Reference Card

|

THE COMPUTER COMPANY
MICRO APL SYSTEMS
1905 Westmoreland Street
Richmond VA 23230-3297

804/358-2171

October 1981

Function

PRIMITIVE SCALAR MONADIC FUNCTIONS
Description

+f
wY
2 4
(2 4
ry
LY
1Y
L
1y
oY
'.'}'

‘o

negativeof ¥ (0-F)

signum (sign) of I , represented by "1 0 or 1 0
reciprocal of ¥ (107)

eto the ¥th power i
cellingof ¥ ; fy=3.14, u=Ty : ¥ ¥="3.18, ™3
floorof ¥ ;i y=3,14, 3=L¥ ¥ F="3.18, T4=
absolute value of ¥

natural logarithm of ¥
factorial ¥ ; Gamma function of ¥+1

r times ¥

a random integer from the vector

Note: All scalar functions are extended to operate element-by-element on

vectors, matrices, and higher

dimensional arrays. Results are displayed if

they are not assigned to a variable.
PRIMITIVE SCALAR DYADIC FUNCTIONS

Function Description

ey adds X to ¥

X-Y subtracts ¥ from X

XuY multiplies ¥ by ¥

Xsy divides ¥ by ¥

XnY raises 1 to power Y

Xy maximum (larger) of X and ¥

XLY minimum {smaller) of X and ¥

Xy X residue of ¥ ; the remainder of Y1 X
Xey base X logarithm of ¥

xy binomial coefficient; for integers ¥ and ¥,

the number of combinations of ¥ things
taken 1 at a time

Note: A scalar or one-element array may be used as one argument of a
scalar dyadic function and will be reshaped to conform to the size of the

other argument.
RELATIONAL FUNCTIONS
Function Description
X<¥ X less than ¥
Xar X less than or equal to ¥
x=r X equal to ¥
X=Y ¥ not equal to ¥
xar X greater than or equal to ¥
Xy X greater than ¥

For each relational function, the result is 1 if the relation is true and 0 §

the relation is false.

Only the = and = hmcﬂnumbemdwh

character data. Auhwwdmmlmymhenudumm
ment to relational functions and will be reshaped to conform to the size of

the other argument.
LOGICAL FUNCTIONS

Function Description if X im005

and ¥ =0101
Xa¥ X and ¥ are true then XAY = 0 0 0 1
xvy X or ¥ Is true. or both wY'=01113
XreY not both X and ¥ are true Xyz=1110
Xy neither X nor ¥ is true X¥Y 2 1000
~y not ¥ (logical negation) ~ 21010

Logical functions can be used only when both X and ¥ consist solely ofo's
and1s. Possible results of logical functions are given in the table above. A
scalar or one-element array may be used as one argument to logical func-
tions and will be reshaped to conform to the size of the other argument.

=—

MIXED MONADIC FUNCTIONS
Function Description
4 Vi to! first P mw}l;';:‘mm with the
LY ‘ector of first ¥ integers, beginni origin (Oor1)
3 Ravel of ¥; make ¥ a vector
ey Reversal along the first axis of ¥
4y Reversal along the last axis of ¥
#(2)Y Reversal along the Zth axis of ¥
ar Monadic transpose; reverses order coordinates of ¥
Ay mw.hmmMWIhmﬁm
"w Sort down; the permutation which subscripts ¥ in
descending order
xty) The elements of X selected by index ¥
a Left inverse of matrix A ; least squares solution of =4+ . =X,
wlmullnldmutym
vy : a character array that looks like ¥
whenpnnud
Note: Mbwdhmth-mﬂmmwhﬂnhuhxped&cruukmyhe
different from the shapes of the arguments.
MIXED DYADIC FUNCTIONS
Function Description
Xo¥ Ruhapeftullnqudﬂulmnu&dmmmm,\
ny The index of the first occurrence of ¥ in vector X
Xe¥ Membership; is X included in ¥. Resultisa | array with
the same shape as 1 1 signifying ip, 0 signifying
not
Xy Rmdundul.xinm chosen without replacement from1¥
Xty Encode. Representation of ¥ in number system with radix ¥
Xy Wdudﬁwwmmfmnmm
wi X
X.Y Catenate. ¥ and ¥ catenated along last axis; i X and ¥ are
, a vector is formed

X, [21Y Catenate, X and ¥ catenated along 2 th axis; either X or ¥
may have one axis more than the other; Z applies to the

larger
X, [Z,51Y Insert a new dimension between axes 2 and 2+1
Rotation by X

Xoy elements along the first axis of ¥
Xoy Rotation by I elernents along the last axis of ¥
X¥6{21Y Rotation mmwzﬂamdr
) Transpose by I of the coordinates of T

Xey Take. If X positive, take first ¥ elements of ¥ and pad with
zeros or ones if necessary. If 1 negative, take last ¥ elements
of ¥ and pad with zeros or ones if necessary.

T Drop. If X positive, drop first X elements of 7. If 1 negative,
take last X elements of ¥ .

B Lnuuqnmumlutbnofﬂ A+ . =X for matrix A , vector &,
or columns of matrix

Note: Mbnndfmﬂbmml}mhwhthﬂtdnpeoldwmllmyhe
different from the shapes of the arguments.

FORMATTING FUNCTIONS
Function Description
1 #10 chasirs ttusetintits Y e o Y i
toa ation on
tions of X, which usually has two columns. Some eamples
are as follows:
12 2vY Column width=12, 2 decimal places
14 0vy Column width =14, 0 decimal I-wes
o 2v¢ Column width determined by
2 decimal places
Wy Cnﬁmmwidthdelermhadbydah
L 4 decimal places
& “3vY Column width=8, 3 significant digits,

scientific notation
If X has more than two elements, each 'ﬁfmmx
specifies the format for each column

Xa¥ mmawmmmhmammicmy
Y to a character representation of ¥ based on the specifica-
tions of X, can be used in a way similar to Format, as
shown in the first example below; it can also be used with a
COBOL-like picture clause, as shown in the second example.
! 7'2 7 307123.456 78.9012
123.48 78.901

'$42,229.99 CR'a™123%.56 123.78

§1,234.56 CF £123.7%

OPERATORS

Primitive scalar dyadic functions may be incorporated into specialized

composite functions as shown below. In the notation used below, both f

u:igmthmdudy&hmto -xae L]
[

Fanction

Circuldar and

Scan, Scan ¥ Jeft to right, performing reductions with f on
progresively longer sub-arrays of ¥, The result has the same
shape as ¥ . For example:

