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DigitaFs Distributed Systems in the 1990s

Butler W. Lampson and Michael D. Schroeder

September 19, 1989

Summary

Digital can be number one in distributed systems in the 1990s. Most markets

for computing are evolving towards distributed solutions, so to maintain

market leadership Digital needs to be number one.

A leadership distributed system includes the best of today's centralized
systems, combining their coherence and function with the better

cost/performance, growth, scale, geographic extent, availability, and
reliability possible in distributed systems.

To build such a system we need a Digital Distributed Systems Architecture as
the framework for our 1990s products. The DDSA specifies a set of standard

services in a distributed system. Together these services make up an
integrated system with global names, access, availability, security, and
management, all working uniformly throughout the system.

This report summarizes a complicated subject in only a dozen pages (not
counting the appendix). We made it as short as we could. Please read it all.
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1. Why distributed systems?

A distributed system is several computers doing something together.
Compared to a centralized system, a distributed system can

• allow more widespread sharing of information and resources;

• provide more cost-effective computing by using cheap workstation

computing cycles;

• be more available and more reliable;

• be more easily expanded and upgraded;

• cover bigger areas and serve larger numbers of users.

No wonder everybody wants a distributed system.

Customers with computer networks based on DECnet or TCPAp already get
many of the benefits of distributed systems. These networks are widespread
today. Customers have a taste of distributed computing, and they like it.
There's no turning back. Computing is going to be more and more

distributed.

But today's networked systems are harder to use than their centralized

predecessors. Centralized systems provide many functions and a lot of

system-wide coherence: all the resources of the system can be accessed and

managed in the same way from any part of it. Today, the functions on a single
computer don't necessarily work over the network. For example, it may be
impossible to let a colleague have access to a file if he is not registered
locally. And many functions on the network don't work the same way they do
locally, and work differently from computer to computer. For example, for
a user of an Ultrix system, reading a local file is not the same as reading a
remote file from a VMS system over the network. In VMS, you can copy a

remote file, but you can't print it.

Fimctionality and coherence decrease as networked systems get larger. Large
networks (and many small ones) are a set of independent computers

interconnected by a network, not an integrated distributed system. Sharing
among the computers is generally limited to mail transport, file transfer, and

remote terminals. These sharing mechanisms can span many computers

because of the underlying packet-switching network, but they aren't
integrated into the usual way of doing business within each system. A few
integrated distributed applications have been developed like the
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Employee Locator Facility on the EasyNet. But basically each system in the
networkis still a world of its own, with its own user registrations, file system
configuration, and way of doing things. Customers exhibit a growing sense
of frustration about the lack of function and coherence as their networked

systems grow larger. No wonder no one is happy with the distributed system
he's got.

The development of engineering workstations has made the problem worse
by increasing the rate at which computers are added to networks. Customers

want workstations because they provide dramatically more cost-effective

performance than time-sharing systems. (Digital charges $300,000 for a 6

mips centralized system but only $15,000 for a 13 mips workstation, a factor

of 50 difference in price/performance!) Workstations also allow fine

grained expansion and upgrading. But having more computers forces more

use of the poorly integrated remote functions. And from a management point
of view each workstation is its own tiny time-sharing system: in large
numbers they become a major headache.

The redundancy and independent failure obtained by having many
interconnected computers can be exploited to increase reliability and
availability. But not many systems have the software needed to duplicate
functions and provide smooth fail-over. In most of today's distributed

clients

typical
services

RPC

Applications

Files Mail Printing Names ExecutionUsers

typical
software

components

typical
hardware

components

VMS OzixVMS Ultrix OS/2

Server 1: Server 2:Workstation WorkstationWorkstation

DS 5420VS 3100 DS2100 DS310 Vax 6400

network

global
propertiesnames access security management availability

Figure 1: A leadership distributed system
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systems, a user doesn't see non-stop operation; instead, he may not be able to
get his work done because of the failure of a computer he's never even heard

of.

