
,

DOCUMENTS FOR USE WITH THE
UNIX TIME-SHARING SYSTEM

•

Sixlh Edition

•

The enclosed UNIX documentation is sUllptied
in accorda nce with the Software Agreement

you have wi th the Western Electril: Company.

, -

CONTENTS

L Scuing Up U'NIX - Sixth Edilio~l

2. The UN I X Time-Sharing System

3. C Rcl"crcilce Munuul

4. Programming in C - A Tutorial

5. UN I X Asseillbler Rcl"ercncc Manual

6. A Tutorial introduction 10 the UN I X Text Editor

7. UN I X ror Beginners

8. RATFOR - A Preprocessor for a R<llional Fortran

9. Y ACe - Yel Another Compiler-Compiler

10. NROFF Users' Mallu<l1

I I. The UN I X 110 System

12. A M;l1luul for the Tmg Compiler-writing Lunguage

13. On the Security of UNIX

14. The M6 Macro Processor

15. A System for Typeselling Mathematics

16. DC - An Interactive Desk Calculator

17. Be - An Arbitrary Precision Desk-Calcululor Language

18. The Portable C Library (on UN I X)

19. UNIX Summary

-~

I.

2.

SEITING UP UNIX - Sixth Edition

Em:loscd arc:

'UN IX Prog ra l1lmer's Manual: Sixth E(]ilion.

Documents with the following titles:

Selling Up UN IX. - Sixth Edition
The UN I X T ime-Sharing System
C Rcrerem:c M<lnual
Programming in C - A Tu tori<ll
UN IX Assembler Reference MmlUal
A Tutori"l Introduction La the UN ! X Text Editor
UNIX for Beginners
RATFOR - A Preprocessor for a Rali0l1<11 Fortran
Y ACe - Yet Another Compiler-Compiler
NROFF Users" Manual
The UNIX 110 System
A Manual for the Tmg Compiler-wri ting Language
On the Security of UNIX
The M6 Macro Processor
A Systen"l for Typesetting M"athcl1llllics
DC - An Interactive Desk Calculator
Be - An ArbitfHry Precision Desk-Calculator Language
Th e Portable C Library (on UNIX)
UNIX Summary

3. The UNIX sortwClre on magtape or disk pack.

I f yOll are se l up 10 do ii, it might be a good idea immedialely 10 make a copy of the disk
or tape to guard against disasler. The lape conlains 12100 SI2·byte records rollowed by a sin
gle fi le m.lfk; only the first 4000 S12-byle blocks on the disk are significant.

The system as distributed corresponds to three rairly full RK packs. The first contains
the bil1<1 ry version of all programs, and the source for the operating system itself; the second
contains nil rel1l<lining source programs; the th ird contains manuals intended to be printed us
Il1g Ihe formalling programs roff or motr. Tbe 'binary' disk is enough .to run the system, bu t
you will almost certainly wan t to modify some source programs.

Making a Disk From Tape

If your system is on magtape, perform the rollowing bootstrap procedure to obtain a disk
with the binaries.

I. Mount magl<lpc all drive 0 at load point.

2.

) .

Mount formalled disk pack on drive O.

Key in and execute at 100000

,

TUIO
012700
172526
010040
012740
06000J
000777

-2 -

TUI6
Use the DEC ROM or other
means to load block 1
(i.e. second block) al 800 BPI
into location 0 and transfer
10 O.

The tape should move ;md the CPU loop. (The TUIO code is 1101 the DEC bulk ROM for
(:lPC; it reads block 0, nol block 1.)

4. lI all and restart the CPU al O. The lape should rewind. The console shou ld type '='.

5. Copy (he maglilpc 10 disk by the following. This assumes TUiO anu RK05 ; sec 6 below
for olher devices. The machine's printouts aTC shown in ilalic (the '= ' signs should be
considered italic). T erminate each line you Iype by carriage return or line-feed.

o.

= Imrk
disk C!trse(
o
{ape Q/J5(!f

100 (See 6 below)
COIIII(

(The tape should move)
= Imrk
disk o.ff.~el
1
lap£' off.\'el
101 (See 7 below)
CO/illi

3999 (The tape moves lots more)

To explain: the (//Irk program copies tape to disk with the given offsets and counts, lis
first use copies a boolstrup program to disk block 0; the second use copies the file system
itsel f onto the disk, You may get back to '=' level by sta rting at 137000,

I f you have TUI6 tape say ' hlrk' i nstead of 'Imrk' in the above e)wlllple. I f you have an
RPOJ disk, say 'Imrp' or ' h trp' , and use a 99 ins tead of 100 tape ollset. If you have an
RP04 disk, use 'tmhp' or 'h lhp' i'nSlcad or ' tmrkl, 'and use a 98 instead of 100 tape offset.
'fhe different offsets load bootstrap programs appropriate to the disk they will li ve on,

7. This procedure generates the 'binary' disk; the 'source' disk may be generated on another
RK pilck by using a tape offset of 4101 i nstead of 101. The 'documen t' disk is at offset
8101 Instead of 101. Unless you have only a single RK drive, it is probab ly wise 10 wait
on generating these disks. Beuer 10015 are avai lable using UNIX itsel f.

Bootin2 UNI X

Once the UN I X 'b inary' disk is obtained. the system is booted by keying in and execut·
ing one of the following programs at 100000. These programs correspond to the DEC bulk
ROMs for disks. since they rcad in and execute block 0 at loca tion O.

-,
.)

•

- 3 -

RK05 RP03 RP04
012700 012700 Use the DEC ROM or other
1774 14 176726 mcans to load block 0 inlo
005040 005040 location 0 and trans fer
005040 005040 10 O.
010040 005040
012740 010040
000005 012740
105710 000005
002376 1057 10
005007 002376

005007

Now follow the indicated dialog, where ' (il)' and '#' are prompts:

(I" rkunix
mem = xxx
IORin: rool

"

(or ' rpunix' or 'hpunix')

.The mem message gives the memory available to user programs in . I K units. Most of the
UNIX software will run wi th 120 (for 12K words), bul some things require much morc.

UN IX is now running, and the 'UN IX Programmer's manual' applies; references below
of the form x-Y mean the subsection named X in section Y of the manual. The '# ' is the
rrompl from the UN IX Shell, and indicates you arc logged in as the super-user. The only
vulid user names are ' rool ' and 'bin ' , The root is the super-user and' bin is the owner of nearly
every file in the fi le system.

Defore UN I X is turned up completely . a few configu ration dependen t ex.e rcises must be
performed. At this point, it would be wise to read all of the manuals and to augment Ih is read
ing with hand 10 himd combat. It might be instructi ve to ex.amine the Shell run files men
tioned below.

Reconfi2uralion

The UNIX system running is configured to run on an 11140 with the given disk, TU10
magtape and TU56 DECtape. Th is is almost certai nly nOI the correct configuration . Print
(cat-!) the file lusrlsys/ru n. Th is rile is a set of Shell commands thai will completely recompile
the ·system source, install it in the correct libraries and build the three configurations for rk, rp
lind hp.

Using the Shcll filc as a guide. compile (cc-!) and rename (mv- I) the configuration pro
gram'mkconr. Run the configuration program and type into it a list of the controllers on your
system. Choose f rom:

-4-

p\: (!'CII)
II' ILl' II)
rf i[(S I I)
lis I RSOJmS(4)

" nU56J
,·k I/(KOJ mKOS)
till n ·U)O)

rl' (RI'OJ)
ilp 1/(1'04)
hi (TU) (0)

dc' IDC)))
kl' I KLI)IOLlI · AIlC)
(W IDLlI ·E)
tip (I)PII)

<In IDNII)
dll IDIIII)
dhtlm IDMII·IW)

The devices marked wi th' should be preceded by a numbe r spccifyinK how mu ny. (The can·
sule typewri ter is tlulonl<llically included; don' t count il in the kl specification.) Mkconf will
geller.lIt! Ihe two flies l.s hrap vectors) and c.c (configuration \<lhle). Take a careful look at l.s
10 make sure Ihill ull the devices \hlll you huvc ;lre assembled in Ihe correct interrupt vec tors.
If your t:onfigunllion is nOll-standard, you will huvc 10 modi fy J.S 10 fit your con figuration.

In the run Shell tile, the 11/45 code is com mented ou\. I f you have Ull 11 /45 you mlls t

also ed it (cd·1) the tile lusrlsys/conf/m4S.s to SCI the assembly nag fl'p \0 rcOect ir you have
Ille FPI I- Il nOllling poi n t unit. The main difference between an 11 /40 and an 11 /45 (or 11 170)
systelll is th;1I in th e fo rmer in$lruc"lion res tart after a segme ntation violation caused by
uverllowing II user slllc k mus t be handled by software. while_ in the laller machines there is
ha rd w:lfe help. As mentio ned above. th e 11145 and 11170 system$ include conditionally
enabled code 10 s .. ve the status or the noati ng point un it when switching users. The source ror
such things is in one of the two files m40.s and 1ll45.s.

Anot her dilfcrence is that in 11 /45 and 11 170 systems the instruct ion and data spaces are
scp;lra teci inside UN IX itse lf. Since the layout or add resses in the system is somewhat peculiar.
and nOl directly su pported by the link-editor 1tI. the sys/ix program hHS 10 be run berore Ihe
lo .. ded output lile ca ll be booted.

There arc c.e rtain magic nU'mbers and confi gurat ion pnrame te rs imbedded in various dev
ice drivers that you may want to change. The device addresses o r each device are defined in
cac h driver. In case you have any non-s tandard device addresses. just c hange the add ress and
reCOml)ilc. (The device dri vers are in th e directory lusrlsys/d mr.)

Thc DCII driver is set to run 14 lines. This ca n be changed in de.c.

The DB I I drive r will on ly handle a s in gle DH wit h a rull compleme nt or 16 lines. Ir you
Il:I ~e less, yo u may wan I 10 edit d h.c.

The DN II dri ver will hand le 3 DN 's. Edit dn .c.

Thc DP]] driver ca n o nl y handle a s ingle DP. This ca nnOI be eas ily c hanged.

The KLiDL driver is set up to run a si ngle DLI I- A. -8. or -C (the console) and no
DLlI-E's. To change th is. edit kl.c to h;lve NK LI I renect the tota l number or DLlI-ARC's
ami NDLIJ 10 re neet the number or DLII -E's. So rar as the drive r is concerned, the
dilfercnce hetween the devices is their addresses.

The linc printer driver is set up tQ print th e 96 character set on 80 column paper
(LPII- II) wi th inden ting. Edit Ip.c.

..

I ~

-5-

All of the disk a,nd tape drivers (rf.c, rk.c, rp.C, Im.c, le.c, hs.c, hp.c, hl.c) are sel up 10 run
8 drives' lind should not need 10 be changed. The big disk drivers (rp.c and hp.c) have parti·
lion tables in them which you Illay want 10 experiment with.

'After aJJ the corrections have been made, use lusrlsys/run as a guide to recompile the '
changed drivers, install them in lusrlsys/l ib2 and to assemble the trap vectors (J.s),
configuration table (c.e) and machine language assist (m40.5 or m45 .5) . Arter all this, link cdi'!
the objects Od-I) and 'if you .have an 11/45, sysfix the result. 'The final objeci fil e (a,out)
should be renamed lunix and booted. ' See Boot Procedu res-VIII for a discussion of booling.
(Note: remember, before booting, always perform a sync·V IJI to force delayed output to the
disk.)

Special Files

Next you must" put in all of the special files in the directory Idev using mknod-VII I.
Print the configuration file c.c created above. This is the major device switch of each device
class (block and character) . There is one line for each device c.onfigured in your system and a
'null line for place holding for those devices not configured. The block spec ial devices are put
in first by executing the following generic command for each disk or tape drive .. (Note that
some of these files alreadY exist in the directory /dev. Examine each file with Is·1 with - I flag
to see if the file should be removed.)

letc/mknod Idev/NAME b MAJOR MI NOR

The NAME is selected from the follo'wing list:

c.c NAME device
rf rro RS fixed head disk
IC tapO TU56 DEC tape
rk rkO RK03 RK05 moving head disk
1m mlO TU IO TUl6 magtape
rp rpO RP moving head disk
hs hsO RS03 RS04 fixed head disk
hp hpO RP04 moving head disk

The major device number is selected by counti ng the line number (from zero) of the device's
entry in the blOCk configuration table. Thus the first entry in the table bdevsw would be major
device ze ro.

The minor device is the drive number, unit number or part i tion as described under each
device in section I V. The last digi t of the name (all given as 0 in the table above) should
reflect the minor device number. For tapes where the unit is dial selectab le, a special file may
be made for each possible selection .

.The same goes for the character devices. Here the names are arbitrary except that dev
ices meant to be used for teletype access should be named /dev/ttyX, where X is any charac·
leT. The fi les tly8 (console), m.em, kmem, null are already correctly configured.

The disk and magtape drivers provide a 'raw' interface to the device which provides
direct transmission between the user's core and the device and allows reading or writing large
records. The raw device counts as a character device, and should have the name of the
corresponding stand<lrd block special file with 'r' p·repended. ThuS"lhe raw magtape files would
be called Idev/rmtX. .

When all the special files have been created, care should be taken to change the access
modes (chmod· I) on these files 10 appropriate values.

-6-

The Source Disk

You should now exl rat:! the source disk. This can be done as described above or the
UN I X command lId·1 I1l<LY be used. The disk illl<lgc begins al block 4100 on Ihe lupe, so the
command

dd il'=/l..Icv/nll0 of= /dcv/rkl (ounl=4000 skip=4100

might be used \0 extract the disk to R K drive I.

This disk shaull! be mounted (mount -V III) on lusrlsoun:e; i1 contains directories of
SOU Tce code. In c;It:h lIircclory is a Shell lilc run thaI will recompile all the source in the direc
tory. These ru.n files should be consu lled whenever you need 10 recompile.

F l oalin~ Point

UNIX only suppOrts the 11/45 FPll·B float ing poinl unit. For mtlchines without this
hardware, there is a user subrout ine avai lable Ihul will caleh il legal instruction Iraps and in ter
pret noating point operutions. (See I"ptrap- J[I.) The system as delivered has this code included
i n all commands that have Iloating point. This colle is never used i f the FP hardware is avail
able and thereror.e docs not need to be changed. The penalty is iI lillie bit or disk space and
loading time for the rew noating commands.

The C compiler in lusrlsource/c probably shou·ld be changed ir noating point is available.
The fpp nag in cOt.s shou ld be set afld C should be recompiled and reloaded and installed.
This allows noating point C programs to be compiled without the - r nag and prevents the
noating point in terpreter from gelling into new noating programs. (See lusrlsource/c/run.)

Time Conversion

Ir your machine is n"Ot in the Eastern l ime zone, you must ed it (ed-I) the subroutine
lusrlsource/s4/c lime.c to rcnecl your local lime. The variable 'timezone' should be changed to
reneci the lime difference between local time and GMT. For EST, this is 5·60"60; ror PST it
wou ld be 8*60*60. This routine also contains the names or the standard and Daylight Savings
lime zone.: so 'EST' and 'EDT' might be changed to ' 1>5T' and ' PDT' respectively. Notice that
th ese two names are in upper case and escapes may be needed (tty- IV). Finally, there is a
'daylight' nag; when it is I it causes the time to shift to Daylight Savings automatically
between the last Sunduys in April and October (or other algorithms in 1974 and 1975). Nor
mally this will not have 10 be reset. After ct ime.c hus been edited it should be compiled and
installed in its l ibrnry. (See lusrlsource/s4/run.l Theil you should (at your leisure) recompile
ilOd reinstall ull"programs perf"orming time conversion. These include: (in 51) ·dute, d.ump, Is,
cron, (in s2) mail. pr, restor, who, sa and Ip.

Disk Layout

Ir there are to be more lite systems mounted Ihan just the root, use mkfs-VIII to create
the new file system and I)ut its mounting in the fi le lelclrc (see inil-VI II and mount-VIII).
(You might look at le lc/rc anyway to see what has been provided ror youJ

There are two considera tions i n deciding how to adjust the <lrrangement or things on your
disks: the most important is making sure there is adequate space for what is required: secon
darily, throughput should be maximized. The R K disk (or its image) as distributed has 4000
blocks ror file storag~, and the remainder or the disk (872 blocks) is set aside ror swap space.
In our own system, which allows 14 simultaneous users, this ilmoun t or swap space is nol quite
enough, so we use 1872 blocks ·ror this purpose; it is la rge enough so funning· out of swap
space never occurs.

I

e

-7-

Many common system programs (C, the editor, the assembler ,
fi les in the lImp directory, so the- file system where Ihis is siored also ~
enough 10 accommodate most higb-water marks. In an idle state, we ho
blocks on the file system where limp resides, and hit the bOllom every. few dt>_
causes a momentary disruption, but not a crash. as swap-space runoul does.) All I .

thai erC,He files in lImp try \0 lake care La delete them, but most are not immune 10 e
being hung up upon, and can leave dregs. T he directory should be examine(l every Sl.
and the old files deleted.

Exhaustion or user-file space is certain to occur now and then; the only mechanisms for
controlling Ihis phenomenon are acc<lsional use of du-I and threatening messages of the day
and personal lellers.

The efficiency with which UNIX is llble to use the CPU is largely dictated by the
configuflHion of disk controllers. For general time-sharing applications, th:c best strategy is to
try to .split user flies, the root directory (including the lImp directory) and the swap area among
three controllers. In. our own system, for example, we have user files on an RP, the root on an
R F fixed-head disk, and swap on an R K. This .is best for us since the R K has a faster transfer
rate than the rather slow RF, and in swapping the transfer rate rather than access time is the
dominant innuence on throughpuL. .

Once you have decided how to make best use of your hardware, the question is how to
initilllize i\. I f you have the equipment, the best way to move a file system is to dump it
(dump-Y II I) to magtape, use mkfs-VllI to create the new file system, and restore the tape. I f
you don't have magtape, dump accepts an argument telling where to put the dump; you might
use another disk or DEC tape. Sometimes a file system has to be increased in logical size
without copying. The super-block of the device has a word giving the highest address which
can be allocated. For relatively sillall increases, this word can be patched using the debugger
(db-I) and the free list reconstructed using icheck-Ylii. The size should not be increased very
greatl y by this technique, however, since although the allocatable space will increase the max
imum number of files wil.l not (that is, the i-list.size ·can't be changed) . Read and understand
the description given in file system-VI before playing around in this way.

If you have only an RP disk, see section rp-JV for some suggestions on how to layout
the information on it. The file systems distributed on Lape, containing the binary, the source,
and the manuals, are each only 4000 blocks long. Perhaps the simplest way to integrate the
latter two into a large file system is to extract the tape into the upper part of the RP, dump it,
and res tore it into an empty, non-overlapping file system structure. I f you have to merge a file
system inl"O another, existing one, the best bet is to use ncheck-VIII to get a list of names,
then edit this list into a sequence of. mkdir and cp commands which will serve as input to the
Shell. (But notice that owner information is los\.)

New Users

Install new users by editing the password file letc/passwd (passwd-V) . You'll have to
make c·urrent directories ror the new users and change their owners to the newly installed
name. Login as each user to make sure the password file is correctly edited. For example:

-8-

.,
i;
~

" root

.• ;, will make a new login entry for joe. His default current directory is Ius r/joe wh ich has
been created. The deli vered password file has the user kell in il to be used as a prototype.

Multiple Users

If UN IX is 10 support simultaneous access from morc Ihan just the console teletype, the
file letc/ttys (ltys-V) has to be edited. For some historical reason nya is the name of the con
sole typewriter. To add new typewriters be sure the device is configured and the special file
exists, then sel the first character of the appropriate line of lelc/uys 10 ·] (or add a new line) ,
Note thai inl1.c will have 10 be recompiled if there are \0 be more than 20 typewri ters. Also
nale thal if the spcciul file is inaccess ible when init tries to create a process for it, the sys tem '
wi ll thrash Hying and retrying to open il.

File System Hea lth

Periodically (say every day aT so) and al~ays af~er a crash, you should check all the file
systems for consistency (icheck, dcheck-V IID. It is quite important to execute sync (VIl!) be
fore rebooting or taking the machine dawn. This is done automatically every)0 seconds by
the update program (V Il !) when a multiple-user system is running, but you shou ld do it any
way to make sure.

Dumping of the file system should be done regularly, since once the system is going i l is
very easy to become complacent. Just remember that our RP controller has failed three times,
each l ime in such a way [hat all informat ion on the disk was wiped out without any error
status from the con troller. Complete and incrementa l dUl1ll)s are easily done with the dump
command (V III) but res torn lio(l of individual files is painful. Dumping of files by name is best
done by (1) m but the number of files is limited. Finally if there are enough drives entire
disks can be copied using cp- I, or preferably with dd- I using the raw special files and an ap- '
propriate block size. Note Ihat Ihere is no stand-alone program with UN I X that will restore
any of Ihese formats. Unless some attion has been Inken to prevent destruction of a running
version of UN I X, you can find you rsel f stranded even though you have b'lCkul).

e

•

-9-

Odds and Ends

The programs dump, khcck. dcheck, ncheck, and dr (source in lus r/source/s l and
lusr/sou rce/52) should be changed to reneel your defauh moun ted file system devices. Print
the first few lines of these programs and the changes will be obvious.

If you would like to share any UN IX compatible software with others, please let us know
about it If you find bugs in the software or the documentation, again let us know.

Last ly. there is a UNIX users' group forming. To gel on their mailing list, send your
name(s) and address to: ·

Prof. Melvi n Feren tz
Ph ysics Dep t.
Brooklyn College of CUNY
Brook lyn. N .Y. 11210

Good luck.
Ken Thompson
Dennis Ritchie

,

~ .

. ~

The UNIX Time-Sharing System

Dennis M. Rilchie
Ken Thompsoll

8ell Labora/ori('S
Murray Hill, N . .J. U79 74

AIISTRACT

UNIX is <1 general-purpose, Illulti-user, inlCnlt live opcnlling system for the Digital· Equipment Corpom
tion 1'1>1'· 11 /40, 11/4511ntl 1[170 computers. It oilers a number of features seldom found even in larger
operating systems, including

I. A hierarchic<ll file system incorporating demountable volullles,

2. COlllp,llible file , device. and inLer-process 110,

3. The "billlY IQ initiate "synchronous processes,

4: System COlll lllunu J~ngu<lge selec table on a per-user bus;s,

S. Over 100 subsystems includ ing a tlolcn languages.

This pal)er discusses the nature and implementation of the file system and of the user command intef
face.

I . Introduction

There IHlve been three versions or UNIX. The ellrliest version (circa 1969-70) ran on the Digital
Equipment Corporation I'Dr-7 llntl -9 computers. The secontl version nm on tile unprotected I'DI'- 11 120
t:amputer. Th is paper describes only the rOI'-II/40, /45 anti 170 1 sys tem, since it is more modern anti
many of the differences between it and older UNtX systems result from redesign of feil tures found to be
deficient or lacking.

Since I'IlP- 11 UNIX became operationtll in FcbrullrY,.1971, about 100 installations hilve been put in to
se rvice ; they lire geneTlllly sma ller thtln the sys tem described here. Most of them lire engaged in appli
cations such tiS the preparation lind fomlalling of patent app.lications anti other textual Illllterial, the
collection lind processing of trouble d,lIa frOIll various switching mllchines within the ~ell System, lind
recording und checking telephone service orders. OUf own instalhllion is used mainly for research in
operating systems. languages, computer networks, ilnd other topics in computer science, lind also for
document preplITation.

('ul'yrighl © 1974. """lC,aliUIl rUf ('uillpulillil Ma~h ill~r}'. tm.:. (icllcml !,efllli,~iO!l It) rel'uhli,h. hUI 11111 fur pmlil , all or P;lrI
ur Ihi~ l1laleri;oI i .. gr;lI1led pr\lvidcd IIwl IICM\ cl1l1yrillhl nul icc ; .. given ;md Ih;'1 rCrerellCC j, mauc Iu Ihe Ilublkaliun. 10 ils (hue
or i uc. OIml III Ihe fae! Ih;" rCllrinlill1l IlTi ... ik:lle~ "'cre granicil by Ilefm;",illll of Ihc "~"lCi;'lilln rur COnllluling Machinery.

Thi~ i .. iL rcvi~cLl \·cr .. iun "I' ;111 ;Of lick' ;'IlllC;OI lnl; in' Ihe COllllllunic;lIiull' OIr Ihe 11(""'. \'UIUIIIC 17. Numher 7 (July 1974) \II'.
3/1).375. Thai Mlklc i .. ;1 rcvi .. cd vcr,iOlIl <li";1 \I;'\ler pre .. enlel l :1\ thc I"Hlflh IICM SYIll\lu .. iulil UII Ollermlllg SY'lelll_~ Principle ...
111M ThnllHh J . W"I'IIII I{c"c :OI~h ("eliler, YmkltlWI\ llelghh. New Ynrk. (),,:Iubcr 15-17. 1973.

UNIX Time-Shar;,,}!, SYSTem - 1

Perhaps the most important uchievement of UNIX is to demonstrute that a powerful operating system
for interactive use need not be expensive either in equipment or in hum:.m effort : UNIX can run on
IHlrdware costing as little as $40,000, and less thun two man-yenrs were spent· on Ihe main system
soflware . Yet UN IX contains., number of features seldom oncred even in much Ju rger sys tems. Hope
fully, however, the use~ of UNIX will find that the most important tharm: tcristics of the system arc ils
simplici ty, elegance, :lntl ease ur usc.

Besides the sys tem proper. the major programs available under .uNlx are

assembler.
text editor b:lsed on OEDl ,
linking loader,
symbolic debugger.
compiler for a language resembling UCPLJ with types and .structures (Cl.
interpreter for a diulect of BASIC,
phOlotypeseuing and equa tion sett ing programs
Fortran compiler,
Snobol interpreter,
top-down compiler-compi ler (TMG 4),

bOllom-up compiler-compiler (YACC),

form letter generator,
macro processor (M6 s'),
permuted imJex program.

There is also a host of m<linten<lnce, utility, recreation <llld novelty programs. All of these progru.ms
were written locally. It is worth noti ng that the system is totally se lf-supporting. All UNIX software is
maintained under UNIX; likewise, this paper and all other UNIX documenls were generated and format-
ted by the UN tx editor und text formatti ng program. .

2. Hardware and software environment
The POp-1 1145 on which our UNIX installation is implemented is a 16-bit word (S-bit byte) computer

with 11 2K bytes of core memory; UNtX occupies 53K bytes. This system, however. includes a very
large number of device drivers and enjoys a generous allotment of space for 110 buffers and system
tables; u minim<ll sys tem capable of running the software mentioned above cun require as lillie as 64K
bytes of core altogether.

Our POP- II has a I M byte fi xed-head disk, used for file system storage and swappi ng, four 'moviDg
head disk drives which each provide 2,.5M bytes on removable disk cart ridges, and a single moving
head disk drive which uses remov<lble 40M byte disk packs. ' There are alsQ a high-speed paper tape
reade r-punch, nine-track magnetic tape, and DEClape (a variety of magnetic tape fac ility in which indi
vidual records may be uddressed and rewritten). Besides the console typewriter, there are 30 va riable·
speed communications interfaces attached 10 laO-series dalasels and a 201 dataset interface used pri
marily for spooling printout 10 a communal l ine printer. There arc also several one-o f-a-kind devices
including a Pictu reph one® interface,. a voice response unit, a voice synthesizer, a phototypesetter, a di
gital switch ing network, and a satellite 1'01'- 11 120 which generates vectors, curves. and characters on a
Tektronix 611 storage-lube display.

The greater paTl of UNIX software is written in the above-mentioned C language' . Early versions of
the opcfll ting system were written in assembly language, but during the summer of 1973, it was rewrit
ten in C. The size of the new sys tem is abou t one third greater than the old. Since the new system is
not only much easier to understand and to modify but also includes many functional improvements,
including multiprogramming and the ability to share reentrant code among several user programs, we
considered this increase in size quite acceptable. .

, ...

3. The File system

The most important role of UN IX is to provide ~ file system. From the point of view of the u~er,
there lire three kinds of files : ordinary disk flies, directories. and special fi les.

3. 1 Ord inary files

A file wntains whatever information the user places on iI , for example symbolic or binary (object)
programs. No particular structuring is expected by the system. Files of text consist simply of a ~Ir i ng

of charm:tcrs. with li nes demarcated by the new-line chartlcter. Binary programs <Ire sequences of
words a~ they will appear in core memory when the program starts executing. A few user programs
manipulate files with more structure; for example, the assembler generates. 'and the loader expects, <In
object lile in a pa rt icular format. However, the structure or files is controlled by the programs which
use them, not by the system.

3.2 [)ire~tories

Direc tories provide the mapping between the names of fi les and the files themselves, an9 thus in
duce a structu re on Ihe file system as a whole. Each user has a directory or his own fi les; he may also
cre<lte subdirectories to contain groups or files conven iently trealed together. A directory behaves ex
actly like an ordinary file except that it cannot be wrillen on by unprivileged programs. so that the sys
tem con trols the con tents or directories. However, anyone with appropriate permission may read a
direc tory j ust l ike any other file.

The system maintains several directories for its own use. ' One or these is the roor di rectory. All files
in the system can be found by tracing a pllth through a chain or directories un til the desired file is
reached. The starting poi nt ror such searches is often the root. Another system directory contains all
the programs provided for genera l use; that is. all the commol/ds. As will be seen, however, it is by no
means necessary tha t a program res ide in this directory for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name or a fi le is spec ified to the
system,.it may be in the rorm of a pOIII name, which is a sequence or directory names separated by
slashes "/" and ending in a !lIe nllme. Ir the sequence begins with a slash, the search begins in the
root directory. The name /afphalbelo lKomma ca uses the system to search the root ror directory alpha.
then to search alpha for bela. fmally to find gamma in beta. Gamma may be an ordinary file. a di rectory,
or a special file. As a limiting case. the name "/" refers to the root i tsel f.

A pa th name not starli ng with "/" causes the system to begin the search in the user's current direc
tory . T hus, the name alpha/bela speci fies the file named bela in subdirectory alpha or the current
directory. The simplest kind of name, ror example alpha, rerers to a file which itself is found in the
current direc tory. As another limiting case, the null file name refers to the current directory.

The 'sa l~e non-directory fi le may appear in several directories under possibly different names. This
reature is called linking: a directory entry ror a file is sometimes called a link. UN IX differs from other
systems in which linking is permitted in thllt all links to a file have equa l status. That is, a fil e docs not
exist within a particular di rectory; the directory entry for a file co'nsisls merely or its name and a
pointer to the information actually desc ribing the file. Thus a file exists independently or any directory

. ent ry, although in practice a file is made to disllppear along with the last link \0 i t.

Each directory always has at least two e·ntries. The name". ,. i n each directory refers to the di recto
ry itse lr. Thus a program may read the current direc tory under the name" ... without knowing its
complete path name. The name" by conven tion refers to the parent or the directory i n which it
appears, that is, to the di rectory in which it was created.

The directory structure is constrained to h:lve the form or a rooted tree. E x~e]l t for the special en
tr ies and " . . ", each di rectory must appear as an ent ry in eXllclly one other, which is ilS parent.
The reason for this is to si mpliry the writ ing or progrllms which visi t subtrees or the directory st ruc
tu re, and more important, to avoid the separation of portions or the hierarchy . I f arbitrary links to
directories were perniilled, it would be quite difficult to detect when the last connection rrom the root
'10 a di rectory was severed.

UNIX Time-SlwrillK System - 4

3.3 Spedal fi les

Special nics cons titut e thc most unusual featurc of the UNIX file system. l::ach 110 device supported
by UNIX is associatcd with ,II least one such file. Special files arc read amI wrillen just l ike ordinMY
disk liles, but requests to re;l{l or write result in activation of the associated device. An entry for each
special tile residcs in dircctory hie I'. although it link may be made to onc of these files just like an ordi
nary lile. Thus, for example, to pUllch paper tape, one may write 011 the tile Idelllppr. Special files ex
ist ror each communica ti on line, each disk, each tape drive, and ror physical core memory. or course,
the active disks '!lll! the core speci<ll file ilre protccted from indiscriminate <lccess.

There is II threefold ad vantage in treating 1/0 devices this way: file and device 1/0 <Ire as simi lar as
possible: fi le and device Ilamcs have the same syntax and mC<lning, so that a program ex pec ting a file
n<lmc as <I parameter can be pilsscd ,I device name: fin al(y, special files arc subject to the same protec
lion mechanism as regular files.

3.4 Removab le file systems

Although the root or the fi le system is always stored on the same device. i t is not necessary that the
en tire fi le sys tem hierarchy reside .on this device. There is a mOllnl system request which h<ls two argu
menlS: the name of an exist i ng ordinary flle, <lnd the name of <l specia l file whose associated storage
volume (e. g. disk pack) should have the structu re or an independent file system con tain ing its own
directory hierarchy. The effect or mOllnl is to c<lUSe re rerences to .the heretorore ordinary file to rerer
instead to the root directory of the file system on the removLlbte volume. In effect, mOl/III rep laces a
lear or the hierarchy tree (the ordin Ll ry file) by it whole new subt ree (the hierarchy stored on the re
movable volume) , Arter the mOI/IIf, the re is virttwlly no distinction between files on the removable
volume and those in the perrnLlnclll file system. In our im;tlllla tion, for example, .the rool directory re
sides on the Cixed-head disk, LInd the large disk drive, which contai ns user's liles, is mounted by the
system initialization program; the four smaller disk drives LIre Clvailable to users for mounting their own
disk packs. A 1110untLlble fi le system is generatcd by writing on ilS correspoml ing spec ial file. A utility
program is avall<lble 10 crellte an empty file system, or one may simply copy an ex isti ng file system.

There is only one exception to the rul e of identical tre<ltmen t or li!es on differen t devices: no linl
may exis t between one file system hierarchy li nd another. This restrit.:tion is enrorced so as to avoid
the elaborate bookkeeping which would otherwise be required \0 assure removal or the links when the
remov<lble volume is finally dismounted. In parti cular, in the root directories of all file systems, remov
able or not, the name " .. " refers to the directory i tself instead of to its parent.

3.5 Protect ion

Although the aCcess control scheme in UNIX is quite simple, it has somc unusual features. Each user
or the sys tem is 'Issigned a unique user iden tification number. When a Iile is cre<lled, it is marked with
the user ID ,or its owner. Also given for new fi les is a set of seven protection bils. Six of these speci fy
independen tly read, write, <lnd executa permission for the owner or the fi.le LInd for all olher users.

Ir the seventh bit is on, the system will temporarily change the user identification or the current
user to th<ll or the crea tor of 'the file whenever the file is executed as <I program. This change in user
t.O is effective only during the execution or the program which calls for il. The set-user-l[) reature pro
vides for privileged programs which m,IY use files in:.tccessible to other users. For example, a program
may keep an accounting file which should neither be read nor changed except by the program itself. Ir
the set-user-identification bit is on for the program, it may access Ihe tile although th is access might be
forbidden to other programs invoked by the givcn program's user. Sincc the a!;tual user 10 of the in
voker or any program is always aV<li!able, set-uscr-tl) programs may lake af;y mca~urcs desi red to s<ltisfy
themselves as to their invoker's credentials. This mechanism is used to allow uscrs to 'execute the
carerully- wrille ll cOlllmands which call privileged system entries. For example, there is a sys tem entry
invokab le only by the "super-user" (below) which creates an empty directory. As indicated above,
directories are expected to have en tries for". " lind" .. ". The c0111m;md which creates a uirectory is
owned by the super-user ilnu has the sel-liser-I\) .bit set. A fter it checks i ts invoker's authorizat ion to

J,.
,

UNIX Time-Sharinx Syslem - 5

create the specified directory , it creates it and makes the entries for", " and"" ",

Si nce anyone ITIlIY set the set-user- II) bit on one of his own files, this mechanism is generally avail
able without administrative in'lervention. For example, this protection scheme easi ly solves the MCX)
accounting problem posed in 17].

The system recognizes one particular user 10 (that of the "super-user") as exempt from the usual
const raints on fi le access; thus (for !!xample) programs may be written 10 dump and reioad the file sys
tem without unwanted interference f rom the protection system.

3_6 1/0 calls

The system ca lls to do I /O arc designed to el iminate the differences between the various devices and
styles of access. There is no dis tincti on between "random" and "sequential" 110, nor is any logical
record size imposed by the system_ The size of an ord inary file is determined by the highest byte writ
ten on it; no pretietennination of the size of a file is necessary or poss ible.

1 0 illustrate the essentials of [/0 in UNtX, some of the basic calls are sum marized below in ' ,In

anonymous language which will indicate the required parameters without gell ing into the complexities
of machine language programming. Each call to the system may potentially resull in an error return,
which for simpl icity is not represen ted in the calli ng sequence.

To read or write a fi le assumed to exist already, it must be opened by the following call :

filep = open (name, nag)

Name indicates the name of the file. An arbit rary path name may be given. The flax argument ·indi
cates whether the file is to be read, writLen, or " updated," that is read and wrillen simultaneously.

The returned value filep is called a file descriplor. It is a small integer used to identify the file in sub
sequent calls 10 read, write or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a creare system call which cre·ates the
given file if i l does nOI exist, or truncates il to zero length if it does exisl. Create also opens Ihe new
file for writing and, like open, returns a file descriptor.

There are no user-visible locks in the file sys tem, nor is there any restriction on the number of users
who may have a file open ror readi ng or writing. Although it is possible for the contents of a file to
become scram bled when two use rs write on it simu ltaneously, in practice difficulties do not arise. We
take the view that locks are neither necessary nor su llicient , in our environment, to prevent interfer
ence between users of the same file. They are unnecessary because we are not faced with large,
single-fi le d~ta bilses maintained by independent processes. They are insullicien t bec~use locks in the
ordinary sensc, whereby one user is prevented from writ ing on a file which another user is reading,
cannot prevent confusion When, for example, both users are editing a file wilh an editor which makes
a copy of the file being edited.

It should be said that the system has su llicient i nternal interlocks to maintain the logical consistency
of the file system when two users engage simultaneouSly in such inconvenient activities as writing on
the same file, crea ti ng files in the same directory., or deleting each other's open files.

Except as indicated below, reilding and writing are sequential. This means that if a particular byle in
the file was the last byte wrillen (or read), the next 1/0 call implicitly refers 10 the first following byte.

, ~ For each open file there is a poinler, maintained by the sys tem, which indica tes the next byte to be
read or written . If n bytcs are read or wri tten, the pointer advances by n byles.

Once a file is open, the following calls may be used.

n = read (filep, buffer, count)

n = write (filcp, buffer, count)

UNIX T;me-S"arin~ System - 6

Up to COIIIII by tes ure tr<lll smilted between' the file speci fied by Ji/ep and the byte array specilied by
bl(//(>r. The returned value 1/ is the number of bytes !!Ctually tran smitted . In the write case, 1/ is the
same as COWII except under e'xcepti onaJ conditions like 110 errors or end of physical medium on speci<l1
files; in a reod, however, n may withou t error be less than COIlIlf. I f the re<ld poin ter is so near the end
of the tile that remling l'01lf1l characters would cause reading beyond the end, only sll ificient bytes arc
trunsmilled to rC<lch the end of the file; also, typewrite r-like devices never return more thlm one line
of input. When 11 read call returns with n equal to lero, it indicates the end of the file. For disk fil es

' this occurs when the rcad pointer becomes equal to the current size of the file. It is possible to gen
erate an end-of-file from a typewri ter by usc of lin escape sequence which depends on the device used.

Bytes wrillen on a tHe .. m~ct oni y those implied by the position of the write poin ter and the count;
no olher p<lrt of the file is ch<lngcd. If the hlst byte lies beyond the end of the file, the fi le is grown as
needed.

To do random (direct access) i/O it is on ly necessary fo move the read or write poi n te r to the ap
propriate location in the file.

loca tion = seek (filer, offset, base)

The poin ter associated wi th jilep is moved 10 a position 'Qffsel bytes from the beginning of the file, from
the current position of the pointer, or from the end of the file, depending on hose. Offset may be nega
ti ve. For some devices (e.g. paper tape and typewriters) seek c<llls are ignored. The act uul offset from
the beginning of the file to which the pointer was moved is returned in Ioc.'otion.

3_6.1 Other 1/0 ca ll s

There are several additional system ent ries having to do with 110 and wit h the fi le system which will
not be discussed. For example: close u file, get the slatus of a file, chllnge the protection mode or the
owner of a file, creAte a directory . make a link 10 an existing file, delete 11 file.

4. Implementation of the file system

As mentioned in §3.2 above, a directory entry contains only a n.ame for the associ<lted file and a
pointer to the file itsel f. This pointer is an integer called the i-number (for i ndex number) of the file.
When the file is accessed, its i-number is used as an index into a sys tem table (the i-list) stored in a
known PMt of the device on whi ch the directory resides. The entry thereby found <the file's i-node)
contains the description of the fl lc:

I. i ts owner;
2. its projection bi ts;
3. the physical disk or tape addresses for the file contents;
4. i ts size;
5. time of last modi fication ;
6. the number of links to the file; that is, the number of times il appears in 11 directory;
7. a bit indicating whether the file is a directory;
8. !I bit indica ting whether the file is a special file;
9.11 bit indicating whether the file is "large" or "small ."

The purpose of an open or creale sys lem ca ll is 10 turn the path name given by Ihe user in to an i
number by searching the explicitl y or implicitly named direc tories. Once a file is open, i ts device, i
number, and read /wri te pointer <lfe stored in a system table indexed by the file descriptor returned by
the open or create. Thus the file descriptor suppl ied during a subsequent call to read or write the file
may be easily related to the information necessary 10 access the file.

When a new file is created, an i-node is alloca ted for it and a direc tory entry is made which contains
the name of the file and the i-node number. Muking a link to an existing file involves creating a di rec
tory entry with the new nume, copying the i-number from the origi nal fil e entry, .. nd incrementing the

,

I .

UNIX Time-Sharinx System - 7

link-count fickl of the i-node. Remo ving (deleting) <l file is done by decrementing the link-count of
th e i-node specified by its directory entry ami erasing the directory enlry. If the link-count drops 10 O.
any disk blocks in the file are freed ami the i-node is deallocatctl .

The space on all fixed or removable disks which contain a file system is divided into a number of
512-by te blocks logically addressed from 0 up 10 a limit which depends on (,he device. There is space
in the i-oooe of each file for eight device addresses. A small (non-special) file filS into eight or fewer
blocks: in Ihis case the addresses of the blocks themselves are Siored. For IOfX(! (non-special) files.
seven of the eight device addresses Illay point to indirect blocks each conlllining 256 addresses ror thc
data blocks or the file. Ir required. thc eighth word is the address or a double·indireci block containing
256 more addresses or indirect blocks. Thus filcs m<lY conceptually grow to (7+256)'256'5 12 byles; ac·
tually they are restricted 10 16,777,216 ON) bytcs. Oncc opened, a small file (size 1 to 8 b'locks) can
be accessed directly. A large file (size 9 to 32768 blocks) requircs one additional access to rcad below
logical block 1792 (7'256) lind two additional rererences above 1792:

The roregoing discussion applies to ordin ary fil es. When an 1/0 reques t is made to a file whose i·
node indica tcs that it is special, thc last seven dcvice address words are immaterial, and the first is in·
terpreted as a pair or bytes which constilute an in ternal (leI/ice name. These bytes speciry respectively a
device type and subdevice number. The devicc type indicates which system rout ine will deal with I/O
on that device; thc subdevice number selects, ror example, a disk drive attached to a particular c.on
trolle r or one or several similar typewriter interraccs.

[n this environment, the implementlltion or the m01i1lf system Call (§3.4) is quite straightrofward.
MOlml mai~tains a system table whose argument is the i·number and device name or the ordinary file
specified during the mOUl/I. and whose corre.<;ponding value is the device name or the indicated special
filc. This table is searched ror each (i·number, dcvice)·pair which turns up while a path name is being
scanned during an open or creale; ir II match is round, the i·number is replaced by I (wh ich is the i
number or the root directory on all file systems), and the device name is rcplaccd by ·the table value.

To the user, both reading nnd writing or files appear to bc synchronous and unbuffcred. That is. im
mediately arter return rrom a read call the da ta are availablc, and conversely arter a write the user's
workspace may be reused . In ract the system maintains a rather complicatcd buffering mechanism
whi ch reduces greatly the number or 110 operations requireil to access a file. Suppose a write call is
made specifying transmission of a single byte. UNIX will search its buffcrs to see whether the affectcd
disk block currently resides in core memory: ir nol, it will be read in from the device. Then the
affected byte is replaced in the buffcr ami an ent ry is made in u list or blocks to be wrillcn. The return
rrom the IVriU! call mtly thcn lake place, although the aclunl 1/0 may nol be completed unlil H lutcr
timc. Converse ly, ir a singlc byte is rCHd, the system determines whether the secondary stonlge block
in which Ihe byte is located is alrelldy in one or the system's bulrers: ir so, the by te can bc relUrneli
immediately. Ir not, Ihe block is read into a buffcr and the by te I)icked oui. .

Thc system recogniles when a progr'H1l has Illade accesses to sequential blocb nf a lile, ,IIHI yn·
chronously pre-rcilds thc llext block. This significantly reduces the running tim!.! ur most prognlllh
while adding lillie to system overhead.

A progmm which reuds or writes lHes in units or 512 bytes hilS an advantage ov!.!r a progr,IIH \\'1111.:h
reads or writcs u single byte al a time. but the gain is nOI immense; il Ctllll!.! mainly from Ih o.:
uvoidance or sys tem overhead. A pr\lgriL1ll which is used rarely or which docs no grl"" volulllo.: of I/O
111.IY quile reasonably reml lind wrile in units as small as it wishes.

The nOtion of the ;-list is un unu'iu.LI fealure or UNIX. In pr:lcticc, this method 111' organi/inl;!, Iho.: lik
system has proved quite reliuble ;lnd casy to deal wilh. To thc system itself, onc of its 'ilrcng.lh'i i Ih o.:
faci Ih:11 c<Jch rile has 11 shorl: unambiguous name which is relatcd in 11 simple way 10 Ihe jlfulcCliull.
addrcssing, and other informlilion needed to access the filc. Il also permits a Quite simple ;lnd rapid al·
gorithm ror checking the consistcncy or a file system. ror example verilicatiOIl that !he portions of c,lCh
devicc containing useful inrormation and Ihose rree to be "lIocated arc disjoint amI togcther cxhau'il
the space on thc dcvicc. This algorithm is i ndcpcndent of the directory hicrarchy, since il need only

UNIX Time-Slwring System - 8

scan the linearly-orgunized (-li.';1. At Ihe same time the notion of the i-lisl indul:e.'; certain pcculiltritics
not found in other file .';ystelll organizations. For example, Ihere is the quc.'; l ion of who is 10 be
chllrged l'or the space" !ile occupies, since all directory entries l'or a nle have equal status. Charging
the owner of a file is unr.,ir in generl:ll, sinc'e one user may create a lilc, another I11UY link to it, Hnd the
Ilrst user 111<1Y delete Ihe lile. The fir.';t user is s"till the owner of the file, btlt it should be charged to the
second user. The .';imple.';\ reasonably fair algorithm seems 10 be 10 spread the charges equally among
users who have links 10 a filc. The current version of UNIX avoids the Issue by not charging any fees
<1\ all.

4.1 Efficiency or the file system

To provide an indication of the overall elIiciency of UNtX and of the fi le systcm in purlicular, timings
were made of the asscmbly of ,1 8848·line program. The lIsselllbly was run alone on the m;n.:hine; the
Iota I clock time was 32 seconds, for a rale of 276 lines pe{ second. The tillle was divided as follows:
66% assembler execut ion time, 21% system overhead, 13% disk wait time. We will not ,lltell1pt any in
terpretation of these figures nor any comparison with other sys tems, but merely nOle thul we are gen-
erally satislleu with the overall performance of the system. .

5. Processes and images

An imoKe is a computer execution environment. It includes a core image, general register values,
status of open files, current directory lind the like. An image is the current state of a pseudo-computer.

A process is the execution of an image. While the processor is executing 0 11 behalf of a process, Ihe
image must reside in core; during the execution of other processes it remllins ill core unless the ap
pearance of an <lclive, higher· priority process rorces it to be swapped out to the fixed-head uisk.

The user-core part of lin image is divided into three logical segments. The program text segment be
gins at location 0 in the virtulli address space. During execution, this segmenl is wrile-prO(ecteu and a
single copy of it is shared among'all processes executing the same progrum. At the first 8K byte boun
dary above the program text segment in the virtu<l1 address'space begins a non-shared, writable dala
segment, the size of which may be extended by a system call. Starting al the highest address in the
virtual address sp<lce is a stack segment, which <lutomatically grows downwaru ilS the hardware's .stack
pointer nuclu<ltes.

5. t Processes

Except while UNIX IS boobtrapping itself inlo operation, H new process clIn come into ex istence only
by usc of the fork sys tem call : .

processid = fork (labe l)

When fork is executed by a 'process, it splits into two indepenuently executing processes. The two
processes have independent copies or the original core image, and share any open files. The new
processes differ only in that one is considered Ihe parent proce!:is: in the parent. control returns directly
from the fork. while in Ihe child, control is passed to location label. The processid reLUrned by Ihe fork
cull is the identiftca'iion of the other process.

Because the return points in the parent and child process are not the s,lIne, each image existing after
u fork may. determine whe th yr it is the parent or child process.

5.2 Pipes

Processes may communiclI te with relilted processes using the SHme system read and write calls that
arc used for file system I/O. The call

filep = pipe ()

returns a file descriptor jilep and crelltes an inter-process channel C<tlled a pipe. This channe l, like olher

- , --

, -

' 'Ill

UNIX nm(!-SIJarill~ Sys/C'm - ()

open lilcs, is passed from paren\ \0 child process in tile image by the fork ctili. A read using a pipe lilc
descriptor wilils until another process writes using the file descriptor for the Silme pipe. At this point,
data ,He]lilsscd between the im,lges of the two processes. Neither process need know that a pipe, rath
er thHIl ;111 ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (sec §6.2), it is nOI it wm
plctely general mechanism, since the pipe Illust be set up by a com111on ancestor of the processes in
volved.

5.3 Execution of proArams

Another major sys tem primitive is invoked by

execute (file, arg), arg1, . . . , arg")

which requests the system to read in and execute the program named by jile, passing it string argu
ments aIRI , orK" arg. All the code and uata in the process using exewle is replaceu from the Jile,
but open files, currellt di~ectory, and inter-process relationships arc unaltered. Only if the call fails, for
example because jile could not be fOllnd or because its execute-permission bit was not scI. docs a re
turn take pl'lce from the execute primitive; it resembles a "jump" machine instruction rather than <I

subroutine call.

5.4 Process synchronization

Another process control system c<lll

processid = wait ()

causes its c(llier {o suspenu execution until one of its children has completed execution. Then wait reo
turns the processidof the tenninateu process. An error return is taken if thc (Jailing process has no des
cendants. Certain status (rom the child process is also.available.

5.5 Termination

Lastly,

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. When the
parent is notified through the wail primitive, the indicated Slams is available to the parent. Processes
may also terminate as ~ result of various illegal actions or user-generated signals (§7 below).

6. The Shell

For most users, commun ication with UNIX is carried on with the aid of a program calleu the Shell.
The Shell is a command line interpreter: it reads lines typed by the user lind interprets them 'as re
ques ts to execute other programs. [n simplest form, a command line consists of the command name
followed by arguments to the command, all separated by spaces:

command <lrgi arg2 ... argn

The Shell splits up the command name and the arguments rnto separate strings. Then a 1i1e 'with Ilame
. command is sought: command may be a p;Hh name including the "/" character to spec ify any lile in the
system. If cOlm;lalld is found, il is brought into core and executed. The arguments collected by the
"Shell are accessible to the command. When the command is finisheu, the Shell res umes its own exe·
cution, and indicates i ls reauiness to accept ,!nother command by typing a prompt chaf<lcter.

I f file command can not be found, the Shell prefixes' the string fbinl to commond and allemplS again
to lind the file. Directory fbill contains all Ihe commands intended to be generally used.

UNIX Time-Sharillg SYSI£'tn - IU

6.1 Standard 1/0

The discussion of 1/0 in §) "bove seems 1"0 imply thilt every lile used by a program Illust be opened
or creatcu by the progntlll ;11 oruer to get a tile descriptor for the Iile. Programs executed by the Shell.
however. star! 011' with two open Illes which have tile descriptors 0 anti I. As such a progrmn begins
execution. IIle I is open fur writing, anti is best untJerstooo as thc standard outpu t file . Except under
r.::ircumSlances imlicated below, this fi lc is the user's tYllewriler. Thus progrHllls which wish to write in
formati ve or diagnostic information ord inarily use fil e descriptor I. Conversely, file 0 starts off open for
rC<lding. and progWIllS which wish to read mess<Jges typed by the lIser usually rcad this file .

The Shell is able to ch,lnge the stam.lard assignments of these file descriptors from the user's type
writer printer untl keybo;lrd. If one of the Hrguillents to a commanu is prefixed by"> ", file descriptor
I will, for the duntlion of the command, refer to the file named after the " > " . For exanwle,

Is

ordinarily lists, on the typewriter, the names of the files in the current directory. The command

Is >Iherc

creates a file culled Ihere and places the listing there. Thus the,argument ">there" means, "place out
put on there." On the other h<lnd,

e~

ordinarily enters the editor, which hIkes requests from the user via his typewriter. The command

ed <script

interprets scripr as a file of editor commands; thus" <scripl" means, "take input from scripl."

Although the file name following "<" or ">" appears to be an argument to the command, in fact it
is interpreled complelely by the Shell and is not passed to the command at all. Thus no special coding
to handle 1/0 redirection is needed' within each command ; the command need merely use the standard
file descriptors 0 and I where appropriate.

6.2 Filters
An exlension of the standard 110 notion is used to direct output from one command 10 the input of

another. A sequence of comm<lnds separa ted by vert ical bars causes Ihe Shell to execute all the com
munds simuhuneously <lnd 10 arrange that the stand<lfd output of each command be delivered to ' the
standard input of the next command in the sequence. Thus in the command line

Is 1 pr -21 opr

Is lists Ihe names of the files in the current directory; its output is passed to pro which paginates i ts in
put with dated hC<ldings. The argument "-2" means double column. Likewise the oulpul from pr is
input to opr. This commund spools its input onto a file for off-line printing.

This procedure could have been carried oul more clumsily by

Is >temp l
pr -2 <Iemp l >lemp2
opr <lemp2

followed by removal of the temporary files. I n the absence of the ability to redirect output and input, a
still clumsier method would have been to require the Is command to accept user requests to pagina~e
its oulput, 10 prinl in mult i-column forrn<lt, and to <lrrange that i ts oulput be delivered off-line. Actual·
Iy i t would be surpris i ng, and in f<lct unwise for emdeocy reasons, to expec t authors of commands
such as Is to provide such a wide variety of outpul options.

UNIX Time-SharinK System - II

A progntm such as pr which copies i ts standard input to its standard output (with processing) is
called a filler. Some litters which we have found usefu l perform character transliteration. sorting of the
input, and encryption anti decryption.

6.3 Command Separato rs : Multitaski ng

Another feature provided by the Shell is relatively st raightforward. Commands need not be on
dilferent .l ines; ioste,ld they may be separated by semicolons.

Is; ed

will firs t list the contents of the current directory. then enter the ed.itor.

A relu ted featu re is Illore i nteresting .. I f a command is followed by "&", the Shell will not wai t for
the command to finish before prompting again : instead, it is ready immediately to accept a new com
mand. For example,

as source >output &

causes source to be assembled, with diagnostic output going to Of/tpur; no mailer how long the assembly
takes, the Shell returns immediately. When the Shell does not wait for the completion of a command,
the identificHtion of the process running that command is prin ted. This identification may be used to
wilit for the completion of the command or to termina te it. The "&" may be used several times in a
line:

as source >OUlput & Is > files &

does bOlh the assembly and the listing in the background. In Ihe examples above using "&", an out
put fi le other than Ihe typewriter was provided; if this had not been done, the outputs of the various
commands wou ld have been in termingled.

The Shell also allows parentheses in the above operations. For example

(date; Is) >x &

prinls the current date and time followed by a list of the curren t directory onto the fi le x. The Shell
also returns immediately for anOlher request.

6.4 The Shell as a Command; Command Files

The Shell is itself a command, and may be called recu rsively. Suppose fi le tryout con tains the lines

as source
mv a.oul testprog
testprog

The mv command causes the file a.ollt 10 be renamed lestprog. A .oul is the (binary) oulput of the as
sembler, relldy to be executed. Thus if the three lines above were typed on the console, source would
be ilssembled, the resulting I)rogram renamed leslprog, and lesfprog executed. When the Jines are in
Ir)'QIII. the commilnd

sh <tryout

would cause the Shell sh to execute the commands sequentially.

The Shell has further cllpubilities, including the abil i ty to substitute parameters anti to construct (lr
gumellt lists f rom a sllccificd subset of the file names in a directory. It is also possib le to execute COIll

mands conditionally 0 11 character string comparisons or on existence of given files and to perform
transfe rs of control within filed command sequences.

UNIX Time-ShariflR System - 12

6.5 Implementation of the Shell

The outline of the OpCT<lIion of the Shell can now be understood. Most of .the time, the Shell is wail
ins for the user to type" cOIl1Il1t1nd. When the new-line character ending the line is typed, the Shell 's
read call returns. The Shell analyzes the comlll ti nd line, putting the ,lrgulllents in a form appropriate
for exemle. Then fork is called. The child process, whose code of course is still that of the Shell. <It
tempts to perform an exec/I/(' with the appropriate arguments. I f sucl.:essful, this will bring in and start
execution of the program whose name was given. Meanwhile , the other process resulting from the
fork, which is the p<lrent process, wails for the chilli process to die. When this happens, the Shell
knows the I.:omlll<lnd is rinished, so it types its proillpt tlnd reads the typewriter to obtain another com-
Illllm!.

Given this framework, the implementation of b<lckground processes is trivi<ll; whenever a command
line contains "&", the Shell merely refmins from waiting for the process which it created to execute
the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output files.
When a process is created by the fork primitive, it inherits not only the core image of its parent but
tllso all the files currently open in its parent, including those with file descriptors 0 and I. The Shell, of
course, uses thest;; files to read command lines and to write its prompts and diagnostics, and in the ordi
nMY case i ts children-the command programs-inherit them automatically. When an argument with
"<" or .. >" is given however, the offspring process, just before it performs execute, makes the stan
dard 110 file descriptor 0 or I respectively refer to the named file. Thi s is easy because, by agreement,
the smalles t unused file descriptor is assigned when a new file is opened (or creared); it is only Ileces·
stlry to close file 0 (or I) and open the named file. Because the process in which the command pro·
gram runs simply terminates when it is through, the association between a file specified after "<" or
.. >" and file descriptor 0 or I is ended automatically when the process dies. Therefore the Shell need
not know the actual names of the files which are i ts own standard input and output, since it need nev·
er rcopen them.

Filters are st raight forward extensions of standard 110 redirection with .pipes used instead of files.

In ordinary circumstances, the main loop of the Shell never terminates. (The main loop includes
that branch of the return from fork belonging to the parent process; that is, the branch which does a
wail, then reads another command line.) The one thing which causes the Shell to te rminate is discov
ering an end·of-file condition on its input file. Thus, when the Shell is executed as a command with a
given input file, as in

sh <coillfile

the commands in comjife will be executell until the end of comjile is reached; then the instance of the
Shell invoked by sh will terminate. Since this Shell process is the child of another instance of the
Shell, the wail executed in the laller will return, and another command may be processed.

6.6 Initializat ion

The instances of the Shell to which users type commands are themselves children of another pro
cess. The last step in the initialization of UNtX is the creation of a si ngle process and the invocation
(via execute) of a progrllm called illil. The role of illit is to create one process for eHch typewriter chan
nel which may be dialed up by a user. The v<lrious sub instances of il1ilopen the appropriate typewrit
ers for input and output. Since when inif was invoked there were no files open, in each process the
typewriter keyboard will receive file descriptor 0 and the printer file descriptor I. Each process types
out a message requesting lhat the user log in and waits, reading the typewriter, for a reply. A t the
outset, no one is logged in, so each process simply h.mgs. FinalJy someone types his name or other
identillc,t1ion. The appropriate instance of inif Wllkes up, receives the log-in line, and reads tI password
file. I f the user name is found, and if he is able to supply . the correct password, inil changes to the
user's default curren t direc tory, sets the process's user II> to th,lI of the person logging in, and performs
an exeClile of Ihe Shell . At this point the Shell is ready to receive commands and the logging-in proto-

r ..

(

e

UNIX Time-SharillK Syslem - 13

~ol i~ complete.

Me.,nwhilc, the mainstream p<llh of inil (the parent of all the subi nstances of itself wh ich will later
become Shells) doc~ a wail. If one of the child processes term in ales. either because a Shell found an
end of file or because a user typed 'un incorrect name or password, this path of in;1 simply recreate~ the
defunct process, which in turn reopens the appropriate input and output files and types another login
message. Thus a user muy log out simply by typing the end-of-file .seQuence in place of a command to
the Shell.

6.7 Other programs as Shell

The Shell as de~cribed above is designed to allow users full access to the faci lities of the system,
since it will in voke the · execution of any program with appropriate protection mode. Sometimes, how
ever, a different interface to the system is desi rable. and this feature is easily arranged.

Recall Ih<lt ufter u user h<.ls successfully logged in by supply ing his nume and password, illil ordinarily
invokes the Shell to interpret command lines. The user's entry i n the password fi le may contain the
name of a progrilm to be invoked after login instead of the Shell. This program is free to interpret the
use r's messtlges in any way it wish es.

For example. the password lile entries for users of a secretarial edit ing system specify that the editor'
(>(/ is 10 be used instead of the Shell. Thus when editing system users log in, they are inside the ed itor
ami can begin work immediiltely; also, they can be prevented from invoking UNIX programs not in
tended for their use. In practice. it has proved desirable to allow a temporary escape from the editor to
execute the formatting program anu other utilities.

Several of the games (e.g., chess, blockjack, 3D lic-tac-Ioe) avail<lb le on UNIX illustrate a much more
severely restricted environment. For eoch or these an enlry exists in the password file specify ing that
the appropriute game-playing program is to be invoked instead of the Shell. People who log in as a
player of one of the games find themselves limited \0 the game and unable to in vestigate the presum-
ably more interesting offerings of UNtX as a whole. .

7. Traps

The pop-II hardware detects a number of program faults, such as references to non-existent
memory. unimplemented ins tructions, and odd addresses used where an even address is required. Such
faults cause the processor to trap 10 a sys tem rouline. When an illegal action is caught, unless other ar
rangements hove been made, the sys tem terminates the process and writes the user's image on file core
in the current directory. A debugger can be used to determin e the state of the program at the time of
the fault. .

Programs which are 1001)ing, which produce unwunted oulput, or about which the user has second
thoughts may be ~alted by the use or the illferrupl signal, wh ich is generated by typing Ihe "de lete"
character. Unless speciul oction has been taken, Ihis signal simply causes the program to cease execu
ti on without producing a core image file.

There is ulso a quil signal which is used 10 force a core image to be produced. Thus programs which
loop unexpectedly may be halted and the core image exami ned without prearrangement.

The hardware-generated faulls and the interrupt and quit signals can, by request, be either ignored or
caught by the process. For example, the Shell ignores Quits to prevent a Quit frQm logging the user out.
The cdilor catches inlerrupts and returns to ils coml1l<lllll level. This is useful ror stopp ing long prin
touts without losing work in progress (the editor manipulates a copy of the file it is euiting) . In sys
tems without noaling point hardware, unimplemented inst ructions are caught and noating point in
struclions are interpreted.

UNIX Time-ShariflK Sysrem - 14

R. Perspective

Pcrh,tps Jl.trudoxi~ally, the success of UNtX is la rgely due to the fact Ihal it W<lS not designed 10 meet
any predefined objc(tives. The firs t version was wri llcn when one of us (Thompson), diss<ltisfied with
the available (ompuler la(ilities, discovered a lillie-used PDP- 7 ami set out to aeiHe a more hospitable
environment. Th is essentially personul efforl was su mciently success ful to gai n the interest of the
rem.tining <luthor and others, lind htter to jus tify the acquisi tion of the I'Df' - I 1/20, spcci ficu ll y to support
a text edi ting lind formatting sys tem. When in turn the 11 120 was outgrown, UNtX had proved useful
enough to pcrsu<lde fllllnagemenilo invest in the 1'1)1'-11/45. Our goals throughout the enort, when ur
ticuluted ut all, hllve <ll ways concerned themselves with building a comfo rtllble relationshi p with the
machine and with exploring ideas am.! inventions in operating systems. We have not been faced with
the need to satisfy someone else's requirements, and for th is freedom we are grateful.

Three considerat ions which innucnced the design of UNIX are visible in retrospect.

First: since we are programmers, we naturally designed the system to make it easy LO write, test, and
run programs, The most important expression of our desire for programming conven ience was that the
system was ar ranged for intentctive use, even though the original ve rsion only supported one user. We
believe th at a properly-designed interactive system is much more proouctive and satis fyi ng to use than
<I "ba tch" sys tem. Moreover such a system is rather easily adaptable to non-in teractive use, wh ile the
I.:onverse is not true.

Second: there ha ve always been fairly severe sile const raints on the system and its software. Given
the p<lrti<llly antagonistic desi res for re<lsonable emcieney and expressive power, the si7.e const raint h<ts
encouraged not only economy but a certai n elegance of design. Th is may be <l thin ly disguised version
of the ~'Sillvation th rough su ffering" philosophy, but in our case it worked.

Third : nea rl y from the sta rt, the system was able to, and did, maintain itself. Th is fac t is more im
portant than it migh t seem. If designers of a system are forced' to use that system they quickly become
<tware of its funclional and superfic ial deficiencies and are st rongly moti va ted to correct them before i t
is too late. Since all source progr<lms were always avaihtble and e<ls ily modified on-line, we were willing
to revise and rewrite the system and its software when new ideas were invented, discovered, or sug
gested by ot hers.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two.of these design con
siderations. The interface to the fil e system, for example, is ex tremely convenient from a programming
standpoint. The lowest possible interface level is designed to eliminate distinctions between the vari
ous devices and files <lnd between direct and sequen tial access. N o large "access method" routines are
required to insulate the programmer from the sys tem calls; in fact all user programs eit her ca ll the sys
lem directl y or use a small libfilry program, only tens of instructions long, which buners a number -of
ChilTacters and reuds or writes them all at once.

Another important aspect of programming convenience is Lhat there are no "cont rol blocks" with a
complicated structure p<lrtially ma;ntHined by and depended on by the file system or other sys tem cal ls.
Generally speaking, the contents of a program's address space are the property of the program, and we
have tried to avoid plac ing restrictions on the dala structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or output,
i t is also desirable from a space-efficiency standpoint to push device-dependent considerations in to the
operati,ng system itself. The only alte rnat ives seem to be to load routines for deal i ng with each device
with all progntms, wh ich is expensive in space, or to depend on some means of dynamicully linkin g to
i he routine appropriate 10 euc h device .when it is actuully needed, which is expensive either in over
head or in hardware.

Likewise, the process control scheme and command interface have proved both convenient and
emcient. Since the Shell operates itS un ordi nary, sWilppable user program, it consumes no wired-down
space . in the system proper, and i t mily be made ilS powerful as desi red at lillie cost. In particular,
·gi ven the framework in which the Shell executes as a process which spawns other processes \0 perform

UNIX Time-Sharill~ SYSII'/1/ • 15

comnwnth, the notiuns of 110 redirection, background processes, comllland files, and user-selectable
system interfaces .. 11 become essen tiall y trivial to implement.

Itl Influences

The success or UNIX lies not so much in new inventions but rather in the full exploitation of a care
rully se lected set of fertile ideas, and especially in showing lhat they can be keys to the implementa
tion of u smull yet powerful opef<lting system.

The .lark operation, essentially as we implemented it, WilS present in the Berkeley time sharing
system". On" number or points we were innuenced by Multics, which sugges ted the particular' form
of the 110 system culls~ and both the name of the Shell and its general functions. The notion that the
Shell should create a process for each comm<lnd W<lS also suggested to us by the early design or Mul
tics, <lhhough in .thill system it was later tlropped for efficiency reasons. A similar scheme is used by
TEN EX 111.

9. Statisti cs

The following numbers arc presentetl to suggest the scale of our operation. Those of our users not
involvetl in document preparation lend to use the sys tem for program development, especially language
work . There are few imporl,IIH "applica tions" progmllls.

Overall, we have

100
14
)80
4800
66)00

user popul<ltion
maximum simultaneous users
tlirectories
fiics
512-byte secondary storage blocks used

There is it "background" process that runs ;)t the lowest possible priority; it is usetl to soak up any
idle CI'U time. II has been used to produce a mill ion-digit approximation to the constan t e-2, and is
now solving <III rook-and-pawn vs. rook chess endgames. Not counting this background work, we aver
age tlaily

2400 commands
5.5 ("I'U hours
100 connect hours
32 different users
100 logins

Acklloll'led.~emellls. We are gmleful to R.I-!. Canaday, L.L. Cherry, anti L.E. McMahon for their contri
butions to UNtX. We are particularly apprecia tive of the inventiveness, thoughtful criticism, and con
stan t support of R. Morris, M.D. Mcilroy, and J.F. Ossanna.

References
1. Digital Equipillent Corporation. ffJl'-1I140 Processor Hondbook (1972), 1'01'-11145 Processor Hand

book (197 1). Hnu pop-1I170 ProcC'ssor Handbook (1975) .
2. Deutsch, L.P., <lnu Lilllll)Son, B.W. An online etlitor. Comlll. ACM 10. 12 (Dec. 1967),793-799,

80).
) .

4.

s.

6.

Richards, M. Bet'l: 1\ 1001 for colllpiil:r writing and system prognllnming. Proc. I\FIPS 1969
SJCc. Vol. 34, I\I-'IPS Press, r ... IOlllvale, N.J., \lp. 557-566.
McClure, R.M. TM(i-1\ synl;Lx tlirected compiler. Proc. I\CM 20th Nat. Can f., ACM, 1965,
New York. PI). 262-274.
Hall, A.D. The M6 macroprocessor. Computing Science Tech . Rep. #2, Bell Telephone Labora
tories, 1969.
Ritchie. O.M. C reference manual. Unpublishe<J memorandum, Bell Telephone Laboratories

UNIX Timl'-Sharillg Syslem - 16

(19711.
7. Aleph-null. Computcr Rec reations. SQ/ilvare Pra~'fil'e alld Experiellce I. 2 (Apr. ·June 1971),

201-204.
8.

9.

10.

lJeutch, L.P. and Lampson, B.W. sns 930 time-shuring systcm preliminary reference manu<ll.
Doc. 30.10. 10. Projer.:l GEN II.;, Univ. e ll. ill Berkeley (Apr. ' 1965).
Feienag, R.J .. <Inti Orgilnick, E. I. The Multir.:s input-outpul sys tem. Proc. Third Symposium on
OpeT<lting Systems Principles. OcL 18-20, 1971, ACM, New York. 1111. 35·4 1.
Bobrow, D.G .. Burchficl, J.D., Murphy, IlL., and Tomli nson , R.S. HNEx, iI pilged time sharing
system for the 1'1)1'-10. Comm. ACM 15., 3 (March 1972) 135-143.

l l!t.

1. Introduction

C Reference Manual

Dennis M. Ritchie
Bell Telephone Laboratories

Murray Hill, New Jersey 07974

C is a computer language based on th e earlier language n [II . The languages and th eir compi lers
differ in two major ways: C in troduces the notion of types, and defines appropriate ext ra syntax and se
mantics; also, C o.n the pOP-II is a true compiler, producing machi ne code where B produced interpre
tive code.

Most of the software for the UNIX lime-sharing system {21 is written in C, as is the operating system
itselr. C is also available on the HIS 6070 computer at Murray Hill, using a compi ler written by A.
Snyder and current ly maintained by S. C. Johnson. A compiler for the IBM Syslcm/36Q/370 series is
under construc tion. .

This is a manual only for the C language itself as implemented on the PDp·It. Hints are given occa·
sionally in the text of implementation-dependent features, and an appendix summarizes the differences
between the Honeywell and DEC impleme ntations; it also contains some known bugs in each .

The UN IX Programmer's Manual (3J describes the library routines available to C programs under
UNIX, and also the proced ures for compiling programs under that system. "The GCOS C Library" by
Lesk and Barres (4] describes routines avai lable under Ihat system as well as compilation procedures.
Man y of these routin es, particula rly the ones having to do with 110, are also provided unde r UN IX. Fi·
nally, "Programming in C- A Tutorial," by B. W. Kernighan [5] ; is as useful as promised by its li tle
and the author's previous introductions to alleged ly impenetrable subjects.

2. Lexical conventions
There are six kinds of tokens : identifiers, keywords, constants, s trings, expression operators, and oth

er separators. In general blanks, labs, newli nes, and comments as described below are ignored except
as they serve to sepa rate tokens. AI least one of these characters is required to separate othe rwise adja·
cenl ident ifiers, cons lants, and certain operator-pai rs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
. The characters /. introduce a comment, which terminates with th e characters ./.

2.2 Identifiers (Names)
An ide ntifier is a sequence of letters and digits; the first character must be alphabetic. The under

score "_" counts as alphabetic. Upper and lower case letters are conside red different. No more than
the firs t eight charac ters are significant, and only the first seve n for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

C Re.f(!renc(! Mall/lal - 2

int
char
float
double
s truct
aula
extern
register
slatic
goto
return
sizeof

break
continue
if
else
for
do
while
switch
case
default
entry

The entry keyword is not currently implemented by any compi ler but is reserved for futu re use.

2.3 Constants '
There are several kinds of cons tants, as follows:

2.3.1 Integer constants
An integer cons tant is a sequence of digits. An integer is taken to be octal if it begins with 0, de

cimalotherwise. The digits a and 9 have oc tal value 10 and II respectively.

2.3.2 Character constants
A character constant is I or 2 characters enclosed in single quotes «' " . Within a character constant

a single quote must be preceded by a back-slash "\". Ce rtain non-graphic characters, and "\" itself,
may be escaped according to the following table:

as \b
NL \n
CO \ r
lIT \t
ddd \ddd
\ \\

The escape "\ddd' consists of the backslash followed by 1,2, or 3 octal digits which are taken to speci
fy the value of the desired charac ter. A special case of this construction is "\0" (not followed by a di
git) which indicates a null character.

Character constants behave exactly like integers (not, in particular, like objects of character type). In
confofll1ity with the add ressing structure of the PDr-ll, a character constant of length I has the code
for the given character in the low-order byte and 0 in the high-order byte; a cha racter constant of
length 2 has the code for the fi rst character in the low by te and that fo r the second character in the
high-order byte. Character constants with more than one character are inheren tly machine-dependent
and should be: avoided.

2.3.3 Floating' constants
A noating constant consists of an intege r part, a decima l point, a fraclion part, an e, and an optional

ly signed ir.teger ex ponent. T he intege r and fraction parts both consist of a sequence of digits. Either
the integer paTi or the fracti on part (not both) may be missing; either the decimal point or the e and
the exponent (not both) may be missing. Every floati ng conStant is taken to be double-precision.

2.4 Stri ngs
A string is a sequence of characte rs surrounded by double quotes"" ". A string has the type array

of-characters (see below) and refers to an area of storage initialized with the given characters. The
compiler places a null by te (\0) at the end of each string so that programs which scan the string can
find its end. In a string, the character " M" must be. preceded by a "\"; in addition, the same escapes
as desc ri bed for character cons tants may be used.

,-•

1 "

C Reference Monllal - 3

3. Syntax notation
In the syntax nohllion used in this manual. syntactic categories are indica ted by iralic type. and

literal words and characters in gothic . Alternatives are lisled on separate lines. An ' optional terminal
or non-terminal symbol is indicated by the subscript "opt," so that

I expressioll"", J

wou ld indica te an optional expression in braces.

4. What's in a Name?
C bases the interpre tation of an identifier upon two attributes of the identifier: ils srorage class and its

'ype. The storage class determines the location and lifetime of the storage associated wi th an identifier;
the type determines the meaning of the values found in the identifier's storage.

There are four declarable slorage classes: automatic, static, external, and register. Automatic vari
ables are local to each invocation of a function, and are discarded on return; sIal ic variables are local to
a function, but retain their values independently of invocations of the function; external variables are
independen t of any function . Register variab les arc stored in the fast registers of the machine; like au
tomatic variables they are local to each function and disappear on return.

C supports four fundamental lypes of objects: characte rs, integers, single-, and double-precision
float ing-point numbers.

Char:Jc lers (declared, and hereinafter called, char) are chosen rrom the ASCtl set; they occupy
the right -most seven bits of an 8·bil by te. h is also possible to interpret chars as signed, 2's
complement 8-bit numbers.

Integers (inn are represented in 16-bit 2's complemen t notation .

Sinlle precis ion floating point (float) quantities have magnitude in the range approximately
10 8 or 0; their precision is 24 bits or about seven decimal digits.

Double-precision floating-point (double) quantities have the same range as lIoats and a preci
sion of 56 bils or about 17 decimal digits.

Besides the fou r fundamen tal types there is a conceptually infini te class or derived types constructed
from th e rundamental types in the following ways:

arrays of objects of most types;

/llI/crions which return Objects of a given type;

poinfers to objects of a given Iype;

sirllCfUres co ntaining objec ts of various types.

In genera l these methods of constructing objects can be applied recursively.

5. Objects and lvalues
An object is a manipulatable region or storage; an lvalue is an expression rererring to an object. An

obvious example or an lvalue expression is an identifier. There are operators which yield Ivalues: for
example, if E is an expression of pointer type, then -E is an lvalue expression referring to the object to
which E points. The name "I value" comes from the assignment expression "EI = E2" in which the
lert ope rand EI mus t be an lvalue expression . The discussion or each operator below indicates wheth·
er il expects lvalue ope rands and whether it yields an lvalue.

6. Conversions
A numbe r of operators milY; -depending on their ' operands_ cause conversion of the value of an

operand rrom one type to another. This section explains the result to . be expected from such conver
sions.

C Re./l'rellcf! Mallllal - 4

6.1 Charac ters and integers
A char objec t Illay be used anywhere an Int may be. In all cases the char is converted to an int by

propagllting its sign through the upper 8 bi ts of the resultant integer. This is consistent with the two's
cOlllplemen t rerresenl<l tion used for both characters lind integers. (However, the sign-rropagation
feature disappears in other implementationsJ

6.2 Float and double
All nOllting arithmetic in C is carried out in dout?le~precision; whenever a fl oat appears in an expres

sion il is lengthened to double by ze ro-padd ing its fraction. When a double must be converted to
float, for example by an assignment, the double is rounded before truncat ion to float length·.

6.3 Float <lnd double; integer and character
All ints and chars may be converted withou t loss of significance to float or double. Conversion of

fl oat or double to int or char takes place with truncat ion tow.a rds o. Erroneous results can be expected
if the magnitude of the result exceeds 32,767 (for int) or 127 (for char).

6.4 Poi nters and integers
In tegers and pointers may be added and compared; in such a case the int is converted as specified in

the discussion of the addi tion operator.

Two pointers to objects of the same type may be subtracted; in this case the result is converted to
an integer as specified in the discussion of the subtraction operator.

7. Expressions
The precedence of expression operators is the same as the order of the major subsect ions of this sec

ti on (highest precedence fi rs t). Thus the expressions referred to as the operands of + (§7.4) are those
expressions defined in §§7. 1-7.3. Within each subsection, the operators have tbe same precedence.
Left- or right-associativi ty is specified in each subsection fOf the operators discussed therein. The pre
cedence and associativity of all the express ion operators is summarized in an appendix.

Otherwise the order of evaluat ion of expressions is undefined: I n particular the compi ler considers
itself free to compute subexpressions in the order it believes most effie.jent, even if the subexpressions
involve side enec ts.

7.1 Primary express ions
Primary expressions involving., -> , subscriptin g, and funct ion calls group left to ri gh t.

7. 1.1 identifier
An ident ifier is a primllfY expression, provided it has been suitab ly declared as discussed below. Its

type is specified by its declaration. However, if the type of the iden tifier is "array of ... ", then the
value of the identifier-expression is a pointer to the first object in the array, and the type of the expres
sion is "poi nter to ... ". Moreover, an array identifier is not an lvalue expression.

