™

Juabv 21, 1959

AEMORANDUM TO: All Holders of STRETCH PROGRAMMING SYETEM
’ SPECIFICATIONS MANUAL

SUBIEGCT: Revisions
Inacinsed are the lalest revisions which, when incated, will

hring the STRAP-1 manual completely up-to-date. Not ali

~»«es have been ravised. Each revision sheet rervlaces the
;age of the same number. with the excepticn ol pags 1-29,

«7ich 18 an additiorn.

iease note that the enclosed revisions are dated at the ton
cf cach page. All future revisions will be similarly dated.
idescription by date of the contents of the most up-to-date
snnrnal can then be issued from time to time to sormit you
13 check on your receipt of all revisicns .

Paul 8. Berwitz, Manager
tachine Oriented Prograraming
#5H:HMime
Facl.

1.

July 1, 1959

Expression of Machine Instructions

Machine instructions are written symbolically on the coding form
described above. Normally they are entered one per line accord-
ing to a prescribed format which varies with the type of instruc-
tion operation. The instructions are written with fixed mnemonic
operation codes.

A Hollerith 11~0 double punch combination will be used to imply

the end of a statement, so that multiple statements may be written
per line. However, this character also implies the end of a comment,
so that it may not be included in a comment. The 8-4 double punch (')
implies the beginning of a comment. If the character ' appears in

the name field, the entire card is treated as a comment and will be
printed on the output listing without affecting the assembly process

in any manner.

Other fields in the instruction format--addresses, modifiers, etc,--
may be stated within the general symbolic forms of the system,

and, when so stated, are said to constitute symbolic expressions.

The order and manner in which such symbolic expressions are written
down in specifying the elements of any particular instruction are
dictated by a symbolic instruction format, that is, a general type
which provides for the expression of a whole class of particular
machine instructions.

1-3

July 1, 1959

1.2.1 Symbolic Instruction Formats

Symbolic instructions are entered in the statement field. Within this
field variable length operation codes and address expressions are
separated by commas and form sub-fields. A variable length modifier
to either an operation or an address is enclosed in parentheses and
attached to the modified sub-field. Blanks have no meaning in any field
except to indicate the spacing desired on the printed output listing. The
twelve symbolic instruction formats for STRAP-1 are:

FORMAT TYPE OPERATION

12, LVS, J, A, A', A", A",

1. OP(dds), A18(I) Floating point
2. OP, A _(I) Miscellaneous, unconditional branch, SIC
3. OP, J,lcg‘\l (I) or OP’J’AIS(I) Direct index arithmetic
4, OP, 7, A19 or OP, J, A18 Immediate index arithmetic
5. OP, 7, B1 (K) Count and branch
6. OP, B19(K Indicator branch
7. OP(dds), A, (I), OF_(I') VFL arithmetic, connect, convert
8. OPI(OPZ)(d 8), A?A(I),OF7(I') Progressive indexing
9. oP, 7J, Ag(D), A4 (1) Swap, transmit full words
10. op, A, (1), B. (K) Branch on bit
11. OP,IO% , CW]ig(I') Input-output select

Load value with sum

Definitions of the above format symbols are:

1. OP and OP1

primary instruction operation.

2. OP, a secondary operation permitted only in progressive
indexing and input-output.

3.4, an '"'n'"" -bit data address.

4, B19 a 19-bit branch address.

5.1 a 4-bit index address where (0) signifies no
indexing and (1.) to (15.) signifies indexing
by the corresponding index register.

6. K a 1-bit index address where no modification (0)
or modification by index register 1 (1.) are the
only possibilities.

7. OF A 7-bit offset field.

8. dds data description (see Section 1.2.2).

9.J a 4-bit index address which refers to an index
register as an operand. Here (0) refers to index
register 0, word 16,

10. 10 input-output unit address.

11. CW18 An 18-bit control word address.

12. LLVS Refers to one specific operation-Load Value with Sum.

13. primes used to distinguish otherwise identical fields in a format.

1-4

July 1. 1959

There is a general right to left ""drop-out' order for all the
fields separated by commas. For example, a VFL instruction
(Format 7 above) for which the offset and its index modifier are
zero is written:

OP, A(1I)

The comma is the major separator for the symbolic instruction types.
If there are less than the maximum number of major symbolic fields
in a given instruction expression (as indicated by the comma count),
then the instruction is compiled as though the missing fields had been
added at the end of the statement and as though they contained zeros.
Such fields, whose contents are implied in a standard way by the
omission of any explicit specification, are called null fields. A null
field is always compiled as a zero, with the excep_fi-gns, indicated
below in Section 1.2.2, of those sub-fields of a data description which
express mode and byte size. Within a major field, a parenthesized
sub-field may be made null by omission. Thus in the VFL example
cited above, if the main index designation were to be zero but the

- offset and its index modifier (which in the hardware also modifies
field length and byte size) were both to be one, the instruction could
be written:

OP, A, 1(1.)

A major field may be null, even though other non-null fields follow it.
Such is the case if nothing but the comma denoting the field termination
© is written., Thus in the example just shown if the offset and its modifier
were both to be one but the principal address and its modifier were

both to be zero, the instruction could be written:

oP, , 1(1.)

1-5

1

L2

.2

July 1, 1959

Data Description (dds)

The small letters ''dds!'' enclosed in parentheses in the above formats
stand for the data description field. It is established by specifying:

1. M use mode,
2. L field length, and
3. BS byte size.

These three entries appear in the above order within parentheses and
are separated with commas thus, (M, L, BS). When the data description
is specified in a machine instruction, it over-rules any other implied

or indirectly specified data description. When it is not specified, the
description is assumed to be that associated with the symbol in the
principal address field of the machine instruction. If this symbol has

no data description associated with it, an error condition arises.

When a string of symbols are added in an address field, the last symbol
written down is the one whose data properties control those of the
instruction.

A complete description of the method by which a data description may
be attached to the symbol which names a piece of data is given in
Section 1.3.1} under the explanation of the Data Description pseudo-
operation.

The mode "M" is always specified in a data description entry. This
is to say that "M'" may never be a null field, so that, for example,
if the first character in a data description were a comma, an error

-would be indicated. The seven modes are:

binary

U binary unsigned

decimal

decimal unsigned
normalized floating point
unnormalized floating point
Properties mode

-

NOUT A W N e
Wcoczoupouoow
(e

The mnemonic "P'" in the mode field of a data description has the
following meaning:
(P, RIVER)

implies in an instruction that the data description associated with the
symbol RIVER is to be invoked just as though it had been written out
explicitly. Thus, in an instruction, the dds of RIVER would over-rule
anything implied by the symbol in the major address field.

July 1, 1959

Within a data description field the usual right to left drop-out
order and null field conventions hold (except, as indicated, that
the mode field may not be null), so that a data description may
appear in any of the following four forms:

(M) Field length and byte size are null
(M, L) Byte size is null

(M, , BS) Field length is null

(M, L, BS)

If the field length is null, a field length of 0 (effectively 64, except in
the case of immediate VFL operations, where it is 24) is compiled.
If the byte size is null, the compiled byte size is a function of the mode:

Mode Standard Byte Size
D or DU 4
B 1
BU 8

2.

