[Ll

//?75:g;'

May 22, 1959

Here is a revised and amplified version of the
STRAP I write-up. This will be followed (soon?)
by appendices C, D, E, . . . listing

error marks, system symbols, . . . and an Index.

i’ml

- 27 /Mouj, 97 105 ALAMOS . I /J /’j

STRAP 1
An Asdemlly Progrom for Shetch

— -;":—::4_;-‘-:?‘ . , D .

SRR Lovis Gatt
""\'\“ IO

Lane Motteler

=\
Grover Lewis

Frank Evans
Dick Thomas

TR —_—
IAmERIT Y hwm,

S TN
'\—I\: l.‘\;,\‘\

e ———my

IR e

oo

e
y Snim e

i

»

77,

S e Rt

AT,

o

-,

— .- A ——

General

1.

2.

w N O v oW

10.

11.

12.

13.

TABLE OF CONTENTS

Strap Coding Form . . + + ¢« ¢ ¢ « ¢« o « « o« &
Instruction Formats . . + + + « ¢ v v ¢« ¢« o o .
2.0 General . . . ¢ v 4 4 e e e e e e e e e e e
2.1 Machine Instructions « « + « « ¢ ¢« + &
2.2 Data Entry Instructions

2.3 Instructions to Compiler

2.4 Format Symbols Defined . . . « « + « «

Data Description . « « « +v ¢« v ¢« ¢« v o o . . .
Strap 1 Location Counter . .« « o o o o« o o + & &

SYymbOLS &+ v v ¢ ¢ ¢« ¢ o o 0 s s e s e e e e e e

General Parenthetical Integer Entry
Multidimensional ATTEYS « « o o o o o o s o s 2
Bit Addresses and Integers . « ¢« ¢« « ¢ « o o« «
8.0 Definition e e

8.1 Addition of Integers and Blt Addresses . . .
8.2 Rules for Conbining Integers and Bit Addresses

Radix Specification « ¢« ¢« ¢ ¢ ¢« « o+ 4 &

SYNONYM « + o & o o ¢ o o o o o o o o o+ o o & o

Other Restrictions on Address Arithmetic

11.0 DR (Data Reservation) . « « « « « v o « + &
11.1 EXT (Extract) . .
11.2 SILC (Set Locatlon Coun‘ber) e e e e e e
Notes on Special Operation Formats . . .

Miscellaneous NOtes « ¢« « ¢ ¢ o o o o s o o » 2 o o

Page

=

v

FFEFwwn

O @ @@ W

10

11

11
12
1k

17
18

20

20
21
21
22

26

1k,

15.

Appendix

Appendix

Appendix

Index .

TABLE OF CONTENTS (cont.)

System Symbols « « « o o ¢ ¢ o 0 e 0 0 s e .

Ceneral Data ENtry « « « o « ¢ ¢ ¢« o o o o o o o

15.1 DD (Data Description) e e e e e e e e

15.2 Entry Mode . . . e e e e e e e e e

15.3 The Form of De01mal NuMbers e ¢ o & o 8 4 »

15.4 Insertion of Specific Fields &

15.5 Rules for Entering Data . . . « e e e
Sumnary of Rules for DD Statements o e e e e

15.6 DDI (Datae Description, Immediste)

A. Restrictions on Addresses in SYN, DR, and SLC.
Coding Exemple « « « « « « o o o o o s o s o o o
B. Strap Moemonics . « « « « o ¢ s 0 s e s e e oo

Notation for symbolizing Floating Point operations .

Floating Point operations . . + « + ¢ » o
Notation for symbolizing the Variable Field Length
operations

Integer operations
Logical Connectives e

Convert Instructions (VFL operatlons) . .
Notation for symbolizing the Indexing operations .

Direct Index Arithmetic

Immediate Index Arithmetic « .
Count and Branch Operations . . . « « « .+ .+ &
Unconditional Branch Operations . « + « « « o « &
Branch on Bit Operations . « « « ¢« o o ¢« o « o o &
Branch on Indicator Operations . . « « « « « « «
Transmit Operations . « o o « o o o ¢ ¢ ¢ o o o«
Miscellaneous Operations . « « + o ¢« « o o o+ o o« &
Input-Output Instructions . « « « « « « o ¢ +
Control PSeudO-0OPE « + o « o o o o o o o o s o o o
I/0 Coding EXample « « « o « o o o o o o o o
Example of a Control Word e o s 6 s s e s s s

C. (Index for Appendix B) « « « « + v ¢ o o o o

ii

Page

"M

E

Revised January 8, 1960
GENERAL

Strap 1 is a program for assembling symbolic programs for
Stretch, utilizing a 32K 704k. It is a predecessor to Strap 2, which
will utilize the Stretch machine itself for assembly. All programs
which can be assembled by Strap 1 can also be assembled by Strap 2.

Appendix A contains such a program.

1. STRAP CODING FORM

The coding form and the card form are divided into 4 fields.

These fields and their positions are shown below.

1 2-~9 110 72 | 73 - 80
Col. Class Name Statement Identification

The purpose of each field is:
1. Class (1 column) - to identify the card format (binary, decimal,
symbolic, etc.).

2. Neme (8 columns) - to identify the statement by a symbol (optional)

3. Statement (63 columns) - to express a machine or pseudo-instruction.
Information punched in column 72 will not appear on the listing, but
is assenbled as part of the statement.

L. TIdentification (8 columns) - to identify the card or program (does

not affect assembly)

2. INSTRUCTION FORMATS

z.0. General

Machine instructions are written and punched symbolically in
the statement field of the form described above. A card may contain
several instructions separated by ; . (The keypunchers will be instructed
to punch this symbol as 11-0 double punch.) The number of instructions
vhich may be punched on a card is limited by the number of columns avail-
eble in the statement field. The symbol in the name field of a card
having more than one instruction in the statement field is associated
with the first instruction. The remaining instructions are treated as if
they appeared on separate cards having blank name fields. (It is not
necessary to name an instruction unless it is referred to in the program.)
4 single instruction cannot be continued from one card to another. A
comment may follow any instruction. A comment is initiated by the symbol
" (an 8-4 double punch) and terminated either by the end of the card or
& ; . A" in the name field causes the whole card to be treated as comment;
it will be printed on the listing but will not otherwise affect assembly.

Symbolic instructions are divided into subfields (e.g., operation,
address, offset, etc.) by commas. These subfields may in turn be sub-
divided or modified by expressions contained in parentheses, such as index
register specifications, secondary operations in progressive indexing,
etc. Three general classes of operations can be defined in Strap 1:
legal machine operations, data-entry psuedo-operations, and instructions-
to-the~compiler pseudo-operations. See Appendix A for examples.

hppendix B and C contain a list of the legal machine operations.

-~

2.1 Machine Instructions

Format Operation

1. opr(dds), AlB(I) Floating point

2. OP,A19(I) Miscellaneous, unconditional branch, SIC
3. OP, J, Al9(I) or OP, J, A18(I) Direct index arithmetic

4. op, J, Ajg or OP, Jy Ajg Immediate index arithmetic

5. op, J, Bl9(K) Count and branch

6. Op, Bl9(K) Indicator branch

7. oP(dds), Azh(1>;OF7(I') VFL arithmetic, connect, convert
8. OP(OP2)(dds), Agh(I),OFT(I') Progressive indexing

9. OP, J,.A18(I), AiB(I) Swap, transmit full words

10. OP, AQM(I), Bl9(K) Branch on bit
1l. opP, I10(I1), CWiB(I') Input-output select

12. LVS, J, A, A', A", A" eee Load value with sum

2.2 Data Entry Instructions

Format Operation
1. (EM)pp(dds), D, D',D",.-- Data definition
2. CW(OPE), FWA, C, R Input-output control word
3. XW, V, C, R, O-7 Index word
b, VF, V Value field
5. CF, C Count field
6. RF, R ' Refill field
7. EXT(L, L') any legal instruction Extract

2.5 Instructions to Compiler

Format Operation
1. Syn(dds), A, Synonym
2. DpI(dds), D Data definition for immediate op
3. ©SIC, A2h Set location counter
4. END, B19 End of program
5. DR(dds), (L, L', L",--+) Datae reservation
6. CNOP, Alg(I) Conditional no-op
7. TLB, B19 Terminate loading and branch

2.4 Fommat Symbols Defined

1.

OP or OP

1

A fixed symbolic (hopefully mnemonic) representation
of a machine operation. -
A secondary operation in progressive indexing or
input-output.

A data address of length n bits.

A 19-bit branch address.

A L4-bit index address in which O signifies no
indexing and 1 to 15 signifies indexing by the
corresponding index register.

A single bit index address in which the choice

is O--no indexing, or l--index with register 1.

A 4 bit index address which refers to an index
register as an operand. In this case O refers to

index 0, word 16.

8. OF Offset.

T
9. IO Input-output unit address.
10. CWiB Control word address.
1l. EM Entry mode.
12. D Numerical data.
13. FWA First word address of words to be transferred in

input-output operation.

1k, ¢ Count field (18 bits, unsigned).

15. R Refill field (18 bits, unsigned).

6. Vv Value field (25 bits, signed).

17. L Symbolic or numeric integer.

18. dds Data description.

19. primes Used to distinguish otherwise identical fields

in a format. In transmit the data is transmitted

from A to A'.

3. Data Description

In the format specifications above, the symbol dds is added as
a modifier to certain operations and stands for the datas description field.
It is specified by:
i. M the use mode,
2. FL the field length,
3. BS the byte size.
These three entries appear within parentheses in the above order, thus;

(M, FL, BS). A data description given with any of the four pseudo-ops,

DD, DDI, SYN, or DR, applies to the symbol in the hame field of the card
and 1s automatically assumed whenever that name appears in an address
field of an instruction. This data description may be overruled by writing
a different data description explicitly as a modifier in the two machine
instruction formats where it applies. There are seven fixed mode desig-
nators as follows:

1. N Normalized floating point,

2. U Unnormalized floating point,

. B Binary signed VFL,

3

L. BU Binary unsigned VFL,
5. D Decimal signed VFL,
6

DU Decimal unsigned VFL,

7. P A special character designating "data properties of." -~
Within s data description field the byte size or field length may be
omitted, but never the mode. If byte size or field length, or both, are
~ omitted, the mode will imply the missing part of the data description as
follows:
N fixed format of 64 bits; field length and byte size
U } not sppropriate,
B FL = 64 BS = 1,
BU FL = 6k4 BS = 8,
D
} FL = 64 BS = k.
DU
Note: Some pseudo-ops (e.g. DDI) imply FL # 64. See description of
individual pseudo~op for details.
A~

A data description using P is written as follows: (P, Symbol).
It means that the data pfoperties associated with the glven symbol are to
apply to the instruction with which it is written. P can be used only
with legal machine instructions, never with a pseudo-op.

In straightforward coding it is unnecessary to write a data

description on machine operations. The data description associated with
the definition of a symbol (in a data-entry or data-reservation pseudo-op)
is automatically applied to the machine operation in whose address the
symbol appears. If a data description is given on a machine operation,

it overrules any data description derived from the symbolic address.

Cases can arise from programmer errors in which a data descrip-
tion and operation are not mutually consistent. In this case the opera-
tion will overrule. If there is no way to obtain a data description
from the symbolic address or from an explicit data description field,
three cases arise.

1. The operation symbol can stand for either floating point or
varisble field length operations (e.g., +, -, *, /). The operation is
assembled as VFL with data description (BU, 64, 8).

2. The operation symbol can stand for VFL only (e.g., M+l). It
is assigned a data description (BU, 6L, 8).

3. The operation symbol can stand for floating point only
(e.g., +A, *WA). The operation is assembled as normalized floating
point, except E+I and its modified forms, which are unnormalized unless

overruled.

An error mark will be printed in any of these cases.

4, Strap 1 Location Counter

Cards are read in sequence, and the number of bits needed for
each instruction or piece of data is added to an assembly location counter
in order that each instruction or dats entry may be assigned an address.

A principle 6f rounding upwards is followed, guaranteeing that an in-
struction, value, count, or refill will begin exactly on a half-word
address and that index words, control words, and floating point data

will begin only on full-word addresses. The SLC pseudo-operation pro-
vides a means of setting the assembly location counter to any value at
any point in a code, and thus glves the programmer complete control of the
location of his code. Following an SLC, the location counter is advanced

in normal fashion until another SLC card resets it. LY

5. Symbols

A programmer symbol is any sequence of six or fewer alphabetic
and numeric characters, the first of which must be specifically alphabetic.
Such a symbol is defined by the programmer and may represent a machine
address of not more than 24 bits plus a sign, or a signed integer of not
more than 24 bits. A symbol is defined when it appears in the name
field of a card. Hence a given symbol may appear in the name field only
onc2. The name of an ordinary machine instruction or data entry pseudo-
operation is set equal to the value of the assembly program location counter
at the point of its appearance in a code. There exist special bseudo-
operations capable of defining a symbol as an address or an integer

independently of the location counter.

A systeﬁ symbol consists of a dollar sign followed by five or
fewer alphabetic and numeric characters. System symbols represent various
special registers, indicators and input-output units. Their meaning is
fixed by the assembly program and is not subject to programmer control.

A programmer symbolized field i1s a field which may contain
programmer symbols and/or system symbols. Of the fields shown in the
instruction formats above all may contain programmer symbols except OP,

OoP

12 OP,

s EM, D, and the mode field of a data description. All others

may be symbolized by the programmer subject to the rules and restrictions

given below.

6. General Parenthetical Integer Entry

By means of the general integer entry any integer or arbitrary
pattern of bits may be stored in any position of an instruction or data
entry field. This type of entry may not be used with the pseudo-ops
classified as instructions to the compiler. The format for general integer
entry is: (.n)An+l. It is a modification which may be appended to a D
field or to any programmer symbolized field (or in place of such a field)

which is not enclosed by parentheses. (Thus, for example, FL and BS

fields cannot contain a (.n) entry.) n is the number of the

rightmost bit of the parenthetical field. The integer An+1 is formed as
an unsigned n+l--bit field and added to the instruction or data field by
means of a logical "or" in the leftmost n+l--bits. Subfield boundaries
are ignored by general integer entry. The position of the entry is de-

termined by counting the bits of the whole instruction field no matter

which subfield the integer entry may heppen to be appended to. Thus,

+1’ OF?

is exactly equivalent to OP, Aeh(I)’ 0F7(.n)An+l. In the case of a DD

for example, in a VFL instruction so modified, OP, AZM(I)('n)An

pseudo-op the position of the parentheticel field is determined by
counting the bits of the field, D, with which it is written. In any
case the general integer entry must follow all other informetion in the
field or subfield in which it gppears, except for another general inte-
ger entry. Although one entry could be made to serve in any single
instruction, it is more convenient to write several different integer
entry specifications when one wishes to place numbers in various places
in a field. Therefore no limit is set on the number of consecutive
entries which can be written together, except as imposed by the length
of the statement field of the card. If An +1 is negative, an n+l--bit -
2's complement 1s taeken. The maximum size of n is restricted by the

total length of the instruction or data field, m. O<n<m. For example,

in a half-word instruction 0<n<3l; in a full-word instruction 0<n<63.

The radix of A, ,1 May be specified as mentioned below under "Radix

Specification.” Ex.: E + I, (.8)41. The integer 41 will be entered in

the left most 9 bits (8 + 1) of the E + I instruction.

T. Multidimensional Arrays

Strep 1 provides a convenient method of defining multidimensional
arreys of data and of addressing individual elements of an arrsy. All
indexing, of course, must be handled explicitly by the programmer. A
symbol is defined as the first element of an arrsy of nt+l dimensions by

virtue of its appearence in the nsme field of a data reservation statement

10

of the following sort: DR(dds), (L, L', L",«++, L'). This statement

is interpreted as reserving space for an Lx L' x L" x ... x I¥ array

of dats fields. A number of bits equal to the field length of each

element multiplied by the product of the dimensions is set aside for

this array and the location counter advenced accordingly. (If the data

- description specifies floating point words, the correct number of full
words is reserved, beginning at a full-word boundary.) In addition the
number and value of the dimensions is permanently associated with the
symbol so defined. Then in any address field a specific member of this
array may be addressed by writing: Symbol (g, q', Q",°*-, oF). The

Pirst element of the array is Symbol (0, O, O,:--, 0) = Symbol, and

the last element of the reserved space is Symbol (L-1, L'-1, L"-1,...,LF-1).
The address of an arbitrary element is computed by means of the formula:
Address of [Symbol (q, a', @",--+, q)] = Address of [Symbol (0, 0, 0,---,0)]
+ FL x (g+q'L+q"LL'+q'""LL'L"+ +-+), where FL is the field length of an
element in the array. Strap 1 will handle a maximum of fifteen dimen-

sions in this fashion. Such an array address may be used in any program-
mer symbolized field not in parentheses, except a general parenthetical

integer entry.

8. Bit Addresses and Integers

8.0 Definition
Two kinds of numbers have been defined for use in the program-
mer symbolized fields of Strap statements. A bit address is a style of

writing a machine address by specifying n_, a number of full 64~bit words,

11

and nb, a number of bits. The format is n_. nb. The period separating
the two integers distinguishes the bit address from an brdinary integer
n,, which 1s the second kind of number allowed to appear in address fields.
As the name "bit address" implies, these numbers are converted to and
carried as 24-bit binary integers such as are appropriate to the address
fields of VFL instructions. When used in the address field of instructions
for which a shorter address is appropriate a bit address is truncated to
the correct length and inserted. The location counter contains a bit
address.. There is no limit on the size of the numbers . and nb except
that 6hn + n, must be less then 2? h

Example: 505.17 = 500.337 = 0.32337

Integers in programmer symbolized fields.are always converted
to binary. They are limited in length to the length of the field into
which they are to be inserted, with the additional restriction thet an
integer larger than 24 bits cannot be symbolized.

Bit addresses and symbols for bit addresses are intended pri-
marily for use in address fields of machine instructions. Integers and

symbols for integers are intended primarily for use in fields for which

they seem more appropriate, counts, shifts, field length, byte size, etc.

8.1 Addition of Integers and Bit Addresses
Although it is expected that integers and bit addresses will
generally be used in different fields, addition of the two types. of

numbers is defined, the result being a function of the type of instruction

field for which the number is intended. Algebraic addition is permitted in

all fields which may be symbolized by the programmer. Symbols for both
bit addresses and integers are signed numbers. The number of terms which
may appear in a field is limited only by the space available on the card,
except for the case of SYN and DR, noted below in sections 10.0 and 11.0.

