
RISCy VAX, 1988
THE COMPUTER HISTORY

Digital Equipment Corporation records
Engineers' papers; Mike Uhler papers: VAX development recor

X2675.2004, Box 30 102749979

1 027 4997 9

T

y
«

rv

r

<<< STAR;:DOCD$:[NOTES$LIBRARY]EXTENDED-VAX.NOTE;1 >>>

-< Extended (Riscy) VAX Conference >-

Riscy VAX Support for VAX Emulation
594 lines

No replies
13-SEP-1988 17:21

Note 26.0

STAR;:KRO

INTEROFFICE MEMORANDUM++ ++ ++ ++

a I 1 II d I i I g I i I t
+ ++ ++ +++

Sept. 9, 1988
Joel Emer

Dist Sys Arch and Perf
226-7537

LKG1-2/A19
ERLANG::EMER

Date:

From:

Dept:
Ext:

Loc :

Enet:

DistributionTo:

Cc:

Subj: RISCy VAX Support for VAX Emulation

This note is a discussion of some of the VAX architectural support

required by RISCy VAX. The operational model is one in which there

exists a native RISC architecture and a software environment that

provides source level compatibility for non-privileged VAX/VMS user

applications. This support would extend to all languages, with the

possible exception of MACRO.

In addition to source level compatibility, object level compatibility

is also provided. In this case, support is provided for translation of

VAX executable images into the native RISC architecture. This

translation may be either static or dynamic. Static translation

involves taking an executable image and generating an equivalent RISC
as it may not beimage. Static translation cannot cover all cases,

possible to find all the instructions in an images, nor does it work

for self-modifying code. In such cases, one must resort to dynamic

translation, which does on—the—fly translation of VAX instructions

into RISC instructions. Even with no static translation, dynamic

translation allows for object level compatibility for existing VAX/VMS

program images on RISCy VAX.

To achieve adequate user level compatibility, the VMS environment

must also be available on RiSCy VAX. As it is unlikely that a

compatible rewrite of VMS in a reasonable time frame is possible,

it is anticipated that VMS will also be translated into native

RISC instructions. Some portions will need to be rewritten, and

some portions may simply be recompiled, while others will will

require translation. Again the translation may be either be

static or dynamic.

In order to provide support for VAX instruction translation a RISC

processor needs to provide support a number of characteristics of the

original VAX ISP. Such things as common data types and certain

instruction and exception/interrupt semantics must be maintained.

Furthermore to facilitate the migration of VMS, certain aspects of the

privileged architecture must also be preserved. This notes attempts to

enumerate important characteristics of the VAX, and discusses how

compatibility is maintained or why it is not.

This memo assumes that RISCy VAX is intrinsically a 64 bit machine.

64bit registers and operations on quantities up to
assumed to have an address space of

-i.e., it provides
64bits in size. Addressing is also ^ u
larger than 4 Gigabytes, however the ramifications of this address

not discussed here.space extension are

Furthermore, this memo assumes that the compatibility constraints

are limited to those characteristics of the VAX architecture that

are preserved in a multiprocessor environment. In specific,
certain instruction atomicity constraints that are maintained in

implementations will not becurrently existing VAX uniprocessor
maintained even on a uniprocessor RISCy VAX.

Following is a discussion of a number of VAX characteristics
that must be preserved in the transition to RISCy VAX, and how

they can be preserved. Some topics that are not addressed in

this memo are the memory management architecture and issues

related to process synchronization.

1) Data Types

In order to make emulation of the VAX architecture feasible a number

of characteristics of the basic VAX architecture must be preserved,

specific, it must be possible to perform byte addressing of data.

There must also be compatibility among the data types supported.

1.1) Integer Data Types

RISCy VAX should support all the VAX integer data types:

- Byte (8bits),
- Word (16bits),

- Longword (32bits), and
- Quadword (64bits).

