The Arithmetic Translator-Compiler of the IBM Fortran Automatic Coding System

Peter B. Sheridan, International Business Machines Corporation, New York, N. Y.

1. Introduction

The present paper describes, in formal terms, the steps in translation employed by the Foptran arithmetic translator in converting Fortran formulas into 704 assembly code. The steps are described in about the order in which they are actually taken during translation. Although sections 2 and 3 give a formal description of the Fortran source language, insofar as arithmetic type statements are concerned, the reader is expected to be familiar with Fortran II, as well as with Sap II and the programming logic of the 704 computer.

The first major phase of translation, described in sections $4-7$, is concerned with converting an arithmetic formula, regarded as the statement of an algorithm, into a set of triples $\left(C_{i}, \mho_{i}, N_{i}\right)$ which also describe the algorithm, but in a manner which lends itself more easily to conversion into conventional computer code (not necessarily that of the 704). The three elements of a triple have essentially the following meanings:
\rangle_{i} : operation to be performed
N_{i} : operand
C_{i} : "time" at which the operation must be performed
There are as many distinct "times" of operation as there are subexpressions in the entire expression to be evaluated. For example, consider the arithmetic expression ${ }^{1}$

$$
\begin{equation*}
(((A+B)-C) /((D *(E+F) / G)-H+J)) \tag{1}
\end{equation*}
$$

One may regard this expression as containing as many subexpressions as there are distinct pairs of parentheses shown-namely six. To evaluate the entire expression all six subexpressions must be evaluated. While there is some latitude in the order in which these subexpressions are to be evaluated, not all orders will work (since "higher level" subexpressions depend on "lower level" ones for their values). A possible order of evaluation for the example shown is as follows:

```
1. \((A+B)\)
2. \(((A+B)-C)\)
3. \((E+F)\)
4. \((D *(E+F) / G)\)
5. \((D *(E+F) / G)-H+J\)
6. \((((A+B)-C) /((D *(E+F) / G)-H+J))\).
```

The triples representing this computation would break up into six subsets, called segments according to their C number (first member of a triple). In each segment (corresponding to a subexpression) there are as many triples

[^0]as there are terms in the subexpression. (The number 0 triples in a segment may be called the length of a seg. ment.) Using the numbers written alongside the sub expressions as names for these subexpressions, we ge the following representation of the computation in triples notation:
\[

$$
\begin{align*}
& (1,+, A)(1,+, B)(2,+1)(2,-, C) \\
& (3,+, E)(3,+, F)(4, *, D) \\
& (4, *, 3)(4, /, G)(5,+, 4)(5,-, H) \tag{2}\\
& (5,+, J)(6, *, 2)(6, /, 5)
\end{align*}
$$
\]

If the divide operation is regarded as multiplication by the inverse, then it is clear that the triples belonging to any given segment of (2) could be reshuffled into some different order without disturbing the algorithm. Although not all possible segments which the Fortran translator produces allow reshuffling, the latitude, whenever present is later used to obtain economies in the computer code eventually produced. It should also be observed that since each triple bears its own segment number, extensive rearrangements of the triples could be tolerated withou making it impossible to restore them into proper order The Fortran translator takes advantage of this fact in that it does not necessarily produce the triples segment by segment with segments in proper order. However, the deviations from this ultimately required order which the process of triples generation introduces are correctible by reordering. The segment numbers developed by the Fortran translator are in reverse numerical order, i.e. the largest segment number represents the subexpression first to be evaluated, while the smallest segment number represents the last (which always coincides with the entire expression). The first major objective of the Fortran translator is accomplished in a number of steps and consists in the translation of form (1) into form (2).

The first step, described in section 4, is to replace constants and subscripted variables by simple variables. thus ensuring that all of the arguments entering into the computation are of a uniform nature.

The next step, described in section 5 , is aimed at ensuring that every subexpression in the expression to be evaluated is provided with an explicit pair of parentheses. In writing Fortran formulas one need not indicate all parentheses, the usual order of precedence among arithmetic operations being assumed: exponentiation, multiplication and division, addition and subtraction. The method by which these precedence relations are made explicit by the Fortran translator is roughly the following: An arithmetic connective of high precedence may be

Fig. 1.
thought of as weakly separating the arguments to either side of it, while a connective of low priority strongly separates the arguments to either side of it. Since there are three degrees of precedence to be considered, we may represent three degrees of separation power by placing one, two, or three pairs of parentheses to either side of a connective according to its order of precedence, thus:

$$
A * * B \quad A) * *(B \quad \text { (exponentiation) }
$$

convert $A * B$ into $A)) *((B \quad$ (multiplication)

$$
A+B \quad A)))+(((B \quad \text { (addition })
$$

This introduction of parentheses is balanced in the sense that as many left parentheses are introduced as right ones. If, in addition to inserting parentheses as shown above, one also prefixes the entire expression by three left parentheses and closes it by three right parentheses, then-as the reader may convince himself a correct parenthesization of the expression is accomplished even though many unnecessary (though harmless) pairs of parentheses are also inserted. For example:

$$
\begin{equation*}
A+B * * C / D \tag{3}
\end{equation*}
$$

becomes

$$
(((A)))+(((B) * *(C)) /((D)))
$$

In the Forman translation four rather than three levels of precedence are recognized because the character "," which conventionally separates successive arguments of a function-as in $f(a, b, c)$-is also treated as an arithmetic connective. Also, for reasons having to do with the subsequent generation of triples, each inserted left parenthesis is preceded by an operation sign which essentially tags the parenthesis with its strength:

$$
\begin{equation*}
+(*(* *(A)))+(*(* *(B) * *(C)) /(* *(D))) \tag{4}
\end{equation*}
$$

Arithmetic expressions expanded by the insertion of parentheses and operation signs as indicated above (and
carefully described in section 5) are called arithmetic expressions in normal form.

The next step in translation, described in section 6, is the generation of a list of triples which (except for the inclusion of some extraneous list members) constitutes an unsorted representation of the desired algorithm. A single scan forward on expressions of a form equivalent to that shown in (3) above produces the desired triples. Every left parenthesis marks the beginning of a subexpression; the operation sign preceding it shows in what sort of arithmetie operation that subexpression is to participate as a term. A ruming index, N_{i}, (N for next subexpression), which steps up one every time another left parenthesis is crossed, serves to generate a set of subexpression numbers which become the indices N_{i} of the generated triples. The numbers C_{i} (C for current subexpression) may be generated from N_{i} provided that one keeps a record of what subexpression numbers were generated at previous left parenthesis crossings, and steps back to the proper earlier subexpression after having crossed one or more right parentheses.

This procedure is illustrated in figure 1, using expression (4) as a source of triples production.

Section 7 describes how to eliminate extraneous triples from lists described as above. To begin with, one can (with only one exception) eliminate all triples which form a single segment by themselves. Secondly, after sorting the triples into order, one can eliminate duplication between entire segments of triples which can be recognized to be identical sub-expressions.

Section 8 describes some intra-segment rearrangements of triples which lead to an ultimate order of computer operation which is not randomly wasteful of storage-toregister and register-to-storage transfers in the course of expression evaluation.

When once an expression has been converted into a string of triples, properly rearranged and made as short as possible by elimination of duplication, it is ready for
conversion into one-address Sap assembly code. In most triples the last element N_{i} will have to be interpreted as an Sar address of a number to be operated upon by an operation corresponding to \forall_{i}.

Sections 9 and 10 show how the Fortran translator assigns storage locations and computes addresses for the various classes of operands encountered in these triples. The following classes of operand storage are considered in order:

Integer and floating point constant storage
Input and output arrays (Represented by source language references to subscripted variables)

Worling storage for each expression (Represented in triples code by references in one segment to the result produced by another segment of the same expression)

Argument storage for functions

Return jump address storage required when functions are nested and control must pass down a chain and then back up again.

Section 11 actually shows, almost in flow-chart form, how Sap assembly instructions are produced from the strings of triples into which Fortran expressions have been recoded.

The Appendix shows how Fortran statement compilation can be extended to the case in which the operations consist in Boolean and, or and not.

The author is indebted to Messrs J. W. Backus, R. A. Nelson, and I. Ziller of IBM for initially suggesting to him the basic ideas underlying section 6 below, and he is most especially grateful to Mr. A. W. Holt of Remington Rand for the extended introduction to this paper, without which its readability would have suffered considerably.

2. Definitions

(a) The alphabet of Fontran comprises the alphameric characters $A, \cdots, z, 0,1, \cdots, 9$ and the set of "special" characters: $\cdot(),,,+,-, *, /,=$, and -1 . The last is not a character explicitly indicated in any Fontran statement, serving solely as a statement endmark on the executive level, with which we shall here be primarily concerned. Lower case Greek letters will be used throughout to denote arbitrary characters of the Fontran alphabet.

By the term string we shall mean a sequence of juxtaposed alphabet characters, of finite length. Upper case Greek letters will be used to denote arbitrary strings.

The length $L(\Sigma)$ of a string Σ is the number of literal occurrences of character tokens in its construction. The symbol Λ will be used to denote the null string, of length 0 ; of course, for any string $\Sigma, \Sigma \Lambda=\Lambda \Sigma=\Sigma$.

Two strings $\Phi=\varphi_{1} \cdots \varphi_{m}, \Psi=\psi_{1} \cdots \psi_{n}$ are said to be identical (and we write $\Phi=\Psi$) if and only if $m=n$ and for each $i, \varphi_{i}=\psi_{i}$.

A string Φ is said to be included in (or to be a substring of) a string Ψ (and we write: $\Phi \subseteq \Psi$) if Ψ has the representation $\Psi=A \Phi B$ where, A, B are strings. As usual, A is said to be a hoad of Ψ, and B a tail of Ψ.

If Ψ is an arbitrary string, then the notation $H_{n}(\Psi)$, $T_{n}(\Psi)$, where n is an arbitrary non-negative integer, is
defined as follows: If $\Psi=\Phi X$, then

$$
\left.\left.\begin{array}{c}
H_{n}(\Psi)=\left\{\begin{array}{c}
\Phi \text { if } n \leqq L(\Psi) \text { and } L(\Phi)=n, \\
\text { or } n>L(\Psi) \text { and } \Psi=\Phi \\
A \text { if } n=0
\end{array}\right. \\
T_{n}(\Psi)=\left\{\begin{array}{c}
\mathrm{X} \text { if } n \leqq L(\Psi) \text { and } L(\mathrm{X})=n, \\
\text { or } n>L(\Psi) \text { and } \Psi=\mathrm{X} \\
A \text { if } n=0
\end{array}\right. \\
\text { Thus, if } \Psi=A B C+D / E * * F \text { then } \\
H_{4}(\Psi)=A B C+ \\
T_{5}(\Psi)=/ E * * F \\
H_{17}(\Psi)=\Psi \\
T_{23}(\Psi)=\Psi
\end{array}\right\} \begin{array}{l}
\text { (b) Names are strings classified as follows: } \\
\text { integer constants } \\
\text { floating-point constants } \\
\text { integer variables }
\end{array}\right\} \begin{aligned}
& \text { floating-point variables } \\
& \text { function names }
\end{aligned}
$$

An integer constant is a string $\mathrm{K}=\kappa_{1} \cdots \kappa_{n}$ such that each κ_{i} is an integer between 0 and 9 (inclusively) and the relation $\mathrm{K}<2^{15}$ holds.