Example: SAM - JOE + FRED - 72.386 + 5,
where SAM and JOE are defined as bit addresses and FRED is an integer,
will in general be a legal address. The data description of the final
symbol, FRED, will apply to the whole combination. In computing such an
address, the sum of the bit addresses is obtained separately from the
sum of the integers; the integer sum is then shifted left
if necessary and the result added algebraically to the bit sddress. If
the field for which the address is intended is signed, the sign will be
placed in the correct bit. If the final result is negative and the n-bit
field for which it is intended is unsigned, a 2's complement is
formed and inserted, except in the case EXT (L, L') where |L| and |L'
are used. A positive final result, of course, is inserted as a true
figure. The programmer is reminded that a 2's complement must be used
with care on Stretch in order not to get an "address invalid"” indication.

Either a bit address or an integer or a combination of the two
may appear in any programmer symbolized field with only four restrictions:

1. The "I" or "K" index fields must contain at
least one bit address term.
2. The entries in an array specification must

not contain any bit address terms. (In

13

EXT (L, L'), (L, L") is not considered an
array specification.)
3. A period may not appear in the field of a
general integer entry. A symbolic bit
address appearing in such a field is treated
as a 24-bit integer. Ex: V+I, (.18)4.32 is not allowed,
but: VI, (.18)9 is.

L. No arithmetic can appear in the name field.

8.2 Rules for Combining Integers and Bit Addresses

The following rules describe the method by which bit addresses
and integers are truncated and added. The numbers are assumed to be signed
2Lh-bit integers before the operation. Addition is algebraic. An error
indication will be given if non-zero bits are discarded, except for the
"16" bit of an index field. In the diagrams below integers and bit addresses
are drawn shifted with respect to each other by the proper eamount. The
numbers are algebraically added with the offset shown, complemented (if
necessary), truncated (if necessary) to the correct final length, and
inserted into the correct position in the operation word. Although the
diagrams show the final sum field truncated to the appropriate length, the
bits are not actually discarded unless they would fall outside the addrecss
field of the instruction. Some operations do not use all the space available
in their address fields (e.g. transmit, input-output select), and in these

cases bits may be placed in the unused portions by this means.
.

1. AQh Bit address: B.A. 24 bits
|

Integer: I. 24 bits

Sum 24 bits

Note: Integer counts bits. |

1L

-~

Al9 Half-word address: B.A.
I.
Sum

Note: Integer counts half words.

A18 Full-word address: B.A.
I.

Sum

Note: Integer counts full words.

Alli Signed 11 bit address: B.A.
I.
Sum

OF Offset: B.A.

Sum

Note: Bit address 1.32 = .96 = integer 96

FL6 Field length: B.A.

Sum

Note: 1.0 = .64 = 64 = O not error marked

15

19 bits

5 bits

24 bits

19 bits

18 bits

6 bits

24 bits

18 bits

24 bits

24 bits

11 bits

<1 bit sign

24 bits

24 bits

7 bits

24 bits

2L bits

6 bits

10.

BS3 Byte size: B.A.

I.

Sum
Note: .8 = 8 = 0 not error marked

I, J 4 bit index fields: B.A.

Sum

Note: A "1" in the bit position immediately to the left of the
final sum field is discarded with no error indication.

K single bit index field: B.A.

Sum

24 bits

2k bits

3 bits

18 bits

6 bits

24 bits

4 bits

-

18 bits

6 bits

2k pits

1 bit --'-[]

|

Note: A "1" in the bit position which corresponds to "16" in the

sum is discarded with no error indication.

I0 input-output address: B.A.

Sum

Note: Integers count tape units,

16

19 bits

5 bits

24 bits

T bits

channels,

ete.

9. Radix Specification

In any programmer symbolized field not enciosed by parentheses,

numerical integers and Bit addresses may be written in any radix from

2 to 10. The radix is specified by simply enclosing the appropriate inte-

ger (written in decimal) in parentheses at some appropriate point in the

sﬁbfield. The radix applies to the entire subfield unless reset before

reaching the end. If no radix base is specified, base 10 is assumed.
Some examples:

a. (8)573 - 34 + 50 (all numbers are octal)

b. (2)11011011100011.11110 (bit address written in binary)

c. (5)8MM - 342 (The symbol SAM is not affected by the radix, having
been previously converted to binary. The integer 342 is
written in the number system of base 5.)

d. (8)7436.(10)60 + 9 (The full word portion of this bit address is
written in octal, whereas the bit portion and the integer 9

are written in decimal.)

When writing a general parentheticél integer entry, the radix
base may be specified within the same parentheses as the .n and in any
order, thus, (.n, R) or (R, .n).

Examples:

a. (.50, 8)17 - JOE + (10)4203(4, .22) - 33303(.60)1030
b. (7)(.30)1265(.20)(10)138 - (6)L43(.10)553
Note that the radix does not have to be specified with .n. If

no radix is specified, the current operative one is continued; it is not

17

reset to 10. It will be understood to be 10 if no radix has been pre-
viously specified in the field to which the general parenthetical integer

entry is appended. The radices which apply in the above examples are:

Example Number Radix

1 17 8

1 JOE does not apply
1 4203 10

1 33303 L

1 1030 L

2 1265 T

2 138 ' 10

2 43 6

2 553 6

All the control integers (within parentheses) are interpreted as decimal

numbers.

10. Synonym
Format: Name |SYN(dds), Ay

The pseudo-operation SYN is used to define a symbol in terms of
a bit address, an integer, or a combination of the two. The address Aa,+
is evaluated and its value is attached to the symbol in the name field.
The dds is attached to the name. If no data description is given, the
data properties of the final symbol not in parentheses are transfered to

the name. If this symbol has multidimensional properties, they are

18

-

transferred to the name symbol. Specifically, one may use a SYN to define
a symbol as an interior element of a multidimensional array and have the

dimensional addressing properties carried along.

Example:
Name Statement

A DR(N), (10, 20)
B SYN, A(5, 5)

In the example the rectangular array A goes from A(0, 0) to
A(9, 19); B goes from B(-5,-5) to B(4, 14), A and B using identical
storage. A(O, 0) = B(-5, -5); A(1, 0) = B(-k4, -5); A(1, 1) = B(-k, -b);
etc. A symbol defined as a sum of bit addresses and integers will have
its two parts combined at the time when it is entered into the field for
which it is intended and will therefore produce the same result that would
be produced if its components were explicitly written in the instruction
field.

The difficulty of evaluating addresses on SYN cards imposes
certain restrictions on the forms of addresses which can be allowed. In
the general case (where SYN cards may be in any order) the address of a
SYN may contain only one programmer symbol outside of parentheses. The
integer portion of any symbol must be completely defined by a chain of
SYN's or DDI's. The bit address portion may be completely defined by a
chain of SYN's, or by a chain leading to a symbol which is defined by the
location counter as a name of an instruction or of data., For a fuller

discussion of SYN cards see Appendix A.

19

Programming note: An example of the use of SYN and the data properties

of s final symbol is the following:

Name Statement
SAM SYN(N), 1000.0
FLAG sYN(BU, 3, 8), .61

(intervening code)

L, SAM + FLAG

The "Ioed" instruction loads only the flag from the floating point word

"SAM" preparatory to some VFL arithmetic or tests on the flag.

11. Other Restrictions on Address Arithmetic

1.0 IR
Format: Neme | DR(dds), (L, L', L")

A DR reserves space for dete and specifies the dimensions of
multidimensional arreys (see section on multidimensional arrays). The

smount of space reserved is equal to the fileld length, as specified or

implied in the data description, multiplied By the product of the integers,

L, L', L", etc., that i, FLx L x L' x L" x ... bits. DR is error-marked

if it has no data description, and normelized floating point is assumed.

Each of the programmer symbolized fields, L, L', etc. may contain at most

one programmer symbol. If evelustion of the complete field L produces e

negative result, the gbsolute value will be teken.

20

L T e S S 4 PO P SN

Example:

Name Statement
legal SAM DR(B, 20), (12, K+4, L-6)
illegal JOE DR, (12-K, K+L, =-1L4) "K+L is not allowed,

but 12-K end -14 are. -14 is the same as 14 in a DR.

11.1 EXT

Format: Name | EXT(L, L')OP, A

The instruction which follows the parentheses after EXT is
completely formed. Then bits L to L' inclusive are extracted from it
and compiled in the position in the code where the EXT occurs. The re-
mainder of the subject instruction is discarded. The name symbol is
assigned a data description of (BU, L'-~I+l, 8). The fields L and L' may
contain any number of symbolic integers but any bit addresses they contain
either must not depend on the location counter or else must be defined by
a preceding card.

Example: EXT(18, L) + (B, 18, 7),73.16

First the full-word instruction + (B, 18, 7), 73.16 is formed.
Then bits 18 to 47 inclusive (the first bit is numbered "O" according to
Stretch custom) are extracted and stored in the program being compiled.

dds = (BU, 30, 8). The location counter is advanced 30 bits.

1l.2 SLC

Format: SLC, Azh

The assembly location counter is set to the value of the address

of this pseudo-op. The next instruction compiled will bé at thls address,

21

subject to the various rounding upwards conventions. If AEh contains
symbols which depend on the location counter for their value, they must
be defined by preceding cards. A symbol in the name field of SIC is

ignored.

12. Notes on Specisl Operation Formats

L. LVS: "Load value with sum" Name | LVS, J, A, A', A",**"
J represents the index register whose value field
wili be filled. A, A', A", etc. are index-type addresses
each of which causes a one to be placed in the correct
position in the machine address.
2. CW: "Control word" Name CW(OPE), FWA, C, R

Intended for the entry of input-output control

words. The locetion counter will be rounded to guaren- MHQ
tee that the control word will begin on a full-word
address. dds = (BU, 64, 8). The secondary operation,
OP2, provides for eight possible variations of the input-
output function as follows:
A

22

%munﬂ!ﬂnlll!!ﬂlnwlﬂlMllIlllllunuluunnlnumnnnunnuuunu-nuununq-ul-nun-Ilnnunmmulumnununulnlllnmunuummunnﬁmmwmmmw

e

XW:

dds

VE:

dds

CF:

dds

Multiple Chain
Bit Bit
CR: "Count within record" 0 o]
CCR: "Chain counts within record" 0 L
CD: "Count, disregarding record" 1
CDSC: "Count, disregarding record,
skip, and chain" 1 1
SCR: "Skip, count within record" o] 0
SCCR: "Skip, chain counts within
record" 0 1
SCD: '"Skip, count, disregerding
record" 1 o)
SCDSC: "Skip, count, disregarding
record, skip, and chain" 1 1

"Index word" Name ‘XW, vV, C, R, 0-7

The index word will begin at a full-word address.
= (BU, 64, 8). The integer 0-7 loads bits 25-27.
"Value field" Name |VF, V

The value field will begin at a half-word address.
= (B, 25, 1)

"Count field" Name [CF, C

The count field will begin at a half-word address.
= (BU, 18, 8)

23

Skip
Flag

5. RF: "Refill-field" Neame |RF, R
The refill field will begin at & half-word address.
dds = (BU, 18, 8)
7. CNOP: "Conditional no-op" Name | CNOP, Ag
CNOP may or may not enter a NOP, depending on the value
of the assembly location counter. This pseudo-op guarantees
that the instruction following CNOP will begin at a full-
word address. If a half-word NOP is required to advance the
location counter to the next full word, it will be inserted.
8. Progressive indexing. OP(ope)(dds), Azu(I), OF,.{.(I')
The six operations which can appear in the OP2 field
in this instruction are: : N
1. V+I, "Add immediste to value"
2. V-I, "Subtract immediate from value"
3. V+IC, "Add immediete to velue, and count"
4, V-IC, "Subtrect immediste from velue and count"
5. V+ICR, "Add immediate to value, count, and refill"
6. V-ICR, "Subtrect immediaste from value, count, end refill."
9. END: "End" END, Big
An END card signifies the end of the program. Its
location gives the starting point for assigning locations
to undefined symbols. If it has an address, B19’ a transi-

tion card to B., will be punched. A symbol in the name

19
field is ignored on this pseudo-op.
20,

2l

mmmmmmmmmm

10.

11.

12.

13.

1k,

15.

16.

TLB: "Terminate loading and branch" | TLB, B19
When this pseudo-op is encountered a transition card

is punched immediately to transfer control of the machine

to the location Blg. The effect is the same as with an END

card except that the assembly continues uninterrupted and

the remainder of the program is loaded under program control.

A symbol in the name field is ignored on this pseudo-op.

PRNS: "Print single-spaced" | PRNS
This pseudo-op causes the assembly listing to be
printed single-spaced. The listing is always double-spaced
unless this is given.
PRND: "Print double-spaced" | PRND
This pseudo-op causes the assembly listing to be
printed double-spaced. It restores print conditions to
normal after a PRNS.
PUNFUL: "Punch full cards" | PUNFUL

Full cards (80 columns) are punched, without check
sum, FWA, ID, etc.

PUNNOR: "Punch normally" | PUNNOR
This pseudo-op restores punching to normal after a
PUNFUL.
SKIP: "Skip paper" | SKIP, i

If 1 = O or blank, this causes the assembly listing
to restore the peper immediately. If i % 0, a half-page
skip will result. DNote that in STRAP-2, SKIP,i will mean
"skip to line number i," as opposed to "chennel i" on the TOh.

PUNID: "Punch ID" | PUNID , X300000K
The first 8 characters after the comma are picked

up and punched in columns 73-~80 of the binary deck. This
card should be used to identify each assembly.

25

15.

Miscellaneous Notes

l'

Instruction data description.

Reference to a machine instruction by another instruction
requiring a dsta description will give a dds of (BU, 64, 8) or
(BU, 3, 8) depending on whether the operation referred to occupies
a full or a half word. This dds can, of course, be overruled.
Blanks.

Blanks are ignored in all fields except in entering
alphabetic information. They have no meaning whatever in any
other field. Blank cards are ignored. An END card must be used
to signify the end of the program.

Parentheses within Parentheses.

In Strap 1 it is a general rule that parentheses may not -
appear within parentheses. Programmer symbolized fields appearing
within parentheses are therefore restricted somewhat in that they
must.always have radix 10, may not contain array specifications, nor
may they have general parenthetical integer entries appended to
then.

Null fields.

Certain subfields in any operation format may be omitted, and they
are then said to be null fields. A right to left drop-out feature
operates in assembly. If the rightmost éubfield for a format is
omitted it is compiled as a zero field. TIf the two rightmost
fields are omitted they are both compiled as zero, etc. A sub-

field in the interior of a format is made null by writing only

-
26

the comma which ends the field thus: OP, , A. Index modifiers
I and K are made null by simple omission.
Supression of error marks.

Error marks, except for mispunch indications, can be
suppressed for any statement by prefixing the op symbol with a
dollar sign. Thus $0P, A(I) will suppress error marks which would
otherwise be printed in connection with compiling that operation,
but only that one.

Name with blank statement field.

If a card contains only a name, the statement field being
left completely blank or containing comments only, it is treated
as a data reservation for one normalized floating point word.

That is, the statement DR(N), (1) is assumed in this event by
Strap 1.
Undefined symbols.

If a symbol appears in a programmer symbolized field, but
never appears in the name field of any card, it is undefined. Un-
defined symbols are assumed to represent normalized floating point
words and are assigned succeeding full-word locations beginning

with the first one after the END instruction.

1Lk, System Symbols

System symbols are symbols whose values are fixed in the compiler.

They are identified in programmer symbolized fields by the fact that the

first character of a system symbol is a dollar sign, which is a character

27

that can never appear in a programmer symbol. Note that a dollar sign
prefix in the operation field is a signal to suppress error marks and
that the indicator symbols, when inserted into the "branch on indicatof"
instructions, do not have the dollar sign prefix. System symbols which
represent special registers in memory or special bits are bit addresses;
all others are integers. System symbols may appear in arithmetic ex-
pressions in programmer symbolized fields, where in cases to which
restrictions apply, they can be considered in the same class as numeric
entries since their values are immediately available whenever needed.
The system symbols are:
1. $0 to $15, identical to $XO to $X15, are index registers O to 15,
addresses 16.0 to 31.0. For example, $5 (or $X5) will produce the
correct index field of 5 in an I-or J-field or the address 21.0 in an _ A~
A-field.

2. Other special registers.

Location Word No. Mnemonic Name
0 $z Word number zero
1.0 $1T Interval timer
1.28 $TC Time clock
2.0 $1A Interruption address
3.0 $uB Upper boundary
3.32 $1B Lower boundary
3.57 $BC Boundary control
h32 $MB Maintenance bits
5.12 $ca Channel address
4,
28

Revised

12/16/59
2. Other special registers (continued)
Location Word No. Mnemonic . Name
6.0 $CPU Other CPU
7.17 $1.7C Left zeros count
T.LbL $AOC A1l ones count
8.0 $L Left half of accumulator
9.0 $R Right half of accumulator
10.0 $SB Sign byte
11.0 $IND Indicator register
12.21 $MASK Mask
13.0 $RM Remainder register
14.0 $FT Factor register
15.0 $TR Transit register

3. Indicator bits. The symbol for any indicator bit may be prefixed
with a dollar sign and placed in a progremmer symbolized field, where
it will represent the correct bit address in word 11.
k. TLocation counter. Whenever the dollar sign by itself appears in a
programmer symbolized field, it represents the value of the location
counter at the beginning of that instruction. In effect this is the
location of the instruction in which it appears if that instruction
actually compiles space in the program. Example: +the instruction,
B, $-2. means branch to the instruction which begins two full words
before. Note that B, $+.32 means branch to the next instruction,
effectively no operation.

Note: All of the system symbols in classes 1, 2, 3, and 4
are bit addresses and are assigned standard data descriptions with mode

29

,MQ“
binary unsigned, byte size eight, and field length depending on the
length of the register.
5. Input-output addresses. Some of the system symbols for input-output
addresses may have different values at different installations, since
the channel to which a particular piece of equipment is connected is
arbitrary. The symbols may represent either channel addresses or unit

addresses, depending on the configuration of the input-output system.

System Symbol Meaning
$PCH Punch
$PRT Printer
$RDR Reader
$DISK Disk unit -
$co, $c1,--+,$Ck Channel O, Channel 1,¢..,Channel k -
$T0, $TL,...,$Tk Tape O, Tape 1,°**, Tape k
$103 Inquiry station
$CNSL Console

If more than one punch, printer, console or any other input-output
unit is attached to the machine, the same numbering convention used in
channel and tape addresses is adopted, where $CNSL = $CNSLO, and so on.

