

MAJOR REVISION
(January, 1961)

This manual is a major revision of, and obsoletes: 709 FORTRAN Automatic
Coding System for the IBM 709 Data Processing System, form C28-6054-1.

It includes material from:

IBM 709/7090 FORTRAN Monitor, form C28-6065, pp. 1-12

704 and 709 FORTRAN: Additional Format features, farm J28-6081

704 and 709 FORTRAN: Using Function and Subroutine Names as Arguments,
fonn J28 - 6082

704 and 709 FORTRAN: Boolean Expressions, form J28-6087

The initial printing of this revision included an errata sheet. Errors listed on
that sheet have been cmected in this printing; no other changes have been
made.

In this manual, all properties attributed to "FORTRAN" apply
to the FORTRAN System for the IBM 704, 709 and 7090 Data
Processing Systems; properties attributed to "709/7090 FORTRANH
apply to that system only. In the latter case, certain rules a r e
applicable to the 32K System only. These a r e explicitly stated
a s such.

This manual presents the FORTRAN language and programming
rules. Other materials covering the 709/7090 FORTRAN System are:

Programmer's Primer for FORTRAN
(Form F28-6019)

709/7090 FORTRAN Operations Manual
(Form C28-6066-2)

FORTRAN Assembly Program (FAP) for the IBM 709/7090
(Form 528-6098)

THE FORTRAN SYSTEM

The IBM FORmula TRANslating System, 709/7090 FORTRAN, is
an automatic coding system for the IBM 709/7090 Data Processing
System. More precisely, it is a 709/7090 program which accepts a

Obiect and
Source Machines

'L Efficiency of the
Obiect Program

Scop of
Applicability

Inclusion of
Library Routines

Provision for
Input and Output

source program written in the FORTRAN language, closely resembling
the ordinary language of mathematics, and which produces a machine
language object program ready to be run on a 709/7090.

709/7090 FORTRAN therefore, in effect, transforms the IBM 709/7090
into a machine with which communication can be made in a language
more concise and more familiar than the machine language itself. The
result is a substantial reduction in the training required to program,
a s well a s in the time consumed in writing programs and eliminating
e r rors from them.

Among the features which characterize the FORTRAN system are
the following:

FORTRAN is available in versions for all sizes of storage. Each
version produces programs which can be used on any size 709/7090,
provided sufficient storage is available for the object program.
Object programs which are too large for the 709/7090 on which they
are to be used must be subdivided by the user.

Object programs produced by FORTRAN will generally be a s efficient
a s those written by experienced programmers.

The FORTRAN language provides facilities for expressing any
problem of numerical computation. In particular, problems con-
taining large sets of formulas and many variables can be dealt with
easily, and any variable may have up to three independent subscripts.

The language of FORTRAN may be expanded by the use of subprograms.
These subprograms may be written in the FORTRAN or FAP language,
and may be called by other FORTRAN or FAP, main or subprograms.
The language may be expanded by the use of subprograms to any
desired depth.

Pre-written routines to evaluate functions of any number of arguments,
can be made available for incorporation into object programs by the
use of any of several different facilities provided for this purpose.

Certain statements in the FORTRAN language cause the inclusion in the
object program of the necessary input and output routines. Those which
deal with decimal information include conversion to or from the internal
machine language, and permit considerable freedom of format in the
input and output of data.

Nature of
FORTRAN
Ari thrnetic

Arithmetic in an object program will generally be performed with
single-precision floating point numbers. These numbers provide
about 8 decimal digits of precision, and may be zero or have
magnitudes between approximately and 1038. Fixed point
arithmetic for integers i s also provided.

TABLE OF CONTENTS
Page -

PART I . GENERAL CONCEPTS

Chapter 1 . The General Properties of a FORTRAN Source Program

Chapter 2. Constants, Variables, Subscripts and Expresslons

Chapter 3 . Functions

PART I I . THE FORTRAN LANGUAGE

Chapter 1 . The Arithmetic Statements

Chapter 2. Control Statements and END Statement
Unconditional GO TO
Computed GO TO
Assigned GO TO
ASSIGN
IF
SENSE LIGHT
IF (SENSE LIGHT)
IF (SENSE SWITCH)
IF ACCUMULATOR OVERFLOW
IF QUOTIENT OVERFLOW
IF DIVIDE CHECK
DO
CONTINUE
PAUSE
STOP
END

Chapter 3. Subprogram Statements
SECTION A: FUNCTION and SUBROUTINE

FUNCTION
SUBROUTINE

SECTION B: CALL and RETURN
CALL
RETURN

Chapter 4. Input/Output Statements

FORMAT
READ

READ INPUT TAPE
READ TAPE
READ DRUM
PUNCH
PRINT
WRITE OUTPUT TAPE
WRITE TAPE
WRITE DRUM
END FILE
REWIND
BACKSPACE

Chapter 5. Specification Statements
DIMENSION
FREQUENCY
EQUIVALENCE
COMMON

PART 111. PROGRAMMING FOR THE 709/7090 FORTRAN MONITOR

Chapter 1 . Introduction to the Monitor System

Chapter 2. Monitor Features

Chapter 3. The Chain Job

Chapter 4. Monitor Control Cards

Chapter 5 . Programming FORTRAN Problems for the Monitor

PART IV. GENERAL RULES FOR FORTRAN PROGRAMMING

Chapter 1 . Miscellaneous Details about 709/7090 FORTRAN

Chapter 2. Limitations on Source Program Size

APPENDICES

A. Source Program Statements and Sequencing

B. Table of Source Program Characters

C . Sense Switch Settings for 709/7090 FORTRAN

D . Using Hand-Coded Subroutines with 709/7090 FORTRAN
Compiled Object Programs

INDEX

C CHAPTER 1 - GENERAL PROPERTIES OF A FORTRAN SOURCE PROGRAM

A FORTRAN source program consists of a sequence of source
statements, of which there a r e 38 different types. These statement
types a re described in detail in the chapters which follow.

Example of a The brief program shown in Figure 1 will serve to illustrate the
FORTRAN general appearance and some of the properties of a FORTRAN
Program program. It is shown a s coded on a standard FORTRAN coding sheet.

The purpose of the program is to determine the largest value attained
by a set of numbers, Ai (represented by the notation A (I)), and to
print the number on the attached printer. The numbers exist on punched
cards, 1 2 to a card, each number occupying a field of 6 columns. The
size of the set is variable, not exceeding 999 numbers. The actual
size of the set is punched on the leading card and is the only number
on that card.

Punching
a Source
Program

Figure 1

Each statement of a FORTRAN source program is punched into a
separate card (the standard FORTRAN card form is shown in
Figure 2); however, if a statement is too long to fit on one card, it
can be continued on a s many a s nine "continuation cards. " The
order of the source statements i s governed solely by the order of
the statement cards.

C I O O 0 o o o o o 0 0 a o a o a o a o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o o o o o o 0 0 0
118 a 4 1 1 ! @ m ~ w 1 ? ~ ~ v ~ ~ m ~ ~ n n n n I ~ i m n n a ~ I u n I I ~ a r m n ~ a t ~ ~ ! ~ u ~ ~ u ~ ~ ~ w s ~ ~ ~ ~ ~ ~ ~ n ~ ~ u ~ ~ ~ ~ ~ ~ n m ~ ~ n n n ~ ~ ~ m n m
1 ' l 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 l

Cards which contain a "CW in column 1 are not processed by the
FORTRAN program. Such cards may, therefore, be used to carry
comments which will appear when the source program deck is listed.

Numbers less than 32,768 may be punched in columns 1-5 of the initial
card of a statement. When such a number appears in these columns,
it becomes the statement number of the statement. These statement
numbers permit cross references within a source program, and when '3 necessary, facilitate the correlation of source and object programs. .

Column 6 of the initial card of a statement must be left blank or punched
with a zero. Continuation cards (other than for comments), on the
other hand, must have column 6 punched with some character other
than zero, and may be punched with numbers from 1 through 9.
Continuation cards for comments need not be punched in column 6;
only the "CW in column 1 is necessary.

The statements themselves are punched in columns 7-72, both on
initial and continuation cards. Thus, a statement may consist of not
more than 660 characters (i. e. , 10 cards). A table of the admissible
characters for FORTRAN is given in Appendix B. Blank characters,
except in column 6 and in certain fields of FORMAT statements, a re
simply ignored by FORTRAN, and may be used freely to improve
the readability of the source program listing.

Columns 73-80 a re not processed by FORTRAN, and may, therefore,
be iunched with any desired identifying information.

The input to FORTRAN may be either the deck of source statement
cards, or a BCD tape prepared on off-line card-to-tape equipment
using the standard SHARE 80 x 84 board. On such a tape, an end-of- '<I
file mark is required after the last card.

<- Types of
L FORTRAN

Statements

The 38 types of statements which can be used in a FORTRAN program
may be classified a s follows:

The arithmetic statement which specifies a numerical computation.
Par t I, Chapter 2 discusses the symbols available for referring
to constants, variables and functions; and Part 11, Chapter 1 the
combining of these into arithmetic formulas.

The fifteen control statements which govern the flow of control
in the program. These, plus the END statement, are discussed
in Part 11, Chapter 2.

The four subprogram statements which enable the programmer
to define and use subprograms. The method for utilizing sub-
programs is discussed in Part 11, Chapter 3.

The thirteen input/output statements which provide the necessary
input and output routines. These statements are discussed in
Part 11, Chapter 4.

The four specification statements which provide information
required, o r desirable to make the object program efficient.
These a re discussed in Part 11, Chapter 5.

CHAPTER 2 -- CONSTANTS, VARIABLES, SUBSCRIPTS, AND EXPRESSIONS

As required of any programming language, FORTRAN provides a
means of expressing numerical constants and variable quantities.
In addition, a subscript notation is provided for expressing one-,
two-, or three-dimensional arrays of variables.

CONSTANTS

Fixed Point
Constants

Floating
Point
Constants

Two types of constants are permissible in the FORTRAN source
program language: fixed point (restricted to integer 8) , and
floating point (characterized by being written with a decimal point).

GENERAL FORM

1 to 5 decimal digits. A preceding
+ or - sign is optional. The
magnitude or absolute value of the
constant must be less than 217.

EXAMPLES 1

Where a fixed point constant is used for the value of a subscript,
it is treated modulo (size of core storage).

I GENERAL FORM 1 EXAMPLES I
Any number of decimal digits, with
a decimal point at the beginning, at
the end, or between two digits. A
preceding + or - sign is optional.

A decimal exponent preceded by an
E may follow a floating point constant.

The magnitude of a number thus
expressed must lie between the
approximate limits of 10-38 and
1038, or be zero.

VARIABLES Two types of variables are permissible: fixed point (restricted to
integral values) and floating point. References to variables a re
made in the FORTRAN source language by symbolic names consisting
of alphabetic and, if desired, numerical characters.

Fixed Point
Variables

Floating
Point
Variables

c, SUBSCRIPTS

1 to 6 alphabetic o r numerical
characters (not special characters),
of which the first is I, J, K, L, M,
o r N.

.

A fixed point variable can assume any integral value provided the
magnitude is less than 217. Values used for subscripts, however,
are treated modulo (size of core storage).

GENERAL FORM

To avoid the possibility that a variable may be considered by
FORTRAN to be a function (see page 13), the following two warnings
should be observed with respect to the naming of variables:

EXAMPLES

Warning: A variable cannot be given a name which coincides with
the name of a function without its terminal F. Thus, if
a function is named TIMEF, no variable should be named
TIME.

Unless their names are less than four characters in length,
subscripted variables (see below) must not be given names
ending with F, because FORTRAN will consider variables
so named to be functions.

I GENERAL FORM I EXAMPLES I
1 to 6 alphabetic or numerical
characters (not special characters),
of which the first is alphabetic but
not I, J, K, L, M, or N.

A
B7
DELTA

A floating point variable can assume any value expressible as a
normalized floating point number, i. e. , zero or with magnitude
between approximately and

Note: The restrictions on naming fixed point variables also apply
to floating point variables.

A variable can be made to represent any element of a one-, two-,
o r three-dimensional array of quantities by appending 1, 2, o r 3
subscripts to it, respectively. The variable is then a subscripted
variable. These subscripts a re fixed point quantities whose values

Subscripted
Variables

Arrangement
of Arrays in
Storage

determine the member of the array to which reference is made.

GENERAL FORM

Let v represent any fixed point
variable and c (or c r) any unsigned
fixed point constant. Then a sub-
script is an expression in one of the
forms:

v
C

v+c o r v-c
c*v
c*v+cr o r c%-cr

(The symbol * denotes multiplication.)

EXAMPLES

The variable in a subscript must not itself be subscripted.

GENERAL FORM I EXAMPLES I
A fixed or floating point variable,
followed by parentheses enclosing
1, 2, or 3 subscripts which are
separated by commas.

K (3)
BETA (5*J-2, K+2, L)

Each variable which appears in subscripted form must have the size
of its array (i. e. , the maximum values which its subscripts can
attain) specified in a DIMENSION statement preceding the first
appearance of the variable in the source program.

The value of a subscript exclusive of its addend, if any, must be
greater than zero and not greater than the corresponding array
dimension.

If an array, A, is 2-dimensional, it will be stored sequentially in
the order A1,1, A2,1, . , A,, 1, A1,2, A2,2, , Am, 2, ,
A , Arrays are thus stored "columnwise, '' with the first of their
subscripts varying most rapidly, and the last varying least rapidly.
The same is true of 3-dimensional arrays. Arrays which are
1-dimensional are of course simply stored sequentially.

All arrays are stored backwards; i. e. , in the order of decreasing
absolute storage locations.

-.
\ '
L

EXPRESSIONS A FORTRAN expression is any sequence of constants, variables
(subscripted or not subscripted), and functions, separated by
operation symbols, commas, and parentheses, which complies with
the rules for constructing expressions.

Rules for 1.
Constructing
Expressions

The operation symbols +, , * , and ** denote addition, subtraction,
multiplication, division, and exponentiation, respectively, in arith-
metic type operations.

Since constants, variables, subscripted variables, and functions
may be fixed point or floating point, expressions may also be
fixed point or floating point; however, they must not be mixed
mode. This does not mean that a floating point constant, variable,
or function cannot appear in a fixed point expression, etc. , but
rather that a quantity of one mode can appear in an expression of
another mode only in the following ways:

a. Fixed point expressions may contain floating point quantities
only a s arguments of a function.

b. Floating point expressions may contain fixed point quantities
only a s arguments, subscripts, and exponents.

Constants, variables, and subscripted variables a r e also
expressions of the same mode a s the constant or variable name.
For example, the fixed point variable name 553 is a fixed point
expression.

Functions a re expressions of the same mode a s the function name,
provided that the arguments of the function a r e in the modes
assumed in the definition of the function. For example, if
SOMEF(A, B) is a function with a floating point name, then
SOMEF(C, D) is a floating point expression if C and D are of
the same modes a s A and B, respectively.

Exponentiation of an expression does not affect the mode of the
expression; however, a fixed point expression may not be given
a floating point exponent.

Note: The expression A**B**C is not permitted. It must be
written a s either A**(B**C) o r (A**B)**C, whichever is
intended.

Preceding an expression by a + or - does not affect the mode
of the expression produced. For example, E, +E, and -E a r e
all expressions of the same mode.

6. Enclosing an expression in parentheses does not affect the mode
of the expression. For example, A, (A), ((A)), and (((A))) a re
all expressions of the same mode.

7. Expressions may be connected by operators to form more
complex expressions, provided:

a. No two operators appear in sequence.
b. Items so connected are all of the same mode.

Rules for FORTRAN arithmetic expressions may be interpreted a s Boolean
Constructing expressions in which the mathematical operators are treated a s
Boolean logical operators. To obtain this interpretation the character "B"
Expressions must be in column 1 of the Boolean arithmetic statement. The
(Applicable to following rules apply :

The operation symbols +, *, and - denote the operators o r ,
and, and complement, respectively. (The symbols / and ** -
are not defined for Boolean expressions.)

The operator * has greater binding strength than the operator +.
(It is higher in the hierarchy of operations.) Because - is a
unary operator it is part of the expression or symbol to which it
applies. Thus, when a Boolean expressibn is to be complemented
it must be enclosed in parentheses if it is a part of a larger
expression. For example, A - B is not permitted, although
A+(-B) is permitted.

In accordance with the "logical" usage of the expression, and
to simplify the construction of masks and logical constants,
constants in Boolean expressions are taken to be octal numbers.
Constants must consist of no more than 12 octal digits, if there
are fewer than 12, then the number will be right adjusted. Blanks
are ignored, they a re not treated a s zero.

All variables used in arithmetic statements which contain Boolean
expressions must have floating point names.

Variable names can be subscripted in the normal FORTRAN
manner.

All Boolean operations are performed upon the full 36-bit
logical word.

