/1

[P i

-y

STRETCH CODIRG ASSUMPTIONS
(Reviged) . 7/29/57

2535!53 The purpose of this write-up is to define a fundamental vocabulary
and arithmetic unit operation which may be used in "experimental coding".
The aim in performing such coding is to permit an evaluation of certain
computer concepts which have not previously existed - at least locally,
It is also possible that such coding will suggest other features and/or
changes. 7

The primary areas for evaluation are expected to be:

(a) Geometric Indexing
(v) Second Address(SA) and 1ts associsted indexing (SAX)
(c) Pre-Post secondary operations (SAUD)
(d) Index Register format.
In addition there are some other areas for evaluation such as:
(a) Indirect addressing technique
(b) Chain indexing
(¢) Programmers Tag bits (PTi) in data words
(4) Indexed &, A& " (index register modifier)
(e) "- to memory" type arithmetic operations.

It should not be assumed that the included vocabulary is complete.
Certain types of operations have not been defined such as fixed point
arithmetic operations, shifts, logical operations (AND, OR, etc,), and
I/0 instructions. In order that coding not be prevented due to these
omissions, a "temporary vocabulary" has been included. The inclusion
of the 1/0 operations is made so the points in the code where I/0 work
is assumed can be simply designated.

-1-

%LE OF CONTENTS

I. Introduction)
A. Skretch Mamofy Organization
B. Arithmetic Speeds
C. Some Comments
D. Miscellanecus Assumptions

II. Floating Point Data Format

I1I. Instruction Format and Types of Addressing
IV. Types of Indexing and Index Word Format

v. Vocabullry and Pre-Post Operatione

VI. Indicators

VII. Coding Form

VIII. "Temporary Vocabulary”

IX. Coding Examples

i1

STRETCH CODING ASSUMPTTONS

I. INTRODUCTION

A.

Stretch Memory Organigation

There are 3 types of random access memory. Their speeds and

aizes are currently assumed to be:

(a) Main Memory (MM): 2.0 us R/W cycle. Four boxes of
8192 was. (Total of 27 wis.)

(b) Fast Memory (FM): 0.5 us R/W cycle, Two boxes of 512 wds.

(Total of 2° was.)

(c) Ultra-Fast Registers (UFR): 0.2 ;s R/W eycle. 16 registers
which are used ag index registers and high-duty rate
temporary (erasable) storage.

The currently accepted memory addressing system is: \
1-16: Accumulator, selectors, instruction counter aﬁd
other addressable registers. :
16-32: Index registers and other 0.2 ps. registers. (UFR)
33-1024: Fast Memory (0.5 us)
1024 -32768: Mein Memory (2.0 ps)

Arithmetic Speeds

C.

Floating Point arithmetic speeds are aessumed to be:

(a) sddition or subtraction: 0,6 ps

(b) multiplication: 1.2 us

(¢) daivision: 1.8 us

Other assumed times are

(a) Clear and Add (Load, etc.): 0.8 us from MM
0.2 us from FM
0.2 pe from UFR

(b) Btore: probably .1 ps for all types of memory.

Some Corments

(1) Insofar as possible, one would like to assume that
data blocks are stored in Main Memory, instructions
in FM, and indexing quantities in UFR. Perhaps some
frequently used constants might also be stored in FM.

wle

.

(2) Occesionally several "quick" references are needed for
the same variable stored in MM, such as the following
calculation of xz(x in MM):

o CA L(x)
a+l FM L(x).

This code would make inefficient use of the Arithmetic
Unit since the first reference to x would tie up MM
for 2 us and the FM cannot begin until o+l completes
its reference for x the second time. Hence 2.0 + .8 = 2.8 us
must elapse before the multiplicetion can start. If o,
however, could store x in a faster memory, say R, and
c+l could get its x from there, then the multiply
could begin after .8 + .2 + .2 = 1.2 us (or possidbly
08 ul):

It is considerations of this type which lead to
the postulation of a restricted second sddress and the
concepts of "Pre-loed”, "Pre-Transmit® (or "Pre-Store"),
"Post-Store", and "Preload and Poststore"., By test
coding we hope to determine the fregquence of use and the
saving of arithmetic uit time through this ides.
Another open question is whether one gains much by having
some indexing associated with this second address. !