With a 64bit architecture, the the register representation of a

native quadword is different than for a VAX quadword, i.e., it

all fits in a single register. This doesn't correspond to the

original VAX architecture, therefore translation of VAX

quadword data will require that the VAX Quadword be treated as

two separate longwords, each of which will reside in the lower 32bits of

distinct registers.

All integer data will be represented
least significant bits in lowest order addresses. (Bits are

numbered right to left 0 on up). This representation is required

to preserve the existing data aliasing semantics. For example,

perserving the behavior seen when using FORTRAN EQUIVALENCE
statements or PASCAL variant records.

Whether loads of words and bytes will do
will be determined by the performance

ramifications of the alternatives.

1.2) Floating Point Data Types

All four VAX floating point formats should also be supported.

- F (32bits),
- D (64bits),
- G (64bits),

In

style, i.e..little-endian

inserts" or

zero-extend

- H (128bits).

Similar to the case for quadword data, native mode D and G values can

reside in a single register. H could reside in two. To get exact VAX

semantics the translator would have to treat D and F as 2 longwords,

and H as 4 longwords.

To retain compatibility with programs that do source r^oint-

of floating point values, the memory representation of the floating point

values on RISCy VAX must be identical to that for the VAX.

Subsetting of support for some of the floating point data types

should be allowed, especialy H.

1.3) unsupported Data Types

No explicit native support is provided for
types. In particular no support is provided for:

- Variable Length Bit Fields
- Character Strings
- Decimal

- Queue

some of the VAX data

the VAX Variable Length Bit FieldNo native support is provided for
data type. This data type can be implemented by interpreting the byte

address, bit position and size. Fortunately, since most uses of this

data type use a fixed bit position and size this data type can

probably be emulated more efficiently in most cases by using shifts

and masks. The translator could generate the shift and mask sequence

whenever possible.

No specific support is provided for the VAX Character String data

type. This data type is really only a sequence of bytes of given

length. Therefore, emulation, as already done for the VAX subset

architecture, is straightforward.

Specifically noNone of the VAX the decimal formats are supported,
support is provided for Trailing Numeric String, Leading Separate

Packed Decimal String. Again, as for the VAX subset
(Is there any specific

Numeric String or
architecture these data type may be emulated,
instruction that might improve the emulation?).

The VAX Queue data type is not supported, but is easily emulated by

accessing the two adjacent longwords that make up the data type.

1.4) Alignment

RISCy VAX supports byte addressing. The hardware, however, will only

support aligned references. Aligned implies that the datum does not

cross specific boundaries in memory associated with the size of the

data being referenced. Thus, word alignment implies low order address bit

is 0; longword alignment implies 2 low order address bits are 0; and

native quadword alignment implies 3 low order address bits are 0.

VAX architectural semantics allow unaligned references,
cases, unaligned references result in traps to software,
software must then interpret the reference and make the required

aligned references. Consequently, there can be expected to be a

significant performance penalty for unaligned references. This penalty

might be mitigated slightly by providing special instructions (like on

MIPS) to reference the two halves of an unaligned reference.

To cover such

The trap

2.0) Register Set

2.1) GPRS

The translated code must be able to emulate the user visible aspects

of the VAX register set. Thus 16 of the RISC GPRs can be dedicated to

There are no special attributes
The last two, the stack pointer, SP;

correspond to the the 16 VAX GPRs.
that distinguish the first 14.
and the program counter, PC, must be handled specially.

2.2) Program Counter

This does notRISCy VAX will not mechanize the VAX program counter,
affect code compiled directly for RISCy VAX, but will affect

translated code. In that case, the code generated by the translator is

required to generate PC values when they are needed. Mostly the PC

values are used for operand specifiers. For most specifiers the

results of using the PC as the register are UNPREDICTABLE. The

remaining cases are:

- Immediate and Absolute

- PC Relative and PC Relative Deferred

the case of Immediate or Absolute the translated RISC code may
or Absolute references.