A floating-point constant is a string $\Gamma=\gamma_{1} \cdots \gamma_{n}$ where $\gamma_{j}=$ - for some j and each γ_{i}, for $i \neq j$, is between 0 and 9 (inclusively), provided $\Gamma=0$ or $10^{-38}<$ $\Gamma<10^{38}$.

An integer variable is a string $I=\iota_{1} \cdots \iota_{n}$ where each ι_{j} is alphameric, but ι_{1} is one of the characters $1, \mathrm{~J}, \mathrm{~K}$, \mathbf{L}, \mathbf{M} or N, and $L(\mathrm{I}) \leqq 6$.

A floating-point variable is a string $\Gamma=\gamma_{1} \cdots \gamma_{n}$ where each γ_{i} is alphameric and γ_{1} is alphabetic but not one of the chatacters $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{m}$ or N . Again, $L(\mathrm{~T}) \leqq 6$.

A function name is a string $\Phi=\varphi_{1}, \cdots, \varphi_{n}$, where each φ_{i} is alphameric, φ_{1} is alphabetic and such that either
(i) $L(\Phi) \leqq 6, \Phi$ does not appear in a drmension ${ }^{2}$ statement, and $L(\Phi)<4$ or $\varphi_{n} \neq F$
or (ii) $4 \leqq L(\Phi) \leqq 7$ and $\varphi_{n}=\mathbf{F}$.
Functions denoted by names in the first category are referred to as Fs-type functions, and are defined by Fortran II function or subroutine subprograms. Those denoted by names in the second category are referred to as FN-type functions, and are defined by machine-coded library tape subprograms, built-in open subroutines, or by a single arithmetic statement (see function definition below). An fs-type function is integervalued if and only if φ_{1} is one of the characters $\mathrm{I}, \mathrm{J}, \mathrm{K}$, L, m or N . An fn-type function is integer-valued if and

[^1]only if $\varphi_{1}=\mathrm{x}$. (This discrepancy in notational convention is, in principle, a nonessential one and arose only through historical accident.)
(c) A subscript is a string of one of the following forms:
\[

$$
\begin{aligned}
& \Sigma \\
& \mathrm{K} \\
& \mathrm{~K} * \Sigma \\
& \Sigma+\mathrm{K} \\
& \Sigma-\mathrm{K} \\
& \mathrm{~K} * \Sigma+\mathrm{P} \\
& \mathrm{~K} * \Sigma-\mathrm{P}
\end{aligned}
$$
\]

where K, P are integer constants and Σ is an integer variable. In addition, the magnitude of a subscript cannot exceed $2^{15}-1$.
(d) A subscripted variable is a string of the form

$$
T\left(\Sigma_{1}, \cdots, \Sigma_{k}\right)
$$

where T is an integer or floating-point variable and such that if $T=\tau_{1} \cdots \tau_{n}$,
(i) T appears in a dmension statement,
and $\quad(i i) L(T)<4$ or $\boldsymbol{\tau}_{n} \neq \mathbf{F}$
and the Σ_{i} are subscripts with $k \leqq 3$.

3. Rules of Formation

(1) The set of expressions is recursively characterized as follows:
$E 1$. A constant or variable name Φ is an expression of the same mode as Φ. If $\Phi=\varphi_{1} \cdots \varphi_{n}$ and $L(\Phi)<4$ or $\varphi_{n} \neq \mathrm{F}$, and Φ appears in a dimension statement, and if, furthermore, $\Sigma_{1}, \cdots, \Sigma_{k},(1 \leqq k \leqq 3)$, are subscripts, then $\Phi\left(\Sigma_{1}, \cdots, \Sigma_{k}\right)$ is an expression of the same mode as Φ.
$E 2$. If Φ is an expression not of the form $+\Psi$ or $-\Psi$, then $+\Phi$ and $-\Phi$ are expressions of the same mode as Φ.
$E 3$. If Φ is an expression, then (Φ) is an expression of the same mode as Φ.
$E 4$. If Φ is an n-adic function name and A_{1}, \cdots, A_{n} are expressions, then $\Phi\left(A_{1}, \cdots, A_{n}\right)$ is an expression of the same mode as Φ.
$E 5$. If Φ, Ψ are expressions of the same mode and Ψ is not of the form +X or -X , then $\Phi+\Psi, \Phi-\Psi$, $\Phi * \Psi, \Phi / \Psi$ are expressions of the same mode as Φ.
$E 6$. If Φ, Ψ are expressions and Ψ is floating-point mode only when Φ is, then unless either Φ or Ψ is of the form $A * * B$ (A, B variables, constants, or function expressions), $\Phi * * \Psi$ is an expression of the same mode as Φ.

Note that E1-E6 prohibit, by implication, the writing of mixed-mode expressions except under certain special formal conditions. To wit, the only allowable expressions in our language are those we shall term integer and float-ing-point expressions. An integer expression is one in which any floating-point mode name occurs, if at all, within the "argument vector" of some function expres-
sion,-for example:

$$
I+\operatorname{XsinF}(A * B / C)
$$

A floating-point expression, on the other hand, is one in which any integer-mode name occurs, if at all, within the argument vector of a function expression, within the exponent of an exponential, or within a subscript,-for example:
$\mathrm{A}(\mathrm{I}) * * \mathrm{~J}+\operatorname{sinf}(\mathrm{K} * \mathrm{~L} / \mathrm{M})$
Any other string is referred to as mixed, and cannot belong to the set of allowed expressions.
(iI) An arithmetic expression is a string of the form

$$
=\Phi
$$

where Φ is an expression in the sense of $E 1-E 6$.
(III) A pure arithmetic statement is a string of the form

$$
\Psi=\Phi-
$$

where Ψ is a subscripted or nonsubscripted variable, and $=\Phi H$ is an arithmetic expression.
(Iv) A quasi-arithmetic statement is a string of one of the following forms:
(a) $\operatorname{IF}(\Phi)$, where Φ is an expression.
(b) Call $\Phi\left(A_{1}, \cdots, A_{n}\right)$, where Φ is a function name such that
(i) if $\Phi=\varphi_{1} \cdots \varphi_{n}$, then $L(\Phi)<4$ or $\varphi_{n} \neq \mathrm{F}, L(\Phi) \leqq$ 6 and Φ does not appear in a dimension statement
(ii) each A_{i} is an expression, in the sense of $E 1-E 6$ or a Hollerith field (q.v., Fortran Programmer's Reference Manual).
The reason for referring to the above as quasi-arithmetic statements will be made clear later.
(V) A function definition is a string of the form

$$
\Phi\left(A_{1}, \cdots, A_{n}\right)=E\left[A_{1}, \cdots, A_{n}\right] \dashv
$$

where Φ is a function name such that
(i) if $\Phi=\varphi_{1} \cdots \varphi_{n}$, then $4 \leqq L(\Phi) \leqq 7$ and $\varphi_{n}=\mathbb{F}$,
(ii) each A_{i} is a nonsubscripted variable name,
(iii) $E\left[A_{1}, \cdots, A_{n}\right]$ is an expression (in the sense of $E 1-E 6$) in the (free) variables A_{1}, \cdots, A_{n}. We note in passing, that any A_{i} may occur vacuously in $E\left[A_{1}\right.$, $\left.\cdots, A_{n}\right]$. Thus, $E\left[A_{1}, \cdots, A_{n}\right]$ is a function form in the free variables A_{1}, \cdots, A_{n}.

4. Reduction of Expressions

An expression Φ is reduced in the following manner:
(г) Each integer or floating-point constant occurring in Φ, but not contained in a subscript, is replaced by an integer or floating-point variable name, respectively, provided the replacement is made at all occurrences of that constant and the replacement name does not already occur in Φ.
(ir) Each integer or floating-point subscripted variable is replaced by a nonsubscripted integer or floating-point variable name, respectively, in such a manner that the replacement name does not already occur in Φ and such that the replacement of each subscripted variable name is made at all occurrences of the latter in Φ. Also, no subscripted variable can have the same name as a nonsub-
scripted variable, nor can any two n-dimensional subscripted variables have the same names if their first $n-1$ dimensions are respectively identical.

The result, then, of applying procedures (r), (ii), above, to the expression Φ will be termed its reduced form and denoted by Φ^{R}.

Now, if Φ is an expression, then we shall denote by We the set all non-null comected name strings occuring in Φ. Thus, for example, if

$$
\Phi=\mathrm{ABC} *(-\mathrm{xy})
$$

then $\mathfrak{B}_{\Phi}=\{A, B, c, a b, b C, A b c, x, y, x y\}$. Clearly, for any expression Φ, there exists at least one element $\Sigma \in \mathfrak{B}_{\boldsymbol{\infty}}$ such that if $\Psi \in \mathfrak{B}_{\Phi}$ and $\Sigma \subseteq \Psi$, then $\Sigma=\Psi$, i.e., Σ is, in this sense, a maximal element. We shall denote by \mathfrak{W}_{Φ} the subset of \mathfrak{B}_{Φ} consisting of its maximal connected non-null name strings. In the last example, $\mathfrak{B}_{\Phi}=$ \{ABC, $x y$ \}.

