. '“P@N A M by

SYMPOSIUM ON

T/&
‘ INR
@QI,I@&(',

AUTOMATIC PROGRQMMING 5o
FOR DIGITAL compﬁ,'rnns

11 g
o

NAVY MATH!:MA'rrCAL COMPUTING
ADVISORY PANEL

13 - 14 MAY 1954

- OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
WASHINGTON, D. C.




-

For

QPN

. 7
IBM 701 SPEEDCODING AND OTHER AUTOMATIC- ¢
PROGRAMMING SYSTEMS

John W. Backus and Harlan Herrick
International Business Machines Corporation, New York, New York

Before the discussion of IBM's 701 Speedcoding System, it is inter=
esting to consider the entire area of automatic programming for large=-
scale calculators to obtain a perspective as to the position of such a
system in this field. The basic purposes of automatic-programming

systems are primarily the following:

1. to provide operations which are not part of a machine’'s
repertoire as operations of the system,
2. to provide operations which are part of a machine's
repertoire in a more convenient form.,

In other words, it is desired to supply the .programmer with a
more convenient language in which to designate a problem than that

- now used by the machine.

The economic reason for providing such a “foreign” language is
that usually the programmer can specify a problem in such a language
and have the machine translate it into its own language at less cost than
would be required to specify the problem in machine language. In turn
this economic fact holds true because very often the machine will have
to do little more work, if any, in translating from the foreign language
to its own and executing the resulting instructions than i1t would have to
do in executing the program written originally in machine language.
Any extra work the machine must do in translating from the language

. in which the program is written to its own (in addition to executing the

. resulting machine instructions) is more than compensated economically

by the additional work the programmer would be required to do to state’
the problem in machine language rather than the nonmachirne language.

. This small difference between the work a machine does in translating

and executing a program in a foreign language and the work it must do -
to carry out the same job specified in its own language is obtained only
if a large percentage of the operations which the programmer needs to
specify are not part of the machine’'s repertoire. As a result some
programming systems permit some operations to be designated in
machine language while others which are not machine operations are
interpreted as belonging to a nonmachine language.

The most common nonmachine operations which automatic-
programming systems seek to provide for scientifie and engineering
calculations are floating-point operations and various elementary -

106

o WBh -




IBM 701 SPEEDCODING SYSTEM

functions: square root, sine, exponential, and so on. In a nonfloating=-
point machine such systems require the use of a subroutine for every
arithmetic operation. There are two principal methods by which auto-
matic programming systems make these nonmachine operations avail-
able to the programmer: the interpretive method and the compiling
method. An interpretive System translates and executes each non-
machine order every time such an order is encountered during the
execution of the program, but leaves it untranslated in memory. Thus,
each order will be translated as many times as it is encountered dur-
ing the course of the problem. ‘

A compiling system, on the other hand, translates each nonmachine
order into a sequence of machine orders before the problem solutiorn is
begun. Each nonmachine order is therefore translated only once. When
a comparison is made in this way it appears that compiler systems are
more efficient than interpretive systems, However, the relative effi-
ciency of the two systems depends on the type of machine being used.

In a calculator whose computing speed is great relative to the

. speed at which information may be brought from auxiliary storage into

high-speed storage, it may be possible to execute ten or more orders

in the time required to bring one order into high speed storage. In

such a machine it is of course desirable to limit the number of instruc=-,
tions in a program, even though it may be necessary for the machine to
execute more instructions while carrying out a compact program than

in a less compact one. If the necessity for bringing a thousand instruc-
tions of a lengthy program from auxiliary storage into high speed stor-
age can be eliminated by executing five thousand extra instructions in a
more compact program, the more compact program will be executed in
less time than the lengthy one plus the time to read the thousand instruc-

‘tions into the main memory. Thus, in such a calculator, saving instruc-

tion space is usually equivalent to saving time.

If we now consider how to produce a good machine-language pro-
gram for a given problem to be done with floating-point arithmetic, we °

- require that it should be compact. Thus,we rule out a program made
. up of floating-point subroutines written over and over again, once for
.each floating-point operation, only changing addresses referring to

operands. Such a program would occupy many times the amount of

~ space required by a program consisting of a calling sequence for each

desired floating'point operation. Each calling sequence designates an
operand or operands and passes control to the appropriate floating-point

-subroutine which is represented only once'in the machine.

