DOCUMENTS FOR USE WITH THE
UNIX TIME-SHARING SYSTEM

Sixth Edition

The enclosed UNIX documentation is supplied
in accordance with the Software Agreement
you have with the Wesltern Electric Company.

£ W N

o o 00 -~ O

CONTENTS

. Setting Up UNIX — Sixth Edilion

. The UNIX Time-Sharing System

. C Relerence Manual

. Programming in C — A Tutorial

. UNIX Assembler Reference Manual

. A Tutorial Introduction to the UNIX Text Editor
. UNIX for Beginners

. RATFOR — A Preprocessor for a Rational Fortran
. YACC = Yel Another Compiler-Compiler

. NROFF Users" Manual

1.
12
13.
14.
15.
16.
12,
18.
19.

The UNIX I/O System

A Manual for the Tmg Compiler-writing Language
On the Security ol UNIX

The M6 Macro Processor

A System for Typesetting Mathematics

DC — An Interactive Desk Calculator

BC — An Arbitrary Precision Desk-Calculator Language

The Portable C Library (on UNIX)
UNIX Summary

e

\ay

SETTING UP UNIX — Sixth Edition

Iinclosed are:
. “UNIX Programmer's Manual,’ Sixth Edition.
2. Documents with the lollowing titles:

Setting Up UNIX — Sixth Edition

The UNIX Time-Sharing System

C Reference Manual

Programming in C — A Tulorial

UNIX Assembler Reference Manual

A Tutorial Introduction to the UNIX Text Editor
UNIX flor Beginners '
RATFOR — A Preprocessor for a Rational Fortran
YACC — Yet Another Compiler-Compiler
NROFF Users* Manual

The UNIX 1/0 System

A Manual for the Tmg Compiler-writing Language
On the Security of UNIX

The M6 Macro Processor

A System for Typesetting Mathematics

DC — An Interactive Desk Calculator

BC — An Arbitrary Precision Desk-Calculator Language
The Portable C Library (on UNIX)

UNIX Summary '

3. The UNIX softwarec on maglape or disk pack.

II' you are sel up to do it, it might be a good idea immediately to make a copy of the disk
or lape Lo guard against disaster. The tape contains 12100 512-byte records followed by a sin-
gle file mark: only the first 4000 512-byte blocks on the disk are significant.

The system as distributed corresponds to three fairly full RK- packs. The first contains
the binary version ol all programs, and the source {or the operaling system itself; the second
containsg all remaining source programs; the third contains manuals intended to be printed us-
ing the formatting programs roff or nroff. The ‘binary’ disk is enough to run the system, but
you will almost certainly want to modify some source programs.

Making a Disk From Tape

Il your system is on maglape, perform the following bootstrap procedure to obtain a disk
with the binaries.

l. Mount magtape on drive 0 at load point.
P Mount [ormaltted disk pack on drive 0.
3. Key in and execute at 100000

TUIO TUl6
012700 - Use the DEC ROM or other
172526 means to load block 1
(10040 (i.e. second block) at 800 BPI
012740 into location 0 and transfer
060003 10 0,
000777

The tape should move and the CPU loop. (The TU10 code is nor the DEC bulk ROM for
tape; it reads block 0, not block 1.)

Halt and restart the CPU at 0. The lape should rewind. The console should type ‘="

5. Copy the magtape lo disk by the following. This assumes TUI0 and RKOS; see 6 below
for other devices. The machine’s printouts are shown in italic (the ‘=" signs should be
considered italic). Terminate each line you Lype by carriage return or line-feed.

= tmrk

disk offset

0

tape offset

100 (See 6 below)

count

] (The tape should move)
= tmrk :

disk offset

1

tape offset

101 (See 7 below)

count

3999 (The tape moves lols more)

To explain: the nmrk program copies tape to disk with the given offsels and counts. Its
first use copies a bootstrap program to disk block 0; the second use copies the file system
itself onto the disk. You may gel back Lo ‘=" level by starting at 137000.

6. Il you have TUI16 tape say ‘hirk' instead of ‘tmrk' in the above example. Il you have an
RPO3 disk, say ‘tmrp’ or *htrp’, and use a 99 instead of 100 tape offset. If you have an
R P04 disk, use ‘tmhp’ or ‘hthp’ instead or ‘tmrk’, and use a 98 instead of 100 tape offsel.
The different offsels load bootstrap programs appropriate (o the disk they will live on.

7. This procedure generales the *binary’ disk; the ‘source’ disk may be generated on another
RK pack by using a tape offset of 4101 instead of 101. The ‘document’ disk is at offset
8101 instead of 101. Unless you have only a single RK drive, it is probably wise to wait
on generating these disks. Better tools are available using UNIX itself.

Booting UNIX

Once Lthe UNIX ‘binary’ disk is obtained, the system is booled by keying in and execut-
ing one of the following programs at 100000. These programs correspond to the DEC bulk
ROMs for disks, since they read in and execute block 0 at location 0.

RKO5 RPO3 R P04
012700 012700 Use the DEC ROM or other
177414 176726 means (o load block 0 into
005040 005040 location 0 and transfer
005040 005040 to 0.
010040 005040
012740 010040
000005 012740
105710 000005
002376 105710
005007 002376
005007
Now follow the indicaled dialog, where ‘@ and ‘#’ are prompls:
@ rkunix (or ‘rpunix’ or ‘hpunix’)
mem = xxx
login: rool
#

The mem message gives the memory available 10 user programs in 1K units. Most of the
UNIX software will run with 120 (for 12K words), but some things require much more.

UNIX is now running, and the ‘UNIX Programmer’s manual’ applies; references below
of the form X-Y mean the subsection named X in section Y of the manual. The ‘#’ is the
prompt from the UNIX Shell, and indicates you are logged in as the super-user. The only
valid user names are ‘root’ and ‘bin’. The root is the super-user and bin is the owner of nearly
cvery file in the file system.

Belore UNIX is turned up completely, a few configuration dependent exercises must be
performed. Al this point, it would be wise to read all of the manuals and to augment this read-
ing with hand to hand combat. It might be instruclive to examine the Shell run files men-
tioned below.

Reconfiguration

The UNIX system running is configured to run on an 11/40 with the given disk, TUI0
magtape and TUS6 DECtlape. This is almost certainly not the correct configuration. Print
(cat-1) the file /usr/sys/run. This file is a set of Shell commands that will completely recompile
the system source, install it in the correct libraries and build the three configurations for rk, rp
and hp. ' ;

Using the Shell file as a guide, compile (cc-1) and rename (mv-I) the configuration pro-
gram ‘mkconf’. Run the configuration program and type into it a list of the controllers on your
system. Choose from:

pc (PCI1)

Ip (LPID)

il (RST)

hs (RSO3/RS04)

te (TUS6)

rk (RKO3/RKOS)
tm - (TULO)

rp - (RPO3)

hp (RP04)

ht (TUI6)

det (DCIY)

ki* (KL11/DL11-ABC)
di* (DLI11-E)

dp (DP11)

dn (DNI1I)

dh (DHII)

dhdm (DM 1-BB)

The devices marked with * should be preceded by a number specifying how many. (The con-
sole typewriter 18 automatically included; don't count it in the kl specification.) Mkconl will
generate the two files Ls (trap vectors) and c.c (configuration table). Take a careful look al ls
to make sure that all the devices that you have are assembled in the correct interrupt veclors.
II' your configuration is non-standard, you will have to modify s to fit your configuration.

In the run Shell file, the 11/45 code is commented out. If you have an 11/45 you must
also cdit (ed-1) the file /usr/sys/conf/m45.s to sel the assembly flag fpp to reflect if you have
the FP11-B foating point unit. The main difference between an 11/40 and an 11/45 (or 11/70)
system is that in the former instruction restart after a segmentation violation caused by
overllowing a user stack must be handled by software, while. in the latter machines there is
hardware help. As mentioned above, the 11/45 and 11/70 systems include conditionally-
enabled code (o save the status of the floating point unit when switching users. The source for
such things is in one of the two files m40.s and m45.s.

Another dilference is that in 11/45 and 11/70 systems the instruction and data spaces are
separated inside UNIX itsell. Since the layout of uddresses in the system is somewhat peculiar,
and not directly supported by the link-editor /d, the sysfix program has to be run before the
loaded output file can be booted.

There are certain magic numbers and configuration parameters imbedded in various dev-
ice drivers that you may want to change. The device addresses ol each device are defined in
cach driver. In case you have any non-standard device addresses, just change the address and
recompile. (The device drivers are in the directory /usr/sys/dmr.)

The DCI1 driver is set to run 14 lines. This can be changed in dc.c.

The DHI11 driver will only handle a single DH with a full complement of 16 lines. If you
have less, you may want to edit dh.c. '

The DNI1 driver will handle 3 DN's. Edit dn.c.

The DPILI driver can only handle a single DP. This cannot be easily changed.‘

The KL/DL driver is set up 1o run a single DLI1-A, -B, or -C (the console) and no
DLI1-Es. To change this, edit kl.c to have NKLI11 reflect the total number of DLI11-ABC’s

and NDLI] to reflect the number of DLII-E’s. So far as the driver is concerned, the
difference between the devices is their addresses.

The line printer driver is set up to print the 96 character set on 80 column paper
(LP11-H) with indenting. Edit Ipc.

«

&

-

All of the disk and tape drivers (rfc, rk.c, rp.c, tm.c, tc.c, hs.c, hp.c, ht.c) are set up to run
8 drives and should not need to be changed. The big disk drivers (rp.c and hp.c) have parti-
tion tables in them which you may want to experiment with.

‘After all the corrections have been made, use /usr/sys/run as a guide to recompile the -
changed drivers, install them in /usr/sys/lib2 and to assemble the trap vectors (I.s)..
configuration table (c.c) and machine language assist (m40.s or m45.s). After all this, link edit
the objects (Id-I) and if you have an 11/45, sysfix the result. The final object file (a.out)
should be renamed /unix and booted.- See Boot Procedures-VIII for a discussion of booting.

(Note: remember, before booting, always perform a sync-VIII to force delayed output to the
disk.) : -

Special Files

Next you must put in all of the special files in the directory /dev using mknod-VIII.
Print the configuration file c.c created above. This is the major device switch of each device
class (block and character). There is one line for each device configured in your system and a

‘null line for place holding for those devices not configured. The block special devices are put

in_ﬁrsl by executing the following generic command for each disk or tape drive. (Note that
some of these files already exist in the directory /dev. Examine each file with Is-1 with —I flag

to see if the file should be removed.)

/etc/mknod /dev/NAME b MAJOR MINOR
The NAME is selected from the following list:

cc NAME device

rf rf0 RS fixed head disk

tc tap0 TUS6 DECtape

rk rk0 RKO3 RKOS moving head disk
tm mt0 TUIO TUI6 maglape

rp rp0 RP moving head disk

hs hsO RS03 RS04 fixed head disk

hp hp0 RP04 moving head disk

The major device number is selected by counting the line number (from zero) of the device’s
entry in the block configuration table. Thus the first entry in the table bdevsw would be major
device zero.

The minor device is the drive number, unit number or partition as described under each
device in section IV. The last digit of the name (all given as 0 in the table above) should
reflect the minor device number. For tapes where the unit is dial selectable, a special file may
be made for each possible selection.