July 1, 1959

Mnemonics

A complete list of all machine mnemonics is included
in Appendix A. Both operation codes and system symbols
are included in the list.

A complete list of STRAP-1 pseudo operation mnemonics
is presented in Appendix B.

1

2.

July 1, 1959

Numbers and Symbols

There are two different number systems which in general
run through the STRAP-1 language, the ordinary system of
real numbers and a bit-address numbering system. The
ordinary real numbers are restricted in all non-data fields

to be integers. Real numbers which are not integers may,

of course be entered as data, but they may not take part in
arithmetic expressions nor may they be symbolized, so that
the general forms of the language are really limited to integers
and bit addresses.

Bit Addresses consist of a pair of integers separated by a
period. The integer to the left of the period specifies a word
address while the integer to the right specifies a bit address.
Thus, 6.32 is the decimal equivalent of either a 19 or 24-bit
binary address specifying bit 32 of memory location 6~ the
bit preceeded by exactly 6 and one-half memory words.

(Note that only the presence of a period distinguishes a bit
address from an integer.)

Symbols which identify memory elements in the object pro-
gram are automatically assignedbit addresses which locate
these memory elements. A symbol may, however, be given
the value of an integer through the use of a '"synonym' pseudo-
operation. Thus in general both bit addresses and integers
may be symbolized. The term ''integer' will be used to denote
either an integral number or a symbol which takes on an
integral value, and similarly so with respect to the term

'"bit address'. ‘

Thus, the address designation A(I) has two possible meanings:

i) If I is a bit address, then it designates an index word and
is compiled in the so-called I-field.

ii) If I is an integer, then an address equal to A plus I times
the field length of A is compiled.

July 1, 1959

A symbol is any sequence of eight or fewer alphabetic and
numeric characters conforming to the following conditions:

1.

2.

It contains only alphanumeric characters.
Its first character is specifically alphabetic.

It appears in the name field of a program instruction
by virtue of which it is '"defined' and is assigned a
value which is either a 24-bit binary address or an
integer.

July 1, 1959

W 1.2.6 System Symbols

System symbols are symbols whose values have been defined by the
Compiler and are therefore fixed. In all other respects, for example
in relation to the conventions for legal arithmetic expressions and

bit address-integer conventions, system symbols are exactly like
ordinary programmer -defined symbols with the one exception that they
are immediately evaluable by STRAP-1,

System symbols are identified as a special class by the prefix character ""$"
(which as one of the non-alphanumeric characters can never appear as

part of a programmer symbol). All system symbols which stand for the
addresses of special registers in memory (e.g. L, the left half of the
accumulator) are bit addresses, and all others are integers or real
numbers.

The appearance of the "$'' character alone makes for a special system
symbol which provides a standardized substitute in place of a name

for the current statement. This is to say that the character "$'" is a

bit address which in any particular statement wherein it appears functions
as though it had been defined by being written in the NAME field of

that statement.

A special use of the "$" character is to prefix any operation code in this
manner~--$OP--. This directs the compiler to suppress any error in-
dications which arise in connection with the compilation of this statement.

Since the actual numerical addresses which are to identify particular

I/O units and channels r)qay be chosen arbitrarily, system symbols

which represent integers are provided for use in addressing I/O equip-
ment. The numerical values of members of this set of system symbols,
unlike the values of all the others, may vary from one installation to
another, in order that RDR--for example--may represent the card

reader channel address independently of what that address, in any particular
installation, may be '

1/0 System Symbols are: /

Symbol Meaning

PCH Punch (Channel Address)

PRT Printer (Channel Address) \

RDR Reader (Channel Address)
DISK Disk Unit (Channel Address)

July 1, 1959

Note: The arcs of a disc may be addressed
by any legal symbolic integer expression,
evaluated modulo 212 to assure a valid arc

address.
Co, Cl1 ...Ck General channel addresses.
TO, T1Tk Tape Units (Unit Addresses) for a

channel which includes 1§_+ 1 units.

1QS Inquiry Station (Channel or Unit Address).
This symbol may have different values
depending on whether it appears in a
channel address or unit address field
of a symbolic select order.

CNSL Consple (Channel or Unit Address)

The system symbol mnemonics for tapes and channels are numbered
in the expectation that more than one of each kind will be typical.

All of the other units named however, are also capable of plural
attachment to a machine configuration, in which case numerical

suffixes are added to expand the single-unit system symbol in a

standard way. For example, if there are k punches for a given machine,
their system symbols are: PCHO, PCHI, PCH2...PCHk - 1, where
PCHO is synonomous with PCH. -

. At each installation's option some system symbols--representing

equipment not included in the particular system at hand--may elicit
error flags on the listing.

1-14

2.

July 1, 1959

Variable-in-Number Field Format

The Lioad Value with Sum (LVS) instruction may be written
with a variable number of address fields, each of which
actually picks out a single bit position within the L'VS address
field itself. For an LVS order, each address field may
specify one of index registers 0 through 15. These fields

are evaluated exactly as if they were regular index designator
fields, so that index addresses may be specified in terms

of either bit addresses or integers in the normal manner.

1-15

1.

July 1, 1959

Pseudo Operations

In this section will be found itemized a number of operation
codes provided for purposes of defining data and of controlling
and directing the assembly process itself. Since these codes
do not directly produce machine instructions in the object
program, the functions which they do trigger are referred to
as ''"pseudo operations''.

The pseudo operations are grouped according to type. There
are two main classes of pseudo operations:

1. Those which create memory elements.

2. Those which control the assembly process.
a. Those which define symbols by assigning
values which appear in the variable field.

b. Those which give directions to the compiler.
The NAME field of all pseudo operations which neither create

memory elements nor define symbols is ignored , with the
exception of CNOP (see Section 1.3.3).

1-16

s 1.3.1

July 1, 1959

Pseudo Operations That Create Memory Elements

1, DD "DATA DEFINITION" DD (dds), N1 ,NZ, ...N

The following provide the basic means for defining and entering
generalized data in the STRAP-1 language:

Mnemonic Name Usage

k

where the bracketed '"dds'" is a data
description prescribing the meaning

of all succeeding numbers (N). The
numbers N are compiled in consecutive
fields and any symbol appearing in the
NAME field of the DD statement applies
to the first such field.

The data description (dds) is identical in form and content to that described
in Section 1.2.2, that is, to the data description which may be used when
writing an individual instruction except the P mode is not omitted in this or
any other pseudo operation. Thus a description may be given with a number
at the point of definition of the number itself, or may be given at the point
of reference as part of an instruction referring to the number. The relation
between these two different points of possible definition is as follows:

‘When the data description is given by a DD statement (or other data defining

operation), the description is invoked whenever the symbol appearing in the
NAME field of the DD statement is used in the principal address field of an
instruction. The instruction mode, and--in the case of a VFL order--the

field length and byte size are supplied by this data description which is logically
affixed to the name of the DD statement.