I I C-' Hierarchy of When the hierarchy of operations in an expression is not explicitly
Operations specified by the use of parantheses, it is understood by FORTRAN

1 to be in the following order (from innermost operations to outermost) :

*S Exponentiation
* and / Multiplication and Division
+ and - Addition and Subtraction

For example, the expression

I

will be taken to mean
I

Ordering Parentheses which have been omitted from a sequence of consecutive
within a multiplications and divisions (or consecutive additions and subtractions)
Hierarchy will be understood to be grouped from the left. Thus, if represents

either * or / (or either + or -), then

A @ B @ C @ D @ E

will be taken by FORTRAN to mean

Optimi =ation of The efficiency of instructions compiled from arithmetic expressions
Arithmetic may also be influenced by the way in which the expressions a re
Expressions written. The section on Optimization of Arithmetic Expressions in

Par t N, Chapter 2 mentions some of the considerations which affect
obj ect program efficiency.

CHAPTER 3 - FUNCTIONS

This chapter will discuss the four function-types which may be
utilized in FORTRAN. To clarify the meaning and use of functions
they will be shown in their relation to subroutine-types a s a whole.
A subroutine is considered a s any sequence of instructions which
performs some desired operation. Subroutines may be function-type
or subprogram-type, each type being further subdivided. The inter-

CALLING

relationship of the various subroutines is a s follows:

FORTRAN
Subroutines

Method Method Method of
of Calling of Naming Defining
Subroutine Subroutine Subroutine

Closed (or Library) functions 1
Arithmetic Statement functions

Open (or Built-in) functions

FORTRAN functions (FUNCTION-
type Subprograms) A ? ?

1

Subroutine (or SUBROUTINE-
type) Subprograms

Thus, from the way they are called, or used, there are four sub-
routine types (i. e. , the functions) which are alike. Three of these
a re named according to the same rules, each of the four is given its
meaning (i. e. , it is defined) in a different manner. The fifth sub-
routine type, Subroutine subprograms, is called, or used, by means
of a CALL statement; however, it is named and defined in much the
same manner a s the FUNCTION type subprograms.

As indicated in the schematic there are two distinct ways by which
subroutines may be referred to. One of these is by means of an
arithmetic expression. (This applies to the four functions: Closed,
Open, Arithmetic Statement, and Fortran functions.) The other,
which applies to Subroutine subprograms, is by means of a CALL
statement. (See page 35.)

Following are examples of arithmetic expressions including function
names.

C = MINOF (M, L)+ABC (B*FORTF(Z) , E)

NAMING

Naming of
Open, C losed,
and Arithmetic
Statement
Functions

C

The names of Open, Closed, Arithmetic Statement, and Fortran
functions are all used in this way. The appearance in the arithmetic
expression serves to call the function; the value of the function is
then computed, using the arguments which are supplied in the
parentheses following the function name. Only one value is produced
by these four functions, whereas the Subroutine subprogram may
produce many values. (A value is here defined to be a single
numerical quantity.)

The following paragraphs describe the rules for naming Open, Closed,
and Arithmetic Statement functions.

I GENERAL FORM

The name of the function consists
of 4 to 7 alphabetic or numerical
characters (not special characters),
of which the last must be F and the
first must be alphabetic. Further,
the first must be X if and only if the
value of the function is to be fixed
point. The name of the function is
followed by parentheses enclosing
the arguments separated by commas.

EXAMPLES

ABSF (B)
XMODF (M/N, K)
COSF (A)
FIRSTF (Z + B, Y)

Mode of a Function and its Arguments. Consider a function of a
single argument. It may be desired to state the argument either in
fixed o r floating point; similarly the function itself may be in either
of these modes. Thus a function of a single argument has 4 possible
mode configurations; in general a function of n arguments will have
2" + l mode configurations.

A separate name must be given, and a separate routine must be
available, for each of the mode configurations which is used. Thus,
a complete set of names for a given function might be:

SOMEF Fixed argument, floating function
SOMEOF Floating argument, floating function
XSOMEF Fixed argument, fixed function
XSOMEOF Floating argument, fixed function

The X's and FTs are mandatory, but the rest of the naming is arbitrary.

Naming of
Fortran
Functions

Open (or
Bui l t-in)
Functions

r-) 1
Although these functions a r e referred to by arithmetic expressions
in the same manner a s the previous three types, the rules for naming
them are different. Except for the fact that no name of a Fortran
function which is 4 to 6 characters long may end in F, these functions
a re named in exactly the same way a s ordinary variables of the
program. This means that the name of a fixed point Fortran function
must have I, J, K, L, My or N for its first character.

Further details on naming Fortran functions a r e given on page 31.

Each of the four types of functions i s defined (or generated) in a
different way.

The FORTRAN System, a s distributed, contains 20 built-in sub-
routines. It, further, has the capacity for 7 more built-in subroutines.
The additional subroutines may be inserted into the system by the
particular installation.

Following a re the 20 functions that a re compiled a s open subroutines
into the arithmetic statement which calls them. These functions a r e
called "open" since they appear in the object program each time
they a re referred to in the source program.

Type of Function

Absolute value

Truncation

Remaindering
(see note below)

Choosing

largest value

Choosing
smallest value

Float

Fix

Transfer
of sign

Positive
difference

Definition

l Arg l

Min (Arg

Arg2,. .

Floating a
fixed number

Same as
XINTF

Sign of Arg2
times

Argl - Min

(b l , Arg2)

No, of
Args.

1

1

2

2 2

-> 2

1

1

2

2

Name I ~ r ~ u m e n t
r

ABSF
XABSF

INTF
XINTF

MODF

XMODF

MAXOF
MAXlF

XMAXO F
XMAXlF

MINOF

MINlF
XMINOF

XMINl F

FLOATF

XFIXF

SIGNF
XSIGNF

DIMF
XDIMF

Floating
Fixed

Floating

Floating

Floating
Fixed

Fixed
Floating

Fixed

Floating

Fixed

Floating
Fi xed

Floating

Fixed

Floating

Floating
Fixed

Floating
Fixed

le of
Functior

Floating
Fixed

Floating
Fixed

Floating

Fixed

Floating
Floating

Fixed
Fixed

Floating

Floating
Fixed
Fixed

Floating

Fixed

Floating
Fixed

Floating
Fixed

NOTE; The function MODF (Argl, Arg2) is defined as Argl - [~ r ~ ~ / ~ r g ~] Arg2, where [x]=integral part of x.

closed (or
I

Library)
I Functions

Arithmetic
Statement Ci Functions

These a re functions which a r e pre-written and may exist on the
library tape o r in prepared card decks. These functions constitute
"closed" subroutines, i. e . , instead of appearing in the object program
for every reference that has been made to them in the source program,
they appear only once regardless of the number of references.

Hand-coded closed functions may be added to the library. Rules for
coding these subroutines a re given in Appendix D; those for adding
them to the library a re included in the FORTRAN Operations Manual.

Seven library functions a r e included in the FORTRAN System, a s
distributed. These are:

Name Type of Function Name Type of Function

LOGF Natural Logarithm SQRTF Square Root
SINF Trigonometric Sine ATANF Arctangent -

COSF Trigonometric Cosine TANHF Hyperbolic Tangent
EXPF Exponential

These a re functions which a re defined by a single FORTRAN arith-
metic statement and apply only to the particular program or sub-
program in which their definition appear s.

GENERAL FORM

"a = b" where a i s a function name
followed by parentheses enclosing its
arguments (which must be distinct
non-subscripted variables) separated
by commas, and b i s an expression
which does not involve subscripted
variables. Any functions appearing
in b must be available to the program
or already defined by preceding
arithmetic statements.

EXAMPLES

FIRSTF(X) = A*X + B
SECONDF (X, B) = A*X + B
THIRDF(D) = FIRSTF(E)/D
FOURTHF (F,G) = SECONDF

(F, THlRDF (G))
FIFTHF(1, A) = 3.O*A**I
SIXTHF(J) = J + K
XSIXTHF(J) = J + K

Just a s with the other functions, the answer will be expressed in
fixed or floating point according a s the name does o r does not begin
with X.

The right-hand' side of a function statement may be any expression,
not involving subscripted variables, that meets the requirements
specified for expressions.

Fortran
Functions

In particular, it may involve functions freely, provided that any
such function, if it i s not built-in or available on the master tape,

'3
has been defined in a preceding function statement.

Of course, no function can be used a s an argument of itself.

As many as desired of the variables appearing in the expression on
the right-hand side may be stated on the left-hand side to be the
arguments of the function. Since the arguments are really only
dummy variables, their names are unimportant (except a s indicating
fixed o r floating point mode) and may even be the same as names
appearing elsewhere in the program.

Those variables on the right-hand side which are not stated as
arguments a re treated a s parameters. Thus if FIRSTF is defined
in a function statement as FIRSTF(X) = A*X + B then a later reference
to FIRSTF (Y) will cause ay+b, based on the current values of a, b,
and y, to be computed. The naming of parameters, therefore, must
follow the normal rules of uniqueness.

A function defined by a function statement may be used just a s any
other function. In particular, its arguments may be expressions
and may involve subscripted variables; thus a reference to
FIRSTF(Z + Y(I)), with the above definition of FIRSTF, will cause

3
a(z+yi) + b to be computed on the basis of the current values of a , b,
yi, and z.

Functions defined by arithmetic statements are always compiled a s
closed subroutines.

Note: All the arithmetic statements defining functions to be used in
a program must precede the first executable statement of the
program.

This class of functions covers those subroutines which on the one
hand cannot be defined by only one arithmetic statement, and on the
other, are not utilized frequently enough to warrant a place on the
library tape.

They are called Fortran functions because they may conveniently be
defined by a conventional FORTRAN program. In this instance
compiling a FORTRAN program produces a Function subroutine in
exactly the form required for object program execution.

Since Fortran functions and Subroutine subprograms are defined in
the same way, a discussion of the definition of Fortran functions 13
is included in Part 11, Chapter 3.

IS' CHAPTER 1 - THE ARITHMETIC STATEMENT

Arithmetic
Statement

The arithmetic statement defines a numerical calculation. A FORTRAN
arithmetic statement resembles very closely a conventional arithmetic
formula. However, in a FORTRAN arithmetic statement the = sign
specifies replacement rather than equivalence. Thus, the arithmetic
statement

GENERAL FORM

"a = b" where a i s a variable
(subscripted or not subscripted)
and b i s an expression.

Y = N-LIMIT (5-2)

EXAMPLES

Q 1 = K
A(I)=B(I)+SINF (C (I))

means that the value of N-LIMIT (5-2) i s to be stored in Y. The result
i s stored in fixed point or in floating point form if the variable to the
left of the = sign i s a fixed point or a floating point variable, respectively.

If the variable on the left is fixed point and the expression on the right
i s floating point, the result will first be computed in floating point and
then truncated and converted to a fixed point integer. Thus, if the
result i s +3. 872 the fixed point number stored will be +3, not +4. If
the variable on the left is floating point and the expression on the right
fixed point, the latter will be computed in fixed point, and then converted
to floating point.

Examples of Arithmetic Statements

Store the value of B in A.

Truncate B to an integer, convert to fixed point,
and store in I.

Convert I to floating point, and store in A.

Add 1 to I and store in I. This example illustrates
the fact that an arithmetic formula is not an equa-
tion, but is a command to replace a value.

Replace A by 3B.

Not permitted. The expression is mixed, i. e. ,
contains both fixed point and floating point variables.

Not permitted. The expression is mixed.

A Boolean arithmetic statement is an arithmetic statement in
which b is a Boolean expression (see page 10).

Examples of Boolean Arithmetic Statements

The inner pair of parentheses is
required to indicate the scope of
complementation. The outer pair
of parentheses is required because
the expression -(B+C) is a part of
a larger expression.

No additional parentheses a re
required here because the function
name, a s well a s the argument
names, are not parts of a
larger expression.

The constant is here being used
to "mask out" the right half of
word X.

C; CHAPTER 2 - CONTROL STATEMENTS A N D END STATEMENT

The second class of FORTRAN statements i s the set of sixteen
control statements which enable the programmer to state the flow
of his program.

This statement causes transfer of control to the statement with
statement number n.

Unconditional
GO TO

Computed
GO TO

Assiigned
GO TO

GENERAL FORM

"GO TO nv1 where n is a statement
number.

I GENERAL FORM 1 EXAMPLES

EXAMPLES

GO TO 3

J

Control is transferred to the statement with statement number
"1, "2, "3, . . . , nm depending on whether the value of i at time of
execution is 1, 2, 3, . . . , m, respectively. Thus, in the example,
if i i s 3 at the time of execution, a transfer to the 3rd statement of
the list, namely statement 50, will occur.

"GO TO (nl n2,. . . , nm), i M where
"1, "2,. , nm are statement
numbers and i is a non-subscripted
fixed point variable.

This statement is used to obtain a computed many-way fork.

--

GO TO (30,42,50,9), I

GENERAL FORM

"GO TO n, (n p 2 , . . . , nm)" where
n is a non-subscripted fixed point
variable appearing in a previously
executed ASSIGN statement, and
"1, "2, . . . , nm a re statement
numbers.

EXAMPLES]

This statement causes transfer of control to the statement with
statement number equal to that value of n which was last assigned by
an ASSIGN statement; n l , n2, . . . , nm are a list of the values which
n may have assigned.

ASSIGN

S E N S E
LIGHT

IF (SENSE
LIGHT)

The assigned GO TO is used to obtain a pre-set many-way fork.

When an assigned GO TO exists in the range of a DO, there is a
restriction on the values of n l , n2, . . . , nm. (See page 26.)

GENERAL FORM

"ASSIGN i TO nu where i is a
statement number and n is a non-
subscripted fixed point variable
which appears in an assigned GO
TO statement.

EXAMPLES

ASSIGN 12 TO K

This statement causes a subsequent GO TO n, (nl, . . . , nm) to transfer
control to statement number i where i is included in the ser ies n l , . . . n,.

Control is transferred to the statement with the statement number
"1, "2, o r n3 if the value of a is less than, equal to, o r greater than
zero, respectively.

GENERALFORM

"IF (a) n l , n2, ngfl where a is an
expression and n l , n2, ng a r e
statement numbers.

I GENERAL FORM I EXAMPLES I

EXAMPLES

IF(A(J, K)-B)10, 4, 30

llSENSE LIGHT if' where i is 0, 1,
2, 3, o r 4.

SENSE LIGHT 3

If i is 0, all Sense Lights will be turned Off; otherwise Sense Light
i only will be turned On.

GENERAL FOEWI

"IF (SENSE LIGHT i) n l , nZtl
where n l , and n2 a r e statement
numbers and i is 1, 2, 3, or 4.

EXAMPLES I

IF (SENSE
SWITCH)

Control is transferred to the statement with statement number n l
o r n2 if Sense Light i i s On or Off, respectively. If the light i s On,
it will be turned Off.

GENERAL FORM I EXAMPLES

"IF (SENSE SWITCH i) nl , n ~ ? ~
where n l and n2 a re statement
numbers and i is 1, 2, 3, 4, 5,
o r 6.

IF (SENSE SWITCH 3)
30, 108

Control is transferred to the statement with statement number n l
o r ng if Sense Switch i is Down o r Up, respectively.

IF ACCU-
MU LATOR
OVERFLOW "IF ACCUMULATOR OVERFLOW

"1, n2" where n l and n;! a r e
statement numbers.

GENERAL FORM

IF ACCUMULATOR
OVERFLOW 30, 49

EXAMPLES

IF QUOTIENT
O'VERF LOW

I

I GENERAL FORM 1 EXAMPLES I
1 "IF QUOTIENT OVERFLOW nl, I IF QUOTIENT OVER- I
I nZff where nl and n2 a r e statement

numbers.
FLOW 30, 49

Control i s transferred to the statement with statement number nl
if an overflow condition is present in either the Accumulator or the
Multiplier-Quotient Register, and to n2 if no overflow is present at
all. That is, in 709/7090 FORTRAN, programming either of these
statements i s equivalent to programming a non-FORTRAN statement,
IF OVERFLOW nl , n2. In 709/7090 FORTRAN, an internal indicator
is used to denote the overflow condition; it is reset to the no-overflow
condition after execution of either of these two statements.

When either the Accumulator or Multiplier-Quotient Register over-
flows, the register is set to contain the highest possible quantity,
i. e. , 3777777777778. The sign is unchanged.

If an underflow occurs in either register, that register is set to zero,
the sign remains unchanged. There is no test for the underflow
oondition.

IF DIVIDE
CHECK

I GENERAL F o m I EXAMPLES 1
"IF DNIDE CHECK nl, n2l1 where
nl and n2 a re statement numbers.

IF DNIDE CHECK
84, 40

Control is transferred to the statement with statement number n l
or n2, if the Divide Check trigger i s On o r Off, respectively. If it
i s On, i t will be turned Off.