5. Normal Form of an Arithmetic Expression

In this section we shall define a set of transformations which, beginning with any reduced arithmetic expression $=$ $\Phi^{h} \dagger$, recursively generate what we shall call partial normal forms $\Delta_{i} \mathrm{X}$ where $T_{1}(\mathrm{X})=\dashv$ and Δ_{0} is the character $=$. The recursion on the head-strings Δ_{i} is as follows:

If

$$
\Delta_{i} \Psi \mathrm{X} \rightarrow \Delta_{i} \Psi^{\prime} \mathrm{X}
$$

then

$$
\Delta_{i+1}=\Delta_{i} \Psi^{\prime}
$$

We shall assume throughout that $\Sigma \in \mathfrak{B}_{\Phi} \cup\{(\}$.
T1. $\Delta_{i} \Sigma \mathrm{X} \rightarrow \Delta_{i}+\left(*\left(* *\left(\oplus \Sigma \mathrm{X} \quad\right.\right.\right.$ if $T_{1}\left(\Delta_{i}\right) \in\{=,(\}$
$T^{\prime 2} ._{i} \pm \Sigma \mathrm{X} \rightarrow\left\{\begin{array}{l}\Delta_{i} \pm\left(*\left(* *\left(\oplus \Sigma \mathrm{X} \quad \text { if } T_{1}\left(\Delta_{i}\right) \in\{=,(\}\right.\right.\right. \\ \left.\left.\left.\Delta_{i}\right)\right)\right) \pm(*(* *(\oplus \Sigma \mathrm{X}, \quad \text { otherwise }\end{array}\right.$
T3. $\left.\left.\Delta_{i} * / \Sigma \mathrm{XX} \rightarrow \Delta_{i}\right)\right) * /(* *(\oplus \mathrm{\Sigma} \mathrm{X}$
14. $\left.\Delta_{i} * * \Sigma \mathrm{X} \rightarrow \Delta_{i}\right) * *(\oplus \Sigma \mathrm{X}$

T5. $\Delta_{i}\left(\mathrm{X} \rightarrow \Delta_{i} \oplus\left(\mathrm{X} \quad\right.\right.$ if $T_{1}\left(\Delta_{i}\right) \in \mathfrak{B}_{\mathrm{w}}$
T6. Δ_{i} ($\mathrm{X} \rightarrow \Delta_{i}$)))) X
T7. $\left.\left.\left.\left.\Delta_{i}, \mathrm{X} \rightarrow \Delta_{i}\right)\right)\right)\right) \oplus(\mathrm{X}$
T8. $\Delta_{i} \dagger \rightarrow \Delta_{i}$)))
Note that the recursion is terminated by 78 , since $x=\dashv$ at this step. Note, further, that stratification (by levels) of the arithmetic expression $=\Phi \dagger$ via the above schema proceeds from the assumption that the order (or degree) of "binding" of operations appearing in Φ coincides with that of conventional mathematical usage, wiz. (in order of increasing "strength"): $\pm ; * / ; * * ;$ and \oplus. Of course, the last noted "operation" is associated solely in each partial normal form with functions and has only a syntactical purpose in that context. Thus, T1-T8 reflect and render more explicit normally assumed usage regarding stratification of algebraic expressions.

If we denote by $N_{i}(\Phi)$ the i th partial normal form of Φ, and by $N(\Phi)$ the last of these (which we may refer to simply as the normal form of Φ), then the following example should suffice to illustrate the above schema.

Let $\Phi=-\operatorname{xyzF}(A, \quad B * C * *(-\mathrm{D})) / \mathrm{E}+\mathrm{F}$. Then,

```
    \(N_{0}(\Phi)=\Delta_{0} \Phi+, \quad\) with \(\Delta_{0}\) standing for \(=\)
\(N_{1}(\Phi)=\Delta_{1}(\mathrm{~A}, \mathrm{~B} * \mathrm{C} * *(-\mathrm{D})) / \mathrm{E}+\mathrm{F} \nmid\),
                with \(\Delta_{\mathrm{l}}=\Delta_{0}-(*(* *(\oplus \mathrm{XYZF}\)
\(\left.N_{2}(\Phi)=\Delta_{2} A, \mathrm{~B} * \mathrm{C} * *(-\mathrm{D})\right) / \mathrm{E}+\mathrm{F}+\),
            with \(\Delta_{2}=\Delta_{1} \oplus(\)
\(\left.N_{3}(\Phi)=\Delta_{3}, \mathrm{~B} * \mathrm{C} * *(-\mathrm{D})\right) / \mathrm{E}+\mathrm{F} \nmid\),
            with \(\Delta_{3}=\Delta_{2}+(*(* *(\oplus \mathrm{~A}\)
\(\left.N_{4}(\Phi)=\Delta_{4} B * \mathrm{C} * *(-\mathrm{D})\right) / \mathrm{E}+\mathrm{F}+\),
            with \(\left.\left.\left.\Delta_{4}=\Delta_{3}\right)\right)\right)\) ) \(\oplus(\)
\(\left.N_{5}(\Phi)=\Delta_{5} * \mathrm{C} * *(-\mathrm{D})\right) / \mathrm{E}+\mathrm{F}+\),
        with \(\Delta_{5}=\Delta_{4}+(*(* *(\oplus\) B
\(\left.N_{6}(\Phi)=\Delta_{6} * *(-\mathrm{D})\right) / \mathrm{E}+\mathrm{F}+\),
        with \(\left.\left.\Delta_{6}=\Delta_{5}\right)\right) *(* *(\oplus \mathrm{C}\)
\(\left.\left.N_{7}(\Phi)=\Delta_{7}-\mathrm{D}\right)\right) / \mathrm{E}+\mathrm{F}-\), with \(\left.\Delta_{7}=\Delta_{6}\right) * *(\oplus(\)
\(\left.\left.N_{8}(\Phi)=\Delta_{8}\right)\right) / \mathrm{E}+\mathrm{F}-1\), with \(\Delta_{8}=\Delta_{7}-(*(* *(\oplus \mathrm{D}\)
\(\left.N_{9}(\Phi)=\Delta_{9}\right) / \mathrm{E}+\mathbf{F}+\), with \(\Delta_{9}=\Delta_{8}\) )) ) )
\(N_{10}(\Phi)=\Delta_{10} / \mathrm{E}+\mathrm{F}-1\), with \(\left.\Delta_{10}=\Delta_{9}\right)\) )) )
\(N_{11}(\Phi)=\Delta_{11}+\mathrm{F}-1\), with \(\left.\left.\Delta_{11}=\Delta_{10}\right)\right) /(* *(\oplus \mathrm{E}\)
\(N_{12}(\Phi)=\Delta_{12}-\), with \(\left.\left.\left.\Delta_{12}=\Delta_{11}\right)\right)\right)+(*(* *(\oplus \mathbf{F}\)
and, finally,
```

$$
\left.\left.\left.N(\Phi)=N_{13}(\Phi)=\Delta_{13}, \quad \text { with } \Delta_{13}=\Delta_{12}\right)\right)\right)
$$

More explicitly, then, $N(\Phi)$ is the expression

$$
\begin{array}{r}
=-(*(* *(\oplus \mathrm{XYZF} \oplus(+(*(* *(\oplus \mathrm{~A})))) \oplus(+(*(* * \\
(\oplus \mathrm{B})) *(* *(\oplus \mathrm{C}) * *(\oplus(-(*(* *(\oplus \mathrm{D}))))))))) / \\
(* *(\oplus \mathrm{e})))+(*(* *(\oplus \mathrm{~F}))
\end{array}
$$

It may be seen quite easily that the result $N(\Phi)$ of appli cation of T1-T8 to a reduced arithmetic expression $=\Phi^{R}+$ is such that the balance of left and right paren theses is not disturbed (closure condition). To wit: the thre additional left parentheses generated by $T 1$ are closec by the three additional right parentheses generated by $T 8$, if $T 1\left(\Delta_{i}\right)$ is $=$, or $T 6$, if $T 1\left(\Delta_{i}\right)$ is (; the same is trut for the first line of $T 2$, and the second line of $T 2$ is self closing; T3, T4 and T5 are self-closing; T6 introduce three additional right parentheses which are closed by the three additional left parentheses generated by T or the first line of $T 2$; identical assertions hold for T^{T}, and $T 8$.

If $N(\Phi)$ is $=\Psi$, then we shall define Φ^{N} as Ψ, i.e., the string $N(\Phi)$ minus the Fortran $=$ sign. Thus, Φ^{N} is ε string of elements of the form $\diamond_{i} \Psi_{i}$ where, for each i

$$
\left.\diamond_{i}=\Lambda \text { and } \Psi_{i}=\right)
$$

or $\quad\rangle_{i} \in\{+,-, *, * *, \oplus\}$ and $\Psi_{i} \in \mathfrak{B}_{\Phi} \cup\{(\}$.

6. Level Analysis

The level analysis of an arithmetic expression $=\Phi$ consists in the recursive generation of what we shall cal partial productions Π_{i}, each partial production a string of triples (of entities to be described below) formed in the following manner.

We define three integer sequences $\left\{N_{i}\right\},\left\{C_{i}\right\},\left\{A_{i}\right\}$ and a sequence $\left\{K_{i}\right\}$ of integer sequences such that, initially, $N_{1}=1, C_{1}=A_{1}=0$ and $K_{1}=\mathrm{A}$. By $K_{i}{ }^{\prime}$ we shall mean the last term of the sequence K_{i}, and it $K_{i}=\left(\Theta, K_{i}^{\prime}\right)$ then $\bar{K}_{i}=(\Theta)$ (possibly null). We set the

TABLE 1

	- -1	*	**(¢	¢ ${ }^{(}$	$+1$	*	**(क.))))	$\oplus($	+	*	**	98))	*	** $<$	¢c)	**	(1)	-1
$N_{\text {i }}$	1	2	3	4	4	5	6	7	8	8	8	8	8	8	9	10	11	12	12	12	12	13	14	14	14	15	16
C_{i}	0	1	2	3	3	4	5	6	7	7	6	5	4	3	8	9	10	11	11	10	9	12	13	13	12	14	15
A_{i}	0	1	2	3	3	4	5	6	7	7	6	5	4	3	4	5	6	7	7	6	5	6	7	7	6	7	8
i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
	* 1	**	$\oplus 0$))	$)$)))))))	16	**	¢ E)))	$+1$	* 1	**	$\mathrm{T}_{\mathrm{F}} \mathrm{F}$)))	
N_{i}	17	18	19	19	19	19	19	19	19	19	19	19	19	19	20	21	21	21	21	21	22	23	24	24	24	24	24
C_{i}	16	17	18	18	17	16	15	14	12	9	8	3	2	1	19	20	20	19	1	0	21	22	23	23	22	21	0
A_{i}	9	10	11	11	10	9	8	7	6	5	4	3	2	1	2	3	3	2	1	0	1	2	3	3	2	1	0
i	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54

initial partial production $\Pi_{1}=\Lambda$, and if $\Pi_{i} \rightarrow \Pi_{i} E$, then $\Pi_{i+1}=\Pi_{i} E$.