Such a description set down at the point of symbol definition is over-
ruled by a description appearing in an instruction referring to the symbol.
Whenever an over-ruling description appears in the data description field
of an instruction, the entire description which was given at the point of
definition of the address symbol is over-ruled. Thus the statement:

OP (BU), JOE

causes the binary and unsigned modifiers to be compiled along with an

1 - 17

July 1, 1959

implicitly defined field length of 64 and a byte size of 8, regardless
of the description occurring in the statement in which JOE appeared
in the NAME field. Over-ruling is strictly local and applies only to
the instruction at hand.

If symbols are used in defining either the field length or byte size
sub-fields of a DD statement's data description, the symbols must be
fully defined when the compiler encounters the DD statement on the
second pass. This requirement is not imposed on the data description
of an instruction since, in that instance, no assignment of memory
space is dependent on the contents of the sub-fields.

Symbols which name instructions themselves are automatically imbued
with data descriptions. Specifically, instruction-naming symbols are
given field lengths equal to the lengths of the particular instructions
named (i.e. either 32 or 64), and are defined as unsigned binary with
byte size 8.

System symbols whose values are the bit addresses of special registers

in memory also have data descriptions which have been fixed by the
compiler (although, as with ordinary symbols, these descriptions may

be over-ruled by the data description fields of instructions). Specifically,
system symbols representing memory registers are binary unsigned, have
field lengths equal to the lengths of their represented registers, and have
byte size 8.

2. XwW "INDEX WORD" XW,VALUE, COUNT,REFILL,FLAG

The location counter is rounded to the next full word. The contents of the
four symbolic fields following the operation are converted and compiled
in an index word format. FLAG denotes the machine field comprised of
bits 25, 26 and 27. An expression in the FLAG field of an XW statement
is therefore evaluated modulo 23. '

Note: Bit 24 of the word format is taken to be the VALUE

sign position. A negative sign is interpreted in two's comple-
ment form in the usual way for all other fields.

1-18

July 1, 1959

3. VF "VALUE FIELD" V¥, VALUE

The location counter is rounded to the next half word. The contents
of VALUE are compiled as a 24-bit plus sig?a-uantity in positions
0-24 of the next half word. The location counter stands at bit 25

at the end of the operation.

4. CF "COUNT FIELD" CF, COUNT

The location counter is rounded to the next half word. The contents
of the COUNT f{ield are compiled as an 18-bit integer in positions
0-17. The location counter stands at bit 18 at the end of the operation.

5. RF "REFILL FIELD" RF, REFILL

This pseudo operation is the same as CF,

NOTE: The last four operations (the index word pseudo operations)
defined above are given data descriptions by the compiler, just as

though they had been defined by DD statements. Specifically, the index
elements created by these orders have had the following data descriptions

affixed automatically, and cannot be over-ruled in the pseudo-op statement:

OPERATION DATA DESCRIPTION

XW (BU)

VF (B, 25)

CF or RF (BU, 18)

6. Cw "CONTROL WORD" CW(OP), ADDRESS, COUNT,

CHAIN ADDRESS

The pseudo operation CW employs a special symbolic format as
illustrated above and defined initially in Section 1.2.1. A set of
secondary operations is provided--whose members are expressed

as parenthesized secondary operations in the manner of "(OP)'" above--
with the purpose of providing manemonics for control word functions:

Multiple Bit Chain Bit

CR "COUNT WITHIN R ECORD" 0 0

CCR ""CHAIN COUNTS WITH-IN 0 1
RECORD"

CD "COUNT DISREGARDING RE- 1 0
CORD"

CDSC'"COUNT DISREGARDING 1 1

RECORD,SKIP AND CHAIN"

1-19

July 1, 1959

“w1.3,1.1 The Form of N in a]T)at;&__ﬁl)cfi nition Statement

All data falls under the category of one of the six modes of the data
description field: N, U, B, BU, D, and DU. The numbers N1 . 'NK
are expressed in the form:

+ XXX . XX

and may optionally have other quantities following them which are ‘
identified and separated from the main number by declension characters:

E +1 The integer "i'" is taken as a decimal exponent of the preceding
number. Over-lapping facilities for specifying an exponent
"Ei'' are provided in the sensc that the decimal point in the number
itself also indicates a decimal exponent. If no point occurs cx-
plicitly, the number is taken to be an integer.

Si The positive octal integer "i'' is compiled as the sign byte of the
preceding number . If either the sign of the main number or i
implies a negative sign bit, the sign byte sign position is made
negative.

A4 X #1 The decimal integer '"i'" is compiled as a machine exponent of a
' floating point number. It over-rules and replaces the computed
exponent, which is completely eradicated by the replacement
process.

NOTE: The data entries in a DD statement are restricted to real numbers
. only. Bit addresses are not permitted, Integers are of course allowed as
a special case of real numbers, but they may not be symbolized. '

Floating point data is always compiled in addressable full words; the
location counter is rounded up, if necessary, to the next full word address
in order to meet this end. This is an instance of a general STRAP 1
principal: a machine format which ordinarily depends in use on the fact
that the 24-bit address of the lead bit ends in a string of zeroes of some
definite length causes the compiler to round the location counter appropriately.
Thus:
1) Instructions always start at either half or full word bit
addresses.

1-20

1.3.1.2

July 1, 1959

The Entry Mode

The data description field represents a kind of generalized use mode
for the data, in that properties specified in this field are translated
into bits and numbers which are compiled into machine instructions
referring to the data. A corresponding field called the entry mode
is available to specify properties which describe the source language
information and its form, but which properties are not themselves
compiled into the object program.

The entry mode may be employed in one of two ways:

a) An entry mode may be used to specify the properties of
any symbolic field (except the 'field' occupied solely by
the operation mnemonics) by being placed, enclosed in
parentheses, as the first item in the field.

b) An entry mode may also be used to specify the properties
of all the data in a DD or DDI statement. When used in
this fashion, it is enclosed in parentheses and appears
before the DD or DDI op code in the operation field. The
mode is more general in form in its usage in connection
with the data of a DD or DDI statement, as it may in this
instance--but only in this instance--designate that alphabetic
information is to be compiled:

ENTRY MODE MEANING
(AX) "A'' signifies that the following information is

704-9 alphabetic (BCD as it appears on tape),
and the letter X is a special end-of-statement
mark for this statement only., The end of
statement character is not itself compiled.

The special end-character may not be:

)

' (8-4)
11-0
blank

(IQSX) The code IQS implies the IQS alphabetic code,
and this entry mode designation is otherwise
the same as the preceding. When IQS is
specified in an entry mode, only those IQS
characters which also exist in Hollerith may
be entered.

July 1, 1959

(F1i) In DD and DDI binary-mode statements,
the number of binary fractional bits is
specified in the entry mode by means of
the letter F followed by a decimal integer i
which is the number of fractional bits.