A leadership distributed system, then, is

• A set of hardware, software, and data components, possibly
heterogeneous,

• whose size and geographic extent can vary over a large range,

• connected by a network,

• providing a uniform set of services (user registration, time, files,

records, printing, program execution, mail, terminals),

• with certain global properties that are uniform throughout the sytem
(names, access, security, management and availability).

The coherence that makes it a system rather than a collection of machines is a

result of uniform services and global properties. The services are available in

the same way to every part of the system, and the properties allow every part
of the system to be viewed in the same way. Let's see how close the state of

the art is to this goal, and what we must do to reach it.

2. Some existing products

Digital's current distributed system products offer either coherence or scale,

but not both in the same system. They provide few fault-tolerant services and

applications. But competitors don't yet do a lot better. Consider in more

detail the capabilities of several product distributed systems:

• DECnet with VMS, Ultrix, DFS, etc.: Networked systems built aroimd

DECnet are collections of single- and multi-user timesharing systems.

We provide almost no fault tolerant services within this framework.

There is little coherence in the way resources and information are

named, accessed, or managed across the network. On the plus side,
DECnet-based systems admit a variety of computers and operating
systems, are easily expandable, scale to very large numbers of

computers, and can span the globe.

• Vax Clusters: The level of coherence in a Vax cluster is quite good: it
provides a common file system, batch queue, print queues, user

registration, management, locking, etc. However, there are not many

fault-tolerant applications to run on this base. While clusters are

Distributed systems in the 1990s Digital Internal Use Only 4



incrementally expandable, the size limit is low and the geographic span
is limited. Upgrading the software in a cluster is difficult, because all
cluster members must run the same version of VMS. And all cluster

members must be Vaxes.

• Sun: Using TCP with Unix, NFS, etc, this competitor has developed a
networked system similar to our DECnet-based system. Sun has had the

advantage of more cost-effective workstations with which to capture
desktops, although we think that is changing. Sun has provided certain
distributed functions in advance of Digital. For example, NFS got to

market far enough ahead of the competition to become a de facto

remote file system standard in the Unix world. Several Sun distributed

systems products are "quick and dirty" designs that are incomplete and
that finesse, rather than solve, problems of consistency and

management. NFS is a good example. These lacks may provide
openings for superior designs to gain acceptance in the market. Of

course. Sun will be trying to provide those superior designs as
upwardly compatible releases.

• Apollo/HP: The Apollo Domain system is today's best-scaling,
coherent distributed system product. It provides a network-wide

virtual memory system that allows consistent sharing for up to about
500 nodes. Domain has not been widely accepted because it was late to

provide compatibility with de facto industry standards like Unix.

Alone, Apollo's presence in the marketplace was probably insufficient

for them to establish Domain as a dominant distributed systems

architecture. But the recently announced purchase of Apollo by HP
may make Apollo's technical strengths a more important force. Up to
now HP has not shown much innovation in its distributed systems

products.

• Tandem: This company is a leader in the use of local distribution to

provide fault-tolerant applications. Their distributed systems are

limited in other respects, but will certainly evolve towards the goals
defined here.

• IBM: This potential competitor in the distributed systems arena has not
shown much innovation in networking and system coherence, but CICS

(Customer Information Control System) is an extremely successful

product offering remote invocation and distributed commit. IBM can

be expected to build on its strengths in transaction processing and
personal computers.

Digital Internal Use Only 5Distributed systems in the 1990s



3. A leadership position for Digital

The industry can and will satisfy customers' demands for increased function

and coherence in distributed systems. The only question is which company
will lead the way. The outlines of a 1990s' leadership position are easy to see:
combine the virtues of a centralized system with the virtues of distributed

computing. Centralized systems offer function and coherence. Today's
distributed systems offer interconnection, cost-effective computing, and
growth. Tomorrow's distributed systems can provide all these — function,

coherence, interconnection, cost-effective computing, and growth. In
addition, they can offer new levels of availability and reliability.

The company that first develops a distributed systems architecture with these

properties, and backs it up with high quality products, will be in a strong
position to lead the distributed systems business in the 1990s. Digital is well-
placed to be that company. DECnet is already the industry's best wide- area

network architecture. We have considerable experience with large numbers
of machines interconnected by Ethernet. We have Vax clusters, which

provide both coherence and function on a limited scale. We now provide the
industry's most cost-effective Unix workstation. We're a big company with
substantial engineering resources and significant market presence. By
leading from these strengths. Digital can be number one in distributed

systems in the 1990s.