Scan along last dimension of

Scan along first dimension of ¥

Scan along Zth dimension of ¥

Generalized inner of Yand ¥
Generalized outer product of T and ¥

COMPRESSION AND EXPANSION

Description
l;vcdtwbybumwfdatmymr
Compression along the last axis of ¥
thalu‘rkimmd"
Compression along the 7 th axis of ¥
Logical expansion by bit vector X along any amay .
m&nl-lube;f
Expansion along the first axis of ¥
wmh.mmdr
TRIGONOMETRIC FUNCTIONS
'mﬂﬂdmw{m!'ihnﬁu

and 1 i within the range of the function

Description

;:'ﬁ',
[§.¥)
(¥])

(50V)

“i0f arcsin X
“20f arccos X
“sor arctan X
“uok L I*T'?)'O

Symbol

SPECIAL SYMBOLS
Descripti

X+Y

x+0

n

O=X
(U2 §

xrz

5 o

Assignment Statement. The value of ¥ is assigned to a variable
named X : ¥ may be any APL expression

chuedl.npul The value of the expression entered is assigned
to X ; » or @ provides escape from request,

Request Character Input. The value of input text up to but not
including the carriage return is treated as literal characters and is
assigned to X ; @ provides escape from request.
Pnntthevaluedupmmnx and return carriage.

Print the value of expression ' and do not return carriage.
The literal characters ¥¥Z ; anything entered between the
quotes will be evaluated as a literal expression, with'' being
interpreted as a single quote.

T'he OUT character, made by overstriking the letters 0, I/, and
T, provides an escape from the request for input [1: and 0:
Endtmmmtdlomdmemdum:oommfoﬂ}!my

or operator defined to its immediate left.

Parentheses are used to define explicitly the order of execution;
funcﬂonmﬂmkri#ﬂtoldt except as modified by paren-
theses; may be of any complexity desired.
Branch to line number ¥ , where ¥ is a scalar, orto the first ele-
ment of X where X is a vector,

If ¥ is an empty vector, continue processing with the next
statement. If ¥ is not in the range of statement numbers in the
function, exit the function,

Terminate execution of this function or of the last suspended
function, and all those functions which led to its use. - is
also used to escape from (1:

Underline is used in constructing the characters 4 through 2
and 4 , which are the only valid underlined characters in
APL.

Comment, This character in a statement indicates that the
remainder of the line is a comment and is not to be executed.
Any valid characters may be used in the comment text.

The DEL character declares a change from execution mode to
function definition mode; a second DEL terminates function
A diamond is used to separate statements entered on the same
line; the leftmost statement is processed first. = and = may
also be used.

Colon. &pa:-amasutmllabelhnmmestmrmam
of a function, e.g. L1: X+1

Semi-Colon. Separates index coordinates when subscripting
matrices and higher order arrays.

Execute function executes a literal expression as if it were
unquoted, for example, '2+3%+-+5

OVERSTRUCK CHARACTERS
Made With ~ Character

4 Braces . .
Column Backslash \ -
Column Slash. ... / -
Combination " .

Comment.......n

Hea@ZBHEE -k & 2D =%rm
£5g g

. z ‘g 3 '5’

#—-'DDEICI-.—EL—

1
g

={ &3 Logarithm ©
Matrix Division .. 0
MNand: .. .oovonia A

| B T

L]

= a1 0 001G <

e r~raoe0E@3angtd2rE
. | e e

g
»00~—~p

ER R R

Key to Notation

A = Array of Data
B = Scalar

or

SYSTEM FEATURES

"= Character Vector

= Function Name

¥ = Character Matrix

¥ = List of Names

5 = One Elesnent Numeric

¥ = Vector

Ly

.. P

Dexcription
Alphabet: 4 BCDEPGH 1 K IMNCRQR:
Alphabet underlined: 1

, CPU time
in milliseconds, connect time in milliseconds,
keyboard unlock time in milliseconds, database
acoess units, month-todate CPU time, month-to-
date connect time
Backspace. lower case
Backspace, upper case
[IBOX restructures a vector into a matrix, breaking
asccording to the delimiter element, and pads each
row with the fill element, for eample:

[d=" o' (BOX '"APRIL|MAY |[JUNE®

w‘.-;
POX restructures a matrix into a vector, eliminating
tradling Hll characters from each row and separating
each by the delimiter character, for example:
Yo' [IROX A

AFRILsMAY«JUNE

If the left argument is omitted, (150X defaults to
blanks for character data and to zeros for numeric
data

Control Characters (ASCH): OcTIro+7], for
example, is a bell character. _
Canonical representation of a function; F is a
character vector containing the function name.
Comparison Tolerance (relative). TC7 is used in
[l «sessre operations and may be changed by
assignmment

Digits: 01 :
Delimited Blank Removal. Removes all leading and

1781

1f a et argument is used, all blanks preceding and
following delimiters specified in the left argument
are eliminated, for example: SR e

(] ! M L] T io 5 &1
.i' (RN :

Delay Exec ' Dela tion for the number
Delay Execution s execul
of seconds specified: returns the number of seconds
actually delayed. :
Data Representation, Returns i_m.unbu which
indicates the data type of A, according to the follow-
ing code

1 = Boolean

2= Integer

1 = Floating Foint

y = Character ¢ e
When used with a left angument which is 1, 2, 3, or
v, (D8 converis 4 to the data type specified, for

s

« [DATA

converts DATA to character data,
control

Error Trapping. Sets error trap and transfers
rolwnurrhl.’whnmmhe::mﬂ'

returms the previous trap value.
m Erase name(s) contained in the character
vector or character matrix of Aﬂobpdnm
Returns 2 1 if object erased, a 0 if not.

Feature

SYSTEM FEATURES (Continued)

Description

OPX N.....

8 OFX M

anx

Ny
OMOUNT Vor M

...
[we ».
i_‘l'l'lr- ‘I ;

¢ ovL ¥

58 (C3C:0)

v OsTOP ¥
OST0P F.....

WM
ors...

orr

V OOTRACE F.
OTRACE F
077

o, ...
w4

Fix,Embl'uhafumionmtheactivewmkspau
from the character matrix specified: function returns
the name of the fixed function. A left argument of 1
causes the fixed function to be locked: a left angu-
ment of 0 causes the fixed function to be unlocked,
Hard Copy. Write hard copy to output device
number specified.

Idle, lowercase (time-fill character)

Idle, uppercase.

Index Origin. Affects indexing. 7 and 1.

Line Feed.

Line Counter. Line number of functions in execu-
Line/Error Report. Returns an error code and the
line number for the last error; see error code table on
this reference card for a list of codes.