(F6) XX . XXX

Entry modes may not appear in a manner that would cause parentheses
within parentheses. An entry mode may appear as the first element of any
field in the DD or DDI statement, in which case it functions as a normal
field entry mode. When contradictory properties (for instance, two differing
radixes) are implied by the statement and field entry modes, the field mode
over-rules for the case of the particular field on hand.

NOTE: Both the statement entry mode and the field entry modes in a.

DD or DDI statement apply only to the pure number part of the data.

All other quantities which may be joined to the data by special declensions
(e.g. S for sign byte) are regarded as separate fields with respect to the
entry mode, and these fields will have no provision for a separate entry
mode in STRAP-1. Moreover, if the entry mode indicates a radix different
from 10, only integers may be entered as data,

There are two kinds of designators which may appear in any entry mode
expression:

a) Any of the digits 2 through 10 may be used to indicate a radix.
All numerical quantities governed by the entry mode--whether
real numbers, integers, or bit addresses--are then interpreted
in the specified radix. The source language radix is 10 throughout
the system unless otherwise specified (and after the declension
character S where the base 8 is used).

b) An integer preceded by a point not exceeding 63 (or 31 in a half word
- instruction) has the following meaning in the entry mode: that the

field following the entry mode is parenthetical in nature and is to
be evaluated and compiled with the specified bit address serving as
the bit address of the rightmost position of the field. The field is
added by a logical OR so that it may be combined with other fields of
the statement or other parenthetical OR fields. The first bit of the
statement is counted as bit 0. Although the parenthetical field may
cross field-lines within a statement, it may not cross statement-lines.
That is, if the bit address is specified as '".n'"", the parenthetical ex~
pression has a field length of n 4 1 and is evaluated modulo 2%+1 ,

All parenthetical fields are regarded as unsigned, so that a negative number is
compiled as the complement, re 20 + 1, of the magnitude of the number.

1-23

July 1, 1959

The field following an entry mode containing a bit address is
terminated either by the end-of-field character of the statement

field in which the parenthetical OR field falls (i.e., within the source
language~-the parenthetical field may cross field lines within the
object language but by its very nature is always specified within

the bounds of some other field in the source language) or by the
beginning-field character for some other field.

Radix designators are permitted in parenthetical OR fields, are
separated by commas from the bit designation, and the two may be
in any order:(.32, 8) signifies an octal field to be terminated at
bit 32, '

Parenthetical expressions are permitted within a DD statement; and
the bit address is measured from the previous comma forward.
Parenthetical expressions may contain anything that goes in a
normal address field (except periods), but may not have other infor-
mation--like real numbers or alphabetic characters--which are
permitted in a DD or DDI statement. Parenthetical expressions are
not permitted in any statement which does not compile memory
space, nor in a DR statement.

‘The parenthetical field ignores both the field structure and any data
description associated with the statement in which it appears. Similarily,
any data description associated with a symbol appearing in a parenthetical
field has no effect in this usage of the symbol. All numbers--including
real numbers-~--which appear in a parenthetical field are converted to

an internal binary format, never to decimal or floating point.

1 - 24

1

3.

July 1, 1959

Pseudo Operations Which Define Symbols

It can be said that almost all pseudo operations (excluding SLC,
CNOP, etc.) define symbols in the standard manner -- any symbol
appearing in the name field will be assigned the current value

of the location counter. Grouped under the present category of
pseudo operations are those which define symbols in other than the

usual manner.

1. DDI "DATA DEFINITION IMMEDIATE"

This pseudo operation is identical to DD except with respect to
the following points:

(1) Like SYN (see below), it is purely definitive in character.
(2) Only one -major field follows the operation field of the
statement. '
(3) If no field length is specified, a field length of 24 is implied.
(4) If the length of a string of alphabetic characters exceeds
the field length, the excessive low-order characters
are lost and an error indication is given.
(5) The compiled field -- less than or equal to 24 bits in
length--is inserted within a 24-bit field within the
symbol table and left justified.

2. SYN - "SYNONYM'" A SYN, Y

The operation '""Synonym' (SYN) may define a new symbol in terms of

a symbolic expression representing either a bit address or an integer,
with the restriction--as with SLC -- that the expression be fully defined
although this may possibly mean as late as pass 3 of STRAP-1. When
one writes:

A SYN, Y

the meaning of the newly defined symbol "A'" ig that whenever A is
written in the program the effect is the same as if Y had been written.
The meaning of SYN is always one of exact substitution. Thus data
properties associated with Y and its bit address-or-integer classification
are transferred to A. SYN statements are permitted to have their own
data description field, as well.

1-25

.3,

July 1, 1959

Pseudo Operations Which Give Directions To The Compiler

Mnemonic Name Usage
1) SLC "SET LOCATION COUNTER" A SLC, Y

This operation resets the location counter to the value (bit address)
taken on by Y, where Y is any legal symbolic expression. The name

‘A applies to the subsequently defined memory element whose first

bit is located at Y. Y must be evaluable by the time it is encountered
in pass 2 of STRAP-1. Although Y may be an absolute number, its
absolute meaning may not be preserved from STRAP-1 to STRAP-2,
In STRAP-1 an absolute origin will be positioned relative to a program
area beginning with machine location 0. In STRAP-2 the beginning of
the program area will normally be supplied independently of the
assembly deck and may differ from 0.

The pseudo operation '"Set Liocation Counter' must contain a bit address
expression whose value is positive. An integer which appears in the

‘variable field of an SL/C instruction is added in as in a 24-bit address

field, i.e. as an integral number of bits, and an error warning is
given.

2) END - "END" A END, Y

A card with the operation code END signals the end of an assembly
and must be included as the last card of each symbolic program deck.
If the END card is missing, one is supplied by STRAP-1. A branch
card is then punched with the output deck with an address Y, so that
the instruction located at Y will be the first program order executed,

The END statement also functions as an origin-setting statement for
the memory assignments given to all symbols which are undefined.

A symbol is undefined if it appears somewhere in the program but
never appears in the NAME field of any statement. All occurrences
of such a symbol are flagged as possible errors. The symbol is
assigned a full memory word in the block whose origin is equal to the
value of the location counter when the END statement is encountered
(possibly rounded up to obtain an integral full word address) and the
symbol is given a normalized floating point data description.

3) CNOP "CONDITIONAL NO OPERATION"
The pseudo operation CNOP is used to insure that the instruction

immediately following the CNOP will be assigned a full word address
by the compiler.

1-26

July 1, 1959

CNOP examines the location counter. If the counter is already set to a

full word address, the compiler ignores the CNOP. If, however, the instruction
counter is set to a half word address, the CNOP instruction directs the compiler
to advance the counter 32 bits (one half word) to the next full word address.

This is accomplished by compiling the machine instruction NOP, which is a

half word instruction. Any symbol appearing in the name field is assigned

a full word address when the CNOP is ignored, or a half word address when

a NOP is compiled.

