the reservation of strings of
zero bits.

- 26 -

Problem 3 , 9 . DqqPlhe-,Precision Compare
I , .

The accumulator contains a double precision floating-point quantity,

Another double precision floating point quantity is stored in two full worda,

with the more significant par t in MI, less significant part in M1 t 1. Compare

the two double precision quantities and set the appropriate indicators $AE, $AL

and'$AH.

Method 1. Full-scale double-precision subtract followed by a test on the result.

MMOMP ST(U), A1 ''save accumulator

SL@ [u), A1 t 1.

BL(U) , A1 t 1, I'dmble -precision subtract

D-tu), M1 t 1 ,

D+(N), Al

D-(N), M1

L(BU, 3), $RLZ "$RLZ, $RZ, $RCZ fetched

ST(BU, 3), $AL "$AL, $AE, $AH stored

DL(U), A1 t 1, "restore accumulator

Dt(U), A1

B E W , $

A1 I w W n (2)

comrnenta

a. The tempta'tion is strong to compare the high order par ts f i rs t ,

and accept the indicator settings unless equality is indicated, and in the lat ter

compare the lower order parts. This is not correct because the compare

instruction is based an a floating subtract operation rather than a bit-by-bit

comparison. For example: if (A l , A l t l) and (MI,M l t l) have

-27-

t

@&en a C Q X ~ W ~ ~ S ~ I Ibetween A1 and M1 leads to $AEq%
(the first 48 fraction bits of the subtraction result being zero)
and a straightforward compare of the second order parta wi l l
lead to the erroneoua concluaion that (Al, Al+ 1.) i s larger
than (MI,M1-k I.), whereas in reality (Al, AI+ 1.) represents

(1-249) * zE ,,(,,, MI+L representrs the larger
quantity)

(1j2) * ZE+l = 1;K2E
the difference being noticeable at the fiftieth bit,

Aside from the above considerations the program presented does not

use conditional branches, eliminating the need for wrong

branch recovery.

The present program is applicable, even if the Power order parts

are slightly off stmdard (say with an exponent 01-d~
46 units
lower tham the higher order connter parts).

-.Compare high order parts. If they compare " e ~ ~ a l " ,perform
the double precision subtraction to ascertain the result. V

BKOMP2 ST(U), A% I t save ,accumulatuy
w 	 SLO(U), AI+ 1.

K(W, M I t single precision corn are
BAE, DPSUB I ' LL51LalI$ unsuccessF PL1-

END 	 BEW, $! I end of program.
DPSUB 	 DL(U), A l + L "ful.l-scale double precision mbtract

D-(U), Ml+1.
D+(N), A.3. w m ,".
L;IBU, 39, $RLZ "$RE&, $RZ, $RGZ fetched
ST(BU*3), $AL "$AL, $AE, $AH stored
DL(U), 813.1 I t r e store accumulator
D+(U), A1
B, END

A1 	 DR(U), (2)
Comments 8

&. 	The present program is free of the objections outiined in Method le
It i s fast if the higher order parts decide the outcome (as is usudPy
the case) a Very effective for normalized double-precision
numbers, it may yield erroneous answers if one sf the high order part8

(1 =L.)*ZE i s clearly larger than O$e2E4-48

a. Even for a program with many different branches, it i e

convenient to end at the same place as a debugging aid. Any other

instruction counter setting at the termination of computation will then be

an error signal,

Problem 3, 10, Integer Part of Log&

N is a positive floating number in DOG, and log2N can be

written as an integer plus a positive fraction. Find the integer and put

its magnitude in the first 18 bit8 of the value field of $ 1 , and the sign in

the s'ignposition of the value field of $1 . A s s u m e no exponent flag.
d

Analvsis. If N = 2 +,
U Then logZN = d t logz = 1 4 log2 b<o

= o(- 1 4- (1 t logzP>

evidently 4-1 expressed as a 18 bit V F L integer, is the desired quantity.

L(N), DOG

E-I, 1

L(B, 12, l) , 8.0, 6

W B , 25, 11, $1

B E W D $

- 29 -

4. Soecial. Problems

Problem 4, 1 V F L Fraction Square-root

Given a 64-bit binary unsigned V F L fraction in FRAC, extract

the square root and put it in the 64-bit field beginning at R(1I)GT.

Analysis: By the Newtonian process of extracting the square root x,of

the number N,

Xk = X t (1 t E) x+=t rue x

then Xk +, 1 = Xt(1#G2 / 2 a (d))

Thus i f we a r e able to find a quess which has a relative e r r o r of Z 0 3 2 , one

W -65interation la ter the relative e r r o r would be reduced to 2 .

The 64-bit fraction is equivalent to a floating point number with zero exponent.

If this latter is manufactured and normalized, the SRT instruction can be used

-47
to give a relative e r r o r l e s s than 2 , which is more than adequate for our

initial guess. The subsequent iteration is done in double precision, with

the second order par t of the initial guess understood to be zero.

Method 1

SQRT L(BU, 64), FRAC, 52 "looks like FP number

BRZ, STOEP.

WN), 0 "normalized long fraction

SRT(U), GUESS "first gueas

D/(ld'), GUESS

"first order quotient

- 29.a

"obtain 8econd order quotient

"double length quotient

"divide by two

"shift until exponent zero

STOR

GUESS

QUfbT

FkAC "to be supplied

Comments

a. Had the original fraction not been pre-normalized, it m a y

contain a number of leading zeros. The relative e r r o r of the square root

of the f i r s t 48 bite m a y no longer be the guaranteed Z--47, but may be aa

large as 1 (when the f i r s t 48 bits a r e all zeros).

b. The result is not rounded, as rounding will create an overflow

in the exceptional case when FRAC is almost 1.0.

Problem 4. 2 Double-Precision Binary to Decimal Conversion

Given a 96 bit binary fraction beginning at BFRAC, transform

it into a 112-bit decimal fraction beginning at DFRAC.

- 2qQ-

The integers &.k can be extracted after each binary multiplication. They
are binary quantdties still, but can be recoded interms of known
conventions. F, can be used to create a rounded result, but i8 more often
ignored.
For ouPproblem let R=1014. This is the largest power of 10 expressible by
48 bits, and w i l l conkribute to the speed of conversion. The binary
multiplication tikill be that between a single precision number R and a
multiple precbion quantity FL.
The aik% w u l have no more than 48 bits, and can be converted into decimal
by the CONVERT type Mstructions. The recoded aek w i l l each have no
more than 56 bits,!&nce 2*56=112, we need only the first two "super digita. I t

Method 1,
DFCQNV L(BU, 48), BFRAC .So. 48, 68 I f second order par t

*(U), RADIX
L(BUp48), $L+O. 12, 20 "third order result ignored
LFT(BU, 48), BFRAC
*+(U), RADIX "there wi l l be forwarding
ST(BU, 48), BUFFER 4 12, 20 "aave secondozxler par t
CV(BU, 48) "convert first superdigit, zero offset
ST(DU, 56), DFRAC
L(U), B U F F E R
*(U), RADIX
CV(BU, 48)
ST(DW, 56), DFRAC-tQ56
BEW, $; CNOP "next item begins at ful l word

RADIX 	 DD(BU, 12), 0
DD(BU, 48), (8)2657242036440OOO "10**14
a>D(SV, 4), 0

BUFFER DD(BW, 64), 0
BFRAC DR(BU, 48), (2) "data to be supplied
DFRAC DR(DW, 56), (2)

-31-

Lomments.

a, A 96 bit binary number contains information actually qAivalent to

,116.25 bits of a decimal number. Only 112 bits are needed for the

problem as stated,

b. 	 In an n-fold precision calculation, (n+l$rder quantities frequently

(though not always) have little effect, and can be ignored, Here the

neglected third order quantity is nowhere larger than 2-95

Problem 4.3(. B i t image of a sequence of numbers.