Thus, if a calculator with high computing speed relative to input-

‘output speed were to employ a compiling system, the compiler would

have to produce a program of calling sequences in order to solve the
specified problem efficiently, However, the number of steps that a sub-
routine must carry out in order to obtain the information given by a
compact calling sequence is fairly large unless use can be made of a

107

pamss




IBM 701 SPEEDCODING SYSTEM

machine facility for automatic address modification. Furthermore,
these are almost identically the steps by which an interpretive program

~ could obtain similar information from a suitable nonmachine-language

instruction. Thus,a program of machine-language calling sequences
(compiled from nonmachine-language instructions) could be executed

_no faster than the nonmachine~-language program could be interpreted <« .

and executed by an interpretive system. There is also the time needed

. to compile the program of calling sequences in addition to the time to

execute such a program: it is clear, therefore, that compiling systems .

are less efficient for this type of calculator than interpretive systems
when the majority of operations specified are not machine operations.

In a machine whose computing speed is slow relative to the rate
at which information may be transmitted into the main membry, it may
happen that the time required to execute an instruction is comparable
to the time required to obtain an instruction from auxiliary storage.
For such machines the effectiveness of compiling systems as opposed
to interpretive systems is evidently reversed. In this case saving
instruction space at the expense of executing more instructions usually
will not result in saving time. Very large programs consisting of fixed
routines repeated many times and differing only in certain addresses
are therefore practical, since the process of modifying many instruc-
tions in storage becomes more time consuming than bringing new
instructions into storage. Consequently, for this type of machine, com-

. piling systems which write large programs as a translation of short,

nonmachine-language programs are more efficient than interpretive

“programs.

This, then, is some of the background of automatic programming
as it stands today and some of the apparent reasons for the difference
in approach which various groups have taken, Automatic-programming
systems have been designed to lessen the enormous burdens of the
programmer by providing a larger and more convenient instruction

- repertoire than a given machine provides. Groups operating machines

which execute instructions considerably faster than they can be brought
into main storage have developed interpretive systems as the most
efficient means of achieving this; other groups have developed compiling

‘systems as the best method for the machines they operate.

Speedcoding was designed to be used in what might be called an
“open shop” type of computing installation, that is to say, one in which
most of the programming would be done by the scientists or engineers
with whom the various problems originated rather than by the group
operating the machine. Thus, it seemed necessary to place the utmost
emphasis on making the system as easy as possible to use and to learn,

' even at the expense of some efficiency in actual machine operation.

We felt that the following specific objectives in Speedcoding would
contribute to this general aim,

108

9/u Wl
4

g




IBM 701 SPEEDCODING SYSTEM

1. As few instructions as possible should be required to specify
a program. Programming time should be minimized.

~N o Db Wi

Programs should be easy to check out.
Scaling should be unnecessary.
Address modification should be made very convenient,
Transfer of arbitrary blocks of infor
speed storage should be easy to specify.

- Common functions should be readily avail
. Optional automatic checking of calculations should be provided.

The following description of the Speedcoding
these objectives were achieved.

Speedcoding is an interpretive system which
point arithmetic, In a floating~-point system data a
completely different forms and are treated differently. Therefore, it
was thought desirable to have separate methods of dealing with each of
these two types of information. Thus, each Speedc

two operation codes in it called
addresses A, B, and C associat
or an input-

Code OP] operations consist of the

plus square

are also orders for transferring arbitrary blocks of information between

mation to and from high- ‘

able.
system shows how

provides floating-
nd instructions have

oding instruction has

OP) and OP,. Code OP; has three
ed with it and is always an arithmetic

output operation. Code OP) has one address, D, associated
with it and is always a logical operation. Code OP
point numbers; code OP; deals with instructions.
was also adopted because it makes efficient use of the space available
for an instruction and because it often speeds up operation by reducing
the number of instructions which must be interpreted.

deals with floating-
1l'his arrangement

usual arithmetic operations

root, sine, arctangent, exponential, and logarithm. There

electrostatic storage and tapes, drums or printer. These input-output
orders have built-in automatic checks for correct transmission. Ac-
companying the OP] operation code is a code to specify that any or all

of the three

by the contents of three a

RA Y RB » RC
instructions

addresses, A, B, C, should be modified during interpretation '
ssociated special registers (B tubes) labeled

. This feature often enables one to red

in a loop by a factor of 1/2.