Now if $\mho_{i} \Psi_{i}$ denotes the i th element of Φ^{N}, the production schema is as follows:

$$
\text { If } \Psi_{i}=\left\{\begin{array}{r}
2, \quad \begin{array}{r}
\text { where } 2 \in K_{\Phi}, \\
\text { then } \Pi_{i} \rightarrow \Pi_{i}\left(C_{i}, \nabla_{i}, \Sigma\right) \\
\\
N_{i+1}=N_{i} \\
C_{i+1}=C_{i} \\
A_{i+1}=A_{i} \\
K_{i+1}=K_{i} \\
, \quad \text { then } \Pi_{i} \rightarrow \Pi_{i} \\
\\
N_{i+1}=N_{i} \\
C_{i+1}=K_{i}^{\prime} \\
A_{i+1}=A_{i}-1 \\
K_{i+1}=\widetilde{K}_{i}
\end{array}
\end{array}\right.
$$

The effect of applying these transformations completely to the normal form Φ^{N} is to produce a string II(Φ)which we shall refer to simply as the production of Φ which is a representation of the computation required to evaluate the original arithmetic expression $=\Phi \rightarrow$. The computation proceeds from the innermost to the outermost levels (in the sense of T1-T8) in a systematic manner, as we shall later see.

Note that, since $A_{1}=0$ and

$$
A_{i+1}= \begin{cases}A_{1}+1 & \text { when } \Psi_{i}=(\\ A_{i} & \text { when } \Psi_{i} \in \mathfrak{W}_{\Phi} \\ A_{i}-1 & \text { when } \left.\Psi_{i}=\right)\end{cases}
$$

then the last term of the sequence $\left\{A_{i}\right\}$ is 0 if and only if Φ itself is closed with respect to parenthesization.

Now, each element C (respectively N) of the set of terms of the sequence $\left\{C_{i}\right\}$ (respectively $\left\{N_{i}\right\}$) may be interpreted as the index of a "currently defined" (respectively, "next-to-be-defined") expression S_{c} (respectively S_{N}) embedded in the production $\Pi(\Phi)$. Each such expression is defined as the set of all triples of the form $\left(C, \widehat{\partial}^{j}\right.$, $\Psi_{c}{ }^{j}$), for arbitrary, fixed C, where the index j ranges over the number of triples having the "current" index C.

From the above "partial production" schema, it is easily seen that, for any $i, j, C_{i}=C_{j}$ entails $A_{i}=A_{j}$ (but not conversely). Thus, since each element of the sequence $\left\{A_{i}\right\}$ is a level index (rising by 1 for each left parenthesis, dropping by 1 for each right parenthesis, and otherwise stationary), it is meaningful to state that each of the above mentioned triples belongs to the same level. We shall call such a set of triples a segment of the level to which any of its members belong. Of two seg. ments $S c_{i}, S c_{j}$, moreover, we may say that they belong to (or are segments of) the same level if and only if $A_{i}=$ A_{j}. Since this is an equivalence relation between segments, we see that each level is completely defined by the set of all segments belonging to it, in the above defined sense. Furthermore, since all triples comprising a segment belong to the same level, their operation elements are of the same type, i.e., all $*$ and/or /; all + and/or - ; all $* *$; or all \oplus.

Before proceeding further, let us pause to illustrate the partial production schema with respect to the example

$$
\Phi=-\operatorname{XYZF}(\mathrm{A}, \mathrm{~B} * \mathrm{C} * *(-\mathrm{D})) / \mathrm{E}+\mathrm{F}
$$

of section 5 . To this end, it is convenient to arrange all information in the form of table I, wherein the i th column contains at its head the element $\nabla_{i} \Psi_{i}$ of Φ^{N} and, immediately below, the respective values of N_{i}, C_{i}, A_{i}, and i. Table 2 is a parallel display of the generated terms of the sequence $\left\{K_{i}\right\}$ (which we name the C-sequence) and the partial productions II_{i}.

7. Optimization (General)

The first stage of optimization of $\Pi(\Phi)$ consists in the elimination of redundant parentheses arising out of the transformations $T 1-T 8$. Having achieved the desired stratification of Φ, they shall now disappear from the scene, and in the following manner.

The production $\Pi(\Phi)$ is scanned, "back-to-front", one triple at a time. If and only if a triple (C, \diamond, Ψ) belongs to a segment of length 1 and $\diamond \neq-$ is this triple eliminated from Π, and Ψ replaces the third member of its immediate predecessor. This "telescoping" procedure is based on the fact that a segment is of length 1 only if its "name" (i.e., current index C) is "addressed" by its immediate predecessor. This last assertion follows, in turn, from the first partial production rule.

TABLE 2

C-Sequence	Partial Productions
$\mathrm{K}_{1}=\Lambda$	$\Pi_{1}=\Lambda$
$\mathrm{K}_{2}=(0)$	$\mathrm{H}_{2}=\mathrm{\Pi}_{1}(0,-, 1)$
$\mathrm{K}_{3}=(0,1)$	$\Pi_{3}=\Pi_{2}(1, *, 2)$
$\mathrm{K}_{4}=(0,1,2)$	$\mathrm{IH}_{4}=\Pi_{3}(2, * *, 3)$
$\mathrm{K}:=(0,1,2)$	$\left.\Pi_{5}=\Pi_{4}(3, \oplus), \mathrm{XYZP}\right)$
$K_{i}=(0,1,2,3)$	$\left.\Pi_{6}=\Pi_{5}(3, \oplus), 4\right)$
$\mathrm{K}_{7}=(0,1,2,3,4)$	$\Pi_{7}=\mathrm{II}_{6}(4,+, \delta)$
$\mathrm{K}_{8}=(0,1,2,3,4,5)$	$\Pi_{s}=\Pi_{7}(5, *, 6)$
$\mathrm{K}_{9}=(0,1,2,3,4,5,6)$	$\Pi_{9}=\Pi_{s}(6, * *, 7)$
$\mathrm{K}_{10}=(0,1,2,3,4,5,6)$	$\Pi_{10}=\Pi_{9}(7, \oplus, A)$
$\mathrm{K}_{11}=(0,1,2,3,4,5)$	$\mathrm{H}_{11}=\mathrm{H}_{10}$
$\mathrm{K}_{12}=(0.1,2,3,4)$	$\Pi_{12}=\Pi_{11}$
$\mathrm{K}_{13}=(0,1,2,3)$	$\Pi_{13}=\Pi_{12}$
$\mathrm{K}_{14}=(0,1,2)$	$\Pi_{14}=\mathrm{\Pi}_{13}$
$\mathrm{K}_{25}=(0,1,2,3)$	$\Pi_{15}=\Pi_{14}(3, \oplus, 8)$
$\mathrm{K}_{16}=(0,1,2,3,8)$	$\Pi_{16}=\Pi_{15}(8,+, 9)$
$\mathrm{K}_{17}=(0,1,2,3,8,9)$	$\mathrm{I}_{17}=\mathrm{I}_{16}(9, *, 10)$
$\mathrm{K}_{13}=(0,1,2,3,8,9,10)$	$\Pi_{18}=\Pi_{17}(10, * *, 11)$
$\mathrm{K}_{19}=(0,1,2,3,8,9,10)$	$\mathrm{H}_{19}=\mathrm{II}_{19}(11, \oplus, \mathrm{~B})$
$\mathrm{K}_{20}=(0,1,2,3,8,9)$	$\Pi_{20}=\mathrm{I}_{19}$
$\mathrm{K}_{21}=(0,1,2,3,8)$	$\Pi_{21}=\Pi_{20}$
$\mathrm{K}_{29}=(0,1,2,3,8,9)$	$\Pi_{22}=\Pi_{21}(9, *, 12)$
$\mathrm{K}_{23}=(0,1,2,3,8,9,12)$	$\Pi_{23}=\Pi_{22}(12, * *, 13)$
$\mathrm{K}_{24}=(0,1,2,3,8,9,12)$	$\Pi_{24}=\Pi_{23}(13, \oplus$, c$)$
$\mathrm{K}_{35}=(0,1,2,3,8,9)$	$\mathrm{I}_{25}=\mathrm{I}_{24}$
$\mathrm{K}_{26}=(0,1,2,3,8,9,12)$	$\mathrm{H}_{26}=\Pi_{25}(12, * *, 14)$
$\mathrm{K}_{27}=(0,1,2,3,8,9,12,14)$	$\Pi_{27}=\Pi_{26}(14, \oplus, 15)$
$\mathrm{K}_{28}=(0,1,2,3,8,9,12,14,15)$	$\mathrm{HI}_{28}=\mathrm{II}_{27}(15,-, 16)$
$\mathrm{K}_{29}=(0,1,2,3,8,9,12,14,15,16)$	$\Pi_{29}=\Pi_{28}(16, *, 17)$
$\mathrm{K}_{30}=(0,1,2,3,8,9,12,14,15,16,17)$	$\mathrm{I}_{30}=\mathrm{II}_{29}(17, * *, 18)$
$\mathrm{K}_{31}=\mathrm{K}_{30}$	$\mathrm{H}_{31}=\mathrm{II}_{30}(18, \oplus, \mathrm{D})$
$\mathrm{K}_{32}=(0,1,2,3,8,9,12,14,15,16)$	$\mathrm{H}_{32}=\mathrm{H}_{31}$
$\mathrm{K}_{33}=(0,1,2,3,8,9,12,14,15)$	$\mathrm{H}_{33}=\mathrm{I}_{32}$
$\mathrm{K}_{34}=(0,1,2,3,8,9,12,14)$	$\Pi_{34}=\Pi_{33}$
$\mathrm{K}_{35}=(0,1,2,3,8,9,12)$	$\Pi_{35}=\Pi_{34}$
$\mathrm{K}_{36}=(0,1,2,3,8,9)$	$\Pi_{30}=\Pi_{35}$
$\mathrm{K}_{37}=(0,1,2,3,8)$	$\mathrm{II}_{37}=\mathrm{I}_{30}$
$\mathrm{K}_{38}=(0,1,2,3)$	$\mathrm{II}_{38}=\mathrm{I}_{37}$
$\mathrm{K}_{39}=(0,1,2)$	$\mathrm{HI}_{39}=\Pi_{38}$
$\mathrm{K}_{40}=(0,1)$	$\mathrm{I}_{40}=\mathrm{I}_{39}$
$\mathrm{K}_{\mathbf{4 1}}=(0)$	$\Pi_{41}=\mathrm{I}_{40}$
$\mathrm{K}_{42}=(0,1)$	$\Pi_{42}=\Pi_{41}(1, /, 19)$
$\mathrm{K}_{43}=(0,1,19)$	$\Pi_{43}=\Pi_{42}(19, * *, 20)$
$\mathrm{K}_{44}=\mathrm{K}_{43}$	$\mathrm{I}_{44}=\mathrm{II}_{43}(20, \oplus, \mathrm{E})$
$\mathrm{K}_{45}=(0,1)$	$\mathrm{II}_{45}=\mathrm{II}_{44}$
$\mathrm{K}_{46}=(0)$	$\mathrm{H}_{46}=\mathrm{I}_{45}$
$\mathrm{K}_{47}=\mathbf{\Lambda}$	$\Pi_{47}=\mathrm{I}_{46}$
$\mathrm{K}_{48}=(0)$	$\mathrm{H}_{48}=\mathrm{II}_{47}(0,-, 21)$
$\mathrm{K}_{49}=(0,21)$	$\mathrm{II}_{43}=\mathrm{II}_{48}(21, *, 22)$
$\mathbf{K}_{\text {j0 }}=(0,21,22)$	$\Pi_{50}=\Pi_{49}(22, * *, 23)$
$\mathbf{K}_{51}=\mathbf{K}_{50}$	$\Pi_{51}=\Pi_{50}(23, \oplus(\mathrm{~F})$
$\mathbf{K}_{\mathbf{i} 2}=(0,21)$	$\Pi_{52}=\Pi_{51}$
$\mathrm{K}_{53}=(0)$	$\Pi_{53}=\Pi_{52}$
$\mathbf{K}_{54}=\mathbf{\Lambda}$	$\Pi_{54}=\Pi_{53}$