D._ Miscellaneous Assumptions

(1)

Arithmetic Unit
(a) Universal Register (no distinction between accumulstor
and My). Universal Register (Accumulator) is double
length, (64 + 64 = 128 bits)

(b) There are 2 types of triggers:
1. Automatically set (such as 3 (1)
overflow triggers, underflow triggers, divide
check, etc.) '
2. Program set (such as 704 sense lights)
It is assumed that a 64-bit selector exists for each
of the two above types. In case (1) one bit corresponds
to each of the various conditions. (Bee VI.)

"

(2)

(3)

Fixed-Point Definitions are not considered in this
write-up except for indexing arithmetic and the logical
connectives (C and CM). (e description of C and CM will
be issued shortly).

The machine is completely binary and no decimal

operations are assumed.

oy £ . - K . N
WALl g vy — o e asf Ak

%

II. FLOATING-POINT DATA FORMAT

12 i 12 13

P SEE
T| exponent |5 MANTISSA sitiT

4 312]1
1 10 1 48 1111

ES: Exponent Sign
MS: Mantissa Sign
PT: Programmer's Tag Bits.

One would like to determine to what extent the four PT bita are of
value. It might be that they would be of value in marking beginnings
and endings of arrays, boundaries , ete,

III. IRSTRUCTION FORMAT AND TYPES OF ADDRESSING
T

At this time only one instruction format is considered.

SA o|s|xX S S | B
[#) AlA A
A X [Teal\3 (B[P ©P Ul 2| P
20 X 6 &6) 1 I | 3 2 2. 2 2

0A: (Operand Address). OA may be immediate, direct or indirect
depending on the definition of the oOperation and the OAD bit.

X: (Index field). May be used directly to address a single index
register in which case X contains a 12-bit address, or geometrically
to sddress a sudbset of index registers 1 - 12,

SA: (Second Address). SA may be immediate, direct, or indirect
depending on the definition of the operation and the SAD bit.
SA in some operations is split into two fields, FL (field length)
and BA (bit address).

' 2
OAD: (Operand Address Designator) (See ¥ below)
0: OA used as basically defined
1: immediate — direct, or direct —> indirect

SAD: (Second Address Designator) (See § below)
Same as OAD except it modifies SA instead of OA.

XD: (Index Designator)
0: Direct
1: Geometric

OP: (Operation) poef gf;f n:wfr«'f“-gfitl 4

8AUD: (Second Address Use Designator)
00: Pre-Transmit (T) or flo Action 1£ 8A = 0 and 8AX = 0 |
Ol: Pre-loed (L)
10: Post-Store (S)
11: Pre-Load and Post-Store (LS)
The SAUD field is not used on non-arithmetic operations even though
BA is used.

SAX:

BP:

(Second Address Index field) Geometric indexing only, The first
bit position refers to index register 1 (in common with 1 in X)
and the second bit position refers to index register 13,

(Break-Point) To be defined later

Note that there are 3 unused bits.

Types of Addressing

l. Immediate, Direct, and Indirect.
The definition of each operation states (or implies)

whether OA and SA is immediste or direct in its basic sense.