Latent Expression. Expression executed on loading a

Manths. Names of the months of the year.
Mount. Assign devices to logical unit numbers 0-9,
for example:
Omvouwe s 7
assigns device 5 to logical unit 0 and
assigns device 7 to logical unit 1,

. Non-printing Null,

Name Classification. Right argument can be a line
label, variable, function, or group. Name classifica-
tion is 1, 2, 3,0r 5, respectively.

Name List. List of name(s) in sorted order of
object(s) in the name classes specified in the right
argument. A left argument may be used to restrict
the list to object(s) beginning with the character(s)
specified, for example:

cyY WL 3

produces a sorted list of functions (name class 3)
whose names begin with letters in character vector

f’:ﬁlf‘udsiaunmﬂhero&digitsmnmmicwqmt
and monadic v (format); may be changed by

assignment
Print Width. Affects all output except [
Retumn Carriage.
Random Link. Used in random number generator
(7); may be changed by assignment.
String Search and Replace. For example:
A+"MARY HAD A LITTLE LAMB'
055 (A:*LITTLEY)

12
The string LIT7LE begins at position 12.

0S5 (As*LITTLE';'BIG)
MARY HAD A BIG LAMB
The string LI7TLE is replaced by BIG .
Stop Vector, The left argument is a vector of state-
ment numbers in function F at which execution is
suspended. Without a left argument, the stop vector
Is returned.

. Tab, horizontal.

Time Stamp. Year, month, day, hour, minute,
second, and millisecond

. Terminal Type. Returns terminal type as a code

number.

Trace, Print value of assignments made on the state-
ment numbers specified in the left argument. Omit-
ting the left argument retumns the trace vector of
statement numbers.

User Load. Number of users signed on the system.
Week. Names of the days of the week.

Work Area. Number of bytes remaining in the

workspace.

R

ERROR MESSAGES

_ Problem and Corrective Action

Input line too long: use back-
space and linefeed to shorten the
line.
Improper overstrike; Reenter
overstrike
The file does not contain the
specified component.
Name listof)0OPY command
Is too long: shorten name list or
wouP all or some of the
names.
Improper attempt at function
definition, function line editing,
or syntax of function header
improper as a result of header
editing, function is pendant, or
function s locked. An object
already has the name: erase it or
choose another name for the
function. During interrupted
function execution, clear the
state indicator.
File data space is full,
Function not defined for the

arguments given: provide proper

arguments.

The file has reached its mad-
mum allowed size.

Attempt to rename a file which
already exists.

An incorrect file password has
been used

The file system is temporarily
not available

The file does not exist in the file
systemn.

The operation cannot be per-
formed due to an outstanding file
or component hold by another
et

Spelling or syntax of command is
faulty; reenter correctly.
Reference to nonexdstent element
of an array; provide proper
incices

APL encountered an error dur-
ing tape or disk input/output
probable hardware failure
Arguments are of unequal
lengths; ensure arguments are of
equal lengths or that proper
coordinates are referenced.
Syntax for operation not sup-
ported; reformulate the expres-
s0n.

Attemnpt to 1PCOPY an object
which exists in the active ws;
check spelling of workspace or
object name

Workspace does not contain the
object (variable, function, or
group)

Variable or function already has
the name; change name of group
or erase conflicting object

An established workspace can-
not be saved unless the active
workspace has the same name.
change name of active work-
space using the)WS7D com-
mand.

ERROR MESSAGES (Continued)

Problems and Corrective Action

Message =

NOT SAVED, WS LOCKEL

I' DANAGE

tion was replaced or removed by
Wooey or JERASE come
mands, Label lines of a sus
pended function are edited or a
function not at the top of the SI
list is edited, erased, or copied or
a function on the S| kst has its
header edited. Action: Clear the
state indicator by VSICLEAR
Too many names used for the
current symbol table size. Ac-
tion: Save current ws, clear,
increase size of symbol table with
JFYME and copy saved wa
into active ws.

lli-formed expression or incor-
rect number of arguments for a
function. Action: Reformulate
statement.

A problem internal to APL, No
action necessary; a clear ws is
loaded automatically. If error
recurs, contact The Computer
Company,

The file's access matrix does not
allow the operation from this
aiser number, Action: Modify
SCTeSS Matrix

User has too many files or the

Key to Notation
R = Result

FILE OPERATIONS

F = File Number
¢ = Component Number { 0 is assumed if omitted)

= User Number ((MI{ 1] is assumed if omitted)
¢ = Allocation Quota
P = File P; rd (0 Is ed if omitted)
[J = Enclosed is optional
nWm
FedBF.C [L,U,P] Writes the expression or variable 4 to the indicated
file and component.
I =0 then Ahw&dmhuﬂdﬂu&
ll =N l!‘lcn A replaces component ¥
) s then 4 hmudbdmqu.-,
*-{1 P [L.0,P] Reads the contents of component C from the
indicated file,
 Del
Ber, 0 [LU,P] Deletes component ¢ from the indicated file.
felF, 0 0.0 F1 Deletes file Ffrom system.

i Hold/Release
ReXWr.C [,0.P1

If the delete operation was successful, a 1 s
returned: otherwise, a 0 is returned.

Hold/Release a component of the indicated file,
according to the value of X |

If xen then release the component/file,

If =1 then hold— restrict write access by other

users.
If x=2 then hold— restrict read and write access by
other users.

If =0 then the whole file is held or released.

If the operation was successful, a 1 Is returned;
otherwise, a 0 s returned.

Set File Allocation Quota

Re@F.Q [, U,P]

Rename/ Replace

Kl Frew ,0,Unew, Prew I8P, 0,0, F Rename file, change password,

Set file allocation quota.
Set default file allocation.
Returns user quota vector of:
1 - User number

Re{Frew 64, Unew , Prew)8 0, U, F Replace file Frnew by F ,

Information Read
F18F,0 L,0.P)
Re2@F0 [LU,P)

F+3@P,C [,U.F)

Returns the number of components in the file.
Retums file description, a nine element vector

- BB T N
" »

il

; -
R
|
i

E
:
i
i

FILE OPERATIONS {Continued)

A«o8F.0 L.V.P)

R<T8F.C [.U.P)

?w&wmammm

1 - Number of components held

1 « User holding the file (or 0)

3 - Hold restriction (0, 1, 0r 2)

Returns component hold description, & three
element vector of:

1-C number
2 - User the component (or 0)
3 - Hold restriction (0, 1,00 7)

The Access Matrix

Refl-F Reads the access matrix,

ReAl-F Writes the acoess matrix.