Likewise, an identi fier wh ich is declared "function returning . .. ", when used except in the function
name position of a call, is ~onverted to " pointer to func tion returning ... ".

7.1.2 conslanl

A decimal, oc tal, charac ter, or noati ng constant is a primary expression. I ts type is int in the first
three cases, double in the last.

7. 1.3 SIring

A st ring is a primary expression. Its type is originally "array of char"; but followi ng the same ru le
as in §7. 1.1 for identifiers, this is modified to "pointer to char" and the result is a pointer to the first
charac ter in the stri ng.

....

C Reference Manual - j

7.1.4 (expression)
A parenthesized expression is a primary expression whose type and value arc identical to those of

the unadorned exp ressIon . The presence of pa rentheses does not affec t whe th er th e expression is an
Ivalue. .

7.1.5 primary-expressioll { expression 1
A primary express ion foll owed by an exp ression in square brackets is a primary exp ression. The in

tuitive meaning is that of a subscript. Usually, the primnry expression has type "poi nter to ... ", the
subscript exp ression is int, and the type of the result is " .. . n . The exp ression "EIIE2J" is iden tical
(by defi nition) to " .. ((EI) + (E2)) ". All the cl ues needed to und.erstand this nolation arc contained
in th is sec tion toge ther wi th the discussions in §§ 7. 1.1, 7.2.1, and 7.4. 1 on ide ntifiers, ., and + respec
tively; §14.3 below summarizes the implications.

7.1.6 primary-expressian (expressioll-Iis,,,,,,)
A function call is a primary expression foll owed by pare nt heses contain ing a possib ly empty.

co mma-separa ted list of expressions which co nstitute the ac tual arguments to the function. The pri-'
mary expression must be of type "function re turni ng ... ", and the result of the functio n ca ll is of type
" ..• n. As indicated be low, a hitherto unseen identifier followed immediately by a le ft parenthesis is
contextually declared to represent a fu nction return ing an integer ; thus in the most common case,
intege r- valued functions need not be declared.

Any actual argumen ts of type float are converted to double be fore the call; any of type char are
co nverted to int.

In preparin g fo r the call to a function, a copy is made of each act ual parameter; thus, all argument
passing in C is strictly by val ue. A function may change the va lues of its formal parameters, but these
changes cannot possib ly affect the values of the actual pa rameters. On the other ha.nd , it is perfectly
possib le to pass a pointer on the understanding that the function may change the value of the object 10
which the pointer points.

Recursi ve ca lls to any funct ion are permissible.

7.1 .7 primary-I value . member-af-Slnlcture
An lvalue expression followed by a dot followed by the name of a member of a structure is a pri

mary expression. The objec t referred to by th e Ivalue is assumed to have the sa me form as the struc
ture contain ing the structure member. The res ult of the exp ression is an lvalue appropriately offset
from the origin of the given Ivalue whose type is that of th e named st ructure member. The given
Ivalue is not requi red to have any particular type.

Structures are d isc ussed in §8.S.

7.1 .8 primary-expressioll - > member-oj-structure
The primary-exp ression is assumed to be a pointer which poin ts to an object of the same form as the

structu re of whic h th e member-of-structure is a part. The res ult is an Ivalue approp riately offset from
the o rigin of th e poin ted-to structure whose type is that o r the named structu re member. The type of
the pri mary-express ion need not in fact be pointe r; it is su fficient that it be a pointer, cha racter, o r in
teger.

Excep! 'for th e relaxation of the requ ireme nt th at EI be of pointer t):' pe, the expression
"E I-> MOS" is exactl y equivalen t to "(·E I) .MOS".

7.2 Unary operators
Expressions with unary operators group right-to-Ie ft.

7.2.1 • expressia.1I
The unary ~ ope rator means il/directioll: the expression must be a pointer, and th e result is an Ivalue

referring to the object to which the expression points. If the type of the exp ress ion is "pointer to
the type of th e resu lt is "

C Re./"c>rence Monllol - 6

7.2.2 & Ivoilie-expression
The result of the una ry & operator is a pointer to the object referred to by the lvalue-ex pression. If

the ty pe of the Iva lue-expression is" . . . ", the type of the result is "poin ter to . .. " .

7.2.3 - expression
The resul t is the nega tive of the expression, and has the same type. The type of the express ion

must be char, in t, float, or double.

7.2.4 ! expression
The result of the logical negation ope rator! is I if the value of the expression is 0, 0 if the value of

the expression is non-zero. The type of the result is lnt. This operator is applicable on ly to lnts or
chars.

7.2.5 - expression
The - ope rator yields the one's complement of its operand. The ty pe of the ex press ion must be int

or char, and the result is Int.

7.2.6 ++ Ivalue-expression
The object referred to by the Ivalue ex pression is incremented. The value is the new value of the

Ivalue expression and the type is the type of the Ivalue. If the expression is int or char, it is incre
mented by I; if it is a pointer to an objec t, it is incremented by the length of the object. ++ is appli
cable only to these types. (Not, for exam ple, to fl oat or double.)

7.2.7 -- /value-expression
The object referred to by the Ivalue ex pression is decremented ana logous ly to the ++ ope rator.

7.2 .8 Ivallle-expression ++
The result is the value of the object referred to by the Ivalue express ion. After the result is noted,

the objec t referred to by the Ivalue is in~remenled in Ihe same manner as fo r the prefix ++ operator:
by I for an int or cha r, by the length of the pointed-to object for a pointer. The type of the result is
the same as the type of the Ivalue-expression.

7.2.9 Ivoilie-expression.....:-
The result of the ex pression is the value of the objec t re ferred 1.0 by the the Ivalue expression. After

the resul t is noted, the object referred \0 by the Iva lue expression is decremen ted in a way analogous
to the postfix ++ operator.

7.2 .10 s izeo! expression
The sl zeo! ope rator yields the size, in by tes, of its ope rand. When applied to an array, the resu lt is

the tOla l number or by tes in the array. The size is dete rmined from the declarations of the objects in
the expression. This exp ression is semantically an 'in teger constant ilnd may be used anyw here a con
stan t is required. Its major use is in cOfl)munication wi th routines like storage allocators and 110 sys
tems.

7.3 Multiplicative operators
The multiplicative opera tors ., I, and % group left- to- right.

7.3. 1 expression. expression
The bina ry · operato r indicates multipl ication. If both ope rands are int or c har, the resul t is Int; if

one is inl or char and one float or double, the fo rmer is converted to double, and the resu lt is double;
if both are float or doubl e, the res ult is double. No other combinations are allowed.

t! •

.C Reference Manual - 7

7.3.2 expression I expression
The binary I ope rator indicates division. The same type considerations as for multiplication apply. ,

7.3.3 expression % expression
The binary % operator yields the remainder from the division of the first expression by the second.

Both ope rands must be int or char, and the result is int. In the current implementation, the remainder
has the same sign as the dividend. .

7.4 Additive operators
The add itive operators + and - group left-to-righ t.

7.4.1 expression + expression
The result is the sum of the expressions. If both operands are int or char, the result is int. If both

are float or double, the result is double. If one is char or int and one is float or double. the former is
converted to double and the result is double. If an int or char is added to a pointer. the former is con~
verted by mUltiplying it by the length of the object to which the pointer points and the result is a
pointer of the same type as the original pointer. Thus if P is a pointer to an object, the expression
"P+ I" is a pointer to anothe r object of the same type as the first and immediately following it in
storage.

No other type comb'inalions are allowed.

7.4.2 expression - expression
The result is the difference of the operands. If both ope rands are Int, char, float, or double, the

same type considerations as for + apply. If an int or char is subtracted from a pointer, the former is
converled in the same way as explained under + above.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the objec t) to an int representing the number of Objects separating the pointed-to objects.
This conversion wi1\ in gene ral give unexpected results unless the pointers point to objects in the same
array, since pointers. even to objects of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators
The shift operators < < and> > group left-lo- righ t.

7.5.1 expression < < expression
7.5.2 expressioll > > expression

Both ope rands must be int or char, and the result is int. The second ope rand should be non
negative. The value of "EI«E2" is E1 (interpreted as a bit pattern 16 bits long) left-shifted E2
bits: vacated bits are O-filled. The value of "EI > > E2" is E 1 (interpreted as a two's complement,
16-bit quantity) arithmetically right-shifted E2 bit positions. Vacated bits are filled by a copy of the
sign bit of El. (Note : the use of arithmetic rather than logical shift does not survive transportation
between machines.]

7.6 Relational operators
The relational operators group lefHo-right, but this fact is not very useful; "a<b<c" does not mean

what it seems to.

7.6.1 expression < expression
7.6.2 expression> expressioll
7.6.3 expressioll < - expressioll
7.6.4 expression> - expressioll

The operators < (less than). > (greater than) , <= (less than·or equal to) and >= (greater than or
equal to) all yield 0 if the specified relation is false and I if il is Irue. Operand conversion is exactly
the same as for the + operator except that poin ters of any kind may be compared; the result in this
case depends on the relative locations in storage of the pointed-to objects: Jt does not seem to be. very
meaningful 10 compare pointers with integers other than O.

C Reference Manual - 8

7.7 Equality operators
7.7.1 expression - - expression
7.7.2 expression 1= expression

The =: = (equal to) and the != (not equal to) operators are exac tly analogous to the relational opera
tors except for their lower precedence. (Thus "a<b == c<d" is 1 whenever a<b and c<d have the
same truth-value) .

7.8 expression & expression
The & operator groups left-to-right. Bot.h operands must be int or char; the result is an lnt which is

the bit-wise logical and function of the ope ra nds.

7.9 expression - expression
The - operator groups left- Io- right. The operands must be

the bit-wise exclusive or function of its operands.

7.10 expression I expression
. The I operator groups left-to-right. The operands must be

the bit-wise inclusive or of its operands.

7.11 expression & & expression

int or char; the result is an lnt which is

lnt or char; the resu lt is an Int which is

The && operator returns 1 if both its operands are non-zero, 0 otherwise. Unlike &, && guarantees
left-to-right evaluation; moreover the second operand is not evaluated if the first operand is O.

The ope rands need not have the same type, but each must have one of the fundamenta l types or be
a pointer.

7.12 expression II expression
The \I operator returns I if either of its operands is non-zero; and 0 otherwise. Unlike I, II guaran

tees left-la-right evaluation; moreover, the second operand is not evaluated if the value of the first
operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer.

7.13 expression? expression: expression
Conditional expressions group left -to-right. The first expression is .evaluated and if it is non-zero,

the result is the va lue of Ihe second expression, otherwise that of third expression. If the types of the
second and third operand are the same, the resu lt has their common type; otherwise the same conver
sion rules as for + apply. Only one of the second and third expressions is evaluated.

7.14 Assignment ope rators
There are a num ber of assign ment operators, all of which group right-to-left. All require an l"alue as

their left operand, and the type of an assignment expression is that of its 'left operand. The va'Jue is
the value stored in the left ope rand after the ass ignment has taken place.

7.14.1 Ivalue '" expression
The value of the expression replaces that of the objec t referred to by the Ivalue. The ope rands need

not have the same type, bul both must be int, char, float , ' double, or pointer. If neither operand is a
pointer, the assignmen t takes place as expected, possibly preceded by conversion of the expression on
the right.

When both operands are Int or pointers of any kind, no conversion ever takes place; the value of the
expression is simply s tored into the object refe rred to by the Ivalue. Thus it is possible to gene rate
pointers which will cause addressing exceptions when used.

~

- ,
~,

" \

7.14. 2 Ivalue '- + expression
7.14.3 /value - - expression
7.14.4 [value _. expression
7.14.5 Ivalue -/ expression
7.14.6 Ivalue -% expression
7. 14.7 Ivalue - > > expression
7. 14.8 Ivalue - « expression
7.14.9 Ivalue -& expression
7.14.10 Ivalue - '" expression
7.14.1 1 Ivalue - I expression

C Reference Manual - 9

The behavior of an expression of the form "~1 =op E21> may be inferred by taki ng it as equivalent
to "EI = EI op E21>; however, El is evaluated only once. Moreover, exp ressions like " i -+ p" in
which a pointer is added to an integer, are fo rbidden .

7. 15 expression, expression
A pair of expressions separated by a comma is evaluated len-to- right and the value of the left ex:

~ression is discarded. The type and value of the result are the type and value of the right operand.
This ope rator groups left-to-right. It should be avoided in situations where comma is given a special
meani ng, for example in actual argumen ts to function calls (§7.1.6) and lists of initializers (§ 10.2) .

8. Declarations
Declarations are used within function definitions to speci fy the interpretation' which C gives to ·each

identi fier; they do not necessarily reserve storage associated with the iden tifier. Declarations have the
form

declaration:
decl-specifiers declarator-lis/opt

The declarators in the declarator-list contain the identifiers being declared. The dec l-specifiers consist
of at most one type-specifier and at most one storage class speci fier.

dec/-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto. static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In the extern case there must be an external definition (see below)
for the given identifiers somewhere outside the function in which they are declared .

There are some severe restrictions on register identifiers: there can be at most 3 register identifiers
in any function, and the type of a register identifier can only be. into char. or pointer (not float , double,
structu re, function, or array) . Also the address-of operator & cannot be applied to such identifiers. Ex
cept for these restrictjons (in return for which one is rewarded with faster, smaller code), register
identifiers behave as jf they were automatic. In fact implementations of C are free to treat register as
synonymous with auto. .

If the sc-specifier is missing from a declaration, it is generally taken to be auto.

C Reference Manual - 10

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double
struct { Iype-decl-/ist J
struc! idenlifier { Iype-decl-/ist J
struct idenlifier

The struct specifier is discussed in §8.5. If the type-specifie r is missing from a declaration, it is gen
erally taken to be int.

8.3 Oec larators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declaralOr-list:
declarator
declarator, declarator-Ust

The specifiers in the declaration indicate the type and storage class of the objects to which the declara
tors refe r, Declarators have the syntax:

declaralor:
identifier
• declarator
declaroror ()
declarator I conslOnl-expression .. 1
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declara

tor appears in an expression, it yie lds an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier th at is declared,

If an unadorned identifie r appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

If a declarator has the form

• D

for O' a declarator, then the contained identifier has the type "pointer to where" ." .. is the type
which the identifier would have had if the declarator had been simply D.

If a declarator has the form

D()

then the contained identifier has the type "function returning .. ,", where" " ... is the type which the
identifier would have had if the declarator had been simply D.

0 '

A declarator may have the form

O(constant-expression]

D[)

In the first c,ase the constant expression is an expression whose value is determinable at compile time,

,

~

C Reference Manual - 11

and whose type is into in the seco~d the constant I is used. (Constan t expressions are defin ed precise
ly in §IS.) Such a declarator makes the contai ned identifier have type "array." If the unadorn ed de
clarator D would .specify a non-array of type " ... ", then the declarator "D[i]" yields a I-di mensio nal
array with rank i of objects of type " If the unadorned declarator D wou ld · speci fy an
n-dimensional array with rank i l x i] x . . . x i~, then the declarator "Dl in+l] .. yields an
(n+1) -dimensional array with rank i, x i]x ... x in X in+r

An array may be constructed from one of the basic types, from a pointe r, from a structure, or from
anothe r array (10 generate a multi-dimensional array).

Finally, parentheses in declarators do not alte r the type of the contained' identifier except insofar as
they alter the binding of the components of the declarator.

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures or funct ions, although they may return pointers to
such th ings; the re are no arrays of functions, although there may be arrays of pointers to functions.
Likewise a strucl"ure may not con tain a function, but it may contain a pointer to a func tion.

As an example, the declaration

int i, ' ip, I(), 'Iip(), ('pti)();

declares an in teger i, a pointer ip to an integer, a funct ion f returning al) integer, a fu nction fip return
ing a pointer to an integer, and a poin ter pfi to a function which returns an integer. Also

float la[17[, .alp[17[;

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d[3][5][7];

declares a static three-d imensional array of integers, with rank 3x5x7. In complete detail, x3d is an ar
ray of th ree items: each i tem is an array of five arrays; each of the latter "arrays is an array of seven in
tegers. Any of the expressions "x 3d", "x3dli]", "x3dli]U]", "xJdli] lj][k]" may reasonably appear
in an expression. The first three have type "array", the last has type int.

8.5 Structure declarations
Recall that one of the forms for a st ructure specifier is

struct { type-dec/-list }

The type-decl-list is a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A type declaration is just a declaration which does not mention a storage class (the storage class
"member of structure" here being understood by context).

type-declaration:
type-specifier declarator-list ;

Wit hin the structure, the objects declared have addresses which increase as their declarations are read
left-to-right. Each component of a structure begins on an addressi ng boundary appropriate to its t'ype.
On the PDP· i I the only requirement is that non-characters begin on a word boundary; therefore, there
may be I-by te, unnamed holes in a structure, and all structures have an even lengt h in bytes.

Another fo rm of structure specifier is

struct identifier { type-dee/-Jist }

T his form is the same as the one just discussed, except that the identifier is remembered as the struc
ture tag of the structure specified by the list. A subsequent declaration may then be given using the
structure tag out without the list , 'as in the th ird form of structure specifier:

C Reference Manlla/'· J 2

strucl identifier

Structure tags allow defi nition of self· referential struc tures; they also permit th e long part of the de
clara tion to be given once and used several limes. It is however absu rd to declare a structure which
co ntains an instance of itselr, as distinct from a poin ter to an instance of itself.

A simple example of a s tructu re declaration , taken from §16.2 where its use is illustrated more full y,
is

strucl !node I

):

char twordI20):
int counl;
struc! tnode · Ieft ;
struct tnode -right;

wh ic h contains an array of 20 characters. an integer, and two pointers to similar structures.
dec laratio n has been give n. the following declarat ion makes sense:

strue! tnode s, ·sp;

Once this

which declares s to be a structure of the given sort and sp to be a poi nter to a structure of the given
sort.

The names ·of st ructure members and structure tags may be the same as ordinary variables, since a
distinc tion can be made by context. However, names of tags and members must be distinct. The
same membe r name can appear in different st ructures only if the two members are of the same type
and if their origin wit h respect to their structure is the same; thus separate structures can share a com
mon initial segme nt.

9 . Statements
Except as indicated, statemen ts are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls.

9.2 Compound statement
So thaI several statements can be used where one is expec ted, the compound statement is provided:

compound-statement:
{ statement-lisl J

slatement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the exp ression is evaluated and if it is non-zero, th e fi rst substatement is executed. In
th e second case the second substatemen l is executed if the expression is O. As usual the "else" ambi
guity is resolved by conn ecting an else with the last encou ntered elseless if.

· ,

~.-

C Reference Manual - 13

9.4 While statemen t
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement. .

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatemenl is executed repeatedly until the value of the expression becomes zero. The test
takes place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-! ; expressior/-2 ; expressior/-3.,) statement
"'" IifI'

This statement is equivalent to

expression-!;
while (expression-}) I

statement
expression-3;

Thus the first expression specifies initialization for the loop; the second specifies a test, made before
each iteration, such that the loop is exiled when the expression becomes 0; the third expression typi
cally specifies an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to "while(I)"; other missing expr~sions are simply dropped from the expansion
above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on the

value of an expression. It has the form

switch (expressioll) statement

The expression must be int or char. The statement is typically compound. Each statement within the
. statement may be labelled with case prefixes as follows: '

c"ase constant-expression :

where the constant exp ression must be int or char. No two of the case cons tants in a switch may have
the same value. Constant expressions are precisely defined in §l5.

There may also be at most one statement prefix of the form

defau lt:

When the switch statement is executed, its expression is evaluated and compared with each case con
stant in an undefined order. If one of the case constants is equal to the value of the expression, con
Irol is . passed to the statement fo llowing the matched case prefix. If no case constant matches the ex
pression, and if there is a default prefix, control passes to the prefixed statement. In the absence of a
.default prefix none of the statements in the switch is execu ted.

Case or defaul~ prefixes in themselves do not alter the flow of control.

C Reference Manual - 14

9.8 Break statement
The statement

break ;

causes termination or the smallest enclosing while, do, for, or switch statement; control passes to the
st;Jlcment rollowing the terminated statement.

9.9 Continue statement
The statement

continue;

causes control to pass to the loop-continuation portion or the smallest enclosing while, do, or for state
ment; that is to the end or the loop. More precisely, in each or the statements

while (... I { do { for (... I {

conlin: ; contin: ; cantin: ;
J J while (... I; J

a continue is equivalent to "goto cantin".

9.10 Return statement .
A runction returns to its caller by means or the return statement, which has one ·or the rorms

return ;
return (expression l ;

In the first case no value is returned. In the second case, the value or the eXpression is returned to the
caller or the runction. Ir required, the expression is converted, as ir by assignment, to the type or the
runction in which it appears. Flowing off"the end or a runction is equivalent to a return with no re
turned value.

9.11 Goto statement
Control may be transrerred unconditionally by means of the statement

goto expression;

The expression should be a label (§§9.12, 14.4) or an expression of type "pointer to int" .which evalu
ates to a label. It is illegal to transfer to a label not located in the current function unless some extra
language provision has been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form

identifier:

which serve to declare the identifier as a- Iabel. More details on the semantics of labels are given in
§14.4 below.

9.13 Null statement
The nutl statement has the rorm

A null statement is userul to carry a label just berore the "}" or a compound statement or to supply a
null body to a looping statement such as while.

C Reference Manual - J 5

10. Exte rna l definitions
A C program consists of a sequence of external defin itions. External defin itions may be given for

func tions. for simple variables. and for arrays. They are used both to declare and to reserve storage for
objects. An external definition declares an identifier to have storage class extern and a specified type.'
The type-specifier (§8,2) may be, empty, in wh ich case the type is taken to ~e int.

10.1 External func tion definit ions
Function definitions have the form

f unCI ion-defin ilioll:
type-specifier." fullclion-declarator function-body

A function declarator is similar to a declarator for a " function retu rn ing ... " except that it lists the fo r
mal parameters of the function being defined.

function-declararor:
declorotor (parameter-list"")

parameter-lisr:
identifier
identifier, parameter-list

The func tion -body has the form

function-body:
type-decl-Iist function-statement

The pu rpose of the type-decl-list is to give the types of the formal parameters. No other identifiers
shou ld be declared in this list, and formal parameters should be declared only he re,

The function-statement is just a compoun'd statement which may have declarations at the start.

function-statement:
{ declaration-list"ll' statement-list}

A simple example of a complete func tion definition is

int max (a, b, c)
, int a, b, c;

(
int m;
m -(a>b)?a:b;
return(m> c? m :cl;

Here "int"· is the type-specifier; "max(a, b, c)" is the function -declarator; "int a, b, c;" is the type
decl- list for the formal parameters; ,, { ... I" is the function-statement.

C conve rts all floa t actual parameters to double, so formal parameters declared float have their de
claration adjusted to read double, Also, since a reference to an array in any context (in particular as an

· actual parameter) is taken to mean a pointer to the first element of the array , declarations of formal
parameters declared "array of .. ," are adjusted to read " poin ter to .. ,", Finally, because neither struc
tures nor functions can be passed to a function, it is useless to declare a fo rmal parameter to be a
structure or function (pointers to structures or functions are of course permitted).

A free retu rn statement is su pplied at the end of each function defini tion, so running off the end
causes con trol. bu t no value, to be returned to the caller.

I 0.2 External data definitions
An external data definition has the form

C Reference Manuaf - 16

dafa-dejinifion:
externOjlI rype-specijieropl init-decfararor-lis(O;>I;

The optional extern specifier is discussed in § 11.2. If given, the init·declarator-l ist is a
separated list of declarators each of which may be followed by an initializer for the declarator.

il/it-declara lor-lisf:
init-declar.ator
inil-decfarator , init-decfarator-fist

il/il-decfarator:
decfarator initiolizer"", .

comma-

Each initializer represents the initial va lue for the corresponding object being defined (and deClared).

initializer:
constant
{ constant-expressIon-lisf J

constan t-expression-lisf:
cOllslan I-expressloll
cOllslant-expression , conslant-expression-list

Thus an initializer consists of a constant-valued expression, or comma-separated list of expressions, in
side braces. The braces may be dropped when the expression is jus t a plain constant. The exact
meaning of a constant expression is discussed in § IS. The expression list is used to initialize arrays;
see below.

The type of th e identifier being defined should be compatible with the type of the initializer: a dou
ble cons tant may initialize a float or double ident ifier; a non-noating-point exp ression may in itialize an
int, char, or pointer.

An initializer for an array may contain a comma-separated list of compile·time expressions. The
length of the array is taken to be the maximum of the number of exp ressions in the list and the
square-bracketed constant in th e array's declarator. This constant may be missing, in wh ich case 1 is
used. The express ions initialize s uccessive members of the array starting at the origin (subscript 0) of
the array. The acceptable exp ressions for an array of type "array 0f ... " are the same as those for type
"".". As a special case, a single sIring may be given as the initializer for an array of chars; in this case,
the characters in the string are taken as the initializing values.

St ruc tures ca n be init ialized, but this operation is incompletely implemented and machine
dependen t. Basically the structure is 'regarded as a sequence of words and the initializers are placed
into those words. Structure in itialization, using a comma-separated list in braces, is safe if all the
members of the structure are integers or pointers but is otherwise ill-advised.

The initial value of any externall y-defined object not explicitly initialized is guaranteed to be O.

11 . Scope rules
A complete C program need not all be compiled at the same time: the source text of the program

may be kept in several fi les, and precompi led routines may be loaded from libra ries. Communication
among the funct ions of a program may be carried out both through ex plicit calls aQd through' man ipu
lation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
iden tifier, which is essentially the region of a program du ring which it may be used without drawing
"undefined identifier" diagnostics; and second , the scope associated with externa l identifiers, which is
characterized by the rul e that references to the same external identifier are re ferences to the same ob
ject.

.. ~

C Reference Manual · 17

11.1 Lexical scope
C is not a block-structured language; this may fairly be considered a defect. The lex ical scope of

names declared in external definitions extends fro"m their definition through the end of the file in
which they appear. The lexical sco pe of names declared at the head of functions (either as formal
parameters or in the decla rations heading the statements constituting the function itself) is the body of
the function .

It is an error to redeclare identifiers already declared in the cu rrent contex t, unless the new declara
tion speci fies the same type and storage class as already possessed by the ide nti fie rs.

11.2 Scope of externals
If a function declares an identifier to be extern, then somewhere among the files or libraries consti

tuting th e complete program there must be an external definition for the identifier. All functions in a
given program which refer to the same external identifier refer to the same object, so care must be tak
en that th e type and extent specified in th e defin ition are compatible with those specified by each
fun ction which references the data.

In POP-II C, it is explicitly permitted for (compatible) external definitions of the same identifier to
be present in several of the separa rely-compiled pieces of a complete program, or even twice within the
same program file, with the important limitation that the identifie r may be ini tiali zed in at most one of
the defin itions. In other operating systems, however, the compiler must know in just which file the
storage for the identifier is allocated, and in which file the identifier is me rely bei ng referred to. In the
implementations of C for such systems, the appearance of the extern keyword before an external
definition indicates that storage for the identifiers being declared wi ll be allocated in another file . Thus
in a multi-file program, an external data definition without the extern specifier must appear in exactly
one of the files . Any ot he r files which wish \0 give an exte rn al defini tion for the identifier must in
clude the extern in the defi nition. The identi fier can be initialized only in the file where storage is al
located.

In pop-II C none of this nonsense is necessary and the extern speci fier is ignored in external
defini tions.

12. Compiler control Jines
When a li ne of a C program begins with the character ·N, it is interpreted not by the compiler itself,

but by a prep rocessor which is capable of replacing ins tances of given ide ntifiers with arbitrary token
strings and of inserting named files into the source program. In order to cause this preprocessor to be
invoked, it is necessary that the very first line of the program begin with II. Since null lines are ig
nored by the preprocessor, this line need contain no other information.

12.1 Token repl aceme nt
A compile r-con trol lin'e of the form

define identifier loken-siring

(note; no trailing semicolon) causes the preprocessor to replace subsequent instances or the identifier
with the given string or tokens (except within compile r conlrol lines). The replacemenl token -stri ng
has comments removed from it, and it is surrounded with blanks. No rescanning of the replacement
sI ring is attempted. This facility is most valuable for definition of "manires t constants", as in

II define tabsize 100

int table[tabsize);

12.2 File inclusion
Large C programs often contain many exte rn al data defini tions. Since the lexical scope of external

defin itions extends to the end of the program file . it is good practice to put all the external definitions
for data at the start of the program file, so that the functions defined within the fi le need not repeat
tedious and e rror-p rone declarations for each ex ternal identifier they use. It is also useful to put a
heavily used structure defin ition al the start and use its structure tag to declare the auto pointers to the

C Reference Manual - '18

structure used within functions. To further exploit this techn ique when a large C program consists of
several files, a compiler control line of the form

incl ude "filename"

results in the replacement of that line by the entire contents of the file filename.

13. Implic it declarations
It is not always necessary to specify both the storage class and the type of iden tifiers in a decla ration.

Sometimes the storage class is supplied by the context: in external definitions, and in decla rations of
formal parameters and structure members. In a declara tion inside a function, if a storage class but no
type is given, the identifier is assumed to be int; if .a type but no storage class is indicated, the
identifier is assumed to be au to. An exception to the laller rule is made fo r functions, since auto func
tions are meaningless (C being incapable of compiling code into the slack). If the type of an identi fier
is "function returning ... ", it is implicitly declared to be extern.

In an expression, an identifier fo llowed by (and not currently declared is con textually declared to be
"function returning inl".

Undefined identifie rs not fo llowed by (are assumed to be labels whic h will be defi ned later in the
function: (Since a label is not an lvalue, this accounts for the "Lvalue required" error message some
times noticed when an undeclared identifie r is used.) Natu rally, appearance of an identifier as a label
declares it as such.

For some purposes it is best 10 consider fo rmal pa rameters as belonging to their ow n storage class.
In practice, C treats paramete rs as if they were automatic (except that, .as mentioned above, formal
parameter arrays and floats are treated specially).

14. Types revis ited
This section summarizes the operations which can be perfo rmed on ·objects of certain types.

14.1 Structures
T here are only two things that can be done with a structure: pick out one o(its members (by means

of the. or -> operators); or take its address (by unary &): Other operations, such as assigning from
or to it or passing it as a parameter, draw an error message. In the future, it is expected that these
operations, but not necessarily others, will be allowed.

14·.2 Functions

f' here are on ly two things that can be done with a function: call it, or take its add ress. If the name
of a function appears in an expression not in the funct ion-name position of a call, a pointer to the
function is generated. Thus, to pass one function to another, one might say

int II);

91 I);

T Hen the definition of g might read

9 (funep)
int 1·luncp)();
{

1·luncp)();

Notice that fwas declared explicitly in the calling routine since its first appearance was not fo llowed by
I.

r •

C Reference Manual- 19

14.3 Arrays, pointers, and subscrip ting
Every time an identifier of array type appears in an expression. it is converted into a pointer to the

first member of the array. Because of this conversion, arrays are not Ivalues. By definition, the sub
script operator (} is interpreted in such a way that "EI[E21" is identical to ".«EI)+(£2))". Because
of the conversion rules which apply to +, if E1 is an array and E2 an integer, then ElIE21 refers to
the E2-th member of EI. Therefore. despite its asymmetric appearance, subscripti ng is a commutative
operation.

A consistent rule is followed in the case of multi-dimensional arrays. tr £ is an n-dimensional array
of rank iXjx . .. Xk. then E appearing in an expression is converted to a pointer to an
(n- I)-d imensional array with rank j x ... xk. If the· operator, ei ther explicitly or implicitly as a result
of subsc ripting, is applied to th is pointer, the result is the pointed-to (n-I)-dimensional array, which it-
self is immediately conve rted into a pointer. .

For example, consider

int x(3)[5),

Here x is a 3x5 array of integers. When x appears in an exp ression, it is converted to a poin ter to (the
first of three) 5-membered arrays of integers. In the expression "xU)", which is equivalent to
" ·(x+i}", x is first converted 10 a pointer as described; then i is conve rted to the type of x, which in
volves multiplying i by the length the object 10 which the pointer points, namely 5 integer objects.
The resu lts are added and indirection applied to yield an array (of 5 integers) which in turn is convert
ed to a pointer to the first of the integers. If there is another subscript the same argument applies
agai n; this time the result is an integer.

It follows from all this Ihat arrays in C are sto red row-wise (last subsc ript varies ·fastest) and that the
first subscript in the declaration helps determine the amou nt of storage consumed by an array but
plays no other part in subscript calculations.

14.4 Labels
Labels do not have a type of thei r own; they are treated as having type "array of int" . Label vari

ab les should be decla red "poin ter to int"; before execution of a goto referring to the variab le, a label
(or an expression deriving from a label) should be assigned to the variable.

Label va riables are a bad idea in general; the switch statement makes them almost always unneces
sary.

15. Constant expressions
In several places C requ ires expressions which evaluate to a constant: after case, as array bounds,

and in initializers. In the first two cases, the expression can involve only integer constants, character
constants, and sizeof expressions. possibly connected by the binary operators

+--1%& « »
or by the unary operators

Parentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discussed above, one
can also apply the unary & operator to exte rn al scalars, and to external arrays subscripted with a con
s tant expression. The unary & can also be applied implicitly by ap pearance of unsubscripted external
arrays. The rule here is that initializers must evaluate ei ther to a cons lant or to the address of an
ex ternal identi fier plus or minus a constan l.

C Reference Manual· 20

16. Examples.
These exam ples are intended 10 illustrate some typical C constructions as well as a servi ceable s tyle

of writing C programs.

16.1 In ne r produc t
This func tion returns the inner product of its array arguments.

double innerlv1. v2. n)
double vHI. v2 (1;
(

double sum;
int i ;
sum - O.D;

r •

for O= O;i<n;i++) ... Jb.
sum =+v 1[i}.v2[iJ; W

return (sum);

The following version is somewhat more efficient, but perhaps a little less clear. It uses the facts that
parameter arrays are really pointers, and that all pa rameters are passed by value.

double inner (v 1, v2. n)
double ·v1. -v2;
(

double sum;
sum 0 .0;
whilel n--)

sum =+ ·vl++ - -v2++;
return I sum);

The declarations for th e parameters are really exactly the same as in the las t example. In the first case
array declarations" [J" were give n to emphasize th at the parameters wou ld be referred to as arrays; in
the second, pointer declarations were given because the indirection operator and ++ were used.

16.2 Tree and cha racter processing
Here is a complete C program (cou rtesy of R. Haigh t) whic h reads a document and prod uces an al·

phabetized list of words found therei n together with the number of occurrences of each word. The
method keeps a binary tree of words such that the left descendant tree for each word has all the words
lexicographicall y smaller than the given word, and the right descendant has all the larger words. Both
the insertion and th e printing routine are recursi ve:

The program calls the library rou tines getchar to pick up characters and exit to terminate execution.
Printf is called to print the res ul ts according to a format string. A version of printf is given below
(§16.3) .

Because all the external definition$ for data are given at the top, no extern declarations are necessary
within the functions. To sta y within the rules, a type declaration is gi ven for each non-i nteger func·
tion when the fun ction is used before it is de ft.ned . However, since all s.uch fun ctions return pointers
which are simply assigned to other pointers, no actual harm wou ld resuit from leaving out the decla ra·
tions; the supposed ly int ·function va lues would be assigned without error or complaint.

II define nwords 100
1/ define wsize 20
s truct tnode {

} ;

char tword[wsize);
int count;
struct tnode · Ieft ;
slruct tnode · right ;

/- number of differenf words -/
I - max chars per word - I
I- the basic structure · 1

struct tnode space [nwords 1;
int nnodes nwords;
struct tnode ~spacep space;
struct tnode ~'reep;
I'

C Reference Manual - 21

I· the words themselves ·1
I· number of remaining slots ~I
I· next available slot ~I
I· free list ~ I

~ The main routine reads words until end-ot-file ('\0' returned from "getchar")
* "tree" is called to sort each word into the tree.
'1

main() I .

J
I'

struct tnode ·top, ·tree ();
char c, word [wsize J;
int i;

i = top = 0;
while (c=getchar()

if ra'<=c && c<='z'II'A'<=c && c <='Z')
if (i<wsize-1)

J else
if (i) I

tprint (top) ;

word[i++] = c;

word [i++] ... '\0' ;
top = tree (top, word);
i = 0;

f The central routine. If the subtree painter is null, allocate a new node for it.
• If the new word and the node's word are the same, increase the node's count.
• Otherwise, recursively sort the word into the left or right subtree according
.. as the argument word is less or greater than the node's word.
'1

struct tnode 'tree (p, word)
struct tnode .p;
char word [1 ;
I

struct tnode ·alloc ();
int cond ;

1* Is pointer null? *1
if (p~~O) I

p .~ all DC ();

copy (word, p - > tword) ;
p->count = 1;
p -> right = p->Ieft = 0 ;
return (p);

1* Is word repeated? *1
if ((cond =compar(p->tword, word») == 0)

p - >count++;
return (p);

I
I~ Sort into left or right *1
if (cond <O)

p->Ie": = tree(p->Ieft, word);
else

p->right = tree(p->right, word);

C Reference Manllal · 22

return (p);

I '
• Print the tree by printing the left subtree, the given node, and the right subtree.
'1

tprint.(p)
slruct tnode .p ;
I

while (p) I
tprint (p- > left) ;
printf("%d: %s\n", p- > count, p -> tword);
p - p- >rlght ;

I'
- String comparison: relurn number (>. - , <) 0
• according as s1 (>, - , <) s2.
' 1

compar(sl,s2)
fhar -s1, ·52;

int cl, c2 ;

whileC (c1 - ·S l++) == (c2 = .s2++»
if (c1--'\0')

return(D);
return (c2-c l):

I '
• String copy: copy s 1 into s2 until the null
• character appears.
·i

copy (s 1,. s2)
' char ·s l, ·s2;
I

while(+s2++'" -s1++);

I' ,
• Node allocation: return pointer to a free node.
+ Bomb out when all are gone. Just for fun, there
,+ is a mechanism for using nodes that have been
• freed, even though no one here calls "free."
' 1

struct tnode *alloc ()
I

struet tnode *t;

if (freep) I

J

t .". freep; .
freep - freep - > left ;

. return (t);

if (--nnodes < 0) I

J

printf ("Out at space\ n") ;
exil ();

return (spacep++) ;

, ..

• The uncalled routine which puts a node on the free list.
. j

free(p)
strucl tnode .p;
[

p->Ieft = freep;
'reep = p;

C Reference Manual· 23

To illustrate a slightly different techn ique of handling the same prob lem, we will repeat fragments of
. this example with the tree nodes treated explici tly as members of an array. The fundamental change is

to deal with the subscript of the array member under discussion, instead of a pointer to 'it. The slrucl
declaration becomes

struct tnode (

J;

char tword [wsize 1 ;
int count;
int left;
int right;

and alloc becomes

. allocl)
[

int t;

t = 7'- nnodes;
it (t<-O) [

J

prin tf ("Out of space\n") ;
exit();

return(I);

The free stu ff has disappeared because if we deal with exclusively with .subscripts some sort of map has
to be kept , which is too much trouble.

Now the tree routine returns a subscript also, and it becomes:

tree (p. word)
char word [1 ;
[

int cond;

it (p~~O) [

J

P = alloc();
copy (word, space [p 1.tword);
space [p] .count = 1;
space [p] .right = space [p 1.left = 0;
relurn(p);

if ((cond= compar (space [p].tword. word)) == 0) (
space [p] .count++;
return(p);

J
il (cond <O)

spacelp].left -= tree (space[p].Ieft,'Word);
else

space {p] .r ight = tree (space [p I.ri ght, word);
return (p);

C Reference Manual· 24

The other routines are changed similarly. It must be pointed out that this version is noticeably less
efficien t than the first because of the multiplications which must be done to compu te an offse t in space
correspondi ng to the subscripts.

The observation that subscripts (like "af il ") are less efficient than pointer indirection (like
"-<lP") holds true independently of wheth er or not structures <Ire involved. There are of course many
situations where subscripts lire indispensable. and othe rs where the loss in eniciency is worth a gain in
clarity.

16.3 Formatted output
Here is a simplified version of the prinlj routine, which is available in the C library. It accepts a

string (charac ter array) as first argument, and prints subsequent arguments accord ing to speci fications
con tained in this format st ring. Most cha racters in the string are simpl y copied to the. ou tput ; two·
characte r seque nces beginning with "%" speci fy th at the next argu ment shou ld be printed in a sty le as
follows:

%d decimal number
%0 oc tal number
Gfoe ASCII character, or 2 characters if upper characte r is not null
%s string (null·terminated array of characte rs)
%f noatin g·poin t number

The actual pa rameters for each function call are laid out contiguously in increasing storage locations;
there fore, a function with a variable number of arguments may take the address of (say) its first argu·
menl, and access the remain ing arguments by use of subsc ripting (regarding the arguments as an ar·
ray) or by indirection combi ned with pointer incrementation.

If in such a situation the arguments have mixed types, or if in general one wishes to insist that an
lvalue should be treated as having a give n (YP.e, then slruct declarations like those illustrated below
will be use ful. It should be evident, though, that such techniques are implementation dependent.

Print! depends as well on the fact that char and float arguments are widened respectively to int and
double, so there are effectively on ly two sizes of arguments to deal with. Print! calls the library
routines putchar to write out single characters and floo to dispose of floating·point numbers.

printf (fmt, args)
char fmtl J;
(

char -s;
struct {char "charpp; I;
struct { double -doublep; I;
int -ap, x, c;

ap - &args ;
lor(;;)(

/. argument pointer- /

while ((e ~ 'Imt++) !- '%')
if(e -- '\0')

}

return ;
putchar (c) ;

switch (c = ·fmt++)
/. dec imal -/
case'd':

xc:>·ap++;
if(x < O)(

x == -x·
if(x < O)'{ /- is - . infinity- /

printf(" -32768");
continue;

·)

. "\
.'

I '

putchar('- ') ;
I
printd (x);
continue;

I · octal -,
case '0':

prinlo (*'ap+ +) ;
continue ;

I- float. double .. ,
case T :

, .. let floa do the real work ./
ftoa (*'ap.doublep++);
continue ;

Ie character - /
case 'c':

put char (.ap++);
continue ; ,* string - /

case '5':

I

5 - ·ap.charpp+ +;
while(c =* ·s+ +)

putchar(c);
continue ;

pulchar (c);

.. Print n in decimal ; n must be non-negative
' 1

printd (n)
{

int a;
If (a - n/ l0)

printd (a) ;
putchar(n% 10 + '0') ;

I'
.. Print n in octal, with exactly 1 leading 0
' 1

printo (n)
{

if (n)
prinlO (Cn > >3) &017777);

putchar ((n&07) + '0') ;

C Reference Manual - 15

C Refer.ence Manual - 26

REFERENCES

I. Johnson, S. c., and Kernighan, B. W. "The Programming Language B." Compo Sci. Tech. Rep.
#8., Bell Laboratories, 1972.

2. Ritchie, D. M., and Thompson, K. L. "The UN IX Time-sharing System." To appear in C. ACM.

3. Thompson, K. L., and Ritch ie, D. M. UNIX Programmer's Manllal. Bell Laboratories, 1973.

4. Lesk, M. E., and Barres, B. A. "The GCOS C Library." Unpublished internal memorandum, Bell
Laboratories, 1974.

•

."

C Reference Manual - 27

1. Ex pressions.

APPENDIX 1
Syn tax Summary

expression:
primary
• expression
& expression
- expression
1 expression
- expression
++ Ivalue
-- Ivalue
Ivalue ++
Ivalue --
sizeof expression
expression hinop expressioll
expression? expression: expression
Ivalue asgnop expression
expression, expression

primary:
idenl/fier
cOllstant
string

Ivalue:

(expression)
primary (expression-list"",)
primary I expression]
Ivalue . identifier
primary - > identifier

idemifier
primary [expression 1
Ivalue . idelllifier
primary - > identifier
• expression
(Ivalue)

The primary-expression operators

()[] . - >

have highest priority and group left-to-right. The unary operators

& - ! - ++ -- sizeof

have priority below the primary operators but higher than any binary ope rator, and group right
to-lerl. Binary operators and the conditional operator all group lerHo-right, and have priority
decreasing as indica ted:

binop:
• I %
+
» «
< > < - >-

!=

•

•

C Reference Manllal - 28

&

I
&&
II
? :

Assignment operators all have the same,priority, and all group right-Io-Iefl.

asgnop:
- =+ -=- =- =-/ - % -» -« -& - ~ -I

The comma operator has the lowest priority, and groups left-la-right.

2, Declarations,

declaration:
decl-specifiers "ee/arator-list.",

dec/-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier '

sc-specifier:
auto
static
extern
register

type-specifier:
, int

char
float
double
struct (type-ded-Iist J
struct identifier (type-ded-list J
struct identifier

dee/orator-list:
dee/arator
declarator, dee/orator-list

dee/orator:
identifier
• dee/orator
dec/orator ()
dee/orator { constant-expression.". 1
(declarator)
,

type-dee/-list:
type-declaration
type-dee/oration type-dee/-list

type-dec/arolion:
type-specifier dee/orator-list ;

3, Statemen ts,

statement:
expression;

,:,- -'

I statement-list J
if (expression 1 statement
if (expression 1 stalemenl else statement
while (expression) statement
for (expression"", ; expression, ; expression"",) statement
switch (expression 1 statemehI
case constant-expression: statement
default : statement
break;
continue;
return ;
return (expression 1 ;
goto expression;
identifier: statement

statement-list:
statement
statement statement-list

4. External defin i lions~

program:
ex ternal-defini tion
external-definition program

externa l-defin ilion:
f unction-definition
data-definition

f unction-defini lion:
type-specifier"",function-declarator function-body

function-declarator:
declarator (parameter-list"",)

parameter-list:
identifier
identifier, parameter-list

funclion -body:
type-decl-list f unciion-s tatemen!

function-statement:
{ declaration-list"", statement-list I

dala-defin i I iOIl:
externopi type-specifier"", init-declarator-Iist"",;

ini (-decl ora tor-list:
init-declarator
illit-declaralor , inil-dec/arator-list

inil-dec/arator:
dec/arator illitializeropi

C Reference Manual - 29

C Reference Manual - 30

inilializer:
conslant
I consfanl-exp;ession-lisl J

conSlan I-expression-list:
cons Ian I-expression
conslanl-expression , cOflStant-expression-!isl

constant-expression:
expression

5. Preprocessor

If define identifier loken-sIring

If include "filename"

...

Programming in C - A Tutorial

Brian W. Kernighan

Bell Laborafories. Murray Hill, N. 1.

ABSTRACT

C is a programming language available on UN IX, GCOS and 05/360 which offers :

l. Modern canlrol structures, permitting a now of control designed with your programming
language rather than in spite of it: programming without GOTO's is easy in C;

2. An economy of expression that eliminates many temporary variaQles and trivial state
ments, giving shorter and clearer code;

J . . Adequate linkage conventions that encourage modularity and good program organization,
making changes and debugging easier;

4. Facilit ies for handling many different kinds of data, including pointers and characte r
variables to do simple non-numeric problems simply, and s tructures to condense the
description of large. complicaled dala aggregates.

This paper is a tutorial introduction to most of the features of C.

·-•

i ' ~ .,

Programming in C - A Tutorial

Brian W. Kernighan

Bell Laboratories, Murray Hill. N. J.

1 .. lntroduction

C is a computer language available Gn t.he GCOS and UNIX operating systems at Murray
Hill and (in preliminary form) on 05/360 at Holmdel. C lets you write your programs clearl y
and simply - it has decent con trol flow facilities so you r ,code ca n be read straight down the
page, without labels or GOTO's; it lets -you write code that is compact without being too cryp
tic; it encourages modularity and good program organization; and it provides good data
structuring faciliti es.

This memorandum is a tutorial to make learning C as painless as possible. The first part
concentrates on the central features of C; the second part discusses those parts of the language
which are useful (usuall y for getting more efficient and sma1ier code) but which are not neces·
sary for the new user. This is nOI a re ference manual. Details and special cases will be skipped
ruthlessly, and no attem pt will be made to cover every language feature. The order of presen
tation is hopefully pedagogical instead of logical. Users who would like the fuli story should
consult the C Reference Manuaf by D. M. Ritchie ll] . which should be read for details anyway.
Runtime support is described in {2] and [3]; you will have to read one of these to learn how to
compile and run a C program.

We will assume th at you are familiar with the mysteries of creating files, text editing. and
the like in the operating system you run on, and that you have programmed in some language
before.

2. A Simple C Program

main() I
prinll("he llo, world");

A C program consists of one or more funclions, which are si milar to the functions and
subroutines of a Fortran program or the procedures of PLII , and perhaps some external da~a
defi nitions. main is s uch a function, and in fact all C programs must have a main. Execution
of the program begins lit the first statement of main. main will usually in voke other functions
to perform its job. some comi ng from the same program, and ot hers from libraries.

One meth od of comm unicat ing data between functions is by arguments. The parentheses
following the function name surround the argument list; h ere main is a function of no argu
men ts. indicaled by () . The (J enclose" the statements of th e function. Indi vid ual statements

C TUlOrial -2-

end wi th a semicolon but are otherwise free-format.

printf is a library function which will formal and print output on the terminal (unless
some other destination is specified). In this case it prints

helio, world

A function is invoked by naming it, followed by a list of arguments in parentheses. T~ere is
no CALL statement as in Fortran or PUI.

3. A Working C Program; Variables; Types and Type Declarations

Here's a bigger program thaI adds three integers and prints ttlei~ sum.

ma;n{) I
int a, ti, c , sum;
a = 1; b = 2; c = 3;
sum = a + b + c;
printf("sum is %d". sum);

Arithmetic and the assignment statements are, much the same as in Fortran (except for
the semicolons) or PL/I. The formal of C programs is quite free. We can put several state
ments (~m a line if we want, or we can sp lil a statement among several lines if it seems desir
able. The split may be between any of the operators or variables, but not in the middle of a
name or operator. As a matter of style, spaces, tabs, and newlines should be used free ly to
enhance readability.

C has four fundamental types of variables:

int integer ·(PDP- Il : 16 bits; H6070: 36 bits; IBM360: 32 bits)
char one byte character (PDP-II, IBM360: 8 bits; H6070: 9 bits)
floal single-prec ision floating point
double double-precis ion floating point

There are also arrays and structures of these basic types, pointers to them and funcIions that re
turn them, all of which we will mee t shortly.

All variab les in a C program must be declared, although this can sometimes be done im
plicitly by contex t. Declarations must precede executable statements. The declara tion

int a, b, C, sum;

declares a, b, c, and sum to be integers.

Variab le names have one to eight characters, chosen from A-Z, a-z, 0-9, and ..J and start
with a non-digit. Stylistically, it 's much better to use on ly a single case and give functions and
external variables names that are uni"que in the first six characters. (Function and external
variable names are used by various assemblers, some of which are limited in the size and case
of identifiers they can handleJ Furthermore, keywords and library functions may on ly be
recognized in one case.

4. Constants

We have already. seen decimal intege r constants in the previous example - I, 2, and 3.
Since C is often used for system programming and bit-manipu lation, octal numbers are an i"m
portant part of the language. In C, any number that begins ~ith 0 (zero1) is an octal integer
(and hence can't have any 8's or 9's in it). Thus 0777 is an octal constant, with decimal value '
5 11.

,

~
~

C Tutorial -J-

A "characte r" is one byte (an inherently machine·dependent concept). Most orten this
is expressed as a characler conslanl, which is one character enc losed in ~ing[e quotes. However,
it may be any quantity that fits in a byte, as in flags below:

char Quest, newline, flags;
Ques~ = '?';
newline = '\n';
fl ags = 077;

The sequence '\n' is C notation for " newline character", which, when printed, .skips the
terminal to the beginning of the next line. Notice that '\n' represents only a single character.
There are several othe r "escapes" like '\n' for representing hard·to"get or invisible characters,
such as '\t' for tab, '\b' for backspace, '\0' for end of file, and 'W for the backslash itself.

.float and double constants are discussed in section 26.

5. Simple: 1/0 - getchar, putchar, printf.

main()\
char c;
c = getchar();
putchar(c);

get char and putchar are the basic 110 library func tions in C. getchar fetches one char·
acter from the standard input (usually the terminal) each lime it is calied, and returns that
character as the value of the function. When it reaches the end of whatever file it is read ing,
thereafter it return~ the character represented by '\0' (ascii NUL, which has value zero). We
will see how to use this very shortly. <

putchar puts one cha racter out on the standard output (usually the terminal) each time it
is called. So the program above reads one character and writes it back out. By itself, this isn't
very interesting, but observe that if we put a loop around this, and add a test fo r end of file, we
have a complete program for copy ing one file to another.

printf is a more complicated function for producing formatted ou tput. We will talk about
.only the simplest use of it. Basically, printf uses its first argument as formatting information,
and any successive arguments as variables to be output. Thus

printf ("hello, world\n");

is the simples t use - the Siring "hello, world\n" is printed out. No formatting information, no
variables, so the string is dumped out verbatim. The newline is necessary to put this out on a
line by itself. (The cons truction

"hello , world\n"

is really an array of chars. More about this shortly.)

More complicated, if sum is 6,

printf ("sum is %d\n", sum);

prints

sum is 6

Within th e fir st argument of print!, the characters "%d" signi fy that the next argument in the
argument liSl is to be printed as a base 10 number.

C Tutorral - 4-

Other use ful formatting commands are "'joC" to print ou t a single character, "%s" to print
out an ent ire string, and "%0" 10 print 3 number 3S octa l instead of decimal (no leading zero) .
For example,

n = 511;
printf ("What is the value of %d in octal?" , n);
printf (" %sl %d decimal is %0 octal\ n", "Right", n, n);

prints

What is the value of 511 in octal? Right! 51 1 decimal is 777 octal

Notice that there is no newline at the end of the first outpu t line. Successive calls to printf
(and/or putchar, for that matter) simply put out characters. No newlines are printed unless
you ask for them. Similarl y, on input, characters are read one at a time as you ask for them.
Each line is generall y terminated by a newline (\n), bu t there is otherwise no concept of
record.

6. If; relational operators; compound statements

The basic condi tional·test ing statement in C is the i f statement :

c - getchar();
if(c == '?')

printf("why did you type a question mark?\n");

The simplest form of if is

if (express ion) statement

The cond it ion to be tes ted is any expression enclosed in parentheses. II is followed by a
statement. The expression is evaluated, and i f i ts value is non·zero, the statement is executed.
There's an optional else clause. to be described soon.

The character sequence '"",=' is one. of the rel ational operators in C; here is the complete
set:

== equal to (.EO. to Fortraners)
!= not equal to
> greater than
< less than
> =- greater than or equal to
-< "" le~s than or equal to

The value of "expression relation expression" is i f the relation is true, and 0 if false.
Don ' t forget that the equality les t is '=='; a single '=' causes an assignment. not a tes t, and in·
variably leads to .disaster.

Tests can be combined with the operators '&&' (AND). 'II' (OR), and '1' (NOT). For example,
we can test whether a character is blank or tab or newline with

il(c~~' , II c~~'\I' II c~~'\n' I ...
C guarantees thaI '&& ' and 'II' are evaluated left to right - we sha ll soon see cases where this
matters.

One of the nice things about C is that the statement part of an if can be made arbi trarily
complicated by enclosi ng a set of statements in O. As a'simple example, suppose we want to
ensure that a is bigger than b, as part of a sort routi ne. The interchange of a and b lakes three
statements in C, grouped together by II :

, -

,~

C Tutorial

if(a < b){
t = a;
a = b;
b ~ t;

- 5 -

As a general rule in C, anywhere you can use a simple statement, you can use any com
pound statement, which is just a number of simple or compound ones enclosed in O. There is
no semicolon after the J of a compound statement, but there is a semicolon after the last non
compound sta tement inside the II.

The ability to replace single statements by complex ones at will is one feature that makes
C much more pleasant to use than Fortran. Logic (like the exchange in the previous example)
which would require several GOTO's and labels in Fortran can and should be done in C
without any, using compound statements.

7. While Statement: Assignment within an Expression; Null Statement

The basic looping mechanism in C is the while statement. Here's a program that copies
its input to its output a charac ter at a time. Remember that '\0' marks. the end of file.

main!) {
char c;
while((c - getchar()) !~ '\0')

putchar(c);

The while statement is a loop, whose general fo rm is

while (expression) statement

Its meaning is

. (a) evaluate the expression
(b) if Its value is true (i.e., not zero)

do the statement. and go back to (a)

Because the exp ression is tested before the statement is exec uted, the statement part can be
executed zero times, which is often desirable. As in the if statement, the expression and th~
statement can both be arbitrarily complicated, although we haven't seen that yet. Our example
gets the character, assigns It to c, and then tests if it's a '\0". If it is not a '\0', the s tatement
part of the while is executed, printing the character. The while th en repealS. When the input
character is fi nally a '\0', the while terminates, and so does main.

Notice that we used an assignment statement

c - getchar()

within an expression. This is a handy notational shortcut which often produces clearer code.
(In fact it is often the only way to write the code cleanly. As an exe rcise, re-write the file-copy
without using an assignment inside an expression.) It works because an assignment statement
has a value, just as any other expression does. Its value is the value of the right hand side.
This also implies that we can use multiple assignments like

x~y - z "'O;

Evaluation goes from right to left.

By the way, the extra parentheses 10 the assignment statement within the conditional
were really necessary : if we had said

c - getchar() 1- '\0'

C Tutorial - 6 -

c would be se t to 0 or I depending on whether the character fetched was an end of file or nol.
This is because in the absence of parentheses the assignment operator '=' is eV31uated after
the relmional operator '!='. When in doubt, or even if not, parenthesize.

Since pulchar(c) return s c as its function value, we could also copy the input to the ou t
put by nesting the calls to getchar and pulchar:

main() (
while(pulchar(gelchar()) l = '\0') ;

What statement is being repeated? None, or techn ically, th.;! null statement, because all the
work is really done within the test part of the while. This version is slightly different from the
previous one, ,because the final '\0' is copied to the output before we decide to stop.

8. Arithmetic

The arithmetic operators are the usual '+', '-', ''''', and '/' (truncating integer division if
the operands are both inl), and the remainder or mod operator '%':

x = a%b;

sets x to the remainder after a is divided by b (i.e., a mod b). The results are machine depen
den t un less a and b are both positive.

In.arithmetic , char variables can usually be treated like int variables. A ri thmetic on char
acters is quite legal, and often makes sense':

c = c + 'A' - 'a';

converts a single lower case ascii character stored in c to upper case, making use of the fact
that corresponding' ascii Ictters are a fixed distance apart. The rule govern ing th is arithmetic is

. that all chars are convcrted to int before the arithmelic is done. Beware that conversion may
involve sign-extension - if the leftmost bit of a character is 1, the resulting integer might be
negative. (This doesn't happen with genuine characters on any cu rrent machine.)

So to convert a file into lower case:

main(I I
char c;
while((c=getchar()) [= .'\0')

if('A'<=c && c<='Z')
plJlchar(c+'a' -' A');

else
pulchar(c);

Characters have different sizes on different machines. Further, this code won't work on an
IBM machine, because the letters in the ebcdic alphabet are not contiguous.

9. Else Clause; Conditional Expressions

We just used an else after an if . The most general form of if is

if (expression) statement 1 else statement2

the else part is optional, but often useful. The canonical example sets x to the minimum of a .
and b:

C T'Jtcrial

if (a < b)
x - a;

else
x - b;

Observe that there's a semicolon after x- a.

C provides an alte rnate form " of cond itional which is often more concise. It is called the
"conditional expression" because it is a conditional which actually has a value and can be used
anywhere an expression can. The value of

a<b1a : b;

is a if a is less than b; it is b otherwise. In general, the form

expr1 1 expr2 : expr3

means "evaluate expr 1. If it is not zero, the value of the whole thing is expr2; otherwise the
value is expr3."

To set x to the minimum of a and b, then :

x - (a<b ? a : b);

The parentheses aren't necessary because '1:' is evaluated before '=' , but safety first.

Going a step further, we could write the loop in the lower-case program as

while((c-gelchar()) !~ '\0')
putchar(('A'<=-c && c< - 'Z') 1 c-'A'+'a': c);

If's and else's can be used to construct logic that branches one of several ways and then
rejoins, a common programming structure, in this way:

if(.. ,)

I ... J
else if(•• •)

I ... J
else if(...)

I ... J
else

I ... J

The conditions are tested in order, and exactly one block is executed - either the first one
whose it is satisfied, or th e one. for the last else. When this block is finished , the next state
ment execu ted is the one afte r the last else. If no action is to be taken for the "default" case,
omit the last else.

For example, to coun t letters, digits and others in a fil e, we could write

main() 1
int let, dig, other. c;
let - dig "'" other =- 0;
while((c-gelchar()) !- '\0')

if(('A'<=c && c< - 'Z') II ('a'<=c && c< - 'z.'» ++Iet;
else if('0' < = c && c< g') ++dig;
e lse ++other;

printW%d letters, %d digits. %d others\nM
, let. dig, other);

The '++' operator means "increment by."; we will get to it in th e next section.

C Tutorial - 8 -

10. Increment and Decrement Operators

In addition to the usual '-" C also has two other interesting unary operators, '++' (incre
ment) and '--' (decrement). Suppose we wan t to count the lines in a file.

main!) I
int c,n;
n = 0;
while! !c~getchar!)) ! ~ '\0')

if(c ~- '\n')
++n;

printf{"%d I ines\ n- , n);

++n is equi valent to n- n+ 1 but clearer, particularly when n is a complicated expression. '++'
and '--' can be applied on ly to int's and char's (and pointers which we haven't got to yet).

The unusual featu re of '++' and '--' is that they can be used either berore or afte r a
variable. The value of ++k is the value of k after it has been "incremented. The value of k+ +
is k before it is incremented. Suppose k is 5. Then

x - ++k;

increments k to 6 and then sets x to the resulting value, i.e., to 6. But

x - k++;

first sets x to to 5, and Ihen increments k to 6. The incrementing effect of ++k and k++ is the
same, but their values are- respectively 5 and 6. We shalt soon see examples where both of
these uses are importan t.

11. Arrays

In C, as in Fortran or PLlI , it is possi ble to make arrays whose elements are basic types.
Thus we can make an array of 10 integers with the declaration

int x[10J;

The square brackets mean subscripting; parentheses are used on ly for function references. Ar
ray indexes begin al zero, so the elements of x are

x[O). x[11. x[2) x[9)

If an array has n elements, the larges t subscript is n-1 .

Multiple-dimension arrays are provided, though not much used above two dimensions.
The declaration and use look like

int name{ 10] [20] ;
n - name[i+i) [IJ + name[k) [2);

Subscripts can be arbi trary integer ex pressions. Multi-dimension arrays are stored by row (op
posite to Fortran), so the rightmost subscript varies fastest; name has 10 rows and 20 columns.

Here is a program which reads a line, stores it in a. buffer, and prints its lengt h (excluding
th e newline at the end) .

, ..

,--

main() {
int n, c;
char line(100J:
n .., 0;

- 9 -

while((c-getchar()) !- 'In') I
iff n < 100)

lineln] = c;
n++;

printf("lenglh = %d\n", n);

As a more complicated problem, suppose we want to print the count for cach line in the
input, st ill sloring the firs t 100 characters of each line. Try it as an exercise before looki ng at
the solution:

main() I
int n, c; char line[loo]:
n "'" 0;
while((c - getchar(» != '\0')

if(c ~~ 'In') I
printf("%dO, n);

J
else (

12. Character Arrays; Strings

n =- 0;

if(n < 100) lineln] = c;
n++;

Text is usually kept as an array of cha racters, as we did with linel J in the example above.
By conven tion in C, the last characte r in a cha racler array s hould be a '\0' because most pro
grams that manipulate charac ter arrays expect it For example, printf uses the '\0' to detect the
end of a characte r array whe n printing it out with a '%s'.

We can copy a character array 5 in to another t like this:

i "'" 0;
while((tIil -slili !- '10')

i++:

Mos t of the lime we have to put in ou r ow n '\0' tit the end of a string; if we want to
print the line with printf, it's necessary. This code prints the character cou~t before the line:

main() I
int n;
char liner 100];
n = 0;
while((line[n++]- getchar()) \= '\n');
linelnl - ,\0';
printf("%d:\l%s", n, line);

Here we increment n in the subscri pt itself, but· only after the previous value has been U!~ed .

C Tutorial - 10-

The characte r is read , placed in linelnl. and only then n is incremented.

There is one place and one place only where C puts in the '\0' at the end of a characte r
array for you, and that is in the cons truction

"stu ff between double Quotes"

The compiler puts a '\0' at the end automatically. Tex t enclosed in double quotes is called a
$"ill/:; its properties are precisely those of an (ini tialized) array of characte rs.

13. For Statement

The for statemen t is a somewhat generalized while that lets us pu t the initial ization and
increment parts of a loop into a single statement along with the test The general form of the
lor is

10r(initialization; expression; increment)
sta tement

The meaning is exactly

initializat ion;
while(expression) {

statement
increment;

Thus, the following code does the same array copy as the example in the previous section :

for(i - O; (l[i) - 5[i)) !- '\0'; i++);

Th is slightly. more orn ate example adds up the elements of an ar ray:

sum - 0;
for(i=O; i < n; i++)

sum - sum + array{i};

In the for statemen t, the initialization can be left out i f you want, but the semicolon has
to be there. The increment is also optional. It is nor followed by a semicolon. The second
clause, the test, works the same way as in the while': i f the expression is true (not zero) do
another loop, otherwise get on with the next statement. As with the while, the for loop may
be done zero times. If the expression is left ou t, it is taken to be al ways true, so

for(; ;) •••

and

while(1) •• •

are both infinite loops.

You migh t ask why we use a for since it's so much like a while. (You might also ask
why we use a whi le because . ..) The for is usually pre ferab le b~cause it keeps the code where
i t's used and sometimes eliminates the need "for compound statements, as i n this code that
zeros a two-dimensional array:

for(i=O; i < n; i++)
10r(j -O; j < m; j++)

array\ilUI = 0 ;

.. ,

"

,\1 -

' '"'

C Tutorial - I I -

14. Functions; Comments.

Suppose we want , as part of a larger program, to coun t the occurrences of the ascii charac
·ters in some input text. Let us also map illegal characters (those with value> 127 or <0) into
one pile. Since this is presumably an isolated part of the program, good practice dictates ma'k
ing it a separate function . Here is one way:

main() I
int hist(1291; j." 128 legal chars + 1 illegal group ." j

count(hist , 128);
printf(•••);

j." count the letters into hist ." j

j ." comments look like this; use them ." j

j ." anywhere blanks, tabs or newlines could appear ."j

count(buf, size)
int size, bul[I;

int t, c;
for(i=O; i<=size; i++)

bullil ~ 0;
while((c ~getchar()) !~ '\0') I

if(e > sizellc < 0)
e = size;

buf[e]++;

return;

j." set buf to zero ." j

j." read til eof ." j

j." fix illegal input ."j

We have already seen many examples of calling a function, so let us concentrate on how to
define one. Since count has two arguments, we need to declare them, as shown, giving the ir
types, and in the case of buf, the facl" that it is an array. The declarations of arguments go
befween the argument list and the opening ' {'. There is no need to specify the size of the array
bul, for it is defined outside of count.

The return statement simply says to go back to the calling routine. In ' fact, we could have
omitted it, since a return is implied at the end of a function.

What if we wanted count to return a value, say the number of characters read ? The re
turn statement allows for this too:

int i, c, nchar;
nchar = 0;

while((c ~ getchar()) !~ '\0') I
if(c > size II c < 0)

c = size;
buf(c]++;
nchar++;

relurn(nchar);

Any expression can appear within the parentheses. Here is a function to compu te the
minimum of two integers:

C Tutorial

minta, b)
int a, b;

return(a < b ? a : b);

- 12 -

To copy a cha racte r array, we could write th e function

s trcopy(s1,'S2) / . copies s1 to s2./
char 51[J. 52{ I; [

int i;
for(i - 0; (52{0 - 51[i)) ! ~ '\0'; i++);

As is often the case, all the work is done by the assignment statement embedded in the test
part of the for. Again , the declarations of the argumen ts 51 and 52 omi t the sizes, because
they don ' t matter to strcopy. (In the sec tion on pointers, we will see a more efficient way to
do a sIring copyJ .

There is a subtlety in function usage wh ich can trap the unsuspecting Fortran program
mer. Simple variables (not arrays) are passed in C by "call by value", which means th at the
ca lled function is given a copy of its argumen ts, and doesn't know thei r addresses. This makes
it impossible to change the value of one of th e actual input arguments.

There are two ways out of this dilemma. One is to make specia l arrangements to pass to
the function the address of a variab le instead of its value. The other is to make the variable a
global or external variable, which is known to each function by its name. We wi ll discuss both
possibi lities in the nex t few sections.

15. Local and External Variables

If we say

f() [
int x;

I
g() [

int x;

each x is local to its ow n routine - the 'x in f is unrelated to the x in g: (Local variables are
also called "automatic".) Furthermore each loca l variab le in a routi ne appears on ly when the
func tion is called, and disappears when th e function is exited. Local variables have no memory
from one call to the next and must be explicitly initialized upon each entry. (There is asIatic

. storage class for maki ng loca l variables with memory; we won 't discuss it.)

As opposed to local variab les, eXfernal variables are defined external to all functions, and
are (potentially) available to all functions. External storage always remains in existence. To
make variables externa l we have to define them ex ternal 10 all functi ons, and, wherever we
want to use them, make a declararion.

main() [
exte rn int nchar, hist[];

count();

,"

,

,
"

C Tutorial

count() I
extern int nchar, hisHI;
int i, c;

- 13 -

int
inl

hist[129J:
nchar;

/ . space for histogram . /
/ . character count . /

Roughly spea king, any function that wishes to access an external variable must contai n an ex
tern declaration for it. The declaration is the sa me as others, except for the added keyword
extern . Furthermore. there must somew here be a definition of the external variables external
to all functions.

External variab les can be initialized; they are set to zero if not expl icitly initialized . In its
simples t form, initialization is done by putting the value (which must be a constant) after the
defini tion :

. int
char

etc.

nchar 0;
flag '1':

This is discussed further in a laler section.

This ends our discussion of what might be called the central core of C. Vou now have
enough 10 write Quite substantial C programs, and it would probably be a good idea if you
paused long enough to do so. The rest of this tutorial will describe some more ornate construc
tions, useful but not essential.

16 . Pointers

A pOillfer in C is th e address of something. It is a rare case indeed when we care what
the specific address itself is, but pointers are a Quite common way to get at the contents of
someth ing. The unary operator '& ' is used to produce the address' of an object, if it has one.
Thus

int a, b;
b =- &a;

pulS the add ress of a into b . We ca n' t do much with it except print it or pass it to some other
routine, because we haven' t given b the right kind of declaration. But if we declare that b is
indeed a pointer to an integer, we' re in good shape::

int a, .b, c;
b = &a;
c = .b;

b contains the add ress of a and 'c .b' means to use the val ue in b as an address, i.e., as a
pointer. The effect is that we get back the contents of a, albeit rather indirectly. (It's always
the case that '.&x' is th e same as x if x has an address.)

The most frequen t use o f pointers in C is for walking e mcie ntl y along arrays . In fact, in
the impleme ntation of an array, the array name represents th e address of the zeroth element of
the array , so you can't use it on the left side of an expression. (Vou can'l change the add ress
of someth ing by assigning to it.) If we say

char .y;
char xl 100);

y is of. type pointer to character (although it doesn't yet point anywhere). We can make y

C Tutorial

point to an element of x by either of

y - &xIOI:
y "" x;

- 14 -

Since x is the address of x[Ol this is legal and consis tent.

Now· '.y' gives x(ol . More importantly,

*(y+ 1) gives x(1]
*(y+ il gives x(iJ

an the sequence

y - &xIO):
y++;

lea es y poi nting at x[1] .

Let's use pointers in a functi on length that computes how long a character array is.
Re em ber that by convention all character arrays are te rminated with a '\0' . (A nd if they
ar 't, th is program will blow up inevitabl y.) The old way:

lenglhls)
char 51): I

int n;
lor{ n - O: sin) !- '\0':)

n++;
return(n);

R writing with poi nters gives

length{s)
char *5; !

int n;
fore n= O; .5 !== '\0'; 5++)

n++;
retuen(n);

Y u can now see why we have to say what kind of thing 5 points to - if we' re to increment it
wi h 5++ we have to increment it by the righ t. amount.

The poin ter version is more efficient (this is almost always true) bu t even more compact
is

lor(n = O; *5++ 1- '\0'; n++);

T e '.5' returns a character; the '++' increments the pointe r so we 'l1 get the next characte r
n xt time arou nd . As you can see, as we make thin gs more efficien t, we also make them less
cI ar. But '.5++ ' is an idiom so common that you have to know it.

Goi ng a step further, here's our fun cti on strcopy that copies a cha racter array s to anoth-
e t .

strcoPy(s,t)
char .s, . t; I

while(*t++ - *s++);

We have omitted the lest .agai nst '\0', because '\0' is identically zero;
code this way . (You mllst have a space afte r th e '=' : see sec tion 25.)

you will often see the

C Tutorial - 15 -

For arguments to a func tion, and there only, the declarations

char s[];
char .s;

are equivalent - a poi nter \0 a type, or an array of unspecified size of that type, are the same
thing.

I f this all seems mysterious, copy these forms until they become second nature. You
don't often need anything more compl icated.

17. Function Arguments

Look back at the function strcopy in the previous section. We passed it two string
names as arguments, then proceeded to clobber both of them by incrementation. So how
come we don ' I lose the origina l strings in the function that called strcopy?

As we said before, t i"s a "ca ll by value" language: when you make a function call like
!(x), the vallie of x is passed, not its address. So there's no way to oller x from inside f. If x is
an array (char x[10)) th is isn't a problem, because x is an address anyway, and you're not trying
to change it, just what it addresses. This is why strcopy works as it does. And it's convenient
not to have to worry about making temporary copies of the input arguments.

But what if x is a scalar and you do want to change it? In that case, you have to pass lhe
address of x to I, and then use it as a pointer. Thus for example, to interchange two integers,
we must write

f1ip(x, y)
int . X, .y; {

int temp;
temp "'" .x;
.x "" .y;
.y = temp;

and to call fl ip, we have to pass the addresses of the variables:

flip (&0, &b);

18. Multiple Levels 01 Pointers; Program Arguments

When a C program is called, the arguments on the command line are .. made avai lable to
the main program as an argument count argc and an' array of character strings argv containing
the arguments .. Manipulating these arguments is one of the mos t common uses of multiple
levels of pointers ("pointer to pointer to ... ") . By conven tion, argc is greater than zero; the
first argument (in argv[O]) is the command name itself.

Here is a program that simply echoes its arguments.

main(argc, argv)
int argc:
char .. argv: I

int i;
fort i - 1: i < argc; i++)

printW%s ", argv[iJ) ;
putchar('\n');

Step by step: main is ca lled with two arguments, the argument count and the array of argu
ments. argv is a pointer to an array, whose individual elements are pointers to arrays of char-

C Tutorial - 16 -

aC lers. The zeroth argument is the name of the command itsel f, so we start to print. with the
first argument, until we've printed them alL Each argv(i) is a character array, so we use a '%s '
in the print!.

You will sometimes see the declaration of argv written as

char .argv();

which is equivalent. BUI we can't use char argv(][1. because both dimensions are variable and
there would be no way to figu re out how big the array is.

Here's a bigger example usi ng argc and arg v. A common convent ion in C programs is
that if the first argument is '-', it indicates a flag of some sort. For example, suppose we want
a program to be callable as

prag -abc arg 1 arg2 ...

where the '-' argument is optional ; if it is present, it may be followed by any combination of
a, b, and c.

maln(argc , argv)
int argc;
char .. argv; (

aflag - bflag cflag - 0;
ill argc > I && argv[1110] -- '-') I

fori i- I ; (c - argv[lIlill 1- '\0'; i++)
if(c=='a')

aflag++;
else if(c=='b')

bflag++;
else if(c =='c')

else

- -argc;
+ +argv;

cflag++;

printf("%c?\n", c);

There are several things worth noticing about this code. First, there is a real need for the
left-to-right eva luation that && provides; we don't want to look at argv[1] unless we know it's
there. Second , the state ments

--argc;
++arg v;

let us march along the argument list by one position, so we can sk ip over the nag argument as .
if it had neve r ex isted - the Test of the program is independen t of whether or not the re was a
nag argument. This only works because argv is a pointer which can be incremented.

19. The Switch Statement; Break; Continue

The switch statement can be used 10 replace the multi-way test we used in the lasl exam-
ple. When the tests are like this:

if(c -- 'a') _ ..
else If(c == 'b')
else if(c ="" 'c')
else ..•

C Tutorial - 17 -

testing a value against a series ·of cOllslorlls, the switch statement is often clearer and usually
gives better code. Use it like this :

switch(c)

case 'a' :
allag++;
break;

case 'b':
bflag++:
break;

case 'c':
cflag++;
break;

defau lt:
printf("%c?\ n", c);
break;

The case statements label the various actions we want; default gets· done if none of the other
cases are satisfied. (A default is optional; if it isn't there, and none of the cases match, you
just fall out the bottom.)

The break statement in this example is new. 1l is there because the cases are jus t labels,
and after you do one of them, you fall Ihrough to the next un less you take some explicit action
to escape. This is a mixed blessing. On the positive sid~, you can ha ve multiple cases on a sin
gle statement; we might want to allow both upper and lower case letters in our flag field, so we
could say

case 'a': case 'A':

case 'b': case'S':
etc.

But what if we just want to get out after doing case 'a' ? We could get Oul of a case of the
switch with a label and a goto, but this is really ugly. The break statemen t lets us exit
without either goto or label.

switch(c)

case 'a':
allag++;
break;

case 'b' :
bflag++:
break;

/ _ the break statements get us here directly _/

The break statement .. Iso works in for and while statements
from the loop.

it causes an immediate exit

The continue statemen t works only inside fo r's and while's; ;t causes the next iteration of
the loop to be started. This means it goes to the increment part of the for and the test part of
the while . We· could have used a continue in our example to get on with the next itera tion of
the for, but it seem.s clearer to use break instead.

C Tutorial - 18-

20. Structures

The main use or st ruc tures is to lump together collections or dispara te variable types, so
they can convenien tl y be treated as a unit. For example, ir we were writin g a compiler or as
sembler, we might need ror e(lch identifier inrormation like 'its name (a character array), its
source line number (an integer), some type inrormation (a charac te r, perhaps), and probably a
usage count (anothe r integer) .

char id[101;
int line;
char type;
int usage;

We can make a structure out or th is quite easily. We first tell C what the structu re will
look like, that is, what kinds or things it contains; after that we can actually reserve storage ror
it, either in the same sta tement or separately. The simplest thin'g is to define it and allocate
storage all at once:

struct
char id[10];
int line;
char type;
int usage;

} sym;

This defines sym to be a structure with the specified shape; id , tine, type and usage are
members or the structure. The way we rerer to any particular member of the structure is

as in

structure-name . member

sym.type = 077;
if(sym.usage == 0)
whil e(sym.id[j++l) •.•

etc.

Although the names or structure members never stand alone, th ey still have to be unique -
there can't be another id or usage in some other structure.

So rar we haven ' t gained much. The advantages or structu res start to come when we
have arrays or structures, or when we want to-pass complicated data layouts -between runctions.
Suppose we wanted to make a symbol tab le ror up to 100 identifiers. We cou ld extend our
defi nitions. like

char id[100][10];
int line[100);
char type[100);
int usage[100};

but a structure lets us rearrange th is spread-out inrormation 'so all the data about a single iden
tirer is collected into one lump:

'struct
char id[10);
int line;
char type;
int usage;

sym[100]; .

:~ ,

C Tutorial - 19 -

This makes sym an array of structures; each array element has the specified shape. Now we
can refer to members as

symIiJ.usage++; / . increment usage of Hh identifier . /
forI j - O, symlil .id[j++J 1- "\0·,) . ..

elc.