The following statements phrased in terms of OA, OAD, and X
apply as well vhen the corresponding substitution; SA, SAD,

and 8AX; is made (except in the definition of the contents of TAW)

immediste address: The address, OA, or the effective address,
OA + C(X), is itself used by the operation. Examples are:
Transfers, Branches, Shifts and A's in the SA fileld.

direct address: The contents of the eddress, C(OA), or the
contents of the effective address, C{OA +w9£§))’ is used by
the operation. The arithmetic operations are a common

example, -

indirect addresas: To perfdrm indirect addressi it is necessary
to use one or more "indirect address words”, (, in addition
to the address and index field of the instruction itself, OA,
and Xo. The format of an indirect address word is the same as
the instruction word format but only four fields are used:

OA, X, OAD, XD. Occasionally several levels of indirect addressing
are needed; hence the notation IAW,, OAy, X, OAD,, snd XD, vhere
i denotes the level of indirect addressing, 1 = 1,2,.... .

The XDi bit designetes direct or geometric interpretation of Xi'
An OAD, bit indicates that another level of indirect addressing
follows. Note that only operations defined with direct addresses

cen be modified for indirect addressing (and OAD =). Hence:
'

-6-

First level indirect addressing (i = 1; OAD, = 0)

] ‘C(C(0A°)+ C(XO)) T C(OA1 + C(Xo)) is the operand used by
A Y ~§g\ the instruction, If there is no indexing, this definition
Y reduces to c(c(oa,)) = c(oa,).

Second level indirect sddressing (i = 2; OAD, = 1, OAD, = 0)

v .
S}" C{C [_C(OAQ) + C(Xo)] + C(Xl)} = c{c [OAl + c(xo)]+ c(x,) g

T - C {o:s‘2 + c(xl)} 18 the
operand used by the instruction

A,
yi,

« 1; OAD, = O)

level indirect addressing (1 = N; OAD, = ... = OAD -

1 K-1
; o2 -
Eﬁﬁé ; C(O»AAN + C(Xn_l)) is the operand used by the instruction,

Y, E"““"‘
7 C
;ZSQQE | The definitions sbove are for OA indirect addressing. For SA
indirect addressing, substitute SA for OAo , BAX for X, and
ff”WT#@ §$i? SAD for OADO. The interpretation and use of IAW1 remeins the
{ 20 e piin o %) same.

2. OAD and SAD
ot The three types of addressing are assumed to be ordered:

a, imnmediate

b. direct

¢, 1indirect.
If OAD (SAD) is sero, then the type of addressing defined by
the operation is used (immediate or direct). If OAD (SAD)
is one, then the order is dropped one downwvard in the liat above
from the type defined in the operation; immediate —» direct, or
direct ~¥ indirect,

3. Bit snd Bit Field addressing
In certain operations it seeme desirable to address s
particular bit or a sequence of continuous bits. For thie
purpose the 12-bit SA field is divided into two 6-bit fields,
FL (fleld length) and BA (bit address). The bit address is
simply the bit position in the vord of the leftmost bit of the
field. The field length is the number of bits to the righf of fﬁi?f:!
BA needed to make up the contents of the bit field (BF).
Examples:
(a) If only bit 37 is desired: BA=37, FL0
(b) If the OA field (bits 1-20) is desired: BA=l, FL=l9
_ 7-

IV, TYPES OF INDEXING AND INDEX WORD FORMAT

o Stretch is assumed to have two general types of indexing,
direct and geometric. Each instruction contains a 12-bit X field
and an XD bit. The XD bit designates direct or geometric indexing.

Direct indexing: The 12-bit index field, X, contains the address of
2 single word to be used as an index register in forming the effective
address for the instruction, OA eff. addr. Thus any word, addressadble
by 12 bits, can be used as an index register if necessary.

Geometric indexing: Each bit in the 12-bit index field, X,
corresponds to an index register (as {n the 70h)., Thus the formation
of the effective address may depend on the sum (i_Vi) of several
index registers, (Ses—T¥)

At present it is assumed that the second address (SA) has
?.' some limited geometric indexing indicated by the second sddress
’ index field(SAX).

