
MACRO
ASSEMBLY PROGRAM

MACRO
ASSEMBLY PROGRAM

DIGITAL EQUIPMENT CORPORATION * M A Y N A R D , MASSACHUSETTS

Copyright 1964 by Digital Equipment- Corporation

TABLE OF CONTENTS

SECTION 1

INTRODUCTliON

SECTION 2

THE MACRO SOURCE LANGUAGE
Page -

Processing of the Source Language by Macro 2- 1

Notation 2-2

Syllables and Expressions: Format of o

Source Program 2-2

Use of Expressions 2-2

Pseudo-Instructions 2-6

.............. Automatic Storage Assignment 2-9

SECTION 3

OPERATING INSTRUCTIONS FOR MACRO

Preparing for an Assembly . . , . , , . , , , , . , , . . , . , , , . , . 3-1

Assembling a Single Macro Language Tape 3-1

Error Indications 3-2

Assembling Several Tapes As One Program , , , , , , . , , . 3-6

MACRO Symbol Package Tape 3-7

Use of Binary Symbol Tapes 3-8

The Test Word Switches 3-8

APPENDIX A

APPENDIX B

Binory Format A2-1

APPENDIX C

......... Symbols i n MAC RO's Permanent Vocabulary A3-1

LlST OF ILLUSTRATIONS
Figure

1-1 A MACRO Source Program 1-2

2-1 A MACRO Source Program with Automatic
.............................. Storage Allocation 2-1 1

2-2 Cascading Macro-lnstruc tion 2-17

LIST OF TABLES
Table

......................... 3 - P List of Error Designations 3-3

..................... 3-2 Function of Test Switches 0-5 3-8

SECTION 1

I N T R O D U C T I O N

Coding for o digi tol computer i s the process o f setting down the exact sequence of instructions,

constants, and tables which must be placed in the memory af a specific computer to perform

some desired computation. The art of coding is for advanced from the early days of automatic

computation when a l l instructions of a program were written i n numerical form using the num-

ber system of the machine being used. This was coding in rnochine language. Now, assembly

programs are available for nearly a l l d ig i tab computers which al low the user a more convenient

language for wri t ing the instructions forming his program. MACRO i s such an assembly pro-

gram for the DEC POP-1 computer. It translates o source program written in a language, which

we shall cal l the MACRO source language into an object program, which eon be read directly

in to the PDP-1 cornpu term

A MACRO source program takes the form of a punched paper tape prepared using the standard

FIO-DEC Flexowri ter with the Concise I11 typeface as given in Appendix A, or using an on-

line edit ing program such as Expensive Typewriter. An example of a source program i s given

in Figure 1 exact1 y as the Flexowriter would pr int i t . The first I ine of a source program i s a

t i t le line, and the program concludes with a start line, as in the example. A MACRO object

program i s a binary tape punched by the PDP-I under control of the MACRO assembly program

The format of the binary tape i s detailed in Appendix B. It contains the t i t le l ine of the

source program in readable form; a read-in mode input routine, which 35 read in by the PDP-1

and placed in the last registers of memory; blocks o f instructions and constants which make up

the object program; and, f inally, cr start. block ind icat ing the address of the first instruction

to be executed.

An assembly program such as MACRO permits the user to prepare source language programs

using symbolic names or, simply, symbols to represenr the numerical values of instruction

codes, machine addresses, and parameters. No t only does this make the program easier to

read and understand, but i t alsoallows a degree of f lex ib i l i ty nototherwise possible. For

example, a program properly written i n the MACRO source language can be placed o t any

location in the PDP-I memory by changing a sing te l ine i n the source program.

SUM

n=100

1 00,'

0 1 law tab

clap b

dsm s

b, lac .
add s

dac s

idx b

c r lac tab+n

/are we through?

init ialize LOAD

zero sum
storage loco tlon w

LOAD AC *
odd contents of ?-I
sum storage

place new value t

start a

Figure 1-1 A MACRO Source Program and Flow Chart
-

Normol l y , an assembly program produces one mochine language instrwc tion for each instruction -

of the source program. However, some lines in the source program, known as pseudo-instsuctions,
-

are directions to the assernbl program and do not direct1 produce instructions in the object

progmm. An example i s the pseudo-instruction start used to denote the end of a MACRO source -
-

program. Also, MACRO provides a means of assoc ioting symbolic names called macro-instruc tions

wi th sequences of instruc tian according to the user's desires. -

Since the source program i n Figure 1-1 i s referred to in subsequent chapters, a brief description

of i t i s in order. The first three steps initialize the routine. Then a program loop i s entered

to place the sum of 100 numbers i n S . These numbers are stored in sequential locations be-
(8) -

ginning with tub. The routine terminates with the halt instruction. - -
Part I4 of this brochure describes the MACRO source language in terns of how i t i s con-

verted into machine language by the MACRO assembly program. Part ill presents operating

instructions for assembling source program tapes written in the MACRO language.

SECTION 2

T H E M A C R O SOURCE LANGUAGE

PROCESSING OF THE SOURCE LANGUAGE BY MACRO

A MACRO source program may be thought of or a long lineor string of characters in which the

alphabet includes the various typewriter functions (tabu la tion, carriage return, backspace and

case shifts) as well as the visible characters. in ossembl ing a program, MACRO scans the string

of characters making up the source program starting from the t i t le l ine and continuing through

the stop code fol lowing the first start l ine. Two posses of this nature are required for a corn-

plete assembly. On the first pass, the values of symbolic addresses are determined, and stor-

age areas are reserved for variables, tables, and constants. During the second pass, the symbol

values are used in evaluating the instructions and constants making .up the user's program, and

the object program i s punched in the farm of a bincry tape.

Certain l i s t s are maintained by MACRO for the purpose of carrying out the assernb lr process.