For example one may have $PRTO, $PRT1, $PRT2, etc.

15. General Data Entry

The use of the pseudo-operation DD (Data Definition) enables

the programmer to enter data into a program in a variety of forms.

30

(

Revised
12/16/59

Among the possibilities which exist are decimal to floating binary
conversion, either normalized or unnormalized, conversion of decimal
fraction to binary fraction in fixed point, integer to integer conversion
from any radix from 2 to 10 or 16 to a radix of either 2 or 10 and conversion
of alphabetic information to binary-coded forms. The pseudo-operation

DDI (Data Definition Immediate) is intended for defining data to be

used in the address of immediate operations. All the features listed

above, with the obvious exception of the floating point conversion,

are also available with DDI. The method of use of the DD will be

described first, and then the minor differences between DD and DDI will

be listed.

15.1. DD

Format: Name | (EM)DD(dds), D, D', D",---.

The address fields D, D', D", etc. are all equivalent to each
other. They are compiled sequentially as separate pieces of data, each
having the data description specified, but only the first having a name.
The effect produced is exactly the same as if the entry mode, op, and
data description were repeated on separate cerds with only one D-field
per instruction and blank name fields. If one wishes to name the separate

entries D, D', D"

, ete., indeed it is necessary to write each one on a
separate card since the name of a DD is given the address value of the
first bit of the first D-field. Programmer symbols may not sppear in
the main body of a D-field, but only in general parenthetical integer

entry fields which are attached to the ends of D-fields. (Note: Since

31

each D-field is essentially & separate major field, the parenthetical
entry counts bits from the beginning of the D with which it is written.)
In the main portion of a D-field various letters and symbols have fixed

meanings not subject to programmer control.

15.2. Entry Mode

The entry mode gives information about the form in which the
data appears on the card; it may also have some implications about the
form to which it is converted and stored. An entry mode may appear before
the DD as shown in the format. Those not concerned with entry of alpha-
betic information may also be used at the beginning of individual D-fields.
It is not always necessary to specify the entry mode explicitly.

There are four different entry modes:
1. (R) Redix. The radix has already been explained for the case of

address arithmetic. In the case of data entry it can be used with

integers only; a decimal point or a floating point notation implies

a radix of 10. The entry mode radix specifies the radix in which an
integer is written on the card, but says nothing about the one to
vwhich it is converted.

2. (Fn) (Fn) tmplies that the data is written with a decimal radix and
is to be converted to binary, and may include a decimal fraction
portion to be converted to a binary fraction of length n bits.

The (decimal) integer n following F specifies the number of
fractional bits to be left to the right of the binary point when the

number, or numbers, which follow are converted.

32

T S 5 OSSOSO Laso 35) ROy AP 0 M WO B

Revised January 8, 1960

(Az) Alphsbetic conversion. This entry mode must precede the DD,
and only one address field "D" is allowed per statement. The Hollerith
characters beginning with the one after the comma which ends the op
Tleld are converted to IBM tape BCD until the cheracter "z" is
reached. Note that tape BCD is somewhat different from internal TOL
BCD. The byte size of converted characters may range from 1 through 12
in & DD, 4 through 12 in a DDI, and is specified by the dds. Leading
zeroes are inserted in each byte for BS > 6, and leading bits are truncated
from each byte for BS < 6. The byte size ccmpiled in an operation
referring to the data is set to the specified byte size modulo 8.

The terminating character "z" itself is not in-
cluded. It may be any legal Hollerith character except blank,), 3},
or ' . Blanks occurring within the field to be converted are retained
and correctly stored. The characters are counted by Strap 1 and the
location counter properly advanced.
(1Q8z) Inquiry station conversion. This entry mode operates exactly
as (A) except that the Hollerith characters are converted to the T-bit
inquiry stetion code, and therefore 7 is the magic number separating
truncation from addition of leading zeroes. Although the IQS code
includes a large number of special characters, Strep 1 is limited to
the ones which can be entered by means of IBM off-line card and tape

equipment.

15.3. The Form of Decimal Numbers

A 4

15}

Decimal numbers may be written in fixed or floating point form,

with or without a decimal point. The general form is

T XXXX XX XX XX EXyyy .

33

Revised January 8, 1960

Wi N
In this form E means that the number which precedes it is multiplied by

10 raised to the power which follows it. That is, 572.34E-57 means

572.34 x 10-57. Parts of the general form which are not necessary for

writing a number may be omitted, thus:

a. * XAOLAKX * @ XX integer
be £ XXeeoXAXX XX decimal fraction

c. % xxe-xx Etyyy integer times power of 10

A plus sign is understood if omitted. The decimal point can be
in eny position in the number. The portion of the number symbolized above
by x's is limited to 20*digits; that symbolized by y's to 3 digits (but
recall that floating point numbers in Stretch are limited to a range of

10 to ‘

15.4. Insertion of Specific Fields

1. Exponent Entry: X + n

The letter "X" may be used to enter any arbitrary exponent
into a floating point word. n is a decimel integer which is

converted to binary and which replaces any exponent previously calculated.

2. Sign Byte Entry: &n

The letter "S" is used to enter a sign byte into data. n is an
octal integer which is evaluated and which is "OR"ed in with any sign byte
previously calculated. The sign byte generated depends on the byte size

according to the following table:

% Number of digits >20 is permitted only when the radix is < 10.

iﬁr 3

34

mﬁﬂmnnunnnnmmnuunnuummnnnumnu-nnuuuumnmnnnmnmuunnnnnnnnnm-nmnnmuum-nnnmn-n-n-nmpwnmumnnwwnmmmnn

Byte Size Si Byte

1 S

2 ST

3 STU

N STUV

5 ZSTUV

6 ZZSTUV

7 ZZZSTUV
8 222ZSTUV

where Z is a zone bit,
S is the sign bit,

T, U, V are the flag bits.

15.5. Rules for Entering Data

The legal formats for entering data can be classified according
to the use mode written in the data description field of the DD state-
ment. In general an element listed in the general format may be omitted

if it is not needed to specify the data.

l. Normelized Floating Point

Format: Name | DD(N), #xx--+xx.Xx-* -xxBE+yyySn

The decimal number is converted to a normalized floating binary
nunber consisting of an 11 bit signed exponent, a 48 bit fraction, and a
4 pit sign byte. If no sign byte has been entered by means of an "S",
the signh preceding the number is used with the flag bits set to zero. If
a different binary exponent is desired, it can be entered following an
"X", as shown below.

Format: Neme DD(N), #xx-. -XX.X-. xxBtyyySnXzzz

35

Examples:
a. DD(N), 5L.73E L
54.73 x lOu is converted to floating binary. The sign bit is
zero (= plus), and the flag bits are zero (i.e. entire sign byte is
zero).
b. DD(N), -54.73 E L4, or DD(N), 54.73 E L S 10
In this case the sign bit is set to one (negative) and the
flag bits are zero.
c. DD(N), -54L.7T3E 4 85
The sign bit is one, since the number is negative, and flag
bits T and V are one. U is zero.
d. DD(N), 1, 3E-5, -45.7, 12 S 17
This example illustrates the multiple entry feature. This -~
single DD statement compiles four 64-bit floating point words and

advances the location counter accordingly.

In normalized floating point a special feature is available
for use in any D field, making the entry of rational fractions and certain
irrational numbers much easier. Arithmetic involving several numbers may
be written using the standard Fortran symbols. Strap 1 will perform the
arithmetic and compile a single normalized constant. The operations
available are addition(+), subtraction (-), multiplication (*), and
division (/), only relatively simple expressions are allowed--that is,
they must contain no parentheses. Multiplications and divisions are per-

formed first (and in a series of multiplications and divisions they are

36

Revised 11/10/'59

done in order from left to right) and then the additions and subtractions.
The arithmetic is done améng absolute constants, and a sign byte may be
used at the end. It will be "OR"ed in with the final result.

Exemples:
a. DD(N), 1/3, h72%351, L-7%5/21 S L

Note sign byte entered in last D field.
be DD(N), 27.9/31.4/12/1k E 5, LU+3%7/5%6

279 ’

31.4 x 12 x 14 x 107

The number produced in the first case is

in the second 4 + 3—§L%—§—§ .

c. DD(N), 1/7 - 3/11 + 1l.4321L E - 2, .12 + 1/1kk

As an extra convenience certain system symbols are defined by which con-

stants involving irrational nunbers can be entered. They are:

1. #PI T
2. @E e
3. #M log, e
h, ¢N log 2
2
5. PR ~fk, where X is the field containing the $R symbol*
Thus one can enter a number such as bx x 10-7 by writing

DD(N), 4 * ¢PI * 1E - 7.

It is to be especially noted that in Strap 1 this arithmetic feature is
available with the normalized floating point mode only.

* The $R symbol may be repeated in a DD field to indicate the nth root,
where n is a positive integral power of 2. If the $R symbol appears m times
T

in a field, X, STRAP-1 will calculate 2~fk as the final value of the field.
If arithmetic synbols are included in the field, all arithmetic will be done
first, then the root of the arithmetic result will be extracted as the

final step in assenbling the data field,

37

2. Unnormalized Floating Point . b

Format: Name | (Fn)DD(U), + xx**-x.x-°-xEtyyySn Xtn

or DD(U), (Fn) % xx-..xx.x-.-xBtyyySnX+n, (Fn)txx..-etc.

The number is converted to binary with the correct number of
binary fractional places as specified by the (Fn) entry mode, and a correct
exponent is computed and entered. This exponent is overruled and re-
placed by that following the "X" if "X" is used. (It is necessary only
if for some reason, the programmer desires an incorrect exponent.) The
entry mode (Fn) can come before the DD, in which case it applies to all
D-fields of the statement, or it may form the first element of a D-field,
in which case it overrules one given before the DD. Either the X or the
S or both may he omitted or thelr order may be interchanéed. Omitting
S hes the same effect here as in the normalized case. Omitting X simply
allows the correct exponent to remain as computed. Ieaving out the sign,
decimel point or E is permitted as in normelized numbers.

Examples:

a. DD(U), (F21) - 343.7, (F10) 432
Two numbers are compiled. 1In the first 343 is converted as an
integer and .7 is converted to & 21-bit fraction. They are joined
and placed in the rightmost bits of the fraction portiom of the floating
point word, and the correct exponent (in this case 27) end sign are
supplied. In the second D field, 432 is converted to a binary integer.
Since ten fractional bits are specified, but no decimal fraction is

written, the ten rightmost bits of the fraction field are set to zero

38

wmmmmmmmmmm

a.

b.

Revised January 8, 1960

and the number is entered with its rightmost bit in position 50.
(F15)DD(U), 767.52, 767.52 X-12 S11

The (F15) applies to both D fields. In the second the computed
exponent is overruled by the specified one and the number is made
negative by means of the specified sign byte.
(F15)DD(U), T67.52, (F20) 767.52 S11 X-12, 398

This exemple is identical with example b except that in the
second field the op entry mode (F15) is overruled by a field entry
mode (F20), and the order of S and X is interchanged, which makes
no difference. (F15) still applies to 398, however.

If the entry mode is omitted, two cases arise.
If the number is entered as an integer, (FO) is understood

If the number entered is a decimal fraction, it is converted to a

normalized floating point number, but will be used as though unnormalized.

8.

Examples:
DD(U), 17, 17X-35

In the first case 17 is converted to binary, placed in the
fraction with its rightmost bit in position 59*and an exponent of 48
suppiied. In the second field the same thing is done except that
the exponent is set to =-35.
DD(U), 17.0

In this example 17.0 is converted to normalized floating binary
and stored as such. However, instructions whose normalization bits

depend on the symbol in the name field of this pseudo-op will have

#* Bit positions are numbered 0-63 in any one word of memory

39

Revised January 8, 1960

-~

them set to "unnormalized."
Note: 17T E 5 is an integer and will be recognized as such.
17 E-5 is g decimal fraction and will be normalized.
17.5 E 5 4is an integer but will be treated as a fraction and
normalized% Hence a normalized integer can be
assigned use mode "unnormalized."

An integer greater than 2h8 is stored as a normalized number.

3. Binary Signed VFL

Formats: (Fn)DD(B, FL, BS), * xx°--x.Xx*-xEtyy Sn
DD(B, FL, BS), (Fn) txx-.-x.x---xE+tyy Sn
(R)DD(B, FL, BS), *xx--.xx Sn
DD(B, FL, BS), (R) #xx xx Sn
A data definition of binary signed data may have either (Fn)
or (R) entry modes, but not both at the same time. (Fn) implies that
the data following it-are written in a decimal radix, whereas (R) implies
that the number following it is an integer. An integer subject to a radix
entry mode must be written without the aid of E since E is not defined for
a radix other than 10, A decimal fraction must have a controlling (Fn)
entry mode. There is no obvious way to convert to a fixed point number
without specifying the binary scaling. In the data description either
the field length or byte size or both may be omitted. The implied field
length in this case is 6L4; the implied byte size is 1. As usual the sign
byte need not be specified unless the programmer desires to have flag or

zone bits different from zero. Note that the sign bit position changes

.A{_‘V

Because of the decimal point without an (Fn) entry.
L0

for byte size less than 4. To make a number negative specify the sign

byte as:

BS

i}
I_J
-

s1,
BS =2 82,
BS = 3, Sk,

BS

]

L, s10.

If a number has no entry mode at all, it must be a decimal integer but

may in this case be written with the aid of the "E" notation.

Examples:
(r7)DD(B,,4), .005E3S13, -17, 1h43.2811, (8)77760, 777

Tmplied field length is 6L4. Octal specification in the fourth D
field overrules (F7) written before DD, but (F7) still epplies to 777.
(2)pp(B, 16, 8) 1101018377, (10) -972, 1110111085201

Binary entry, overruled in only the second D field.
(F12)DD(B, 24), 1.324E3, -72.1E-L, 3.4E-LS1

Implied byte size is 1.
DD(B), 1489, -1272, 1491, (F13) -972.16, 139L8sl, 12E5

Decimel integers except where a field entry mode is written.

Binary Unsigned VFL

Formats: (Fn)DD(BU, FL, BS), Xxx*- X.X - -XEtyy
DD(BU, FL, BS), (Fn) xx:.::X.x-. -xEtyy
(R)DD(BU, FL, BS), XX..:XX

DD(BU, FL, BS), (R) xx*°'xx

41

http:-972.16

A,

(Az)DD(BU, FL, BS), alphabetic information to "z"
(1Qsz)DD(BU, FL, BS), alphabetic information to "z"
Numerical entry is exactly the same as in binary signed data

except that no sign byte is formed and if the byte size is left out of
the dds, it is set to 8. Any sign or sign byte (with "S") written with
mode BU is ignored. The two alphabetic modes are permitted here; they
are explained in the section under "Entry Modes." Note that the alpha-
betic entry mode must precede the DD, that there can be only one D field
per statement and that if the field length is omitted it is set equal to
the byte size.

Examples:

a. (F13)DD(BU, 30), 17.2, 183, (8) 70707

b. (A*)DD(BU, 48, 6), GLORIOUS FRIDAY, THE 13TH.* -~
The mode and field length have no effect on the conversion and
storage; they are used in compiling instructions which refer to the name
of this statement. Field length L8 indicates that the programmer wants
to process these characters in groups of 8.
c. (1QSs)DD(BU, 32, 8) DOG EAT DOG S
5. Decimal Signed VFL
Formats: (R)DD(D, FL, BS), * XX«..Xxxx Sn
DD(D, FL, BS), *(R) xx--+xx Sn
DD(D, FL, BS), * xx*:-xxEyy Sn
(Fn) has no mesning for mode = D or DU.
The two decimal modes in DD and DDI statements represent the
A

k2

only cases in which Strap 1 converts numbers to an internal decimal radix.
This conversion is limited a bit more in being available only from integers
to integers. The radix entry mode indicates the radix in which the numbers
are written on the card. Thus it is possible to write an integer in binary
or octal and have it converted to decimal for machine use. If no entry mode
is given, decimal to decimal is implied and the E notation can be used to
multiply an integer by positive powers of 10. If either the field length
or byte size is omitted, the implied values are FL = 6L, and BS = L.

Examples:
a. DD(D), -9534812, +173E5, 18E10S13

Field length = 64; byte size = 4. A four-bit sign byte is

formed. Decimal to decimal conversion.

b. (2)DD(D, 20), 11101000110187

Binary to decimal conversion. BS = k.
c. DD(D, , 8), L3E3

Decimal to decimal conversion. FL = 6L4. Four binary zeros are

inserted in the zone positions of each byte.

6. Decimal Unsigned VFL

Formats: (R)DD(DU, FL, BS), xx---xx
DD(DU, FL, BS), (R) xx---xx
DD(DU, FL, BS), xx---xxxByyy
(Az)DD(DU, FL, BS), alphabetic information to "z"

(1QSz)DD(DU, FL, BS), alphsbetic information to "z"

43

The numerical conversion is Jjust as in decimal signed mode
except for the omission of the sign byte. Alphabetic conversion is
exactly as in the binary unsigned mode except that instructions refer-
ring to this data will be compiled as decimal operations. For alphabetic
entry implied field length is equal to byte size.

Examples:

a. DD(DU), 8430051, (8) T72Ll, 82E10

FL = 64, BS = 4. An octal to decimal conversion is inserted
between two decimal to decimal conversions.
b. (1983)DD(DU, , 8), PUSH PANIC BUTION 3

FL = B.

Wk

SUMMARY OF RULES FOR DD STATEMENTS

Entry mode Appropriate use modes
n U, B, BU
R ' B, BU, D, DU
A BU, DU
IQs BU, DU

Note: Use mode N should have no entry mode.

Special field entry Appropriate use modes
S N, U, B, D
X N, U

The floating decimal notation, using E to designate multipli-
cation by powers of 10 is eppropriate to all modes although it is always
restricted to a decimal radix and in the decimal use modes, is restricted
to increasing the magnitude of decimal integers.

If the field length is omitted from the dds, it will be assigned
a value of 6L, except in the case of alphabetic entry where it is set
equal. to the byte size. The maximum permissible field length for a DD
statement is 6.

The following examples illustrate the use of general parenthe-
tical integer entry with DD.

a. DD(N), 572(.59)1, 347.89E12(.63, 2)1011
In the second case the sign byte is specified by means of (.n)

entry.

