MACRO
ASSEMBLY PROGRAM

DIGITAL EQUIPMENT

DIGITAL-1-1-S

MACRO
ASSEMBLY PROGRAM

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

Copyright 1964 by Digital Equipment Corporation

TABLE OF CONTENTS

SECTION 1
INTRODUCTION

SECTION 2
THE MACRO SOURCE LANGUAGE

Processing of the Source Language by Macro
PNOTAYION | o o oiels/alsiatara e wolsore/atapiniie oo bin rarte

Syllables and Expressions: Format of a
SOUTCE/ PROGIGT ¢ soivaia'se osidlois vakisnaininm s sis

Use of EXPressions ... vsvisvssavesioss sess
Pseudo=Instructionsceecevveenns oo wome
Automatic Storage Assignment

MACro=InsSIUCHIONS < iiincanenin avs s dnes

SECTION 3
OPERATING INSTRUCTIONS FOR MACRO

Preparing for an Assemblycccovviiiiinnn.
Assembling a Single Macro Language Tape
EnonINdICalions . coiaieisiaess seiasiisaies sish/end ot wiatomiee
Assembling Several Tapes As One Program ,,........
MACRO Symbol Package Tapecvvvenvennnn.
Use of Binary Symbol Tapescovvvevnnnennnns

The Test Word Switches

oooooooooooooooooooooooooo

FIO-DEC Tape

ses
1

3-1
3-1
3-2
3-6
3-7
3-8
3-8

Al-1

Figure
1-1

2-1
2-2
Table

3-1
3-2

APPENDIX B

Page

B PO s s e v esca s oo asals 8 mia s aln loiele u auatalte o slas A2-1
APPENDIX C
Symbols in MACRO's Permanent Vocabulary A3~-1
LIST OF ILLUSTRATIONS
A MACRO Source Program ... sssssessessassssss 1-2
A MACRO Source Program with Automatic
Storage Allocationil, iiueewi cslseiseasiales sie's s siates sas 2-11
Cascading Macro=Instructioncovvvvvenenennens 2-17
LIST OF TABLES

List of Ertor Designations .. saisesesiadaalesiilests ales 3-3
Function of Test Switches 0=5coviiernunnnns 3-8

SECTION 1

INTRODUCTION

Coding for a digital computer is the process of setting down the exact sequence of instructions,
constants, and tables which must be placed in the memory of a specific computer to perform
some desired computation. The art of coding is far advanced from the early days of automatic
computation when all instructions of a program were written in numerical form using the num-
ber system of the machine being used. This was coding in machine language. Now, assembly
programs are available for nearly all digital computers which allow the user a more convenient
language for writing the instructions forming his program. MACRO is such an assembly pro-
gram for the DEC PDP-1 computer. It translates a source program written in a language, which
we shall call the MACRO source language into an object program, which can be read directly

into the PDP-1 computer.

A MACRO source program takes the form of a punched paper tape prepared using the standard
FIO-DEC Flexowriter with the Concise lll typeface as given in Appendix A, or using an on-
line editing program such as Expensive Typewriter. An example of a source program is given
in Figure |1 exactly as the Flexowriter would print it. The first line of a source program is a
title line, and the program concludes with a start line, as in the example. A MACRO object
program is a binary tape punched by the PDP-1 under control of the MACRO assembly program.
The format of the binary tape is detailed in Appendix B. It contains the title line of the
source program in readable form; a read-in mode input routine, which is read in by the PDP-1
and placed in the last registers of memory; blocks of instructions and constants which make up
the object program; and, finally, a start block indicating the address of the first instruction

to be executed.

An assembly program such as MACRO permits the user to prepare source language programs
using symbolic names or, simply, symbols to represent the numerical values of instruction
codes, machine addresses, and parameters. Not only does this make the program easier to
read and understand, but it also allows a degree of flexibility not otherwise possible. For
example, a program properly written in the MACRO source language can be placed at any

location in the PDP-1 memory by changing a single line in the source program.

1-1

SUM
n=100

100/

start a

law tab
dap b
dzm s
lac .
add s
dac s
idx b
sas ¢ /are we through?
imp b
hlt
tab+n/
0

lac tab+n

initialize LOAD
command with IEE'E

v

Zero sum

storage location

LOAD AC

¥

add contents of
sum sforage

Y

place new value
in sum storage

K]

index LOAD command

Have
we summed 100
numbers?

halt

Figure 1-1 A MACRO Source Program and Flow Chart

Normally, an assembly program produces one machine language instruction for each instruction

of the source program. However, some lines in the source program, known as pseudo-instructions,

are directions to the assembly program and do not directly produce instructions in the object

program. An example is the pseudo-instruction start used to denote the end of a MACRO source

program. Also, MACRO provides a means of associating symbolic names called macro=instructions

with sequences of instruction according to the user's desires.

Since the source program in Figure 1~1 is referred to in subsequent chapters, a brief description
of it is in order. The first three steps initialize the routine. Then a program loop is entered
to place the sum of]00(8) numbers in S. These numbers are stored in sequential locations be-

ginning with tab. The routine terminates with the halt instruction.

Part |l of this brochure describes the MACRO source language in terms of how it is con-
verted into machine language by the MACRO assembly program. Part |ll presents operating

instructions for assembling source program tapes written in the MACRO language.