The symbol table contains an entry for each symbolic address, instruction code and parameter

used by the progammer in his source language program. The entry consists of the character

group forming the symbol, and i t s value represented as an 18-bi t number.

The rnacra-instruction l ist contains the sequence of instructions making up each macro-

instruction defined by the user's source program. The symbolic names of pseudo- and macro-

instructions are f i led i n the pseudo-instruction l ist which contains a reference to the macro-

instruction l i s t for macro names, or to the appropriate routine in MACRO for pseudo-instruc tions.

A current location counter in MACRO indicates the obiect program location in which the next

instruction translated w i l l be placed. A current radix indicator controls whether a string of

digits in the source program i s treated as octal (base 8) or decimal (base 10).

At the beginning of an assembly, the mocro-instruction l ist i s empty, and the pseudo-instruction

l frt contains only the names of system pseudo-instruc tions described in de tei l later.

The symbol table contains the l i s t of permanent symbols and values given i n Appendix C. At

the beginning of each pass, the current location i s set to 4, and the current radix i s se t ko

octal *

Notation

In the following description of the MACRO source language, its structure w i l l be illustrated

by character strings which could appear as p s t of a source program. These strings w i l l be

enclosed i n brackets < >. For clarity, the signs <+ I > and < b> w i l l be used to represent

tabulation and carriage return, and < > w i l l be used for space when needed for emphasis.

The abbreviations tab and c r w i l l be used for tabulation and carriage return in format descriptions. - -

S y l lables and Expressions: Format of a Source Program

As mentioned in the Introduction, a MACRO source program consists of a t i t le line, a body,

and a start l ine. A t i t le l ine i s an arbitrary string of characters terminated by o cr. The corn- -
plete t i t le i s punched by MACRO in readable form a t the beginning of the ob ject program tape.

A middle dot in the t i t l e wi l l cause only the characters preceding i t to be punched.

The start tine must have the form i l bustrated in the source program example on Page 1-2. It

must be terminated by a cr and followed by a stop code, which wi l l be the last character read -
on the source program tape.

The body i s a series of expressions, which are the basic units of a MACRO source program.

An expression is a string of charoc ters representing .a program instruction, a constant used by

a program, table entries, or other data. Some examples are:

<add 100>

<dio t+2>

<+ 1234>

<m+n>

t123-a-. >

Expressions are usually delimited by tab, cr, slash, comma, or equals, The significance of - - - -
an expression depends on the context i n which i t appears.

More precisely, an expression i s one or more syllables separated by the characters plus,. minus, --
or space. Examples of sy l lables ore: -

<add >
<loo>

<1224>

MACRO computes the valve of an expression by summing the values of its component syllables.

If o syllable i s preceded by a plus sign or space, the s y l table value i s added to form the sum,

i f preceded by a minus sign, the complement of the syllable value i s added. The plus sign

may be omitted before the first syllable of an expression. The addition i s performed in the

1 8-bi t ones complernen t asi thmetie o f the PDP-I , except when the sum is zero; then i t w i l l

be evaluated as minus zero 777777 if any syllable was other than plus zero. Since this oddition

i s associative, the order i n which the sy Ilables of on expression ore written does not affect its

value. In the foE lowing examples, the current radix i s assumed set for octal . The two expres-

sions of each pair w i l l represent the same value to MACRO.

Syl babies can take a number o f forms, two of which w i l l be mentioned here.

Symbols - A symbol i s o string of one, two, or three letters and digits in which at least one

letter appears. A symbol may represent an instruction as in dac or a symbolic address such clr -
x in l io x . A symbol i s defined i f there i s a corresponding entry in the symbol table, otherwise - -
it i s undefined. The value of a symbol i s the 18-bit number osseciated with i t in the symbol

table i f i t i s defined, and minus zero i f i t i s undefined.

Integers - A n integer i s a string of the digits 0, 1, ..., 9 and i s evaluated as an octal or decimal

integer accoring to the current radix. The value af an integer i s the 18-bit representation of

the integer. Thus the largest integer taken as its face value i s

<777777> in octal or

<262143> i n decimal.

18 The value of an integer above these limits i s taken modulo (2 -1).

Use of Expressions

The meaning of an expression to MACRO i s determined by the context in which i t appears in

the source program, and usuolly by the character immediately following i t .

Storage Word - An expression fol lowed immediately by a - tab or - cr i s a storage word.

The 18-bit number representing the value of the word i s entered in the object program a t the

address given by the current location counter in MACRO. The location counter i s then ad-

vanced by one. A storage word may be an instruction forming port af a program, a constant

used by the program, or data.

Location Assignment - An expression immediately followed by a slash i s u location assignment:

t 1 00/>

<tob+I 20/>

The current location i s set equal to the address portion of the value of the expression. Thus

<I 00/ s za imp 100 J >

or

(1 001 s za

imp 100 i>
in the source program wil l place the instruction sza in the object progrnm at register 100 and -
the instruction imp 100 in register 101 .
If, on Puss 1 , a location assignment contains any undefined symbols, the current location

becomes indefinite .

Symbolic Address Tag - An expression immediately followed by a comma i s an address tag:

(beg, >
(aa2, >
<a+12, >

If the expression contains one syllable, and this syllable i s on undefined symbol not preceded

by a minus sign, and the current location i s not indefinite, the symbol i s entered in MACRO'S

symbol table and assigned a value equal to the current locotian. Otherwise, the value of the

expression, compared with the current locotion, end a disagreement w i l l cause an error print-

out. The current location i s not changed by a symbolic address tag.