45

b. DD(B), (F9) -35.7(.2L4) SAM + L
The address SAM + 4 is placed in the first part of the 6L4-bit
field, followed by the converted number -35.7.
c. (8)pp(BU), W762(.10)707(10, .20)3k

TO7 is written in octal, 34 in decimal.

15.6 DDI

Format: Name | (EM)DDI(ads), D

DDI is used to define a symbol which is used at some other
point in the program as the address of an immediate operstion. It com-
piles no space at its location in the program, and in fact its position
in the program is of no importance whatever. It may have only one D
field, as shown in the format. The rules for writing the data field are)
the same as for DD with some obvious and relatively minor changes. Neither
of the floating point modes can be used with DDI. The upper limit on
field length is 24 instead of 64, and in every case where a field length
of 64 is implied for a DD, a field length of 24 is implied for a DDI.. A
general parenthetical integer entry may not be appended to the end of the
dats field as it can in DD statements.

If a DDI has a field length of less than 24, the number which
it defines will appear in the leftmost portion of the address of the oper-
ation when it is compiled in an immediate operation. Unused bits in the
right end of the address will be zero, but they may be loaded by means of

a general parenthetical integer entry in the operation itself. If the

46

Revised

12/16/59

address field of an immediate operation coqﬁains arithmetic among symbols
or symbols and integers, the arithmetic will be éone in binary regardless
of how the symbols were defined or what the mode of the operation itself
is. All numeric entries in such an address field are handled exactly as
other addresses and converted to binary, never to decimal. Therefore,

the only way to get a decimal number into the address field of an immediate
op, without writing it in the Stretch BCD code explicitly, is to symbolize
it and use a DDI. Care should be exercised in address arithmetic among
signed numbers, since the sign byte 1s compiled as such and does not

participate in the arithmetic as a sign.

Examples:
1. Name Statement

JOE DDI(DU), 9478

SAM DDI(DU, 12), 342

BILL DDI(DU, 24), 12
LI, JOE
+I, SAM
-I, SAM + BILL

The sequence sbove is an example of slightly tricky coding to
show what is possible. JOE has field length of 24 implied. All three
symbols have a byte size of 4. The address SAM + BILL is added in binary,
but since the addresses do not overlap they produce a legal decimal number,

342012, The result is 9478 + 342 - 342012 = -332192.

L7

Revised -~

12/16/59
2. Name Statement

AIF DDI(B), -1k2
JIM SYN(B, 24), 389
RIP SYN(B, 24), =210

LI, ALF

+I, JIM

+I, JIM + RIP

In this sequence the sum -142 + 389 + 389 - 210 = 426 is obtained.
Since JIM and RIP are defined by SYN cards the address arithmetic JIM + RIP
is done correctly, yielding an answer of 179. If they had been defined by
DDI, the address arithmetic JIM + RIP would have produced a result of -599. -
When compiling addresses for immediate operations, STRAP-1
assuies that a symbol defined by DDI has a sign byte if one is needed.
It assumes that a symbol defined in any other weay does not have one and
compiles a sign byte having flag and zone bits equal to zero and byte
size as specified in the dds. Address arithmetic between a symbol
defined by DDI and anything else is marked as a possible error, although

it is performed as shown above.

48

APPENDIX A

Restrictions on Addresses in SYN, DR,and SLC

In order to finish assembling a program in a finite length of
time using a finite storage, some generality has been sacrificed in +the
address arithmetic which can be allowed with the three pseudo-ops, SYN,
DR and SLC. The underlying reason for their different treatment is that
their addresses must be evaluated sooner in the program than those of
other operations. ©Strap 1 is a three pass assembly in which the first
two passes are concerned primarily with assigning velues or addresses to
symbols and the last with forming the machine code and revealing it to
the outside world in some form of a listing and stretch column binary
cards.

During pass 1 any SYN address containing only numerical
entries, or numerical entries plus system symbols, can be evaluated
immediately. System symbols can always be considered in the same class
as integers and bit addresses since Strap-l can evaluate them immediately.
A SYN address which contains symbolic information ceannot be. Strap-1
can, however, store the symbol from the name field and one symbol from
the address (always the one on which the mode of the name symbol will
depend if not overruled) for future reference. The same restriction
epplies to each of the elements of the address of a DR (each "L" in the
notation of this paper). The restriction on DR sddresses is really
the crucial one at this point, because the DR address is completely

evaluated at the end of pass 1. Therefore, each element of the DR

L9

address end the SYN or chain of SYN's defining the symbolic portion of

such an address must be evaluable from a numeric part plus a single

symbol. Since all of this information is stored in tables permanently
and is always avalilable to the assenbly program, the order of the cards
is of no importance. At the end of pass 1 an evaluation is made of all
symbols defined in this simple manner, and as stated ebove a DR must be
completely defined at this point.

During pass 2 locations are assigned to all symbols which
depend on the location counter for their value, and a new attempt is made
to evaluate SYN addresses not evaluated in the first pass. At this point
the order of the cards can play an important role. If all of the symbols
appearing in an address have appeared previously in the name field and if
they in turn are defined by symbols which have sppeared previously (or
by the location counter) then the address can be evaluated no matter
how many progremmer symbols it contains or what signs they may be preceded
by. If there are two or more symbols in a SYN address still not evaluated
when the card is encountered in pass 2, the name symbol may never be
completely evaluated and will elicit an error indication whenever it is
used. If only one symbol remains not evaluated at this point then
eventual success in eveluating the name symbol depends on
position in the address and later evaluation. At the end of pass 2 an
attempt is made to tie up all the loose ends still dangling from this
perticular rats' nest. If any symbols remain not evaluated after this

procedure, a last try will be made when the SYN card is encountered in

50

wmumqn-n.nuun'q'qm'n"M"n-m-puu--muumnnnuuunnunnnnuwnmnlunum-nmnmnmn-wulnnmmmmmnmnmnmmnmmmMt

pass 3. But this may be too late, depending on the order of the cards.

From the preceding discussion it is clear that the address of
an SLC card must be evalueble when it is encountered in pass 2. The
same rules epply to it as to the address of a SYN card which cen be
completely evaluated at that point. However, if the address of an SIC
cannot be evaluated, all is lost an no attempt is made to tidy up at the
end of the pass. This last point also gpplies to the L and L' of
EXT(L, L*'). Since they are used to compute the smount to advance the
location counter, they must be available when the card is encountered
in pass 2.

The program on the following pege is given here to give more
examples of what can be assembled by STRAP-1. Each line of type
represents one card of input to STRAP-1 and the comments associated
with the instructions explain more what STRAP-1 does than explain what

Stretch does.

51

ABE

BILL

CHICK

DUD

MAC

JOE

ISH

PAT

EGBERT

SAM

TOBY

STATEMENT

L, ZEP "Normalized fl. pt. operation since ZEP is undefined.

+, ZEKE + 1 "Add 2nd no.; ST, TOBY; IX, $10, SAM "Many ops. per card.
LV, I, SAM - .32 "127.0 To Value field of $x9 or $9

Lvs, $5, I, I + 1.0; L(BU,3,8), TOBY + .61, 20 "Overrule dds of TOBY
SYN(N), ISH(L-12,L,20) "Array properties of ISH go to DUD

CTIOL0l, MAC "MAC is an immediate esddress defined by & DDI
DDI(BU,3,8), (2)110 "MAC is a 3 bit number = 110,
BRZZ, CHICK + .32(1.0) "Index (CHICK +.32) with $x1

SYN, 1209M; B, ABE .32 "ABE .32 is the same as ABE + .32
L(WI)(D,24,6), SAM + 13.121(I-3), L-10($x3) "Progressive Indexing.
SYN, $x9 "I is index word $x9 with dds = (BU,64,8)

sT(v-IC)(B), ZFKE + M-I "Progressive indexing and address arithmetic.
LWF, EGBERT (1) "EGBERT (1) = EGBERT + .25

LFT, PAT(20) + 12.34(I-6.0) "An exercise for the reeder.

DR(U), (L,M-4,177-N) "Reserve L x (M-l4) x (177-N) unnormalized words.
DR(B,25,4), (27) "PAT is a block of 25 x 27 = 675 bits.

SYN, L + 10

(r5)DD(B,25,4), 1283, -14.6, (8)763h4, 15.3

VF, 127.0 "The location of this VF is SAM - .32

XW, 900.0, L+M-N, $ "The refill address = SAM

SYN, 50 "The base of the SYN chain, M = 60, N = 60

"Blank instruction reserves one normalized word.

pD(N), 13, -14.5732E-101S7, 1/13 + 7/9 + $PIS5; END

52

APPENDIX B

STRAP MNEMONICS

The following list of mnemonics mey be used with STRAP - 1 (and 2).
A symbolic description of the mnemonic is also given to assist the
programmer. The symbols used to symbolize the operations are defined for
each section. One should note that the same letter ("a" and "m" for
example) has a different definition for floating point and for VFL. The
definition for each set should be read carefully. A more detailed
description of the operation may be obtained from the IBM Stretch Manual
of Operatioms.

A specific title to each mnemonic is not given in cases where the
mnemonic is derived from the basic operation by changing the sign and
absolute modifiers. In some cases no titles are given.

In the case of VFL operations the unsigned modifier must be implied
by the data referred to or be explicitly stated in a dds as explained

earlier.

23

-

Notation for symbolizing the Floating Point operations OP(dds), Ag (1)

Accumulator operands

a = bits (0 - 59) of the accumulator, and the accumulator sign,
bit 4 of the sign byte register.

= bits (60 - 107) of the accumulator, and the accumulator sign.
ab = bits (0 - 107) of the accumulator, and the accumulator sign.
e(a) = bits (0 - 11) of a.
f(a) = bits (12 - 59) of a, and s(a).
s(a) =bit 4 of the sign byte register.
SB(a) = bits L-7 of the sign byte register. o

Fl(a) = bits 5-7 of the sign byte register.

Memory operands "~

m = bits (0O - 59) of the memory word, and its sign, bit 60.

M

L(m) = the effective address.

e(m) =bits (0 - 11) of m.

f(m) = bits (12 - 59) of m, and s(m).

s(m) = bit 60 of the memory word.

SB(m) = bits (60 - 63) of the memory word.

Fl1(m) = bits (61 - 63) of the memory word.

#FT = Factor operand; SB($FT) = bits (60 - 63) of FT.

#RM

Remainder operand.

54

B e e e

STrAP 1

Floating Point operations

ADD

+A
-A

ath —————— 8
a-ll ————» &
a+in| —» &

a-lm| ———a

TO MEMORY ADD

M+
M-
M+A
M-A

n+g —————— 1

M= —————— Il

Iml-l-a.—---—-m

|m| -8 ——em

ADD TO FRACTION

F+
Fa
F+A
F-A

f(eb)+(m) — f(ab)

f(ab)-f(m) —= f(ab) "

f(ab)+|f(m)l— f(ab)
f(ab)-|f(m)]— £(ab)

ADD TO EXPONENT

E+
E-
E+A
E-A

e(ab)+e(m) —= e(ab)
e(ab)-e(m) —= e(ab)
e(ab)+|e(m)|— e(ab)
e(ab)-le(m)|— e(ab)

*ADD IMMEDIATE TO EXPONENT

E+I
E.I
E+AI
E-AT

e(ab)+e(M) —= e(ab)
e(ab)-e(M) — e(ab)
e(ab)+le(M)| — e(ab)
e(ab)-le(M)|— e(ab)

*SHIFT FRACTION

SHF
SHFN
SHFA
SHFNA
SHFL
SHFR

f(ab)-2M————- f(ab)
f(ab)~2'M — f(ab)
£(ev) 2™ o £(ap)
£(ab)e2 M _o #(ev)
£(ab)-2M o £(ap)
£(ab)-2” M — £(ab)

1.
20

1.
2.

ll
2.
3.

h.
5.

Revised January 5, 1960

b is unchanged
Fl(a) is unchanged

F1(m) remain unchanged.
The entire acc. and SB(a) remain
unchanged.

e(m) is ignored; the add is per-
formed with e(a) on both operands.
The normalized mode operates in
the same way as in D+.

f(m) is ignored.

STRAP-1 will assemble as un-
normalized unless the normalized
mode is requested by referring to
normelized data or by using the
dds = (N).

The unnormelized mode is given
unless over-ruled by dds = (N).

Left shift if bit 11 of M = 0,
Right shift if bit 11 of M= 1.
The operation is not affected by
the normslized modifier.

The exponent is not adjusted for
the shift. e(a) is unchanged.

On a right shift, zerces are
introduced in bit 12.

These operations have the format: OP(dds), A12 (1)

2o

DOUBLE ADD
D+ ab+l ——— gb
D- b=l ——— 8b
D+A ab+|m| ——— ab
D-A gb-|m| ————= ab

ADD TO MAGNITUDE

+MG R=|al-+m
-MG R=lal-m
+MGA R=|a|+|m|
-MGA R=|a|-|m|

DOUBLE ADD TO MAGNITUDE

D+MG R=|ab| +m
D-MG R=|abl| -m
D+MGA R=|ab| +|m|
D-MGA R=|abl-|m|

TO MEMORY ADD MAGNITUDE

M+MG R=m+|a|
M-MG R=m-lal
M+MGA R=|m|+]a|
M-MGA R=|m}-]a]

MULTIPLY
* BN ——— 8,
*N 8=l —————m—p 8,
A a|Mm| —— &
NA a°-|M| ——— &

D* a'm ————e ab
D*N 8¢ =l —————— 8b
D*A aeiml ab
D*NA a'-lml N) »

MULTIPLY FACTOR AND ADD

4 n(#FT)+eb— ab
*N+ -m+ ($FT)+ab—- &b
*A+ |m|+($FT)+8b — ab
*NA+ -|m |« ($FT)+ab— &b

D S T e O s

2.

3.

1.
2.

1.

56

Revised Jamuary 5, 1960

PSH indicator goes on if the
exponent difference exceeds L8.

R—sa if R 2 0.

0 —f(a) if R< O, e(a) i
unchanged whether R < O or not.
s(a) 1is unchanged in either case.

R —ab If R 20,

0 — f(ab) if R< O, e(a) is
unchanged whether R < O or not.
s(a) is unchanged in either case.

R —em if s(R)=s(m).
0 —£(m) if s(R)#s(m).
8(m) is unchanged in either case.

b is unchanged.

(108 - 127) of acc. sre unchanged.

The contents of $FT remain
unchanged.

R/ m/a

R/N -m/a

R/A Imj/a — =

R/NA -|m]/a ——=
DOUBLE DIVIDE

D/ ab/m —————=

D/N ab/-m —————e

D/A ab/Im| —

D/NA ab/-im| —
STORE ROOT

SRT Ja &—

SNRT -./8 ————

SRTA laf ———

SNRTA -/[&] —
LOAD

L n —

LN N —i

LA m | —————

LNA -ln| ————e
DOUBLE LCAD

DL n ————

DLN] —

DLA In| ———

DLVA -|1] s

® OO

oo Pe

at+l
a+l
a+l

PP e 58 88

P PP

1.
2.
3.

1.
2.

1.
2.
3.
L.

1.

2'

1.
2.

5T

Revised January 5, 1960

No remainder is generated.

Quotient rounded to 48 bits.
Pre-normalization of the operands
is independent of the normalization
modifier.

b is unchanged.

Performed similar to divide.
b is unehanged.

Remainder in fRM
0 —eb(61-107
No rounding.
SB(a) —= SB($RM).

ab and SB(a) are unchanged.

O0—F1(a).
b is unehanged.

O _’bn
0 —=Fl(a),

LOAD WITH FLAG BITS

LWF m a
LWFN ~m e
LWFA Im| a
LWFNA -|m| a

DOUBLE LOAD WITH FLAG BITS

DLWF n a

DIWFN -m a

DIWFA Iml a

DLWFNA -|m|—————g,
LOAD FACTOR

LFT n ———————e $FT

LFTN -1 —————————s $FT
ILFTA |m| ——————= $FT
IFTNA -|m| ——————————e $FT

STORE
ST 8 —————————= 1M
STN -8 ——e
STA 8| ———m
STNA -|8| ——————sn

STORE ROUNDED

SRD 8 —————m
SRDN - —
SRDA la| ——————em
SRDNA - |a] m
STORE LOW ORDER
SLO b f(m)
SLON -b f£(m)
stoA vl £(m)
SIONA -|bl| f(m)

1.
2.

(VAR VI o

58

Revised January 5, 1960

Fl(m)—F1(a).

0—=b,
Fi(m)—=Fl(a).

gb end SB(a) are not changed.
s(m)—=(60)$FT
0—=(61 - 63)$FT

Fl(a)—Fi(m)!!
a is unchanged.

A one is edded in bit (60)b
prior to the store: a and
(60)b are unchanged.
F1(a)—=F1(m).

e(a) - 48—ee(m).
F1(a) —=F1(m).
e(a) is unchanged.

K a:m
KN a:-m
KA a:lm|
KNA a:-|m|

COMPARE FOR RANGE

KR a:m
KRN a:-m
KRA a:|m|
KRNA a:~|m|

COMPARE MAGNITUDE

KMG lal:m
KMGN lal:-m
KMGA lal:|m]|

KMGNA |a|:-iml|

COMPARE MAGNITUDE FOR RANGE

KMGR lal:m
KMGRN lal:-m
KMGRA la|:|m|
KMGRNA jal:~|m]

59

Indicators AL, AE, and AH are set
as follows:

AL, is set to one if a<mn

AE is set to one if a =n

AH 1is set to one if a>m
Zero exponents of different sign
are considered equal.
If the exponent difference is 48
the larger of the numbers is per
sign and exponents regardless of
fractions.

If AH is off prior to this op,
no indicators will be changed.
If AH is on:

AL is unchanged.

AE is set to one if a < m.

AH is set to one if a 2 m.

Same as COMPARE, except for
accumulator comparand.

Same as COMPARE FOR RANGE,
except for accumulator comparsend.

Notation for symbolizing the Variable Field Length operations

OP(dds), Azh(I), OF7(I')

Accumulator operands

a = the accumulator operand whose:
1. low order bit is defined by the offset;

2. byte size is four for decimal arithmetic, eight for binary
arithmetic;

3. length includes all bits in the accumulator to the left
of the offset;

L. sign is indicated by bit four of the sign byte register.

a = the accumulator operand, a, but without sign.

85y = the accumulator operand, a, with offset = 20,

Memory operands

m = the memory operand whose: A~
1. high-order bit is defined by the bit address;

2. byte size may be any number from one to eight, but is
assumed to be four in the instruction lists below;

3. length is defined by the field length in the dds;
h. sign is bit s in the sign byte.

