
V

April 15, 1958

INTERNALNOTE # 30

Subject: Coding Examples for Basic SIS

The preliminary specifications of a Basic computer coding
system as proposed in Internal Note #29 have furnished UII with a
general technique for exprearring instructions. In thin internal
note we wish to illuatrate the flexibility and potential of this pro-
poaed coding system through sample instructions and programs.

Firert, though, w e would like to point out that flexibility and
potential will be attained not only through the u ~ eof the proposed
coding arrangements but alrro through the varity of terminology
that can be employed. However, as this Baeric coding irystem termin-
ology and its syntax doe8 not conform to any standard language, we
ehall call the language for this rsystem the SYNTHETIC language.
Then our system for preparing Baaic machine instructions becom ed
the SYNTHETIC INSTRUCTION SYSTEM or SIS. Machine inter-
pretation of SIS terminology and syntax will be performed by a
SYNTHETIC TRANSLATOR, ASSEMBLER, and COMPILER, or
SYNTAC. SIS coding will be illustrated here but SYNTAC will be
explained in a subsequent internal note.

Aa our first .sample,we choose the ADD operation. The
variations in the way the ADD instruction can be coded are as
follows:

1. 	 Add (d) + 1 3 . 5 4 #, 6-4, (3)
Six decimal numbers (001345) a8 indicated by the field length
(6) , the decimal modifier (d), and the number sign (#) will be
added to the accumulator. The two leading e e r o ~are implied
by the field length of 6 and the decimal byte size ir denoted by
the 4 following the 6. The (3) indicates the offaet and infer6 an
of€set of 3 four bit bytes or 3 decimal charactere.

2. 	 Add (b) t 13.54 #, (5)
The binary value of 1354 as determined by SYNTAC will be
added to the accumulator in the binary mode. No length is

- 2 -

specified for the binary field because SYNTAC will de-
termine this length. The (5)will mean a 5 bit offeet and
since it is enclosed in parenthesis, it can not be confueed
with a possible field length specification.

3. Add (d) -256 .25 , 3-4
Decimal data in m e m o r y location 256.25 will be rubttacted
from the contents of the accumulator. The byte size will
be 4 bits and the field length irs 3 bytes o r 3 decimal char-
acters. No offset ir specified.

4. Add (b) 256.25 (9, ICR), 20
Twenty binary bita of a m e m o r y location apecificd as 256.25
but indexed by register 9 will be added algebraically to the
accumulator. The absence of a sign here mean8 that the sign
of the data will be urred. After indexing the addresb, the
index regiaterlrs value field will be incremented, its count
will be reduced by one, and if its count reaches zero, the
register will be refilled with the contents of the word de-
eignated by i te refill address.

5. Add (b) Current Wages (9 , ICR), 20
Same instruction as 4 except that the aymbolic m e m o r y
location 256 .25 is replaced by the tag "Current Wager".

6. Add (b)Current Wagea (250 -20 -250 .00 , ICR), 20
Same inatruction as 5 except that index regiater 9 haa been
replaced by the contento of an unspecified regieter to be
a88igned by SYNTAC. The contents of this psuedo register
d f l be stored in the location apecified by the refill address
(250 .00) .

7. Add (b) Current Wages (Wage Record - # RecordB, ICR), 20
Same instruction as 6 except that "Wage Record" has re-
placed 250 a e the record length in the value fie3d a d 'I# Recorda"
has replaced 20 as the record count in the count field. The
refill addre88 is unspecified and therefore SYNTAC is re-
8ponaible for locating and eetting-up the refill word. Lf inmtead
of ICR this had only been IC, a refill ward would have been
unnecessary.

a. Add (b)256. 25 (9 8, I), 20
Same instruction am 4 except that 9 # ie the actual value of an
index regirter to be aasigned by SYNTAC. This irs the only
cacle where confusion between an index register designation

W and an index value will occur.

- 3 -

Of course the ADD hetruction may be expressed with other variations
but by now these should be apparent and the way in which the other
operations can be expreslred should be evident too.

As programing examples we have selected short routines from
the Project 7000 Preliminary Manual of Operation. The first pro-
gram, found on page 6 . E l , is an FICA routine. The parameters in the
program are:

Current G r o w Wage
Current FICA
FICA Balance (remaining FICA to be paid, max. = 94.50)

The FICA program i s :

Load (d)Current Gross Wage, (2)

Multiply t .0225 #, 3-4

Add t 5 # , 1-4, (5)

Store (d) Current FICA, (6)

Augment - FICA Balance, (6)

Add - Current FICA, (6)

Store (a) - Current FICA, (6)

Add Memory - FICA Balance, (6)

The aecond program, found on page 6.25, i e a continued compare.

Load(d) t M, 12-5
Compare (d) + N, 12-5
Load(d) t ha + 60, 1Z-5
C. Compare (d)t N t 60, 12-5
Load (d) t M + 120, 6-5
C . Compare (d)t N t 120, 6 - 5

These examples should preeent a fair idea of the flexibility
and potential of SIS. Further detailed elaboration on the coding methods
will be provided in the final specifications.

LLB/bb

W