GENERAL FORM

m2, m3'? where n i s a statement
number,i i s a non-subscripted fixed
point variable, and ml , m2, m3 a re
each either an unsigned fixed point
constant o r non-subscripted fixed
point variable. If mg is not stated,
i t i s taken to be 1.

EXAMPLES I

The DO statement i s a command to execute repeatedly the statements
which follow, up to and including the statement with statement number
n. The first time the statements a re executed with i = m l . For
each succeeding execution i i s increased by mg. After they have
been executed with i equal to the highest of this sequence of values
which does not exceed m2, control passes to the statement following
the last statement in the range of the DO.

The range of a DO is that set of statements which will be executed
repeatedly; i. e . , it is the sequence of consecutive statements
immediately following the DO, up to and including the statement
numbered n.

The index of a DO i s the fixed point variable i, which is controlled
by the DO in such a way that i ts value begins at m l and is increased
each time by mg until it is about to exceed m2. Throughout the range
it i s available for computation, either a s an ordinary fixed point
variable or a s the variable of a subscript. After the last execution
of the range, the DO is said to be satisfied.

Suppose, for example, that control has reached statement 10 of the
program

The range of the DO is statement 11, and the index is I. The DO
sets I to 1 and control passes into the range. The value of 1. N(l)
is computed, converted to floating point, and stored in location
A (1). Since statement 11 is the last statement in the range of the
DO and the DO is unsatisfied, I is increased to 2 and control returns
to the beginning of the range, statement 11. The value of 2. N(2) is
then computed and stored in location A(2). The process continues
until statement 11 has been executed with I = 10. Since the DO is
satisfied, control then passes to statement 12.

DOs withm DOs. Among the statements in the range of a DO may
be other DO statements. When this is so, the following rule must
be observed:

Rule 1: If the range of a DO includes another DO, then all of the
statements in the range of the latter must also be in the
range of the former.

A set of DOs satisfying this rule is called a nest of DOs.

Transfer of Control and DOs. Transfers of control from and into
the range of a DO are subject to the following rule:

Rule 2: No transfer is permitted into the range of any DO from
outside its range. Thus, in the configuration below, 1, 2
and 3 are permitted transfers, but 4, 5 and 6 are not.

Exception. There i s one situation in which control can be transferred ..J
into the range of a DO from outside i ts range. Suppose control is in
the range of the innermost DO of a nest of DOs which a re completely
nested (i. e . , every pair of DOs in the nest is such that one contains
the other). Suppose also that control i s transferred to a section of
the program, completely outside the nest to which these DOs belong,

I

which makes no change in any of the indexes o r indexing parameters
(mts) in the nest. Then after the execution of this latter section of the
program, control can be transferred back to the range of the same
innermost DO from which it originally came. This provision makes
it possible to exit temporarily from the range of some DOs to execute
a subroutine.

Restriction on Assigned GO TOs in the Range of a DO. When an
assigned GO TO is in the range of a DO, the statements to which it
may transfer must all be in the exclusive range of a single DO (i. e. ,
among those statements in the range of a DO which a re not in the
range of any DO in its range), or all outside the DO nest.

I

Preservation of Index Values. When control leaves the range of a
DO in the ordinary way (i. e. , when the DO becomes satisfied and
control passes on to the next statement after the range) the exit is
said to be a normal exit. After a normal exit from a DO occurs,
the value of the index controlled by that DO is not defined, and the '3 1
index cannot be used again until i t is redefined. (In this connection, 1
see "Further Details about DO Statements, " page 85.)

However, if exit occurs by a transfer out of the range, the current
value of the index remains available for any subsequent use. If
exit occurs by a transfer which is in the ranges of several DOs,
the current values of all the indexes controlled by those DOs a r e
preserved for any subsequent use. I

Restrictions on Statements in the Range of a DO. Only one type of
statement is not permitted in the range of a DO, namely any statement
which redefines the value of the index o r of any of the indexing
parameters (mls). In other words, the indexing of a DO loop must
be completely set before the range i s entered.

The first statement in the range of a DO must not be one of the non-
executable FORTRAN statements. The range of a DO cannot end.
with a transfer.

Exits. When a CALL statement is executed in the range of a DO,
care must be taken that the called subprogram does not alter the
DO index or indexing parameters. This applies a s well when a Ll
Fortran function is called for in the range of a DO.

GENERAL FORM

CONTINUE i s a dummy statement which gives r ise to no instructions
in the object program. It is most frequently used a s the last statement
in the range of a DO to provide a transfer address for IF and GO TO
statements which a r e intended to begin another repetition of the DO
range.

EXAMPLES I
"CONTINUE"

As an example of a program which requires a CONTINUE, consider
the table search:

CONTINUE

10 DO 12 I = l , 100
IF (ARG - VALUE (I))12, 20, 12

12 CONTINUE

This program will scan the 100-entry VALUE table until it finds an
entry which equals the value of the variable ARG, whereupon it exits
to statement 20 with the value of I available for fixed point use; if
no entry in the table equals the value of ARG, a normal exit to the
statement following the CONTINUE will occur.

GENERAL FORM EXAMPLES

STOP

'lPAUSE'l o r "PAUSE n" where n i s
an unsigned octal fixed point constant.

PAUSE
PAUSE 77777

The machine will halt with the octal number n in the address field
of the Storage Register. If n is not specified, it is understood to be
0. Depressing the Start key causes the program to resume execution
of the object program with the next FORTRAN statement.

GENERAL FORM

"STOPw or "STOP nM where n is an
unsigned octal fixed point constant. -

EXAMPLES

STOP
STOP 77777

END

This statement causes a halt in such a way that depressing the Start '3
key has no effect. Therefore, in contrast to PAUSE, this statement
is used where a terminal, rather than a temporary stop, i s desired.
The octal number n is positioned in the address field of the Storage
Register. If n is not specified, it i s understood to be 0.

I GENERAL FORM I EXAMPLES I

This statement differs from the previous statements discussed in
this chapter in that it does not affect the flow of control in the object
program being compiled. Its application is to the FORTRAN executive
program during compilation:

"END (I1, 12, Is, 14, Is)" where I
is 0, 1, or 2.

1. FORTRAN provides the option of running under monitor control,
which allows the compilation of a number of separate FORTRAN
source programs in succession. The END statement, then, marks
the end of any given FORTRAN source program, separating it from
the program that follows. 3

END (2, 2, 2, 2, 2)
END (1, 2, 0, 1, 1)

2. The END statement specifies the treatment of the setting of Sense
Switches 1 through 5.

3. The END statement must be the physically last statement of a
program. The statement may be omitted only for single program
compilations. When the END statement is omitted, all In a r e
assumed equal to 2 (see below).

For each I of the statement's list,

I = 1 1 Ignore actual Sense Switch setting. Assume it to be Down. I
1 = 0 Ignore actual Sense Switch setting. Assume it to be Up.

The END statement does not, of course, physically change the
setting of a Sense Switch.

1 = 2

The Sense Switch options a re given in Appendix C.

13

- - -

Note actual setting and act accordingly.
i

L: CHAPTER 3 - SUBPROGRAM STATEMENTS

It is possible to program, in the FORTRAN language, subroutines
which are referred to by other programs. These subroutines may,
in turn, refer to still other lower level subroutines which may also
be coded in FORTRAN language. It i s therefore possible, by means
of FORTRAN, to code problems using several levels of subroutines.
This configuration may be thought of as a total problem consisting
of one main program and any number of subprograms.

Because of the interrelationship among several different programs,
it is possible to include a block of hand-coded instructions in a
sequence including instructions compiled from FORTRAN source
programs. It is only necessary that hand-coded instructions conform
to rules for subprogram formation, since they will comprise a
distinct subprogram.

This chapter presents a discussion of the two types of FORTRAN
coded subprograms possible. These are the FUNCTION subprogram
and the SUBROUTINE subprogram. Four statements, described
subsequently, are necessary for their definition and use. Two of
these, SUBROUTINE and FUNCTION, are dealt with in Section A;
the other two, CALL and RETURN, are discussed in Section B.

Illustrations of, and the rules for hand-coding subprograms are
given on page 101.

Although FUNCTION subprograms and SUBROUTINE subprograms
are treated together and may be viewed as similar, it must be
remembered that they differ in two fundamental respects.

1. The FUNCTION subprogram, which results in a Fortran function
as defined on page 16, is always single-valued, whereas the
SUBROUTINE subprogram may be multi-valued.

2. The FUNCTION subprogram is called or referred to by the
arithmetic expression containing its name; the SUBROUTINE
subprogram can only be referred to by a CALL statement.

Each of these two types of subprogram, when coded in FORTRAN
language must be regarded as independent FORTRAN programs.
In all respects, they conform to rules for FORTRAN programming.
However, they may be compiled with the main program of which
they are parts by means of multiple program compilation. In this
way the results of a multiple program compilation will be a complete
main program-subprogr am sequence ready to be executed.

Schematically, the relationship among nested main and subprograms
can be shown as follows. This diagram, further, indicates the main
division of the internal structure of each program.

Main Program

START
1

Argument Addresses I
Return Point from
Subpryram A t-

STOP 1

Subpmgmm A

rransfer to Subprogram E

ENTRY POINT
I

I
I +

Pass Control to Instruc-
tion which Transfers to
Subprogram B

Argument Addresses

Return Point from
Subpmgmm B

I

A
Return to

Main Program

Su bpmgmm B

ENTRY POINT

L
Return to

Subprogram A

f-\

L SECTION A: FUNCTION and SUBROUTINE

FUNCTION GENERAL FORM

"FUNCTION Name (al, a2, . . . , an)''
where Name is the symbolic name
of a single-valued function, and the
arguments al, a2, . . . an, of which
there must be at least one, are non-
subscripted variable names, the name
of a Subroutine subprogram, or the
name of a Fortran function.

The function name consists of 1 to
6 alphanumerical characters, the
first of which must be alphabetic;
the first character must be I, J,
K, L, M, or N if and only if the
value of the function is to be fixed
point, and the final character must
not be F if there are more than
three characters in the name.

Every variable name used a s an
argument must occur in at least
one executable statement of the
subprogram.

EXAMPLES

FUNCTION ARCSIN
(RADIAN)

FUNCTION ROOT
(B, A, C)

FUNCTION INTRST
(RATE, YEARS)

The FUNCTION statement must be the first statement of a Fortran
function subprogram and defines it to be such.

In a FUNCTION subprogram, the name of the function must appear
at least once a s the variable on the left-hand side of an arithmetic
statement, or alternately in an input statement list, e. g. ,

FUNCTION NAME (A, B)

RETURN

SUBROUTINE

By this means, the output value of the function is returned to the
calling program.

3

This type of program may either be compiled independently, or
multiple-compiled with others. A FUNCTION subprogram must
never be inserted between two statements of any other single program.

The arguments following the name in the FUNCTION statement, may
be considered a s "dummy" variable names. That is, during object
program execution, other actual arguments a re substituted for them.
Therefore, the arguments which follow the function reference in the
calling program must agree with those in the FUNCTION statement
in the subprogram in number, order, and mode. Furthermore,
when a dummy argument i s an array name, the corresponding actual
argument must also be an array name. Each of these array names
must appear in DIMENSION statements of their respective programs
with the same dimensions.

None of the dummy variables may appear in EQUIVALENCE
statements in the FUNCTION subprogram.

GENERAL FORM I EXAMPLES .

of another Subroutine subprogram,
or the name of a Fortran function.

The name of the subprogram may
consist of 1 to 6 alphanumerical
characters, the first of which i s
alphabetic; its final character
must not be F if there a re more
than three characters in the name.

Every variable name used a s an
argument must occur in at least
one executable statement in the
subprogram.

"SUBROUTINE Name (a l , a2, . . . ,
an)'' where Name i s the symbolic
name of a subprogram, and each
argument, if any, i s a non-sub-
scripted variable name, the name

SUBROUTINE MATMPY
(A, N, M, BY L, C)

SUBROUTINE QDRTIC
(B, A, C, ROOT1, ROOT2)

This statement is used a s the first statement of a Subroutine sub-
program and defines it to be such. A subprogram introduced by the
SUBROUTINE statement must be a FORTRAN program and may
contain any FORTRAN statements except FUNCTION or another
SUBROUTINE statement.

A Subroutine subprogram must be referred to by a CALL statement
(see page 35) in the calling program. The CALL statement specifies
the name of the subprogram and i ts arguments.

Unlike the FUNCTION-type subprogram which returns only a single
numerical value, the Subroutine subprogram uses one or more of
i ts arguments to return output. The arguments so used, must,
therefore, appear on the left side of an arithmetic statement some-
place in the program (or alternately, in an input statement list within
the program).

The arguments of the SUBROUTINE statement a re dummy names
which a re replaced, at the time of execution, by the actual arguments
supplied in the CALL statement. There must, therefore, be
correspondence in number, order, and mode, between the two sets
of arguments. Furthermore, when a dummy argument is an array
name, the corresponding actual argument must also be an array
name. Each of these array names must appear in DIMENSION
statements of their respective programs with the same dimensions.

For example, the subprogram headed by

SUBROUTINE MATMPY (A, N, M, B, L, C)

could be called by the main program through the statement

CALL MATMPY (X, 5,10, Y, 7, Z)

where the dummy variables, A, B, C, a re the names of matrices.
A, B, and C must appear in a DIMENSION statement in subprogram
MATMPY and X, Y, and Z must appear in a DIMENSION statement
in the calling program. The dimensions assigned must be the same
in both statements.

None of the dummy variables may appear in EQUIVALENCE
statements in the Subroutine subprogram. These subprograms
may be compiled independently or multiple-compiled with others.

F CARD

FORTRAN will accept Function and Subroutine names a s arguments
in other Subroutine and Function subprograms. This permits the
Function or Subroutine specified a s an argument to be different
depending upon the arguments specified in the CALL statements.
Thus, the statements

SUBROUTINE BOB (DUMMY, Y)

A=DUMMYF (Y)

will permit the function DUMMYF to vary depending on the CALL
statements of the main program.

The statement

CALL BOB (SIN, S)

in the main program would cause the SINF (S) to be computed and
placed in storage location A.

Notice that the terminal 'F' of the subroutine name must be dropped
when the subroutine name appears a s the argument of a CALL or
SUBROUTINE statement. This terminal ' F' however, must appear
whenever the subroutine name appears within an arithmetic statement.

In addition, when a subroutine name i s to appear in an argument list
of a SUBROUTINE o r CALL statement, the subroutine name must
appear in an F card. The F card may appear anywhere in the deck
containing the CALL statement.

F must appear in column 1. Thus, the F card

F SIN, COS

would permit either SINF (Y) or COSF (Y) to be computed by
Subroutine BOB, depending upon which was specified in the CALL
statement.

c- SECTION B: CALL AND RETURN

The CALL statement has reference only to the Subroutine subprogram,
whereas the RETURN statement is used by both the Function and
Subroutine subprograms.

GENERAL FORM
-

EXAMPLES

"CALL Name (al , 82, , an)''
where Name is the name of a
Subroutine subprogram, and a l ,
82, . . . , an are arguments which
take one of the forms described
below.

I CALL MATMPY
I (X, 5, 10, y, 7, Z)

CALL QDRTIC
(P*9.732, w4.536 ,
R - s**2.0, XI, X2)

This statement is used to call Subroutine subprograms; the CALL
transfers control to the subprogram and presents it with the
parenthesized arguments. Each argument may be one of the
following types:

Fixed point constant.

Floating point constant.

Fixed point variable, with or without subscripts.

Floating point variable, with or without subscripts.

Arithmetic expression.

Alphanumerical characters. Such arguments must be preceded
by nH where n is the count of characters included in the argument,
e. g. , 9HEND POINT. Note that blank spaces and special
characters are considered characters when used in alphanumerical
fields.

Alphanumerical arguments can, of course, only be used a s input
to hand-coded programs. (See Appendix D.)

The name of a FORTRAN function or another Subroutine sub-
program.

RETURN

The arguments presented by the CALL statement must agree in
number, order, mode and array size with the corresponding
arguments in the SUBROUTINE statement of the called subpro-
gram, and none of the arguments may have the same name as
the Subroutine subprogram being called.

GENERAL FORM

This statement terminates any subprogram, whether of the type
headed by a SUBROUTINE or a FUNCTION statement, and returns
control to the calling program. A RETURN statement must, there-
fore, be the last executed statement of the subprogram. It need not
be physically the last statement of the subprogram; it can be any
point reached by a path of control and any number of RETURN
statements may be used.