.The same goes for the character devices. Here the names are arbitrary except that dev-
ices meant to be used for leletype access should be named /dev/ityX, where X is any charac-

~ter. The files tty8 (console), mem, kmem, null are already correctly configured.

The disk and magtape drivers provide a ‘raw’ interface to the device which provides

* direct transmission between the user’s core and the device and allows reading or writing large

records. The raw device counts as a characler device, and should have the name of the
corresponding standard block special file with ‘r’ prepended. Thus the raw maglape files would
be called /dev/rmtX. :

When all the special files have been created, care should be taken to change the access
modes (chmod-I) on these files to appropriate values.

The Source Disk

You should now extract the source disk. This can be done as described above or the
UNIX command dd-1 may be used. The disk image begins at block 4100 on the tape, so the
command

dd il=/dev/m10 ol=/dev/rkl count=4000 skip=4100

might be used to extract the disk to RK drive 1.

This disk should be mounted (mount-VIII) on /usr/source; it contains directories of
source code. In each directory is a Shell file run that will recompile all the source in the direc-
tory. These run files should be consulied whenever you need to recompile.

Floating Point

UNIX only supports the 11/45 FP11-B floating point unit. For machines without this
hardware, there is u user subroutine available that will catch illegal instruction traps and inter-
pret floating point operations. (See [ptrap-1I1.) The system as delivered has this code included
in all commands that have floating point. This code is never used if the FP hardware is avail-
able and therefore does not need to be changed. The penalty is a little bit of disk space and
loading time for the few floating commands.

The C compiler in /usr/source/c probably should be changed if floating point is available.
The fpp flag in cOLs should be set and C should be recompiled and reloaded and installed.
This allows floating point C programs to be compiled without the —f flag and prevents the
floating point interpreter from getting into new floating programs. (See /usr/source/c/run.)

Time Conversion

If your machine is not in the Eastern time zone, you must edit (ed-1) the subroutine
/usr/source/s4/cltime.c to reflect your local time. The variable ‘tlimezone’ should be changed 1o
reflect the time difference between local time and GMT. For EST, this is 5*60*60; for PST it
would be 8*60*60. This routine also contains the names of the standard and Daylight Savings
time zone; so ‘EST' and ‘EDT" might be changed 1o ‘PST" and ‘PDT’ respectively. Notice that
these two names are in upper case and escapes may be needed (tty-IV). Finally, there is a
‘daylight’ flag; when it is | it causes the time o shift to Daylight Savings automatically
between the last Sundays in April and October (or other algorithms in 1974 and 1975). Nor-
mally this will not have to be reset. After ctime.c has been edited it should be compiled and
installed in its library. (See /usr/source/s4/run.) Then you should (at your leisure) recompile
and reinstall all programs performing time conversion. These include: (in sl) date, dump, Is,
cron, (in s2) mail, pr, restor, who, sa and (p.

Disk Layout

If there are to be more file systems mounted than just the root, use mkfs-VIII to create
the new file system and put its mounting in the file /etc/rc (see init-VIII and mount-VIII).
(You might look at /elc/rc anyway o see what has been provided for you.)

There are two considerations in deciding how 1o adjust the arrangement of things on your
disks: the most important is making sure there is adcquate space for what is required; secon-
darily, throughput should be maximized. The RK disk (or its image) as distributed has 4000
blocks for file storage, and the remainder of the disk (872 blocks) is set aside for swap space.
In our own system, which allows 14 simultaneous users, this amount of swap space is not quite
enough, so we use 1872 blocks for this purpose; it is large enough so running out of swap
Space never occurs. T

=T

Many common system programs (C, the editor, the assembler .
files in the /tmp directory, so the file system where this is stored also =
enough lo accommodate most high-water marks. In an idle state, we ha
blocks on the file system where /tmp resides, and hit the bottom every. few da_
causes a momenlary disruption, bul not a crash, as swap-space runout does.) All ..
that creale files in /tmp try to take care lo delete them, but most are not immune 10 e

being hung up upon, and can leave dregs. The directory should be examined every su
and the old files deleled.

Exhaustion of user-file space is certain to occur now and then; the only mechanisms for
controlling this phenomenon are occasional use of du-l and threatening messages of the day

and personal letters.

The efficiency with which UNIX is able to use the CPU is largely dictated’ by the
configuration of disk controllers. For general time-sharing applications, the best strategy is 1o
try to split user files, the root directory (including the /tmp directory) and the swap area among
three controllers. In.our own system, for example, we have user files on an RP, the root on an
RF fixed-head disk, and swap on an RK. This is best for us since the RK has a faster transfer
rate than the rather slow RF, and in swapping the transfer rate rather than access time is the
dominant influence on throughput. -

Once you have decided how to make best use of your hardware, the question is how to
initialize it. If you have the equipment, the best way to move a file system is to dump it
(dump-VIII) to magtape, use mkfs-VIII to create the new file system, and restore the tape. If
you don't have magtape, dump accepts an argument telling where to put the dump; you might
use another disk or DECtape. Sometimes a file system has to be increased in logical size
without copying. The super-block of the device has a word giving the highest address which
can be allocated. For relatively small increases, this word can be patched using the debugger
(db-I) and the free list reconstructed using icheck-VIIIl. The size should not be increased very
greatly by this technique, however, since although the allocatable space will increase the max-
imum number of files will not (that is, the i-list size can't be changed). Read and understand
the description given in file system-VI before playing around in this way.

If you have only an RP disk, see section rp-IV for some suggestions on how to lay out
the information on it. The file systems distributed on lape, containing the binary, the source,
and the manuals, are each only 4000 blocks long. Perhaps the simplest way to integrate the

“latter two into a large file system is to extract the tape into the upper part of the RP, dump it,

and restore it into an empty, non-overlapping file system structure. If you have to merge a file
system into another, existing one, the best bet is to use ncheck-VIII to get a list of names,
then edit this list into a sequence of mkdir and cp commands which will serve as input to the
Shell. (But notice that owner information is lost.)

New Users

Install new users by editing the password file /etc/passwd (passwd-V). You’ll have to
make current directories for the new users and change their owners to the newly installed
name. Login as each user to make sure the password file is correctly edited. For example:

(9%

. root

.> will make a new login entry for joe. His default current directory is /usr/joe which has
been created. The delivered password file has the user ken in il o be used as a prototype.

Multiple Users

If UNIX is to support simultaneous access from more than just the console teletype, the
file /etc/tlys (itys-V) has to be edited. For some historical reason tty8 is the name of the con-
sole typewriter. To add new typewriters be sure the device is configured and the special file
exists, then set the first character of the appropriate line of /etc/ttys to 1 (or add a new line).
Note that init.c will have to be recompiled if there are to be more than 20 typewriters. Also
note that if the special file is inaccessible when init tries Lo create a process for it, the system
will thrash trying and retrying Lo open it.

File System Health

Periodically (say every day or so) and always after a crash, you should check all the file
systems for consistency (icheck, dcheck-VIII). It is quite important to execute sync (VIII) be-
fore rebooting or taking the machine down. This is done automatically every 30 seconds by
the update program (VIII) when a multiple-user system is running, but you should do it any-
way Lo make sure.

Dumping of the file system should be done regularly, since once the system is going it is
very easy 10 become complacent. Just remember that our RP controller has failed three times,
each time in such a way that all information on the disk was wiped out without any error
status from the controller. Complete and incremental dumps are easily done with the dump
command (VIII) but restoration of individual files is painful. Dumping of files by name is best
done by tp (I) but the number of files is limited. Finally if there are enough drives entire
disks can be copied using cp-l, or preferably with dd-I using the raw special files and an ap--
propriate block size. Note that there is no stand-alone program with UNIX that will restore
any of these formats. Unless some action has been taken 1o prevent destruction of a running
version of UNIX, you can find yourself stranded even though you have backup. .

Odds and Ends

The programs dump, icheck, dcheck, ncheck, and df (source in /usr/source/sl and
/usr/source/s2) should be changed to reflect your default mounted file system devices. Print
the first few lines of these programs and the changes will be obvious.

If you would like to share any UNIX compalible software with others, please let us know
about it. If you find bugs in the software or the documentation, again let us know.

Lastly, there is a UNIX users” group forming. To get on their mailing list, send your
name(s) and address to:"

Prof. Melvin Ferentz

- Physics Dept.
Brooklyn College of CUNY
Brooklyn, N.Y. 11210

Good luck.
Ken Thompson
Dennis Ritchie

The UNIX Time-Sharing System

Dennis M. Riichie
Ken Thompson

Bell Laboratories
Murray Hill, N. J. 07974

ABSTRACT

UNIX is a general-purpose, multi-user, inleractive operating system for the Digital Equipment Corpora-
" tion pDP-11/40, 11/45 and 11/70 computers. It offers a number of features seldom found even in larger
operaling systems, including

I. A hierarchical file system incorporating demountable volumes,

2. Compatible file, device, and inter-process 1/0,

3. The ability to initiate asynchronous processes,

4. System command language selectable on a per-user basis,

5. Over 100 subsystems including a dozen languages.

This paper discusses the nature and implementation ol the file system and of the user command inter-
face.

1. Introduction

There have been Lhree versions of UNIX. The earliest version (circa 1969-70) ran on the Digital
Equipment Corporation ppr-7 and -9 compulers. The second version ran on the unprotected ppp-11/20
computer. This paper describes only the ppp-11/40, /45 and /70! system, since it is more modern and
many of the differences between it and older UNIX systems result from redesign of features found to be
deficient or lacking.

Since popr-11 UNIX became operational in February,, 1971, about 100 installations have been put into
service, they are generally smaller than the system described here. Most of them are engaged in appli-
cations such as the preparation and formatling of patent applications and other textual material, the
collection and processing of trouble data from various swilching machines within the Bell System, and
recording and checking telephone service orders. Our own installation is used mainly for research in
operaling syslems, languages, compuler networks, and other topics in computer science, and also for
document preparation. :

Copyright ©® 1974, Association Tor Computing Machinery, Ine. General permission o republish, but not for profit, all or part
ol this material is granted provided that ACM's copyright notice is given and that relerence is made to the publication, 1o its daie
ol issue, and to the fuct that reprinting privileges were granted by permission of the Association for Computing Machinery.

.

This is o revised version of an article appearing in the Communications ol the ACM, Volume 17, Number 7 Culy 1974) pp,
365-375, That article is o revised version ol a paper presented at the Fourth ACM Symposium on Operating Systems Principles,
1BM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973,

Unix Time-Sharing System - 2

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operating system
lor interactive use need not be expensive either in equipment or in human efforl: UNIX can run on
hardware costing as little as $40,000, and less than two man-years were spent on Lthe main system
sofltware. Yel UNIX contains a number of features seldom offered even in much larger systems. Hope-
[ully, however, the users of UNIX will find that the most important characteristics of the system are its
simplicity, elegance, and ease of use.