Using a symbo I i c address, the preceding example cou Id be written as

<100/a, rzo +,I jmp a b>

The programmer shou Id note that location assignments and symbolic address tags, i n themselves,

hove no effect on the object program but rather direct the process of assembly. Also, he should

observe their inverse character . The location assignment sets the current location counter to

the value of an expression, while the address tag sets the value of a syrnbot equal to the current

location. Hence the sequences

<'IOO/a, b, >
or

< 1 oo/ *I L

b, $>

assign 100 a s the value of both symbols a - and - b. A sequence such as

(1 000/tab,J

ta b+n/>

i s frequently used to reserve a b!ock of registers for a table of data or computed resul ts. In

the example, the block starts a t register 1000, i s named by the symbol - tab, and contains an

octal number of registers given by the value of the symbol - n.

SymboEic Parameter Assignment - A symbol immediately followed by an equal sign, an expression,

and a tab or cr i s a parameter assignment. I t assigns the symbol lef t of the equal sign a value - -
given by the expression to the right, i f the expression i s defined. If the expression i s unde-

fined, no action i s taken. For example:

<n=100 J >
<sna=sza i >
<cai=cto+cEi-opr & >
<t=t+t +I >

The parameter assignment faci l i ty i s useful for setting table lengths and other properties of the

object program. It provides a means of defining new opera tion codes to simp1 i f y the wr i ting of

programs and for preparation of instruction sets for interpretive programs.

Comments - A string of characters which commences with a tab-slash or cr-slash i s a comment.

The string i s ended by a tab or cr . Comments are ignored by MACRO ond may be used to label - -
sections of a program, annotate important instructions, and give the reader of the typescript

information about the program. Example:

<get, +I +I/ This i s a comment &>

Current Location Syllable - The character period <. > i s a special syP lable whose value i s equal

to the current location.

Hence,

Gza +I i m p . - 1 3. >
i s an alternote way of writing

<a, sza 4 imp a i>

The use of the features of the MACRO assembly program that have been discussed so far are

i l lustrated by the program example on Page 1-2. The reader should be sure he thoroughly

understands this example before proceeding further in this brochure.

Pseudo-Instructions

Pseudo-i nstruc tions in the MACRO source language are directions to the MACRO assembly

program whish govern the woy in which subsequent informa tion i n the source program i s processed.

Typographical!y, a pseudo-instruction i s a string of a t least Four letters and digits, in which a t

least one of the first four isa letter. The string i s followed by a terminating character which

may be space, plus, minus, tub, or cr. For convenience, the character < -> w i l l be used to
- - - A -

represent any of these termino ting characters. A pseudo-instruc tion may always be abbreviated

to four characters.

The pseudo-instruc tions of MACRO are described bc low:

End of Source Program - The pseudo-instruction start denotes the end of the source language -
program, The expression following start gives the address of the instruction in the obiect pro- -
gram which i s to be executed first, and MACRO w i l l include the appropriate start block in the

binary program tope. The line

<start beg+2 $>

terminates scanning of the source program and causes h e word imp beg-t-2 to be punched as the

start block of the binary tape. When the binary tape i s subsequently read into the PDP-1,

control wi l l go to register "beg+Z1' after the start block is read.

Radix Control - The pseudo-instructions, octal - and decimal, control the current radix for

evalwo ting integer sy I lables. The string <octal --> anywhere in the source program sets the

current radix)o eight, and the string <decimI -> sets the current radix to ten for a j I subsequent

integers. These pseudo-instructions may appear as sy l lobles of value zero in an expression,

for example:

<octal U+decimal 27 + I >

i s equivalent to

<octal +1 77 decimal +I >

Suppression of Input Routine - The string (noinpu t--> anywhere in the source program w i I I

suppress punching of the input routine on the binary program tape.

Storage of Character Codes - The pseudo-instruc tions, charac tcr, flexo, and fex t, are provided -
to a'l low the programmer a convenient means of storing character codes for print-out by his

program or for comparison against alphanumeric data accepted by his program. Far reference,

the six-bib codes for the Concise I l l character set used with the PDP-I are included as Appen-

dix A of this brochure.

The pseudo-instruction character is used to place a character code in the left, middle or right

6-bit portion of an 18-bit word. The string <character-> i s followed by r , m or I, according - - -
to the position desired, and then the character whose code i s desired.

Thus

<char ra> i s the same as <000061>

<char mb> i s the same as <006200>

<char Ic> i s the same as <630000>

The above strings are pseudo-instruction syllables and may be used in the same manner as

symbols or integers i n forming expressions.

For example

<-char rx> i s equivalent to <777750>

The pseudo-instruction flexo i s used to compi le three character codes into one 18-bit word.

Thus

<flex0 dec> is the same os <646563>

and may a150 be written os

<char rc+chor rne+char Id>

The pseudo-instruction - fext is used to assemble o long string of characters by groups of three

into successive words in the object program. The string to be assembled i s enclosed between

two appearances of the same character, which immediately follows the string <text>. I t i s

suggested that the character period be used to enclose the string, although any legal character

may be so used. Of course, the character selected cannot appear within the string itself.

For example, the string

<text .Error.>

i s equivalent to

<flex E +I flex rro +I char Ir +I >

The Repeat Pseudo-Tnstrvc tion - The repeat pseudo-instruc tion provides a convenient way of

placing a sequence of simi lar expressions in a block of the object program. The string

causes MACRO to scan and assemble the following characters a number of times equal to the

value of the expression n. The string of characters scanned and assembled i s the range of the -
repeat; i t starts immediately after the comma and continues up to and including the next car-

riage return. The expression giving the order of the repea t (n - in the above example) must be

non-negative and definite when the repent i s encountered during the first pass. If the value

of the expression i s zero, the range of the repeat i s ignored.

As an exomple of the use of repeat, the following sequence forms a teble of squares of length n. -
< U = 0 91 v = 1 3 1 repeatn,u+l u = u + v * ! v=u+2J>

Emptying of Symbol Table - Occasionally i t i s desirable to delete a l l symbols from the symbol

toble when using MACRO to assemble certain symbolic data tapes. The string <expunge- >
appearing in the source program deletes a l l symbols, including the ini t io l list given i n Appendix

C, from the MACRO symbol table ot the time i t is encountered during the first pass. It has

no effect during the second pass.