Given 64 numbers in successive full words beginning at NUMB. Many

of these are floating pbint zeros, but some are not. Create a full word

beginning at BIMAGE in which successive bits reflect the condition of the

successive words, such that a zero number will be represented by a zero

bit image and a nonzero will have a 1 bit as image.

Method 1.

Lx,$1 ,xw1

%ssume most are zeros

LU

BZRZ,FIX "usually unsuccessful

V+, $2, BIT "increase by one bit

CAB CB+,$P,LU

BEW, $

FDC CMP111(BU, l.)(V+I), 0. l ($ Z)

B, CAB

BIT w,o.]I
Xvvl XW, 0.0,64,$

xw2 XW, BIMAGE,0, $

Comment3.

a, The bit image is very useful in, say, sparse matrix multiplication.
, .

The bit image af each vector involved can be created, and the nonttivial

multiplications needed between any two such vectors &can be tested

via the logical connectives I1and",and the subsequent querying of $APC

and $LZC.

Problem 4.4, &mpression of sparse vector._

Given a sparse vector of N components stored In consecutive floating point

words beginning at SVEC. It has a bit image stored in consecutive bits

beginning at the full word beginning at BIMAGE. Compress the vector into

the smallest possible storage space on the basis of this bit image, and put

the result in consecutive words beginning at SVEC also.

Method 1.

Lx,$1,xw1;Lx,$3,xw3

LVNI,$Z, 1. O

B,CONN

L$wF LWF(U),SVEC($2)

-

ST(U), SVEC($3)

V-kIC, $3,1. 0

C G N N 	 COO11(BU, l)(V+IC),0. O l ($ l)

BXCZ, END

V+I,$Z, 1. O

BZRZ, LjZhVT'

B, CONN

IT" 	 z, S'vtE;c($3)

CB+, $ 3 I END

REW, $

XWl XW, BIMAGE, N+1,$

xw3 XW, O* 0, Na $

Problem 	4, 5 Scalar product of compressed sparse vectors.

X and Y are two N- dimensional sparse vectors, d 6 4 , with the non-zero

carnponents stored in consecutive floating-point words beginning a t XVEC

arid WEC respectively, and bit images stored at XBMAGE and YBMAGE

respectively. Flnd the scalar product of these two vectors.

zch.
Analysis: A '&e scalar product W

d

N
(& Y) = XkYk'

K i'/

kultiplication need be performed only when xk and y are both non-zero.
k

This information may be obtained wtth a connect operation on the bit images

of the two vectors. The $A@C wil the number of multiplications to

be performed and the $LZC will give & e # a c z ~ - e m

Method 	1.

w 	 TI,3 , 1 7 e 0, S A W

L(BU, N),XBMAGE

COOOl(BU, N), YBMAGE

ST(BU, NFEYVEC

LX,$3,8.0

DL(U), ZER@;ST(U), P R m T

BXCZ, FIN

B,L@;CN@P

L@@P 	 CMOOOO(BU, O),KEYVEC+O, 1,0($1)

GTOOl1(BU,N),KEYSfEC

LcdF 	 LF(BW, 25), $LZC-O.2,128-25

LV,$1,8 .0

CT0011(BU,O),XBMAGE, 0($1)

LV,$2,7.32

V+,$2,18. 0

CTOOll (BU,0), YBMAGE, O ($ l)

LV,$3,7 .32

v+c,$3,19.0

L(U),PR@DT

LFT(U),XVEC($Z)

*+ (N),YVEC ($3)

ST(U), PRaDT

BZXCZ, L@@P

FIN TII3 ,SAVEX, 17.0

,BEW, $

''1 bit if 	both items nonl*zerO

"$Ap)C in $3 count field

"field length indexing

"test left 	zeros

I' low order part untouched

"dLZC) at field length position

"field length indexing

' %	 ~ ~modifier

"field length indexing

YVEC modifier

"restore high order part

I'computation part

"restore $1,$2,$ 3
Itanswer in -am, a s w e l l as PR@DT

ZER@

P R ~ D T

KEYVEC

SAVEX

W N) , *a)
DRZ(N), (5)

SYN(N),PR$DT+L o

SYN(N), PR$DT+P. 0

Comments.

a, If half of the elements of each vector are zero, then statistically

speaking only one quarter of the multiplications need to be performed.

Thus the loop in the present program can take four times as long a s the

corresponding loop in the straightforward multiplication method, and still

be efficient for sparse vectors and sparse matrices.

b. 	 The second I field in a W L instruction can be used to index the

f ie ld length and byte size besides the offset. Bits in the half-word

position In t h e index value field inZluence the offset directly, bit% in 26

t i m e s f u l l word position influence the byte s ize directly, and bits in 29

times f u l l word position influence the field length directly. Note that

$LZC is given at the bit level and $A@C is given at the half-word level,

ncccssltating a small amount of adjustment.

Problem 4.6; Transposition of a n 8x8 bit matrix,

Given a n 8x8 matrix whose elements are bits stored consecutively and

ro*ise startifig at BMATX8. Create the transpose and store the latter in

the same area.

Method 1. B i t -by-bit operation

LF(BU, I), 0. 0($2)

SF(BU, l)(V+ICR),0,1($2), 64

SF(BU, l)(V+ICR), N($3)

r-'

a. The program is written to . accommodate an NxN bit matrix

beginning at LgC. The SYN pseudo instguctions define L@C a s BMATX8

and N to be 80 BMATX8 is assumed to be. defined elsewhere in the

symbolic program.

be 0. N is equivalent to 0,8, since N is 8.

Method 2. Take advantage of the special properties of connective operations.

BMX8T2 W,$1,,XW1
i,

LVIO$2,8-1 " 7 half words

I' zero accumulator

VMI v-I, S 2 , l 	 "reduce offset by 1

BaCCZ, V M I

ST(BU, 64),BMATX8

BEW, $

XWl XW, BMA'IX8,8, $

Cpmments.

a. 	 This is a much more efficient program. I nstead of triamportlng

2*64 bits one at a t i m e , 8 bits are loaded with each connect instruction

\ and the entire transpoged matrix is stored in one instruction. The indexing

here is less involved also. The price one pays is the lack of generality -
for a square matrix df size greater than 8x8 the coding would have t o be

considerablcy different.

