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1. I n t rod ac t ion  

:. The present paper describes, in formal terms, the 
:; steps in translation employed by the Fom't~Ax arithmetic 

translator in eonverting FORTRAN formulas into 704 as- 
semMy code. The steps are described in about the order 
in which they are actually taken during translation. 
All, hough sections 2 and 3 give a formal description of the 
FOaTaAN source language, insofar as arithmetic type 
stal~ements are concerned, the reader is expected to be 
familiar with FORTRAN II, as well as with S.~vP II and the 
programming logic of the 704 computer. 

The first major phase of translation, described in sec- 
tions 4-7, :is concerned with converting an arithmetic 
formula, regarded as the statement of an algorithm, into 
a set of triples (C i ,  @i, NO which also d~seribe the al- 

; .  gorithm, but in a manner which lends itsdf more easily 
to conversion into conventional computer code (not neces- 
sarily that of the 704). The three elements of a triple have 

:!~essentially the following meanings: 

~ : operation to be performed 
perand 
time" at which the operation must be performed 

are as many distinct "times" of operation as there 
ia re  subexpressions in the entire expression to be evalu- 

a t e d .  Ior example, eonstder the artthmette expressmn 

(((A + B) -- C)/((D • (E + F)/G) - H + J)). (1) 

i*subexpressions as there are distinct pairs of parentheses 
_~;shown--namcly six. To evaluate the entire expression 

:'all six subexpressions must be:~ evaluated. While there is 
some latitude in the order in which these subexpressions 
are to be evaluated, not all orders will work (since "higher 
i r 1" me subexpressions depend on "lower level" ones for 
their values). A possible order of evaluation for the ex- 
ample shown is as follows: 

:~. (d + B) 
i 2. ((A + B) - C) 
: a. (u + F) 

i 4. ( D ,  (E + F)/G) 
5. ( D ,  (E + F)/G) - H + J 

- (~. ( ( ( A  + B )  - C ) / ( ( D  • (E  + F ) / ( ; )  - -  H + J ) ) .  

rhe triples representing this coniputation would /)reak 
tp into six subsets, called segments according to their C- 
mmber (first member of a triple), in each segment (cor- 
esponding to a sut)expression) there are as many triples 

i~: t In the FORTRAN system * is used for multiplication, ** for 
xpon(mlsiation. 

as there are terms in the subexpression. (The number o: 
triples in a segment may be called the lengthof a seg 
ment.) Using the numbers written alongside the sub 
expressions as names for these subexpressions, we gel 
the following representation of the computation in triple~, 
notation: 

(1., + ,  A)(:I, + , / / ) (2 ,  + ,  1)(2, - ,  C) 

(3, + ,  E)(3, + ,  e)(4, ,, D) 
(2: 

(4, ,, 3)(4, / ,  G)(5, + ,  4)(5, - ,  H) 

(5, + ,  J)(6, ,, 2)(6, / ,  5) 

If the divide operation is regarded as multiplication by th( 
inverse, then it is clear that the triples belonging to an) 
given segment of (2) could be reshuffled into some differ. 
ent order without disturbing the algorithm. Although not 
all possible segments which the FORTRAN translator pro. 
duces allow reshuffling, the latitude, whenever presertt 
is later used to obtain economies in the computer cod( 
eventually produced. It  should also be observed that 
since each triple bears its own segment number, extensiv( 
rearrangements of the triples could be tolerated without 
making it impossible to restore them into proper order 
The FORTmkN translator takes advantage of this fact it: 
that it does not necessarily produce the triples segmen| 
by segment with segments in proper order. However, the 
deviations from this ultimately required order which th( 
process of triples generation introduces are correetibl( 
by reordering. The segment numbers developed by the 
F O R T R A N  translator are in reverse numerical order, i.e. 
the largest segment number represents the subexpressio~ 
first to be evaluated, while the smallest segment number 
represents the last (which always coincides with the en- 
tire expression). The first major objective of the FORTRAN 
translator is accomplished in a number of steps and con- 
sists in the translation of form (1) into form (2). 

The first step, described in section 4, is to replace con- 
stants and subscripted variables by simple variables: 
thus ensuring that all of the arguments entering into the 
computation are of a uniform nature. 

The next step, described in section 5, is aimed at ensur- 
ing that. ever T subexpression in the expression to be evalu- 
ated is provided with an explicit pair of parentheses. In 
writing FowraAN fornmlas one need not indicate all 
parentheses, the usual order of precedence among arith- 
metic operations being assumed: exponentiation, multi- 
plication and division, addition and subtraction. The 
method by which these precedence relations are made 
explicit by the FORTRAN translator is' roughly the follow- 
ing: Art arithmetic connective of high precedence may be 
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Normal form being 
scarified: 

Operation~ 
Operand: 

Triples 

Sub-expression to 
which this triple 
belongs; 

~{ecord of" sub- 
expressions not  yet 
comelete 

Algorithm for Computing Triples fr6m Normal Forms (Example) 

(Read from left to right) 

(Column in which the arrowhead of an operatiom symbol appears 
is the "time" at which the operation is executed; more than 
one ooeration may be performed at a time.) 

Operation Codes: ] 
x ~ x  = T r a n s f e r  x i 
----+.-~,--x : Generate x]  

] ~..._~ Erase x 

I I I ' * ~  i ~ I I 

i / I ' *~D~ I I I 

lq g. 

thought of as weakly separating the arguments to either 
side of it, while a connective of low priority strongly 
separates the arguments to either side of it. Since there 
are three degrees of precedence to be considered, we may 
represent three degrees of separation power by placing 
one, two, or three pairs of parentheses to either side of a 
connective a(:eording to its order of precedence, thus: 

A ** B A) ** (B (exponentiation) 

convert A • B into A)) * ((B (multiplication) 

A + 1~ A))) + (((B (addition) 

This introduction of parentheses is balanced in the sense 
that as many left pm'entheses are introduced as right 
ones. If, in addition to inserting parentheses as shown 
above, one also prefixes the entire expression by three 
left, parentheses and closes it by three right parentheses, 
then---as the reader may convince hirnself-.a correct 
p~trenthesization of the expression is accomplished even 
though many unnecessary (though harmless) pMrs of 
parentheses arc also inserted. ]for example: 

A + B ** C /D  (a) 

beeomes 

(((A))) + (((B) ** (C))/((D))) 

In the FORTreSS translation four rather than three levels 
of precedence are recognized because the character "," 
which eonventionMly separates successive arguments of a 
function--as in f(a, b, c)- -is also treated as an arithmetic 
connective. Also, for reasons having to do with the sub- 
sequent germration of triples, each inserted left paren- 
thesis is preceded by an operation sign which essentially 
tags the p~trenthesis with its strength: 

+(*(**(A))) + (,(**(B) ** (C))/(**(D))) (4) 

Arithmetic expressions expanded by the insertion of 
parentheses and operation signs as indicated above (and 
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em'efully (leseribed in seed(m 5) are called arithmetic 
expressions ill normal .lbrm. 

The next step in translation, described in section 5, is 
the generation of a list of triples which (except for lhe in- 
('lusion of some extraneous list rnemt)ers) constitutes a~t 
uns(n'ted representation of the desired algorithm. A single 
semi f()rward on expressions of ~ form equivalent t() that 
shown in (3) above produces the desired triples, l<xery 
left pare|lthesis marks the beginning of a subexpression; 
the o/)eration sign preceding it shows in what sort of 
arithmeti(. (q)erati(m that subexpression is to participate 
as a term. A rmming index, N~, (N for n<ct s'ube:cpres,~i(m), 
whieh ,ste. 4)s up o , e  every iime another left parenthesis is 
e r o s s e d ~  s e r v e s  {o  g e l l e r a t e  a s e t  o f  S H t ) e x p F e s s i o I I  l l t l l l J ) e l ' 8  

which become the indices N.~ of the generated triples. 
The numbers C,: (C for c~rre~t sube:cpression) may be 
generated from AT; pr(wided that one keeps a re(',oM of 
wh:tt subexpression nmnbers were generated at previous I 
left parenthesis (.rossings, and steps back t(/ the proper { 
earlier sltbexpressh)n after having er(ssed one or more 
right parentheses. 

This procedure is illustrated in figure l, using expression 
(4) as a s(/uree of triples production. 

Seetion 7 describes how to eliminate extraneous triples 
from lists deseribed as abovc. To begin ~ ith, one ean (with 
only one exception) eliminate all triples which fornl a 
single segment by themseh, es. S(.eon(lly, after sorting the 
triples into order, one can eliminate duplication bet weel~ 
entire segInents of triples \vhieh can be recognized to be 
klentieal sub-expressions. 

Section 8 deserit)es some intra-segment rearrangenmnts 
of triples which lead to an ultimate order of computer 
operation which is not randomly wasteful of storage-to- 
register and register-to-storage transfers in the eourse of 
expression evaluation. 