To be number one, we need to make coherent distributed computing the
company's highest-priority development goal. Any lower priority will lead
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Figure 2: Getting to a leadership distributed system
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to failure because the scope of the problem is so broad and the effect on our

product positioning is so profound. Distributed computing doesn't belong to
any one group in the company, and it affects them all. Only by making it the
highest priority can we succeed.

4. The Digital Distributed System Architecture

To make a distributed system coherent and highly functional, we need a

standard way of doing things and a set of standard services that pervade all
the computers of the system. These standards are defined by a distributed
system architecture.

Digital must define such an architecture as a focus for its product offerings in
the 1990s. We'll call it the Digital Distributed Systems Architecture —

for short. The architecture provides the homogeneity that makes the

distributed system a system, rather than just a collection of computers.

But this homogeneity doesn't mean that all the components of the system must
be the same. DDSA applies to a heterogeneous collection of computers
running VMS, Unix, MS-DOS, and perhaps other operating systems. In short,
all Digital's computers and operating systems can operate in this framework,

as well as computers and systems from other vendors. The connecting
network is a collection of Ethernets, new higher-speed LANs, bridges,
routers, gateways, various types of long distance links, etc. supporting
DECnet/OSI and other protocols.

DDSA provides global names, global access, global security, global
management, and global availability. "Global" means everywhere in the
system. For example, if we evolve the EasyNet into a DDSA-based system —
call it "BetterNet'

computers all over the world.

DDSA scales over a wide range of system sizes and extents, from small, local

installations with a few computers in one building to world-wide systems
such as BetterNet with 100,000 or more computers.

Let's examine what these pervasive properties mean:

• Global names: The same names work everywhere. Machines, users,

files, distribution lists, access control groups, and services have full

names that mean the same thing regardless of where in the system the
names are used. For instance, Butler Lampson's user name might be
something like dec . Eng. src . bwl throughout BetterNet. He will

DDSA

then "global" includes all of the 100,000 attached
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operate under that name when using any computer on BetterNet.

Global naming underlies the ability to share things.

• Global access: The same functions are usable everywhere with

reasonable performance. If Butler sits down at a machine in Palo Alto,

he can do everything there that he can do in Cambridge, with perhaps
some small performance degradations. For instance, Butler could

command the printing facilities on a computer in Palo Alto to print a
file stored on his computer in Cambridge. Global access also includes

the idea of data coherence. Suppose Butler is in Cambridge on the

phone to Mike Schroeder in Palo Alto. Butler makes a change to a file
and writes it. If they're both on BetterNet, Mike will automatically be
able to read the new version as soon as it has been written. Neither

Mike nor Butler needs to take any special action to make this possible.

• Global security: The same user authentication and access control

work everywhere. For instance, Butler can authenticate himself to any
computer on BetterNet; he can arrange for data transfer secure from

eavesdropping and modification between any two BetterNet
computers; and assuming that the access control policy permits it,
Butler can use exactly the same BetterNet mechanism to let the person
next door and someone from another group read his files. All the

facilities that require controlled access — logins, files, printers,
management functions, etc. — use the same machinery to provide the
control.

• Global management: The same person can manage components
anywhere. Obviously one person won't manage all of BetterNet. But

the system should not impose a priori constraints on which set of

components a single person can manage. All of the components of the

system provide a common interface to management tools. The tools

allow a manager to perform the same action on large numbers of

components at once. For instance, a single system manager could

configure all the workstations in an organization without leaving his
office.