Thus' to print a list of all identifiers that haven't been used, together with th'ei r line number,

fort i - a; i<nsym; i++)
if(sym[i].usage" == 0)

printW%d\t%s\n-, sym[i) .line, sym[i].id);

Suppose we now want to write a function lookup(name) which will tell us i f name already
ex ists in sym, by giving its index, or that it doesn't, by returning a -I. We can't pass a struc
ture to a fUllction directl y - we have to either define it externally, or pass a pointer to it. Let's
try the first way first.

int nsym 0 ; / . current length of symbol table . /

struct (
char id[101;
int line;
char type;
int usage;

J sym!I00!, / . symbol table . /

mainl) I

if((index c> lookup(newname)) > = 0)

else

IOOkup(s)
char .s; I

int i;

sym[index].usage++; / . already there /

install (newname, newline, newtype);

extern struct {
char id[10];
int line;
char type;
int usage;

J sym!];

for(i-a: i<nsym; i++)
if(compar(s , sym{i].id) > 0)

returnO);
return(-l);

compar(sl,s2) / . return 1 if sl==s2, 0 otherwise. /
char .sl , .52; (

while(.s 1++ == .52)
if(.52++ == '\0')

return(1);

C TUlOrial - 20 -

return(O);

The declaration of the structure in lookup isn't needed if the external definition precedes its
use in the same source file, as we shall see in a moment.

Now what if we want to use pointers?

struet symtag {
char id[10]:
'int line;
char type;
int usage;

} sym[100], .psyrn;

psym = . &sym[O]; /_ or p = sym; ./

This makes psym a pointer to our kind of structure (the symbol table), then initializes it to
point to the first element of sym.

Notice that we added something after th e word struct: a "tag" called symtag . This puts
a name on OUf structure defini tion so we can refer to it later without repeating the definition.
It's not necessary but useful. In fact we could have said

struet symtag (
•• . structure definition

) . . '

which wouldn't have assigned any storage at all , and then said

struct symtag sym[100];
sl ruc! sym!ag .psym;

which wou ld define the array and the pointer. This could be condensed further, to

slruct sym!ag sym(1001, .psym;

The way we actually refer to an member of a structure by a pointer is like this:

ptr - > structure-member

The symbol '->' means we're pointing at a member of a structure; '->' is only used in that
context. plr is a pointer to the (base of) a st ructure that contains the structure member. The
expression plr - > struc ture-member refers to the indicated member of the pointed-to struc
ture. Thus we have constructions like:

psym- >type = 1;
psym- > id[O] ' = 'a' ;

and so on.

For more complicated pointer expressions, it's wise to use parentheses to make it clear
who goes with what. For example,

sl rucl { int x, . y; J .p;
p- > x++ increments x
++p->x so does this!
(++p)->x . increments p before getting x
.p->y++ uses y as a pointer, then increments it
.(p- > y)++ so does this
.(p++l->y uses y as a pOinter, then increments p

The way to remember these is that - >, . (dot), (1 and [1 bind ve ry l igh tly. An expression in-

, .

-""-

C Tutorial - 21 -

volving one of these is treated as a unit. p- > x, am. y .x and f(b) are names exactly as abc is.

I f p is a pointer to a st ructure, any arithmetic on p takes into account the acutal size of
the structure. For instance, p++ increments p by the correcl amount to get the next element
of the array of st ructu res . Bu t don't assume that the size of a structure is the sum of the sizes
of its members - because of alignments of different sized objects, there IT!ay be " holes" in a
structure.

Enough theory'. Here is the lookup example, this time with pointers.

struct symtag {
char id[101;
int
char
inl

} sym(100];

main!) (

line:
type;
usage;

struct symtag _Iookup();
struct symtag -psym;

if((psym - lookup(newname)))
psym - > usage++;

else

/ _ non - zero pointer - /
/ _ means already there _/

install(newname, newline, newtype);

struc! symtag _lookup(s)
char _s ; (

struc! symtag _p ;
for(p=sym; p < &sym[nsym1; p++)

if(compar(s, p- > id) > 0)
return(p);

return(Q);

The functi on compar d~esn 't change: 'p - > id' refers to a string.

In main we test the pointer returned by lookup against zero, relyi.ng on the fact that a
pointer is by definition never zero when it really points at something. The other pointer mani
pulations are trivial.

The only complexity is the se t of lines like

struct symlag _lookup{);

This brings us to an area that we will treat only hurriedly - the question of function types. So
far, all of our functions have returned integers (or characters, which are much the same).
What do we do when the function returns something else, like a pointer to a stru/:tu re-? The
ru le is that any function tha t doesn't return an int has to say explicitly what it does return.
The type inform ation goes before the function name (which can make the name hard to see).
Examples :

char f(a)
int a; {

C Tutorial - 22 -

int·g()I .•. }

struc! symtag frlookup(s) char frS; I ... J

The function f returns a character, g returns a pointer to an integer, and lookup returns a
pointer to a structure that looks like symtag. And if we're going to use one of these functions,
we have to make a declara tion where we use it, as we did in main above.

Notice th parallelism between the declarations

struet sym!ag fr lookup();
slruct symtag frpsym;

In effect, th is says that lookup() and psym are both used the same way - as a pointer to a
strcture - even though one is a variable and the other is a fl:lnction.

21. Initialization of Variables

An external variab le may be initialized at compile time by following its name with an ini
ti alizing value when it is defined. The initializing value has to be somethi ng whose value is
known at compile time, like a constant.

inl x 0; /11' "0" could be any constant 11'/
int a 'a' ;
char flag 0177;
int frp &y(1]; /11' P now points to y[1] 11'/

An external array can be initialized by following its name with a list of initializations enclosed
in braces:

int
int

x(4]
y(]

10.1.2.3\;
10.1.2.3\;

char frmsg "syntax error\n";
char frkeyword[11

\ ;

"if',
"else",
"for",
"while",
"break",
"continue" ,
o

/11' makes x(i] = i 11'/
/11' makes y big enough for 4 values 11'/
/11' braces unnecessary here 11'/

This last one is very useful - it makes keyword an array of pointers to character strings, with
a zero at the end so we can identify the last element easi ly. A simple lookup routine could
scan·this until it either finds a match or encounters a ·zero keyword poinler:

lookup(str)
char frslr; I

int i,j,r;

/11' search· for sir in keyword[) 11'/

fort i = O; keyword[i} != 0; i++) I
. for(j~O; (r~keyword[i][j]) ~~ strUi && r I~ '10'; j++);
it(r == slrfj])

return(i);

return(- 1);

C Tutori al - 23-

Sorry - neither local variables nor st ructures can be initialized.

22. Scope Rules: Who Knows About What

A complete C program need not be compil ed all at once; the sou rce text of the prOiram
may be ,kept in several files, and previously compiled routines may be loaded from libraries.
How do we arrange that data gets passed from one routine to another? We have already seen
how to use function arguments and values, so let us talk about external data. Warn ing: the
words dec/oration and definition are used precisely in th is section; don't treat them as the same
thing:

A major shortcut exists for making extern declarations. If the definition of a variable ap
pears be/ore its use in some fu nction, no extern declaration is needed within the function.
Thus. if a file contains

IHI{ ... }
int 100;

12(I { ... 100 ~ 1; ••• }

13(I { ... il (100 I ...)
no declaration of too is needed in either f2 or or f3, because the external definition of faa ap
pears before them. But if 11 wants to use .too, it has to contain the declaration

IH I (
extern int faa;

This is true also of any function that exists on another file - if it wants 100 it has to use
an extern declaration fo r it. Of somewhere there is an extern declaration for something, th ere
must also eve ntually be an external definition of it, or you'll get an "undefined symbol" mes
sage.)

There are some hidden pitfalls in external declarations and definitions if you use multiple
source files . To avoid them, first , define and initialize each external variable ol)ly once in the
entire set of files:

int 100 0;

You can get away with mUltiple ex ternal defin itions on UNIX, but not on GCOS, so don't ask for
trouble. Multiple initiatizations are illegal everywhere. Second, at the beginning of any file
that contains functions needing a variab le whose definition is in some other file, put in an ex·
tern declaration, ou tside of any function :

extern int faa;

IH I{ .. . }
etc.

The #incl ude compi ler control line, to be discussed shortly, lets you make a single copy
of the external declaratio ns for a program and then stick them inlO each of the source files
making up the program.

23. # define, .. include

C provides a very limited macro faci lity. You can say

#define name something

and thereafter anywhere "name" appears as a loken, "something" will be substituted. This is

C Tutorial

particularly usefu l in parametering the sizes of arrays:

tdefine ARRAYSIZE 100
int arr[ARRAYSIZE];

while(i++ < ARRAYSIZE) •••

(now we can alter the entire program by changing only the define) or in setting up mysterious
constants:

#defjne
tldefine
#define

SET 01·
INTERRUPT 02
ENABLED 04

/* interrupt bit ./

if(x & (SET I INTERRUPT I ENABLED)) ...

Now we ha e meaningful words instead of mysterious constants. (The mysterious operators
'&' (AND) and 'I ' (OR) will be covered in the next section .) It 's an excellent practice 10 write
pro2rams wit hout any literal constants except in #define statements.

There are several warnings about #define. First, there 's no semicolon al the end of a
#define; all the text from the name to the end of the line (except for comments) is taken to
be the "something". When it's put into the text, blanks are placed around it. Good style typi
cally makes the name in the #define upper case - this makes paramete rs more visible.
Definitions affect things only after they occur, and only within the file in which they occur.
Defines ca n't be nested . Lasl, if there is a #define in a fi le, then the first character of the file
must be a 'II', to signal the preprocessor that definitions exist.

The other control word known to C is #include. To include one file in your source at
compilation time, say

#include "filename"

This is useful for putting a lot of heavily used data definitions and , define statements at the
beginning of a fil e to be compiled. As with #define, the first line of a file containing a #in
elude has to begin with a 'II' . And ,include can't be nested - an included file can't contain
another 'include.

24. Bit Operators

C has several operators fo r logical bit-operations. For example,

x - x & 0177;

forms the bit-wise AND of x and 0177, effectively retaining only the last seven bits of x. Other
operators are

inclusive OR
(circumflex) exclusive OR
(tilde) I's complement
logical NOT

< < lefl sh ift (as in x < < 2)
» right shift (arithmetic on PDP-II ; logical on H6070, lBM360)

J

, -iL.

,

C Tutorial - 25 ~

25. Assignment Operators

An unusual feature of C is that the normal binary operators like '+', '-', etc. can be
combined with the assignment operator '=' to form new assignment operators. For example,

x =- 10;

uses the assignment operator '=-' to decrement x by 10, and

x =& 0 177

forms the AND of x and 0177. This convention is a usefu l notational shortcut, particularly if x
is a complicated expression. The classic example is summing an array:

fort sum= i=O; i<n; i++)
sum = + array[iJ;

But the spaces around the operator are critical! For instance,

x = -10;

sets x to -10., while

x = - 10;

subtracts 10 from x. When no space is present,

x=-10;

also decreases x by 10. This is quite contrary to the experience .of most programmers. In par
ticular, watch out for things like

c= · s++;
y~&xIOl;

both of which are almost certainly not what you wanted. Newer versions of various compi lers
are courteous enough to warn you about the ambiguity.

Because all other operators in an expression are evaluated before the assignment operator,
the order of evaluation should be watched carefully:

x = x«y I z;
.means "shift x left y places, then OR with z, and store in x." But

x ·=« ylz;

means "shift x left by Yiz places", wh ich is rather different.

26. Floating Po int

We've skipped over floating point so fa r, and the treatment here will be hasty. C has sin- ·
gle and double precision numbers (where the precision depends on the machine at hand). For
example,

double sum;
float avg, y[10l;
sum = 0 .0;
lor(i=O; i<n; i++)

sum = + vIi];
avg = sum/n;

forms the sum and average of the array y .

All floating arithmetic is done in double precision. Mixed mode arithmetic is legal; if an
arithmetic operator in an expression has both operands int or char, the arithmetic done is in
teger, but if one operand is int or char and the other is float or double, both operands are con-

C Tutorial - 26 c

veTted to double . Thus if i and j are jnt and x is Iloat,

(x+i)/j
x + ilj

convert-s i and j to float
does ilj integer, then converts

Type conversion may be made by assignment; for instance,

int m, n;
IIoat x, y;
m = x;
y = n;

converts x to integer (truncating toward zero), and n to floating point.

Floating constants are just like those in Fortran or PLlI, except that the exponen t letter is
'e' instead of 'E'. Thus:

pi = 3.14159;
large = 1.2345678ge 10;

prinlf will format floating point numbers: "%w .df" in the format string will print the
corresponding variable in a field w digits wide, with d decimal places. An e instead of an I will
produce exponential notation.

27. Horrors! goto's and labels

C has a goto statement and labels, so you can branch about the way you used to. But
most of the time goto's aren't needed. (How many have we used up to this· point?) The code
can almost always be more clearly expressed by for/while, if/else, and compound statements.

One use of goto's with some legitimacy is in a program which contains a long loop,
where a while(l) would be too ex.tended. Then you might write

mainloop:
! ..
goto mainloop;

Another use is to implement a break out of more than one level of lor or while. goto's can
only branch to labels within the same function.

28. Acknowledgements

J am indebted to a veritable host of readers who made valuable criticisms on several
drafts of this tutorial. They ranged in experience from complete beginners through several im·
plementors of C compilers to the C language designer himself. Needless to say, this is a wide
enough spectrum of opinion that no one is satisfied (including me); comments and suggestions
are still welcome, so that some future version might be improved.

References
C is an extension of B, which was desi~ned by D. M. Ritchie and K. L. Thompson (4].

The C langua~e design and UNIX impJementation are the work of D. M. Ritchie. The GCOS ver
sion was begun by A. Snyder and B. A. Barres. and completed by S. C. Johnson and M. E.
Lesk. The IBM version is primarily due to T. G. Peterson, with the assistance of M. E. Lesk.

(IJ D. M. Ritchie, C Reference Manual. Bell Labs, Jan. 1974.

(2J M. E. Lesk & B. A. Barres, The GCOS C Library. Bell Labs, Jan. 1974.

[3J O. M. Ritchie & K. Thompson, UNIX Programmer's Manual. 5th Edition, Bel1 Labs, 1974.

[4] S. C. Johnson & B. W. Kerni&han, The Programming Language B. Computer Science
Techn ical Report 8, Bell Labs, 1972.

UNIX Assembler Reference Manual

O. Introduction

Dennis M. Ritchie

Bell Laboratories
Murray Hill. New Jersey

This document describes the usage and input syntax of the UNIX pop- II assembler as. The details of
the pop- II are not described; consult the DEC documents " PDP- 11 /20 Handbook" and "PDP- 11 /45
Handbook."

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler PAL-IIR ,
although its in te rnal workings and o utpu t format are unrelated . It may be useful to read th e publica
tion DEC-II-ASDB-D. which describes PAL-II R, although naturall y one must use care in assum ing that
its rules appl y 10 as.

As is a rather ordinary two-pass assembler without macro capab ilities. It produces an output file which
contains relocation information and a complete sy m bol table; thus the output is acceptable to ·the UN IX
link-ed itor Id, which may be used to combine the outpu ts o f several assembler runs and to obtain ob
ject .programs from libraries. The ou tput format has been designed so that if a program contains no
un resolved references to external symbols, it is executable without furth er processi n~.

1. Usage

as is used as follows:

as I - J /ite, ...

If the optional "-" argument is give n, all unde fin ed symbols in the curren t assembly wi ll be made
undefined-ex ternal. See th e .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs may be writ
ten in seve ral pieces and asse mbled toget her.

The output of the assembler is placed on the file a.ol/t in the current directory . If there were no un
resolved external refe rences, and nO" e rrors detected, a.oUl is made executable; otherwise, if it is pro
duced at all, it is made non-executable.

2. Lex ica l co nventions

Assembler to kens include identifiers (alternatively, "symbols" o r " names'.'), te mporary sy mbols, co n
s tants, and operators.

2.1 Identifiers

An identifier cons is ts o f a sequence of al phanu meric charac te rs (including period " . ", unde rscore "_",
and tilde "-,, as alphanume ric) of which the fi rs t may not be nume ric. Only the firs t eight characters
are s ign ifican t. When a name begins with a tilde, the tilde is disca rded and th at occurrence of the
identifier genera tes a unique entry in th e symbol table which can match no other occ urrence o f the
identifier. This feature is used by the C compiler to place names of local va riables in the output sym-

Assembler Manual - 2

bol table without having to worry about making them unique.

2.2 Temporary symbols

A temporary symbol consists of a digit followed by "f" or "b". Temporary symbols are discussed fully
in §5.1.

2.3 Constants

An octal constant consists of a sequence of digits; "8" and "9" are taken to have octal value 10 and 11.
The constant is truncated to 16 bits and interpreted in two's complement notal ion.

A decimal conslan t consists of a sequence of digi ts terminated by a decimal point ".". The magnitude
of the constant shou ld be representable in 15 bits; i.e., be less than 32,768.

A single-character constant consists of a single quote"'" followed by an ASCII character not a new
line. Certain dual-character escape sequences are acceptable in place of the ASCII character to represent
new-line and other non-graphics (see String statements, §5.5) . The constan t's value has the code for the
given character in the least significant by Ie of the word and is null-padded on the left.

A double-character constant consists of a double quote"·" followed by a pair of ASCI I characters not
including new-line. Certain dual-character escape sequences are acceptable in place of either of the
ASCII characters (0 represent new-line and olher non-graphics (see String statements, §5.5). The
constant's value has the code for the first given character in the least significant byte and that for the
second charac ter in the most significan t byte.

2.4 Openltors

There are several single- and double-character operators; see §6.

2.5 Blanks

Blank and lab characters may be interspersed freely between tokens, but may not be used within to
kens (except characte r constants). A blank or tab is required to separa te adjacent identifiers 'or con
stants nOI otherwise separated.

2.6' Comments

The charac ter "/" introduces a comment, which ex tends through the end of the line on which it ap
pears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment, and the bss
segment. The text segment is the one in which the assembler begins, and it is the one into which in
structions are typically placed. The UNIX system will, if desired, enforce the purity of the text segment
of programs by trapping write opera tions into it. Object programs produced by the assembler must be
processed by the link-editor Id (using its "-n" nag) if the text segment is to be write-protected. A
si ngle copy of the text segment is shared among all processes executing such a program.

The data segment is available for placing data or instructions which will be modified during execution.
Anything which may go in the text segment may be put into the data segment. In programs with
write-protected, sharable text segments, data segment contains the init ialized but variable parts of a
program. If the text segment is not pure, the data segment begins immediately after the text segment;
if the text segment is pure, the data segment begins at ihe lowest 8K byte boundary afler the lext seg
ment.

The bss segment may not contain any explicitly initialized code or data. The length of the bss segment
(like that of text or data) is determined by the high-water mark of the location counter within it. The
bss segment is actually an ex tension or the data segment and begins immedia tely after it. AI the start
of execution of a program, the bss segment is set to O. Typically the bss segment is set up by state
ments exemplified by

lab: • = ,+10

-
~;,.

,

...

Assembler Manual - 3

The advantage in usi ng Ihe bss segment for storage that stans off em pty is that the initialization infor
mation need not be stored in the output file. See also Location counter and Assignment statements below.

4. The location counter

One special symbol, ", ", is the location counter. l1s value at any time is the offset withi n the ap·
propriate segment of the start of the statement in which it appears. The location counter may be as
signed to, with the restriction that the current segment may not change; furthermore, the value of ... "
may not decrease. If the effect of the assignment is to increase the value of".", the requi red number
of nu ll by tes are ge ne rated (but see Segmems above).

5. S tatements

A source program is composed of a sequence of slatements. Statements are se parated either by new
lines or by se micolons. There are five kinds of statements: null statements, expression statements, as
sign ment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a name fol
lowed by a colon (:) . The effect of a name lilbel is to assign the current value and type of the location
coun ter ... " to the name. An error is indicated in pass I if the name is already defi ned; an e rror is in
di~aled in pass 2 if the". " value assigned changes the definition of the label.

A numeric label consists of a d igit 0 to 9 followed by a colon (:) . Such a label serves to define tem
pora ry symbols of the fo rm "nb" and "nf", where n is the digit of the label. As in the case of name
labe ls, a numeric label assigns the current value and type of" . " to the tempo rary symbol. However.
seve ral nume ric labels with the same digi t may be used with in the sa me assemb ly. References of the
form "nf" refer to the first numeric label "n:" fo rward from the reference; "fib" symbols refer to the
first "n :" label backward from the reference. Th is son of temporary label was introduced by Knuth
[nle Art of Computer Programming, Vol I: Fundomelllal Algorithms I. Such labels tend to conserve both
the sy mbol table space of the assembler and the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement (which may. however, have labels). A null statement is ig
nored by the assemble r. Common examples of null statemen ts are empty lines or lines containing
only a label.

5.3 Expression statements

An 'expression statement consists of;1O arithmetic expression not beginning with a keyword. The as
sembler computes its 06-bit) value and places it in the output stream, together with the appropriate
relocation bits.

5.4 Assignment statements

An assignment statemen t consists of an identifier. an equals sign (=), and an expression. The va lue
and type of the expression are assigned to the identifier. It is not required that the type or value be
the same in pass 2 as in pass I, nor is it an error to redefine any symbol by assignment.

Any external attribu te of the expression is lost across an assignment. This means that it is not possible
to decla re a global symbol by assigni ng to it, and that it is impossible 10 dellne a symbol to be offset
from a non- locally defined global symbol.

As me ntioned . it 'is permissi ble 10 ass ign to the location counter". ". It is required, however. that the
type of the expression assigned bc of the same type as " . ". anti it is forbidden to decrease the v,llue of
" " In practice, the most common assignment to ."." has the form " .=.+ n" for some number II;

Assembler Manual - 4

th is has the effect of generating n null bytes.

5.5 String statements

A string statement generates a sequence of bytes con tain ing ASCII characters. A string statement con
'sists of II left Siring quote "<" followed by a sequence of ASClt characte rs not including newline, fol
lowed by a right stri ng quote ">". Any of the ASCII characte rs may be repl ,lced by a two-character es
cape sequence to represent certain non-graphic charac ters, as follows:

In NL (012)
It HT (011)
Ie EOT (004)
10 NUL (000)
IT CR (015)
la ACK (006)
Ip rFX (033)
II \
I> >

The last two are included so thaI the escape character and the right string quote may be represented .
The same escape sequences may also be used within single- and double-character constants (see §2.3
above).

5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instructions are or
this sort. A keyword statement begins with one or the many predefined keywords or th e assembler;
the syntax or the remainder depends on the keyword . All the keywords are listed below with the syn
tax they requi re.

6. Expressions

An expression is a sequence or symbols representing a value. Its cons tituents are identifiers, constants,
temporary symbols, operators, and brackets. Each expressio n has a type.

All operators in expressions are fundamentally binary in nature; ir an ope rand is missing on the left, a
o of absolute type is ass umed. Arithmetic is two's com plement and has " 6 bits or precision. All opera
tors have equal precedence , and expr~sions are eva luated strictly lert to right except ror the effect of
brackets.

6.1 Expression operators

The opera tors are :

(blank) when there is no operator between operands. the e ffect is exactly th e same as ir 'a
"+" had appea red.

+ addition

•

v

subtraction

multiplication

division (note that plain "'" starts a comment)

bitwise an"

bitwise or

> > logical right shirt

< < logical lert shift

% modulo

a! b is a or (nol b); i:e., the or of the first ope rand and the one's complement or the

, -

.- -

,.
r

,

Assembler Manual· 5

second ; most common use is as a unary.

result has the value of first operand and the type of the second; most often used to
define new machine instructions with syntax identical to exis ting inst ructions.

Expressions may be grouped by use of square brackets" (j". (Round paren theses are reserved for ad·
dress modes.)

6.2 Types

The assembler deals with a numbe r of types of exp ressions. Most types are attached to keywords and
used to select the routin e wh ich treats that keyword. The types lik~ly to be mel explici tly are:

undefined
Upon first encounter, each symbol is undefined. It may become undefined if it is as
signed an undefined expression. It is an er ror to attempt to assemble an undefined ex·
pression in pass 2; in pass I, it is not (except that certain keywords require operands
which are not undefined).

undefined ex ter nal
A symbol which is declared .glob! but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link edi tor Id must be used to load
the assembler's output with another routine that defines .the undefined reference.

absolute

text

data

bss

An absolute symbol is one defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link·editor to t-he output file.

The value of a text symbol is measured wi th respect to the beginning of the text segment
of the program. If the assembler outpu t . is link-edited, its text symbols may change in
value since the program need not be the first in the link editor's output. Most text sym·
boIs are defined by appearing ·as labels. At the start of an assembly. the value of"." is
text O.

The value of a data symbo.l is measured with respect to the origin of the data segment of
a program. Like tex t symbols, the value of a data symbol may change during a subse
quent link-editor run since previously loaded programs may have data segments. After
the first .data statement, the value of". " is data O.

The value of a bss symbol is measured from the beginning of the bss segme nt of a pro
gram. Like text and data sy mbols, the value of a bss symbol may change during a subse
quent link·editor run, since previously loaded programs may have bss segments . . After
the first .bss statement, the value of"." is bss O.

external absolute, text, data, or bss
sy mbols declared .g lobl but defined within an assembly as absolute, text, data, or bss sym·
bois may be used exactly as if they were not declared .glob! ; howeve r, their value and
type are available to the link editor so that the program may be loaded with others that
reference these symbols.

register
The sy mbols

rO ... r5
frO ... fr5 s.
pc

are predefined as register sy mbols. Either they or symbols defined from them must be
used to refe r to the six gene ral-purpose, six floating·point , and the 2 special-purpose
machine registers. The behavior of the noating register names is identical to that of the

Assl'mbler Manual· 6

correspondi.ng general register names; the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to se lect the routine
which processes the associa ted keyword statement. The behavior of such symbols when
not used <1$ keywords is the same as if they were absolute.

6.3 Type propagation in exp ressio ns

When ope rands are combined by expression opera tors, the result has a type which depends on the
types of the operands and on the operator. The rules involved arc complex to state but were inte nded
to be sensible and predictable . For pu rposes of expression evaluation th e imporlanl lypes are

undefined
absolute
tex t
data
bss
undefined ex terna l
other

The combin ation f'ules are th en: If one of the operands is undefined , th e result is unde fin ed. If both
operands are absolute, the resu lt is absolute. If an absolute is combined with one of the "other types"
mentioned above. or with a register expression, the result has the register or other type. As a conse·
quence, one can refer to r3 as "rO+3". If two operands of "other type" are combi ned, the result has
the numerically larger type (not that this fact is very useful, since the values are not made public) . An
"other type" combined with an explicitly discussed type other than absolu te acts like an absol ute. ,
Further rules applying to paqicular ope rators are:

+ If one operand i ~ te xt·, data·, or bss·segment relocatable, or is an undefi ned external,
th e resu lt has the postulated type and the other ope rand must be absolute.

If the first operand is a reloca tab le text·, data·, or bss·segment symbol, the second
operan d may be absolute (in which case the result has the type of the first operand); or
th e second operand may have the same type as the first (in which case the result is abo
solu te) . If the firs t operand is external undefined, the second must be absolute. All
ot he r combinations are illega l.

This operator follows no other rule than that th e result has the value of the first
ope ran d and the type of the second.

others It is illegal to apply th ese operators·to any but absolute symbols.

,. Pseudo-operations

The keywo rds lis ted below introd uce, statements which ge nerate data in unusual forms o r innuence the
la ter operations of the assembler. The meta notation

[stuffl ...

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are literals, italic
words are substitutable. .

7.1 .byte expression I , expression 1

•

The expressions in the comma·separated list are trunca ted to 8 bits and assembled in successive bYles. ~
The expressions must be absolute. This sta temen t and the string statement ab"Ove are the only ones ~
which assemble data one by te at at time.

7.2 .even

If the locat ion cou nter ". " is odd, it is advanced by one so the next statement will be assembled at a

,

Assembler Manual - 7

word boundary.

7.3 . i f expression

The expression must be absolute and defined in pass I. If its value is nonzero, the . i f is ignored; if
zero, th e statements between the .if and the matching .cndif (below) are ignored .. if may be nested.
The effect of .i f cannot ex tend beyond the end of the input file in which it .appears. (The statements
are not totally ignored. in the following sense: . ifs and .cndifs are scanned for, and moreover all names
are entered in the symbol table. Thus names occurring only inside an . if wi ll show up as undefined if
the symbol table is listed.)

7.4 .endi f

This statement marks the end of a conditionally-assembled section of code. See .if above.

7.5 .globJ name (, name) ...

This statement ma kes the names external. If they are otherwise defined (by assignment or appearance
as a label) they act within the assembly exactly as if the .Jllobl statement were not given; however, the
link editor Id may be used to combine this routine with other routines that refer these symbols.

Conversely, if th e given sy mbols are not defined within the cur rent assembly, the link editor can com
bine the output of this assembly with th at of others which define the sy mbols.

As di scussed in §I, it is possible to force the assembler to make all otherwise undefined symbols exter
nal.

7.6 .text
7.7 .data
7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text, data, or bss seg
ment respectively . Assembly starts in the text segment. It is forbidden to assemble any code or data
into the bss segment. but symbols may be de fi ned and" . " moved about· by assignment.

.7.9 .co mm nome, expression

Provided the name is not defined elsewhere, this statement is equivalent ·to

.globl name
name = expression name

That is, the Iype of nome is "undefined external", and its value is expression In fact the name behaves
in the current assembly just like an undefined external. However. the link-editor Id has been spec ial
cased so that all external symbols which are nOI otherwise de fined, and which have a non-zero value.
are defined to lie in th e bss segment, and enough space is lefl after the symbol to hold expression bytes.
All symbols which become defined in this way are located before all the explicitly defined bss-segment
locations.

8. Machine instructions

Because of the rather complica ted instruction and addressing structure of the POP-I I, the syn tax of
machine instruction stateme nts is varied. Although the following sections give the syntax in detail, the
11120 and 11 /45 handbooks should be consulted on the semanlics.

8.1 Sources and Destinations

The syntax of general sou rce and destination addresses is the same. Each must have one of the rol
lowing fo rms. where reg is a register symbol, and expr is any so rt of exp ression:

Ass~mb/~r Manual - 8

syntax words mode

"g 0 O+reR
(reg)+ 0 2+reR
- (reg) 0 4+reg
expr(reg) I 6+rcg
(reg) 0 I + reg
• reg 0 I+ reg
· (reg)+ 0 3+reg
• -(reg) 0 5+reg
·(reg) I 7+reg
• expr(reg) I 7+reg
expr I 67
Sexpr I 27
• expr I 77
• S expr I 37

The words column gives the number of add ress words generated; the mode column ' gives the octal
address-mode number. The ~ynlax of the address forms is identical to that in DEC assemblers, except
that "." has been substituted for "Ca)" and "$" for "#"; the UNIX typing conventions make "(PI" and
"tI" rather inconvenient.

, Notice that mode " ·reg" is identical to "(reg)"; that "· (reg)" generates an index word (namely, 0);
and that addresses consisting of an unadorned express ion are assembled as pc-relative references in
dependen t of the type of the expression. To force a non-relative re re rence, the form " ·$expr" can be
used, but no tice th at rurther indi rectio n is impossible.

8.3 Simple machine instructions

The following instructions are defined as absolute symbols :

cle
cI,
clz
cln
sec
s",

sez
sen

They therefore require no special syntax . The pop-II hardware allows more than one of the "clear"
class, or alternatively more than one of the "set" class to be or-ed together ; this may be expressed as
follows:

clc I clv

8.4 Branc,h

The followinl instructions lake an expression as ·ope rand. The expression must lie in the same seg
ment as the rere rence, can not be undefined-ex ternal, and its value cannot differ from the current loca
tion of" . " by more th an 254 bytes:

~.

... ,-'
~.

'" ,-

..

Assembler Manual· 9

b, bios
bne b"
be. b"
bge bhis
bit bee (= bce)
bgt bee
ble blo
bpi bcs
bmi bes (~ bcsl
bhi

bes ("branc h on error set") and bec ("branch on error clear") are intended to test the error bit reo
tu rn ed by system calls (which is the c· bit).

8.5 Extended branch inst ructions

The rollowing symbols are rollowed by an expression representing an address in the S\lme segme nt as
", ". Ir the target address is close enough, a branch·type inst ructio n is generated; ir the add ress is 100
ra r away, a jrnp will be used.

jbr jlos
jne j\'C
jeq jvs
jge jhis
jlt jec
jgt jec ·
jle jlo
jpl jcs
jrni jes
jhi

jbr turns into a plain jrnp ir its target is. too remote; the others (whose names are con trucled by replac·
ing the "b" in the branch instruction's name by "j") turn into the co nve rse branch over a jmp to the
targ~t address.

8.6 Single operand instructions

The rollowing symbols are names or single·operand machine instructions. The ro rm or address expect·
ed is discussed in §8.1 above:

c1, sbcb
c1rb ,.,
com rorb
comb '01
inc rolb
incb '" dec 3srb
decb asl
neg aslb
negb jmp
ade swab
adcb ts.
, be Istb

8.7 Doub le operand instructions

. The rollowing inst ructi ons take a general source and destination (§8.t). sepa rated by a comma, as
operands.

Assembler Manual. · 10

mo"
movb
emp
cmpb
bit
bitb
bie
bicb
bis
bisb
add
sub

8.8 Miscellaneous instructions

The followini instructions have more speciali zed syntax. Here reg is a register name, src and dSI a gen
eral source or destination (§8,n. and expr iS, an expression:

jsr reg,dsr
rls reg
sys expr
ash SfC, reg (or, als)
ashe SfC, reg (or, alsc)
mul SfC, reg (or, ruPY)
div src, reg (or, dvd)
xor reg. dSI

sXl dSi
mark ex.pr
sob reg. expr

sys is jl.nother name for the trap instruction. It is used to code system calls. Its operand is required to
be expressible in 6 bits. The alterna tive forms for ash, ashe, mul , and div are provided to a~oid connict
with EAE re&iSler names should they be needed.

The expression in mark must be expressible in six bits, and the expression in sob must be in the same
segment as ".", must not be ex ternal-undefined, must be less than ".", and must be within 510 bytes
of" • ",

8.9 Floating-point unit instructions

The following Ooating-point operations are defined, with syntax as indicated :

dee
setr
setd
seti
set!
elrf Idsl
negf Idsl
absf Idsl
Islr fsrc
muvf fsrcJreg (- Idr)
movf fregJdsl (- SIr)
movif srcJreg (- Ide;r)
movti freg, dSI (= stcfi)
movof fsrcJr~K (- Idedf)
movfo fregJdst (- Slefd)
movie srcJreg (- Idexp)
movei freg, dSI ("" stcxp)
addf fsrcJrl?g
subr fsrcJreg

" / " ,

..,
Assembler Manual - II

muir /src,freg
divf Isrc,freg
cmpf Isrc,lreg
modf Isrc,freg
Idfps s<c
stfps dSl
slst dSl

Isrc. Ids,. an(j IreK mean floating-point source. des tination, and register respec ti vely. Thei r syntax is
identical to that for the ir non- floa ti ng counte rparts, but note that on ly floating registe rs 0- 3 can be a
ITeg.

The names of several of the operations have been changed 10 bring oul an analogy with ce rtain fi xed
point instructions. The on ly st range case is movf. which turns into eit lie r str or Idf depending respec
tively on whether ils first opera nd is or is not a regis ter. Warning: Idf sets the floati ng condition
codes. stf does not.

9. Other sy mbols

9.1 ..

The sym bol " is the relocation counter. Just before eac h assembled word is placed in the output
stream, the current value of th is symbol is added to the word if the word refers 10 a text, data o r bss
segment location . If the ou tput word is a pc-relative address word which refers to an absolute location,
the value of" .. " is subt racted.

Thus the value of " can be taken to mean the starting core location of the program. In UN IX sys
tems with relocation hardware. the initial value of " is O.

The va lue of " may be changed by assignme nt. Such a course of action is somet imes necessa ry ,
but the co nsequences should be carefully thought out. It is particu larly ticklish to change " mid
way in an assembly or to do so in a program which will be treated by the loader, which has its own no
tions of " .

9.2 System calls

The following absolute sy mbols may be used to code calls to the UNIX syste m (see th.e sys instruction
above).

break nice
chdir open
chmod read
chown seek
close setuid
creat signal
exec slat
ex it slime
fork stty
fslat lell
gCluid lime
glly umount
link unlink
makdir wait
mdalc write
mount

Warning: the wait syste m call is not the same as the wait instruction, which is not defined in Ihe as
sembler.

10. Diagnostics

Wh en an input file ca nn ot be read. its name followed by a question mark is typed and assembly ceases.
When sy ntactic or semantic errors occur, a si ngle,character diagnostic is. typed ou l together with the

Assembler Manual - 12

line number and the file name in which i t occurred. Errors in pass I cause cancellation of pass 2. The
possible errors are :

parentheses error
parentheses error

> st rin g nol terminated properly
indirection (.) used illegally
illegal assignmen t to"."

A error in address
Il branch address is odd or too remote
t error in expression
F error in local ("f" or "b") type symbol
G &arbage (unknown) character
I end of fi le inside an .ir
M mult ip ly defin ed symbol as label
o word quantity assembled al odd address
P phase error- " . " differen t in pass I and 2
R relocation error
u undefined symbol
x syntax error

A Tutorial Introduction to the UNIX Text Editor

B. W. Kern ighan

Bell Laboratories, Murray Hill, N. J.

Introduction

Ed is a "text editor", that is. an interactive
program for creating and modifying "text", using
directions provided by a user at a terminal. The
text is often a document like this one, or a pro
gram or perhaps data for a program.

Th is introduction is meanl to simplify
learning e.d. The recommended way 10 learn ed
is to read Ihis document, simul taneously using ed
to follow the examples, then to read the descrip
tion in section 1 of the UNIX manual, all the
while experimenting with cd. (Solicitation of ad
vice from experienced users is also useful.)

Do the exercises! They cover material not
completely d iscussed in the ac tual text. An ap
pendix su mmarizes the commands.

Disc:laimer

This is an introduction and a tutorial. For
this reason, no allempt is made to cover more
than a part of the facilities tha t ed offers
(alt hough this fraction includes the most useful
and frequently used pans). Also, there is not
enough space to explain basic UN IX procedures.
We will assume that you know how to log on to
UN IX, and that you have at least a vague under·
standing of what a file is.

You must also know what character 10 type
as the end·of·line on your particular terminal.
This is a "newline" on Model 37 Teletypes, and
"return" on most others. Throughout, we will
refer to Ihis character, whatever il is, as "new·
line".

Gett ing S tarted

We'll assume that you have logged in 10
UNIX and it has just said "'/. ". The easiest way
to get. cd is \0 type

ed (followed by a neWline)

You are now ready 10 go - ed is waiting fo r you
to tell it what to do.

Creating Text - the Appen~ command "a"

As ou r firs l problem, suppose we want 10
create some text starting from scratch. Perhaps
we ·are typing the very fi rst d raft of a paper;
clearly it will have to Slarl somewhere, and un·
dergo modifications later. This section will show
how to get some text in , just to get started.
Later we'll talk about how to change it.

When ed is firs t started, it is rather like
working with a ·blank piece of paper - there is
no text or information present. This muSI be
supplied by the person using ed; it is usually
done by typing in the text, or by reading it in to
ed from a file. We will Slarl by typing in some
text, and re lurn shortly to how to read files.

First a bit of terminologY. In cd jargon, the
text being worked on is said to be "kept in a
buffer." Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effeci the buffer is
like the piece of paper, on wh ich we will write
things, then change some of them, and fi nally
file the whole thing away for another day.

The user tells ed what to do to his text by
typing ins tructions called "commands." Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is
preceded by information about what line or lines
of text are to be affected - we will discuss these
shorlly.) Ed makes no response to most com·
mands - there is no prompting or typing of mes
sages like "ready". (This silence is preferred by
experienced users, but sometimes a hangup for
begin ners.)

The firs t command is append, written as the
leuer

,
all by itself. It means "append (or add) text
li nes to the buffer, as J type them in." Append·
ing is rather like writing fresh material on a
piece of paper.

So to enter Jines or text into the buffer, we
just tyre;1n "[I" rollowed by a newline, followed
by the lines or text we want , like this :

Now is the time
ror ltll good men
to come to the aid 0r their party.

The only way to stop appending is to type a
line that contains only a period. The "." is used
to tell cd that w.e have finished appending.
(Even experienced users forget that terminating
"." sometimes. If ed seems to be ignoring you,
type an ext ra line with just "." on it. You may
then find you've added some garbage lines to
you r text, which you'll have 10 take ou t later.)

Arter the append c,?mmand has been done,
the buffer will contain the three lines

Now is the time
for all goocl men
to come to the aid of their party.

The "a" and " ." aren't there, because they are
not text.

To add more text to what we already have,
just issue another "a" command, and continue
typing.

Error Messages - "?"

If til any time you make an error in the
commands you type to ed, it will tell you by typ
ing ,
This is about as cryptic as it can be, but with
practice, you can usuallr figure ou t how you
goofed.

Writing text out as a fil e - the Wr ite command
"w"

It's likely that we'll want to save our text
for later use. To write OUI the con tents of the
buffer onto a file, we use the write command

w

followed by the filename we want to write on.
This will copy the buffer's contents onto the
specified file (destroying any previous informa
tion on the file). To save the text on a file
named "ju·nk". for example, type

w junk

Leave a space between " w" and the file name.
Ed will respond by printing the number of char
acters it wrote ou t. In our case, ed would
respond with

- 2 -

68

(Remember that blanks and the newline charac
ter at the end of each line are included in the
character count.) Writing a file just makes a copy
of the texi - the buffe r's con tents arc not dis
turbed, so we can go on adding Jines to il. Th is
is an important point. Ed at all limes works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
"w" command. (Writing ou t the text onto a file
from lime to lime as il is being created is a good
idea, since ir the system crashes or if you make
some horrible mistake, you will lose all the text
in the bulfer but any texi thaI was written onto a
file is relatively safe.)

Leav ing ed - the Quit command "q"

To te rminate a session with ed, save the
text you're working on by writing it onto a file
using the "w" command, and then type the
command

q

which stands for quit. The system will respond
wilh " %". At this point your buffer vanishes,
with all its tex t, which is why you want to write
it out berore quitting.

Exercise t:

Enter ed and create some text using
,
... text .. .

Write it out using "w". Then leave ed with the
"q" command, and print the file, to see th at
everything worked. (T9 prinl a file, say

pr filename

cat filename

in response to " %". Try both.)

Reading lext from a fil e - the Edit command
" c"

A common way to get text into the buffer
is to read it rrom a file in the file system. This is
what you do to edit lext that you saved with the
"w" command in a previous session. The edif
command "e" retc hes the entire contents of a
file inlo the buffer. So if we had saved the Ihree
lines "Now is the time", etc .• with a "w" com
mand in an earlier session. the ed command

ejunk

would fetch the entire conten ts of the file
"junk" into the buffer, 'and respond

\

68

which is the number of characters in "junk". If
ol/ything was already in the buffer. it is deleted first.

Ir we use the "e" command 10 read a file
inlO the butrer, then we need not use a file name
afler a subse~uent "w" command; edremembers
the lasl file name used in an " e" command, and
"w" will write on this file : Thus a common way
to operate is

,d
e file
[editing session)
w

q

You can find out at any lime what file
name ed is remembering by typing the file com
mand "P', In our case, if we typed

f

cd would reply

junk

Reading text from a file - the Read command
"r"

Sometimes we want to read a file into the
buffer without destroying anything that is al
ready there. Th is is done by the read command
" r". The command

r junk

will read the file "junk" into the buffer ; it adds it
to the end of whatever is al ready in the buffer.
So if we do a read after an edit :

ejun k
r junk

the bu ffer wi ll contain lWO copies of the text (six
lines).

Now is the time
for all good men
to come to the aid o f their party.
Now is the time
for all good men
to come to the aid of thei r party.

Like the "w" and "e" commands. "r" prints the
number of c haracters read in, after the reading
operation is complete.

Generally speaking, "r" is much less used
than "e".

- J-

Exercise 2:

Experiment with the "e" command - try
reading and printing va rious files . You may get
an error "?", typically because you spelled the
file name wrong. Try al ternately reading and ap
pending to see that they work similarly . Ve rify
that

ed filename

is exactly equivalent to

,d
e filename

What does

f filename

do?

Printing the contents of the buffer - the P rint
comnland "p"

To print or list the contents of the bu'ffer
(or parts of il) on the terminal, we use the print
com niand

•
The way th is is done is as follows. We speci fy
the lines where we want printing to begin and
where we wan t it to end, separated by a comma,
and followed by the letter lOp". Thus to print the
first two lines of the buffer, for example, (that is,
lines ! through 2) we say

!,2p (starling line- I, e nding line ... 2 p)

Ed will respond with

Now is the time
for all good men

Suppose we want to print all the lines in
the buffer. We could use " 1,3p" as above if we
knew there were exactly 3 lines in the buffer.
But in general, we don't know how many the re
are, so wha t do we use for the ending line
number? Ed provides a s horthand symbol for
"line number of last line in bulTer" - the dollar
Sign "S". Use it this way:

l,$p

This will print all the lines in the buffer Oi ne I
to last line.) Ir you want to SlOp the printi ng be
fore it is finished, push the DEL or Delete key;
edwilltype ,
and wait for the nex t command.

To print the last line of the buffer, we
cou ld use

S,$p

but ed lets us abbreviate this to

Sp

We can print any singl~ line by typing the line
number followed by a "p". Thus

Ip

IHOduccs the resflOnsc

Now is thc time

wh ich is the first line of the buffer.

In fllel, <'d leIs us abbreviate even furthe r:
we Clln print a ny single line b)' typing jllst Ihe
line number - no need 10 (ync the letter "p".
So if we say

$

ed will print the last line of the buffer for us.

We can lliso use "$" in combinations like

$-I,Sp

which prints the last two lines of Ihe buffer.
This helps when we wanl to see how far we got
in typing.

Enrcise 3:

As before, creale some lext using the ap
pend command and experiment with the "1'''
command. You will find, for example, that you
can' t prin t .line 0 or II line beyond Ihe end of thc
bulfeT, and that attempts \0 print a buffer in re
verse order by saying

3, I p

don't work.

The current line - "Dol'·' or " ."

Suppose our buffer still contains the six
lines as above, that we have just typed

1,3p

and ed has printed the: three: lines for us. Try
typing jusl

p (no line numbers).

This will print

to come to the aid of thei r party.

which is the third line of the buffer. In fact it is
the last (most recent) line that we have done
anything with. (We: just primed it!) We can re
peat this "p" command without line numbers,
and it will continue to prin t line 3.

The reason is th,lI eJ maintains a record of
the last line that we did anything to (in this case,
lin e 3. which we just printed) so thaI it can be
used instead of an ex plicit line number. This
most recent line is referred 10 by the shorthand
symbol

(pronounced "dot").

- 4 -

00\ is " line number in the same way Ihat "S"
is; il means exaclly "the c urrent line", or loose
ly, " the line we mosl recently did somethi ng [0."

We can usc it in several ways - one possibility
is to SllY

. ,$11

This will print all the lines from (includi ng) the
current line to the end of the buffer. In ou r case
these are lines 3 through 6.

Some commllnds change the value of dot,
while others do 1I0t. Th e print command sets
dot 10 the number or the last line printed; by
our l<.lsl comm<lnd, we would have "," - "$" =

6.

Dot is most useful when used in combina
tions like this one :

.+1 (or equivale ntly, .+Ip)

This means "prim the next line" and gives us a
handy way to step slowly th rough a buffer. We
can also say

.-\ (or ,-Ill)

which means "print the line be/ore the current
line," This enables us to go backwards if we
wish, Another useful one is something like

.-3,_-lp

which prints the IHevious three lines.

Don' t forget that all of these change the
value of dOl. You can find ou t what dot is at
any lime by typing

-
Ed will respond by printing the value of dol.

Let's summnrizc some things about the "p"
command and dol. Essentially "p" (an be pre
ceded by 0, I, or 2 line numbers. If there is no
line number given, it prints the "cu rren t line",
the line thaI dot refers 10. If there is one line
number given (with or without the leller "p"), il
prints Ihat line (and dot is sct there); and if
there nre two line numbers. it prinlS all the lines
in Ihat range (and sets dot to the last line print
ed.) If two tine numbers arc specified the first
can't be bigger than Ihe second (sec Exercise 2.)

Typing a single newline will cause printing
of the next line - it's equivalent to ".+ Ip", Try
it. Try typing "." - it's equivalent to ".- lp".

c '

Delelin~ line,,; the "d" command

Suppose we want to get rid of the three ex
tra lines in the butfer, This is done by the defe/e
command

d ·

Except that "d" deletes lines instead of printing
them, its action is similar to that of "p", The
lines to be deleted are specified for "d" exactly
as Ihey ,He for "p":

starlin/{ fine, ending lille d

Thus the command

4,$d

deletes lines 4 through the end. Th cre are now
three lines Icrt, as we can check by using

I,$p

And notice that "$" now is line)! Dot is set to
the next line after the last line dcleted , unless
the last line deleted is the last line in the buffer.
In thai case, dOl is set to "$".

Exercise 4:

EXlleriment with "a", "e", "r", "w", "p",
and "d" until you are sure that you know what
they do, imd until you understand how dot, "S",
and line numbers are used.

If you arc adventurous, try using line
numbers with "a", "r", and "w" as well. You
will find that "3" will append lines a/ler th e line
number that you specify (rather than after dot);
that "r" reads a file in o/Ier the line number you
specify (not necessarily at the end of the bulfer);
and that "w" will write out exactly the lines you
spccify, not necessarily the whole bulTer. Thcse
varia tions are sometimes handy . For instance
you can insert a file at the beginning of a buffer
by saying

Or fil ename

and you can enter lines at the beginning of the
buffer by saying

0,
... Iext.

Notice thai ".w" is very different from

w

Modify ing lext: the Substitute command "s"

We are now ready 10 try onc of the most
important of all commands - the subst itute
command

s

This is the command that is used to change indi
vidual words or letters wilhin a line or group or
lines. It is what we usc, for example, for correct
ing spelling mistakes and typing errors.

Suppose that by a typing error, line I says

Now is th time

the "c" has been lert off "the". We can use
"s" 10 fix this up as follows:

Is/th/the/

This says: "in line I, substitute ror the charac
lers 'th' the charac ters 'the'." To verify that it
works (ed will not print the result automatically)
we ,say

p

and get

Now is the time

which is whal we wanted, Notice that dot must
ha ve been set to the line where thc substitu tion
took place, since the "p" command printed Ihat
line. Dot is always set this way with the <'s"
command.

The general way to usc the substi tute com
mand is

starling-line. ending-l;ne s/chonge this/to Ihis/

Whatevcr string of characters is between the
first pair of slashes is replaced by whatever is
between the second pair, in af/the lines between
starting line and ending line. Only the firsl oc
currence on each line is changed, however. If
you want to change every occurrence, see Exer
cise 5. The rules for line numbers are the same
as those for "p", except that dot is set to the last
line changed. (But there is a trap ror the
unwury: if no substitution took place. dot is nol
changed. This causes an error "?" as a warn
ing.)

Thus we can say

I,Ss/speli ng/spellingl

and correc t the first spelling mistake on each line
in lhe tex\. (This is useful for people who are
consistent misspellers !)

If no line numbers are given. the "s" com
mand assumes we mean "make the substitution
on line dot", so it changes things only on the
current hne. This leads to the very common se
Quence

s/somcthing/somcthing elselp

which makes some corrcction on the currcnt
line, and thcn prints iI, 10 make sure it worked
ou t right. If it didn't, we can try again . (Notice
that we put a print command on the same linc as
thc substitute. With few cxceptions, "p" can
follow any command; no other multi-command
lines are legal.)

It's also legal to say

sl ... /I

which means "change the first string of charac
ters to no/fling", I.e., remove them. This is useful
for deleting extra words in a line or removing
ptra letters from words:. For instance, if we had

Nowxx is thc timc

we can say

s/xxllp

to get

Now is the time

Notice that "/I" herc means " no characters",
not a blank. There is a diffcrence! (See below
for another meaning of "/I"J

Exercise 5:

Experiment with the substihlte command.
Sce what happens if you substitu te for some
word on a line with several occurrences of that
word. For example, do this:

,
the other side of the coin

s/the/on thelp

You will gel

on the other side of the coin

A substitute command changes only the first oc
currence of the first string. You can change all
occurrences by adding a "g" (for "global") to
the "s" command, li ke this:

s/ .. . I . . . /gp

Try other characters ins tead of slashes to delimit
the two sets of charac ters in the ':s" command -
anything should work except blanks or tabs.

(If you gct funny results using any of the
characters

$ • \
read the sec tion on "Special Characters",)

-6-

Context searching - "I ... I"

With the substitute command mas tered. we
can move on to another highly important idea of
ed - context searching.

Suppose we have our origina l three line
tcxt in thc buffer:

Now is the timc
for all good men
to come \0 the aid of their party.

Suppose we want to find thc line that contains
"their" so we can change it to "the". Now with
only thrce lines in thc buffer, it's prctty easy to
keep track of what line the word "their" is on.
But if the buffcr contained sc'/eral hundred lines,
and we'd been making changes, deleting and
rearranging lines, and so on, we would no longer
really 'know what this line number would be.
Context searching is Simply a method of specify
ing the desircd line, regardless of what its
number is, by specifying some context on it.

The way we sa}' "search for a line that
contains this particular st ri ng or characters" is to
type

Istring of characters we ",0111 10 find!

For example, the ed line

Itheirl

is a context search which is sufficient to find the
desired line - ;t will locale the next occurrence
of the characters between slashes (" thei r"). It
also sets dot 10 that line and prints the line for
verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking
for the string at line "_+1", searchcs to the end
of the buffer, then continues at line I and
searches to line dot. (That is, the sea rch "wraps
around" rrorn "$" to 1.) II scans all the lines in
the buffer until it either finds the desired line or
gets back to dot again. If the given string of
characters can't be found in any line, ed types
the error message ,
Otherwise it prints the line it found.

We can do both the search for the desired
line alld a substitution all at once, like this:

It hei r Islt heir It help

wh ich will yield

LO come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
si.Jbstitution, print the line.

r

The expression "/their/" is a context
search expression. In their simplest form, all
context search expressions are like this - a
string of characters surrounded by slashes. Con
text searches ' are interchangeable with line
numbers, so' they can be used by themselves 10
find and print a desired line, or as line numbers
for some other command, like "s". We used
them both ways in the examples above.

Suppose the buffer contains the three fami -
liar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

/Now/+I
/good/
Iparty/-I

are all context search expressions, and they all
refer to the same line Oine 2). To make a
change in line 2, we could say

/Now/+ is/good/bad!

0'

/goOO/s/good/bad/

/party/-Is/good/bad/

The choice is dictated only by convenience. We
could print all three lines by, for instance

/Now/,Iparty/p

0 '

/Now/,INow/+2p

or by any number of similar combinations. The
first one of these might be better if we don't
know how many lines -are involved. (Of cou rse,
if there were onl y" three lines in the buffer, we'd
use

I,Sp

but not if there were seve ral hundred.)

The basic rule is: a context search expres
sion is the same as a line number, so it can be
used wherever a line number is needed.

Exerc ise 6:

EXperiment with context searching. Try a
body of text with several occurrences of the
same string of charae-ters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substi tute, print and delete commands.
(They Ciln also be used with "r", "w", and "a".)

-7-

Try context searching using "?text?" in
stead of "/text/". This scans lin es in the buffer
in reverse order rather than normal. This is
sometimes useful if you go too far while looking
for some stri ng of characters - it's an easy way
to back up.

(If you get funny results with any of the
characters

$ • \
read the section on "Special Characters".)

Ed provides a shorthand for repeating a
context search for the same string. For example,
the ed line number

/string/

will find the next occurrence of "string". It of
ten happens that this is not the desired line, so
the search must be repeated. This can be done
by typing merely

/I

Ttiis shorthand stands for "the most recently
used context search expression." It can also be
used as the first string of the substitute com
mand, \IS in

/string l/s//string2/

which will find the next occurrence of "stringl"
and replace it by "string2". This can save a lot
of typing. Similarly

??

means "scan backwards for the same expres
sion."

Change and Insert - "c" and "i"

This section discusses the change command
,

which is used to change or replace a group of
one or more lines, and the insert command

which is used for inserting a group of one or
more lines.

"Change", written as
,

is used to replace a number of lines with
dil1erent lines. which are typed in at the termi
nal. For example, to change lines ".+1" through
"S" to something e lse, type

.+ I,$c
. . . type the lines oj lexl you want here . ..

The lines you type hetween the "c" command
and the" " will take the place of the original

lines between start line and end line. This is
most useful in replacing a line or several lines
which have errors in them.

If only one line is specified in the "c" com
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of " ." to end the input - this
works just like the"." in the append command
and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

" Insert" is similar to append - for instance

Is tring/i
· .. rype rhe lines to be inserted here . ..

will insert the given lext be/ore the nex t line that
con tains "string". The text between " i" and ,
is inserted before the spec.ified line. If no line
numbe r is specified dot is used. Dot is sel to the
last line inscrted.

Exercise 7:

"Change" is rather like a combination of
delete followed by insert. Experime nt to verify
that

start, endd ,
· .. text ..

is almost the same as

start, end c
· .. text . . .

Thcse are not p;ecisely the same if line "$" gets
deleted. Check this out. What is dot?

Experiment with "a" and "i", to see that
they are similar, but not the same. You will ob
serve thaI

line-number a
... tcxt . ..

appends after the given line, while

Iillc-number i
... text . ..

inserts be/ore it. Observe that if no line number
is given, "i" inserts before line dOl, while "a"
appends ancr line dol.

-8-

Moving lext around: the "m" command

The move commimd "m" is used for cu t
ting and pasting - il lets you mOve a group of
lines from one place (Q another in the buffer.
SUPIlOSe we wanl 10 pu t the first three iines of
thc buffer at the end insleild. We could do it by
saying:

l,3w tcmp
Sr temp
1,3d

(Do you see why?) but we can do it a lot easier
with thc "m" command:

1,3mS

The general case is

start lille, end lille m a/fer tlris line

Notice that there is a third line to be specified -
the place where the moved stuff gets pul. Of
course the lines 10 be moved ca n be specified by
context searches; ir we had

First paragraph

cnd of first pamgraph.
Second puragraph

end of second paragraph.

we could reverse the IWO paragraphs like this:

ISecond/,lsecond/m/First/-l

Notice the "-I" - the moved text goes after the
line mentioned. Dot gets set \0 the last line
moved.

The global commands "g" and "v"

Thc global command u g" is used 10 execute
one or more ed commilnds on all those lines in
the buffer that match some speCified Siring. For
example

g/pclinglp

prints all lines that contain "peling". Morc use
fully ,

g/peling/sllpelling/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compa re this to

1,$s/peling/peJling/gp

which only prints the last line substituted.
Another subtle clifference is that the u g" com
mand does not give a "?" if "peli ng" is not
found where the "s" command will.

There may be several commands (includ
ing "a", "c" "i" "r", "w", bul not "g"); in that
case, every line excepl the laSI mUSt cnd with a
backs lash "\";

I e;;
I

~
~

glxxx/.- ls/abc/defA,
.+2s/ghi/jklA,
,-2"p

makes changes in the lines before and after each
line that con tains "xxx", then prints all three
lines.

The "v" command is the same as "g", ex
cept that the commands arc executed on every
line that does not match the string fo llowing "v":

vlld

deletes every line that does not contain a blank.

Speci al Characters

You may have noticed that th ings .just
don't work right when you used some characters
like ".", " "", "S", and others in context searc hes
and the substitute .command. The reason is
rather complex, although the cure is simple. Ba
sically. I'd treats these characters as special, with
special meaning.s. For instance, ill a C"Oll text
search or the first string o/Ihe substitute command
ollly,

Ix.yl

me'lns "a line with an x. any character, and a 'I,"
110/ just "a line with an x, a period, and a 'I." A
complete list of the speCial characters that can
cause trouble IS the following:

$ \
Warning: The backs lash character \ is specia l to
ed. For safety's sake, avoid it where possible. Ir
you have to usc one of the special characters in
a subs titute command, 'IOU can turn off its magic
meaning temporarily by preceding ;t with the
backs lash. Thus

sA,\\.\"/backslash dot starl

will change "\ . • " into "backslash dot star".

Il ere is a hurried synopsis of the other spe
cial characters. First, the circumnex .. - ..
signifies the beginning of a line. Thus

/'stringl

findS' "string" only if it is al the beginning of a
line: ;t will find

string

but not

the siring ...

The dollar-sign "S" is just the OflPosite of the
circumOex; il means the end of a li ne :

IstringSI

will on ly find an occurrence of "SIring" that is at
the end of some line. This implies, of cou rse,

-9-

that

rstring$1

will find only a line that contains just "string",
and

1'.$1

finds a line containing exacllY'one charac ter.

The character " as we mentioned above,
matches anything;

Ix.yl

matches any of

,+y
,-y
, Y
'-Y

This is useful in conjunction with ".", which is
a repetition character; ·'a ·" is a shorthand for
"any number of a's." so " matches any
number of any things. ' This is used like this :'

s/ ."/stulfl

which changes an entire line. or

5/."'/1

which deletes all characters in the line up to and
including the last comma. (Since" ."" finds the
longest possible match, this goes up to the last
comma.) ,

"t" is used with "J" to form "character
classes"; ror example,

1(1234567890]1

matches any single digit - anyone of the char
acters inside the braces will cause a match.

Finally, the "&" is anothe r shorthand char
acter - it is used only on the right-hand part of a
s ubstitute command where it means "whatever
was matched on the left·hand side". It is used
to save typing. Suppose the current line con·
tained

Now is the time

and we wanted to put parentheses around il. We
could just retype the line, bu t this is tedious. Or
we could say

sOU
s/S!)1

using our knowledge of. .. -" and "$". But the
easiest way uses the "&":

s/."/(&)1

This S'IYS "match the whole line, and replace it
by itsel f surrounded by parens." The "&" can

. be used several. times in a line ; consider using

s,.",&? &1!1

to produce

Now is the time? Now is the time!!

We don' t have to match the whole line, of
course: if the buffer cont,lins

th e end of the world

we could type

Iworld/sll& is at handl

to prod uce

the end of the world is at hand

Observe this expression c<lrefully, fo r it illus
trates how to take advan tage of ed 10 save typing.
The sIring "/world!" found the desired line; Ihe
shorthllnd "II" found the same word in the li ne;
and the "&" saved us from typing il agai n,

The "&" is a speci:ll character only within
the replacement text of a substitute command,
and has no special mean ing elsewhere. We can
turn off the special mean ing of "&" by preceding
it wit h a"''':

s/ampersandl\&1

will convert the word "ampersand" into the
literal symbol "&" in the current line.

Summary of Commands and Line Numbers

The general form of ed comma nds is the
command name, perha ps preceded by one or
two line numbers, and, in the case of e, r and w,
followed by a fi le name. On ly one command is
allowed per li ne, but a p command may fo llow
any other command (except for e, r, \II and q)

a (append) Add lines to the buffer (at line dot,
unless a diffe rent line is specified). Append ing
contin ues unti l "." is typed on a new line. Dot
is set to Ihe last li ne appended.

c (change) Change the specified lines to the new
tex t wh ich follows. T he new li nes are terminat·
cd by a ".". If no lines are specified, replace line
dot. Dot is set to last line changed.

d (delete) Delete the lines specified. If none are
specified, delete line dol. Dot is SCI 10 the first
undeleted line, unless "$" is deleted, in which
case dot is set \0 "$".

e (cditJ Edit new fil e. Any previous contents of
the buffer are thrown away, so issue a w be fore
hand if you wan t to save them.

J (fife) Print remembered fi lename. If a name
follows J the remem bered name will be set to it.

g (global) g{-··!commands will exec ute the com·

-10-

mands on those lines that contai n " •• _", which
com be any context search expression.

i (il/sert) Insert lines before specified line (or dot)
until a "." is typed on a new line. Dol is set to
last line inserted .

m (move) Move lines specified to after the line
named after m. Dol is SCI to the last li ne moved.

/' (prim) Prin t specified lines. If none specifi ed,
print line dot. A single line number is
equivalent to "line -n umber p". A single newline
prints ".+1", the next line,

Q (quit) Exit from ed. Wipes out all tex i in
buRer! !

r (read) Read a file into buffer (at end unless
specified elsewhere.) Dot set to last line read.

s (sllbstitute) s{strillgJ/string2/ will substitute the
characters of 'stri ng2' for 'st ri ng)' in specified
jines. If no line is specified, make substitution in
lioe dol. Dot is set to last line in whic h a substi
tution took place, which means that if no substi
tution took place, dot is nOI chonged. s changes
only the first occurrence of stringl on a line; to
change all of them, Iype a 'og" after the final
slash.

v (exclude) v/---/commands executes "commands"
on those lines Ilult do nOI contain " _._".

III (wrile) Write out buffer onlO a fi le. Dot is not
changed.

.- (dot value) Print value of dol. ("=" by itself
prints the value of "S".)

! (Iemparary escape)
Execute this line as a UN IX command.

1---··1 Con tex t search. Search for next line which
contains this string of characters. Print it. Dot
is set to line where string fo und. Searc h starts at
".+ 1", wral)S arou nd from "S" to I, and contin
ues to dOl, if necessary.

7--·_·? Con text search in reverse direction. Start
search at ", - I", scan to I, wrap around to "$".

/C ·.

..

,

-

UNIX For Beginners

Brian W. Kernighan

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT.

This paper is meant to help new users get Slarted on UN IX. It cove rs:

• basics needed for daY-lo-day use of the system - typing commands, correct
ing typing mistakes. logging in and out, mai l, inler-console communication. th e
fil e sys tem, printing files, redirecting 110 , pipes, and the shell.

• document preparation - a brief IUlorial on the I{OFF formatter fo r beginners ,
hints on preparing documents, and capsule descrip tions of some supporting
software.

• UNIX programming - us ing the edito r, programming the shell. program ming
in C, other languages.

There is also an annotated UN I X bibliography.

UNIX for Beginners

Brian W. Kemighan

Bell Laboratories, Murray Hill , N. J.

In many ways, UI'lIX is the SlalC of the art
in computer operating systems. From the
user's point of view, ;t is easy to learn and use,
and presen ts few of the usual impediments 10
geHing the job done.

It is hard, however, fo r the beginner \0
know where 10 slarl, and how to make the best
use of the facilities available. The purpose ' of
this introduction is to point QUI high spots for
new users. so they ca n gel used to the main
ideas of UNIX and Slart making good use of it
Quickly.

This paper is not an attempt \0 fe-write
the UNIX Programmers MOlluol; often the discus
sion of something is simply " read section x in
the manual." (This implies thai you will need a
copy-of the uNix Programmer's Manua'.) Rather
it suggests in what order to read the manual,
and il· collects together Ihings Ihat are slated
only indirectly in the manual.

There are five sections :

I. Getting Slarled: How to log in to a UNIX,
how to type, whal to do about mistakes in
typing, how 10 log oul. Some of this is
dependen t on which UNIX you log inlO
(phone numbers, for example) and whal
terminal you use, so this section must
necessarily be supplemen ted by local in
formalion .

2. Day-to-day Use: Things you need every
day to use UNIX effectively·: generally use
f.ul commands; the file system.

3. Document Preparation: Preparing
manuscripts is one of the mosl common
uses for UNIX. This section contains ad
vice, bu t nOI extensive instructions on
any of the formatting programs.

4. Writing Programs : UNIX is an excellent
vehicle for developing programs. This
secl ion talks about some of the tools, but
again is not a IUlorial in any of the pro
gramming langu;gcs Ihal UNIX providcs.

S. 1\ UNIX Reading List. An annotated bi
bliography of documents worth reading by
new users.

I. GEITING STARTED

LogginJ: In

Most of the detai ls about logging in are in
the manual section called " !--l ow to Get Started"
(pages iN in the 5th Edition). Here are a cou
ple of extra warnings.

You must have a UNIX login name, .which
you can get from whoever administers you r
system. You also need to know the phone
number. UNIX is capable of dealing wilh a
variety of terminals : Terminet 300's; Execu
port, TI and similar portables; video terminals;
GS l's; and even ihe vene rable Teletype in its
various forms . But note : UNIX will not handle
IBM 2741 terminals and their deriva tives (e.g.,
some Anderson-Jacobsons, Novar). Further
more, UNIX is strongly o riented towards devices
wilh lower case. I f you r terminal produces only
upper case (e.g., model 33 Teletype), life will be
so diOicull thai you should look fo r another ter
minal.

Be sure to ·set the switches appropriately
on your device: speed (if it's variable) 10)0

characters pcr second, lower case, full duplcx,
evcn parity. and any others that local wisdom
advises. Establish a connection using whatever
magic is needcd for your terminal. UNIX· should
type "login:" al you. J(it types garbage, you
may be al the wrong speed; push the 'break' or
'interrupt' key once. If that fai ls to produce a
login message, consult a guru.

When you get a " login :" message, type
your login name in lower case. Follow it by a
RETURN if the terminal has one. l r a password
is required, you will be asked for it, and Gr pos
sible) printing will be turned off while you type
iI, again followed by a RETURN. (On M37 Tele
types always use NEWLJN E or LJt>lEFEED in place
of KETURN) .

The culmination of your login cOorts is a
percenl sigll ""10". The percent sign means thai
UNIX is ready to accept commands from the
terminal. (You may also gel a message of the
day just berore the percent Sign or\ a
notification Ihat you have mail.)

. - 2-

Typing Comm ands

Once you've seen the percent sign, y;ou
can type commands, whic h art requests thllt
UNIX do something. Try typing

date

follo wed by RETURN. You should get back some
th ing like

Sun Sep 22 10:52:29 EDT 1974

Don't forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; somethi ng should hap
pen. We won't s how the carriage returns, but
they have to be there.

Another command you might try is wtio,
which tells you everyone who is currently logged
in :

who

gives something like

pjp
bwk
mel

lIyf
ttyg
ttyh

Sep 22 09:40
Sep 22 09:48
Sep 22 09 :58

The time is when the user logged in.

If you make a mistake typing the command
name, UNIX wilt tell you. For example, if you
type

whom

you wi ll be told

whom: not found

St range Termina l Behavior

'Somelimes you can gel into a state where
your terminal ac ts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed. You can often fix this by
logg!ng out and logging back in. Or you can read
the description of Ihe command sl1y in section I
of the manua1. Th is will also lell you how to get
intelligent treatment of tab characters (which are
much used in UNIX) if your ~erminal doesn't
have tabs. If it does have computer-sellable
ta~s, the command labs will set the stops
correctly for you.

MiSlakes in Typing

If you make a typing mistake, and see it
before the carriage return has been typed, there
are two ways 10 recover. The sha rp-character
"#" erases the last character typed ; in fac t suc
cessive uses of "I" e rase characters back' to the
begi nning of the line (bul not beyond). So if

you type badly, you can correct as you go:

dd#alle#Ie

is the same as "dale".

The at-sign "«.," erases all of the cha rac
ters typed so far on the cu rrent input line, so if
the line is irretrievably fouled up, type an "/i""
and start over (on the same line!) .

What if you must en te r a sharp or at-sign
as pari of the text ? If you precede ei ther" I" or
"(,," by a backslas h "\", it loses its erase mean
in.8. This implies that to erase a backslash, you
have 10 type two sharps or two ai -s igns. The
backs lash is used extensively in UNIX 10 indica te
that the following character is in some way spe
cial.

Readahead

UNIX has full readahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at·
you. If you type during outpUl, your input char
acters will appear intermixed with the oulpu t
characters, but they will be stored away by UN IX
and in terpreted in the correct order. So you can
type two commands one after another without
waiting for the first to finish or even begin.

S lopping a Program

You can stop most programs by typing the
character "DEL" (perhaps called "delete" or
"rubout" on your terminal). There are excep
tions, like the text edilor, where DEL stops what
ever the program is doing but leaves you in that
program. You can also just hang up the phone.
The " interrupt" or "break" key found on most
terminals has no effect.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login name-of-new-user

and lei someone else use the terminal you were
on. It is not sulficient just to turn off the termi
naL UN tX has no time-out mechanism, so YOU'll
be there forever unless you hang up.

Mai l

When you log in, you may sometimes gel
the message

You have mail.

UNtX provides a postal system so you can send
and receive letters from other users of the sys
tem. To read your mail, issue the command

•

mai l

Your mail will be printed, and then you will be
asked

Save?

If you do want to save the mail , type y, for
"yes"; any other response means "no",

How do you send mai l to someone else?
Su ppose ;t is to go to "joe" (assuming "joe" is
someone's login name). The easiest way is this :

mail joe
1I0W Iype ill Ihe leXI of Ihe leller
all as mOllY lines as you tike ...
a/ler Ihe lasl line a/lhe feller
Iype Ihe charaCler ''col1lral-d'',
!hal is, hold down "conlrol" alld Iype
a feller "d".

And that's il. .The "control·d" sequence, usually
called "EOT", is used throughout UNIX fo mark
the end of input from a terminal, so you might
as well get used to it.

There are other ways to send mail - you
can send a previously prepared leiter, and you
can mail to a number of people all at once. For
more details see mail (I).

The nOlation mail (J) means the command
mail in section (I) of the UNIX Programmer's
Manual.

Writing to other users

At some point in you r UNIX career, out of
the blue will come a message like

Message from joe ...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless you take ex
plicit aClion you won't be able 10 talk back. To
respond, type Ihe command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will ap
pear on yours and vice versa. The path is slow,
rather like talking to the moon .. (I f you are in
the middle of something, . you have to get to a
state where you can type a command. Normally,
whatever program you are running has to ter
minate or be terminated. If you're editing, you
can escape temporari ly from the editor - read
the manual.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it's like th is:

Joe types "write smith" and waits.

- J -

Smilh types "write joe" and waits.
Joe now types his message (as many lines
as he likes). When he's ready for a reply,
he signals ;t by typing (0), which stands
for "over".
Now Smith types a reply, also terminated
by (0).
This cycle repeats unlil someone gets
tired; he then signals his in lent to qu it
with (0+0), ror "over and out" .
To terminate the conversation, each side
must type a "cont rol-d" character alone
on a line. ("Delete" also works.) When
the other person lypes his "control-d",
you will get the message "EOT" on you r
terminal.

If you write to someone who isn't logged
in, or who doesn't wan t to be disturbed, you'll
be told. If the target is logged in bul doesn't
answer after a decent interval, simply type
"control·d".

On· line Manual

The UNtX Programmer's Manual is !ypically
kept on-line. If you get stuck on something, and
can't find an experl to assist you, you can print
on your terminal some manual section that
might help, It's also useful for gelling the most
up-to·date in formation on a command. To print
a manual sec tion , type "man section-name".
Thus to read up on the who command, type

man who

If the section in question isn't in part I of the
manual, you have 10 give the section number as
well, as in

man 6 chess

Of course you're out of luck ir you can't
remember the section name.

II. DAY·TO·DA V USE

Creating Fi les - The Editor

If we have to type a paper or a letter or a
program, how do we get lhe information stored
in the machine? Most or these tasks are done
with the UN IX "text editor" ed, Since cd is
thoroughly documented in cd (J) and explained
in A TIi/orialllllrodliCTiol1 10 Ihe UNIX TeXT EdiTor,
we won't spend any lime heFe desc ribing how to
use il. All we want it for right now is to make
some jiles. (A fi le is just a collection of informa
tion slored in the machine, a Simplistic but ade-

. quate defin ilion-.)

To create a file with some text in ii , do the
following:

ed (invokes the text editor)
a (command to "cd", to add text)
now Iype in
whalever ,ext yOIl wan, , ..

(s ign als the end of adding text)

At this point we could do various editing opera
tions on the text we typed in, such as correcting
spelling mistakes, rearranging paragraphs and the
like. Finally, we write the information we have
typed into a file wi th the editor com mand "w":

w junk

ed will respond with the number of characters it
wrote into the file called "junk".

Suppose we now add a few more lines with
"a", terminate them with ".", and write the
whole Ihi ng oul as "temp", using

w temp

We shou ld now have two files, a smaller one
called "junk" and a bigger one (bigger by the
extra lines) called "temp". Type a "q" to quit
Ihe editor.

What fi les are out there?

The Is (for " list") command lists the
names (nol contents) of any of the files that
UNIX knows about. If we Iype

Is

Ihe response will be

junk
tem p

which are indeed our two files . They are sorted
into alphabetical order automatically, bUI other
variations are possible. For example, if we add
the optional argument "-I ",

Is -t

lists them in the order in which they were last
changed, most recent firsl. The ":1" option gives
a "Iong" listing:

Is -I

will produce something l ib~

-rw-rw-rw- 1 bwk 41 Sep 22 12:56junk
-rw-rw-rw- I bwk 78 Sep 22 12 :57 temp

The dale and lime are of Ihe last change to Ihe
file. The 41 and 78 are Ihe number of characlers
(you gal the sa me th ing from ed). "bwk" is th e
owner of the file - Ihe person who created il.

- 4-

The "-rw-rw-rw-" tells who has permission to
read and write the file, in this cilse everyone.

Options ciln be combined: "Is ·11" would
give the same thing, bUI sorted into time order.
You can al~o name the files you're interested in,
,lOd ' \s wi!] list the information about them only.
More details can be found in Is (I).

It is generally true of UNtX program~ that
"flag" argul)1ents like "-t" precede filename ar
guments.

P rinling Files

Now that you've got a file of lext, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than arc needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

ed junk
'I,Sp

ed will reply with the count of the characters in
"junk" and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to
use the editor for printing. For example, there is
a limit on how big a fil e ed can handle (about
65,000 characters or 4000 lines). Secondly, it
will only print one file at a time, and sometimes
you want to print several, one after another. So
here are a couple of alternatives.

First is cat, the simplest of all the printing
programs. cat s'imply copies all the files in a list
onto the terminal. So you can say

cal junk

or, to print two files,

cat junk temp

The two files are simply concatenated (hence the
name "cat") onto the terminal.

pr produces formatted printouts of files.
As with cal, pr prints all the files in a lisl. The
difference is th3t it produces headings wi th date,
time, page number and file name at the top of
each page, and eXira Jines 10 skip over the fold
in the paper. Thus,

pr junk temp

will list "junk" neatly, then sk ip 10 the top of a
new page and list "Iemp" neat ly.

,

.... "'-

~~
:;;;Y

pr will also produce multi-colum n output:

pr - J junk

prints "junk" in J-column formal. You can use
any reasonable number in place of " 3" and pr
will do its best.

It should be noted that pr is 1101 a fo rmal
ti ng program in the sense of shuming lines
around and justifying margins. The true for
matters are roff, nroff, and troff, which we will
gel 10 in the section on document preparalion.

There are also programs Ihal prinl files on
a high-s peed printer. Look in your ·manual
under opr and Jpr. Which to use depends on Ihe
hardware configuralion of your machine.

Shuffl ing Files About

Now Ihal you have some files in the file
system and some experience in printing Ihem,
you can Iry bigger things. For example, you can
move a file from ol).e place to another (which
amounts 10 giving a file a new name), like Ihis:

mv junk precious

This means Ihal whal used to be "junk" is now
"precious". If you do an Is com mand now, you
will get

precious
temp

Beware Ihat if you move a file to another one
Ihal already exists, the already existing conlents
are lost forever.

If you want to make a copy of a fil e (that is,
10 have two versions of something), you can use
Ihe cp command:

cp precious tempi

makes a duplicate copy of "precious" in
"tempi " .

Finally, when you get tired of crea ting and
moving liles, there is a command to remove files
from Ihe file system, called rm.

rm temp tempi

will remove all of the files named . You will get a
warning message if one of the named files wasn't
there.

Filename, What's in a

So far we have used fi lenames wi thout ever
saying what's a legal name, so it's time for a cou
ple of rules. First, filenames arc limited to 14
characters, which is enough to be descriplive.
Second, although you can use almost any charac-

- 5 -

ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We already saw, for exam
ple, that in the Is command, "Is -t" meant to list

.in lime order. So if you had a file whose name
was "-I", you would have a tough time listing it
by name. There are a number of other charac
lers which have ' special meaning either to UNIX
as a whole or to numerous commands. To avoid
pitfalls, you would probably do well to use on ly
letters, numbers and Ihe period . (Oon't use the
period as the firSI characler of a filename, fo r
reasons too complicated to go into.)