EXAMPLES

"RETURN" RETURN 1

Ci CHIAPTER 4 - INPUT/OUTPUT STATEMENTS

Specifying
Lists of
Q ~ ~ a n t i ties

There are thirteen FORTRAN statements available for specifying
the transmission of information during execution of the object
program, between storage on the one hand, and magnetic tapes,
drums, card reader, card punch, and printer on the other hand.
These input/output statements can be grouped a s follows:

Five statements (READ, READ INPUT TAPE, PUNCH, PRINT,
and WRITE OUTPUT TAPE) which cause transmission of a
specified list of quantities between storage and an external
input/output medium: cards, printed sheet, or magnetic tape,
for which information is expressed in Hollerith punching,
alphanumerical print, o r binary-coded-decimal (BCD) tape code,
respectively.

One statement (FORMAT), which is a non-executable statement,
that specifies the arrangement of the information in the external
input/output medium with respect to the five source statements
of group 1 above.

Four statements (READ TAPE, READ DRUM, WRITE TAPE,
and WRITE DRUM) which cause information to be transmitted in
binary machine-language.

Three statements (END FILE, BACKSPACE, and REWIND) that
manipulate magnetic tapes.

Of the thirteen input/output statements, nine call for the transmission
of information and must, therefore, include a list of the quantities
to be transmitted. This list is ordered, and its order must be the
same as the order in which the words of information exist (for input),
o r will exist (for output) in the input/output medium.

The formation and meaning of a list is best described by an example.

Suppose that this list is used with an output statement. Then the
information will be written on the input/output medium in this order:

A, B(3L , 1 , , C(2). D(2, K), , C(10), D(10, K),

Input/Output
in Matrix
Form

Similarly, if this list is used with an input statement, the
successive words, a s they were read from the external medium,
would be placed into the sequence of storage locations just given.

Thus, the list reads from left to right with repetition for variables
enclosed within parentheses. Only variables, and not constants,
may be listed. The execution is exactly that of a DO-loop, as though
each opening parenthesis (except subscripting parentheses) were a
DO, with indexing given immediately before the matching closing
parenthesis, and with the DO range extending up to that indexing
information. The order of the above list can thus be considered the
equivalent of the 'program:

Note that indexing information , as in DOs, consists of three constants
or fixed point variables, and that the last of these may be omitted,
in which case it is taken to be 1.

For a list of the form K, (A(K)) or K, (A(1) , I = 1, K) where an
index or indexing parameter itself appears earlier in the list of an
input statement, the indexing will be carried out with the newly
read-in value.

As outlined on page 8, FORTRAN treats variables according to
conventional matrix practice. Thus, the input/output statement

READ 1, ((A(I,J), I = 1, 2) , J = 1, 3)

causes the reading of I x J (in this case 2 x 3) items of information.
The data items will be read into storage in the same order as they
are found on the input medium,

For example, if punched on a data card in the form:
1 I 1 I I \ 1

I 1

the items will be stored in locations N, N-1, - 2 . . . , N-5,
respectively, where N is the highest absolute location used for the
array of information to be read in.

Inpi~t/Ou tput When input/output of an entire matrix is desired, an abbreviated
of Entire notation may be used for the list of the input/output statement; only
Matrices the name of the array need be given and the indexing information

may be omitted.

Thus, if A has previously been listed in a DIMENSION statement,
the statement,

READ 1, A

is sufficient to read in all of the elements of the array A. In
709/7090 FORTRAN, the elements, read in by this notation, a re stored
in their natural order, i. e. , in order of decreasing storage locations.
If A has not previously appeared in a DIMENSION statement, only
the first element will be read in.

Note: Certain restrictions to these rules exist with respect to lists
for the statements READ DRUM and WRITE DRUM, for
which the abbreviated notation mentioned immediately above
is the only one permitted.

FORMAT GENERAL FORM I EXAMPLES I
I described below. I

"FORMAT (sl,. . . , s,)" where each
s is a format specification a s

The five input/output statements of group 1 (listed on page 37)
contain, in addition to the list of quantities to be transmitted, the
statement number of a FORMAT statement describing the information
format to be used. It also specifies the type of conversion to be
performed between the internal machine-language and external
notation. FORMAT statements are not executed, their function is
merely to supply information to the object program. Therefore,
they may be placed anywhere in the source program, except as the
first statement in the range of a DO.

FORMAT
(12/(~12.4, F10.4))

For the sake of clarity, examples are given below for printing.
However, the description is valid for any case simply by generalizing
the concept of "printed line" to that of unit record in the input/output
medium. A unit record may be:

Numerical
Fields

1. A printed line with a maximum of 120 characters.
2. A punched card with a maximum of 72 characters.
3. A BCD tape record with a maximum of 120 characters.

Four forms of conversion for numerical data a r e available:

INTERNAL

Floating point variable
Floating: point variable

These types of conversion a r e specified in the forms:

e---
TYPE ___,

Fixed point variable
Binary representation
of the octal integer

Ew. d, Fw. d, Iw, and Ow

EXTERNAL

E
F

where w and d a r e unsigned fixed point constants.

Floating point decimal
Fixed point decimal

I
0

Format specifications a re used to describe the format of input and
output. The format i s specified by giving, from left to right, beginning

3

Decimal integer
Octal integer

with the first character of the record:

1. The control character (E, F, I, or 0) for the field.

2. The width (w) of the field. The width specified may be greater
than required, to provide spacing between numbers.

3. For E- and F-type conversions, the number of positions (d)
of the field which appear to the right of the decimal point.
(Note: d is treated modulo 10.)

Specifications for successive fields a r e separated by commas. No
format specification that provides for more characters than the
input/output unit record should be given. Thus, a format statement
for printed output should not provide for more than 120 characters
per line including blanks.

Information to be converted by 0-type format spe~ifications may be
given fixed point or floating point variable names.

i cal Al phanumer
Field1

Example:

The statement FORMAT (12, E12.4, 0 8
printing of the line:

, F10.4) might cause

(b is included here to indicate blank spaces.)

FORTRAN provides two ways by which alphanumerical information
may be read or written; the specifications for this purpose a re Aw
and wH. Both result in storing the alphanumerical information internally
in BCD form. The basic difference is that information handled with
the A specification is given a variable or array name and hence can
be referred to by means of this name for processing and/or
modification. Information handled with the H specification is not
given a name and may not be referred to or manipulated in storage
in any way.

The specification Aw causes w characters to be read into, or written
from, a variable or array name. The name must be constructed in
the same manner a s a fixed or floating point variable name.

The specification wH is followed in the FORMAT statement by w
alphanumerical characters. For example

28H THIS IS ALPHANUMERICAL DATA

Note that blanks are considered alphanumerical characters and must
be included a s part of the count w.

The effect of wH depends on whether it is used with input or output.

1. Input. w characters are extracted from the input record and
replace the w characters included with the specification.

2. Output. The w characters following the specification, or the
characters which replaced them, are written a s part of the
output record.

Example: The statement FORMAT (3HXY= F8.3, A8) might produce
the following lines:

Blank
Fields

(b is used to indicate blank characters.)

This example assumes that there a re steps in the source program
which read the data "OVFLOW", store this data in the word to be
printed in the format A8 when overflow occurs, and stores six blanks
in the word when overflow does not occur.

Blank characters may be provided in an output record and characters
of an input record may be skipped by means of the specification wX
where 0 I. w S 120 (w is the number of blanks provided or characters
skipped). When the specification is used with an input record, w
characters a re considered to be blank regardless of what they actually
are, and a re skipped over.

(The control character X need not be separated by a comma from
the specification of the next field.)

Repetition of It may be desired to print n successive fields within one record, in
Field Format the same fashion. This may be specified by giving n (where n is an 3

unsigned fixed point constant) before E, F, I, 0, or A. Thus, the
statement FORMAT (12, 3E12.4) might give:

Repetition of A limited parenthetical expression is permitted in order to enable
Groups repetition of data fields according to certain format specifications

within a longer FORMAT statement specification. Thus, FORMAT
(Z(F10.6, E10. 2), 14) i s equivalent to FORMAT (F10. 6, E10. 2, F10.6,
E10. 2, 14).

Sca le Factors To permit more general use of F-type conversion, a scale factor
followed by the letter P may precede the specification. The scale
factor is defined such that:

Printer number = Internal number x loscale factor

Thus, the statement FORMAT (12, 1P3Fl l . 3) used with the data
of the preceding example, would give

whereas FORMAT (12, - 1P3Fll . 3) would give

Multiple-
Record
Formats

FORMAT and
Input/Ou tpu t
Sta ttsment
Lists

A positive scale factor may also be used with 3-type conversion to
increase the number and decrease the exponent. Thus, FORMAT
(12, 1P3E12.4) would produce with the same data

The scale factor is assumed to be zero if no other value
has been given. However, once a value has been given,
it will hold for all E- and F-type conversions following
the scale factor within the same FORMAT statement. This
applies to both single-record and multiple-record formats
(see below). Once a scale factor has been given, a
subsequent scale factor of zero in the same FORMAT
statement must be specified by OP. Scale factors have
no effect on I-conversion.

To deal with a block of more than one line of print, a FORMAT
specification may have several different one-line formats, separated
by a slash (1) to indicate the beginning of a new line. Thus, FORMAT
(3F9. 2, 2F10.4/8314.5) would specify a multi-line block of print
in which lines 1, 3, 5,. . . . have format (3F9. 2, 2F10.4), and lines
2, 4, 6, have format 8E14.5.

If a multiple-line format is desired such that the first two lines will
be printed according to a special format and all remaining lines
according to another format, the last line-specification should be
enclosed in a second pair of parentheses; e. g. , FORMAT (12,
3E12.4/2~10.3, 3F9.4/ (10F12.4)). If data items remain to be
transmitted after the format specification has been completely
"used, " the format repeats from the last open parenthesis.

As these examples show, both the slash and the closing parenthesis
of the FORMAT statement indicate a termination of a record.

Blank lines may be introduced into a multi-line FORMAT statement,
by listing consecutive slashes. N + 1 consecutive slashes produce
N blank lilies.

The FORMAT statement indicates, among other things, the maximum
size of each record to be transmitted. In this connection, i t must
be remembered that the FORMAT statement is used in conjunction
with the list of some particular input/output statement, except when
a FORMAT statement consists entirely of alphanumerical fields. In
all other cases, control in the object program switches back and forth

Ending a
FORMAT
Statement

FORMAT
Stc~ tements
Read in at
Ob j ec t
Time

Carriage
Con tro I

between the list (which specifies whether data remains to be
transmitted) and the FORMAT statement (which gives the specifica-

3
tions for transmission of that data).

During input/output of data, the object program scans the FORMAT
statement to which the relevant input/output statement refers. When
a specification for a numerical field is found and list items remain
to be transmitted, input/output takes place according to the specifica-
tion and scanning of the FORMAT statement resumes. If no items
remain, transmission ceases and execution of that particular
input/output statement is terminated. Thus, a decimal input/output
operation will be brought to an end when a specification for a
numerical field or the end of the FORMAT statement is encountered,
and there are no items remaining in the list.

FORTRAN will accept a variable FORMAT address. This provides
the facility of specifying a list at object time.

Example:

Thus A, By and the array C would be converted and stored, according
to the FORMAT specification read into the array, FMT, at object time.

The name of the variable FORMAT specification must appear in a
DIMENSION statement even if the array size is only 1.

The format read in at object time must take the same form as a
source program FORMAT statement, except that the word FORMAT
is omitted, i. e. , the variable format begins with a left parenthesis.

The WRITE OUTPUT TAPE statement prepares a decimal tape which
can later be used to obtain off-line printed output. The off-line
printer is manually set to operate in one of three modes: single -3

Data Input
to the
Object
Program

space, double space, and Program Control. Under Program Control,
which gives the greatest flexibility, the f irst character of each BCD
record controls spacing of the off-line printer and that character i s
not printed. The control characters and their effects are:

Blank
0
+
1 - 9
J - R

Single space before printing
Double space before printing
No space before printing
Skip to printer control channels 1-9*
Short skip to printer control channels 1-9*

Thus, a FORMAT specification for WRITE OUTPUT TAPE for off-
line printing with Program Control, will usually begin with 1H
followed by the appropriate control character. This i s required for
the PRINT statement since on-line printing simulates off-line
printing under Program Control.

Decimal input data to be read by means of a READ or READ INPUT
TAPE when the object program i s executed, must be in essentially
the same format a s given in the previous examples. Thus, a card
to be read according to FORMAT (12, E12.4, F10.4) might be punched

Within each field, all information must appear at the extreme right.
Plus signs may be omitted or indicated by a blank or +. Minus signs
may be punched with an 11-punch or an 8-4 punch. Blanks in numerical
fields a re regarded a s zeros. Numbers for E- and F-type conversion
may contain any number of digits, but only the high-order 8 digits
of accuracy will be retained. Numbers for I-type conversion will be
treated modulo 217.

To permit economy in punching, certain relaxations in input data
format a re permitted.

1. Numbers of E-type conversion need not have 4 columns devoted
to the exponent field. The start of the exponent field must be
marked by an E, o r if that is omitted, by a + or - (not a blank).
Thus E2, E02, +2, +02, E 02, and E+02 a re all permissible
exponent fields.

* See the section on Carriage Control in the Reference Manual for
the IBM 709 Data Processing System (Form A22-6536).

READ

READ INPUT
TAPE

2. Numbers for E- or F-type conversion need not have their decimal 9
point punched. If it is not punched, the FORMAT specification
will supply it; for example, the number -09321+2 with the
specification E12.4 will be treated a s though the decimal point
had been punched between the 0 and the 9. If the decimal point
is punched in the card, its position over-rides the indicated
position in the FORMAT specification.

GENERAL FORM EXAMPLES

"READ n, List" where n is the READ 1, ((ARRAY (I, J) ,
statement number of a FORMAT I = 1, 3), J = 1, 5)
statement, and List is a s described
on page 37.

The READ statement causes the reading of cards from the .card
reader. For 709 FORTRAN, the Data Synchronizer Channel to
which the card reader is attached, must be specified by the
installation (see "Symbolic Input/Output Unit Designation" page 47).
Successive cards are read until the complete list has been "satisfied, ''
i. e. , all data items have been read, converted, and stored in the
locations specified by the list of the READ statement. The FORMAT
statement to which the READ refers, describes the arrangement of
information on the cards and the type of conversion to be made.

GENERAL FORM I EXAMPLES

"READ INPUT TAPE i, n, List"
where i is an unsigned fixed point
constant or a fixed point variable;
n is the statement number of a
FORMAT statement, and List is
a s described on page 37.

READ INPUT TAPE
24, 30, K, A(J)

READ INPUT TAPE
M, 30, K, A(J)

The READ INPUT TAPE statement causes the object program to
read BCD information from symbolic tape unit i (709, 0< i<49;
7090, 0<i<81). Record after record is brought in, in accordance
with the FORMAT statement, until the complete list has been satisfied.

The object program tests for the proper functioning of the tape
reading process. In the event that the tape cannot be read properly,
the object program halts. 0

' ' ~ ~ m b o l i c Tape units. In order to enable 709/7090 FORTRAN to accept source
Input/Output programs written in connection with other programming systems,
Unit a distinction i s made between the logical tape unit numbers specified
Designation in the source program, and the actual tape units which will be affected -

by the resulting object program. ~ogical/actual equivalences for
the 709/7090 FORTRAN system are specified in the system a s distributed,
but these may be changed by the installation in accordance with i t s
own needs. The equivalences a re established by the insertion of a
control card into the edit deck of the 709/7090 FORTRAN system.
(See "The 709/7090 FORTRAN Editing Program, " in the 709/7090
FORTRAN Operations Manual.)

Card reader, on-line printer. and card ~unch . One each of these

READ TAPE

- -

input/output units can be attached to Data synchronizer Channels A,
C, or E of the 709. The card reader, on-line printer, or card punch
which will actually be involved in the execution of READ, PRINT,
or PUNCH, respectively, i s specified by the system a s distributed
and may be changed by the installation.

At the time the 709/7090 FORTRAN object program is executed, the
equivalence between the logical and actual input/output units must
be known.

I GENERAL FORM

"READ TAPE i, List" where i
is an unsigned fixed point constant
or a fixed point variable, and List
is a s described on page 37.

EXAMPLES

READ TAPE 24, (A(J),
J = 1, 10)

READ TAPE K, (A(J),
J = 1, 10)

The READ TAPE statement causes the object program to read binary
information from symbolic tape unit i (709, 0<i< 49; 7090, 0<i< 81),
into locations specified in the list. A record is read completely
only if the list specifies a s many words a s the tape record contains;
no more than one record will be read. The tape, however, always
moves to the beginning of the next record.

Binary tapes read by a 709/7090 FORTRAN compiled program should
have been written by a 709/7090 FORTRAN object program. It is,
however, possible to use a nonoFORTRAN written binary tape provided
the tape records a re in the proper format. The following is a description
of this record format.