In

simply generate its own corresponding Immediate
In the PC Relative cases, the translated code should maintain base

registers outside of the 16 VAX-visible registers and use references

relative to those registers in place of PC relative addressing.

These base registers need only be updated on entry to specific code blocks.

In general, base registers could probably be updated exclusively

on procedure or subroutine entry. Thus, the the translated code

for the start of a procedure or subroutine could load them. This

unfortunately doesn't cover the case of branches into the middle

of a subroutine. One way of handling such cases is to explicitly

capture the need to load base registers as part of the

translation of the VAX PC of the target address into the

corresponding RISC address of the target.

PC values are also pushed onto the stack for subroutine and procedure

calls. In these cases, the translated code must generate the

appropriate PC to push. These values are typically static and can be

computed just once at the time of translation.

Finally, dynamic PCs must be pushed onto the stack for certain

exceptions and interrupts. In general, the translated code should

try to avoid generating VAX PCs, except in those cases where user

code will be executed as a result of the exception or interrupt.

Section 4 contains more discussion of the precision of

exceptions and interrupts.

2.3) Stack Pointer

The other special register is the SP. There are no problems with the
normal use of the SP as a register or its use for data references. The

VAX architecture, however, specifies that there are actually 5 SPs,

one for each processor mode, and one for the interrupt stack. RISCy

VAX does not provide explicit support these multiple stacks, so this

behavior must be emulated in software (see Section 5)

•Note that to avoid distributing the emulated VAX stack on RISC

exceptions and interrupts, it may be desirable to make the VAX SP

register distinct from the register normally designated as the RISC SP.

2.4) Floating Point

The VAX architecture does not have distinct floating point registers.
There is no reason that implementation considerations cannot dictate

that RISCy VAX have a separate set of floating point registers. In such

a circumstance, the software translator would have to move values

between the GPRs and the Floating Point registers. Architectural support

for these moves would be required.

2.5) Processor Status Longword

The final application user visible aspect of the VAX register set is
the VAX Processor Status Longword, PSL. Some components of the

PSL correspond directly to hardware state maintained by the

RISCy VAX CPU, others are simply software state maintained by

the translator. The aggregate state of the PSL must be generated

by the translator when a user application needs to examine it.

The important parts of the PSL are;

- Software Emulated

- Software Emulated

- May be used by translator
- Software Emulated

- Hardware Supported?
- Hardware Supported?
- Hardware Supported
- Software Emulated

- Hardware Supported

CM (Compatibility Mode)
TP (Trace-bit...)
FPD (First Part Done)
IS (Interrupt Stack)
CURMOD

PRVMOD

IPL

T,DV,FU,IV (Trap Enables)
NZVC (Condition codes)

PDP-11 compatibility mode would be supported entirely by

software interpretation as done on all recent VAXes.

In the event of interrupts or exceptions that occur
middle the execution of a translated VAX instruction, the

translator may set First Part Done as allowed by the VAX srm.

A discussion of processor modes is needed....

RISCy VAX will directly implement the 32 VAX IPL levels.

The T-bit trace control would have be to be handled in software.

Since the individual VAX instructions are translated into RISC code,

if TP is enabled the translator could simply translate
individual instructions and include a trap at the end of the execution

sequence.

The other traps (DV,FU,IV) would also
the normal case when no traps are enabled, the translated code

does not pay attention to the trap events. If the traps are

enabled, then alternative versions of the translated code are

generated that explicitly check for the trap conditions. The

version of the code to use can be determined by concatenating the

trap bits as high-order VAX address bits in the process
of

in the

be handled in software. In

•translating VAX PCs to RISC PCs. (It still needs to be tested whether

this will perform adequately).

Finally, RISCy VAX must mechanize
Generation must be data type dependent, and will be optional on

various RISC opcodes. Generating these values rapidly is a

significant hardware burden. Therefore the examination of these

values must be delayed one instruction following their generation

(Similar to read delay slots).

the Condition Code bits.