We assume index words of the form: :
- % (oN NEXT PAGE)

W ¢ Ay Y -
Nt e Vv I+ ¢ R M
1 ik . L. .
i1 Zo + 1 2o Zo 3
7™ wheres N sy
} ' 1T v (value) « the quantity used for address modification; multiple index
/ (? ;. . ' register reference vill cause & V, to modify the address.
YRy - C (count) 4is the control count vhichicounted dmm by 1 and tested.
R (reset address) = the sddress of the next word to be losded into this
regleter when it is reset, - chtin P e
A fourth quantity, & , or L(A) is carried in the SA portion of
the instructions vhich modify and test index registers. O may be used
to increment or decrement the value V.
The Reset address, R, is used for "chain indexing”. For example,
the instruction IBR (increment, branch, and reset) is executed as follows:
1. V+A~3V;1rC M, C-1->C, then
2, If C>»0 , Transfer,
A\ g

-8-

3. If C = 0, Control goes to next instruction and C(R) replaces
the present contents of the index register.
Thus, one may have & whole series of words to be loaded into an
index register, with the Ris forming the connecting links.

* Inside the machine, the sign of V is agsumed to follow V.
Hence, the V field (20 bits) occupies the same bits as OA
in an instruction.

V. VOCABULARY"

= (' .) .
4 Arithastis (c(acc) means ¢ “c)l-.éh

‘1. Basic operations (massumed to be similar to 70L4 floating point).
A (ada):
c(ace) + c(0A eff. addr.) — c(ace).
8 (subtract):
c(acc) - c(0A eff. addr.) —y c.(ace).
M (mltiply):
" c(ace) x c(0A eff. addr.) —> c(ace)
+ D (divide):
c(acc)/c(OA eff. addr.) —> c(acc), Q high, R lov
L (load):
c(0A eff, uddr.) > c(ace)
LL (load lov sccumulator):
c(0A eff. addr.) —> °("c°)65-128

. 87 (store):
c(ace) —> c(0A eff. sddr.)
STL (store low accumulator):
e(acc)ss 128 ~> c(0A eff., addr,)

2, Basic operations plus sign modification

AV (ada value):

c{ace) + Ic(OA eff, addr.)‘-—-—)c(acc)
8V (subtract value):
c(ace) - lc(QA eff. addr.)l—*-) c(ace)
MV (multiply value):

c(ace) x]c(OA eff. addr.)l —> c(acc)
DV (4ivide by value):
c(ace)/ ?’e(m eff. tddr.)}---) c(mace), Q high, R low
(load value):
Ic(OA eff. addr,)' —» c(ace)
LNV (loed negative value): :

lc(OA eff. addr.)1‘-—-) c(ace)

LN (load negative:

- a(0A eff. addr.)—> c(acc)

1=

It should be remembered that the accumulator, imstruction counter,
etc. are addressabdle. _
«10-

STV (store value):
}c(tcc)]-—-) c(OCA eff. addr.), c(ace) unchanged

hd STRV (store negative value):
- /c(ucc)/-—-y c(0A eff. addr.), c(ace) unchanged
STN (store negative)
-c(ace) — c(0A eff, addr.), c(acc) unchanged
3. Basic operations on memory (note: these operations do not
destroy c(ace).) \
AM (add to memory): . ! \\
c(ace) + c(OA eff. addr.) —> c(OA eff, addr.)
SM (subtract to memory):
E ﬁt) - . . . -
p Jw//;, c{ace) ~ c(0A eff. addr.) —> c(0A eff. adar.)
C(,u) MW (multiply to memory):
;”u‘t / c(acc) x c(0A eff. addr.) — c(OA eff, addr.)
C/W\ s j' DM (divide to memory):

c{ace)/c(0A eff. addr.) = @ —> c(OA eff. addr.), R lost

b, Basic operations plus sign modification, on memory

- . AVM (edd value to memory):

| clace) + [c(0A eff. agar.) —> c(0A eff. adar.)
SVM (subtract value to memory): _ .