Next, the set of so-condensed segments $\bar{\Pi}(\Phi)$ is ordered according to current indices, so that, if

$$
\bar{\Pi}(\Phi)=S_{1} \cdots S_{L}
$$

where

$$
S_{c}=\left(C, \nabla_{c}{ }_{c}^{1}, \Psi_{c}{ }^{1}\right) \cdots\left(C, \nabla_{c}^{\lambda_{c}}, \Psi_{c}^{\lambda_{c}}\right)
$$

then $S_{c^{\prime}}$ "precedes" $S_{c^{\prime \prime}}$ if and only if $c^{\prime} \leqq c^{\prime \prime}$.
The next stage of optimization involves the "elimina-
tion" of common subexpressions, so as to avoid redundant computation. This is accomplished in two steps:

1) Beginning with S_{L}, the last segment in $\bar{\Pi}(\Phi)$, and for each $i \leqq L$, the set of all S_{j} with $j<i$ is examined for the occurrence of $\mathfrak{m} S_{j}=S_{i}$. As soon as some $S_{j}=$ S_{i}, S_{j} is eliminated from $\bar{\Pi}(\Phi)$, and all references to S_{j} replaced by references to S_{i}, i.e., if some $\Psi_{k}=j$, then j is set equal to i.
2) Having eliminated, by 1), common segments, we now eliminate common subexpressions. Beginning with S_{L}, and for each $i \leqq L$, the set of all S_{j} with $j<i$ is examined for the occurrence of more than one reference to S_{i}, i.e., the occurrence of Ψ_{m}, Ψ_{n}, with $m \neq n$ and $\Psi_{m}=\Psi_{n}=i$. If and only if this is the case is S_{i} tagged as a common subexpression (what we call a cs-type segment).

Procedures 1) and 2) together assure the elimination of outermost common subexpressions. Thus, if

$$
\Phi=\mathrm{A} *(\mathrm{~B} * \mathrm{C})+\sin \mathrm{F}(\mathrm{~A} *(\mathrm{~B} * \mathrm{C})),
$$

then

$$
\begin{aligned}
& {[\bar{\Pi}(\Phi)=(0,+, 1)(0,+, 14)(1, *, \mathrm{~A})(1, *, 7)} \\
& \quad(7, *, \mathrm{~B})(7, *, \mathrm{c})(14, \oplus, \operatorname{sinF})(14, \oplus, 16)(16, *, \mathrm{~A}) \\
& \quad(16, *, 22)(22, *, \mathrm{~B})(22, *, \mathrm{c})]
\end{aligned}
$$

Procedures 1) and 2) reduce $\overline{\mathrm{I}}$ to
$(0,+, 16)(0,+, 14)(14, \oplus, \operatorname{sinf})(14, \oplus, 16)$

$$
(16, *, \mathrm{~A})(16, *, 22)(22, *, \mathrm{~B})(22, *, \mathrm{C}),
$$

with S_{16} tagged as a cs-type segment, since $\Psi_{0}{ }^{1}=\Psi_{14}{ }^{2}=$ 16.

We shall denote the result of common subexpression elimination by ($\overline{\bar{\Pi}} \Phi$).

8. Optimization (Special)

Owing to the fact that the Fortran System was originally designed to compile "object" (running) programs in 704 language, certain further species of optimization regarding the compilation of arithmetic statements appear to be necessary if advantage is to be taken of the machine's own special characteristics. We list these in the order in which they are considered by the executive program.

1) Each segment S_{i} with $\widehat{\nabla}_{i}{ }^{1}=*$ is scanned for possible permutation of its members, so as to minimize the occurrence of compiled memory accesses. Specifically, each segment S_{i} of the form

$$
\left(i, *, \Psi_{i}{ }^{1}\right) \cdots\left(i, \diamond_{i}^{\lambda_{i}}, \boldsymbol{\Psi}_{i}^{\lambda_{i}}\right)
$$

where

$$
\diamond_{i}{ }^{j}=* \text { or } /, \quad 1<j \leqq \lambda_{i}
$$

undergoes permutation of its elements so as to yield a (possibly null) maximal subsegment of the form

$$
\left(i, *, \Psi_{i}{ }^{j_{1}}\right)\left(i, /, \Psi_{i}{ }^{{ }^{2}}\right) \cdots\left(i, *, \Psi_{i}{ }^{{ }^{j}-1}\right)\left(i, /, \Psi_{i}{ }^{{ }^{k}}\right)
$$

i.e., a maximal subsegment whose operator structure is

$$
* / /, * /, \cdots, * / .
$$

Since the only remaining elements (if any) are of the form $(i, *, \Psi)$ or $(i, /, \Psi)$, consider the following cases:
(i) The number of *'s in S_{i} is one more than the num-
ber of /'s. In this case, the operator structure of S_{i} is */*/ ...*/*.
(ii) The number of *'s in S_{i} is at least two more than the number of /'s. In this case, the operator structure of S_{i} is $* * / * / \cdots * / * \cdots *$.
(iii) The number of /'s in S_{i} exceeds the number of *'s. In this case, the structure is $* / \cdots * / \cdots /$.
2) A segment S_{i} is said to be type mQ if its last operation is / ; otherwise, it is said to be type ac.

A further species of optimization of $\overline{\overline{I I}}(\Phi)$, which we term linkage, designed to minimize memory accesses, is performed in the following manner. Beginning with the last segment, S_{L}, each segment S_{i} is examined as to type and affected in the following ways.
(I) S_{i} is type ac. Then S_{i} is tagged as ac-linkable and S_{i-1} as ac-linked, if and only if one of the following conditions obtains:
(i) $\nabla_{i-1}^{1}=+$ or - , and for some $j, \Psi_{i-1}^{j}=i$. In this case, in addition to tagging S_{i} and S_{i-1}, interchange the first and j th elements of S_{i-1}.
(ii) $\nabla_{i-1}^{1}=*, \nabla_{i-1}{ }^{2}=/$, and for some $j, \Psi_{i-1}^{j}=i$, $\nabla_{i-1}{ }^{3}=*$. Again, in addition to tagging S_{i} and S_{i-1}, interchange the first and j th elements of S_{i-1}.
(iii) $\diamond_{i-1}^{1}=\oplus, \quad \Psi_{i-1}^{2}=i$ and Ψ_{i-1}^{1} is the name of a closed subroutine (see below), and fN-type function, or an open univariate function.
(iv) $\rangle_{i-1}{ }^{1}=* *$ and $\Psi_{i-1}{ }^{1}=i$.
(II) S_{i} is type mo. Then S_{i} is tagged as mq-linkable and S_{i-1} as mo-linked, if and only if one of the following conditions obtains:
(i) $\forall_{i-1}{ }^{1}=*, \forall_{i-1}{ }^{2}=*$ and for some $j, \quad \Psi_{i-1}{ }^{j}=i$, $\diamond_{i-1}{ }^{j}=*$. In this case, in addition to tagging S_{i} and S_{i-1}, interchange the first and j th elements of S_{i-1}.
(ii) $\nabla_{i-1}{ }^{1}=\oplus, \quad \Psi_{i-1}{ }^{3}=i$ and $\Psi_{i-1}{ }^{1}$ is the name of a closed subroutine (see below), an FN-type function or an open univariate function.
(iii) $\nabla_{i_{1}}^{1}={ }^{1} *$. There are two cases:
(a) $\Psi_{i-1}{ }^{2}$ is the name of an integer constant less than 7 (in which case S_{i-1} is compiled as an open subroutine), and $\Psi_{i-1}^{1}=i$.
(b) $\Psi_{i-1}{ }^{2}=i$.

In all other cases, i.e. cases which do not fall either under (I) or (II) above, S_{i} is unlinkable and S_{i-1} unlinked.

9. Function Types

With each library or fn-type function appearing in a Fortran program is associated a type number according to the following scheme:

1) Each library function is of type 0 .
iI) If Φ is an FN -function name, where

$$
\Phi\left(A_{1}, \cdots, A_{n}\right)=E\left[A_{1}, \cdots, A_{n}\right]
$$

then
(a) if E contains no library or FN -function name, Φ is of type 1 .
(b) if E contains a library or FN-function name, and $\tau_{1}, \cdots, \tau_{k}$ are the type numbers already associated with these functions, then the type number of Φ is simply

$$
\max \left(\tau_{\mathrm{t}}, \cdots, \tau_{k}\right)+1
$$

10. Address Compilation

Each member of an element (triplc) occurring in $\bar{\Pi}(\Phi)$ is represented during compilation by the contents of a full word of 704 storage. These three words are referred to, respectively, as the tag word, operator word, and symbol word. The precise bit-structure of each of these words is a function of the role played by the element in question.

The tag word of each element of a segment S_{i} contains not only the current index i, but in addition, if this element refers to a subscripted variable in the original (unreduced) expression Φ a set of three tags identifying the dimension, subscript and addend combinations.

The operator word of each element contains the operation code and, if the first element of a segment S_{i}, a set of bits containing information as to certain properties of this segment, viz., whether the segment is linkable or linked (and through which arithmetic register); whether arithmetic for this segment is floating or integer mode, whether, if $\diamond_{i}{ }^{1}=\oplus, S_{i}$ defines a library, open subroutine, $\mathrm{FS}-$ or FN -function (and, if the latter, what its type); whether or not S_{i} defines a common subexpression; whether the result of computation of S_{i} appears in the accumulator or multiplier-quotient register.
The symbol word of each element contains the name of the operand, which may be an integer or floating mode variable, an integer or floating mode constant, a function, or some other segment S_{j}.