When once an expression has been converted into a 
string of triples, properly rearranged and made as short 
as possible by elimination of duplication, it is ready for 



conversio~ in to  one-address  SAP assembly  code. In  mos t  
tr iples d*e bust e lement  )V~ will have  to be in terpre ted  as 
a,n SAP address  of a mtmt)er to be operated upon by  an 
operal~ioh correst)onding to O,; • 

S(:(:tio~s 9 and 10 show how the FO1YI'I.tAN t rans la tor  
assigns sl;ora, ge lo(::d.ions an(t (~omputes addresses for' the 
var ious  classes ()[' opertm(ts ('ll(}Olllltcred in these triples. 
l i e  followb~g clas~.~es o[ operand  s torage are considered 
in or(ler : 

Integer and floating point constant storage 
Input and oldput arrays ( l lepresented  by  source lan- 

guage refereu(.es to std)scripted variables)  
WorMng storage for each expresdon (Represented  in 

triples code by references in one s(:gment to the  result  
p roduced  by  ano the r  segment  of the same expression) 

Argun~.ent storage for functions 
teeturn jump address storage required when functions are 

nested and control  mus t  pnss down a chain and  then  back 
up agMn. 

Sect ion 11 ac tuMly shows, ahnos t  in f low-chart  form, 
how SAP a s sembly  ins t ruc t ions  are produced f rom the 
str ings of t r iples  in to  which F o w r m t x  expressions have  
been reeoded.  

The  Appendix  shows how FowraAx s t a t e m e n t  com- 
pi la t ion can be ex tended  to the  case, in which the  operat ions  
consist  in Boolean  and, or and  not. 

The  au tho r  is indeb ted  to Messrs  J. W. Baekus,  R. A. 
Nelson,  and [. Ziller of I B M  for initiMly suggest ing to him 
the basic ideas underlyir~g sectior, 6 below, and  he is mos t  
especial ly gra tefu l  to  Mr. A. W. Ho l t  of R e m i n g t o n  R a n d  
for the  ex tended  in t roduct ion  to this paper ,  wi thout  which 
its r eadab i l i ty  would htrve suffered considerably.  

2.  D e f i n i t i o n s  

rF1 (a) ne alphabet of FOICTRAX comprises  the alpha-  
merle cha rac te r s  A , . . . , Z ,  0, 1 , . . . , 9  and  the set of 

~ "speeiM" c h a r a c t e r s : . ,  ( , ) ,  ,, + ,  - ,  * , / ,  = ,  and ft. The  
last  is not  a cha rac t e r  expl ici t ly  indicated in a n y  IPORTRAN 
s t a t emen t ,  serving solely as a s t a t emen t  erMmark on the 
execut ive  level,  wi th  which we shall here be pr imar i ly  
concerned.  Lower  ease Greek  le t ters  will be used through-  
out  to denote  a r b i t r a r y  charac te rs  of the  FOWrRAN al- 

Jl phabe t .  
By  the  terul  string we shall mean  a sequence of juxta-  

posed a lphabe t  characters ,  of finite length. Upper'  case 
Greek  le t ters  will be usedAo  denote  a rb i t r a ry  strings. 

The  length L(2)  of a s t r ing ~ is the n u m b e r  of literM 
occurrences  of cha rac te r  tokens  in its construct ion.  The  
symbol  A will be used to denote  the null string, of length 
0; of course, for a n y  str ing E, EA = AB = Z. 

Two str ings (P = ~2t " '  ~ .... kO = ~ . . .  ¢,, are said 
[ to be identical (and we write q) = ~ )  if and only if m = n 
e and for each i, ¢,: = ~x. 

A str ing q) is said to be includcd in (or to be a substring o/) 
a s t r i | |g  q~ (trod we write:  iP ~ ~') if q* has  tire represen-  
ta t ion  q* = A<bB where, A, B axe strings. As usual, A is 
said to be a head of q:, mtd B a tail of ~ .  

)! I f  q, is an a r b i t r a r y  string, then the nota t ion  H,,(,I~), 
!~ T,,(qe), where n is mr a r b i t r a r y  non-neg~ttive integer,  is 

defined as follows: If  ,I, = ~X, then 

(/l, if n N L('10 and  L@)  = n, 

H.,~(q.) = t or n > L ( ~ )  and ,1, = ~1, 
t 

~A if n = 0 

I 
X if n =< L(,P) and  L(X)  = n, 

T,~('IO = or n > L ( ~ )  and ,Is = X 

IA if  n = 0 

Thus,  if • = A B C +  D / E * * F  then 

II4(gz) = A B C +  

7;('I,)  = / E  ** F 

I i  ,7('P ) = "t, 

(b) Names are strings classified as follows: 

integer cons tan ts  

f loat ing-point  cons tants  

integer  wa ' iables  

f loat ing-point  var iables  

function names  

An integer constant is a string K = K1 " "  K. such t ha t  
each K~ is an integer be tween 0 and 9 (inclusively) and the 
relation K < f 5  holds. 

A floating-point constant is a str ing F = " r ~ ' " 7 , ~  
where 'Yi = • for some j and  each "y~, for' i # j ,  is be- 
tween 0 and  9 (inclusively),  provided F = 0 or 10 as < 
P < 10 as. 

A n  integer variable is a s tr ing  I = t~ . . .  L,, where  each 
~j is a lphameric ,  bu t  t~ is one of the charac ters  ~, z, ~, 
L, M or x, and  L( I )  ~ 6. 

A floating-point variable is a string P = ' y ~ . . . % ,  
where each .y~ is Mphamerie  and 'yl is a lphabet ic  but  not  
one of the charac te rs  1, a, K, ~, M or N. Again,  L(F)  =< 6. 

A function name is a s t r ing q) = ~,,, "--  , ~,~, where 
each ~ is a lphamerie ,  ~1 is Mphabet ic  and  such t h a t  either 

2 
(i) L@) =< 6, • does not  appea r  in a DIMENSION 

s ta tement ,  and  L@)  < 4 or ~n # F 

or ( i i )  4 =< L @ )  N 7 and ¢,~ = r'. 

F u n c t i o n s  d e n o t e d  b y  n a m e s  in the  first categol3 ,  are 

referred to as Fs- type f lmctions,  and  are defined by  
FORTRAN I I  FUNCTION o r  SUBI-~OUTINE subprograms.  
Those  denoted by names  in tile second ca tegory  are 
referred to as FN-type functions,  and are defined by 
machine-coded l ibrary  t ape  subprograms,  buil t- in open 
subroutines,  or by  a single a r i thmet ic  s t a t e m e n t  (see 
function definition below). An Fs- type funct ion is integer- 
valued if and  only if ~ is one of the charac te rs  I, J, K, 
L, M or X. An Fx- type  funct ion is integer-vMued if and 

.... ~-i~(~Tdcfinition, see, e.g., the FORTRAX Programmer's Refer- 
enee Manual. 
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only if ~, = x .  (This d i sc repancy  in nota t ional  convent ion  
is, in principle,  a nonessent ia l  one and  arose only th rough  
historical  accident . )  

(c) A subscript is a str ing of one of the following forms:  

K 

K , E  

E - [ - K  

~ - - K  

K * E + P  

K * Z - - P  

where K, P are  integer cons tan ts  and  E is an integer  var i -  
able. In  addi t ion,  the  magn i tude  of a subscr ip t  cannot  
exceed 2 is - 1. 

(d) A subscripted variable is a s tr ing of the  fo rm 

T(Z, ,  . - - ,  Ze) 

where I '  is an  integer or f loat ing-point  var iable  and  such 
t h a t  if T = r~ . . .  r~ ,  

(i) T appea r s  in a DIMENSION s t a t e m e n t  

and (it) L(T)  < 4 or r~ ~ F 

and the  2a are  subscr ipts  with k ~ 3. 

3. Rules of  Format ion  

(t) The  set  of expressions is recursively character ized 
as follows: 

E l .  A cons tan t  or var iable  n a m e  ~ is an expression of 
the same mode  as ~. If  il, = ,#~ . . .  ,~, and  L(~) < 4t or 
~,, # ~', and  a) appea r s  in a DIMENSION s t a t emen t ,  and  if, 
fu r thermore ,  E l ,  . . . ,  2e ,  (1 =< k =< 3), are subscripts ,  
then ~l,(E~, . - - ,  2e) is an expression of the  same mode  
as el,. 

E2. I f  ~ is an expression not. of the  fo rm +,I~ or - %  
then q-~ and  -~I, are expressions of the same mode  as ~. 

E3.  i f  ~I, is an expression, then  @) is an expression of 
the same mode  as ~. 

E4.  I f  • is an n-adie funct ion name  and A~, . . .  , A~ 
are expressions, then  ~(A~,  . . .  , A~) is an expression of 
the same mode  as ~. 

E5.  I f  ,I,, ,I~ are expressions of the  same mode  and ,I, 
is not  of the  fo rm + X  or - X ,  then • + % ,I~ - ~ ,  
q, * q(, q , / ~  are expressions of the same mode  as ~. 

E6. If  ~o, qe are expressions and ,I~ is f loat ing-point  mode  
only when ~I, is, then  unless ei ther  q, or • is of the  fo rm 
A ** B (A, B variables,  constants ,  or funct ion expres-  
sions),  • ** "I-' is an expression of the  same mode  as el,. 