SECTION 2

THE MACRO SOURCE LANGUAGE

PROCESSING OF THE SOURCE LANGUAGE BY MACRO

A MACRO source program may be thought of as a long linear string of characters in which the
alphabet includes the various typewriter functions (tabulation, carriage return, backspace and
case shifts) as well as the visible characters. In assembling a program, MACRO scans the string
of characters making up the source program starting from the title line and continuing through
the stop code following the first start line. Two passes of this nature are required for a com-
plete assembly. On the first pass, the values of symbolic addresses are determined, and stor-
age areas are reserved for variables, tables, and constants. During the second pass, the symbol
values are used in evaluating the instructions and constants making up the user's program, and

the object program is punched in the form of a binary tape.

Certain lists are maintained by MACRO for the purpose of carrying out the assembly process.
The symbol table contains an entry for each symbolic address, instruction code and parameter
used by the programmer in his source language program. The entry consists of the character

group forming the symbol, and its value represented as an 18-bit number.

The macro=instruction list contains the sequence of instructions making up each macro-
instruction defined by the user's source program. The symbolic names of pseudo- and macro-
instructions are filed in the pseudo~instruction list which contains a reference to the macro-

instruction list for macro names, or to the appropriate routine in MACRO for pseudo-instructions.

A current location counter in MACRO indicates the object program location in which the next
instruction translated will be placed. A current radix indicator controls whether a string of

digits in the source program is treated as octal (base 8) or decimal (base 10).

At the beginning of an assembly, the macro-instruction list is empty, and the pseudo=instruction

list contains only the names of system pseudo-instructions described in detail later.

The symbol table contains the list of permanent symbols and values given in Appendix C. At
the beginning of each pass, the current location is set to 4, and the current radix is set to

octal.

2-1

In the following description of the MACRO source language, its structure will be illustrated
by character strings which could appear as part of a source program. These strings will be

enclosed in brackets < >. For clarity, the signs <-> | >and < 1> will be used to represent
tabulation and carriage return, and < > will be used for space when needed for emphasis.

The abbreviations tab and cr will be used for tabulation and carriage return in format descriptions.

Syllables and Expressions: Format of a Source Program

As mentioned in the Introduction, a MACRO source program consists of a title line, a body,
and a start line, A title line is an arbitrary string of characters terminated by a cr. The com=-
plete title is punched by MACRO in readable form at the beginning of the object program tape.

A middle dot in the title will cause only the characters preceding it to be punched.

The start line must have the form illustrated in the source program example on Page 1-2., |t
must be terminated by a cr and followed by a stop code, which will be the last character read

on the source program tape.

The body is a series of expressions, which are the basic units of a MACRO source program.
An expression is a string of characters representing a program insfruction, a constant used by
a program, table entries, or other data. Some examples are:

<add 100>

<dio t+2>

<+1234>

<m+n>

<123-a-.>

Expressions are usually delimited by tab, cr, slash, comma, or equals. The significance of

an expression depends on the context in which it appears.

More precisely, an expression is one or more syllables separated by the characters plus, minus,
or space. Examples of syllables are:

<add>

<100>

<1224>

<i>

2-2

MACRO computes the value of an expression by summing the values of its component syllables.
If a syllable is preceded by a plus sign or space, the syllable value is added to form the sum,

if preceded by a minus sign, the complement of the syllable value is added. The plus sign

may be omitted before the first syllable of an expression. The addition is performed in the
18-bit ones complement arithmetic of the PDP-1, except when the sum is zero; then it will

be evaluated as minus zero 777777 if any syllable was other than plus zero. Since this addition
is associative, the order in which the syllables of an expression are written does not affect its
value. In the following examples, the current radix is assumed set for octal. The two expres-

sions of each pair will represent the same value to MACRO.

<add> = <400000>
<=1234> = <776543>
<=0> = <777777>
<tx> = x>

<dac 123> = <240123>
<lac i a+2> = <a+210002>
<=1+1> = <777777>

Syllables can take a number of forms, two of which will be mentioned here.

Symbols = A symbol is a string of one, two, or three letters and digits in which at least one
letter appears. A symbol may represent an instruction as in dac or a symbolic address such as

x in lio x. A symbol is defined if there is a corresponding entry in the symbol table, otherwise

it is undefined. The value of a symbol is the 18-bit number associated with it in the symbol

table if it is defined, and minus zero if it is undefined.

Integers = An integer is a string of the digits 0, 1, ...,9 and is evaluated as an octal or decimal
integer accoring to the current radix. The value of an integer is the 18-bit representation of
the integer. Thus the largest integer taken as its face value is
<777777> in octal or
<262143> in decimal.
18

The value of an integer above these limits is taken modulo (2~ -1).

Use of Expressions

The meaning of an expression to MACRO is determined by the context in which it appears in

the source program, and usually by the character immediately following it.

Storage Word - An expression followed immediately by a tab or cr is a storage word.
<{mp jes >
<+103-a »|>

The 18-bit number representing the value of the word is entered in the object program at the
address given by the current location counter in MACRO. The location counter is then ad-
vanced by one. A storage word may be an instruction forming part of a program, a constant

used by the program, or data.

Location Assignment = An expression immediately followed by a slash is a location assignment:
<100/>
<tab+120/>

The current location is set equal to the address portion of the value of the expression. Thus

<100/ sza jmp 100 } >
or
<100/ sza
imp 100 >

in the source program will place the instruction sza in the object program at register 100 and

— =

the instruction jmp 100 in register 101.
If, on Pass 1, a location assignment contains any undefined symbols, the current location

becomes indefinite.

Symbolic Address Tag - An expression immediately followed by a comma is an address tag:

<beg,>

<aa2,>

<a+12, >

If the expression contains one syllable, and this syllable is an undefined symbol not preceded

by a minus sign, and the current location is not indefinite, the symbol is entered in MACRO's

symbol table and assigned a value equal to the current location. Otherwise, the value of the
expression, compared with the current location, and a disagreement will cause an error print-

out. The current location is not changed by a symbolic address tag.