c(ece) - }c(OA ef?. addr,)] —> c(OA eff. addr.) !

| - MM (multiply value to memory):
I} | . ecface) x [c(OA eff. addr.)] —» c(OA eff. addr.)
{ DVM (aivide value to memory):
c(ace)/ lc(OA eff. addr.)l = Q— c(0A eff. addr.) R lost

!/ . 5, Exponent and sign modification
‘ ¥ - AE (add to exponent):

[l’/ ¢:4(a<:<.~.)°":p + OA2_11 > c(acc)e x
- / / o SE (subtract from exponent): 0A

/ ‘ c(ucc)exp - 0Ay 5, _,c(acc)exp.
E

i .- cHS (change sign):
f /

2.11 is immediate

-c(0A eff, addr.) —> c(OA eff, addr.)

-1l

@'M%Q’Z(
C (0,%)
-
-

MP (make positive):
|c(oa err. o.ddr.)] —5 c(0A eff. addr.)
MN (make negative):
-[c(OA eff. addr.)’ —5 c(0A eff. addr.)

6. Use of SAUD (Pre-Post)
(May be used with all operations defined under V.A.l1 thru V.A.5)
The following definitions and rules for determining the meaning
of instructions whose Op consists of a primary operation and a
pre-post cperation are currently assumed. In some cases,
redundancies occur. Let @ denote the primary operation
(such as A, AM, AR, etc.)

blank: no action ®

!‘f’(‘:{(f‘d})@ T: pre-transmit C(OA eff. addr.)- C(8A eff. addr.),$
»(S*QW E Ls pre-loed : C(SA eff. addr.)-> C(ace),®
‘ 8: post-store : ®, C(acc) —% C(8A eff. addr,)
18 pre-load and
post-store C(8A efr. addr.)->C(acc),®, C(ace) —>

C(SA eff. addr.)

Rule: To determine the meaning of an operation, substitute the
definition of the primary operation in one of the sbove definitions.

' B Ihtil_exiggy operationa*

1. Operations to modify an index word directly or geometrically.
' TI (transfer and increment)¥
V + A =3 V; transfer to OA.
TD (transfer and decrement):
| V -4 ~—> V; transfer to OA,
TS (transfer and set):
c(BA eff, addr.) —» c(X-reg); transfer to OA.
TR (transfer and reset):
¢(R) —> e(X-reg); transfer to OA.
TIR (transfer, increment and reset):

V+d —» V; 1f ¢ = 0, reset; transfer to OA. reset applies
TDR (transfer, decrement and reset): :gd::]-y those
V-4A ->V; if ¢ = 0, reset; transfer to OA. registers with
e=0,

#* Transfer is used for "unconditional transfer".
Branch 1is used for "conditional transfer”.

S ¥

2. Operations to test an index word. 4 in SA (fmmediate)

BCG (Branch if C greater)

If C> A , transfer to OAj otherwise proceed.
ECE (Branch if C equal)

If C = A, transfer to OA; otherwise proceed.
BCL (Branch if C less)

If C< A, transfer to 0A; otherwise proceed.
BVG (Branch if V greater)

If V>4 , transfer to OA; otherwise proceed.
BVE (Branch if V aqual) '

If V = A, transfer to OA; otherwvise proceed.
BVL (Brench if V less)

If V& A , transfer to OA; othervise proceed.
BVGN (Branch if V greater then negative A)

Ir V> « A, transfer to OA; otherwise proceed.
BVER (Branch if V equal to negative A)

If Va<.A, transfer to OA; otherwvise proceed.
BVLN (Branch if V less than negative A)

If V<. A, transfer to OAj; otherwise proceed.

To any of the above mnemonic codes the suffix R may be added
to achieve the reset operation vhen the condition is satisfied.
For example:

¥ BCGR (Branch if C greater and reset)

g:v::;::\a- . If C> A , transfer to OA and reset; otherwise proceed.