The access matrix is an N by 2 matrix in which each row is a user number
followed by a number which is the sum of the acoess codes that the user is
authorized. The default access matrix grants the owner all privileges except

Access Acces

Code Operation Code Operation
! Read file components 512 Set Hle allocations
2 1§, 8 %8 1024 Rename file "
4 Insert components 2048 Hold/Release
8 Append components unhe Hold/Relesse
16 Replace components companents
6k Delete a file 16368 &8, W

128 Delete componerits

524758 Read access matrix
10UESTE Write acoess matrix

OVERLAYS
)OOPT SYSFNS WOV

Ae0 f0V Name-Matrix Create overlay. & will be an overlay of all

objects whose names are in Name-Matrix.

F+1 gov Overay overlay with all functions locked.
m.mdmdﬂw
objects.

Re2 40V Owverlay Disperse overlay, Mllmwm
tions unlocked. % will be a matrix of names
of all dispersed objects.

ERROR TRAP RETURN CODES

Ermor

Number Description

1 WS FULL

P SYNTAX ERROR

3 INDEXY ERROR

4 RANK ERROR

5 LENGTY ERROR

€ VALUE ERROR

11 DONAIN ERROR

13 INTERRUPT

16 NONCE ERROR

17 FILE I/0 ERRGR

18 FILE MOT IR SYSTEN
19 URAUTHORIZED FILE ACCESS
20 COMPONENT BOT IN FILE
21 FILE ALLOCATION EXCEEDED
23 FILE MAINTENANCE IR PROGRESS
24 PILE OF COMPONENT HELD
25 IRCORRECT COMMAND
a6 DATA DANAGED
27 USER NOT IN SYSTEN
28 USER ALLOCATION EXCEEDED
29 FILE IN EXISTENCE
4o DISE FULL
K1 FILE LOCKED
52 LOGICAL UNIT NOT POUND

SYSTEM COMMANDS

Ky 1o Notation
= enclosed argument s optional

Wi
wd
A
ity

b

(&

workspuce

workapace identification
name of vanable, flunction, or group
Lrl!rr weed to begin listing

acal ura
one of more

(' -

d and Arg

Decription

Clear the active ws

End work sewsion and store the active wy

under the name CONTINUE

Copy selectod obyects from a stored wy

into the active ws

St maximum number of sgnificant

digits for output

List currens setting for 7000

Remove the wuid l;udhad from the

library

Remove any global object from the

active wy. remove functions, variables,

and groups. inc objects in groups

. names of all defined functions. or

! wh?mgwhthhwmikd

(-u! unctions and variables into a
first name is naume of

.un names of objects in the specified

L names of groups, or those begin-
ning with the letter

List the names of all workspaces in a
-Ewudbhury or those beginning with

Rntixrmwmwahuupydamvd

wy
Erd & work seson

Mu\htmln orl

List curvent CR7GIN metting
Lqryuhud&mdmamudm
into the active wi if the names are not in
the active wa

Store the active ws under its current wsid
Slunqllwdﬂ\(mmmw
wa specifnd

Sierdt CUPY ;vame as g
mm-rm"dmm
Slert 8IS m': ORGP . €

no B execubon
Suate | f"r... :ﬁmm of all
halted functions

List the names of all halted functions and
awociated local variables

Clear the State Indicator

Sl 040 ;sameas JLOAD |, except
mmuwndupmmhm
Silest POOS ; same as | FUOH
mmmm,pmgdupmm
ton

Silent S4VE ;sameas JSAY , except
mmﬁfmdupﬂ"mm

‘:ﬂmz

List current number of symbols in the

2 et i

Set W aulomatc

and output,; tabs must correspond to ter-

mnali;hl'::;\ﬂ

List current lab positions

List the names of all global vanables, or

thow beginning with the letter specified

Set muaimum number gf positions in 3
line of output

List the current ¥IDTH setting

Frnarme the active ws

Lt waad of active wa

APL GRAPH-IT

USERS’ REFERENCE CARD

This document is a summary of
PLOT-10/APL GRAPH-I
Standard Function Package—
TEKTRONIX Part No. 062-1617-01
Implementation for APL \360—
TEKTRONIX Part No 062-1618-03

For further infor mation, cont
Applications Engineer

acl your TEKTRONIX

TEKTRONIG
[|

fication

nabout syntax lllustrationt ENVIRONMENTAL ROUTINES Environment Speci

the graphic «

Special Environmental Routines

S unaeriy

: SET v glion on a line. Used lo

) 4 result, if not needed
i : : imenlal parameter satting

" y I Or vector a«<TO v
0 1 | rackels are | : :
':,“ .
- |
J

ol MEenc f
| & "

| gl L

" . ¢ : - FUNCTIONAL ROUTINES
Graphic Input

| " : P

J velar iriat 1 y a < CURSO Retlurns dec APL equivaleni of

ihe sgraan Parameter Satting Routines the kaved i star.and tha X and Y
Restore tho system status to 'v Note! The following routines have an explich result which loealian of Noned by the

) 3 . TRt AT < 18 the ellect on the current anvironmantasl p user the current anvironment
o i i im0 Bl I zarded by the | € iung Graphic Output

Set charactar size lor 4015

a4-CHARSIZE

All of the graphic cutput functlions can take the form

*** xn. ¥ LHAT xioc.yloc)

Hyi¥y2eeosiin

peration [TO]/*t

ael! length of soltware dashed line
a4 DASHLENGTH [{TO] length

VIEWPORT | ||

a4« " gL s : i ally X and Y
FT

WINDOW DEFN e variables. AT is Lsed for a MOVE TO xloc yh

tonment

Character Quipuy

[.SIZE [TO] xsize ysize] STAING ‘charac

the curmanl

RESERVED VARIABLES

The following is & list of the va

il a which are
a by APL GRAPH-II. Their values should
] 0y B usersp

tThese rout

. ; tie 1874 by] X Baavertan, Oregon. Piintod (n the
APL CODE CHART e el) H sl 3 Contants of this ¢
n-afy ¥ IRl parmissior
d 1 TEKTRONIX prodichs covered By U &
il ' Daie o)
N 8 lout T " 4 T3 J i o ')
Sp . TEK MNiX 1o o demark of Tektronin, Ine
) " I- . | L [
» L] . el L]
" ’ |
. -] L
e MAK |
|
A ' N ’ .
" '] i L
L] o | w # #
(L] Ll
' '] . # ' ' # @
F 4
T i i
' . 4y " 2 .
M ' 19 M T
alw] ‘g . ‘ a

ASCII CODE CHART

‘ # o " “ . i
5P g U?;,' P P
" L . " ai | I
: ! A Q a q
=t :
-] " b ’
L] (s | [
4 Y - 5 | ¢ s
[A lbca e P [. II[e
| | DO 1 d t
NG LT Y] 12l
|

APL* PLUS /2000

APL PRODUCTIVITY IN
THE VAX' ENVIRONMENT

Of the available approaches 1o
increasing productivity—mor

capital, innovation, a better

trained or motivated workiorc
innovation clearly offers the best
return on investiment
International Data Corporation in
Caomputer Svstems and Services

for Business anid Industny

These days, increasing produc-
tivity is a top priority within
business and industry. That's fine
with us. We've grown from a
one-office location to an interna-
tional corporation in less than
ten years because we specialize
in a productivity enhancing serv-
ice. And we've built upon what
we sell.