Besides the system proper, the major programs available under UNIX are

assembler,

text editor based on QED?,

linking loader,

symbolic debugger, :
compiler for a language resembling BCPL? with types and structures (C),
interpreter for a dialecl ol BASIC,

phototypeselling and equation setting programs

Fortran compiler,

Snobol interpreter,

lop-down compiler-compiler (TMG*),

bottom-up compiler-compiler (YACC),

form letter generator,

macro processor (M65),

permuted index program,

There is also a host of mainlenance, utility, recreation and novelty programs. All of these programs
were written locally. It is worth noting that the system is totally self-supporting. All UNIX software is
maintained under UNIX; likewise, this paper and all other UNIX documents were generated and format-
ted by the UNIX editor and text formatting program. '

2. Hardware and software environment

The pDP-11/45 on which our UNIX installation is implemented is a 16-bit word (8-bit byte) computer
with 112K bytes of core memory; UNIX occupies 33K bytes. This system, however, includes a very
large number ol device drivers and enjoys a generous allotment of space for 1/0 buffers and system
tables; a minimal system capable of running the software mentioned above can require as little as 64K
bytes of core allogether.

Our ppP-11 has a IM byte fixed-head disk, used for file system storage and swapping, four moving-
head disk drives which each provide 2.5M bytes on removable disk cartridges, and a single moving-
head disk drive which uses removable 40M byte disk packs.” There are also a high-speed paper lape
reader-punch, nine-track magnetic tape, and DECtape (a variety of magnetic tape facility in which indi-
vidual records may be addressed and rewritten). Besides the console lypewriter, there are 30 variable-
speed communications interfaces attached to 100-series datasets and a 201 dataset interface used pri-
marily for spooling printout to a communal line printer. There are also several one-of-a-kind devices
including a Picturephone® interface, a voice response unit, a voice synthesizer, a phototypesetter, a di-
gital switching network, and a satellite PDP-11/20 which generates vectors, curves, and characters on a
Tektronix 611 storage-tube display.

The greater part of UNIX software is written in the above-mentioned C language®. Early versions of
the operating system were wrillen in assembly language, but during the summer of 1973, it was rewrit-
ten in C. The size of the new system is about one third greater than the old. Since the new system is
not only much easier to understand and to modify but also includes many functional improvements,
including multiprogramming and the abilily to share reentrant code among several user programs, we
considered this increase in size quite acceptable. '

a

N

UNix Time-Sharing System - 3

3. The File system

The most important role of UNIX is to provide a file system. From the point of view ol the user,
there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example symbolic or binary (object)
programs. No particular structuring is expected by the system. Files of text consist simply ol a string
of characlers, with lines demarcated by the new-line character. Binary programs are sequences of
words as they will appear in core memory when the program slarts executing. A [ew user programs
manipulate files with more structure; for example, the assembler generates, and the loader expects,.an
object file in a particular format. However, the structure of files is controlled by the programs which
use them, not by the system.

3.2 Directories

Direclories provide the mapping between the names of files and the files themselves, and thus in-
duce a structure on the file system as a whole. Each user has a directory of his own files; he may also
creale subdirectories to contain groups of files conveniently treated together. A direclory behaves ex-
actly like an ordinary file except that it cannot be written on by unprivileged programs, so that the sys-
tem controls the contents of directories. However, anyone with appropriate permission may read a
directory just like any other file. '

The system maintains several directories for its own use. One of these is the roor directory. All files
in the system can be found by tracing a path through a chain of directories until the desired file is
reached. The starting point for such searches is often the root. Another system directory contains all
the programs provided for general use; that is, all the commands. As will be seen, however, it is by no
means necessary that a program reside in this directory [or it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified to the
system, it may be in the form of a path name, which is a sequence ofl directory names separated by
slashes /" and ending in a file name. If the sequence begins with a slash, the search begins in the
root directory. The name /alpha/beta/gamma causes the system Lo search the root for directory alpha,
then to search alpha for beta, finally o find gamma in beta. Gamma may be an ordinary file, a directory,
or a special file. As a limiting case, the name **/" refers to the root itself.

A path name not starting with **/" causes the system to begin the search in the user’s current direc-
tory. Thus, the name alpha/beta specifies the file named bera in subdirectory alpha of the current
directory. The simplest kind of name, for example alpha, refers to a file which itsell is found in the
current direclory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly different names. This
feature is called linking; a direclory entry for a file is sometimes called a link, uNIX differs from other
systems in which linking is permitted in that all links 1o a file have equal status. That is, a file does not
exist within a particular directory; the directory entry for a file consists merely of its name and a
pointer to the information actually describing the file. Thus a file exists independently of any directory

. entry, although in practice a file is made to disappear along with the last link to it.

"

Each directory always has at least two entries. The name **." in each directory refers to the directo-
ry itsell. Thus a program may read the current directory under the name “." without knowing its
complele path name. The name *“.." by convention refers to the parent of the directory in which it
appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the special en-
tries ** ." and **..", each directory must appear as an entry in exactly one other, which is its parent.
The reason for this is to simplify the writing of programs which visit subtrees of the directory struc-
ture, and more important, to avoid the separation of portions of the hierarchy. If arbitrary links lo

directories were permiitted, it would be quite difficult to detect when the last connection from the root

‘lo a directory was severed.

Unix Time-Sharing System - 4

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. [ach 1/O device supported
by UNIX is associated with at least one such file. Special files are recad and written just like ordinary
disk files, bul requests to read or wrile resull in activation of the associated device. An entry for each
special file resides in directory /dey, although a link may be made Lo one ol these files just like an ordi-
nary file. Thus, for example, to punch paper tape, one may write on the file /dev/ppt. Special files ex-
ist for each communication line, each disk, each tape drive, and for physical core memory. Of course,
the active disks and the core special file are protected from indiscriminate access.

There is a threefold advantage in treating /O devices this way: file and device 1/0 are as similar as
possible; file and device names have the same syntax and meaning, so that a program expecting a file
name as a parameter can be passed a device name; finally, special files are subject lo the same protec-
tion mechanism as regular files.

3.4 Removable file systems

Although Lhe root of the file system is always stored on the same device, il is not necessary Lhat the
entire file system hierarchy reside .on this device. There is a mount system request which has two argu-
ments: the name of an existing ordinary file, and the name of a special file whose associated storage
volume (e. g. disk pack) should have the structure of an independent file system conlaining its own
directory hierarchy. The effect of mount is to cause references to the heretofore ordinary file to refer
instead to the root directory of the file system on the removable volume. In effect, mount replaces a
leaf of the hierarchy tree (the ordinary file) by a whole new subtree (the hierarchy stored on the re-
movable volume). After the mount, there is virtually no distinction between files on the removable
volume and those in the permanent file system. In our installation, lor example, the root directory re-
sides on the fixed-head disk, and the large disk drive, which contains user’s files, is mounted by the
system initialization program; the four smaller disk drives are available (o users for mounting their own
disk packs. A mountable file system is generaled by writing on its corresponding special file. A utility
program is available to create an emply file system, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no link
may exist between one file system hierarchy and another. This restriction is enforced so as to avoid
the elaborate bookkeeping which would otherwise be required to assure removal of the links when the
removable volume is finally dismounted. In particular, in the root directories of all file systems, remov-
able or not, the name **.. " refers Lo the directory itself instead of to its parent.

3.5 Protection

Although the access control scheme in UNIX is quite simple, it has some unusual features. Each user
of the system is assigned a unique user identification number. When a file is created, it is marked with
the user 1D of its owner. Also given for new files is a set ol seven protection bits. Six of these specily
independently read, write, and execute permission for the owner of the file and for all other users.

If the seventh bit is on, the system will temporarily change the user identification of the current
user 1o that of the creator of ‘the file whenever the file is executed as a program. This change in user
ID is effective only during the execution of the program which calls for it. The set-user-1D feature pro-
vides for privileged programs which may use files inaccessible to other users. For examiple, a program
may keep an accounting file which should neither be read nor changed except by the program itself. If
the set-user-identification bit is on for the program, it may access the file although this access might be
forbidden to other programs invoked by the given program’s user. Since the actual user 1D of the in-
voker of any program is always available, set-user-1D programs may take any measures desired to satisfy
themselves as to their invoker's credentials. This mechanism is used lo allow users lo execute the
carefully-written commands which call privileged system entries. For example, there is a system entry
invokable only by the “super-user” (below) which creates an empty directory. As indicated above,
directories are expected to have entries for *“." and **..". The command which creates a directory is
owned by the super-user and has the sct-user-1D bil sel. After it checks its invoker’s authorization (o

‘

Unix Time-Sharing System - 5

create the specified directory, it creates it and makes the entries for . and ...

Since anyone may set the set-user-1D bil on one of his own files, this mechanism is generally avail-
able without administrative intervention. For example, this protection scheme easily solves the MOO
accounting problem posed in [7).

The system recognizes one particular user ID (that of the “‘super-user”) as exempt from the usual
constraints on file access; thus (for example) programs may be written to dump and reload the file sys-
tem without unwanted interference from the protection system.

3.6 1/0 calls

The system calls to do 1/0 are designed to eliminate the differences between the various devices and
styles of access. There is no distinction between ‘“‘random™ and “sequential™ 1/0, nor is any logical
record size imposed by the system. The size of an ordinary file is determined by the highest byle writ-
ten on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of I/0 in UNIX, some of the basic calls are summarized below in an
anonymous language which will indicate the required parameters without getling into the complexities
of machine language programming. Each call to the system may potentially result in an error return,
which for simplicity is not represented in the calling sequence.

To read or write a file assumed 1o exist already, it must be opened by the following call:
filep = open (name, flag)

Name indicates the name of the file. An arbitrary path name may be given. The flag argument indi-
cates whether the file is to be read, writlen, or “updated,” that is read and written simultlaneously.

The returned value filep is called a file descriptor. 1t is a small integer used to identily the file in sub-
sequent calls to read, wrile or otherwise manipulate the file.

To create a new file or complelely rewrite an old one, there is a create system call which creates the
given file if it does not exist, or truncates it to zero length if it does exist. Create also opens the new
file for writing and, like open, returns a file descriptor.

There are no user-visible locks in the file system, nor is there any restriction on the number of users
who may have a file open for reading or writing. Although it is possible for the contents of a file to
become scrambled when two users write on it simultaneously, in practice difficulties do not arise. We
take the view that locks are neither necessary nor sufficient, in our environment, to prevent interfer-
ence between users of the same file. They are unnecessary because we are not faced with large,
single-file data bases maintained by independent processes. They are insufficient because locks in the
ordinary sense, whereby one user is prevented from writing on a file which another user is reading,
cannot prevent confusion when, for example, both users are editing a file with an editor which makes
a copy of the file being edited.

It should be said that the system has sufficient internal interlocks to maintain the logical consistency
of the file system when two users engage simultaneously in such inconvenient activities as writing on
the same file, creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a particular byte in
the file was the last byle written (or read), the next 1/O call implicitly refers 1o the first following byle.
For each open file there is a pointer, maintained by the system, which indicales the next byle to be
read or written. Il n byles are read or writlen, the poinler advances by n byltes.