We shall denote the compiled tagged-address associated with the j th symbol of the i th segment by $\bar{\Psi}_{i}{ }^{3}$.
Actual Sap-form address compilation proceeds as follows:
(i) An address reference to an integer (respectively floating-point) constant is compiled into a symbolic address 2) (respectively 3)) and relative address ν (respectively μ), where ν (respectively μ) is associated with the ν th (respectively μ th) distinct integer (respectively floating-point) constant occurring in a given source program.
(ii) An address reference to a subscripted variable is compiled as follows:
(a) If $\mathrm{K} * \Sigma \pm \mathrm{P}$ is the canonical form of the subscript associated with a one-dimensional variable $\Psi^{i}{ }^{j}$, then the symbolic address is compiled as $\Psi_{i}{ }^{j}$ and the relative address as $1 \mp \mathrm{P}$.
(b) If $\mathrm{K}_{1} * \Sigma_{1} \pm \mathrm{P}_{1}, \mathrm{~K}_{2} * \Sigma_{2} \pm \mathrm{P}_{2}$ are the canonical subscripts associated with a two-dimensional variable $\Psi_{i}{ }^{j}$, then the symbolic address is compiled as $\Psi_{i}{ }^{j}$ and the relative address as

$$
\epsilon-\left(\pm \mathbf{P}_{1}-\epsilon_{1}\right)-\Gamma_{1}\left(\pm \mathbf{P}_{2}-\epsilon_{2}\right)
$$

where

$$
\begin{aligned}
\epsilon & = \begin{cases}0 & \text { if } \Sigma_{1}=\Sigma_{2}=\Lambda \\
1 & \text { otherwise, }\end{cases} \\
\epsilon_{k} & = \begin{cases}0 & \text { if } \Sigma_{k} \neq \Lambda \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

and Γ_{I} is the first dimension of $\Psi_{i}{ }^{j}$.
(c) Tinally, if $\mathrm{K}_{1} * \Sigma_{1} \pm \mathrm{P}_{1}, \quad \mathrm{~K}_{2} * \Sigma_{2} \pm \mathrm{P}_{2}$,

$$
\mathrm{K}_{3} * \Sigma_{3} \pm \mathrm{P}_{3}
$$

are the canonical subscripts associated with the threedimensional variable $\Psi_{i}{ }^{j}$, then the symbolic address is compiled as $\Psi_{i}{ }^{j}$ and the relative address as

$$
\epsilon-\left(\pm P_{1}-\epsilon_{1}\right)-\Gamma_{1}\left(\pm \mathbf{P}_{2}-\epsilon_{2}\right)-\Gamma_{1} \Gamma_{2}\left(\pm P_{3}-\epsilon_{3}\right)
$$

where

$$
\begin{aligned}
\epsilon & = \begin{cases}0 & \text { if } \Sigma_{1}=\Sigma_{2}=\Sigma_{3}=\Lambda \\
1 & \text { otherwise }\end{cases} \\
\epsilon_{k} & = \begin{cases}0 & \text { if } \Sigma_{k} \neq \Lambda \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

and Γ_{1}, Γ_{2} are the first two dimensions of $\Psi_{i}{ }^{j}$.
(iii) An address reference to another segment S_{j} is compiled into a symbolic address 1) τ, where τ is the type number associated with the arithmetic expression $=$ $\Phi \dagger$, and a relative address φ_{i}. The φ_{i} 's are erasable storage relative addresses determined in the following way: Beginning with the last segment S_{L} of $\overline{\bar{\Pi}}(\Phi)$, each S_{i} is examined to determine whether it is nonlinkable or is tagged as a common subexpression. In either case (and only then) an erasable storage relative address

$$
\varphi_{i}=\varphi_{j}+1
$$

is associated with S_{i}, where $S_{j}(i \leqq j)$ is the last seg. ment nonlinkable or tagged as a common subexpression, and, initially, $\varphi=-1$ or 0 , depending upon whether $\overline{\bar{\Pi}}(\Phi)$ does or does not define an FN -type function.
(iv) With each tape library or en-type function is associated a class of erasable storage cells set aside as a buffer for the transmission of its arguments. The type τ of any given class is determined by the type assigned to the function in question. Thus, tape library functions are always of type 0, and an FN-function is of type 1 greater than the highest type occurring in its definition.

In the case of a tape library function, an address reference to its k th argument is compiled into a symbolio address 4)0 and a relative address - $(k-1)$.

In the case of an FN-function, on the other hand, an address reference to its k th argument is compiled into a symbolic address 4) τ, where τ is the type number, and relative address $k-1$.

It should be noted, at this point, that the necessity for typing tape library and rn-functions arises from the fact that either may occur within the definition of an FN-function. Unrestricted nesting of these functions within such a context is possible, therefore, only if their argument buffer regions are non-overlapping.
(v) For the reasons cited at the end of (iv), the class of calling-index saving cells is also typed, type 0 assigned for tape library functions and type $\tau>0$ for a given fr-function of type τ. The relative address in both cases is 0 , the symbolic address 7) 0 for tape library functions and 7) τ for FN-functions.
(vi) Finally, when intrasegment erasable storage is required, a single cell is set aside having symbolic address 7)0 and relative address 0 .

11. Arithmetic Statement Compilation

Beginning with the last segment S_{L} of $\overline{\bar{\Pi}}(\Phi)$, each segment S_{i} is "forward scamed" and compiled according to the following schema.
(1) Initial Compilation of a Segment
(A) $\nabla_{i}{ }^{1}=+$. There are two cases:
(i) S_{i} is linked. Proceed to (II), unless S_{i} is of length 1, in which case proceed to (III).
(ii) S_{i} is unlinked. Compile cla $\bar{\Psi}_{i}{ }^{1}$ and proceed to (ii).
(B) $\rangle_{i}{ }^{1}=-$. Again, two cases:
(i) S_{i} is linked. Compile cus and proceed to (II), unless S_{i} is of length 1 , in which case proceed to (III).
(ii) S_{i} is unlinked. Compile cls $\bar{\Psi}_{i}{ }^{1}$, then proceed as per $B(i)$.
(C) $\rangle_{i}{ }^{1}=*$. Two cases:
(i) S_{i} is linked. Proceed to (II).
(ii) S_{i} is unlinked. Two subcases:
(a) $\nabla_{i}{ }^{2}=/$ Compile cla $\bar{\Psi}_{i}{ }^{1}$.
(b) $\diamond_{i}{ }^{2}=*$. Compile LDQ $\bar{\Psi}_{i}{ }^{1}$.

In either case, proceed next to (II).
(D) $\diamond_{i}{ }^{1}=\oplus$. There are several cases:
(i) $\Psi_{i}{ }^{1}$ is the name of a tape library subroutine. Three subcases:
(a) S_{i} is Ac-linked. Compile the sequence

$$
\left\{\begin{array}{l}
\operatorname{LDQ} \bar{\Psi}_{i}^{4} \\
\operatorname{sTQ} 4) 0-2 \\
\cdots \cdots \cdots \\
\operatorname{LDQ} \bar{\Psi}_{i}^{\lambda_{i}} \\
\operatorname{sTQ} 4) 0-\left(\lambda_{i}-2\right) \\
\operatorname{LDQ} \bar{\Psi}_{i}^{3}
\end{array}\right.
$$

followed by the sequence

$$
\begin{gathered}
\operatorname{sxD} 7) 0,4 \\
\operatorname{TsX} \Psi_{i}{ }^{1}, 4 \\
\operatorname{LXD} 7) 0,4
\end{gathered}
$$

Either subsequence in braces is vacuous (not compiled) in the event S_{i} defines a univariate or bivariate function only. Note, further, that both the sxd and Lxd instructions surrounding the TsX may be eliminated by a later section of the Fontran executive system in the event that the flow of indexing information obviates saving the contents of register 4 at this point.
(b) S_{i} is Mq-linked. Compile the sequence

$$
\begin{cases}\operatorname{cLA} & \Psi_{i}{ }^{4} \\ \mathrm{sro} & 4) 0-2 \\ \cdots \cdots \cdots \cdots \\ \operatorname{cLA} & \bar{\Psi}_{i}{ }_{i} \\ \mathrm{sTO} & 4) 0-\left(\lambda_{i}-2\right)\end{cases}
$$

followed by the sequence

$$
\begin{aligned}
& \operatorname{CLA} \bar{\Psi}_{i}^{2} \\
& \operatorname{sXD} 7) 0,4 \\
& \operatorname{TSX} \Psi_{i}^{1}, 4 \\
& \operatorname{LXD} 7) 0,4
\end{aligned}
$$

The subsequence in braces is vacuous in the event S, defines a bivariate function only.
(c) S_{i} is unlinked. Compile CLA $\bar{\Psi}_{i}{ }^{2}$, then the serquence

$$
\left\{\begin{array}{l}
\begin{cases}\mathrm{LDQ} & \bar{\Psi}_{i}^{4} \\
\operatorname{sTQ} & 4) 0-2 \\
\cdots \cdots \cdots \cdots \\
\mathrm{LDQ} & \bar{\Psi}_{i}^{\lambda_{i}} \\
\operatorname{sTQ} & 4) 0-\left(\lambda_{i}-2\right) \\
\mathrm{LDQ} & \bar{\Psi}_{i}^{3}\end{cases}
\end{array}\right.
$$

followed by the sequence

$$
\begin{aligned}
& \operatorname{sxd} 7) 0,4 \\
& \operatorname{Tsx} \Psi_{i}^{\prime}, 4 \\
& \operatorname{sxD} 7) 0,4 .
\end{aligned}
$$

Either subsequence in braces is vacuous in the event S_{i} defines a univariate or bivariate function only.
(ii) $\Psi_{i}{ }^{1}$ is the name of an FN -function of type τ. Three subcases:
(a) S_{i} is ac-linked. Compile sto 4) τ, then the sequence
followed by the sequence

$$
\begin{aligned}
& \operatorname{sxD} 7) r, 4 \\
& \operatorname{Tsx} \Psi^{1}, 4 \\
& \operatorname{LxD} 7) \tau, 4 .
\end{aligned}
$$

Either subsequence in braces is vacuous in the event S_{i} defines a univariate or bivariate function only.
(b) S_{i} is ma-linked. Compile the sequence

$$
\begin{aligned}
& \operatorname{CLA} \bar{\Psi}_{i}^{2} \\
& \operatorname{sTO} 4) \tau \\
& \operatorname{sTg} 4) \tau+1
\end{aligned}
$$

then the sequence
$\operatorname{CLA} \quad \bar{\Psi}_{i}^{4}$
$\operatorname{sto} 4) \tau+2$
$\cdots \cdots \cdots \cdots$
$\operatorname{CLA} \bar{\Psi}_{i}^{{ }^{i}}$
$\operatorname{sto} 4) \tau+\left(\lambda_{3}-2\right)$
followed by the sequence

$$
\begin{aligned}
& \operatorname{sxd} 7) \tau, 4 \\
& \operatorname{Tsx} \Psi_{i}{ }^{1}, 4 \\
& \operatorname{LxD} 7) \tau, 4 .
\end{aligned}
$$