APL (A Programming Lan-
guage) is the computer program-
ming language in which STSC
specializes. It could just as easily
be called A Productivity Lan-
guage. As the largest supplier of
APL services in the United
States, STSC's intensive research
and development efforts are
committed to enhancing and
extending APL to run in a variety
of environments and in the most
productive, powerful manner
possible.

In the past decade, our enhance-
ments to APL, incorporated
into our proprietary APL*PLUS*
System, have allowed the devel-
opment of superior computer
applications for many business
applications with only one-fourth
the effort required in other
computer languages. STSC has
further extended these enhance-
ments to run on a variety of
large-scale computer systems,

APL*PLUS/2000—the APL= PLUS
System for the VAX-11/780 and
VAX-11/750 computers!

How the
APL*PLUS/2000
Boosts Programmer
Productivity

Programmers cite five key areas
where their time is spent:

* application design

® documentation

® code design and coding

e debugging

® testing.
Stated simply, faster application
development increases produc-
tivity. While APL does shorten
the design and documentation
cycle, APL’s greatest strength is
at the coding. debugging. and
testing stages, Here the effort is
one-fourth that of other lan-
guages. In general, one character
in APL is equal to an entire
statement in other programming
languages.

APL is one of the

consistent, and

graniming languages evel
devised

Since compuier programming
typrcally involves a grea
work with virrious kinds
structures, the simphihcation

offered bv APL's nch and powes
lul handling of al u

Its strength

rravs s centr

Daarel D

of the

Past Preside
\ssociation for
Computing Machiinen ACM

Brevity means money. Clearly,
it means productivity. The same
improvement factor of four to
one for writing programs in APL
applies at every stage of building
computer software: APL makes it
easier to conceive the solution
and faster to write the program,
results in fewer clerical errors,
requires less documentation, and
accommodates change more
readily. Code logic more closely
follows the logic of algorithms.
making debugging easier.

Imagine application develop-
ment in one-fourth the time.
Imagine subsequent debugging,
testing, and modification in up to
one-tenth the time required
using other programming
languages!

According to the 1980 report
programming personnel spent 55
percent of thewr tme on existing
program mairtenance and

enhancements, the lalter mor

often meamng ‘getting the bugs
ot

Infosvstems pulilisher, Amold E
Keller, discussing the resulls of

an INPUT survey of DP manage

Since over hall of the program-
ming done today is in the area
of maintenance, APL can have a
very significant impact on the
life cycle costs for major appli-
cations.

The efficiency benefits are
clear. If you can write a program
in one-fourth the normal time,
and modify and maintain that
program in up to one-tenth the
time of other languages, you
have given yoursell some valua-
ble performance lactors:

® You can starl to program a

low-cost working model ol
an idea as soon as the ini-
tial design concept is
conceived.

® APL programming can be a

means of developing firm
specifications. You can
explore alternative
approaches and throw away
an inadequate design

® Feedback you acquire from

end users in the early stages
of a project improves the
design, assures timeliness
and acceptance of the
design, and facilitates training.

* Management . more
control over 1 Irams-
ming proces | of
being told ie to
make a cha

Look at these | pro-

ductivity-increasis its:

® APL*PLUS/20 ils to
the end user 15 Lo
the computer | ional.,
Many who won I other-
wise make dire ol the
computer in tf ik find
APL to be a n: problem
solving tool. I * easier
to solve the p using
APL= PLUS/200 to
describe it to else!
Your program eis
freed to work
complex proj

e APL»PLUS/2I ven. Its
features have d by
some ol the gest

ecade

companies lor
in a commer

sharing setting 5t
stringent testi 1=
ment for any |

The APL*PLUS/
Package

The APL Language V' 80T,
Integral to the APL=* Pl 000,
the APL Language Processor
provides functional compal ibility
with STSC’s enhanced APL, plus
additional capabilities such as a
full-screen editor for quick and
convenient editing of functions
and data. Some of the productiv-
ity-boosting features provided
are described below.

e The APL#PLUS/2000 offers a
wide range of system func-
tions and variables for con-
trol of the application envi-
ronment and efficient use of
virtual workspaces. including
capabilities such as:

poapand [WwLoAl Overlays

the active workspace with
a copy of a saved work-
space. These functions are
extremely useful in large
applications that use
overlay and chaining
techniques.

Hows function
tion and definition
rogram control,
rforms a string
operation on char-
s well as numeric
ents, locating all
ences of a given
vector) in another
vector),
O 7 formatting
i yn—the most powerful
fi ter in APL—combines
t st of FORTRAN for-
i notation and COBOL
p editing. Features of
it make it such a
tool for detailed
eporting require-
listed below.
data arguments
formatted at the
ne
be formatted
wrations and
flects, especially
r reporting in a
analysis environ-
ir example, special
may include
dollar signs and
re of negative
les in parentheses.
clative and absolute
ung are supported
- printing order of data
be varied from the
standard left-to-right order.
—Message text can be
inserted in the report.
—Picture formatting allows
the user to arbitrarily mix
text and data in the
formatted output,

® The Exception Handling
facility automates and
expands an APL program's
ability to react to errors and
exceptions that can occur
during program execution.
Exception handling, or
“error trapping”, can be
used to increase the reliabil-
ity and efficiency of APL
programs by allowing the

system to react to errors in
a controlled manner. It can
also improve the security of
applications, protecting the
applications, and the data
they contain, from interfer-
ence, In short, exception
handling can be used to
write applications that are
tolerant of users who have
minimal training on

the system.

® The APL*PLUS/2000 provides
access to two file systems.
You can access your exist-
ing VMS/RMS native files.
You are also provided with
a component-based file sys-
tem enabling you to store,
retrieve, share, and update
large volumes of data. Each
component is an entire APL
data array—nol just a rec-
ord. STSC pioneered this
easy-to-use file system in
1970, Since then, more than
2,000 companies have made
use of the file system’s fiexi-
bility and reliability.

User-Oriented Utilities. During
the course of 11 years as a
commercial time sharing sup-
plier, STSC has developed
numerous APL utilities that aid
in the readability and maintaina-
bility of source code and
increase the productivity of your
staff in meeting application pro-
gram requirements. These utili-
ties include:

® Program debug and docu-
mentation aids that provide
a simple and efhicient
method for workspace docu-
mentation, and programs
that search specified func-
tions in order to aid in
debugging and editing

® Production subroutines that
accept and manipulate input
and grade, rank, and sort
arrays ol data.