• Global availability: The same services work even after some

failures. System managers get to decide (and pay for) the level of

replication for each service. As long as the failures don't exceed the

redundancy provided, each service will go on working. For instance, a

group might decide to duplicate its file servers but get by with one
printer per floor. System-wide policy might dictate a higher level of
replication for the underlying communication network. On BetterNet

mail won't need to fail between Palo Alto and Cambridge because a

machine goes down in Lafayette, Indiana.
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The standard services defined by DDSA are based on the Network Application
Services (NAS). They include the following:

• Names: Access to a replicated, distributed database of global names
and associatedvalues for machines, users, files, distributionlists,
access control groups, and services. A name service is the key DDSA
component for achieving global names, although most of the work

involved in achieving that goal is making all the other components of
the distributed system use the name service in a consistent way. The
DECnet Name Service architecture defines this service.

• Remote procedure call: A standard way to define and invoke

service interfaces. Allows service instances to be local or remote. We

expect that the DECnet RPC architecture will define this service.

• User registrations: Allows users to be registered and authenticated.

Issues certificates permitting access to system resources and

information. The Security Architecture Task Force is working out a
definition for this service.

• Time: Consistent and accurate time globally. The DECnet Time

architecture defines this service.

• Files: A replicated, distributed, global file service. Each component
machine of the distributed system can make available the files it stores

locally through this standard interface. Information stored in the name

service together with file system clerk code running in client machines

knits these various local files systems together into the coherent global
file system. The file service specification should include standard

presentations for the different VMS, Unix, etc. file types. For example,
all implementations should support a standard view of any file as an
array of bytes.

• Records: An extension of the file service to provide access to

records, either sequentially or via indexes, with record locking to
allow concurrent reading and writing, and journalling to preserve

integrity after a failure.

• Printers: Printing throughout the network of documents in standard

formats such as Postscript and ANSI, including job control and

scheduling. We expect that the Print System Model will define this

service.

• Execution: Running a program on any machine (or set of machines)
in the network, subject to access and resource controls, and efficiently
scheduling both interactive and batch jobs on the available machines.

Distributed systems in the 1990s Digital Internal Use Only 9



taking account of priorities, quotas, deadlines and failures. For many
customers, the most cost-efficient, upgradable, available, reliable

configurations include small numbers of medium- to large-sized cycle
servers. The exact configuration and utilization of cycle servers (not to
mention idle workstations that can be used for computing) fluctuates

constantly, so users and applications need automatic help in picking the
machines on which to run.

• Mailboxes: A computer message transport service, based on

appropriate international standards. X.400 and Mailbus define this

service.

• Terminals: Access to a windowing graphics terminal from a

computation anywhere in the network. X-windows defines this

service.

• Accounting: System-wide collection of data on resource usage which
can be used for billing.

DDSA includes a specification of the interface to each of these services. The

interface defines the operations to be provided, the parameters of each, and
the detailed semantics of each relative to a model of the state maintained by
the service. The specification is normally represented as an RPC interface

definition.

Each service can be provided in multiple implementations, but all must

conform to the specified interfaces. DDSA also must specify how each service
will provide the five pervasive properties: global names, global access,
global security, global management, and global availability.

Our definition of a distributed system assumes a single set of interfaces for

the standard services and global properties. For example, every component

of the system can be named, accessed, and managed in the same way. Further,
every component that provides or consumes a service, such as file storage or
printing, does so through the same interface. There still may be several
implementations of the interfaces for naming, management, files, etc., and

this variety allows the system to be heterogeneous. In its interfaces, however,

the system is homogeneous.

It is this homogeneity that makes it a system with predictable behavior rather
than a collection of components that can communicate. If more than one

interface exists for the same function, it is unavoidable that the function will

work differently through the different interfaces. The system will
consequently be more complicated and less reliable. Perhaps some
components will not be able to use others at all because they have no interface

Distributed systems in the 1990s Digital Internal Use Only 10



in common. Certainly customers and salesmen will find it much more

difficult to configure workable collections of components.

In reality, of course, there is no absolute distinction between a system and a
collection of components. A system with more different ways of doing the
same thing, whether it is naming, security, file access, or printing, is less
coherent and dependable. On the other hand, it can still do a lot of useful

work. The evils of heterogeneous interfaces can be mitigated by gateways,
components that map from one interface to another. A gateway is often
necessary when two systems evolve separately and later must be joined into
one. An obvious example is the conjunction of IBM's System Network
Architecture (SNA) and Digital's DECnet, and indeed there are already
several DECnet/SNA gateways.