The subsequence in braces is vacuous in the event S_{i} defines a bivariate function only.
(c) S_{i} is undinked. Compile the sequence

$$
\begin{aligned}
& \operatorname{CLA} \bar{\Psi}_{i}^{2} \\
& \operatorname{sTO} 4) r,
\end{aligned}
$$

then the sequence

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\operatorname{LDO} & \bar{\Psi}_{i}^{3} \\
\operatorname{sTg} & 4) T+1
\end{array}\right.} \\
& \text { (} \mathrm{Cla} \bar{\Psi}_{i}^{{ }^{4}} \\
& \text { sto 4) } \tau+2 \\
& \text { CLA } \bar{\Psi}_{i}^{\lambda_{i}} \\
& \left(\begin{array}{ll}
\text { sтO }
\end{array}\right) \tau+\left(\lambda_{i}-2\right)
\end{aligned}
$$

followed, again, by the sequence

$$
\begin{aligned}
& \operatorname{sxo} 7) \tau, 4 \\
& \operatorname{Tsx} \boldsymbol{\Psi}_{i}^{3}, t \\
& \operatorname{Lxv} 7) \tau, 4
\end{aligned}
$$

Either subsequence in braces is vacuous in the erent S_{i} defines a univariate or bivariate function only.
(iii) $\Psi_{i}{ }^{1}$ is the name of an Fs-function. Two subcases:
(a) No subscripted variable containing a variable subscript index occurs as an argument of $\Psi_{i}{ }^{1}$. Compile the sequence

$$
\begin{gathered}
\operatorname{sxd} 7) 0,4 \\
\operatorname{Tsx} \Psi_{i}{ }^{2}, 4 \\
\bar{\Psi}_{i}{ }^{2} \\
\cdots \\
\hline \operatorname{LxD} 7) 0,4
\end{gathered}
$$

(b) Some subscripted variable occuring as an argument of $\Psi_{i}{ }^{1}$ contains a variable subscript index. If $\Psi_{i}{ }^{12}$, $\cdots, \Psi_{i}{ }^{j_{k}}$ comprise such a set, then compile the sequence

$$
\begin{aligned}
& \operatorname{PXD} \bar{\Psi}_{i}{ }^{j} \\
& \operatorname{ARS} 18 \\
& \operatorname{ADD} *-2 \\
& \operatorname{sed} \alpha+j_{1} \\
& \cdots \\
& \operatorname{PXD} \bar{\Psi}_{i}{ }^{j k} \\
& \operatorname{ARS} 18 \\
& \operatorname{ADD} *-2 \\
& \operatorname{STA} \alpha+j_{k} \\
& \operatorname{sxD} 7) 0,4 \\
& \operatorname{TSX} \Psi_{i}{ }^{1}, 4 \\
& \cdots \\
& \operatorname{LXD} 7) 0,4 .
\end{aligned}
$$

The symbolic address α denotes the relative location of the TSx instruction within the body of the program, and each entry in the sequence between the Tsx and axd in-
structions is of the form $\bar{\Psi}_{i}^{m}$, if $m \neq$ any j_{n}, or $\Psi^{j_{m}}$ if otherwise. We recall, in passing, that in this context $\bar{\Psi}_{i}^{j_{n}}$ is our symbol for the composite symbolic-relative address and tag of $\Psi^{j_{n}}$ if the latter denotes a subscripted variable. That is, if $\rho_{i}^{j_{n}}$ is the algebraic (signed) relative address and $\tau_{i}^{j_{n}}$ the tag associated with this variable, then

$$
\bar{\Psi}^{j_{n}}=\Psi_{i}^{j_{n}}+\rho_{i}^{j_{n}}, \tau_{i}^{j_{n}} .
$$

Thus, the effect of the sequence pxd, ARs, ADD, sra is to compute the effective address of this variable and store same as an actual address in the calling sequence, which address is then available to the subroutine defining the value of $\Psi_{i}{ }^{1}$ via the calling index register 4 . The symbolic address * denotes the contents of the 704 program counter at the time an instruction having this symbolic address is interpreted by the machine.
(iv) $\Psi_{i}{ }^{1}$ is the name of a built-in open subroutine. Owing to the fact that compilation of an open subroutine into the main body of an object program is an essentially ad hoc procedure-depending, as it does, on the particular nature of the function in question, the number of its arguments, and upon the particular context within which the function arises-and since, further, actual compilation of open subroutines is deferred to a section of the executive system later than that with which the present paper is concerned, we shall omit a detailed description of this subject for the present.
(E) $\diamond_{i}{ }^{1}=* *$.
(i) S_{i} defines an open subroutine, viz., $\Psi_{i}{ }^{2}$ is the name of an integer constant less than 7 . The same remarks apply here as for (D) (iv) (q.v.).
(ii) S_{i} defines a closed subroutine.
(a) S_{i} is ac-linked. Compile LDQ $\widetilde{\Psi}_{i}{ }^{2}$; then proceed to (C).
(b) S_{i} is not ac-linked. Compile cla $\bar{\Psi}_{i}{ }^{1}$.

1) S_{i} is MQ -linked. Proceed to (C).
2) S_{i} is not MQ-linked. Proceed to (a).
(c) Compile sxd 7)0,4; then proceed to (d).
(d) Three distinct built-in tape library subroutines compute the exponential according as the exponent is integer or floating valued, or the base is fixed valued.
(1) $\Psi_{i}{ }^{1}, \Psi_{i}{ }^{2}$ are both integer valued. Compile TSX $\exp (1,4$.
(2) $\Psi_{i}{ }^{1}$ is floating valued, $\Psi_{i}{ }^{2}$ integer valued. Compile $\operatorname{TsX} \operatorname{Exp}(2,4$.
(3) $\Psi_{i}{ }^{1}, \Psi_{i}{ }^{2}$ are both floating valued. Compile TSX $\operatorname{ExP}(3,4$.
(4) $\Psi_{i}{ }^{1}$ integer valued, $\Psi_{i}{ }^{2}$ floating valued. Disallowed.
(e) Finally, compile Lxd 7)0,4 and proceed to (III).
(II) Intra-Segment Compilation
(A) $\nabla_{i}{ }^{j}=+$. Two cases:
(i) S_{i} is in floating-point mode. Compile fad $\bar{\Psi}_{i}{ }^{j}$.
(ii) S_{i} is in integer mode. Compile add $\bar{\Psi}_{i}{ }^{j}$.
(B) $\nabla_{i}{ }^{j}=-$. Two cases:
(i) S_{i} is in floating-point mode. Compile $\operatorname{FSB} \bar{\Psi}_{i}{ }^{j}$.
(ii) S_{i} is in integer mode. Compile sub $\bar{\Psi}_{i}{ }^{j}$.
(C) $\diamond_{i}{ }^{j}=*$. Two cases:
(i) Predecessor in mq. T.e., $\nabla_{i}{ }^{j+1}=/$ or $\nabla_{i}{ }^{1}=*$ and $j=2$. Two subcases:
a) S_{i} floating-point. Compile fmp $\bar{\Psi}_{i}{ }^{j}$
b) S_{i} integer. Compile mpy $\bar{\Psi}_{i}{ }^{j}$, als 17,
(ii) Predecessor in Acc. I.e., $\nabla_{i}{ }^{j-1}=*$ and $j \neq 2$ Compile sto 7)0, LDQ 7)0, and proceed to (i) (a) or (i) (b) above, depending upon mode of S_{i}.
(D) $\nabla_{i}{ }^{j}=/$. Two cases:
(i) Predecessor in mq. I.E. $\nabla_{i}{ }^{j-1}=/$. Two subcases
(a) S_{i} floating-point. Compile ste 7)0, CLA 7)0, $\operatorname{FDP} \bar{\Psi}_{i}{ }^{j}$.
(b) S_{i} integer. Compile dve $\bar{\Psi}_{i}{ }^{j}$, CLM, lls 18.
(ii) Predecessor in acc. I.e. $\nabla_{i}{ }^{j-1}=*^{*}$. Two subcases
(a) S_{i} floating-point. Compile fdp $\bar{\Psi}_{i}{ }^{j}$.
(b) S_{i} integer. Compile las 35 and proceed to (i) (b) above.
(III) Final Compilation of a Segment
(A) Last segment compiled was S_{0}.
(i) $\bar{\Pi}(\Phi)$ is an F -type production, i.e., is the productior of an expression Φ contained in a Fortran source language statement of the form

$$
\operatorname{xF}(\Phi) n_{1}, n_{2}, n_{3}
$$

where the n_{2} 's are source program statement names.
(a) S_{0} is type ac. Finis.
(b) S_{0} is type mo. Compile lls 37 and finis.
(ii) $\bar{\Pi}(\Phi)$ is a call-type production, i.e., is the production of an expression Φ contained in a Fobtran source language stagement of the form call Φ, where Φ is ar fs-function. Finis.
(iii) $\overline{\bar{\Pi}}$ is neither an IF- nor call-type production Then the source language statement containing Φ is 0 the form $\Psi=\Phi-$, where Ψ is a variable or FN -functior name. Consider the cases:
(a) Ψ is integer-valued.
(1) S_{0} is in floating mode and is type AC. Compile the (fixing) sequence ura 6), Lrs 0 , ana 6) +1 , lls 0 , als 18 We note, here, that two constants having Sap identifi cations 6), 6) $+1, \cdots$ are compiled into the object pro gram constant-region. These constants are, in 704 octa word-format, 233000000000 and 000000077777 , respectively. Thus, the above sequence has the effect of placins the point of the floating-point number, whose integer form is desired, to the extreme right of the accumulator preserving its sign in the mQ register, extracting the mantissa (now positioned in the last 15 bits of the accumulator), restoring the sign and shifting the mantisse into the decrement field.
(α) If Ψ is an FN -function name, compile rad 1,4 Finis.
(β) If not, compile sto $\bar{\Psi}$, and finis.
(2) S_{0} is in floating mode and is type MQ. Compile STQ 7)0, cla 7)0, then proceed as in (a) (1), above.
(3) S_{0} is integer valued.
(α) Ψ is an FN -function name.
a) S_{0} is type ac. Compile tra $1,4$.
b) S_{0} is type mq. Compile ste 7)0, cla 7$) 0, \operatorname{tra} 1,4$.
(β) Ψ is a variable.
a) S_{0} is type ac. Compile sto $\bar{\Psi}$.
b) S_{0} is type ma. Compile sre $\bar{\Psi}$.
(b) Ψ is floating valued.
(1) S_{0} is floating valued. Proceed as in (a) (3), above.
(2) S_{0} is integer valued.
(a) S_{0} is type ac. Compile les 18 , ora 6), fad 6).
a) Ψ is an fn-function name. Compile tra 1,4 .
b) Otherwise, compile sro $\bar{\Psi}$.
(β) S_{0} is type mq. Compile sTQ 7) 0 , cLa 7$) 0$, and proceed as in (2) (α) above.
B) Last segment $\left(S_{i}\right)$ compiled was not S_{0}.
(i) S_{i} linkable and not a common subexpression. Proceed to compilation of S_{i-1}.
(ii) S_{i} not linkable or is a common subexpression.
(a) S_{i} is type ac. Compile sto 1) $\tau+\varphi_{i}$, where τ is the type number associated with Φ, and equals 0 if Ψ is not an Fs-function name; otherwise, τ is the type of the function currently being defined (see section 9). The relative address φ_{i} is defined as in section 10 (iii). Proceed to compilation of S_{i-1}.
(b) S_{i} is type me. Compile ste 1) $\tau+\varphi_{i}$, and proceed to compilation of S_{i-1}.