Method 3, Same technique as above, but coded to accanmm'odate all NxN

matrices with Nd8, > I

w c , $ l , X w l

LVI,$2,N-l

LI(BU, l),0

B, CNNECT

VMI 	 v-I, S 2 , l "reduce offset by 1

CNNECT 	 CO111(BU8 N, I)(V'IC), 0,N($l) r 0($2)

BZXCZ, V M I

SF(BU, N*N,N), L@C

BEW, $

"or any location desired

l'or any integer not exceeding 8

Comments.

a. 	 The store field instruction will not be assembled correctly by

STRAP-1, because of the multiplication in the data description field.

Problem 4. 	7#-Transposition of a 64x64 bit matrix,

Given a 64x64 matrix whose demen t s are bits stored consecutively and

row-wise, starting at BMX64. Create the transpose and store it in the same area.

Method 1, Bit -by - bjlt operation. Same as Method 1 of previous

program with LqC and N redefined to be BMX64 and 64 respectively

Method 2. Use locrical connectives. The m a t r i x is partitioned into 8x8

submatrices ,or blocks and each is transposed separately.

RMX64T LX, $1,XW1;SX, $l,xWll;SX, $l,,XWl11 "row block index

LX,$2,XW2;SX, $2,XW22;$x,$2,XW222 "column block fndes

rx,,$3,XW3 - off set index

Lx,$4,xw4;sx, $4,)NIr44 block counter

DIAG 	 LI(BU, l) , 0 If clear accumulator

DIAG 1 	 COlll(BU, 8,1)(V+ICR), 0.64($1), 7($3) "loop for diagonal blo&

V-ICR, $3,& offset by 1

BZXCZ, DIAG P until block completed
'I

DZAG2 ST(BU, 8,8)(V+ICR), 0. 64($1), 64-8($3) "store diagonal block rowwise

V-XCR, $2?+ $r
BZXCZ, DIAG2 	 until block storedI '

CBZR,$4, BEW 	 branch if last diagonal block complete'I

~ F D I A G 	V * , $ l , V F P 8 ; S X , $ l , X W l l l "loop for off diagonal block pair

v+,$2,VF&?P;SX,$2,xw222

LL(BU, J-), 0

-.33 -

QPDIA1

OFTXA2

COllI(BU,8,l)(V+ICR), 0*'64($1),7($3) Vow block treatment

CO111(BU, 8,1)(V+ICR), 0,64($2), 64+7($3)

V-ICR, $ 3 , 1

"column block treatment

'I lower offset

BZXCZ,@FDLA~ "until block pair complete

ST(BU, 8,8)(V'ICR), 0.64($2),64-8($3) "store into column block area

ST(BU, 8,8)(V+ICR), 0,64($1), 128-8($3) @'storeinto row block araa

V-ICR, $ 3 , 8

BZXCZ I @I?DIA2

CBR, $4,@DUG

NEWRCdW 	 LX,$1,XWll

v+, $lIWE3P8

sx,$1,XWl~;SX,$b,XW113.

LXS 2 * xw22

sx,$2,xw22;sx, $2 ,xw222

B, DIAG

BEW BEW, $

VFP8 O m 8

VF8P VF, 8.0

VF8P8 W, 8.8

XWX

X W

xw3

xw4 XW, 0,8,XW44

XWP1 xw, 0

' 'until block pair stored

"until one row, one column complete

"procedure for new row

-,?..3q -

xw22 xw, 0 to contain column infirmation
w

XW44' xw,o "to contaih black counter

X W l l l xw,o to contain row block information' I

xw222 xw,o 'I to contain column block information

LQfC SYN,BMX64

Comments.

a. The matrix is (mentally) partitioned Into 64 square submatri'ces,

et?$ or blocks,Ao s ize 8x8. The (I,f)-block of the transposed matrix is the

transpose of the &I)-block of the original matrix.

b. XWl,XWZ,XW3 and XW4 are not destroyed in the program. XW9.1,

XW22 and XW44 are changed upon the completion of permutation of a row

of blocks with a column of blocks. XWllP and W 2 2 2 are chanaed upon

the completion of permutation of each pair of blocks, or that of a diagonal

block.

Problem 4. 8 Product of square matrices.

NxN fu l l word floating point matrices L,R are stored row-wise beginning at

LMTKIX and RMTRK respectively. Create P=L*R and store it row-wise

bcyinning at PMTRW:.

--- Use $ 2 for left matrix elements, $ 3 for right matrix elements andMcthcdl .

$ 4 for product matrix elements. Program generates successive rows o f the

product matrix.

"load three index registers

"main loop

""1, W$3)

VPT V+T, $ S 8 N "advance $3 to next row

CBR+,$Z,LIFT' "advance $ 2 to next element

SRD(N), 0($4) "new product m a t r i x e l e m e n t

V+I, $4,1.0

V-ICR, $ 3 , N*N-l. 0

RrnCZ, LU "towards new product e l e m e n t of dame
row

V+I, $2, N "prodedure for new row

CB, $4 p SDC;BEW, $

xwz XW, LMTKIX, N,XW g ,

xw3 XW, RMTRIX, N,$

xw4 XW, PMTRIX, N, $

xw$!.%xw, 0

Zd?r<y DD (14) 0

a# STRAP - docs not perform multiplication of addresses ,

but STRAP - II will do it properly,

b. XW2, X W J , and XW4 a r e not destroyed and the program

can be uscd repeatedly without re-assembly or reloading imts the machine.

Problem 4. 9. Gosine of ZIT#*

Given a nurnber - 1/8 4 x 4 1/8 in the accumulator. Create

cos 2r\x in the accumulator.

AnalysiB : Since - T / 4 2 t~ x n/4,the aeries

C O S 2 n x = 1 - (a x)
2

-I-(2tr-x)
4 -..... '3

21 4 !

is rapidly convergent. If the se r i e s is truncated at some point, the absolute

F

err0rJ .s estimated by the magnitude of the first omitted term. Fur the r ,

since cos 2 ~x 7 cos ~ / 4 =
70. 7, the relative e r r o r defined by 6,. absolute e r r o r
t rue answer

is less than or equal. to 1.438*

If the l a s t t e r m included has 2K = 16, the relative e r r o r es t imate is l e s s than

0.3 x well within the round-off e r r o r due to ari thmetical operations

using a 48-bit fraction field length.

Method 1,

' 2"$PI

' Isquare

EM1

'W

Cornment s

a. Instruction EME is used in lieu of a multiplication by 1 / 2 * 1 / 1 to

gain a little s p e d .

b. By a redefinition of the constants the multiplication by 2+<$PI

could be eliminated, but then instruction EM1 would have tobe replaced

by a full-scale multiply operation.

- 3 5 -

c . The nesting technique used tends to keep the round off e r r o r

to a minimum.

d. The number (2) of multiplication pe ra t ions in the Poop can

be halved by using 1/2n! as the constants.