No te  t h a t  E l - E 6  prohibi t ,  b y  implicat ion,  the wri t ing 
of mixed-mode  expressions except  under  cer tain special 
formal  conditions.  T o  wit, the  only allowable expressions 
in our language are those we shall t e rm  integer and float- 
i'ng-point expressions.  An integer  expression is one in 
which any  f loat ing-point  mode  name  occurs, if a t  all, 
wi thin  the " a r g u m e n t  vec to r "  of some funct ion expres-  
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sion,-- for example  : 

i + :xst~'~,"(A • :~/c) 

A float ing-point  expression, on the  other  hand,  is one in 
which any  in teger -mode  nnme occurs, if a t  all, within the  
a r g u m e n t  vec tor  of a functior~ expression, within the ex-  
ponen t  of an exponential ,  or  within a subscript ,  ~-for 
example:  
A(0 ** a + srxr(K • L/~0 

Any  other  s tr ing is referred to as mixed, and  c a n n o t  
belong to the  set  of allowed expressions. 

(H) An arithmetic expression is a string of the  fo rm 

= ~ - ~  

where q, is an expression in the  sense of ~ , -  ~o. 
(m)  A pure arithmetic statement is a s tr ing of the f o r m  

= ¢ ~  

where T is a subscr ip ted  or nonsubser ip ted  variable,  a n d  
= ee -t is an a r i thmet ic  expression. 

0 v )  A quasi-arithmetic statement is a s tr ing of one of t h e  
following forms:  

(a) IF@), where • is an expression. 
(b) CaLL ~(A~, . ."  , A,~), where  • is a funct ion n a m e  

such tha t  
(i) i f ~  = ~ t . . . ~ , t h e n L @ )  < 4 or,#~ ~ F , L @ )  =< 

6 and  q~ does not  appea r  in a DIMENSION s t a t e m e n t  
(it) each A,  is an expression, in the  sense of E1-£'6 

or a Hol ler i th  field (q.v., FoaTm~X P r o g r a m m e r ' s  R e f e r -  
enee M~mual).  
T h e  reason for referring to the  above  as quasi-arithmetic 
s t a t e m e n t s  will be made  clear later.  [ 

(V) A .h~nction definition is a s tr ing of the fo rm 

,~(A~, . . . ,  A,~) ~- ~'[A~, . - . ,  A4 

where ¢I~ is a funct ion  n a m e  such t h a t  
(i) if • = ~, - . .  ~,,, then  4 N L(~) =< 7 and  ,~,~ = F, 
(ii) each d~ is a nonsubser ip ted  w~riable name,  
(iii) E [ A i , . . . ,  An] i8 ant expression (in the  sense o f  

El---E6) in the (free) var iables  A 1 , ' . . ,  A,~. We n o t e  
in passing, t h a t  any  Ai m a y  occur vacuous ly  in E l A n ,  
• . .  , A,,]. Thus ,  E[Ai ,  . . .  , A,] is a funct ion form in t h e  
free var iables  A~, . . .  , d,~. 

4. R e d u c t i o n  of Expressions 

An expression • is reduced in the following m a n n e r :  
(I) Each  integer  or f loat ing-point  cons t an t  occur r ing  

in ~, bu t  not  conta ined  in a subscript ,  is replaced by  a n  
integer  or f loat ing-point  var iable  name ,  respec t ive ly ,  
p rovided  the r ep lacement  is made  a t  all occurrences  of  
t h a t  cons t an t  mid the r ep l acemen t  name does no t  a l r e a d y  
occur  i,},,I~. 

(H) Each  iuteger  or f loat ing-point  subscr ip ted  v a r i a b l e  
is replaced by  a nonsubscr ip ted  integer  or f l oa t ing -po in t  
var iable  name ,  respect ively,  in such a m a n n e r  t h a t  t h e  
r ep lacement  n a m e  does not  a l ready  occur  in ,l~ and  s u c h  
t h a t  the r ep l acemen t  of each subscr ip ted  var iab le  n a m e  is 
m a d e  a t  all occurrences  of the  la t te r  in q,. Also, no s u b -  
scr ipted var iab le  can have  the  same n a m e  as a n o n s u b -  



~<ripted variable, nor can any two n-dimensional sub- 
s( ripted wtriables have the same names if their first n - 1 
dimensions are respectively iden t i ca l .  

The result, then, of applying procedures (i), (H), 
above, to the expression ¢, will be termed its reduced form 
and denoted by ~ze. 

Now, if d) is an expression, Chen we shall denote by 
-_~>~,' the set of all non-null c(mnected name strings occurring 
in qb. [htL!;, for example, if 

4, = : ~ B C ,  ( - - x v )  

~ = {A, ~, C, aN, Be, ,tBC, X, Y, XY}. Clearly, for 
pression qP, there exists at least one element ~" @ ~,r 
~hat if ~, ~ ~3~ and E C 'If, then 2: = ~, i.e., E 
this sense, :~ maximal element. We shall denote 

the subset of ~,r consisting of its maximal con- 
non-null name strings. In the last example, ~B,~ = 

KY} ° 

rmal  F o r m  of  an  A r i t h m e t i c  Express ion 

his section we shall define a set of transformations 
beginning with any reduced arithmetic expression = 

reeursively generate what we shall call partial nor- 
,ms A,X where T~(X) = { and ~0 is the character 
~e recursion on the head-strings hi is as fffllows: 

k i ~ X  -+  k i ~ ' X ,  

Ai+I = A i ~ ' .  

tall assume throughout that E (~ g!3.t, U {(}. 

eX --) A~ + (,(**(@EX if 5I'1(A~) ~7 {=,  (} 
(:~ ± ( , ( * * ( e z x  if r , ( = , ) ~ { - - ,  ( l  
) ± EX - -4  

~A~ ) ) ) ~ (,(**(~:~X, otherwise 
•/zx - ,  ~, ) ) •/(**(®zx 
• * EX --~ a~ ) ** (@:~X 
' ,X-- ,  A~ @ (X if 7'~(kO ~ 93¢ 
} x +  ~ ) ) ) ) x  

, x-~ ~)))) o ( x  
-~ ~..))) 

that  the recursion is terminated by 77'8, sittce 
at this step. Note, further, that  stratification 

~els) of the arithmetic expression = q, ~ via the 
schema proceeds from the assumption that  the 

or degree) of "binding" of operations appearing in 
.,ides with that  of conventional mathematical usage, 
order of increasing "strength"):  ± ;  . / ;  **; and @. 

rse, the last noted "operation" is associated solely 
partial normal form with functions and has only a 

¢ieal purpose in that context. Titus, 77'1-T8 reflect 
ader more explicit normally assumed usage regard- 
:atifieation of algebraic expressions. 
e denote by Nd¢') the ith partial normal form of 
by N@) the last of these (which we may refer to 
as the normal form of ¢,), then the following ex- 

should suffice to illustrate the above schema. 
qD = --XYZF(A, B * e ** ( - - I ) ) ) /E  "Jl-" F. Then, 

;V0@) 
~v~(®) 

N,@) 

N~(+) 

N~@) 

Nxo(([ ~) 

= A0q~ ~, with ~o standing :for = 
= ~ ( ~ ,  B • c ** ( - - D ) ) / i , :  + ~. -~, 

with At = ~0 - (*(**(@XYZF 
= ~x,., :~, • c ** ( - - D ) ) / E  + r ~, 

with 52 = A1 ® ( 
= ~ ,  ~ • c ** ( - - D ) ) / , ~ :  + F q ,  

with Aa = k~ ÷ ( , (**(®,  
= a,~l~ • c ** ( - - D ) ) / i , :  + F q ,  

w i t h &  = 5 a ) ) ) )  ® ( 
= ~ • c ** (-D))/i~ + e ~, 

with 5~ = ,54 + (*(**(@B 
= ~ 6 " *  ( - - D ) ) / E  - t - F  ~, 

with & = & ) )*(**(@c 
= . 5 7 -  D) ) /~ . :+F~ ,  withAr = zX6)**(~( 
= &))/~: + ~' ~, with & = e ,~ -  (,(**(@D 
= Ag)/E + F q ,  withAo = & s ) ) ) )  
= & o / E +  F-~, wi th&o = & ~ ) ) )  ) 
= & ~ + F ~ ,  with&u = &o ) ) / (**(®E 
= ~x,, ~, w i t h  zx,, = ~. ) ) ) + (.(**(eF 

and, finally, 

N@) = Nla@) = Ala, with At3 = ~12 ) ) ). 