On 10 some more positive suggestions.
Suppose you're typing a large document like a
book . Logically this divides into many small
pieces. like chapters and perhaps sec tions. Phy
Sically it must be divided too, for ed will not
handle big files. Thus you should type the docu
menl as a number of files. You migh t have a
separate file for each chapter, called

chapl
chap2
etc ...

Or, if eac h chapter were broken into several fi les,
you might have

chap J.I
chap1.2
chap1.3

chap2.!
chap2.2

You can now tell at a glance where a partic ular
file fits into the whole.

There are advantages to a systematic nam
ing convention which are nOI obvious to Ihe no
vice UNIX user. What i f you wanted to print lhe
whole book? You could say

pr cha~1.l chapl.2 chapl.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a s~ortcul. You can say

pr chap·

The means "anything at all", so this
translates into "prin t all fil es whose names begin
with 'chap' ", listed in alphabetical order. This
shorthand notation is not a property of Ihe pr
command, by the way. It is system-wide. a ser
vice of the program Ihat in terprets commands
(the "shell" sh 0». Using that fact, you can see

how to lis t the files of the book:

Is chap·

produces

chap!.1
chap 1.2
chapi.3

The ... " is not limi led to the las\ position in a
filename - it can be anywhere. Thus

rm ·junk·

removes all files that contain "junk" as any part
of their name. As a special case, "." by itself
matches every filename, so

p' •

prints all the fi les (alphabetical order) , and

removes all files. (You had bener be sure that's
what you wanted to say!)

The " . " is not the o·nly pattern-matching
feature available. Suppose you want 10 print
only chapters 1 through 4 and 9 of the ·book.
Then you can say

pr chap 11 23491 ·

The "1...1" means to match any of the characters
inside the brackets. You can also do this with

pr chapl1-491"

"(a-zl" matches any character in the range a
through z. There is also a "?" character, which
matches any single character, so

pr ?

.will print all fi les which have single-character
names.

Of these niceties, "." is probably the most
useful, and you should get used to il. The others
arc frills, but worth knowing. .

If you s hould ever have to lurn off the spe
cial meaning of " . ", ""?", etc., endose the entire
argument .in quotes (single or double), as in

Is "?"

What's in a Filename, Continued

When you first made that file ca lled
"junk", how did UN IX know that there wasn't
another "junk" somewhere else, especially since
the person in the next office is also reading th is
tutorial"? The reason is that generally each user
of UNIX has his own "directory", which contains

- 6-

only . the files that belong to him. When you
create a new file, unless you take special action,
the new file is made in· yOUT own directory, and
is unreillted to any other file of the same name
that might e xisl in someone else's directory.

The set of all files Ihal UN IX knows about
are organized inlo a (usually big) tree, with your
files located several branches up inlo Ihe tree. It
is possible for you 10 "walk" around th is tree,
and to find any file in the system, by starting at
the rOOI of the tree and walking along the right
sel of branches.

To begin, Iype

Is I

"/" is the name of the root of the tree (a con
ven tion used by UNtX). You will get a response
something like this:

bin
dey
elO

lib
Imp

""
This is a collection of the basic directories of
files tllal UNIX knows abou t On most systems,
"usr" is a directory that contains all the normal
users of the system, like you. Now Iry

Is lusr

Th is should list a long series of names, among
which is your own login name. Finally, try

Is lus r/your-name

You should get what you get from a plain

Is

Now try

cat lusr/your-name/junk

(i f "junk" is still around) . The name

lusr/you r-name/junk

is called the "path name" of the file that you nor
mally think of as "junk". " Pathname" has an
obvious meaning: it represents the fu ll name of
the path you have to follow through the tree of
directories \0 get to a particular file. It is a
universal rule in UNtX that anywhere you can
use an ordinary fi lename, you can use a path
name.

Here is a picture which may make this
clearer:

/ I ::.

•

11"\
eu: usr de.., Imp /11/1\/11 III

bin
II I

adam eve mar\

I / \ . junk
junk temp

Notice thai Mary's "junk" is unrelated 10
Eve's.

This isn't 100 exciting if all the files of in
terest arc in yOU T own directory, but if you work
with someone else or on several projects con
currently, it becomes handy indeed. For exam
ple, yOUT friends can print your book by saying

pr lusr/your-name/chap·

Similarly, you can find out what files your neigh·
bor has by saying

Is lusT/neighbor-name

or make yOUT own copy of one of his files by

cp lusr/your-neighbor/his-file you rfile

(If your neighbor doesn't want you poking
around in his files. or vice versa, privacy can be
arranged. Each file and directory can have
read ·,write-execute permissions for the owner, a
group. and everyone else, to control access. See
Is (I) and chmod (I) for details. As a mauer of
observed fact, most users most of the time find
openness of more benefit than privacy.)

As a final experiment with pathnames, try

Is fbi n lusrlbin

Do some of the names look familiar? When you
run a program, by typing its name after a " %",
the system simply looks for a file of that name.
It looks first in your directory (where it typically
doesn't find it), then in "fbin" and finally in
"/usr/bin". There is nothing magic about com
mands like cat or Is, except that they have been
collected' into IWO places to be easy 10 find and
administer.

What if you work regularly wi th someone
else on common information in his directory?
You cou ld just log in as your friend each time
you want 10, but you can also say'" want to
work on his files instead of my own". This is
done by changing the directory that you are
currently in:

chdir lusr/your-friend

- 7 - .

Now when you use a filename in something like
cal or pr, it refers to the file in "you r-friend 's"
direttory. Changing directories doesn't alfect
any permissions associated with a file - if you
couldn't access a file from your own directory,
changing to another directory won't aller that
fac\.

If you fo rget what directory you're in, type

pwd

("print working directory") to find ou\.

It is often conve nient to arrange one's fi les
so that all the files related to one thing are in a
directory separate from other projects. For ex·
ample, when you write you r book, you might
want to keep all the text in a directory called
book. So make one with

mkdir book

then go to it with

chdir book

then start typing chapLers. The book is now
found in (presumably)

/usr/your- name/book

To delete a directory, see Tmdir (I) .

You can go up one level in the tree of files
by sayi ng

chdir .

.... " is the name of the parent of whatever direc
tory you are currently in. For completeness,
is an alternate name for the directory you are in.

UsinG Files instead of the Termin al

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is un iversal in UNIX that the terminal can be reo
placed by a file for either or both of input and
outpu\. As one example, you could say

1,

to get a list of files. But you can also say

Is > filelist

\0 get a list of your files in the file "filelist".
("filelist" will be created if it doesn't already ex
ist, or overwritten if it does,) The symbol ">" is
used throughout UNIX to mean "put the output
on the following file, rather than on the termi
nal". Noth ing is produced on the termina l. As
another example, you could concatenate several
files iOlo one by. caplUring the output of cat in a
file :

cat fI f2 f1 >temp

Similarly, the symbol "<" means to take
the input for a program from the following file,
instead of from the terminal. Thus. you could
make up a script of commonly used editing com
mands and put them into a fi le called "script".
Then you can run the script on a file by saying

ed file <script

Pipes

One of the novel contributions of UNIX is
the idea of a pipe, A pipe is simply a way to
connect the output of one program \0 the input
of another program. so the two run as a se
Quence of processes - a pipe-line.

For example.

pr f g h

will print the files "r', "g" and " h", beginni ng
each on a new page. Suppose you want them
run together instead. You could say

cat f g h >temp
pr temp
rm temp

bu t this is more work than necessa ry. Clearly
what we want is to take the output of cat and
connect it to the input of pr, So let us use a
pipe :

cat f g h 1 pr

The vertical ba r means to take the output from
cat, which would normally have gone 10 Ihe ter
minal, and put it inlo pr, which formats it neatly.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many clements in a pipeline as you
wish ,

Many UNtX programs are written so that
Ihey will lake their input from one or more files
if file arguments are given; if no arguments arc
given lhey will read from the terminal. and Ihus
ca n be used in pipelines, .

The Shell

We have already mentioned once or twice
the mysterious "shell," which is in fact sh (I).
The shell is the program thai interprets what you
type as commands and arguments. It also looks
after translating " ' '' , etc" in to lists of filenames.

The shell has olher capabilities too. For
example, you can S13((two programs with one
command line by separating th e commands with

- 8-

a semicolon; the shell recognizes Ihe semicolon
and breaks the line inlo two commands. Thus

dale; who

does both commands before returning with a
"%".

You can also have more than one program
running silllllffOIl('()lIsly if you wish. For example,
if you are doing someth ing time'consuming, like
the editor script of an earlier section, and you
don't want to wait around for the results before
starting something else, you can say

ed file <script &

The ampersand at the end of a command line
says "sta rl this command running, then take
further commands from the terminlll immediate
ly." Thus the script will begin, but you can do
something else at the sa me time. Of course, to
keep the output from interfering wi th what
you're doing on the termina l, it would be beller
to have said

ed fi le <script >Iines &

which would save the output lines in a file called
"lines",

When you initiate a command with "&",
UN IX replies with a number called Ihe process
number, which identifies the command in case
you laler want to stop it, If you do, you can say

kill process-number

You might also read ps (I).

You can say

(command- I ; command-2; command-,3) &

to start these commands in the background, or
you can start a background pipeline with

command- l I command-2 &

Just as you can tell . the editor or some
simila r program to lake its input from a file in·
stead of from the terminal, you can lell the shell
to read a file 10 gel commands. (Why nol? The
shell lifter all is just a program, albeit a clever
one.) For instance, suppose you want 10 set tabs .
on your lernlinal, and find out the date and
who's on the system every tjme you log in.
Then you can put Ihe Ihree necessary com
mands (labs: dale; who) into a file, let's call it
"xxx", and then run it with either

sh xxx

0'

sh <xxx

/1-;;'

":\'
riJ

"

" ...

This says \0 run the shell with the file "xxx" as
input. The cffect is as if you had typed the con
lents of "xxx" on the terminal. (If this is \0 be
a regular thing, you can eliminate the need 10
type "sh"; sec ch iliad (I) and sh (I).)

The shell has quite a few other capabilities
as well , some of which we'll gel 10 in the section
on programming.

Ill. DOCUMENT PREPARATION

UNIX is extensively used for documcllI
preparation. There are three major formal/illK
programs, lhal is, programs which produce a lext
with justified right margins,. automatic page
numbering and tilling, automatic hyphenation.
and the like. The simplest of these formatters is
roff, which in fact is simple enough thaI if you
type almOSI any text inlO a file and "rolf" iI, you
will gel plausibly formalied output. You can do
better with a lillie knowledge, but baSically it's
easy to learn and use. We'll get back to roff
ShOrtlY.

moff is similar to roff bUl does much less
for you automatically. It will do a great deal
more, nnce you know how 10 use it.

(Joth ruff and nroff are deSigned to produce
output on terminals, line-printers, and the like.
The third formaller, troff (pronounced "tee
rolf'), instead drives a Graphic Systems phOIO
typesetter, which produces very high quality ou t
put on photographic paper. This paper was
printed on the photolypeseuer by Iroff.

Because THoff and Iroff are relatively hard
to learn 10 use effectivel~', several "packages" of
canned formatting requests are available which
let you do things like paragraphs, running titles,
multi-column output, and so on, with lillie effort.
Regrettably, details vary from system to system.

ROFF

The basic idea of roff (and of nrofT and
troff, for that matter) is that the text to be for
matted contains within it "formatting com
mands" Ihal indicate in detail how the formatted
text is to look. For example, there might be
commands thaI specify how long lines are,
wheth er 10 usc s ingle or double spaCing, and
what running tilles to use a ll each page. In gen ·
eral, you don't have to spell oul all of the possi
ble formatting detnils. Most of Ihem have "de·
fault values", which you wiJl get if you say noth
ing at all. For eXample, unless you take special
precautions, you'll gel single-spaced output,
65-charactcr lines, justified right margins, and 58

-9 -

text lines per page when you roff a file. This is
the reason that roff is so simple - most of the
decisions have already been made for you.

Some things do have to be done, however.
If you want a document broken into· paragraphs,
you have to tell roff where 10 add the ext ra
blank lines. T his is done with the ".sp" com
mand:

Ihis is the end of one paragraph .
. :ip
This begins the next paragraph.

In roff (and in nroff and IrotI) , formatting com
mands consist of a period followed by two
letters, and they must appear at the beginning of
a line, all by themselves. The ".sp" command
tells roff to finish printing any of the previous
line Ihat mighl be still unprinted, then print a
blank linc before continuing. You can have
more space if you wish; ".sp 2" asks for 2
spaces, and so on .

If you simply wan t to ensure that subse·
quent text appears on a fresh output line, you
can use the command ".br" (for "break") in
stead of ".sp".

Most of the other commonly-usctl r"if

commands are equally simple. ror (!X a1l1111c I'i' .:

can cenler one or more Jines wi th the ".ce" com ·
mand.

.oe
Tille of Paper
.sp 2

causes the title to be centered, then followed by
two blank lines. As with ".sp", " .ce" can be fol·
lowed by a number; in that case, that many in
put lines are ccntered,

".ul" underlines lines, and can also be fol-
lowed by a number:

.ce 2

.u12
An Earth-sh~king Paper
.'p
John Q. Scientist

will center and underline the two text lines. No
tice that the ".sp" between them is not part of
the line count.

You carl get multiple-line spacing instead
of the default single-spacing with the ".Is" com
mand :

.Is 2

causes double spacing.

1/(,

If you're typing things like tables, you wil!
not want the automatic filling-up and
justification of output lines that is done by de
fault. You can turn Ihis off with the command
".nr' (no-fill), and then back on again with " .ft"
(fill). Thus

this section is filled by default.

.0'
here lines will appear just
as you typed them -
no extra spaces, no moving of words.
.fi
Now go back to filling up output lines.

You can change the line-length with ".11",
and the left margin (tne indent) by ".in". These
are often used together to make offset blocks of
text:

.11 -10

.in +10
this text will be moved 10
spaces to the right and the
lines will also be shortened 10
characters from the right. The
"+" and "-" mean to change
the previous value by that
much . Now revert:
.11 +10
.in -10

Notice that ".11 + 10" adds ten characters to the
line length, while ".11 10" makes the line ten
characters {ollg.

The ".Ii" command indents (in either
direction) just like ·'.in", except for only one
line. Thus to make a new paragraph with a
10-character inden l, you would say

.s,

.ti + 10
New paragraph ...

You can put running titles on both top and
bottom of each page, like this :

.he ~left topHcenter top"righ t top·

.fo "left bOllom"center bOllom"right bottom"

The header or footer is divided into three parts,
which arc marked off by llny character you like.
(We used a double quote,) If there's nothing
belween the markers, that part of Ihe title will
be blank. If you use a percent sign anywhere in
".he" or ".fo", the current page number will be
inserted. So to get centered pa'ge numbers wilh
dashes around them, al the top, use

.he ""- % -""

You can skip to the la p of a new page at any
lime wilh Ihe ".bp" command: if ".bp" is fol
lowed by a number, that will be the new page
number.

The foregoing is probably enough about
£off for you to go orr and formal mOSI everyday
documents. Read roffO) for more details.

Hints fo r Preparing Documents

Most documents go through several ver
sions (always more than you expected) before
Ihey are finally finished. Accordingly, you
should do whatever possible to make the job of
changing them easy.

First, when you do the purely mechanical
operations of typing, type so subsequent editing
will be easy. Start each sentence on a new line.
Make lines short, and break lines at natural
places, such as after commas and semicolons,
ralher than randomly. Since most people change
documents by rewriting phrases and adding,
deleting and rearranging sentences, these precau
tions simplify any editing you have to do later.

The second aspect of making change easy
is not 10 commit yourself to formatting details
too early. For exam ple, if you decide that each
paragraph is to have a space and an indent of 10'
characters, you might type, before each,

.'p

.ti + 10

But what happens when latcr you decide that it
would have been bener to have no space and an
indent of only 5 characters? It's tedious indeed
to go back and patch Ihis up_

Fortunately, all of thc formatters let you
delay decisions until the actual moment of run
ning. The sec ret is to define a new operation
(called a macro), for 'each formatt ing operation
you wallt to do, like ma,king a new paragraph.
You can say, in all three formallers,

.de PP

.'p

.ti + 10

This defines ". r p" as a new roff (or nroff or troff)
operation, whose meaning is exactly

" .Ii +10

(The " .. " ' marks the end' of the definition.)
Whenever ".PP" is encountered in the text, it is
as if you had typed the two lines of the
definition in place of it.

(I (

The beauty of this scheme is that now, if
you change your mind about what a paragraph
should look like, you can change the formalled
output merely by changing the definition of
".rp" and re-running the formatter.

As a rule of thumb, for all but the most
trivial jobs, you should type iI document in terms
of a set of mac ros like ".PP", and then define
them appropriately. As long as you have entered
the texl in some sy.stemalic way, il can always be
cleaned up and re-formalled by a judicious eonl
bination of ediling and macro defin itions. The
packages of fo rmalling comm:mds Ihat we men
tioned earlie r are Simply collec tions of macros
designed for particular formatting tasks,

One of the main differences between roff
and the other formallers is that macros in roff
can only be lines of text and formalling com
mands. In nrofT and troff, macros may have ar
guments, so they can have different effects
depending on how they are called (in exnctly Ihe
same way that the " ,sp" command has an argu
ment, the number of spaces you want) .

Miscel lany

In addition to the basic formullers, UNtX
provides a host of supporting programs. eqn and
lIeqn let you integrate mathema tics into the text
of a document, in a language that dosely resem
bles the way you would speak it aloud. spell and
typo detect possible spelling mistakes in a docu
ment. Grep looks for lines containing a particular
lext pattern (rather like the editor's context
search does, but on a whole series of f,les). For
exa mple,

grep ~i n g:S " chap '

will find all lines ending in the letters "ing" in
the series of files "chap'''. ((I is almost always a
good practice to put qUOles around the pattern
you're searchi ng for, in case it contains charac
ters that have a special meaning for Ihe sheiL)

wc counts the words and (optionally) lines
in a set of files. Ir transla tes characters into olh
er characters; for example it will convert upper
to lower case and vice versa. This translates
upper into lower:

tr "[A-Z[- -[a-7.I"

diU prin ts a list of the differences between
two files , so you can compare IwO versions of
something automatically (which certainlY beats
proofreading by hand). !iorl sorts files in a
vMiety of ways; ere! makes cross- references; pIx
makes a permuled index (keyword-in-context
listi ng).

- 11 -

Most of these programs arc ei ther indepen
dently documented (like eQn and neqn), or are
sufficiently simple that the description in the
UNIX Pro1:rammer's Mallual is adequate explana
tion.

IV . PROG RAMM ING

UNtX is a marvelously pleasa nt and produc
tive system for writing programs; productivi ty
seems to be an order of magnitude higher than
on other interactive systems.

There will be no a!lempt made to teach
any of the programming languages available on
UNtX, but a few words of advice are in order.
First, UNIX is wri tten in C, as is most of the ap
plications code. If you are undertaking anyth ing
substantial, C is the only reasonable choice.
More on that in a moment. Bu t remember that
there are qui te a few programs already written,
some of which have substantial power.

The editor can be made 10 do th ings that
would normally require special progra ms on oth
er systems. For example, to list Ihe fi rst and lasl
lines of each of a set of files , say a book. you
cou ld laboriously type

ed
e chapl.l
Ip
Sp
e chap1.2
Ip
Sp
etc.

But instead you can do the job once and fo r all.
Type

Is chap' >temp

10 gel the list of filenames in to a fi le. Then edit
this fi le to make the necessary series of edi ting
commands (using the global commands of cd),
and write it inlo "script". Now the command

ed <script

will produce the same outpul as the laborious
hand typing.

The pipe mechanism leIS you fab ricate
qui le complicated operat ions Oul of spa re parts
lliready nuil!. Fo r example, the fi rst d raft of Ihe
spell program was (roughly)

, , 0

"I
I tr .

I sort
I uniq
I comm

(collect th e fi les)
(pUI each word on a new line,

delete punctuation, elc.)
(into dictionary order)
(strip OU I duplicates)
([is\ words found in lex I bUI

not in dictionary)

Programming the Shell

An aplion orten overlooked by newcomers
is Ihal the shell is ilself a programming language,
and since UNIX already has a host of building
block programs, you can sometimes avoid wri t
ing a special purpose program merely by piecing
together some of the bui lding blocks with shell
command files.

As an unlikely example, suppose you want
10 counl the number of users on the machine
every hour. You CQu id Iype

dale
whol we-I

every hour, and write down the numbers, bu t
that is rather primitive. Th e nexi slep is prob
ably to say

(date; who I wc -I) > > users

which uses "> >" to append to the end of the
fil e " users". (We haven't mentioned "»" be
fore - it's another service of the she ll.) Now all
you have to do is to put a loop around this, and
e nsure that it's done every hou r. T hus, place
the following comma nds inlo a file, say "coun t":

: loop
(date; who I wc -[) > > users
s leep 3600
gOlo loop

The com mand: is fallowed by a space and a la
bel, which you can Ihen goto. Notice thaI it's
quite legal to branch backwards. Now if you is
sue the command

sh count &

the use rs will be counted every hour, and you
can go on with other things. (You will have to
use kill 10 stOp coun ting.)

If you would like "every hour" 10 be a
parameter, you can arrange for that too:

: loop
(dale; who I wc - l) > >use rs
sleep $ 1 .
goto loop

"$1" means the first argumen t when Ihis pro
ced ure is invoked. If you say

- 12-

sh count 60

it will count every minute. A shell program can
have up to nine arguments, "5 [" through "59".

T he other aspect of programming is condi·
lional lesting. The if command can test condi
tions and execute commands accordingly. As a .
simple example, suppose you wanl to add to
your login sequence something to print your
mai l if you have some. Thus, knowing thaI mail
is Slore\1 in a file 'called 'mailbox', you could say

if - r mailbox mai l

This says "if the ' file 'mailbox' is readable, exe
cute the mail command."

As anOlher e xample, you could arrange
Ihal the "counl" procedure count every hour by
default , but allow an oplional argument to speci
fy a different lime. Simply rep lace Ihe "sleep
SI" li ne by

if$ l x = x sleep 3600
if $ l x! = x sleep $1

The construction

if$lx=x

tests whelher "5 1", th e firsl argument, was
present or absent.

More complicaled conditions can be tested:
you can find Oul the Slat us of an executed com
mand, and you can combine conditions with
'and', 'or', 'nol' and parentheses - . see if (I).
You should also read shift (I) which descri bes
how to manipulate argum ents 10 shell command
files .

Programming in C

As we said, C ·is the language of choice:
everything in UNI X is .tuned to it. It is also a
re markably easy language to use once you get
started. Sections II and III of the manual
describe the system interfaces, that is, how you
do I/O and similar functions.

You can write quite Significan t C programs
with the [evel of [/0 and system inJerface
described in ProK'ommillg ill C: A TUlor;ol, if you
use existing programs and pipes to help. For ex
ample, rather Ihan lcarning how to open and
close files you can (at [eas t temporarily) write a
program that reads from its standard inpul, and
use cal 10 concatentate several files in to it. This
may not be adequate for the long run , bUI for
the early stages it 's JUSt right.

There are a nu mber of supporting pro
. grams that go with C. The C debugger, cdb, is

marginally useful for digging th rough the dead

I ('i

...... ("

-

, ..

bodies of C progriHllS. db, the assembly
I;mguage debugger, is ilclUa Uy more useful most
of Ihe lime, bu t you ha ve 10 know morc nbout
Ihe machine and system to use il well. The mOSI
effective debugging 1001 is sti U careful Ihought,
coupled with judiciously placed print statemen ts.

You Clln instrumen t C programs and thus
fi nd Oul where they s pend their time an~ what
pariS arc worth optimising. Compile the routines
with the "-p" option; aner the test run use prof
to print an execution profile. The command
l ime will give you the gross run -time s tatis tics of
a progra m, but it's not super accurale or repro
ducible.

C programs that don't depend too much o n
specia l features of UNtX can be moved to the
Honeywell 6070 and 111M 370 systems with mod
est effort. Read TlJe GCClS' C Library by M. E.
Lesk and B. A. Barres for detai ls.

Miscell.any

If you liMe to use Fortran. you might con
sider ralfor, which gives you the decent cont rol
s tructures and free-form input · that characterize
C, yet lets you write code that is s till portable 10
other en vi ronments. Hear in mind that UNIX
Foman tends to produce large and rel,Hively
Slow-running programs. Furthermore. support
ing softwMe like db, prof, etc., nre all virtually
useless with Fortran ·programs.

If you want to use assembly languilge (all
heavens forfend!), try the implementation
language U L. which gives you many of the ad
vantages of a high-level language, like decent
control now structures, but s till lets you gel close
to the machine if you reully wunt to.

If your application requires you to translate
a language into a set of actions or another
language, you arc in elfect building a compiler,
though probably a small one. In that case, you
should be usi ng the yacc compiler-compi ler,
which helps you develop II c.empiler quickly .

V. UN IX READING LIST

General:

UNIX Programmer's Manual (Ken Thollll)son,
Denn is Ritchie, ;lIld a ca:; t of thou~ands). Lis ts
comm.lIlds, system routines :lIld intcrfaces, Ii Ie
formats, and some of th e Illaintenalll:c pro
cedures. You can't live with out this. although
you will probabl y on ly read section I.,

The UN tX Time-sha ring System (Ken T hompson.
Dennis Ritc hie>. CACM. Ju ly 1974. An over
view of th~ sy~lem, for people interes ted in
operating systems. Wort h reading by anyone

- 13-

who programs. Contains a re markable numbe r
of one-sente nce observations on how to do
things right.

Document Pr(!paratiall:

A Tutoria l In troduction to the UN IX Text Editor.
(Ori;1Il Kernighan). Be ll LabOflllories internal
memorandum. Weak on the more esoteric uses
of the edi tor, but still probably the easiest way to
learn ed.

Typing Documents on UNtx. (Mike Lesk) . Bell
Laboratories internal memorandum. A macro
package to isolate the novice from the vagaries
of the formatting programs. If this speCific pack
age isn't available on your system, something
simillir probably · is. This one works with both
nroff and Iroff.

P'W:ramminX:

Prognunming in C: A Tutorilll (Brian Ker
nighan) . Bell Laboratories in ternal memoran
dum. Th e easies t way 10 s tart learning C, bul it's
no help at all with the interface to the system
beyond the simplest 10. Sho uld be read in COn
junction with

C Rcference Manwt l (Den nis Ritchie)' Bell la
boratories internal memorandum. An excelle nt
reference, but a bit heavy going for the be
ginner. es pecially one wh o has never used a
language like C.

Others:

D. M. Ritchie, UNIX Assembler Reference
Manual.

B. W. Kernighan and L L. Cherry, A Syslem for
Typc~el1ing Mathematics, Com puting Science
Tec h. Rep. 17.

M. E. Lcsk and B. A. Banes, The GCOS C li
bra ry. Bell Laboratories internal memorandum.
K. Thompson lind D. M. Ritchie, Setting Up
UNIX .
M. D. Mcilroy, UN IX Summary .

I). M. Ritchie, The UN IX I/O Sys tem.

A. D. lIall, The M6 Mac ro Processor, Computing
Science Tech. Rep. 2.

1. F. Oss.lOna, NROFF User's Manual - Second
Edit ioli , Bell Laboril tories internal memorandum.

n . M. Ritchie and K. Thompson, Regcner<lting
System Soft ware.
B. W. Ke rnighan , Ratfor-A Rlltional Fortran,
Bell Laboratories internal memorandum.

M. D. Mcilroy, Synthetic English Speech by
Rule, Com l)uting Sc ience Tech. Rep. 14.

M. D. Mc ilroy, A Manual fo r the TMG
Compiler-writing Language. Bell Laboratories

, - -

in ternal memorandum.

J. F. Ossanna, TROFF Users' Manual, Bell La
boratories inlcrnal memorandum.

B. W. Kcmigh.tn, T ROFF Madc Trivial, Bell La
boratories inlernal mcmorandum.

R. H. Morris .lnd L. L. Cherry, Compute r Detec
tion of Typographicil l Errors, Computing Science
Tech. ReI). 18.
s. C. Johnson, YACC (Yet Another Compiler
Compiler), Bell Laboratories imcrnal memoran
dum.

P. 1. Plauger, Programming in Ll L: A T utorial,
Bell Laborlllories intcrna l mcmorandum . .

I ndex

&: (asynchronous process) 8
; (multiplC processes) 8
• (pallern match) 5
I J (pallern match) 6
? (pallern match) 6
< > (redirect 110) 7
»(fileitppend) 12
backslash (\) 2
cat (concatenate files) 4
cdb (Cdcbugger) 12
chdir (changc directory) 7
chmod (change protec tion) 7
command argumen ts 4
command fi les 8
cp (COpy filcs) 5
cref (cross reference) 11
date 2
db (assembly debugger) I)
delete (DEL) 2
diff (HIe comparison) 11
directories 7
document formalling 9
ed (editor) J
editor programming 11
EOT (end of file) J
eqn (mathematics) t I
emse character (#) 2
file system st ructu re 6
filenames 5
fi le IHolec tion 7
goto 12·
grep (pallern matching) II
if (condition test) 12
index 14
kill a program 8
ki ll a character «(ill) 2

- 14 - .

Ii i (high·level assembler) I J
login I
logout 2
Is ([is! file names) 4
macro for form;tlting 10
mail 2
multi-columns printing (pr) 5
mv (movc files) 5
nroff 9
on· line manual J
opr (omine IHint) 5
pathname 6
paltern match in filenames 5
pipcs (1) 8
pr (print files) 4
prof (run-lime mon itor) 13
protection 7
ptx (permu ted index) II
pwd (working dircctory) 7
quotes 6
ratfor (decent Fortran) I)

readahead 2
reading list 13
redirect I/O « » 7
RETURN key I
rm (remove files) 5
rmdi r (remove di rec tory) 7
roff (text formalling) 9
root (of file system) 6
shell (command interpreter) 8
shell arguments (S) J 2
shell programming 12
shift (shell arguments) 12
sleep 12
sort I I
spell (fi nd spelling mistakes)
stopping a program 2
sUy (set termin;tl options) 2
tabs (set tab stops) 2
terminal types J

time Clime programs) 13
tr (t ranslate characters) II
troff (typesetting) 9
typo (find spelling mistakes) 11
we (word count) I I
who (who is looged in) 2
write (to a use r) J
yacc (compiler-compiler) 13

.' ,
'.;

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories,
Murray H ill, New Jersey 0797:t

ABSTRACT

Although Fortrall is nOI a pleasilnt langu<lge 10 use, il does have the ad
vantages of universality and (usulIlly) relative efficiency. The RATFOR language
<ltlemplS to conceal the main deficiencies of Fortran while retaining ils desir-
able qualities, by providing decent control now statements: .

• statement grouping

• if - else

• while, for and do for looping

• break and next for controlling loop exits

and some "syntactic sugar":

• free form input (multiple statements/line, automatic continuation)

• unobtrusive comment convention

• translation of >. >=, elc., into .GT., .GE .• etc.

• "tlenne" slrtiemCnl for symbolic parameters

• "include" statement for including source files

RAT FOR is implernented as a preprocessor which translates this language into
Fortran.

Once the control now and cosmetic deficiencies of Fortran are hidden,
the . resulting language is remarkably pleasant to use. RATFOR programs are
marked.ly easier to write, and to read, and thus easier to debug, maintain and
modify than their Fortran equivalents.

It is readily possible to write RATFOR programs which are portable to oth
er environments. RATFOR is written In .itself in this way, so it is also portable;
versions of RATFOR are now running on compu ters of si x different manufactur
ers.

This paper discusses d~sign criteria lar (l r orlran preprocessor, thc RAT

FOR langu<Lge and lIs implcmcntation, and user cxpcrie.nce.

')
'-'

: "

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernil:han

Bell Laboratories,
Murray Hill. New Jersey 07974

I. INTR.OD UCTION

Most progr,lI11lllcrs will agree Ih:.11 For
tran is an unpleasant language to program
in, yet there are many occasions when they
ani fo rced to use it. For example, Fortran is
often the only la"nguage thoroughly ~upporl
cd on the local computer. Indeed, il ' is the
closest thing 10 a universal programming
language currently <Ivailable: with care it is
possible 10 write large. truly pOflilble port
able Fon ran programs(ll . Finally, FOriran
is of len the most "eflicient" language avail
able, particularly for programs requiring
much computation.

But Fortran is unpleasant. Perhaps
the WOfst deficienc), is in the control now

statemen ts - conditional branches and
loops - which express (he logic of the pro
gram. The Fortran DO restricts Ihe user 10
going forward in <In arithmetic progression.
It is fine for " I to N in steps of I (or 2 or
.. J", but there j~ no direct way 10 go back·
wards, or~'eve n (in ANSI Fortmn[2J) to go
from I to N- I. And of cou rse ·the PO is
useless if one's problem doesn't map inlO an
,lfithmelic progression.

The condi tional statements in Fortran
ure primitive. T he Arithmetic tF forces the
user into at least two statemenl numbers
.U10 twei (implieo) (iOTO's: it Icads to unin
telligible code, ami is esche weo by good
programmers. The LogiciLl tF is beller, in
thill the test part Cilll be st<lted cle,.rl y. but
hopelessly restric tive bec<luse the stlltement
tMt follows the II' call only be one FOrlrllll
statement (with some jUrlher restrictions!) .
Ami of wurse there can he no !:lSi: p • .lft to
a FOrlrllll II': Ihere is no way to speci fy <In
<llterna tive "ction if the IF is not sat is fied .

The result of these failings is tilat For·
tran programs must be wrillen with
numerous lubels ,JIlll branches. The result
ing cotie is particularly dimcult to re<ld and
understaml, lIIld thus hard to debug ami
1l1ooify.

When one is faced with an unpleasant
language, a useful technique is to define a
new I<mguage that overcomes the
rJeficiencies, and to translate i t into the un
pleasant one with a preprocessor. This is
the approach hlken with RATFOR. (The
preprocessor idea is of course not new, and
preprocessor::; for Fort ran are espec ially po
pu!ar Imlay. A conference on Fort nln
preproce::;::;or::;[3] held in !ate 1974 drew 31 ·
papcrs.)

2. LANGUAGE DESCRIPTION

Design

R,HFOR illlempis to retain the merits
of Fonran (universality, ponability,
efficiency) while hiding the worst Fortran
inmJcquacies. The language is FonTan ex
cept for two aspects. First, since control
now is central to any program, regardless of
the specific <lpplic<ltion, the primary task of
RATt."OR is to conceal this part of Fortran
frolll the user, by providing decent con trol
now structures. Second, since the prepro
cessor must eX<lmi ne an entire program 10
tmnslate the control structure, it is possible
at the same time to clean up many of the
"cosll1cti c" defkiencies of Fortran, and thus
provide a language which is easier and more
pleas,tllt to read and write.

BeyonrJ these two aspects - conlrol
now and cosme tics - RATFOR docs nothing
about the host of other weaknesses of For
tran . Allhough it would b~ straightforward
10 extend it to provide churacter strings, for
example, they <Ire not needed hy everyone,
and o f course the preprocessor would be
himler to impleilletlt. Throughout, the
design principle which has determined Whill

shoulrJ be in RI\TFOR and what should not
has been R,IrrOR doesn't know any For/ran.
Any language feature whidl would requ ire
thill RATI'OH rea lly understl.lnd Fortran has
becn OlllillCd. We will return 10 this point
in the section on implcmentation.

Even within the confines of control
now and cosmetics, we have ,1IIempted to
be selective in what features to provide.
The intent has been to provide a small sct
or the mOst useful constructs, rather thun 10

throw in everything thtlt has ever . been
thought use ful by 'someone.

The rest of this section contains an in·
formal description of the RATFOR language.
The cont rol now aspects will be quite fami·
l iar to readers used to languages like Algol,
PLlI, Pascal, etc; similarly the cosme tic
changes are simple. We shall concentrate
on showing what the language looks like.

Statement Grouping

Fortran provides no way to group
statements together. short of making them
into a subrou tine. The standard construe·
tion "if a condition is true, do this group of
things," for example,

if(x> 100)
I ca ll error(" ... "); err = 1; return J

cannot be wrillen direc tl y in Fortran. I n·
stead a programmer is forced to translate
this ' relative ly clear though t into murky For·
tran, by stating the negat ive . cond ition and
branch ing tlTound the group of statements:

10

if(x .Ie. 100) goto l Q
call error(27h ...)
err = I
return

When the program doesn' t work, or when i t
must be mOdified, this must be translated
back in to a cleare r fonn before one can be
sure whtlt it does.

RATFOR eliminates th is error~pron e
and confus ing back·and·forth . translat ion;
the fi rst form is the way the computation is
wrillen in HATf'OI{. .A group of statements
can be treated as a unit by enclosing them
in the braces { and L Th is is true
throughout the language: wherever a single
RATFOR statement can be used, there can be
several enclosed in braces. (Braces seem
clearer and less obtrusive than begin and
end and of course "end" al ready has a For·
tran meani ng.)

Cosmetics contribute [0 the readability
of code, an(! thus to its understandability.
The character" >" is clearer than ".<..iT.", so
RATI'OI{ trans lates it <lppropriately, along
with several other similar shorthands.
Although the construction " is recognized
by many Fortran compilers as a chafHcter
SIring, il is not allowed in ANSI Fortran, so
RATFOI{ converts it i nto the righ t number of
" H's"; computers count belle r than people
do.

RATFOR is a free· form language: st~te·
men ts may appear anywhere on a line, and
seveml may appear on one line i f they are
separa ted by semicolons. The example
above could also be written as

;r(x> 100) 1
call error(" ." ")
err = I
retu rn

No semicolon is needed at the end of each
line because RATfOR assumes there is one
statement per line unless told otherwise.

Of course, if the statemen t that follows
the if is <l single statemen t (RAT FOR or oth
erwise), no braces are' needed:

;r(y <~ 0.0 & z <~ 0.0)
write(6,20) y, l

No continuation need be indicated because
the statement is clea rly not finished on the
first line. In genera l RATFOR con tinues l ines
when it seems obvious that they arc not yet
done. (The con tinu<ltion convention is dis
cussed in detail later.)

The "else" pause

RATFon provides an else statement to
handle the construction "if a cond it ion is
true, do this th ing, otherwise do that thing."

i f(a<=b)
I sw = 0; wrile(...) a, b J

else
I sw = 1; write(...) b, a J

The Fort ran equiva lent of this code is ci rcu·
itous indeed:

r •

• 'I

in a .gl. b) goto 10
sw = 0
write(...) a, b
goto 20

10 sw = I
write(...) b, a

20

- J -

T his is a mechanical translation; shorter
forms exist, as they do for Inllny simihlf si
tuations. l3ut all translations suffer from the '
same problem: since they are translations,
they arc less clear and understandable than
code that is not a translation. To under
stand the FOrlr<ln version, one must SC<ln
the entire program to make sure that no
other statement branches to statements 10
or 20 before one knows that indeed this is
an i f-else construction. With the RATFOR
version, there is no question about how one
gets to the pariS of the statement. The if
else is a single unit, which can be read, un
derstood and forgotten. T he program says
Wha t it means.

The syntax of the if statement is

in legal Fortran condition)
Ratfor statement

else
Ratfor statement

where the else part is optional. The "legal
Fortran condition" is anything that can le
gally go into a Fortran Logical tF. RATFOR
does not check this clause, since it does not
know enough Fortran to know what is per
mitted.

RATFOR does not proVide a case stale
ment, since it may be readily simulated with
a series of else i f statements:

;f(...)

else in ...)

else

This is an exall111le where the desire for
simplicity overcomes (he desire to provide a
"complete" set of statements.

T he " do" Statemen t

The do statement in RATFOR is quite
similar to the DO statement in Fortran; ex
cept Ihat it uses no statement number.
Thus

do i = 1, n {
x(i) = 0.0
y(;) ~ 0.0
,(;) ~ 0.0

is the same as

doIOi=l,n
x(;) ~ 0.0
y(;) ~ 0.0
zG) = 0.0

)0 continue

The !!yntax is:

do legal-Fortran-OO-text
Ratfor statement

The pari that follows the keyword do has to
be something that can legally go into a For
tran DO statemenl. Thus if a local version
of Fortran allows DO limits to be expressions
(which is not permitled in ANSI Fortran),
they can be used in a RATFOR do.

As with the if a single statement need
not have braces around it. This code sets
an array to zero:

do i =], n
x(;) ~ 0.0

"break" and " next"

RATFOR provides statements for leav
ing a loop early, and for beginning the next
iteration. Break causes an immediate exit
from the do; in effect it is a branch to the
statement after the do. Next is a branch to
the bollom of the loop, so it causes the next
iteflltion to be done. For eX<lmple. this code
skips over negative values in an array:

do i = I, n {
;f(x(;) < 0.0)

next
--- process positive element ---;-

The "while" Slatement

One of the problems with Ihe Forlran
no slillemen l is Ihal i l insisls upon being
done once, regardless or its limits. Ir a loop
begins "no 1 - 2. I"' Ihis will be done once
wilh I set 10 2, even though common sense
would suggest Ihat perhaps il shouldn'l be.
Of course a RATFOR do can be easily preced·
cd by a leSI

;f(j<~k)

do i = j, k

but this has 10 be a conscious act, and is of·
ten overlooked by programmers.

A more serious problem with the DO
statement is that it encourages that a pro
gram be written in terms of an arilhmelie
prog ression with small positive steps, even
though that may not be the best way to
write i t.

To overcome these difficulties, RATFOR

provides a while slalement, w~i c h is simpl y
a loop: "while some condi tion is true, repeat
th is group or slalements". It has no precon
ceptions about why one is looping. For ex
ample, this rouline 10 compute sin (x) by the
Maclaurin series combines two termination
criteria,

function sin(x, e)
returns sin(x) to accuracy e, by

-4-

sin (x) = x - x"3/3! + x"5/5! - .,.

sin = x
term = x
i = 3

while(abs(lerm» e & i<IOO){
lerm = -term * x"2 I noat(i*(i-I)
sin = sin + term
i=i+2

return
end

Notice thai ir the routine is entered
with term already smaller than e, ' the loop
will be done zero times, tha t is, no tlllempi
wi ll be made 10 compule x"j and thus a
poten tia l undernow is avoided. Since the

test· is made ill Ihe lap of a while loop in
sle'ad of the bOltom, a spec ial Cilse disap
pears - the code works alone of ils boun
daries,

As an aside, a sharp cil(lracter "#" in
a line marks the .beginning of a comment;
Ihe reSI or Ihe line is comment. Comments
and code ciln co-exist on the same line -
one can make marginal remarks, which is
nOI possible wilh Fortran's "C in column I"
convenlion .

The synlax of the while sta lement is

while(legal Fortran condition)
Ratfor statemenl

As with the if, "legal Fortran condition" is
something thai can go into a Fortran Logi
cal i F.

The while encourages a style of coding
not normally pracliced by Fort ran program
mers. For example, suppose nextch is a
funClion which returns the next input cha r
acter both as a function value and in its ar
gument. Then to find the first non-blank
character requires si mply

whi le(nextchOch) == iblank)

(A semicolon by ilself is a null statement;
"==" is "".EQ."J When the loop is broken,
ieh contains the first non-blank. Of course
the same code can be written in Fortran as

100 if(nextch (ich) ,eq. iblank) goto 100

but few Fortran programmers even believe
this line is legal. . The language at one's
disposal strongly innuenccs how one thinks
about a problem.

The "for " Statement

The for sta tement is the final RATFOR

control now conslruct. It attempts to ca rry
Ihe separation of loop·body from reason·
for-looping a step furthe r than Ihe while. A
for statement allows explicit initialization
and increll1ent steps as . part of the state
ment. For example, a DO loop is just

fore i=l; i<=n; i=i+l) .. ,

and the loop of the sine routine i n the pre-

-

.'q;"

vious section could be re-wrillen as

for(i=J ; abs{term»e & i <IOO; i=i+2 H
term = -term" x"21 noatW(i-l»
sin = sil) + term

The initiali/.at ion and increment of i have
been movcd into the for statement, making
it .easier to sec· at a glance what controls the
loop.

The sY I~tax of the ror sta tement is

for (i~'it ; condition; increment)
Ratfor statement

il1il is any single Fortran statement, wh ich
gets done once before the loop begins. in
crement is allY single Fortran statement,
which gets done at the end of each pass
through the loop, before the test. condilion
is aga in anything that is legal in a logical IF.
Any of il1il, condilion, and incremenl may be
omitted, although the semicolons must
remai n. A non-existent condilion is treated
as always truc, so fort;;) is an indefinite re
peal.

The ror statement is particularly useful
for backward loops, chaining along lists,
loops that might be done zero times, and
similar th in gs which are hard to express
with a DO statement, and obscure to write
out di rec·tly. For example, here is a "back

. wards DO loop" to find the last non-blank
characte r on a card :

fore i = 80; i .> 0; i = i-I)
if(cardm != blank)

break

("!=" is the same as ,. NJ.::') . The code
scans the columns from 80 through to l. If
a non-blank is found, the loop is immediate
ly broken (break and next work in for's and
while's jusl as in do's). I f i reaches zero,
the card is all blank.

The incremen t need not be an arith
metic progression; the following program
walks along a list until a tero pointer is
found, adding up elements from a parallel
array of values :·

- 5 -

sum = 0.0
for(i = first; i > 0; i = plr(i))

sum = sum + value(j)

Notice that the code works correctly if the
list is empty. Agai n, placi ng the test at the
top of a loop instead of the bottom elim
inates a potential boundary error.

Cosmetics

Free-Jorm Input: Statements can be placed
anywhere on a line; long statements are
continued automatically . Multiple state
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if RATFOR can
make some reasonable guess about whether
the statement ends there. Lines end ing
with any of the characters

+ • I &

are assumed to be contin ued on the next
l.ine.

Any statement" that begins with an
aU-numeric field is assumed to be a Fortran
label, and placed in col umns I-S upon out
put. Thus

write(6,100); .100 fOflnat("heUo")

is converted into

write(6, I 00)
100 format(Shhello)

Translalion Services: Text enclosed in
matching single or double quotes is convert
ed to nH .. , but is otherwise unaltered (ex
cept for formatting - it may get split across
card boundaries during the reformatting
process) .

Any line thaI begi ns with .the charac
ter '%' is left absolu.lely unaltered except for
stripping all· the '%' and moving the line
aile posi tion 10 the left. T his is usefu l for
inserting control c<lrds, and ot her things that
should not be transmogrified (like an ex ist
ing Fortran program).

Symbols like '>., or '>=' are translat
ed in the obvious manner unless they occur
within either single or double quotes or on a

li ne beginning wi th <I '%'; '&' <lnd ' I' be
come ··.ANn·· <lnd ··.OIC. The brackets (and
I are synonyms for the braces I and J.
define: Any stri ng of ulph,mumerk churac
ters can be defined as a name; thereafter,
whenever that name occurs in the input
(del imited by non-alphanumerics) it is re
placed by the rest of the definition line
<Comments <lre st ripped om. define is typi
c<llly used to make symbol ic parameters:

define ROWS 100
define COLS SO

dimension a(RO WS), b(ROWS,COLS)

if{ i > ROWS I j > COLS) ...

include: The sta temen t

include filenumber

inserts the fi le found on input st ream
jifellllmber into the R,\TFOR inpu t in place of
the include statemen t.

3. IMPLEMENTATION

RATI'OR was origi nally written in C[41.
a high-level language reminiscen t of HCPL,
on the UNtX opemting sys tem(S]. The
language is speci fied by a context f ree gram
mar and the compiler cons tructed using the
Y Ace compiler-compiler(6J.

The RATI'OR grammar is simp le and
stra ight forward :

prog: stat
I prog stilt

sta t : if(...) stat
I if(...) stut else stat
I while(...) stal
I for (.:.; ... ; ...) sta t
I do ... slat
I break
I next
I digits stat
I {pcog I
I any thing unre.co'gnizable

The observa tion Ihat RATFOR knows no
Fortrhn follows directly from the production
tha I says a statement is " anyth ing unrecog
nizable". In fact 1110st of Fortran falls in to
Ihis c-ategory. since any sta temen t Ihal docs
not begin with one or the keywords is by

-6-

definition "unrecognizable."

Code generation is ulso simple. I f the
firs t token on .. source line is not a keyword
(like if, else, c td the ent ire slatement is
simrly copied 10 the ou tput with appropriate
characte r translation and forrnalling. (Lead
ing digits are treated as a label.) Keywords
C<luse on ly slightly more compl ica ted ac
tion s. For example, when if is · recognized,
two consecutive labels L and L+I are gen
enlletl anti the value of L is stacked. The
condition is then isol<lted, <lnd the code

if(.nol. (condilion)) gOIO L

is OUlput. The sfafement par t of the if is
then tf<lnslated. When the end of the state
men t is encoun tered (which may be some
distance away and include nested irs, of

. course), the code

L continue

is generated, unless there is an else clause,
in which case the code is

gOIO L+l
L cont inue

In th is latter case, Ihe cotle

L+ I cont inue

is produced after the Sfaft'menf part of the
else. Code generation for the various loops
is equally simple.

One might argue that more ca re
should be taken in cpde genera tion. For ex
ample, if there is no tr<l iling else,

if(i >O)x=a

shou ld be left alone, not converted into

if(.no\. (j .g!. 0)) goto 100
x=a

100 cont inue

But what are optimizing compi lers for; if not
10 improve code? It is a rare program
indeed where Ihis kind of "ine fficiency"
will make a large differe·nce. In Ihe few

-cases where it does, the offending li nes can
be protected by '%'.

.-

' \

The usc of ,I I;ompilcr-compilcr is
definitely the preferred method of software
development The language is well-defined,
with no sy ntac tic irregularit ies, Implemen
tation is quite simple: Ihe original .const ruc
tion look under a week. However the
language is sutliciellily simple Ihal an ad hoc
recognizer could be reml ily constructed to
do the saille job if no compiler-compiler
were available.

- 7 -

The C version of RATFOR is used on
our local Honeywell 6070 anti PllP- 11. C
programs are not pOrlable, however, and
there was a need for a RATFOR that cou ld be
movetl 10 other l11<1chincs. A new version
of RATFOR was writLen in itself and
bootstrapped with the C version. The RAT·
FOR version was wrillen so as to translate
into th e portable subset of Fortran
described in iiI, so i t is portable. Th is cotle
has been run essenti<~ il y without change on
the machines of six different vendors. (The
main restrictions of the portable s.ubsct arc:
only one character per machine word: sub- .
scripts in the form c·v±c; avoiding expres
sions in places like DO loops: consistency in
subrou tine argument usage. and in COMMON

declarations. RATI'OR Ltself will nol gratui
tously generate non-standard Fortran.)

The RA TFOR version is about 1500
lines of RATFOR (compared to about 750
lines of C); this compiles into 2500 lines of
Fortran. Both figures are deceptive. howev
er, since the compi led code contains un
necessary occurrences of COMMON declara
tions and numerous CONTINUE sta tements
that ·are never referenccd. Similarly the
RATFOR source uses white space generously
in an attempt to be readablc. Thc expan
sion ratio seems typical in spite of this.

The execution time of the RATI'OR
version is domina ted by three routines. Six
ty percent of the time is spent in two
routines thaL read <Inti write cards: twenty
percent is spent deciding whether input
chamclers arc lellers. digi ts. or others.
Clearly these three routines could be re
placetl by machine coded local versions; un
less this is <.IoLle •. the efficiency of other
pa rts of the translation process is irrelevant.
II docs (;Q llfirm the folk-theorem that 10%
of the code t;\kes 90% of the run time.

4. EXPERIENCE

Good Things

At the moment there arc perhaps fOTlY
RATFOR users at ~cll L::Ibs. " It 's so much
beller th::ln Fort ran" is the most common
response of users when asked how well RAT
FOR meets their needs. Although cynics
might consider this to be vacuous, il does
seem to be true that decent conlrol now and
cosmetics converts Fortran f rom a ba<.l
langu<lge inlO quite a reasonable one, assum
ing that FonTan <.Iala st ructures are adequate
for the task al hand.

One interesting and encouraging fact
is that programs wrillen in RATFOR tend to
be as readable as programs written in more
modern languages like Pascal. For example,
here is a RATFOR implementation of the
linear tab le search discussed by Knu th 17):

A(m+l) = x
for (i = 1; Am != x; i = i + I):
if(i>m)!

else

m =i
SCi) - I

Once one is free<.l from the shack les of
Fortran's cle rical detail and rigid input for
mat. it is easy to wrile code that is readable,
even esthetically pleasing.

Although Ihere (Ire no quantita tive
results. users feel t~al codi ng in RATFOR is
at least twice as fast as in Fortran. More
important. debugging and subsequent revi
sion are much faster than in Fortran. Partly
this is simply because the code can be read.
The looping Sla temen ts which test at Ihe
Lop instead of the bottom seem to elimi nate
or at least reduce the occurrence of a wide
cl<lss of boundary errors. AL1<.l of course it is
easy to <.10 st ructured progr:mHlling in RAT·
nm; this self-<.Iiscipli ne also cont ributes
markedly to reliability.

Bad Things

The biggest single problem is that For
tran syntax errors are not detected by RAT·
FOI{ but by the local Fortran cOI11[)iler. The
I;ompiler then prints It mcssagc in terms or
the generated rortrall, alld in some CHses
this may" be difficult to relate back 10 the
offending RATFOR line, especially if the im
plementation conceals the genera ted For
tr<ln. This problem could be dealt with by
tagging each generated line with some indi
cation of the source line tllat created it, but
this is inherently implementlltion
dependent, so no action has yet been taken.
Users also complain thaI the generated For
tran is "unreadable" because it is not taste
fully forll18Lled and contains extraneous
CONTtNUE statements.

There are a number of implementa
ti on wellknesses that are a nuisance, espe
cially to new users. For example, the con
tinuation convention says thllt a line wh'ich
ends wilh a slash'/' should be continued,
since the slash is probably an arithmetic

. operator. But the Fortran DATA statement
also ends with a slash. Since RATFOR truly
doesn't know any Fortran i t cannot reliably
recognize when it is dealing with a DATA
stolemenl. Thus one must te rminate each
nATA statement with a semicolon. Another
less serious difficulty is that keywords arc
reserved. This rarely makes any difference,
except for those hardy souls who want to
use un Arithmetic tF. It is hard to work up
much sympathy for them, however.

The construction

; r(...)
stop # or return or goto

else
thing

generates an inaccessible UOTO after the
STO r> statement. Most Fortran compilers
produce a warnin g diagnost ic. which is
disconcerting the firs t lime encountered.
The problem may be solved by removing
the else, which is logically unnecessary.

A few standard FOrlran constructions
ar~ not accepted by' RATFOR. and this is per
ceived as <I problcm by users with a large
corpus or existing Fortran programs. Pro-

-8 -

tccting every line with a '%' is not really :I

complcte solution, 'llthough it scrvcs as a
Slop-gap.

5. CONCLUSIONS

RATI'OR demonstrates that with mod
est elforl it is possible to convert FOrlran
rrolll a bad language inlo quite a good one.
A preprocessor is clearly a userul way to ex
tend or a'meliorate the facilities of a base
language.

When designing a language, i t is im
portan t· to concentrate on the essential re
quirement of providing the user with the
best Illnguage possible for a given effort.
One must avoid throwing in "realures" -
things which the user may trivially con
struct within the exis ting rramework. For
example, RATFOR docs not provide a repeat
statement which is a loop with its test at the
bottom. This statement encourages pro
grams which rai l at their boundaries. In the
rew cases where it is needed, it can be easily
simulated with an infinite loop and a lest
and break at the bOllom .

One must also avoid getting side
tracked on irrelevancies. For instance it
seems pointless ror RATFOR to prepare a
neatly formatted listing or either its input or
its output. The user is presumably capable
of the selr·discipline required to prepare
neat i nput that re nects his thoughts. [t is
much more important that the language
provide free-rofm input so he can rormat it
neatly. No one should read the output any
way except in the most dire circums tances.

Acknowledgements

C. A. R. Hoare once sa id Ihat "One
thing [the language designer] shou ld not do
is to include untried ideas of his own." RAT
FOR follows this precept ve ry closely -
everything in it has been stolen from some
one else. Most of the control 1I0w struc
tures are taken directly from the language
C14] developed by Dennis Ritch ie; the com
ment and conti nuation conventions are
adapted rrom Altran[8].

I am graterul to Stuart Feldman, whose
. p<llient si mulation of an innocent user led to

scveT<.lI design improvements and the eradi-

.... r

\..

,alion of bugs. He also tra nslated the C
parse- tables ;In(] YMX' pilfscr inl0 f}ort ran
for the RAHOR version OfRATFOIC

Refe rences

III B. G. Ryt.l cr, The
Software- Pracfice
Oct.- Dec. 1974.

PFORT Verifier,
t~ Experience,

(21 Amcril.!an National Stam.lard Fortran.
American National SI:'l1ldards ins titute,
New York. 1966.

131 Workshop on Fortran Preprocessors
for Numerk:'11 sort ware. Pasadena,
Cal if. , Nov. 1974.

[4) D. M. Ritchie. C Reference Manual.
Bell Labs internal memorandum, 1974.

(5J D. M, Ritchie lmd K. L. Thompson.
The UN I X T ime-shari ng System.
CACM, July 1974.

(61 S. C. Johnson. Y ACe - Yel Another
Compiler-Compiler. Bell Labs in ternal
memorandum. 1974.

(7J D. E. Knuth. Structured Programming
wit h gala Sta tements. Compuring Sur
l'eys, Dcc. 1974.

(8J A. D. Hllll, The Altran SysLem ror Ra·
tional Function Manipulation - A

.Survey. CACM, Aug. 1971.

-9-

r

'-

Y ACe - Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every
computer program which does input can be thought of as defining an "input
language" which it accepts. The input languages may be as complex as a pro
gramming language, or as simple as a sequence of numbers. '. Unfortunately,
standard input facilities are restricted. difficuh to use and change, and do not
cpmpletely check their inputs for validity.

Vacc provides a general tool fo r controlling th e input to a computer pro
gram. The Yacc user describes the structures of his input. together with cOde
which is to be invoked when each such st ructure is recognized. Yacc turns
such a specification into a subroutine which may be invoked to handle the in
put process;' frequent ly, it is convenient and appropriate to have most of the
now of control in the user's application handled by this sub routine.

The input subroutine produced by Yacc calls a user supplied routine to
return the next basic input item. Thus, the user can speci fy his input in terms
of indi vidual input char,acters , or, if he wishes, in terms of higher level con
structs such as names and numbers. The user supplied routine may also han
dle idiomatic features suc'h as comment and continuation conventions, which
typically de fy easy specification.

Yacc is written in C[7] , and runs under UNIX. The subrou tine which is
output may be in C or in Ratforf41, at the user's choice; Ratfor permits transla
tion of the output subroutine into p'ortable Fortran[5]. The class of
specifications accepted is a very general one, called LALR (]) grammars with
disambiguating rules. The theory behind Yacc has been described else
whereU ,2,3l.

Yacc was originally designed to help produce the "front end" of com
pi lers; in addition to this use, it has been successfully used in many application
programs, including a phototypesetter language, a document retrieval system, a
Fortran debugging system, and the Ratfor compiler.

..

.-

,-

Section 0: Introduction

YACC - Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories.
Murray Hill, New Jersey 07974

Yacc provides a general tool fo r imposing structure on the input to a computer program . .
The Yacc user prepares a specification of the input process; this includes rules which describe
the input structure, code which is to be invoked when these structures are recognized, and a
low·level routine to do the basic input. Yact: then produces a subroutine to do the input pro
cedure; this subroutine, called a parser, calls the user-supplied low-level input routine (called
the lexical ana/ner) to pick up the basic items (called tokens) from the in put stream. These to
kens are organized according to the input structure rules, called grammar rules; when one of
these rules has been recognized, then the user code supplied for this rule, called an action, is

. invoked; actions have the ability to return values and make use of the values of other actions.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structu re and gives it a name. For example, one grammar rule migh t be

date: month_name day',' year ;

Here, ·date, month name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma "," is quoted by
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4. 1776

might be matched by the above rule.

As we mentioned above, an important part of the input process is carried out by the lexi
cal analyzer. This user rout i n~ reads the true input stream, recogn izing those structures ·which
are more conveniently or more efficiently recognized directly, and communicates these recog
nized tokens to the parser. For historical reasons, the name of a structure recognized by the
lexical analyzer is called a terminal symbol name, while the name of a structure recognized by
the parser is called a nontermillal symbol name. To avoid the obvious .confusion of terminology,
we shall usually refer to terminal symbol names as token names. .

. There is considerable leeway in deciding whether to recognize structures by the lexical
analyzer or by a grammar rule. Thus, ·in the above example it would be possible to have other
rules of the form

month name
month_name

'1' 'a' 'n'
'F' 'e' 'b'

month_name : 'D' 'e' 'c'

Here, the lexical analyzer would only need to recognize individual letters, and month_name
would be a nonterminal symbol. Rules of this sort tend to be a bit wasteful of time and space,
and may even restrict the power of the input process (alth0l!gh they are easy to write). For a

- 2-

more efficient input process, the lexical analyze r itself might recognize the month names, and
return an indication thaI a month_name was seen; in this case, momh_name would be a token.

Literal characters. such as ",", must also be passed th rough the lex ical analyzer, and are
conside red tokens.

As an example of the n"exibility of the grammar rule approach, we might add to the above
specifications the rule

date: month 'f' day 'f' year

and thus optionally allow the fOfm

7/411776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal efforl,
and a very small chance of disrupting existing input.

Frequently, the input being read does not conform to the specifications due to errors in
the input. The parsers produced by Yacc have the very desirab le property that they will detect
these input errors at the earliest place at which this can be done with a left-Io-right scan; thus,
not only is the chance of reading and computing with bad inpu t data subs tantia lly reduced, bu t
the bad data can usually be quickly found. Error handling facilities, entered as part of the in
put spec ifi cations, freque ntly permit the reen try of bad data, or the continuation or the in put
process after skipping over the bad da ta.

In some cases, Yacc fai ls to produce a parser when given a set of specifications. For ex
ample, the specifications may be self contradictory, or they may requi re a more powerful recog
nitiutl mechanism than that available to Yacc. The fo rme r cases probably represl!nt true
design er rors; the lalle r cases can often· be corrected by making the lexical analyzer mQre
pow(.:rful, or by rewrit ing some of the grammar rules. The class of spec ifications which Yacc
can ha ndle compares very favorablY with other systems of this type; moreover, the construc
tions which are difficult for Yacc to handle are also frequently d ifficult for human beings to
hand le. Some users have reported that the discipline of formulating valid Yacc specificatio ns
for their input revealed errors of conception or design early in the program development.

The next seve ral sec tions describe th e basic process of preparing a Yac..: specificat io n;
Sect ion I describes the preparation or grammar rules, Section 2 the preparation of the user sup
plied ac tions associated with these rules, and Section 3 the preparation of lexical analyzers. In
Section 4, we discuss the diagnostics produced when Vacc is unable to produce a parser from
the give n specifica tions. This sec tion also desc ribes a simple, frequently useful mechanism ror
handling ope rator precedences. Section S.discusses error detection and recovery. Sec tions 6C
and 6R discuss the operat ing environment and special features of the sub routines wh ich Yacc
produces in C and Ratfor, respectively. Section 7 gives some hints wh ich may lead to bette r
designed, more efficien t, and clearer specifications. Finally, Section 8 has a brier sum mary.
Appendix A has a brief exam ple, and Appe ndix B tells how to run Yacc on the UN IX ope rat
ing system. Appendix C has a brief description of mechanisms and syntax which are no lo nger
actively supported , but which are provided for historical con tinui ty with older versions or Yacc.

\""\ . ..#

~ •

-, . ,

-3-

Section 1: Basic Specifications

As we noted above, names refer to eithe r tokens or nonterminal symbols. Yacc requires
those names which will be used as token names to be declared as such. In addi tion, for rea·
sons which will be discussed in Section. 3, it is usually desirable to include th e lexical analyzer
as part of the specificat ion file; it may be usefu l to.include other programs as well. Thus. every
specification . file consists of three sections: the declaratIons, (grammar) rules, and programs. The
sections are separated by double percent "%%" marks. (The per-cent "%" is generally used in
Yacc specifications as an escape character.)

In other words, a (ull specification file looks· like

declarations
%%
rules
%%
programs

The declaration section may be empty . Moreover, if the programs seclion is omitted, the
second °/.% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, la bs, and newlines are ignored except Ihal they may nOI appear in names Or
multi-character reserved symbols. Comments may appear wherever a name or operator is le
gal; they are enclosed in r . .. • ', as in C and PLII.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY;

A represents a nonterminal name, and BODY represents a sequence of zero o r more names
and lite rals. Notice that the colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dOl ".", underscore
"_n, and non-initial digits. Notice that Vacc cons iders that upper and lower case lette rs are dis
tinct. The names used in the body of a grammar rule may represent tokens or nonterminal
sy mbols.

A literal consists of a character enc losed in single Quotes "'''. As in C. the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\ n' represents newline
'\r' represents return
'\" represents single Quote II'"
'W represents backs lash "\"
'\1' represents tab
'\ Q' represents backspace
'\ xxx' represents "xxx" in octal

For a number of technical reasons. the nul character no' or 000) should never be used in
grammar rules.

. if there are several grammar rules with the same left hand side, the vertical bar "\" can
be used to avoid rewriting the left hand side. In addi tion. the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A : BCD
A : E F
A : G

can be give n to Yacc as

A : BC Dl
E Fl
G,

- 4 -

It is not necessary that all grammar rules with the same left side appear together in the gram·
mar rules section. a"lt hough it makes the input much more readable, and easy to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way :

empty :

As we mentioned above, names which represent tokens must be declared as such. The
simplest way of doing this is to write

%token name I name2 ...

in the decla rations section. (See Sections 3 and 4 for much more discussion). Every name not
defined in the declarations section is assumed to represent a nonterminal symbol . . If. by the
end of the rules section, some nonlerminal symbol has not appeared on th e left of any rule,
then an error message is produced and Yacc halts.

The left hand side of the first grammar rule in the grammar rutes section has special im
portance; it is taken to be th e controlling nonte rminal symbol for the entire input process; in
technical language it is called th e start symbol. In effect. the parser is designed to recognize the
start symbol; thus, this symbol generally represents the largest, most gene ral structu re
described by the grammar ru les.

The end of the in put is signaled by a special token, called the endmarker. If the tokens
up to, but not including, the end marker form a structure which matches the start symbol, the
parser subroutine returns to ilS caller when th e endmarker is seen ; we say that it accepts the
input. If the endmarker is se~n in any other context, it is an error.

It is the job of the use r supplied lex ical analyzer to retu rn th e end marker when appropri
ate; see section 3, below. Frequently, the endmarker token represents some reasonably obvi
ous 110 status, such as "end-of·file" or "end-of-record".

Section 2: Act ions

To each grammar rule, the user may associate an action to be performed each time the
rule is recognized in the input process. This action may return a value, and may ob tain the
values retu rned by previous actions in th e grammar rule. In add ition, the lexical analyzer can
return values for tokens, if desi red.

When invoking Vacc, the user specifies a programming language; currently , Ralfor and C
are supported. An aC lion is an arbitrary s tatement in th is language, and as such can do input
and outpu t, call subprograms, and alter e~ ternal vectors and variab les (recall that a "s tatement"
in both C and Ratfor can be compound and do many distinct lasks) . An action is specified by
an equal sign "=" at the end of a grammar rule, fo llowed by one or more statements, enclosed
in curl y braces "(" and !'J". For example,

A: 'r B ')' ~ I he llo(I, "abc"), I
and

{..::. .

, ..

r

~-

XXX: YYY ZZZ ~
I

printf("a message\n");
nag ~ 25;

-5-

are grammar rules with actions in C. A grammar rule with an action need not end with a sem·
ieol,?n ; in ~act, it is an error to have a semicolon before the equal sign.

To facilitate easy. communication between the actioris and the parser, the act ion stale
ments are altered sligh tly , The symbol "dollar sign" "$" is used as a signal to Yacc in th is
con text

To return a value, the action normally ,sets the pseudo-variab le "$$" to some integer
value. For example, an action which doe.<; nothing but return the value 1 is

~ · I$$~ I; J

To obtain the values returned by previous actions and the lexical analyzer, th e action
may use the (integer) pseudo-variables $1, $2, . . " which re fer to the values re tu rned by the
components of the right side of a rule, reading from left to right Thus, if the rule is

A: BCD ;

for example, then $2 has the va lue returned by C, and '$3 the value returned by D.

As a more' concrete example, we might have the rule

expression: '(' expression')' ;

We wish the value returned by this rule to be ·the value of" the expression in parentheses.
Then we write

expression: '(' expression ')' = { $$ = $2 ; .}

As a default, the value of a ru le is the va lue of the first element in it ($1) . This is t rue
even if there is no explicit action given for the rule. Thus, grammar T':lles of the form

·A: B ;

freque ntly need not have an expl ict action.

Notice that, although the values of actions are integers, these integers may in fact contai n
pointers (in C) or indices into an array On Ratfor); in this way, actions can return and refer
ence more complex data structures.

Sometimes, we wish to get control 'before a rule is fully parsed, as well as at the end of
the rule. There is no explicit mechanism in Yacc· to allow this ; the same effect can be ob
tained, however, by introducing a new symbol which matches the empty string, and inserti ng
an action for this symbol. For exampt"e, we might have a rule describing an "ir' statement :

statement: IF 'r expr ')' TH EN statement

Suppose that we wish to get control after seeing the right parenthesis in order to output some
code. We might accomplish this by the rules :

statement: IF '(' expr ')' act n TH EN statement
= { ca ll act ion I J .

acln: 1* matches the empty Si rin g *'
= { call aClion2 J

, ,

-6-

Thus. the new nonterminal symbol actn matches no input. but serves only to call aclion2
after the right parenthesis is seen.

Frequently. it is more natural in such cases to break the rule into parts where the action
is needed. Thus. the above example might also have been written

statement : ifpart THEN statement
= I call action I I

ifpart: IF T expr T
= { call action2 }

In many applications, output is not done directly by the actio ns; rather, ' a data structure.
such as a parse tree. iii constructed in memory, and transformations are applied ·to it before out
put is generated. Parse trees are particularly easy to construct. given routines which build and
maintain the tree structure desired . For example. s uppose we have a C function " node" , writ
ten so that the call

node(L, nl, n2)

creates a node with label L. and descendants nl and n2. and returns a pointer to the newly
created node. Then we can cause a parse tree to be buill by supplying actions such as :.

expr: expr • +' expr
- t $$ - node('+', $1, $3) ; I

in our specification.

The user may define other variab les to be used by the actions. Declarations ' and
definitions can appear in two places in the Yacc specification : in the declarations sect ion. and
at the head of the rules sections, before the first grammar ru le. In each case, the declarations
and definitions are enclosed in the marks " %{" and "','o j". Declarations and definitions placed
in the declarations section have global scope , and are thus known to the action statements and
the lexical analyzer. Declarations and definitions placed at the head of the .rules section have
scope local to the action statements. Thus. in the above example, we might have included

%{ int variable 0; %}

in the declarations section, or, perhaps,

%{ slatic int variable ; %J .
at the head of the rules section. If we were writing Ratfor actions, we' might want to include
some COMMON statements at the beginning of the rules section, to allow for easy communi

·cation .between the actions and other routines. For both C and Ratfor, Yacc has used only
external names beginning in "yy"; the user shou ld avoid such names.

Section 3: Lexical 'Analysis

The user must supply a lexical analyzer which reads the input stream and communicates
tokens (with values. if desired) to the parser. The lexical analyzer is an integer valued function
called yylex. in both C and Ratfor. The function returns an integer which represents the type
of the token. The value to be associated in the parser with that token is assigned to the integer
variable yy lval. Thus, a' lexical analyzer written in C should begin

yylex () t
extern int yylval;

while ~ lexical analyze r written in Ratfor should begin

;' _':.> v

~ };l

."

integer function yylex(yylval)
integer yy lva l

- 7 -

Clearly, the parser and the lexical analyzer must agree on the type numbers in order for
communication between them to take place. These numbers may be chosen by Yacc, or
chosen by the user. In either case, the "define" mechanisms of C and Ratfor are used to allow
the lexical analyzer to return these numbers symbolically. For example. suppose that the to
ken name DIGIT has been defined in the declarations section of the specification. The
relevan t portion of the lexical analyzer (in C) migh t look like:

yyl.x() I
exte rn int yylval;
iot c;

c = getchar();

ir(c >- '0' && c < - '9') I
yylval = c-'O';
return(DlG IT);

The relevant portion of the Ralfor,Jexical analyzer might loo~ like:

intege r function yy lex(yy lval)
integer yylval, digitsOO), c

data digits(t) I "0" I;
data digilS(2) I-},' I;

data digitsOO) I M9- I;

set c to the next input charac ter

do i-I, 10 I
ir(c .EQ. digits(j)) I

yylval = i-1
yy lex = DIGIT
return

In both cases, the intent is to return a token type of DIG IT, and a va lue equal to the nu
merical value o r the digil. Provided thaI the lexical analyzer code is placed in · the programs
section or th e specification, the identifier DIGIT will be redefined to be equal to the type
number assoc iated with the token name DIG IT.

This mechanism leads to clear and easily modified lexical analyzers; the on ly pitfall is
that it makes it important to avoid using any names in the grammar which are reserved or
sign ifican t in the chosen language; thus, in both C and Ratror, the use or token na mes or "if'
or "yylex" will almost certain ly cause seve re difficulties when the lex ical analyzer is compiled.
The token na me "error" is rese rved for error handling, and should not be used naively (see
Section 5) .

- 8 -

As ment ioned above. the type numbers may be chosen by Vacc or by the user. In the
·defau lt situation. the numbers are chosen by Vacc. The default type number for a literal char
ac ter is the numerical value of the character, considered 35 a I byte integer. Other token
names are assigned type numbers starling at 257. It is a difficult, machine dependent operation
to determi ne the numerica l value of an inpu t character in Ratfor (or Fortran) . Thus, .the -Rat
for user of Yacc wi ll probably wish to sel his own Iype numbers, or not use any literals in his
spec ifica tion.

To assign a type number to a toke n (including literals), the first appea rance of the token ·
name or literal in the dec/ara/ions sec/ion ca n be immediately followed by a nonnegative integer.
Th is integer is taken to be the type number of the name or litera l. Names and literals not
de fin ed by this mechanism re tai n their defa ult defin ition , It is important that all type numbers
be distinct.

There is one exception to this situation , For st ick y historical reasons, the end marker
must have type num ber O. Note that this is not unallractive in C, since the nul characte r is re
turned upon end of fil e; in Ratfor, it makes no sense. This type number can not be redefined
by the user; thus, all lex ical analyzers should be prepared to return 0 as a type number upon
reaching the end of thej'r inpu t.

Section 4: Ambiguity, Conflicts, and Precedence

A set of grammar rules is ambiguous if the re is so me input string which can be structured
in two or more different ways, For example, the grammar rul e

expr : expr ' - ' ex pr ;

is a natural way of ex press ing th e fact that one way of forming an arithmetic express ion is to
put two other expressions together with a mi nus sign between them, Unfortu nately, th is
grammar rule does not com pletely speci fy the way that all complex inputs should be' structured,
For example, if we have input of the form

expr - expr - ex pr

the rule would permit us to treat this inpu t eit he r as

(expr - expr) - expr

or as

expr - (exp r - expr)

('We speak of th e first as left association of operators, and the second as right ossociotion).

Yacc detects such ambiguities when it is auempt ing to build the parse r, It is instructive
to consider the problem ,that confronts the parser when it is given an input s uch as

expr - exp r - expr

When the parse r has read the second expr, the input which it has seen:

expr - expr

matches the right side of the grammar rule above. One valid thing for the parser to do is to
reduce the input it has seen by applying this rule; after applying the rule, it would have re
duced the input it had already seen to exp r (the left side of the rule) , It could then read the
fina l part of the inpu!:

- expr

and agai n red uce by the rule, We see tha t the e ffect of th is is to take the le ft assoc iat ive in
terpretation ,

IY

. \
--

-9-

Alternatively, when the parser has seen

expr - expr

it could defer the immed iate appl ication ·of the ru le. and continue reading (the technical term
is shifring) the input unti l it had seen

expr - expr - expr

It could then apply the grammar ru le to the rightmost three symbols, reducing them to e xpr
and leaving

expr - expr

Now it can reduce by the rule again ; the effect is to take the right associative interpretation.
Thus, having read

expr - expr

the parser can do two legal th ings, a sh ifl or a reductio n, and has no way of deciding between
them. We re fe r to this as a shifllreduce cOl/flier. It may also happen that the parser has a choice
of"two legal reductions; th is is called a reducelreduce conjiict.

When there are sh ift/ reduce or reduce/reduce conflicts, Yacc slill produces a parser. It
does th is by selecti ng one of the valid steps wherever il has a choice. A rule which descri bes
which choice to make in a given situation is called a disambiguaring rule.

Yacc has two disambiguating rules which are invoked by default. in the absence of any
user directives to the contrary :

I. In a sh ift/ reduce co nflict, the default is to do the s hi ft.

2. In a reduce/ reduce conflict. the default is to red uce by the earlier grammar rule (in the
input sequence).

Rule I implies th at reductions are defe rred whenever there is a choice, in favor of shirts.
Rule 2 gives the user rather crude con trol over the behavior of the parser in this situation, but
the proper use of reduce/reduce conflicts is still a black art, and is properl y considered an ad-
vanced topic. .

ConfliclS may arise because of mistakes in input or logic, or because the grammar rules,
while consis tent, require a more complex parse r than Yacc can co nstruct. In these cases, the
application of disambiguating rules is inappropriate, and leads to a 'parser which is in error. For
this reason, Yacc always reports the numbe r of shi ft / reduce and reduce/ reduce conflicts whic h
were resolved by Ru le I and Rule 2.

In general, whenever it is possible to apply disa mbiguating rules to produce a correct
parser, it is also possible to rewrite th e gram mar rules so that the same inputs are read, but
there are no conflicts.· For this reason, most previous sys tems like Yacc have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna
tural to do, and produces slower parsers; thus, Yacc will produce parsers eve n in the prese nce
of confliclS.

As an example of the powcr of disambiguating rules, consider a fragment from a pro
gramming language in volving an "i f-then-else" construc tion:

stat : 1 F T cond ')' Sill! I
IF '(' cond ')' slat ELSE stat;

Here, we consider IF and ELSE to be toke ns, cond to be a non terminai symbol descri bing con
ditional (logical) expressions, and stat to be a non terminal symbol describing statements. In
the followi ng, we shall refer 10 these two rules as the simple-if rule and the if-else rule, respec

·ti vely.

- 10 -

These two rules form an ambiguous construc tion, since input of the form

IF (CI) IF (C2) SI ELSE S2

can be st ructu red according to these rules in two ways:

or

IF(CI){
IF(C2)SI

I
ELSE S2

IF(CI){
IF(C2)SI
ELSE S2

The second interpretation is the one give n in most programming languages which have this
const ruct. Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example,
consider the situation where the parser has seen

IF (C I) IF (C2) SI

and is looking at the ELSE. It can immediately reduce by the simple-if ru le to get

IF(C I)stal

and then read the remaining input,

ELSE S2

aryd reduce

IF (CI) stal ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other ha nd, we may ' shift the ELSE and read S2, and then reduce the right hand
portion of .

IF (CI) IF (C2) SI ELSE S2

by the if-else rule to get

IF (CI) stal

which can be reduced by tHe simple-if rule. This leads to the second of the above groupings
of the input, which is usually desi red.

Once again the parser can do two valid things - we have a shift/reduce conflict. The ap
plication of disambiguating rule 1 tells the parser to shi ft in this case, which leads to the
desired grouping.

Notice "that this shi ft/ reduce con flict arises on ly when there is a particular "curren t input
symbol, ELSE, and particular inpu ts already seen , such as

IF (CI) IF (C2) SI

In general, there may be many conflicts, ·and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser. which is assigned a nonnegative integer. The number of stales in the parser is typi
cally two to five times the number ·of grammar rules.

, ','

.'