Method 2. Since cos 2A = 2cos 2A l l , it is possible to reduce the number

of terms in the series by evaluating cos T X first. Examination shows that

t e r m s up to K = 12 would be adequate,

CQ)SF2 STfN), T E M P

zx,$2, x w 2 2

D2:c(N),T E M P

(SBC, $2, DMULT

"create cos 2A

x w 2 2 xw, 0, 5, $

KQ>NST DD(N), $PI/ 1Z2:$PI/ 11, $PI/ 1Og:$PI / 9

DD(N), PT/WPI/7 , $PI/6>:c$PI/5

DDW), $P1/4*$PI/3, $PI/ 2::$PI

WON DD(N), 1.0

TEMP DRCN), (I)

- 35 -

c . The nesting technique used tends to keep the round off e r r o r

to a minimum,

d. The nwnber (2) of multiplication qe ra t ions in the Poop can

be halved by using 1/2n! a s the conatants,

Method 2. Since cos 2A = 2cos 2A l l , it is possible to reduce the nwnber

sf t e rms in the se r i e s by evaluating cos T X first. Examination shows that

t e r m s up to K = 12 would be adequate.

GOSF2 ST(N), TEMP

zx,$2, xw22

DMULT D9JNCN), KQ)NST($2)

Dt(N) , WON

D2:c(N), TEMP

C B t , $2, DMULT

D';<N(N), KoNST ($2)

"create cos 2A

DDW), $PI/4*:$PI/3 , $PI/ 2::$PI

WON DD(N), 1 . 6)

T E M P DRCN), (1)

Comments,
cc

q L 	The error situation is somwhat worsened in the present method.
Suppose COB A has been evMuated with absolute e r ror $$;
thm 	 C O S A = (C O S A) t r U , +E,

~ C O S ~ A - ~ = ~ (C ~ S " A) ~ , ~ ~ - ~+4Q; COS A
The total absolute error i s therefore

&'= 4$% cos A or 4 8

The relative e r ror can be examined in the slame l# 6t .

Problem 9a~./Y,f-a~.---_- 1- -----^.-
(L.1 /ogariC/lrn.

A positive single-precision normalized floating-point number x is in the

accumulator, Replace it by h x , Assume zero exponent flag for x.

1nx = c, .I)

2k'1/(2k+1) = 2 5 (2 2) k / 2 k + l
k=O

'trrr in (0,1/36), the series is rapidly convergent,
absolute truncation e r ro r in the

than 2"48. If the (E-l /2) ln2
term dominates in lnx, the relative truncation error wnhld also be much
less than 2-48a and further improvement in this direction cannot be seen in
the single precision fraction.

If on the other hand, (E-I/2)ln2 does not dominate the result,)E-1/21
itself must be small. But it can be no smaller than 1/2, since E is an integer.
Therefore the worst that can happen ia when, E=O, F-1. In this case one can
show the e r ror cannot be improved without knowledge of the fraction

-36-

"F+P /RT2

'IF-1 /RT2
",zcreated

ADD

CONST DD(N) 1/ 1'7%1 / 15) 1 / 14 I. / 1I.? I. / 9j1/7j1 / 5,1/ 331
FLAN2 DD(N), $ N X 4 7 tt$pJ*24c*47
T E M P DRZ(M), (3)
XX DD(N), + 3 , 5 2
Cornments,

- 1 1 In function evaluation an understanding of the properties of the
function and the format of the numbers used frequently leads ta
great improvement in speed and accuracy, as shown by this example.

b, 	 The truncated Taylor series in Z can be replaced by a polynomial
wi th fewer terms hut comparable accuracy. The coefficients of the
optimal polynomial (5) for the evaluation of functions can be
computed by an iterative process, or can be excellently approximated by
appealing to the properties of the orthogonal Chebyshev polynomials.
See, for example, C. Lanczos, Applied Analysis (Prcntice-Hall, 1956)
Ch. TPII; F.D. Murnahan and J.W. Wrench Jr, Mathematical. Tables and
Other Aids to Computation, 8, 185(1959).

c, 	Instcad of divisions by (2k+I), multiplication by the inverse is used
for speed.

d. 	In FLN2 X47 means replace the exponent field. by +47, '' In the
prescnt case $N,having the rnngnitude of 0. 7 normally would have
a n expollent of zero, and $fiQC47 is the same as $N*k2**47. This
would not be true had $N a magnitude of I say, 1.5.

- 37 -

number, A 0,O($P5) re turn with the exponent flag on is sufficient.
W'

Otherwise the following algori thm can be used:

t e rma beyond k = 15 can be safely neglected,

It is a l a 0 possible t o reduce the range of the argument in tlne Berfes to

improve convergence. For instance:

k - 0 k l

and term$ beyQnd k = E2 can be neglected. The subsequent squaring lead

to a rcvund off errof twice as large as before, however.

Method n d
E X P KMG(N), K@MP

BAH, EXIT1

D4<(N), RLN2 . " l / L N 2

Dt(U) , E l l

STQB, 12, 11, TEMEX, 128-12-11 l'P as exponent

SHFL, 11

*(NIP LNZX "LNZX-11

LX, $14, XW14

ST(U), TEMPF

- 3 7 . a -

DPLUS

EXIT 1

KDMP

RLN2

E l l

LN2X

XW 14

C$NST

TEMEX

TEMPF

Dt(N)8 CQ)NST+1 . 0($14)

Ddc(N), TEMPF

C B t , $14, DPLUS

Dt(N), CdNST($14)

E-t-QN), TEMEX

Bj 1.0($15) %orma1 return

COOll@U, 1), 10 .4y 128-11 "exponent sign

LAW), $L "remove sign

C l l l l (l B U , 1) $L, 127 "insert exponent flag

B, 0,0($15)

DD(N), 1024+c$N

DDCN), 1/$N

Db(N), $NX -.1 1

xw,0, 1% $

DD(N), 1/ 13076743680000, 1/87 178291200

DD("), 1/6227020600, 1/479001600, 1/39916800

DDCN), 1/3628800, 1/362880, 1/40320, 1/5040, 1/720

DD(N), 1/12@, 1 /24 , 1 / 6 , 1/2 , 1

DR(N)Y (1)

DJMN, (11

- 38 -

Comments,

a. There are numerous ways to improve the speed of the program.

The multiplications by 1/ 2 and 1, for instance, can be replaced by m o r e

efficient devices. The creation of Fln2 a l so would not be needed if (1112) k/k!

a r e used instead of l/k! as coefficients.

b, The present program is actually writ ten as a subroutine,

assuming the convention of 1. 0($15) normal re turn and 0. 0($15) error
$SB

return. Aside from $L, $R, B,$14 and $15,none of the other intern-sl
*
IS

reg is te rs - al tered during exit. The memory requirement is a l s o modest.

Fur ther the program can be used again and again to evaluate the exponential

of whatever floating-point number given in the accumulator.

Problem 4. 12 	 Transcendental Function Evaluation

Assurne the existence of the previous exp(x) program. Compute

f(x)=2xe 1-e f o r x = v

and put the answer in the accumulator as a floating-point number.