5. Benefits of ddsa

A system conforming to DDSA will be of enormous benefit to Digital's
customers:

• A system can contain a variety of Digital hardware and software as

well as components provided by other vendors who follow our lead.

• A system can be configured to have no single point of failure. The

customer gets service nearly all the time, even when some parts of the
system are broken.

• A system can grow by factors of thousands (or more), from a few

computers to 100,000. It can grow a little at a time. Nothing needs to
be discarded.

• Managers and users of that large collection of components can think of

it as a single system, in which there are standard ways to do things
everywhere. Resources can be shared — especially the data they store

— even when the computers are physically separate, independently
managed, and different internally.

Customers will view DDSA as different from clusters because it allows a

bigger system and supports multiple machine architectures and multiple
operating systems. They will view DDSA as different from DECnet because it

defines all the services of a complete system and deals effectively with
security, management, and availability.

DDSA has significant internal benefits to Digital as well. It provides a
standard set of interfaces to which we can build a variety of cost-effective
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implementations over a long time period, as we already have with Vax and

DECnet. It provides building blocks that allow product teams to concentrate

more on added value rather than base mechanisms. It produces systems that
are easier to configure, sell, and support.

6. Standards

Before customers commit to an architecture they increasingly demand to

have standards established for key interfaces. Standards have been established

for computer network protocols and programming languages. The industry
is close to adopting standards for operating system kernels and applications
programming interfaces. The essence of a coherent distributed system is a
common way of doing things across a variety of components. This clearly
will be a fertile ground for more standards.

In some areas Digital will have to conform DDSA to industry standards.
Where we conform. Digital's edge over its competitors must be in providing
better implementations of such standards: better performance, lower cost,

better reliability and availability, larger capacity, larger scale, better
security. The Ethernet bridge is a good example of how to gain competitive
advantage by conforming to, and indeed taking advantage of a standard. We

can also fill more price/performance niches.

Where standards don't exist or are inadequate. Digital can add new ftmction.

Where innovations are successful, we may choose to push for standards based
on our work, to which competitors must conform their offerings. Of course,
the longer we wait the less room there will be for standards that we originate.

7. Getting started

We must start now on this project (in fact, we should have started three years
ago), for if we don't establish a leadership position in this crucial area in a

timely way then we will be forced to follow the lead of others. To succeed we

must make the definition of this architecture and the alignment of product
plans with it the highest development priority within Digital. The scope of
the activity is so broad and the impact on products so profound that any lower
priority will lead to failure.

DDSA will impact a wide variety of Digital products. Any mistakes or
misjudgments it contains will be amplified by the implementation of many
conJforming components. The people responsible for defining DDSA will need
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good design judgement, considerable experience with distributed systems,
and wide knowledge of the needs of Digital's customers. Digital's existing
products, and industry trends. Such people are hard to find, and always busy
on important projects. The first measures of our commitment to leadership
in distributed systems in the 1990s will be the people we put to work on DDSA
and how long we wait to get started.

Appendix: Models for ddsa

Defining a Digital Distributed Systems Architecture is feasible now because

experience and research have suggested a set of models for achieving global
naming, access, security, management, and availability. For each of these

pervasive properties, we describe the general approach that seems most

promising. This Appendix goes into more technical detail than the body of
the report; feel free to skip it if you are not interested.

A. Naming model

Every user and client program sees the entire system as the same tree of

named objects with state. A global name is interpreted by following the
named branches in this tree starting from the global root. Every node has a
way to find a copy of the root of the global name tree.

For each object type there is some service, whose interface is defined by
DDSA, that provides operations to create and delete objects of that type and to
read and change their state.

The top part of the naming tree is provided by the DDSA name service. The

objects near the root of the tree are implemented by the DDSA name service.

A node in the naming tree, however, can be a junction between the name

service and some other service, e.g. a file service. A junction object contains:

• a set of servers for the named object

• rules for choosing a server

• the service ID, e.g. DDSA File Service 2.3

• an object parameter, e.g. a volume identifier.