READ DRUM

Consider a logical record a s being any sequence of binary words to
be read by any one input statement. This logical record must be
broken into physical records, each of which is a maximum of 12810
words long. Of course, if a logical record consists of fewer than
12810 words, it will comprise only 1 physical record. The first
word of each physical record i s a "signal" word that is not part of
the list. This word contains zero for all but the last physical record
of a logical record. The first word of the last physical record
contains a number designating the number of physical records in
this logical record.

The object program checks tape reading. In the event that a record
cannot be read properly, the object program halts.

GENERAL FORM I EXAMPLES
--

"READ DRUM i, j , ListH where i and READ DRUM 2, 1000,
j a r e each either an unsigned fixed A, B, C, D (3)
point constant or a fixed point variable,
with the value of i between 1 and 8 in- READ DRUM K, J,
clusive, and List i s a s described below. A, B, Cy D (3)

The READ DRUM statement causes the object program to read words
of binary information from consecutive locations on drum i, begin-
ning with the word in drum location j, where O< j < 2048. (If j > 2047,
it is interpreted modulo 2048.) Reading continues until all words
specified by the list have been read in. If the list specifies an array,
the array i s stored in inverse order.

The list for the READ DRUM and WRITE DRUM statements can
consist only of variables without subscripts or with only constant
subscripts, such a s A, B(5), C, D. Variables consisting of only
one element of data will be read into storage in the ordinary way;
those which a r e arrays will be read with indexing obtained from
their DIMENSION statements. Thus, the statement READ DRUM i,
j , A, where A is an array, causes the complete array to be read.
The array, A, i s stored in inverse order.

' C.)
I

PUNCH

PRI I\(T

OUTPUT
TAP' E

GENERAL FORM

"PUNCH n, List" where n i s the
statement number of a FORMAT
statement, and List is a s
described on page 37.

EXAMPLES

PUNCH 30, (A(J),
J = 1, 10)

The PUNCH statement causes the object program to punch Hollerith
cards. Cards a r e punched in accordance with the FORMAT statement
until the complete list has been satisfied.

I GENERAL FORM I EXAMPLES

"PRINT n, List" where n is the
statement number of a FORMAT
statement and List i s a s described
on page 37.

PRINT 2, (A(J),
J = 1, 10)

The PRINT statement causes the object program to print output data
on an on-line printer. Successive lines a r e printed in accordance
with the FORMAT statement, until the complete list has been satisfied.

GENERAL FORM I EXAMPLES

"WRITE OUTPUT TAPE i, n,
List" where i is an unsigned fixed
point constant o r a fixed point
variable, n is the statement
number of a FORMAT statement,
and List is a s described on
page 37.

WRITE OUTPUT TAPE
42, 30, (A(J), J = 1, 10)

WRITE OUTPUT TAPE
L, 30, (A(J), J = 1, 10)

The WRITE OUTPUT TAPE statement causes the object program to
write BCD information on symbolic tape unit i (709, 0<i<49;
7090, O<i<81).

Successive records a re written in accordance with the FORMAT
statement until the complete list has been satisfied. An end-of-file
i s not written after the last record.

WRITE TAPE

WRITE DRUM

END FILE

GENERAL FORM EXAMPLES

"WRITE TAPE i, ListM where i
i s an unsigned fixed point constant
o r a fixed point variable, and
List is a s described on page 37.

1 WRITE TAPE 24,

(A(J), J = 1, 10)

WRITE TAPE K,
(A(J), J = 1, 10)

The WRITE TAPE statement causes the object program to write
binary information on the tape unit with symbolic tape number i
(709, O<i<49; 7090, O<i<81). One logical record i s written
consisting of all the words specified in the list.

The object program checks tape writing. In the event that a record
cannot be written properly, the object program halts.

- - -

GENERAL FORM

"WRITE DRUM i, j, ListM where
i and j a re each either an unsigned
fixed point constant o r a fixed point
variable, with the value of i between
1 and 8, inclusive, and List i s a s
described for READ DRUM.

EXAMPLES

WRITE DRUM 2, 1000,
A, B, C, ' D(6)

WRITE DRUM K, J,
A, B, C, D(6)

The WRITE DRUM statement causes the object program to write
words of binary information onto consecutive locations on drum i,
beginning with drum location j. (If j >2O47, it i s interpreted modulo
2048.) Writing continues until all the words specified by the list
have been written.

The list of the WRITE DRUM statement is subject to the same
restrictions that apply to READ DRUM.

I GENERAL FORM I EXAMPLES I
-

I1!END FILE iT1 where i is an unsigned I END FILE 29 1 I fixed point constant, o r a fixed point I I
I variable. I END FILE K I

The END FILE statement causes the object program to write an
end-of-file mark on symbolic tape unit i (709, 0< ic49; 7090, O c ic 81).

REWIND GENERAL FORM

BACKSPACE

"REWIND iM where i is an unsigned
fixed point constant, o r a fixed point
variable.

REWIND 3

RE WIND K

The REWIND statement causes the object program to rewind symbolic
tape unit i (709, 0 4 ~ 4 9 ; 7090, 0 4 4 1) .

I GENERAL FORM I EXAMPLES I
"BACKSPACE iw where i is an
unsigned fixed point constant, or a
fixed point variable.

BACKSPACE 18

BACKSPACE K

The BACKSPACE statement causes the object program to backspace
symbolic tape unit i (709, Oci.49; 7090, 0 4 e 8 1) .

CHAPTER 5 - SPECIFICATION STATEMENTS 0
The final type of FORTRAN statement consists of the four specification
statements : DIMENSION, FREQUENCY, EQUIVALENCE, and
COMMON. These a r e non-executable statements which supply
necessary information, or information to increase object program
efficiency.

DIMENSION GENERAL FORM

"DIMENSION vl, v2, vg, . . . " where
each v i s the name of a variable,
subscripted with 1, 2, or 3 un-
signed fixed point constants. Any
number of v's may be given.

EXAMPLES I

The DIMENSION statement provides the information necessary to
allocate storage in the object program for arrays.

Each variable which appears in subscripted form in a program or
subprogram must appear in a DIMENSION statement of that program
o r subprogram; the DIMENSION statement must precede the first
appearance of that variable. The DIMENSION statement lists the
maximum dimensions of arrays; in the object program references
to these arrays must never exceed the specified dimensions.

The above example indicates that B is a 2-dimensional array for
which the subscripts never exceed 5 and 15. The DIMENSION
statement therefore, causes 75 (i. e., 5 x 15) storage locations to be
set aside for the array B.

A single DIMENSION statement may specify the dimensions of any
number of arrays. A program must not contain a DIMENSION
statement which includes the name of the program itself, o r any
program which it calls.

FREQUENCY I GENERAL FORM I EXAMPLES I
"FREQUENCY n (i, j,. ..),
m(k, 1,. . .), . . . " where n,
rn, . . . are statement numbers
d i, j, k, 1 . are unsigned
fixed point constants.

FREQUENCY 30(1,2, I),
40 (11), 50(1, 7, 1, 1)
10 (1, 7, 1, 1)

Statements
to Which
Applicable

The FREQUENCY statement has no direct effect upon the execution
of the object program. Its sole purpose is to inform FORTRAN
about the number of times which the programmer believes that each
branch of one o r more specified control branchings will be executed.

The purpose of the statement i s to make the object program a s
efficient a s possible in terms of execution time and storage locations
required. In no case will the logical flow of an object program be
altered by a FREQUENCY statement.

A FREQUENCY statement can be placed anywhere in the FORTRAN
source program except a s the f irst statement in the range of a DO,
and may be used to give frequency estimates for any number of
branch-point s. For each branch-point, the information consists of
the statement number of the statement causing the branch, followed
by parentheses enclosing the estimated frequencies separated by
commas.

In a program including the above example, statement 30 might be an
IF, and statement 50, a computed GO TO. In these cases, the
probability of going to each of the 3 o r 4 branch points, respectively,
is given by the corresponding entry of the FREQUENCY statement.
Statement 40 must be a DO, in which at least one of the parameters
is variable and the value of which is not known in advance. An
estimate i s made that the DO range will be executed 11 times before
the DO is satisfied.

All frequency estimates, except those about DOs a re relative. Thus,
the example given above could have been FREQUENCY 30(2,4,2),
40(11), 50(3,21,3,3), with equivalent results. A frequency can be
estimated a s 0; this will be taken to mean that the expected frequency
is very small.

The following table lists the seven FORTRAN statements about
which frequency information may be given.

STATEMENT

(Computed) GO TO

IF

IF (SENSE SWITCH)

IF ACCUMULATOR
OVERFLOW

IF QUOTIENT OVER-
FLOW

IF DIVIDE CHECK

No. of
Branche REMARKS

Frequencies must appear in
the same order a s the
branches. If no frequencies
a re given they a re assumed
to be equal for all branches.

Frequency need be given
only when ml, m2, o r m3
is variable.

A frequency estimate concerning a DO is ignored unless a t least one
of the indexing parameters of that DO is variable. Moreover. such
frequency estimates should be based only on the expected values of
those variable parameters; in other words, even if the range of a
DO were to contain transfer exits (see page 25), the frequency
estimate should specify the number of times the range must be
executed to cause a normal exit. A DO with variabl; indexing
parameters and for which no FREQUENCY statement is given will
be treated by FORTRAN as though a frequency of 5 has been estimated.

EQUIVALENCE GENERAL FORM EXAMPLES

"EQUIVALENCE (a, b, c, . . .),
(d, e, f , . . .), . . . where a, b, c,
d, e, f, . . . a re variables
optionally followed by a single
unsigned fixed point constant in
parentheses.

The EQUIVALENCE statement provides the option of controlling the
allocation of data storage in the object program. In particular, when

0

the logic of the program permits it, the number of storage locations
used can be reduced by causing locations to be shared by two or
more variables. The EQUIVALENCE statement should not be
used to equate mathematically two or more elements.

An EQUIVALENCE statement may be placed anywhere in the source
program, except a s the first statement of the range of a DO. Each
pair of parentheses of the statement list encloses the names of two
o r more quantities which a re to be stored in the same locations
during execution of the object program; any number of equivalences
(i. e. , sets of parentheses) may be given.

In an EQUIVALENCE statement, the meaning of C(5) would be "the
4th storage location following the one which contains C, o r (if C is
an array) contains C1, C1,1, o r C1,1,1. In general C@) i s defined
for p>O to mean the (p-1) th location after C o r after the beginning
of the C-array; i. e. , the c& location in the array. If p is not
specified, it is taken to be 1.

Thus, the above sample statement indicates that the A, B, and
C arrays a r e to be assigned storage locations such that the elements
A, B, and C(5) a r e to occupy the same location. In addition, it
specifies that D(17) and E(3) a r e to share the same location.

Quantities o r arrays which a r e not mentioned in an EQUIVALENCE
statement will be assigned unique locations.

Locations can be shared only among variables, not among constants.

The sharing of storage locations cannot be planned safely without a
knowledge of which FORTRAN statements, when executed in the
object program, will cause a new value to be stored in a location.
There a r e seven such statements:

A. Execution of an arithmetic formula stores a new value of the
variable for the left-hand side of the formula.

B. Execution of an ASSIGN i TO n stores a new value in n.

C. Execution of a DO will in general store a new indexing value.
(It will not always do so, however; see the section, "Further
Details about DO statements, " page 85 .)

D. Execution of a READ, READ INPUT TAPE, READ TAPE, o r
READ DRUM each stores new values for the variables mentioned
in the statement list.

COMMON GENERAL FORM I EXAMPLES

"COMMON A, B, . . . where A,
B, . . . are the names of variables
and non-subscripted array names.

COMMON X, ANGLE,
MATA, MATB

Variables, including array names, appearing in COMMON statements
are assigned to upper storage. They are stored in locations

fc J? completely separate from the block of program instructions, constants,

' L ~ e and data (see page 79). This area is assigned separately for each
program compiled. For 709/7090 FORTRAN, the area is assigned

at<(beginning at location 774618 and continuing downwards. This separate
(COMMON) area may be shared by a program and its subprograms.
In this way, COMMON enables data storage area to be shared

~7 between programs in a way analogous to that by which EQUIVALENCE
permits data storage sharing within a single program. Where the
logic of the programs permits, this can result in a large saving of
storage space.

Array names appearing in COMMON must also appear in a
DIMENSION statement in the same program. 0
The programmer has complete control over the locations assigned
to the variables appearing in COMMON. The locations a re assigned
in the sequence in which the variables appear in the COMMON
statements, beginning with the first COMhlON statement of the problem.

Arguments in Because of the above, COMMON statements may be used to serve
Common another important function. They may be used a s a medium by which
Storage to transmit arguments from the calling program to the called Fortran

function or Subroutine subprogram. In this way, they are transmitted
implicitly rather than explicitly by being listed in the parentheses
following the subroutine name.

To obtain implicit arguments, it is necessary only to have the
corresponding variables in the two programs occupy the same location.
This can be obtained by having them occupy corresponding positions
in COMMON statements of the two programs.

Notes:

1. In order to force correspondence in storage locations between two
variables which otherwise will occupy different relative positions 0
in COMMON storage, it is valid to place dummy variable names in

a COMMON statement. These dummy names, which may be
dimensioned, will cause reservation of the space necessary to
cause correspondence.

2. While implicit arguments can take the place of all arguments in
CALL-type subroutines, there must be at least one explicit
argument in a Fortran function. Here, too, a dummy variable
may be used for convenience.

The entire COMMON area may be relocated downward for any
one problem by means of a Control Card. (See FORTRAN
Operations Manual.)

When a variable is made equivalent to a variable which appears
in a COMMON statement, the first variable will also be located
in COMMON storage. When COMMON variables also appear in
EQUIVALENCE .statements, the ordinary sequence of COMMON
variables is changed and priority is given to those variables in
EQUIVALENCE statements, in the order in which they appear
in EQUIVALENCE statements. For example,

COMMON A, B, C, D

EQUIVALENCE (C, G), (E, B)

will cause storage to be assigned in the following way.

774618 CandG

774608 Band E

0 CHAPTER 1 -- INTRODUCTION TO THE MONITOR SYSTEM

The 709/7090 FORTRAN Monitor System consists of three basic
programs: a Monitor, a Compiler, and an Assembler. The Compiler
accepts a source program written in FORTRAN and produces a
machine language object program. The Assembler accepts symbolic
machine language and produces a machine language object program.
The function of the Monitor i s to coordinate compiler and assembler
processing and simultaneously to provide means for initiating execution
of object programs. Thus, continuous machine operation i s possible
regardless of what combinations of source and object programs the
machine encounters.

MONITOR
OPERATI ON S

A series of 709/7090 FORTRAN or FAP (FORTRAN Assembly Program
for the IBM 709/7090) source programs can be continuously compiled
and assembled without halts between processing individual programs.
Also, a series of object programs may be continuously executed, again
without halting between programs. A third possibility, allowing
continuous machine operation, i s a mixture of source programs for
compiling/assembling and object programs for execution. Still a
fourth possibility exists: a single source program can be compiled/
assembled and executed with no machine halts between compiling/
assembling and execution. From the programmer's point of view,
this i s equivalent to entering a source program into the machine a s
an obj ect program. A fifth possibility allows continuous execution of
a program too large to fit into core storage a s a series of subsections,
called links.

Thus, the Monitor is a supervisory program for 709/7090 FORTRAN,
FAP, and object programs. It calls in the various System programs
a s needed. It i s necessary only to inform the Monitor what type of
processing is to be expected.

The Monitor permits the following operations:

1. FAP (FORTRAN Assembly Program) assembling.

2. Execution of object programs.

3. Execution of programs in links, a procedure necessary where
the total program i s too large to fit into storage and a link i s a
section of it which does fit into storage.

MONITOR
INPUT.

DEFINITION
OF JOB

Non-Execute
Jobs

Input to the FORTRAN Monitor System consists not only of the source
program, but may include the following a s well:

0

1. FAP symbolic cards.
2. Object program cards.
3. Data cards.
4. FORTRAN Monitor control cards.

With one exception the relative order of a series of different types
of input does not matter provided that each separate deck, whether
source program, object program, etc., is preceded by appropriate
control cards. This exception applies to the 32K System and is
described below under "Ordering of Job Input Deck. "

The 709/7090 FORTRAN Compiler proper may be considered a sub-
section of the Monitor. Under FORTRAN control a single source
program may be compiled. Nothing further, including execution, can
be done. If multiple compilation of a series of FORTRAN source
programs is desired, Monitor control is required.