3. . Operations to modify and test an index word.
I8 (Increment and Branch) immediate A in 8A
"V+A~BV; 1 C A0, C-1 =% C; then
If C = 0, proceed '
If C # 0, transfer to OA
DB (Decrement and Branch) immediate A in SA
V-A-—» V;1£C £0, C - 1 ~» C; then
{If C = 0, proceed
If C § 0, transfer to OA
Note: If BAD = 1 in IB and DB, then V £ A —3 V is replaced
by V.¥ c(ea + c(8aX)),~> V.

-13-

_! . Control

ICB (Increment by C and Branch)
V + C(8A + C(SAX))C*"‘* V; i C A0, C - 1-»C; then

{If C=0, proceed.
If C 4 0, transfer to OA

DCB (Decrement by C and Branch)
same’ as ICB except V modification 1s V - C(8A + C(SAX))c""! \
Note: If SAD = 1 in ICB and DCB, then the V modification
is V + C(C(84),, + C(8AX)),—> V

INB (Increment and no Branch)

same aB above except
2’5.‘5. (Decrement and no Branch) that the proceed and
ICNB (Increment by C and no Branch) transfer conditions
DCNB (Decrement by C and no Branch) are interchanged

Rote: To any of the sbove eight operations may be added
the reset operation by adding the suffix R to the
mnemonic code. On the first four operations above,
the reset occura on the proceed branch. On the last
four, reset occurs on the transfer branch.

~ TSL (Transfer and set location)

C(location counter) --—-DC(SA)OA - C(S.A)l_20

Transfer to (OA eff. addr.)
Note that this is also an "ordinary” indexable transfer
vhen SA = O,
BB* (Branch on bits)
If C(BF) # O, transfer to (OA eff. addr.); otherwise proceed.
ﬁ*(Brnnch on Zero bits) '
. If C(BF) = 0, transfer to (OA eff. addr.); otherwise proceed.
BBC* (Branch on bits and clear)
I C(BF) # O, transfer to (OA eff. addr.), O—Y>C(EF);
otherwise proceed.
BBZC* (Branch on zero bits, clear on proceed)
If C(BF) = O, transfer to (OA eff. addr.);
otherwise proceed, O —» C(BF).

#These operations apply only to the "implied” machine-set

indicator (8ee VI)
-1k

- D._Miscellaneous Operations wf ”é"

MST (masked store) No pre-post.
C(acc) —»C(0A eff. addr.) masked by C(SA eff. addr,)
ML (masked load) No pre-post.
C(OA eff. addr.) —» C(acc) masked by C(SA eff. addr.)
MIC (masked load with clear). No pre-post
O-yace, C(OA eff. addr.)—> C(acc) masked by C(SA eff. addr.)
SWAP (interchange two wds. in mem.)
C(0A eff. addr.) —» C(SA eff. addr.) vhile C(SA eff., addr.) —%
C(0A erf. addr.). C(acc) not disturbed.
Possibly pre-post might be useful (except SWAP,T) but
none are gssumed at this time.
SEA (store effective address)
0A + C(Xi)v"""’ c(SA)l-al geometric

OA is immediste and used as a 20 bit number wvhose sign is +)‘
c(x1)y means the Z V, from the gecmetrically indicated
index register or a single V if direct. BSA 1s assumed to
refer to an index register.)