B
]

the memory operand in which all bytes are processed as data;
a positive sign is assumed.

The unsigned memory operand is designated by the dds.

Bits 7.17 and 7.18 are the leftmost two bits of $LZC.
#FT = FACTOR OPERAND; s(#FT) = bit 60; FL($FT) = bits (61 - 63).
$TR = 64 bit Transit Register.

A,
60

Integer operations

Operations which can have an immediate
except for *+,

ADD

atf, ——————3a

(1)
- 8-M — e a
TO MEMORY ADD

M+
M-

n+g —m————— 1

M-y, ———————s M

ADD TO MAGNITUDE

+MG R=a+m () 1.
-MG R=g.-m 2.
3.
TO MEMORY ADD MAGNITUDE
M+MG R=m+a. 1.
M-MG R=m-8 2
3.
MULTIPLY
* aem 200 (r) 1.
* ® o=
N a«-m a20 5.
3.
b,
MULTIPLY FACTOR AND ADD
*+ e (fFT)e—e a (1) 1.
*N -m« ($FT)+a — a
2.
3-

61

operand are followed by (I)

If the sign changes, bits to
the right of the offset are
complemented.

R —ea if R
0 —=entire
s(a) is not
operations.

20,
acc. if R < O.
changed by these

R —em if s(R) = s(m).
0 —em if s(R) # s(m).
s(m) is not changed.

Multiplication tekes place
only if mode = B or BU.

The decimal mode gives LTRS
and 005 to bits 7.17 and 7.18.
The length of & or m must be
< 48 bits in binary multiply.
The portion of the accumulator
not containing the product is
set to zero.

Write: *I+

and *NI+ for an immediate
operand.

Multiplication takes place only
if mode = B or Bu.

Decimel mode gives LTRS and

102 to bits 7.17 and 7.18.

DIVIDE
/ a/i ———=a (I)
/N a/-m — o g
LOAD
L m—————s g (I)
LN -m a
LOAD WITH FLAG BITS
LWF m a (1)
IWFN -l ————— a
LOAD FACTOR
LFT m —— $FT (I)
LFIN -m — — » $FT
LOAD TRANSIT AND SET
LTRS m #TR (I)
LTRSN - ———— = §#TR

62

1.

l.
2.

ll
2.
3.

Divide takes place only in the
binary mode.

Decimal divide gives LTRS and
Olo in bits 7.17 and T7.18. ‘
The remainder is placed in $RM.
The remainder sign, (60)%RM,

is the same as the original
s(a). FL($RM) = O,

Bits to the right of the offset
are cleared.

0—=F1(a).
The entire acc. is cleared
before the load.

Fi(m) —F1(a).

0—=(61 - 63)¢FT,
The offset field is ignored.

Offset —= $AOC.
11p —=bits 7.17 and 7.18.

Indicator $BTR = 1 and gDTR = O
if mode is B or BU.
Indicator DTR = 1 and EBTR = O

if mode is D or DU.

0 S O O PSP PO R PR 0 U AR

STORE

ST 4 ———————»m 1. SB(a)— SB(m).
STN -8, m 2. If the byte size is greater
than four:

binary: zone bits of the sign

T byte register are
stored in SB(m).

decimal: zone bits of the sign

T byte register are
stored in each byte
of m.

STORE ROUNDED

SRD These operations are the same as the corresponding stores,
SRDN except for:

a. binary: a one is added one bit to the right of the
offset, prior to the store.

b. decimal: 0101 is added one byte to the right of the
offset, prior to the store.

¢. the accumulator is unchanged, even if rounding occurs.
ADD ONE TO MEMORY

M+l mdl —m———=m 1. The one is added to the low order
M-1 mn-l ———————en byte.

2. The offset fleld is ignored.

63

COMPARE
K a:m
KN asi-m

COMPARE FOR RANGE

KR a:m
KRN a:-m

COMPARE IF EQUAL

KE a:m
KEN a:-m

COMPARE FIELD

KF
KFN

o3}

:m
a:-m

COMPARE FIELD FOR RANGE

KFR a:m
KFRN a:-m

COMPARE FIFLD IF EQUAL

KFE
KFEN

asm
a:-m

(1)

(1)

(1)

(1)

(1)

(1)

6l

The COMPARE operations set the
AL, AE, and AH indicators.

AL is set to one if: a <m

AE is set to one if: a =m

AH is set to one if: a>m
All bits to the left of the off-
set in the accumulator participate
in the compare.

]

If the AH indicator is off prior
to the op, it 1s executed as a NOP.
If AH is on:

AL is unchanged.

AE is set to one if

AH is set to one if

o o

VA
=

If the AE indicator is off, no
changes will occur.

If the AE indicator is on, the
indicators are set as in COMPARE, K.

i

The indicators are set as in
COMPARE,

The length of the accumulator
comparand is the same as the
length of the memory comparand.
The matching bits of both operands
are compared.

The accumulator comparand is the
same as in COMPARE FIELD, KF.
The indicators are set as in
COMPARE RANGE, KR.

The accumulator coggarand is the
same as in COMPARE FIFLD, KF.
The indicators are set as in
COMPARE IF EQUAL, KE.

Logical Connectives OP(dds), Ay (1), OF7 (1')

Note: If the operand from memory has byte size (BS) less than 8
then (8-BS) lead zeroes are added to each byte from memory before
the connect takes place. However, the memory operand is not

changed in C xxxx or CT xxxx.

CONNECT TO ACCUMULATOR

Cxlx2x3xu Result —= 2

CONNECT TO MEMORY
CI.VI:>c1:c2:c3>cLL Result —m

CONNECT FOR TEST

Ci[bclx2x3xh Result is not stored.

X.X.X.X, is a four bit binary configuration to describe the

172737,

type of connective and is summarized below:

Iet: m = a bit from memory (may be an inserted lead zero if

the byte size is less than 8).

a = a bit from the accumulator corresponding to m. The
accumulator byte size always = 8.

X, = desired result if m = 0O and a =0

X, = " " " m=0anda =1

X3 = " " " m=1and a =0

x), = " " " m=1anda-=1

Example: C1010 (BU, 64, L), O will complement the
entire 128 bit accumulator.
Pseudo Connectives

IF (Load field) LF
SF (Store field) SF

CO011
CMO101

o

65

Immediate Connects

To indicate immediate addressing one writes CIx,x.X. X

172737

CTlex2x3xlL and LFI.

ghoc =
fuzc -

All ones count register.

Lef't zeroes count register.

After a connective operation the two registers ¢AOC and
$LZC contain the indicated counts of the result. Since the
result may not occupy the entire accumulator, ¢AOC and

$LZC may not give the total count of ones and left zeroes
of the accumulator. However, these counts always give the

correct count in CM or SF.

66

Convert Instructions

Definitions:

o
i

8pp0
%pg8 =

length.

(VFL operations)

accumulator in binary with offset

accumulator in binary with offset

"

accumulator in binary with specified offset.

200
68.

accumilator in decimal, 4 bit bytes with specified offset.

memory operand in binary with specified byte size and field length.
memory operand in decimal with specified byte size and field

FTR = 6L bit transit register with a sign byte in the rightmost L bits,

The conversion goes from decimal to binary if the mode given

is decimal; from binary to decimal if the given mode is binary.

Note:
CONVERT
cv ap —8pg8
or B.B6 a —n aD
CVN -8, ——= apcg
or ~8pgg—"8p

DOUBLE CONVERT

DCY 8y —=ap50
or 8pon—8p
DCVN -aj —= ap,
or ~Bp,ny™ 8y
LOAD CONVERTED
eV m, —eay
or m, —>ap
LCVN 4%3_——"3B
or -mB me— aD

if mode

if mode

(1)

(1)

67

D or DU
B or BU

In binary a field
of 48 bits is used.

The entire accumulator
to the left of the
offset is used.

In binary a field of
96 bits is used.

The entire accumulator
to the left of the
offset is used.

s(m) —s(a)
0 —=Fl(a)
The entire accumulator

is cleared before the load.

LOAD TRANSIT CONVERTED
LTRCV mD—-$TRB (1) 1. The acc. and offset are
or . $TR ignored.
' D 2, 0—=TFL($TR)
3. s(m)—=s($IR)
LYRCVN -m -———-——$TRB (1) L. The entire $TR is cleared
D
before the loead.
or -mB—————$TRD
Progressive Indexing
Any VFL or Connective operation (when not immediate) may have a.
second operation enclosed in parentheses. The second operation may be:
VI, V£IC, orV % ICR.
Format: OP(OPE)(dds), Ay (7), OF,(. (1v)
Note: 1. The original value field of J is the effective address of op.
2. APM is the immediate operand specified by J in V = I, ete.,
& ..ﬂ
and the value field of J is incremented by * A?h according 7
to = I. The incrementing takes place subsequent to note 1
sbove.
3. J may be $XO.
AT,

Notation for symbolizing the Indexing opefations

Index word operands

= bits (O ~ 63) of the index word.
= bits (0 - 24) of J.
= bits (28 - 45) of J.
= bits (46 - 63) of J.

Hoo < 4y

Memory word operands

m = bits (0 - 63) of a memory word.

V(m) =bits (0 - 24) of m if the second operand is V.
(sign of V is in bit 24)

V(m) = bits (O - 17) of m if the second operand is C or R.

Tmmediate operands

m = bits (O - 18) of the effective address if the second
operand is V.

m = bits (O - 17) of the effective address if the second
operand is C or R.

Note: For clarity the titles to the indexing and the branch
operations have been omitted.

Note: The indicators: XF, XCZ, XVLZ, XVZ, and XVGZ are set by
all of the direct and immediate index operations except for:
KV, KC, KVI, KVNI, and KCI. These indicators are set
before the refill (if any) takes place.
KV, XC,...,KCI set the index compare indicators
XL, XE, and XH.

69

Revised

12/16/59 ~
Direct Index Arithmetic , oP, J, Ao (1) or OP, J, Al8(I) *
*1x m—J 1. M=4A, (1)
LV V(n) —— V 9
1C V(m) ——— C 2. m = (M)
LR V(m) ———= R 3. C, = The count field of J after
% modification
SX J—— = m
sV V —————= V(m)
sc C—— = V(m) 1. 0 —(18 - 24) of m.
SR R —————s V(m) 1. 0 —(18 - 24) of m.
V+ V+V(m) ——— Vv 1. There is no V - etc.
Ve V+V(m) —— Vv
C-1 —— C,
V+V(m) —— V
V+CR C-l ————= Cp
(R) — = (J) if C, =0
SVA V ————— V(n) 1. V is truncated to 18, 19, or 24
bits, as is appropriate for the
instruction containing v(m).
LVE (M) ———— v 1. (M) means contents of M -~
(M)l " (1] it (M) »
(M)n 1" " M (M)n'l
KV V:V(m) 1. Indicators: XL, XE, XH are set

by KV and KC. This setting is

k¢ C:V(m) the only output of KV and KC.

J — (R(#X0)) 1. used for saving and restoring
*RNX n ——— J index registers.

M ——————= R($X0)

LVS (special format): Lvs, J, AL, A2, ..., A"
& 1
Y V(AT)— v(J) l. The sum may include any subset
i=1 of the index words.

2. No indexing of the address field
is allowed.

For 1X, SX, and RNX, the format is: OP, J, Aqg (I)

70

%mnnlulnllllMHlHN!llmuunnulunlunllnlnllnullluMllunnulnmlnmnFn-nm-unIllln-nunMu-nnnuulmmnmnqnnmnnmnnmmmumnmmw

Tmmediste Index Arithmetic op, J, Ai9 or OP, J,

Revised
12/16/59

3*
Ag

Notes: 1. ©None of the immediate index instructions allow for
indexing of the address. A19 is the effective
address and is represented by A below.

2. The output of: KVI, KVNI, and KCI is the setting of
indicators XL, XE, and XH.

LVNI A ———aV 1.
LVI AV 1.
LCI A——=C
LRI A— =R
V+I V+A ———— V 1.
v-I Ve ——e V 1.
VA — = V 1.
V+IC . {C-l c
. V-A —— V 1.
V-IC {c-l————-» o
V+A —_— V lt
V+ICR C-l —— C
(R) ——= (35 12 Cp= 0
VoA ——e V 1.
V-ICR Cal ————e C
R) ______.(J§ if C,= 0
#C+I C+A—= C
*¥C-I C-A —_— C2
KVI (0 - 18) of V:A 1.
KVWNI (0 - 18) of V:A 1.
*KCI C:A

(19 - 24) of V are set to O.

(19 - 24) of V are set to O.

(19 - 24) of V are unchanged.

(19 - 24) of V are unchanged.
" 1" " 14] "

(19 - 24) of V are unchanged.

(19 - 24) of V are compared
with zeroes.

(19 - 23) of V are compared

with zeroes. and (2h) of V is

compared with 1(minus).

T

Count and Branch Operations op, J, 1319 (K)

CB

CBR

CBZ

CBRZ

Note:

Cl-l————-—C2 1. K may be only O or 1.
. _ 2. M = the effective address

ICl+ 0.32—IC if 02 =0 of B19 ().
M Ic if Cy £O 5 IC, is the value of the
C, -1 —=C instruction counter where the CB
1 2 instruction is located
IC;+ 0.32=IC and (R)=(J)) = o "0147C are the count field

if C2 =0 1 2

of J before and after the

M ¢ if C2 70 count portion of the instruction,

respectively.

C;-1—=¢C,

IC,+ 0.32+ IC if C, £0

M ———= ICif C, =0

¢,-1——=¢,

IC,+ 0.32 IC if C, £0

M ——————— IC and (R) —(J)

if C, =0 -,

In addition to the above functions the value field of J
may be modified by placing + , - , or H after
the above mnemonics. The modification of V takes place

regardless of C. and before the refill (if any).

2
Example: In addition to the above functions of CB we have:
CB leave V alone
CB+ V+1.0 —V
CB- V-1.0—=YV
CBH V +0.32 ==V
72

Unconditional Branch Operations: OP, A19 (1)

B
‘BR

BE

BED

BEW

NOP

M IC 1. The unconditional branch orders
M%Icl + 0.32 —=IC are the only brench orders which
Ensble allow a 4 bit index field, I.
M . IC The conditional branch orders
may have only a 1 bit index field,
{ Diseble Ic K.
M 2. ICl is the value of the instruction
Ensble counter where the instruction is
located (i.e. the leftmost bit
Wait . R
{M 10 of the instruction).

IC:L + 0.32 — IC

Branch on Bit Operations: OP, A, (1), B19 (K)

BB

BZB

Note:

IC, + 0.32 —IC if m = 01l m= (Agh(l')), the bit being tested.
IC if m= 1 2. M= 319(1{), the branch address.

3. K=0Oorl; I=20-15.

ICl + 0.32—IC if m, = 1
M2 —1C if m = 0

The BB and BZB may have a suffix, 2, 1 , or N, which will

set ny to zero, to one, or negate it, respectively. This function
is independent of the success of the branch. For example, the
following branch on bit instructions are permissible and perform

the gbove functions as well as those below.

BB and BZB lesave m1 alone
BBZ BZBZ 0 --—ml
BB1 BZB1 11— ml
BBN BZBN -ml-- ml

73

Branch on Indicator Operations: BIND, Bl9(K)
BIND IC.+ 0.32 —=IC if ind.= 0 1. The indicators mey not
. be set to 1 or negated
M 1C if ind.= 1 with a BIND operation.
BZIND ICl+ 0.32 —— IC if ind.= 1
M IC if ind.= O
Note: (1) The letters "IND" in BIND are replaced by the eppropriate
indicator mnemonics as shown in note (2) below.

(2) The above operations can have a suffix, 2, which will
cause the indicator being tested to be set to zero
independently of the success of the branch. For example,
BZXPOZ will set indicator XPO to zero arbitrarily. We
may have: BXPO; BZXPO; BXPOZ; and BZXPOZ. The following
list includes all of the indicator mnemonics which may
be used in BIND, 319(1{), and their bit addresses.

MNEMONIC NAME BIT ADDRESS

EQUIPMENT CHECK

MK Machine Check 11.0 -

IK Instruction Check 11.1

1J Instruction Reject 11.2

EK Exchange Control Check 11.3
ATTENTION REQUEST

TS Time Signal 11.k

CPU Other CPU 11.5
INPUT-OUTPUT REJECTS

EKJ Exchange Check Reject 11.6

UNRJ Unit Not Ready Reject 11.7

CBJ Channel Busy Reject 11.8
INPUT-OUTPUT STATUS

EPCGK Exchange Program Check 11.9

UK Unit Check 11.10

EE End Exception 11.11

EOP End of Operation 11.12

Cs Channel Signal 11.13

(Not availeble) 11.14

R 0 D O 00000040 0000000 00 R - A 0000 OO 48 OO s

Th

MNEMONIC

OP
AD
USA

EXE
DS

DF
IF

IC
PF
ZD

IR
LS
PSH
XPO

XPH

XPM

&

HESH

BIR
DIR

NAME

INSTRUCTION EXCEPTION
Operation Invalid
Address Invalid
Unended Sequence of

Addresses
Execute Exception
Data Store
Data Fetch
Instruction Fetch

RESULT EXCEPTION
Lost Carry
Partial Field
Zero Divisor

BIT ADDRESS

11.
11.
11.

11.
11.
11.
11.

11.
11.
11.

RESULT EXCEPTION-FLOATING POINT

Imaginary Root
Lost Significance
Preparatory Shift
Grester Than 48
Exponent Overflow
(xp2 2")
Exponent High

(20 < mxp < 2")
Exponent Medium

(28 < e < 210)
Exponent Low

(2 <EXP < 28)

Exponent High Negative

(-2M< EXP < -210)

Exponent Underflow
(exp <-2M)

Remainder Underflow

FLAGGING

T Fleg
U Flag
V Fleg
Index Tleg

TRANSIT OPERATIONS

Binary Transit
Decimal Transit

5

11.
11.
11.
ll.

ll‘

11.

11.

11.

11.

1.
11.
1l.
11.

11.
11.

11.