~
Q

- II -

When Yacc is invoked with the verbose (-v) option (see Appendix B). it produces a file
of user output which includes a description of the states in the parser. For example, the output
corresponding to the above example might be:

23: shift/reduce Conflict (Shift 45, Reduce 18) on ELSE

State 23

Slat : IF (cand) slat
Slat : IF (cand) stat:ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving th e state and the input sy mbol. The state title fol
lows, and a brie f description of the grammar rules which are active in this state. The underline
" _" describes the portions of the grammar rules which have been seen. Thus in the example,
in state 23 we have seen input whic h corresponds to

IF (cand) stat

and the two grammar rules shown are active at this time. The actions possible are, ir the input
symbol is ELSE, we may shift into Slate 45. In this state, we shou ld find as part of the descrip
tion a line or the rorm

stat : IF (cond) stal ELSE_stat

because in this state we will have read and shifted the ELSE. Back in state 23 , the alternative
action, desc ri bed by".", is to be done if the input sy mbol is not mentioned explicitly in the
above actions ; thus, in this case, if the input symbol is not ELSE, we should reduce by gram
mar rule 18, which is presumably

stat : IF 'r cond T stat

Notice that the nu mbers following "shift" commands refer to other sui.tes, while the numbers
following "reduce" commands refer to grammar rule numbers. In most states, there will be
on ly one reduce action possible in the state, and this will always be the de fault command. The
user who encoun ters unexpected shift/reduce conflicts will probab ly want to look at the ver
bose output to decide whether the default actions are appropriate. In really lough cases, the ·
user might need to know more about the behavior and construction or the parser than can be
covered he re ; in th is case, a reference such as [I] might be consulted; the services of a local
guru might also be appropriate.

There is one common situation where the rules given above for resolving conflicts are
not sufficient; this is in the area of arithmetic express ions. Most of the commonly used con
st ructions for arithmetic expressions can be naturally described by the notion or precedence lev
els for operators, togethe r with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers which
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UN AR Y expr

fo r all binary and unary ope rators desi red. T his creates a ve ry ambiguous grammar, with many

- 12 -.

parsing connIC\s. As disambiguating rules. the user specifies the precedence. or binding
strength, of all the operators, and the associativity of the binary operators. This info rmation is
sufficient to allow Vacc to resolve the parsing conflicts in accordance with these rules. and con
struct a parser which realizes the desired precedences and associativities.

The precedences and associativities are allal.:hed to tokens in the declarations section.
This is done by a se ries o f lines beginning with a Vacc keyword: %teft. %right, or %nonassoc.
followed by a list of toke ns. All of the tokens on the same line are ass umed to have the same
precedence level and associativity; the lilles are listed in order of increasing precedence or
binding strength. Thus,

'¥o teft '+' '-'
'¥oleft '.' '/'

describes the precedence and associativity of the four ari thmetic operators. Plus and minus are
left associative. and have lower precedence than star and slash. which are also left associative.
The keyword '¥oright is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators. like the operator .LT. in Fortran. which may not assoc iate with
themse lves; thus,

A .LT. B .LT. C

is illegal in Fortran. and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations. the description

%right '-'
'¥oleft '+' '-'
%teft '.' 'r

%%

expr :
expr '=' expr
expr '+' expr
expr '-' expr
expr '.' expr !
expr '/' expr I
NAME;

migh t be used to s tructure the input

a = b = c·d - e - £-"g

as follows:

a - (b - («c'd)-e) - (f'g)))

When this mechanism is used, unary operators must, in general, be given a precedence. An
interesting situation arises when we have a unary operator and a binary operator which have
the same symbolic representation. but different precedences. An example is unary and binary
'-' ; frequently, unary minus is given the same strength as multiplication, or even highe r, while
bi nary minus has a lower strengt h than multiplication. We can indicate this situation by use of
another keyword. %prec, to c hange the precedence level associated with a particular grammar
rule. %prec appears immed iately after the body of the grammar ru le, before the action or clos
ing semicolon, and is followed by ;l; token name or literal; it causes the precedence of th e
grammar rule to become that of the token name or literal. Thus, to make una ry minus have
the same precedence as multiplication, we might write:

. ' .

%Jeft '+' '-'
%Ieft '.' 'I'

%%

expr ;
expr : +: expr I
expr - expr
expr '.' expr I
expr • r expr I
. -' expr %prec -·'1
NAME;

. - 1)-

Notice thaI the precedences which are described by %Jeft, %righ t, and %nonassoc are in·
dependent of the declarations of token names by %token. A symbol can be declared by %to·
ken, and. later in the declarations section, be given a precedence and associativity by one of
the above methods. It is true. however, that names which are given a precedence or associa
tivity arc also declared to be token names, and so in general do not need to be declared by
%Ioken. although it does not hurt to do so.

As we mentioned above, the precedences and associativi ties are used by Yacc to resolve
parsing conniets; they give rise to disambiguating rules. Formally. the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals which have
them.

2. A precedence and associativity is associated with each grammar rule ; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec con
struction is used, it overrides this default. Notice that some grammar rules may have no
precedence and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule, or both, has no precedence and associativity associated
with it, then the two disambiguating rules given at the beginning of the section are used,
and the conflicts are reponed.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift. and nonassociating implies error.

There are a number of points worth making abou t this use of disambiguation. There is
no reporling of conflicts wh ich are resolved by Ihis mechanism. and these conflicts are not
counted in the number of shift/reduce and reduce/reduce conflicts found in the grammar.
This means that occasionally mistakes in the specification of precede'nces disguise errors in the
input grammar ; it is a good idea to be sparing with precedences. and use them in an essentially
" cookbook" fashion , until some experience has been gained. Frequently. not enough operators
or precedences have been specified; this leads to a number of messages about shift/reduce or
reduce/reduce conflicts . The cure is usually to specify more precedences. or use the %prec
mechanism, or both. It is generally good to examine the verbose output file to ensure that the
conflicts which are being reponed can be validly resolved by precedence .

- 14 _ .

Secfion S: Error Handli ng

Error handling is an ext remely di fficult area, and many of the prob lems are semantic
ones. When an error is found. for example, it may be necessil ry \0 reclaim parst! tree storage.
dele te or alter symbol table ent ries, and, typically. sel switches \0 avoid pUlling out any further
output.

It is genera lly nOI acceptable to stop all processing when an e rror is found ; we wish to
continue scan ning the input to find any fUriher syntax errors. ,Th is leads \0 the problem of
getting th e parser " restarted" afte r an error. The general class n(algorit hms to do this involves
reading ahead and discarding a number of tokens from the input SIring, and allempli"ng 10 ad
just the parse r so that inpu t can continue.

To allow the user some co ntro l over this process, Vacc provides a simple, but reasonab ly
gene ral, feature. The token name "error" is reserved for error handling. This naml! can be
used in grammar rules; in effec t, it suggests places where errors are expected, and recovery
might take place. The parser attempts to find the last time in th e in put when the special token
"error" is permitted. The parser the n behaves as though it saw th e token name "error" as an
input token, and attempts to parse accordi ng to the rule encou nte red. ihe token at which the
error was de tected remains the next input token after this e rror token is processed. If no spe
cial error rules ha ve been specified, th e processing effec ti vely halts when an error is detected.

In order to prevent a cascade of error messages, the parser assumes that, after detecting
an er,ror. it remains in e rror Slate untillhree tokens have been successfull y read and shifted . If
an error is de tected when the parser is already in error state. no eTTor message is give n, and the.
input token is quietly deleted. .

As a common example, the user might include a rule of the form

stateme nt : e rror ;

in his specification. This would, in e ffect, mean that on a syn tax error the parser would at
tempt to ski p ove r the statement in which th e error was seen. (Notice, however, that it may
be difficult or impossi ble to tell the end of a statement, depending on the other grammar .
rules). More precisely. th e parser will scan ahead. looking for th ree toke ns that might legally
follow a statement , and start processing at the first of these; if the beginnings of statements ar'e
not sufficie ntly distinc tive, it may make a fal se start in the middle of a sta teme nt, and end up
reporting a second error whe re there is in fact no e rror.

The user may supply actions after these spec ial grammar ru les, just as after the other
grammar rules. These actions might attempt 10 reinitialize tables, reclaim symbol tab le space,
etc.

The above form of grammar rule is ve ry general, but somewhat difficult to cont rol.
Somewhat easie r to deal with are rules of the fo rm

statement : error ';' ;

Here, when there is an e rror, the pa rse r will again attempt to sk ip over the statement, but in
this case will do so by skipping to the next ";". All tokens after the error and before the next
";" give syntax errors, and are discarded. When the ";" is seen, th is rule will be reduced, and
any "cleanup" action associa ted with il will be performed. .

St ill another form of e rror rule arises in io te rac li ve applications, where we may wish 10

prompt the use r who has incorrec tly input a line, and allow him to reen ter the line. In C we
might write:

, , .,

..

- 15 - .

inputline: error '\n' prompt inputline
- 1 $$ - $4; };

prompt: /- matches no input - ,
-I printf("Reenter last line: "); I;

There is one difficulty with this approach; the parser must correctly process three input tokens
before it is prepared to admit that it has correctly resynchronized after the error. Thus, if the
reentered line contains er"rors in the first two tokens. the parser will simply delete the offend ing
tokens, and give no message; this is clearly unacceptable. For this reason, there is a mechan
ism in bOlh C and Ratfor which can be used to force the parser to believe that resynchroniza

. Iion has taken place. One need only include a statement of the fo rm

yyerrok ;

in his action afte r such a grammar rule, and the desired effect will take place; this name will be
expanded, using the "# define" mechanism ofC or the "define" mechan ism of Ratfor, into an
appr?priate code sequence. For example, in the situation discussed above where we want to
prompt the user to produce input, we probably want to consider that the original error has
been recovered when we have thrown away the previous line, includ ing the newline. In this
case, we can reset the error state before pUlling out the prompt message. The grammar rule
fo r the nonterminal symbol prompt becomes:

prompt: r matches no input */
- 1

yyerrok;
printf("Reenter laslline: ");

I ;
There is another special feature which the user may wish to use in error recovery . As

mentioned above, the token seen immediately arter the "error" symbol is the in put token at
which the er ror was discovered. Sometimes, this is seen 10 be inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume in
put. In this case, the user wishes a way of clearing the previous input loken held in the parser.
One need only include a statement of the form

yyclearin ;

in his action; again, this expands, in both C and Ratfor, to the app ropriate code sequence. For
example, suppose the action arter error were to call some sophisticated resync hronization
routine, supplied by the user, which attempted to advance the input to the beginn ing of the
next valid statement. Arter this routine was called, the next token returned by yylex would
presumably be the first token in a legal statement; we wish to throwaway the old, illegal to
ken, and reset the error state. We might do this by the sequence:

statement: error
- I

} ;

resynch() ;
yyerrok ;
yyclear'in ;

These mechanisms are admillcd ly crude, but do allow for a simple, fairlY effective
recovery of the parser from many errors, and have the vi rtue that the user can get "handles"
by which he can deal with the error actions required by the lexical and output portions of the
system.

- 16-

Section 6C: The C Language Yacc Environment

The default mode of operation in Yaee is to write actions and the lexical analyzer in C.
This has a number of advantages; primarily, it is easier to write character handling routines,
such as the lexical analyzer. in a language which supports character-by-character 110, and has
sh iftin g and masking opera tors.

When (he user inputs a specificat ion to Yacc, the 'output is a file of C programs, called
"y.lab.e". These are then compiled, and loaded with a library; the library has default versions
of a number of useful routines. This section discusses these routines, and how the user can
write his own routines if desired. The name of the Yacc library is system depe nden t; see Ap
pendix B.

The sub routine produced by Yacc is called "yyparse"; it is an in teger valued function .
When it is called, it in turn repeated ly calls "yylex", the lexical analyzer supplied by the use r
(see Section 3), to ob tain input tokens. Eveniually, either an error is detected, in which case
(if no error recovcry is possible) yyparse returns the value 1, or the lexical analyzer returns the
end marker token (type number 0), and the parser accepts. In th is case, yyparse returns the
value O.

Three of the routi nes on the Yacc library are concerned with the "external" environment
of yyparse. There is a default "main" program, a default "initialization" routi ne, and a default
"accept" routine, respecti vely. They are so simple Iha~ they will be given he re in their entire
ty :

maine argc, argv)
int argc;
char ·argv[)
I

yyi nit(argc, argv);
ir(yyparse())

return;
yyaccpt();

yyi nit(rI }

yyaccpl() I }
By supplyi ng his own versions of yyinit andlor yyaccpt, the user can get control either before
the parser is called (to set options, open input files, etc.) or after the accep't action has been
done (to close files, call the next pass of the compiler, etc.). Note that yyinit is called with the
two "command line" argumen ts which have been passed into the main program. If neither of
these routines is redefined, the default situation simply looks like a can to the parser, ronowed
by the term ination of the program. Of course, in many cases the user will wish to supply his
ow n main program; for example, this is necessary if the parser is to be called more than once.

The othe.r major routine on th.e library is called "yyerror" ; its main purpose is to wr.He
out a message when a syntax error is detected. It has a number of hooks and ha ndles which
attempt to make this e rror message general and easy to understand. This rouline is somewhat
more complex, bUI still approachable:

I '/ .

, ,.

.~

- 17 -

extern int yy line; r input line numbe r -/

yyerror(s)
char ·s;
I

~xtern int yychar;
extern char ·yysterml J;

printW\n%s", s);
if(yy line)

printf(", line %d,", yyline);
printf(" on input: ");
if(yychar > = 0400)

printW%s\n". yystermfyychar-04001);
else swi tch (yychar) I
c.ase '\1': prinlf("\\1\ 0"); return;
case "n': prinlf("\\0\0"); return ;
case "0': prinlf("Send\n"); return;
default : printf("%c\n" , yychar); return;
I

The argument to yyerror is a string containing an error message; most usually. it is "syntax e r
ror". yyerror also uses the external variables yyline, yychar, and yysterm. yyline is a line
number which, if set by the user to a nonzero number, will be printed out as part of the error
message. yychar is a variable which contai ns the type number of the current token . yysterm
has the names, supplied by the user, for all the tokens which have names. Thus., the routine
spends most of its time trying to print out a reasonable name for th e input token. The biggest
problem with the routine as given is that, on Unix, the error message does no t go out on the
e rror file (file 2). Th is is hard to arrange in such a way that it works with both the .portable 110
library and the system 1/0 library; if a way can be worked out, the routine will be changed to
do this. Beware: This routine will not work if any token names have been given redefined type
numbers. In this case, the user must supply his own yyerror routine. Hopefully, this
"feature" will disappear soon.

Finally, there is another feature which the C user of Yacc might wish to use. The integer
variable yydebug is normally set 10 O. If it is set to I, the parser will output a verbose descrip
tion of ils actions, including a discussion of which input symbols have been read, and what the
parser actio ns are. Depending on the ope rating environme nt, it may be possible to set this
variable by using a debugging system.

Section 6R: The Ralfor Language Yacc Environment

For reasons of portability or compatibility with ex isting software, it may be desired to use
Yacc to generate parsers in Ratfor, or, by extension, in portable Fortran . The user is likely to
work considerably harder doing this than he mighl if he were to use C.

When the user inputs a specification to Yacc, and specifies the Ratfor option (see Appen
dix B), the output is a file of Ratfor programs called "y.tab. r". These programs are then com
piled, and provide the desired subroutine.

The subrou ti ne produced by Yacc which does the input process is an integer function
called "yypars". When it is called, it in turn repellted ly calls "yylex", the lexica l analyzer sup
plied by the user (sec Section)). Eventually, either an error is detected. in which case (if no
error recovery is possible) yypars return s the vr.! ue I, or the lexical analyzer returns the end
marker (type number 0), and the parser acccpl~ , In this case, yypars returns O.

- 18-

Unlike the C program situation (see Section 6C) there is no lib rary' of Ratfor routines
which must be used in the loading process. As a side effect of t~is. (he IIser I1IUS/ supply a rna;"
program which calls yypars. A suggested Ratfor main program is

integer yypars
n = yypars(O)
;f(n .EQ. 0) I

here if the program accepted
I else I

here if there were unrecoverable errors

end

Notice that there is no easy way for the user to gel con1rol when an error is detected, since the
Fortran language provides only a very crude character string capability.

There is another feature which the Ratfor user might wish to use. The argument to
yypars is normally O. If it is set 10 I , the parser will output a verbose description of ils actions.
including a discussion of which input symbols have been read, and what the parser actions "re.
During the input process, the value of this debug nag is kept in a common variable yydebu,
which is available to the actions and may be set and reset at will.

Statement labels 1 through 1000 are reserved for the parser, and may not appear in ac
tions; note that, because Ratfor has a more modern control structure than Fortran, it is rarely

. necessary to use statement labels at all; the most frequent use of labels in Ratfor is in format
ted 110.

Because Fortran has no standard character set and not even a standard character width, it
is difficult to produce a lex ical analyzer in portable Fortran The usual solution is to provide a
routine which does a table search to get the internal type number for each input character,
with the understanding that such a rout ine can be recoded to run far faster for any particular
machine.

Finally, we must warn the user that the Ratfor feature of Yacc has been operational for a
much shorter time than the other portions of the system. If past experience is any guide, the
Ratfor support will develop and become more powerful and better human engineered in
response to user complaints and requirements. Thus, the potential Ratfor user might do well
to contact the author to discuss his own particular needs.

Section 7. Hints for Preparing Specifications

This section contai ns miscellaneous hints on preparing efficien t, easy to change, and clear
specifications. The indi vidual su bsections are, more or less, independent; th e reader seeing
Yacc for the first time may well find that this entire sec tion could be omitted.

Input Style

It is difficult to input rules with substantia l actions and still have a readable specification
file. The followi ng sty le hints owe 'much to Brian Kernighan, and are offic ially endorsed by the
author.

a. Use all capital lette rs for token names, all lower case letters for nontermina! names. This
rule comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows eithe r to be changed
without an automatic need to change th e other.

-

u

- 19-

c. Put all rules wi th the same lert hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Indent rule bodies by one tab stoP. and action bodies by two tab stops.

The ex.ample in Appendix A is written following this style. as are the examples in the
text of this paper (where space permits) . The user must make up his own mind about these
sty listic questions; the central problem, however. is to make the rules visible through the
morass of action code.

Common Actions

When several grammar rules have the same action, the user might well wish to provide
only one code sequence. A simple, general mechanism is. of course, to use su,broutine calls. It
is also possible to put a label on the first statemen t of an action, and let other actions be simply
a goto to this label. Thus, if the user had a routine which built t rees, he might wish to have
only one call to it, as follows :

expr:
expr '+' expr =
{ binary:

$$ ~ btree($1, $2, $3 J;
J I
expr '-' expr =
{

goto binary ;

J I
expr '.' expr =
{

gOlo binary;
J ;

Left Recurs ion

The algorithm used by the Yacc. parser encourages so called "left recursive" grammar
ru les: rules of the form

name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list:

and

item I
list ': item ;

sequence:
item I

·seQuence item ;

Notice that, in each of these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced fo r the second and all succeeding items.

If the user were to write these rules right recursivel y. suc h as

sequence:
item I
i tern sequence ;

- 20-

the parser would be a bit bigger, and the items would be seen, an-d reduced, from right .to left.
More se riously, an internal stack in the parser would be in danger of overflowing if a ve ry long
sequence were read. Thus, the user should use left recursion wherever reasonable.

The user should also consider whether a sequence with zero e lements has any meaning,
and if so, consider writing the sequence specification with an empty rule:

sequence:
. \rempty · '

sequence ilem ;

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once fo r each item read. Experience suggests that
permitting empty sequences leads to increased ge nerality, which frequently is not evident at
the time the rule is first written. There are cases, however, when the Yacc algorithm can fail
when such a change is made. In effect, conflicts might arise whe n Yacc is asked to decide
which emply sequence it has seen, when it hasn't seen enough 10 know! Nevertheless, th is
principle is slill worth following wherever possi ble.

Lexlc;al Tie-ins

Frequen tl y, there are lexical decisions wh ich depend on the presence of various construc
tions in the specification. For example, the lexical analyzer might wa nt to delete blanks nor
mally, but not within quoted strings. Or names might be entered in to a symbol table in de
clarations, but not in expressions.

One way of handling these situations is to create a global flag which is examined by the
lexical analyzer, and set by actions. For example, consider a situation where we have a pro
gram which consists of 0 or more declarations, followed by 0 or more statements. We declare a
flag called "dOag", which is 1 during declarations, and 0 during statements. We may do th is as
follows:

%{

%l
%%

int dOsg ;

program:
decls stats ;

decls :
= , . empty·'
I

dOag = 1;
11
decls declaration;

stats :
= , . empty · '
I

dOag = 0;
II
stats statement ;

... other rules . ..

The Oag dOag is now se t to zero whe n reading statements, and 1 when read ing declarations, ex
cept jor the first token in the first statement. This token must be seen by the parse r before it can

/.:;, ...

(.,.
1-' .
;""

- 21 -

tell that the declaration section has ended and the stateme nts have begun. Frequently , howev
er, this single token exception does not affect the lexical scan required.

Clearly. this kind of "backdoor" approach can be elaborated on to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult, if not impossible, to do
otherwise.

Bundling
Bundling is a technique for collecting together various characte r st rin gs so that they can

be output al some later time. IL is derived from a feature of the same name in the
compiler/compiler TMG (6J.

Bundling has two components - a nice user interface. and a clever implementation trick .
They will be discussed in that order.

The user interface consists of two routines, "bundle" and "bpri nt".

bundle(aI, a2, .. . , an)

accepts a variable number of arguments which are either character strings or bundles, and re
turns a bundle, whose value will be the concatenation of the values of al, ... , an.

bprinl(b)

accepts a bundle as argumen t and outputs its value.

For example, suppose that we wish to read ari thmetic .expressions, and output function
calls to routines called "add", "sub", "mul", "div", and "assign". Thus, we wish to translate

a = b - c*d

into

assign (a,sub(b,mul (c,d»)

A Yacc specificat ion file which does this is given in Appendix D; this includes an imple
mentation of the bundle and bprint routines. A rule and action of the fo rm

expr:
expr '+' expr =

I
$$ = bundle("add(", SI, ",", $3, ")");

causes the returned value of expr to be come a bundle, whose value is the character string con
taining the desired function call. Each NAME loken has a value which is a pointer to the ac
tual name which · has been read. Finally, when the entire input line has been read and the
value has been bundled, the value is written out and the bundles and names are cleared, in
preparation for the next input line.

Bundles are implemented as arrays of pointers, terminated by a zero pointer. Each
pointer either points to a bundle or to a characte r stri ng. There is an array, called bundle space,
which contains all the bundles.

The implementation trick is to check the values of the pointers in bundles - if the
pointer points into bundle space, it is assumed to point to a bundle; otherwise it is assumed to
point to a character Siring.

The treatme nt of functions with a variable number of arguments,. like bundle, is likely \0

differ from one implementation of C to another.

- 22 -

In general, one may wish to have a simple storage allocator which allocates and frees
bundles, in order to handle situations where it is not appropriate to comp letely clear all of bun
dle space at one time.

Reserved Words

Some programm"ing languages permit the use r to use words like " ir', wh ich are normally
reserved, as label or variable names, provided (hat such use does na\ conflict with the lega! use
of these names in the programming language. Th is is extremely hard 10 do in the framework
of Yacc, since it is di fficult to pass the required information to the lex ical analyzer which tells it
"this instance of i f is a keyword. and that instance is a variable". The user can make a stab at
it, using the mechan ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement, and one will probably be
supported eve ntually. Until this day comes, I suggest that the keywords be reserved; that is, be
forbidden for use as variable names. There are powerful stylistic reasons for preferring this,
anyway (he said weakly ...).

Non-integer Values

. Frequently, the user wishes to have values which are bigger than integers; again, this is
an area where Yacc does not make the job as easy as it might, and some additional support is
likely. Nevert heless, at the cost of writing a storage manager, the user can return pointers or
indices to blocks of storage big enough to con tain the full values desired.

Previous Worl{

There have been many previous applications of Yacc. The user who is con templating a
big application might well find that others have developed relevant techniques, or eve n por
tions of grammars. Yacc specifications appear to be easier to change than the equivalent com
puter programs, so that the "prior art" is more relevant here as well.

Section 8: User Experience, Summery, nod Acknowledgements

Yacc has been used in the construction of a C compiler for the Honeywell 6000, a system
for typesetting mathematical equations, a low level implementation language for the PDP II,
APL and Basic compile rs to run under the UNIX system, and a number of othe r applications.

To summarize, Yacc can be used to construct parsers; these parsers can in terac t in a fair
ly flexib le way with the lexical analysis and output phases of a larger sys tem. The system also
provides an indication of ambigui ties in the speci fi cation, and allows disambiguating ru les to be
supplied to resolve these ambiguities.

Because the ou tput of Yacc is largely tables, the syste m is relatively language indepen
dent. In the prese nce of reasonable applications, Yacc could be modified or adapted to produce
subroutines for other machines and languages. In addition , we contin ue to seek better algo
rithms to imp rove the lexical analysis and code gene ration phases of compi lers produced using
Yacc.

This document would be incomplete if I did not give credit to a most stimulat ing collec
lion of use rs, who have goaded me beyond my incl ination, and frequently beyond my ability,
in their endless search for " one more feature". Their irritating unwill ing ness to learn how to
do th ings my way has usuall y led to my doing th ings their 'way; most of the time, they have
been right. B. W. Kernighan, P. 1. Plauger, S. I. Feldman, C. Imagna, M. E. Lesk, and A.
Snyder will recog nize some of their iqeas in the current version of Yacc. Al Aho also deserves
recognition for bringing th e mountain 10 Mohammed, and other fa vors.

~,r..
'%.

. "' ,

- 23-

References

Aha. A.V. and Johnson, S.c., "LR Parsing" , Computing Surveys, Vol 6, No 2, June 1974,
pp. 99-124.

2 Aha, A.V., Johnson . S.c.. and Ullman, J.D., " Deterministic Parsing of Ambiguous q ram
mars", Proceedings of the .A.C.M. Symposium on Principles of Programming Languages,
October 1973, pp. 1-21; to appear in CACM.

3 Aha, A.V. and Ullman, J.D., Theory of Parsing, Translation, and Compiling. Volume 1
(1972) and Volume 2 (1973), Prentice-Hall , Englewood Cliffs, N.J.

4

5
Kernighan, B. W., Ralfor, a Rational Fortran

Ryder. B. B., "The PFORT Verifier," Software-Practice and Experience, Vol 4 (974), pp
359-377.

6 Mcilroy. M. D., A Manual for the TMG Compiler-writing Language

7 Ritchie. D. M., C Reference Manual

....
\i..

-

.,

- 24 _ .

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled a through z. and accepts arithmetic expressions made up of
the operators +. -, +, /, % (mod operated, & (bitwise and). I (bitwise or), and assign men t. Ir
an expression is an assignmen t at the top level, the value is not printed; otherwise it is .. As in

. C. an integer which begins with 0 (zero) is assumed to be octal; otherwise. it is assumed to be
decimal.

As an example of a '(ace specification, the desk calculator does a reasonable job of show
ing the way that precedences and ambiguities are used. as well as showi ng how simple er ror
recovery operates: The major ove rsimplifications are that the lexical analysis phase is much
simple r tha n for most applications, and the output is produced immediately, line by line. Note
the way that decimal and ~tal integers are read in by the grammar rules ; frequently, this job is
better done by the lexical analyzer.

%token DIGIT LEITER
°/.left l'
%Ieft '&'
%Ieft '+' '-'
%Ieft '.' 'r '%'
%Ieft UMINUS
%{

int base;
int regs[26] ;

%J

r these are token names "
r declarations of operator precedences "

r supplies precedence for unary minus "
r declarations used by the actions "

%% "beginning of rules section "

list: r list is the start symbol "
I r emptY-iI
list stat '\n' I
list error '\n' -
{

yyerrok ;
J ;

stat:
expr ...
(

printn"%d\ n-, S 1) ;

J I
LETTER' =' expr =
{

regsiSIi - S3 ;
I;

expr :
'(' expr ')' =<

{
S$ - $2 ;

J I

- 25 _ .

ex.pr '+' expr = "
{

$$ - $1 + $3 ;
I { ;.J'
expr . -' expr =

{
$$=$1-$3;

I {
expr '.' expr =

{
$$ - $1 • $3 ;

I {
expr 'r expr =
{

5$ - 51 153 ;
I {
expr '%' expr =

{
$$ - $1 % 53 ;

II
expr • &' expr
{

5$ - $1 & 53 ;
II
expr l' expr
{

5S-51{53;
{ {
'-' expr %prec UMINUS
{

$$=-$2;
I {
LETTER
{

$$ - regs[$!1 ;
II
number; r i

~.
number :

DIGIT -
(

$$ = $1 ;
base - tO;
if($1 == 0)

II
base -8;

~~
number DlGIT -
{

$$ - base· $1 + $2;
I ;

,
%% r start of programs -,

,-

- 26-

yylex() r lexical analysis routine +,
I

r returns LETTER for a lower case leiter, yylval = 0 through 2S -,
r return DIGIT for a digit, yylval = 0 through 9 +,
I' all other characters are returned immediately +,
int c ;

while((c=getchar(» == ..)

,
if(c >='a'&&c <='z') {

yylval = c - 'a' ;
return(LETTER) ;

I
if(c > - '0' && c < - '9') I

yylval = c - '0' ;
relu"rn(DIGIT) ;

I
retum(c) ;

IS6'

Appendix B: Use of Yacc on Unix

Suppose that th e Vacc speci fication is on a file called yfile. If the actions are in C, Vacc is
invoked by .

yacc yfile

The output appears on file y.tab.c To compile the parser and load it with the 'Vacc library. use
the command

cc y.tab.c -Iy

If Yacc is invoked with the option -v:

yacc -v yfile

a verbose description of the parser is produced on file y.output. The C user should consuh sec
tion 6C for more information about the run time environment

If the actions are in Ratfor, the user should invoke Yacc with the option -r:

yacc -r yfile

The Ratfor output appears on file y.tab.r It may be compiled by

rc -2 y.tab.r

Note that when Vacc is used to produce Ratfor programs, there is no need to load these pro
grams with any library .

If the -v action is also invoked:

yace -rv yfile

8 verbose description of the parser is produced on file y.output. The Ratfor user should consult
section 6R for more information about the run time environment.

Appendix C: Old Features Supported but not Encouraged

This appendix mentions sy nonyms and features which are supported for historical con
tinuity, but, for various reasons, are not encouraged.

1. Literals may be delimited by double quotes " ft" as well as single quotes "'''.

2, Literals may be more than one. character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did .oot have
the quotes around it. Otherwise, it is difficult to find the value fonuch literals.

The use of multi-character literals is likely 10 mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \\ is the same as
%%, \ Ieft the same as %Ieft, etc.

4. There are a number of other synonyms:

%< is the same as %Ieft
%> is the same as %righl
%binary and %2 are the same as %oonassoc
%0 and %term are the same as %token
%= is the same as '1Gprec

S. The curly braces "{,, and "}" around an action are optional if the action consists of a sin
gle C statement. (They are always required in Ratfor).

I::.. I

....

-

I""
.-

. ...
.-

- 28-

Appendix 0: An Example of Bundling

The following program is an example of the techn ique of bundling; this example is dis
cussed in Section 7.

r warnings:

I. This works on Unix; the handling of fun ctions with a variab le number of arguments is
different on different systems.

2. A number of checks for array bounds have been left out to avoid obscuring the basic
ideas, bUI should be there in a practical program.

'/

%token NAME

-%right '='
%Ieft '+' '- ',
%Ie(t '.' 'j'

%%

lines :
= ,- empty -,

I
bclear() ;

J I
lines expr '\n' =

I

J I .

bprinl($2) ;
prinlf(ft\n-) ;
bclear{) ;

lines error , n' =

I

J;

expr :

bclear() ;
yyerrok;

expr • +' expr =

I
$$ - bundle("add(". $1. ",' . $3 . ")") ;

J I
expr . -' expr =

I
$$ - bundle("sub(". $1. ",'. $3. ")");

J I
expr '.' expr =

(
$$ - bundle("mu](". $1. ",'. $3. ")");

J I

- 29-.

cxpr . r expr ... ,
I

$$ - bundle("dive", $1 , ",", $3, ")");

%%

J I
'(' expr T =

I
$$ - $2;

J I
NAME '=' expr'"

$$ = bundle("assign(", $1, ",", $3, ")");

J I
NAME;

#define nsize 200
char names(nsize), -optr I names };

#define bsize 500
int bspace[bsizeJ, -bptr f bspace };

yylex()
I

int c;

c = getchar(),;
while(c == ..)

c = getchar{);
if(e>-'. && e<-'z') {

yylval - optr;

J

fore ; c>='a' && c<-'z'; c=getchar())
-nptr++ :eII c;

ungetc(c);
·nptr++ - '\0';
return(NAME);

return{ c);

bel.arC)
{

optr = names;
bplr - bspace;

bundle(ai ,a2,a3,a4.aS)
{

iot i. j . • p, ·obp;

p - &al ;
i - nargs();

/ ,

, r

.-

.-

. ...,

.-

obp "'" bptr ;

for(j=O; j<i; ++j)
·bptr++ = .p++;

·bplr++ = 0;
return(obp);

bprinl(p)
int .p;
(

if(p>=bspace && p< &bspace(bsize]) r bundle·'
while(.p != 0) .

bprinl(.p++);
else printf("%s", p);

NROFF Users' Manual

Joseph F. Ossanna
Bell Laboratories, Mu"ay Hill, New Jersey

Introduction

NROFF is a text processor on the PDP-11l45 UNIX Time-Sharing System. It accepts lines of text "in
terspersed with li nes of fo rmat control information (request lines) and formats the text into a printable,
paginated document having a user-designed style. The request syntax and many of the requests them
selves are reminiscent of other text formatte rs·, NROFF differs from its predecessors in offering
unusual freedom in document styling. Examples include: arbitrary style headers and footers; arbitrary
style foo tnotes; multiple automatic sequence numbering for paragraphs, sections, etc; and multiple
column output (with the aid of a posl-processort). TROFF, a similar text processor that produces out
put for a Graphic Systems Phototypesetter, is also available on UNIX I.

Usage '

The general form of invoking NROFF at UNIX command level is

nroff op.tions files

where "options" represents an y of a number of optional arguments and "files" represents the list of files
con taining the document to be formatted. An argument consisting of a single minus ._- sign is taken
to be a file name corresponding to the standard input. The options, which may appear in any order so
long as they appear before the files, are:

Option
+N

Effect

Commence output at the first page whose page number is N
whether or not the page number is being printed).

"':'N End output afrer the first page whose page number is N.

(independent of

-oN Number first generated page N; simulates an initial ".pn N" request.

-s Stop between pages. Printing will halt prior to each page (including the first) to
permit paper loading or changing. Printing is resumed by typing a "new-line".

-h Hi gh speed output. Strings of space characters are replaced by tab characters
where possible to speed printing and to reduce the numbe.r of output characters.

-i Read standard input after the input fil es are exhausted. NROFF automatically
reads the standard input, if no input files are given.

-rnX Simulates an ".so /usr/lib/tmac.x· request.

·Particularily ROFF on the same System and-M. D. Mcilroy's ROFF on the Murray Hill Computation Center HIS-6070.

tSee description of "COL" in the UNIX Programmer's Manual and tutorial plrl of th is manuaL

- I -

NROFF Users· Manual - Second Edition
Version 9/11174

-q The prompt names for insertions are not printed and the bell character Is sent
instead; in addition, the insertion is not echoed. This mode permits insertions
during the actual output printirig (See description of the Rrd" request) .

Each option is invoked as a separate argumentj for example,

nrotl' +7 -h -5 filel tHe2

requests formatting of a document contained in the files named
page 7, with high-speed output, and stopping before every page.

"filet" and "filer, beginning with

If no files are given, the input is taken· from the standard input, which may be a "pipe·2. For example,
NROFF may be used with NEQNJ, an equation preprocessor, as follows:

neqn files I nroff options

The "I" indicates the piping of NEQN's output to NROFF's input.

The remainder of this manual consists of: a Request Summary and Index; a Reference Manual keyed
to the index; and a set of Tutorial Examples.

References

111 1. F. Ossanna, TROFF User's Manual, Internal Document, April 1974.

(2J K. Thompson, D. M. Ritchie, UNIX Programmer's Manual, Fifth Edition (June 1974).

13J B. W. Kernighan, L. L. Cherry, Typesetting Mathematics - User's Guide, Internal Document, March
1974.

.-

.-

NROFF Users' Manual - Second Edition
Version 9/11174

REQUEST SUMMAR Y AND INDEX

Cause Request
Form

Initial
Value

If no
Argument Break · Explanation

I. Page Control

.pl ± N 66 lines

.bp ±N N-I

. pn ±N N=l

.po ±N N=D

.ne N

. mk a

. rt -N
lineD

66 lines no
yes

ignored no
prev no
N-I no
internal no
inte rnal no

n. Text Fill ing, Adjusting, and Centering

. br yes

.fi fi ll yes

.nf fi ll yes

.ad c adj,norm adjust no

.na adjust no

.ce N olf N-I yes

III . Vertical Spacing

.Is N N-I prev no

. sp N N-I yes

.Iv N N-I no

.sv N N-I no

. OS no

. ns space no

. " no

. xh olf no
IV. Line Length and Indenting

.II ±N 65 prev no

.in ±N N-O prev yes

.Ii ±N N-I yes
V. Macros, Diversion, and Line Traps

.de xx

.am xx

.ds xx

.as xx

.rm xx

. di xx

.da xx

. wh -1'1 xx -

. ch-N-M

.ch xx -M

.em xx none

ignored
ignored
ignored
ignored
ignored
end
end

none

no
no
no
no
no
no
no
no
no
no
no

Page length.
Begin page.
Page number .
Page offset.
Need N lines.
Mark current line .
Return to marked line .

Break .
Fill output lines.
No filling and adjusting.
Adjust mode on.
No adjusting.
Center N input text lines.

Line spacing.
Space N lines .
See "sv" below.
Save N lines.
Output saved lines .
No-space mode on .
Restore spacing .
Extra-half-line mode on .

Line length .
Indenl.
Temporary indent.

Define or redefine a macro.
Append to a macro.
Define a string.
Append to a string.
Remove macro or string.
Divert output to macro ~xx" .
Divert and append to "xx".
When; set a line trap .
Change trap location .

"
End-macro name specification.

"The use or"· as control chafatter (instead of'.") suppress.es the break funtlion .

.) .

NROFF Users' Manual - Second Edition
Version 91 II 174

Cause Request
Form

Initial
Value

/f"O
Argument Break Explanation

VI. Number Registers

.nr a±N -M

.nr ab ±N-M

. ne c \n · \n

. ar arabic

. ro arabic

.RO arabic

VO . Tabs, Leaders, and Fields

. Ia N, ... 9, 17, ... none

.IC c unpaddable unpaddable
space space

.Ie c period period

.fe a b off off

no
no
no
no
no
no

no
no
no
no

Number register.
"

Number character .
Arabic numbers .
Lower case roman pumbers .
Upper case roman numbers.

Tab settings.
Tab replacement character
Leader replacement character.
Set field delimiter and pad characters.

VIII. Input" and Output Conventions and Character Translations

.ec c \ \ no Set escape character .

. cc c no Basic control character .

. c2 c . no Nobreak control character.

.I i N N=l no Accept input lines literally .

. tr abed.... none no Translate on output.

IX. Local Horizontal and Vertical Motions

.ul N N-I no
X. Hyphenation.

. nh hyphenate no

.hy hyphenate no

.hc c none none no
XI, Three Part Titles .

. t1 ' Ieft'cen ter' right' no

.It N 65 prev no
XII. Output Line Numbering.

.nrn±NMSI off no

.np M S 1 none reset no
XIII. Conditional Input Line Acceptance

.i f c anything

.if 1c anythin g

.i f N anythi ng

.if !N anything

XIV. Env ironment Switching .

no
no
no
no

Underline input text lines.

No hyphenation .
Hyphenate,
H yp henation indicator character,

Title.
Length of title .

Number mode on or off, set parameters.
Number parameters set, or ,reset.

If condition true accept -anyth ing-.
"

"

. ev N N""Q prey no Environment pushed down (IO levels).

XV. Insertions rrom the Standard Input Stream

.rd prompt bell no Read insert.

.ex no Ex it. .

I ,

'Ofii,r

~!

.-

NROFF Users' Ma nual - Second Edition
Version 9111174

Request
Form

Initial
Value

If no
Argument

Cause
Break Explanation

XVI . Input File Switching

. 50 filename no
no

Switch source file (pushed down; 5 levels) .
Next fi le. .nx fi lename

XVI I. Miscellaneous

. tm st ring no
no
yes
no

Teletype message .
Ignore . .ig

.n

.ab
Flush output buffe r.
Abort.

XVIII. Error Messages

Escape Sequences for Characters, Indicators, and Functions

Ref Input Meaning

\\ \ (to prevent or delay the interpretation 0(.\)
\e Directly printable version of the current escape character.

II \ (space) Unpaddable space character
VIII.I V \& Non·prin Ling, zero width characte r
V III ,VII \ ! Transparent line indicator
VIII. VIII \? Raw transmission indicator
V.III \$ Argument indicator
V.I V String indicator

VI I.!
VIII.II
IX.I

IX.III

VI
II
IX. I

VII.!
IX.!

\ : Generates ASCII ETX (003) for posl processor use
\ a Non-interpreted leader character
\c Interrupt text processing
\d Forward (down) 1/2 Line vertical motion
\f Font change function (for TROFF compatibility)
\k Mark horizontal input place
\ 1 ASCI I Delete
\n Number register indicator
\p Break and spread output line
\ r Reverse I Line vertical motion
. \s Point-size change function (for TROFF compatibility)
\ t Non-inte rpreted horizontal iab
\ u Reve rse (up) 1/2 Line vertical motion
\ x ASC II Shift-out
\y ASCII Shift·in
\ (newline) Concealed (ignored) newline

- j -

. ~

NROFF Users' Manual - "Second Edition
Version 911 1174

REFERENCE MANUAL

Explanation

Con/rol input lines. Input lines beginning with a "con trol" character (ordinarily"." or" -") are in terpreted
as containing either format control "requests" or as speci fying the interpolation of a user defined macro.
Such lines which contain neither a recognizable request name nor a defin ed mac ro name are ignored.
The "break" function - the forted output of a partially filled line - associated with any request can be
suppressed by using the no-break control character (ordinarily "-,, instead ·of ".") to indicate control
lines.

Numerical parameter inpu/. Numerical arguments are indicated below in several symbolic forms: ±N
means that the argument may take the forms N, +N, or -N and that the corresponding effect is to set
the affected parameter to N, to inc rement it by N, or decrement it by N respectively ; -N means thaI
the argument may take the form N or - N and that the effect is to set the parameter to N or -N. Oth
er capital letters are used for additional numerical arguments. When number arithme tic is used in the
± N case, the entire N is evaluated before the result is taken as an· increment (e. g. -.11-6 will decre
ment by (11-6»). Certain requests that set a parameter value will restore the previously set value, if
no new value. is speci fied; only the most recent previous value is saved un less otherwise noled.

Character string argumen/s. Single character arguments are indicated by single lower case let ters. Char
acte r string arguments are indicated by multi-character mnemonics. The space character shown im
mediately after the two character requests can be omitted in those cases where the firs t argumen t is
numeric.

I. Page control

Top and bottom margins are not automatically provided; it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and -N (from the bottom). See § V and Tutorial Exam
ples.

Request initial
Form Value

. pl ±N 66 lines

.bp ±N N~I

.pn ±N N~I

.po ±N

.ne N

.mk a line 0

' .rt -N

If no
Argument

66 li nes

ignored

prev

internal

internal

Cause
Break Explanation

no Page length set to ± N li nes .

yes Begin page. The cu rrent page is ejected and a new page is
begun. If ±N is ·given, the new page number will be ±N.
See request "ns".

no

no

no

no

no

Page number. The next page (when it occurs) will have
the page number ±N. A "pn" occurring he/ore the first
break or first text will set the page number for the fi rst
page.

Page offset. ± N spaces are prepended to each output line;
i. e. the page image is moved ± N spaces to the right.

Need N lines. If the distance. D, to the next trap position
is less than N lines, the paper is moved forward the D
lines, which will spring the trap . If there are no remaining
traps on the page, D will be the distance to the bottom of
the pagc. See § V.

Milrk current line. The current number or lines on the
pilge is stored for future reference. If "a" is given, the
number is stored in number register "a". (see "rt" request.)

Return to marked line. The paper will be moved in the re
verse direCTion ollly to a place a N lines from the top of the
page or, if N is negative. to a place a N lines before the
current line, or, if "N is absent, to a previously marked line
(see request "mk"), if any.

- 6 -

NROFF Users' Manual - Second Edition
Version 9111/74

11. Text Filling, Adjusting, and Centering

Th e default fill mode is to fiJI outp ut Jines; in put words are take n from the next input line or output
words a re deferred u ntil the next OUljlut line 10 prod uce ou tput lines thaI are full but with in the
currenl line length size. a "word" is a string of characters separated by spaces. If two words must be
separated by spaces th at must not be used for adjustment bo line splittin g, th e un paddable space char·
aCie r "\ "may be used or the "Ir" request may be used (§V lIl. Vn. The de fault adjust mode is to adjust
lines for a uniform right (as well as left) margin; if a fully formed line con tains fewe r character posi
tions ' than the curren t line length, the blank spac'es between words ue ex panded to achieve the
cu rren l line length. Both of these processes may be turned olf. During filling hyphenation is automat·
ically attemp ted when th e next word does not fi l on the line; this process may be turned olf also. (See
IX)
A \ p may be imbedded or attached to a word to cause a break at the end of the word and . have th e
resulting ou tput line spread out to fill the current line le ngth .

Request Initial If no Cause '"
Form Value Argument Break Explanation

.br

. fi

.n f

.ad c

.na

.ce N

fill

fill

adj,norm adjust

adjust

o~

III . Vertica l Spacing

yes

. yes

yes

no

no

yes

Break. Th e filli ng of the line curren tty bei ng filled out is
slopped and the lin e is prin ted. Text lin es beginn ing with
spaces and empty lext lines (blank lin es) cause a break.

Fill output lines. Subsequen t output li nes are fill ed .

Nofi ll. Subsequent output lin es are neither fi lled nor ad·
justed. Input text li nes are copied di rect ly to outp ut li nes
without regard for the curren t maximum line length (see
request "II").

Adjust mode is turned on . If fill mode is not on, adjust
ment will be de fe rred until fill mode is back on . If th e ad
justment type indicator charac te r, "c", i!i prese nl the adjust
men t type is changed ; if "c" is "n", the normal (defa ult) is
restored - both margins will be adjusted uniform; if "c" is
"r", only th e righ t margin is adjusled - the left margi n will
be ragged; if "c" is "c", the lin e is centered - both margi ns
will be ragged.

Noadjusl. Adj ustme nt is turned off; i.e th e le ft margin will
be uniform -and the right margi n wi ll be ragged . The ad
j ustme nt type is not changed. Outpu t line filling will still
occur if fill mode is on.

Center the next N in put text lines within the c urren l line
le ngt h. A break automatically occurs after each line. If the
input line is longer than the line length, it w.ill be left ad
j usted. If N=O, any residual centering count is cleared.

I. Line spacing. The defau lt line spacing is single space. The line spaCin g may be dynamically set and
reset with the "Is" request. If th e li ne spacing is N, N-I blank lin es are put out aJiereach output lin e.
If a trap occurs, any remaining blan k lines are ommited.

I/. Blocks oj vertical space. Vert ical space is ordin arily requested usi ng "sp" which honors the no-space
mode and which does not space past a trap. When a co ntiguous vertica l space m ust be reservep Ih e
"sv" request shou ld be used,

- J -

C r
~

--

~

-

NROFF Use rs' Man ual - Second Edit ion
Version 9/11 174

R equest
Form

.Is N

.sp .N

. Iv N

.sv N

.os

.ns

.rs

Initiol .
Value

N~ l

space

space

Bl ank tex t line.

.xh off

If no
Argument

prev

N~l

IV. Line Le ngth and In denting

Cause
Break Explanation

no Line spacing set to ±N. If N, N- l blank lines are in ter
polated between output lines.

yes Space N lines in either di rection. If N is negative, the m-o
tion is upward (backward). Downwa rd (forward) motion is
limited to the distance to the nearest trap. Reverse motion
is limited to the distance to the top of the page. If the no
space mode is on, no spacing occurs .

no
no

no

no

no
yes

no

See "sv" request next.
Save N lines of space. If the distance to the next trap is
greater "than N, N lines is output. No-space mode has no
effect. If this distance is less· than N, n.o lines is immed i
ately output, but N is remembered for later output (see re o
quest "as") . Subsequent "sv" requests wil l overwrite any
still remembered N.

Output saved blank lines. No-space mode has no effect.
Used to finally output a block of lines requested by the "sv"
request.

No-space mode turned on. When on, the no-space mode
inhibits "sp" requests and "bp" requests without a next page
number: The no-space mode is turned off when a]j ne of
output is produced.

Restore spacing. The no-space mode is tu rn ed off.

Causes a break and output of a blank line exactly like "sp
I".

Extra·half-line mode is set on. Whe n this mode is on each
output line has an additional half- line-fqr ard control se
quence (escape·9) appended. If single spacing is in effect,
the net effect is to cause 1.5-line spacing. NROFF is other
wise unaware of this mode so that it is necessary for the
user to set the page length, margins, etc. to 2/3 of the actu
al vertical while space wanted.

Requests ari: provided to set and rese t the line I(:ngth and the extent of indent. The line length in
cludes any indent" spaces but does not include page offset spaces. As long as fill mode is on, the length
of tex t on all outpu t li ne is less than or equal to the line length minus the indent.

Request Initial If no Cause
Form Value Argument Break Explal/ation

.I I ±N oS prev

.i n ±N N~O prev

.Ii ±N N~l

no
yes

yes

Line Length is set to ± N .

Indent is set to ± N. If the lin~ length is L and the indent
is N, N spaces are put out at the beginning of each output
line and the text on the remainder of the line is con
strained to a size L-N.

Temporary indent. The next ou tput text line wi ll be in
dented ±N spaces (±N with respect \0 the current in-
dent). The resulting temporary inden t may fIOt be negative.
The current indent is not changed.

- 8 -

NROFF Users' Manual - Second Edition
Version 9/11/74

V. Macros, Strings, Diversion, and Line Traps

I. Macros and strings. A macro is a named set of one or more lines that may be invoked by name or by
having reached a speci fied vert ical position on the page. Macro names are one or two characters long
and may usurp previously defmed request names or macro names. M;;!cros are defined (or redefined)
by the "de" request 'or by output diversion (see "din). Ex isting macros can be appended to using the
"am" and "da" requests. A macro named "xy" may be invoked by an input line beginning with ".xy";
the rest of the line may contain up to nine argument strings. In addi tion , a "trap" may be set at a ve rti
cal place on the page to invoke the macro (see "wh"). Macros may contain arbitrary request and text
lines. A "st ring" is a .macro containing a line fragment (without a terminal new-line) . Strings are creat
ed using the "ds" or "as" requests. They are then interpolated into the inpu t at any point by the se
quence "*x" or "*(xx" where "x" and "xx" arc one and two character string names respectively.

II. Copy mode input interpretation. During macro and string definition (or appending to) the input is pro
cessed in a "copy" mode. The only input processing that occurs is escape mapping (see § VII 1.1) and:
(I) number registers indicated by "\n" are expanded; (2) string references (indicated by "V") a.r~ inter
polated into the input; and (3) argument references (indicated by "\$") are interpolated into the input.
I n cases 0-3) the interpretation can be suppressed by prepending a "\". Since "\\" maps into a "\", "\\n"
will copy as "\n" which will be interpreted as a number register indicator when the macro or st ring is
reread.

The conce8led newline (\(newline» is always processed (thrown away). Tab, leader, and field
mechanism characters are not processed in copy mode. Except for the interpretation c.f number regis
ters, strings, and arguments, runc tions are not interpreted or performed.

III. Arguments. When a macro is invoked as a requesl the reques t line may contain up lO nine argu
ments separated by bla·nks. I f the desired arguments won't fit on a line, a concealed new-line may be
used to continue on the next l ine (see § VII L!) . If an argument conlains blanks, it must be surround
ed by double-quotes. For example,

:xx . .lfgl "a r g 2" arg3

calls macro "xx" with three arguments. Each time a macro is invoked any arguments available al that
level are pushed down and any new arguments are made available. No arguments are avai lable at the
top (input Iile) level. The arguments available at the current level are invoked G. e. included in the
current inpu t) by

\$N

where \$ is the argument indicator and N is·an digit rrom 1 lO 9. I f the invoked argumenl doesn't ex
isl, a null string is included. I f a macro is to contain "\$N", i t is necessary to conceal the "\$" when lhe
macro definilion is being copied; "\\$N" would copy as "\$N". For example, the macro "xx" may
defined by

.de xx
Tod" is \\$1 the \\$2\\$3.

and called by

.xx Monday 14 th

lO produce 1 he text

Tod,IY is Monday the 14th.

IV. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §V) or determining the vertical size of some text for conditional changing of pages or
columns (n limber register "dn" conlains the size in lines of the last diverted text). Processed lex t that
is diverted into a macro retains ils vertical dimensions when reread in "nofill" mode regard less or lhe
cur-rent vertical line space.

- 9 -

1/1

r ,.

r
C;
'IS.,

I

~

..

NROFF Users' Manual - Second Edition
Version 9/11174

Cause Request
Form
.de xx

Initial
Value

If no
Argument Break Explanarion

.am xx

.ds xx string

. as xx string

.rm xx

.di xx

. da xx

. wh -N xx

.ch -N -M

.ch xx-M -

VI. Number Registers

ignored

end

end

no

no

no

no

no
no

no
no

Define or redefine a macro with the one or two charac ter
name "xx". The contents of the macro begins on the next
input l ine. Input lines are copied until ·the defin ition is ter
minated by a line beginning with " .. ". A macro may con
tain "de" requests provided the corresponding " .. " is con
cealed to prevent copy termination; "\\ .. " will copy as "\ . .'.'
and be reread as " .. "

Append to macro (append version of "de").

no Define string. The character st ri ng "string" (without a
terminal new-line t::haracter) is defined as a macro having
the (one or two character) name "xx". A n initial double
quote, "" ", is stripped off to permit i nitial blanks. This re
quest is like the "de" request, except that the resulting mac
ro consists of only "string".

no Append to string (append version of "us") .

Remove macro or string. The macro or string named "xx"
is removed from the name list. Subsequent refe rences will
have no effect.

Divert output into the macro named "xx". The macro
name "xx" is (re)defined at this point. Normal text pro
cessing occurs during diversion except that page offsetting
is not done. The diversion ends when the request "d i" or
"da" is encountered without an argument. Diversions can
not be nested. The vertical size of the diverted outpu t is
kept in a number register (named "dn") for possible later
use.

Append to diversion (append version of "di") .

When (after) output line -N occurs invoke macro "xx" .
Any macro previously planted at line -N is replaced by
"xx". A positive N is measured from the top of the page
and -N is measured from the bottom. If the page length

. is 66, line - } is line 66. A 'zero N will set a trap at the be
ginning of a page and should be used for headers. I f no
macro name is given, the trap planted at line -N, if any, is
removed.

See nex\.
Change the trap planted at Hne -N to occur instead at line
...:. M. Alternatively, change the place at which the macro
"xx" is planted to be -M. If no trap exis ts at line -N, the
request is ignored .

It is possible to define and use number registers to au tomatically sequence-number sect ions. para
graphs, lines, etc. A number register may be used any time a number is expected. Number regis ters
have one or two character names and are invoked by the sequences.:

\na or \n+a (one character name)
\n(ab or \n+(ab (two character name)

where "\n" is ·the "number character" indicating that the next character (s). unless "+" or '''('', is the
name of a number register and where "a" or "ab" is the number register name. The "+" in the second

- 1 n .

NROFF Users' Manual - Second Edition
Version 9/11174

example specifies that the register is to be auto·incremented prior to usc. The "(" in the two character
name examples indicates the presence of a two character name. When invoked the number register is
converted to decimal. lower·case Roman, or upper·case Rom an and interpolated into the input stream.
If the number charac ter M\n" is used within a macro defi nition, the number will be invoked at th e time
the definition is read unless the ,- is preserved by an additional preceding M_; i. e., expressing the
number character as "\\n M will delay number invocation until the macro is invoked .

Request Initial If no Calise
Form Value Argument Break Explanation

.nr a ±N -M

.nr ab ±N -M

.nc c In

.3< arabic

.ro arabic

.RO arabic

In

no
no

no

See next
Number register definition or modification . Ma" or "ab" is
the register name. The register is (re}set to ±N. The in·
crement to be used for auto·incrementing is set to -M.

Number character is set to "c". For example, if "c" = "X",
"Xa" will invoke the register "a".

no Arabic numbers (see below).
no Lower case roman numbers (see next).
no Upper case rOmlln numbers. Number regi sters will subse·

quent;y be converted into Arabic, lower .:ac;e Roman, or
upper case Roman respectively. This number conversion
mode also applies to the pagc number conversion in titles
(see request "11") .

Clearly, "+M and M(" cannot be used as number register names. In addition, the re are reserved (inter
nally defined) names:

Nallle Use

%
yr
rno
dy
dw
nl
dn
hp
. V
. p
.0
• 1
.;
• t

. $

. ,

Current page number.
Last two digi ts of current year.
Current month (J · 12).
Current day of the month.
Current day of the week 0-7).
Current number of output lines on a page.
Size in lines of last diversion.
Curren t number of character positions read on input line.
Current vertical line spacing (read only) .
Current page lengt h (read only) .
Current page offset (read only)
Current line length (read only) .
Current indent (rcad only) .
Distance to the next trap (read onty) .
Number of argumen ts ava il able at the curren t macro level (read only) .
Reserved vcrsion·dependent register (read only) .

VII . Tabs, Leaders, and Fields

. r ...

I. Tabs and feaders. The horizontal tab character is replaced by a number of unpaddable space charac
ters corresponding to the distance to the next lab stop on that input line. The unpaddable space ch ur-
acter which may be otherwise input by .,\ " (\(space» prints as a space but is not recognized as a space a
mean ing word separation. Optionally, the lab may be re piliced by a user-specified replacement- V
character sI ring having enough replacement·characters to fill out the distance to th e tab stop. The
"leaderM character (ASCII "SO!;") is treated exactly like the horizontal tab except th at th e defallit mode
is to use " . M as the replacement·character. Tabs or leaders encountered after the last SlOp generate a
single repl al:emen t charac ter.

' . II .

~ i!g

•

N ROFF Users' Manua l - Second Edition
Version 911 1174

1/. Fields. A "field" is surrounded by a user-defmed field delim iter character. A fie ld cont<l ins a strin g
cons isting of sub-strings separated by padding indicator characters. The fiel d lengt h is the distance on
the . inpur line from the place where the fie ld begins to the next tab stop. The differe nce be twee n the
total lengt h of all the sub-.strings and the field length is incorporated as padd ing space that is d ivided
among the indicated paddi ng places. The incorpored paddi ng consis ts o f unpaddable spaces or, if
necessa ry. of bac kspaces. For e xample. if the field delimite r is "/", and if th e padd in g indicalor is "~",
r xxx/ and rxxx-' represent right-adjusted and cen tered "xxx" respectively.

Request Initial 1/ flO Calise
Form Value Argument Break Explanation

. ta N, .. . 9, 17,25, . . .

.IC C unpaddable
space

.Ic c . (pe riod)

.fc a b o[

none

unpaddabte
space

. (period)

off

no

no

no

no

Tab sett ings. Default tabs are at 9, 17, 25, 160 (each
worth 8 spaces); a total of" 20 stops may be set. The stop
va lues may be separated by commas , spaces. or any othe r
nonnumerics.

The tab replacement-c haracte r is set to "c" or reset to un
paddable space .

Leader replacement character is set to "c" or reset to period .

The lield delimiter is set to "a"; the padding ind icator char
acter is set to "space" or to· "b", if given. In the absence of
arguments the field mechanism is tu rned oJ .

VIII. Input and Output Convent ions and Character Translations

Certain character translations and character sequence interp retations occur both when the input file is
read and when stored macros and st rings are invoked and reread. This section summa rizes how and
when these occ ur and to what ex tent they can be con trolled, delayed. or suppressed.

J.lnpul characler franslmiolls. The ASC II controls "SOH", bell, backspace, ta b, newline, shi ft -in, sh ift
ou l, and escape are accepted and all others <Ire ignored. The character "\" plays an important role dur
ing inpu t by modi fying the in terpretation of the character following: for this reason the "\" is called the
"escape" character but it should not be confused with the ASC II control character of the same n<lme.
Fo r example, "\ " generates an unpaddable rather than an ordinary space character. In addition, the "\"
is used to in troduce various indicators, functions, and local motions (see later). A complete list of
c haracters mod ified by a preceding "\" follows; the treatment of all ot her characters is unaffected.

Ref Inpur Meaning

\\ \ (to preven t or de lay the interp retation 0(\) •
\e Direc tl y printable version of the current escape characte r.

II \(space) Unpaddable space character
VlIl.IV \& Non-print ing, zero width character
VIII. VI/ \! Transparent line ind icator
VII I. VIII \? Raw transmission indicator
V. III \$ Argument indicator
V. I \" String indicator

Vll.l
VII UI
l X. 1

l X.1II

V I
II
l X.1

Vll.l

\! Generates ASC II ETX (003) for post processor use
\. \ Non-interpreted leader character
\r: : In terrupt text processing
\ J Forward (down) \/2 Li ne vertical motion
\r Font change function (for TROFF compatibility)
\k Mark horizontal inp ut place
\1 ASC II Delete
\11 Number register indicator
\p Break and spread output line
\r Reverse I Line vertical motion
\s Point·size ch<lnge function (for TRO FF compatibility)
\t Non-interpreted horizontal tab

. 12 .

NROFF Users' Manual - Second Edition
Version 9111174

IX.! \u Reverse (up) 1/2 Line vertical motion
\ x ASC II Shirt·Qul
\y ASCII Shift-in
\(newline) Concealed (ignored) newline

The escape character may be changed.

Request Initial If no Cause
Form Vallie Argument Break Explanation

.cc c \ \ no Change esc'(lpe character 10 "e" or rese t it to "\".

/1 -

1I. lnferrupled lexl. The text ror a "nofil1ed" line can be interrupted by terminating the partial line with
a "'coo. The nexl encoun tered lext will be considered to be a continuation or the same line or input. If
the intervening conl rol lines cause a break; the parti<l l line will be rorced OUL Simi liarly, a word within
"filled" texl may be interrupted by terminating the word (and line) with "\c"; the "next encountered text
will be taken ,IS a cont inuati on of the interrupted word. · If the in tervening control lines cause a break, \I
any partial line will be forced out but the parti al word will not 1I1I/('ss 110 parliolUne ('xisls.

III. Back~l)acim~, IInder/inim:, overslrikinK. elC. Underlin ing and ge.neraJized overstriking are discussed in
§ lX.I/).

IV. COII/rol characlers (normally"." and '" ") . Both control characte rs muy be changed In addition, it is
possible to specify that a cerluin number of input lines are 10 be taken literally as lext (non-control)
lines. Another way to "begin" a text line with a control churac ter is to precede that character wlth the
non-printing, zero-wid th filler character input a!l "\&". Still another way is to specify output t ranslation
of some convenient characte r into the control character (see "Ir" reques t below)'

Request
Form

.cc c

.c2 c

.Ii N

Initial
Value

If no
Argument

Cause
Break Explanation

no

no

no

The basic control character is set to MC" or reset to ".M, Use
of this request to temporarily change the control character
can result in requests in l ine-trap-invoked mucros being
misinterpreted.

The nobreak control character is set to "e" or reset to "'",
See warning under "ce".

ACCI!pt the next N input lines 01 Ihe Cllrrelll SIring/macro iI/
pili level (or }1I:~"er levels) as li teral tex t.

V. Number orirhmelic. A simple form of arithmetic expression can be used anywhere thai a number is
expected while processing a request. The operators permitted are + (addition), - (sulnract ion), • (mut
tilllicution), / (division), and unary minus. Evaluation is from left to right ant! no grouping is permit+
tet! . For example, if number regis ter x con tains - 4, tile "number" 7-\nx+2/l3 ev .. luates to -2. It
should be remembered that in ce rtain cOnlexts an initi al + or - is taken as an incremental designator
and therefore applies to the entire following expression.

VI.Olllplll lrollslalion. Provision exists for specify ing a mapping of any char .. cter into uny other churac
ler. All text processing (e. g. character comparisons) takes pl<lce with the original churucler which up
pears to have ihe width of the final charac ter. The graphic translation occurs at the moment of ou tput
(including diversion).

Rl'Quesl
Form

Inilial
Value

If no
Argument

Cause
Break Explanation

.tf ubcd.... none no Translate. HU" will be mapped into "b:', "c" will be mapped
into "d", eiC. If an odd number of characters is given, the
last one will be mapped inlo the space character.

A common use of the MtrM requesl is to provide nonadjustable spaces. When normal filling and adjust
ing is done the space character be tween words indicates where the additional space may be put und
where line splitting may occur. A ". Ir I", which specifies that "I" be mapped into a space during output,

- J3 -

NROFF Users' Manual - Second Edition
Version 9111174

permits tying two or more words toge ther so that th ey will neither be moved apart nor split across Iwo
lines. Examples might be "Fig.1 12", "Mr.ISmith", and "21+lxl=ly". Another way to get nonadjustable
spaces is 10 use unpaddable space character "\~. It should be noted thai horizontal tabs arc converted
into unpaddable space characters. .

VII. Transparent n"oughput. An input line begioning with a "\!" is transparently output· (except for the
initial "\!"); only "copy mode" processing takes place (see §V./I). This mechanism is used to pass con
trol in formation to a post-processor or to pass NROFF requests to a macro during a diversion.

VIII. Row Trallsmission. An input line beginning with "\?" in itiates a raw transmission mode in which
all input bytes (except null and the one selected to mean .end or raw model are passed through
NROFF untouched and without interpretation . The byte meaning end of raw transmission is defined
as the first byte rollowing the ,,\?"; th is byte is not transmitted.

IX. Local Horizontal and Verti ca l Motions

I. Local Vertical Motions. The escape sequences \ u, \d, and \r may· be used 10 obtain the local vertical
motions 112 Line up, 112 Line down, and I Line up respective ly. They are equivalen t to the input se
quences "(ESC)8", "(ESC)9", and ~(ESC)r respectively and where "(ESC)" represents the ASCII "es-
cape" charac ter. For example, "E" cou ld be generated by the sequence "E\d2\ u" or
"E(ESC)92(ESC)8". 2

I/. Local Horizontal MOlions. Underlining and other overs triking can be achieved by backspacing and
overstriking with the desired character(s). Because words separated by spaces are the en tities being
processed, it is unwise to backspace over a space that may later be enlarged by line adjustment or even
taken as a good place to end an output line. Because underlining is common, provision ex ists for au
tomatic underlin ing of input lines.

Request Initial If tiD Cause
Form Value Argument Break Explanatioll

.ul N N=I no UNderline the ncxt N input text lines. Only alphanumeric
characters arc underlined. lr N > I is used, it must be
realized that macros invoked by line traps may be interpo
lated into the input within the span of N text lines. I f the
macro switches environ ments (see request "ev") or i f the
macro contai ns only control requests, no misplaced under
lining will occur.

III. Mark horizontal place. A \ ka appearing with in an input line will result in the then curren t horizon
tal position (in the input linel being stored in number registe r "a".

X. Hyphenalion.

The automatic hyphenation may be turned both otT arrd on. When on it may be suppressed for H sin
gle word. In addition, the permissible hyphenation points with in a word can be specificd by imbedding
a hyphenation indicator character within a word.

Request Inilial If 110 Cause
Form Value Argument Break Explanatiol1

.nh

. hy

. hc c

on

on

none

no

no

none no

No hyphenation. AutOlllatic hyphenation is turn ed ot[
Words contuining hyphens (c. g. mOiher-in-law) may still
be ~p lit ac ross lincs.

Hyphenate. Autom<ltic hyphenation is turned on .

Hyphenat ion indicator charac ter is set to "c" or removed .
During lext processing the indicl1 tor is suppressed and will
not appear in the outpUl. Prcl)cnding the indicator 10 "
word has t·he elfec t of preventing hyphenation of th,ll
word.

- 14 -

NROFF Users' Manual - Second Edition
Version 91l1!74

XJ. Three Part Titles.

A titling function provides for automatic placing of three fields respectively at the left, cenler, and right
of a specified tit le line .Ienglh. Use of "11" has no effect on current line accumulation.

Request Initial "no Cause
Forill Value Argument Break Explanation

.11 'le ft'cenler'right'

.Il N 65 prey

no

no

Title. The str ings (epresented by "left", "center", and
"right" are respectively left adjusted, centered, Clnd right ad
jus ted within the current ti tle length . . Any of the fields
may be empty. I f the chuac ter "%" is found within any of
the fields it is replaced by the current page num ber in the
cu rrent number style (see requests "ar", "ro", and "RO").
Any graphic characte r may be used in place of the field
delimiter "'''.

Length of tit le. The length of lines and titles are main·
tain.!d separately. Indents do not apply to titles; page·
offsets do.

"tI" is usually used within header and foo ter macros. For example. ". tI .. - % -"" will pri nt the page
number in the cente r of the -t itle length.

XII. Outllut L..ine N umbering.

Automat ic sequence numberi ng of ou tpul lines may be turned both on and of[When on, a line
number is prepended to outPU'1 lines. Blank lines and other verticCl] spaces are not numbered.

3 The prepended entity has the general form : (I spaces of number indent) plus (a three digit
number wi th leading ze ros prin ted as SP<lce:s) plus (5 separating spaces). The prepended en tity
eneclively o.tlsets the line which still has the current l ine length; a reduction in l ine length is

6 nece~;sa ry, i f the right margi n is to be preserved. In addition, it can be speci fied that on ly those
line numbers that are multiples of some number M are to be printed (the others will appe(l r as
blank number fie lds). The parameters I, S, and M are con trollab le.

Reqllesl
Form

Initial
Value

.nm±N .M S I

fi no
Argument

off

Cause
Break Explanation

no Number mode. If ± N is given, line numhering is turned
on; the fi rst line numbered is numbered ± N. If any of
the remaining parameters arc given, they will be set to the
given values; an alphabetic cha rat ter causes the
correspond ing parameter to be unaffected. Default values
are M = I, S= I , and 1=0. In the absence of all argumen ts,
numberi ng is turned off; the next line number is preserved
for possible further use .

. . np M S' I 1, 1.0 reset no Number parameters are set or reset 10 defHult values (sec
above) in the absence of all arguments. Individually ab
sent parameters (or specified by an alphabe tic char,ICler)
are unchanged.

I ,

-~.

9 As an example, the paragraph. portions of this section are numbered with M,,,,3: ".nm I 3" was e
placed at the begin ning; ".om" was placed at the end of the fi rst paragraph; and ".n m +0" was . .
placed in front of this paragraph ; and ".nm" finally placed at the end. Li ne lengths were also .

12 changed to keep the right side atigned. Some other eX;lmples are: ".nm +5 .s x J" tu rns on
numbering with the line n'umber or the next line to be 5 greater than the last numbered li ne,
with M=5, with spacing S untouched, ;lnd with the indent I set to 3; ".n p 3" sets M=3 and leaves

15 S and I alone.

~ .

1fl

NROFF Users' Manual - Second Edition
Version 9111/74

XIII. Conditional Input Line Acceptance

Inpu t lines may be accepted conditionally.

Request Ini tial 1/ no Cause
Form Value Argument Break

.if c anything

.if !c anything

.if N anything

.if!N anything

Built-in Condifiol1s.

Name Meaning

no
no
no
no

a The current page number is odd.
e The curre n t page number is even .
t The formatter is TROFF.
n The formatte r is NROFF.

' Some .examples are:

.if c .tl 'Even Page %'"

Explanation

See next.
"
"

If. "anything" is an arbi trary input line; it ca n be eit her
text or a request. "c" is a one-character, bu il t-in condition
name. "N- is any number; it ca n be an expression involv
ing number registers. If the condition is "true", or if the
nu mber is greater than ze ro, the remainder of the line con
taining "anything" is accepted as input, ot herwise the rest
of the line is ignored. An y spaces in front of "anyth ing"
are ignored . If "c" or ~N" are prefaced by"!" (not), the line
is accepted when the condi tion is fal se o r the number is
less than or equal to zero.

outputs !llitle if the page number is even; and

.if l\na-\nb .xy

invokes the macro "xy" if the number (\na-\nb) is zero or negative .

. XIV. Environment Switching.

A number of the parameters that control the text processing are gathered together into an "envirQn
me nt" which can be swi tched by the user.

Request Initial 1/ no Cause
Form Value Argument Break Explanation

.ev N prev no Environment is switched to environmen t N. Switching is
done in push-down fashion (limit o f 5) so that restoring a
previous environment shou ld be done with " .ev~ rather
than specific reference. The re are 3 environmen ts; N can
be 0, l, or2.

The din'erent environments all have the same initial default parameter va lues. Parameters within an
environment are those assoc1ated with :

• 16 .

NROFF Users' Manual - Second Edition
Version 9/l 1174

ve rtical1ine spacing
line length
indenting
adjusting
fi ll ing
title length

centeri ng count
line numbering
tab settings
hyphenat ion con trol
request cont rol characters
number register ind icator

tab replucemcn t.character
leader replacemen t character
partially collec ted words
partially collected lines

Everything else is global - i. e. not switched when environments are. Examples of global enti ti es in
clude the page offset, page numbers, current line number, number registers, line trap tables, and macro
definitions. It may be noted that partially collected words and lines are kept with ,In environment so
that environment sw itchi ng prevents the next break from printing the previous environment's partial
line.

XV. Insertions from the Standard Input Stream

The input stream in NROFF can be switched to the system standard input stream, which typica ll y is
the user's keyboard, but which may be a pipe or a fil e. The input stream is switched back to :ts origi
nal source when two newl ine characters in a row are encou nte red Ci. e. an "ex tra" blank line is found).
This mechanism is useful for form-letter-like documentation. With UN I X's abi lity to switch the Sian
dard In put to a file, insertions can be stored in a file.

Request Initial If no Cause
Form Value Argument Break Explanation

.rd prompt bell no

.ex no

Read insert. N ROFF input is switched to UNiX standard
Input until two newline chlu acters in a row are found. The
extra newline is thrown away. I f "prompt", a character
string without blanks, is given, "prompt" is wri tten out on
the user's typewriter to indicate that the in put is requested . .
I f "prompt" is absent, a Bell character is written instead.
Because "rd" behaves like a macro, arguments may be
placed after "prompt".

Ex it. Text processing is finished exac tly as if all input was
finis hed.

The contents of "prompt" should be chosen to suggest what or which insertion is cu rrentl y wanted.
Prompting is au tomatica lly suppressed when the standard input is not a console typewriter. Ordi·naril·y
prompting is used when the output document is being sent to a file as a result of having switched the
UNIX Stantlard Output to a fil e. A "quiet" mode may be set when N ROFF is in voked by giving a ".q"
argument "that prompts with a bell only and turns off echoing keyboa rd inpu t so th at insertions may be
made whi le the document is being printed. T he input text and inserts via "rd" should not simultaneous
ly come from the standard input. Multiple copier. of a processed "letter" are easily obtained by causing
"Ielle r" to reinvoke itse l f by means of the "nx" request (see below) and including an "ex" request in an
insert after the end of the last leite r.

XVI. Input File Switching

A t any given ins tant, i nput is taken from either the cu rrent input file (the top in put leve]) or rrom iI

macro or SITing (at some macro/s tring invocat ion leve l) . The following requests permit inpu t fi le
switch ing al the top level.

Request Initial If no Calise
Form Vallie Argument Break Explanation

.so fi lename no Switch Source file. Input at the top (input fi le) level is
switched to the fi le named "filename". The cu rrent inpu t
leve l is not chunged. When the new file ends, input is
aga in taken rrom the origina l fi le begin ni n·g with the line
after the "so" request.

~
C!' . . , ,

NROFF Users' Manual - Second Edition
Version 9/1 1174

.nx filename no

XVII. Misce ll aneous

Cause

Next file is "filename". No fur ther input is taken from the
current input fi le (or cu rren t input level); "filename" be
comes the current input file and the input leve l is popped
back to the top (input fi le) level. This request may be used
to repeatedly process the same file by having the nextfile
be itself.

Request
Form

Initial
Value

If no
Argument Break Explanation

.tm string

.ig

.n

.ab

XVIII. Error Messages.

no

no

yes

no

Typewriter message. "string" is printed on the user's con
sole typewriter and is nOI buffered (See §XVIIO. "Si ring" is
read .in copy mode (see §V.ln.

Ignore. Input lines are ignored up to and including the
next input line beginning with " .. ". The ignored lines are
read in copy mode and some side effects can occur (e. g.
\ n+a will increment register "a"), '

Flush output buffer. This request is useflll for debugging
request sequences because it can be used to force output
that typically would be buffered and hidden.

Abor!. This request causes an lOT trap alld causes a core
image to be produced. It is used for debugging the
NROFF program itself.

Various fatal error messages may be written on the user's typewriter. If the lalter cannot be found, the
message is written on the shell's output file . If th.lI cannot be found, it is written in a file called
"nr.out". This strategy is also used by "tm" for writing its message, and by "rd" fo r writing out the
prompt. If an error is considered fatal, NROFF will attempt to exit gracefully. Va rious non -fatal error
co nditions do not produce error messages so as not to comtaminate t~e user's outpln. Examples of
non-fatal conditions are word-overflow and line-overflow which OCcur when some word didn't fil in the
word buffer (in filled text) and when a line being gene rated became too long for the line buffer respec
tively; in both cases what didn' t fit was discarded .

• 18 .

NROFF Users' Manual - Second Edition
Version 9/11174

TUTORIAL EXAMPLES

Introduction

The followi ng examples wi ll range from the provision of si mple headers and footers, to the provision
o f more gene ral ones, to programming multi-column ou tput, and finally to programming for footnotes.
The term programming is used here because using NROFF is more like building upon a framework of
basic features than like choosing from a list of specific features . For ex,lmple, NROFP has no built-in '
footnote mechanism, but such a mechanism can b.e "programmed" using the ,bllsic' macro, dive rsion,
environme nt switching, and line-trap mechanisms. Nonprogrammers and others who may not want to
probe N ROFF possibilities shou ld find it relatively easy to use NROFF for simple formatting jobs such
as documents requiring straightforward header and footer designs. To use footnotes it is only neces
sary to include at the beginning of a document an available pre-canned set of macro definitions that
implement a footnote mechanism. Similar pre-can ned macros are available for multi-column output.

I. Headers and Footers

The material that fills the space betwee n the 10V of a page and the beginning of the running text is
te rmed a "hl!ade r" and is typically relatively constant from one page to the next. The ma terial that fill s
th e space be tween the bottom of th e running le).t and the bottom of a page is termed the "footer". It
is necessary to define two macros - one each describing the header and footer respectively. Then it is
necessary to specify at what line on the page they are to be invoked. For example

.de ltd
'sp (j

.ns

.de fo
·bp

.wh 0 hd

.wh -7 fa

describes a header macro named "hd" which produces 1 inch (6 lines) of space (without causing a
break). and describes a footer macro named "foM thai will simply eject Ihe page (without 'causing a
break). The "wh" requests specify thai "hd" is to be invoked at the beginning of the page (making "hd"
a headed and that "fa" is to be invoked after th e 7th line from the bOl/om. The break suppressio n (us
ing the'" ") prevenls what is left over from the last line printed o n a page from being printed by the
occu rrence ,)f a break. The ".ns" turns on the no·space mode that suppresses vertical spltce that would
result from the accidenta l occurrence of an ".sp N" exacLly at the location of the intended fi rst output
text line on a page.

The trap at the top of the first page occurs at the first encountered bre'ak func tion or when regular text
is first encountered : the definition of any headel must occur befo re this if i.t is to appear o n the first
page.