Using a symbolic address, the preceding example could be written as

<100/a, sza »| jmpa b>

The programmer should note that location assignments and symbolic address tags, in themselves,
have no effect on the object program but rather direct the process of assembly. Also, he should
observe their inverse character. The location assignment sets the current location counter to

the value of an expression, while the address tag sets the value of a symbol equal to the current

location. Hence the sequences

<100/a,b, >
or
<100/ 3| a,)
b, >
assign 100 as the value of both symbols a and b. A sequence such as
<1000/tab,)
tab+n/>

is frequently used to reserve a block of registers for a table of data or computed results. In
the example, the block starts at register 1000, is named by the symbol tab, and contains an

octal number of registers given by the value of the symbol n.

Symbolic Parameter Assignment - A symbol immediately followed by an equal sign, an expression,

and a tab or cr is a parameter assignment. It assigns the symbol left of the equal sign a value
given by the expression to the right, if the expression is defined. If the expression is unde-
fined, no action is taken. For example:

<n=100) >

<sna=sza i 3| >

<cai=cla+cli-opr) >

<t=tt 3| >

The parameter assignment facility is useful for setting table lengths and other properties of the
object program. It provides a means of defining new operation codes to simplify the writing of

programs and for preparation of instruction sets for interpretive programs.

2-5

Comments = A string of characters which commences with a tab-slash or cr-slash is a comment.
The string is ended by a tab or cr. Comments are ignored by MACRO and may be used to label
sections of a program, annotate important instructions, and give the reader of the typescript
information about the program. Example:

<get, >|lac >|/ This is a comment)>

Current Location Syllable - The character period <.> is a special syllable whose value is equal

to the current location.
Hence,

<sza 3| jmp .=1 0>
is an alternate way of writing

<a, sza 3| jmpa)>

The use of the features of the MACRO assembly program that have been discussed so far are
illustrated by the program example on Page 1-2. The reader should be sure he thoroughly

understands this example before proceeding further in this brochure.

Pseudo-Instructions

Pseudo-instructions in the MACRO source language are directions to the MACRO assembly

program which govern the way in which subsequent information in the source program is processed.

Typographically, a pseudo-instruction is a string of at least four letters and digits, in which at
least one of the first four is a letter. The string is followed by a terminating character which

may be space, plus, minus, tab, or cr. For convenience, the character < ~> will be used to

represent any of these terminating characters. A pseudo-instruction may always be abbreviated

to four characters.

The pseudo-instructions of MACRO are described below:

End of Source Program - The pseudo-instruction start denotes the end of the source language

program. The expression following start gives the address of the instruction in the object pro-
gram which is to be executed first, and MACRO will include the appropriate start block in the
binary program tape. The line

<start beg+2)L >

terminates scanning of the source program and causes the word jmp beg+2 to be punched as the

2-6

start block of the binary tape. When the binary tape is subsequently read into the PDP-1,
control will go to register "beg+2" after the start block is read.

Radix Control - The pseudo-instructions, octal and decimal, control the current radix for

evaluating integer syllables. The string <octal ~> anywhere in the source program sets the
current radix to eight, and the string <decimal~> sets the current radix to ten for all subsequent
integers. These pseudo-instructions may appear as syllables of value zero in an expression,
for example:

<octal 44+decimal 27 >| >
is equivalent to

<octal S| 77 | decimal 3| >

Suppression of Input Routine ~ The string <noinput~>anywhere in the source program will

suppress punching of the input routine on the binary program tape.

Storage of Character Codes - The pseudo-instructions, character, flexo, and text, are provided

to allow the programmer a convenient means of storing character codes for print-out by his
program or for comparison against alphanumeric data accepted by his program. For reference,
the six=bit codes for the Concise |ll character set used with the PDP-1 are included as Appen~-
dix A of this brochure.

The pseudo-instruction character is used to place a character code in the left, middle or right
6-bit portion of an 18-bit word. The string <character~> is followed by r, m or |, according
to the position desired, and then the character whose code is desired.
Thus

<char ra> is the same as <000061>

<char mb> is the same as <006200>

<char le> is the same as <630000>

The above strings are pseudo~instruction syllables and may be used in the same manner as
symbols or integers in forming expressions.
For example

<-char rx> is equivalent to <777750>

The pseudo-instruction flexo is used to compile three character codes into one 18-bit word.

Thus
<flexo dec> is the same as <646563>
and may also be written as

<char rc+char me+char Id>

The pseudo-instruction text is used to assemble a long string of characters by groups of three
into successive words in the object program. The string to be assembled is enclosed between
two appearances of the same character, which immediately follows the string <text>. It is
suggested that the character period be used to enclose the string, although any legal character
may be so used. Of course, the character selected cannot appear within the string itself.
For example, the string

<text .Error.>

is equivalent to

<flex E >|flex rro »| char Ir >|>

The Repeat Pseudo-Instruction = The repeat pseudo-instruction provides a convenient way of

placing a sequence of similar expressions in a block of the object program. The string
<repeat~n, >

causes MACRO to scan and assemble the following characters a number of times equal to the

value of the expression n. The string of characters scanned and assembled is the range of the

repeat; it starts immediately after the comma and continues up to and including the next car-

riage return. The expression giving the order of the repeat (n in the above example) must be

non-negative and definite when the repeat is encountered during the first pass. If the value

of the expression is zero, the range of the repeat is ignored.

As an example of the use of repeat, the following sequence forms a table of squares of length n.