Other Pseudo-Instructions - The remaining pseudo-instruc tions, constants, dimension, variab I es,

define and terminate, w i l l be discussed Fn connection w i t h automatic storage assignment

and macro-inrtruc tions i n the fol lowing sections.

Automatic Storage Assignment

Several features have been provided in the MACRO assembly program which autarnaticol I y

assign storage locations for the constants used by a program and the variables and tables manip-

ulated by the program. These features reduce the amount of typing required to prepare a corn-

ple te source language program, simp1 i f y editing, and make the source program typescript more

readable .
Constants - An expression enclosed in parenthese,< i s a constant syllable and may appear as cr

syllable in storage words and parameter assignments. MACRO w i l l compute the value of the

expression enclosed and place i t i n a constants area of the obiect program as explained below.

The location a t which constant words are i s determined by the next appearance of the

pseudo-instruc tion constants fol lowing the constant sy l lable . For example, i n the program

illustrated on Page 3-2, the l ine

<c, 31 lac tub+n a>
could be omitted i f the l ine

(sad c & >
were replaced by

Gad (lac tab+n) >
and the string

<cons tan ts >
inserted before the start l ine, -
When the pseudo-instruc tion constants i s scanned by MACRO, the constant expressions,

assembled since the beginning of the program or after the last use of the pseudo-instruction

constants, are placed in the object program starting at the current locution. Constant words

having the same numerical value are entered only once. The current location i s advanced to

an address somewhat beyond the register i n which the last constant i s placed, leaving a small

gap o f unused registers between the constants area and any following portion of the program.

(This gap arises because MACRO reserves blocks of registers for constant words during the

first pass when some of these words may not be defined.)

Some addition01 points on the use o f constant syllables are:

1 . The right parenthesis may be omitted from constant syllables i f immediately

followed by one of the terminating characters, comma, tab or cr. -- -
2. Recursive use of constant syllables i s permitted; that is, a constant syllable

may appear within an expression forming a new constont syl lable :

<lac (add (corn)) & >

<lac (odd (corn J > - .

This moy be continued to a depth of eight levels.
-

Variables - A symbol typed with a bar over a t Beast one of i t s characters at i t s first appearance
-

in the source program i s a variable, for instance:

<qrn>or <aIZ>. -
A l l symbols identified os variables become defined on the subsequent appearance of the pseudo-

instruction variables. The pseudo-instruction variables must follow al I defining appearances -

of variables and may appear only once i n any source program. The variables are assigned to

sequential locations starting a t the location of the pseudo-instruction variables. Their ini t ial -

contents are undefined. For instance, the sequence
-

<lac a 31 add b 31 dac a 31 . . .

i s equivalent to

<lac a +I add 6 dac a 3) . . .
. . . variables a >

except that the contents of registers a and b of the object program w i l l be zero in the first -

case and undefined in the second.

Tobles - Blocks of registers may be reserved for tables by means of the dimension pseudo-

instruction. The string
-

(dimension ?: (n), y(m), z(rn+n) > -
for exomple, reserves three blocks of lengths given by the values o f the expressions n, m, and - -
m+n. The first address of each block i s assigned as the value of the symbols x, y, and z. The - - - - /

reserved blocks are placed a t the location in the ob ject program specified by the variclbles

pseudo-instruc tion. The ini tia E con tents of the reserved blocks i s undefined i n object program. -

The following rules apply:

1 . The expressions given us lengths of blocks in a dimension pseudo-instruction

must be definite when scanned on the first p a s s .

2, The symbols assigned to btocks by a dimension statement must be previously

undefined.

The use of dimension, variables and constants in a complete MACRO source program i s illus-

trated in Figure 2-1 . This program wil l produce exact1 the same object program os the intro-

ductory example on Page 1-2 except that the initial contents of register s is zero in the earlier

version and undefined here.

SUM

n=100

dimension tab(n)

too/

a, l a w tab

dap b
-

dzm s

add s

dac s

idx b

variables

constants

start a

sas (lac tab+n

b

hl t

Figure 2-1 A MACRO Source Program with Automatic Storage Allocation

Very frequently the =me sequence of instructions i s required at many places in a computer

program. For example, he two instruction sequence

s P 4

crna

forms the absolute value of the contents of the PDP-1 accumulator, To simplify wri t ing o f

the source language program and provide a more meaningful source program typescript, i t i s

convenienf to represent such a sequence by a special name such us Absolute. The macro-

instruction feature of the MACRO assembly program makes this possible. The source programs

sequence

<define

oibsol u te

=pel

crna

terrnina te >
defines o macro-instruction with name absolute. When the string

<absoiute>

su bsequenti y appears in the source program, the sequence of words, spa, crna, w i l t be copied - --
into the object program.

In the more common instances, the recurring instruction sequence is not identical in each

appearance, but the words of a basic sequence are modified by additive parameters. A frequent .-

combination i s

lac x

dac y

which moves the quantity in register x ta register y . The macro-instruction h c i li ty allows

the user to represent such a sequence by a name with a group of parameters such as

(move x , y >

This represents tion i s establ ished by the definit ion

<define 31 move A, B i

41 lac A

3 1 dac B

4 1 terminate h >

which must appeor i n the source program prior to use of the macro-instruction. In this

example, - A and - Bare dummy symbols i n which at leost one letter i s in upper case. When

MACRO scans the macro-instruction

<move x , y J >
i t copies the word sequence from the definit ion into the obiect program substituting the values

of the arguments x and y for the dummy symbols A and B respectively .