The sizes of these headers and foote rs could be parameterized by the following tIlternative definitions

.nr I 6

.nr b -7

.de hd
'sp \\nt
.n,

.de fo
·bp

.wh 0 hd

.wh \ nb fo

which achieves the same e nd except that the margin sizes arc initialized in two number registers. Us-

- 19 -

/J.

. -

-~

NROFF Users' Manual - Second Edition
Version 911 1174

ing "\\" in M'Sp \\n'- resu lts i n the stored defi niti on of "hd" containing "'sp \ nl" causing the top margin
. to depend each time on th e then current value of number register "I"; this permits easy dynamic
modification of the top ma rgin by changing the register "t" (using the "nr" request). Dy namic
modification of th e baltom margin requires th e use of the lOch" request prior to the des ired chan ge; for
example. ".ch fa \nb-3" pushes th e trap for "fa" up 3 line spacings. The footer can be arranged to
reset itself by including in th e definition for ''foOl a '~.c h fa \\nbM.

Footer macros can of COU Tse contain more than a ft 'bp" although it is convenient for them to end (hal
way to facili tate changing trap locations. For example,

.de fo
'sp 2

.-i f 0 .11 "'Bottom Title'
.if e .Il 'Bottom Title''''
'bp

produces di lferently adjusted titles on even and odd numbered pages. It is often convenient to use
something like

.de pp

.tl " , % ."

.wh - 4 pp

wou ld pl ace an independently positioned, cen tered page number a half· inch (after the forth linc) from
the bottom. .

The above examples illI in volved headers or footers which avoided producing a break. The more gen
eral case is exempli fied by

.de hd

.cv 1
(Any kind of text and
text processing)

,ev

which s:-",ilches to another environment 10 avoid any conflict with the main stream of text processing.

II , Major Headings and Paragraphs

It is most convenient to defi ne macros to be placed at the beginni ng of paragraphs and various head·
ings. For example,

.de pg

.sp

.ne 2

.Ii 5

.de nIh

.sp

.ne 4
,ul

defines a' pardgraph macro named "pg" which spaces a line. requi res that 2 lines of space be left on the
page, and se ts up a temporary indent of 5 spaces. And defines a major heading macro "mh" that
spaces, requires that 4 lines of space be left on the page (room for a one Hne head ing, a space, and two
lines of the following paragraph), and arranges for the headi ng to be underlined.

- 10 -

. - -

NROFF Users' Manual - Second Edition
Vers"io"n 9111/74

The use of such mac ros is an exa mple of the good practice of includ in g mac ros ra ther than exp licit
NROFF requests in the main body of text. This provides the maximum ease of changing the global
fo rmal of a doc ument.

Ill . Labeled Indented Paragraphs

Another common formatting problem is properly placing labels on indented p<lragraphs when the l<lbel
mus t go in the inden t Space on the same line as the first line of the paragrap h. Assumming that the
paragraph is filled text it is necessary thaI the white space around (and possibly within) the label must
not contain space characters that can be expanded in size for adjustment purposes. Among many solu
tions is:

.in N2

.Ia NI N2+1

.Ii 0
(tab)\abe l{tab}words in paragraph ...
res t of' paragraph
.in 0

NI is Ihe distance to Ihe label and N2 is the inden t and N2+ 1 is the corresponding lab stop for fi ll ing
in the space betwee n the label and the first word of the pawgraph . Any sp,lces within the label would
be the unpaddable space (\(space)) or characters translated into space using the "tf" request. ihe Fie ld
Mechan ism described in. § VIl.1I may be used for mo re soph isticated pa r<lgraph label ing.

IV. Multilli c Column Output

It is relatively easy to arrange for mu lt iple column output. NROFF will generate Reverse-line-Feed
sequences ("ESC 7"s) and. if the device used for printing cannot handle such sequences, the COL pro
gwm may be used as a post-processor·. The following shows a header and footer set of macros can
wining the additional requests for generating three column outpu l.

.de fo

.if !\\n+c-3 .nc

.i f \\nc-3 .np

.de nc NEW COLUMN

.po +18+3

.ft

.de np NEW PAGE

.po 0
'sp 2
.if !\\n%- I .11"- % -"
'bp

.de hd
'sp 3
.if \\n%-I .11 " - %-"
'sp 2
.ns
.nr c
.mk

.wh 0 hd

.wh -7 fo

.II 18
(Confinlled /lexf POf?e.)

See ·COI.' ill Ihc UNIX rrugrOlmmer's ManullL COL removes reverse·linc·rcells hy lluncrin1: whole pages.

- 21 -

, " ,

NROFF Uscrs' Manual - Sc(.:ond Edi tion
Version 9/11174 .

. br

The header macro, "hd':, sets a number register, "c· , to an initial column number (I) and specifics that
any aUloin(.: remcnling be by I. The request "mk n ma rks the place at the bottom of the header as the
return point for a subsequen t urt " request. The footer, "fa", increments the column number and lesls it
to see whether a new column or new page is to be next and invokes either the macro "nc· or · np" ac
cordingly. The new column macro "nc" increments the page offset by 18+3 spaces (]inc length plus
col umn spacing) and retu rns to the marked place. The new page macro "np" resets the page offset to
the original value and goes on to perform normal footer functions. The line le ngth is set to 18. The
three columns arc eac h 18 spaces wide ' and are spaced 3 spaces. apart for a total page width of 66
spaces. The only change necessary to get a di fferent nu mber of columns would be to change the line
length. inc remental page offset, and the constant against wh ich the column' number is compared in the
footer macro.

These macros also show how one ca n number page one at the bottom of th e page and su bsequent
pages at the lOp.

V. Generatinjl: Footnotes

The programming example lo 'be discussed here implements a fai rly general footnote mechan ism. One
aim is 10.define a set of macros that permits simple user demarca tion of footnote con len t. A user of
the footnote macros to be described needs on ly to include the fo llowing

.rn
(Any kind of text and
text processing)

.er

as close arter the point of footnote reference as possible. The macro "fn" ind icates the beginning of
the footnote, and Mer' indicates end of footno te. The footnote text is processed in another environ
ment while being diverted for later use.

A usable footnote program is:

.Of bm 7

.de hd HEA DER
'sp 3
.tl ' Head ti tle'"
'sp 2
.nr x 0 I
.nr y O-\\n(bm
.ir\\n(dn Jz
.ns

.de fa FOOTER

.nr dn 0

.if\\nx .xf

.ch ro - \\n(bm
'bp

.de bo

.tl "- % -"

.de rn BEG IN FOOTNOTE '

.da FN

.ev l

.if !\\n+x- I .fs

.de er END FOOTNOTE

.br
(Colltillued next page.)

NROFF Users' Manual - Second Edition
Version 9/1 '1174

.ev

.di

.nr y -\\n (dn

.ch ro \\ny
jr \\n(nl-\\n(p-\\ny .ch ro \\n(nl+ 1

.de fs SEPARATOR

.br

.de fz

.rn

.nr
Jy
.fi
.er

.de fx

.di fy

.de xf

.ev l

.nr

.FN

.fm FN

.di

.ev

.wh 0 hd

.wh - \\n(bm ro

.wh -4 be

.ch fa 70

.wh -\\n(bm r,

.ch ro -\\n(bm

.ev l
·1155
.ev
.br

The size of the bottom margin is speci fied in number register MbmM
, The header Mhd" in i tial izes two re

gisters, "x ft and "yft, at the top of every page; "x " is the basic per-page footnote counter and loy" is used
during footnote output to keep track of where the footer macro should be sprung. The conditional in
vocation of mac ro "fz" reprocesses th e remainde r of any footnote that did not fit at the boltom of the
previous page. The foote r lests whether or not any footn otes were processed and if so, invokes "xr.
Afterwards the position trap for Mfa" is rese t to place "bm". The macro "x r' s witches environ ments, sets
the "nofill" mode, in te rpolates in the foot notes (macro "FN"), removes "FN", terminates any possible
di ve rsion of footnote material th at did not fit on the page, restores fill mode, and restores the previous
envi ronme nt. The macro "fx", also 'planted at position "bm", wi ll sa ve the portion of the last footnote
that didn ' t fit , if any, by dive rti ng in to a macro "fy". The. latter is preprocessed in the heade r, if there
has bee n any diversion (no n-zero number register "dn") since the begin nin g of the footer. The begin
footnote macro "fn " dive rts the footnote On append fashion) into the macro "FN" and switches e n
vironmen ts. If the footnote to be processed is the. first one on a page, the footnote sepa rator macro "fs"
is invoked. In this example, "fs" me rely gene rates a short dashed li ne. The e nd-footnote macro "er'
resets the environment, e nds the diversion . and pus hes up th e tra p position for "fo" to account fo r the
size of the footnote. If this mo vement wou ld move;: the trap up past the next output li ne {presumably

_ ')1 _

I v

NROFF Users' Ma nual - Second Edi tion
Version 9111174

containi ng the reference), the trap is moved up only to the latter place; this occu rrence ordi nari ly will
result in the last footnote being split between two ' pages. The ·wh· and ~ch· requests plant the header
tra p at the top of the page, plant the foote r trap at position "bmft, move th e footer trap somewhere past
the page length, plant a trap fo r "fx" also al position "bm", and finally move the foote r trap back. The
two macros "fo· and "fx" are effectively planted at the same place; the trap fo r "fx· can occur only if
the foote r trap is moved up by the occurrence of a foot note, because it is fur ther down the in ternal
trap list; it was necessary to temporarily move the trap for "fo" 10 avoid "fx" replaci ng "fo" at that trap
position .

..-.=n \
d!!, '
~.

5/19/75

Qulck ' NROFF Addendum

Arguments

-raN

-mx

Escapes

.. "

Number -register "a" is set to N.

Simulates ".50 /usr/l1b/tmac.x"j x can be multlcharacter.

This
May
11ne

escape and the rest of the input line
be used anywhere. If used at beginning
acts like a blank lin e.

are
of a

ignored.
line the

Read only registers

• c input line count 1n current file.

• h high-water mark of register "n1" on current page.

• n length of " text on last output line •

\w'strlng'
Width of "string".

Sen tences ending
minal space just

" " wi th 1 and
as with

" ..
? are given an extr~ ter-

~or changed reguests

• eo
Escape ~roc~s51ng 1s turned off. May be turned · on again
using • ec •

• rn xx YY tt , .,

Rename request / macro xx
.. ..

.pi prog

• hy N

Pipe the output to
tran smi tted. Must
buffer.·

to yy

the program
occur before

Control hyphenation where N is:
o = don't hyphenate. .
1 or greater = hyphen ate.

"prog". No
NROFF unloads

arguments
it's first

2 = don't hyphenate last lines (more specifically lines
that will cause a trap). .

4 = don't do -xxI· (split off last two characters).

/87

5/19/75

8 = don't do lxx- (split off first two').
These are additive; i.e •• hy 12 invokes last two restric
tions.

• hw word1 word2 •••
Specify hyphenation 'except'ion list (words contain "_It in
dicating where hyphens should go). Versions of a word
with terminal " s" are implied; i. e. , "dig-it" implies

• af xx c

• cu N

• mc c N

.. ..
dig-its. This list is examined initially and after '

each suffix stripping. Space available is small - about
128 characters total.

" .. assigns a ' format to the number register xx. c may be
1 for 0 ; 1 ,2,,3,4', •• •
i for O,i,il,ili,iv, •••
I for O,I,lI,III,IV, •••
a for 0, a"b, c, ••• ,z, aa,ab, ••• ,zz,a.aa, •••
A for O,A,B , C, ••• ,Z,AA,AB, ••• ,ZZ,AAA~ •••
If· c is missing or not recognized, the format assign-
ment is ,removed . Number registers without a forma-t as-

, ..,' ,... ""
signment ,are subject to ar t ro t and RO . The read-
only registers do not have a format . The number returned
by \w· •• • • is always arabic.

Continuously underline ,the next N lines •

Specify a margin character 'to appear after each non-empty
text line...(except those produced by ". tl"); the margin
character c is printed in the right margin separated by
N spaces (default 2) from the line length as exemplified
by this paragraph. If the output line is too'-:long (as
can happen in nofill mode) the character will appear with
N=O. If there are no arguments, the mechanism is turned
off.

I a '

-".,:
~,

/ ,)" ' 7

The Unix 110 System

Dennis M. Ritchie
Bell Telephone Laboratories

This paper gives an overview of the workings of the Unix 110 system. It was wri tten with an eye toward
providing guidance to writers of device driver routines, and is oriented more toward describing the en·
viro nment and nature of dev ice drivers than the imp lementation of that part of the file system which
deals with ordinary fi les. '

It is assumed that the reader has a good knowledge of the overall structure of the fil e system as discussed
in the 'paper "The Unix Time-sharing System." Moreover the present document is intended to be used in
conjunction with a copy of the system code, since it is basically an exegesis on that code.

De,vice Classes

There are two classes of device: block and character. The block interface is suitable for devices like disks,
. tapes, and DECtape which do, or can, work in 512-byte blocks and can be used in direct-access fash ion.

Ordinary magtape just barely fits in this category. Block devices ca n at least potentially contain a mount
ed file system. The interface to block devices is very highly structured.; the drivers fo r these devices

,share a great many rou tines as well as a pool of buffers.

Character-type devices have a much more straigh tforward interface, although more work must be done
by the driver itself.

Devices of both types are named by a major and a minor dev ice number. These numbers are generally
stored as a word with the minor device number as the low byte and the major device number as the high
byte. The major device number selects which driver will deal with the device; the minor device number
is not used by the rest of the system but is passed to the driver at appropriate times. Typically the
minor number selects a subdevice attached to a given controller, or one of several s imilar hardware inter
faces.

The major device numbers for block and character .devices are used. as indices in separate tables; they
both start at 0 and therefore overlap. .

Overview of I/O

The purpose of the open and crear system calls is to set up entries in three separate system tables. The
first of these is the u_ofile table, wh ich is s tored in the system's per-process data area u. This table is in
dexed by the file descriptor returned by the open or creal, and is accessed during a read, write, or other
operation on the open file. The on ly contents of the entry is a pointer to the corresponding entry of-the
file table, which is a per-system data base. There is one entry in the file table for each instance of open
or creal. This table is per-system because the same instance of an open file mus t be shareq among the
several processes which can result from forks after the file is opened. A file table en~ry contai ns flags
which indicate whether the file was open for reading or writing or is a pipe; a count which is used to de
cide when all processes using the entry have terminated or closed the file and therefore when the entry
can be released. There is also a 32-bit file offset which is used to indicate where in the fi le the next read
or write wi ll take place. Finally, there is a pointer to the en try for the file in the inode table, which con
tains a copy of the fil e's i-node. Notice that an entry in the file table cor responds precisely to an instance
of open or crear; if the same file is opened several times, it will have several entries in this table.
However, there is at most one entry in the inode table for a given file. Also, a file may enter the inode
table not only because it is open, but also because it is the current directory of some process or because it
is a special file 'containing a currently-mounted file system.

2· Unix 110 System

An entry in the inode table differs somewhat from the corresponding i-node as stored on the disk; the
modified and accessed times are not slored, and the entry is augmented by a nag word containing infor
mation about the entry, a count used to determine when it may be allowed to disappear, and the device
and i-number whence the entry came.

During the processing of an open or creat call for a special file, the system always calls the device's open
routine to allow fo r any specia l processing required (rewinding a tape, turning on the data-terminal-ready
lead of a modem, etc.). However; the close routine is called on ly when the last process closes a file, that
is, when the i-node table entry is being deallocated. Thus it is not feasib le for a device to maintain, or
depend on, a count of its users, although it is quite possible to implement an exclusive-use device which
cannot be reopened until it has been closed.

When a read or write takes place, the user's arguments and the file table entry are used to set up the vari
ables lI.u_base. u.u30Ilnt. and lI.u_offset which respectively contain the (user) address of the 110 target
area, the byte-count for the transfer, and the current location in the file. If the file referred to is a
character-type special file, the appropriate read or write routine is called; it is responsible for transferring
dilta and updating the count and current location appropriately as discussed below. Otherwise, the
current location is used to calculate a logical block number in the fi le. If the file is an ordinary file the
logical block number must be mapped (possibly using an indirect block) to a physical block number; a
block-type special file' need not be mapped. In any event, the resulting physical block number is used, as
discussed below, to read or write the appropriate device.

Character device drivers

The cdevsw table specifies the interface routines present for character devices. Each devices provides five
routines: open, close, read, write, and special-function. Any of these may be missing. If a call on the
routine should be ignored, (e.g. open on non-exclusive devices which require no setup) the cdevswentry
can be given as nlllldew if it should be considered an error, (e.g. write on read~nly devices) nodev is used.

The open routine is called each time the file is opened with the full device number as argument. The
second argument is a flag which is non-zero only if the device is to be written upon.

The close routi ne is called only when the file is closed for the last time, that is when the very last process
in which the file is open closes it. This means it is not possible for the driver to maintain its own count
of its users. The "first argument is the device number; the second is a flag which is non-zero if .the file
was open for writing in the process which performs the final close.

When write is called, it is supplied the device as argument. The per-user variable u.u_count has been set
to the number of characters indicated by the user; for character devices, this number may be 0 initially.
lI.u_base is the address suppl ied by' the user from which to start taking characters. The system may call
the routine internally, so the nag u.u_segflg is supplied which indicates, if on, that lI.u_base refers to the
system address space instead of the user's.

The write routine should copy up to u.u_count characters from the user's buffer to the device, decrement
ing u.u count for each character passed. For most drivers, which work one character at a time, the
routine - .

cpass()

is used to pick up characters from the user's buffer. Successive ca lls on it return the characters to be
written until lI.u_count goes to 0 or an error 9ccurs, when it returns -1 . . Cpass takes care of interrogating
lI.u_segfig and updating u.u_count.

Write routines which want to transfer a probably large number of characters into an internal buffer may
also use the routine

iomove(buffer. offset. count, flag)

which is faster when many characters must be moved: lomove transrers up to count characters into the
buffer starting offset bytes from the start of the buffer; flag should be B_ WRITE (which is 0) in the write
case. Caution: the caller is responsible for making· sure the count is not too large and is non-zero. As an
efficiency note, iomove is much slower if any of bllfJer+Offset. count or u.u_base is odd.

The; device's read routine is called under conditions similar to write, except that II.U_coUnt is guaranteed to

, ,

r

-

• . .

Unix ItO System - 3

be non-zero. To return characters to the user, the rout,ine

passc(c)

is available; it takes care of housekeeping like cpass and returns -(as the last character specified by
u.u_count is returned to the user; before thai time, 0 is returned. lomove is also usable as with write: the
nag should be B_READ but the same cautions apply.

The "special-functions" routine is invoked by the slly and glly system calls as fo llows:

sgtty(dev, v)

where dev is the device number and v is a vector. In the guy case, the device is supposed to place up to
3 words of status information into the vector; this will be returned to the caller. In the srty case, v is 0;
the device should take up to J words of control information from the array u.u_arg{O ... 2}.

Finally . each device s hould have. appropriate interrup t-time routines. The interrupt-catching mechan ism
makes the low-order four bits of the "new PS" word in the trap vector for the interrupt avai lable to the
interrupt handler. This is conveiuionally used by drivers which deal with multiple similar devices to en
code the minor device number.

A number of subroutines are avail able which are useful to character device drivers. Most of these
handlers, for example, need a place to buffer characters in the internal interface between their "top· hair'
(read/write) and "bottom hair' (interrupt) routines. For relatively low data-rate devices. the best mechan
is'!' is the character qu~ue maintained by the routines getc and pUIC. A queue header has the structure

struct I

J queue;

int
char
char

r character count -/
r firsl character -/
r last character -,

A character is placed on the end of a queue by

putc(c. &queue)

where c is the character and queue is the queue header. The routine returns - I if there is no space to
put the character, 0 otherwise. The first character on the queue may be retrieved by

getc(&queue)

which returns either the (non-negative) character or -} if the queue is empty.

Notice that the space for characters in queues is shari<! among all devices in the system and in the stan
dard system there are only some 600 character slots available. Thus device handlers , especially write
routines, must take care to avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The call

sleep(event, priority)

causes the process to wait (allowing other processes to run) until the even r occurs; at that time, the pro
cess is marked ready-la-run and tt"!e call will return when there is no process with higher priority.

The call

wakeup(event)

indicates that the el'€nt has happened, that is, causes processes sleep ing on the event to be awakened.
The evenr is an arbitrary quantity agreed upon by the sleeper and the waker-up. By convention, it is the
address or some data area used by the driver, which guarantees thaI events are unique .

Processes sleeping on an event should nol assume that the event has reai1y happened; they should check
that the conditions which caused them to sleep no longer hold.

Priorities can range from 127 to - 127; a higher numerical value indicates a less-favored schedul ing situa
tion. A process 'sleep ing at negative priority canno t be terminated for any reason, although it is conceiv
able that it may be swapped out. Thus it is a bad idea to sleep with negative priority on an event which

" - Unix I/O System

might never occu r. On the other hand, calls to sleep wi th non-negative priority may never return if the '
process is terminated by some signal in the meantime. Inciden tally, it is a gross error to call sleep in a
routine caUed at interrupt time, since the process which is runn ing is almost certainly not the process
which should go 10 sleep. Likewise, none of the variables in the user area" u." should be touched, let
alone changed, by an interrupt routine.

If a device driver wis hes to wait for some even t fo r which it is inconvenien t or impossible to supply a
wakeup, (for example, a device going on-line, which does not generally cause an interrup t), the call

sleep(&lbolt. priority)

may -be given. Lbolt is an external cell whose address is awakened once every 4 seconds by the clock in
terrupt routine.

The routines

...,.;.

~A~A.WA_") ~
are available to set the processor priori ty level as indicated to avoid inconvenient interrupts from the
device.

If a device needs to know about real-time intervals, then

timeout(func, arg, interval)

will be usefu l. This routi ne arranges that aher interval sixtieths of a second, the June will be called wi th
arg as argument, in the style

('l!me)(arg)

T imeouts are used, for example, to provide real-time delays after function characters like new-l ine and
tab in typewriter output, and to terminate an attempt to read the 201 Dataphone dp if there is no
response within a specified number of seconds. Notice that the number of sixtieths of a second is limit
ed to 32767, since it must appear to be posi ti ve, and that on ly a bounded number of timeouts can be go
ing on at once. Also, the specified Jllne is called at clock-i nterrupt time, so it should co nform to the r~
Quiremen ts of interrup t rou tines in general.

An example

The driver for the paper-tape reader/punch is worth examining as a fairly simp le example of many of the
techniques used in writing character device handlers. The pe/J structure contains a state (used fo r the
reader), an input queue, and an outpu t queue. A structure, rather than th ree individual variables, ~as
used to cut dow n on the number of external symbols whic h m ight be confused wi th symbols in other
routines.

When the file is opened fo r readi ng, the open rou tine checks to see if its state is not CLOSED; if so an er
ror is returned since it is considered a bad idea to let several people read one tape simultaneously. The
state is set to WAITfNG, the interrupt is enabled, and a character is requested. The reason for this gam
bi t is that there is no direct way to determine if there is any tape in the reader or if the reader is on-line.
In these s ituations an in terrup t wil1 occu r immediately and an error indicated. As wil1 be seen, the inter
rupt routine ignores errors if the s tate is WAI TING, but if a good character comes in wh ile in the WA IT
ING state the interrupt routine sets the state to READING. Thus open loops until the state changes,
meanwhi le s leeping on the "lightning bolt" Ibolt. If it did not sleep at all, it would prevent any other
process from running un til the reader came on-line; if it depended on the interrupt rou tine to wake it uP.
the effect would be the same, since the error interrupt is almost instantaneous.

The open-write case is much simpler; the punch is enabled and a tOO-character leader is punched using
pcleader.

T he close routi ne is also simp le'; if the reader was open, any uncollec ted characters are flushed, the in ter
rupt is turned off, and the state is set to CLOSED. In the wr ite case a IOO-character trai ler is punched.
The routine has a bug in that if both the reader an~ punch are open close wi ll be called on ly once, so that
e!ther the leftover characters are flushed or the trailer is punched, but no t both. It is hard to see how to
fix this problem excep t by mak ing the reader and punch separate devices.

.-

, /~

Unix 110 System - 5

The pcread routine tries to pick up characters from the input queue and passes them back until the user's
read call is satisfied. If there are no characters it checks whether the state has gone to EOF, which
means that the interrupt routine detected an error in the READ state (assumed to indicate the end of the
tape). If so, pcread returns; cilher during this call or the next one no characters will be passed back, indi
cating an end-or-file. If the state is still READING the routine enables another character by fiddling the
device's rt;ader control register, provided it is not active, and goes to sleep.

When a reader interrupt occurs and the state is WAITING. and the device's error bit is set, the interrupt
is ignored; if there ,is no erro.r the state is set to READING. as indicated in the discussion of pcread. If
the state is READING and there is an error, the state is set to EOF: it is assumed that the error
represenlS the end of the tape. If there is no error, the character is picked up and stored in the inpUl
queue. Then, providell the number of characters already in the queue is less than the high-water mark
PClHWAT. the reader is enabled again to read another character. This stra tegy keeps the tape moving
without flooding the input queue with unread characters. Finally, the tOp half is awakened.

Looking again at pcread. notice that the priority level is raised by spl4() to prevent interrupts during the
loop. This is done because of the possibility that the input'queue is empty, and just after the EOF tcs t is
made an error interrupt occurs because the tape runs out. Then sleep will be called with no possibility of
a wakeup. In general the processor priority should be raised when a routine is about to sleep awaiting
some condition where the presence of the condition, and the consequent wakeup. is indicated by an inter
rupt. The danger is that the interrupt might occur between the test for the condition and the call to
sleep, so that the wakeup apparently never happens.

At the same time it is a bad idea to raise the processor priority level for an extended period of time,
since devices with real-time requirements may be shut out so long as to cause an error. The pcread
routine is perhaps overzealous in this respect, although since most devices have a priority level higher
than 4 th is difficulty is not very important.

The pewri/e routine simply sets characters from the user and passes them to pcOUlpU/. which is separated
out so that pcleader can call it also. PeoUlpur checks for errors (like out-of- tape) and if none are present
makes sure that the number of characters in the output queue does not exceed PCOHWAT: if it does,
sleep is called. Then the character is placed on the output queue. There is a small bug here in that pcoU/
put does not check that the character was successfully put on the queue (all character-queue space might
be empty); perhaps in this case it might be a good idea to sleep on the lightning-bolt unti l things quiet
down. Finally pes/art is called, which checks 10 see if the punch is currently busy, and if not starlS the
punching of the first character on the output Queue.

When punch interrupts occur, pepint is called; it starts the punching of the next character on the output
queue, and if the number of charaoters remaining on the queue is less than the low-water mark
PCOLWATit wakes up the write routine, which is presumably waiting for the queue \a ' emp ty.

The Block-device Interrace

Handling of block devices is mediated by a collcction of routines which manage a set of buffers contain
ing the images of blocks of data on the various devices. The most important purpose of these routines is
to assure that several processes which access the same block of the same device in multiprogrammed
fashion maintain a consistent view of the data in the block. A secondary bul still important purpose is
to increase the efficiency of the sys tem by keepi ng in-core copies of blocks which are being accessed fr~
quently. The main data base for thi s mechanism is the table of buffers buf. Each buffer header con tains
a pair of pointers (bJorw. b back) which maintain a doubly-linked list of the buffers associated with a
parlicula~ block device, and-a pair of pointers (ovJorw, av_baek) which generally maintain a doubly
linked list of blocks which are " free," that is. eligible \a be reallocated for another transaction . Buffers
which have 110 in progress or are busy for other purposes do not appear in this list. The buffer header
also contains the device and block number to which the buffer refers, and a pointer to the ac tual storage
associated with the buffer. There is a word couni which is the negative of the number of words to be
transferred to or from the bulTcr; there is also a error byte and a residual word count used to communi
cate information from an 110 routine to ilS caller . Finally, there is a flag word with bilS indicating the
status of the buffer. These nags will be discussed below.

Six routines constitute the most important part of the interface with the rest of the system. Given a dev
ice 'and block number, both bread and getblk return a pointer , to a buffer header for the block; the

·6 - Unix 110 System

difference is that bread is guaranteed to return a buffer actually containing the current data for the block,
while getblk returns a buffer which contains the data in the block only if it is already in core (whether it
is or not is indicated by the B_DONE bit; see below). In either case the buffer, and the corresponding
device block, is made "busy," so that other processes referring to it are obliged to wait unti l it becomes
free. Gelblk is used, for example, when a block is abou t to be totally rewrilten, so that its previous con
tents are not useful; still. no other process can be allowed to refcr to the block until the new data is
placed into it.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other processes. It is
called, for example, after data has been extracted following a bread. There are three subtly-different write
routines, all of which take a buffer pointer as argument, and all of which logically release the buffer fo r
use by others and place it on the free list. BwrUe puts the buffer on the appropriate device queue, waits
for the wr ite to be done, and sets the user's error flag if required.

BawrUe places the buffer on the device's queue, but does not wait for completion, so that errors cannot be
reflected directly to the user. Bdwrile does not start any I/O operation at all, but merely marks the buffer
so that if it happens to be grabbed from the free list to contain data from some other block. the data in it
will first be written out.

Bwrite is used when one wants to be. sure that I/O takes place cor rectly, and that errors are reflected to
the proper user; it is used, fo r example, when updating i-nodes. Bawrire is useful when more efficiency is
desired (because no wai t is requi red for I/O to ~nish) but when it is reasonably certain that the write is
really required. Bdwrite is used when there is doubt that the write is needed at the moment. For exam
ple, bdwrite is called when the last byte of a write system call falls short of the end of a block, on the as
sumption that another write will be given soon which will re-use the same block. On the other hand, as
the end of a block is passed, bawrite is called, since probably the block will not be accessed again soon
and one might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively to the use o f
the caller, and make others wait, whi le one of brelse. bwrife. bawrite. or bdwrite must eventually be called
to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer. Since
they provide one important channel for information between the drivers and the block I/O system, it is
important to understand them.

B_READ

This bit is set when the buffer is handed to the device strategy routine (see below) ·to indicate a read
operation. The symbol B WR ITE is defined as 0 and does not define a flag; it is provided as a mnemon
ic convenience to callers of routines like swap which have a separate argument which indicates read or
wri te.

B_DONE

This bit is set to 0 when a block is handed to the the device strategy routine and is turned on when the
operation completes, whether normally as the result of an error. It is also used as part of the return ar
gument of gerblk to indicate if I that the returned buffer actually contains the data in the requested block.

B_ERROR

This bit may be set to 1 when B DONE is set to indicate that an I/O or other error occurred. If it is set
the b error byte of the buffer header may contain an error code if it is non-zero. If b error is 0 the nature
of the error is not specified. Actually no driver at present sets b_error; the latter is Provided for a futu re
improvement whereby a more detailed error-reporting scheme may be imp lemented .

B_BUSY

This bit indicates that the buffer header is not on the free list, i.e. is dedicated to someone's exclusive
use. The buffer still remains attached to the list of blocks associated with its device, however. When
gerblk (or bread. which calls it) searches · the buffer list fo r a given device and fi nds the requested block

•

· . ." '."
' .

.-. , ,

-

Unix I/O System· 7

with this bit on, it sleeps until the bit clears.

B_ WANTED

This Oag is used in co njunction with the B_BUSY bit. Before sleeping as described just above, ,it getblk
sets this flag. Conversely, when the block is freed and the busy bit goes down (in brelse) a wakeup is
given for the block header whenever B_WANTED is on . This strategem avoids the overhead of having
to call wakeup every time a buffer is freed on the chance that someone migh t want it.

B_ASYNC

This bi t is set by bawrite to indicate to the appropriate device driver that the buffer should be released
when the write has been finished . usually al interrupt time. The difference between bwrite and bawdte is
that the former s tarts 110, waits until it is done, and frees the buffer. The latter merely sets this bit and
starts 110. The bit indicates that relse should be called for the buffer on completion.

B_DELWRI

This bit is set by bdwrire before releasing the buffer. When gerblk. while searching for a free block. dis
covers the bit is I in a buffer it wou ld o therwise grab, it causes the block to be wrinen out before reusing
it.

B_XMEM

This is actually a mask for the pai r of bits which contain the high-order two bits of the physical address
of the origin of the buffer; these bits are an extension of the 16 address bits elsew here in the buffer
header.

B_RELOC

This bit is cu rrently unused; it previously indicated that a system-w ide reloca tion constant was to be ad
ded to the buffer address. It was needed during a period when addresses of data in the system (including
the buffers) were mapped by the reloca tio n hardware to a physical address differing from its virtual ad
dress.

Block Device Drivers

The bdellsw table con tains the names of the interface routines and that of a table for each block device,

Just as for character devices, block device drivers may supply an open and a close routine called respec
tively on each open and o n the fina l close of the device. Ins tead of separate read and wri te routines,
each block device driver has a strategy routine which is called with a pointer to a buffer header as argu
menlo As discussed, the buffer header contai ns a readlwrite flag, the core address (including extended
memory bits). the block number. a (negative) word count, and the major and minor device number. The
role of the strategy routine is to ca rry ou t the operation as requested by the information on the buffer
header. When the transaction is complete the B_DONE (and possibly the B_ERROR) bits should be set.
Then if the B ASYNC bit is set, brelse should be called; otherwise, wakeup. In cases where the device is
capable, under error-free operation , of transferring fewcr words than requested, the device's word-count
register should be placed in the res idual .count s lot of the buffer header; otherwise, the .residual count
should be set to O. This part icular mechanism is really fo r the benefit of the magtape driver; when read
ing this device reco rds shorter than requested are quite normal, and the user should be told the ac tual

' Iength of the record. (However the mechanism has not been integrated into normal 1/0 even on magtape
and is used only in " raw" 110 as discussed below.}

Noti ce that although the most usual argument to the s trategy routines is a genuine buffer header allocated
as discussed above, all that is actually required is that the argumen t be a pointer -to a place containing the
appropriate information. For example the swap rou tine, which manages movement of core images to and
from the swappi ng device, uses the strategy routine fo r this device, Care has to be taken thaI no ex
traneous bits get turned on in the flag word.

The device's' table speci fied by btlellsw has a byte to contain an active nag and an error count, a pair of
links which cons titute the head of the chain of buffers for the device (bJorw, b_back), and a first and last

8 - Unix flO System

poin ter for a device queue. Of these things, all are used solely by the device driver itself except for the
buffer-chain pointers. Typically the flag encodes the state of the device, and is used at a minimum to in
dicate that the device is currently engaged in transferring information and no new command should be
issued. The error count is useful for counting retries when errors occur. The device queue is used to
remember stacked requests; in the simplest case it may be maintained as a first-in first-out list. Since
buffers which have been handed over to the strategy routines are never on the list of free buffers, the
pointers in the buffer which maintain the free list (avJorw, av_back) are also used to contain the pointers
which maintain the device queues.

A couple of routines are provided which are useful to block device dri vers.

iodone(bp} ,

given an pointer to a buffer header, arranges that it be released or awakened as appropriate to the situa
tion when the s trategy module has finished with the buffer whether normally or after an error. On the
latter case the B_ERROR bit has presumably been set.)

When the device conforms to some rather loose standards adhered to by certain DEC hardware, the
routine

deVSfarf(bp, devloc, devblk, hbcom}

is useful. Here bp is the address of the buffer header, devloc is the address of the slot in the device regis
ters which accepts a perhaps-encoded device block number, devblk is the block number, and hbcom is a
quantity to be stored in the high byte of the device's command register. It is understood, when using
this routine, that the device registers are laid out in the order

command register
word count
core address
block (or track or sector)

where the address of the last corresponds to devloc. Moreover, the device. should correspond to the RP,
RK, and RF devices with respect to its layout of extended-memory bits and S!Tucture of read and write
commands.

The routine

geterrodbp}

can be used to examine the error bit in a buffer header an arrange that any error indication found therein
is reflected to the user. It may be called only in the non-interrupt part of a dri ver when 1/0 has complet
ed (B_DONE has been sel).

An example

The RF disk driver is worth studying as the simplest example of a block I/O device. Its strategy routine
checks to see if the requested block lies beyond the end of the device; the s ize o f the disk, in this in
stance, is indicated by the minor device number. If the r.equest is plausible,. the buffer is placed at the
end of the device queue, and if the disk is not running, rjslart is called.

R/start merely returns if there is nothing to do, but otherwise sets [he device-active flag, 'loads the ad
dress extension register, and calls dellstart to perform [he remaining tasks attendant on beginning a data
transfer.

When a completion or error inter rupt occu rs, rfinlr is called. If an error is indicated, and if the error
count has not exceeded 10, the same transaction is reattempted; otherwise the error bit is set. If there
was no error or if 10 fai ling transfers have been issued the queue is advanced and rlstar, is called 10 begin
another transaction. .

Raw Block-dev ice 1/0

A scheme has been set up whereby block device drivers may provide the ability to transfer information
directly between the user's core image and the device withou t the use of buffers and in blocks as large as
the 'caller requests. The method involves setting up a character-t~pe special file corresponding to the raw

(7 '

I

~

.' j , ..

•

. , ,

Unix 110 System · 9

device and providing read and write routines which set up what is usually a private, non-shared buffer
header with the appropriate in formation and call the device's strategy routine. If desired, separate open
and close routines may be provided but this is usually unnecessary . A special·function routine might
come in handy. especially for magtape.

A great deal of work has to be done to generate the "appropriate information" to put in the argument
buffer for the strategy module; the worst part is to map relocated user addresses to physical addresses.
Most of this work is done by

physio(slrot, bp, de\!, rw)

whose arguments are the name of the strategy routine strat, the buffer pointer bp, the device number dev.
and a read-write nag rw whose values is either B READ or B WRITE. Physio makes sure that the user's
base address and count are even (because most devices work-in words) and that the core area affected is
contiguous in physical space; it delays until the buffer is not busy, and makes it busy while the operation
is in progress; and it sets up user error return information.

The magtape driver is tfie only one which as of this writing provides a raw 110 capability; given physio,
the work involved is trivial , and amounts to passing back to the user information on the length of the
record read or written. (There is some funniness because the magtape, uniquely among DEC devices.
works in bytes, not words,) PUlling in raw 110 for disks should be equally trivial except that the disk ad·
dress has to be carefully checked to make sure it does not overnow from one logical c;levice to another on
which the caller may not have write permission .

.. ..

,

A Manual for the Tmg compiler-writing. Language

M. D. MCIlroy
Bell Laboratories

Murray Hill, New Jer.sey

ABSTRACT

Tmg is a string processing language especially intended

for writing translators for computer languages . It

deals with string scanning. bui lding of tables and Qut-

put generation, and frovides some integer arithmetic.

l'~e experience of many years has been" distilled into a

new version running on the PDP-l1 under the UNIX

operating system.

, / ~

. ' , ,. ..

, . ,

A Manual for the Trng Compil er-writing Language

1. INTRODUCTI ON

M. D. McI lroy
Bel l Laboratories

Murray Hill. New J ersey .
Septembe r 13, 1972

At the heart at the lang uage ~re parsing rules (3.1). A rule is
a sequence of actions, written s imply by naming the actions one
after the othe r. For exampl e, ·this typical parsing . rule

smark any (letter) string (a l p ha) install

might be used to r ecognize an identifier of arbitrary l ength and
install it in a table. The example invokes two scanning func
t i ons , !lany(.)!! and " string (.)", which recogn'ize r espect ively
precise,ly one, and an arbitrary string of characters from a
£haractm;: clas.§.. sandwiched around the scanning are "smark" and
'tin s tall" , which note the beginning of the. st ring, and enter the
completed s'tring into the tabl e .

A par z ing statement (2 .)
and ended with a semicolon.
pr evi ous parsing rule:

i s a parsing rule l abe l ed with a name
This pars ing statement contains the

ident: smark any (letter) s tring (alpha) installi

when the meaning is obvious from context, a parsi ng statement may
also be c alled s imply a rule.

As it happe ns, "smark"' , "any (.)" and "string (.)" are all fUnc
tions intrinsic to Tmg. which we call Quilti!!§, while "install II
must be defined by another ru l e in terms of other actions. No
character classes are ' buil t in, 50 " l etter" and "alpha ll a l so must
be defined somewhere e l se in the program.

The functi on of ma-tching a specifed lit~!
that it has been given a special notation,
by angle b r ackets, <>. ThUS a Fortran DO
recogniz ed by

st ring i s
the stri ng
st.atement

do: <00) number i dent <=) limi ts;

so common
surrounded
might be

· .

- 2 -

l.l SUCCe5~. fail"g~ ~9 £~nch~.§
Execution of a parsing rule may have several effects. (We have
already noted that it may make entries in a table.) Every rule
must succeed or fail. A 'rule succeeds when execution proceeds to
the end of~he rule-without failing. certain builtins can fail-
"any(letter) " fails unless the cursor (see be:low) points to a
letter. In general the failUre of any action invoked" by a rule
causes the rule itself to fail without doing any subsequent ac
tions. However. there are ways to continue conditionally upon
failure. .

A rule may specify an alternate cranch in case of failure, as in
this rule for a DO limit~ which consists either of an identifier
or of a number.

limit:
Iml :

ident/lml ;
number;

The branch. deSignated by a slash and the name of a rule. is a
conditional go-to. If "ident ll fails. then the rule for Illimitll
continues at "lml" as if "ident" had neve.r been invok.ed (but see
3.7 for a qualification). The success or failure of "number"
then determines the success or failUre of "limit".

Conditional branches may also be made on success. indicated by a
back.slash.

limits:
lmsl:

limit <.> limit <.>'lmsl;
limit.

This rule continues at "IItlsl" after a
found • . Because a test has been made.
tinues right .on when a second comma is
(successfully) at the semicolon.

1.J The ipput £YI§or

second comma has been
execution of Ulimits" can
not found. to terminate

A successful action may move a £~~ along the input-
"any(letter)1I succeeds and moves the cursor to the next character
if it points to a letter. When a rule succeeds the cursor is
left whe·re it was left by the last action in the rule. When a
rule fails. the cursor is restored to the place where it was when
t~e rule was invoked, reg·ardless of what happened later.

A successful parsing rule may deliyg~ a translation !y!~, often
called simply a tr~n~!~!ion. Since the pro Fer order of output
may not be the same as the order in which translation rules are
delivered, the execution of a tra·nsl,ation rule is delayed until
explicitly called for ().5).

. I •

!

.~

.2
,

- 3 -

A translation rule, li'ke a parsing rule, consists of a sequence
of actions, which may be other translation rules or literal
strings to place int,o the cutput~ A translation rule is always
enclosed in braces, ().

This simple program defines the
the sized infix expressions to polish

translation
postfix for

of fully paren
a stack machine.

expr: < (>/exp1 expr of:erator expr q> = (3 1 2 J ;
exp1 : ident = (< LeAC > 1 J ;
operator:
opO: <+>/op1 = (< ACe>) ;
op1 : <->/op2 = (< SUB> J ;
op2: <*>/op3 = (< MPY> 1 ; .
op3: </) = (< OIV>) ;

The U=" in eac h rule intrcduces the translation to be delivered
by the rule . The numbers in a translation refer to translations
delivered by these actions that delivered tr~ns12tiQn§ to the
parsing rule-.---ihose--translations--are identified by counting
bac~~~Q f~ 1~ = §ign. Actions with no translations (e.g.
recognizing a literal) are not counted. This awkward convention

. happens to be very efficient to implement, so we . live witt. it;
however some syntactic sugaring will get around counting in many
cases (4.2).

The fo ur operators +- */ are translated into "ADDn, "SUBu, "MPY"
and "DIV". An expression consisting of a single identi'fier is
render-ed as "LOAD" ,followed by the translation of the identifier,
which we assume is unchanged in trans lation. A little inspection
shows that the parsing rule~ correspond to this simple BNF, in
which angle bracke ts have the same meaning as in Tmg:

expr ::=
operator

<(> .. -.. - expr o~erator expr <»
<+> I <- > I <*> I </>

ident

and that the expression «a*x)+(b*y») translates into

LOAD a LOAD x MPY LOAD b LOAD 'y MPY ADD

Here we see an important difference between the Tmg, which is a
E£Qg~, and the BNF, which is a E~1te£n. In Tmg the branch was
placed after «>, not after the matching <I> as was the a lternate
in the BNF. The latter place would be wrong, fdr the rule would
fail without ever getting there to test .for the branch.

Mere delivery of a translation rule does not create any output.
Indeed a delivered translaticn may never get used, for example if
the rule to which it was delivered ' fails~ The builtin function
"parse (. J II is provided ' to cause the execution cf a parSing rule
followed immediately by the execution of its translation (if the
rule succ,?eds). Data is f laced, on the output file only while

- 4 -

translations are being executed. Once executed. the translation
is forgotten.

These two rules might be used to parse and translate Fortran
card-by-card4

program: ccmment'program
endcard\done

done:

parse (statement) \program
diag(error)\program;

First ~ach card is checked to see if it is a comment, and if so
the · rule loops. (It is unde rstood that IIcomment" delivers no
transla tion l est the process get clogged with delivered but unex
ecuted translations.) Ne xt the card is checked to see whether it
is the end; if it is, the rule terminates by going to the empty
rule "doneJl. when "statement" succeeds, its translation is
output; "parse(statement) II then succeeds in turn, and the rule
l oops. When Ustatement" fails, so does "parse (statement) II and
the rule goes on to "diag (error) u.

ItDiag(.)It is just like "r:arse (.)", except that it sends output to
the diagnostic fi l e. We assume that "error" has been coded to
eat u p any card and perhar:s deliver a copy of the card along with
a message. Thus unless there is no card there at all (end of
filet ·. the rule loops after giving the diagnostic.

As characte,rs are scanned over by "any (.) II and .. string (.) fl. but
not by quoted literals, they are gathered into a £~~n! ~ing.
The current string may be looked up in or entered into a !2ble.
Recalling the rule on page 1 for identi"fiers. we now show how to
accomplish II install ".

ident: smark any (lette r), string (alpha) install = (1);
install: enter (t,i) getnam (t,i) = (1):

The current string is cleared by "smark ll and gathered by "any(., It
and IIstring(.) u . "Enter(t,i) II enters the current string into
table t and assigns the index of the entry to variable i. (see
Section 6 for how to cz;eate a table.) IIGetnam(t,i)U delivers the
string which is the ith entry of table t. The 11= (1) t1 in each
rule arranges ta deliver to its invoker the one translation that
was delivered to it.

1.I ~g~~ classes

A £.haracter clgsS is defined by enclosing a set of characters in
double angle brackets. Sets may be unianed by juxtaposition as
in the next example .

0.>/ c .

,
W

" 5 -

l etter: «abcdefghijklmnopqrstuvwxyz»
«ABCDEFGHIJKLMNOPQRSTUVWXYZ»;

An exclamation mark conpiements a set as
defines the class of all as cii characters as
the empty class ..

ascii: 1«» ;

2. PROGRAMS

in this example that
the complement of

~ A Tmg program consists of a sequence of statements. Each state-
~' men t ha 5 one of these forms

(i I
(iiI
(iiil
(ivl
(vI

a comment bracketed by /* */ in the style of PL/I .
a parsing statement
a labe l ed translation rule (4.)
a labeled character class (3.2)
a labeled list of octal constants separated by
s emicolons (5.1,5.7)

"All statements except comments are terminated by semicolons.
spaces, tabs and newline characters delimit tokens but not state
ments. Execution of the ~rogram begins with the first Aoncomment
statement, which must be a ~arsing statement, and ends when exe
cution of that rule (as extended by go-to'· s) ends.

A Earsing ~ement is a labeled parsing rule fol lowed by a semi
colon or by a parsing statement. In the ~a~ter case the execu
tion of the containing statement flows into the contained rule as
if the contained label were not there.

Instructions for compiling and executing a
are reproduced from the UNIX manual (8] as
manual.

program on the PDP-11
Section 10 of this

~ 3 . . PARSING RULES

• ,

J.1 General fO£m

A Q2rsin9 rule ~s a possitly em~ty sequence of disjYn£~§ separat
ed by I signs.

A disjunct consists of a nonempty sequence
(ca lled simply e lements when the context is

may be anyone of

a literal (10 . 2)

of Eersing e l ement.§
obvious). An e lement

(i I
(iiI
(iii)
(ivl

a name of a builtin function (8.)
a name of a farsing statement (2.)
an output element (a translation) (3.3,4.)

(v)

(vi)
(vii)

- 6 -

a reference to a parameter of the parsing
statement (3.5)
an arithmetic e l ement (5.1)
any of the preceding with a success or
failure branch (1 .2)

(viii,) a parsing rule in parentheses ()

The elements specify acti ons to be performed in order, except as
modif i ed by failure, branches or disjunction.

A· literal consists of one or more
angle brackets <>. A > sign may
the first character.

ascii
appear

characters enclosed
within a literal only

in
as

A literal consisting of a single new1ine character may be desig
nated by a special notat ion, an unbracketed asterisk ••

A character class is designated by

(1) a set of characters enclosed in double angle
brackets «»

(ii)

(iii)

a union of two or more classes of type (i)
indicated by juxtaposition
the complement of a class of type (i) or (ii)
indicated by a prefixed !

Type (ii) classes are merely a convenienc e for splitting a large
c l ass up into r eadable grou~ings. The characters of a class may
be given in any order. with duplications. except that the charac
ter >. if included, must come last to avoid confusion with
litera ls •

. There is always an !gno!~g class, which is saved upon the invoca
tion and restored u pon the return from each parsing rule. The
ignored class is initially empty; "ignore(.) II resets it. The
fWlction "smark" scans over ignored characters before marking the
start of the curren t s1;ring.. "Any (.) II and fI string (.)" skip ig
nored characters. Ignored characters are skipped before. but
not within , literals.

Here we define the syntax of a Tmg literal, which must contain at
l east one aSC~ l character.. "Ignore(none~" resets the ignored
c·lass from the prevai.ling value, which is space, tab and newline.

literal: smark «> ignore(none) any(ascii) string (nonket) <»;
nonket: 1«»>;
none: «»;
ascii: !«»;

The Tmg charact.er set consists of 121 characters--ascii l ess NUL.

1.1 output element s

,)
~

.-

- 7 -

An output element is an = sign followed by a translation rule, or
by the name .of a labeled translation rule. In the latter case
the element acts as if the design~ted rule were copied verbatim
into the place of the name.

J . .s, Disjunctions

An infix , sign separates two or more disjunct§, each of which is
a nonempty sequence of elements. The exampl e of page 3 may be
reworked into a go-to-less form using disjunction:

expr: q> eKfr Cferator expr <» = (3 1 2 J
I ident = (< LOAD > 1 J ;

operator: <+> = [< ADD> J
I <-> = [< SUB> J
I <*> = (< MPY> J
I.. </) = [< DIV> J ;

Disjuncts are executed in crder, with the second being tried if
and only if the firs~ ~!~meD! of the first disjunct fails and has
no branch, and so on. Once past the first e l ement of a disjunct,
the rule executes ,as if the other dis juncts weren· t there. For
all its BNF-like appearance, a disjunction still represents a
program, not a pattern, as may be illustrated by the example of
DO limits from page 2.

limits: limit <.> limit
(<. > limit I 0);

The following version of this rule is incorrect because the
second disjunct is useless--it would only be tried when the first
el~ment of the first disjunct failed. rather than when the second
comma failed.

limits: limit <.> limit <, > limit
I limit <, > limit;

1.a ,Ea ramete rs

A parsing statement may have one or more parameters. Correspond
ing arguments are designated in ordinary functional notation. An
argument may be

(i)
(ii)
(iii)
(iv)
(v)
(vi)

a name of a statement
a parenthesized parSing rule
a character class
a number .
a reference to a parameter of the invoking rule
a literal; corresponding parameter may only be used
as an argument of another element

The forms ii and iii are
unwritten name of a statement
able.

understood to be. shorthand for an
containing the given rule or vari-

- 8 -

A parameter is referred to cy number, counting 1.2.... from
.righ~ to left in the argument list, the number being p r eceded by
a dollar sign. Before any farameters are used, they must be made
available by means of the builtin IIparams (..) ", whose argument
tells how many arguments are expected.. "Params (..)" may be used
several times to pick off successive arguments from the right end
of the argument li st; the arguments so obtained are (re) numbered
$1,$2,... If the total number of arguments transmitted during
execution of a rule is ~ron9~ or if an argument is used in a non
sensica l context, chaos usually results.

This example def ines a number of cons truct s of Algol in terms of
a "separated list ll or tlseplist (..) If. The $2 argument of seplist
defines a list element, the $1 argument defines the separator.

seplist:
block:
actuals:
formals:
expr:
term:
fqctor:

pararns(2) $2 ($1 seplist($2. $1)
<begi:..!!> seplist (statement" «; »)
«> seplist(expr, «,») <»;
< (> seplist (ident, «,») < } >;
seplist (term, «+> 1 <-») ;
seplist (factor, «*>1 </»} :
seplist (f:rimary, «T»);

1 ());
<eng> ;

Parses according to this definition of IIseplistll
ciative, and not always a~propriate to Algol.
tells how to obtain left-associative parses.

are right as 50-
The next section

The , parameters of a rule that is not properly contained in any
other ~ule may be denoted by names instead of numbers. provided
they are referred to from within that rule only. The names are
declared by beginning the rule with "proc(.}II, where the argu
ments of "procn are the r:arameters. IIseplist" can be defined
this way:

seplist: proc(x,y) x (y seplist(x,y) ());

The following rule defines "not(.)" to be a parsing element that
s~cceeds only when its ar'gument fails and vice versa. The built
in !tfail" does what you expect.

not: proc (x) x fail () ;

The next example uses "not{.)11 to distinguish a < sign from <=
and « by looking ah ead one character. The double parent~eses
come from an argument of type (ii), a parsing rule.

lessthan: «> not « any (<<=<»1));

"Not((not (oO) » tI may be us.ed to peek ahead without displacing
the input cursor as in this rule for recognizing the end of a
statement in BCPL, where a newline (denoted *) can act as a semi
colon provided the b eg inning of the next line is a plausible
beginning for a statement.

.-

•

- 9 -

semicolon: <j) : (* not« not« ident:keyword » »)j

Parameters are passed by name, in the Algol sense . This example
capitalizes on a name parameter to recognize a notorious non
context free language.

f: proc(x) (a) f«<b) x» <C> : Xj

The element Hparse« fee»~ »11 will recognize anbnc n . The di-
agram shows the progress of a parse of " aabbcc " .

• --------------f(())---------_____ •
: . ------- f((())) --------••
: • . - f(«b>(())))-.
I :----«b>(»---:

I .--()--,:
• • •

a a b bee

3..Q Bundles

Upon successful completion of a rule, all translations that have
been delivered to it are bundled into a single translation, or
bundle, to be delivered to its invoker. The elements of the bun
dle are translation rules. The elements are counted 0 .1, 2,
from the most to the least recently delivered.

Translations delivered by output elements (designated by =)
no different from translations delivered by other elements.
any case the translation most recently delivered to a rule
comes the 0 element in its bundle. Thus the rules

param:
param:

ident ;; { 1 } i
identj

are
In

be-

deliver
t i on) .

indistinguishable translations (see 4.3 for a qualifica
The latter form is more efricient in time and space .

. The builtin "bundle " causes a bundling in the rule that invoked
it up to the point of its invocation, and delivers that bundle to
the same rule . The set of translations delivered up to the invo
cation of "bundle " is replaced by just one translation --exactly
the tra'nslation that the rule ·would have delivered if the final
semicolon appeared in place of "bundle", ,rBundle " is particular
ly useful for left - associative parses, as in the following fra g
ment of a translation from infix to postfix with operator pre
cedence . The qperators +-*/ are left - associative and ' T is
right - associative.

expr:
expr 1:
t erm:
term1 :
fac.tor:
primary:

I
done:
addop:

mulop:

- 10 ..

term
addop/done term =
factor
mulof/done factor
primary <T>/done
ident = (< LOAr::.
<(> expr <) >;
;
<+) = (< ADD) I
<-) = (< SUS> I ;
<*) = (< MUL) I
</) = (< OIV) I ;

(3 1 2 } bundle'expr1;

= (3 1 2 I bundle'\term1;
factor = [2 1 < EXP>];
) 1 I

The builtin IIreduce (n) II t=erforms the same job ·as "bundle ll except ~:A
that it replaces only the l~st n delivered translations. There ~
can be no intra- or interbundle references (4.2. 4.4) between
elements of a bundle created "by "reduce(..)II and translations of
earlier elements of the rule.

Some side
undone upon
persist:

effects of the execution of a
its completion. All side

rule are
effects

automatically
except these

assignments to variables saved by "push(.) II are undone
the igno~ed class is r eset
the.cursor is reset on failure

4 • . TRANSIA T ION RULES

The boQy: of a
glements enclosed
one of

translatiCn rule is a sequence of · translation
in braces (). A translation element may be any

(i)
(ii)
(iii)

(i v)

(v)

a name of a labeled translation rule
a literal (3.2)
a reference to a parameter of the translation
rule (.4.3)
an intrabundle reference optionally accompanied
by arguments (4 _ 2)
an interbundle r e ference optionally accompanied
by arguments (4.4)

In general the significance of a translation element is dynamic
and · de~ends upon the progress of the parse and upon other trans
lation rules delivered by the parse. If a translation element is
the name of a labeled translation rule, which must consist of a
body only, the element acts as if the deSignated rule were copied
into its place witn. the traces stripped.

~-
'2;

,"

- 11 -

An intraburidle reference is a number designating another element
of the same bundle. An argument list may be supplied to an in
trabundle reference (4.3). Intrabundle references are counted
bacKward starting trom 0 at the element containing the reference.
For example, if all parsing elements in this rule deliver trans
lations

r: a = (I)· b = (3 2 1);

the bundle it delivers will have four elements

a#s translation
[1 }
b"s translation
[3 2 1 }

The 1 in the last element refers to the translation of b, 2 to
II (1)" and 3 to the translation of a; the other 1 refers to the
translation of a. . Only the 0 element of a bundle is directly
accessible to its invoker; other elements of the bundle are
pulled out by intrabundle references in the 0 el~ment (or by
interbundle references, 4.4).

Names may be used instead of numbers for intrabundle references
within one parSing rule, ~rovided that the parSing elements that
have translations are indicated explicitly by suffixing each with
a per iod. A name, or alias, to denote the translation delivered
by a parsing element-may follow the pe·riod with no intervening
blanks. If no alias is given and the element consists of a name
alone, then that name becomes the alias. The preceqing rule may
be rewritten in these ways. among others:

r: a. = [1 }.t
r; a. = { a }.

~.J farame!;~

1: . = { a t b };
b.x = (a 2 x) ;

A translation rule may have pararr,eters, and if it does. their
number is declared by a parenthesized integer prefixed to its
body. Alternatively Faraweters may be given names listed in the
leading parentheses. va lid only in the immediate rule body and
contained bodies, but not in codies copied in place of type (i)
elements . (4.1). Parameters are referred to by name or by $1 • .
$2, •.• counted from right to left in the associated argument
list. An argument corresponding to a paran~ter is itself a
translation rule body. or a reference thereto, and is passed ~y
name (in the sense of Algol), so that intra bundle references and
parameter references in an argument are evaluated in the environ
ment of the invoking rule.

The next r .ule compiles Honeywell 6000 assembly code for a simple
case of Fortran subscripted variables:

- 12 -

svar: idente «> ident.subscr <»
= (1)[<LxLO > subser *

$1 < > ident<,O> *)
A machine opcode is to be filled in for the parameter. Assuming
that "exprl! compiles code to leave a result in the Q register.
this rule would handle assignments to such subscripted variables:

assign: svar. (=) expr. = [expr svar«(<STQ>}));

The next example compiles code for Boolean expressions over a set
of unspecified elementary predicates that set a condition code,
the state of which determines the outcome of IIbt" (branch 'on
true) and "bf" (false" instructions. The Boolean operators are
disjunction I and conjunction &. Each translation rule has two
parameters, $2 and $1, which are respectively the destinations of
branches to be taken upon determining the truth or falsity of the
subexpression in question. ttLbl" is a rule that delivers a
unique label every time it is inVOked.

disj: conj.
(<I> lbl. disj.

= (T,F) { eonj (en, (lbll) lbl<:> disj ((TI, (FI) I
o); ,

conj: prim.
(<&> lbl. eonj.

= (?,F) (prirr((lbll,(FJ) lbl<:> eonj((TI,[F})1
I 0 ,);

prim: pred. = (T, F) (pred< bt >T< bf >F * I
I «> d'isj q>;

Suppose that predicates are denoted by single letters and that
IIIbl'! generates the labels #1, '2, ... Then the parsing e1.ement

parse ((disj. = (disj ((<T>I ,[<F>J) I »

applied to the expression a6 (bl · c~d) would yield (except for spac
ing) the output

.1 :
'2:
'3:

a bt .1
b bt T
e bt t3
d bt T '

bf F
bf '2
bf F
bf F

~.~ Interb!!!!~ re!,~!:§l£g.§

An interbundle reference is . a translation element of the form
m.n. where m and n are toth numbers; m must be a legal intra
bundle reference. Then the interbundle reference rn.n picks · out
the same translation as would an intrabundle reference n in the 0
element of that bundle.

Interbundle references furnish a trick for getting several trans
lations from one parsing rule to be put together by an invoking

- 13 -

translation rule. The following example udoubles"- a paren
thesized list of identifiers. Members of the first output list
are separated by /, of the second by', and the lists are
separated by I. The inf:ut 11 (a,b ,c)" yields the output
"d/b/c I a\.b'\.c".

double: < I> dbla. <) > = [dbla.1 <I> dbla.O }

db~a: ident.
(<.> dbla. = [ident (/> dbla.1). = [ident <,> dbla . O}
1 = [ident }. = [ident });

The rule "dbla ll builds two different output lists that are final
ly pasted tog-ether by t1double ll • The notation Udbla.O" means
just the same as ndblal!; it has been used to emphasize the fact
that it is expected to evoke only 'part of the designated bundle.

5 • . ARITHMETIC

All arithmetic is performed on 16-bit twois complement integer
data. An integer variable is declared and initialized by a lab
eled unsigned Q£Sal number, thus

n: 1;
size: 0;

An 2rithmetic element of a far sing rule is an expression enclosed
in brackets [] that specifies a calculation to be performed as a
parsing actipn. Expressions involve variables, called lvalues as
in the language B [7] , octal constants, parentheses and, in de
creasing order of precedence

unary operators
infix operators
conditional Of era tors
assignment operators

All operators except unary * r eturn an rvalue.
(but not their precedences) are taken from B.

2·l ~!y operators

Their meanings

Unary
l eft.

operators in a primary expression are evaluated right to
The unaries are

prefixed to an l value
++ increment and return new va1ue

decrement and return new value
& return Ivalue

- , q -

postfixed to an Ivalue
++ increment and return old value

decrement and return old value
prefixed to an rvalue

* indirection, take rvalue to be Ivalue
.., '''5 corq::lement

not, !x means x?O:l
2'" 5 corr.plement

Infix operators associate l e(t-to-right

•
•
/

%
&
I

(

>
(=

>=
==
!=
»
«

add
subtract
multiply
divide
remainder
and
or
exclusive or
less than
greater than
l e ss than or equal to
greater than or equal to
equal to
not equa 1 . to
right shift (logical)
left shift Ilogical)

The comparison operators r~turn 1 or 0 for true or false.

~.! Conditional QEera!Q~2

If el, e2 and e3 are three rvalues, then the conditional expres
sion

e l?e2:e3

has the value of e2 if el is nonzero, and otherwise e3. Only one
of e2 or e3 is evaluated.

The operator :
e3) associates

(regarded as an infix operator between
from the right.

.,2.,2 A§J!ignment operator§

e1?e2 and

The ope rator = assigns the rvalue on i,ts right to the lvalue on
its l eft . An = concatenated with any infix operator 0 is a
Utwo-addres s code tt assignment oper~tor: x=o y means the same as x
= x 0 y provi ded the evaluation of x h as no side effects.

Ass ignme nt ope rators associate right-to-left.

,~ -

'-. '....,

- 15 -

If the expression in an arithmetic element is follo~ed by a ?
mark, then its rvalue is tested for nonzero (success) or zero
(failure), otherwise an arithmetic element always succeeds. This
is a simple Fortran-style do-loop:

begin:
loop:

(i = 1]

A static array is allocated by initializing more than one loca
tion with an octal constant. thus:

A: 1;2;3;4;

Subscripting is not directly ~rovided for static arrays. but can
be simulated by address computation, as in the expression
*(&A+4), which when applied to the array A as initialized above
would pick out the rvalue 3. (Addresses of successive words
differ by 2, as is usual on the PDP-l1.)

Although the names of variacles have global scope, their values
can be pushed down for the dUration of a r 'ule, as in SNOBOL. The
builtin "push (n, v1, v2, ••• , vn) II saves the current values of the n
variables vl,v2, .•• ,vn, to be automatically restored when the
rule terminates. Variables to be pushed right at the start of a
rule may be "listed after a semicolon within the "proc (.)" dec
laration (3.5) instead of in a "push (.) ".

The following rule recognizes an octal integer and assigns to its
argument the numerical eguivalent of the integer. The rule
pushes its temporary, i, to avoid conflict with other uses of i
in the program.

integer:
int 1:
inta:

proc{n;i) [n=O] inta
[n = n*10+i] inta\intl;
char (i) [iOO?] [(i =- 60»=01]:

The builtin "char (i) II moves the cursor and assigns the ascii
value of the scanned character to variable i. The rule depends
upon knowing that the ascii codes for 0, 1, ••• are octal 60,
61,

The next rule has the same effect as the builtin "octal (.) II for
binary-to-octal conversion, provided ~he argument is not nega
tive.

octal:

done:

- 16 -

proc(n;m.i) (i = (m=n)~lil]
((i ==01] = «0»)
I • • .
I (i==71] = «7»
(m =/ 101 Vdone
octal (m) = (1 2) ;
;

The purpose of m is to e 'ffect call by value. Were the rule writ
ten as below, it would nct work because of a collision between
the argument passed by name and the temporary.

octal: proc(n;i) (i = n~10]
((i==01] = «O))
I . • .
I ' (i==71] = «7»)
(1 = n/l0]/done
octal (i) = (1 2);

done: ;

~.2 cnarac~er glas2 Q~~ations I .
Each ,haracter class is represented by a one-word mask. The mask
for e ~ch class declared in angle brackets «» contains exactly
one ~onzero bit, different for each class. A zero mask denotes
the e,pty class, so "ignore (0) II and "ignore «<»l" behave simi
larly, except the latter uses up one of the 16 mask bits.

words lmade by or-ing may serve as masks for classes made from
union j of other classes. For example, given the following de
clarations, the element (letter = ucas e I lease] makes IIletter"
becpm I the class of all letters in either case: .

6. TABLES

ucase:
lease:
lette r:

«ABCCEFGHIJKLMNOPQRSTUVWXYZ»;
«abcdefghijklmnopqrstuvwxyz»;
o ;

A tabl e is a dynamically allocated array. identified by an
-~ nonze,o integer Q.g,§1..s!!!!!Q!'. The builtin IItable (t)II allocates a

new t~b le and assigns its designator to the integer variable
The builtin Udi scard(t)11 destroys the designated tabl~ ..

t.

ByteS /"Of a table are indexed. In arithmetic ex{;ressions
index~ng notation, ~i], refers to the word occupying bytes i
i+1 of table t (i may be odd) ..

A taJ le may be used as a . symQQ! ~ble that holds strings and
val~ I~Q!.Q of arbitrary information associat"ed with each.
builtilns

I

the
and

one
The

(

,

f!A

...
.:.tl

find (t"i)
en te:r (t. i)

- 17 -

look .up the current string in table t • . If the string isn"t al
ready there ·, "find (t,i) II fails,. whi le 'tenter (t,i)" adds the
str ing and sets its value word to zero, unless the string is
empty~ When they succeed, both assign the index of the value
word to variable i. No arithmetic assignments should be made to
any words of a symbol table other than value words.

The builtin "getnam tt,i)" delivers the string of a
entry . for a given index. Here is a variant of
stall", given on page 4:

insta ll : enter (t , i) getnam(t,i);

symbol table
the rule Ilin-

This version delivers a trivial alias--IIX" followed by the index:

install : enter (t, i) octal (i) = (<x> 1];

The next version delivers an alias that counts the temporal order
of entries. The first entry has alias X1, the second X2, and so
on. (In reading this e xample, remember that "='1 does an assign
ment. not a compar,ison.)

install: enter (t,i)
([t e mp=t[i)1) I [temp=t[i)= ++count))
octal (temp) = (<X> , J;

count :
temp:

0;
0;

Notice tha.t
"Octa l (t(i]) II

the argument
is not a legal

of "octal(.)"
function call.

is a simple variable.

Symbol tables are kept tree-sorted. Tables are stored on disk
and pertinent pages are brought into addressabl e memory as need
ed. Erratic accessing patterns through large tables can thus be
costly in time . If no information is to be stored with them. the
strings may not have to be tabled at all. The first version of
"install" on this page can te sitr.ulated. except in the handling
of null strings, by the builtin "SCOPY", which delivers the
current string .

install: sco{'y ;

7. REDUCTIONS ANAL~SIS

A "pure" Tmg program, which uses no builtins except perhaps the
basic lexical function 5 "sm,ark". "any (.) u. "string (.) It and
Itscopy" and no arithmeti,c, is a "top down" parsing and transla
tion mechanism with limited backup capability. However the'
buil tins "bundle" and ureduce (.) " are bottom-up actions

- 18 -

characteristic of reductions analysis. A few other builtins have
been added to facilitate reductions analysis.

5. C. Johnson and A. V. J:Ulo have automated the construc"tion . of
reductions analysis parsers for certain deterministic grammars,

· .

and the transliteration of these parsers into Tmg programs. .r
Their methods 'promise to make Tmg translators considerably more ~
pers~icuous and less tedious to write, since ~hey start from a
BNF patte rn for translation instead of from a parSing program.
Most notably, they are able to handle ambiguous grammars, which
are especially useful for describing special-case optimization.
With Tmg available underneath ,it is possible to mix top-down and
bottom-up to get the best of both.

The new buiitins for ' sim~le LR(k) parsing are
stack () ", "accept ll and "gatab ll (8.2). "Bundle"
should not be intermixed in the same rule with
stack(.) II and lIacceptll. The use of thes,e actions
lators will be· described by Johnson and Aha.

IIstack". lIun
and IIreduce(n)fI

IIstack ll • "Wl
in real trans-

8 . BUILTIN FUNCTIONS

~.! General £2ta109

This catalog tells
requires. if any. and

for each builtin
whether it may:

what kind of arguments it

C move ' the cursor
T . deliver a translation
F fail

conventional meanings

any (C)

append (1)
bundle

char (i)

decimal (n)

c character class or name thereof
i name of variable
n number or name of variable
r parenthesized parsing rule or name .of rule
t name of table designator

CF scan current character; succeed if in class c and
add character to current string (see pages 1,6)
append literal I to the current string

T · deliver (and make otherwise unavailable) to this
rule the translation. if any, that this rule
would deliver to its invoker if this rule ter
minated her·e (9)

CF assign the asc~~ equivalent of the next input
character to variable i; fail if no more charac
ters (15)

T ·deli,ver n as a decimal string. with a - sign if
required

diag (r)

emit

"i discard (t)
,enter (t.i)

fail
find (t, i)

getnam (t, i)

~
goto (r)
ignore (e)
octal (n)
params (n)
parse (r)

proc (11.; 12)

push(n,list)

reduce (n)

scopy
size (i)

smark

string (el

stop
suce
table (t)

accept

gotab (list)

,..,
stack

.- unstack (n)

CF

F

F
F

T

r

CF

·r

T

C

C

0> ' ,

- 19 -

execute rule r and execute the translation it
deli vers; at:pend resul,t to the diagnostic file;
fail it r fails (4)
execute and forget last translation delivered to
this rule
discard table t
look up the current string in table t; enter if
not there; assign its index to variable i; fail
if current string is empty (11)
fail unconditionally
look up the current string in table t; assign its
index to variable i; fai l if not there (17)
deliver the string of entry i in table t (17)
same as succ\r, but saves space and time
the ignored class becomes c (6)
deliver n as an octal string
make n parameters available to this rule (8)
execute rule r and execute the trans lation it
delivers; afpend result to output file; fail if r
fails (3)
a declaration~ not a true builtin; 11 and 12 are
lists of names; performs IIparams(nl) push(n2~12' ff

where n1 and n2 are lengths of 11 and 12 (8.15)
list has form 11,i2, ••• ,in, where il •.••• in are
variable names; save the n values; restore them
when this rule ends (15)
bundle the last n translations delivered to this
rule (10)
deliver the current string (1 7)
assign the number of characters in current string
to variat:~e i
move to next nonignored character; clear the
current string (1 .6)
scan up to next character not in class c; add the
scanned characters to the current string (1,6)
stop the program and dump it
succeed; a no-op
make a new table; assign its designator to t (16)

£II Function

T

T

unstack remaining labels stacked during this rule
and bundle (18)
list has form s'~ 11,s2 ,12, ••• ,O.ln; if top
stacked label is s1 go to 11, if s2 go to 12,
else go to In
place lacei of this element on stack (18)
remove l ast n labels stacked during this rule and
bund le a ll translations delivered since the label
so uncovered was stacked (18)

- 20 -

9. SYNTAX

.9. .1 Conventions

In the following syntactic specification terminal symbols are
under l ined; nonterminals have names one or more letters longj all
symbols are separated by spaces. Each rule gives the name of a
nontermlnal followed by the metasymbol .. _, then displays the
productions for that nonterminal separated by : signs .

Brackets [] surround parts of a rule that may be repeated. The
ri gh t bracket is followed by a subscript denoting the minimum
number of repetitions, and a superscript for the maximum. A miss
in g superscript permits unbounded repetition.

These primitive nonterminal symbols are used

name a string of letters and digits "beginning with a
let ter

number a nonempty string of octal digits

char any ascii character except NUL

In general one or more blanks (ascii SP, HT or NL) must appear
b.etween successive constituents of a production i however they may
be dropped when no ambiguities are so introduced .

.9..,£ The grammar

program ::= [statement]o

statement comment: [label]1 tail ~

label · . -· .- name ..!...

tail [proc)~ prule [label prule)0

trule charcl number [.:. number)0

proc proc([names)1
0

[i [names)1
0)6 1

prule · ' - [disj [1 disj)0)1 · . - 0

disj 1 [pelem [- [name)1
0

)1
0)1

pelem pprime [[" L)1
1 pname) 1

0 -'- prule 1

pprime2 pname [
~

)1
0

[1. parg [i parg)0 1)1
0

) 1 [expr [1)
,

literal 0
,

-
name trule - -

pname · . - name ,
i number ,

parg pname , number , 1. prule 1 literal charc 1 , ,

Oi I J

r
•

€: ' -'-

..
'-

...

~

- 21 -

expr · '- Iv ass ign expr , rv · . - ,

rv : : :: (rv ? rv ,
)0 primary (infix prim"ary)0 ~

primary : : :: Iv (incdec J6 , inc dec Iv ,

: i Iv : i expr 1 unary primary : number

Iv pnarne * pr lmary 1 Iv 1 : I v (expr)

unary

assign2

incdec

infix

trule

tbody

telem

bundle ref "

targ

names

li te ral 3

charcl 4

commentS

· : · =

: : =

- (

:t±
, ,

, ,

, -,
infix]1 o

, • - , ± - L

,
! :: ~ - ,

.1 §"
, - ,

~ .?2 , ,

2 <=
,

>= ,

::= (1' (number: names); 1)~ tbody

1 (te lem)0 1

: ::: name: literal : ! number

".. -
· '-· .-

bundleref (1 targ (

(name , number) 1 (,
1 ~

name tbody

name (• name)0

~ (char) 1 2
, • , -

(1) 1
0 (~ (char)0

!..!. (char) . /
0-

.... targ

number

.?2) 1

)0 1
) 1
0

) 1
0

1. if pelem begins with pname ~ it can not be followed
2 . no spaces are permitted :

within an assignment operator
just before 1 in pprime

3 · no char after first may be 2, blanks count as chars
~ . no char before last may be 2, blanks count as cha rs
5. (char)0 must not contain !..L

by

~ . ,

~

- 22 -

10. SOURCES

Tmg has a long history s t emming from MCClure~s work on the CDC
1604, and subsequent deve l opment OG the IBM 7090, GE 635- 645, and
DEC PDP-7 by the author, R. Morris and M. E. Barton [1 ,2]. Some
of the present design derives from insigh ts from language theory
for wh i ch I am indebted to A. V. Abo and J. D. Ullman [3, 4]. I
have f r ee ly borrowed code and appropriated l anguage ideas from R.
Mor ri s, L. L. Cherry. S. C. Johnson , K. L. Thompson and D. M.
Ritchie.

Enough like its predecessor s to deserve the same name, this .im
pl ementation of Tmg and its unpublished predecessor on the PDP-1
introduced a new parsing discipline that has made possible the
use of reductions ana l ysis, the avoidance of backup within a rule
(thereby augmenti,ng the class of languages " na,.t.urallyll parsable
by Tmg) and rules with parameters. Sh a llower, b ut nonethe l ess
useful innovation s are tabl es and the handling of the c urrent
str ing, uniform treatment of diagnosti c and tran s l ated output,
the form of translation bodies, success branches, disjunctions
and other syntactic conventi on s . Internal ly , improved handling
of character . classes . and ' the e limi nation of many l evels 'of
s ubroutine call both in parsing and translation have improved the
speed of Trng; dynamically a llocated tables have extended its
capacity so that it may fi t c omfortably in a minicompute r.

[1 J
20th

R. ~l.

Nat!.
MCClure, TMG--A syntax-directed

COIlf. (19 65) 262 -274
compi l e r , Proc.

[2] R. R • . Fenichel a n d M. D. McIlroy, Reference Manui'.l for
Multics System Programmer"s, Manual, Project MAC, MI T (1 961)
tion BN 4.02

[3] A. V. Aha, P • . J. Denning
Strategy Precedence Parsing,

and J . D • .
JACM (19)

Ullman,
225-243

Weak and

ACM

TMGL,
Sec-

Mixed

(4] A. Birman and J. D. Ullman,
track, conf. Recor d 11th Annual
mat a Theory, IEEE ("1 9 70) 153-174

Pa rSing Algorithms with B.ack
Symposium on Switchi ng and Auto -

! ,.

On the Security of UNIX

Dennis M. R itchie

Bell Laboratories, Murray Hill , N. J.

Recently there has been much interest in the security aspects of operating systems and software .
. At issue is the ability to prevent undesired disclosure of information, destruction of information, and

harm to the function ing of the system. T his paper discusses the degree of security which can be pro
vided unde r the UNIX system and olfers a number of hints on how to improve security_

The first fact to face is that UN IX was not deve loped with security, in any realistic sense, in
mind; this fact alone guarantees a vast number of holes. (Actually the same statemen t can be made
with respect to most systems.) The area of secu rity in wh ich UN IX is theoretically weakest is in pro
t.ecting agains t crashing or at least cr ippl ing the operation of the system. The problem here is not
mainly in unc ritical acceptance of bad parameters to system calls - there may be bugs in th is area, but
none are known - but rather in the lack of any checks for excessive consumption of resources. Most
notably, there is no limit on the amount of disk storage used, either in total space allocated or in the
number of files or directories. Here is a pa rticularly ghastly shell sequence guaranteed to stop the sys
tem:

; loop
mkdir x
chdir x
goto loop

Either a panic will occur because all the i-nodes on the device are used up or all the d isk blocks wi ll be
consumed, th us preventin g. anyone from writing files on the device.

Pro.cesses are another resource on which the only limit is total exhaustion. For example, the se
quence

command&
command&
command&

if continued long enough will use up all the slots in the system's process table and prevent anyone
from executi ng any commands. Alternatively, if the commands use much core, swap space may run
out, causing a panic. Incide nlly, because of the implementation of process termination , the above se
quence is effeclive in slop ping the system no matter how short a time it takes each command to ter
minate. (The process-table slot is not freed un til the terminated process is waited for; if no commands
wi thout "&" are executed, the Shell never executes a "wail.")