4) TLB "TERMINATE LOADING AND BRANCH"

The pseudo operation '""Terminate Loading and Branch'" is similar to an "END"
statement with one major distinction--TLB does not stop the assembly process.
Therefore, TLB may be used at any point in a symbolic deck where a branch card

is desired. The branch card thus produced will interrupt the loader when encountered
in a binary deck and transfer control to the instruction at location Y.

5) EXT "EXTRACT" A EXT (1,J) STATEMENT

The ""Extract'' pseudo operation has the following meaning:

I and J are integers or integer expressions. STATEMENT is assembled by the
processor as though it were to be compiled. The field beginning at bit I and ending
at bit J within the assembled statement is then extracted, and compiled. Any symbol
A in the NAME field of the EXT order is attached to this compiled quantity. A data
description is attached to the symbol as though it had been written:

(BU, J-1+1,8)
I and J can also be bit addresses.

If EXT is used to specify the extraction of anything beyond the range of the single
statement which follows it, zeroes are added up to 64.

6) DR "DATA RESERVATION" A DR (dds), (N)

The DR operation causes N fields of the kind described in the data description--(dds)--
field to be reserved, i.e. the instruction location counter is skipped forward a
quantity in bits equal to the product of N and the field length specified in (dds). The
symbol A if any, appearing in the NAME field of the DR statement is attached to the
first such field. The description specified in (dds) is in turn attached to the symbol
and is invoked -~in the same fashion as with a DD or DDI statement--whenever the
symbol appears as a principal address.

1 - 27

July 1, 1959

An array is specified in the form:
NAME DR (dds), (I, J, K)
where I, J and K must be integers in symbolic or numeric form.

-In fact, an array parameter may be specified by any integer-wvalued
expression.

Although a fifteen dimensional array is the largest which can be
specified in STRAP-1, arrays involving fewer parameters can
also be described.
Thus, as seen from the discussion in Section 1.2.4, to apply
index word I to the second element of a one dimensional array A,
one writes: '

A (1) (I)
where I must be a bit address,
7) PRNS "PRINT SINGLE-SPACED" " PRNS
This pseudo operation causes the assembly listing to be printed -
with single spacing. Double spacing is the normal mode unless
PRNS is written.
8) PRND "PRINT DOUBLE-SPACED" PRND

This pseudo-op restores printing to the normal double spacing
condition after the use of a PRNS.

9) PUNFUL "PUNCH FULL CARDS" PUNFUL

Full cards (80 columns) are punched, without checksum, FWA,
ID, etc.

1-28

July 1, 1959

10) PUNNOR "PUNCH NORMALLY" PUNNOR
This pseudo-op restores normal punching after the use of a

PUNFUL.

11) SKIP "SKIP PAPER" SKIP, i

If i= 0, the assembly listing will restore the paper immediately. If
i 50, one half page will be skipped.

12) PUNID "PUNCH ID" ' PUNID, XXXXXXXX

The first eight characters following the comma are punched in columns
73-80 of the binary deck produced by the assembly program. This card
is used to identify the assembly.

13) PRNID "PRINT ID" PRNID, COMMENT

When PRNID is encountered anything written after the comma is immediately
printed on line and on the output tape as well. PRNID provides a means

of heading the assembly listing with such information as problem name.
programmer, etc. |

1-29

AD
AE
AH
AL
AQOC
BC
BTR
CA
CBJ
CNSL
CPUS
CPU

.CS

CcX

DF
DISK
DS
DTR

EE
EK
EKJ
EOP
EPGK
EXE
FT

IF
IK
1J
IND
1QS
IR
IT

LB
LC
LS
LZC

b DDV e DN DD = DYDY

b bt DN DN bt b b DD R b DD D ke e BB DN DNV NN e NV

ALPHABETIC LIST OF SYSTEM SYMBOLS

ADDRESS INVALID

ACCUMULATOR EQUAL

ACCUMULATOR HIGH

ACCUMULATOR LOW

ALL ONES COUNT

BOUNDARY CONTROL

BINARY TRANSIT

CHANNEL ADDRESS

CHANNEL BUSY REJECT

CONSOLE

CPU SIGNAL

OTHER CPU

CHANNEL SIGNAL

CHANNEL X (X IS A NUMERICAL DESIG-
NATION)

DATA FETCH

DISK

DATA STORE

DECIMAL TRANSIT

[S]

END EXCEPTION

EXCHANGE CONTROL CHECK

EXCHANGE CHECK REJECT

END OF OPERATION

EXCHANGE PROGRAM CHECK

EXECUTE EXCEPTION

FACTOR

INTERRUPTION ADDRESS

INSTRUCTION FETCH

INSTRUCTION CHECK

INSTRUCTION REJECT

INDICATORS

INQUIRY STATION

IMAGINARY ROOT

INTERVAL TIMER

LEFT HALF OF ACCUMULATOR

LOWER BOUNDARY

LOST CARRY

LOST SIGNIFICANCE

LEFT ZEROS COUNT

1og10e

July 1, 1959

WORD BIT
NO. ‘ADDRESS

11 16
11 ' 61

11 62

11 60

7 44-50
3 - 57

11 39

5 12-18
11 8

11 5

6 0-18

11 13

11 20

11 19

11 40

11 11

11 3

11 6

11 12

11 9

11 18

14 0-63

2 0-17

11 21

11 1

11 2

11 0-63

11 25

1 0-18

8 0-63

3 32-49
11 22

11 26

7 17-23

B e R & A A eSS AR

ALPHABETIC LIST OF SYSTEM SYMBOLS

MASK
MB
MK

"MOP

N

NM

OoP

PCH

PF
PGO..PG6
PI

PRT

PSH

R
RDR
RGZ
RLZ
RM
RN
RU
RZ
SB
TC
TF
TR
TS
X

UB
Ur
UK
UNRJ
USA

VF
XO
X1
X2
X3
X4
X5

X6

|3

N~ NN = NN NN -
[\¥)

DN = DN s NN DN NN e e

NIV IV -

e = e)

MASK

MAINTENANCE BITS

MACHINE CHECK

TO-MEMORY OPERATION

log, 2

NOISY MODE

OPERATION INVALID

PUNCH

PARTIAL FIELD

PROGRAM INDICATORS

(L

PRINTER

PREPARATORY SHIFT GREATER

- THAN 48

RIGHT HALF OF ACCUMULATOR

READER

RESULT GREATER THAN ZERO

RESULT LESS THAN ZERO

REMAINDER

RESULT NEGATIVE

REMAINDER UNDERFLOW

RESULT ZERO

SIGN BYTE

TIME CLOCK

T FLAG

TRANSIT

TIME SIGNAL

TAPE X (X IS A NUMERICAL
DESIGNATION)

UPPER BOUNDARY.

U FLAG

UNIT CHECK

UNIT NOT READY REJECT

UNENDED SEQUENCE OF AD-

DRESSES

V FLAG
INDEX ZERO
INDEX ONE
INDEX TWO
INDEX THREE
INDEX FOUR
INDEX FIVE

INDEX SIX

July 1, 1959

WORD
NO.