<u=02 v=1> repeat n,u3| u=u4+val v=us2)>

Emptying of Symbol Table - Occasionally it is desirable to delete all symbols from the symbol

table when using MACRO to assemble certain symbolic data tapes. The string <expunge~ >
appearing in the source program deletes all symbols, including the initial list given in Appendix
C, from the MACRO symbol table at the time it is encountered during the first pass. |t has

no effect during the second pass.

2-8

Other Pseudo-Instructions - The remaining pseudo-instructions, constants, dimension, variables,

define and terminate, will be discussed in connection with automatic storage assignment

and macro-instructions in the following sections.

Automatic Storage Assignment

Several features have been provided in the MACRO assembly program which automatically
assign storage locations for the constants used by a program and the variables and tables manip-
ulated by the program. These features reduce the amount of typing required to prepare a com=
plete source language program, simplify editing, and make the source program typescript more

readable.

Constants = An expression enclosed in parentheses is a constant syllable and may appear as a
syllable in storage words and parameter assignments. MACRO will compute the value of the
expression enclosed and place it in a constants area of the object program as explained below.
The location at which constant words are placed is determined by the next appearance of the
pseudo-instruction constants following the constant syllable. For example, in the program
illustrated on Page 1-2, the line

<c, 2| lac tab+n 1>
could be omitted if the line

<sad ¢). >
were replaced by

<sad (lac tab+n)) >
and the string

<constants) >

inserted before the start line.

When the pseudo-instruction constants is scanned by MACRO, the constant expressions,
assembled since the beginning of the program or after the last use of the pseudo=instruction
constants, are placed in the object program starting at the current location. Constant words
having the same numerical value are entered only once. The current location is advanced to
an address somewhat beyond the register in which the last constant is placed, leaving a small
gap of unused registers between the constants area and any following portion of the program.
(This gap arises because MACRO reserves blocks of registers for constant words during the

first pass when some of these words may not be defined.)

2-9

Some additional points on the use of constant syllables are:
1. The right parenthesis may be omitted from constant syllables if immediately
followed by one of the terminating characters, comma, tab or cr.
2. Recursive use of constant syllables is permitted; that is, a constant syllable
may appear within an expression forming a new constant syllable:
<lac (add (com))) >
or simply
<lac (add (com) >

This may be continued to a depth of eight levels.

Variables = A symbol typed with a bar over at least one of its characters at its first appearance
in the source program is a variable, for instance:
<s—ym> or <al2>.
All symbols identified as variables become defined on the subsequent appearance of the pseudo-
instruction variables. The pseudo-instruction variables must follow all defining appearances
of variables and may appear only once in any source program. The variables are assigned to
sequential locations starting at the location of the pseudo-instruction variables. Their initial
contents are undefined. Forinstance, the sequence
<lac a?| add b>| dac a 2|
...b,0 3|a,0)>
is equivalent to
<laca 2| add b =| dac a 3|
... variables l >
except that the contents of registers a and b of the object program will be zero in the first

case and undefined in the second.

Tables - Blocks of registers may be reserved for tables by means of the dimension pseudo-

instruction. The string

<dimension x (n), y(m), z(m+n)) >
for example, reserves three blocks of lengths given by the values of the expressions n, m, and
m+n. The first address of each block is assigned as the value of the symbols x, y, and z. The
reserved blocks are placed at the location in the object program specified by the variables
pseudo-instruction. The initial contents of the reserved blocks is undefined in object program.

The following rules apply:
2-10

1. The expressions given as lengths of blocks in a dimension pseudo-instruction

must be definite when scanned on the first pass.
2. The symbols assigned to blocks by a dimension statement must be previously

undefined.

The use of dimension, variables and constants in a complete MACRO source program is illus=

trated in Figure 2-1. This program will produce exactly the same object program as the intro-
ductory example on Page 1-2 except that the initial contents of register s is zero in the earlier

version and undefined here.

SUM

n=100

dimension tab(n)

100/

a, law tab
dap b
dzm s

b, lac .
add s
dac s
idx b
sas (lac tab+n
imp b
hlt

variables

constants

start a

Figure 2-1 A MACRO Source Program with Automatic Storage Allocation

Macro=Instructions

Very frequently the same sequence of instructions is required at many places in a computer
program. For example, the two instruction sequence
spa
cma
forms the absolute value of the contents of the PDP-1 accumulator. To simplify writing of
the source language program and provide a more meaningful source program typescript, it is
convenient to represent such a sequence by a special name such as Absolute. The macro-
instruction feature of the MACRO assembly program makes this possible. The source programs
sequence
<define
absolute
spa
cma
terminate >
defines a macro=instruction with name absolute. When the string
<absolute >
subsequently appears in the source program, the sequence of words, spa, cma, will be copied

into the object program.

In the more common instances, the recurring instruction sequence is not identical in each

appearance, but the words of a basic sequence are modified by additive parameters. A frequent

combination is
lac x
dac y
which moves the quantity in register x to register y. The macro-instruction facility allows

the user to represent such a sequence by a name with a group of parameters such as

<move x,y>
This representation is established by the definition
<define >| move A,B)
>| lac A
> | dac B

» | terminate) >

2-12

which must appear in the source program prior to use of the macro-instruction. In this
example, A and B are dummy symbols in which at least one letter is in upper case. When
MACRO scans the macro-instruction

<move x,y) >
it copies the word sequence from the definition into the object program substituting the values

of the arguments x and y for the dummy symbols A and B respectively.

Defining @ Macro-Instruction =~ A macro-instruction definition consists of four parts; the

pseudo-instruction define, the macro=instruction name and dummy symbol list, the body, and

the pseudo-instruction terminate. Each part is followed by at least one tabulation or

carriage return.