-15-

VI. IRDICATORS

A. Automatically set indicators

1. Ve assume twenty-seven indicators, to be set by the machine,
a8 follows:

Indicator # Condition indicated by bit being ON
1. Accumulator gero
2. Accumulator greater than zero
3. Accumulator less than zero
k., Programmer tag #1
. 5. Programmer tag #2
6. Programmer tag #3
7. Programmer tag #i
8. Improper divisor
9. Fixed point overflow
10. Fl. Pt. Overflov (a bit occurs in
exponent bit 7)
11. Fl1. Pt. Overflov (a bit occuis in
exponent bit 10)
12, Fl. Pt. Overflov (overflow beyond tbe
range of the exp.) :
13. Fl. Pt. Underflow (bit occurs in exp. bit 7,
. sign minus)
1k, Fl. Pt. Underflow (bit in exp. bit 10)
15. Fl. Pt. Underflow (bit occurs bdeyond rnnge
of exp.) .
16. Exponent zero
17. Exponent greater than zero
18. Exponent less than rero
19. Index quantity "C" less than zero (or attenptm
20. Invalid operation
a21. Invalid address
2g. Break point bit #1
% 23. Break point bit #2
2h. Control error
25. Information error
26. Memory error
27. [V| overtiow

2. Indicator #2h, 25, 26 indicate internal malfunctions in the machine.

3. Operations are postulated to test the status of these indicators in
either a destructive or non-destructive fashion, where this applies,
at the option of the programmer.

4. The indicator number can be used in the SA field when test programming
to denote the condition being tested. For example, "BB, A, # 1" is
equivalent to the 704 "TZ,A".

5. The address to which control is transferred is given by OA + C(X)."

#* The notation, OA + C(X), is equivalent to the previously used notation,
OA eff. addr.

B. Programmer set indicators

*
A vocabulary to handle the programmer set indicators is not
included, but is being studied.

-17-

VII. CODING FORM

The present coding form has the following format:

SEQ@ [OPN | A | X SA COMMENTS

It 1s suggesied that the coder adjust this form to the current
assuxptions by making the following additions:

SEQ | OPN A X SA COMMENTS
oP__AUb XD |SA __SADI SAX

In coding, it would be helpful in anslyzing codes if the following
conventions were used in the fields.
OP: letters corresponding to operation
SAUD: blank: no action
T: Pre-Transmit
L: Pre-Load
S: Post-Store
1LS: Pre-Load and Post-Store
0A: number ¢22° or alphabetic letter to represent
data word.
OAD: blank or 1

18-

X:

pumber(s) in range 1 through 12 or subscript letter(s)

if geometric, or single 12 bit number or letter if direct.
Should be consistent with XD.

blank for direct

G for geometric

mmber < 22 to be used as address or A for 1ndex1ng)9_r_

alphabetic letter to represent data word.
blank or 1
blank: no indexing of 8A
1: index register 1 to be used
13: index register 13 to be used (If desired, letters
(subscripts) may be used instead of 1 and 13)

BP: not defined st present.

«19-

VIII. “TEMPORARY VOCABULARY"

A, Ehifts »
AL: (Accumulator left)

c(tcc)l_lae shifted left OA + C(X) places; overflov indicator
possibility.
(High ace. left)
C(.cc)l.sh shifted left OA + C(X) places; overflow indicator
possibility.
: (low sce. left)

c('°°)65-128 left; c(acc)1_6h unchanged.

&

(acec. right)
C(uoc)l_lae right.

(high ace right)
C(acc)l_Su right; c(acc)65_lae unchanged.

¢ (low ace right)
c(‘°°)65-128 right.

E

5

B. logical operations (same as TOh)

NA: (AND to accumulator)
: (OR to accumulator)
yS: (AND to storage)
:. (OR to storage)

e

& |

C. 1/0 operations

RD: (read) OA field can designete unit and
WR: (wkite) SA field can designate which record, ete.

D, Fixed-Point Arithmetic

No fixed-point arithmetic operations are included.