Defining a Macro-Instruction - A macro-instruction definit ion consists of four parts; the

pseudo-instruc tion define, the macro-instruction name and dummy symbol - 4 kt, the body, and

the pseudo-instrwction terminate. Each part i s followed by at least one tabulation or

carriage return.

The macro-instruction name has the same form as a pseudo-instruction--o string of at least

four letters and digits of which at leclst one of the First four characters i s a letter. The name

i s terminated by o space or by a - tab or A cr i f there i s no dummy symbol list. The first six char-

acters of a macro-instruction name must distinguish that name from a1 I other macro names and

a l l pseudo-instructions. The dummy syrnbal list consists of a5 many distinct dummy symbols as

desired, separated from each other by commas, and from the macro name by s space. Since

dummy symbols have no meaning outside of a macro definition, the same dummy symbols may

be used in mony definitions without harm.

The body of o macro definit ion i s an arbitrary sequence of storage words i n which any dummy

symbol from the dummy symbol list may appeor os a syl lsble. The pseudo-instructions

character, --- f lexo, test, octal, decima I, noinpu t, and any previous1 y defined MACRO instruc-

tion may be used within the body of a macro definition. Constont syllables moy appear i n

any expressions and dummy symbols may be used as syllables in constant expressions.

Using a Macro-Instruction - A macro-insttuction consists of a macro instruction name fol lowed

by a argument I kt, and a tabulation or carriage return. The argurnen t list consists of expres-

sions separated by commas, i n correspondence with the dummy symbols listed i n the definit ion

of the macro-instruction. The first expression O F the argument l i s t must start with -- space, plus,

or minus to separate it from the macro name. The expressions i n the argument list may contain

constant syllables and the pseudo-instructions character, -- flexo, octal or decimal. When the

current location s y l iable r. > appears in an argument list, its value i s token as the current

location at the time the macro-instruction name i s scanned.

MACRO assembles a macro-instruc tion by evoluoting the expressions in the orgumen t 1 ist, sub-
-

s t i tuting these values for corresponding dummy symbols i n the definition, and copying the

resulting sequence of storage words into the object program. The current location i s advanced
--

for each word copied. If an argument expression i s omitted, its valve i s taken as zero.

An Example:

The defici tion and use of a macro-instruction i s illustrated by a program to store zeros in a

block of registers. This program con be assigned the name clear by the definit ion -
(define clear A, N

low A

dap . + I

d zm

idx . -1

sos (dzm A+N

imp .-3

terrnina te>

When the l ine

ic lear tab,100&>

appears later in the source program, the instruction sequence

low tab -

dap .+ l

d zrn

idx . - 1
-

sas (dzm tab+100

imp .-3

i s inserted i n the object program. The resulting sequence wi l l clear a hundred registers start-

ing with register tab. - -

Address Tags Within a Mocro Definit ion - Before MACRO scans the body of o macro-instruction

definition, the current locotion i s set to zero; i t i s then advanced by one for each storage
-

word included in the definition. Therefore, an oddresr tag in the body of a macro definit ion

wi l l be assigned a value equal to the number of storage words i n the body up to that point.

Symbols defined in this manner are entered in the symbol table as usual and may be referred

to at any point in the source program. Note that a given symbol should not be used os on

address tag in several definitions as this would attempt to define the same symbol twice.

Addressing Within a Macro Definit ion - In longer macros i t i s frequently necessary far some

instswctions i n the sequence making up the macro 10 address other instructions i n the sequence.

The address parts of such instructions must be given different values each time the macro-

instruction i s used a t a differenf object program location. To provide u convenient means

of handling this problem, a special dummy symbol <R> i s provided, This dummy symbol may

O ~ W Q ~ S be used in the body of a macro definit ion and should not appear in the dummy symbol

list. When rr macro-instruction i s used, the current location at the time i t s name i s scanned

i s substituted for <R> in each appearance. In i l lustration, the preceding definit ion of

<clear A, N> may also be written as

(define clear A, N

law A

dap a+R

d r m

idx atR

sos (d m A+N

imp a+R

terminate)

When the current location syllable r.> i s used in the body of a macro definit ion as in the

earlier example, symbol (R> i s automatical Iy included.

Cascading Macro Definit ion - Once defined, a macro-instruction may be used i n the body

of another macro definition. In this case, the expressions in the argument I ist of the mocro-

instruction may also include any dummy symbols from the new definition. An example i s given

in Figure 2-2, which i s a third way of writ ing the summation program introduced on Page 1-2.

Dummy Symbol Assignments - Provision has been made for creating new dummy symbols and

reassigning the meaning of existing dummy symbols within the body of a macro-instruction

definition. This i s accomplished by a dummy symbol assignment. The format i s the same as

for a parameter assignment except the left ride must be a dummy symbol, and the expression

on the right may contain dummy symbols. When o macro-instruction i s subsequently used in

the source program, the value substituted for the new dummy symbol i s computed from the

values of arguments substituted for dummy rymbolr according to the right hand side af the

dummy symbol assignment. For instance the string

<C=A+B - 100 J >

will create a new dummy symbol <C> whose value i s the sum of the arguments substituted for

A and 6, plus the number -100. Dummy symbols may be reassigned in terms of themselves: - -
Thus

a=x+x+x+x &>
wi l l cause four times the value of the argument corresponding to dummy symbol X to be sub-

s t i tu ted for X in subsequent appearances. -

SUM

define

define

define

1 oo/
define

initialize A, B

terminate

accumulate T

termi no te

index A, B, C

imp C

total T, N,S

initialize b+R,T

dzm S

lac

occumulote S

index b+R, lac T+N, b+R

terminate

dimension tab(n)

tobl tab, n,;

hlt

variables

constants

start Q

odd T

idx A

termina t.e

dap A

dac T

sas (0

Figure 2-2 Cascading Macro-Instruction

SECTION 3

OPERAT1NG INSTRUCTIONS FOR MACRO

PREPARING FOR A N ASSEMBLY

Macro uses the PDP tape reader, punch and typewriter. Therefore, before starting an assern-

bly, the typewriter should be turned on and the punch checked to make certain an adequate

supply of tape is properly threaded. For normal operation, al l TEST WORD and TEST ADDRESS

switches must be off. The reader must be turned off before inserting a tape, ond must be turned -
on before reading i s attempted. Tapes are placed in the reoder with the feed hole toward the

computer. To place the MACRO assembly program in the machine, put the MACRO ASSEMBLY