15
16

17
18
19
20
21

22
23
2l

25
26
27

28
29

30
31
32
33

34

35
36

37
38

39
40

MNEMONIC NAME
PROGRAMMER INDICATORS
PGO or PG
PGL —
PG2
PG3
PG4
PG5
PG6
INDEX RESULT
XCZ Index Count Zero
XVLZ Index Value Less Than
Zero
XVZ Index Value Zero
XVGZ Index Value Greater
Then Zero
XL Index Low
XE Index Equal
XH Index High
ARITHMETIC RESULT
MOP To-Memory Operation
RLZ Result Less Than Zero
RZ Result Zero
RGZ Result Greater Than
Zero
RN Result Negative
AL Accumulator Low
AR Accumulator Equal
AH Accumulator High
MODE
M Noisy Mode
76

BIT ADDRESS

11.41
11.kp
11.43
11.44
11.45
11.46
11.47

11.48
11.49

11.50
11.51

11.52

11.53
11.5L4

11.55
11.56

11.57
11.58

11.59
11.60
11.61
11.62

11.63

Transmit Operations: OP, J, A18(I), A'8(I')

Note: (1) Full words are transmitted in all transmit and Swap
instructions.
(2) In the immediate operations, J is the count of the
number of full words transmitted. J must be < 16.
If J = 0, 16 words are transmitted.
(3) In the others (the direct transmission) the count field
of J has the number of full words to be transmitted.

TRANSMIT FORWARD
T (Ml) (M2) 1. M) is the effective address of A18(I)

. . 1 t
(M1+1) Tt:—(Meﬂ) 2. M, is the effective address of A18(I)

TRANSMIT FORWARD IMMEDIATE
TI () —= ()
(M1+l) (M +l)

TRANSMIT BACKWARDS

® (Ml) (M2) 1. Both blocks are referred to in
(M, -1) ——= (M,-1) a backwards direction.
Ml ete. 2

TRANSMIT BACKWARDS IMMEDIATE

TBI () (M)
(M -1) —~ (M -1)
SWAP FORWARD
SWAP (M) ——= (1)
(M +1) s (M+1)

SWAP FORWARD IMMEDIATE
SWAPI (Ml) 4————-—(M2)
(i r1)= (ML)

SWAP BACKWARDS
SWAPB (M)) o— (1)

SWAP BACKWARDS IMMEDIATE
SWAPBI (Ml)-—-—-.(M)

(Ml-l) (M -1)
77

S W A S I MO N <R e S e am e e

-

Revised December 15, 1950

-
Miscellaneous Operations: OP, AlB(I) or OP, A19(I)*
STORE INSTRUCTION COUNTER IF
¥81c 1€+1.0 ——=(0-18) of Ajg(I) if the following half word
brancg instruction is executed.
SI1C §
1. NOP will not store the IC.
REFILL
R (RM) —_— (M) 1. Ry = refill field of word M
REFILL IF COUNT IS ZERO
RCZ (RM) —_— (M) if C field of M = 0
EXECUTE
* EX Execute (M) 1. The instruction located at M is
executed.
2. Control then goes to the instruc-
tion following EX.
EXECUTE INDIRECT AND COUNT
EXIC Execute (MY 1. The instruction whose address -
(M) + 1 ——— (M) is located in M is executed. e
STORE ZERO
Z 0 —m—— (M) 1. Full word of zeros.
* NOTE: TIf the OP is SIC or EX, the format is OP, Al (I)e iee.
these two Operations have a 19 bit address field.

78

STRAP 1

Input-Output Instructions: OP, A7(I), A18(I')

LOCATE A
LoC

~

SELECT UNIT
SU

READ
RD

WRITE

RELEASE
REL

COPY CONTROL WORD
CCW

LOCSECP
RDSECP
WSEOP
RELSECP
CTLSEOP
SUSEQCP

A-(I) represents a channel address; Alg(I') represents
(1) the address of one of several units attached to
channel A7(I); in this case LOC or SU must be given
before a RD or W addressing this channel;

(2) en address on the disc specified by A7(I). LOC=SU

A7(I) represents a chennel address; a reading
operation is initiated for this channel (or for a
unit sttached to this channel, if more then one,
vhich has been readied by a LOC instruction).

Ajg(I') is the address of a control word (see below).

Initiates a writing operation. Analogous to RD
except that the skip flag of the control word is
ignored.

Immediately terminates any operation in progress at
the unit specified in A7(I), the channel address,
or in the last unit at A7(I) selected by a LOC
instruction, if A7(I) consists of more than one
unit.

The current control word corresponding to the
addressed channel A7(I) is sent to A18(I').

Same as LOC, SU, RD, W, REL, CTL except the SEQP
bit in control word is set to 1; thus program
interruption on completion of an operation is
suppressed, provided no exceptional conditions
are encountered (viz. unit check and end
exception).

9

STRAP 1
Revised 1/22/60

Input-Output Instructions: OP, A7(I)’ AlB(I')

LOCATE
LOC
OR
SELECT UNIT
SU

WRITE

RELEASE
REL

COPY CONTROL WORD
CCW

LOC(SEOP)
SU(SEOP)
RD(SEOP)
W(SEOP)
REL(SEOP)

CTL(SEOP)

ﬁZ(I) represents a channel address; Al8(I')
presents (1) the address of one of Séveral
units attached to chamnel A (I); in this case

LOC or SU must be given before a RD or W using
this channel; or (2) an arc on the disc specified

by A7(I).

(I) represents a channel address; a reading
ggeration is initiated for this channel (or for a
unit attached to this channel, if more than one, which
has been selected by a LOC instruction). AlS(I')
is the address of a control word

Initiates a writing operation. Analogous to
RD except the skip flag of the control word
is ignored.

Imediately terminates any operation in progress
at the unit specified in A.(I), the channel
address, or in the last unit at A-(I) selected
by a LOC instruction, if A7(I) consists of more
than one unit,

The current control word corresponding to the
addressed channel A,(I) is sent to Ajg(I')e In
the case of high-speed disc units, A7(I) must be

0 or 1 according to whether the control word is
assoclated with reading or writing. If the disc
is actually engaged in reading or writing, however,
CCW is ineffective and the Channel Busy Reject in-
dicator is turned on.

Seme as LOC, SU, RD, W, REL, CTL except that SEOP
bit in the control word is set 1; thus program
interruption on completion of an operation is
suppressed, provided no exceptional conditions

(viz. unit check and end exception) are encountered.

Revised 1/22/60

STHAP 1
CONTROL Initiates performance of certain functions at
CTL the channel indicated by A-(I), or at the last
unit there selected by a LOC instruction. These
functions depend on the value of Ag(I'), in-
dicated in the following tebles:
UNIT A18(I') (Octal) FUNCTION
General I/@ 016 RESERVED Light Off
unit (standard oL7 RESERVED light on
for A18(I') 057 ECC mode
116 CHECK light on
157 No-ECC mode
Card Reader Standard (see &bove)
Card Punch Standsrd, plus
056 Card run-out (feeds one card)
Printer Standard, except that 057 and
157 are not allowed
Console Standard, except that 057 and
157 are not allowed; plus
AN Sound gong
Disc No control functions allowed.
Tapes an-stahdard functions.
016 Turn off TAPE INDICATOR light
(Erage endaof tape condition)
036 High density mode (556 bits/inch)
037 Low density mode (200 bits/inch)
056 Erase long gap (three inches)
057 0dd parity, ECC mode
076 Space block (record)
oTT Space file
117 Write tape mark (EOF Mark)
136 Rewind
137 Rewind and unload
156 Even parity, no~ECC mode
157 0dd parity, no-ECC mode
176 Backspace block (record)
77 Backspace file

Since the above control codes are difficult to remember, STRAP-L
provides the following CONTROL pseudo-ops:

RLF
RIN
ECC
KIN
NOECC
CRDRUN

GPNG

8L

Reserved light off
Reserved light on
ECC mode

CHECK light on
NO=ECC mpde

Card run~out
Sound. gong

STRAP 1
Revised 1/22/60

ERETC Erase end of tape condition

or or

TILF Tape indieator light off P
HD High densitymode 7
LD Low density mode

ERG - ' EBrase long gap

@DDECC 0dd parity, ECC mode

@DDNEC 0dd parity, no ECC mode

SP Space block

SPFL Space file

WEF Write end~of-file mark

REW Rewind

UNLPAD Rewind and unload

EVEN Even parity, no-ECC mode

BS Backspace

BSTFL Backspace file

By using these CONTROL psuedo-ops, only the channel address, A7(I)
need be specified, thus:

| ECC, #PCH

In the case of a tape unit, the pseudo-op will always apply to the
last unit referred to in a LOC instruction:

Lgc, grci, k4
REW, $TCl

fThis code will rewind tape 4 on tape chammel 1.)

System Synbols for Channel Assignments:

In order that a coder need not know the specific numeric addresses
of his installation, the following system symbols may be used:

¢DISC* or ¢DISK* Channel containing a disc unit.
If an installation has more than
one disc unit, these will be
designated $DISC, gDISC 1,
#DISC 2, etce

*
ggg;* Tepe channels 1, 2, and 3. More
$ % may be added at the option of a
TC3 particular installation. On

each channel, tapes may have
addresses O through 7.

#PRT Printer
#RDR Card reader
$PCH Card punch
#CNsL Console (including console typevwriter)
In s multi-unit installation, these system symbols will be expanded to -

include $PRTL, $PRT2, or #RDRL, $RDR2, etc.

*The instruction LOC or SU must be used before reading or writing on this channel.

82

A N S U USSR SO o FO S o uss S O SO R S S uE FSUseesios SO {5 SO seOmes ¥ 5 B9

Note:

is
is
is
is

is

APPENDIX

(Index to Mnemonics i

alphabetically listed
alphabetically listed
alphebetically listed
alphsbetically listed
elphsabetically listed

83

C

as

Appendix B)

"&dd"
"subtract"
"multiply"

"divide"

)
Mnemonic Page
AD Address invalid (indicator)-=-s---e-e-cmmccceccmacaccaoa. 75
+ Add (floating point Op.)----ee-ecccemmcmcccceacano- c———— 55
(integer arith. op.)====mmeex e mmememm—————————— - 61
+A Add 8b80lute---emmemm e cme e cdecce - 55
AE Accumulator equel (indicator)-------eecccmmcmamccoman—ae 76
AH Accumulator high (indicator)=e--ceec-cemmcmccmcccccccmnes 76
AL, Accunulator low (indicator)--=eeeece-cacccacccmcccmcaeaa- 76
+MG Add to magnitude (floating point oOp.)===--ceecmeccmcamaas 56
(integer arith. Op.)=-e--ecccccccccccccccccccccccnaa- 61
+MGA Add (ebsolute) to magnitude~---m-mmmmmcmccemcccacaccaanan 56
B Branch (unconditiongl)e=eeeecmccccceccccacmccccmccme————— 73
B Branch on bitece-rccrcmcmcccmcc e cec e - 73
BBN Branch on bit and negate--=-eccmmccccccmmccccmcacan —————— 3
BB1 Branch on bit and set 40 Ofe~--cecmmmmcacccccmc e cccanae 73
BBZ Branch on bit and set to Zero------ce-cmccccmmmenaaeo 73
BD Branch disabled (unconditiongl)----=--cmccamccmmmccmanaax 73
BE Branch ensbled (unconditiongl)----=--ccomccacmmmmmcmcacan 73
BEW Branch ensbled and wait (unconditionsl)----cecccccomnunn 73
BIND Branch on indicator-----c-ccmmcmmcocmmaccnccccccccccnana T4
BR Branch relative (unconditional)-----meccmmacmcmomommaaoo 73
BTR Binary transit (indicator)-----ceeccemcmmmcmmcccmcccceees 75
BZB Branch on zero bit----eecceccmecccacccc;cccccccccecec———— 73 Ay,
BZBN Branch on zero bit end negate------ceeememcmcaccccmmrcanan 73
BZB1 Branch on zero bit and set to one---=-ccmmaccccmmccncnaaa 73
BZBZ Branch on zero bit and set t0 zZero===-cccccmmmmccccmcnaa- 73
BZIND Branch on zero indicator-~-----eeeccaccmcaccmacanccoccnaa Th
Cx1XoX2x), Connect to accumulator------=ce-ceccmeeccmcmcancaaex 65
C+I Add immediate t0 COUNt-mmmmmcccmccm e 71
CB Count and branCh---cececmmcccamem e e e ccmnm—- 72
CBJ Channel busy reject (indicator)-----c-ececammammoccnaaan. Th
CBR Count, branch, and refill---mececemccecmamcmnceanas - 72
CBRZ Count, branch on zero count, and refill------e-coccaeaea- 72
CBZ Count end branch on zero coulte-=-eermeccccccmcccccccccnax 72
CCW Copy control Worde-sm--eemeecocememccmmcccccaceaccamaacoas 79
CIx)xpx3x), Commect immediate to accumulator-------=----ee----- 66
CMx1Xox2X), Connect 1O MEMOTYy~=--=cmemmcmcmm oo cce e cceaeen 65
CPU Otﬁer central processing unit (indicetor)--ec-eecceeacamaa i
CS Channel signal (indicator)-cememccucmmmmccccaccccccaacaan Th
C-I Subtract immediate from COUNt~==—mmmemmcmcccmcccecceccaean val
CTx)XpX3X) Comnect fOr test=--mmmemmmm o oo e 65
CTIx;XpXoX), Connect immediate for test-----=emecommcccccccaaa. 66
CTL,CTLSECP Control--=-==w- e em e memem—cmesmacmc—ccmrceaa———— 79,80
CV Converteeemmcemmmec e cmc e rnmcnrcme e cac e cmmc e ——a 67
CVN Convert negative-meecemaeaceea e cmeeeea 67
-~
8l

Mnemonic

D+ Douwble 83d--emmmmmemcmcccmase e mcecmemm——————————————————
D+A Double add 8bsoOlute--=-me-ememcccameec e m e ——— e
D+MG Double add to magnitude---=-meccmccccmcccm e
D+MGA Dowble add (absolute) to magnitude----=-e-eemmccamaaaa-
DCV Double converbt----ececmcmcomcmrmram e cccccem e m e e m e ——
DCVN Double convert negativee---eemeemececmcmcccacccmomcananan
D/,D/A,D/N,D/NA Double Givide--==mmemmmmmmmmeemcmm————a—a——e
Divide (floating point Op.)-==-mc=mm-cmmceammcccmccca——-
(integer arith. Op.)=-=m-mmemcccmmcmcccmecccae—ena-

/A Divide 8bsOlute==-m-m-mmcmemcemcme s me e e
/N Divide negative (floating point op.)-==-=-=mc==a-ua- —
(integer arith. Op.)=-m-=mmme-mosmcceccccmecam—e——-

/NA Divide negative absolute-------cmcommmcmccmcccnmceann———
DF Date Fetch (indicator)----c-ceeacecccmammmcmcccacmamnne-
DL,DLA,DIN,DLNA Double load---~=-=mecemccmemcem e m e e e e
DLWF ,DLWFA,DLWFN,DLWFNA Double load with flag bits------=---
D#%,DxA,D%N,D¥NA Double multiply---=-==cc-emecemmcceneannaaanx
DS Datae store (indicator)------cemecemmcmcmccemmccece————-
D~ Double subtraCte--e-ememearcrcncccraccncrcc e r e ———
D-A Double subtract ebsolute----=eecmeccecraccreccccaemaceaa-
D-MG Double add to magnitude-=wee-mmemecemcmaccccccnccacmeaa=
D-MGA Double add to magnitude @bsolute-----=ce-c-ceamane- ————
DTR Decimal transit (indicator)------e--eccecmacmaca- ,—————

E+ Add to exponente----m--—mmecmcesmcccmccccmm e m - R
E+A Add to exponent absolute------mecemccccccccccncnnana- ———
E+AI Add immediate to exponent sbsolute----=c-cc-mcecacoccacnaa
E+I Add immediate to exponente-----ecececccceccccamaaoceenan
EE End exception (indicetor)e-s-----ceeccmccccccaccnaea- ————
EK Exchange control check (indicator)----e--eeecmacacmaran-
EKJ Exchange check reject (indicator)---=esmeeececaccanmanana
EOP End of operation (indicator)--c--eeecememccamcmaoncocaa-
EPCK Exchange program check (indicator)--=-e---mecemmccacearana
ERG Erase gap---===smmmmme-mcccecccccmcacscecnceacnona—~— ——
E- Subtract from exponent-------- e m e e ——— - -————-——— ———
E-A Subtract from exponent gbsolute--==--emmecccccmcacaconane
E-AI Subtract immediate from exponent sbsolute--=-m=wmece—=a-
E-I Subtract immediate from exponent--------cc-ecccccamcanane
EVEN Even parity----see-eceemmacemcccmcmcccccecmcccmcncmmmanan=
EX ExeCUt@--emmwommmcccccccccccmrcrmcneseem e m e e ———————————
EXE Execute exception (indicator)-----ee-cmccccmmmcmcncamaa-
EXIC Execute indirect and counte---cememmccamccccccmcmacanan—

85

Mnemonics
F+ Add to fraction--=-w--ccscccccccccc e ccc e e e e e
F+A Add to fraction gbsolutes=wsecewccccmcn v ccmcccccnnna
F- Subtract from fraction-----eecccccccccccccnnmcccccncceeaa
F-A Subtract from fraction absolute~----cccweamcmcmcccaccaaas
GONG SOUNGA OIIZ = = = == o e o e e et e e e 1 0 e e e
HD High density~----ececemccrcmmcmmc e cc e e
IF Instruction fetch (indicator)-----eeececmccccccmmmneoeea-
IJ Instruction reject (indicator)----=-ee-ceccccccccccnonnca.
IK Instruction check (indicator)----=c--mececmamcmccamacaac-.
IR Imaginary root (indicator)----eee-eeeccmcemcmmccccnacenn-
K Compare (floating point oOp.)-=m=-=---cecccccmccccmnocane-
(integer arith. Op.)====-re-cecccce e ———
KA Compare absolute----=--c-cmcacacmmcc e ccccccccc e em
KC Compare COUnb-m--ememmcm e e e mc e e
KCI Compare count immediate------ccccmcccmmcmcccccaamcacccnax
KE Compare if equal---c-m-ccmcccccmmcmc e cccccc e e
KEN Compare if equal negative------ecccomemcamacccocacnncaana-
KF Compare field-----e-ccccccmm o rcccr e cccrcc e e
KFE Compare field if equal--=--cerccmccmmmccmcccmcccccccc e
KFEN Compare field if equal negative-------cccemmmccccmccmanaaa
KFN Compare field negative----ecmeccacccmmccccccccamccmcanaa-
KFR Compare field for range-------=--cc-cemmcmmccmmcccccncan-
KFRN Compare field for range negative--=---ecccemmarmmcaoaaoa-
KLN Check light On------ccccmcmm e e
KMG Compare magnitude------cmccmmmmme i cccccccccccc e
KMGA Compare magnitude gbsolute--------eccccmccmmmcccccaaanaaa
KMGN Compare magnitude negative----------cccccammcmcccmaacaaa-
KMGNA Compare magnitude negative absolute~-eec-ccccccccccccaaa
KMGR Compare magnitude for range----=--eceecammcmcmccccccmccaan
KMGRA Compare magnitude for range absolute----ececcecmccacmaaaan
KMGEN Compare magnitude for range negative------cccecaccmcana-
KMGRNA Compare magnitude for range negative absolute------a---
KN Compare negative (floating point op.)----ccececccacmaaaa-
(integer arith. Op.)=---—--cmmecmmmcccmccccccacacan
KNA Compare negative absolute-----mecmcccmmcccccrcccnccccme-
KR Compare for range (floating point oOp.)-=-e-meecacccamacaa-
(integer arith. Op.)==-memccmmccmmaccommccacaccmaoas
KRA Compare for range absolute------ceccccccccccccccccccaaaa-
KRN Compare for range negative (floating point op.)----=-----
(integer arith. Op.)-==-=--ececmcccmccccccccccmo e
KRNA Compare for range negative absolute--------ecmccccccmccaaa

86

25
55
55
25

81
81
1

T
™

59
ol
29
T0
T
6l
6L
6l
6l
6l
6l
6L
6l
81
29
29
59
29
59
59

59
29
6l
29
29
6l
29

29
6l

29

amm,

-

Mnemonics

KV
KVI
KVNI

L

LA
Ic
c
ICI
LCv
LCVN
D
F
LFT

Compare value
Compare value immediate

. e SN e M S e W M e S W W e A w8 e e m

Compare value negative immediate---we-cmcccammcmaanceana

Load (floating point Op.)-=-=--emmmecmcmceccc e
(integer arith. Op.)----=-ccmamccamcccccccc e

Load
Last
Load
Load
Load
Load

Load

gbgolute~mmmmeaoaacu
carry (indicator)---

converted-----------
converted negative--
Low density
field-e-mmmmemccacan

A h n e MO Gm D e S S e S e G R e o . W v e B o -

- St G e G YA D D A P S Gn Ge ER OB S S G AN A S e e e

L R N L

e W W e W s G5 G e me ES W Gm e S S e B B G e

L R L Ll L

- .G At WY S o 50 S G e A e G e A e e

R T L L L L L L L ey

Load factor (floating point oOp.)----mceeccecamccaaccana-

(integer arith. op.)
LFTA Load factor absolute

o n o - - B . - - G W - -

Bl R R R A

LFTN Load factor negetive (floating point op.)-ee=ce=eecacu--

(integer arith. op.)