Since CC generation is slow, the translator should avoid making

decisions based on their values. For example, when translating

consecutive VAX instructions that generate and use condition

codes the translator should recognize the sequence of

instructions and generate a combined RISCy VAX instruction
sequence. This sequence could generate the CCs as a side effect,

but use an alternative means of actually causing the same

behavior (usually a branch) as would actual examination of the

condition codes. Thus, only for those cases where CCs are not

used for a number of instructions, need the actual hardware CCs be

examined.

3) Exceptions

3.1) VAX Exceptions

To support the VAX architecture it must be possible to generate a

number of events in support of VAX exceptions. In specific, the

VAX exceptions can be divided into six categories:

- Arithmetic Traps and Faults
- Memory management exceptions
- Operand reference exceptions
- Exceptions occurring as a consequence of an instruction
- Trace exceptions
- Serious system failures

3.1.1) Arithmetic Traps and Faults

In order to achieve reasonable efficiency on arithmetic
operations, RISCy VAX must allow arithmetic operations to

generate exceptions on certain overflow and underflow conditions.

For the VAX user controlled excpetions, individual decsions need

to be make on how they are handled, e.g., with mode bits, with

distinct instructions or with explicit conditional trap instructions.

3.1.2) Memory Management exceptions

RISCy VAX will generate a memory management exceptions on

load/store and probe operations. In addition, any TB miss results

in a Memory Management exception. These should be sufficient to

generate the VAX standard set of memory management exceptions.

3.1.3) Operand Reference Exceptions

Most VAX operand reference exceptions will not be supported
directly by RISCy VAX. Only reserved floating point operand traps

may be supported directly. For VAX emulation, the others can

be supported by the software translator.

First,VAX operand reference exceptions fall into two categories,
are the illegal addressing mode faults. These can easily be

detected when the VAX instruction is translated. Second, ar

reserved operand exceptions. In many cases, i.e., when the

operand specifiers are literals, the validity of an operand can

be checked at translation time. When they can't be checked at

translation time, they must be checked as part of instruction
execution. Most of the cases should have little performance
impact, but two might warrant special support. They are:

- Reserved floating point operand

- PSL/W bits

must be checked to see if they have theFloating point operands
sign bit set, and a zero exponent. Hardware support for this

checking should be provided. In an implementation with a separate

floating point register set, this check (and associated
exception) could be combined with the operation that transfers

the value between the GPRs and the Floating Point register set.

to check for legal combinations of PSL/W bits might
The magnitude of this benefit should be estimated,

a consequence of an instruction

An operation
also be beneficial.

3.1.4) Exceptions occurring as

Certain RISCy VAX instruction will generate exceptions,
illegal instructions and mode-change traps.

e.g • t

A exception occurring as a consequence of a VAX instruction can

easily be detected when the VAX instruction is translated. These

would include. Illegal VAX instruction opcodes, instructions to

be emulated. Change-mode instructions and Breakpoints.

3.1.5) Trace exceptions

Handled by translator as described in

3.1.6) Serious system failures

Kernel-stack-not-valid, Interrupt-Stack-not-valid and
machine-check exceptions must be supported.

Section 2.

3.2) Additional Exceptions

The design of a RISC mitigates that certain other conditions must

generate exceptions. In particular, RISCy VAX must provide an

unaligned reference exception to indicated that a attempt to read

or write a value at an alignment memory address was attempted. To

do a VAX emulation, the software in the trap routine must then

make the appropriate pair of references to read or write the

data.

3.3) Exception Implementation

Exceptions will be handled via a subroutine linkage to a

•trap routine. Pertinent information about the trap will be saved

in processor registers. Details still need to be specified.

RISCy VAX must be able to emulate the VAX exception vector

including the specification of stack on which to handle the

exception. Such emulation will be done primarily by VAX

emulation code in the RISCy VAX trap handler.