Method 1.

-~

LN(N), EKS

LVI, $15, $ t l . O ; B, EXP

B, ERR;NOP

RTURN 	 ST(U), TEMP

LVI, $15, $4-1.0; B, E X P

B, E R R ; N O P

*(N), EKS

E+I(up, 1

ST(U), TEMP+1

LN(U), TEMP

+(N), WON

SRT" $L

R/ (N) , TEMP+ 1

B E W , $ "normal exit

ERR B E W , $ r ror exit

EKS DD(N), $PI

TEMP DR" (2)

WON DD(N), 1.0

Comments

a. The present program is designed to demonstrate the usefulness

of subroutines for repeated usage,

b. 	 The accepted way to enter the subroutine SR (say) is to wri te

LVI, $15, $ + L O (or LVI, $15, $t2)

before branching into S a . In STRAP I1 a pseudo instruction

LINK (no address needed)

is available for this purpose.

c . It is obvious that the present program can be r ecas t into

conventional subroutine form also, i f ever needed.

d. The present program requi res the E X P subroutine, and therefore

is usually assembled together with the la t te r , Fortunately there is no multiply

- 38.b -

defined symbol to produce difficulties and no conflict in the use of special

reg is te rs and $14, $15. A good subroutine should keep the number of

$ea;%?
syrnbols small , and the "tailing" t e d m r q t r e available in STRAP can be

used by the user of the subrouthe to avoid memory conflict,

Problem 4, 13. Nuner i ca l Integration

Provide a subroutine to handle the numerical integration of

any function over any finite interval. U s e it to evaluate

1
I = 2 x eemX 	 dx/ j=

0

Analysis :

a. F o r standard intervals, say+, q) , an n-point numerical

integration quadrature formula i s the approximation

with prescr ibed 	 f Wi') and(zi1 . In the well-known Newton-Cotes

quadratures the 	zitsa r e evenly spaced over the interval,

.Inthe case of the highly accurate Gaussian quadratures the z i ' s

are the zeros of the nth degree orthogonal polynomial Pn(z) , where

PI" w(z) Pn(z) P,(z) dz = 8 , n + m.

The n-point Gaussian quadratut-e will yield an exact answer (barr ing round-off

e r r o r) i f F (z 1 is a polynomial of degree no higher than 2n-P, F o r other

W 	 integrands the approximation is, in general , quite excellent. The most

commonly used Gaussian quadrature is the LegendrehCauss quadrature with

.

(p ,q) = (4, t1) and w(.) = 1 .

For even n the formula becomes

- 1 i = 1

For finite limits (a,b) other than (-1, tl), w e have

b 3-1 t1
f (x) dx = s f (s z t t) dz = 8 { F(z)dz

a - 1 - 1

i = l

where bt = (b-a) / (q-p) = (b - a)/2, t = a - sp = (b +- a) /2.

- 39 -

b. The integration suhroi.tt;ino has to be able to obtain f (szi 9 t)

and f t - s z , 3- t) for a number of z i ' s . It is thus desirable to have available
1

an integrand evaluation subroutine, written in a standard format, The

integration subroutine does not need to know the intsgrand subroutine

En detail, only i t s address and calling sequence. It is conceivable that

the integrand subroutine also requires other subroutines, but this would

not be the direct concern of the integration subroutine itself.

c . The following specifications for the 8-point Legendre -Gauss

integration 'subroutine LEG Q8 a r e therefore reasonable:

1) The main program branchee to the integration Bubroutine

by the standard LINK entry, in the following format:

LVI, $15, $+l.O:B, LEGQ8

2) The leading 19 bits of the ensuing full word mus t contain

the address of the subroutine for the, evaluation of the integrand.
WOd

3) The next iullb(i. e . I 1, 0($15)) mus t contain the floating

point lower limit A.

4)The next full word (2.0($15)) must contain the floating

point upper l imit B.

5) If an e r r o r occurs in the integration program, a re turn

should be made to 3.0($15).

6) If the evaluation. is successful, the approximate value of

the integral mus t be in the accumulator during the normal return. The

normal re turn address i s 4. 0($15).

- 39aa -

?) All internal reg is te rs except L $R, $SB, $ E T , $TR,

$LZC, $AQC, $14 and $15 a r e to be restored during exit, as is desirable

for all subroutines. Fur ther , LEG08 mus t allow for the fact that the

integrand evaluation aubroutine will use $L, $R, $SB, $FT,$LZ@, $AD@,

and $14 without restoring.

da The arrangement of the symbolic prcgram is something like

the following.

111 Identification for assembly program and ''SLC".

2) A main program which makes use of LEGQ8,

3) LEGQ8, which makes use of:a subroutine, slay SUBR.

4) SUBR, which happens to require the subroutine EXPa

5) E X P , which is self-sufficient.

6) Indication to end assembly ami indication of the first

instruction to be executed.

”*

-4 0-

A l l pieces should be made available and assembled together by the STmP
a s scrribler.
M c t h o c u

‘I Main program for intcrJration. Answer should be in ANS.
MAIN 	 LVI, $15, $+I. O;B, LEGQ8

SIC, SUBR; NOP

DD(I’J), d.0 “lower l i m i t

DD(N), a. o “upper l i m i t
BEW, $;rJoP “tip vor m e a s u r e
ST(U),ANS;BLW, $ ‘‘normal end of program

ANS DRZ(U), (1)
‘’ 8-point Legcndrc-Gauss inteqration subroutine
II integrand evaluatim subroutim with 1. ($15) return m u s t be provided by user,

with offcctivr; (;ld&css at(.?,($Is)#lower l i m i t must be at 1. ($15) and
upper limit L J t 2. (SlS), both a s floatbng point numbers,

” the integration subroui.ine will return normally to 4. ($15).
error return is 3. ($Is),with answer in $Le

EEGQ8 	 SX, $ 2 .,LEGQ02;SX, $15, LEGQ8F

LVE, $2,0. ($15)

SVA,$2 , LEGQ8A

SVA, $ 2 , LCGO8B

DL(N), 1. ($15)

D-(N), 2. ($15)

E=-I(u),1

SRD(N), LEGQ8P

D-t-(H),2 .($15)

SRD(TLT), LEGQ 8Q

Lac, $2,LEGQ81;L(U), LEGQ8Z;i

ST(U), LEGQ8S; ST (IT),LEGQ8T

LEGQ8L 	 DL(TJ), LEGQ8Q

LFT(U), LEGQ8P

*N+(PJ), LEC;Q8X($2)

T,n,$15 # $ + L O

LEGQ8A 	 B , $ %ranch address changeable
B, LEGQ8E;NOP Hemor
ST(N),LEGQ8R h o r m a 1 return from integrand subrautitne
DL(U), LEGQ8Q
LFT(U), LEGQ8P
*+(N),LEGQ8X($2)
LVI, $15, %+l.0

LEGQ8B 	 B,$

B, LEGQ8E;NOP

+(N),LEGQ8R

D*(N), LEGQ8W($2)