PROG binary tape in the reoder, turn on the reader, and press the READ-IN lever. If the tape

stops before the last line of information has been read, a reading error has occurred resulting in

a faulty checksum. If the reader has stopped with cr blank section of tape under the lamp, the

reading may be continued by moving the tape back one block to the previous blank section and
-

pressing the CONTINUE lever. Otherwise, start the reading from the beginning of the fope.

ASSEMBLING A SINGLE MACRO LANGUAGE TAPE

To assemble a MACRO source language program which i s complete on one paper tape proceed

as follows:

1. Place the tape in the reader, turn on the reader, and press CONTINUE.

This initiates the first pass of the assembly. After a section of tape has been

read, MACRO w i l l reproduce the title line of the source program on the

typewriter and continue scanning the remainder of the tope. Format and

other errors in the source program which are detected by MACRO w i I1 be

recorded on the typewriter. These error printouts are described in Error

Indications. The first p a s s i s completed when the start line and slop code

at the end of the source language tape are scanned.

2. Agoin place the source program tope in the reader, turn on the reader,

and press CONTINUE. This initiates the second pass of the assembly.

MACRO w i l l read a section of tape and print the t i t le as i n the first p s s .

The t i t le w i l l also be punched in readable form as the leader of the binary

program tape. A copy of the standard input routine w i l l be punched if i f i s

not suppressed by a noinput pseudo-instruction. MACRO will then scan the

source program and punch the object program in a form suitable for loading

by the standard input routine. The second p s s i s complete when a start

l ine faf lowed by a stop code i s scanned.

3 . Press the CONTINUE levera third time. MACRO w i l l punch a start

block to complete the binary tape. At this point MACRO'S symbol table

w i ll contain the values assigned to any symbols defined in the source pro-

gram, and the macro-instruction list w i l l contain any macro clefhitions in-

cluded i n the source program. These values may be printed out or punched

i n a form suitable for use with debugging programs such as DDT by using the

macro symbol package tope as directed in Macro Symbol Package Tape. -
Pressing the CONTINUE lever a fourth time after the completion of pass two

w i l l init iate pass one without restoring the symbol table or macro-instruction

list.

ERROR INDICATION5

As mentioned above, MACRO w i [I detect certain format irregularities, the use of undefined

names, and conditions where assembly i s impossible because of the amount of memory avail-

able. When an error condition i s discovered, the on-line typewriter w i l l provide information

i n the following format to identify the error and help the user locate i t in his source program:

usw - 134 - yrn + 4 oc ta 1 a m -
error absolute symbolic last pseudo-instruction symbol not

octal address scanned defined or
address concise

code

The conditions associated with each identification are I isted below. The rightmost column

appearr only for an undefined symbol or an i l legal character on the source program tape.

Normal ly, when an error print-out occurs. the computer w i l l halt. Pressing either START or

CONTINUE w i l l cause the assembly to continue when possible, During pass two, pressing

CONTlNUEwil l causepunchingof the binary tape tobesuppressed. Pressing START w i l l

continue to process and punch the tope; however, undefined rymbols w i l l be assigned o value

of zero. MACRO can be instructed to automatical l continue processing after error prin t-outs

by setting bit 17 of the TEST WORD switches to one. In this care punching w i l l be suppressed

on pass two after the first error i s detected.

In the list of error identifications both the situation producing the error comment ond the treat-

ment of MACRO upon continuation are given.

TABLE 3-1 LIST OF ERROR DES IGNATlONS
--

Error
-

Condition
-

Action on

Designation Causing Error Continuation

Bad source tape characters

ich Illegal character - 1) A code not repre- The questionable

renting a standard character or function character i s ignored.

has been scanned, OF 2) a legal chawc-

ter has been used in the wrong context.

i lp F I legal parity - A character read from

the source tape has even parity.

START causes the

character to be ac -

cepted; CONTINUE

ignores the bud char-

acter. (In this case,

CONTINUE w i l l not

suppress punching . $

Multiple definitions

md t Multiple defined tag - An address tag No symbol values ore

expression has a value nat equal to the changed.

current location.

TABLE 3- 1 LIST OF ERROR DESIGNATIONS (continued)
-

Error Condition Action on
Designation Causing Error Continuation

Mult iple definitions

mdv Mult ip le defined variable - a previously The original defini-

defined symbol appears w i th an over-bar. tion i s retained.

mdd Mult iple defined dimension - o previous1 y The original defini-

defined symbol appears as a table name in tion i s retained.

a dimension statement.

Mul t ip le defined macro-instruction - an The new definit ion i s

attempt i s mode to define a macro- entered i n the macro

instruction with a name already used for list and w i l l subse-

a pseudo-instruction or previousty defined quently be used

macro-instruction .