L T Y e -

IFTNA Load factor negative gbsolute--~-cecmcmccmccoamcaccanao
Loed negative (floating point oOp.)=-=----cccmmcmammmacan

LN

LR

IRI Load refill immediate
LTRCV Load transmit converted

(integer arith. op.)
LNA Loed negative absolute
LOC,LOCSECP Locate

R e N IR L X X ¥ R R S

LoBA Tefillemmmmammem;cc;eccc e e e —————————————— ———

- D D TR SN G e G S D S S B s D G e -

. " - - D WS %E An e S ms Gn e e s e

LTRCVN Load transmit converted negative-=--c-meccmcacccaanan

LTRS Load trensmit and set

LTRSN Load transmit and set negative--eemeccmacccccaamaceaaaa

Lv

LVE
LVI
LvVS
LWF

Load value
Load velue effective
Load value immediate
value with sun-we-w-

Load.

L e L L L L L Ty

- - - - N A AN B W am S e e e e

Load with flag bits (floating point Op.)--e=-mcmeccacaaa

(integer arith. op.)

L Y el e

IWFA Load with flag bits ebsolute-=--wemmecmcmmccacacacoaoo.
LWFN Load with flag bits negative (fl. pt. Op.)=-mcm-cecoeea-

(integer arith. op.)

L N L L]

LWFNA Load with flag bits negative gbsolute~-=--eccmecmacaaaas

IX

M+

Load index

To memory add (floating point Op.)----==cccmemmmcocaoaoo

(integer arith. op.)
M+rA To memory add ebsolute

- e e o . . G e e S G D e e e W e e N

87

Mnemonics
M+l Add one t0O MEMOYY==~=mm=mmmmcemc e cce e m e
M+MG To memory add magnitude (floating point op.)-=-=====n---

(integer arith. Op.)=--=-mmmmmmmmmam e
M+MGA To memory add megnitude absolute--mmeme-mcmocccccaacaaan
MK Machine check (indicator)-===--=-mccmmccmccmmccoccmoneaa=
MOP To memory operation (indicator)--------c-cmcmmcmccmnaana
M- From memory subtract (floating point op.)-----=--=we-u-a-

(integer erith. Op.)-=mmm-mmm-ccccccceccecccc—em—--
M-A From memory (ebsolute) subtract-------ememccmemcocmanmns
M-1 Subtract 1 from mMEMOYy------e--ecmeccceccacmreamcc e ——————
M-MG From memory subtract magnitude (floating point op.) -----

(integer arith. Op.)--==m-mccm-mmccccccccamcccmman-
M-MCA From memory (ebsolute) subtract megnitude------=---==---
¥ Multiply (floating point Op.)-===----mcmcmccmmmmaceaaan=

(integer arith. Op.)mrme-mmeec;ccecccccccec————————
*A Multiply gbsolute-=e-me—memcemc e e e
#A+ Multiply fector (ebsolute) and add---------=cccmemmeman-
%+ Multiply factor and add (floating point op.)==-=-=-m==---

(integer arith. Op.)=-=-mccmmmomccccmccmmcmccmancan
*N Multiply negative (floating point oOp.)--=-cccmcmmcrenan-

(integer arith. Op.)-=mmm-meceeececcmcecce————————
*N+ Multiply factor (negative) and add-----=eemmeccmcmcaaaox
*NA Multiply negative absolute--=--meecmmceccccecmccr e
*NA+ Multiply factor (negative sbsolute) and add------=--~---

NM Noisy mode (indicator)-----=--ccommccmccmmmmccccmmemeees

ODD 0Odd parity-<----r-emeccceccecccccccec e me e — e ————————
OP Operation invalid (indicator)------mcamomcmccmccccmaaoo-

PF Partial field (indicator)-----=-ececcmcccccmccccccccaaa
PG 0-6 Progremmer indicatorsS----=-cemcecocmacccmccmccucnonans
PSH Preparatory shift > 48 (indicator)------cecomcmmamoaaao

R Refillemmeeccme e ccmcccccccc e —————
RCZ Refill if count is zerO----wcemcrcccrcmcncacecrenrcerecea.
RD,RDSEOP Re@l-=-ceccmemcccmmcmc e
R/,R/A,R/N,R/NA Reciprocel divide-----cece-cmmccmccccmamonnn-
REL,RELSEOP Releas@-~-mrecmmcmc o e e e
RGZ Result greater than 0 (indicator)------eeocmcmmcmcmaanaoo
RLZ Result less than O (indicator)--=e-c-cecacmcmcmccmcaaas
RN Result negative (indicator)-----—--cccmmocmcmmaccccmeaas
RNX ReN&ME-mm-=mmmmmccemcc—emccmec————————————————————————
RU Remainder underflow (indicator)------cccemcmcmcmccmounan-
RZ Result zero (indicator)-c--e-cececmmccmmeccccaccacmcnoa-

am

am,

Mnemonics

SC Store cOouNt-cecccncmmmmm e m e e e r e e -—
SF Store field-----mececrmccccccccccnmacnanx eemmmm—————— -——
SHF ,SHFA,SHFL,SHFN,SHFNA,SHFR Shift fraction--=--wececcena--
SIC Store instruction counter if-ec-ecmmcccccmccccccccccana-
SLO,SLOA,SLON,SLONA Store low Order-------e---escmecmmeec—n--
SNRT Store negative root----weemmmeecmcmccmcccccac e cccene e
SNRTA Store negative root ebsolute----=ceecerccccccncnnacan-
SR Store refill--ccmcccrmcrmmmrmecmcmrccmec e ——cm— e
SRD Store rounded (floating point Op.)==--=eemmecmacccacnaa-

(integer arith. Op.)==memm-=cmccccmcccmmcccccm———a-
SRDA Store rounded sbsoluter--w---ecrmmecccmccrcaccecamanena—-
SRDN Store rounded negative (floating point op.)-------------

(integer arith. Op.)=mm=--memccecccmcccomocacecnen-
SRDNA Store rounded absclute negative------ememcemamceocoeooan
SRT Store root------ecccccsccummmccc e crcmce e —————————
SRTA Store root 8bsolutes~---emecmcmcmccarcccecamee e e
ST Store (floating point Op.)-=-=-e=eecemeccccamcacaccaean

(integer arith. Op.)=-===c=-mecccmeccmmcccccamcana-
STA Store 8bsolute--=--mecercemmrccmcm e ccc e cccccem————————
STN Store sbsolute negative (floating point op.)---=====a---

(integer arith. Op.)==mm=mmmmmcmcccccce—ccocccaooo-
STNA Store negative sbsolute (floating point op.)-=--=--===--

(integer arith. Op.)==-m=m=mcmeccccccccccooomcocaa-
SU,SUSEOP Select unite=m-ceccmocacmccc e e e
- Subtract (floating point Op.)--==-ce=ccmmcmcccmcccecneas

(integer arith. Op.)----mc-eceecceccameacammccancan
-A Subtract gbsolute--e-crecccrmr e ccm e~ ——————
-MG Subtract from megnitude (floating point op.)=-=====-----

(integer arith. Op.)-=---mceccacmcccmccmcccmccoacan
-MGA Subtract (ebsolute) from magnitude----=-eeccemmemcememen-
SV Store value--—-=-mecmccmcccmccencem e e ————————
SVA Store value in address-w-me---emecccccecccccccnrcce————————
SWAP Swap fOrward--=--meecemecccmccccccccmcmccccmescacnacna—a~
SWAPB Swap backwardS-se-e-emmeemccacccmec e ce e ccmame e e e
SWAPBI Sweap backwards immediate----eeemccmacoccccccanaoncana-
SWAPI Swap forward immediate--ee--emcccccccmcccccccmacc o
SX Store indeX---cemececcccccmccncme e e m e e ———————

T Transmit forwerd-~----wemmecncemccrcccrmcreearecrcne——-
B Trensmit backward-~ccwemecomcncmcmmrrcc e crce e r e c e -
TBI Transmit backward immedigte---=-e-cemccmmccccccccaccenca-
T T Fleg (indicator)-------==---- T
TI Transmit forward immediate----- T e
TS Time signal (indicator)-=--=-==-=c=mccomommo o mccmmemean

89

-

Mnemonics Page
UF U Flag (indicator)---=emmeeececmmmecc e e 5
UK Unit check (indicetor)--=---cecmecmcmmccmceccccccccuneea e
UNRS Unit not ready reject (indicator)-----eeeeecmmmcmcanaaas h
USA Unended sequence of addresses (indicetor)-----e-cecocumac- 75 !
V+ Add to valuem-ceemcccccmcccmcc e cc e ce e n e e T0
V+C Add to value and CcOUNtemcmewmecccccaccceccccmnreencccncnmn—- 70
V+RC Add to value, count, and refill---c--ceccccamccccccncannaa 70
ViI Add to or subtract from velue, immediate--eecceemcmacanan 68,71
V+IC Add to or subtract from value and count, immediate--w=w-- 68,71
ViICR Add to or subtract from value, count, and refill,

immediate--~--- 68,71
VF V Flag (indicator)-e-—-eccmamomoocmcccccmcmcccmcemaee e 75
W,WSEOP Write-=cemeoocmcecmammmom oo e e s ccma oo cmaae 79
XCZ Index count zero (indicator)-~--=ceemaccmcccaccmccmoamann 76
XE Index equal (indicator)-----=m=-mecmmcoomococccamcaaaeoa- T6
XF Index flag (indicator)-e=-=-mcememmocem o ceceeccee——- 75
XH Index high (indicator)-=--c-ecemammmacmcmacaacccmceees 76
XL Index low (indic@tor)-=---=-cmommmmmc oo 76
XPH Exponent high (indicator)----=-eemmemecmmoommceccecaa. 75
XPL Exponent low (indicator)==--=-m--mmeccmcmmo oo 75 N
XPM Exponent medium (indicator)-------eeeacmmmccacccmcccaeaan 75 E
XPN Exponent high negetive (indicator)--------ceecccceaccaa-- 75
XPO Exponent overflow (indicator)-----c-cecmmmomommmmmaaaao 75
XPU Exponent underflow (indicator)--=-ecemecmccmccacacocaanao- 75
XVGZ Index value greater than zero (indicetor)-------cememaean 76
XVLZ Index value less than zero (indicator)----eecaceccaccacaa- 76
XVZ Index value zero (indicator)-==-e-emececccccccoccmcma——n 76
Z StOYe ZEYO==m—mmemmc e e e e e cdeemeceemm e e———— 78
ZD Zero divisor (indicator)-----e--mmmcmmce e eeceeeea 75

90

INDEX TO GENERAL STRAP 1 WRITEUP

¢ Y T e LT L b
Addition of integers and bit addresses =e~mecemecemmc—comccceceana= 12-1L4
Address arithmetic, restrictions on -=-e-=emecwceccecccnceacax camew 20=22
assigning by 8SSEMbly =-===--cemceccccceccccccccaccmncnsecceoocnconan 8
Dit memmeemccccccccmccccccnccccscscccmmeenencccecem—c————————— 11-16
negative ecwceccrmccccccccccrncrccrrcec i e r s e r e c e e n - 13
Alphabetic conversion, entry mode =--ececcccecmccaccccnmccncncncnnnenn 33
Arrays, multidimensionglee-cevcceccceax - e o 10-11, 19, 20
use Of SYNONYN =w-wwremcrrcccccr s carcrcrca e c e ar e e e ——————— 19
AZ ccmmcccmcccrr e ccrr e e e e e e e e — .- ————— L 33
B emmmermemccmcc e e e e ce s m et e m e m e - ———————————————— SR 6
Blg =emssccemmccmccc e e e——— e e 0 e e o o e e e——— L
Binary signed VFL data ~eececemcccwcccacccccanccnaa e mmceccve———— - LO-L1
€X8MPle =~mmmmecccceccccecensccnee————— e L L L L L R L R L1
Binary unsigned VFL deta =-eeeecccccccccccnacanaa" ——m - ———————— hi-he
EXAMPLE ~emecemcccsrccncnmmm e — e ——————— e - L2
Bit 2ddress ~cemremmccccccccccccccccccnne- e mn e ——--——— cmemee= 11-16
format ~cececnncnncccnccncnccncnncecnrncnccrcnccr s s s rrcrn s 12
negative memmcmmmmccccccccenccnea—- —mm—ae-———— s 13
restrictions ~eeeccwccccccccccnvcncrercccnnnne—— —————— cmemmeeeee 131k
rules for combining --eececccccmccnccnccnconcccnccnnnna- ——————— 14-16
use of synonym in -weseccsmccccceccanom—-- e ————— cemmcsmnnena——- 19
Blank statement field following neme -eeccecmccccwcccccccrcccrccccca= 27
BlONnks =memme-memeccccccccccccessccsamcaneee———————— PR 26
Branch instruction, formet ------ccccccmcccccccncceccnacecan- LT 3
BS emcemccncme-- v o o e e e e 0 o e - e mmeeeree——— 5
BU mmmcccccccccnccccc s cc e n e e e e e —e e e e e . e .- ———————————— 6
Byte 5128 emccmmccccmccmecmcccccccnccccmcrcmecan e ceana- 5, 6, 35, LO-41
(S L L L PP PP S - o 2 e o e o e ————————- 5
Card foImM -recemmmecmcrmararr e ce e er e cnecceer e ne—-. - 1
COR cmm o e e o e e et o 0 om0 0 O e e -———— 23
CD mmmcmmmammcmo oo o - - o o o o om0 e e e 25
CDSC =m0 e om0 0 e o o e om0 B e 23
CF e m e o e o e o o e e o e e e e e e e e e 23
Chain counts within record -eeccmmecccccncccnarrencee- - 23

Class FLleld mmmmmmm e c e e e - - e o o G e 1
Coding fOIM wecmemmmmcmmcranmr e e c e e r e e c e a e — e ————————————— 1
Combining integers and bit addresses, rules =-eem-—ccmcccccecacee= 14-16
Commas, meaning Of -~-eecccccrececccccncccrnceerome e — e —n— e a—————— 2
Comment following instruction ~=eeceececcccccecccccccaccccnrcecmcrccaaa- 2
Conditiongl NO-0p =memccccccomccccsmrcccmrrcmccn e e . ——— —————————— L, 24
Connect instruction, format ---ememcccccccccmccccnnncrcurccccccncncenn= 3
Control wWord m---ceccccccecaccnncca- o o o o o O o o e 20
Convert instruction, format ----cecmcccccccccccccccccncrncccnncncencna- 3
Count disregarding record =--emececmcccmccercrcccncrerrccrccneanenmann 23
disregarding record, skip, and chain --ecccccrccccccrcccnccecccena 23
field swcccucmccccccccc e r e e mrcc e s r e e r e —— - ———— 3, 23
within record -—e-ecccmcccmcccccccmrenmcercnr e c e e c e — e e —— e ————— 23
Counter, location -==ececccacccemccccnncccnann- reemeescssere—ae e —————— 8
CNOP momeemc e e et e e m e o e o e o o e 2 e 0 ot o O 24
CR mmmm e e e o e o o e e e o e e 0 e e e e e 23
CW mmmmccmm e e m e o - e i o e e e e e e e e o e e 22
CW) g === e e e e o S S s som s mmo=--- 2
1 e e L 5, 6
Data, binary signed VFL --cecmceccccccccccncnnnnanax R U R —— 4Oo=h1
binary unsigned VFL eecccceccccmcercmacrcrccarcccnnnrecrnncnen- ha-L42
decimal signed VFL «cccmcmccmccccccccccccnccccancaccncas - h2-43
decimal unsigned VFL cemeememccamcccmnccnccrcccr e cn e nan - b3 4l
definition ~-erecccccccccccecccrccccacnrdcnrr s r e e o 3, 30-48
definition immediste —emecccmccccmrcanmccncncccnrecanaa - 4, 31, 46-48
description, field ----=--cceccccmccncaccrcnnan- - 5, 10
description, instruction ----ecceccecccnancerncnnnencnnremce e a e 26
description, overruling ~-eeeeccmcccnccccrcrc e cre e e e ———— 6, 7
description, programmer errors in ~--ec--ccecmcamccccacccsmcnconacaen 7
description, when UNNECESSArY -=ecmeccccccmrcccccrcrmceer e ecam—— T
entry, general =eemmeemmemmccacccmecome s e eeccecmseces e —————— 30-L48
entry instructions, format ---cccwacencmaccccnrcmmncncnnrccncccana- 3
normelized floating point ~-ecmemccrccrccerccccmcrncrccnnecrmee= 35-37
reservationememmeemeccececee e aan- 4, 6, 10-11, 20-21, 27, 49-50
reservation, restrictions on ----eccccccrccrccvenncnncenna" cem= 49-50
rules for entering -w--wemcemecncncececcccccccrcccd s e — e e e, — - 3514
unnormalized floating point =ececccccnccncccccnannaa o o o e e o o 38
DD =eecmcmcccccmcscnsacmemceemememeee e e —ee—eee———————————— 6, 10, 30-48
floating point examples -eecmeccmccccccccccccccccercsrccereenee= 36-39
summary of rules fOr -—eecmccwccccacucrccccconnccnnen== R —— 45-48
DD]I ~mmcccccccaccccnrcr e —— - e o 0 o 6, 31, 46-48
EXOMPLES = mmm o e e o o o o 0 e e e e e e L7-48
QS mmmm e o m e c e e m e e e e 8 B e e 5
II

e e L

Decimal numbers, form Of -—m-emcccccccmcccmcccccmcccccnnccacananae 33-34
signed VFL dat8 -eeeeccccmccmccccncencnccreccrererrecernennanecan- L4ouu3
signed VFL data, eXample e=emeemccemcccecccccccccccccccccmonencea—- 43
to binary, entry mode «c-eecmcccemcmccccercr s nm e e r e ————— 32
unsigned VFL dats --e-ccccccccacaccncncccccmccrcncanmcrncnnan-" L3-Lh
unsigned VFL data, €Xample -meemeececccmmccccccccccccccncccanenax Ll