12

11
11

11
11

11
11

11

11
11
13
11
11
11
10

11
15
11

11
11
11
11

11
16
17
18
19
20
21

22

BIT
ADDRESS

21-49
0-63
0

55

63 .
15

23
41-47

27

0-63

:58
56

0-63
59

34

57
0-7
28-63

'35

0-63

0-17

.36

10

17

37

0-63
0-63
0-63
0-63
0-63
0-63

0-63

<HQQQOF <UD UUNENEEZZ OB DN d<< << <ddidigaig<hy

July 1, 1959
I. OVER-ALL LIST OF MNEMONICS

B. OPERATIONS

+ 3 ADD

+ 6 ADD

+MG 3 ADD TO MAGNITUDE

+MG 6 ADD TO MAGNITUDE

- 3 SUBTRACT

- 6 SUBTRACT

-MG 3 SUBTRACT FROM MAGNITUDE

-MG 6 SUBTRACT FROM MAGNITUDE

& 4 MULTIPLY

7 MULTIPLY

* 4 MULTIPLY AND ADD

* 4 MULTIPLY AND ADD

*A 4 MULTIPLY ABSOLUTE AND ADD

*I 4 MULTIPLY IMMEDIATE AND ADD

*N + MULTIPLY NEGATIVE AND ADD

*N 4 MULTIPLY NEGATIVE AND ADD

*NA + MULTIPLY NEGATIVE ABSOLUTE AND ADD
*NI + MULTIPLY NEGATIVE IMMEDIATE AND ADD
/ 4 DIVIDE

/ 7 DIVIDE

B BRANCH

BB BRANCH ON BIT

BB1 BRANCH ON BIT AND SET TO ONE
BBN " BRANCH ON BIT AND NEGATE

BBZ BRANCH ON BIT AND ZERO

BD BRANCH DISABLED

BE BRANCH ENABLED

BEW BRANCH ENABLED AND WAIT

BR BRANCH RELATIVE

BS BACKSPACE

BSFL BACKSPACE FILE

BZB BRANCH ON ZERO BIT .