A job may be considered a s the basic unit being processed by the
Monitor at any one time; it consists of one or- more programs. A
job is either an Execute or Non-execute job. As an Execute job, it 0
is to be executed immediately after whatever processing is required.
This means that the programs of the job a re related to each other.
A Non-execute job contains programs which need not be dependent.
Each program is processed a s the control cards for the job specify.
The "processing" that is given a program i s one of the following:

Execute Non-Execute

1. FORTRAN Compilation 1. FORTRAN Compilation
2. FAP Assembly 2. FAP Assembly

(obj ect program input i s ignored)
3. Relocation of object

program input
4. For jobs divided into

links, treatments of
chain links

A job may be considered a s falling into one of the following five types:

1. One or more FORTRAN source programs to be compiled. This is
simply multiple compilation. The programs may be main programs
or subprograms. 0

0

Execute Jobs

2. One or more FAP symbolic programs to be assembled. These may
be main programs or subprograms.

3. An intermixture of job types 1 and 2. This results in multiple
compilation and assembly of FORTRAN and FAP source programs,
with object program output for each source program input.
There may be any combination of main programs and sub-
programs.

4. A sequence of input programs for immediate execution. The
input programs may be of job types 1 and 2, together with re-
locatable columnar binary object program cards. Data cards,
to be used during execution, follow the input programs. Input
programs each consist of a single main program-subprogram
sequence not larger than the available core storage. This sequence
constitutes a "machine load. "

5. A sequence of input programs meant for execution where each
input program is a job of type 4. The data cards a re placed at
the end of all the input programs. This is called a Chain job
and each of the jobs of type 4 is a Chain Link. This permits a
single object program execution to consist of more than one
"machine load. "

CHAPTER 2 - MONITOR FEATURES 0
The first record of the Monitor is the "Sign-OnH record. This
may be programmed by the installation to handle accounting or
other identifying information pertaining to a job. It reads and
interprets the I. D. card which i s the first card for any given job.
In addition it recognizes the END TAPE card which signals that
no more jobs follow. The IBM version of the Sign-On record
prints the I. D. card on-line, writes it on tape for off-line printing,
and signals the beginning of a job. It also prints and writes on
tape the total number of lines of output of a job. This number
includes output both from compilation and execution of the job.
If an installation elects to program this record, it will be useful
to have certain locations left undisturbed at all times in which to
save desired information. For this purpose, the Monitor leaves
available locations 3-1810 and 49-9g10 in the 32K system, and
34-3610, 38-3g10 in the 8K system.

2. There i s a complete set of control cards for the Monitor. These
a re distinguished by an asterisk (*) in column one. In general,
they a re of two types; one type governs the job a s a whole, telling
what it consists of, and the other governs output options. In
addition to this set of control cards, there a r e the DUMP card, 0
the START card, and the RESTART cards which a r e self-loading
binary cards. Each of these three card types permits processing
to be restarted when an unexpected stop occurs. They a r e
discussed in detail in the 709/7090 FORTRAN Operations Manual.

3. The FORTRAN Monitor System uses eight tapes on two channels.
These a re Al, A2, A3, A4, B1, B2, B3, B4. A2 i s the input tape
and A3 i s the output tape. It should be noted that the correspondence
between logical tape designations used in FORTRAN source
program input/output statements and the actual tape assignments
at object time i s set in the Unit table (IOU) in the FORTRAN
library. In the Unit table distributed with the IBM System, the
correspondence is a s follows:

Logical Designation Actual Unit

Each installation may alter the logical correspondences. For
compatibility purposes an installation may allow more than one
logical tape designation to apply to each of the input and output
tapes, A2 or A3. This is done through the Unit table (IOU) in
the FORTRAN Library. (See Description of DSU Channel-Unit
Table for FORTRAN in the "709/7090 FORTRAN Operations
Manual, " form C28-6066-2.)

If a job is not a chain job, fewer tapes a re required by the
FORTRAN Monitor.

4. FORTRAN programs written for use under Monitor control will
be the same a s conventional FORTRAN programs, with three
exceptions.

a. The instructions for reading input tape and writing output
tape must refer to tapes A2 and A3, respectively.

b. The STOP and PAUSE statements should not be used.
Programs must be terminated by a CALL EXIT or
CALL DUMP statement, or by a READ INPUT TAPE
statement when there is no more input data.

c. The END card program option controls may be superseded
by Monitor control cards. The END card itself is still
necessary.

5. Monitor control card information and diagnostic information
a r e written on tape and printed on-line.

6. Object programs in columnar binary form a re stacked on tape
B4 for peripheral punching if on-line card output is not called
for. In the 8K System this stacking may be prevented by placing
Sense Switch 6 in the Down position. In the 32K System the
binary output for each job is contained in one file which is
preceded by a file containing the contents of the I. D. card for
that job. If a chain job, the compiled binary output for each
link of the job is contained in a separate file. At the end of the
binary output, an END TAPE file is placed.

Ordering of All program decks containing symbolic cards (including control cards)
Job Input Deck must precede all binary decks which a re part of the job. Once a

(Applicable to binary card has appeared in the job input deck (or link, for chain

32K System job) a symbolic card, with the exception of the DATA card, may not

0 Only) subsequently appear.

CHAPTER 3 - THE CHAIN JOB

In the Chain job, one program which is too large to fit into core
storage is executed a s a sequence of smaller programs. Each
smaller program, called a link, consists of a main program together
with all i ts subprograms and constitutes a "machine load. "

For execution, the links a re stacked on any of three possible tapes.
The first link in the input deck is called in f irst for execution by the
Monitor executive routine. The other links a re executed a s they
a r e called by a preceding link.

There a re two requirements for distinguishing individual links:
(a) The start of each link must be distinguished when preparing the
input deck; (b) Each link must make provision for calling the
following link during execution of the chain job.

1. The control card CHAIN (R, T) must precede the physically
first program (or subprogram) of each chain link, regardless
of whether the link is composed of source o r object programs.
In the card CHAIN (R, T), T specifies the tape on which
the chain link is to be kept at execution time. It must be
either B2, B3 or A4. Previously written FORTRAN source
programs which refer to B1 will be accepted and the tape
reference changed to A4. R is a fixed point number greater
than 0 but less than 32,768 which denotes an identifying
label for that link by which it is called. (Note: The
sequence in which links a re stored is in no way determined
by the number R. The sequence follows from the relative
position in the input deck.)

2. The last executable statement of a link which is to call a
succeeding link for execution must be of the form:

CALL CHAIN (R, T)
This will then cause the link, which at compilation time
had been specified by the control card:

CHAIN (R, T)
to be read into cores and executed.

Chain Job Deck The rule given on page 65 for ordering within a job applies separately
Ordering to each link of a chain job.
(Applicable to
32K System Only)

V Selection of
Tapes for
Link Stacking

Programm i ng
for
Chain Problems

Chain links may be stacked on tapes B2, B3, A4 for object time
execution. If PDUMP is used, links may not be stacked on B2.
The selection of tapes may be a function of object time needs to
minimize tape reading time. For example, if it is desired to execute
the links only once and in succession, they may be placed in that
order on one tape. If one of these links, however, is to be executed
repeatedly while the others a r e executed only once, then it should
be on a separate tape to minimize tape backspace and search time.

1. Data and Common. Data may be passed from one link to another
by means of COMMON. Therefore, when it is intended that
data be used by the programs of two or more links, the appropriate
COMMON and EQUIVALENCE statements must be written.
If a link, A, in storage is overwritten by the next link in sequence,
the next time link A is read in for execution, it will be in the
same form a s before i ts f irst execution. This means that any
program modification or storage of non-COMMON data resulting
from the first execution will not exist for the second execution.
In this connection, it should be mentioned that FORTRAN compiled
programs do not cause program modifications.

.-.L

/ 1-1 A a

2. Relative Constants. As in the case of main programs and sub-
programs within a link, relative constant values may be passed
on from one link to another merely by placing them in COMMON.
This means that if I is used a s a subscript in one link and i ts
value is defined in another, the appropriate COMMON entries
will assure the proper subscript values at the time the subscript
is used.

CHAPTER 4 -- MONITOR CONTROL CARDS 0
All Monitor control cards must have an "*" in column 1. With the
exception of the I. D. card, the specific control instruction of the
card is punched in columns 7-72. Punching may be done according
to normal FORTRAN rules, which means that blanks a r e ignored.

Governing
the Job as
a Whole;
Type 1
Control Cards

Governing
Compilation
of Individual
Programs;

Type 2
Control Cards

1. I. D. Card. This card must be present for every job and if
there i s no DATE card, it must be the f irst card for the job.
If there is a DATE card, i t is first and the I. D. card immediately
succeeds it. Columns 2-72 may contain anything that the
installationJ s Sign-On record is prepared to process.

2. XEQ. This card must follow the I. D. c a r d of a job which is
to be executed.

3. DATA. This card must immediately precede the data, if any,
for jobs that a r e to be executed.

4. CHAIN (R, T). This card is used to separate links within a single
Chain job and specifies the tape on which the link object program
i s to be stored for execution. It must precede the physically
firstprogram(orsubprogram)ofeachchainlink,regardless 0
of whether the program is a source or object program. R i s
a fixed point number greater than 0 but less than 32,768 which
denotes an identifying label for the tape record which contains the
link and T is the actual unit designation of the tape on which the
link i s to be stored at execution time.

5. DATE. (Applicable to 32K System only.) This card precedes
the I. D. card for a job and i s the only card which may precede
it. It permits the programmer to obtain the date a s an additional
part of the heading for each printed page of output. Following
a re examples of the date field, which i s specified after the
DATE word of the control card: 4/2/61; 11/4/61; 3/19/61.
There must be two slashes (/) in the date field plus two characters
for the year. (As usual, blanks a r e ignored.)

Under Monitor control, there a r e two ways by which the programmer
may specify his output options for FORTRAN compilations. These
a r e the END card and the Type 2 Monitor control cards. If
specifications a r e given by both means, the Monitor control cards
take precedence. In fact, the END card specifications will then
be over-written, and the END statement which appears in the source
program listing will be that fabricated by the Monitor from the
control cards. For FAP assemblies, only the first two of these

0 control cards apply. Another result of the precedence of type 2
control cards over the END card i s that the END statement for programs
to be compiled by the Monitor need not have options specified following
the word END. It may be only

END

If no specifications a r e given in the END statement o r in Monitor
control cards for a FORTRAN compilation, a standard output is
produced.

This consists of the following:

a. The output tape, A3, contains the information of which the
first two files of a compilation in the single compile mode a r e
composed; that is, the source program and the map of object
program storage.

b. The object program in relocatable binary is stacked on tape
B4 for peripheral punching without the required library sub-
routines.

The type 2 Monitor control cards, and their effects are:

1. CARDS ROW. This card causes the Monitor to punch on-line
standard FORTRAN relocatable row binary cards, preceded
by a BSS loader, if a main program.

2. CARDS COLUMN. This card causes the Monitor to punch
on-line columnar binary relocatable cards (no loader). It
prevents stacking of binary output on tape B4 for peripheral
punching.

Note that CARDS ROW and CARDS COLUMN cannot be used
with the same source program.

LIST or LIST8. (The LIST8 card i s applicable only to the
32K System.) Each of these cards causes the Monitor to write
the object program in FAP-type language following the storage -
map. Both appear on the output tape. The LIST card produces
listings in three columns without octal instruction representation;
the LIST8 card produces listings in two columns with octal
representation of each instruction and i ts relocation bits. If
both cards a re used the LIST8 card takes precedence. The
LIST card option corresponds to END card setting 4; the
LISTS, to END card setting 8.

Other
Con tro I
Cards

4. LIBE. This card causes the Monitor to search the FORTRAN 0
library for subroutines during compilation and include these
with the object program.

5. LABEL. (Applicable to 32K System only.) This card permits
labeling to be obtained on the output cards of a FORTRAN
compilation. The label is designated by the programmer in this
way: The contents of columns 2-7 inclusive of a card a re taken
a s the label if (a) it is the first card of the program which does
not have an * in column 1, (b) the card has a c punch in column
1, and (c) at least one of the columns 2-7 does not contain blank.
This label, with blanks treated a s zeros, is then placed in columns
73-78 of the output cards with columns 79 and 80 used for
serialization. Serialization begins with 00 and re-cycles when
99 is reached. All subroutines obtained with the program are
serialized in the same way with their own names in columns
73-78.

If conditions (a), (b), and (c) do not all hold, then labeling is
applied in the following way with the LABEL control card present:
for a subprogram, the name of the subprogram is used; for
a main program, 000000 is used, in columns -73.78. The LABEL
card option corresponds to END card setting 7.

1. There are three other Monitor control cards: FAP,
and PAUSE.

END TAPE

FAP. This card is placed immediately before the FAP a- -
program cards that are input to the Monitor. It specifies
that those cards are to be FAP assembled. The FAP card
follows any Type 2 Monitor control cards that may be used.

b. END TAPE. This card designates the end of the last
Monitor job. It must be a separate file on the input tape.

c. PAUSE. (Applicable to 32K System only.) This card
constitutes, in a sense, an executable statement. When
this card is processed the machine halts and may be
restarted by depressing the Start key. In this way a
pause for such purposes a s tape reel mounting may be
obtained.

2. Other cards, not strictly control cards, may be input to the
Monitor.

a. Cards with an asterisk in column 1 may be included with
the control cards but their information field will be treated
in the manner of comments. When read, they will be printed
on-line and written on tape for off-line printing.

b. End of File.

This is not a Monitor control card. It is used only when
input to the Monitor is on-line. When input is on-line
this card is necessary to signal the FORTRAN card-to-tape
simulator to write an end-of-file mark which must separate
jobs on the input tape. An end-of-file card is specified
by a 7- and 8-punch in column 1. All other columns are
ignored.

CHAPTER 5 - PROGRAMMING FORTRAN PROBLEMS FOR THE MONITOR

This chapter deals with programming in the FORTRAN language.
However, the same requirements, a s reflected in machine language,
apply to FAP assembly programs a s well, and to input object
programs resulting from a previous symbolic assembly program.

Further details on arrangement of input decks for Monitor operations
a re given in the 709/7090 FORTRAN Operations Manual.

In general, all ordinary FORTRAN problems may be used with the
Monitor. There are, however, three ways in which FORTRAN
Monitor programs must differ.

Differences 1. BCD Tape. All input BCD data must be called by the statement
Concerning READ INPUT TAPE a;, n, List. Output i s effected by a WRITE
Tape Usage OUTPUT TAPEP, n, List statement, where CC and Q are the

proper logical tape designations for tapes A2 (input) and A3
(output), respectively.

If BCD information is to be written for intermediate storage
during program execution, a tape not used by the Monitor must
be used (or one the programmer knows the Monitor is not using).

2. Binary Information. READ TAPE and WRITE TAPE statements
must address tapes not used by the Monitor system. However,
when the programmer knows the complete disposition of the
various tapes used during Monitor operation, those tapes not
being used may also be addressed. For example, if a binary
tape i s to be used for intermediate storage during execution of
the program, a Monitor tape may be available for that particular
object program run.

Differences
Concerning
End of Program

The STOP and PAUSE statements should not be used. Instead, the
last executable source program statement must be one of the following:

1. CALL EXIT. This statement causes immediate termination
of the job. 1 - CS is restored and control goes to the Sign-
On record to process the next job.

2. CALL DUMP (A1, B l r F ly . . . 9 Any Bn, Fn)
where A and B are variable data names indicating limits
of core storage to be dumped. Either Ai or Bi may represent
upper or lower limits. Fi is a fixed point number indicating
the format desired, a s

F = 0 dump in octal
= 1 dump in floating point
= 2 interpret decrement a s decimal integer
= 3 octal with mnemonics

The core dump is effected a s specified, 1 - CS is restored,
and control i s transferred to Sign-On to initiate the next
job. If no arguments a re given, all of core storage i s
dumped in octal. The last format indication, Fn, may
be omitted, in which case it will be assumed to be octal.

Example: Consider the FORTRAN source program

-C FOR COMMENT

STATEMENT
NLJMER '

5 i 7 FORTRAN STATEMENT

a. To dump the array A in floating point, the CALL DUMP
statement would be

CALL DUMP (A, A(100), 1)

b. To dump in octal that portion of core storage which
includes the array A and the array N a s well,

CALL DUMP (N(100), A, 0) or CALL DUMP (A, N(100))

c. To dump both 1 and 2,

CALL DUMP (A, A(100) , 1, N(100) , A, 0)

Use of
END
Sta tern en t

d. To dump in octal with mnemonics from absolute location 0
1 O O l O up to but not including the array N, another
statement is required:

L = XLOCF(N) - 100
CALL DUMP (N(L), N(101), 3)

The library function XLOCF (N) simply returns the
location of N to the accumulator a s a fixed point constant.

3. CALL CHAIN (R, T). This statement can be used only a s
the last executable statement of a chain link. It calls
the next chain link into core storage to be executed. Thus,
each link or job runs to its conclusion without stopping
and progresses to the next link or job without operator
intervention.

4. READ INPUT TAPE. This statement terminates execution
if all data on the input tape has been previously read. Thus,
a programmer may utilize the technique of reiterating the
reading and processing of data until all the data is exhausted.