DR =me=mmmmmmmmme oo m oo e 4, 6, 10-11, 20-21, 27, 49-50
restrictions ON ~=-ececccccecccecccccmcccccrcrrrcncmrr e e ————— 49-.50

DU cemccmcmcccncccnncann e e cmeme e m e s — e e ———————————— 6

EM mmecccenccccm e ccmce e e c e e nr e s s s d e s e == 5, 32-33

END comc e e e e e e e e e e e e o e o e o b, 24

End of program, format -eme-cccemceccccrencccccenanca- mmmmema——— h, 24

Entering data, rules fOr -mmeemmccmcccccccccccccncrcncnncnnrannae- 35=4L

Entry, integer, genersl parenthetical «eec-mecccmcccenimcncnnacecaaxn 9-10

Entry mode eececmccccccccnccccrcncc e crcs s ccnmcc e s ——— 5, 32-33
elphabetic conversion «-ececcccmccmcnccccnccnnccccancannarcenene= 33
decimal to binary eeececceccccccacaa - e e e e - e o e e o 0 e 32
=Y s o QR - o e e o 0 32

Entry of data, general -ee-=-ecec-—-- e mmeceesccmces e —————————— 30-48
of exponent =--~ecwuccecancormcmmem~- e em——e——— remreem e ————— 3k
of sign byte ~-eec-ccccccccmmancccmccncncncncann cememacma e 34-35

EXTor MATKS ceccccmccccmannm oo ————————————-———-- - Appendix D
suppression Of ~eemmecccccencccccccenna cemm——— e nm—————— -——- 27

Errors, programmer, data description -~-cceccewecccvcarcnccnncnca- ————— T

e, system symbol fOr --ceccvccmcnncncncnccencnnnceranenn- e - 37

Example, binary signed VFL ~-=--= - e T L]
binary unsigned VFL «ceccccecwnceccccncecnmcnecreencccanmamne= we—e 42
bit address and integer --eemmcemecccecna-- ,————— P — 12, 13, 14
COdiNg ==emmmmcemmmmcecem—————— mememmmeeemecseeeesee————————— 52
DD mmm e o e a1 e e e o o e e e om0 L7-48
decimal signed VFL ~eecemecmmeccccccccmecccncaaa" S 43
decimal unsigned VFL ---ecceccmnccceccneccccrcrncacenennmam e ————— Lk
DR cmcmmmun mo o e oo o o o o o o 0 0 o e e e o 0 0 e 0 o o 0 O O 21
EXT cecccccccmccccrcccncncccamnermrcnanee- - - o a0 1 e 2 21
floating point data description ~ececeecemmcccemmccmcamemaanaa 36-39
general integer eNtry ~=emec-cececcrecccccccccccccncccenmm—a——- 10, 14
PrOGrall ==eemmm e ———————————————————————— ———— 52
radix specification --—-eecccmcmcccccccaccmcncccermreeenca———- 17, 18
SYNONYIL = e o o om0 1m0 O o o o e e e 19, 20

Exponent entry «--cecemeccececccceccmccccrcccc et m e ae e ——— 34

EXT moccmmmmcmmeceecmeemseeeeSe e s e ———e——m—— e e ——————————— 3, 21

EXtract cccccccammcncmm e nrncc e e s s crrrc e r rn e r e e e ——— 5, 21

11T

Field length ~wecmceccccccmcccmccccccc e r e ccremr e rerm e~ 5, 6
B L EEEEL LR PR L L LEL L LA L S L e e ——————— 5, 6
Floeting point data, eXemples =----emecocccccccmcccemmcccmcncacn= 36=39
NOYMBLIiZEA mmecmccmccccmcccmcccccrccrr e n - —————————— 35=-37
unnoIMalized =-emeccccccccmccconrmrcr e e ————— ~—- 38
Floating point instruction, format ----eeccccccccccrcaccccncca - -3
T L T L L E L LR P T P T 32
Form of decimal NUMDETrS -e-c-ecccecccccmccmcrceermcncerrecceeen—- 33.3L
Format symbols, definitions -=e-eemcmcccccccccccccccccccoccccnccan- L5
date entry instructions «-e-m--eccceccccccccccccccccccnrcncrsc e e an 3
instructions to compiler eeeeeccccmccrcwccccrcrcccnr s recaenn e m——— L
machine instruction ~-ceccecccvmcncrrcmcnccnccnrmrrrcccccar e ——— 3
R ittt it b L L L E L EE PR L P L LT L E R L T 5
General parenthetical integer entry -«-ceceeccccccccccamncrcccana- 9-10
R Lttt R e L L L L L L L
Jdentification field evweccccmeccmcmcccnccrcncarccn e c e ————— 1
Index register, system symbol fOr --ccccccccmmcucrcnccnnucunvencane - 28
TNOEX WOT'G = oo om0 o v o e o 1 e o o 0 5 e o o o o Ot o0 0 3, 23
Indexing, instruction, format -=eec-cccmcccccccccccccncccncccnancecaan 3
Progressive ewwemmceecccrcncucnaceneccmee e men e . ———— P —— 24
Indicator bits, system symbol fOr -e-recmccecccccaaccmcncccccnncnnaax 29
Input-Output, addresses, system symbols fOr =eweccceeccw-- cemmccmme——- 30
control word, format -ee-cee=--- mmmem——————————— cmmm——————— —————— 3
Input-Output Select instruction, format ----ceccmccccmcccccccanacnnax 3
Inquiry station conversion, entry mode ==ecececececccemrcmccerneeea= 33
Insertion of specific fields -ewweccmccmececcecnnn- cemmmmemen—————— 34-35
Instruction continuation -==eecccmcmccccmmcecnnccccnccccrrecrreecnnnne- 2
dats description -~-ceccccmmccccccmccnccccm e c e e ————— 26
FOTMALS wwmmemccccccccccmccccmccmccccccc e e rren e —— . ———— 25
need t0 NAME ~mwccccaccccm e crnccrc oo - - -——— 2
5eparation «wemcecrccccncmrcrc e r e e e e ———— - ———— 2
Integer entry, general parentheticgl ----ecccccccccccceccnncacanns 9-10
CXOMPLE = om e o e e e e e e e e e e e e e 10
INEEEEYS mmmmmcm e c e e - - o = 0 1 e 9-16
and bit addresses, addition Of =seecrmccccccwnnmmccrcncrercema- 12-14%
formal memcmmcccccccccccacc e cc e rccn e r e r e m e e — - 9-10, 12
L e e L L E L L L PP P P 5
R R T 33
B LR L e L e e 4
T i it et 4
v

Load value with SUM ~cceremccccmccrccmrmrr e rcnrc e anr e m - 3, 22
Location counter ~e-eecccec—cmcccnccccameenc————— e mm—— i m e e ————— 8

system symbol fOr -=wecercmmrmcccccamrreneececen———— mmmmmm———meae 20
TLocation word for special registers -e-eemeeccccnea-- e ———— 28-29
logjpe, system symbol fOr wem---mermecccccccmascccscmemcee e e 37
loge2, system symbol fOr wwceceranacna e e o e e e e e 2 o e e 27
TVS cmmcmmc e c e crrc o e e o e e e e e e e 3, 22
et el btttk i 5: 6) 7
Machine instructions, format -we-ceccccrcncnccnwana= R L T TP 3
Miscellaneous NOtes =--eemecccccccncccccmccmmecnmceeerene———————— 26-27
Mnemonic for special registers =eecececmcececmcccacemcccccccccanaa- 28-29
Mnemonics for operationg =--=e=cecceea ceememe————— cmmeeme=-ws Appendix B

INAEX mcmmemec e — e —r—————— e ————————————————— Appendix C
L R e iy 5, 6, T
Multidimensional arrays =e-eeecceea ,ermms e n e e ——————— 10-11, 19, 20

use of synonym in -=cecemcacccccarrcomoncneawa—- e mem e ———————- 19
Nl mmmmccmcccccemccmes e s e e e ——————— . cmmmemme s o —————— 6
Name field wewcccwemcmcenwecnana- —ream———- - o o o e o o 2 e e e 1
Neme, with blank statement field «--cecmeccccrccccecrccrcccccncceea- 27
Negative address «emecememcecerccccccacerccccccremrcr e e e —————— 13

Integer ~eccmcmmeccrcmcmrrr e r e ncrc et r e r e r e e e e — - ——— 10
Normalized floating point datl --ce-eecmceccccccacrcccccnanecncna-" 35=3T7
Notes, miscellaneous ===---ecemcccccccmcreeecrrenmeceecaaceann——= 26-27
Null fields, omission Of =ecec--ce---- S 26-27
Number of instructions per card ~eeecmceccerccmacccnccnrecrcccrnerrea- 2
OF 7 cwemcacccccncrcerrreres e m e — e --- e e ————————— ———————— 5, 15
Offset we-mcmmcoccccmmmcrcncnermcrrmeer e ccan- mememmemmecece———— 5, 15
Omission of null fields =ee-cem== e ————— e e 26-27
OP, OP1, OPp ==s==ev-mcccccccecce- - e e “mmmmm————— L
Operations,classes Of =ewrecwemcecea- -t e o 0 o e e - o memem———— 2
P emcecccccccrcrcenenae—— cemescccccmccccn e ————— mcmeccenmcencanan—— 6
Parentheses, use of and restrictions ---es-mcececccea-- ———— wm== 26, 37
Pi (n), system symbol fOr ememeemecccaccacccccne- eemeceecmcme—————— 37
Primes (', ") ---meee- B S ——— 2, 5
PRND ~ewemcwcaca= - - o o o o et e o ———————————— 25
PRIS o ov o o v cm i o o o e o o o om0 0 6 0 0 0 B e e e o e 25
Prografmer SymbOl =wmewwecmecweemc- —m————————— mmremmmcme e ————— cumemanse §

symbolized field =mesmcceccecccccccccccncaca" - L LT P 9
Progressive indexing -----e-c-e=-- - e m e — e, —— - ———— 24
PEEUAO=0pD me==memeeceeecc—cmoscescsceemememesees———meee— e —ee—e—.————— 6
PUNFUL «-eececcccomcmranmcrarecrcercmracae- e msmaner s e— e, e —————————— 25
PUNID mmmmoc oo oo e e e o om0 o 0 e 0 0 o o 0 o 25
PUNNOR o= o vt om0 e o om0 0 0 0 e o 25

e 5, 32
Radix, specification ~--mecccecccacmcmcccccmecccccccccraec oo 17-18
eNtry MOQe =memwemcccm e e e — - 32
when unspecified =-eececcccmcccccmc - 17-16
Refill-field =mememcm e e e e e 3, 2h
Restrictions on address arithmetic =ceccccccmavmmnncancccnncncna- 20-22
ON DR ~mececmccccccmcnc e s o e e cmc e cn e e m————— - 49-50
on Parentheses wmeememacmccccmccccndeccsccmcrcrcdcr e ———————————— 26
ON SLC =mecemccccccccc e cmcm e e cmc o mc—cm— e ————c———— 49-51
On SYN memeeme o e e e e e e e 19, h9-51
S L i T T T 3, 24
Rules for combining bit addresses, integers -ewecececemmccanccaaa 14-16
for DD statements, summary Of -wwmececcceccccaccnncrecaceacaaaaa 45-48
for entering dats -ececmcccccccmaavcdcamacec i rcem e c e —aa 35«4l
SOCR m e e on e e e e e o e e e e e e et e e o e e 23
o e e T T T TP ey PR 23
SCDSC memmmm e m e r e e cn e e e c e n e e, e ——————— 25
) e e et T T S PSSR 25
Set Location Counter —cecmcmerccccmmcnacanccccaanaaa 4, 8, 21-22, L49-51
restrictions ON -eeccmcccmmc e acccrcccarcecamaa ———————— 49-51
Sigh DIt —-wmemmrc e ccc e e cm e rcnccd e e ——————— Lo-41,
Sign byte entry -ce-ccammmmcccmcmc e acccmccc o e cma e e 34-35
S et e e T T T T ST 25
Skip, count ~-==c-ccce-a o e o e e e O e e e 23
SLC m=reccereccceccccececm e ccce e s mcccccm——————— L, 8, 21-22, L49-51
Special operation format, notes ON =ewmcecccmccmmcnncacaa- ——————— 22-25
Special registers =-e-eceecccamccceccocenrcccrancaaa- - e o o e e 28-29
Specific fields, insertion Of ---eccccmmmccccacccmccmmacm———————a 34-35
Statement field —emmecemmmcc e a e 1
Subfields of instruction ~eeemcemmccmca e ddcrdcccccm e e 2
Summary of rules for DD statements ~weecccmummmcrcccccccc e 45-48
Suppression of error marks —-eeccmccccmcccenmc e ccc e cre— e ——————— 27
SWAP instruction, format -eeeceecmmcmcc e - 3
Symbol, instruction separetion w--swwwemcaweceaaaa e o o o e e e 2
PTOGYANMMNEY = e o e m e o e e om0 0 0 e 0 o o 0 o o 8
BYSTeM = m e e e 9, 27-30, 37
T e e e e e e e e e e e e e e e e e e o e e e 2
B el et T e B SRS U SRR S U ,———————— 2, 5
e 9, 27-30, 37
Symbols, format, definition ---eecccccmcccmcc e e e b5
undefined =eeeeeemm e e e a e e em e el 27
S e o T L, 6

VI

Synonym, deata description for =--eecemmeeccecccancrcanncmnena= —————— 18
definition ~eeemcrecceccccccrccctcercr e, e — e e —————— 18-20
FOIMAL memmmmmeececrccrcmreror e e e e e a— e ——————————— 4, 18
restrictions On —ecececmccamcccnccrc e arar e e e e ——— 19, 49-51
use in multidimensional array «-w==esecccccccmacacccccccccco—cea- 19

System symbols «--eemeccccarcccccrcccnneccaneen 9, 27-30, 37, Appendix E
for some irrational NUMDErs -=---ececcacccecccccccncncccncncccnaa 37

Terminate loading and branch ---s-cccocccmcmmcanmocmmeccccnanaeax L, 25

TLB --coccwea- e e e e e — - ——————————— L, 25

Transmit instruction, format ----emecmcmmcmmccc e crccrccc e cncaenee 3

L1 T T e P P PP T 6

Undefined symbols ==eerereeceeccccccnenccacanena-" P ————— 27

Unnormelized floating point daté --e-eec-cccecccccccacmcccaccncrconcan-" 38

USE MOAE ~emcmmccccnccrccccccs e c e mme - ——m - ——————————— 5, 6, 7

AR e D L D e e Ll hubahatabae 5, 5

Value field ~-eccececmcnmcncnrrenerccnan=" P - ———— cermene 3, 23

L e bttt DL L L L T L 3, 23

VFL, arithmetic instruction, format --emeecccmcmrcccmcsccmcnaccncacna 3
binary signed date -=--c-ca-mcea-- e ———————————— - e ———— Lo-41
binary unsigned data ~ecmcecececcnmcaccccccercce e r e ae b1-42
decimal signed data ~eeecececccecmmccnnccmmrcrrree———————— ————— 4213
decimal unsigned data --emcecsstccccmcncancnceee e e e e e, — e ———— L34k

X, use in floating point datae entry ----e-eececccccmcccncmcncanan 35, 38

DG A D e D et D D e D 3, 25

VII

iOZ(’)béqe} 5

	Table of Contents
	2 Instruction Formats
	2.0General
	2.1 Machine Instructions
	2.2 Data Entry Instmctions
	2.3 Instructions to Compiler
	2.4 Format Symbols Defined

	3 Data Description
	4 Strap 1 Location Counter
	5 Symbols
	6 General Parenthetical Integer Entry
	7 Multidimensional Arrays
	8 Bit Addresses and Integers
	8.0 Definition
	8.1 Addition of Integers and Bit Addresses
	8.2 Rules for Conibining Integers and Bit Addresses

	9 Radix Specification
	10 Synonym
	11 Other Restrictions on Address Arithmetic
	11.0 DR (Data Reservation)
	11.1 FXT (Extract)
	11.2 SLC (Set Location Counter)

	12 Notes on Special Operation Formats
	13 Miscellaneous Notes
	14 System Symbols
	15 General Data Entry
	15.2 EntryMode
	15.3 The Form of Decimal Nwnbers
	15.4 Insertion of Specific Fields
	15.5 Rules for Entering Data

	Appendix A
	Appendix B Strap Mnemonics
	Notation for symbolizing Floating Point operations
	Floating Point operations
	Integer operations

	Appendix C
	Index