4) VAX Instruction Atomicity

On a uniprocessor, the set of actions associated with many

individual VAX instructions appear to be atomic. In a translated

version of these instructions, these actions will frequently
correspond to multiple RISC instructions. Thus, achieving
compatibility with the existing atomicity behavior could be

difficult. On a multiprocessor, this atomicity is not preserved,

except on designated interlocked instructions. (RISCy VAX will

support VAX-style memory interlocks). Thus, by considering the

behavior of RISCy VAX to only need correspond to the behavior

that would be observed on a multiprocessor, this instruction
atomicity need not be preserved.

The only case were this atomicity is important is when a user can

regain control following a exception event. In such cases, the

state should correspond to the appropriate VAX atomic instruction

execution. These occur for the following reasons:

- User written exception handlers
- Delivery of Asynchronous System Traps (ASTs)

In each case, the translator must be able to generate
translations of VAX instructions that will complete atomically

(for traps) or allow the instruction to be restarted (for

faults).

4.1) Atomicity on Exceptions

Exceptions are synchronous with respect to instruction execution.

Thus, in a translated instruction sequence the specific RISC

instructions that can generate exceptions are known. Given this

information, making VAX instruction execution atomic with respect

to exceptions, can, in general, be accomplished by deferring all

side effects of VAX instruction execution (including register

updates for autoincrement and autodecrement) until the very end

of the translation sequence. Then in event of an exception, the

exception can be taken on behalf of the offending RISC
instruction itself. In the case of a fault, no side effects have

occurred and the VAX PC can be backed up to reexecute the same

translated sequence. In the case of a trap, the remaining work

of the VAX instruction must be done as appropriate for the trap.

Finally, if a call to a user written exception routine is needed,

then the call can be made directly because the state of the

machine corresponds properly to atomic VAX instruction execution.

As before the relevant set of VAX exceptions are:

- Arithmetic Traps and Faults
- Memory management exceptions
- Operand reference exceptions

instructionconsequence of an- Exceptions occurring as a
- Trace exceptions
- Serious system failures

With the support described in the previous section, judicious

placement of instructions that generate the exceptions should

allow the translator to guarantee the proper behavior of a RISC

instruction sequence corresponding to a single VAX instruction.

The RISCy VAX generates only RISCy VAX exceptions. Thus,

the saved PC is a RISC PC. When exceptions are translated into

VAX exceptions the RISC PC must be mapped into a VAX PC. This

mapping to a VAX PC from a given RISC instruction address may be

expensive. Thus, in those cases where the system handles the

exception, one can avoid the mapping cost by having the system

handle the exception as a RISC exception until it determines it

must translate it into a VAX exception. Memory management faults

are a good example of where this could be done. At best, this

could limit the mapping cost to occur only when the application
result of the exception.program is going to receive control as a

4.2) Atomicity on ASTs

ASTs can occur at any time,
delivery is defined to be synchronous with respect to VAX

instruction execution. Thus, a RISC instruction sequence
corresponding to a VAX instruction must complete before service

of the AST is allowed. Otherwise, it is possible for a partial

set of the side effects of the VAX instruction to occur. Such a

partial execution of translated instruction sequence violates the

VAX instructions atomicity constraints.

Two basic mechanisms have been proposed to ensure VAX
instruction atomicity on ASTs:
software solution.

Furthermore, within a process, AST

a hardware solution and a

The hardware solution relies on hardware selectivity on when an

AST can be delivered. Such selectivity can be achieved by

designating certain instructions as allowing AST delivery. For

example, certain load, branch and operate instructions might allow

AST delivery. The translator could then use these instructions as

the first instructions of a translated instruction sequence.

AST delivery would then occur only on those instructions, thus

assuring atomic VAX instruction execution. (Note that every

VAX instruction need allow AST delivery, but branches should,

that one cannot create a loop that never looks for ASTs.)

so

The software solution allows ASTs to occur on any RISC
instruction. The AST trap routine would then determine where the

end of current VAX instruction is, and single step up to it.

