A W S M by

June 27, 1956

Memorandum for: File

Subject: Indexing for the Improved 705

Indexing is a procedure whereby the memory address of an instruction

is modified by the contents of an index register before it is used. Usually
the contents of the index register are added to or subtracted from the
memory address. The number contained in the index register is called
the index. Since there is usually more than one index register, several
indicgs are available for use. The index selected is shown {n a specific
place in the instruction and represents the value to be used in coniunction
with the memory address of the instruction to determine the effective
memory address. This is not to be confused with the index #ddressed; in
this case an index register is addressed for the purpose of taking data from
it or putting data in it,

In a strictly one-address machine, the index addressed would he shown in
the instruction where the memory address would otherwise be. However,
greater flexibility may be obtained by introducing the index addressed into
the instruction as a second address. For reasons which will appear later,
the index addressed and the index selected should be shown in two different.
and independent locations in the instruction. In the proposed improvement
for the 705, the index selected and the index addressed are indicated in the
lead word as shown in figure 1; in addition, there is 2 use-index bit in the
operation word which shows by its presence that the index selected is to be
used with that operation word.

INDEX SfL2CTED

- N .
ceet LOMNES
WUMERICS

i
i

} LEALD WG @]
INDEX ABDRESSED

(UR QTHER ASY
#0S5iTION ADDRESSE D)

Figure 1

The value of indexing is found in relative programing and in loop program-
ing. In relative programing, the characters of a data area or work area

are assigned relative addresses, the first character being given the address
00000 and each succeeding character receiving an address one number higher.
An index is selected and used with each instruction addressing the area; by
setting the index to the actual address of the first character of the data area,
the effective address of the instructions involved will be properly set. This
technique is best used when either the location of the data ares is unknown
and must be developed during the program and/or when there ixre a number
of similar data areus to which the instructions will apply., Only one number,
the index value, must be changed to change the effective address of all in-
structions for which this index has been selected.

Indexing is an aid to loop programing prinicipally when there are a number

of instructions to be applied successively to several work areizs. For exam-
ple, the entire processing of grouped records must be repeated for each record
of the group. Such a program may be written using the actual addresses of the
first record. Each instruction of the program would select and use an index
whose value would be set to zero for the first record and increased by (say)

200 for each successive 200 - character record. The end of the loep is

reached when the index attains a certain maximum value, which depands on the
particular case, If 4 records are involved. the last record wculd be processed
with an index value of 3 x 200 = 600, Note that only one number, the index, has to
be charnged when stepping from one record to the next. If relative programing
is comhined with looping, the index starta with the actual address of the first
character of the first record and is stepped up the amount of the record length,
sav 200, until the last record is processed with an index value equal to the
‘actual address of its first character.

To obtain the maximum value from indexing, it should be possible to index any
program. It is quite possible that a program which we wish to index through

a series of grouped records will itself contain indexing. If the grouped records
are being handled with simultaneous read-write-compute, it will be desirable
to index the program through the several compute areas as well as through the
records of the group. Thus a third (or even higher) level of indexing may be
required. This multiple indexing should be possible in any indexing scheme,

The elements of looping are shown in figure 2, £

IN

i
¥

INITIALIZE: !

Set instructions to ,
their initial value |

COMPUTE: ;

Use the instructions: §

TEST: 'STEP:
Is this the last] —- - No ».Set the iastructioas’
computation? | to their next value °
YES
ourT
Yigure 2

With indexing, looping becomes a matter of initializing, using, testing, and
stepping an index. The problem of establishing an indexirg scheme comes
down to a consideration of these four operations.

One possible plan for indexing is to store in memory the initidl value, the
maximum value and the stepping value for the index. In initializing, the
initial value is loaded into the index register; in testing, the maximum value
is compared against the index value; in stepping, the stepping value is added
to the index. A more flexible plan is to place these constants in the memory
address of the initializing, stepping and testing instructions. The operations
required for this plan are:

Phase: Nature of Iastructior:
Initializing Load (reset-add) memory address into index
Stepping Add memory address to index

Testing Compare memory address to index

The advantages of this plan are: (1) no memory space is required for the
constants other than that required for the instructions - this also simplifies

the programmer's job; (2) since no memory access for tha constant is involved,
time may be saved; (3) the constants may be modified by indexing the instructions
containing them - this is the key to multiple indexing,

In one type of indexing, (available on the 704 through the TIX instruction) the
index steps from an initial value, set by the problem, down t¢ zero. The
indexing system proposed in 705 Improvement Memo #3 is similar to this
cxcept that the index is stepped upward until its value reach:s zero through

an overflow. Hoth schemes have the same limitation: the initial and final
values of the index are fixed so that the memory address plus the index (the
effective memory address) has a fixed initial value and final value. This
allows only one startiay place aad one ending place as, for example, starting
with the first record of a group and indexing through the last record of the group.
A second-layer index to permit directing the program successively to different
compute areas is not possible with this type of indexing.