It should be evident that unbounded consumption of disk space, fil es, swap space, and processes
can easily occ ur accidentally in malfunctioning programs as well as at co mmand level. In fact UNIX is
essentially defenseless against this kind of abuse, nor is there any easy fix. The best that can be said is
that it is generally fai rly easy to detect what has happened when disaster strikes, to identify the user
responsible, and take appropriate action. Tn practice. we have fou nd that diffic ulties in this area are
rather rare, but we have not been faced with malicious users, and enjoy a fairly generous supp ly of
resources which ha ve served to cush ion us against accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unauthorized
perusal and destruction . He re the degree of sec urity seems (almost) adequate theoretically, and the
prob lems lie more in the necessity for care in the actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together wi th a user
identification number and a user-group iden tification number WID and GID). Nine of the proteqiofl
bits are used to specify independently permission to read, to write, and to execute the fil e to the user
himself, to members of the user's group, and to all other users. Each process generated by or for a

UN IX Security - 2

user has associated with it an effective UID and a real UID, and an effective and real G1D. When an
attempt is made to access the file for reading, writing, or execution, th e user process's effective UIO is
compared agai nst the file's UIO; if a match is obtained, access is granted provided the read, write, or
execute bit respectively for the user himself is present. Jr the UID for the file and for the process fail
to match, but the GID's do match, the group bils are lIsed; if the GID's do not match, the bits for oth
er users are tested. The laSI two bits of each file's protection information, called the set-U1 D and set- .
GID bits, are used only when the file is executed as a program. If, in this case, the set-U ID bit is on
for the file, the effective UID for th e process is changed to the UID associated wi th the file; the change
persists until the process terminates or until the UIO changed again by anothe r execution of a set-U ID
file. Similarly the effective group ID of a process is changed to the G fD associated with a file when
that file is executed and has the set-GID bit set. The real UID and GID of a process do not change
when any file is executed, but only as the result of a privileged system call.

The basic notion of the set-UfO and set-G fD bits is that one may write a program which is exe
cutable by others and which maintains files accessible to others only by that program. The classical
example is th e game-playing program which maintains records of the scores of its players. The pro
gram itself has to read and write the score fi le, but no one but the game's sponsor can be allowed un
restricted access to the fil e lest they manipulate the game to their own advan tage. The solution is to
turn on the set-UID bit of the game program. When, and only when, it is invoked by players of the
game, it may update the score fil e ordinary programs executed by ot hers can not access the score.

There are a number of special cases involved in determining access permissions. Since exec uting
a directory as a program is a meaningless operation, the execu te-permission bit, fo r direc tories, is taken
inst(;H(1 to mean permission to search the directory fo r a given file during the scanning of a pa th name;
thus il" a directory has execute permission but no read perm ission for a given use r, he may access files
with known names in the directory, but may not read (Jist) the entire contents of the directory. Write
permi.ssion on a d irectory is interpreted to mean that the user may create and delete files in that di rec
tory; it is impossible for any user to write dire'ctly into any directory.

Another, and from the point of view of security, much more serious specia l case is that there is a
"super user" who is' ab le to read any file and write any non-directory. The super-use r is also able to
change the protection mode and the owne r UIO and GID of any file and to invoke privileged sys tem
calls. It must be recognized that the mere notion of a super-user is a theoretical, and usually practical,
blemish on any protect ion sc heme.

The fi rst necessity for a secure system is of course arranging that all flies and directories have the
proper protection modes. Unfortunately, UN IX software is exceedi ngly permissive in this regard;
essentiall y all commands create fil es readable and writable by everyone. This means that more or less
continuous atten tion must be paid to adjusting modes properly. If one wants to keep one's files com
pletely secret, it is possible to remove all permissions from the d irectory in which they li ve , which is
easy and effective; but if it is desired to give general read permission while preventing writing, things
are more compli cated. The main problem is that write permiss ion in a directory means precisely that;
it has nothing to do with wri te permission for a file in that directory. Thus a writeable fi le in a read
only directory may be changed, or even truncated, though not removed. This fact is perfectly logical,
though in this case unfortunate. A case can be made for requiring write permission for the directory
of a file as well as for the fil e itself before allowing writing. (This possibility is more complicated than
it seems at fi rst; th e system has to allow users to change their own directories while rorbidding them to
change th e user-directory di rectory.)

A si tuation conve rse to the above-discussed difficulty is also present- it is possible to delete a file
if one has write permission for its directory independently or any permiss ions for the fi le. This prob
lem is related more to self- protect ion than protection from others. It is largely mitigated by the fact
that the two major commrds which dele:te named files (mv and rm) ask confirmation before de leti ng
un writable files. .

It fo llows rrom this discuss ion that to main tai n both data privacy and data integrity, it is neces~
sary, and largely su ffi cien t, to make one's d irectory inaccessible to others. The lack of sufficiency could
follow from the ex istence of set-UID programs creHwd by the user and the possibility or 10tal breac h

."

••

UNIX Security· 3

of system secu rity in one of the ways discussed below (or one of the ways not discussed below) .

Needless to say, the system administrators must be at least as careful .as their most demanding
user to place the correct protection mode on the files under their control. In part icular, it is necessary
that special files be protected from writin g. and probably reading, by ordinary users when th ey store
sensitive files belonging to other users. 1\ is easy to write programs that exami ne and change files by
accessing the device on which the files live.

On the issue of password security, UNIX is probably better th an most systems. Passwords are
stored in an encrypted form which, in the absence of serious attention from specialis ts in the field, ap·
pears reasonably secure, provided its limitations aTe understood. Since both the encryption algorithm
and the encrypted passwords are available. exhaustive enumeration of pote ntia l passwords is feasible
up to a point. As a pract ical lest of the possibilities in this area. 67 encrypted passwords were collected
from 10 UN IX installations. These were tested against all five· letter combinations. all combinations of
letters and pigits of length four or less, and all words in Webster's Second unabridged dictionary; 60 of
the 67 passwords were found. The whole process took about 12 hours of machine time. This.. experi·
ence suggests that passwords should be at least six characters long and randomly chosen from an al·
phabet which includes digits and special characte rs.

Of cou rse there also exist feasi ble non·cryptanalytic ways of finding out passwords. For example:
write a program which types out "login:" on the typewriter and copies whatever is typed to a file of
your own. Then invoke the command and go away until the victim arrives. (It is this kind of possibi l·
ity that makes it evident that UN IX was not designed to be secure.)

The set· U1 D (se t·GID) notion must be used carefully if any security is to be main tained . The
first thing to keep in mind is Ihal a writable sel·U1D file can have another program copied onto it. For
example. if the super· user (SII) command is writable, anyone can copy the shell onto it and get a
password· free version of SUo A more subtle problem can come from sel-U ID programs wh ich are not
sufficiently careful of what is fed inlo them. In some systems. for example, the mail command is set
UID and owned by the super-user. The notion is that one should be able to send mai l to anyone even
if they want 10 protect the ir directories from writing. The trouble is that mail is rather dumb: anyone
can mail someone else's private file to himself. Much more serious. is the following scenario: make a
file with a line like one in the password file which allows one to log in as the super·user. Then make a
li nk named ".mail" to the password file in some wri leable directory on the same device as the pass·
word file (say l Imp) . Finally mail the bogus login line to Itmp/.mail; You can then login as the super·
user. clean up the incriminating evidence. and have you r will.

The fac t that users can mount their own disks and lapes as file systems can be another way of
gaining super· user status. Once a disk p<lck is mounted. the system believes what is on it. Thus one
can take a blank disk pack, put on il anything desi red, and mount it. There are obvious and un fo r·
tunate consequen ces. For example: a mounted disk with garbage on it will crash the system; one of
Ihe files on the mounted disk can easily be a password·free version of SII; other files can be unprotecl·
ed entries for special file s. The only easy fix for thi s problem is to forbid the use of mOil'" to
unprivileged users. A partial solution. nOI so restrictive . would be to have the mOl/III command exam·
ine the special file for bad data. set·UID programs owned by others. and accessible special files, and
balk at unprivileged invokers .

I

•

,

•

Bell

THE M6 MACRO PROCESSOR

by

Andrew D. Hall
Telephone Laboratories, Incorporated

Murray Hill, New Jersey

hBSTRACT

M6 is a general purpose macro processor which processes a

continuous stream of input text by copying it character-by-

character to an output text unchanged except for selected

portions known as macro calls.

The processor is coded entirely in FORTRAN IV in a way that

is intended to be highly portable. Some details of the im-

plementation are also described •

,

..
',-

•

THE M6 MACRO PROCESSOR

by

Andrew D. Hall, Jr.
Bell Telephone Laboratories, Incorporated

Murray Hill, N~w Jersey

1. Introduction

M6 is a macro processor designed by M. D. McIlroy and R.
Morris of Bell Telephone Laboratories and combines ideas
from many sources [1,2,3,4]. The version described here is
a translation of an earlier experimental version written in
MAD by R. Morris and has been written in FORTRAN IV in a way
that is intended to be highly portable ••

M6 receives a continuous stream of input text from an exter
nal source and copies it character-by-character to an output
text unchanged except for selected portions known as macro
calls. If a macro call or a quoted string (6) never occurs
in the input text, the processor does nothing at all to the
text stream as it pa,sses through.

The beginning and end of a macro call are signa led by
opening and closing warning characters. In this implementa
tion, the character sharp (I) is used for an opening warning
character and either colon (:) or semicolon (;) may be used
for a clos ing warning character. The call i tself consists
of a series of arguments separated by commas (,) as in

#ADD3,A,B,C:

Upon encountering a sharp in the inpu t text, the pr.ocessor
suspends transmission of characters to the output text and
instead begins collecting the arguments of the call. when
the closing colon or semicolon is found, the argument after
the initial sharp, or uargument on, is taken to be the name
of the macro ~eing called and is looked up in a table of
macro definitions to find the replacement text. The entire
call, including warning characte rs, is deleted and the
replacement text substituted in its place. The scan resumes
at the beginning or e nd of the substituted text depending on
which warning cnaracter terminated the call •

For instance , if the name PSYMBOL is in the table of macro
definitions with replacement text A6 then the appearance of

• M6 has been compiled and executed on the ' GE-635, IBM
360/65, CDC 6600, Univac 1108, PDP-10 and SIGMA 7 without
any changes in the source code except for input-output Wlit
numl:ers.

June, 1971 ,

'PSYMBOL: in the input stream would ·be replaced in its en
tirety. by A6. If the input text contained

FORMAT (IPSYMBOL:)

then the output text would receive

FORMAT (A61

Occurrences of nested macro calls not enclosed
quotes (6) w~ll be evaluated as t hey occur during
collection. For example, in

in string
argument

the call of PSYMeOL will be evaluated first so that the call
to ADD3 becomes

' ADD3G'A6,B ,C:

2. Macro De!!r!i.tion

The macro processor " has a number of built-in macro defini
tions (8), the most important of which is the macro, DEF,
for defining other macros. This macro is used in the form

IDEF,argl,arg2:

where arg1 "is the name of a macro to be defined and arg2 is "
the replacement text to be associated with the name.

Aside from making an entry in the table of macro defini
tions, DEF has no effect, for its own replacement text is
the null string. We can now define the macro PSYMBOL by the
call

IDEF ,PSYMBOL,A6:

If the input text is

IDEF,PSYMBOL,A6:FORMAT (IPSYMBOL:)

the output text is

FORMAT (M)

If a call of DEF redefines a macro, the new definition
supersedes the old. Also, if a macro has never been defined
and is called, then the macro whose name is the null string
is looked up and used . Initially this macro has null
replacement text but it can, of course, be redefined.

2 June, 1971

r •

3. EValuation

We speak of the macro processor as evaluating its input.
The way text is evaluated depends on whether it is part of a
call, part of replacement text; or part of a string quota
tion . The following sections describe the process of
evaluation in considerable detail .

4. Argument substitutiQn

In the replacement text of a macro, a dol1ar sign ($) fol
lowed immediately by a digit acts as a . parameter. When a
macro has been called , all occurrences of $0, $1, ••• , $9 in
the replacement text are each replaced by the corresponding
argument in the call. Parameters for which no argument has
been s~pplied are replaced by null strings. For example the
input text

' DEF,ADD3, $1 = $2 + $3: 'ADD3,X.Y,Z:

would yield

x = y + Z

Since only the first ten argumnets may be referenced by
parameters in r eplacement text, special conventions have
been established for the collection of argument 9 which make
it possible to write macros that have more than ten argu

·ments (7) .

5. Recursive EValuation

!he process of evaluating a macro call can be thought of as
occurring in two steps:

First, the arguments of the call are substituted in the
replacement text for occurrences of $0,$1 •••• ,$9, regardless
of any string quotes (6) which may be present in the
replacement text.

Next, the text resulting from this substitution replaces the
entire call, including the warning characters. If the
original call was terminated by a colon, then scanning of
the resulting input text resumes at the beginning of the
substituted replacement text. If the original call was ter
minated by a semicolon then the . scan resumes immediately
after the substituted replacement text.

June, 1971 3

6. String Quotation

To permit warning characters to appear in text and be
treated as ordinary characters , the macro processor recog
nizes a left-angIe-bracket «) a nd a right-angIe-bracket (»
as string quotes . In a string enclosed in quotes, the
characters sharp , comma , co lon , semicolon are not recognized
as special characters. Nested occurrences of string quotes
must be balanced . When a quotation is evaluated the outer
most pair is removed . .

For example , the input text

< #A:>

is not ,a macro cal l , because the surrounding quotes exempt
fA: from special status . Consequently the text evaluates to

' A:

The macro, QSYMBOL, can be defined to have the replacement
text

A4 , A2

by the following definition

' DEF ,QSYM80L, <A4 , A2> :

7. Argument..2

Unlike arguments 0 through 8, argument 9 is collected
without recognizing comma , sharp or string quotes as special
characters . Thus , all arguments occurring after the ninth
comma ,are collecte d as one string which then becomes argu
ment 9.

For example, the macro , CONCAT , which simply concatenates up
to 16 arguments , would he defined as follows:

' OEF,CONCAT,<$1$2$3$US6$7$8 f CONCAT9T016,$9 : >:
' OEF , CONCAT9T0 16,<$1$2$ 3US$6$7$8>:

8. Built-in Mac~Q Definitions

In order to facilitate the writing of new macro definitions,
a number of useful macros have been initially defined.
Where ' an argument is interpreted as an integer, its value is
found by taking the longest initial substring of digits

U June, 1971

•

(perhaps
initial
o.

preceded by a
substring of

sign) as a decimal
digits is null. the

number.
value is

If the
taken as

The calls f .or the built-in macros. are as follows:

'DEF,argl,arg2:

A macro
defined.

named arg1, with
The replacement

replacement
text of DEF

text,. arg2,.
is null.

is

ICOPY ,.arg 1, arg2:

A macro named arg2 is defined with replacement
identical to that of the rracro named arg1.
replacement text of COpy is null. For example

leopy, ADD, +:

text
The

defines a macr·o + which has the same replacem·ent
text as ADD .

The macros DEF and COpy are used to define or rename
macros. ·They work for built-in macros as well as
macros previously defined by DEF and COpy.

ISEQ.argl,arg2:
ISNE,argl,.arg2:.

The replacement text of SEQ is 1 if arg1
tical, character by character~ to arg2.
the replacement text is O.

is iden
Otherwise

The replacement text
identical t.o arg2.
is O.

of SNE is
Otherwise

1 if arg1 is
the replacement

not
text

For example,

t SEQDABC , AB: ~SNEQ ~C~AB:
~SNE,1,~SEQ,1, 1::

would be replaced by

June, 1971

0 1
o

5

I GT "argl "arg2:
IGE"arg1.arg2:
ILT"arg1"arg2:

. I LE"arg1 "arg2:
I EQ"arg1"arg2 :
'NE"arg1"arg2 :

The replacement text of GT" GE " .LT" LE " EQ or NE is
1 if arg1 is respectively greater !han" greater than
or ~qual to . less Shan" Jess than or ~qual to" ~ual
to" or not ~qual to arg2. The arguments. arg1 and
arg2 " are interpreted as integers. For example

#EQ . O. O:

and

tEQ, 0:

would both be replaced by 1.

'IF·"argl " arg2" • •• "argn:

The arguments arg1 g arg2 • ••• are considered in pairs
from left to right. If t he left argument of a pair
is the string 1. then the replacement text of IF
becomes the right argument in the pair. If none of
the left arguments in the pairs are 1, then the
replacement text of IF is null .

For example "

I IF" Ogarg2" l , arg4:

will be ·replaced by arg 4.

' GO"argl:

6

GO is a macro which a llows conditional evaluation of
the replacement text of a macro. If GO is evaluated
as part of a replacement text and argl is equal to
the string 1 , the remainder of the rep.lacement text
is ignored. o t herwise GO has no effect . In either
case" GO is ·replaced by the null string .

For example" if SPEECH is defined as follows:

' DEF,SPEECH ,,<NOW IS THE HOUR t GO,,$l: FOR •• • >:

then

' SPEECH" 1:

June" 1971

I •

is replaced cy

and

iSPEECH o 2:

is replaced J:y

NOW IS THE HOUR FOR •••

• GOEK.argl:

GOBR is similar to GOo
replacement text is
character •

except that evaluation of the
K'eSic.art.ed from i:.he initial

• SIZE.arg 1:

SIZE is repl aced -by the length
characters •

• SUBSTR.argl.arg2.arg3:

of argl in

SUBSTR is normall y r e pl ace d by th~ substrinq of arg i
beginning at character position arg2 and having
l ength arg3. A negative arg3 is taken to be O. and
a null aig3 as arbi trari ly l arge. In case of an im
proper substring . whose e nds lie outside argl. only
its intersection with argl is taken.

'AOD.argl,arg2 :
'SUE,argl.arg2:
'MPY.arg1 .arg2:
'DIV ,arg l , arg2:

ADD. SUB, MPY a~d . DIV aK'e replaced by the sum, dif
ference, produc il: 21nd mteger q uotient of arg .1 and
arg2~ respective l y . ~he a r guments. arg1 and arg2,
are interpreted as in~ege~s . Overflow conditions
are not checked and ifax g2 is 0 in OIV, the result
is the null string.

' EXP ,argl,arg2 :

If arg2 is negative. t.he res ult is the null string ..
If arg2 is ze ro . the result i s 1. Otherwise. the
result is arg l raised t o the arg2-th power. Qver-

June, 1971 7

flow conditions are not checked .

' DNL:

DNL re.ads the source strea~ through the occurrence
of the next new-line chara c t er (10.2) and throws it
away_ DNL has null replacement text. DNL is used
to delete unwanted new- lines from the source text.
For example

~DEF. PSYMBOL , A6 :

and

I DEF, PSYMBOL , i DNL':
A6 :

are equivalent. If the ' t DNL: were not included in
the latter call of OEF . then a new- l ine char acter
would be included in the replacement text of PSYMBOL
immediately preceding A6 .

I SQUFCE, arq1 ,arg2:

After the next net-I-line character is processed, the
current input unit number lrlil1 be " pushed down" and
the input unit set to a rg1. If arg2 is not null ,
the new unit will oe rewound before use. The occur
rence of an END mac r o will "pop" the the input unit
to its previous value.

tEND:

After the next new- line character is processed # the
unit number will be " popped" to the value most re
cently saved by a SOURCE macro call. I f the stack
is empty when END is called# processing will be ter
minated .

• TRACE#arg 1:

B

If arg1 is 1# trace, mode is set on# otherwise off.
When i n trace mode~ the level of each macro call and
the fir st t en characters of e ach argument will be
printed (10 .1) as the macr o calls are encou ntered
during processing. The new-line character is
printed as a blank.

June# 1971

• J

,.
.-

9. 1:2Lamples

The foll""",ing examples illustrat~ ' some useful and in
teresting techniques.

Conditio pal replacement - IF

suppose MIN is a macro to be called with two argu
ments both of which are integers and is to be
replaced by the smaller of the two arguments. One
way to write MIN is:

t DEF,MIN , ('IF,tLT, S1,$2:,($1>,1,($2>:>:

Redefinition

GO

Quite often it is necessary to have a method for
g~~n~.r:::ating "created 'symbols" when using macros. For
instance , when ~sing macros to generate FORTRAN 00
loops it is necessary to have a unique label every
time a loop is generated. This ' can be accomplished
as follows:

t DEF,CRSN , O:
t DEF , CRS , ('DEF , CRSN,#ADD,tCRSN:,1::'CRSN:>:

The initial value of CRSN is defined to be o.
time CRS is called, the definition of CRSN is
cremented by 1 and the call of ORS replaced by
new value. At any time , the last symbol created
be obtained by calling CRSN .

Each
in
the
can

Suppose
has one

it is desired to
integer argument.

write
The

a macro,
call

STARS, which

'STARS , n:

is to be replaced by n asterisks (n L 0). STARS can
be defined as follows:

#OEF,STARS,< #GO,'EQ,$1,O::*tSTARS,ISUB,$1,1::>:

The use of GO in the replacement text of STARS will
cause the replacement text which follows to be ig
nored when STARS is called with 0 as an argument.
Thus the call

' STARS,2:

.June , 1971 9

is evaluate d in three steps , as follows:

"'STARS , 1 :
**' STARS , O:
M

String Quotes

10

The following two examples illustrate some of t he
effects o f string quotes.

(a) ' DEF ,X # $1: #X, Y:

and

' DEF ,X,<$>1:IX,Y:

are both replaced by

y

while

I DEF, X,«$>1>:#X,Y:

is replaced by

$1

(b) ' DEF , A" ' DEF , B, $1: : - SA,GOSH:- 'B,GEE:

is replaced by

--GEE

while

' DEF ,A,<eOEF , B, $1:>:-#A, GOSH:-tB,GEE:

is replaced ty

--GOSH

but

' DEF,A,«'DEF,B,$1:»:-'A,GOSH: - t B,GEE:

is replaced l:y

- ' DEF ,B,GOSH:-

June , 1971

I

~

.,
...

10. Implementatign Notes

the current implementation reads input text from logical
unit 5 and writes output text on logical unit · 43. Diag
nostics. trace output and run statistics are written on
logical unit 6.

If necessary. these unit assignments
modifying the appropriate DATA statements
subprogram.

10.2. Treatmen.!: o~ 1.l:!llYt ~

can be .changed by
in the BLOCK DATA

All reading of input text is handled by the logical func
tion RDCHAR which reads records (card images) under an BOAl
format. Only the first 72 characters of an input record are
considered significant 50 that the last B characters may
contain sequence information. Trailing blanks are deleted
and replaced by a Glnew-line" character .

10.3. Treatment of Qill:.2!!!: Tex~

M6 collects output characters until a new-line character oc
curs or a line exceeds 72 characters. at which time the line
is padded with Ql anKs to 72 characters and the sequence
field Of the last input line appended. The line is then
written 'on the output file.

10.4. Implementation Parameters

The program contains 25 subroutines. totaling about 600 ex
ecutable statements .

In the present irrplementation there is room for 250 -distinct
macro definitions of which 25 are already used for built-in
definitions. Table entries of macros that have been
redefined wil-l be reuse d. The nWIlber of def initions per
mitted can be changed by adjusting the l ength of the COMMON
regions named MLISTN. MLISTD. MLISTT. MLISTU and MLISTL and
by adjusting the val ue of MFREE which is initialized in the
ELOCK DATA subprogram .

About
macro

120 00 characters of string
names and corresponding

June. 1971

storage are
replacement

avail able
texts.

for
Each

11

character is s tored as a FORTRAN INTEGER variable . This
storage is a lso Ils ed f or the t emporary storage o f argument
strings during macro evaluation so that storage can be ex
hausted eve n t hough no new definitions are ma de. Th e amount
of string s t orage available can be c hanged by adjustin g the
length of blank COMMON and by adjusting t he value of LENGTH
which is init i a l i zed i n the BLOCK DATA subprogram .

The maximum r ecurs ive depth for macro cal l s i s a r o und 60 and
depends on the number of arguments appear ing i n· calls at
each level . This maximum d epth can b e changed b y adjusting
the l e ngth of the COMl-ION region named POLS and the value of
the variable OPTR which is initialized in the BLOCK DATA
subprogram.

The maximum depth of the stack of input units is 10 (see
SOURC.E and END in 8) .

10.5 . Diagnosti£ Messages

M6 can give diagnostic messages .
pertain to t able l imitations and

STORAGE EXHAUSTED

PUSH DOWN LIST OVERFLOW

TOO MANY DEFINITI ONS

Four of t h e
are as follows :

INPUT STREAMS NES~'ED 'roo DEEPLY

diagnostics

There are t wo diagnostics i ndicating an i n t erna l M6 error .
as follows :

INCORRECT CALL TO LOG2

PROCESSCR ERROR

10.6. Improving Performance ~

Measurement has s hown that the major overhe ad in M6 i~ in
curred in the execution o f t he s ubprograms STREQ , ROCHAR,
WRCHAR and WRBUFF . The execution speed of M6 is approx
imately doubled by rewriting t hese rou t ines in assembly
language .

12 June" 1911

; , ,

References

1. C. Strachey, A General purpose Macrogenerator, Comput.

2.

3.

J • .!!. 3 (oct. 1965) pp. 225-2q1.

C. -N. MOoers
Language, Proc.

and L. P. Deutsch, TRAC, A Text Handling
ACM 20th Nat. Conf. (1965). pp. 229-246.

IBM 7090/7094 IBSYS Operating System:
Assembly Program (MAP) Language, Form

V~rsion 13, Macro
C28-6392-3.

4. M. D. McIlroy, Macro Instruction Extensions of COmpiler
Languages. CACM d (1960) pp. 560~571 • .

June, 1911 13

A Syslem for Typesell ing Mal hemal ies

B. W, Kernighan
and

L. L. ChlUY

8e/l Laboratories. Mllrray Hill, N. J.

ABSTRACT

Th is p;lper describes the design and implementation of a system for typeset
ting mathematics. currently running On the UNIX operating "System. An appendix
contains the user's manual for the language.

T he language has been designed 10 be casy 10 learn and \0 use by people (for
~xam ple. s~relarics and mathematical typists) who know neither mathematics
nor typesett ing. Early experience indicates thai the language can be learned in
all hour or so, for il has few rules and fewer exceptions. For I,ypical expressions.
the size and fonl changes. positioning. line drawing, and the like necessary to
print according 10 mathematical conventions are all done automatically. For ex
ample, the input

sum from i-o to infinity x sub i "'" pi over 2

-L X. _ 2C.
; - 0 I 2

The syntax of the language is specified by "a small context-free grammar; a
tompiler-compilcr is used to make a compiler that translates this language inlo
typesetting command'i"

Outpu t may be produced on either a phototypesetter or on terminals with
forward and reverse h,M-line motions" The system interfaces directly with texl
furmal1ing programs, so mixtures of text and mathematics may be handled sim"
ply" This technical report is an example of its output.

· r •

I

~

I. Introd ucti on

A System for Typesett ing Mat hematics

B. W. Kernighan
and

L. L.Chcrry

Bell LohorofOries, Murray Hill. N. J.

"Mathematics is known in the trade as dU/iCIIlf. or pef/olly, copy because it is slower. more
difficult. and more expensive 'to set in type than any other kind of copy normally occurring in
hooks ilnd journals," ill

One difficulty with mathematical text is the multiplicity of characters. sizes, and fonlS. An
exprc.'ision as simple as

lim han Xpill 2.r co 1
.<-,,/2

reQuircs an intImate mixture of Roman. i talic and Greek letters. in three sizes, and a special
character or two. ("Requires" is perhaps the wrong word. but mathematics has its own typo
~r"phic"l conventions which are Quite di fferent from those of ordinary lex\.) A composi tor set·
ting such an expression by traditional methods must sit before a large box containing a large
numher or pieces of lead. choosing them one al a lime and fitting them together by hand.

A second area of difficu l ty is the two dimensional character of mathemat ics. which the SUo

perscript and limits in Ihe preceding example showed in its simplest form. This is carried funh·
er by

;ind sti.1l run her by

(o>O. b>O)

These examples also show line-drawing. buil l-Up characters like braces and radicals, and a spec
Irum of' positioning problems. (A laler section shows w'hat one has to type to produce these on
nUT system.)

'1 TYPESETIING MATIIEMATICS

2. 1111OioctlmposiliuII

Pholocomposition tcchniQues. which have already had a sunstanli<ll cOCct on tradilional
[1ril1tin~, can also be WiCt! to solve somc of thc prohlcl1ls of selling mathematic-'i.

A phototypcseller is .. device which cxposcs, for example, a Ilicn: of photogr<lphic paper,
placing characters wherever they arc wanted. The Graphic Systems phololypescnerl21 on the
UNIX III operating system works by shining light Ihrough a char<lcter slencil. The character is
made the right size by lenses, and Ihe light beam is directed by fiber optics to the desi red place
on a piece of photographic paper. The exposcd pllper is developed and typically used in some
form of photo-offset reproduction .

On UNtX. Ihe phototypeseller is driven by a rormalling program called TROFF [41. TROF!" is
quile acceptable for sellil1g running text, the job it was designed for. I t also provides all or the
facilities thaI one needs for doing mathematics - arbitrary horizontal and vertical motions, line·
dr<lwing, size changing, and .so on - but the syntax for describing these special operations is
difficult to learn, and diflicult even ror experienced users to Iype correctly .

For this reason we decided 10 use TROr-r- as an "assembly language", write a language for
describing mathematical expressions, and compile it into TROFF.

J . Langu_e Desl~n

The fundament:!1 principle upon which we based our language design is that the language
shou ld be e<lsy 10 use by people (for example, secret<lries) who know neither malhem<llics nor
typcsetling.

This principle implies several things. First, "normal" mathematical conven~ ions about
oper<llor precedence, p:!rentheses, and so on cannOI be used, for to give special meaning 10 such
cha racters means that the user has to understand what he or she is typing. Thus the language
'ihould 110t assume, for instance, that parentheses are always balanced - consider the half.apen
interval (a .hl - nor Ihal .Ja+b can be replaced by (a+b) l1 , nor that 1/(1 -x) is better wrinen

1 .
<IS -1-- (or vice versa).

-x
Second, there should be relatively few rules, keywords, special symbols and operators, and

Ihe like, so Ihe language is easy 10 learn and 10 remember. FUrihermore, there should be few ex
cep tions to the rules that do cxist - if something works in one si tu<llion, it should generally
work everywhere. ,If a vari able can have a subscripl, then a subscript can have a subscipt, and so
on without limil.

Third, Slandard lhings should happen aUlom:lI ically, so thai common or usual cases require
no spe,ial treatmenl. Someone who types x=y+l. should get x - y+z. Subscrip ts and super·
scripls shou ld autom,lIically be printed in an appropriately smaller size, with no special interven·
lion. Frllclion bars have to be made the right lenglh and positioned al the right height. And 'so
on. Indeed a mechanism for overriding default actions has to exist, but ils application is the ex·
ceplion, not the rule.

We will lIssume that the typist has a reasonable piclure (a two dimensional representation) of
the desired final form , as might be wrillen by the author of a paper. We also assume tha t the in·
pul is typed on a computer terminal much like an ordinary typewriter, which implies an inpu t al ·
phahet of perhaps one hundred characters, none of them special. This is fortunate, for we can
thell resisl the temptat ion 10 build a language where eac:h special character has a special mean ing.

A secondary, bu t still ImpOrlan!, goal in our design was that the sys tem should be easy to
implement, since nei.ther of the authors had any desire to make a long·term project of it . Furth·
cr, si nce when we began we had a less than precise idea of where we were going, it was also
necessary that the program be easy to change at any time.

To make the program easy to build and easy to change, and to guaran tee regularity (" i t
should generally work everywhere"), the language is defined by a context-free grammar (described
in a later section). The compiler for the language as built using a compiler·compiler.

TYPESETfING MATHEMATICS .3

A fll'iflri. thc ~rall1lllilfk{)mpilcr-l.:Ompilcr apprnw.:h seemed the right th i ng to do. Our subse
qucnt cxpcricllt:c Icads us to hdieve that any otlll;r wursc would havc heell fully . The original
languagc was dcsigllc(,f in a fcw days, and wllstrue tion of a working systcm su fficient that we
wuld try things out rClluired tlcrhaps a person-ll1onth, Since then, we have spent another part
lime thn ... "!.! nwn ths or so luning, adding facilities, alld regularly changing things as users make cri
ticisms and suggest ions.

We also decided quite carly lhat we wou ld let !'RUFF do our work for us whenever possible,
rather lhan reinventing the wheel. Since TRO!'], is quite a powerful program: with a macro fac ili
Iy, text and arithmetic va riables, numerical compu\(lt ion lind tesling, and conditional branching,
we have heen ahle In avoid wri ting a 101 of mundane but tricky software, For example. we store
nil te xt st rings, but simp ly P,l>;S Ihem on to TlWt'F, Thus we avoid having to wri te a storage
ll1iul,lgcment package. Furthermore, we have been able 10 isolate ourselves from the details of
the parlicular devicc, character set, and so on currcnlly i.1l use. For example. we let TROfF com·
pu tc the widths of <til strings of characters - we need know nothing about them.

!\ Ihird design goal is special to OUf environmellt. Since our program is only useful for
typeselling mathcmatics, i t is ·necessary that it intcrface cleanly with trye underlying typesetting
language ror the benefit of those users who want 10 set intermingled mathematics and text hhe
usual case). The st;lndard mode of operation is thill when a document is typed, mathematical ex
IHcssion.>; arc input ;IS P;If\ of the text, but markcd hy (user sCHab Ie) delimiters. T he math-seller
reads this input and trea!.>; as comments those things which <lrc nol mathematics, simply passing
them through untouched. I\t Ihe Slime time it convcrts the mathcmat1r.:al input into the netes
SilTY mil!']' commands. The resu l tillg output is r;lssed directly 10 TlW!'F where the comments
and the l1lathem<ltical paris both become text <lnd/or TlWFf commands.

4. The Lan~ua~t'

WI.! will not try to describe the language rrecisely here; interested r~ders should look at [51
for Illore details. Throughout this section, we wil l write expressions. exactly as they arc handed
to the math-seller, excert that we won't show the delimilers that mark the beginning and end.

As we said, typing x""'y+z should produce x =y+ z. and indeed it docs, Variables are made
italil.:. uperators are Roman. and normal spac ings tx!tween lellers and operators are altered slight
ly III give a more pleasing appearance.

Spal.:es and newlines in the input are used by Ihe math-seller to separate pieces of the inpu t;
they arc not used to create srace in the output. Thus

, - y + 7.

,llso giv!.:>; x ""'y+ z. Th is rree-form input 1ll,lkes i l eilsier 10 lyre and edit the inrut. for an ex
prc.>;siull may he typed il>; Illany short lines.

Exira wlli tc spal.:C call be forced into the outpu t by several t haral.:ters of v"rious sizes - a
, tilde"'" gives a sral.:e equal to the normal word spacing ill text; iI .circumnex ,,'" gives h<llf this
much.

Sllao.!S (or tildes. etd arc used to delimit pieces of the input. FOT example, to get something
likc

we wril c

«t)-2 pi illt .~ill (umega ttdt

Ilere w ates arc I/NI 'X.\Ofl ' in the input to indicate th:lt .~il1, pi. inr. omeKQ arc ~pccial. and potential
ly worth speciOlI treatment. T he math-seller looks c<leh such token up in a table, and if appropri
ate givc.~ it il translaliun . In this case, pi and OIlIC'KlI beco'me theiT Greek equivalents, ;111 becomes
Ihc in tegral sign (wlm:h must be moved down and en larged so it looks "right"), and sill is made
Roman, following conventional mathematical pf:lctice. Parentheses, digits and operators are

4 TYI'I:SETTI N(i MATHEMATICS

mude Homill' cvcn wi!hin !okens.

Fractions arc :;pccified with th~ kcyw\ ,rd o\'l'r:

a+b over I;+O+C = I

produl;cs

a+h =1 --f"
C+d+l' .-

Similarly, subscripts and superscripts are introduced by the keywords slIhand SlIp:

x2+y2=zl

I .~ produced by

x sup 2 + y sup 2 = z sup 2

Thc spal;es <If!er the "2"s are necessary to mark the end of the superscript.s; similarly the key
word .Hlp has to be marked o ff by spaces or some equi v<llerH delimiter. The return to the proper
baselinc ' is automatic. Mult iple levels of sub or superscripts are of course allowed:
"x sup y sup z" is Xl". The construc! "someth ing slIb something SliP something" is. recognized as
a sllcl;ial case, and gives ."(,2 inSICad of Xi 2.

More complicated cX ll ressions can now be formed with these primitives:

x sup 2 over ;1 sup 2 + Y sup 2 over b sup 2 =
{(leta - zeta sub 0) sup 2} over {a lpha - alpha sub 0)

will produce

Xl y2 (~ _~O)2
-+-~
0 2 h 2 n - o-o

Hral;Cs f1 arc used to grOU[J objens together; in this case they indicate unambiguously what goes
ovcr wha t on the righ t-hand side of the exprc.'ision. T he language defines the precedence of Slip

to be higher than that of 01)"', so no braces arc needed to get the correct ~nswer on the len side.
Braces ca n alwa ys be used when in ttoubt about precedence.

T he braces convention is an example of the power o~ using a recursive grammar to define
the language - it is par I o f the language Ihat if a variable can appear in some con tcxt, then Q,!Y
fhing ill hnlces can illso oceur in tha i context.

T hcre is <I sqr l operator for making square roots of the appropriatc .~ i ze - "SQrt a+b" pro
dUl;cs "!a+h - but sincc largc radica ls look poor all our typesc1ler, ils use is not encouraged.

Li mits on summal ions, intcgrals and similar const ructions are also easy
keywords from alld 1/). To gCI

LXi-O
I ~ U

wc necd only type

sum from i=O to inf x sub i -> 0

to specify with the

Centering, maki ng l he 1: big enough and the limi ts smaller, and the ·Iike are all automat ic. T he
(mill and {j) parts are both optional, and the cent ral part (e.g .. the II can in fact bc anything:

is

l il11 from Ix -> pi 12) (tan-x)

lim (lUll x)
. .,-"/1

Again , the braccs indicatcjust wha t goes into the'/rllm parI.

There is a faci li ty for mak ing braces, brackets, pa rentheses, and vertical bars of the right
hcight, us ing Ihc keywords It:li and flK'II:

Ic~t I x+y ovcr 2a right r =- I

. "

TYPESETI1NG MATHEM ATI CS 5

l1lake.'i

[~I - I
A leii need not have a wrresponding rixill. as we shall see in the next example. Any charac ters
m;IY fullow le./ i and rixlli. but generally only various parentheses and bars are meaningfu l.

Bi~ hrackets, etc. are often used with ;mother facility, called piles. which make vertical piles
of objCt.:1.'i. For exam pic, to gel

.f igll(X) ==

we I.:an type the rather mc.'isy look ing

sign {xr--·lef t {
·Ipilc II above 0 above - II

I)

-I

if x>O
;[x=O
;[x<O

-- Ipile li l--x>O above ir·x=O above ir-x<ol

T hl.: wnst rul.:tioll " left , .. m;tkes a left brace big enough to enclose the "Ipilc (. .. ''', which is a left
iusti lied pilc of " ... abovc ... ahove Thcre are also centered and right-j ustified piles. Bcc<l use
of the recu rsive lililguage definition, a pile can conlain any number of elements; any element of a
pile can of course contain piles within it .

'Al lhough the math-seller makes a valiant allempt to use the right sizes and fonts, there are
times when the default assumptions are simply not what is wanted . For instance the italic sign
i n the previous example would conventionally be made Roman. Thus we also provide size
chang,ing <lnd font ch<ln~in~ commands: .fize' 12 hold {A- x-=-y} will produce A X = y . Size' is
followed hy a numbcr rcpresenting a character sizc in roints: one point is 1/72 inch.

If neccssary. an input string can be quoted in ~ .. . ", which turns olT any font or spaci ng
chan~es Ihal mighl otherwise be donc 011 it. Thus we can say

lim· roman "~up" -x sub n - 0

1U ensure that the suprcmum doesn't become a superscript:

lim sup XII - 0

D iacritic"l marks. long a problem with tr<ldi tional typcselling, are straigh tforward:

i+x+y+X+ Y""z+Z
is mild!! hy typing

x dut + x hat + y tilde + X hat + Y dotdot = z+Z bar

Finally, there is a definition facility, so a user can say

define name " .. ."

at any lime in his document: henceforth. any occurrcncc of the token "namc" in a:n expre.~sion
will he expanded into whatever was inside thc doublc quotcs in its definition. This lets the user
~n 1",Ir Inward lailoring Ihe langu<lge to his own specifications, ror it is Quitc possible to redefme
key wurds like .W{I or fJI'('r. Section 6 shows an examplc of definitions .

5, 1.11I11!Ua1!l' Theury

T ile basic SIrUClurc of Ihe languagc is nOI a particularly original one. Equat ions are pictured
as a SCI of "boxes", pieced together in various ways. For exam pic, something with a subscript ;s
[us t a box fullowed by anal her box moved downward by an appropriate amount A fraction is
just iI hux centered ;[bove another box, at the right alli tude, and wilh a long enough lihe drawn
hetween thcm. "

II TY PI:SETTI N(i MATHI:MATICS

T he gr<Lmmaf fOf the I<Hlguage is shown below. FOf PUfPOSes of exposition, we have col
lapsed somc productions: i n thc qriginal grammar, thcre arc about 70 prouuct ions. but m<lny of
these afC simple oncs useu only to guarantcc that some keyword is recogn ized early enough in
the Ilursing process. Symbols in capit<ll leuers arc terminal symbols; lower case symbols are
ilon-terminals. i.c .. syntaetie c<ltego r ie.~. The venical bar I indicates an alternative; the brackets I I
indicate oplion:.l l materi:!i. A TEXT is 11 string of non-blank characters or any string inside double
lIuotes. the Olher terminal symbols represent literal occurrences of Ihe corresponding key word.

ctln box I cqn box

ho, ICXI

I I CQIl J

I hox OVER hox
I SQ RT m)x

I box SUB box I box SUP box
I I L I c I R IPILE I Ii" }
I LEFT lex! cqll I RIGHT lext
I box I FROM hox I I TO box I
I SIZE lex I box
I IRDMAN I BOLD I ITALIC} 00'
I ho, I Il AT I BAR I DOT I DOTDOT I TILDE I
I DEFI NE tell I tell!

list : eqn I lisl ABOVE eqn

texi : TEXT

The grammar m<lkes il obvious wh y there are few excep tions. For example. the observation
thaI something can be replaced by a more complicated something in braces is impl icit in Ihe pro
uuc tions

cqn : box
box : lext I I eqn J

- :!nywhere a simple v:!riable could be used. OilY legal expression can be used.

Is i l

Clearly , our grammilr is highly <lmbiguous. W h<lt. for ins\<lnce, do we do with the i nput

a over b over c ?

{a over bl over c

or is it

a over Ib over cl .)

To answer Questions like Ihis. Ihe gramm<lT is supplemented with a small set of rules that
describe the precedencc and "associativity of operators. I n particular. we specify (more or less ar
bitrarily) that over associates 10 the lef t. so the first allernative is the one chosen. On the other
hanU . . mh and Slip bind to Ihe right , because Ihis is closer 10 standard mathematical practice.
ThaI is. we assume X"h is Xlllh,. not (XU),."

The precedence rules resolve the ambiguity in a construction like

a sup 2 over b
. 1

We define sup 10 have a higher precedence than over, so this construction is parsed as.E.....:. instead
1 b

or a"' ,
Naturally , <I user can <II ways force a particular rarsing by placi ng braces around things.

c

r

.~
j, :

u ,

"TYPESETTING MATHEMATICS 7

Th~ amhiguous gralllmar ilpproilch seems to tx: quite useful - the grammar we use is small
elluugh 10 he easi ly understood. for il contains nOlle of the productions thai would be normally
used for resolving amhiguity. InSlead Ihe supplcllll:lllal information "boul precedence and associ
ativit y (also small Cll0ul,th to he understood) provi(k:s the compiler-compiler with the information
it needs It) make :I fast, delcflniniSlic parser for the specific l<lnguagc we want. When the
lanl!.uagc is sU('Iplcnlclltcd hy Ihe disambiguating rules, il is in faci LR (II and thus easy \0 parse.

The nuqlUI cml!.: is generated as the input is sC:Inned. I II plITlicular. any lime a production of
the gr:unlllar is rc(ogni/.cu. (potentially) some TI(OFF is output. For example. when the Icxil:al
·apaIY/.er rCl1C)rts thai It has r?und a TF.XT (i .e .. it string or conliguous chamclers), we havc recog
ni/.ed the production

leXl : T1x r
The translation or this is .~impk - we generate <I local name ror the string. then hand the name
ami tllc Siring to ·rKoFt·. and ICI TKOFI' worry ahuut the storagc m<lnagemenl. All wc save is the

. name of Ihe Siring. il.~ height. and its baselinc.

IS

As another example. thc translation associated with the production

hox : box OVER hox

Willth or output box = slightly more than largcsi input width
!leight of outpu t box = slightly more than sum or input heights
Strillg descrihing output box is

Illove down: move right cnough \0 cenler ballom box;
draw hOl!o1l1 hox (i .c .. copy Siring for bOllom box):
!\lOV!.! up: move Icft enough to center top box:
draw top hox (i .e .. topy string for top box);
Illove down and lert: draw line full width:
return to propcr hasc lil1e.

Most o f Ihe olher productions have equally simple senHullic actiOIlS picturing the output as a
se t or properly-placed hoxes nlilkes t~e right sequence of positioning comm<lnds quite obvious.
The oilly dimwlt y is in li nding Ihe right numbers 10 usc for esthelically pleasing positioning.

Wilh a grammar, it is usually clear how to e:(tend the hll1guagc. For instance. one of our
uscrs suggc ... tcd a TENSOR operator , 10 make conslructions like , .

' T' 'I' , .
"

(jralllllJatiGl ll y. th is i ... ca~y : adtling the production

htJx : TENSOR I list I
would hI.! sullicien!: sC llwntit:ally. we neell only juggle. the boxes to the right places.

6. Exp~ril' lI (,c

There arc really lltree aspcc\s of inlerest - how wdl lhe math-seller scts mathematics. how
wdl it ... atislies its goal or heing "casy to usc". and how e<lsy it was 10 build.

The lir~l area is easily disposed of. The malerial in this· papcr, or course, has all been set by
lhe Ilflll!raill. The re:uier GIn judge for himself whl.:ther it is good cnough for the purpose he has
III mimI. One commcnl made by a user is that although the output is not as good as the best
h;II\{I-sl.:l mater;;II, il i ... ~ti ll heller than average. iliid much beller than thc worst. I n any cac;e.
who cares'! I'rinled books G1nnOI compete with the birds and " owers or illuminated manuscripts
011 c.~lhe !ic grounds. eit her. but they have some clcar economic advantngcs.

SUllie or Ihe deficiellcies in the outpul could he t:le;1I1ed up with more work on our parI. For
exaillple. we often le"ve 100 much Spilte between a Roman leller and ;111 italic one. If we were
willing In kecp tr"t:k of Ihe fonts involved. wc could do tllis beller more of Ihe l imc.

)I TYI'ESETTINU MATIIEMATICS

!-;oml! other weaknesses arc inherent in our oUlllUt device - ;1 is hard, for instance, to draw
a linc uf an arbitrary len~th without gelling a perceptible overstrike;1\ one end.

As to ease of usc, at the lime of writing, the system has been used by t.wo distinct groups.
The main user population right now is about half a d01.en members or stalf in the Cumputing
.'iciellce Rese<lrch Center, whl) have cullectively produced well over a hundred p:.l~es of
Illathelllatical tex\. Their typ ical re;lction has been omelhill~ like

(I) II 's e:lsy It) wrile, although I ll1:.lke the following mistakes
(2) How do I do .. .'?
(3) II botches the following things Why don't you fix . them'!
(4) You re:.llly need the following feature.,; ...

The le;tTllill~ lime is short - a few minutes gives the general navar, and typing a page or
two of a p:.lper gener:J tly uncovers most of the misconceptions about how it works. This group
seems vcry satisfied with the language.

We have much less cxperience with the second user group, the secretaries and mathematical
tYt1;SlS who were the original targCt of the syslCm. For administrative reasons, most of them had
had lillie chance In try;!, so their response is limited to "it looks easy, much easier than wha t we
have IU do now." The fine math typist who now uses il on a regular basis is an enthusiastic con·
vcr!.

The langull~e is somewha t prolix, but this doesn't seem excessive consider ing how much is
heing dOlle, and it's t:en;linly more compact liMn the corresponding TRQFF commands. For ex·
ample. here is the source for the continued frllction eXpression in section I:

a suh 0 + h sub l over
la sub I + h sub 2 over

III suh. 2 + b suh J over
I" ,un) + ... III

This is Ihe input for the large in tegral of Section I ; notice the use of definitions.

iJefine cmx "Ie sup mx l "
define m:Jb "tm SQn abl"
definc sa " {sqrt al"
define sh "Iswt hI"
in t dx over I .. emx - be sup -mxl ~-~
left { Ipile (

lover 12 mal'll ~Iog~ {sa cmx - sbl over {sa emx + sbl
above

lover mah ~ lanh sup - I (sa over sb emx)
;!hove

- l over m:Jb ~ cOlh sup -I (S:J over sb emx)

-~---~~--(a > O,-h > 0)

As In case nf cnn'it rut:lion, we have alrC<ldy mentioned that there are really only a few
IlCrSUIHllolllhs inve'ilcd. Much of this lime has gonc inlo two things - fine·tuning (what is the
11141 t esthelic;dly plcllsing spm:c to use between Ihc numerator :Jnd denominator of a fraction'?),
and chall~illg Ihings found deficient by our users (shouldn't a tilde be a delimiler?).

The program consists of a number or small. e .. senlially unconnected modules for code gen·
eration, a simple lexical ullaIY7.er, a can ned p;lrser which we did not have 10 write, and some mis·
cdlany associated with input flies and the macro faci lity . There are on ly about 15 global vari·
ahle ... The program is currenily about 1000 lines uf c Q4J; a langullge reminiscent of IICPLl. A·
hout 20 percenl of Ihese lin~ arc "prinl " sta tements, generating the OUlpu l code. To our ever·
lasling shame, lhere arc two (iOTfJs in the program.

. , ',.

...

TYPESETTING MATHEMATICS 9

The semantic routinc.~ thai generate the actual TROFF commands can be changed to accom
modate other out pu t languages or devices. For example, in less than 24 hours, one of us
changed the enti re scm'intic package to drive NROFf. a precursor of TROFl". for typeseHing
mathematics on teletypew riter dev ices capable of reverse line motions. Since many potential
users do not have access to the typesetter. bul still have 10 Iype mathematics. th is provides a way
to gcl a typed version of the final output which is is close enough for debugging purposes, and
sometimes even for ultimate use.

7. Conclusions

We think we ha ve shown that il is possible to do acceptably good Iypeselling of mathemat
ics nn a photocomposer. with an input language that is easy 10 use and Ihat satisfies many users'
demands, and that such a pack<lge can be implemented in short order, given a decent lypeseHing
package underneath.

Defin ing a language. and building a com piler ror it with a compiler-i:ompi lcr seems like the
nnly sensible W<lY to do business. Our experience with the use or a grammar and a comp iler
compiler has been uniformly favorable. If we had written everything into code direct ly, we
would have been locked into whatever design we originally Ihqught or. Furthermore. we wou ld
h;.ve never been sure where the exceptions and specia l cases were. Bul becaUSe we have a gram
mar. we can change our minds readi ly and sl ill be reasonably sure thai if a construction works in
one place. il will work everywhere.

8. Acknowledgements

We ;ire deeply indebted to J. F. Ossanna. the author of TR OfP'. for his willingness to modify
'fH,OFF to make our task easier, and for his cont inuous assist;ance during the development of our
program. We are also grateful to A. V. Aho ror help with IclOguage theory. to S. C. Johnson for
;.id with the co mpiler-compi ler, and to our early users A. V. Aho, S. I. Feldma n, S. C. Johnson.
R. W. Hamming. and M. D. Mcilroy for thei r constructive cr iticisms.

References

111 A MOIIIlO! Q(Sly/e, 121h Ed ition. University of Chicago J ' ress. 1969. p 295.

121 Mlldel GAIT Pho/v/ypes(Jfler. Graphic Systems. Inc. Lowell, Mass.

131 D. M . Ritchie alld K L. n,ompson. The UN IX Time-Shar ing Sys tem. CACM, July 1974.

141 1. F. OUOIII/(/, TROFF User's Manual. Bell Laboratories internal memorandum.

151 H. W. Ker nighan, L. L. Cherry. TypesellillR MOlhemalic~; - User's Guide. Appendix to this
p:lpCr.

161 D. M. Ritchie. C Reference M anual. Bell Laboratories in ternal memorandum.

Typesetting Mathematics - User's Guide

B. W. Kernighan
and

L. L. Cher ry

Bell Labora/ories. Murray Hill. N. J.

ABSTRACT

This appendix is the user's guide for a system for typcsetling mathematical expressions, us
ing Ihe phototypesetter on the UNIX operating system.

Mathematical expressions are described in a language designed to be easy to use by people
who know neither mathematics nor typesetting. Enough of the language to s'et in-line expres
sions like lim (tan x)~in 2x - I or display equations like

.~-"n

G(,)
S k

- ('In G(:\ "" exp L~ '
*)d k

[S',' I [S " S',' _ I+Slz+-'-+ ··· 1+_'_+_'_+
2! 2 22.2!

- 1:
s·, ,

I k, k ' m)O *1 '*1 " .. . "' ..)0 \ .
*1 +2k:2 + ... +"""", - m

can be learned in an hour or so.

s".f"; 1
kO k ' m m'

,M

The language interfaces direct ly with TROFF. the ph'ototypesetting language on UNIX, so
mathematical expressions can be embedded in the running text of a manuscript, and the entire
document produced in one process. This technical report is an example of its output.

The same language may be used with the UNIX formancr NROFF to sel mathemalical expres
.... ions .on devices which have half-line forward and reverse motions. like model 37 Teletypes or
GSI terminals.

Typesetting Mathematics - User' s Guide

8. W. K('fl1i~hull & L. L. Cherry

I. Introduction

EON is a UNIX program for typeseuing mathematical material on the G raphics Systems
photolypeseller. EON works as a preprocessor for the typesetter formatter. TROFF, so the normal
mode of opera tion is to prepare a document wilh both mathematics and ordi nary text inter
'\pcrsed. and let EON set the .mathematics while TROt:r does the body of the lex\.

The F.ON la nguage was designed to be easy tn use by people who know neither mathemat
ks nor typesel1ing. Thus EON knows no mathemat ics. In particular . mathema tical symbols like
+. - , x, parentheses. and so on have no ins trinsic meaning. EON is quite happy to set garbage
(but it will look good>'

Comments and cr it icisms on the eq uation-seIter and this guide are solicited.

2. Usage

Equations are general ly embedded in a larger tex\. To te ll the equation-setter where an
equation begins and ends. we mark it with lines beginning ".EO" and " .EN". Thus, the lines

.EQ
x-y+z
.EN

produl:e

x - y+z

The " .EO" and " .EN ;· are copied through un louched: they are not ot herwise processed by the
equation-seIter. This means that you have to take care o f things like centering, numbering, and
so on yourself. To center an equation, fo r example. use

.co

.EQ
a-b+c+d
.EN

There is also a shorthand not<ll ion useful for short in-line expressions. which is described in a
l<Iter sec tion .

3.

or

To print a number of fi les containing equations o n the phototypesetter, type

eqn filename(s) I !roff

Spl!.ces

Spaces and newl incs in what you type are thrown away by the equation-seller. Thus

x - y + z

TYI'I ~'iITnN(j MATII I '.MATIC ·S

, Y
+ 7.

ailli SO Oil all produce Ihe same

x - .1'+::

- 2 -

Use sp;u.:es and new li nes freely 10 milke your inpu t eq uations readable and eusy 10 edit.
To force cxln.l SP,KCS il)IO the Olllp"I, usc a ti lde" -" fo r each space you want:

x---y-+-,.

x - y+::

Yuu can a1. ... o use a circumflex "-", which gives a space half the width of a lilde. It is mainly use
ful for fine-t uning. The circum flex is in all other rcspec ts identical 10 the tilde. Tabs may also
he used 10 position pieces of an expression . The tabs SlOpS must be set by TROFF commands.

4. S ymbols, S p!tcial NlI mes, Greek

The equation-setter knows some mathematkal sy mbols, some mathematica l names, and
Ihe Greek alphabet : (A comp lete list appears nea r the end of this Guide.>

x - 2 pi illt si n (omega tki t

prod uces

x - 27T f sin (w I)dl

IIere spilces arc l1en's.w~v iO the input to tell EQN that "inl". " pi", "sum", Cl nd "omega" are
s!.!l)ilnrIC cntities. that get spet:ial trea tmen\. The "sin", digit 2. and parentheses are scI in Roman
ty pe insteild of ital ic; "pi" atld "omega" are made G reek: and "int" becomes Ihe in tegral sign.
Knowledgable users can .. Iso usc TROFF four-ch araCler names for anyth ing the equation setter
doesn', know about, like \{hs for 'he Bell Sy'st~m sig n @.

Whe n in doubt, leave spaces around separal~ parts of the inp ul.

~ , Spaces. Al!:a in

The only way the equation-setter can deduce thill some sequence of lellers might he spe
cial is if that sequence is scparated from the letters nn ei ther side or il. This can be done by sur
rounding" special word by ordinary spaces (or newlinesl, as we did in the previous section.

We can .. Iso make spec ial words stand ou t by surrounding them with ti ldes or
circumflcxcs:

x---rpnnt-sill Comega-tTdl

is much Ihe samc as the I,ISI exa mple, except tha t the ti ldes nOI o nl y separate the magic words
I.ike " ... in", "omega", and so on, but also add ex ira spaces:

:c" - 2 7r J sin (wi) ell

Special words can also be separated by brace. .. f J and double quoles ~ , all or which have
special meanings tha i we will see soon.

6. Sub.o;cr ipls and Superscripts

gives

Subscripts and superscrir's are avai lable:

x sup 2 + Y sub k

.'!\". -

~

" I

TYI'fSFfTI NO MII.TIU;MII.TtCS - l- USER'S GU IDE

x 2 +y~

The equation-scHer takes care of all size-changing and verlical motion. The words sub and sup
may he In upper or lower case, as may most other words known to Ihe equation-setter. Don't
forget to leave a space (or i ls equivalent) to mark Ihe end of a sub or superscript. A common er
ror is to say something like

y - (x sup 2)+1

Y _ (X 21+1

instead of

is

Subscripted subscr ipts and superscr ipted supl:rscripts also work:

xsub i subl

X·
"

1\ subscript and superscript on the same thing are printed one above the other if the subscript
willes /ir.~I :

IS

means

x sub i sup 2

X' I

Other than Ihis special case. sub and SlIP group to the righ t, so

x sup · y sub 7.

x sup I y sub z I. no t Ix sup y} sub l.

7. Uslna Braces for Grouping

Normally, the end of a subscript or superscript is m;trked simply by a blank (or tilde, etc.)
What if the sub or superscript is something that has to be Iyped with blanks in it? Use I and}
(bracc.") 10 mark the beginning and end of the sub or superscr ipt:

x sup Ii omega II

is

Rule: Braces I I can always be used to force the equation-seller 10 Ireat something as a unit, or
.iust to make your intent perfectly clear. Thus:

is

x sub I i sub II sup 2

X'
"

wilh braces. but

x sub t sub 1 sup 2

IS

TYI'ESETTINO MATIII::MATICS

x ,I

-4-

Ami braces can occur within braces if necessary:

.It sup Ii suplaillha + bewll

is
/" 'II .,

USER'S GUIDE

To print braces, enclose them in double quotes. like "(H, This is discussed in a later section.

K. Fn&('tions

gives

To draw a fraction. use the word Ove":

a+b over 2c = I

o+h _ I
21 ' .

The line is nlude the right length and positioned automalic'llIy. Braces can be used 10 make clear
what goes over what :

is

{alpha + beta} over {sin (x)1

.!!..±.Ii..
sin (x)

Ow'' is considered. by the equation-seiter 10 be of lower precedence lhan sub and sup, so

-b sup 2 over (pi xl
needs no braces to be unambiguously

-h'
1rX

The precedence rules. which decide which operation is done first. <Ire summarized near the end
of lhe user's guide. When in doubt. however. II.H' bmces 10 make clear Wh<l l goes with what.

9. Square Roots

To draw a squ<lre rOOI. usc sq,f:

sqrt a + sqrt/ax sup 2 +bx+C)

is

.Ja+Jax2+bx+c
W:lrn ing - square rools or tall quantities look lousy. because a rool-sign big enough to cover the
qualltity is 100 dark und heavy:

sqrt{a sup 2 over b sub 2\

is

-J?;
Good slyle replaces big square rOOIS by something 10 the power \.1:

(a'lb,)"

TYI'E"I'."ITIN(i Mil. rlIEMII.TI("S - 5-

10. Summaliun, IlItt'\.:ra1. Etc.

Summatiolls., inlc~rals, and sin,ilar tonstruc ti olls arc easy:

sum from i=O to 0= inrl x sup i

pruduo . .:s
, . ,,';
L X'
• ~U

USER'S GUIDE

Nlllil;e .hal we used hr:u.:es 10 indicale where the upper limi t begins and ends. No braces were
necessary for ,he lower l illlit. bccause il contained 110 blanks. The braces will. never hun, though

IIlwoY-I' usc braces around Ihe fmm iLnd 10 limi,s, if they contain any blanks.

The /rom ,md ·fo pariS arc both optional, but if both are used, they have to be in that order.

Olher useful characters (,Ill rep lace the "sum":

'11' proll ullion inter

hccome, rc. ... pcctively,

J IT u n
Since the thin!!; hefore the (rom can be anything, the from-to construction can often be used in
ullcxpcctell ways:

lim from {Il-> inrl x sub n - 0

"

II. nil! Hfllckels. Elc.

To gel hig hrackets [1. braces I I, parentheses (), and bars II around th ings. use the leff and riRht
commands: .

left I a over b + I right I IeI'I (cover d r ight) + left [e right 1
IS

The resullin~ hrackels arc milde hig enough 10 tover wha,ever they enclose.

Sevefill warnings ahout brackets ilre in orc..lcr. Firs!. not ice that braces are lypically bigger
lhan hrackelS and parentheses. because they arc mac..le up of three, five. seven. etc. pieces, while
hr,Kkets can he made up o j' two, three. ctc . Seconll, lert and right paren1heses lypically look
puor, hecause lhe t.:haraClcr .~e1 is poorly designed. finally, the "righ1" part may be omilled: a
"left ... nl11ethill~" need not have a corresponding "right something". If the d1(111 pan is omilled,
pill hrace ... Muund the 1hing you want Ihe lefl bracket to encompass. Otherwise. the resul ting
hrat.:kels may he too large.

12. Pil c

There is a general facility for making vertical piles of things: it comes in several navars.
):or exalllple:

A --- lel"t I
rile ! a above b above c I -- pile ! x above y above l I
righl J

TYl'ESElTl N(j M A Til EMA TICS

will make

. [a x
A = h Y

(' :!

- 6 USER.·S GUIDE

The clemcnts of thc pilc hhcrc can be as many as you want) are centered one above another, at
the riSh: height for most purposes. The keyword ah(Jve is used to separate the pieces; braces are
u .~ed "round the elltire list.

Three other forms or pile exist: fpile makes a pile with the elemen\s left-justified; (pife
milkes a right-justifieIJ pile; anIJ ('pife makes a centered pile, JUS! like pilc'. The vertical spacing
between the pieces is somewhat larger for 1-, r- and cpiles than it is for ordi nary piles.

makcs

sign<xr-- left I Ip i le II above 0 above - II
-- lpile (irx>O ubove irx=O <lbove if-x<ol

1
sixl/(x) '"" 0

- I

if x> 0
if X "",0

if X< 0

Notice Iht! left brace without a matching right one.

13. Sil.e and Fonl Chanl!es

By default, equations arc set in 10 point type, with standard muthcmalica l font conven
tions. Although the equal ion-seller makes a vali'lIlt al1empt 10 use esthetical,"y pleasing sizes and
runts. it is nul perfect. To chunge sizes <Jnd ronts, usc .~ize /I anti (0111011. ilalic, and bold. Legal
sil.cs which may follow .fi:!l' arc 6.7.8.9. 10. II. 12. 14. 16, 18,20.22.24.28.36.

size 14 bold x = y' + size 14 { alpha + bela I
gi ves

x ~y+a+f3
As always. use braces to delimit what you want affected. For example, you can change an entire
equat ion hy

size 12 { ... I

14. Oillcrilical Marks

T o gel funny marks on lop of letters:

x dot .+ X dot + y hat + y dotdot + x-y bar + lalpha + beta} bar + x l ilde

gives

.i"+ X+.Y+.ii+ x-y+a +{3 + .~

As well as possible. the mark is placed at the right height. The bar is made the righ t length ror
the enti re construct; other mOJrks <Jre centered. (At present. this works only on italic lellers: oth
er ranIs arc botchedJ By the WOJy. there is no "prime" - u!Se ,., " .

15. Quoted Tex l

Any input entirely with in quotes (" .. . ") is not subject 10 any of the fonl changes and spac
ing adjustments normally tlane by the equation seller. This provides a WOJy to do your own spac
illg and adjusting i f needed:

·..:-(j
f

" '.

I YI' I'.'iI', ITIN(i M il. n II '.MII.IIC 'S - 7- IISEII. 'S (illlll!;

italk "sin(x)" + sin (x)

is

.~ill(.\')+sin(x)

Notke tile differences. Quotes tire <.Ilso used 10 ~et bmces and other EQN keywords printed:

"{ alpha 1M

IS

I o/fl"a I
To ~et a quole inlO it {jullled siring, usc "\"".

I., Sh"rllliUld fur III-line .:qualiolls

In a m:llhemalical ducumcnt, il is nccessarv 10 follow l11alhcmaln;:l1 conventions not just
ill di"play cquations, hUI also in the hudy of the lext, fOT example by m<.lking v<.lriablc names ilal·
I~·. Allhough this call he dOlle hy surrounding the appropriate paris with ".EO" and ".EN", the
cOlllinual repet ition of".EO" and " .EN" is a nuisance.

I'I)N provides a shorthand for shurl in·line seQuenccs, You can define two characters to
mark Ihe lert and right ends of an in- l ine equalioll. and Ihen type expressions in the middle or
texl line.~ , To SCI the Iei'I ;lIld righl characters 10 dollar. signs, ror example, use

·1'0
delil11 $$
.EN

Ilavinl,: done Ihis. you can then say things like

Lei Sulpha suh is he the primary variable, and lei Sbeta$ be zero. Then we can
show thai $x suh 1$ is >-0.

Th is works ,IS you mi~hl expect - spaces, ncwline.'" and so all arc significant in the text, but not
in Ihe eljuat ion ":In itsclL Mulliplc equations can uecur in a single inputlinc.

To turn uff the lIc1imilers,

.EO
lIelilll oil"
.EN

Warl1 in~: don ', use hr;u.:cs. lildes, drcumnexes, or double quotes. as delimi ters - chaos will
result.

17. I)~finitiul)s

H)N provilles .. !'adl ilY so you tan give freljuently used string of characters a name, and
thereafter just Iype the namc inste .. d of the whole string, For example, ir Ihe sequence

x suh i suh I + y sub i sub I

wcre to appear repe;lIedl y Ihrnughoul u Illcmo, you ciln save re·typing i, eal:h lime by defining it
likc this:

J 'O
dclinc xy "x suh sub I + Y sub i sub I"

and then using il like this:

.EO
«x) - xy

TYJlESETTI NG MATII EM A TICS -8- USER 'S GUIDE

.EN

and so on. The "define" statement makes "xy" a shorthand for the longer expression. Be care·
ful to leave spaces or their equivalent around the name, so EQN will be able to identify it as spe·
l;i<l1.

There are sever;!1 warnings : J"":irsl, although definitions can use previous definitions, as in

.EQ
define xi "x sub i"
define xiI "xi sub I"
.EN

don't define something in terms of i tseW Second, although EQN keywords can be redefined, this
should be done with some care. Although you can make "/" mean " over" by saying

define I "over"

10 redefine "over" as "/", you have 10 write

define "over" "f'

10 avoid a syntax error.

IH. A LaTjite Example

memo:
Here is the comp lete source for Ihe three display equations on the cover sheet of" this

.nf

.in Ii

.sp 5p

.EQ
Grzt-- e sup { In - Grz)}
'".,- exp left (
sum from k> ""' i {S sub k z sup kl over k right)

prod from k> = 1 e sup Is sub k z sup k Ikl
.EN
.sp
.EQ
-------... left (I + S sub 1 z +
f 5 sub I sup 2 z. sup 2) over 2! + ... right)
left (1+ { S sub 2 z sup 2 lover 2
+ f S sub 2 sup 2 z sup 4 lover I 2 sup 2 cdo! 2! I
+ ... righl) .. .
. EN
.sp
.EQ

sum from m>=O lefl (
sum from
pile I k sub I .k sub 2 ; k sub m >==0
above
k sub I +2k sl,lb 2 + ... +mk sub m ""mJ
I S sub I sup Ik sub J} } over II sup k sub I k sub 1 ! } -
1 S sub 2 sup Ik sub 2} } over 12 sup k sub 2 k sub 2 ! } -

1 S sub m sup {k sub mJ } over 1m sup k sub m k sub m ! }
right) z sup m
.EN

rr
. ~

~.

•

TYl'ESET riNO MATlII ;MATICS

19.

.fi
-in 0
.s f) Sp

Keywords. Precedences. Ele.

-9-

Much of (his section can be skipped on first reading.

USER'S UUJ\}E

The keywords in Ihe nexl twO lists are TCl.:ognized in upper or lower case. These key
words have no precede",c associated with them:

Ipilc cpile rpile pile above define delim

The>;e keywords arc listed in order of increasing precedence:

f rom 10

over sQrl sup sub
si7.c roman italic bold
lefl right
dOl dotdot hal tilde

These group to the left:

over sQrl len r ight

All Olher ... group 10 the right.

bar

Digits, parentheses, br<lckeIS, punct uation marks. and Ihese mathematical words are co n
venco \0 Roman ront wh en encoun tered:

sin cos lall aTC lim max min log In exp

These character sequences are recognized:

<- +- -> < _ !co. , ... ,

sum int prod union inter inf panial l imes edot

and translated to, respectively,

±

r.Jrrun ~ax
Fi nall y, those Greek leHers which are not identical to some Roman leller are known; sim

ply spell them out i n whatever case you want:

alpha gamma GAMMA

IS

a y r
Nutin; Ihut GAMMA is all capitals ,

211 . Imp lementation Peculiaritie.o; and Other Blemishes

When you leave an equation. the equation-setter restores you to the size and font in which
you en tered.

TROFF number-registers · and string macros numbered \0 through 99 are used. Avoid
them.

Equlltions mOlY be set i n·line, rather than in display; in fact this is the default mode, since
".EO" and ".EN" arc nol defined by Ihe equation sctter, but are simply copied from input to out
puL Enough room is left before and after the l ine con tain ing an equation so that it does not i n-

- ,

' ·YI'i'..'iETTIN(; MATIIt:MATICS - 10- USER'S GU IDE

le ffeTe will) other l ines, so an in·line expression likc err(x) =J'(, _,1(/1 docs nOI interfere with

" Ihe lines surrounding iL This WitS produced by

roman err (x)- in l sil.e 9{- from 0 10 x I e SUI) -I sup 2 dl

I n·line equal ions t.:an only' he so big bCt.:Juse of an ill1crnJI bun'cr in TROf-F. I f you gel a
mc.o;sJge "word over now", you h<lvc exceeded this limit. I f you prim the equation in no-fill
Illode Ihis message will usually go away. The mc.o;sage "line overnow" indicates you have ex·
ceeded an even bigger buffer in no·fill mode. The only cure for Ihis is to fe·write the equation.

On a relined lopie, EON docs not break equations by itself - you must split long equations
up across multiple l ines by yourself, marking each by a separat.e " .EQ ... ,EN" sequence. If
operators must be lined up vert ic:.ll!y. use tildes 10 gel to Ihe right horizonl:.l l position - examine
the big eXllmples in an earlier section,

EQN occasionally fails 10 give the right spacing on some construction. If you feel you
have to lune Ihings, and arc willing 10 use some TRtlFF, you can pUi in your own local motions.
The best way is to enclose them in double quotes.

21. Use on Model 37 Teletypes and GSI Termina ls

A compatible version of EON can be used on devices like telelypes and GSI termina ls
which have hal f-l ine forw:lrd and reverse capabi lities, To print equations on a model 37 teletype,
for example, use

neqn files I nroff

The language for equa tions recognized by NEON is identical to Ihat of EON. although of course the
ou lpu.1 is more restricted .

To use a GSI terminal as the output device,

neqn files I moff I gsi

22. Acknow l ed~ments

We are deeply indeb ted to 1. F. Ossanna, the author of TROFF. for his will ingness to ex
lend TRO!'!' to make our task easier, and for his cominuous assistance during the develop men I of
Ihe EON program. We are " Iso grateful 10 A. V. Aho for advice on language design, and 10 S. C.
Johnson for assistance with the YACC compiler-compiler.

I -

...

EON changes

'Minor :

I. Umlerhars can be made with the keyword "under"; it is quite analogous to "bar".

2. The keyword "approx" gives the double wiggly line previously produced by '''\(--'''.

J. Error messages now (orne ou t on the error file instead of through troff, so you can pre-check a big
document by nushing the output down Idevlnull. Thus:

eqn Jile ... >/dev/null

cheL.:ks for errors .

4. Superscripts arid subscripts are 'now better positioned when there is a tiny one 'on a big object.

M'Ljor:

I. Equations can now be lined up with previous ones. The keyword "mark" remembers the current po
si tion: in a later equation you can use "lineup'~ to force that ·position to line up with the previously

' marked place. Thus:

.EQ
f(x) mark = y
.EN
.EQ
lineup = z
.EN

lines up the equals signs.

2. By popular demand, matrices have arrived (at great .expense to the management. I might add). Ma
trices are introduced by the keyword "matrix ". Elements are specified by column in much the same
way as piles. EACH COLUMN MUST HAVE T il E SAME NUMBER OF ELEMENTS. or I will no~
be responsible for the results . Each column may be individually left-justified, centered, or right
justified. Matrices may be nested, although surely 110 one would want to. Thus:

.EQ
mlllrix Ilcol I a above b } ccol I c above d } reol t e above I' \ \
.EN

That is. column .. are "leol". "ccol", or "rcol"; a column is just "ccol I ... above ... above ... \", and a matrix
is just "matri x I column column. }" Be sure to gel the right number of braces. But nolice that there
is no need for braces around the things that lie between "above" keywords.

There is no qecent way to get ex tra space between the columns .

- . -' /

. e.

DC - An Interactive Desk Calculator

Robert Morris

Lo(inda Cherry

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UN IX
time·sharing system to do arbitrary· precision integer ari thmetic. It has prov;·
'sion for manipulating scaled fixed·point numbers and for in put and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by avai lable
core storage . On typical implementations of UN IX, the size of numbers that
can be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

[•

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories,
Murray Hi ll, New Jersey 07974

DC is an arbitrary precision arithmetic package implemen'ted on the UNIX time-sharing
system in the form of an interactive 'desk calculator. It works like a stacking calculator using
reve rse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
inpu t hase, output base, and a number of fract ional digits to be. maintained.

A language cal1ed Be 111 has been developed which accepts programs written in the fami
liar sty le of highe r-level programming languages and compiles output which is inte rpreted by
DC. Some of the commands described below were designed for the compi ler interface and are
not easy for a human user to manipulate. .

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desi red operation, and pushing the
result on the stack. If an argument is given, input is taken from that tile until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we desc ribe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line c haracters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onlO the main stack.. A number is an unbroken
string of the digits 0-9 and the capital letters A-F which are treated as qigi ts wi th values
10-15 respectively. The number may be preceded by an und erscore to input a negative
numbe r. Numbers may contain decimal points.

+ - * % '
The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
U), remaindered (%), or exponentiated n . The two entries are popped off the stack; the
result is pushed on the stack in' their place. The result of a division is an integer truncat
ed toward zero. See the detailed description below for the treatment of numbers with de
cimal points. An exponent must not have any digits after the decimal point.

sx

Ix

- 1 -

The top of the main stack is popped and stored inlo a register named x, where x may be
any character. If the !Ii is capitali zed, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new.line. is a valid regisler name.

The value in register x is pushed onlo the Slack. The register x is nOI alte red. If the I is
capitalized, register x is treated as a stack and its lOP value is popped onto the main slack.

All registers start w'ith empty value which is treated as a zero by the command I and is treated
as an error by the command L.

d

p

f

x

I ... I

q

The top value on the stack is .duplicated.

The top value on the Slack is printed. The top value remains unchange~.

All va lues on the stack and in registers are printed .

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the br.acketed character st ring onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is cap
italized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >x =x !<x !>x !=x

,

The top two elements. of the stack are popped and compared. Register x is executed if
they obey th e stated relation . Exclamation point is negation.

replaces the top element on the stack by' its square root. The square root o f an integer is
truncated to an intege r. For the treatment of numbers with decimal points, see the de
tailed description below.

c

o

k

z

?

-) -

interprets the rest of the line as a UN IX command. Con trol returns to OC when the .
UNIX command terminates.

All values on fhe s lack are popped; the slack becomes em pty.

T he lOp value on the stack is popped and used as the number radix for further input. I f i
is capi talized, the value of th e input base is pushed onto the stack. No mechanism has
been provided fo r th e input of arbit rary numbers in bases less than I or greater than 16.

The top value on" the stack is popped and used as the num ber radix for further oUlput. If
o is capitalized. the, value of the output base is pushed onto the s tack.

The lop .of the Slack is popped. and that value ·is used as a scale factor that influences the
numbe r of decimal places that are maintained during multiplication, divisio n, and ,ex
ponen tiation . The scale factor must be greater than or equal to zero and less than 100, If
k is capitalized, the val ue of the scale factor is pushed onto the ·s tack.

The value of the stack level is p.ushed onto the s lack.

A line of input is taken' fro m the input source (usually the co nsole) and exec uted. ,

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are sto red internally using a dynamic storage allocalor. Numbers are kept in
the form of a sl r,ing of digits to the base 100 stored one digit per byte (centennial d igits) . The
st ring is store~ with the low-ord er digit at the beginn ing o f the string. For example, the
representatio n of 157 is 57,1. After any arithmetic operation on a nu mber, care is taken that
all dig'its are in the range 0-99 and that the nu m ber has no leading zeros. The number zero is
represe nted by the empty string.

Negative !lumbers are represented in the I OD's complement notal ion, wh ich is analogous
to two's complement notation for binary Rumbers. The high order digit of a negati ve number
is always - 1 and all other digits are in the range 0- 99. The digit preceding the h igh o rder - I
digit is never a 99. The representation of -\57 is 43,98,-1. We shall call this the canon ical
form of a num ber, The advantage of this kind of representation of negative numbers is ease of
add ition . When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because th e largest valid digit is 99 and the by te ca n hold numbers twice that large, addi
tion can be carried out and the handling of car.ries dane later whe n' that is yonven ie nt, as it
sometimes is,

An add itional by te is stored wi th each number beyond the high order digit to indicate the,
number of assumed decimal digi ts after the dec imal point. The representation of ,DOl is 1,3

-4-

where the scu le has been italicized to emphasize the fact that it is not the high order digit. The
value of th is extra byte is called the sca le factor o f Ihe number.

The AHocalor r
DC uses a dynamic stri ng s torage alloca tor for iLlI of ils in ternal s torage. All reading and

writing of numbers inte rnally is done through the allocator. Assoc iated wilh each stri ng in Ihe
allocator is a four-word header con'tai ning poin te rs to the beginning of the string, the end of
the sI ring, Ihe next place to write, and the next place to read . Communication between 1he al
locator and DC is done via pointers to 1hese headers.

The allocator initially has one large string o n a list of free s trings. All heade rs except the
o ne poi nting to this s tring are o n a list of free headers. Requests ror st ri ngs are made by size.
The size or the s tring aCtually s upplied is the next higher power or 2. Whe n a request ror a
st ring is made , th e allocator first checks the rree list to see ir there is a st ring or the desired
size. Ir none is ro und, th e allocator fi nds the next larger rree s tring and splits it repea tedly un
til it has a s tring o r the right size. Le rt-over strings are put on the rree list. Ir the re are no
larger .s trings, th e allocator tri es to coa lesce smalle r free s trings in10 large r ones. Since all
strings are the res ult of spl itt ing la rge s trings , each stri ng has a neighbor that is nex t to it in
core and, ir rree, can be combined wit h it to make a st ring twice as long. This is an implemen
tation or the 'budd y system ' or allocation desc ribed in i2J .