The macro-instruction name has the same form as a pseudo-instruction=-a string of at least

four letters and digits of which at least one of the first four characters is a letter. The name
is terminated by a space or by a tab or cr if there is no dummy symbol list. The first six char-
acters of a macro-instruction name must distinguish that name from all other macro names and
all pseudo-instructions. The dummy symbol list consists of as many distinct dummy symbols as
desired, separated from each other by commas, and from the macro name by a space. Since
dummy symbols have no meaning outside of a macro definition, the same dummy symbols may

be used in many definitions without harm.

The body of a macro definition is an arbitrary sequence of storage words in which any dummy
symbol from the dummy symbol list may appear as a syllable. The pseudo-instructions

character, flexo, test, octal, decimal, noinput, and any previously defined MACRO instruc-

tion may be used within the body of a macro definition. Constant syllables may appear in

any expressions and dummy symbols may be used as syllables in constant expressions.

Using a Macro-Instruction = A macro-instruction consists of a macro instruction name followed

by a argument list, and a tabulation or carriage return. The argument list consists of expres-
sions separated by commas, in correspondence with the dummy symbols listed in the definition
of the macro-instruction. The first expression of the argument list must start with space, plus,
or minus to separate it from the macro name. The expressions in the argument list may contain

constant syllables and the pseudo-instructions character, flexo, octal or decimal. When the

current location syllable <. > appears in an argument list, its value is taken as the current

location at the time the macro-instruction name is scanned,

MACRO assembles a macro-instruction by evaluating the expressions in the argument list, sub-
stituting these values for corresponding dummy symbols in the definition, and copying the
resulting sequence of storage words into the object program. The current location is advanced

for each word copied. If an argument expression is omitted, its value is taken as zero.

An Example:
The definition and use of a macro=instruction is illustrated by a program to store zeros in a
block of registers. This program can be assigned the name clear by the definition
<define clear A,N
law A

dap .+1
dzm
idx =1
sas (dzm A+N
jmp .-3
terminate>
When the line
<clear tab,100y >
appears later in the source program, the instruction sequence
law tab
dap .+1
dzm
idx .-1
sas (dzm tab+100
imp .-3
is inserted in the object program. The resulting sequence will clear a hundred registers start-

ing with register tab.

Address Tags Within a Macro Definition - Before MACRO scans the body of a macro=-instruction
definition, the current location is set to zero; it is then advanced by one for each storage

word included in the definition. Therefore, an address tag in the body of @ macro definition

2-14

will be assigned a value equal to the number of storage words in the body up to that point.
Symbols defined in this manner are entered in the symbol table as usual and may be referred
to at any point in the source program. Note that a given symbol should not be used as an

address tag in several definitions as this would attempt to define the same symbol twice.

Addressing Within a Macro Definition - In longer macros it is frequently necessary for some
instructions in the sequence making up the macro to address other instructions in the sequence.
The address parts of such instructions must be given different values each time the macro-
instruction is used at a different object program location. To provide a convenient means

of handling this problem, a special dummy symbol <R> is provided. This dummy symbol may
always be used in the body of a macro definition and should not appear in the dummy symbol
list. When a macro-instruction is used, the current location at the time its name is scanned

is substituted for <R> in each appearance. In illustration, the preceding definition of

<clear A, N> may also be written as

<define clear A, N
law A
dap a+R
a, dzm
idx a+R

sas (dzm A+N
imp a+R
terminate >
When the current location syllable <.> is used in the body of a macro definition as in the

earlier example, symbol <R> is automatically included.

Cascading Macro Definition = Once defined, a macro-instruction may be used in the body
of another macro definition. In this case, the expressions in the argument list of the macro-
instruction may also include any dummy symbols from the new definition. An example is given

in Figure 2-2, which is a third way of writing the summation program introduced on Page 1-2.

Dummy Symbol Assignments = Provision has been made for creating new dummy symbols and
reassigning the meaning of existing dummy symbols within the body of a macro-instruction

definition. This is accomplished by a dummy symbol assignment. The format is the same as

2-15

for a parameter assignment except the left side must be a dummy symbol, and the expression
on the right may contain dummy symbols. When a macro-instruction is subsequently used in
the source program, the value substituted for the new dummy symbol is computed from the
values of arguments substituted for dummy symbols according fo the right hand side of the
dummy symbol assignment. For instance the string

<C=A+B - 100) >
will create a new dummy symbol <C> whose value is the sum of the arguments substituted for
A and B, plus the number -100. Dummy symbols may be reassigned in terms of themselves:
Thus

K=X+X+HX+X) >
will cause four times the value of the argument corresponding to dummy symbol X to be sub-

stituted for X in subsequent appearances.

2-16

SUM

define

define

define

100/

define

n=100

a,

initialize A, B law B
terminate
accumulate T add T
terminate
index A,B,C idx A

jimp C terminate

total T,N, S
initialize b+R, T
dzm $

lac

accumulate S
index b+R, lac T+N,b+R
terminate
dimension tab(n)
total tab,n,s
hlt

variables
constants

start a

Figure 2-2 Cascading Macro-Instruction

dap A

dac T

sas (B

SECTION 3

OPERATING INSTRUCTIONS FOR MACRO

PREPARING FOR AN ASSEMBLY

Macro uses the PDP tape reader, punch and typewriter. Therefore, before starting an assem-
bly, the typewriter should be turned on and the punch checked to make certain an adequate
supply of tape is properly threaded. For normal operation, all TEST WORD and TEST ADDRESS
switches must be off. The reader must be turned off before inserting a tape, and must be turned
on before reading is attempted. Tapes are placed in the reader with the feed hole toward the
computer. To place the MACRO assembly program in the machine, put the MACRO ASSEMBLY
PROG binary tape in the reader, turn on the reader, and press the READ=IN lever. If the tape
stops before the last line of information has been read, a reading error has occurred resulting in
a faulty checksum. If the reader has stopped with a blank section of tape under the lamp, the
reading may be continued by moving the tape back one block to the previous blank section and

pressing the CONTINUE lever. Otherwise, start the reading from the beginning of the tape.