uce the number of

The OP, operation in an instruction is executed after the OP;.
By means of this operation one can obtain conditional or unconditional
transfer of control. One can initialize the contents of any of the R~
registers or one can, in one operation, increment any or all of the R~
registers and transfer control., Another OP2 operation allows one to
compare the contents of an R-register with the given D-address and
skip the next instruction if they are equal. The OP;, also provides a
set.of operations for using a fixed point accumulator for computations

- with addresses and for comparing the contents of this accumulator with

the D address. Finally, OP2 provides a convenient means of incorpo-
rating checking in a problem if desired. This feature consists mainly
of two operations, START CHECK and END CHECK; all instructions

109




IBM 701 SPEEDCODING SYSTEM R

between these two orders may be automatically repeated as a block and
at the end of the second repetition two separate check sums which have
been accumulated during the two cycles are compared and the instruc-
tion fol}owing the END CHECK skipped if they agree.

.. Instructions or data may be stored anywhere in electrostatic or.
auxiliary storage as single Speedcoding words. Average execution
times for various Speedcoding operations are as follows:

Add: . 4.2 milliseconds
Multiply: - 3.5 milliseconds
Read Tape: 14 ' milliseconds access plus .

4 .
1.6 milliseconds per word -
Transfer Control: 0.77 milliseconds

Electrostatic storage space available is about 700 words.

Let us follow a problem from its coded form on programming
sheets and data sheets until it is checked out and ready to run. First
the instructions and data are punched on decimal cards whose formats
are identical to those of the sheets. If there are any data or instruc-
tions which the program requires from tapes or drums, loading-control
cards are punched (one for each block of information) which will cause
the loading system to put this information in the proper places in
auxiliary storage. The deck of binary cards for Speedcoding is placed
in front of this decimal deck consisting of instruction cards, data cards,
and, possibly, loading~control cards, and the entire deck is put in the
701 card reader. When the load button is pressed, the information will
be stored in electrostatic storage, on tapes or on drums as indicated
by locations on the cards. When the last card is read, execution of the
program will begin automatically. ’

In checking out the program, use will be made of a feature of
Speedcoding which has not been mentioned yet. Each Speedcoding

instruction includes a list code which may be assigned one of three

possible values. Associated with each of these values is a switch on
the operator's panel of the 701. During execution of a program all
instructions will be printed which have list codes corresponding to
switches which are on. If one has properly assigned list codes, one
may then check out a problem in the following way: One begins execu-

- tion of the program with all three switches on, after seeing the most
_ repetitive portions of the program printed once or twice, one of the

switches is turned off, after which only moderately repetitive parts of
the program are listed. Finally, the second switch is turned off and
only the least repetitive instructions are seen. If trouble is encountered
in the last cycle of a much repeated loop, one can approach this point
rapidly with a minimum of printing and just before reaching it one can -
turn on all three switches and see all details of the program. Each
instruction is printed with alphabetic operation codes just as it was
originally written on the programming sheet. The floating-point

110




IBM 701 SPEEDCODING SYSTEM ' . é

]
: . : 4
numbers at A, B, and C, the contents of the R-registers and the address 2
accumulator, are also printed with each instruction. s

Extensive experience in using Speedcoding at several 701 installa-
tions has verified its usefulness and practicality. And of course this
experience has resulted in several additions and improvements to the b
original system as described. Several 701 installations use the system ‘
extensively. Although the original system was developed by IBM's New
York Scientific Computing Service, two large aircraft companies have
contributed important additions to the system which have becn made o
available to all the other 701 installations throughout the country. Some ‘
of these outstanding new features are:

1. A program to print out memory which automatically distin-
guishes between instructions and data and prints accordingly.

2. A facility for automatically doing extended precision floating
point calculations,

3. A facility to permit adding the result of an operation to the
contents of the specified result register, C, and placing the
sum in C, )

4. A facility to allow alternating between machine language and
-Speedcoding language.

5. An automatic table look-up operation which provides quadratic
interpolation for bivariate functions. '

Now let us again return to the subject of automatic programming
in general. Up to now the usual purpose of autornatic programiaing sys-

‘terns such as Speedcoding has been to make available to the programmer

nonmuchine instructions, each of which usually represents a fairly long
sequence of machine instructions when translated. Evern thouygh the
rmachine autornatically expands the instructions of the programmer into
the necessary machine operations and thereby saves him considerable
labor, the work of the programmer still contains a lot of drudgery. He
must still decide what actual or symbolic addresses he will assign to