The proposed improvement plan for the 705 provides operations with indexing
congtants stored in the memory address as follows:

I.LFM - Load from memory address - loads the mcrmory address
into the index addressed

MODX - modify index - loads tke memory address irto the index
selected

Either of these instructions can be used to initialize an irdex, The MODX
instruction violates a basic concept inasmuch as the index sclected is taken

to be the index addressed; however, no E-time is requu'ed so that the MODX
rastruction takes less time than the L FM instruction. Ii‘nthe MODX instruction,
the use-index bit is present, self-indexing takes place: the memory address is
indexed by (i.e.;, added to) the index selected and the result loaded into the

same index. This is equivalent to stepping the index by the armount of the memory
address. The same effect can be obtained with the LFM instruction by indicating
the same index as index selected and index addressed. Wher: the index-used bit

is present, the index will be stepped by the amount of the memory address. When
the LFM instruction is used to initialize an index, its memory address may be
indexed by another index - - this technique is used in multiple indexing. The ¢
MODX instructions cannot be used in this application, Neither the MODX or

the LFM instruction can be indexed with another index when they are used for
stepping because the stepping is done by self-indexing; no applicatiorn for such
indexing has as yet turned up and 8o there is perhaps no valid objection to the
lack of a direct add-from-memory-address instruction.

Attached to this memorandum as figure 3 is a sample program written for
multiple indexing using the MODX and LLFM instructions, The program is
written for grouped records, 200 characters long, with a header record of

100 character in front of each group. The second-layer index is used to progress
the program through three compute areas as is commonly dore with simultaneous
reading-write-compute. Since the proposed 705 improvement does not include

an instruction for the testing phase, an instruction marked "TEST'" has been
added with the assumption that this will compare the memory address (after
indexing if se indicated) to the index selected and set the enu:al trigger on or off
in accordance with the result of this comparison. (This assuraption is for
illustrative purposes only; for instance, a special index-equal trigger might

be preferablel

The basic requirements of a complete indexing system are: (1) an instruction
format that indicates separately and independently the index sclected and the
index addressed; (2) an instruction which loads the memory-address into the
index addressed - by seif-indexing this will also add the meraory address to the
index addressed; (3) an instruction which compares the memory address with
the index addressed and sets a trigger accordingly. These features are
strongly recommended for incorporation into the indexing plaz for the improved
705.

RVS:pw R. V. Smith
Attachment

EAV N Y A A S

0y T

S

* Multiple Index Program - Improved 705 . R S S S loger -
T N .,

4 Index

Symbolic Or ASU Memory Use. Index
Class Liocation Oper. Address Address Ind. Sel. Description

7 ‘ | e SRR T 4 e S g vt e mmp et oo TR s o e R R Ii(lfi lllze

L. 00010 . LFMx 009 - 00000 [] GO0UOteIR 009
1 00020 'LFM 004 00000 K+ . 009! 00000 #IHOGY to IROO4
K : : - : ‘ B 7 Cilcnate Routme

BMILMM etd are adtual
- e . Caétrenses for first record
roete.] 4 004 | i‘r firstarea - ot oo

-10010 00 - MMMMM + = 004 [~z

. 10020 o etc

7 - Test Find Miror Loar

1 20010 TEST - 004 00600 | 109, Last (4th) record in group?
20020 TRE 40010 Yes

7 . : Step Through Mino~ Loop

1 30010 MODX 00200 + 004 No-steo to next reéord
30020 TR 10010 repeat calculation routine

-’ - , L L Tzst End of Major Loop

1 40010° TEST 009 - 01800 ["1 TLast (’rd) area?

40020- TRE =+ - out#l . Yes - re-enter at 00010- after
B P

7 - ‘ S ~Sten Through Major Loop

1 50010 . MODX 00900 4 009 No-efep to next arex
50020 TR Out #2 T re-e uer atouuzo after RD

* If there is no higher layering of indices, instruction 00010 should be written:

i 00010 MODX 00000 009

Figure 3