Failing to find a stri ng or the proper length arter coalesci ng, the allocator asks the system
ror more space. The amo unt or space o n the system is the o nly limitation o n the size and
number or s tr ings in DC. Ir at any time in the process of trying to allocate a string, the alloca
tor runs out or headers, it also asks the system for more space.

There are routines in the allocator for readi ng, writing, copying, rewindi ng, forward
spac ing, and backspaci ng strings. All stri ng mani pulation is done using these routines.

The read ing and writing routines increment the read pointer or write pointe r so that the
c haracters o r a s tring are read o r written in succession by a series or read or write calls. The
write pointe r is interpreted as the e nd o r the informat ion-co ntai n ing portion or a strin g and a
call to read beyond that point re turns an end-or-stri ng ind icat ion. An attempt to write beyond
the end or a s tring ca uses the allocator to allocate a larger space a nd then copy the old s tring
into th e larger block.

Interna l Arithmetic

All arithmetic operations are done o n integers. The' ope rands (or operand) needed ror
the 'operation are popped from the main stack and their scale ractors st ripped off. Zeros are ad
ded or digits removed as necessa ry to ge L a prope rly scaled resu lt rrom the inte rnal arith metic
routin e. For example, ir the scale or the operands is diffe rent and decimal alignment is re
qui red, as it is ror add ition, zeros are appended to the ope rand with the smalle r scale. Arter
performing the required arithmetic operatio n, the proper scale ractor is appe nded to the end of
the number berore it is pushed o n th e stack.

A registe r called sca le plays·a part in the results or most ari thme tic operations. scale is
the bound on the number of deci mal places retained in ari thmetic computations. sca le may be
set to the numb~r o n th e lOP of the s tack truncated to a n integer with th e k command. ' K may
be used to push the value or sca le on th e s tack. scal e must be greater than or equal to 0 and
less than 100. The desc riptions or th e individua l arithmetic operations wi ll include the exac t
effect of sca le on the compu tations. .

I

~

'.

-5-

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the
number with the lower scale to give both numbers the same scale. The number wi th the
smaller sca le is multiplied by 10 if the difference. of the scales is odd. The scale of the result is
then set to the larger of the scales of Ihe two operands.

Sub tractio n is performed by nega ting the number to be subtracted and proceedi ng as in
addi tion.

Finally. the addition is . performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought inlo canonical
fo rm, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,-1 by the digit - \. In any case, digits which are not in the range
0-99 ":lust be brought into that range, propagating any carries or borrows that result.

Multip licat ion

The scales are removed from th e two opera nds and saved. The operands are botl'l made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginnins with its low order digit. The intermediate produc ts are accu mulated into a
partial sum which becomes the final product. The product is put into the canonical form and
its sign is com puted from the signs of the original ope rands.

The scale of the result is set equa l to the sum of the scales of the two operands. If that
scale is larger than the internal register sca le and also larger lhan both o~ the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Oil' is ion

The' scales are removed from the. two operands. Zeros are appended or digits removed
from the dividend to make th e scale of the result of the intege r division equallo .the internal
qua ntity sca le. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is compu ted. If the divisor is longer than the dividend, zero is re turn ed.
Otherw ise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the fi rst (high-order) digit of the quotien t. It may turn out be one unit too
low, but if il is, the next trial quotient will be larger than 99 and this will be adj usted at the
end of the process. The trial digit is multiplied by the divisor and the result s'ublracted from
the dividend and the process is repeated to get additional quotient digits until the remaining
dividend is smaller than the divisor. At the end, the digits of the quotient are put into the
canonical fo rm, with propagation of carry as needed. The sign is set from the sign of the
operands.

Remainder

The division routine is 'called and division is performed exactly as described . The quanti
ty returned is the remains of the dividend at the end of the divide process. Since division
truncates toward zero, remainders have the same sign as the dividend. The scale of th e
remainder is set to the maximum of the scale of the dividend and the scale of the quotient plus
the scale of the divisor.

-6-

Square Rool

The sca le is stripped from the operand. Ze ros are added if necessary to make the integer
result have a scale that is the larger of the in ternal quanti ty sca le and the scale of the operand.

The method used to compu te sqrt(y) is Newlon's method with successive approxima tions
by the rule

The initial guess is fou nd by laking the integer square rool of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. I f the exponent is zero, then the
result is I. If the exponent is negative, th en il is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary numbe r. The base is repeatedly squa red and
the result is obtained as a produc t of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digi ts of the result re
moved to make the sca le of the result the same as if the indicated multiplication had been per
formed.

Input Convers ion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding th e numbe r with a _. The hexadecimal digits A-F correspond to the
numbers 10-15 rega rdless of input base. The i command can be used to change the base of
the input numbers. This comma nd pops the s tack. truncates the resulting numbe r to an in
teger, and uses it as the input base for all further input. The input base is initialized to 10 but
may , for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command 1 will push the value of the input base on the stack.

Output Commands

The command p ca uses the lOp of the stack to be printed. Il does not remove the lOp o f
the stack. All of the s tack and internal registers can be output by typing the command f. The
o command can be used to change the output base. This command uses the top of the stack.
truncated to an intege r as the base fo r all fu rthe r output. The outpu t base in initialized to 10.
It will work correctly for any base. The command 0 pushes the va lue o f the output base on
the s tack.

Output Formal and Base

The inpu t and output bases only affect the interpretation of numbers on inpu t and out
put; they have no effect on arithmetic computa tions. Large numbers are output wi th 70 char
acters per line; a \ indicates a continued line. All choices of input and output bases work
correctly. although not all arc use ful. A particularly useful output base is 100000, which has
the effect of groupi ng digits in fives. Bases of 8 and 16 can be used fo r decimal-octal or
decimal-hexadecimal conversions.

f ..

I ~

-7-

Inlernal Re~is lers

Numbers or st rings may be stored in interna l registers or loaded on the' slack from regis
ters with the commands s and I. The command sx pops the top of the Slack and stores the
result in register x. x can be any character. Ix pUIS the contents of register x on the top of the
slack. The 1 command has no effect on the conlents of register x. The 5 command, however,
is destructive.

Stack Commands

The command (' clears the stack. The command d pushes "a duplicate of the number on
the lOp of the stack on the stack. The command 1 pushes the stack size on the Slack. The
command X replaces the number on the lOp of the stack with its scale factor. The command Z
replaces the lOP of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in II pushes the asci i st ring on the stack. The q command qui ts o r in
executing a string, pops the recursion levels by two.

Internal Re~isters - Pro~ramming DC

The load and store commands together with II to store st rings, x to execute and the test
ing commands ' <', '>', '=', '!<', '!>', '!=' ca n be used to program OC. The x command as
sumes the top o r the stack is an string or OC commands and executes it. The testing com
mands compa re the top two elements on the stack and ir the relation holds , execute the regis
tcr that rollows the retatio n. For example, lo.print the numbers 0-9,

[tip l + si lilO>alsa
Osi tax

Push-Down Reg isters and Ar rays

These commands were designed ror used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
though t of as having individual stacks for each register. These regis ters are operated on by the
commands Sand L. Sx pushes the top value of the main stack onto the stack fo r the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands sand
I also work on registers but not as push-down stacks. I doesn't effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are: and;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the slack is the index into the array x of the
value \0 be loaded.

M isce ll aneous Com mands

The command! inte rprets the rest of the line as a UN IX command and passes it to
UNIX to execute . . One oth er compiler command is Q. This command uses the top or the
stack as the number of le vels or recursion to skip.

-8-

DESIGN CHOICES

The real reaso n for the usc of a dynamic sto rage allocator ·was that a general purpose pro
gram could be (and in fact has been) used for a variety of other tasks. The alloca tor has some
value for input and for compiling (i .e. the bracket L.J commands) where it '<lnnOI be known
in advance how long a string will be. The result was thaI ut a modest cost in execution time,
all conside rations of string allocation and sizes of strings were removed from the remainder of
the program and debugging was made casier. The alloca tion method used wastes approxima te
ly 25% of avai lable space.

The choice of 100 as a base for internal arit hmetic seemingly has no compelling advan
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5'/0 in
space, debugging was made a great deal easier and decimal output was made much faste r.

The reason for a stack-type arithmetic design was to permit all DC commands from addi
tion to subrou tine execution to be implemented in essentially the same way. The result was a
conside rable degree of logical separation of the final program into modules with very little com
munication between mod ules.

The rationale for the lack of interac tion be tween the scale and the bases was 10 provide
an unde rstandable means of proceeding after a change of base or scale when numbers had al
ready been ente red. An earlier implemen tati on which had global notions of scale and base did
not work ou t well. If the value of sca le were to be interpreted in the current input o r output
base, then a change of base or scale in the midst of a computation would ca use great confusion
in the interpretation of the results. The current scheme has the advantage that the value o r
the input and output bases are only used for input and output, respectively, and they are ig
nored in all othe r operations. The value of scale is not used for any essential purpose by any
part of the program and it is used .on ly to prevent the number o r decima l places resulting rrom
the ari thme tic operations rrom growing beyond all bounds.

The design rationale fo r the choices for the scales or the results of arithmetic were that in
no case should any sign ificant digits be thrown away ir, on appearances, the user actually want·
ed them. Th us, ·if the user wants to add the numbers 1.5 and 3.5 17, it seemed reasonab le to
give him the res ult 5.017 withou t requiring him to unnecessarily specify his rather obvious re
quirements for precisiQn.

On the the other hand, multiplication and expone ntiation produce results with many
more d igits than thei r operands and it seemed reasonab le to give as a minimum the number of
decimal places in the ope rands but not to give more than that number of digits unless the us"er
asked fo r th em by speci rying a value fo r scal e. Square root cun be handled in just the same
way as multiplication. T he operation or division gives arbitrarily many decimal places and
the re is simply no way to guess how many places the user wants. In this case only, the user
mus t specify a sca le to get any decimal places at all.

The scale o r remainder was chosen to' make it possible to recreate the divide nd from the
quotient and remainder. This is easy to implement; no digits are thrown ·away.

Rererences

(Il L. L. Cherry, R. Morris, BC - An Arbitrary PrecisiOIl Desk-Calculmor Langllage,

(2) K. C. Know lton, A Fast SlOrage AI/ocalar, Comm. ACM 8, pp .. 623-625 (Oct. 1965)

.->! • .

e

,.

BC - An Arbitrary Precision Desk-Ca lculator Language

Lorinda Cherry

Roben Morris

Dell Laboratories,
Murray Hill, New Je rsey 07974

ABSTRACT

Be is a language and a com pile r for doing arbit rary precision arithmetic
on the PDP-II under the UNIX time-sharing system. The output of the com
piler is interpreted and executed by a collection of routines which can input,
output, and do arithmetic on indefinite ly large intege rs. and on scaled fixed
point numbe rs.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occu r until all available core storage is ex hausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defmed and saved for later execution.

Two five hundred-digi t numbers can be multiplied to give a thousand di
git result in about ten seconds.

A small collection of library functions is also avai lable. including sin, cos ,
arctan, log, exponential, and Bessel fu nctions of integer order.

Some of the uses of this compiler are

to do compu tation with large integers,

to do computation accurate to many decimal places,

conversion of number's from one base to another base.

r

I

~

' ..

Be - An Arbitrary Precision Desk-Calculator Language

Introduct ion

Lorinda Cherry

Roberl Morris

Bell Laboratories,
Murray Hill, New Jersey 07974

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX
time-sharing system [I]. The compiler was written to make conveniently available a -collection
of rou tines (called DC [61) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is' a
rninimal language facili ty.

There is a scaling provision that permits the use of decimal point nolation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from de
cimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amoun t of
storage availab le on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UN IX.

The syntax of BC has been deliberately selected to agree substantiall y with the C
language 12,3], Those who are familiar with C will find few surprises in this language.

S imple Computat ions wit h Inle~ers

The simplest kind of statemen t is an arithmetic expression on a line by itsel f. For in
stance, if you type in the line:

142857 + 285714

the program responds immediately with the line

42857 1

The operators -, *., I. 0/0, and' can also be used; they indicate subtraction, multiplication, divi
sion, remain dering, and exponentiation, respec tively. Divisio'n of integers produces an integer
result truncated toward zero. Division by zero 'produces an error comment.

Any term in an expression may oe prefixed by a minus sign to indicate that it is to be
negated (the 'unary' minus sign). The expression

7+-3

is interpreted to mean thal-3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted
just as in Fortran, with' having the greatest binding power, then * and % and I, and finally +
and -. Con tents of parentheses are evaluated before material outside the parentheses. Ex
ponentiations are performed from righ t to left and the other operators from left to right. The
two expressions

, , -

are equivalen t. as are the two expressions

a-b·c and (a-b)-c

~2-

Be shares with Fortran and C the undesirable conve ntion that

a/b · c is equivalent 10 (a/b)·c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a registe r in the usual way . The statement

x = x + 3

has the effec t of increasing by three the value of th e contents of the register mimed x. When ,
as in th is case, the ou te rmost operator is an =, the assig nment is performed bul the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square roal function whose result is truncated to an integer (but see
scaling below). The lines

x - sqrtO 9!)
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' and ·obase'. The contents of 'ibase',
ini tially set to 10, determines the base used fo r interpreting numbers read in . For example, the
lines

ibase "" 8
II

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to dec imal by typing

ibase = 10

Because th e number 10 is interpreted. as octal. this statement will have no effect. For those
who deal in hexadecimal notation, the characters A-F are permitted in numbers (no mailer
what base is in effect) and are interpreted as digi ts having values 10- 15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large posi ti ve input bases are permitted but useless. No mechanism has been provided fo r
the input of arbitrary numbers in bases less th an I and greate r than 16.

The conten ts of 'obase', initially set to 10, are used as the ba~e for output numb~rs. The
lines

",

abase = 16
1000

will produce the output line

lEa

-l-

which is to be interpreted as a 3-digit hexadecimal number. Ve ry large output bases are per
mined, and they are sometimes useful. For example, large nUi:1bers can Je 01'o.Vut in groups of
fi ve digits by selling 'obase' to 100000. Strange (i .e. I, O. or negative) outr~t bases are handled
appropriately.

Very large numbers arc sp lit across lines with 70 charac ters 'per line. Lines which are
continued end with \. Decimal output conversion is practically instantaneous, but output of
very large numbers (i.e., more than 100 digits) with othe r bases is rath er slow. Non-decimal
output conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'abase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but on ly. affect input and output
conversion, respec ti vely.

Sca lin~

A third special interna l quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
poin~ of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtrac tion, the
scale of the result is the larger of the scales of the two operands. In this case, there is never
any truncation of the result. For multiplications, the scale of the result is never less than the
maximum of the two scales of the operands, never more than the sum of the scales of the
opcrarJds and, subject to those two restrictions, the scale of the result is set equal to the con·
tents of the internal quantity 'scale'. The scale of a quotient is the contents of the internal
quantity 'scale'. The scale of a remainder is the sum .or the scales of the quotient and the divi·
SOT. The result of an expo nentiation is scaled as if the implied multiplications were performed.
An expone nt must be an integer. The scale of a square rool is set to the maximum of th,e scale
of the argument and the contents of 'scale'. .

All of the internal operations are actually carried out in terms of integers, with digits be·
ing discarded when necessary. In every case where digits ate discarded, truncation and not
rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to
O. In case you need more than 99 fraction digilS, you may arrange your ow n scali ng.

The internal quanti ties 'scale', 'ibase', and 'obase' can be used in expressions just like
other variables. The line

scale = scale + I

increases the value of 'scale' by one, and the line

scale

causes the curren t value of 'scale' to be printed.

The value of 'scale' retains ilS meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are not equal to 10. The internal computa·
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any ot her kind of digits.

- 4 -

Functions

The name of a functio"n is a single lower-case letter. Func tio n names are permitted to
collide with simple variable names. Twenty-six difterent defined functions are permitted in ad
dition to the twenty -six va riable names. The line

define a(x) I
begi ns the definition of a function with one ' argument. This line must be fo llowed ' by one or
more statements, which make up the body of the function, e nd ing with a right brace l. Return
of control from a functio n occurs when a return statement is executed or when the end of the
function is reached. The return statemen t can take either of the two forms

return
relurn(x) .

In the first case, the val ue of the function is 0, and in the second , the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of th e form

au to x,y,z

There ca n be on ly one 'auto' s tatement in a function and it must be the firs t statemen t in the
defi ni tion. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
th e func tion are not disturbed. Functions may be called recursively and the automatic vari
ables at each level of call are protected. The parameters named in a function de fi n ition are .
treated in the same way as the automatic variab les of that function with the single exception
that they are given a value on entry to the func tion . An example of a funct ion definition is

define a(x,y)f
au to z
z = x·y
return{z)

The value o f this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments en ·
dosed in parentheses and separated by commas. The result is unpredictable if the wro ng
number of arguments is used.

Functions with no argumen ts are defi ned and called usi ng . paren theses with nothing
between them: bOo

If the function a above has been defined, then the line

,(7,3.14)

wou ld cause the result 2 1.98 to be printed and the line

x ~ ,(,(3,4),5)

would cause the value of x to become 60.

... {

- 5 -

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subsc ri pted va riable (an array eleme nt). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple va riables and function
names. Any fractional part of a subscript is discarded before use. Subscripts must be greater
than or equal to ze ro "and less than or equal to 2047. .

Subscripted va riables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as au-
tomalic in a functio n defi nition by the use of emp ty brackets:

f(.1])
define f(.I])
au to a(I

When an array name is so used. the whole con tents of th e array are copied for the use of the
functio n. and thrown away on exit from the function. Array names which refer to whole ar
rays cannol be used in any other contexts.

Control Statements

The 'ir, the 'wh ile', and th e ' for' statements may be used to alter th e now within pro
grams or to cause iteration. The range of each of them is a statement or a compound state
ment consisti ng of a collection of statements enclosed in braces. They are written in the fol~
lowi ng way

or

if(relation) statement
whi le(relation) statemen t
for(expression l ; relat ion; expression2) statement

if(re latio n) {statements I
while(relation) {statements I
for (expressio n I; relation; ex pression2) {statemen ts}

A relation in one of the con trol statements is an expressio n of the form

,>y

where two expressions <lre related by one of the six relational operators <, >, <=, >=, ==,
or !=. The relation == stands for 'equal to' and != stands for 'not equal to'. T he meaning of
the · remaining relational operators is clear.

BEWARE of us ing = instead of == in a relational. Unfortu nately, both of them are le
gal, so you will not get a diagnostic message, but = really will not do a comparison.

The 'ir s tatement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

T he 'wh ile' statement causes execution of its range repeated ly as long as the rela tion is
true. The r'elation is tested before each execution of its range and if the reilltion is false, con-
trol passes to the ne xt statemen t beyond the range of the while. .

The 'for' stateme nt begins by executing 'ex pression I'. Then the relation is tes ted and, if
true, the statements in the range of the 'for' are executed. Then 'cxp ress ion2 ' is executed.
The relatio n is tested, and so on. The typical use of th e 'for' statemen t is for a co ntrolled ite ra
tion, as in the sta tement

,

-6-

(orO=I; i<=IO; i-i+O i

which will print the integers from t to to. Here are some examples of the use of the control
statements.

defi'ne no)!
auto i, x
x=\
(orO=I; i<=n; i- i+1) x=x*i
return(x)
I

The line

f(a)

will print a facto rial if a is a positive integer. Here is the definition of a function which will
compule values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,ml!
aulO x.j
x=l
ror(j:z:\; j <=m; j-j+ I) x=x*.(n-j+ 1)/j
return(x)
I

The following function computes values of the exponential function by summing the appropri·
ate series without regard for possible truncation errors:

sca le = 20
define e(xl!

Some Details

aulO a, b, c, d. n
a = I
b - 1
c = I
d~O

n=1
whileO -~ 1) I

a = a·x
b = btn
c = c + alb
n=n+i
if(c==d) returnee)
d = c

There are some language f~atures that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any
where that an expression can. For example, the line

~
..:il

-7-

(x=y+ 17)

not ·only makes the intlil,;tltctl assignmcnt, but also prints the rcsulting valuc.

I lcrc is an example of i\ use of the value of an assignment statement even when it is not
paren thesizctl.

x =al i=i+11

l:auses a value to be assigned to x and also increments i before it is uscd .as a subscript.

The followin g wnstructs work in BC in cxactly the same manner HS they do in the C
language. Consult the appendix or the C manuals 12,31 for their exact workings.

x=y=z is the same as
x =+ y
x =- y

. x =" y
x =1 Y
x =% y
x =' Y
x++
x-
++x
--x

x=(y=1.l
x = x+y
x = x-y
x = x"'y
x = x/y
x = x%y
x = x'y
(x=x+I)-1
(x=x-ll+1
x = x+1
x = x-I

Even if you don't intcnd to use the constructs, if you type one inadvertently, something
c.or rcct ·but uncxpcl,;ted may happen.

WARN ING! In SOlllC of these constrUl;tions, spaces arc signIficant. 1here is i\ real
~il1crcnce between x=-y and x= -yo The first replaces x by x-y and the second by -Yo

Three Important Thin!:s

I. To exit a lle progrlllll, type 'quit'.

2. There is a comment convention identical to .that of C and of PLll. Comments begin
with 'r' and end with ,./'.

J. There is a library of 11l<lth functions which may ·be obtained by typing at command lev-
cl

bc -I

This C(l1ll1l1;lnd will load a set of library fUllctions which, at the time of writing, cOI~sists of si ne
(namcd 's'), cosine ('c'), arctangent ('lI'), n,!lural logarithm ('],), exponen tial ('e'l nnd Bessel
fUllctiolls of inte~er order ('j(n,xl'). Doubtless morc functions will be added in time. The Ii·
tnary sets the scale 10 20. You call reset i t 10 something else if you like. The design of these
mathematical libmry routines is discus·sect elsewhere 14J.

I f you type

he file ...

He will rC<ld and execute the named file or files before iu:cepting COlllnHllld::; from the key·
bourd. I.n Ihis way , you I)lay load your favorite programs and function definitions.

''':>< (""

,,(/ (

-8-

Arknowlcd~cmenl

The compiler is wr;lIen in YACC [5J; its origi nal version was written by S. C. Johnson.

'-' References

III K. Thompson ilnd D. M. Ritchie. UNIX ProRrommer~' MOl/ua l, Fifth Edition (1974)

[2] D. M. Ritchie. C Reference Manual.

131 B. W. Kcrn igh'1I1, Pro!:,ommillg. in C A TUfor,;,I.

141 Roben Morris. A . Library of Re/erellc(! SlOlIda{d MalllemaficaJ Subroutines. Internal
memorandum, "Bell Laboratories, 1975.

[51 S. C. Johnson, YACe, Yel AI/orher Compiler-Compiler.

[6J R. Morris and L. L. Cherry, DC - All 11I({'ra('five Desk CalculalOr.

... \L.

-9-

Appendix

1. Notation

In the following pages syntactic categories are in italics; literals are in bold ; material in
brackets 11 is optional.

2. Tokens

Tokens consist of. keywords, identifiers. constan ts, operators, and s~parators. Token
separators may be blanks, tabs or comments. Newline charac ters or semicolons se parate stale
ments.

2.1. Comments

Comments are introduced by the characters r and terminated by·'.

2.2. Identifiers

There ,are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three ty pes consist of single lower-case letters. Array identifiers are followed by
square brac kets, poss ibly enclosing an ex pression describi ng a subscript. . Arrays are singly
dimensioned and may co ntain up to 2048 elements. Indexing begins at zero so an array may
be indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are fol
lowed by parentheses, possibly enclosing arguments. The three types of identifiers do not
conflict ; a program can have a variable 'named x, an array named x and a function named x, all
of which are sepa rate and distinct.

2.3. Keywords

The following are reserved keywords :
ibase if
obase break
sca le defi ne
sqrl auto
length ret urn
while quit
ror

2.4. Constants

Constants consist of arb itrarily long numbers with an optional decimal point The hexa
decimal digits A- F are also recognized as digits wit h values 10-15, respectively .

3. Expressions

The value of an expression is 'printed ur.iess the main operator is an assignme nt. Pre
cedence is the same as the order of presen tation ~ere, with highest appearing first. Left or
right associativi ty , where applicable, is discussed .wit:' each operator.

- 10-

3.1. Pri mitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply Slated, named expressions
are legal on the le ft side of an assignment. The value of a named ex pressio n is th'e value
stored in the place named.

3.1.1.1. idenr(fiers

Simple identifiers are named expressions. They have an init ial va lue of zero.

3.1.1.2. array-name I expression I

Array elements are named expressions. They have an initia l value of ze ro.

3.1.1.3. sca le, ibase and obase

The interna l registers sca le, ibase and obase are all nllmed expressions. sca le is the
number of digits afte r the decimal point to be retained in arithmetic operations. sca le has an
initial value of zero. ibase and obase are the input and output number radix respecti vely . Both
ibase and obase have initial values of 10.

3.1.2. Function ca ll s

3.1.2.1 . !unclion-name([expression f. expression ... I))
A function ca ll consists of a function name fo llowed by pa rentheses contammg a

comma-separated list of expressions, which are the function arguments. A whole array passed
as an argument is speci fied by th e array name followed by empty square brac ke ts. All func tion
arguments are passed by vaiue. As a resul t, changes made to the formal parameters have no
effect on the actual argumen ts. If th e function termjn~tes by exec uting a re turn statement, the
value of th e func tion is the value of the express ion in the parentheses of the re turn statement
or is zero if no ex press!on is provided or if th ere is no re turn statement.

3.1.2.2. sqrt(expression)

The res ult is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the res ult is th e sca le of th e expression or the value of
sca le, whichever is larger.

3. t .2.3 . length (expression)

The result -is the total numbe r of significant decimal digits in th e expression . The scale of
the result is zero.

3.1.2 .4. scale(expression)

The resul t is the scale of the expression. The scale of the result is zero.

3.1 .3 . Constants ·

Constants are primiti ve exp ressions.

eX I,

I

~

\ ~ ..

- II -

3.1.4. Parentheses

An expression su rrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression

The result is the negative of the expression.

3.2.2. ++ named-expression

The named expression is inqemenled by one. The result is the value of the named ex
pression arter incrementing.

3.2.3. -- named-expression

The named expression is decremented by one. The result is the value of the named ex
pression after decrementing.

3.2.4. named-expression++

The named expression is incremented by one. The result is the va lue of the named ex
pression before incrementing.

3.2.5. named-expression--

The named exp ression is decremented by one. The res ult is the value of the named ex
pression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds righ t to left.

3.3.1. expression - expression

The result is the first expression raised to the power of the second expression, The
second expression must be an intege r. If a is the scale of the left expression and b is the abso
lute value of the right expression, then th e scale of the resu lt is:

min (axb, max (scale, a))

3.4. , Mu itiplicath'e operators

The operators·, /, % bind lert to right.

3.4.1. expression'" expression

The result is the prod'uc t of the two expressions, If a and b are 'the scales of th e two ex
pressions, then the scale of the result is:

min (a+b, max (sca le, 0, b))

- 12 -

3.4.2. expression I expression

The resul t is the Quotient of th e two expressions. The scale of the resu lt is th e value of
scale.

I
3.4.3. expressioll % expression _

The % operator produces the remainder of the division of the two expressions. More pre-
cisely, a%b is a-alb+b.

The sca le of the result is th e sum of the scale of the divisor and the value of sca le

3.5. Additive operators

The additive" operato rs bind left to right.

3.5 .1. expression + expression

The result is the sum of the two express ions. The scale of the result is the max imun of
the scales of the expressions.

3.5.2. expression - expression
The result is the difference of the two expressions. The scale of the result is the max

imum of the scales of the expressions.

3.6. assignment operators

The assig nment operators bind righ t to left.

3.6.1. named-expression = expression
This expression results in assigni ng the value of the expression on the right to the named

expression on the left.

3.6.2. named-expression =+ expression

3.6.3. named-expression =- expression

3.6.4. named-expression =* expression

3.6 .5. named-expression =/ expression

3.6.6. named-expression = % expression

3.6.7. named-expression =~ expression

The result of th e above exp ressions is equiva lent to "named expression = named expres
sio n OP expression ", where OP is the operator afte r the = sign.

4. Re lations

Un like all other operators, the relational ope rators are only valid as the object of an if,
while, or in side a for statement.

~
~"

~

- 13 -

4.1- expression < expression

4.2. expression > expression

4.3. expression <= expression

4.4. expression > = expression .

4.5. expression == expression

4.6. expression != expression

5. Storage classes

There are only two storage classes in Be, global and au.tomatic (locaO, Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to
a function are local to the function. All, other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Iden tifiers declared
as auto are allocated on ehtry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto .arrays are specified by the ar
ray name followed by empty square brackets.

Automatic variables in BC do not work in exactly the ,same way as in either C or PLII.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, .reference to these
names refers 'only to the new values:

6. Statements

Statements must be separated by semicolon or newline: Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression , unless the main operator is an assignment, the value
'of the expression is printed , followed by a newline character.

6.2. Compound stateme nts

Statements may be grouped together and used when one ,statement is expected by sur
rou nding them with { J.

6.3. Quoted string statements

"any string"

This statement prin ts the string inside the quotes.

6.4. If statements

if(felalioll) stalemenl

The subs tatemenl is executed if the relation is true.

6.S . While stateme nts

while(relation) sfOlemenr

- 14-

The statement is executed while the relation is true. The lest occurs before" eac h execu
tion of the statemen t.

6.6. For statements

(or(expression; rela rion; expression) sralen,ent

The for statement is the same as
jirsr-€xpressiofl
white(relarion) (

stalemenr
last-expression

All three expressions must be present.

6.7, . Break statements

break

break causes termination of a for or while stateme nt.

6.8. Auto statements

auto identifier(.ident~fier l

The auto statement ca uses the va lues of the identifiers to be pushed dow n. The
iden tifiers can be ordinary identi fiers or array iden tifiers. Array identi fie rs are specified by fol
lowi ng the array name by empty square brackets. The auto statemen t must be the first state
ment in a function defi nition.

6.9. Define statements

defi ne([parameter [• parameter . ..]]) I
SlalemellfS I
T he de fine statemen t defines a function. The parameters may be ord inary ident ifie rs or

array names. Array names must be followed by em pty square bracke ts.

6.10. Return statements

return

return(expressioll)

The return stateme nt ca uses te rmination of a function, popping of its au to variables, and
specifies the result o f the function . The first form is equiva lent to retu rn(O}. The result of the
func tion is the result of the expression in parentheses.

6.11. Quit

The quit stateme nt stops execu tion of a Be program and returns con trol 10 UNIX when ·
it is first e ncountered. Because ·it is not treated as an executable stateme nt, it can not be used
in a function definition o r in an if, for , or while statement.

j 1\

I. INTRODUCTION

The Portable C Library (on UNIX) •

M. E. Lesk

Bell Laboratories,
Murray Hill, New Jersey 07974

The C language 111 now exists on three operati ng systems. A set of library routines com
mon to PDP II UN IX, Honeywell 6000 GCOS, and IBM 370 OS has been provided to improve pro
gram portability. This memorandum describes the UNIX implementation of the portable
routines.

The ' programs defined here were chosen to fo llow the standard routines available on
UNIX, with alterations to lmprove transferability to other compu ter systems. It is expected that
future C implementations will try to support the basic library outlined in this document. It
provides characte r stream input and outpu t on multiple fil es; simple accessing of fil es by name;
and some elementarY formatti ng and translating routines. The remainder of this memorandum
lists the portable and non-portable library routines and explains some of the programming aids
available.

The I/O routines in the C library fall into several classes. Files are addressed through in
termediate num bers called file-descriptors which are described in section 2. Several default file
descriptors are provided by the system; other aspects of the system environment are explained
in sectidn 3.

Basic character-stream input and output involves the r.eading or writin g of files considered
as streams of characters. The C library includes facilities for this, discussed in section 4.
Higher-level character stream operations permit translation of internal binary representations
of numbers to and from character representations, and formatting or unpacking of character
data. These operations are performed with the subprograms in section 5. Binary input and
output routines permit da ta transmission without the cost of translation to or from readab le
ASCII character representations. Such data transmission ' shou ld on ly be directed to files . or
tapes, and not t9 pri nters or terminals. As is usual with such rou tines, the on ly simple guaran
tee that can be made to the programmer seeking portabili ty is that data written by a particular
sequence of bina ry writes, if read by the exactly match ing sequence of binary reads, will re
store the previous contents of memory . Other reads or writes have system-dependent effects.
See section 6 for .a discussion of binary. input and output. Section 7 describes some fu rther
routines in the portable lib rary. These include a storage allocator and some other control and
conversion functions.

• This document is an abbreviated form of "The Portable C Library", by M. E. Lesk, describing only the UNIX section
of the library.

-- - f

-2-

2. FILE DESCRIPTORS

Except for the stan dard input and output files, all fites must be exp licitly opened before
any [/0 is performed on them. When nles are opened for writing, they arc created if not al
ready present. They must be closed when finished, although the normal cexil routine will take
care of that When opened a disc fi le or device is associated with a fil e descriptor, an in teger
between 0 and 9. This file descriptor is used for furthe r 1/0 to the file.

Initially you are given three file descriptors by the system: 0, I , and 2. File 0 is the stan
dard input ; it is normally the teletype in time-sharing or input data cards in batch. File 1 is
the standard outp ut; it is normally the teletype in time-sha ri ng or th e line printer in batch. ·
Fi le 2 is the error file; it is an output file, normally the same as fi le I, except that when fil e I is
diverted via a command line '>' operator, file 2 remains attached to the original destination ,
usually the terminal. It is used for error message outpU l. These popular UNIX co nven tions are
considered pan of the C library specification. By closing 0 or I, the default input or output
may be re~directed; this can also be done on the command li ne by > file fo r outpu t or -;:'file for
input.

Assoc iated with the portable library are two external integers, named cin and cout. These
are respecti vely the numbers or the standard input unit and standard output unit. Initiall y 0
and I are used, but you may redefine them at any time. These cells are used by the routines
getchar, putchar, gets, and puts to select their I~O unit number.

3. THE C ENVIRONMENT

The C language is almost exactly the same on all machines. except for essential machin e
differences such as word length and num~er of characters per· word. On UN IX ASCII character
code is used. Characters range from - 128 to +1 27 in numeric value. there is sign extension
when charac ters are ass igned to integers, and right shifts are arithmetic. The "first" character
in a word is stored in the right half word.

More serious problems of compatibility are caused by the loaders on the differen t operat~
ing systems.

UN IX permits external names to be in uppe r and lower case, up to se ven characters long.
There may be multiple external definitions (unin itialized) or the same name.

,The C alphabet for identifie r names includes the upper and lower case letters. the digits,
and the upderli ne. It is not possible for C programs to communicate with FORTRAN programs.

4. BASIC CHARACTER STREAM ROUTIN ES

These routines transfer streams of characters in and out or C programs. In terpretation of
the characters is le ft to the user. Facilities ror in terpreting numerical st rin gs are presented in
section 5; and rout ines to trans rer binary data to and rrom fi les or devices are discussed in sec
tion 6. In the following routine descriptio ns, the optional argumeni fd represents a file
descriptor; if not present, it is taken to be 0 ror inpu t and. 1 ror output. When your program
starts. remember th at these are assoc iated with the "stand ard" input and output fi les.

COPEN (filename. type)

Copen initiates activity on a file; if necessary it will creale Ihe file too. Up to 10 files may be
open at one time. When called as desc ribed here. copen returns a filedescrip tor ror a character
stream file. Values less than. zero returned by copen indicate an error trying to open the file .
Other calls 10 copen are described in seclions 6 and 7.

Argume nts:

Filename: a string re presenting a fi le name, according to th e local operati ng sys lem conventions.
All accept a strin g or letters and digits as a legal file name, although leading digi ts are not

. I -

-) -

,recommended on Geos.
Type: a character 'r', 'w', or 'a' meaning read, write, or append. Note that the type is a single
character, whereas the fi le. name must be a string.

CGETC(Jd}

Cgete returns the next character from th e input unit associated with jd. On end of file cgetc re·
turns '\0'. To signal end of fil e from the teletype, type the specia l symbol appropriate to UN IX:
EOT (control -D)

CPUTC (ch . Jd)

CPUlC writes a character onto the given output unit. Cputc returns as its value the character
written.

Output for disk files is buffered in 512 character units, irrespective of newlines; teletype
outpu t goes characte r by character

CCLOSE (fd)

Activity on fileJd is termi nated and any output buffers are e mptied. You usually don't ·have to
call cclose: cexit will do it for you on all open fil es. However, to write so me data on a .file and
then read it back in, the correct sequence is:

fd = copen ("file", 'w');
write on fd ...
cclose (fd);
fd = copen("fi le", ' r');
read from fd ...

CFLUSH (fn)

To get buffer flus hing, but re tai n the ability to 'write more on th e file , you may call this routine.

Normally, output inte nded for the teletype is not buffered and this call is not needed.

CEXIT (ferrcode})

Cexil closes all files and then terminates execution. If a non-zero argument is given , this is as
sumed to be an error indication or other returned value ·to be signalled to the operating system:

Cexil must be called explicitly; a return from the main program is not adequate.

CEOF (fd)

Ceo/returns nonzero whe n e nd of file has been reached on input uni t /d.

GETCHAR ()

Gelchar is a special case of cgelc; it reads one character from the standard input uni t. Gelchar ()
is defined as cgelc rein); it should not have an argument

PUTCHAR (ch)

Purehar (ch) is the same as cpule (eh. cout): it writes one character on the standard output.

GETS (s)

Gets reads everything up to the next newline into the string pointed to by s. If the last charac-

- 4 -

leT read from this inpu t un it was newline, then gets reads the next line, which on GCOS and IBM
correspo nds exactly to a logical record. -The termi nating newli ne is replaced by '\0', The val ue
of gets is $, or 0 if end of file. .

~w ~
Copies the string s onto the standard output unit. The terminating '\0' is-replaced by a newline
character. The value of puts is s.

UNGETC (ch ,Jd)

Ungelc pushes back its character argument to the un it fd, which must be open for input. Arter
ungetc ('a: jd); unge/c ('b', fd); the next two charac ters to be read from fd will be 'b' and then
'a', Up to 100 characte rs may be pushed back on each fi le. This subroutine permits a program
to read past the end of its inpu t, and then restore it for the next routine to read . It is impossi
ble to change an external file wi th ungerc; its pu rpose is only for iniernal communications, most
particularly scan/. which is described in section 5. Note that scan! actual].y requires on ly one
character of ~'ungel" capab il ity; th us it is possible that futu re imp lementors may change the
specification of the ungerc routine.

5. HIGH-LEVEL CHARACTER STREAM ROUTINES

These two routi nes, printj for outpu t and scan! for input, permit simple translation to and
from character represen tati ons of numerical quantities. They also allow generation or interpre
tation of formatted lines.

PRINTF ({fd,) control-string, a'll, ar.g2, .. J

PRINTF ({-I, omput-string, J control-string. argJ, arg2, ... J

Printj converts, formats, and prints its arguments under cont rol of the con trol stri ng. T he con
trol string contains two types of objects: plain characters, which are simply copied to the outp ut
stream, and conversion specifications, ' each of which causes conversion and printing of the
next successive argume nt to print!

Each conversion specification is introduced by the character '%'. Following the '%', there may
be:

- an optional minus sign '-' which specifies left adjustment of the converted argu
ment in the indicated field;

- an optional d igit 'string specifyi ng a mi nimum field width ; if the converted argu
ment has few.er characters than the field width it will be padded on the left (or
right, if the left adjustment indicator has been given) to make up the field width;
the padd ing characte r is blank normally and ze ro if the fi eld width was specified
with a leading zero (note that this does not imply an octal field width);

- an optional period '.: -w hich serves to separate the fie ld widt h from the next digit
string;

- an ·optional digit string (t he precision) which specifies the maximum number of
characters to be printed from a st ring, or the number of d igits to be printed to the
right of the decimal point of a floating or double num ber.

- an optional length modifier']' which indicates that the corresponding data item is
a long rather than an into

- a characte r which indicates the type of conversion to be applied.

The conversion characters and their meanings are:

' ,\
-

-5-

d The argument is converted to decimal notation.

o The argument is conve rted to octa l notation.

x The argume nt ;s converted to hexadecimal notation.

u The argument is converted to unsigned decimal notation. Th is is only imple·
mentcd (or useful) on UNIX.

c The argument is taken to be a si ngle character.

s The argumen t is taken to be a st ring and cha racters from the stri ng are printed

e

r

unt il a null cha racter is reached or until the number o f charac ters indicated by the
precision specification is exhaus ted.

The argumen t is taken to be a float or double and converted to decimal notation
o f the form /-}m.mmmmE{-}xx where the length o f the string o f n's is specified by
the precision. The default precision is 6 and the maximum is 22.

The argument is taken to be a float or doub le and converted to decimal notatio n
o f the fo rm /-Jmmm.nnllllll whe re the length of the string of n's is specified by the
precision. The default precision is 6 and the maximum is 22. Note that the preci·
sion does not dete rmi ne the number o f signi fi cant digits printed in f fo rmat.

If no recognizab le conversion character appears after the '%', that c haracter is printed; thus '%'
may be printed by use of the s trin g "%%".

As an example of pril/ t/. the followi ng program fragment

in! i , j; float x: char ·s;
i "'" 35; j=2: x- I. 73l; s = "ritchie";
print/ ("%d %J %.sO', i, x. s);
print/ ("%0, %4d or %-4d%5.55fJ ', i, j, j, s):

would print

35 1.73l000 ritchie
043. 2 or 2 ritch

If fd is not specified, output is to unit COIlt. It is possible to direct ou tput to a strin g in·
stead o f to a file. T his is indicated by - I as the fi rst argument. The second argiJment sho uld
be a pointer to th e string. Print/will put a term inating '\0' onto the st ring. .

SCANF (lid,) control-string, argl, argl, J

SCANF (f-I, inpw·strinJ.:.) control-string, arg I, arg},)

Scan/reads characters, interprets them according to a format, and slores the resu lts in its argu
ments. It expec ts as arguments:
I. An optio nal file-descriptor or input-string, indicating the source of the input characte rs; if
omitted, file cin is used;
2. A control string, described below;
J. A set of arguments, each 0/ which //lust be a poinlcr. ind icating where the converted inpu t
should be s tored.

Tile con trol stri ng usually con tains conversion sp"ecifications. which are used to di rect in terpre
ta tion of input sequences. The control s tring may contain:

I. Blanks. tabs or newlines. whicb are ignored.
2. Ordinary characters (not %) which arc expected 10 match t'he nexl non-space

c haracter of the input stream (where space characte rs arc defined as blank. tab or
newline).

3. Conve rsion specifications. co nsisting o f th e character %. an optional assign ment

-6-

suppressing character ., an optional numerical maximum field width, and a conver
sion character.

A conversion specification is used to direct the conversion of the next input fie ld; the resull is
placed in the variable poi nted to by the corresponding argument, unless assignmen t suppres
sion was indicated by the· charac te r. An input field is defined as a st ring of non-space charac
ters; it extends either to the next space character or un til the field width, ir specified, is ex
hausted.

The convers ion characte r ind ica tes th e interpretation of the input fie ld; the correspond
ing pointer argument must usua ll y be of a restricted type. Pointers, rather than variable '
names, are requi red by the "call-by- value" sema ntics of the C language. The foll owing conver
sion characte rs are legal :

. 9/, ' indicates that a si ngle % character is expected in the input st ream at this point;
no assig nment is done.

d indicates th at a decimal integer is expected in the,input st ream; the correspond-
ing· argument should be an in teger poin ter.

o indicates that an octal intege r is expected in the input stream; the correspondi ng
argume nt shou ld be a integer pointer.

x indicates that a hexadecimal integer is expected in the input stream; the
corresponding argument s hou ld be an integer pointe r.

s indicates that a c haracte r string is expected; th e corresponding argument should
be a character pointe r pointing to an array of characters large enough to ac~ept the
string and a terminating '\0', which will be added. The input field is term inated by
a space characte r or a newline.

c indicates that a single character is expected; the corresponding argume nt should
be a characte r pointer; the next input characte r is placed at the indicated spot. The
normal skip over space cha racters is suppressed in this case; to read the next non
space character, try %/s.

e or f indicates that a floating point number is expected in the input st ream; the next
fie ld is converted accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for floats is a Si ring of
numbers possibly con taining a decimal point, followed by an optio~a l exponent fie ld
containing an E or e followed by a possibly signed integer.

indicates a stri ng not to be delimited by space c haracters. The left bracket is fo l
lowed by a se t of characters and a right bracket; the characters between the brack
ets define a set of characters making up the string. If the fi rst character is not
ci rcumflex ('), the input fie ld is all characters until the first character not in the set
between the brackets; if the first character after the left bracket is . , the input field
is all characte rs until the first charac ter which is in the remaining set of characters
between th e brackets. The correspo nding argume nt must point to a character array.

The conve rsion cha racters d, 0 and x may be preceded by I to indicate that a pointer to
long rather than inl is expec ted . Similarl y, the conversion ch'aracters ear jmay be preceded by
I to indicate that a pointer to double rather than float is in th e argument list. The character h
will funct ion similarly in the future to indicate shorl data items.

For exampl e, the call
int i; float x; char name(50);
scan! ("%d%j%s", &i, &x, name);

with the input line
25 54.32£-/ thompson

will assign to i the value 25, x the value 5.432, and name will co ntain "lhompson\O': Or,
. int i: floa t x; char name{50l;

scan! ("%2d%/% <d%[J 2345678901". &;. &x. name);

r -

-7-

with input
56789012356072

will assign 56 to i, 789.0 to x, skip " 0123", and place the string "56\0" in name. The next call
to cgelc will return 'a',

Scan/ returns as its value the number of success full y matched and assigned in put items.
This ca n be used to decide how many inpu t items were found. On end of fil e, - I is retu rned;
note tha t this is different from 0, which means that the ne xt input character does not match
what you called for in the cont rol string. Scan/. if given a first 'argument of -1, will scan a
string in memory given as the second argume nt. For example, if you want to read up to four .
numbe rs from an input line a nd find out how many there were, you cou ld try

int 0/41. amax;
char line[JOO):
amax = scan! (-/, gers(line). "%d%d%d%d': dalO}, &001 &0[21 &a[3]);

6. BINA RY STREAM ROUTINES

These routines write binary data, not translated to printable characters. They are normal
ly efficien t but do not produce files that can be printed or easily interpreted. No special infor
mation is added to the records and thus they can be hand led by ot her programming systems if
you make the departu re from portability required to tell the other system how big a C item (in
teger, noat, st ructu re, etc.) really is in machine units.

COPEN (name, direc/ion, "i")

When copen is called with a third argument as above, a binary stream filedescr iptor.is returned.
Such a file descriptor is required for the remaining subroutines in th is section , and may not be
used with the routines in the preceding two sections. The first two arguments operate exactly
as described in section 3; further details are given in section 7. An ordinary fil e descriptor may
be used for binary 1-0, but binary and character 1-0 may not be mixed unless cflush is called at
each swi tch to binary 1-0. The third argument to copen is ignored.

CWRITE (pfr, sizeoj("(Jlr), nitems, jd)

Cwrile writes nilems of data begi nning at pfr on file fd. Cwri/e writes blocks of binary informa
"tion, not translated to printable form, on a file. II is intended for machine-oriented bu lk
storage of intermediate data. Any kind of data· may be wri Hen with this command , but only
the correspo nding cread should be expected to make any sense of it on return. The first argu
men t is a pointer to the beginning of a vector of any kind of data. The second argument tells
cwrite how big the items are. The th ird argument specifies the number of the items to be writ
ten; the fourth indicates where.

CREAD (plr, sizeoj(*ptr), ni/ems, fd)

Cread reads up to ni/ems of data from file fd into a buffer beginning at plr. Cread retu rns the
num ber of items read.

,
\ ..

-8-

The returned number of items will be equal to the number requested by "items except for
reading certain devices (e.g. the teletype or magnetic tape) or reading the final bytes of a disk'
file.

Again . the second argument indicates the size of the data items being read.

CCLOSE(fd)

The same desc riptio n applies as for character-stream files.

7. OTHER PORTABLE ROUTINES

REW (fd)

Rewinds unit fd. Buffers are emptied properly and the file is left open.

SYSTEM (string)

The given string is executed as if it were typed at the terminal.

NARGS () ,
A sub routine can call this function to try to find out how many arguments it was cal led with.
Normally. nargs() returns the number of arguments/plus 3 for every jioat or double argument
and plus one for every long argument. If the new UN IX featu re of separaled instruction and
~ata space areas is used, nargs() doesn't work at all.

CALLOC (n, sizeo!(object))

Calloe returns a pointe r to new storage, ·allocated in s pace ob tained from the operating system.
The space obtained is well enough aligned fo r any use, i.e. fo r a double-prec.ision number.
Enough space to store n objects of the size indicated by the second argumen t is provided. The
sizeo! is executed at compil e time; it is not in the li brary. A return ed value of - I indicates
fai lure to obtain space.

CFREE (plr, n, sizeof(~plr))

C!ree returns to the operati ng system memory s tarting at ptr and extendi ng for 1/ units of the
size give n by the third argument. The space shou ld have been obtained through colloe. On ·
UN IX you can only return the exact amount of space ob tained by calloe: the second and third
arguments are ignored.

FTOA (fIoating-nllmber, char-siring, precision, formal)

Floa (noating to ASCII conversion) conve rts noati ng point numbe rs to character strings. The
format argument should be either 'f or 'e' ; 'e' is default . See the explanation of print! in sec
tion 5 fo r a description of the result.

ATOF (char-siring)

Returns a floating value equal to the value of the ASCII character st ri ng argument, in te rpreted
as a decimal floating poi nt nu mbe r.

TMPNAM (sIr)

This routine places in the character array expected as its argument a string which is legal to use
as a file name and which is guaranteed to be unique among all jobs execu ting on the computer

r •

-9-

at the same time. It is thus appropriate for use as a temporary file name, although the user
may wish to move it into an appropriate directory. The value of the function is the address of
the string.

ABORT (code)

Causes your program to terminate ab normally, which typically results in a dump by the op~ ra l
ing system.

This routine tells you whether you are run ning in fo regrou nd or backgrou nd. The definition of
"foreground" is that the standard input is the te rminal.

WDLENG()

This returns 16 on UN IX. C users should be aware that the preprocessor normally provides a
de fined sy mbol suitable fo r disti nguish in g the local system; thus on UN IX the sy mbol unix is
defi ned before slarting to compile you r program.

r .,

"

UNIX Summary

A. Hardware

UNIX runs on a DEC PDP I 1/40·, 11145 or 11170 with atle<lstthe following equipment:
48K to 124K words of managed memory : parity not used,
disk: RP03, RP04, RK05(preferably 2) or equivalent ,
console typewriler,
dock: KWII-Lor KWII·P,
extended instruction set KElI ·E, on 11140 only.

The system is normally distributed on 9·track tape or RK05 packs.
The following equipmenl is strongly recommended :

communications controllers such as DLlI , £XII or OH II.
full duplex 96-character ASCII terminnls,
9·1rack lape, or exira disk for system backup.

The minilll.um memory and disk space speci fied is enough 10 run and milintain UNIX. More will be
needed to keep all source on line, or 10 handle a huge number of users, big data bases, diversified com
plements 0[' devices, or large programs. UNtX docs swapping and reentrant sharing of user code to
minimize milin memory requirements. The resident code of UNtX occupies 20·22K depending on
configuration.

An 11/40 is not advisable for heavy Ooating poinl work, as UNtX on this hardwure uses interpreted
11145 110<lting point.

B. Software

All Ihe pr.ograms available as UNtX commands are l isted. Every command, including all options, is
issued as just one line, unless speci fically noted as "interactive". I n!Cractive programs can be made to
run from a prepared sc ript simply by redirecting input. .

File prol.:ess i ng com mands thaI go from sltllldard inl>ut to standard output are noted as usable as filters.
The piping facility of the Shell may be used to connect fillers directly to the input or output of other
programs.

Normally the software ·listed in $cction 6, "Typeselling," is distributed only to educat ional institutions.
Source code is incl uded except as noted.

'1 Basic Sortware

This p<lck'lge includcs the timc-sharing operating system with utilities, a machine lllnguage asscmbler
and a compiler for the programming language C-enough software to write and run new applications
and to maintain or modify UNIX itself.

1.1 Operating System

o UNIX The basic resident code all which everything else depends. Supports the system calls,
and maint;lins the file system. A general description of UNtX design philosophy and
system facilitics appeared in the Communica tions of the ACM, July, 1974. Further
capabilities include:
• Automatically supported reentrant codc.
• Separate instruct ion and data spaces on 11/45 and 11170.
• "Group" access perm issions for cooperative projects, with overlapping memberships.
• Timer-interrupt sampling. and interprocess monitoring for debugging and measure

men t.

o M'llHlal

D IIl LV)

UNIX Summary

Printed lllallllilis ror UNIX and ;111 its software, execpl where other manuals exist.
• UNIX Programmer's MalHWi.
• The UNIX T ime-Sharing Syslem_ reprint sel1ing fUflh desil,tn prindplcs.
• UNIX for Beginners.
• The lINIX 1-0 Sy.stem.
• On Ihe SeeurilY or UNIX .

All I/O is logi(ally synehrol1ous. Normally, invisible hull"cring makes all physi(al record
slru(lure Iransrarenl and exploits Ihe hardware's ability 10 do overlapped I/O.
Unbuncred rhysiGli record I/O is available for unusual arpJicatiom;. Drivers for these
lkvi(es arc availHble: olhers can he casily writlen:
• Asynchronous interfaces: DC I I; DH II, DLI I . Support faT most common ASCII ter-

minals.
• Synchronous interface: DPIL
• Automati(caHing unit inter];lce: DN II. ~ .Ji'
• Line prinler: LPIL •
• Magnctic tape: TUIO and TU16.
• I)EClapc" : TC II.
• Paper lapc. PCI !.
• Fixed head disk: RSI 1, RSO) <lnd RS04.
• P;I(k type disk·: RPO) "nu RP04, one or more logical dcvices per physical dcy ice, .

minimlllll-Iatcncy seck scheduling.
• Cartridge-type disk: RK05, one or more physical devices per log ical devi(c.
• Null device.
• Physical memory of PDPII, or mapped mcmory in res ident system .

. • Phototypcseller : Graphic Systems Systemll through DR lie.
• Voice synthcsizer: VOTRAX· through DCII. Includcs TOlJCII-TONE'~' input.

rJ BOOT Proceuures to get UNIX started.

o MKCONF Tailor device-dcpendcnt system code to hardware configura tion. Othcr changcs, such as
optimal assignmcnt of dircctories to devices, inclusion of Iloating point simulalor, or
installation of dcvice names in file sys tem, Gill thcn be madc at leisure. (As distribut
ed, UNIX I.;an be brought up directly on lilly Heceptable CPU with any acceptable disk,
any sufficient amount of corc Lind either clock.)

o Manu;l] Prinlcd lll;tIlU"] on selling up UNIX.

1. 2 USN Access CUlltrol

D UX; I N Sign 011 ltS a new user.
• Verify plIssword and establish user's individu'al Hnd grouJl (rTojectl identity.
• Ad:lrt 10 characteristics or terminal.
• Establ ish working dircctory.
• Announce prcsence or m:li] (rrom MA IL).
• Puhlish messagc of the day.
• St,ITI l:omllland intcrpre ter or other initiClI progf:lm.

o PASSWD Ch'lngc it password.
• User can change his own passwon.1.
• p.ilssworus arc kepI encrypted for bcneT security.

o NEWG RP Change working grour (projectl. Protects against changes to unauthorized rrojects.

2

(: ..

UNIX Summary

1.3 File Manipulation

o CAT

o CP

o PR

o OPR

o SPLIT

OED

o Manual

ODD

o STTY

o SUM

Concatenate one or more files onto s tandard OUI,\>Ut. Particularly used (or unadorned
printing, for inserting data into a pipeline, and for buffering output that comes in dribs

' and drabs.
• Usable as filter.

Copy one file to another. Works on any file without distinction as to conleqlS.

Print files with title, date, and page number on every page.
• Multicolumn outpUI.
• Parallel coluffin merge of seve ral files.
• Usable as a filter.

Off line print. Spools arbitrary files to the line printer.
• Usable as a filter.

Split a large file into more manageable pieces. Occasionally necessary for editing (ED).

Interacti ve con text editor. Random access to all lines of a file.
• Find lines by number or paHern. Patterns may include: specified characters. don't

care characters, choices among characters, repetiti~:ms of these constructs, beginning
of line, e nd of line.

• Add, delete, change, copy or move lines.
• Permute or split con tents of a line.
• Replace one or all in stances of a pattern within a line.
• Combine or splil fil es.
• Escape to Shell (UNIX command language) during editing.
• Do any of above operations on every pattern·selected line in a given range.

IntroduclOry manual for ED.

Physical file format translator, fo r exchanging data with foreign systems, especially
051360.

Set up options for optimal control of a terminal. In so far as they are deducible from
the input. these options are set automatically by LOGIN.
• Half vs. full duplex.
• Carriage re turn+line feed vs. newline.
• Interpretation of tabs.
• Parity.
• Mapping of upper case to lower.
• Raw vs. edited input.
• Delays for tabs, newlines and carri age returns.

Sum the words o f a file .

1.4 Manipulation of Directories and File Names

o RM Remove a file. Only the name· goes away if any other names are linked to the file.

o LN " Link" anothe r name (alias) to an existing file .

o MY Move a file . Used for re naming fil es or directories.

3

UNIX Summary

o CHMOD Change permissions on one or more files. Executab le by files' owner.

o CHOWN Change owner of one or more files.

o CHGRP Change group (project) to which a file belongs.

o MKOIR

o RMOIR

o CHOIR

o FIND

o DSW

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.
• Fi nd files that satisfy one of these crite ria:

spelling of name matches a given pallern,
creation date in given range,
date of last use in given range,
given permissions,
given owne r,
given special file characteristics,
boolean combinations of above.

• Any directory may be considered to be the root.
• Perform specified command on each file found.

In teractively step through a-directory, deleting or keeping files.

1.5 Running of Programs

o SH

o IF

o GOTO

o WAIT

o EXIT

o ECHO

The Shell, or command language interpreter.
• Supply arguments to and run any executable program.
• Redirect s tandard input or standard output
• Compose compound commands using these operators:

';' for sequential execution.
'I' for . simultaneous execution with outpu l of one process 'piped' to the inpul of
another,
'&' for asynch ronous operation ,
parentheses for grouping.

• Perform 'Shell programs', command scripts with subs titutable argume nts.
• Construct argument lists from all file names satisfy ing specificd patterns.
• Collec t command usage statistics.

Conditionally execute command on basis of:
• String comparison. '
• Filc accessibi lity.

Go to a label in a Shell program.

Wait for termination of asynch ronously running processes.

Terminate a Shell program. Usefu l with IF.

Print remainde r of command line. Use ful for diagnostics or prompts in Shell programs,
or for inserting c;lata into a pipel ine.

4

U NI X SUmm<lry

o SLEEP SUSI)cnd cxct:utio n for a speci fi ed lime.

o NOH UP Run a command immune to hanging up the terminal.

o NICE Run 11 command in low (or high) priority.

o KILL Terminate na med processes.

o CRON Perform an act ion al specified limes.
• Actions are arbitrary Shell (SH) programs.
• Times are conj uncti ons of month, day of month, day of week, hOUf and mi nute.

Ranges arc specifiable for each.

o TEE Pass data between processes and di vert a copy into a file. Used as a filler.

1.6 S tatus Inquiri es

OLS

o FILE

o DATE

o OF

o DU

o WHO

o PS

o TTY

o rWD

o PFE

List the names of one, several, or all files in one or more directories.
• Alphabetic or temporal· sorting, up or down.
• Optional information: size. owner, group, date last modi fied, dale last accessed, per

missions, i-node number.

Try to determine what kind or in rormation is in a file by consulting the file system
index and by reading the file itself.

Print today's date and time. Has conside rable knowledge or calend ric and horoJogical
peculiarities.
• May set UNIX'S idea or date and time.

Report amount or rree space on file system devices.

Print a summary or lotal space occupied by all files in a hierarchy.

Tell who's on the system.
• List or presen tly logged in users, ports and times on.
• Optional history or all logi ns and logouts.

Report on all acti ve processes attached to a te rminal.
• Gives all commands being execu ted.
• Can also report on other te rmin als.
• Can give extended status inrormation : stale and sched uling info. priority, attached

termin al, what it 's waiting ror, size.

Print name or your term inal.

Print name or yo ur working directory.

Print type or last noatin g exception.

1.1 Back up and Mai ntenance

o MOUNT Attach a device containing a fil e system to the tree or directories. ProteClS against non·
sense arrangements.

5

UNIX Summary

o UMOUNT Remove the file sys tem contained on a device from the tree of directories. Protects
against removing a busy device.

o MKFS Make a new file system on a device.

o MKNO D Make an i-node (file system entry) for a special fil e. Spec ial files are ph ysical devices,
virtual devices, physiclIl memory, etc.

o TP

o DUMP

Manage file archives on magnetic tape or DECtape.
• Collect files into an archive.
• Up~ate DECtape archive by date.
• Replace or delete DECtape files.
• Print table of contents.
• Retrieve from arch ive.

Dump the file system s tored on a specified device, selectively by date, or indiscrim·
inately.

o RESTOR Restore a dumped file system, or selectively retrieve parts thereof.

o SU

o DCHECK
o ICHECK
o NCH ECK

o CLRI

o SYNC

1.8 Accountin~

Temporarily become the super use r with all the rights and privileges thereof. Requir.es
a password .

Check co nsistency of file system.
• Print gross statistics: number of files, number of di rectories, n umber of special files,

spaced used, space free.
• Report duplicate use of space.
• R.etrieve lost space.
• Report inaccessible fil es.
• Check consistency of directories.
• List names of all fi les.

Peremptorily expunge a file and its space from a file system. Used to repair damaged
file systems.

Force all outsta nding I/O on the system to completio n. Used to shut dow n gracefully.

These routines use floating point. The timing information on wh ich the reports are based can be
manually cleared or shut olf completely.

o AC Publish cumulative connect time report.
• Connect time by user or by day.
• For all users or fo r selected users.

o SA Pub lish Shell accounting report. Gives usage inform ation on each command executed.
• Number of times used.
• Total system time. user time and elapsed lime.
• Optional averages and percenlages.
• Sorting on various fie lds.

6

,~ t' <J •

,
. ~

UNIX Summary

1.9 Inter-user COllllllunica tion

o MAIL

o WR ITE

o WALL

o MESG

Mai l a me.c;sage to one or more users. Also used to read and dispose of incoming mail.
The presence of mail is ann ou nced by LOGIN.

Es tablis h direct terminal communication with another !Jser.

Wri te to all users.

Inhi bit receipt of messages from WRITE and WALL.

1.10 Basic ProAralll Ocnlopmcnl Package

A kit of fundamental programming tools. Some of these uti lities are used as inlegral parlS of the
higher level languages described below.

DA R

o AS

o Manual

o Library

o (LISP)

Maintai n archives and lib raries. Com bines seve ral fil es into one for housekeeping
e ffic iency.
• Create new archive.
• Update archive by date.
• Repl ace or delete files .
• Print table of contents.
• Retrieve from arch ive.

Assembler. Similar to PAL-I I, but diffe ren t in detai l.
• Creates object program consisting of

code, .possibly read-only,
initialized data or read-write code,
un initialized data.

• Relocatable object code is directly exec utable without further transrormation.
• Object code normally includes a sy mbol table.
• Multi ple sou rce fil es.
• Local labels.
• Condi tional assembly.
• "Condi tional jump" instructions become bra nches or branches plus jumps dependi ng

on distance.

Printed manual for the assembl y language.

The basic run-time lib rary. T hese rou tines are used rreely by all system software.
• Formatted writing on standard ou tput.
• Tiri1e convers ions.
• Number conve rsions.
• Elementary functions : sin , cos, log, exp, atan, sqrt, gamma.
• Password enc ryption .
• Quicksort.
• Buffered characte r-by-c haracter 1/0.
• Random number genera tor.
• Floating point interprete r for I 1140's and non-noating point mac hi nes.

An e laborated 1/0 library.
• Formalled input and outpu t.
• Ability Lo put characters back inlO input streams.

7

o Man ual

o DB

O DD

O LD

o NM

o SIZE

o STRIP

o TIME

o PROF

UN IX Summary

Printed manual fo r L1 BP.

In teractive post-mortem debugger. Works on core dump files, such as are produced by
all program aborts, on object files, or on any arbitrary file .
• Symbolic add ressi ng of nles that have symbol tables.
• Octal, decimal or ASC II output.
• Symbol ic disassembly.
• Octal or decimal patching.

Dump any file.
• Output options include: octal or decimal by words, octal by bytes, ASCII , opcodes,

hexadecimal, any combination thereof.
• Range of dumping is controllable.

Link edit Combine relocatable object files. Insert required routi nes from specified
libraries.
• Resulting code may be sha rable.
• Resu lt ing code may have sepa rate instruction and data spaces.

Prin t the name list (symbol table) of an object program. Provides con trol over the style
and order of names that are printed .

Report the core requiremen ts of one or more object files.

Remove the re location and symbol table information from an Object file to save space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathe red by time-sam pl ing
the execution of a program. Uses float ing point
• Subrouti ne call frequency and ave rage times fo r C programs.

1.11 The Programming Language "e"

Dec Compile and/or link edit programs in the C language. The UN tX operating system,
most of the subsystems and C itself are written in C.
• Gene ral purpose la nguage designed for structured programm in g.
• Data types:

character,
integer,
float,
double,
pointers to all types,
func tions returning above types,
arrays of all types,
structures of all ty pes.

• Operations intended to give machine-indepenae nt control of fu ll mac hine facility,
inc luding to-memory operations and poi nter ari th metic.

• Macro prep rocessor for parameterized code and" inclusion of sta ndard fi les.
• All procedures recursive, with parame ters py value.
• Natural coercions. .
• Object code uses fu ll addressi ng capabil ity of the PDP I!.
• Runtime lib rary gives access to all system facilit ies.

8

r --

•

o Manuals

o CDB

UN'IX Summary

Printed manual and tutorial fo r the C language.

An inte ractive debugger tailored for use with C.
• Usable in real time or post-mortem.
• The debugger is a completely separate process from ·th e debuggee. No debugging

code is loaded wit h debuggee.
• Prints in natu ral notation : characters. integers (octal and decima1), noating-poi nt

numbers, double preci.sion numbers, machi ne instructions (disassembled).
• Stack trace and fault identification.
• Breakpoint tracing.

2 Other Languages

2.1 FORTRAN

o FC

o RC

o Manual

Compi le and/or link-edit FORTRAN IV programs. Object code is " threaded". Relies
heavily on naating point.
• Idiosyncracies:

free form , lower-case source code,
no arithmetic statemen t functions,
unformatted 110 requires record lengths agree,
no BACKSPACE,
no P FORMAT con trol on input.

• Hand les mixed-mode arithmetic, general subscripts and general 00 limits.
• 32-bit integer arithmetic.
• Free format numeric input.
• Understands these nonstandard specifications:

LOGICAL*I, ·2, "4,
INTEGER"'2, "4,
REAV4, "8,
COMPLEX'S, '16,
IMPLICIT.

Compile and/or link edit ' Ratfor' programs. Ratfor adds rat ional control structure a la C
to FORTRAN.
• Else, for, while, repeaL.unti l statements.
• Symbolic constants.
• File insertion.
• Compound sta tements.
• Can produce genuine FORTRAN to carry away.

Printed manual fo r Ratfor.

2.2 Other A I ~or ithm ic La nj;luages

o BAS An interactive in terpreter, similar in sty le to BASIC. Interpret unnumbered statements
immedia tely, numbered statemen ts upon ' run'.
• Stateme nts include:

comment,
dump,
for.. .next,
goto,
i f...else ... ft,
list,
print ,
prompt,

9

DOC

o Be

o Manual

o SNQ

return,
run,
save.

UNIX Summary

• All calculations double precision.
• Recursive function defining and calling.
• Builtin functions include log, e~p, sin, cos, atn, int, sqr, abs, rnd.
• Escape to ED for complex program editing.
• Usable as a filter.

Interactive programmable desk calculator. Has named storage locations as well as can·
ventio nal stack for holding integers or programs.
/) Unlimi ted precision decimal arithmetic.
o Appropriate treatment of decimal fractions.
o Arbitrary input and output radices, in particular binary,. octal, decimal and hexade

cimal.
o Reverse Polish operators:

+ - • I
remainder, power, square root,
load, siore, duplicate, clear,
print, enter program text, execute.

• Usab le as a filter.

A C-like interactive interface to the desk calcu lator De.
• All the capabilities of DC with a high-level syntax.
• Arrays and recursive functions.
• Im mediate evaluation of exp ressions and evaluat ion of functions upon call.
• Arbitrary precision' elementary functions: exp, sin, cos, atan.
• Go- to-Iess programming.
• Usable as a filter.

Prin ted manual for Be.

An interpreter very similar to SNOBOL 3.
• Limitations:

function definitions are static,
pattern matches are always anchored,
no built- in functions.

• Usable as a filter.

.2.3 Macroprocessing

o M6 A general purpose macroprocessor.
• Stream-oriented, recognizes macros anywhere in tex t
• Integer arithmetic.
• Usable as a filter.

o Manual Printed manual for M6.

2.4 Compiler-compi lers

o TMG A classical top-down compiler-compiler language. Provides a formalism for syn tax
directed translation. Produces driving tables to be loaded with a standard in terpreter.
• Resulting compilers can have arbitrary tables kept in paged secondary store.
• Integer arithmetic capability .
.• Syn tactic function capabil ity (similar to ALGOL 68 metaproductions).

10

r ..

-i;,..

i

~

<.

o Manual

o YACC

o Manual

UN IX Summary

Printed manual for the TMG compiler-writing sys tem.

An LR(t)-based compiler writing system. Duri ng execution of resulting parser!!, arbi
trary C-language, Ratfor or FORTRAN functions may be called to do code generation
or semantic actions.
• BNF syntax specifications.
• Precedence relations.
• Accepts formally ambiguous gramma rs with non-B NF resolution rules.

Printed manual for the YACC compiler-writing system.

3 Word Process ing

o ROFF

o CREF

o INDEX

o FORM

o FED

A typesetting program for terminals. Easy for nontechnical people to learn, and good
fo r most ordinary kinds of documen ts. In put consists of data lines intermixed wilh
control lines, such as

.sp 2 insert two lines of space

.ce center the next line
• Justification of either or both margins.
• Automatic hyphenation.
• Generalized funnin g heads and feet, with even-odd page capability, numbering, e tc.
• Definable macros for frequently used con trol sequences (no substitutable arguments).
• All 4 margins and page size dynamically adjustable.
• Hanging indents and one-line indents.
• Absolute and relative parameter settings.
• Optional legal-style numbering of output lines.
• Multiple file capability.

Make cross-reference listings of a collection oLfiles. Each symbol is listed together
with file, line number, and text of each line in which it occurs.
• Assembler or C language.
• Gathering or suppressing references to selected symbols.
• Last symbol defined may replace line n~mbe r. .
• Various ways to sort output available.
• Selecti ve print of uniquely occu rring symbols.

Make cross-reference indexes of English text.
• Hand les lists of specific index terms or e.xcluded terms.
• Handles words hyphenated across lines.
• Understands TROFF and NROFF output, so can gather references accordi ng 10 final

pagination .
• Output capabilities like CREF.
• Frequency counLS.

Form letter ge nerator. Remembers any number of forms and stock phrases such as.
names and addresses. Output usually intended to be ROFFed.
• Any lhing that is typed in can be remembered for later use.
• Runs interactively, querying only for those items that are nOI in ils memory.
• Any item may ca ll for the inclusion of ot he r items. For example. full name, address,

first name, title, etc., may be sepa rately retrieved from one name key.

Edi t the memory used by FORM. Extract any item, lurn it over to context editor ED
for editing, and put it back when done.
• List names of selected items.
• Print cohtcnts of selected item .

. 11

o SORT

o USORT

o TR

o D1FF

o COMM

o CM P

o GREP

o WC

o TYPO

o GSI

o COL

4 Novelties

UNIX Summary

Sort or merge ASCII files line-by-Jine.
• Sort up or down.
e Sort lexicographically or on numeric key.
• Multiple keys located by delimiters or by characler position.
• May sort upper case together with lower inlo dictionary orde r.
• Usable as a filler.

Collapse successive duplicate lines in a file into one line.
• Publish lines that were originally unique, duplicated, or both.
• May give redundancy counl rOT each linc.
• Usable as a filter.

SORT and UNIQ at the same time. Saves substantial time over sequentia l execution.

Do one-la-one charac ter translation according to an arbitrary. code.
• May coalesce selected repeated characters. .
• May delete selected characters.
• Usable as a filter.

Report line changes, additions and deletions necessary to bring two files into agree
ment.
• May produce an editor script to convert one file into another.

Identify common lines in two sorted files. Output in up to 3 columns shows lines
present in first file only, present in both, and/o r present in secol"1d only.

Compare two files and report disagreeing bytes.

Print all lines in a file that satisfy a pattern of the kind used in the editor ED.
• May print all lines that fail to match .
• May print coun t of hits.
• Usable as a filter.

Count the lines and "words" (blank-separated strings) in a file.
• Usable as a filte r.

Find typographical errors. Statistically analyzes all the words in a tex.t, weeds out
several thousand fami liar ones, and publishes the rest sorted so that the most improb
ably spelled ones tend to come to the top of the list.

Simulate Model 37 Teletype facilities on GSI-300, DASI and other Diablo-mechanism
terminals.
• Gives ha lf-line and reverse platen motions.
• Approx.imates Greek letters and othe r special characters by overstriking.
• Usable as a filter.

Canonical ize files with reverse line feeds fo r one-pass printing.
• Usable as a filter.

Sou rce code fo r game-playing programs is not distributed .

o CHESS This chess-play ing program scored 1-2- 1 and 3-0- 1 in the 1973 and 1974 Compu ter
Chess Championsh ips.

12

. r ..

•

o III

o CU BIC

o MOO

o CA L

o UN ITS

o TIT

o QU IZ

o WUM P

UNIX Summary

A blackjack tlcalcr.

An accomplished player of 4x4x4 lie-ta(-Ioc.

A fascinating number-guessing game.

Print a calendar of specified month and year.

Con veri amounts between different scales of measurement. Knows hundreds of units.
For example. how m.my km/sec is a parscc/megayear?

A lie-\aC-IOe program lhal learns. It never makes the same ~istake twice.

Tcs t your knowledge of Shakespeare, Presiden ts, capitals. etc.

Hunt the wUmpus, thrilling search in a dangerous cave.

5 Texl Ilrepa ral ion

5.1 Fo rm atters

lI igh programming skill is required \0 exploit the formatting capabilities of NROFF, although unski lled
personnel can easi ly be. trained 10 enler documents according \0 canned formals.

o NROFF

o Manual

o NEON

o Mmlu<l1

o TB L

Advanced l),pcsclIing for terminals. Style similar to ROFF. bul capable of much morc
elaborate fcats of formatting. at a price in ease of usc.
• All ROFF capabilities available or definable.
• Comp]clely de fiOilblc page formal keyed to dynamically planted "inte rrupts" at

specified lines.
• M:linlains several separately definable Iypcselling environments (e.g. one for body

texl, one for fool nOles, ;lnd Olle for unus ually e la borate headings),
• Arbitrary number of OUlput pools can be combined al will .
• Macros with substitutable arguments, and macros invocable in mid· line.
• Computation and prin ting of numerical quantities.
• Conditional execution of macros.
• Tabular layoul fadlity .
• Multicolumn QllqlUl on terminals caplIble or reverse line reed , or through the post

processor COL
• US<lble as 11 filter.

Printed manual ror NROFF.

/\ mathematical typcsCtlil1~ preprocessor ror NI{OFF similar to EQN (see Section 6) .
Prepares rormulas ror displilY 0 11 Model 37 Tele types with half- line runct ions and
128-characler ronl.
• For Diablo-mechan ism terminalS, filler output through GS I.
• S;11l1C facilities as EQN within gmphicnl cap,lbility of terminal.

Printed manual ror NEQN/EQN.

A preprocessor fur NROFr-rrROFF that translilles simple descriptions of table layouts
and contents in to deilliled typesetting inst ruct ions . .
• Computes column widths.
• [I ;lndles lert- and righI-justified columns, centered columns and decimal-point <llign

ment.
• Places column titles.

o MS

o Manuul

UNIX Summary

A sland<lrd izcd tcchnical manuscript layout for usc with NROFFfTROFF.
o P"gc numbers and dmfl dales.
• Cover sheet lind 'Iille page.
• AUIOmalk<lliy numbered subheads.
• F 001n01es.
• Single or double column.
• Paral:tmphing, display and indentation.
• Numbered equa tions.

Prinled manual for MS.

5.2 UNIX Pro~rammer's Ma nual

O MAN Print specified manual sect ion on your terminal.

o Manua l Machine-readable vers ion of the UNIX Programmer's Manual.
• System overview.
• A ll commands.
• All system culls.
• All subroutines in assembler, C and FORTRAN libraries.
• All devices and olher special files.
• Form alS of tile system and kinds of files known 10 sys tem so ftware.
• Boo\ prOt:edures.

6 Typesett ing

This so ftware gencrales OUl pUI on a Graphic Syste ms Systemll phototypesetter. It is distributed
se para tely as an enhancement to UNIX.

High programmi ng skill is required to exploit the formatting capabilities of TROFF, although unskilled
person nel can easily be traineu 10 enter documcnts according to canned fo rmats. TROFF and EQN are
sufficien tly si milar to NROFF and NEQN that it is usually possible to defin e interchangeab le formats
10 produce approx imate proof copy on terminals. The preprocessors MS und TB L are fully compat ible
with TROFF as well as NROFF.

o T ROFF

o Manuals

o EON

\

Provides facilities like NROFF, augmented as foll ows. This Summary was typeset by
TROFF.
• Vocabulary ofsevcra l 102-character fon ts (4 simultaneously) in 15 sizes.
• Positions expressible in inches, centimeters, ems, points, machine units o r arithmeti~-

combinations thereof. ~.
• Access to character-wid th computatio n for unusually difficult layout proble ms.
• Overstrikes, built-u p brackets, horizon tal and vertica l line drawing.
• Dynamic relative or absolute positioning and size selectio n, globall y or at the charac

te r level.
• Te rminal output for rough sampling of the product, usually needs a wide platen . Not

a subst itute for NROFF.
• Usable as a filler.

Printed manual and tutorial for TROFF.

A mathematical typesetting preprocessor for TROFF. Translates easily readable form u
las, eit he r in-li ne o r displayed, into detailed typese tting instructions. Formulas are wri t-
ten in a style like this: .

sigma su p 2 -=- lover N su m from 1=1 \0 N (x su b i-x bar) sup 2
wh ic h produces this:

UNIX Summary

,.
fr2 - ~1:(X, _X)2

I ~ I .
• Aulonmlic (.:ait.:u l;lliun uf size chang(.!s fur subsc ripts, sub-subscripls. ctc.
• Full vocabulary o r Greek ICliers, such <Is · ·~alllma' . 'G AMMA '.
• Aulollltltic cilh.;ulatioll or large bracket sizes.
• Vertical "piling" or rormulae ror matriccs. condiliunaluilefllatives, etc.
• Integrals, sums, etc, with arbitrarily complex. limits.
• Diacriticals: dots, double dots, hats, bars.
• Easily learned by non programmers and malhematicaltypists.
• Usable as a filte r.

o TMAN Typeset spec ified portions or UN IX manual.
• Same capabil it ies as MAN (see Section 5.2).

August, 1975

• DEC. PDP .Illd OECwpc ,HC registe red lmdem:l rks or LJigitul Equipment Corporatio n. VOTRAX is :I

regisle red trademark or Vocal Inter race Division, Federal $(': Tew Works.

1<