More explicitly, then, N@) is tile expression 

= - ( , ( * * ( e x ~ - z t .  e ( + ( , ( * * ( e ~ )  ) ) ) • ( + (.(** 

(er~) ),(**(ec )**(e(- (,(**(e,) ) ) ) ) ) ) ) ) )/ 

(**(e:~:) ) ) + (,(**(eF) ) 

I t  may be seen quite easily that the result N(q,) of app l i  
cation of T1-T8 to a reduced arithmetic express im 
= cP ~¢ ~ is such that the balance of left and right p a r e n  
theses is not disturbed (closure condition). To wit: t he  threq 
additional left parentheses generated by TI  are close( 
by the three additional" right parentheses genera ted  b.! 
7'8, if TI(A~) is = ,  or 77'6, if TI(A0 is (; the same is truq 
for the first line of .7'2, and the second line of T2 is se l f  
dosing; .7'3, 77'4 and 7'5 are self-closing; 7'6 in t roduee l  
three additional right parentheses which are d o s e d  b3 
the three additional left parentheses generated b y  T:  
or the first line of 77'2; identical assertions hold for  T;  
and 77'8. 

If N@) is = %  then we shall define ~N as ~,  i.e., th (  
string N@) minus the FORTRAN = sign. Thus, ¢x  is t. 
string of elements of the form @A'~ where, for each  i 

~ i =  A a n d ~ i  = )  

or ~ , ~  { + , - , , , * * ,  ®} and q~ ~ ~B,U {(}. 

6. L e v e l  A n a l y s i s  

The level analysis of an arithmetic expression = ,ll 
consists in the reeursive generation of what we shall  e a l  
partial productions I t ,  each partial production a s t r in{  
of triples (of entities to be described below) f o r m e d  irl 
the following manner. 

We define three integer sequences {Nd,  {C~}, {A,:} 
and a sequence {Kd of integer sequences such t h a t :  
initially, N1 = 1, C1 = A1 = 0 and K1 = A. B y  K /  
we shall mean the last teml of the sequence K~,  a n d  it 
K~ = (0,  K / )  then R.~ = (0)  (possibly null). We: se t  t he  
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d 

inithd partial production II1 = A, and if [[i ~ ILE,  
then IL+t = II.iE. 

Now if ~ ' i ~  denotes the /tit element of q;v, the pro- 
duetion schema is as follows: 

I ( then [L -~ IIi(C~, <~ ,  NO 
N,iH = N i  + 1 

I Ci+t = N.~ 
Ai+~ = A~:+ 1 
Ki+~ = (K~,  C d  

Z, where Z C !~33¢, 
then [Ii ~ II,:(Ci , ~ i , X) 

Ni+l = N i  If ~ i  = 
C,,+~ = C~ 

Ai+~ = A:; 
K g+~ = Ki  

then [Ii --~ H~ 
Ni+l = N~ 
Ci+l = K,:' 
A,i+, = A ~ -  l 
K~+t = R.: 

The effect of applying these transformations com- 
pletely to the normal form ~pv is to produce a string 11@)-  
which we shall refer to simply as the production of ~--- 
which is a representation of the computation required 
to evaluate the original arithmetic expression = ~-~. 
The computation proceeds from the innermost to the 
outermost levels (in the sense of T1-TS) in a systematic 
manner, as we shall later see. 

Note that,  since A~ = 0 and 

{ A1-4- 1 when'-P; = ( 

Ai+t = A i  when Ti ~ ~3¢ 

A,: - -  l whenT~ = ), 

then the last term of the sequence {Ai} is 0 if and only 
if (I, itself is closed with respect to parenthesization. 

Now, each element C (respectively N) of the set of 
terms of the sequence {C.i} (respectively {Nil) m~y be 
interpreted as the index of a "currently defined" (respec- 
tively, "next-to-be-defined") expression S~ (respectively 
SN) embedded in the production 1I@). Each such expres- 
sion is defined as the set of all triples of the form (C, ~,~J, 
T~), for arbitrary, fixed C, where the index j ranges over 
the number of triples having the "current"  index C. 
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li'rom the above "partial production" schema, it, is 
easily seen that, for any i, j, C,: = Cj entails A., = d j  
(but not conversely). • s l 'hu:, sinee each element of the se- 
qtmnce {di} is a level index (rising by 1 for each left 
parenthesis, dropping by it for each right parenthesis, 
and otherwise stationary), it is meaningful to state that 
each of the above mentioned triples belongs to the same 
level. We shall call such a set of triples a segmerd of the 

i level to which any of its members belong. Of two seg- 
ments Sc.~, Sc: ,  moreover, we may say that  they belong 
to (or are segments qf) the same level if' and only if A~ = 
A~. Since this is at, equivalence relation between seg- 
ments, we see that each level is completely defined by 
the set of all segments bdonging to it, in the above defined 
sense. Furthermore, since all triples comprising a segment 
behmg to the same level, their operation elements are of 
the same type, i.e., all • and/or  / ;  a[l + and/or  - ;  all 
• , ; o r  all @. 

Before proeeeding further, let us pause to illustrate the 
partial production schema with respect to the example 

~, = - x Y z r ( a ,  n • c ** ( - D ) ) / E  + r 

of sect, i(m 5. To this end, it is convenient to arrange all 
information in the form of table I, wherein the ith column 
contains at its heard the element ~,ivg,i of ~I ;v and, imme- 
diately below, the respective values of N~, C~, A.:, and i. 
Table 2 is a parallel display ef the generated terms of the 
sequence {Ki} (which we name the C-sequence) and the 
partial productions 1L. 

7 .  O p t i m i z a t i o n  ( G e n e r a l )  

The first stage of optimization of II@) consists in the 
elimination of redundant parentheses arising out of the 
transformations T1-T8. Having achieved the desired 
stratification of ~, they shall now disappear from the 
scene, and in the following manner. 

The production lI@) is scanned, "back-to-front",  one 
triple at a time. If and only if a triple (C, ~ ,  T) belongs 
to a segment of length 1. and ~ # - is this triple elimi- 
nated from 1I, and • replaces the third member of its 
immediate predecessor. This "telescoping" procedure is 
based on the fact that  a segment is of length 1 only if its 
"name"  (i.e., current index C) is "addressed" by its imme- 
diate predecessor. This last assertion follows, in t u rn ,  
from the f i rs t  partial production rule. i 
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C-Sequence 

K~ = A 
K~ = (0) 
Ka = (0, 1) 
K4 = (0, l ,  2) 
K.~ = (0, t ,  2) 
K~ = (0, 1, 2, 3) 
K7 = (0, 1, 2, 3, 4) 
Ks = ( 0 , 1 , 2 , 3 , 4 , 5 )  
K~ = ( 0 , 1 , 2 , 3 , 4 , 5 , 6 )  
K~0 = (0, 1, 2, 3, 4, 5, 6) 
Kn = (0, 1, 2, 3, 4, 5) 
K~2 = (0. 1 ,2 ,  3, 4) 
K~a = (0, 1, 2, 3) 
Kt4 = (0, l ,  2) 
K~a = (0, 1 ,2 ,  3) 
K~  = (0, 1, 2, 3, 8) 
K17 = (0, 1, 2, 3, 8, 9) 
KlS = (0, 1, 2, 3, 8, 9, 10) 
KI9 = (0, 1, 2, 3, 8, 9, 10) 
K~o = (0, 1, 2, 3, 8, 9) 
K~ = ( 0 , 1 , 2 , 3 , 8 )  
Keg = (0, 1, 2, 3, 8, 9) 
K,,,a = (0, 1 , 2 , 3 , 8 , 9 ,  12) 
K~,~ = (0, 1, 2, 3, 8, 9, 12) 
K ~  = (0, 1, 2, 3, 8, 9) 
K ~  = (0, 1 , 2 , 3 , 8 , 9 ,  12) 
K~7 = (0, 1 , 2 , 3 ,  8, 9, 12, 14) 
K~s = (0, 1 , 2 , 3 ,  8, 9, 1 2 , 1 4 , 1 5 )  
Ke,~ = ( 0 , 1 , 2 , 3 , 8 , 9 ,  12, 14, 15, !.6) 
Kao = (0, 1 , 2 , 3 , 8 , 9 ,  12, 14,15,  16, 17) 
Ka~ = Kao 
Ka~ = (0, l ,  2, 3, 8, 9, 12, 14, 15, 16) 
Kaa = (0, 1, 2, 3 ,  8, 9, 12, 14, 15) 
Ka.t = (0, 1 , 2 , 3 , 8 , 9 ,  12, 14) 
Kay, = (0, 1 , 2 , 3 , 8 , 9 ,  12) 
Ka~ = (0, 1 , 2 , 3 , 8 , 9 )  
K87 = (0, 1, 2, 3, 8) 
Kas = (0. 1, 2, 3) 
Ka9 = (0, 1, 2) 
K40 = (0, 1) 
K~  = (0) 
K~e = (0, 1) 
K4a = (0, 1, 19) 
K44 = K4a 
K.~5 = (0, 1) 
K46 = (0) 
K~ = A 
S.*s = (0) 
K~.~ = (0, 21) 
Kr~0 = (0, 21, 22) 
K ~  = K~0 
K~2 = (0, 21) 
Kaa = (0) 
K~4 = A 