ASSEMBLING A SINGLE MACRO LANGUAGE TAPE

To assemble a MACRO source language program which is complete on one paper tape proceed
as follows:

1. Place the tape in the reader, turn on the reader, and press CONTINUE.

This initiates the first pass of the assembly. After a section of tape has been

read, MACRO will reproduce the title line of the source program on the

typewriter and continue scanning the remainder of the tape. Format and

other errors in the source program which are detected by MACRO will be

recorded on the typewriter. These error printouts are described in Error

Indications. The first pass is completed when the start line and stop code

at the end of the source language tape are scanned.

3-1

2. Again place the source program tape in the reader, turn on the reader,
and press CONTINUE. This initiates the second pass of the assembly.
MACRO will read a section of tape and print the title as in the first pass.
The title will also be punched in readable form as the leader of the binary
program tape. A copy of the standard input routine will be punched if it is
not suppressed by a noinput pseudo-instruction. MACRO will then scan the
source program and punch the object program in a form suitable for loading
by the standard input routine. The second pass is complete when a start

line followed by a stop code is scanned.

3. Press the CONTINUE lever a third time. MACRO will punch a start
block to complete the binary tape. At this point MACRO's symbol table
will contain the values assigned to any symbols defined in the source pro-
gram, and the macro-instruction list will contain any macro definitions in=
cluded in the source program. These values may be printed out or punched
in a form suitable for use with debugging programs such as DDT by using the

macro symbol package tape as directed in Macro Symbol Package Tape.

Pressing the CONTINUE lever a fourth time after the completion of pass two
will initiate pass one without restoring the symbol table or macro~instruction

list.

ERROR INDICATIONS

As mentioned above, MACRO will detect certain format irregularities, the use of undefined
names, and conditions where assembly is impossible because of the amount of memory avail-
able. When an error condition is discovered, the on-line typewriter will provide information

in the following format to identify the error and help the user locate it in his source program:

usw 134 sym + 4 octal arg
error absolute symbolic last pseudo-instruction symbol not
octal address scanned defined or
address concise
code

3-2

The conditions associated with each identification are listed below. The rightmost column

appears only for an undefined symbol or an illegal character on the source program tape.

Normally, when an error print-out occurs, the computer will halt. Pressing either START or
CONTINUE will cause the assembly to continue when possible. During pass two, pressing
CONTINUE will cause punching of the binary tape to be suppressed. Pressing START will
continue to process and punch the tape; however, undefined symbols will be assigned a value
of zero. MACRO can be instructed to automatically continue processing after error print-outs
by setting bit 17 of the TEST WORD switches to one. In this case punching will be suppressed

on pass two after the first error is detected.

In the list of error identificationsboth the situation producing the error comment and the treat-

ment of MACRO upon continuation are given.

TABLE 3-1 LIST OF ERROR DESIGNATIONS

Error Condition Action on
Designation Causing Error Continuation

Bad source tape characters
ich Illegal character = 1) A code not repre= The questionable
senting a standard character or function character is ignored.
has been scanned, or 2) a legal charac-

ter has been used in the wrong context.

ilp Illegal parity = A character read from START causes the
the source tape has even parity. character to be ac-
cepted; CONTINUE
ignores the bad char-
acter. (In this case,
CONTINUE will not
suppress punching.)
Multiple definitions
mdt Multiple defined tag = An address tag No symbol values are
expression has a value not equal to the changed.

current location.

TABLE 3-1 LIST OF ERROR DESIGNATIONS (continued)
Error Condition Action on
Designation Causing Error Continuation

Multiple definitions

mdv

mdd

mdm

Multiple defined variable - a previously

defined symbol appears with an over-bar.

Multiple defined dimension - a previously
defined symbol appears as a table name in

a dimension statement.

Multiple defined macro-instruction - an
attempt is made to define a macro-
instruction with a name already used for
a pseudo-instruction or previously defined

macro=instruction.

Undefined symbol error designations

Undefined symbol:

usa

usc

usd

usm

usp

usr

in @ macro-instruction argument
in a constant expression

in a dummy symbol assignment within a

macro=-instruction definition
in a macro-instruction storage word

in the right-side expression of a para-
meter assignment, or as the size of a

dimensional array

in the parameter of a repeat pseudo-

instruction

The original defini-

tion is retained.

The original defini=-

tion is retained.

The new definition is
entered in the macro
list and will subse~
quently be used
wherever the name
appears in the source

program.

For all these errors,
the value of the un-
defined symbol is

taken as zero.

TABLE 3-1 LIST OF ERROR DESIGNATIONS (continued)

Error Condition
Designation Causing Error

Action on
Continuation

Undefined symbol error designations
Undefined symbol:

uss in a start pseudo-instruction

Usw in a storage word

Other indefinite names
uds Undefined dummy symbol - a dummy sym-
bol name was used that has not appeared
in the dummy symbol list or on the left

side of a dummy symbol assignment.

lllegal pseudo-instruction = A sequence

o,

of four or more letters and digits is not
the name of a pseudo-instruction or a

macro-instruction,

Format Errors
ids Illegal dummy symbol = A member of the
dummy symbol list in a macro-instruction

does not have the dummy symbol format.

ipa Illegal parameter assignment = Something
other than a single symbol or dummy sym-
bol has appeared to the left of an equal

sign.

ilr Illegal repeat = The count parameter of a
repeat pseudo-instruction is negative, or
a repeat has been used in the range of

another repeat.