" his data and to his instructions and must keep track of these decisions

once made. He must still write hundreds or thousands of instructions
to specify how the machine is to do his problem. And as he debugs his
program he must be intimately familiar with the relationships between
all of these assignments and the quantities involved in his equations
and between the multitude of instructions and the operations designated
by the equations. )

Obviously the programmer would like to write “X" instead of
some specific address, and if he wants to ddd X and Y he would like to
write “X + Y" instead of, perhaps: ' '

CLEAR AND ADD 100
ADD 106

' or some such gibberish. To go a step further he would like to write

Zajj * bjk instead of the fairly involved set of instructions corresponding
to tguis expression. In fact a programmer might not be considered too

111




IBM 701 SPEEDCODING SYSTEM o~

unreasonable if he were willing only to produce the formulas for the
numevical solution of his problem and perhaps a plan showing how the

. data was to be moved from one storage hierarchy to another and then

demand that the machine produce the results for his problem. No doubt
if he were too insistent next week about this sort of thing he would be
subject to psychiatric observation. However, next year he might be
taken more seriously.

Few people will dispute the worthiness of such objectives: the
question is, can a machine translate a sufficiently rich mathematical
language into a sufficiently economical machine program at a sufficiently
low cost to make the whole affair feasible? It seems that this is going
to be the vital question for automatic programming in the future since =
the majority of present automatic programming systems seem to be
primarily concerned with reducing the number of instructions needed
to specify nonmachine operations. As machines of the future acquire
larger repertoires of built-in operations these problems will diminish.
This tvend has already made its appearance in the recent announcement
of IBM's new type 704 calculator. This machine has all the features of
the 701 plus many new features. Outstanding among these for the pur-
pose of this discussion are automatic floating-point arithmetic and
powerful automatic address-modification facilities. Since these are
the two most important features which contribute to Speedcoding's
economic usefulness, it seems evident that Speedcoding~-type systems
will be of little value for the 704. The programmer will rather write
programs in a language much less removed from the machine language.

Consider the advantages of being able to state the calculations,
decisions, operations on ordered arrays of data, and manipulations of
blocks of data necessary for a problem solution in a concise, fairly
natural mathematical language.

1. Such a language would mean that there was a close resemblance

_of the ptoblem statermnent acceptable to the mnachine and the original

formulation of the problem in a form for numerical solution. Thus,the

.. programmer would be largely relieved of the necessity of making and

-machine much more accurately. .

remembering the extensive translation from the symbols of the original
formulation to the addresses and operations of the program. :

2. The tremendous increase in conciseness of the problem state-
ment for machine solution and its closer relationship to the original
statement will make it possible to check the material presented to the

3. Once the concise problem statement has been checked care-
fully and presented to the machine, debugging might virtually be
eliminated. ‘ - . :

.

_ . 4. The amount of knowledge the programmer would have to have
‘about the machine and about programming conventions and library

112

- i




IBM 701 SPEEDCODING SYSTEM

programs would-be greatly reduced. He would have to know only the
rules of the language in which the problem is to be stated and the facts
about the memory hierarchy of the machine. This of course would be a
tremendous advantage to the open-shop type of computing installation.
The programmer would not have to become familiar with dozens of
codes, special machine features, timing conditions, addresses of various
units, and a host of other Yacts which are presently necessary to know.

5. Much wasteful duplication of programming effort may even-
tually be eliminated. In programming many practical problems, pro-
gramming situations and difficulties are often encountered which require
considerable analysis to obtain a good procedure. In a great many
instances similar situations have arisen before and a similar analysis
has been made. In the rush of completing a problem it is not usually
possible to make a good record of the results of such work. Therefore,
analysis tends to be repeated again and again and is often never done
as well as it could be. Programming techniques which arise in this
way could be thoroughly analyzed and incorporated as programming
capabilities of an automatic-programming system.

Whether such an elaborate automatic-programming system is
possible or feasible has yet to be determined. If it is possible, an
enormous amount of work will undoubtedly be involved in producing

such a system. The tremendous strides the computing field has already

made in developing automatic-programming systems indicate that if
such systems are possible they will be produced. If they are produced
it seems likely that such an application of the ability of modern cal~
culators to do an enormous amount of work for a small cost may repre=~
sent one more area in which machines can do a job more economically
than human beings. ' : .

113

s wal