BZBI BRANCH ON ZERO BIT AND SET TO ONE
BZBN BRANCH ON ZERO BIT AND NEGATE
BZBZ BRANCH ON ZERO BIT AND ZERO

C 10 CONNECT

Cxrl ADD IMMEDIATE TO COUNT

C-1I SUBTRACT IMMEDIATE FROM COUNT
CB 8 COUNT AND BRANCH

CBR 8 COUNT, BRANCH AND REFILL

CBZ 8 COUNT AND BRANCH ON ZERO COUNT
CBZR 8 COUNT, BRANCH ON ZERO COUNT AND REFILL
CCw COPY CONTROL WORD

CM 10 CONNECT TO MEMORY

A -5

HEESTHTE A

<HEEHdmEEdd<S <P dERESRZEZEE AT Y Y

July 1, 1959

CT 10 CONNECT FOR TEST

CTL CONTROL

CV 5 CONVERT

D+ 6 ADD DOUBLE

D+ MG 6 ADD DOUBLE TO MAGNITUDE

D - 6 SUBTRACT DOUBLE

D-MG 6 SUBTRACT DOUBLE FROM MAGNITUDE
DCV 5 CONVERT DOUBLE

DL 7 LOAD DOUBLE

DLWEF 7 LLOAD DOUBLE WITH FLAG

D% 7 MULTIPLY DOUBLE

D/ 7 DIVIDE DOUBLE

E + 6 ADD TO EXPONENT

E + Al ADD ABSOLUTE IMMEDIATE TO EXPONENT
E+1 ADD IMMEDIATE TO EXPONENT

E - 6 SUBTRACT FROM EXPONENT

E - Al SUBTRACT ABSOLUTE IMMEDIATE FROM EXPONENT
E -1 SUBTRACT IMMEDIATE FROM EXPONENT
ERG ERASE GAP

EVEN EVEN PARITY

EX EXECUTE

EXIC EXECUTE INDIRECT AND COUNT

F ¢ 6 ADD TO FRACTION

F - 6 SUBTRACT FROM FRACTION

GONG GONG

HD HIGH DENSITY

K 4 COMPARE

K 7 COMPARE

KC COMPARE COUNT

KCI COMPARE COUNT IMMEDIATE

KE 4 COMPARE IF EQUAL

KF 4 COMPARE FIELD

KFE 4 COMPARE FIELD IF EQUAL

KFR 4 COMPARE FIELD FOR RANGE

KLN CHECK LIGHT ON

KMG 7 COMPARE MAGNITUDE

KMGR 7 COMPARE FIELD FOR RANGE

KR 4 COMPARE FOR RANGE

KR 7 COMPARE FOR RANGE

KV COMPARE VALUE

KVI COMPARE VALUE IMMEDIATE

KVNI COMPARE VALUE NEGATIVE IMMEDIATE
L 4 LOAD

B R E << < <SSR RN R N g <

LC
LCI
LCV
LD

LF
LFT
LFT
LOC
LR
LRI
LV
LVE
LVI
LVNI
LVS
LX
LTRCV
LTRS
LWF
LWF
M+

Ms
M+1
M+A
M+MG
M«MG
M-

M-
M-1
M-A
M-MG
M-MG
NOP
ODD

RCZ
RD
REL
REW
RLF
RLN
RNX
R/
sC

~

O W N b

o W

July 1, 1959

LOAD

LOAD COUNT

LOAD COUNT IMMEDIATE
LOAD CONVERTED

LOW DENSITY

LOAD FIELD

LOAD FACTOR

LOAD FACTOR

LOCATE (SAME AS SELECT UNIT)
LOAD REFILL

LOAD REFILL IMMEDIATE
LOAD VALUE

LOAD VALUE EFFECTIVE
LOAD VALUE IMMEDIATE
LOAD VALUE NEGATIVE IMMEDIATE
LOAD VALUE WITH SUM
LOAD INDEX

LOAD TRANSIT CONVERTED
LOAD TRANSIT AND SET
LOAD WITH FLAG

LOAD WITH FLAG

ADD TO MEMORY

ADD TO MEMORY

ADD ONE TO MEMORY

ADD TO ABSOLUTE MEMORY

ADD MAGNITUDE TO MEMORY

ADD MAGNITUDE TO MEMORY
SUBTRACT FROM MEMORY

SUBTRACT FROM MEMORY

SUBTRACT ONE FROM MEMORY
SUBTRACT FROM ABSOLUTE MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
NO OPERATION

ODD PARITY

REFILL

REFILL ON COUNT ZERO

READ

RELEASE

REWIND

RESERVED LIGHT OFF

RESERVED LIGHT ON

RENAME

RECIPROCAL DIVIDE

STORE COUNT

2@

MR R RN A N g R Sl < g <

SEOP
SF
SHF
SHF L
SHFR
SIC
SLO
SP
SPFL
SNRT
SR
SRD
SRD
SRT
ST

ST

sSU

SV
SVA
SWAP
SWAPI
SWAPB
SWAPBI
sX

T

TI

TB
TBI
V¢
Vil
V+C
V + CR
V + IC
V + ICR
V-1

V - IC
V - ICR

W
WEF
Z

11

~N OO~

O O O O O

July 1, 1959

SUPPRESS END OF OPERATION
STORE FIELD

SHIFT FRACTION

SHIFT FRACTION LEFT (SAME AS SHFA)
SHIFT FRACTION RIGHT (SAME AS SHFNA)
STORE INSTRUCTION COUNTER IF
STORE LOW ORDER

SPACE

SPACE FILE

STORE NEGATIVE ROOT

STORE REFILL,

STORE ROUNDED

STORE ROUNDED

STORE ROOT

STORE

STORE ,
SELECT UNIT (SAME AS LOCATE)
STORE VALUE

STORE VALUE IN ADDRESS

SWAP

SWAP IMMEDIATE

SWAP BACKWARD

SWAP BACKWARD IMMEDIATE
STORE INDEX

TRANSMIT

TRANSMIT IMMEDIATE

TRANSMIT BACKWARD

TRANSMIT BACKWARD IMMEDIATE
ADD TO VALUE

ADD IMMEDIATE TO VALUE

ADD TO VALUE AND COUNT

ADD TO VALUE, COUNT AND REFILL
ADD IMMEDIATE TO VALUE AND COUNT

-ADD IMMEDIATE TO VALUE, COUNT AND REFILL

SUBTRACT IMMEDIATE FROM VALUE
SUBTRACT IMMEDIATE FROM VALUE AND COUNT
SUBTRACT IMMEDIATE FROM VALUE, COUNT

AND REFILL

WRITE
WRITE END-OF-FILE
STORE ZERO

e L S e S 4S L L

July 1, 1959
II. LIST OF MNEMONICS BY TYPE

"A. FLOATING POINT

+ 6 ADD

+~ MG 6 ADD TO MAGNITUDE

- 6 SUBTRACT

-MG 6 SUBTRACT FROM MAGNITUDE

* 7 MULTIPLY

* g MULTIPLY AND ADD

*A 4 MULTIPLY ABSOLUTE AND ADD

*N ¢ MULTIPLY NEGATIVE AND ADD

*NA + MULTIPLY NEGATIVE ABSOLUTE AND ADD
/ 7 DIVIDE

B BRANCH

BD BRANCH DISABLED

BE BRANCH ENABLED

BEW BRANCH ENABLED AND WAIT

BR BRANCH RELATIVE

D + 6 ADD DOUBLE

D +MG 6 ADD DOUBLE TO MAGNITUDE

D - 6 SUBTRACT DOUBLE

D-MG 6 SUBTRACT DOUBLE FROM MAGNITUDE
DL 7 LOAD DOUBLE

DLWF 7 LOAD DOUBLE WITH FLAG

D* 7 MULTIPLY DOUBLE

D/ 7 DIVIDE DOUBLE

E ¢ 6 ADD TO EXPONENT

E 4AI ADD ABSOLUTE IMMEDIATE TO EXPONENT
E +I ADD IMMEDIATE TO EXPONENT

E - 6 SUBTRACT FROM EXPONENT

E -AI SUBTRACT ABSOLUTE IMMEDIATE FROM EXPONENT
E -I SUBTRACT IMMEDIATE FROM EXPONENT
EX EXECUTE

EXIC EXECUTE INDIRECT AND COUNT

F 4+ 6 ADD TO FRACTION

F - 6 SUBTRACT FROM FRACTION

K 7 COMPARE

KMG 7 COMPARE MAGNITUDE

KMGR 7 COMPARE MAGNITUDE FOR RANGE

KR 7 COMPARE FOR RANGE

L 7 LOAD

LFT 7 LOAD FACTOR

LWF 7 LOAD WITH FLAG

PR 2R

M+
M+A
M+MG
M-
M-A
M-MG
NOP

RCZ
R/

SHF
SHF L
SHFR
SIC

SLO
SNRT
SRD
SRT
ST

BUTNC NEC I NP

July 1, 1959

ADD TO MEMORY

ADD TO ABSOLUTE MEMORY

ADD MAGNITUDE TO MEMORY
SUBTRACT FROM MEMORY

SUBTRACT FROM ABSOLUTE MEMORY
SUBTRACT MAGNITUDE FROM MEMORY
NO OPERATION

REFILL

REFILL ON COUNT ZERO

RECIPROCAL DIVIDE

SHIFT FRACTION

SHIFT FRACTION LEFT (SAME AS SHF A)
SHIFT FRACTION RIGHT (SAME AS SHFNA)
STORE INSTRUCTION COUNTER IF
STORE LOW ORDER

STORE NEGATIVE ROOT

STORE ROUNDED

STORE ROOT

STORE

STORE ZERO

A - 10

FEEEEEAAE OO S EEEHEEEBEE

BS
BSFL
CcCw
CTL
ERG
EVEN
GONG
HD
KLN
LD
LOC
ODD
RD
REL
REW
RLF
RLN
SEOP
SP

SPFL

SU

WEF

II

11

LIST OF MNEMONICS BY TYPE

B. 1I/O SELECTS

BACKSPACE
BACKSPACE FILE

COPY CONTROL WORD

CONTROL

ERASE GAP

EVEN PARITY

GONG

HIGH DENSITY

CHECK LIGHT ON

LOW DENSITY

LOCATE (SAME AS SELECT UNIT)
ODD PARITY

READ

RELEASE CHANNEL

REWIND

RESERVED. LIGHT OFF
RESERVED LIGHT ON

SUPPRESS END OF OPERATION
SPACE

SPACE FILE

SELECT UNIT (SAME AS LOCATE)
WRITE

WRITE END OF FILE

A - 11

July 1, 1959

<<<<<<<<<<<<<K<K<K<<<<<<<<S<SS<S<<<<<<<<<<<<

+ MG

- MG
* 4
*1 4
*N »
*NI +

CM
CcT
CcvV
DCV

KE
KF
KFE
KFR

LCV
LF

. LFT

LTRCV
LTRS
LWE
M +
M+ 1
M+MG
M -

M -1
M -MG
SF
SRD
ST

II

C.

B W W w

— e = N
o O ©

NG N NN ORI e

IR NN

S

July 1, 1959

LIST OF MNEMONICS BY TYPE

VFL

ADD

ADD TO MAGNITUDE
SUBTRACT

SUBTRACT FROM MAGNITUDE
MULTIPLY

MULTIPLY AND ADD

MULTIPLY IMMEDIATE AND ADD
MULTIPLY NEGATIVE AND ADD
MULTIPLY NEGATIVE IMMEDIATE AND ADD
DIVIDE

CONNECT

CONNECT TO MEMORY
CONNECT FOR TEST

CONVERT

CONVERT DOUBIE

COMPARE

COMPARE IF EQUAL

COMPARE FIELD

COMPARE FIELD IF EQUAL
COMPARE FIELD FOR RANGE
COMPARE FOR RANGE

LOAD

LOAD CONVERTED

LOAD FIELD

LOAD FACTOR

LOAD TRANSIT CONVERTED
LOAD TRANSIT AND SET

LOAD WITH FLAG

ADD TO MEMORY

ADD ONE TO MEMORY

ADD MAGNITUDE TO MEMORY
SUBTRACT FROM MEMORY
SUBTRACT ONE FROM MEMORY
SUBTRACT MANGITUDE FROM MEMORY
STORE FIELD

STORE ROUNDED

STORE

A - 12

July 1, 1959

H. SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

LLOACTION
WORD BIT

NO.