To look up a name through a junction, choose a server and call the service

interface there with the name and the object parameter. The server looks up
the rest of the name. The servers listed in a junction object are designated by
global names. To call a service at a server the client must convert the server
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name to something more useful, like the network address of the server

machine and information on which protocols to use in making the call. This
conversion is done with another name lookup. A server object in the global
name tree contains:

• a machine name

• a "protocol tower".

A final name lookup maps the (global) machine name into the network

address that will be the destination for the actual RPC to the service.

Figure 3 gives an example of what the top parts of the global name space for
BetterNet (the EasyNet replacement based on DDSA) might look like. An

important part of the DDSA is designing the top levels of the global name
space.

Consider some of the objects named in Figure 3. dec, dec . eng , and

DEC. ENG. SRC are directories implemented by the DDSA name service.

DEC. ENG. SRC. BWL is a registered user of BetterNet, also an object
implemented by the DDSA name service. The object dec . eng . src . bwl

contains a suitably encrypted password, a set of mailbox sites, and other

information that is associated with this system user, dec . eng . src . staff is a

group of global names. Group objects are provided by the DDSA name

service to implement things like distribution lists, access control lists, and sets
of servers.

DEC. ENG. SRC. bin is a file System volume. Note that this object is a junction
to the DDSA file service. Figure 3 does not show the content of this junction
object, but it contains a group naming the set of servers implementing this
file volume and rules for choosing which one to use, e.g., first that responds.
To look up the name dec . eng . src . bin. is, for example, the operating
system on a client machine traverses the path dec . eng . src . bin using the
name service. The result at that point is the content of the junction object,
which then allows the client to contact a suitable file server to complete the
lookup.
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DEC ENG SRC Domain ... data for SRC management domain

BWL:Principal=(Password=...,Mailbox=...,etc)

MDS:Principal=(Password=...,Mailbox=...,etc)

_ ... other principals registered at SRC

Staff:Group=(DEC.ENG.SRC.BWL, DEC.ENG.SRC.MDS,etc)

... other groups at SRC

Computers Cl:Computer=(Address=Al,HWInfo=..

Bootfile=...,Bootdata=..

etc)

C2:Computer=(Address=A2,etc)

... other computers

• r

• r

-Backmap A1=DEC.ENG.SRC.Computers.Cl

A2=DEC.ENG.SRC.Computers.C2

... addresses of other computers

bin :Volume=(junction to file service)

udir:Volume=(junction to file service)
... other volumes

... other SRC objects

ZK Domain

Kenah:Principal=(Password=..., Mailbox=...,etc)

_ ... other principals registered at Spitbrook

... data for ZK management domain

VMS Staff:Group=(DEC.ENG.ZK.Kenah,etc)

... other groups in VMS

Computers ...

Backmap ...

VERSI0N4:Volume=(junction to subtree under VERSI0N4)
... other volumes in VMS

... groups in DECWINDOWS

... volumes in DECWINDOWS

... other objects in DECWINDOWS

DECWINDOWS

... other projects in VMS

... other organizations in ZK

... other sites in Engineering

.. other parts of DEC

Figure 3: Top portion of a BetterNet global name space
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B. Access model

Global access means that a program can run anywhere in a DDSA-based

distributed system (on a compatible computer and operating system) and get
the same result, although the performance may vary depending on the
machine chosen. Thus, a program can be executed on a fast cycle server in
the machine room while still using files from the user's personal file system
directory on another machine. Thus, a VMS printing program can print a file
that is stored in a different machine or cluster.

Achieving global access requires allowing all elements of the computing
environment of a program to be remote from the computer where the

program is executing. All services and objects required for a program to run
need to be available to a program executing anywhere in the distributed

system. For a particular user, "anywhere" includes at least:

• on the user's own workstation;

• on public workstations or compute servers in the user's

management domain;

• on public workstations in another domain on the user's LAN;

• on public workstations across a low-bandwidth WAN.

The first three of these ought to have uniformly good performance. Some
performance degradation is probably inevitable in the fourth case, but

attention should be paid to making the degradation small.