Once a file is open, the following calls may be used.
n = read (filep, buffer, count)

n = write (filep, buffer, count)

UNix Time-Sharing System - 6

Up o count bytes are transmitted between the file specified by filep and the byte array specified by
buffer. The returned value n is the number of bytes actually transmitted. In the write case, n is the
same as count excepl under exceptional conditions like [/0 errors or end of physical medium on special
files; in a read, however, n may without error be less than count. If the read pointer is so near the end
of the file that reading count characters would cause reading beyond the end, only sufficient bytes are
transmitted to reach the end of the file; also, typewriter-like devices never return more than one line
of input. When a read call returns with n equal 10 zero, il indicates the end of the file. For disk files
“this occurs when the read pointer becomes equal to the current size ol the file. [t is possible to gen-
erale an cnd-of-file from a typewriler by use of an escape sequence which depends on the device used.

Bytes wrilten on a file affect only those implied by the position of the write pointer and the count;
no other part of the file is changed. I the last byte lies beyond the end of the file, the file is grown as
needed. '

To do random (direct access) i/0 it is only necessary to move the read or write pointer to the ap-
propriate location in the file.

location = seek (filep, offset, base)

The pointer associaled with filep is moved lo a position offsef bytes from the beginning of the file, from
the current position of the pointer, or from the end of the file, depending on base. Offset may be nega-
tive. For some devices (e.g. paper lape and typewriters) seek calls are ignored. The actual offset from
the beginning of the file to which the pointer was moved is returned in location. '

3.6.1 Other 1/0 calls

There are several additional system entries having to do with 1/0 and with the file system which will
not be discussed. For example: close a file, get the status of a file, change the protection mode or the
owner of a file, creale a directory, make a link to an existing file, delete a file.

4. Implementation of the file system

As mentioned in §3.2 above, a directory entry contains only a name for the associated file and a
pointer to the file itsell. This pointer is an integer called the i-number (for index number) of the file.
When the file is accessed, its i-number is used as an index into a system table (the i-/ist) slored in a
known part of the device on which the directory resides. The entry thereby found (the file’s i-node)
contains the description of the file:

. iIls owner;

. its prolection bits;

. the physical disk or tape addresses lor the file contents;

. 11S size;

. lime of last modification;

. the number of links to the file; that is, the number of times it appears in a directory;
. a bit indicating whether the file is a directory,

. 4 bit indicating whether the file is a special file;

. a bit indicating whether the file is “large™ or “small.”

L0~ b N —

The purpose of an open or create system call is to turn the path name given by the user into an i-
number by searching the explicitly or implicitly named directories. Once a file is open, ils device, i-
number, and read/wrile pointer are stored in a system table indexed by the file descriptor returned by
the open or create. Thus the file descriptor supplied during a subsequent call 1o read or write the file
may be easily related to the information necessary 1o access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made which contains
the name of the file and the i-node number. Making a link to an existing file involves crealing a direc-
tory entry with the new name, copying the i-number from the original file entry, and incrementing the

ae

Unix Time-Sharing System - 7

link-count field of the i-node. Removing (deleting) a file is done by decrementing the link-count of
the i-node specified by its directory entry and erasing the directory entry. If the link-count drops Lo 0,
any disk blocks in the file are freed and the i-node is deallocated.

The space on all fixed or removable disks which contain a file system is divided into a number of
512-byte blocks logically addressed from 0 up to a limit which depends on the device. There is space
in the i-node of each file for eight device addresses. A small (non-special) file fits into eight or fewer
blocks: in this case the addresses of the blocks themselves are stored. For large (non-special) files,
seven of the eight device addresses may point to indirect blocks each containing 256 addresses for the
data blocks of the file. If required, the eighth word is the address of a double-indirect block containing
256 more addresses of indirect blocks. Thus files may conceptually grow to (7+256)-256:512 bytes; ac-
tually they are restricted to 16,777,216 (2*) bytes. Once opened, a small file (size | to 8 blocks) can
be accessed directly. A large file (size 9 to 32768 blocks) requires one additional access to read below
logical block 1792 (7-256) and two additional references above 1792.

The foregoing discussion applies Lo ordinary files. When an 1/0 request is made lo a file whose i-
node indicates that it is special, the last seven device address words are immaterial, and the first is in-
terpreted as a pair of byles which constitute an internal device name. These byles specify respectively a
device lype and subdevice number. The device type indicates which system routine will deal with 1/O
on that device; the subdevice number selects, for example, a disk drive attached to a particular con-
troller or one of several similar typewriler interfaces. 3

In this environment, the implementation ol the mount system call (§3.4) is quite straightforward.
Mount maintains a system table whose argument is the i-number and device name of the ordinary file
specified during the mount, and whose corresponding value is the device name of the indicated special
file. This table is searched for each (i-number, device)-pair which turns up while a path name is being
scanned during an open or create; if a match is found, the i-number is replaced by 1 (which is the i-
number of the root directory on all file systems), and the device name is replaced by the table value.

To the user, both reading and wriling of files appear to be synchronous and unbuffered. That is, im-
mediately after return from a read call the data are available, and conversely after a write the user's
workspace may be reused. In fact the system maintains a rather complicated buffering mechanism
which reduces greatly the number of 1/0 operations required to access a file. Suppose a write call is
made specifying transmission of a single byte. UNix will search its buffers to see whether the affected
disk block currently resides in core memory; if not, it will be read in from the device. Then the
affected byte is replaced in the buffer and an entry is made in a list of blocks lo be written. The return
from the write call may then take place, although the actual 1/O may not be completed until a later
time. Conversely, if a single byte is read, the system determines whether the secondary storage block
in which the byle is located is already in one of the system’s buffers; il so, the byle can be returned
immediately. If not, the block is read into a buffer and the byte picked oul.

The system recognizes when a program has made accesses o sequential blocks of a file, and asyn-
chronously pre-reads the next block. This significantly reduces the running time ol most programs
while adding little to system overhead.

A program which reads or writes files in units of 512 bytes has an advantage over a program which
reads or wriles a single byle al a time, but the gain is not immense; it comes mainly from the
avoidance of system overhead. A program which is used rarely or which does no great volume ol 1/0)
may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organizing the file
system has proved quite reliable and casy to deal with. To the system itsell, onc ol its strengths is the
fact that each file has a shorl, unambiguous name which is related in a simple way to the protection,
addressing, and other information needed o access the file. It also permits a quite simple and rapid al-
gorithm for checking the consistency of a file system, for example verilication that the portions of cach
device containing useful information and those free to be allocated are disjoint and together exhaust
the space on the device. This algorithm is independent of the directory hierarchy, since it need only

Unix Time-Sharing System - 8

scan the linearly-organized i-list. At the same time the notion of the i-list induces certain peculiarities
not found in other file system organizations. [For example, there is the question of who is to be
charged lor the space a lile occupies, since all directory entries for a file have equal status. Charging
the owner of a file is unfair in general, since one user may create a file, another may link to it, and the
first user may delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally among
users who have links to a file. The current version of UNIX avoids the issue by not charging any fees
at all,

4.1 Efficiency of the file system _ .
To provide an indication of the overall efficiency of UNIX and of the file system in particular, timings
were made of the assembly of a 8848-line program. The assembly was run alone on the machine; the
total clock time was 32 seconds, lor a rate of 276 lines per second. The time was divided as [ollows:
66% assembler execution time, 21% system overhead, 13% disk wait time. We will not attempt any in-
lerpretation of these ﬁgurea nor any comparison with other systems, but merely note that we are gen-
erally satisfied with the overall performance of the system.

5. Processes and images
An image is a computer execution environment. [t includes a core image, general register values,
status of open files, current direclory and the like. An image is the current state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of a process, the
image must reside in core; during the execution of other processes it remains in core unless the ap-
pearance of an active, higher-priority process forces it to be swapped out to the fixed-head disk.

The user-core part of an image is divided into three logical segments. The program text segment be-
gins at location 0 in the virtual address space. During execution, this segment is write-protecled and a
single copy of it is shared among-all processes executing the same program. At the first 8K byte boun-
dary above the program lext segment in the virtual address-space begins a non-shared, writable data

segment, the size of which may be exlended by a system call. Starting at the highest address in the -

virtual address space is a stack segment, which automatically grows downward as the hardware's stack
pointer fluctuates. :

5.1 Processes

Except while UNIX is bootstrapping itsell into operation, a new process can come into existence only
by use of the fork system call:

processid = fork (label)

When fork is executed by a process, il splits into two independently execuling processes. The two
processes have independent copies of Lthe original core image, and share any open files. The new
processes differ only in thal one is considered the parent process: in the parent, control returns directly
from the fork, while in the child, control is passed to location /abel. The processid returned by the fork
call is the identification of the other process.

Because the return points in the parent and child process are not the same, each image existing aflter
a fork may. determine whether it is the parent or child process.

5.2 Pipes

Processes may communicate with related processes using the same system reaa' and write calls that
are used for file system /0. The call

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, like other

&

Unix Time-Sharing System - 9

open liles, is passed from parent to child process in the image by the fork call. A read using a pipe file
descriptor waits until another process writes using the file descriptor for the same pipe. Al this point,
data arc passcd between the images ol the two processes. Neither process need know that a pipe, rath-
er than an ordinary file, is involved.

Although inter-process communication via pipes is a quile valuable tool (see §6.2), it is not a com-
pletely general mechanism, since the pipe must be set up by a common ancestor ol the processes in-
volved. g

5.3 Execution of programs
Another major system primitive is invoked by

execute (file, arg,, arg,, ..., arg,)

which requests the system to read in and execule the program named by file, passing il string argu-
ments arg,, arg,, ..., arg. All the code and data in the process using execute-is replaced from the file,
but open files, current directory, and inter-process relationships are unaltered. Only il the call fails, for
example because file could not be found or because ils execule-permission bit was not sel, does a re-
turn take place from the execute primitive; it resembles a “jump” machine instruction rather than a
subroutine call.

5.4 Process synchronization
Another process control system call

processid = wait ()

causes its caller to suspend execution until one of its children has completed execution. Then wait re-
turns the processid of the lerminated process. An error return is taken if the calling process has no des-
cendants. Certain status from the child process is also available.

5.5 Termination
Lastly,

exil (status)

terminates a process, destroys its image, closes its open files, and generally obliterales it. When the
parent is nolified through the wair primitive, the indicated sratus is available to the parent. Processes
may also terminate as a result of various illegal actions or user-generated signals (§7 below).

6. The Shell

For most users, communication with UNIX is carried on with the aid of a program called the Shell.
The Shell is a command line interpreter: it reads lines typed by the user and interprets them as re-
quests to execute other programs. In simplest form, a command line consists of the command name
followed by arguments to the command, all separated by spaces:

command arg; arg, ... arg

n

The Shell splits up the command name and the arguments into separate strings. Then a file 'with name

-command is sought; command may be a path name including the */" characler to specifly any file in the

system. Il command is found, it is brought into core and executed. The arguments collected by the

‘Shell are accessible to the command. When the command is finished, the Shell resumes ils own exe-
. cution, and indicates its readiness to accept another command by Lyping a prompt character.

If file command cannot be found, the Shell prefixes the string /bin/ o command and atlempls again
to find the file. Directory /bin contains all the commands intended to be generally used.