-20-

(

B covE ! CALLING SEQUENCE

SuBROVTINE
MATRIX MULTIPLY (A ug;-c> AEC Srocer Row-wise o CoDE | SUBROUTINE
SEQ |, OPN 1. A .l X I, SA_| COMMENTS
B_1TsL oA 3
,G*'Iv A. WwHERE A, = FWA ofF THE Q;; MATR/X
B2 Bo , - B,= * " va- "
B3 Co \r c R I A L Y S
;B”' 2 . - .2'4‘ INDEX WORDS ; THE QuANTITIES /INDICATED ARE
| fs o K g+s ASSUMED To BE N THE V,C,R FIELDS (NoT in
;54, J '5\.6 THE A, X,SA FieLps SHoww).
{;“_ ,;Sf‘l‘ conTRoL RETURINS HERE '
"___hw o L s | Il IR A
oyl b S |2 3 T
. 1 % s|3 13 Tz
- de2 | TS " |arg 4 4)3
A+ 4] TS d+ 5 2,3 Gl 5 /3
dA+S| TS &+l 1,5 glo 13
anan tYA NS S ko) b
| [eleT] L Te 1] 4 G
f’ah‘? M T 13,5 G
9! A SIE z
' (oviol ICBR o+t 5 5 13 - :
‘q*u IBR A+ 7 / - /.
derz] ST Ta 1;2,3 q SToRE Ci§
a+13| IBR A+ 3 /
(d+14 TCBR A+ 15" RV 5 13
(e ‘,&MST TCBR 4+ 6 4 6 13 7/29/57
oA 416 TSL 7 13 0

(

(exAampLe ofF \CHA./N ~ INDEXING ”)

F I

g-NEIGHBOR SUM SafsT
SEQ op OPN <Aud| oa A@x X ol 52 SA WCOMMENTS i
« _|Ts A+ j To C(R):= Ex llm-
A+{ | TS A+ A I. C(T.) = i 11-2 a
:*2 TS "‘;-; A Ko C(R): [En 3 TR
+3 L Y Lo = - -y
Atd | A (Mfaﬁ?{;fﬁ_wi AT cgm s (=1 1% [®’]
d+5 | IBR N rm N 1 C(R)= LT TTTR:]
A+l | BVGN d+4 ~ I c(Re) [FL T3 [Re |
A+ 7| ST (*%0.0) (pl .
< o+ §|IBR d+3 i 1 1‘[;_'?2)Eﬂiﬁgmk;ot "om‘;;i (1:;41‘2,
- . 3§ J-2) FoRm AND SToRE W K{© wHICH
} 9(+‘i L8R 43 L I iS5 THE SuM OF ITS 8 NEIGHBORS. g
Mo, 0 L R0

e

:_QDNangs Brri | 349

“

Ls/2/# |
- g H WAl I N EZE30
gl ? ¥ g+® ¥GOL | e |
(2+¥ 9) gl S 4 AR 283X lor+r/
LAYLSNOD T + SNOLLINYISNI T £ % d9I | 6P
| & qay @inem Sl o @l - f T €, 1S g+p
‘NILnodaNs FHL M A2an1aWI ! S
ﬁwgaa som SYN S nhnownL T : 3 4 e ¥gIL, Lreg
sFausibay xaavl 39 Dnvyaissy €1 & s Lep AIIT i y+»)
qry %{Ayggﬂb’d INL aLoN k4 =z ' 'vl S+p
7 T g1 21 W [#¥p«
, K4 (e}1 1 S N EMR
€11 715 59 GEY IR T
€l ERE £z zHP sI| tHe
€l ¥ ¥ +P sI»®
: /
234 FIUIY GozLve)y IRY
¥ 1 +$!
5‘*?1 - r D; < A T |
d 32 7 A, e 5%
(iz $) SaYom X3AVT 357 R 349
¥ 2 A |
% £zl °2 s+$’}
9 56’2 o 98 -2+g] i
| B A '*'e",
* 5] % LT §
Xy VSiax 30457 VoS ;
SLN3WWOD™ [VS X v NdO | ©3S |

*
.

IMLNOWE NS [FGOT R

)

FSim-m0y gapars 78 Pz g%xl¥) Aguwinw iy

)

s .
"2 +"v0)) Brissavaay L23¥NI WL byish

3NILaodg NS

)

-2 -