5) Privileged Architecture

The RISCy VAX privileged architecture will be supported
using an EPICODE strategy like that of PRISM. Under this

strategy, some RISC instructions result in direct subroutine
calls to routines at predetermined addresses. Arguments for

these routines will be provided in the GPRs. These
routines will execute in a privileged context.

■Following are those aspects of the VAX privileged architecture

that need to be supported.

- Stack pointers (*SP) .
Not supported by RISCy VAX, but can be handled by Epicode.

- Memory Management (*BR,*LR)
The VAX memory management registers are irrelevant to RISCy

VAX. VMS memory management must be rewritten.

- IPL/AST (IPR, ASTLVL, SIRR, SISR)
The VAX IPL architecture is supported directly by RISCy
VAX. Actually, the IPL state can be maintained outside
of the CPU and managed using Epicode.

- Clock Stuff (ICCS, NICR, ICR, TODR)
Functionality supported by processor dependent Epicode
with control logic external to the CPU. (Is subsetabi1ity
important?)

- Console (EX*,TX*) .
Functionality can be supported by processor dependent Epicode.

- Mem Mngment (MAPEN, TBI[AS], TBCHK)
Functionality supported (except TBCHK) by processor dependent

Epicode.

PME

Unsupported.

SID

Supported by Epicode, and external logic.

VAX Task Force

Status Update

October 1988

Dob Supnik

HUD
For Internal Use Only

Purpose

The purposes of today’s presentation are:

• To acquaint STF with the work done to date l)y the VAX

Task Force.

• To obtain STF’s technical feedback on key issues.

• To obtain STF’s approval for further work.

BBUBBan StatusVAX TF

The VAX Task Force

• When Prism was cancelled, the Executive Committee asked

for renewed focns on making proprietary (VAX/VMS) sys

tems competitive.

• An interdisciplinary VAX Task Force was formed with tlie

aim of extending VAX/VMS’ competitive lifespan.

• The Task Force, consisting of representatives from HPS,

MSB, SSG, NaC, CRA, and SCO, has met periodically
since then to study alternatives.

• The Task Force has now reached a i)oint where its work is

affecting existing plans.

• The Task Force seeks feedback on, and approval ol, the

proposed courses of action.

Bonn StatUf?VAX TF

Mission

pro])rictarY• Extend the competitive lifetime of DEC’s

VAX/VMS systems.

- Improve VAX/VMS’ competitiveness against
hardware/software systems.

• Maximize the lifetime revenue from VAX/VMS systems.

- Maintain large, healthy (high margin) proprietary l)usi-

ness segment.

new('r

mmm StatusVAX TF

Strategy

A proprietary VAX hardware architecture and
VMS software system that will be demonstrably
better than standard offerings for the next 20

years.

mmm StatusVAX TF

Goals

Proprietary VAX/VMS systems demonstrably Iretter along'
all dimensions of the product spectrum:

• Function:

— State of the art software functionality.

— Robust hardware and software.

— Compatibility with existing VAX/VMS systems.

• Cost/performance:

- Improved cost/performance against RISC.

— Improved absolute performance.

• Time to market:

- Flexible, extensible, maintainable software.

- Less complex hardware.

mmm StatusFAX TF

Issues

• Customers increasingly inclined towards standard soln-

tions.

— Proprietary systems must provide stability and uuicpie
value added.

• VAX/VMS hardware and software is becoming uncompet
itive.

- VAX and VMS designed with 1970’s concepts to 1970’s
constraints.

— Cost/performance uncompetitive vs RISC.

— I/O uncompetitive vs IBM.

- Functional limitations (address space, gpr’s, page size).

— Implementation schedule and cost penalties.

mmm StatusVAX TF

Task Force Methodology

• Short term focussed on evolutionary improvements witliout

major architecture or software perturbations,

competitiveness from 1992 to• Long term focussed on
2000+.