* Online computer-aided
instruction that teaches how
to write and use APL pro-
grams. Topics include use
of stored programs and

inserting and modifying
instructions.

® News “bulletin board” system
that allows the posting of
headlines and variable-length,
memo-type messages for the
entire APL user group.

Complete Documentation.
Three separate manuals describe
formatting, files, and system fea-
tures. A supply ol each is pro-
vided with the APL*PLUS/2000
product. Also offered with the
APL#* PLUS/2000 are two reference
books coauthored by STSC per-
sonnel and widely read in the
APL community: APL: An Interac-
tive Approach (Wiley, 1976) and

APL in Practice (Wiley. 1980).

Training. STSC provides

initial user training with the
APL# PLUS/2000, conducted by
experienced STSC software spe-
cialists. STSC also holds regu-
larly scheduled classes and semi-
nars. Our wide range of topics is
designed to give you the latest
information and to help you get
top performance from our prod-
ucts. APL training is an STSC
specialty.

Ongoing Support
for APL*PLUS/2000
Users

Experienced professionals

are available to translate

APL* PLUS/2000 capabilities into
practical solutions for manage-
ment problems. STSC can pro-
vide program development con-
sulting to help design or com-
plete a major application,

For day-to-day information
needs, STSC provides a toll-free
“hot-line” service to our software
specialists.

APL*PLUS/2000
is a Product You Can
Grow With

The technology behind the

APL* PLUS/2000 language proces-
sor assures you of low-cost port-
ability from one computer archi-
tecture to another. APL*PLUS
system and application programs
are easily transportable—when-
ever your overall corporate
needs dictate a move to different
hardware. This means you can
migrate to even an inhouse
mainframe computer without
rendering your applications soft-
ware obsolete. Count on STSC to
be ahead of state-ol-the-art in
language development.

Future developments for better
efficiencies using APL include an
APL compiler, extensions to the
APL language, a relational data-
base management system, and
additional application develop-
ment tools.

APL»* PLUS/2000 provides the
core foundation to use other
STSC products written in APL
that deal specifically in the areas
of general ledger, long range
planning, financial reporting,
budgeting, corporate modeling,
and FASB compliance reporting.

STSC: The Company

STSC, Inc. specializes in financial
management services and pro-
vides remote access computing
services and software products
based on the APL computer
programming language. STSC was
founded in 1969 as a computer
time sharing firm specializing in
the use of APL. We developed
and promoted many of the
advanced features that are
viewed today as APL standards.
As the leader in APL services,
STSC provides a full range of
support and consulting services
at each of its 25 offices in the
United States and Europe,

Corporate Headquarters
STSC, Inc.

7316 Wisconsin Avenue
Bethesda, Maryland 20014

(301) 657-8220

International
Headquarters
APL*PLUS International
74T Third Avenue

New York, New York 10017
(212) 751.9305

TWX 7105812254

Marketing Offices
United States

Boston

462 Boviston Street, Suite 305
Boston, Massachusetts 02116
(617) 267-6864
Manufacturing Services
462 Boylston Street, Suite 305
Baston, Massachusetts 02116
(617) 267-6864

Chicago

1550 Spring Road

Oak Brook, Winaois 60521
(312) 530-7600

APL* PLUS is a service mark and
trademark of STSC, I
in the United States Patent and
Trademark Office

. registered

VAX s

s tegisteret] trademsark of e Digital

Eqguigamend Corporation

Dallas/Ft. Worth

1525 Elm Street, Suite 2660
Dallas, Texas 75201

(214) 2634577

Denver

42 Denver Technological Center
7965 East Prentice Avenue
Englewoond, Colorado 80111
(303) 779-8878

Detroit

100 Renaissance Center
Suite 2910

Detroit, Michigan 48243
(313) 2590220

Hartford

111 Pearl Street, Suite 401
Hartford, Connecticul 06103
(203) 549.0107

Honolulu

1269 Maleko Streel
Katlua, Hawail 96734
(808) 261-3751

Houston

11 Greenway Plaza, Suite 2116
Houston, Texas 77046

(713) 850-9400

Los Angeles

2900 31st Street, Suite 110
Santa Monica, California 90405
(213) 4504611

The Optimation Group

21243 Ventura Blvd,, Suite 240
Woodland Hills, California 91364
(213) 340-4611

New York
747 Third Avenue
New York, New York 10017

(212) 751-9305

Philadelphia

The Bourse Bldg., Suile 530
Independence Mall East
Philadelphia, Pennsylvania 19106
(215) 627-5300

Rochester

3000 Winton Road South
Townline Park Building E
Rochester, New York 14623
(716) 442.5281

San Francisco

Spear Streetl Tower

I Market Plaza Building

Suite 1601

San Francisco, Californmia 94105

(415) 7774357

Maintenance Systems Group
Spear Street Tower

I Market Plaza Building

Suite 1601

San Francisco, California 94105

(415) 7774357

Southeast Marketing

100 Eastowne Drive, Suite 108
Chapel Hill, North Carolina 27514
(919) 493.2478

Washington, D.C,

7101 Wisconsin Avenue
Suite 1414

Bethesda, Marviand 20014
(301) 9861750

Westchester-Fairfield

11 Clearbrook Road
Elmsford, New York 10523
(914) 347-5560

International Offices
United Kingdom
APL=PLUS Limited

5052 Chancery Lane
London WC2A 1HL, England
(11-242 8135

Spain

APL Informatica S.A,
(Independent Distributor)
Rosario Pino 6
Madrid-20, Spain

(1) 279-47-84

France

Société de Tratements et de
Services Conversationnels

Tour Neptune, Cedex N°20

92086 Pans La Délense, France

773-7964

Subsidiaries

MTSC, Inc.

4330 East-West Hwy., Suite 111
Bethesda, Marvland 20014

(301) 951-4200

Resource Systems, Inc.

42 Denver Technological Center
7965 East Prentice Avenue
Englewood, Colorado 80111
(303) 779-6900

Printed in the US.A
CCO57-81

Copynight ©) 1981 STSC, Inc

APL

A Puzzle

ow o W e

11.

14,
17.

18.
19.

20.

23.
25.

27.
29.

30.

31.

32.

34.