The dummy symbol
value is taken as

Zero.

All characters up to
the next tab or cr

are ignored.

The last symbol
scanned is taken in
place of the bad
dummy symbol .

The parameter assign=

ment is ignored.

The repeat and its

range are ignored.

TABLE 3-1 LIST OF ERROR DESIGNATIONS (continued)

Error Condition Action on
Designation Causing Error Continuation J

Format Errors

ils Illegal start = A start pseudo-instruction Continuation not pos-
has appeared within a macro~instruction sible.

definition or the range of a repeat.

vld Variable location disagreement - The The location from
pseudo-instruction variables appeared pass one is used.

at different location in passes one and

two.
ilf Illegal format - other cases of improper The source program is
format. ignored up to the next -

tab or cr.

ASSEMBLING SEVERAL TAPES AS ONE PROGRAM -

When several tapes are assembled together as described below, they are treated by MACRO
exactly as though the title lines had been deleted from all but the first tape, the start lines
deleted from all but the last, and the tapes spliced together to form a single source program =~

tape. The address of the start should be removed from all the tapes but the last.

First prepare MACRO for operation as directed in Preparing for an Assembly. Then:

1. Place the first tape in the reader and press CONTINUE to perform pass

one.

2. Place the second tape in the reader and press START to continue pass

one. Repeat for each tape, checking that the correct order is observed.

3. Place the first tape in the reader again and press CONTINUE to ini-
tiate pass two.

4. For each subsequent tape, place in the reader and press START to
continue pass two. Be sure all tapes are processed in the same order as

in pass one. —

MR e IR et b

Iy et e ee

r-l

5. Press CONTINUE to punch a start block and complete the binary

program fape.

THE MACRO SYMBOL PACKAGE TAPE

The macro symbol package tape contains four sections which provide the following functions

under control of the console switches:

Symbol Punch - Sense switch 1 on. This section will punch a binary tape containing symbol
and macro definitions made during an assembly. This binary tape may be used to establish an
initial set of definitions for a later assembly, or it may be used with a symbolic debugger such
as DDT. After being read in, the program will wait for the operator to type a title which will
be reproduced in readable form as the leader of the binary symbol tape. Typing a carriage re-
turn ends the title and starts the punching operation. If only macro definitions or only symbol
values are desired, the user may end the title with o tabulation followed by the word <macros>

or <symbols> (or simply <m> or <s>) accordingly; then a carriage return.

Alphabetic Symbol Print = Sense switch 2 on. Each symbol will be printed together with the

value last assigned to it by the assembler. Symbols from the initial symbol list will be listed
only if they have been assigned new values during the processing. Symbols are listed in al-

phabetic order with all one-character symbols coming first. The digits follow the letters.

Numeric Symbol Print = Sense switch 3 on. The symbols and values are listed as above, but

in order of increasing value.

Restore - Sense switch 4 on, MACRO is made ready to perform a new assembly: the macro-

instruction list is cleared and the symbol table reduced to the set of permanent symbols and

values given in Appendix C. The effect is as if MACRO had just been read in.

The symbol punch and print section may be also used in the middle of an assembly if desired.
Of course, some symbols may not have been assigned their final values, and macro-instruction
definitions may be incorrect. If this is done after a tape has been processed, the subsequent

effect of CONTINUE or START will be the same as if symbol punch or print had not been used.

USE OF BINARY SYMBOL TAPES

A binary symbol tape may be used to restore MACRO and stock it with a special set of symbols
and/or macro-instruction definitions. This is done by placing the symbol tape in the reader,
turning it on, and pressing READ IN. Note, however, that a symbol table punched with only
symbol definitions will not restore the macro instruction list, and a symbol tape punched with

macro instructions only will not restore MACRO's symbol table.

THE TEST WORD SWITCHES

The test word switches allow the user to direct the operation of the assembly program for

special circumstances. The function of switches 0 through 5 is shown below.

TABLE 3-2 FUNCTION OF TEST SWITCHES 0-5

Switch No. Meaning

0 On - Examine remainder of TW switches

Off - Do not examine

1 On - Pass 2
Off - Pass 1
2 On - Continuation, do not reset address

Off - Reset initial address to zero

3 On = Punch object tape
Off - Do not punch

4 On = Punch input routine

Off - Do not punch

5 On - Punch title
Off - Do not punch

If switch O of the test word is off, the effect of the START lever in assembly is as previously
described. If switch 0 is on, MACRO will proceed according to the position of the other

five switches.

3-8

A common procedure is to initiate pass two with no punching by setting test word switches 0,
1 and 17 on. MACRO will then print out any error comments without attempting to punch
the binary program tape. If there are no errors, test word switches 3, 4 and 5 may be set to

repeat pass two and punch the object program.

Another common use of the test word switches is in providing MACRO with symbol and macro-
instruction definitions from source language tapes that need not be processed by pass two.
First, perform pass one on the definition tapes in the normal manner. Then set switch 0 of
test word on with the other switches off and press START to begin processing of the first pro-

gram tape. Turn off test word switch 0 and continue the assembly in the usual manner.

It is well to turn off the test switches immediately ofter pressing the START lever to avoid

errors the next time START is used.