D+(N), LEGQ8T

l3f-(N), LEGQ8S

SY(N), LEGQ8S

SLO(TT),EEGQ8T

CB+ SZ,LEG 8L
*N(?H ,LEG %P I) normal return to main programLX, $k,LEG882

V

-41-

Ex,$15, LEGQ8F

B, 4.0($15)

"W LEGQ8E: 	 LX,$Z,LEGQ82
Ex,$15, LEGQ8F
B,3.0($15) /

LEGQ82 XVf,,'O / E changeable
LEGQW XW,O //changeable
LEGQ132 DD(N), 0.0
LEGQ81 XW, 0,4,$
LEGQ8R DR(N), (3)
L€C;rlF3:3 SYN(N), LEGQ8M. 0
LEGQ8T SYN(N),ZEGQ8R+Z.O
LEGQ8P DR(N), (1)
LE:C,Q8(;2 mw),(Ufb
LEGQ8X DD(N), .@OZ8 98564 97536, .79666 64774 13627

DD(IJ), ,52553 24099 16329* .I8313 46434 95650
LEGQIIW +DD(N), . lo122 85362 90376, .22238 10344 53374

DD(N), 31370 66458 	778117, a 36268 37833 78362
'1 end of LEGQ8 subroutine.

SUBR is a bona fide subroutine wtth 0($15) error exit and normal return 1,0($15).

SUBR "t SX, $15, SAVE15 3

ST(N), SAVEX
LN (N) ,S A V m
La,$15,$+l.O;B, EXP ' f lgo to EXP subroutine
B, ERR;NOP

RTURN 	 ST(U), TEMP

LVI,$15,$+l.O;B, EXP # g 0 t o ExP subroutine

B,ERR; NQP

*(N),SAVEX

E+I(u),1

ST(U),S A W 	 IJ2 q*e**kE;**-X
LN(U), TEMP
+(FI),WQM
SRT(LT), $L " square fopt of 1-e* *-%
R/(M) ,SAVEX
IX, $15, SAVE15;B, 1.0($15) 'rlmormal return

ERR LX,$15, SAVEl$;B, 0,0($15) berror return

WON DD(N), 1. 0

SAVE15 	 xw,9
S A W DRe V), (1)

TEMP DR(1'0, (1)

91 subroutine

(identical. with a previous program)

(c1* The instructicm execution should begin with MAIN, which triggers
all other programs.

b, The seemingly elaborate way of doing the problem is actually
very easy to use, particularly if most of the subroutines are
a ailabfC r For mu tfple Integration the same integration subrWtine can

-42-

be assembled at different locations and one can be made subservient

t o the other. For example

=$f(*)dx
A

and one of the integration subroutines is used to provide f(x).

d. 	 Barring sound-off errors, the 8-point Legendre-Gauss integration

subrsutine will y h l d exact resul ts i f f(x) is a polynomial in x of 15th

degree or less. Otherwise the appoxfmation amounts t o an exact

integration of a finite expansion of f(x) in terms of the orthogonal

Legendre polynomials Pk(X) up to and including k=7.

e , 	 A discussion of errors in numerical integration is outside the

scope of th i s work. It sufficbs to say that in case of suspicion of

inaccuracy, the domain can be subdivided, and the numerical quadrature,

c a n be used for each subinterval to improve accuracy. This necessi ta tes

only a trivial change in the main program.

82. Checklist for Proaram before Assemblv

A2.1 	 General format.

Check for presence of PRNID, PUNID, §E@, and END. Make sure
that the address of SLC is a true bit address with a decimal point.

8 2 . 2-.
 Symbol definition.

Are there undefined symbols ? Circularly defined symbols ?
Multiply defined symbols?

A2,3 	 Instruction format.

Every operation field should be separated from the address field by

a comma.

Look for missing right parentheses,

Look for missing quotation mark at the beginning of comment field.

A2.4 	 Nature of instructions.

Check integers to make sure they a re not bit addresses with missing

decimal point.

Half-word instructions cannot be addressed down to the bit level.

Check particularly the address fields of V+ V+I, and floating point

operations.

Check VFL instructions for field length >64 o r byte size >80

Check TI, SWAPI, etc., for count exceeding 16.

The address field of immediate index arithmetic instructions cannot

be indexed; the address field of CB, Bind and BB can only be indexed

by $1. V P L immediate instructions cannot use progressive indexing.

Make sure that J fields a r e supplied in the following operations: CB,
Vt, and V + L

-W-

A2.5

Ai,. 6

Q

.

Loops and paths.

Visually trace through all the possible paths in the program,

Trace the entry into, and exit from loops,

If a Poop is closed by a CB, make sure the index register lT1
hae
a valid (non-zero) count field at the beginning.

Termination of a Poop by BAE o r BZAE after a floating point eam-
para is a dangerous practice, because of unforeseen roundoffs.

Proofreading,

After the program has been keypunched, produce a 407 lirsting and
check the overall alignment, particularly the location of the NAME
fields. Proofread carefully, look for missing cardso mispunches,
and off-puhche s,

Character code for symbolic decks

P i A J /
2 2 B K S

Also ; is defined to be equivalent to an (11,fl) double punch, On
407 listings this double punch i s usually considered to be 0. On
assembly listings the semicolon is replaced by a skip of the
printer to the next line. On the keypunched card it looks like the
Greek letter 0.

A5. Ma,chine Handling of Floating Point Exponent Flags in the 7038
__I-

-"A.5. 1 Exceptional floating point quantities.

Exponent overflow and underflow occur only infrequently in most
floating point computations, In machines ab ear l ie r design, the
''overflawed" and "underfl.owedf,' numbers have the appearance of
normal quantities, and further operations tend to lead to untrace-
able Contamination of the results. The conventional way of c i r -
cumventing this difficulty is to tes t for the exceptional events from
time to time.

Some machines now have a "floating t r ap mode" feature which auto..
matically interrupts the normal. instruction sequencing immediately
after ad exceptional event, without the need for t es t instructions.
A wide choice of interrupt conditions (X P F P , XPO, XPH, XPL,
XPU) is available on the 7030, enabling a firm control on the
quantities used in floating point instructions. Interruption feature,
however, tends to t rea t exceptional events equally and is not capable
of knowing the consequences of these events without elaborate pro-
gramming *

On the other hand, if the D'overflowedfl o r %nderflowed" quantities,
which are responsible for the exceptional events, a r e themselves
clearly labelled, i f the numbers contaminated by these labelled
numbers are also labelled in a coTsistcnt manner, it would be pos-
sible to perform an entire Computation without any tes t instruction
nor interruption. In this scheme, drast ic action would be not needed
unless par t of the results bear the "exceptional quantity'' label.

In the 7030 the exceptional number is labelled by a rrl"bit occupying'
the leftmost (exponent flag) position of the exponent field. An ex-
ceptional number therefore appears to be a number with an extremely
large exponent magnitude. The consistent rules governing the gene-
ration, .-propagation and disappearance of the exponent flag a r e re-
I*-

rninesccnt of algebraic operations involving infinite and infinitesimal
quantities.