Undefined symbol error designations

Undefined symbol:

wherever the name

appears in the source

program.

usa i n a macro-instruc tion argument

usc in a constant expression

in a dummy symbol assignment within a

macro-instruction definit ion

u srn i n a macro-instruction storage word For a t l these errors,

the value of the un-
USP in the right-side expression of a para-

defined symbol i s
meter assignment, or a s the s i r e of a

taken a s zero. dimensions l array

u5r in the parameter of a repeat pseudo-

instruct ion

TABLE3-1 LISTOF ERROR DESIGNATIONS (continued)

Error Condition Action on
Designation Causing Error continuation

Undefined symbol error designations

Undefined symbol:

in a start pseudo-instruction -
usw in a storage word

Other indefinite names

The dummy symbol

value i s taken as

zero.

uds Undefined dummy symbol - a dummy sym-

bol name was used that has not appeared

in the dummy symbol list or on the le f t

side of a dummy symbol assignment.

ipi All characters up to ll legal pseudo-instruction - A sequence

of four or more letters and digits i s not the next tab or cr - -
the name of a pseudo-instruction or a are ignored.

macro-instruction .

Fornot Errors

ids il legal dummy symbol - A member of the

dummy symbol list in a macro-instwction

does not have the dummy symbol format.

The last symbol

scanned i s taken in

place of the bad

dummy symbol.

ll legal parameter assignment - Something The parameter assign-

ment i s ignored. other than a single symbol or dummy sym-

bol has appeared to the left of an equal

sign.

Illegal repeat - The count parameter of a The reweat and its

range ore ignored. repeat pseudo-instruc tion i s negafive, or

a repeat has been used in the range of

another repeat.

TABLE 3- 1 LIST OF ERROR OES IGNAT IONS (continued)

Error Condition Action on
Designation Causing Error Continuation

i 3 s Il legal start - A - start pseudo-instruction Continuation not pos-

has appeared within a macro-instruction sible.

def in! tion or the range of a repeat.

Vcrsiable location disagreement - The The location from

pseudo-instrwction variables appeased p a s s one i s used.

at different location in pcrsses one and

two.

l l legal fomo t - other cases of improper The source program i s

format. ignored up to the next

tab or cr. - -

ASSEMBLING SEVERAL TAPES AS ONE PROGRAM

When several tapes are assembled together as described below, they are treated by MACAO

exactly as though the t i t le lines had been deleted from a l l but the first tape, the start lines

deleted from a l l but the last, and the tapes spliced together to form a single source program

tope. The address of the start should be removed from a l l the tapes but the last. -
First prepare MACRO for operation as directed in Preparing for an Assembly. Then:

1. Place the first tape in the reader and press CONTINUE to perform pass

one.

2 . Place the second tape i n the reader and press START to continue p a s s

one. Repeat for each tape, checking that the correct arder i s observed.

3, Place the first tape in the reader again and press CONTINUE to ini-

tia te p a s s two.

4. Far each subsequent tape, place in the reader and press START to

continue pass two. Be sure all tapes are processed in the same order as

In p s s one.

5. Press CONTINUE to punch a start block and complete the binary

program tope ,

THE MACRO SYMBOL PACKAGE TAPE

The macro symbol package tape contains four sections which provide the following functions

under control of the console switches:

Symbol Punch - Sense switch 1 on. This section w i l t ~ u n c h a binary tape contoining symbol

and macro definitions made during an assembly. This binary tope may be used to establish an

in i t ia l set of definitions for a later assembly, or it may be used with a symbolic debugger such

as DDT. Afterbeing read in, the program w i l l wait for the operator to type a t i t le which wi l l

be reproduced in readable form a s the leader of the binary symbol tape. Typing a carriage re-

turn ends the t i t le and starts the punching operation. If only macro definitions or on1 symbol

values are desired, the user may end the t i t l e wi th a tabulation followed by the word macros>
or <symbols> (or simply a> or <s>) accordingly; then o carriage return.

AlphabetCc Symbol Print - Sense switch 2 on. Each symbol w i l l be printed togetherwith the

value lost assigned to i t by the assembler. Symbols from the in i t ia l symbol list w i l l be listed

only i f they have 'been assigned new values during the processing. Symbols ore listed i n al-

phabetic order with a l l one-character symbols coming first. The digits follow the letters.

Numeric Symbol Print - Sense switch 3 on. The symbols and values are listed as above, but

in order of increasing value.

Restore - Sense switch 4 on. MACRO i s made ready to perform a new assembly: the macro-

instruction l i s t i s cleared and the symbol table reduced to the set of permanent symbols and

values given in Appendix C. The effect i s as if MACRO had iust been read in.

The symbol punch and print section may be also used i n the middle of an assembly i f desired.

Of course, some symbols may nof have been assigned their final values, and macro-instruction

definitions may be incorrect. If this i s done after o tape has been processed, the subsequent

effect of CONT lNUE or START w i l I be t he same as if symbol punch or print had not been used.

USE OF BINARY SYMBOL TAPES

A binary symbol tape may be used to restore MACRO and rtock it with o special set of rymbolr

and/or macro-instruction definitions. This i s done by placing the symbol tape in the reader,

turning it on, and pressing READ IN. Note, however, that a symbol table punched wi th only

symbol definitions w i l l not restore the macro instruction list, and a symbol tope punched with

macro instructions only w f l l not restore MACRO'S symbol table.

THE TEST WORD SWITCHES

The test word switches allow the user to direct the operation of the arsembly program for

special circumstances. The function of switches 0 through 5 i s shown below.

TABLE 3-2 FUNCTION OF TEST SWITCHES 0-5

Switch No. Meaning

0 On - Examine remainder of TW switches

Off - Do not examine

On - Pass 2

Off - Pass 1

On - Continuation, do not reset address

Off - Reset in i t ia l address to zero

On - Punch object tape

Off - Do not punch

On - Punch input routine

Off - Do not punch

On - Punch title

Off - Do not punch

If switch 0 of the test word i s off, the ef ect of the START lever in ossembl y i s as previously

described. If switch O i s on, MACRO wi l l proceed according to the position of the other

f ive switches.

A common procedure i s to initiate pass two with no punching by setting test word switches 0,

1 and 17 on. MACRO wil l then print out any error comments without attempting to punch

the binary program tape. If there are no errors, test word switches 3, 4 and 5 may be set t o

repeat pass two and punch the object program.