The END statement may be used without any of the indicated program
options following it. Thus, END, which must be the physically last
statement of every FORTRAN source program, may appear in either
of the two following forms:

1. END

2. END (11, 12, . . . , 115) where Ii may have the values 0, 1, or 2.

If the first form is used, indicators for the actual program
options will be inserted by the Monitor. There are two possibi
with respect to each option indicator.

a. No Monitor control card is present. The setting prescribed
by "standardH FORTRAN output (see page 69)
is inserted. Where Ii = 2, FORTRAN is instructed to
interrogate the actual Sense Switch setting. Physical
Sense Switch settings, however, are not available under
Monitor control. The setting of 2, therefore, will instruct
the Monitor to make its setting represent that given on the
control card or by the standard setting, a s above.

b. A Monitor control card for the indicator precedes the
program. In this case, the setting prescribed by this 0
card is inserted.

0 Dumping
During
Execution

The following statement may be used anywhere in the source program.
CALL PDUMP (A1, B1, F1. . . ,An, Bn, Fn). The argument formats
for A, B, and F are the same a s those given for the CALL DUMP
statement.

The difference between PDUMP and DUMP is that after PDUMP
is executed, the machine is restored to its condition upon entry,
and control is returned to the next executable statement. The
storage dumps appear on Tape A3 with other output from the job.

PDUMP is a primary name appearing on the program card of the
library subprogram, DUMP.

Restriction on use of PDUMP. The CALL PDUMP statement should
not be used when there is a chain link on tape B2 to be executed
subsequently. Tape B2 is used by the PDUMP program for
intermediate storage of the contents of core storage where PDUMP
is loaded.

GENERAL RULES

Monitor 0 Operations
Although when under Monitor control, a FORTRAN compilation,
if desired, will produce row binary cards, the only cards acceptable
for Monitor execution a re columnar binary. All non-Monitor
hand-coded subprograms to be used must have correct associated
program cards in proper columnar binary form.

If an error occurs during any of the non-execution phases of
the Monitor, the Monitor will continue to process a s much a s
possible of the remainder of the current job.

1. If the error is in the source program (whether FORTRAN
or FAP), an on-line print-out occurs. This particular
program of the job will be skipped and the next program of
the job will be brought in via the Source Program Error
Record.

WARNING: Where a non-execution phase error occurs
in any program of a job, there is the danger that succeeding
programs of the job will be compiled needlessly. If the job
i s an XEQ job and if object programs of succeeding compiled/
assembled programs are not called for by the control cards,
there is no purpose in continuing to these programs. There-
fore, the operator, in this case, at the time of the source
program error diagnostic, should be prepared to continue
to the next job by means of the appropriate RESTART card.

Program
Limitations

2. If the stop is a machine error stop, the ordinary diagnostic
option will be presented by the Machine Error Record. The
option of continuing will enable the next program of the job
to be brought in. If the job is an XEQ job, the warning
given above applies here also.

3. For the case of unlisted stops, RESTART cards and a
DUMP card, which are loaded at the point of stop, are
provided. These cards are described in the 709/7090
FORTRAN Operations Manual.

4. For unexpected stops occurring during object program
execution, the DUMP or RESTART cards may be used.

Care must be exercised on jobs involving both compilation/
assembly and execution to avoid overlapping of program and
common data and to avoid overlapping of program and BSS
control. Lf either occurs, execution will be omitted. Common
data may overlap BSS control. (Overlapping of program and
BSS control is permitted in the 8K System.)

A list of missing subroutines is accumulated during a job or
during each chain link of a job. If more than 50 are missing,
a diagnostic print-out occurs and the job is deleted.

Corrections and patches to binary programs can be made in
the usual way when under Monitor control. That is, the
necessary control and relocatable correction cards can be
added to the binary deck, when prepared as Monitor input,
if patches a re desired.

CHAPTER 1 - MISCELLANEOUS DETAILS ABOUT FORTRAN

SOURCE AND The source machine is that which is used to translate a FORTRAN
OBJECT source program into the object program. The object machine is
MACHINES that on which the object program is executed.

For 709/7090 FORTRAN, the source machine must be an IBM 709/7090
Data Processing System which includes at least 8,192 storage locations,
5 tape units, 1 on-line card punch, 1 on-line card reader, and 1 on-
line printer. When multiple-program compiling, 3 additional tape
units a re required.

The object machine may be of any size. The information produced
at compiling time by FORTRAN includes a count of the storage
locations required by the object program. From this information it
can be determined whether an object program, together with its
subprograms, is too large for a given object machine.

ARRANGEMENT A main object program and its associated subprograms, may each
OF THE be considered a s a separate, but complete block, containing every-
OBJECT thing, except COMMON data, necessary for execution of the program. 0 PROGRAM These blocks a re placed contiguously by the FORTRAN BSS loader

in lower storage with a variable length area separating them from
COMMON in upper storage.

Each program block consists of program instructions, constants,
erasable storage, and data, which are stored in that order in
ascending storage locations. The data is separated into non-
dimensioned variables, dimensioned variables, and variables
appearing in EQUIVALENCE statements.

COMMON data starts at 774618, and continues downward in storage.
The area above 774618 is available for erasable storage for library
and hand -coded subroutines.

When a source program is compiled, FORTRAN produces a printed
%torage mapf1 of the arrangement of storage locations in the object
program.

FIXED POINT The use of fixed point arithmetic is governed by the following
ARITHMETIC considerations :

1. Fixed point constants specified in the source program must have
magnitudes < 217.

2. Fixed point data read in by the object program itself is treated
modulo 217.

3. The output from fixed point arithmetic in the object program is
modulo 217. However, if, during computation of a fixed point
arithmetic expression, an intermediate value occurs which is
2g9, it is possible that the final result will be inaccurate.
(The inaccuracy will occur only when the arithmetic expression
contains a divide.)

4. Indexing in the object program is modulo (size of core storage) -
never greater than 215.

OPTIMIZATION Considerable attention is given by FORTRAN to the efficiency of the
OF AR ITI-hAET lC object program instructions arising from an arithmetic expression,
EXPRESSIONS regardless of how the expression is written. Thus, although the

expression

is taken to mean

(where represents / or *, or + or -)

FORTRAN assumes that mathematically equivalent expressions a re
computationally equivalent. Hence, a sequence of consecutive
multiplications and/or divisions (or additions and/or subtractions)
not grouped by parentheses will be reordered, if necessary, to
minimize the number of storage accesses in the object program.

Although the assumption concerning mathematical and computational
equivalence is virtually true for floating point expressions, special
care must be taken to indicate the order of fixed point multiplication
and division, since fixed point arithmetic in FORTRAN is "greatest
integer" arithmetic (i. e., truncated o r remainderless). Thus, the
expression

which is by convention taken to mean ((5 x 4)/2), is computed in a
FORTRAN object program as

i. e. , it is computed from left to right after permutation of the

SUBROUTINES
ON THE
SYSTEM
TAPE

operands to minimize storage accesses. The result of a FORTRAN
computation in this case, would be 8. On the other hand, the result
of the expression (5 x 4)/2 is 10. Therefore, to insure accuracy of
fixed point multiplication and division, it is suggested that parentheses
be inserted into the expression involved.

One important type of optimization, involving common sub-expressions,
takes place only if the expression is suitably written. For example,
the arithmetic statement

will cause the object program to compute the product A*B twice.
An efficient object program would compute the product A*B only
once. The statement is correctly written

Y = (A*B) * C + SINF (A*B)

By parenthesizing the common subexpression, A*B will be computed
only once in the object program.

In general, when common sub-expressions occur within an expression,
they should be parenthesized.

There is one case in which it is not necessary to write the parentheses,
because FORTRAN will assume them to be present. These a r e the
type discussed in "Hierarchy of Operations, l 1 page ll), and need not
be given. Thus

is, for optimization purposes, a s suitable a s

However, the parentheses discussed in "Ordering within a Hierarchy, l 1

on page 11, must be supplied if optimization of common sub-expressions
is to occur.

Various library subroutines in relocatable binary form a re available
on the FORTRAN master tape. As mentioned on page 15, further
subroutines can be placed on the tape by each installation in
accordance with its own requirements. To do so, the following
steps a re necessary:

1. Produce the subroutine in the form of relocatable binary cards.

2. Produce a program card in accordance with specifications
outlined in the 709/7090 FORTRAN Operations Manual.

3. Transcribe the resulting card deck onto the master tape by
means of the 9LIB program included in the 709/7090 FORTRAN
Editor Deck.

Tape subroutines may include Fortran functions and Subroutine
subprograms. The program card compiled by FORTRAN with these
programs will be in the format required for tape subroutines.

If the name of a function defined by a library tape subroutine is
encountered while FORTRAN is processing a source program, that
subroutine will be included in the object program. Only one such
inclusion will be made' for a particular function, regardless of how
many times that function occurs in the source program.

INPUT AND When control is transferred to a library subroutine, other than a
OUTPUT OF Fortran function or Subroutine subprogram, the argument(s) will be
ARGUMENTS located a s follows: Argl will be located in the AC, Arg2 (if any) in

the MQ, Arg3 (if any) in relocatable location 777758, Arg4 in
relocatable location 777748, etc. Locations down through 77462*
a re available for common erasable storage for library subroutines.

The output of any function called by an arithmetic statement which
is a single value, must be in the Accumulator when control is
returned to the calling program. All Index Registers which were
stored at the beginning of the subroutine, must be restored prior
to returning control.

RELATIVE
CONSTANTS

The arguments for Fortran functions and Subroutine subprograms
a r e listed in the object program after the transfer to the subroutine
(see Appendix D).

A relative constant is defined as a variable in a subscript, which is
not under control of a DO, or a DO-implying parentheses in a list.
For example, in the sequence:

K and J a r e relative constants, but I is not.

The appearance of a relative constant in any of the following ways
will be called a relative constant definition.

Relative
Constants in
an Input List

Relative
Constants in
an Argument

0
List

1. On the left side of an arithmetic statement.
2. In the list of an input statement.
3. As an argument for a Fortran function or Subroutine subprogram.
4. In a COMMON statement.

The following paragraphs describe methods for assuring that the
computation for relative constants occur at the proper point between
the definition and the use of the relative constant.

In the object program, some computation will take place at each
such definition. In the case of READ, READ TAPE, and READ
INPUT TAPE lists, the computation may not precede the use of a
relative constant in the list unless the relative constant appearance
is handled properly.

Where the relative constant definition appears in the same READ,
READ TAPE, or READ INPUT TAPE list with its relative constant
and precedes it, extra parentheses may be required in the list. In
such a list, it is necessary that there be a left parenthesis, other
than the left parenthesis of a subscript combination, between the
relative constant definition and its relative constant. If the list does
not contain the parenthesis, it should be obtained by placing parentheses
around the symbol subscripted by the relative constant.

Examples :

The first of these two input lists i s correct. The second i s incorrect,
but may be made correct with extra parentheses; i. e. ,

A relative constant definition must not appear to the left af the name
of an array in the list of a READ DRUM statement.

A variable defined in one program may have its value transmitted
to another program, where it is a relative constant and where,
consequently, the value is used. This may be done by placing it in
an argument list. The appearance of a relative constant in an
argument list is sufficient to provide the necessary computation for
the relative constant.

Relative
Constants in
Common
Statements

CONSTANTS IN
ARGUMENT
LISTS

FURTHER
DETAILS
ABOUT DO
STATEMENTS

A relative constant value may be transmitted from one program to
another by placing it in COMMON, but only if it is being transmitted
from the calling to the called subprogram.

Example

Main Program

COMMON K

K = 5
CALL ABC

SUBROUTINE ABC
COMMON I
DIMENSION B(10)
A = B(1)

A constant may not appear a s an argument in the call to a SUB-
ROUTINE or FUNCTION subprogram if the corresponding dummy
variable in the definition of the subprogram appeared either on the
left side of an arithmetic statement o r in an input list.

Triangular Indexiniz

Indexing such a s

i s permitted and simplifies work with triangular arrays. These
a r e simply special cases of the fact that an index under control of
a DO i s available for general use a s a fixed point variable.

The diagonal elements of an ar ray may be picked out by the following
type of indexing:

DO I = l , 1 0
A(1, I, I) = (some expression)

Status of the Cell Containing I

A DO loop with index I does not affect the contents of the object program
storage location for I, except under the following circumstances:

An IF-type or GO TO-type transfer exit occurs from the range
of the DO.

I is used a s a variable in the range of the DO.

I is used a s a subscript in combination with a relative constant
whose value changes within the range of the DO.

Therefore, if a normal exit occurs from a DO to which cases 2 and
3 do not apply, the I cell contains what it did before the DO was
encountered. After normal exit where 2 o r 3 do apply, the I cell
contains the current value of I.

What has just been said applies only when I is referred to a s a
variable. When it is referred to a s a subscript, I is undefined after
any normal exit and i s the current value after any transfer exit.

CHAPTER 2 -- LIMITATIONS ON SOURCE PROGRAM SIZE

In translating a source program into an object program, FORTRAN
internally forms and utilizes various tables containing certain items
of information about the source program. These tables a r e of finite
size and thus place restrictions on the volume of certain kinds of
information which the source program may contain. If a table size
is exceeded, a halt will occur during compilation.

Alphanumeric HOLARG Table. Entries a re made in this table when a CALL
Arguments statement l is ts alphanumerical arguments. For every nH in a

CALL statement, divide n by 6. Add 1 to the quotient i f there i s
a remainder. Add 1 to this. Maximum table size is 900 (8K),
3600 (32K).

Arithmetic
Statements

A description of the relevant tables is given below. The term
"literal appearance" means that if the same item appears more
than once, it must be counted each time it appears. Table size
limitations a re given following the table descriptions.

ALPHA Table. This table is computed for each arithmetic
statement a s follows:

Set the initial value of a counter to 3.

Scanning the right hand side of the statement in question, add
4 to the value of this counter for each left parenthesis en-
countered and subtract 4 for each right parenthesis encountered.

Compilation will stop if overflow occurs.

Maximum table size i s 139 (8K), 556 (32K).

BETA Table. This table limits the size of arithmetic expressions
both on the right-hand side of arithmetic statements, and a s the
arguments of IF and CALL statements. Using the values computed
for the LAMBDA Table (below):

Maximum table size i s 297 (8K), 1197 (32K).

LAMBDA Table. This table limits the size of arithmetic expressions
both on the right-hand side of arithmetic statements, and a s the
arguments of IF and CALL statements. For each expression:

Arithmetic
Statements :
Fixed Point
Variables

Arithmetic
Statement
Function

CALL

where:

n = number of literal appearances of variables and constants,
except those in subscripts.

b = number of open parentheses, except those introducing subscripts.

p = number of appearances of + or -, except in subscripts or a s
unary operators (the + in A*(+B) is a unary operator).

t = niunber of appearances of * or /, except in subscripts.

e = number of appearances of **.

f = number of literal appearances of function names.

a = number of arguments of functions (for SINF(S1NF (X)), a = 2).

Maximum table size is 1185 (8K), 4785 (32K).

FORVAL Table. An entry is made for each literal appearance of
non-subscripted fixed point variables on the left-hand side of
arithmetic statements, in input lists, in COMMON statements, and
in argument list for Fortran functions and Subroutine subprograms.

Maximum table size is 1000 (8K), 4000 (32K).

FORVAR Table. An entry is made for each literal appearance of
non-subscripted fixed point variables on the right-hand side of
arithmetic statements, and in the arguments of IF and CALL
statements.

Maximum table size is 1500 (8K), 6000 (32K).

FORSUB Table. An entry is made for each distinct Arithmetic
Statement function.

Maximum table size is 35 (8K), 140 (32K).

CALLFN Table. An entry is made for each CALL statement
appearing in the source program.

Maximum table size is 600 (8K), 2400 (32K).

COMMON

DIMENSION

EQUIVALENCE

Fixed Point
Constants

Floating Point
Constants

COMMON Table. An entry is made for each literal appearance
of variables in COMMON statements.

Maximum table size is 600 (8K), 2400 (32K).

DIM Tables. An entry is made for each 10, 29, and 3-dimensional
variable mentioned in DIMENSION statements.

Maximum table sizes are:

SIZ Table. An entry is made for each array mentioned in a source
program.

Maximum table size is 580 (8K), 2320 (32K).

DOTAG Table. An entry is made for each DO in a nest of DOs.

Maximum table size is 50 (8K), 200 (32K).

TDO Table. An entry is made for each DO. (A DO-implying
parenthesis counts a s a DO.)

Maximum table size is 150 (8K), 600 (32K).

EQUIT Table. An entry is made for each literal appearance of
variables in EQUIVALENCE statement.

Maximum table size is 1500 (8K), 6000 (32K).