36.
. RETURN THE SMALLEST ELE-

ACROSS

. SIMPLIFY (ZA>0)-ZA<0
. RETURN THE AVERAGE OF A

NUMERIC VECTOR V¥

. RETURN TWICE THE VALUE

OF M

. SIMPLIFY pM>1
. GENERATE THE INTEGERS

FROM 1 TO THE POSITIVE
SCALAR INTEGER ZA

RETURN THE INTERSECTION
(ELEMENTS COMMON TO
BOTH) OF THE TWO VECTORS
BA AND Z
SIMPLIFY Z[(Z<B)
ASSUME
A+2:
SIMPLIFY V-1 |V
GENERATE

13 165 17 19
RETURN VECTOR V AS A
ONE-COLUMN MATRIX

/1pZ

10x(A*Y4)+143x4

2123 25

BYE-BYE
ASSUME V<15: GENERATE
9 16 25 36 43

ASSUME ¢ IS A MATRIX:
SIMPLIFY C,(1ppC)p0

FOR AN INTEGER ARRAY F,
RETURN 1 WHERE F IS
ODD, 0 WHERE F IS EVEN
THE APL EQUIVALENT OF A
ONE DIMENSIONAL EMPTY
SHOPPING CART

GENERATE 9 RANDOM NUM-
BERS FROM 1 TO 8

SIMPLIFY
I[(I<11)/1pIl*11
RETURN THE NUMBER OF 5'S
IN EACH COLUMN OF A
NUMERIC MATRIX 7
SIMPLIFY 2x(1+a\V1)[1]

MENT OF TWO NONEMPTY
NUMERIC VECTORS V AND ¥

13.

15.

. REPLACE ALL 3'SIN 7 BY 2
. RETURN THE RANGE (DIFFER-

ENCE BETWEEN THE LARGEST
AND SMALLEST VALUES) OF A
NUMERIC VECTOR V

. GENERATE A LIST OF THE

NAMES OF THE VARIABLES IN
YOUR ACTIVE WORKSPACE

. RETURN THE RANK OF Z4
. ASSUME 4 IS A VECTOR:

IF 4 IS NON-
IF IT IS EMPTY

RETURN 1
EMPTY, O

. SIMPLIFY MM
. RETURN THE POSITION OF

THE FIRST OCCURRENCE OF
SCALAR & IN VECTOR 7
RETURN THE NONBLANK
ELEMENTS OF A CHARACTER
VECTOR F

RETURN THE LAST TWO ELE-
MENTS OF A VECTOR V

16.

21.
22,
24.

26.
28.
29.
33.

35.

1 2 3 4 5 6 7 8
9
10 11 12
13
14
15 16
17 18 18
20 21 22 23
24
25 26
27 28 29
30
31 32 33
34 as
36 37
SEE REVERSE SIDE FOR SOLUTION
DOWN

GENERATE THE NUMBERS
FROM 1 TO 36 WHICH ARE
PERFECT SQUARES (A PER-
FECT SQUARE IS AN INTEGER
SQUARED)

RETURN THE POSITIVE NUM-
BERS IN A VECTOR 7
GENERATE THE ODD NUMBERS
FROM 3 TO 17

ASSUME (C«110: ASSIGN
THE ADDITION TABLE FOR THE
FIRST 10 POSITIVE INTEGERS
TO THE VARIABLE NAME T

WHERE AM I?
SHUFFLE 152
SIMPLIFY 2+1pVIVV]

RETURN THE FIRST ELEMENT
OF A NONEMPTY MATRIX ¥
SIMPLIFY VxxV

NOTE: ASSUME 770+1

0CT+0

SOLUTION

STSC, Inc.

2115 East Jefferson Street
Rockville, Maryland 20852
(301) 984-5000

APL. 638000

Microcomputer Interpreter

=

THE COMPUTER COMPANY » MICRO APL SYSTEMS
1905 Westmoreland Street, Richmond, VA 23230-3297 » 804/358-2171

APL.68000 Microcomputer Interpreter

The Computer Company’s APL.68000 is the first APL
interpreter for the M68000 microcomputer chip which
offers state-of-the-art processing speed, and up to 16
megabytes of directly addressable main memory, limited
only by available hardware. APL.68000 is a full im-
plementation of IBM’'s APL.SV, with the same
enhancements as our commercial timesharing system
ACTION/APL.SV.

If you have used APL, you know that its strengths as a
programming language—concise code, easy debugging
and less detailed specification work, for example—mean
increased programmer efficiency, reduced costs and
fewer programming errors. And you know that APL is
incomparably versatile in providing new solutions for
difficult applications—quickly.

If you are familiar with hardware development, you
know that microprocessors are the new generation in
computing. Their small size, low cost and increasingly
impressive main storage make them, for many busi-
nesses, an irresistable bargain.

With APL.68000, you can have both. The distinct ad-
vantages of a microcomputer based on the M68000 chip
and a sophisticated APL interpreter proven for more
than 12 years by our many timesharing customers.

Consider the special features of APL.68000:
POWERFUL FILE SYSTEM

User files are always open; there is no need to open
(tie) or close (untie) them.

are used for file operations.
Files may have an arbitrary number of components.

Each component may contain data of an arbitrary
size, shape and type.

Components may be inserted between existing
components, deleted, replaced, or appended to the
front or back of the file,

RN ERR

R

Files may be protected by passwords.

o il

Files have an access matrix to specify how a user
may access the file. A user may be allowed to ap-
pend components to a file, for example, but not al-
lowed to insert or replace components.

Primitives,t4 & [[, rather than shared variables,

g

Files may be renamed or replaced.

You can access dynamically a list of all of your
files, as well as information about each file and
each component.

A file is created automatically by the first file
write,

OVERLAYS (PACKAGES)

Through the use of overlays or packages, functions
and variables may be clustered and written to a file
for subsequent quick and easy access.

COMMERCIAL ALPHA FORMATTER

The alpha formatter uses a COBOL-like picture
statement, allowing you flexibility in inserting text
such as dollar signs, commas and slashes between
output digits. For example, ~ could be
formatted to printas 51,469, 28

You can work with both fixed and floating fields, a
feature especially convenient in formatting financi-
al statements. For example, you can specify that
dollar signs be placed automatically next to the
highest digit.

You can define the fill character for a field, a ttea-
ture useful in writing checks or in any application
using a special fill character.

The fixed or floating sign minus -, high minus ,
parenthesis (, and brackets[B, will be printed only
if the number you format is negative. The plus sign
+ will be printed only if the number you format 1s
positive. All other fixed or floating characters ar¢
not affected by sign.

Text following the last digit field in the picture
statement is displayed only if the number you for-
mat is negative. This feature allows you to include
text such as (7 following negative dollar amounts.