Par tia[ Productions 

[I~ = A 
lie = IIl(0, --,  1) 
IIa = IIe(l,  * ,2 )  
H4 = Ha(2, **, 3) 
II., = I14(3, Q ,  xYZt,') 
II~ = n d 3 , ® ,  4) 
117 = r id4 ,  + ,  5) 
Ils = II7(5, *, 6) 
II~ = IIs(6, **, 7) 
Illo = r[9(7, @ ,  A) 
I lu  = H10 
II12 = IIil~ 
11ta = I I p ,  
II14 = II,a 
11,8 = II1114(3, @,  8) 
1116 = It:5(8, + ,  9) 
Ill7 = I h d 9 ,  *, 10) 
111s = IltT(10, *% 11) 
IIl~ = 111s(11, @,  B) 
II20 = IIi9 
112t = I1,~0 
1122 = 1121(9, *, 12) 
H~,a = lice(12, *% 13) 
I[~ = llea(13, @,  C) 
II~8 = II~4 
Iie~ = II-2~(12, *% 14) 
II27 = II~(14,  @,  15) 
l[I:s = II~(15,  -- ,  16) 
11~ = II~a(16, *, 17) 
118o = 11~9(17, **, 18) 
Hat = IIa0(18,(f), D) 
IIa~ = Ilat 
Ilaa = [Ia~ 
I[a4 = Ilaa 
Ilaa = IIa4 
I11a,~ = lIIaa 
11at = Ilaa 
l-[as = t137 
Has = lls8 
II4o = Ha9 
II4~ = II~o 
I I~ = n ~ ( 1 ,  / ,  tg) 
II~a = Ilv.,(19, **, 20) 
11,~4 = 114a(20, @,  I~:) 
11~8 = II44 
H4B = 1148 
II47 = [[46 
[I~s = [147(0, -- ,  21) 
I Io  = II~s(21, *, 22) 
II~0 = II~9(22, **, 23) 
IIbl = II~0(23, @,  F) 
II52 = 11.~1 

I I ~  = II~a 

Next, the set of so-condensed segments fI@) is ordered 
according to current indices, so that, if 

,vhere 

fi@) = & . . .  & 

& = (c, 0o', ~o') . . .  (c, O )  ~, ~)o)  

;hen S~, "precedes" S¢. if and only if c' =< c". 
The next stage of optimization involves the "elimina- 

t ion" of comnlon subexpressions, so as to avoid redundant 
computation. This is accomplished in two steps: 

1) Beginning with &:, the last segment in fI(~), and 
for each i =< L, the set, of all $5 with j < i is examined 
for the occurrence of an S~ = S~. As soon as some Si = 
Sx, S~ is eliminated from [](qs), and all references to Sj 
replaced by references to S~, i.e., if some % = j,  then j 
is set equal to i. 

2) Having elinfinated, by 1), common segments, we 
now eliminate eonmmn sul)expressions. Beginning with 
S£., and for each i =< L, the set of all Si with j < i is 
examined for the occurrence of more than one reference 
to S~, i.e., the occurrence of ~,,,, ',P,~, with m # n and 
~Ig,,~ = ~,~ = i. If and only if this is the case is S~ tagged 
as a eomnmn subexpression (what we call a cs-type seg- 
ment). 

Procedures 1) and 2) together assure the elimination 
of outermost common subexpressions. Thus, if 

(D = A * (U * C) + SINF(A * (U * C)) ,  

t h e n  

[ f I @ )  = ( 0 ,  + ,  1 ) ( 0 ,  + ,  1 4 ) ( 1 ,  , ,  x ) ( 1 ,  , ,  7 )  

(7 , . ,  B)(7, *, C)(14, @, SlNF)(14, @, 16)(16, *, A) 

(16, ,, 22)(22, ,, n)(22, ,, c)] 

Procedures 1) and 2) reduce fI to 

(0, + ,  16)(0, + ,  14)(14, @, S~NF)(14, @, 16) 

(16, *, A)(16, *, 22)(22, ,, n)(22, ,, c), 

with S~ tagged as a cs-type segnlent, since q,o ~ = ~t~ ~ = 
16. 

W e  s h a l l  d e n o t e  t h e  r e s u l t  of  c o m m o n  s u b e x p r e s s i o n  

e l i m i n a t i o n  b y  ( ~ ) .  

8 .  O p t i m i z a t i o n  ( S p e c i a l )  

O w i n g  t o  t h e  f a c t  t h a t  t h e  FORTRAN S y s t e m  w a s  o r ig i -  

n a l l y  d e s i g n e d  t o  c, o m p i l e  " o b j e c t "  ( r u n n i n g )  p r o g r a m s  

i n  7 0 4  l a n g u a g e ,  c e r t a i n  f u r t h e r  s p e c i e s  of  o p t i n f i z a t i o n  

r e g a r d i n g  t h e  c o m p i l a t i o n  of  a r i t h m e t i c  s t a t e n l e n t s  a p -  

p e a r  t o  b e  n e c e s s a r y  if a d v a n t a g e  i s  t o  b e  t a k e n  of  t h e  

m a c h i n e ' s  o w n  s p e c i a l  c h a r a c t e r i s t i c s .  W e  l i s t  t h e s e  in  

t h e  o r d e r  i n  w h i c h  t h e y  a r e  c o n s i d e r e d  b y  t h e  e x e c u t i v e  

p r o g r a m .  

1) E a c h  s e g m e n t ,  S~ w i t h  @ i  ~ = * is  s c a n n e d  f o r  p o s -  

s ib le  p e r m u t a t i o n  of  i t s  m e m b e r s ,  so  a s  t o  m i n i m i z e  t h e  

o c c u r r e n c e  of  c o m p i l e d  m e m o r y  a c c e s s e s .  S p e c i f i c a l l y ,  

e a c h  s e g m e n t  S i  of  t h e  f o r m  

(i, *, ~, ')  . . -  (i, ~ ? ' ,  ~ 7 9  
where 

~ ] = . o r / ,  1 < j  =< X~ 

undergoes permutation of its elements so as to yield a 
(possibly null) maximal subsegment of the form 

(i, ,, ~ / ' ) ( / , / ,  ~ P )  . . .  (i, , ,  ~ / ~ - ' ) ( i ,  / ,  "~ /9  

i.e., a maximal subsegment whose operator structure is 
• , / ,  , / ,  . . .  , , / .  

Since the only remaining elements (if any) are of the form 
(i, *, ,t,) or ( i , / ,  ~),  consider the following eases: 

(i) The number of . 's  in S~ is one more than the num- 
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ber of / 's .  It: this case, tile operator structure of St is 
, / , / . . .  ,/,. 

(it) The number of , ' s  in S,: is at least two more than 
the number o f / ' s .  In this case, the operator structure of 
S< is * * / , /  . . .  , / *  . . -  , ,  

(iii) The number of / ' s  in N~. exceeds the mm~ber of 
• 's. In this case, the structure is . /  . . .  , /  . . .  / .  

2) A segment S~ is said to be type Mq it! its last opera- 
lion is / ;  otherwise, it is said to be type AC. 

A fm'ther species of optimization of H(~), which we 
term linkage, designed to minimize memory accesses, is 
performed in the following manner. Beginning with the 
last segment, SL, each segment S~ is examined as to 
type and affected in the following ways. 

(I) S~ is type he. Then & is tagged as Ae-linkable and 
Si_t as At-linked, if and only if one of the following con- 
ditions obtains: 

(i) @,:_1 + o r -  and for some j,  .i-1 = i. In th i s  
ease, in addition to tagging ,~.q and S,:_~ , interchange the 
first and j th  elements of &_~. 

(it). @.i_1 t *, @i._: 2 / ,  and for some j ,  ~_~ = i, 
<-:~ = *. Again, in addition to tagging Si and S~ 1, 

interchange the first and j th  elements of & - l .  
(iii) @ ~_~: @, i-: = i and ,Iq_~: is the name of a 

closed subroutine (see below), and ~N-type function, or art 
open univariate function. 

(iv) @ i-t' = ** and ~.,_** = i. 
(I0 S., is type MQ. Then S~ is tagged as ~*Q-linkable 

and S~_, as Mq-lirdced, if and only if one of the following 
conditions obtains: 

1 
(i) ~.i_: = *, @~-,2 = * and for some j,  T.i_:i= i, 

J 
@~_~ = *. In this ease, in addition to tagging & and 
S~_,, interchange the first and j th  elenlents of S,_~. 

~i f 8 1 (it) @ i_, 1 @, ~-t = i and T~_~ is the name of a 
dosed subroutine (see below), an ~N-type function or an 
open univariate function. 

(iii) @i_** = **. There are two cases: 
(a) ~_, is the name of art integer constant less than 

7 (in which ease S~_~ is compiled as an open subroutine), 
and .i-t = i. 

(b) 'Iq_l ~ = i. 
[n  all other cases, i.e. eases which do not fall either under 
(0 or (tI) above, S< is unlinkable and Si-~ unlinked. 

9. Funct ion  Types  

With each library or FN-type function appearing in a 
FORTRAN program is associated a type number according 
to the following scheme: 

I) Each library function is of type 0. 
H) If • is an FN-function name, where 

q~(At, . . .  , A,~) = td[A~ , . . .  , Anl q ,  

then 

(a) if E contains no library or FN-fmlction name, ~ is 
of type 1. 