Unix Time-Sharing System - 10

6.1 Standard 1/0

The discussion of 170 in §3 above seems to imply that every filc used by a program must be opened
or created by the program in order 1o get a file descriptor lor the file. Programs executed by the Shell,
however, start off with two open files which have file descriptors 0 and 1. As such a program begins
execution, file | is open for writing, and is best understood as the standard output file. Except under
circumstances indicated below, this file is the user's typewriter. Thus programs which wish 1o write in-
formative or diagnostic information ordinarily use file descriptor 1. Conversely, file 0 starts off open for
reading, and programs which wish o read messages typed by the user usually read this file.

The Shell is able to change the standard assignments of these file descriptors from the user’s type-
writer printer and keyboard. If one of the arguments to a command is prefixed by *>", file descriptor
| will, for the duration of the command, refer 10 the file named aflter the *>". For example,

Is
ordinarily lists, on the typewriter, the names of the files in the current directory. The command
Is >there

creales a file called rhere and places the listing there. Thus the argument *“>there” means, “place oul-
put on there.”” On the other hand,

ed

ordinarily enters the editor, which takes requests from the user via his typewriler. The command
ed <scripl

interprets scripr as a file of editor commands; thus ** <script” means, “take inputl from script.”

Although the file name following *“ <" or “>" appears to be an argument to the command, in fact it
is interpreted completely by the Shell and is not passed to the command at all. Thus no special coding
to handle 1/0 redirection is needed within each command the command need merely use the standard
file descriptors 0 and | where appropriate.

6.2 Filters

An exlension of the standard 1/0 notion is used to direct output from one command to the input of
another. A sequence of commands separated by vertical bars causes the Shell to execute all the com-
mands simultaneously and to arrange that the standard output of each command be delivered to the
standard input of the next command in the sequence. Thus in the command line

Is | pr =2 | opr

/s lists the names of the files in the current directory, its output is passed Lo pr, which paginates its in-
put with dated headings. The argument **—2" means double column. Likewise the outpul from pris
inputl to gpr. This command spools its input onto a file for off-line printing,

This procedure could have been carried out more clumsily by

Is >templ
pr —2 <templ >1emp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and input, a
still clumsier method would have been to require the /s command to accepl user requests (o paginale
its outpul, to print in multi-column format, and o arrange Lhal its outpul be delivered off-line. Actual-
ly it would be surprising, and in fact unwise for eﬂ:cnency reasons, (o expecl authors of commands
such as /s to provide such a wide varietly of outpul options.

e

UNix Time-Sharing System - 11

A program-such as pr which copies its standard input to its standard output (with processing) is
called a filter. Some filters which we have found useful perform character transliteration, sorting of the
input, and encryption and decryption.

6.3 Command Separators; Multitasking -
Another feature provided by the Shell is relatively straightforward. Commands need not be on
different lines; instead they may be separated by semicolons.
Is; ed
will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by “&", the Shell will not wait for
the command to finish before prompting again: instead, it is ready immediately to accepl a new com-
mand. For example,

as source >oulpul &

causes source 10 be assembled, with diagnostic outpul going 10 output; no matler how long the assembly
takes, the Shell returns immediately. When the Shell does not wait for the completion of a command,
the identification of the process running that command is printed. This identification may be used to

wail for the completion of the command or to terminate it. The “&" may be used several times in a
line:

as source >oulput & Is >files &

“does both the assembly and the listing in the background. In the examples above using “&", an out-

put file other than the typewriter was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The Shell also allows parentheses in the above operations. For example
(date; Is) >x &

prints the current date and time followed by a list of the current directory onto the file x. The Shell
also returns immediately for another request.

6.4 The Shell as a Command; Command Files
The Shell is itself a command, and may be called recursively. Suppose file tryout contains the lines

as source
mv a.out testprog
lestprog

The mv command causes the file a.out 10 be renamed restprog. A.out is the (binary) output of the as-
sembler, ready to be executed. Thus if the three lines above were typed on the console, source would
be assembled, the resulting program renamed festprog, and tesiprog executed. When the lines are in
tryout, the command

sh <lryout
would cause the Shell sh 1o execule the commands sequentially.

The Shell has further capabilities, including the ability Lo substitute parameters and 1o construct ar-
gument lists rom a specified subset of the file names in a directory. It is also possible lo execute com-
mands conditionally on character string comparisons or on existence of given files and to perform
translers of control within filed command sequences.

UNix Time-Sharing System - 12

6.5 Implementation of the Shell

The outline of the operation of the Shell can now be understood. Most of the time, the Shell is wait-
ing for the user to type a command. When the new-line character ending the line is typed, the Shell’s
read call returns. The Shell analyzes the command line, putling the arguments in a form appropriate
lor execute. Then fork is called. The child process, whose code of course is still that of the Shell, at-
tempts to perform an execute with the appropriate arguments. If successful, this will bring in and start
execution of the program whose name was given. Meanwhile, the other process resulting from the
Jork, which is the parent process, waits [or the child process to die. When this happens, the Shell
knows the command is finished, so it types its prompl and reads the typewriler o obtain another com-
mand.]

Given this ramework, the implementation of background processes is trivial, whenever a command
line contains “*&", the Shell merely refrains from waiting for the process which it created to execute
the command. ;

Happily, all of this mechanism meshes very nicely with the notion of standard input and output files.
When a process is created by the fork primitive, it inherits not only the core image of its parent bul
also all the files currently open in its parent, including those with file descriptors 0 and 1. The Shell, of
course, uses these files 1o read command lines and to write its prompts and diagnostics, and in the ordi-
nary case its children—the command programs—inherit them automatically. When an argument with
“<Mor “>" is given however, the oflspring process, just before it performs execute, makes the stan-
dard 1/0 file descriptor 0 or | respectively refer to the named file. This is easy because, by agreement,
the smallest unused file descriptor is assigned when a new file is opened (or creared); it is only neces-
sary (o close file 0 (or 1) and open the named file. Because the process in which the command pro-
gram runs simply terminates when it is through, the association between a file specified after *<" or
*>" and file descriptor 0 or | is ended automatically when the process dies. Therefore the Shell need
not know the actual names of the files which are its own standard input and output, since it need nev-
er reopen them.

Filters are straightforward extensions of standard 1/0 redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the Shell never terminates. (The main loop includes
that branch of the return from fork belonging to the parent process; that is, the branch which does a
wait, then reads another command line.) The one thing which causes the Shell to terminate is discov-
ering an end-of-file condition on its input file. Thus, when the Shell is executed as a command with a
given inpul file, as in

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance of the
Shell invoked by sk will terminate. Since this Shell process is the child of another instance of the
Shell, the wait executed in the latter will return, and another command may be processed.

6.6 Initialization

The instances of the Shell to which users type commands are themselves children of another pro-
cess. The last step in the initialization of UNIX is the creation of a single process and the invocation
(via execute) of a program called inir. The role of init is to create one process for each typewriter chan-
nel which may be dialed up by a user. The various subinstances of init open the appropriate typewrit-
ers for input and outpul. Since when /nit was invoked there were no files open, in each process the
typewriler keyboard will receive file descriplor 0 and the printer file descriptor 1. Each process types
oul a message requesting that the user log in and waits, reading the typewriter, for a reply. At the
outset, no one is logged in, so each process simply hangs. Finally someone types his name or other
identification. The appropriate instance of inir wakes up, receives the log-in line, and reads a password
file. If the user name is found, and if he is able (o supply the correct password, init changes to the
user’s default current direclory, sets the process's user ID 1o that of the person logging in, and performs
an execute of the Shell. At this point the Shell is ready lo receive commands and the logging-in proto-

‘D

Unix Time-Sharing System - 13

col is complele.

Meanwhile, the mainstream path of inir (the parent of all the subinstances of itself which will later
become Shells) does a wair. Il one of the child processes terminates, either because a Shell found an
end of file or because a user typed an incorrect name or password, this path of inif simply recreales the
defunct process, which in turn reopens the appropriate input and output files and types another login

message. Thus a user may log out simply by typing the end-of-file.sequence in place of a command to
the Shell.

6.7 Other programs as Shell

The Shell as described above is designed to allow users (ull access to the facilities of the system,
since it will invoke the-execution of any program with appropriate protection mode. Sometimes, how-
ever, a different interface to the system is desirable, and this feature is easily arranged.

Recall that after a user has successlully logged in by supplying his name and password, init ordinarily
invokes the Shell to interpret command lines. The user’s entry in the password file may contain the
name of a program to be invoked after login instead of the Shell. This program is free to interpret the
user's messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system specily that the editor
ed is 1o be used instead of the Shell. Thus when editing system users log in, they are inside the editor
and can begin work immediately; also, they can be prevented from invoking UNIX programs not in-
tended for their use. In practice, it has proved desirable to allow a temporary escape from the editor to
execute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D lic-lac-loe) available on UNIX illustrate a much more
severely restricted environment. For each of these an entry exists in the password file specifying that
the appropriate game-playing program is to be invoked instead of the Shell. People who log in as a
player of one of the games find themselves limited to the game and unable to mvesllgate the presum-
ably more interesting offerings of UNIX as a whole.

7. Traps

The ppp-11 hardware detects a number of program faults, such as references lo non-existent
memory, unimplemented instructions, and odd addresses used where an even address is required. Such
faults cause the processor o trap to a system routine. When an illegal action is caught, unless other ar-
rangemenlts have been made, the system terminales the process and writes the user's image on file core
in the current directory. A debugger can be used to determine the state of the program at the ume of
the fault.

Programs which are looping, which produce unwanted output, or about which the user has second
thoughts may be halted by the use of the interrupt signal, which is generated by typing the “delete”
character. Unless special action has been taken, this signal simply causes the program 1o cease execu-
tion withoul producing a core image file.

There is also a quif signal which is used lo force a core image to be produced. Thus programs which
loop unexpectedly may be halted and the core image examined withoul prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either ignored or
caught by the process. For example, the Shell ignores quits to prevent a quil from logging the user out.
The editor catches interrupts and returns to its command level. This is uselul for stopping long prin-
touts without losing work in progress (the editor manipulates a copy of the file it is editing). In sys-
tems without floating point hardware, unimplemented instructions are caught and floaling point in-
structions are interpreted,

Unix Time-Sharing System - 14

8. Perspective

Perhaps paradoxically, the success ol UNIX is largely due to the fact that it was not designed to meet
any predefined objectives. The first version was writlen when one of us (Thompson), dissatisfied with
the available computer facilities, discovered a little-used pPDP-7 and sel out to create a more hospitable
environment. This essentially personal effort was sufficiently successful to gain the interest of the
remaining author and others, and later to justify the acquisition of the pppe-11/20, specifically to support
a text editing and formatting system. When in turn the 11/20 was outgrown, UNIX had proved uselul
enough to persuade management o invest in the ppP-11/45. Our goals throughout the effort, when ar-
ticulated at all, have always concerned themselves with building a comfortable relationship with the
machine and with exploring ideas and inventions in operating systems. We have not been faced with
the need lo satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations which influenced the design ol UNIX are visible in retrospect.