Another common use of the test word switches i s in providing MACRO with symbol and moero-

instruction definitions from source language tapes that need not be processed by poss two.

F i r s t , perform p s s one on the definition topes in the normal manner. Then set switch 0 of

test word on with the other switches off and press START to begin processing of the fint pro-

gram tape. Turn off test word switch 0 and continue the assembly in the usual manner.

It i s wel l to turn off he test switches immediately after pressing the START lever to avoid

errors the next t i m e START i s used.

APPENDIX A

F I O - D E C TAPE (M A C R O INPUT)

CHARACTER COPES

F 10-DEC F 10-DEC
Character Code Character Code

a A 61 0 20
b B 62 1 " 0 1
c C 263 2 l 02
d D 64 3 203
e E 265 4 04
f F 266 5 V 205
9 G 67 6 A 206
h H 70 7 < 07
i 1 27 1 8 > 10
i J 24 I 9 21 I
k K 242 I r 57
1 L 43 1 255
m M 244 - 256
n N 45 + 54 -
o 0 46 - 40
P p 247 I 233 - -

S Q 250 . X 73
r R 5 1 / ? 22 1
s S 222 Lower Case 272
t T 23 'Upper Case 274
u U 224 Space 200
v V 25 BK. SP. 75
w W 26 Tab 236
x X 227 Carr. Ret, 277
Y y 230 Tape Feed 00
z Z 3 1 RE D* -

BLK* -
Stop Code 13
Delete 1 00

GENERAL FORMAT

hole number

of

motion

carr. ret.

a=61

c = 263

delete line

e x m . x * x m .

X * X X X * X X X

m

B I N A R Y F O R M A T (M A C R O O U T P U T T A P E)

GENERAL

hole number

direction A
Of I motion

The line sensed by the reader requires that hole eight always be punched. Hole seven is ignored,

X X * X . X X X

m x . x * . x x x

* x x m x - x m m

m

and the remaining six holes are assembled into one-third of a ward. Three lines are read to

form s single 18-bit word.

The word illusfrated above i s 205023 (lac 5023).

5PEClFlC FORMAT (MACRO OUTPUT TAPE)

Tit le in leodoble
characters (hole 8
not punched)

Read-in mode
loader (loca ticns

1
Body of program

100~8) word sectio s
Start black

APPENDIX C

add
and
ca l
cdf
cfd
cks
c lo
c l c
c l f
cli
cla
cma
dac

~ Q P
dio
dip
dis
~ P Y
dzm
esrn
h l t
1

i dx
lor
io t
jda
jfd
i m p
~ S P

I ' P
lac

lap
lot
law
l io
'I srn
mus

noP
Pr

PPO
P P ~
ra l

SYMBOLS IN M A C R O ' S P E R M A N E N T V O C A B U L A R Y

ra r
rc l
rc r
ri l
r i r

r Pa
rpb
rrb

sad

sa l
sa F

ras
scr
s i I
s i r

skp
srn a

=Po
spi

SP9
stf
sub
sza
sr f
szm
5 2 0

5 2 5

ty i
+YO

x c t

xor

XX

1 s
2 5

3s
4s
5s
65
7s
8s
9s

	DEC.pdp_1.1964.102635758.fc.src.tif
	DEC.pdp_1.1964.102635758.p1.src.tif
	DEC.pdp_1.1964.102635758.p2.src.tif
	DEC.pdp_1.1964.102635758.p3.src.tif
	DEC.pdp_1.1964.102635758.p4.src.tif
	DEC.pdp_1.1964.102635758.p5.src.tif
	DEC.pdp_1.1964.102635758.p6.src.tif
	DEC.pdp_1.1964.102635758.p7.src.tif
	DEC.pdp_1.1964.102635758.p8.src.tif
	DEC.pdp_1.1964.102635758.p9.src.tif
	DEC.pdp_1.1964.102635758.p10.src.tif
	DEC.pdp_1.1964.102635758.p11.src.tif
	DEC.pdp_1.1964.102635758.p12.src.tif
	DEC.pdp_1.1964.102635758.p13.src.tif
	DEC.pdp_1.1964.102635758.p14.src.tif
	DEC.pdp_1.1964.102635758.p15.src.tif
	DEC.pdp_1.1964.102635758.p16.src.tif
	DEC.pdp_1.1964.102635758.p17.src.tif
	DEC.pdp_1.1964.102635758.p18.src.tif
	DEC.pdp_1.1964.102635758.p19.src.tif
	DEC.pdp_1.1964.102635758.p20.src.tif
	DEC.pdp_1.1964.102635758.p21.src.tif
	DEC.pdp_1.1964.102635758.p22.src.tif
	DEC.pdp_1.1964.102635758.p23.src.tif
	DEC.pdp_1.1964.102635758.p24.src.tif
	DEC.pdp_1.1964.102635758.p25.src.tif
	DEC.pdp_1.1964.102635758.p26.src.tif
	DEC.pdp_1.1964.102635758.p27.src.tif
	DEC.pdp_1.1964.102635758.p28.src.tif
	DEC.pdp_1.1964.102635758.p29.src.tif
	DEC.pdp_1.1964.102635758.p30.src.tif
	DEC.pdp_1.1964.102635758.p31.src.tif
	DEC.pdp_1.1964.102635758.p32.src.tif
	DEC.pdp_1.1964.102635758.p33.src.tif
	DEC.pdp_1.1964.102635758.p34.src.tif
	DEC.pdp_1.1964.102635758.p35.src.tif
	DEC.pdp_1.1964.102635758.p36.src.tif
	DEC.pdp_1.1964.102635758.p37.src.tif
	DEC.pdp_1.1964.102635758.bc.src.tif