FIXCON Table. An entry is made for each different fixed point
constant. For this purpose, constants differing only in sign are
not considered different.

Maximum table size is 100 (8K), 400 (32K).

FLOCON Table. An entry is made for each different floating point
constant in any one arithmetic statement and in any one source
program. For this purpose, constants differing only in sign or
format (e. g. , 4. , 4. 0, 40. E-1) are not considered different.

Maximum table size is 450 (8K), 1800 (32K).

U FORMAT FMTEFN Table. An entry i s made for each literal appearance of
a FORMAT statement number in an input/output statement.

Maximum table size i s 500 (8K), 2000 (32K).

FORMAT Table. For each FORMAT statement included in the
source program, compute f a s follows:

Count all characters, including blanks, following the word
FORMAT, up to and including the final right parenthesis.
Divide this count by 6. Add 1 to the quotient if there i s a
remainder.

All f values thus computed a re entered in the table.

Maximum table size i s 1500 (8K), 6000 (32K).

FREQUENCY FRET Table. An entry i s made for each number mentioned in
FREQUENCY statements.

Maximum table size i s 750 (8K), 3000 (32K).

Non-executable NONEXC Table. An entry i s made for each non-executable
Statements statement in the source program.

Maximum table size i s 300 (8K), 1200 (32K).

Statement
Numbers

c.

STOP

Subprogram
Arguments

TEIFNO Table. An entry i s made for each source statement which
has a statement number. (An input/output statement which has
a statement number and whose list contains controlling parentheses
counts a s 2.)

Maximum table size i s 750 (8K), 3000 (32K).

TSTOPS Table. An entry i s made for each STOP and RETURN
statement in the source program.

Maximum table size i s 300 (8K), 1200 (32K).

SUBDEF Table. The SUBDEF Table arises from the SUBROUTINE
and FUNCTION statements. An entry i s made for the name of the
subprogram being defined, and for each "dummy" argument
contained in the argument lists.

Maximum table size i s 180 (8K and 32K).

Subprograms, CLOSUB Table. One entry is made in this table for each closed
Fimctions and subroutine, Fortran function, and Subroutine subprogram called
Input/Output in the source program. In addition, a s many a s three entries may
Statements be made for each input/output statement.

Maximum table sizes are:

Total entries 1500 (8K), 6000 (32K)
Total different entries 750 (8K), 3000 (32K)

Subscripted FORTAG Table. An entry i s made in this table for each literal

Variables appearance of subscripted variables.

Maximum table size i s 1500 (8K), 6000 (32K).

Sv bscri pts

Transfer
Statements

SIGMA Table. An entry i s made for each literal appearance of
variables whose subscripts contain one or more unique addends
in any one arithmetic expression.

Maximum table size i s 30 (8K), 120 (32K).

TAU Tables. An entry i s made for each different I-, 2-, and
3-dimensional subscript combination. Subscript combinations a r e
considered different if corresponding subscripts, exclusive of
addends, or corresponding ' 'leading dimensions" of the subscripted
arrays differ. ' 'Leading dimensionsJ ' are the fir s t dimension of
a 2-dimensional array, and the first and second dimensions of a
3-dimensional array.

Maximum table sizes are:
(8K) (3 W

1-dimensional 100 400
2-dimensional 90 360
3-dimensional 75 300

NLIST Table. An entry i s made in this table for each different
fixed point variable in an assigned GO TO statement.

Maximum table size i s 50 (8K), 200 (32K).

TIFGO Table. An entry i s made in this table for each ASSIGN,
IF-, and GO TO-type statement in the source program.

Maximum table size i s 600 (8K), 2400 (32K).

(j APPENDIX A - SOURCE PROGRAM STATEMENTS AND SEQUENCING

The precise rules which govern the order in which the source program
statements of a FORTRAN program will be executed can be stated
a s follows:

1. Control originates a t the f irst executable statement.

2. If control has been with statement S, then control will pass to the
statement indicated by the normal sequencing properties of S.
(The normal sequencing properties of each FORTRAN statement
a r e given below. If, however, S is the last statement in the
rsinge of one o r more DO% which a r e not yet satisfied, then the
normal sequencing of S is ignored and DO-sequencing occurs.)

Non-Execu ta ble
Statements

The statements FORMAT, DIMENSION, EQUIVALENCE, FREQUENCY,
and COMMON a re non-executable statements. In questions of
sequencing they can simply be ignored.

If the last executable statement in the source program is not a STOP,
RETURN, IF-type, o r GO TO-type statement, then the object program
is compiled to give the effect of depressing the Load Cards key
following the last executable statement.

Every executable statement in a FORTRAN source program (except
the first) must have some path of control leading to it.

Table of Source Program Statement
Sequencing

Statement

a = b

GO TO n

GO TO n, (nl, "2, . . . , nm)

ASSIGN i TO n

GO TO (nl, n ~ , . . . , n m i

IF (a) n1, "2, "3

Normal Sequencing

Next executable statement

Statement n

Statement last assigned to n

Next executable statement

Statement ni

Statement n l , n2, or n3 if (a) < 0,
(a) = 0, or if (a) > 0, respectively.

Statement

SENSE LIGHT i

IF (SENSE LIGHT i) nl , n2

IF (SENSE SWITCH i) nl , n2

IF ACCUMULATOR OVER-
FLOW nl, n2

IF QUOTIENT OVERFLOW

" 1 3 "2

IF DIVIDE CHECK nl, n2

PAUSE or PAUSE n

STOP or STOP n

CONTINUE

CALL Name (al, a2, . . . , aJ

Normal Sequencing

Next executable statement.

Statement n l , n2 if Sense
Light i is On or Off,
respectively.

Statement nl, n2 if Sense
Switch i is Down or Up,
respectively.

Statement nl , n2 if the 709/
7090 FORTRAN internal
overflow indicator is On or
Off, respectively

Statement nl, n2 if the 709/
7090 FORTRAN internal
overflow indicator is On or
Off, respectively.

Statement nl, n2 if the
Divide Check indicator is
On or Off, respectively.

Next executable statement.

Terminates program.

Do-sequencing, then next
executable statement.

Next executable statement.

No sequencing; this statement
terminates a problem.

First statement of subroutine
Name.

Next executable statement.

Statement

FUNCTION Name (a1, a2,. . . , %]

RETURN

READ n, List

READ INPUT TAPE i, n, List

PUNCH n, List

PRINT n, List

WRITE OUTPUT TAPE i, n, List

FORMAT (Specification)

READ TAPE i, List

READ DRUM i, j, List

WRITE TAPE i, List

WRITE DRUM i, j, List

END FILE i

REWIND i

BACKSPACE i

DIMENSION V, v, v, . . .

EQUIVALENCE (a, b, c, . . .),
(d,e,f, ...),. . . .

FREQUENCY n (i, j, , . .),
m(k, 1,. . .),

COMMON A, B, . . .

Normal Sequencing

Next executable statement.

The statement or part of
statement following call.

Next executable statement.

Next executable statement.

Next executable statement.

Next executable statement.

Next executable statement.

Not executed.

Next executable statement.

Next executable statement.

Next executable statement.

Next executable statement.

Next executable statement.

Next executable statement.

Next executable statement.

Not executed.

Not executed.

Not executed.

Not executed.

blank

NOTE: There are two - signs. Only the 11-punch minus sign can be used in FORTRAN
source program cards. Either minus sign may be used in input data to the object
program; object program output uses the 11-punch minus sign.

The character $ can be used in FORTRAN only as Hollerith text in a FORMAT
statement.

C APPENDIX C - SENSE SWITCH SETTINGS FOR 709//090 FORTRAN

Sense Switch 1 UP

DOWN

Sense Switch 2 UP

DOWN

Sense Switch 3 UP

DOWN

Sense Switch 4 UP

DOWN

Cards containing the object program(s)
a r e punched on-line. Actual tape unit
B3 contains the object program of the
source program compiled, or , if under
Monitor control, of the last source
program compiled.

Actual tape unit B3 contains the object
program for the last or only source
program compiled. If under Monitor
control, tape unit B4 contains the
object programs for all the source
programs compiled, in the order
compiled. No cards a r e punched.

Produces, on actual tape unit B2, two
files for the source program compiled,
containing the source program and a
map of object program storage. If under
Monitor control, actual tape unit A3
will contain two files for each program
compiled and actual tape unit B2 will
contain two files far the last program
compiled.

Adds a third file for each program
compiled (see above) containing the
object program in terms of the symbolic
code FAP (FORTRAN Assembly Program)
on actual tape unit B2 (and A3, if under
Monitor control).

No on-line listings a r e produced.

Lists on-line the f irst two or three
files of tape unit B2, depending upon
the setting of Sense Switch 2.

Punched output, if any, is relocatable
row binary cards.

Punched output i s relocatable columnar
binary cards.

APPENDIX D - US I N G HAND-CODED SUBROUTINES WITH 709/7090 FORTRAN
COMPILED OBJECT PROGRAMS

Fortran function subprograms and Subroutine subprograms coded
by hand or by a system other than FORTRAN can also be linked to
FORTRAN programs. If coded in FAP and assembled through the
FORTRAN Monitor, the linkage instructions will occur auto-
matically. For hand-coding other than by FAP, rules for providing
this linkage are given below.

It is necessary for hand-coded subprograms to conform to FORTRAN
programs with regard to five conditions.

1. Transfer lists to called subroutines, if any.

2. Method of obtaining the variables (arguments) given in the
calling sequence.

3. Saving and restoring index registers.

4. Storing results.

5. Method of returning to the calling program.

Calling A calling sequence for a subprogram, .produced by FORTRAN
Sequence consists of the following:

TSX NAME, 4

TSX LOCX1

TSX LOCX2

. .
TSX LOCXn

The calling sequence consists of n+l words. The first is an instruction
which causes transfer of control to the subprogram. The remaining
n words include one for each argument. The "TSX" in these words

3
is never executed. In case an argument consists of an array, one
instruction determines the entire array; the address of that instruction
specifies the location of the first element of the array, i. e. , element
A1, 1,l. If the argument is Hollerith data, the location given is that
of the first word of the block containing the data.

Transfer List,
Rcb logue,
and Index
Register
Sav i ng

The first instructions of a subprogram will consist of a transfer list
and a prologue in that order. The transfer list contains the symbolic
names of the lower level subprograms and functions, if any, that the
subprogram calls. The prologue obtains and stores the locations
given in the calling sequence. It will consist of the CLA and STA
instructions necessary for each argument. If it is desired, index
registers may be saved.

RESlU LTS

The instructions below show such a transfer list and prologue.

,[* FOR REMARKS I I

LOCATION OPERATION I ADDRESS, TAG, DECREMENT/COUNT COMMENTS
I I

A Fortran function must place its (single) result in the Accumulator
prior to returning control to the calling program.

A Subroutine subprogram must place each of its results in a storage
location. (Such a subprogram need not, of course, return results.)
A result represented by the n th argument of a CALL statement is
stored in the location specified-by the address field of location (n, 4).

C Return

Entry

Transfer of control to the calling program is effected by

1. Restoring the Index Registers to their condition prior to transfer
of control to the subprogram.

2. Transferring to the calling program. The required steps are:

Unlike a Fortran compiled subprogram, a hand-coded subprogram
may have more than one entry point. A hand-coded subprogram used
with a FORTRAN calling program may be entered at any desired point,
provided that a subprogram name acceptable to FORTRAN is assigned
to each selected entry point. All the above mentioned conditions,
must of course, be satisfied at each entry point. The entry point .
name by which a FORTRAN calling program refers to a FAP sub-
program need not have been used in the original symbolic FAP
coding.

System Tape As discussed on page 81, hand-coded subprograms a s well a s Library
Subroutines functions, may be placed on the System tape of the FORTRAN System.

When a FORTRAN source program mentions the name of such a
subprogram, it is handled in exactly the same way a s a library function.

A 1 phanumeri ca 1 Hand-coded subprograms may handle alphanumerical information.
Information This information is supplied as an argument of a CALL statement.

The form for an alphanumerical argument is

The following example illustrates the method of storing alphanumerical
information.

Example :

CALL TRMLPH (8, C, 13HFINAL RESULTS)

the characters 13H are dropped, and the remaining information stored:

Location Contents

F I N A L b

R E S U L T

S b b b b b (b represents a blank - 608)

The address X i s given in the calling sequence for the CALL
statement.

INDEX
Admissible Character8 97
Alphanumeric Fields, conversion 4 1

Argume-
alphanumeric 35
in common storage 56
of a function 13,16,32, 35
of a library subroutine 8 2
(see ako "Subprogram, rrgumentr")

Arithmetic Exprerdonr, optimizing
Arithmetic Statemem

Boolean expressions in
f ~ d i o ~ ~ (KC ' T u I I ~ o ~ ')
meaning of =
mode of result
optimization of
truncation of floating point q d t y

Arrays
arrangement in storage
in FUNCTION subprograms
in SUBROUTINE subprograms

Assembler
ASSIGN
Assigned GO TO, in range of DO

(see also "GO TO, Assigned")
BACKSPACE
Blank Fields, output records
Blanks, ignored
Boolean

expressions
operators

BSS Loader
Built-In Functions

(see "Open Functions")
CALL
CALL CHAIN (R, T)
CALL DUMP '
CALL EXIT
CALL PDUMP
CARDS ROW Card
CARDS COLUMN C d
Carriage Control
CHAM
Chain Job
Closed Functions
Coding Forms

(see "FORTRAN, coding form")
Comment Cards
COMMON
Complier
Computed GO TO

(see "GO TO, Computed")
Control Statements
Constants
Continuation Cards
CONTINUE
DATA Card
DATE
Data Input to Object Programs

Defining Functions
Diagnostics
DIMENSION
DO

index
nests
range
satisfied
sequencing
transfer exit from
transfers within range of

Dummy Variables
DUMP Card
Efficiency of Object hogram
END
END FILE
End of File Card
END TAPE Card
EQUIVALENCE

not to be used to equate quantities
Execute Jobs
Exponentiation
Expressions
F Card
FAP Card
Fixed Point

arithmetic
constants
variables

Floating Point
constants
variables

FORMAT
Format

for alphanumerical conversion
for numerical conversion
lists
multiple n w r d
repetition
variable

FORTRAN
assembly program (FAP)
c d
coding form
functions (see "Subprograms,

FUNCTION-typeB')
types of staernents

FREQUENCY
FUNCTION

(see also "Subprograms,
FUNCTION-type")

Functions
arithmetic statement
closed (library)
open (built-in)
modes of
naming

GO TO
Assigned

I . Computed
Unconditional

Hand Coded Subroutines
Hierarchy of Operations
I. D. Card
IF
IF ACCUMULATOR OVERFLOW
IF DIVIDE CHECK
IF (SENSE LIGHT)
IF (SENSE SWITCH)
IF QUOTIENT OVERFLOW
Individual Compilations
Input/Output

lists
of matrices
statements
unit designation

Job
LABEL
LIBE Card
Library Functions

(see "Closed functions")
LIST Card
LIST8 Card
Lists of Quantities

abbreviated form
for transmission
for drum

Logical Record
Machine Load
Mode of a Function
Monitor

control cards
diagnostics
input
options,
output
patches
program limitations
programming
tape usage

Multiple Program Compilation
Naming

functions
FORTRAN functions
subroutines

Non-executable Statements
Non-execute Job
Numerical Fields, conversion
object Machine
Object Program
Octal Numbers
Open Functions
Operation Symbols
Ordering of Job Input Deck
Ordering Within a Hierarchy
Optimization of Arithmetic Expressions 1 1

' .

Parentheses
PAUSE
Physical Record
PRINT
PUNCH
READ
READ DRUM

lists
READ INPUT TAPE
READ TAPE
Relative Constants

in argument lists
in input list

RESTART Card
RETURN
REWIND
Scale Factors
Selection of Tapes for Link Stacking
SENSE LIGHT
Sense Switch Settings
Sequencing of Statements
Sign-On Record
Source Machine
Source Program
Source Program Characters
Source Statements
Specification Statements
START Card
Statement

cards
(see 'TORTRAN, card")

numbers
STOP
Storage Allocation
Subprogram

arguments
FUNCTION-type
statements
SUBROUTINE-type

SUBROUTINE
(see also "Subprogram,

SUBROUTINE-type")
Subroutines

on system tape
Subscripts
Subscripted Variables
Symbolic Input/Output

Unit Designation
Symbolic Machine Instructions
Table Sizes
Triangular Indexing
Unconditional GO TO

(see "GO TO, Unconditional")
Unit Table (IOU)
Variables
WRITE DRUM

lists
WRITE OUTPUT TAPE
WRITE TAPE

XEQ

	Table of Contents
	Part I: General Concepts
	Part II: The Fortran Language
	Part III: Programming for the 709/7090 Fortran Monitor
	Part IV: General Rules for Fortran Programming
	Appendices
	Index