First: since we are programmers, we naturally designed the system to make it easy o wrile, test, and
run programs. The most important expression of our desire for programming convenience was that the
system was arranged [or interactive use, even though the original version only supported one user. We
believe that a properly-designed interactive system is much more productive and satisfying to use than
a “batch™ system. Moreover such a system is rather easily adaptable to non-interactive use, while the
converse is not true. : <

Second: there have always been fairly severe size constraints on the system and its software. Given
the partially antagonistic desires for reasonable efficiency and expressive power, the size constraint has
encouraged not only economy but a certain elegance of design. This may be a thinly disguised version
ol the *‘salvation through suffering” philosophy, but in our case il worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is more im-
portant than it might seem. Il designers of a system are forced to use that system they quickly become
aware of its functional and superficial deficiencies and are strongly motivated to correct them before it
is too late. Since all source programs were always available and easily modified on-line, we were willing
to revise and rewrite the system and its software when new ideas were invented, discovered, or sug-
gested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these design con-
siderations. The interface to the file system, for example, is extremely convenient from a programming
standpoint. The lowest possible interface level is designed to eliminate distinctions between the vari-
ous devices and files and between direct and sequential access. No large “access method™ routines are
required to insulate the programmer from the system calls; in fact all user programs either call the sys-
tem directly or use a small library program, only tens ol instructions long, which buffers a number of
characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no “control blocks™ with a
complicated structure partially maintained by and depended on by the file system or other system calls.
Generally speaking, the conlents of a program’s address space are the property of the program, and we
have tried 1o avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or outpul,
it is also desirable from a space-efliciency standpoint 1o push device-dependent considerations into the
operating system itsell. The only alternatives seem Lo be lo load routines for dealing with each device
with all programs, which is expensive in space, or to depend on some means of dynamically linking to
the routine appropriate to each device when it is actually needed, which is expensive either in over-
head or in hardware.

Likewise, the process control scheme and command interface have proved both convenient and
eflicient. Since the Shell operates as an ordinary, swappable user program, il consumes no wired-down
space.in the sysltem proper, and il may be made as powerful as desired at little cost. In particular,
+given the framework in which the Shell executes as a process which spawns other processes to perform

Unix Time-Sharing System - 15

commands, the notions ol [/O redirection, background processes, command files, and user-selectable
system interfaces all become essentially trivial to implement.

8.1 Influences

The success of UNIX lies not so much in new inventions but rather in the lull exploitation of a care-
[ully sclected set of fertile ideas, and especially in showing (hat they can be keys o the implementa-
tion of a small yel powerlul operating syslem.

The fork operation, essentially as we implemented it, was present in the Berkeley time sharing
system*. On a number of points we were influenced by Multics, which suggested the particular form
of the 170 system calls? and both the name of the Shell and its general functions. The notion that the
Shell should create a process for each command was also suggested to us by the early design of Mul-

tics, although in that system it was later dropped for efliciency reasons. A similar scheme is used by
TENEX ',

9. Statistics

The following numbers are presented to suggest the scale ol our operation. Those of our users not
involved in document preparation tend Lo use the system for program development, especially language
work. There are few important “applications” programs.

Overall, we have

100 user population

14 maximum simullaneous users

380 direclories

4800 files

66300 512-byte secondary storage blocks used

There is a ““background™ process thal runs at the lowest possible priority; it is used lo soak up any
idle cpu time. [t has been used to produce a million-digit approximation to the constant e—2, and is
now solving all rook-and-pawn vs. rook chess endgames. Nol counting this background work, we aver-
age daily

2400 commands
55 cru hours
100 connecl hours
C) different users
100 logins

Acknowledgements. We are grateful to R.H. Canaday, L.L. Cherry, and L.E. McMahon for their contri-
butions to UNIX. We are particularly appreciative of the inventiveness, thoughtful criticism, and con-
stant support ol R. Morris, M.D, Mcllroy, and J.F. Ossanna.

References

. Digital Equipment Corporation. Ppp-11/40 Processor Handbook (1972), PpP-11/45 Processor Hand-
book (1971). and popr-11/70 Processor Handbook (1975).

2 Deutsch, L.P., and Lampson, BW. An online editor. Comm. ACM 10, 12 (Dec. 1967), 793-799,
803.

3. Richards, M. Bcrr: A tool for compiler writing and system programming. Proc. AFIPS 1969

' SICC. Vol. 34, AFIPS Press, Montvale, N.J., pp. 557-566. i

4, McClure, R.M. TMG—A synlax directed compiler. Proc. ACM 20th Nat. Conf,, ACM, 1965,
New York. pp. 262-274,

S Hall, A.D. The M6 macroprocessor. Computing Science Tech. Rep. #2, Bell Telephone Labora-
tories, 1969, :

6. Ritchie, D.M. C reference manual. Unpublished memorandum, Bell Telephone Laboralories

Unix Time-Sharing System - 16

(1973).

7 Aleph-null, Computer Recreations. Software Practice and Experience 1, 2 (Apr-June 1971),
201-204.

8. Deutch, L.P. and Lampson, B.W. sns 930 time-sharing system preliminary relerence manual. -

Doc. 30.10.10, Project GENIE, Univ, Cal, at Berkeley (Apr. 1965).

9, Feiertag, R.J., and Organick, E.I. The Multics input-output system. Proc. Third Symposium on
Operating Systems Principles. Oct. 18-20, 1971, ACM, New York, pp. 35-41.

10. Bobrow, D.GG., Burchfiel, J.D., Murphy, D.L., and Tomlinson, R.S. TENIX, a paged time sharing
system for the ppp-10. Comm. ACM 15., 3 (March 1972) 135-143.

\a

-

C Reference Manual

Dennis M. Ritchie

Bell Telephone Laboratories
Murray Hill, New Jersey 07974

1. Introduction

.C is. a computer language based on the earlier language B [1]. The languages and their compilers
differ in two major ways: C introduces the notion of types, and defines appropriate extra syntax and se-

mantics; also, C on the pDP-11 is a true compiler, producing machine code where B produced interpre-
tive code.

_ Most of the software for the UNIX time-sharing system [2] is written in C, as is the operating system
itsell. C is also available on the His 6070 computer at Murray Hill, using a compiler written by A.

Snyder and currently maintained by S. C. Johnson. A compiler for the 1BM System/360/370 series is
under construction. '

~This is a manual only for the C language itself as implemented on the ppp-11. Hints are given occa-
sionally in the text of implementation-dependent features, and an appendix summarizes the differences
between the Honeywell and DEC implementations; it also contains some known bugs in each.

The UNIX Programmer’s Manual [3] describes the library routines available to C programs under
UNIX, and also the procedures for compiling programs under that system. “The Gcos C Library” by
Lesk and Barres [4] describes routines available under that system as well as compilation procedures.

Many of these routines, particularly the ones having to do with 1/0, are also provided under UNIX. Fi-

nally, “Programming in C— A Tutorial,” by B. W, Kernighan [5], is as useful as promised by its title
and the author’s previous introductions to allegedly impenetrable subjects.

2. Lexical conventions

There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and oth-
er separators. In general blanks, tabs, newlines, and comments as described below are ignored except
as they serve to separate tokens. At least one of these characters is required to separate otherwise adja-
cent identifiers, constants, and certain operator-pairs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters /* introduce a comment, which terminates with the characters */.

2.2 ldentifiers (Names)
An identifier is a sequence of letters and digits; the first character must be alphabetic. The under-

w "

score “_" counts as alphabetic. Upper and lower case letters are considered different. No more than
the first eight characlers are significant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

C Reference Manual - 2

int break
char continue
float if
double else
struct for
auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants-
There are several kinds of constants, as follows:

2.3.1 Integer constants
An integer constant is a sequence of digits. An integer is taken to be octal if it begins with 0O, de-
cimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively.

2.3.2 Character constants

A character constant is 1 or 2 characters enclosed in single quotes Within a character constant
a single quote must be preceded by a back-slash “\". Certain non-graphic characters, and *“\” itself,
may bé escaped according to the following table:

(TR L]

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

The escape “\ddd” consists of the backslash followed by 1, 2, or 3 octal digits which are taken to speci-
fy the value of the desired character. A special case of this construction is “\0”" (not followed by a di-
git) which indicates a null character.

Character constants behave exactly like integers (not, in particular, like objects of character type). In
conformity with the addressing structure of the pDP-11, a character constant of length 1 has the code
for the given character in the low-order byte and 0 in the high-order byte; a character constant of
length 2 has the code for the first character in the low byte and that for the second character in the
high-order byte. Character constants with more than one character are inherently machine-dependent
and should be:avoided.

2.3.3 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an optional-
ly signed integer exponent. The integer and fraction parts both consist of a sequence of digits. Either
the integer part or the fraction part (not both) may be missing; either the decimal point or the e and
the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.4 Strings

A string is a sequence of characters surrounded by double quotes *“"”. A string has the type array-
of-characters (see below) and refers to an -area of storage initialized with the given characters. The
compiler places a null byte (\0) at the end of each string so that programs which scan the string can
find its end. In a string, the character “"” must be_preceded by a “\”; in addition, the same escapes
as described for character constants may be used.

A

C Reference Manual - 3

3. Syntax notation

In the syntax nolation used in this manual, syntactic categories are indicated by iralic type, and
literal words and characters in gothic. Alternatives are listed on separate lines. An optional terminal
or non-terminal symbol is indicated by the subscript “opt,” so that

| expressi on,,]

would indicate an optional expression in braces.

4, What's in a Name?

C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its
type. The storage class determines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automalic, static, external, and register. Automatic vari-
ables are local to each invocation of a function, and are discarded on return; static variables are local to
a function, but retain their values independently of invocations of the function; external variables are
independent of any function. Register variables are stored in the [ast registers of the machine; like au-
tomatic variables they are local to each function and disappear on return.

C supports four fundamental types of objects: characters, integers, single-, and double-precision
floating-point numbers.

Characters (declared, and hereinafter called, char) are chosen [rom the ASCIl set; they occupy

the right-most seven bits of an 8-bit byte. It is also possible to interpret chars as signed, 2’s
complement 8-bit numbers.

Integers (int) are represented in 16-bit 2's complement notation.

Singg precision floating point (float) quantities have magnitude in the range approximately
10%°% or 0; their precision is 24 bits or about seven decimal digits.

Double-precision floating-point (double) quantities have the same range as floats and a preci-
sion of 56 bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually infinite class of derived types constructed
from the fundamental types in the following ways:

arrays of objects of most types;

JSunctions which return objects of a given type;
pointers to objects of a given type;

structures containing objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and Ivalues

An object is a manipulatable region of storage; an lvalue is an expression referring to an object. An
obvious example of an Ivalue expression is an identifier. There are operators which yield Ivalues: for
example, if E is an expression of pointer type, then *E is an Ivalue expression referring to the object to
which E points. The name “lvalue’” comes from the assignment expression “El = E2" in which the
left operand E1 must be an lvalue expression. The discussion of each operator below indicates wheth-
er it expects lvalue operands and whether it yields an lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from such conver-
sions.

C Reference Manual - 4

6.1 Characters and integers

A char object may be used anywhere an int may be. In all cases the char is converted to an int by
propagating its sign through the upper 8 bits of the resultant integer. This is consistent with the two’s
complement representation used for both characters and integers. (However, the sign-propagation
feature disappears in other implementations.)

6.2 Float and double

All floating arithmetic in C is carried out in double-precision; whenever a float appears in an expres-
sion it is lengthened to double by zero-padding its fraction. When a double must be converted to
float, for example by an assignment, the double is rounded before truncation to float length.