VAX hardware must be on the— Assumption:

cost/performance curve.

- Assumption: VMS and layered software must support
andstate of the art computing structures, conce])ts

functions.

- Assumption: Extended addressing is required in this
timeframe.

non-negligible])ortion olSome— Assumption:

VAX/VMS value is in l)inary compatibility.

- Strong goal: Competitive system performance.

— Strong goal: Extended functionality.

— Strong goal: User-perceived VAX/VMS comiuO ibility.

mn StatusVAX TF

Short Term Recommendations

ill the next• VAX processors - more competitive processors

3 years:

— Better technology - ECL VLSI VAX.

— Better microarchitecture - Centaiirns, nltimate VLSI

VAX.

— Better delivery - NVAX schedule, performance.

• VMS software - more competitive software in the next 3

years:

— VMS improvements - production systems, human inter
face, distributed systems, standards, etc.

- Compiler improvements - interprocedural analysis, tar-

getted code generators, vectors, parallel decom])osition,
etc.

recomniendations from 1/0 Task• VAX/VMS I/O - see

Force.

ennn Staf/iLSVAX TF

Long Term Alternatives

as is or with minor evolution ary• VAX/VMS forever,

changes.

• New VAX/new VMS, with strong compatiltility to existing
VAX/VMS.

— Many choices for implementing new ISA.

- New ISA has significant

— VMS on VAX migrates to new VMS on new VAX, with
VAX image compatibility.

— I/O architecture must also be overhauled.

• RISC/ported VMS, with (at best) source level compatibil-

to VAX history.concessions

ity.

• First alternative is status (luo (default choice).

• Third alternative was P.VMS (tried and rejected).

• Focus on second alternative - migration to new VAX/new

VMS while preserving compatibility.

StatusVAX TF

Key Questions

Key questions facing the Task Force are:

• Is a competitive “makeover” of VAX/VMS:

— an essential corporate strategy?

- an interesting technical issue?

lost opportunity of only historical interest!

• Is such a transformation technically feasible?

- Can VMS be moved off the VAX ISA in our lifetimes?

— Does software translation work?

• How are tradeoffs on comi)atibility to l)e made''

— What do customers think compatibility means f

— What is the impact on customers of discontinuities!

— What are the costs to DEC of indehnite continuity.''

Plans: surveys, focus groups, coni])etitive analysis, etc.

• How does VAX/VMS coexist with new VAX/uew
What happens in clusters?

• What are the (piantitative tradeoffs V)etv^een

— a

VMS?

alternatives?

mmm Statu8VAX TF

Recommendations

The Task Force’s reconiinendatioiis to date:

• Approve short term focussed projects.

• Close on strategy, goals

• Close on extended functionality for new VAX/VMS sys
tems.

miptions for VAX longevity.assi

pre-migration” strategy aimed at larger page

loose read/write ordering.

• Within SDT, assign highest priority to VAX-oriented

piler work:

— Prototype software translator.

— Interprocedural analysis, o])tiniization.

• Begin intensive study of VMS evolution and porting.

• Close on a

sizes

com-

enno Sto.tusVAX TF

Next Steps

The Task Force’s next steps;

• Quantitatively analyze, choose an alternative.

- The impact on VMS and customer software will be a
principle evaluation factor.

• Investigate phaseover issues.

• Integrate with I/O TF recommendations.

• Create concensus, generate enthusiasm, get moving!

eigni] StatusVAX TF

Appendix; Details On Alternatives

As we examined alternatives, we fonnd that we were retrac

ing old ground, and that the available alternatives form a spec

trum of increasing breaks in compatibility.

• Alternatives:

— VAX/VMS forever (as is, or with small evolutionary
changes).

- VAX mode on RISC, or VAX translation to RISC.

- VAX and RISC ISP’s in one processor.