ADDRESS

11
11
11
11
11
11
11

11
11
11

11
11
11
11
11
11
11
11
11
11

11
11
11
11

11
11

11

15
16
17
18
19
20
21

22
23
24

25
26
27
28
29

30

31
32
33
34

35
36
37
38

39
40

41-47

B AAE DA

W 4 o

A o

7 2 A

MNEMONIC

SYSTEM SYMBOL

NAME

INSTRUCTION EXCEPTION

oP
AD
USA
EXE
DS
DF
IF

OPERATION INVALID

ADDRESS INVALID

UNENDED SEQUENCE OF ADDRESSES
EXECUTE EXCEPTION

DATA STORE

DATA FETCH

INSTRUCTION FETCH

RESULT EXCEPTION

LC
PF
ZD

LOST CARRY
PARTIAL FIELD
ZERO DIVISOR

RESULT EXCEPTION-FLOATING POINT

IR
LS
PSH
XPO
XPH
XPM
XPL
XPN
XPU
RU

FLAGGING
TF
UF
VF
XF

IMAGINARY ROOT

LOST SIGNIFICANCE

PREPARATORY SHIFT GREATER THAN 48
EXPONENT OVERFLOW (EXP > 211)
EXPONENT HIGH (210« ExP < 211)
EXPONENT MEDIUM (28< EXP<210)
EXPONENT LOW (25< EXP<28)

EXPONENT HIGH NEGATIVE (-21KKEXPg210)
EXPONENT UNDERFLOW (EXP - 211y
REMAINDER UNDERFLOW

T FLAG
U FLAG
V FLAG
INDEX FLAG

TRANSIT OPERATIONS

BTR
DTR

PGO...PGb6

BINARY TRANSIT
DECIMAL TRANSIT

PROGRAM INDICATORS

A - 18

10,

11.

12.

July 1, 1959

This floating point operation code may have the following
suffixes:

N Negative

A Absolute

NA Negative Absolute

Count and Branch operation may have the following suffixes:
+ Add one to value

- Subtract one from value

H Add half to value

This operation code may be used to indicate either an
immediate indexing operation or the secondary operation
of any VFL instruction.

This operation mnemonic specifies potentially 16 connect
orders. Four binary digits are written directly after the
op code to select a particular one at the 16 orders.

This op code is also subject to footnote 3.

This code may be as a secondary operation in connection
with those I/O select orders which are subject to end-of-

operation interrupts.

These mnemonics are mathematica_l constants.

b B e B T e O T O I B B B B B T T T e T e T I B T e T T T T T T T I B

C+1
C-1I
KC
KCI
KV
KVI
KVNI
LC
LCI
LR
LRI
LV
LVE
LVI
L/VNI
LVS
LX
RNX
sC
SR
SV
SVA
SX
V+
V+C
V + CR
Va+I
V+IC
V+ICR
VvV -1
VvV -IC
V -ICR

[V« JENeIRNoJEN o Jik Vo B Ne]

July 1, 1959
II. LIST OF MNEMONICS BY TYPE
G. INDEX TRANSMISSION AND ARITHMETIC

ADD IMMEDIATE TO COUNT

SUBTRACT IMMEDIATE FROM COUNT
COMPARE COUNT

COMPARE COUNT IMMEDIATE
COMPARE VALUE

COMPARE VALUE IMMEDIATE
COMPARE VALUE NEGATIVE IMMEDIATE
LOAD COUNT

LOAD COUNT IMMEDIATE

LOAD REFILL

LOAD REFILL IMMEDIATE

LOAD VALUE ‘

LOAD VALUE EFFECTIVE

LOAD VALUE IMMEDIATE

LOAD VALUE NEGATIVE IMMEDIATE
LOAD VALUE WITH SUM

LOAD INDEX

RENAME

STORE COUNT

STORE REFILL

STORE VALUE

STORE VAL UE IN ADDRESS

STORE INDEX

ADD TO VALUE

ADD TO VALUE AND COUNT

ADD TO VALUE, COUNT AND REFILL
ADD IMMEDIATE TO VALUE

ADD IMMEDIATE TO VALUE AND COUNT
ADD IMMEDIATE TO VALUE, COUNT AND REFILL
SUBTRACT IMMEDIATE FROM VALUE
SUBTRACT IMMEDIATE FROM VALUE AND COUNT

SUBTRACT IMMEDIATE FROM VALUE, COUNT AND REFILL

A-16

T
e

July 1, 1959

H. SYSTEM SYMBOLS THAT ARE BIT ADDRESSES

LOCATION SYSTEM SYMBOL

WORD BIT

NO. ADDRESS MNEMONIC NAME

0 0-63 $ Z WORD NUMBER ZERO

1 0-18 $ 1T INTERVAL TIMER

1 28-63 $ TC TIME CLOCK

2 0-17 $ IA INTERRUPTION ADDRESS

3 0-17 $ UB UPPER BOUNDARY

3 32-49 $ LB LOWER BOUNDARY

3 57 $ BC BOUNDARY CONTROL

4 0 - 63 $ MB MAINTENANCE BITS

5 12-18 $ CA CHANNEL ADDRESS

6 0-18 $ CPU OTHER CPU

7 17-23 $ LZC LEFT ZEROS COUNT

7 44-50 $ AQC ALL ONES COUNT

8 0-63 $ L LEFT HALF OF ACCUMULATOR

9 0-63 $ R RIGHT HALF OF ACCUMULATOR

10 0-7 $ SB SIGN BYTE

“wr INDICATORS

11 0-63 $ IND INDICATORS

11 0 $ MK MACHINE CHECK

11 1 $ IK INSTRUCTION CHECK

11 2 $ 1J INSTRUCTION REJECT

11 3 $ EK EXCHANGE CONTROL CHECK
ATTENTION REQUEST

11 4 $ TS TIME SIGNAL

11 5 $ CPUS CPU SIGNAL
INPUT-OUTPUT REJECTS

11 6 $ EKJ EXCHANGE CHECK REJECT

11 7 $ UNRJ UNIT NOT READY REJECT

11 8 $ CBJ - CHANNEL BUSY REJECT
INPUT-OUTPUT STATUS

11 9 $ EPGK EXCHANGE PROGRAM CHECK

11 10 $ UK UNIT CHECK

11 11 $ EE END EXCEPTION

11 12 $ EOP END OF OPERATION

11 13 $ CS CHANNEL SIGNAL

N 11 14 $ RESERVED

A - 17