6.3 Float and double; integer and character

All ints and chars may be converted without loss of significance to float or double. Conversion of .

float or double to int or char takes place with truncation towards 0. Erroneous results can be expected
if the magnitude of the result exceeds 32,767 (for int) or 127 (for char).

6.4 Pointers and integers
Integers and pointers may be added and compared; in such a case the int is converted as specified in
the discussion of the addition operator.

Two peointers to objects of the same type may be subtracted; in this case the result is converted to
an integer as specified in the discussion of the subtraction operator.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this sec-
tion (highest precedence first). Thus the expressions referred to as the operands of + (§7.4) are those

expressions defined in §§7.1—7.3. Within each subsection, the operators have the same precedence.

Left- or right-associativity is specified in each subsection for the operators discussed therein. The pre-
cedence and associativity of all the expression operators is summarized in an appendix.

Otherwise the order of evaluation of expressions is undefined: In particular the compiler considers
itself free to compute subexpressions in the order it believes most eflicient, even if the subexpressions
involve side effects.

7.1 Primary expressions
Primary expressions involving ., —>, subscripting, and function calls group left to right.

7.1.1 identifier .
An identifier is a primary expression, provided it has been suitably declared as discussed below. Its

type is specified by its declaration. However, if the type of the identifier is “‘array of ...", then the
value of the identifier-expression is a pointer to the first object in the array, and the type of the expres-
sion is “pointer to ...”. Moreover, an array identifier is not an lvalue expression.

Likewise, an identifier which is declared “function returning ,..”, when used except in the function-
name position of a call, is converted to “pointer to function returning ...”.

7.1.2 constant
A decimal, octal, character, or ﬂoalmg conslant is a primary expression. Its type is int in the first
three cases, double in the last.

7.1.3 string :

A string is a primary expression. Its type is originally “array of char’; but following the same rule
as in §7.1.1 for identifiers, this is modified to “pointer to char” and the result is a pointer to the first
character in the string.

C Reference Manual - 5

7.1.4 (expression)

A parenthesized expression is a primary expression whose type and value are identical to those of
the unadorned expression. The presence of parentheses does not affect whether the expression is an
Ivalue.

1.1.5 primary-expression [expression]

A primary expression followed by an expression in square brackets is a primary expression. The in-
luitive meaning is that of a subscript. Usually, the primary expression has type “pointer to ...", the
subscript expression is int, and the type of the result is ““...”. The expression “EI[E2]" is identical
(by definition) to “«((E1)+(E2)). All the clues needed to understand this notation are contained
in this section together with the discussions in §§ 7.1.1, 7.2.1, and 7.4.1 on identifiers, *, and + respec-
tively; §14.3 below summarizes the implications.

1.1.6 primary-expression (expression-list .w)

A function call is a primary expression followed by parentheses conlaining a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The pri-
mary expression must be of type “function returning ...", and the result of the function call is of type
“...". As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type char are
converted to int.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument-
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot possibly affect the values of the actual parameters. On the other hand, it is perfectly
possible to pass a pointer on the understanding that the function may change the value of the object to
which the pointer points.

Recursive calls to any function are permissible.

1.1.7 primary-lvalue . member-of-structure

An lvalue expression followed by a dot followed by the name of a member of a structure is a pri-
mary expression. The object referred to by the Ivalue is assumed to have the same form as the struc-
ture containing the structure member. The result of the expression is an Ivalue appropriately offset
from the origin of the given lIvalue whose type is that of the named structure member. The given
Ivalue is not required to have any particular type.

Structures are discussed in §8.5.

T1.1.8 primary-expression —> member-of-structure

The primary-expression is assumed to be a pointer which points to an object of the same form as the
structure of which the member-of-structure is a part. The result is an Ivalue appropriately offset from
the origin of the pointed-to structure whose type is that of the named structure member. The type of
the primary-expression need not in fact be pointer; it is sufficient that it be a pointer, character, or in-
teger.

Except for the relaxation of the requirement that El1 be of pointer type, the expression
“E1—>MOS"” is exactly equivalent to “(*E1).MOS".

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 * expression

The unary * operator means indirection: the expression must be a pointer, and the result is an Ivalue
referring to the object to which the expression points. If the type of the expression is “‘pointer to ...",
the type of the result is *..."

C Reference Manual - 6

1.2.2 & Ivalue-expression

The result of the unary & operator is a pointer to the object referred to by the lvalue-expression. If
the type of the lvalue-expression is *...”, the type of the result is “‘pointer to ..."”.

7.2.3 — expression

The result is the negative of the expression, and has the same type. The type of the expression
musl be char, int, float, or double.

-

7.2.4 | expression

The result of the logical negation operator ! is 1 if the value of the expression is 0, 0 if the value of
the expression is non-zero. The type of the result is int. This operator is applicable only to ints or
chars.

7.2.5 =~ expression

The ~ operator yields the one’s complement of its operand. The type of the expression must be int
or char, and the result is int.

7.2.6 ++ Ivalue-expression .

The object referred to by the Ivalue expression is incremented. The value is the new value of the
Ivalue expression and the type is the type of the lvalue. If the expression is int or char, it is incre-
mented by 1; if it is a pointer to an object, it is incremented by the length of the object. ++ is appli-
cable only to these types. (Not, for example, to float or double.)

127 —— lvalue-expression
The object referred to by the Ivalue expression is decremented analogously to the -+-+ operator.

7.2.8 Ivalue-expression ++

The result is the value of the object referred to by the Ivalue expression. After the result is noted,
the object referred to by the lvalue is incremented in the same manner as for the prefix ++ operator:
by 1 for an int or char, by the length of the pointed-to object for a pointer. The type of the result is
the same as the type of the Ivalue-expression.

7.2.9 Ivalue-expression ——

The result of the expression is the value of the object referred to by the the lvalue expression. After
the result is noted, the object referred to by the Ivalue expression is decremented in a way analogous
to the postfix ++ operator. g

7.2.10 sizeof expression

The sizeof operator yields the size, in bytes, of its operand. When applied to an array, the result is
the total number of bytes in the array. The size is determined from the declarations of the objects in
the expression. This expression is semantically an integer constant and may be used anywhere a con-
stant is required. Its major use is in communication with routines like storage allocators and 1/0 sys-
tems.

7.3 Multiplicative operators
The multiplicative operators *, /, and % group left-to-right.

7.3.1 expression * expression

The binary * operator indicates multiplication. If both operands are int or char, the result is int; if
one is int or char and one float or double, the former is converted to double, and the result is double;
if both are float or double, the result is double. No other combinations are allowed.

).

T |

A

.C Reference Manual -7

1.3.2 expression / expression
The binary / operator indicates division. The same type considerations as for multiplication apply.

7.3.3 expression % expression

The binary % operator yields the remainder from the division of the first expression by the second.
Both operands must be int or char, and the result is int. In the current implementation, the remainder
has the same sign as the dividend.

7.4 Additive operators
The additive operators + and — group left-to-right.

1.4.1 expression + expression

The result is the sum of the expressions. If both operands are int or char, the result is int. If both
are float or double, the result is double. If one is char or int and one is float or double, the former is
converted to double and the result is double. If an int or char is added to a pointer, the former is con-
verted by multiplying it by the length of the object to which the pointer points and the result is a
pointer of the same type as the original pointer. Thus if P is a pointer to an object, the expression
“P+1" is a pointer to another object of the same type as the first and immediately following it in
storage.

No other type combinations are allowed.

7.4.2 expression — expression

The result is the difference of the operands. If both operands are int, char, float, or double, the
same type considerations as for + apply. If an int or char is subtracted from a pointer, the former is
converted in the same way as explained under + above.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects in the same
array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators
The shift operators < < and >> group left-to-right.

7.5.1 expression < < expression
7.5.2 expression > > expression

Both operands must be int or char, and the result is int. The second operand should be non-
negative. The value of “E1<<E2" is El (interpreted as a bit pattern 16 bits long) left-shifted E2
bits; vacated bits are O-filled. The value of “E1>>E2"” is El (interpreted as a two’s complement,
16-bit quantity) arithmetically right-shifted E2 bit positions. Vacated bits are filled by a copy of }he
sign bit of E1. [Note: the use of arithmetic rather than logical shift does not survive transportation
between machines.]

7.6 Relational operators

The relational operators group left-to-right, but this fact is not very useful; “a<b<c” does not mean
what it seems to.

7.6.1 expression < expression
7.6.2 expression > expression
7.6.3 expression <= expression.
7.6.4 expression > = expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or
equal to) all yield 0 if the specified relation is false and 1 if it is true. Operand conversion is exacll‘y
the same as for the + operator except that pointers of any kind may be compared; the result in this
case depends on the relative locations in storage of the pointed-to objects. It does not seem to be very
meaningful to compare pointers with integers other than 0.

C Reference Manual - 8

7.7 Equality operators

7.1.1 expression == expression
7.1.2 expression \= expression
The == (equal to) and the != (not equal to) operators are exactly analogous to the relational opera-

tors except for their lower precedence. (Thus “a<b ==c¢<d” is 1 whenever a<b and c<d have the
same truth-value).

7.8 expression & expression

The & operator groups left-to-right. Both operands must be int or char; the result is an int which is
the bit-wise logical and function of the operands.

1.9 expression " expression
The " operator groups left-to-right. The operands must be int or char; the result is an int which is
the bit-wise exclusive or function of its operands.

7.10 expression | expression _
_The | operator groups left-to-right. The operands must be int or char; the result is an int which is
the bit-wise inclusive or of its operands.

7.11 expression && expression

The && operator returns 1 if both its operands are non-zero, 0 otherwise. Unlike &, && guarantees
left-to-right evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer.

7.12 expression || expression

The Il operator returns 1 if either of its operands is non-zero, and 0 otherwise. Unlike |, |l guaran-
tees left-to-right evaluation; moreover, the second operand is not evaluated if the value of the first
operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer.

7.13 expression 7 expression : expression

Conditional expressions group left-to-right. The first expression is evaluated and if it is non-zero,
the result is the value of the second expression, otherwise that of third expression. If the types of the
second and third operand are the same, the result has their common type; otherwise the same conver-
sion rules as for + apply. Only one of the second and third expressions is evaluated.

7.14 Assignment operators

There are a number of assignment operators, all of which group right-to-left. All require an Ivalue as
their left operand, and the type of an assignment expression is that of its'left operand. The value is
the value stored in the left operand after the assignment has taken place.

7.14.1 Ivalue = expression :

The value of the expression replaces that of the object referred to by the lvalue. The operands need
not have the same type, but both must be int, char, float, double, or pointer. If neither operand is a
pointer, the assignment takes place as expected, possibly preceded by conversion of the expression on
the right.

When both operands are int or pointers of any kind, no conversion ever takes place; the value of the -

expression is simply stored into the object referred to by the Ivalue. Thus it is possible to generate
pointers which will cause addressing exceptions when used.