(b) if E contains a library or FN-functk)n name, and 
r r ,  - . .  , r~: are the type numbers already associated with 
these functions, then the type number of ,I, is simply 

max (r~ , . . .  , r~) + 1. 
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10. Address  Compi /a f io l l  

Each member of an element (triple) occurring in 
lI@) is represented during compilation by the cont, ents 
of a full word of 704 storage. These three words are re- 
ferred to, respectively, as the htg word, operator word, and 
symbol word. The precise bit-structure of each of these 
words is a function of the role plnyed by the element in 
question. 

The tag word of each element of a. segment S~ contains 
not only the current index i, but in addition, if this ele- 
ment refers to a subscripted variable in the original (un- 
reduced) expression (I, a set of three tags identifying the 
dimension, subscript and addend combinations. 

The operator word of each element contains the ope ra -  
tion code and, if the first clemcnt of t~ segment S~., a set 
of bits containing information as to certain properties of 
this segment, viz., whether the segment is linkable or 
linked (and through which arithmetic register); whether 
arithmetic for this segment is floating or integer mode; 
whether, if 1 @i = @, St defines a library, open sub- 
routine, FS- or F~'-function (and, if the latter, what  its 
type); whether or not S~ defines a common subexpres -  
sion; whether the result of computation of S~ appears 
the accumulator or multiplier-quotient register. 

The symbol word of each element contains the nan 
of the eperand, which may be an integer or floating mode 
w~riable, an integer or floating mode constant, a func- 
tion, or some other segment S i .  

We shall denote the compiled tagged-address asso- 
ciated with the j th  symbol of the ith segment by ~ / .  

Actual SAP-form address compilation proceeds as 
follows: 

(i) An address reference to an integer (respectively 
floating-point) constant is compiled into a symbolic 
address 2) (respectively 3)) and relative address v (re 
spectively u), where ~ (respectively u) is associated with 
the vth (respectively uth) distinct integer (respectively 
floating-point) constant occurring in a given source  
program. 

(it) An address reference to a subscripted variable is 
compiled as follows: 

(a) If K • ~ ~ P is the canonical form of the subseripl 
associated with a one-dimensional variable ,I,/, then the 
symbolic address is compiled as "I,'i ~ and the relative 
address as 1 ~ P. 

(b) If K : . 2 h  =t: P1, K s .  Z2 ± P2 are the canonical 
subscripts associated with a two-dimensional variable 
'It .j~ , then the symbolic address is compiled as ~ : '  and 
the relative address as 

e- (=I=Pi- El) -- r1(±P2- e~), 

where 

f ~  if ~1 = Z2 = A 
= otherwise, 

if Zk # A 
ek = "~lfo otherwise, 

and Pl is the first dimension of ,F/. 
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ie 

re) Finally, if K, • E:t ± P l  , K.e * Ee ± Pe, 

Ka * Ea ± Pa 

are the canonical subscripts associated with the three- 
dimensional w~riable q,,/, then the symbolic address is 
compiled as ~F/and  the relative address as 

e,) - C , ( ± e ~ -  ee) - r , P e ( ~ P a -  e:~) e - -  r i P , -  

where 

e = otherwise, 

I(~ if ~ ~ A 
~k = otherwise, 

mid I'~, I'2 are the first two dimensions of q>/. 
(iii) An address reference to another segment Sj is 

compiled into a symbolic address l) r, where r is the 
type number associated with the arithmetic expression = 

-~, and a relative address ~i.  The ~ ' s  are erasable 
storage relative addresses deternfined in the following 
way: Beginning with the last segment SL of I~[(4S), each 
S~ is examined to determine whether it is nonlinkable or 
is tagged as a common subexpression, hi either case (and 
only then) an erasable storage relative address 

~ = ~ + 1 

is associated with & ,  where S~ (i =< j) is the last, seg- 
ment nonlinkable or tagged as a common subexpression, 
mld, initially, ~ = - 1  or 0, depending upon whether 
I i@) does or does riot define an Fx-type function. 

(iv) With each tape library or ~\,¢-type function is 
associated a class of erasable storage cells set aside as a 
i)uffer for the transmission of its arguments. The type r 
of any given class is determined by the type assigned to 
the function in question. Thus, tape library fimctions are 
~dways of type 0, and an Fi-function is of type 1 greater 
than the highest type occurring in its definition. 

In the case of a tape library function, art address refer- 
ence to its kth argument is compiled into a symbolic 
address 4)0 and a relative address - ( k - 1 ) .  

In the case of all FN-function, on the other hand, an 
address reference to its kth argument is compiled into a 
symbolic address 4)r, where r is the type number, arid 
relative address k-1. 

I t  should be rioted, at this point, that the necessity 
*'or typing tape library and FN-functions arises from the 
fact that  either may occur within the definition of an 
Fx-funetion. Unrestricted nesting of these functions 
within such a context is possible, therefore, only if their 
~rgument buffer regions are non-overlapping. 

(v) For the reasons cited at  the end of (iv), the class 
of calling-index saving cells is also typed, type 0 as- 
signed for tape library functions and type r > 0 for a 
given FN-function of type r. The relative address in both 
eases is 0, the symbolic address 7)0 for tape library func- 
tions and 7)r for Fx-functions. 

(vi) Finally, when intrasegment erasable storage is 
required, a single cell is set aside having symbolic address 
7)0 and relative address 0. 

11. A r i t h m e t i c  S t a t e m e n t  C o m p i l a t i o n  

Beginning with the last segment SL of H@), each seg- 
ment S~ is "forward scanned" and compiled according to 
the following schenm. 

(I) Initial Compilation of a Segment 

(A) ~ i  ~ = + .  There are two cases: 
(i) S:i is linked. Proceed to (g), unless Si is of length 

1, in which case proceed to (hi). 
(ii) S~ is unlinked. Compile CLA ~ and proceed t(~ 

(~) .  

(B) ~ i  1 = - .  Again, two cases: 
(i) Si is linked. Compile cns and proceed to (H), 

unless S~ is of length 1, in which case proceed to (Iii).~ 
(ii) S~ is unlinked. Compile C:LS q~, then proceed as 

per B(i). 
(C) C , )  = *. T w o  cases:  
(i) & is linked. Proceed to (~). 
(ii) & is unlinked. Two subcases: 
(a) ~ i ~ = / .  Compile cI~:t ~,1. 
(b) ~,i 2 = *. Compile LDO ~i I. 
In either case, proceed next to (H). 
(D) <~1 = ®. There are several cases: 
(i) qct is the name of a tape library subroutine. Three 

s u b c a s e s :  
(a) S; is At-linked. Compile the sequence 

I [ S  IA)Q ~i4 
TQ 4)0 -- 2 

|1LI Q ~,: 
~(STq 4)0 -- ( M -  2) 

LDq ~a  

followed by the sequence 

SXD 7)0,4 

TSX q2il,4 

LXl/ 7)0,4. 

Either subsequence in braces is vacuous (not compiled) 
in the event S,: defines a mfivariate or bivariate func- 
tion only. Note, further, that  both the SXD and Lxo in- 
structions surrounding the TSX may be eliminated by a 
later section of the FORTRAN executive system in the 
event that the flow of indexing information obviates 
saving the contents of register 4 at this point. 

(b) S i is Eta-linked. Compile the sequence 

CLA ~-~ i 4 
STO 4)0 -- 2 

t . . . . . . . . . . . .  
CLA ~f i hi 

~STO 4 )0 - -  (M--  2) 

followed by the sequence 

CLA ~d~i 2 

SXD 7)0,4 

TSX x~il,4 

LXD 7)0,4. 
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The 8tt[)se(ti.l(;iK:e it, braee, s is v:~.cuotts ira the event ,% de,- 
fines a bivariate function only, 

(c) S~ is unlit/ked. Compile (:lea q,,~, then lhu sequence 

((L,)Q ~,4 

4)o - - e) 
( 'I,I)Q @i:; " 

follmved t}y the se(tu(mee 

sxD 7)0,4 

'['sx q, il,4 

l ,xo 7)0,  l, 

Either subse(luence in |)races is vacuous in the event; £',. 
defines a univariate or biv:tri:tte function only. 

(ii) qC ~ is the name of :m Fx-funetion of type r. Three 
subct ts (}S : 

(a) S, is At-linked. Compile STo 4)r, then the sequence 

[A)O x[t/3 

STq 4) r  + I 
'CLA x[t,: '~ 

STO l)r  + 2 

CI,A @i xi 

~ST() 4)7" + (Xl -- 2) 

folh~wed by the sequence 

sxl) 7)r,4 

!l'SX qr;t, [ 

[,XO 7)r ,  I. 

li',ither subse<luence in braces is vaetlotls lit the event S,. 
defines a univariale or I)iwa'iate ftmetion only. 