- VAX/RISC coprocessor.

— VAX software translator to VAX-inated RISC.

— VMS port to vanilla RISC.

• Or:

- VAX.

— Riscy VAX.

— Dual instruction sets.

- HR32.

- SAFE.

— Prism/P.VMS.

SDSDQSD StatusVAX TF

VAX/VMS Forever

• VAX architecture as is, with (perhaps) larger pages and

other minor architectural tweaks.

• “Perfect” binary compatibility.

• Maintains present VMS.

• Maintains present compilers.

• Permanent >2X cost/performance penalty, because of:

— Too few general registers.

— Irregular, unaligned iiistructioii formats.

— Procedure call overhead.

— Small page size.

— Ordering requirements on reads, writes, exceptions.

• Longer time to market.

- Complexity - > longer design cycles.

— Complexity — > denser technology reciuiremeut.

• “Irregular” rather than linear extended addressing.

mma StniusVAX TF

Riscy VAX

• Several variations:

— (Sites proposal 1) RISC subset of VAX instructions.

— (Lampson proposal) RISC translation from VAX in
structions.

• “Perfect” binary compatibility.

• Maintains present VMS.

• Requires retargetted compilers.

• Does not realize full potential of RISC! technology, due to:

— VAX calling standard.

— Insufficient GPRs.

- Intra- and inter-instruction dependencies.

(But would the improvement suffice?)

• “Irregular” rather than linear extended addressing.

Bonn StatusV4A TF

Dual Instruction Sets

• Several variations:

— (Sites proposal 2) Conventional VAX iinplementation,
underlying RISC available as alternate ISP.

— (Stewart proposal) RISC translation from VAX iTistruc-
tions, underlying RISC available as alternative ISP.

• “Perfect” binary compatibility.

• Could maintain present VMS:

- Eventually, VMS would run native on RISCb

• Requires retargetted compilers, new RTL.

• Complicated to implement - VAX plus new ISA in one
design.

• Extended addressing only in native RISC.

mum StatusVAX TF

VAX/RISC Coprocessor

• VAX with RISC coprocessor, migrating tf> RISC with VAX

hardware compatibility mode.

• Or: HR32.

• “Perfect” binary compatibility.

• Could maintain present VMS:

— Start with user mode ASMP support.

— Eventually, VMS would run native on new ISA.

• Requires retargetted compilers, new RTL.

• Extra CPU in all systems: affordable in ECU?

• Initial VMS changes to support ASMP model are extensive.

• ASMP performance is questionable.

• RISC must make concessions to current VAX/VMS archi
tectural model.

• Extended addressing only in RISC^ cojuinessor.

mm StatAisVAX TF

VAX Software Translator

• Software translation of VAX EXE’s to a “VAX-inated
RISC.

• Or: SAFE.

• Key RISC concessions to VAX past:

- VAX data types.

— VAX condition code tracking.

— 32b image (longword address/data) support.

— Exceptions and AST support.

- Small page size support (maybe).

- VAX privileged architecture (maybe).

• User-mode only binary compatibility; good performance.

• VMS must be extensively changed for new architecture.

RTL, translation• Requires retargetted compilers,
tools.

• Is a strategy based on extensively reworking VMS acliiev-

able, in our lifetimes?

• What is the “cutover” strategy between old VAX’s and new

VAX’s? between old VMS and new VMS'' How do clusters

work?

new

mmm StatusVAX TF

VMS on RISC

• Port VMS to vanilla RISC.

• Or: P.VMS/Prism.

• VAX support limited to source level compatability.

• VMS must be ported to new architecture, without signif
icant hardware support.

• Requires retargetted compilers, new RTL.

• Can be prototyped with existing hardware.

• Will this keep VAX customers for DEC?

• Is a strategy based on porting VMS achievable, in our life

times?

• How are old VAX’s and new RISC’s positioned? transi

tioned?

mmm StatusVAX TF