~g

\

€ Refereﬁce Manual - 9

7.14.2 Ivalue =+ expression
7.143 Ivalue = — expression
7.14.4 Ivalue =* expression

14.5 Ivalue =/ expression
6 Ivalue =% expression
1 Ivalue =>> expression

8 Ivalue =< < expression

9 Ivalue -& ‘expression
10 Ivalue =" expression
4 11 Ivalue = expression

The behavior of an expression of the form “El =op E2” may be inferred by taking it as equivalent

to “El = El op E2"; however, El is evaluated only once. Moreover, expressions like “i =+ p” in
which a pointer is added to an integer, are forbidden.

1.15 expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left ex-
pression is discarded. The type and value of the result are the type and value of the right operand.
This operator groups left-to-right. It should be avoided in situations where comma is given a special
meaning, for example in actual arguments to function calls (§7.1.6) and lists of initializers (§10.2).

8. Declarations ;

Declarations are used within function definitions to specify the interpretation which C gives to-each
identifier; they do not necessarily reserve storage associated with the identifier. Declarations have the
form

declaration:
decl-specifiers declarator-list,, ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist
of at most one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In the extern case there must be an external definition (see below)
for the given identifiers somewhere outside the function in which they are declared.

There are some severe restrictions on register identifiers: there can be at most 3 register identifiers
in any function, and the type of a register identifier can only be int, char, or pointer (not float, double,
structure, function, or array). Also the address-of operator & cannot be applied to such identifiers. Ex-
cept for these restrictions (in return for which one is rewarded with faster, smaller code), register
identifiers behave as if they were automatic. ln fact implementations of C are free to treat register as
synonymous with auto.

If the sc-specifier is missing from a declaration, it is generally taken to be auto.

C Reference Manual - 10

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double .
struct { type-deci-list)
struct identifier | type-decl-list }
struct identifier

The struct specifier is discussed in §8.5. If the type-specifier is mlssmg from a declarauon it is gen-
erally taken to be int.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.
declarator-list:

declarator
declarator , declarator-list

The specifiers in the declaration indicate the type and storage class of the objects to which the declara-
tors refer. Declarators have the syntax:

declarator:
identifier
* declarator
declarator ()
declarator [constant- -expression,,]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declara-
tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

If a declarator has the form
*D
for D a declarator, then the contained identifier has the type “pointer to ...”, where “...” is the type
which the identifier would have had if the declarator had been simply D.
If a declarator has the form

D()

then the contained identifier has the type “function returning ..”, where ... is the type which the
identifier would have had if the declarator had been simply D. '
A declarator may have the form
Dlconstant-expression]

or
D[]

In the first case the constant expression is an expression whose value is determinable at compile time,

@m

4

~ (n+1) -dimensional array with rank i, X i,X...Xi Xi .

C Reference Manual - 11

and whose type is int. in the second the constant 1 is used. (Constant expressions are defined precise-
ly in §15.) Such a declarator makes the contained identifier have type “array.” If the unadorned de-
clarator D would specify a non-array of type “...”, then the declarator “D[i]” yields a 1-dimensional
array with rank 7 of objects of type “...”. If the unadorned declarator D would specify an

n-dimensional array with rank ,Xi,x...Xi, then the declarator “Dli ,J]” yields an

An array may be constructed from one of the basic types, from a pointer, from a structure, or from
another array (to generate a multi-dimensional array).

Finally, parentheses in declarators do not alter the type of the contained identifier except insofar as
they alter the binding of the components of the declarator.

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures or functions, although they may return pointers to
such things; there are no arrays of functions, although there may be arrays of pointers to functions.
Likewise a structure may not contain a function, but it may contain a pointer to a function.

As an example, the declaration
int i, *ip, (), *fip(), («pfi) ();

declares an integer i, a pointer ip to an integer, a function freturnihg an integer, a function fip return-
ing a pointer to an integer, and a pointer pfi to a function which returns an integer. Also

float fa[17], *afp[17];
declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3][5](7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an ar-
ray of three items: each item is an array of five arrays; each of the latter arrays is an array of seven in-
tegers. Any of the expressions “x3d”, “x3d[i]”, “x3d[i][j]”, “x3d[il[j][k]” may reasonably appear
in an expression. The first three have type “array”, the last has type int.

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { type-decl-list)
The type-deci-list is a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A type declaration is just a declaration which does not mention a storage class (the storage class
“member of structure” here being understood by context).

type-declaration:
type-specifier declarator-list

Within the structure, the objects declared have addresses which increase as their declarations are read
left-to-right. Each component of a structure begins on an addressing boundary appropriate to its type.
On the pDP-11 the only requirement is that non-characters begin on a word boundary; therefore, there
may be 1-byte, unnamed holes in a structure, and all structures have an even length in bytes.

Another form of structure specifier is
struct identifier { type-decl-list)

This form is the same as the one just discussed, except that the identifier is rememberqd as lh; struc-
ture tag of the structure specified by the list. A subsequent declaration may then be given using the
structure tag but without the list, as in the third form of structure specifier:

C Reference Manual - 12

struct identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the de-
claration to be given once and used several times. It is however absurd to declare a structure which
contains an instance of itself, as distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully,
is

struct tnode |
char tword[20];
int count;
struct tnode +left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once ll-us
declaration has been given, the following declaration makes sense:

struct tnode s, *sp;

which declares s to be a structure of the given sort and sp to be a pointer to a structure of the given
sorl.

The names of structure members and structure tags may be the same as ordinary variables, since a
distinction can be made by context. However, names of tags and members must be distinct. The
same member name can appear in different structures only if the two members are of the same type
and if their origin with respect to their structure is the same; thus separate structures can share a com-
mon initial segment.

9. Statements _
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form
expression ;
Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list)

statement-list:
statement
Statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In
the second case the second substatement is executed if the expression is 0. As usual the “else” ambi-
guity is resolved by connecting an else with the last encountered elseless if.

€

G

C Reference Manual - 13

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test
takes place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-1,, ; expression-2,, ; expression-3,,) statement
This statement is equivalent to

expression-1;

while (expression-2) |
statement
expression-3;

)

Thus the first expression specifies initialization for the loop; the second specifies a test, made befor.c
each iteration, such that the loop is exited when the expression becomes 0; the third expression typi-
cally specifies an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied wlﬂle
clause equivalent to “while(1)"; other missing expressions are simply dropped from the expansion
above.

9.7 Switch statement

The switch statement causes control to be transferred to one of several statements depending on the
value of an expression. It has the form

switch (expression) statement

The expression must be int or char. The statement is typically compound. Each statement within the

" statement may be labelled with case prefixes as follows:

case constant-expression
where the constant expression must be int or char. No two of the case constants in a switch may have
the same value. Constant expressions are precisely defined in §15.
There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and compared with each case con-
stant in an undefined order. If one of the case constants is equal to the value of the expression, con-
trol is passed to the statement following the matched case prefix. If no case constant matches the ex-
pression, and if there is a default prefix, control passes to the prefixed statement. In the absence of a
default prefix none of the statements in the switch is executed.

Case or default prefixes in themselves do not alter the flow of control.

C Reference Manual - 14

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for state-
ment; that is to the end of the loop. More precisely, in each of the statements

while (...) { do { for(...){
cdﬁiin: s CC.)I-'Iiin: : . cc;l:\.tin::
)) while (...);

a continue is equivalent to ““goto contin”.

9.10 Return statement _
A function returns to its caller by means of the return statement, which has one.of the forms

return ;
return (expression) ;

In the first case no value is returned. In the second case, the value of the expression is returned to the
caller of the function. If required, the expression is converted, as if by assignment, to the type of the
function in which it appears. Flowing off the end of a function is equivalent to a return with no re-
turned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement
goto expression

The expression should be a label (§§9.12, 14.4) or an expression of type ‘“pointer to int” which evalu-
ates to a label. It is illegal to transfer to a label not located in the current function unless some extra-
language provision has been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form
identifier

which serve to declare the identifier as a-label. More details on the semantics of labels are given in
§14.4 below.

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the “)” of a compound statement or to supply a
null body to a looping statement such as while.

AcF

C Reference Manual - 15

10. External definitions

A C program consists of a sequence of external definitions. External definitions may be given for
functions, for simple variables, and for arrays. They are used both to declare and to reserve storage for
objects. An external definition declares an identifier to have storage class extern and a specified type.
The type-specifier (§8.2) may be empty, in which case the type is taken to be int.

10.1 External function definitions
Function definitions have the form

JSunction-definition: .
rype-spec:ﬁerw , Junction-declarator function-body

A function declarator is similar to a declarator for a “function returning ...’ except that it lists the for-
mal parameters of the function being defined.

Junction-declarator:
declarator (parameter-list,,)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

Sfunction-body:
type-decl-list function-statement

The purpose of the type-decl-list is to give the types of the formal parameters. No other identifiers
should be declared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

JSunction-statement:
(declaration-list,,, statement-list]

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

int m;
m= (a>b)?a:b;
return(m>c? m:c);

Here “int™ is the type-specifier; “max(a, b, ¢)” is the function-declarator; “int a, b, ¢;” is the type-
decl-list for the formal parameters; “{ ... }” is the function-statement.

C converts all float actual parameters to double, so formal parameters declared float have their de-
claration adjusted to read double. Also, since a reference to an array in any context (in particular as an

-actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal

parameters declared ‘“‘array of ..”" are adjusted to read “pointer to ..”. Finally, because neither struc-
tures nor functions can be passed to a function, it is useless to declare a formal parameter to be a
structure or function (pointers to structures or functions are of course permitted).

A [ree return statement is supplied at the end of each function definition, so running off the end
causes control, but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

C Reference Manual - 16

data-definition:
extern , type-specifier,, fnfr—declaramr-ﬁsrop, :

The optional extern specifier is discussed in § 11.2. If given, the init-declarator-list is a comma-
separated list of declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer,,

Each initializer represents the initial value for the corresponding object being defined (and declared).

initializer:
constant
{ constant-expression-list)

constant-expression-list:
constant -express."an
constant-expression , constant-expression-list

Thus an initializer consists of a constant-valued expression, or comma-separated list of expressions, in-
side braces. The braces may be dropped when the expression is just a plain constant. The exact
meaning of a constant expression is discussed in §15. The expression list is used to initialize arrays;
see below.

The type of the identifier being defined should be compatible with the type of the initializer: a dou-
ble constant may initialize a float or double identifier; a non-floating-point expression may initialize an
int, char, or pointer.

An initializer for an array may contain a comma-separated list of compile-time expressions. The
length of the array is taken to be the maximum of the number of expressions in the list and the
square-bracketed constant in the array’s declarator. This constant may be missing, in which case 1 is
used. The expressions initialize successive members of the array starting at the origin (subscript 0) of
the array. The acceptable expressions for an array of type ‘“‘array of ...”” are the same as those for type
“.". As a special case, a single string may be given as the initializer for an array of chars; in this case,
the characters in the string are taken as the initializing values.

Structures can be initialized, but this operation is incompletely implemented and machine-
dependent. Basically the structure is regarded as a sequence of words and the initializers are placed
into those words. Structure initialization, using a comma-separated list in braces, is safe if all the
members of the structure are integers or pointers but is otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A complete C program need not all be compiled at the same time: the source text of the program
may be kept in several files, and precompiled routines may be loaded from libraries. Communication
among the functions of a program may be carried out both through explicit calls and through manipu-
lation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
“undefined identifier” diagnostics; and second, the sco