(t>) S~ is ~tq-linke(:l. (]<)mpile the se<luelme 

{'.LA '~[ti '~ 

s'ro 4) r 

STQ [ ) r  + 1 

then the se(luenee 

CLA ~ti  4 

STO 4)r  + 2 

CLA x~r i '\ i 

STo ;t)~ + ( X , -  2) 

R~llowed by the sequence 

sxD 7)r ,4  

TSK qril,4 

I, XI) 7) r,4. 

The subseqttenee in braces is vacuous in the event  S, 
defines a bivariate funetkm only. 

18 C o m m u n i c a t i o n s  of  the  ACM 

(c) S~ i,~5, u~lhiked. Compile the :-equence 
- -  9 

sTo '-IOT, 

~}112[] t~l(} S('(]llfHI(::C 

I,bQ CP; ;~ 

! i  . . . . . . . . . . .  

l 
+ (x,:- 

followed, agai~, by the sequeuce 

s x  J) 7) r,4 

'rsx q,,~,4 

~,xl) 7)7,4 

I[!;ither subseque~lce in b r a c e s  is v~t(tl.l()lb5 ill  l:}]e e V e l / t  ~S', ;! 

defines a tmivariate or bivariate fm~etioH o n l y  
(I l l )  XPi lS th(~ / t a l l l e  of ~iAi FS-{l l l l0 t lOl l .  [ w e  s l l l ) ( ' ases :  

(a) No subscripted va.riatfle contaiaing a variable 
subscript itMex occurs as aH argumenl of xP, 1. (:olnpi/e 

{{ 
t h e  8e(tl leIlc(} [; 

sxl~ 7)0,4 

' rsx ~I,,:~, t 

........................ ;L"' 

I,xK) 7)0,-t. 

(b) Some sui)scripted x.ariable oeetlrrillg its ttl/ ai'gu- 
meltt of ,It, t contains a, variable stl])se'ipt index. If .,[,a 

i! , . .  , ,,p,./k ()Oll tpFise S/l( h tI s ( t  t | l ( ! l l  compile the sequence 

PXI) @i g 

A ItS 18 

A H )  * - -  ' 2  

S T . .  + j~ 

PXD ~[Q a'k, 

At.~S 18 

ADD * - -  '2 

ST, c¢ + j:,, 

SXD 7)(), ~ 

TSX ~ .z ,~  

• 7)0+[. 

The symbolic address c~ denotes the relative location 0f 
the TSX instruction within the body of' the program, and 
each entry in the sequence between the TSX a.nd LXD in- 



iii~ii!; 
structions is of the form ~ , if m ~ any j,, ,  or R,a,,~ if 
obherwise. We recall, in passit,g, that in this cont.ext 
~4J" iS our symbol for the composite symbolie-rela.tive 
~ddress arid tag of ;F ~'~ if the latter denotes a subscripted 
w~riable. Tha t  is, if p~s" is the algebraic (signed) relative 
address mid r~ ~'~ the tag associated with t, his variable, then 

~,;'~ = ,It/'~ + p,/" r]'* , . 

Thus, the effect of the sequence PXD, At{S, aO[), STA is 
to compute the effective address of tiffs variable and 
store same as an actual address it, the calling sequence, 
which address is then available to the subroutine de- 
fitting the value of ,It** via the calling index register 4. 
r a  e [h ,  symbolic address • denotes the contents of the 704 
program counter at the time an instruction having this 
symbolic address is interpreted by the machine. 

(ix') ,P? is the name of a built-in open subroutine. 
Owing to the fact that compilation of an open subroutine 
into the main body of an object program is an essentially 
ad hoe procedure--depending, as it, does, on the particu- 
lar nature of the function in question, the number of its 
arguments, and upon the particular context within 
which the function arises--and since, further, actual 
compilation of open subroutines is deferred to a section 
of the executive system la, ter than that with which the 
present paper is eormerned, we shall emit a detailed de- 
scription of this subject for the present. 

( E )  ~ ?  = **. 
(it S,: defines an open subroutine, via., ~('  is the name 

of an integer constant less than 7. The same remarks 
apply here as for (D) (iv) (q.v.). 

(if) S~ defines a closed subroutine. 
(at S~ is ate-linked. Compile LDQ ~.2,~, then proceed 

to (C). 
- -  1 (b) S~ is not At-linked. Compile cb.,~ ~ i .  

1) S¢ is ~aq-linked. Proceed to (C). 
2) S~ is not Mq-linked. Proceed to (at. 
(e) Compile SXD 7)0,4; then proceed to (d). 
(d) Three distinct built-in tape library subroutines 

compute the exponential according as the exponent is 
integer or floating valued, or the base is fixed valued. 

1 2 g, ~ are both integer wtlued. Compile TSX 

? is floating valued, T~ integer valued. Compile 
(2,4. 
1 ~tlf2 ~, ~ are both floating valued. Compile TSX 

~ integer valued, 'Icz ~ floating valued. Disallowed. 
nally, compile LXD 7)0,4 and proceed to (m).  

~dra-Segment Compilation 

>i ~ = + . T w o e a s e s :  
is in floating-point mode. Compile FAn q,j. 
is in integer mode. Compile ADD ~¢~. 

>i / -~- --. TWO eases: 
is in floating-point mode. Compile FSB ~ / .  - j  

(if) S, is in integer mode. Compile SVB 'I'~. 
(C) ~ i  ~ = *. Two cases: 

(it Predecessor in MO. I.e., Q/ -*  = / or ~ ?  = * and 
j = 2. Two subeases: 

a) S.i floating-point. Compile FMP ~ /  
b) ~5g,: integer. Com!oile ~pY ~,/, ALS 17. 
(if) Predecessor in ace. I.e., ~ i  >* = • and j # 2 

Compile STO 7)0, LDQ 7)0, and proceed to (i) (at or (it (b) 
above, depending upon mode of S.i. 

(D) ~ /  = /. Two cases: 
(it Predecessor in MQ. I.E. ~,/-~ = / .  Two subcases 
(at S~ floating-point. Compile STQ 7)0, CLa 7)0: 

F D P  ~gi j. 
(b) S~ integer. Compile Dye ~J,  eLM, LLS 18. 
(it) Predecessor in ACe. I.e. ~ j - t  = , .  Two subcases 
(at Si floating-point. Compile FDP ~J .  
(b) S~ integer. Compile Lt~S 35 and proceed to (it (b) 

above. 

(m)  Final Compilation of a Segment 

(At Last segment compiled was So. 
(it ~@) is an iF-type production, i.e., is the productior 

of an expression ~I, contained in a Foln'm~x seurce hm- 
guage statement of the form 

IF@)n, , n2 , na 

where the n~'s are source program statement names. 
(at So is type Ac. Finis. 
(b) So is_' type MQ. Compile LLS 37 and finis. 
(it) i i @ )  is a CALL-type production, i.e., is the produc- 

tion of an expression ¢ contained in a ti'm¢T~tAn sourc( 
hmguage stagement of the form cAr, t, ~, where ,I, is ar 
Fs-function. Finis. 

(iii) ~ is neither an IF- nor CiH~-type production 
Then the source language statement containing • is el 
the form 'I* = ~I, -~, where T is a w~riable or FIv-functior 
name. Consider the cases: 

(at • is integer-valued. 
(1) So is in floating mode and is type Ac. Compile th{ 

(fixing) sequence UFA 6), LRS 0, AiR 6) q- 1, LLS 0, ALS 18 
We note, here, that  two constants having SaP identifl. 
cations 6), 6)+1,  - . .  are compiled into the object pro. 
grant constant-region. These constants are, in 704 octal 
word-format, 233000000000 and 000000077777, respec. 
tively. Thus, the above sequence has the effect of placin~ 
~he point of the floating-point number, whose intege] 
form is desired, to the extreme right of the accumulator 
preserving its sign in the MQ register, extracting th( 
mantissa (now positioned in the last 15 bits of the ac. 
cumulator), restoring the sign and shifting the mantiss~ 
into the decrement field. 

(a) If • is an r~-funetion name, compile a'mt 1,4 
Finis.  

(5) If not, compile STO ~, and finis. 
(2) So is in floating mode and is type uq. Compih 

STQ 7)0, eLA 7)0, then proceed as in (at (1), above. 
(3) So is integer valued. 
(at 'I~ is an FN-funetion name. 
a) So is type he. Compile TR.< 1,4. 
b) So is type ~Q. Compile STQ 7)0, eLa_ 7)0, "rna 1,4. 
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(¢3) ,P is a var iab le .  
a) So is t y p e  AC. Compi le  STO ~ .  
b) So is t y p e  ~q .  Compi le  STQ ~.  
(b) qz is f loat ing valued.  
(1) So is f loat ing valued.  Proceed  as in (a) (3), above.  
(2) So is in teger  valued.  
(a) So is t y p e  he. Compi le  LRS 18, Om~ 6), FAD 6). 
a) qP is an ~'N-funetion name .  Compi le  T:m~ 1,4. 
b) Otherwise ,  compile STO '~. 
(B) So is t y p e  MQ. Compi le  swQ 7)0, CL:~ 7)0, and  pro- 

ceed as in (2) (a) above.  
B) Las t  s egmen t  (St) compiled was  not  S0.  