In the following EF represents the exponent flag, ES the exponent
Yign.

EF =: 1 signifies a very large floating paint exponent magnitude. If
(EF= 1, ES 8 - - - - - -1

If EF 2 1, ES x 0, the magnitude of the floating point number is
extremely Parge (2 21023- and may be symbolized by (x9

(XFPcase),

If EF s B, ES I E , the magnitude of the floating point number % e
extremely small, and m a y be symbolized by 6 (XFN case).

If EF = 0, the number is said to be normal, and will be represented
bythe symbol Ne

The sign bit (bit 6 0) of the floating point number retaims its normal
meaning in all cases.

The following scheme i s designed to disaPlow the loss of EF bit due
to irretrievable overflows.

A5 2 Generation of exceptional quantities. -
In floating point operations involving normal numbers snPy, EF
behaves like an extension of the regular 10-bit exponent magnitude
field, and will be turned on in the result i f the expected answer
has an exponent either greater than 1024 or less than -1024, An
exponent overflow is said to have occurred in the former ease,
rendering $XPO B e In the latter case an exponent underflow i ef

said to have occurred, and $XPU will be set to It. In D / , $RU
may be set to 1, In either casep an expanent flag is said to be
generated,

Other operations will proceed normally for aPP generated EF cases
except in the following situations which might otherwise generate
exponent overflow beyond EF:

Multiplications which Peadl to generated G results prior to
any msrmalization. The normalization and noisy modeI if
stated, will be suppressed. E+, E+E instructions behave
Pike multiplications

Divisions where prenormalization of the two operands yields
an N and a generated G . The quotient fraction is developed
normally, but the quotient exponent will be either that sf G
(case of small dividend), or that of 1 /G (case of small
divisor).

The following table gives the conditione and the apparent range
of normal as well as exceptional numbers, when EF i a imagined
to be an extension of the exponent magnitude field.

Condition of
F.P, Number Symbol EF-

Fractior
Sign

Apparent Range for
Normalized Fraceion

XFP, + +a3 1 8 3 21023

Normal,+ + N 0 0 421023 , -1024*2

XFN,t +E 1 0 doZ4,
XFN, =-G B (10

Normal, 9 -N 0 P

XFP, - -00 1 PO235 -2

AS, 3 Exceptional. number arithmetic,

In floating point arithmetic involving numbers with EF t 1, the
mathematical fawe concerning extremely large and extremely
emall numbers apply where the results are unambiguous. If
the outcome i s indeterminate in a strict mathematical sense, the
ambiguity is resolved in the machine by the choice of 00, producing
the most alarming situation possible :

The following are resolved ambiguous cases:

For details, see A5.8. Note that normal answers are obtained
only by special G + N operations, and exponent overflows beyond
the EF position which m a y yield harmless-looking results are
prevented from occurring.

A5,4 	 Propagation of exponent flag.

In operatione other than K, KMG, K.MGR, and KR, if both the result
and at least one of the operand8 a r e in the 00 range,, an %xponent
flag positive" condition is said to have been propagated, and $ X P F P
is set to 1. The propagation of condition does not lead to special
indicator settings .

A5.5 	 Comparison involving exceptional quantities.

All 00 a r e treated as equal in magnitude in IC, KMG, and KR; all G
a r e likewise treated as equal in magnitude.

A5.6 	 Approximation of the true floating point aero.

The true floating point zero is approximated by an E. If a f-1Pbii.g
point zero is requested of STRAP,,what appears to be 0 * 2
will result from the compiling.

A5,if 	 The Y3ero multiplvts indicator.

$ZM cannot be turned on if the re~uf tof the multiplication is Gwith
zero fraction.

A5*8 	 Summary of floating point arithmetic with exceptional operands,
(Only exponents a r e shown in equation8 below.)

A5.80 1 	 Addition, subtraction, load, store, and SLO, (Result
may be N)

Fraction arithmetic : suppressed. Normalieation and
noisy mode: allowed only if pre-normalized anawer d ~ 4
normal.

#Whichever has the higher exponent; or if the ex-
ponents are equal, whichever is from the ac-
cumulator e

F+ behaves Pike NOP for accumulator being 00 or Gr
since the memory fraction ba given the accumulator
exponent,

A5.8.2 Multiplication, E+ and E.B.1. I__- a0 or @. 1(Result always

Fraction arithmetic: a11owed to proceed. Normalb
zatisn and noisy mode: suppressed,

#In $4-, where accumulator does not contain operandss
whichever is from memory; otherwise whichever isr
from the accumulator.

A5,8.3 Division. (Result always m or Gel

Fraction arithmetic: allowed to proceed. Normalb
zahion and noisy mode: suppressed. Operations in-
volving (z or m will be treated as unnormalized,
Remainder: Exponent same as that of dividend, no
normalization allowed.

- -- -

t

A5.8.4 Square root. (Resul t always a3 o r G o)
--I_

001 z 001

Fraction arithmetic: allowed to proceed. Normali-
zation and noisy mode: suppressed.

A5.8.5 Shift fraction.

G and 00 behave normally, since the exponent is un-
alte red.

--

A& Noisy Mode in 7030 Programming

A6, P Purpose of noisv mode.

The purpose of the noisy mode i s to allow the 7030 to perform i t a
own e r ro r analysis in the crucial a rea of significance Pose in
normalized floating point arithmetic,

Essentially the same computing algorithm for the solution of a
problem can be pursued twice on the machine, once in "normaltg
mode and once in noisy mode. During the computation the low
order fraction bits a r e affected differently in each case, the dif-
ference being particularly noticeable on normalizing left shifts.
When the results a r e contrasted with each other, i f the relative
discrepancy is 2'" then probably the "normal" result has a re-
l a t h e e r r o r of 2k-h, the odds being something like 2k to 1 in favor
of this interpretation (and against fortuitous agreement).

In the 7030 the noisy mode is activated only when the indicator bit
$NM equals 1, and only for normalized floating point operations.
When normalization is suppressed due to exponent flag conditions
(see A6.6) , noisy mode will be inoperative. For convenience, we
shall speak of the influence due to noisy mode a s noise.

A6.2 Firs t . order noise.

Am operand may be right-appended by 48 identical bits at the be-
ginning of an operation, to produce a double-length fraction. We
may call these "d" bits.

d 1 i f and onlyjif

a. normalized operation is specified (and not suppressed).
b. $NM :1;

c o the operand is one of the following:

I) an operand in (single) LOAD type instruction: E, EWP,,LFT;

2) an operand in ST instruction (NOT-SRD nor SLO);

3) the divisor in /, R / , and D/;

4) the dividend in 1 and It/;

5) the unshifted operand prior to arithmetic action in the fol-

lowing single operations: +, Mt -4 MGJ M+MG; K, KMG,
KMGR, KR.

d 8 0 otherwise.