APPENDIX

Al. Implicit Multiplication

A certain conciseness of notation in the writing of expressions is allowed of by the fact than an $* \operatorname{sign}$ need not occur in an expression Φ if Φ is not of the form $\Psi * X$, where $T_{1}(\Psi), H_{1}(\mathrm{X})$ belong to \mathfrak{B}_{Φ}. Thus, if $\Phi \sim \Psi$ (read " Φ equivalent to Ψ ") is taken to mean that the corresponding arithmetic expressions $=\Phi \nmid==\Psi \nmid$ yield identical object (machine-language) programs, then

$$
\begin{aligned}
& (-\mathrm{A})_{\mathrm{B}}(\mathrm{I}) \sim(-\mathrm{A}) * \mathrm{~B}(\mathrm{I}) \\
& \mathrm{x} 01(\mathrm{I})_{\mathrm{B}} \sim \mathrm{x} 01(\mathrm{I}) * \mathrm{~B} \\
& \operatorname{SINF}(\mathrm{x}) \operatorname{COSF}(\mathrm{x}) \sim \operatorname{SINF}(\mathrm{x}) * \operatorname{COSF}(\mathrm{x}) \\
& \mathrm{A}(\mathrm{~B}+\mathrm{C}) \sim \mathrm{A} *(\mathrm{~B}+\mathrm{C}) \\
& (\mathrm{A} / \mathrm{B})_{\operatorname{LOGF}}(\mathrm{x}) \sim(\mathrm{A} / \mathrm{B}) * \operatorname{LOGF}(\mathrm{x}) \\
& (\mathrm{A}+\mathrm{B})(\mathrm{x}+\mathrm{x}) \sim(\mathrm{A}+\mathrm{B}) *(\mathrm{x}+\mathrm{y}) \\
& \operatorname{TANF}(\mathrm{x})(\mathrm{A}-\mathrm{B}) \sim \operatorname{TANF}(\mathrm{x}) *(\mathrm{~A}-\mathrm{B})
\end{aligned}
$$

A2. Boolean Statements

An immediate extension of the mechanisms of arithmetic statement compilation, exploiting the and-OR logic of the 704 , is readily at hand. If the operation signs ,$+ *$, and - are interpreted to denote union, intersection and complementation, respectively, then a certain subset of the set of expressions defined by $E 1-E 6$ (see section 3) is sufficient for the formulation of any Boolean function on the set of all 36-bit binary strings. We shall call the elements of this subset sentences and recursively characterize them as follows:

S1. Every floating-point variable name Φ is a sentence. If, furthermore, $\Phi=\varphi_{1}, \cdots \varphi_{n}$, and $L(\Phi)<4$ or $\varphi_{n} \neq F$, and Φ appears in a dimension statement, and if Σ_{1}, \cdots, $\Sigma_{k}(1 \leqq k \leqq 3)$ are subscripts, then $\Phi\left(\Sigma_{1}, \cdots, \Sigma_{k}\right)$ is a sentence.
$S 2$. If Φ is a sentence, so is (Φ).
S3. If Φ is a sentence such that $H_{1}(\Phi) \neq-$, and Φ is not of the form $\Psi+\mathrm{X}$, where Ψ, X are sentences, then $-\Phi$ is a sentence.
$S 4$. If Φ is a sentence of the form $\Psi+X$, where Ψ, X are sentences, then $-(\Phi)$ is a sentence.
$S 5$. If Φ is an n-adic function name with $H_{1}(\Phi) \neq \mathrm{x}$,
and A_{1}, \cdots, A_{n} are sentences, then $\Phi\left(A_{1}, \cdots, A_{n}\right)$ is a sentence.

S6. If Φ, Ψ are sentences, and $H_{1}(\Phi) \neq-, H_{1}(\Psi) \neq-$, then $\Phi+\Psi, \Phi * \Psi$ are sentences.
(Note: The same rule regarding implicit multiplication of expressions-mentioned in A1 above-applies as well to the construction of sentences.)

Rules $S 1-S 6$ prohibit, by implication, the writing of expressions of the form $\Phi-\Psi$, where Φ, Ψ are sentences. Thus, what in conventional logical notation is written $\Phi \cap \Psi^{\prime}$ or $\Phi \Lambda \sim \Psi$ cannot be abbreviated to $\Phi-\Psi$, but must be rendered by $\Phi *(-\Psi)$.

We define a Boolean expression as a string of the form

$$
=\Phi \dashv
$$

where Φ is a sentence.
Similarly, a pure Boolean statement is a string of the form

$$
\Psi=\Phi \mathfrak{f}
$$

where Ψ is a subscripted or nonsubscripted floating-point variable, and $=\Phi-t$ is a Boolean expression.

A quasi-Boolean statement is a string of one of the following forms
(a) IF (Φ), where Φ is a sentence.
(b) call $\Phi\left(A_{1}, \cdots, A_{n}\right)$, where Φ is a function name such that
(i) if $\Phi=\varphi_{1} \cdots \varphi_{n}$, then $L(\Phi)<4$ or $\varphi_{n} \neq \mathrm{F}, \Phi$ does not appear in a dmension statement, and $L(\Phi) \leqq 6$.
(ii) each A_{i} is a sentence or a Hollerith field.

A (Boolean) function definition is a string of the form

$$
\Phi\left(A_{1}, \cdots, A_{n}\right)=E\left[A_{1}, \cdots, A_{n}\right]
$$

where Φ is a function name, and such that
(i) if $\Phi=\varphi_{1} \cdots \varphi_{n}$, then $H_{1}(\Phi) \neq \mathrm{x}, 4 \leqq L(\Phi) \leqq 7$ and $\varphi_{n}=\mathrm{F}$.
(ii) each A_{i} is a nonsubscripted floating-point variable name.
(iii) $E\left[A_{1}, \cdots, A_{n}\right]$ is a sentence in the (free) variables A_{1}, \cdots, A_{n}, wherein each A_{i} may occur vacuously.

Exactly the same reduction, level analysis and general optimization procedures are applied to Boolean as to
arithmetic expressions. In addition, the special optimization procedures (section 8) apply with one minor modification. Since each segment S_{i} is type ac (the/sign cannot occur in a sentence), then linkage can only oceur, if ever, through the machine's accumulator register. Hence, if $\rangle_{i-1}{ }^{1}=*$, and for some $j, \Psi_{i-1}{ }^{j}=i$, interchange the first and j th elements of S_{i-1}, tagging S_{i} as AClinkable and S_{i-1} as Ac-linked.

Compilation of Boolean statements proceeds in a manner analogous to that of arithmetic statements except for the following operation code transformations:

$$
\begin{aligned}
& \mathrm{CLA} \rightarrow \mathrm{CAL} \\
& \mathrm{LDQ} \rightarrow \mathrm{CAL} \\
& \mathrm{STO} \rightarrow \mathrm{SLW} \\
& \mathrm{CLS} \rightarrow \mathrm{CAL}, \mathrm{COM} \\
& \mathrm{FMP} \rightarrow \mathrm{ANA} \\
& \mathrm{FAD} \rightarrow \mathrm{ORA} \\
& \mathrm{CHS} \rightarrow \mathrm{COM} \\
& \mathrm{STQ} \rightarrow \text { SLW }
\end{aligned}
$$

Example.

$$
\begin{aligned}
& \operatorname{mpr}(x, y)=(-x)+x \\
& \operatorname{EQUIVF}(\mathrm{X}, \mathrm{y})=\operatorname{Impf}(\mathrm{x}, \mathrm{y}) \operatorname{mpf}(\mathrm{y}, \mathrm{x}) \\
& z=(((\mathrm{A} * \mathrm{~B}) \mathrm{C})+\mathrm{D})+\operatorname{rapF}(((\mathrm{A} * \mathrm{~B}) \mathrm{C})+\mathrm{D}), \\
& \operatorname{\operatorname {EQurvf}}(-(-\mathrm{x}), \mathrm{y}))
\end{aligned}
$$

We shall assume that the above statements appear in a possibly more extensive program, and that each is tagged as a Boolean-type statement (the letter B in column 1 of an IBM Fortran card).

Note that the impf function is type 1 and translates into the following instruction sequence:

```
CAL 4)I
COM
orA 4)1+1
tra 1,4
```

The (free) variables X, y are associated with 4)1, 4) $1+1$, respectively, in this case.

The equive function is type 2 , and translates into

```
CAL 4) \(2+1\)
sLw 4) 1
Cal 4) 2
SLW 4) \(1+1\)
sxo 7)1, 4
TSX MPP,4
LxD 7) 1,4
sLw 1)2
CAL 4)2
sLw 4) 1
cal 4 ) \(2+1\)
sLw 4) \(1+1\)
sxD 7) 1,4
TSX imp,4
Lxo 7) 1,4
and 1)2
Tra 1,4
```

Finally, the third of the above statements translates into the sequence

```
CAL X
COM
COM
SLW 4)2
CAL Y
suw 4) 2 + 1
Tsx mquiv,4
sLw 1)1 +1
CAL A
ANA B
ANAC
ORA D
sLw 1) + 2
sLw 4)1
CAL 1) + 1
SLW 4) 1 + 1
TSX mMP,4
ORA 1) +2
sLW Z
```


[^0]: ${ }^{1}$ In the Fortran system * is used for multiplication, ** for exponentiation.

[^1]: ${ }^{2}$ For definition, see, e.g., the Fortran Programmer's Reference Manual.