(i) S~ l inkable  arid no t  a common  subexpressio~> 

Proceed to compi la t ion  of S~_~. 

(it) S,: no t  l inkable  or is a common  subexpressiol~. 
(a) S.z is t y p e  ac .  Compi le  STO I ) r  + ~ i ,  where  T is 

the t ype  n u m b e r  associa ted  with q,, and  equals  0 if ~, is 

not  an Fs-funet ion name;  otherwise,  T is the t y p e  of the 

funct ion cur ren t ly  being defined (see section 9). The 
relat ive address  ~z is defined as in section 10 (iii). Pro- 

ceed to compi la t ion  of S~ ~. 
(b) S.~ is type  M(~. Compi le  STQ l ) r  + ~.~, and  proceed 

to compi la t ion  of S i - - 1  • 

APPENDIX 

A1. I m p l i e i t  M u l t l p l i e a t l o n  

A certain conciseness of no ta t ion  in the  wri t ing of 
expressions is a l lowed of b y  the  fac t  than  an  • sign need 
not  occur in an  expression 4, if q~ is no t  of the  fo rm ,I, • X, 
where T~(,P), H~(X) belong to ~ .  Thus,  if • ~ ,It (read 
,%5 equ iva len t  to ' I ,")  is t aken  to mean  t h a t  the  eorre- 
sponding a r i t hme t i c  expressions -- q5 ~,  = ,I¢ ~ yield 
identic,,fl object (machine- language)  programs,  then  

(-A)t~(~) ~ (--A),B(i)  

X01.(I)B ~-~ X01(I)*B 

s INF(x)cos~(x)  ~ S~Nr(X)*COS~(X) 

A(B + c) ~ ~, (B + e) 

(A/B)~o~r (x)  ~ (*/B)*~O~r(X) 

(:~ + ~0(x + Y) ~ '  (~ + B) , (x  + v) 

~r~Nr(x) (A -- B) ~ ~.~N,~(X)*(~ - ~) 

A2. B o o l e a n  S t a t e m e n t s  

An i m m e d i a t e  extension of the mechan i sms  of ar i th-  
met ic  s t a t e m e n t  compila t ion,  exploit ing the  AND-OR 
logic of the 704, is readi ly  a t  hand.  I f  tile opera t ion  signs 
+ , . ,  and  - are  in te rpre ted  to denote  urfion, intersect ion 
and complemen ta t i on ,  respect ively,  then  a cer tain subset  
of  the  set of expressions defined b y  E l - E 6  (see section 3) 
is sufficient for  the  fo rmula t ion  of any  Boolean  funct ion 
on the  set of all 36-bit  b ina ry  strings. We  shall call the  
e lements  of this  subset  sentences and  reeurs ively  charac-  
terize t h e m  as follows: 

S1. E v e r y  f loat ing-point  var iab le  name  q5 is a sentenee.  
If,  f u r the rmore ,  • = ~ ,  • " ~ ,  and  L@) < 4 or,f,,  ¢ F, 
and ,I, appea r s  in a. D~MENS~ON s ta tement ,  and  if Z~, . .  • , 
~ (1 _<_ /c N :3) are  subscripts ,  then  ~(Z~,  . . -  , Z~) is a 
sentence.  

$2. If  ,I~ is a sentence,  so is @). 
$3. If  • is a sentence such t h a t  H ~ @ ) ¢  - ,  and  ¢, is 

not  of the fo rm • + X, where % X are sentences,  t hen  
- ~  is a sentence.  

$4. If  ~I, is a sentence of the  fo rm ,i, + X, where ~ ,  X 
are sentences,  then  - @ )  is a sentence.  

$5. If  • is an n-adie funct ion n a m e  with H~(~I,) ¢ x ,  

and  A~,  . . .  , An are sentences,  then  ,I,(A~, . .  • , A,,) is a 
sentence. 

$6. I f  ~, '.P are sentences,  and  Hi@) ~ - ,  H:('.P) ¢ - ,  
then  ,I, + % ¢ , ,  ,I, are sentences.  

(Note :  T h e  same rule regarding implici t  inultiplic~t- 
t ion of exp re s s ions - -men t ioned  in A l a b o v e - - a p p l i e s  as  } 
well to the cons t ruc t ion  of sentences.)  

Rules  S 1  $6  prohibi t ,  by  implicat ion,  the writ ing of  
expressions of the  form + - ~ ,  where q~, q¢ are sen ten(es  
Thus ,  w h a t  in convent iona l  logical no ta t ion  is wr i t t en  

Nxp '  or ~A ~-~ ,It cannot  be abb rev i a t ed  to ,1~ - ~ ,  b u t  
m u s t  be rendered by  ~ *  ( - ~ ) .  

We  define a Boolean expression as a s tr ing of the f o r m  

where • is a sentence.  
Simihtrly, a pure Boolean statement is a s tr ing of t h e  

fo rm 

where ,Is is a subscr ip ted  or nonsubscr ip ted  f l oa t i ng -po in t  
variable,  and  = • ~ is a Boolean expression. 

A quasi-Boolean statement is a s tr ing of one of t h e  
following forms  

(a) IF @), where  • is a sentence.  
(b) CALT~ ,I,(A~, - - -  , A,~), where  • is a funct ion narc le  

such t h a t  
(i) i f ~  = ~ . . . ~ , ~ , t h e n L @ )  < 4or,p,~ ~ F,~I~ d o e s  

not  appea r  in a I)IMENSION s ta t emen t ,  and L@) ~ G. 
(it) each  A~ is a sentence or a I to l ler i th  field. 
A (Boolean) f l tnction definition is a s tr ing of the f o r m  

ii 
,~(A, , . . .  , An) = E[A,  , . . .  , A,~] 

where • is a funct ion name,  and  such t h a t  
(i) if cp = ¢t " " , ~ ,  then  H1(~)¢ x, 4 =< L(~) _~ 7 

and  ~ = F. 
(it) each A~ is a nonsubscr ip ted  t loat ing-point  v a r i a b l e  

name. 

(iii) E[A1 , . . . .  , .4,,] is a sentence in the  (free) v a r i a b l e s  : 
A~,  . - • , A , ,  wherein each A~ m a y  occur  vacuously .  

E x a c t l y  the  same  reduct ion,  level analysis  and  gene ra~  
op t imiza t ion  procedures  are appl ied to  Boolean as t o  
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arithmetic expressions. In addition, the special optimiza- 
tio3~ procedures (section 8) apply with one minor modifi- 
(:ad(m. Since each segment S; is type ac (the / sign ean- 
t~ot occttr in a, sent;ence), then linkage can only occur, 
if ever, through the machine's accumulator regisger. 
f{ellce, if 4~ i--I 1 = * ,  and for some j, %+-i'; = i, interchat~ge 
the first and j t h  elelnents of S,_~, tagging S; as ~c- 
lin#able and S~--t as ~c-linlced. 

Compih+tion of Boolean statements proceeds in a man- 
tier ana logo t l s  to that  of arithmetic statements except 
for the following operation code transformations: 

CLA --+ CAL 

LDQ --} CAL 

STO - +  SLW 

CLS --+ CA, L~ COM 

FMP --~ ANA 

FAD --+ ORA 

CHS --> COM 

STQ ~ SLW 

[~XAMI[ I !;. 

. , v ( x ,  Y) = ( - x )  + v 

EQU[VF(X,  Y) = [MPF(X, Y)[MPF(Y, X) 

z = (((**~)c) + D) + Im, K((**t,)c) + D), 

r:qt~wF(- ( - x ) ,  y)) 

We shall e~ssume tha t  the above statements appear in a 
possiMy more extensive program, and that  each is tagged 
as a Boolean-type statement (the letter u in cohunn 1 
of an IBM Fen'emiR, card). 

Note that  the IMPF function is type 1 and translates 
into the following instruction sequence: 

CAb 4)1 
cou  
o m t  4 )1  + 1 

T R i  1, 4 

The (free) variables x, Y are associated with 4)1, 
4) 1 + 1, respectively, in this ease. 

The I.:Qu,vF function is type 2, and translates into 

ea~, 4)2 + 1 
SLW 4) 1 

eAL 4)2 
SLW 4)1 + 1 
SXO 7)1, 4 
TSX IMP,~ 

Lxo 7)1,4 
SLW 1)2 
CAL 4)2 
SLW 4)1 
CAL 4 )2  + 1 

SLW 4)1 + 1 

SXD 7)1,4 
TSX IMPs4 

Lx D 7) 1,4 
ANA 1)2 
TRA 1,4 

Finally, the third of the above statements translates 
into the sequence 

CAL X 

CO~/I 

COM 

SLW 4)2 
CAL Y 

SLW 4)2 + 1 
TSX EQUIV,4 

s l , w  1)1 + 1 

CAB A 

ANA B 

ANA C 

ORA D 

s~w 1) + 2 
sI~w 4)1 
eAL 1) + 1 
s ~ w  4)1 + i 

TSX 1MP,4 

o 3 ~  1) + 2 
SLW Z 
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