The unshifted operand in operations described in (5)i s the operand
with the higher exponent, o r i f the exponents are equal, the operand

-W
from the accumulator

The d bits, being second order quantities, may influence the first
order part (first 48 bits) of the result fraction through post-normali-
zation and/ or arithmetic ction. The minimum noticeable relative
e r r o r due to d bits is 2-48; the maximum is just below 1 J Z m

W e shall speak of first order noise as one which can create a mini-
mum noticeable relative e r ro r in the first order part (the first 48
bits) of the result fraction, and define aecsnd order noise a s one
which creates a minimum noticeable relative e r r o r in the second
order part (the second 48 bits) of the (double-length) result-fraction,
In the 7030 computer the (9 bits produce only first order noise,

A6,3 Second order noise.

When a double-length fraction undergoes left shift (in, for example,
post-normalization), the positions left vacant a r e filled in by another
kind of identical bits, We shall call them 'td,'sbits,

L

dZ 3 3L i f and only if

ill. normalized operation is specified (and not suppreseed):
b. $ N M = B m

d2 :0 otherwise.

In all operations save one, the d, bits produce only second order
noise. In the cases where d and'dZ a re both present, the result
fraction i s invariably truncated to 48 bits, revealing only the effect
due to d bits.

E t must be noted that second order noise is not necessarily small.
The largest possible relative error caused by it is the same as
that for f irst order noise, namely just below B/Z. This occurs
when ;a 96-bit fraction before post-normalization has all bits equal
to zero except the last bit. Ninety-five d2 bits will be shifted in.

A6.4 Machine instruction and noisv mode.

A6.7 shows the pertinent noisy mode features of floating point
operations.

-

f t is noteworthy that all but one double operations posseam sadand
order noiee, The exception i s D/, which has first order noiee
through divisor preshifting. 0 n the sther hand, the ' 'single1'
operation * posses only second order noise. The operation *+
has aecond order noiee if the preceding LFT operation did not
introduce f i r a t order noise,

SRD and SRT a re noiseless operations,

In SLO the low order fraction is Peft-appended by 48 high order-
zero bits to produce a 96 bit fraction. This Batter is then shifted
left at least 48 places, shifting in d2 bits. Second order noise on
the second order fraction thus behaves like first order noise on
an ordinary (single) fraction.

Noise in 1,.R/ and D/ i s introduced in both the divisor (always by
d bits) and the dividend (d bits f o r /, R/;d2 bits for D /) o The
quotient never needs further normalizing left shifts and the normali-
zation o f the remainder is noiselese. F i r s t order noise in E)/ iep
desirable i f the quotient is to be single precision (say after a round-
ing operation), but not if truly double precision quotient is required.

"w'
It is possible to produce noisy results without any normalizing left-
sh i f ts not only from divide-type operations, but in ADD-type opera-
&ionsas well, The 48 d bits m a y simply create a car ry into bit 47
of the fraction during the addition process,

A6.5 Programming significance.

All digital computers have a finite word-length. In normalized
floating point operations the post-normalizing left shifts iiptroduce
bits through the right-boundary of the fraction. With few exceptione
(some to be mentioned below), the programmer has no idea what
these bits ought to be, and he is unwilling to or has no way to find
out.
Shifting in all Pasas in noisy operations, very probably introduces
e r rors . It is almost equally probable that errors of a similar
magnitude a re introduced by the alternative strategy of shifting
in zerofl. In either case bias is introduced.

The purpose of'the noisy m o d e is to biae the results in a manner
as opposite to llnormall ' as possible for the digits known to have
no numerical significance, yet without destroying the digite valid
for the particular machine instruction.

In computations involving integers and simple numbers, extremely
frequently the result fraction is known to be exact, to be followed
byan infinite number of zero bits. It should be evident that such
exact answers can be corrupted by noisy mode. $NM should be
off, or unnormalized operations should be prescribed,

In programmed double-and .rnultiple-precision arithmetic, the ad-
dressed operand may have one or more well-defined lower order
part. The use of noisy mode amounts to a redefinition of the lower
order part, and extreme caution has to be applied, except perhaps
in dealing with the lowest-order fraction,

In programmed double-precision arithmetic second order noise i e
always permissible, but first order noise should affect only the less-
significant part of the fraction, The use of E F T (N) a s a prelude to *+,
and D / (N) for unnormalized first order operands thus should be dis-
couraged; it i s much safer to employ the unnormalized counterparts
t~ these operations. It is easy to introduce second order noise
through other operations in the instruction sequence,,

Under special circumstances, normal and noisy compare type opera-
tions m a y yield different indicator settings (sometimes even for the
-same two numbers), The user of floating point compare operations
shbuld know always that, except for the "exactIs operations he is com-
paring numbers a.ffccted by errors, and due allowance must be made
for this, whether noisy mode is used or mot.

A6.6 Suppression of normalization.
L

In the great majority of cases normalization, i f specified in i f l ~in-
struction, will proceed. The exceptions occur only because of the
appearance of exponent f lag .

Normalization (and therefore noisy mode) will be suppressed in the
following cases :

a. For instructions involving only one operand, i f the operand prior
to the normalizing shift is either an rn (X F P case) or an G(XFN
ease).

b. For instruction with two operandso neither of them a r e 00 OF G :

' 1) instructions of * type, i f the produd before normalization
i 8 an Ge

2) 	 instructions of / type, if the operands after prenormali-
eation contain one G and one N (i ,e , , no exponent flag).
(This case does not influence noisy mode in any way. 1

The suppression of normalization in this category i e to prevent
the Bosn of EF due to double underflow.

C . 	 For instructions with two operands, at least one of which is
either w or 6:: if the result is not an N before the post-normali-
zation. The result is an N only in the case of (z +N,and normali-
zation here, i f specified, will proceed.

- t

.

-A6.7 Summary of behavior of normalized floating point instructions fm noiey mode.-

Add Type Operatione

E, LWF
ST
K,KMG,KMCR, KR

LFT
SRD
SEO

Multiply, Divide & Root

*
/, R/

SRT

Double OPerations

D + j D+MG, F+
DL,DLWF
D***+
D/

QtheFs

Right -Appendage
by 48 d Bite
(prior to any 1

II

yes on unahifted
operand

Yes
Yes
yes, on unshifted

operand
Yes
no

no

no
yes, both divisor

and dividend

no

no
no

no
yes on divisor

pre shift

Foet-Shifting
into Bit 95 by
dz Bite

ycs(no effect]

yes(ns effect)
yes(no effect)
(nopost- shifting)

yesjylo effect)
yes(no effect)
yes, before any

shifting

Yes
yes(no effect on

operands. No
post-left-shift
for quotient.

yes(no effect)

Yes
Ye*
Yes
yes on dividend

preshift. No
post-left- shift
for quotient.
Yes(no effect)
on divisor pre-
shift.

Order of Noise
and Other
CommentB

P

L H a s bearing ~n *+.
Noi aeles s
1

2

P

NoisePess

2
2
2
P.No additional

noise introduced
in remainder
normalization.

no Yes 2
no no Noiseless