3-9

APPENDIX A

FIO-DEC TAPE (MACRO INPUT)

CHARACTER CODES

FIO-DEC FIO-DEC

Character Code Character Code
a A 61 0 20
b B 62 i = 01
e '€ 263 2 ! 02
d D 64 3 203
e E 265 4 04
f F 266 5 V 205
g G 67 6 A 206
h H 70 Rz & 07
i | 271 8 > 10
i il 241 9 211
k K 242 (| 57
I L 43) | 255
m M 244 — 256
n N 45 - 4+ 54
o O 46 e 40
p P 247 , = 233
q Q 250 - X 73
r R 51 - 221
s S 222 Lower Case 272
t T 23 Upper Case 274
v U 224 Space 200
v V 25 BK. SP. 75
w W 26 Tab 236
x X 227 Carr. Ret. 277
y Y 230 Tape Feed 00
2 Z 31 RED* —_—
BLK* —

Stop Code 13

Delete 100

Al-1

GENERAL FORMAT

v I

carr. ref.
direction
X X ® e X o X X ® a=61
of
e X e ® x * x e e c=263
motion .
X @ X X X & X xX x delete line

APPENDIX B

BINARY FORMAT (MACRO OUTPUT TAPE)

GENERAL
@?@@@@@@? hole number
direction ® X X ® X e« X X X =20
of ® X ® X @ ¢« X X Xx =50
motion ® X X ® X s+ X @ ® =23

The line sensed by the reader requires that hole eight always be punched. Hole seven is ignored,
and the remaining six holes are assembled into one-third of a word. Three lines are read to

form a single 18-bit word.

The word illustrated above is 205023 (lac 5023).

SPECIFIC FORMAT (MACRO OUTPUT TAPE)

fuImi

Title In?eadable *
characters (hole 8
not punched)

Read=in mode
loader (locations
ZE i = 7 1s0)
®) (®) Body of program
in 100,,, word
sectior‘?)

Start block

A2-1

—

™ e

add
and
cal
cdf
cfd
cks
cla
clc
clf
cli
clo
cma
dac
dap
dio
dip
dis
dpy
dzm
esm

hit

idx
ior
iot
jda
ifd
imp
Isp
isp
lac
lap
lat
law
lio
Ism
mus
nop
opr
ppa
ppb

ral

SYMBOLS IN MACRO'S PERMANENT VOCABULARY

400000
020000
160000
720074
720074
720033
760200
761200
760000
764000
651600
761000
240000
260000
320000
300000
560000
730007
340000
720055
760400
010000
440000
040000
720000
170000
120000
600000
460000
620000
200000
760300
762200
700000
220000
720054
540000
760000
760000
730005
730006
661000

APPENDIX C

A3-1

rar
rcl
rcr
ril
rir
rpa
rpb
rrb
sad

sal

sas
scr
sil
sir
skp
sma
spa
spi
sP9
stf
sub
sza
szf
SZm

SZ0
S5Z5§

671000
663000
673000
662000
672000
730001
730002
720030
500000
665000
675000
520000
677000
666000
676000
640000
640400
640200
642000
650500
760010
420000
640100
640000
640500
641000
640000
720004
730003
100000
060000
760400
I

3

7

17

37

77

177
377
777

	DEC.pdp_1.1964.102635758.fc.src.tif
	DEC.pdp_1.1964.102635758.p1.src.tif
	DEC.pdp_1.1964.102635758.p2.src.tif
	DEC.pdp_1.1964.102635758.p3.src.tif
	DEC.pdp_1.1964.102635758.p4.src.tif
	DEC.pdp_1.1964.102635758.p5.src.tif
	DEC.pdp_1.1964.102635758.p6.src.tif
	DEC.pdp_1.1964.102635758.p7.src.tif
	DEC.pdp_1.1964.102635758.p8.src.tif
	DEC.pdp_1.1964.102635758.p9.src.tif
	DEC.pdp_1.1964.102635758.p10.src.tif
	DEC.pdp_1.1964.102635758.p11.src.tif
	DEC.pdp_1.1964.102635758.p12.src.tif
	DEC.pdp_1.1964.102635758.p13.src.tif
	DEC.pdp_1.1964.102635758.p14.src.tif
	DEC.pdp_1.1964.102635758.p15.src.tif
	DEC.pdp_1.1964.102635758.p16.src.tif
	DEC.pdp_1.1964.102635758.p17.src.tif
	DEC.pdp_1.1964.102635758.p18.src.tif
	DEC.pdp_1.1964.102635758.p19.src.tif
	DEC.pdp_1.1964.102635758.p20.src.tif
	DEC.pdp_1.1964.102635758.p21.src.tif
	DEC.pdp_1.1964.102635758.p22.src.tif
	DEC.pdp_1.1964.102635758.p23.src.tif
	DEC.pdp_1.1964.102635758.p24.src.tif
	DEC.pdp_1.1964.102635758.p25.src.tif
	DEC.pdp_1.1964.102635758.p26.src.tif
	DEC.pdp_1.1964.102635758.p27.src.tif
	DEC.pdp_1.1964.102635758.p28.src.tif
	DEC.pdp_1.1964.102635758.p29.src.tif
	DEC.pdp_1.1964.102635758.p30.src.tif
	DEC.pdp_1.1964.102635758.p31.src.tif
	DEC.pdp_1.1964.102635758.p32.src.tif
	DEC.pdp_1.1964.102635758.p33.src.tif
	DEC.pdp_1.1964.102635758.p34.src.tif
	DEC.pdp_1.1964.102635758.p35.src.tif
	DEC.pdp_1.1964.102635758.p36.src.tif
	DEC.pdp_1.1964.102635758.p37.src.tif
	DEC.pdp_1.1964.102635758.bc.src.tif