You can suppress all leading zeros or force signifi-
cance in your output. For example,

APL.68000 Benchmarks

In Milliseconds

Microcomputers Minicompuiers

APL.68000
Benchmark 8 MHZ HP 3000 |HARRIS| DECSYSTEM
1 Wait State| IBM 5120 | APL/V80 | Series 11 S123 2020

Plus Reduction Ta [¥T 124.0 141.3 128.3 50.1 1.9

Logical Reduction v [VL by 57.9 5.8 5.4 0.7 6.8

Maximum Reduction s WA 52,7 136,32 95.3 39.3 5.3
Exponentiation Be¥le.5 BB05. § T34 S6754 ., 7 B54.,7 57.9 103.9
Absolute Value 2= | VA 9.6 134.0 109.7 101.7 3.8 B.1
Indexing E~-VRL¥I[120]] 13:5 184, 3 77.8 -y S.H

Sorting ZevIiewn) 550,93 1535.6 2375:3 266.1 52.8 56,0

Take ZeT2 14MR 1.3 53.2 591.5 5.1 1. 2.8

Membership Z+VTeVI 210.2 BO36.6 1696. 3 3871, 38.9

Transposition Z¢7 10NC 176.6 1TNE.T 1928.3 11.9 138.5 B2.1

Outer Product, Characters ZeVCe .20 2.4 5353.7 291.3 306.9

Outer Product, Integers 2+(150, +15¢ 339.1 6585,k 1850.8 1193,8 53,8 54 . 6

Inner Product, Real Numbers I+VEL .+ VR 198.0 137.3 2646, 8

Matrix Division S MFB10A VR ugs.7 | 13s0.8 | 10u38.7 104, 3
Fibonacci Series Li>(1005p2+E, 0 " 24Z)/L u211.0 | 10770.0 6206 .6 XT3k 3496 1534.6

Note I: Variables used in the benchmarks. Note 2: The DECSYSTEM 2020 used APL-SF.
MI+1D PIe{500s0 1 0 0 1)/1500 The HP 3000 used APL/3000. VSAPL was used
on the IBM 5120.

MR+10 10 4

MO=26 26pV0+"ABCDEFGRIJKIMNOPQRSTUVWAY L' Note 3: All times are in milliseconds.

For additional information, please contact
Phil Van Cleave at 804/744-2458.

": THE COMPUTER COMPANY * MICRO APL SYSTEMS
1905 Westmoreland Street, Richmond, VA 23230-3297 » 804/358-2171

APL.68000 Retail Price List

Effective October 1, 1981

ST g e o g1 D 0! ot S e B IR s so M IR (! $ 3000.00
User Manual, if purchased separately............cooveiiiniven.. 30.00
5 B e U e e o AR o W A ety S No charge
BenCNMATKS REDOTE ;s v sl sl a el e m sl i e s Ao e e lich No charge
Prodict Broehiie v i na s et 2 s R A S i el o No charge

Stated prices are retail prices for single end-users; manufacturer, OEM, and multi-
ple end-user discounts are available.

In the United States, APL.68000 is currently implemented on WICAT Systems
hardware, under the DIS operating system, and on Motorola hardware under the
VERSAdos operating system.

In Europe, APL.68000 is available on MicroAPL LTD SPECTRUM hardware,
under the MIRAGE operating system.

To place orders, or for additional information,
please contact Phil Van Cleave at 804/744-2458.

l THE COMPUTER COMPANY * MICRO APL SYSTEMS
1905 Westmoreland Street, Richmond, VA 23230-3297 » 804/358-2171

R

Using the special features of the alpha formatting
primitive, you can produce descriptive output.

'((2,229.99)'a1469.28 0 3u6

1,469,228 0.00 (346.00)

FAST SEARCH/REPLACE PRIMITIVE

APL.68000's search/replace primitive is extra-
ordinarily fast. It will allow you to perform char-
acter vector search to locate and/or replace parts
of your text. Any part of the text can be stored as a
variable to facilitate your corrections. For exam-
ple,

A«"MARY HAD A LITTLE LAMB!
0S5(A3*LITTLE')
12 (LITTLE begins at position 12 of the string)

[155(4

A;'LITTLE" ;'BIG")
MARY HAD A BI

AN .‘; ,h IG L?I a"'HE“

DELIMITED BLANK REMOVAL
PRIMITIVE

[DBR removes all leading, trailing and duplicate
blanks from a character vector and all blanks pre-
ceding and following any set of specified delim-
iters. For example,
', '[PBR!?

L1,L2 L3

2 I3 ‘!

'I'J} .

DELIMITED VECTOR-TO-MATRIX
AND MATRIX-TO-VECTOR PRIMITIVE

Using (180X , you can define your delimiter for
rapid conversion of vector to matrix or matrix to
vector. This is especially useful in preparation of
row and column headings. For example, using the
semicolon : as the delimiter,

';'0BOX 'DOE, JANE;LITTLE, TOM'
Ej'g I: '. L] '-;-‘; .Hl'r.';.'.‘
LITTLE, TOM

gl

COMMENTS

You can add a comment following an APL expres-
sion. For example,

2x5 A MULTIPLY 2 TIMES 5
10

DIAMOND STATEMENT SEPARATOR

The diamond ¢ inserted between statements al-
lows you to place multiple statements on one line.
For example,

2+604+1 2 303x4

3 6 9

:

ERROR TRAPPING

Error trapping in APL.68000 gives you the option of
intercepting and handling errors encountered dur-
ing the execution of a function. [1ERX sets the er-
ror trap and [JLER returns the program line num-
ber and type of error found.

EXECUTION OF SYSTEM COMMANDS

The Execute primitive allows execution of system
commands and single-line function definition
statements. For example,

2')LOAD DEMO'
SAVED 12.10.06 06/10/81

Execution of function definition statements:

2 'VSTAT[2 JR<+/XV!

SHARED VARIABLE PROCESSORS

One processor allows APL to send and receive data
through any 1/0 port on the system; the other pro-
cessor allows you to read and write standard oper-
ating system files.

AUTOMATIC SYMBOL TABLE CLEANUP

Symbol tables in APL.SV often become cluttered
with unused names, returning SYMBOL TABLE

FULL errors. APL.68000 automatically removes
unused names from the symbol table.

: The Computer Company
1905 Westmoreland Street, Richmond, Virginia 23230-3297 » 804/358-2171

Houston

The Computer Company
5301 Hollister, Suite 430
Houston, Texas 77040
713/460-5955

Los Angeles

The Virginia Computer Company
77 Brookhollow Drive

Santa Ana, California 92705
714/754-6440

213/678-9605

New York

The Computer Company

211 East 43rd Street, Suite 1804
New York, New York 10017
212/682-7390

Richmond

The Computer Company
1905 Westmoreland Street
Richmond, Virginia 23230
804/358-2171

October 1981