In DDSA, global naming and standard services exported via a uniform RPC

mechanism provide the keys to achieving global access. All DDSA services

accept global names for the objects on which they operate. All DDSA services

are available to remote clients. Thus, any object whose global name is known
can be accessed remotely. In addition, we must arrange that programs access
their environments only by using the global names of objects. This last step
will require a thorough examination of the computing environment provided
by Ultrix, VMS, and other operating systems to identify all the ways in which
programs can access their environment. For each way identified a

mechanism must be designed to provide the global name of the desired

object. For example, in Unix systems that operate under DDSA,the identities

of the file system root directory, working directory, and /tmp directory of a
process must be specified by global names. Altering VMS, Unix, and oAer
operating systems to accept global names everywhere will be a major
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undertaking, and is not likely to happen in one release. As a result, we must

expect incremental achievement of the global access goal.

Another aspect of global access is making sure DDSA services specify
operation semantics that are independent of client location. For example, any
service that allows read/write sharing of object state between clients must

provide a data coherence model that is insensitive to client and server

location. Depending on the nature of the service, it is possible to trade off
performance, availability, scale, and coherence.

In the DNS name service, for example, the choice is made to provide
performance, availability, and scale at the expense of coherence. A client

update to the name service database can be made by contacting any server.
After the client operation has completed, the server propagates the update to
object replicas at other servers. Until propagation completes, different
clients can read different values for the object. But this lack of coherence

increases performance by limiting the client's wait for update completion;
increases availability by allowing a client to perform an update when just one
server is accessible; and increases scale by making propagation latency not
part of the visible latency of the client update operation. For the objects that
the DNS name server will store, this lack of coherence is deemed acceptable.
The data coherence model for the name service carefully describes the loose

coherence invariants that programmers can depend upon, thereby meeting
the requirement of a coherence model that is insensitive to client and server

location.

On the other hand, the DDSA file service probably needs to provide consistent
write sharing, at some cost in performance, scale, and availability. Many
programs and users are accustomed to using the file system as a

communication channel between programs. Butler Lampson may store a

document in a file from his Cambridge workstation and then telephone Mike
Schroeder in Palo Alto to say the new version of the document is ready. Mike
will be annoyed if then fetching that file into his Palo Alto workstation

produces the old version of the document. File read/write coherence is also

important among elements of a distributed computation running, say, on
multiple computers on the same LAN. Most existing distributed file systems
that use caching to gain performance do not have data coherence, e.g. Sun's
NFS.
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C. Security model

Security is based on three notions:

• Authentication: for every request to do an operation, the name

of the user or computer system which is the source of the request
is known reliably. We call the source of a request a "princip^".

• Access control: for every resource (computer, printer, file,

database, etc.) and every operation on that resource (read, write,
delete, etc.), it's possible to specify the names of the principals
allowed to do that operation on that resource. Every request

for an operation is checked to ensure that its principal
is allowed to do that operation.

• Auditing: every access to a resource can be logged if desired,

as can the evidence used to authenticate every request. If trouble

comes up, there is a record of exactly what happened.

To authenticate a request as coming from a particular principal, the system
must determine that the principal originated the request, and that it was not

modified on the way to its destination. We do the latter by establishing a
"secure channel" between the system that originates the request and the one
that carries it out. A secure channel might be a physically protected piece of
wire, but practical security in a distributed system requires encryption to
secure the communication channels. The encryption must not slow down

communication, since in general it's too. hard to be sure that a particular
message doesn't need to be encrypted. So the security architecture includes

methods of doing encryption on die fly, as data flows from the network into a

computer.

To determine who originated a request, it's necessary to know who is on the

other end of the secure channel. If the channel is a wire, the system manager
might determine this, but usually it's done by having the principal at the other
end demonstrate that it knows some secret (such as a password), and then
finding out in a reliable way the name of the principal that knows that secret.

DDSA's security architecture specifies how to do both these things. It's best if
you can show ihat you know the secret without giving it away, since
otherwise the system you authenticated to can impersonate you. Passwords
don't have this property, but it can be done using public-key encryption.

It's desirable to authenticate a user by his possession of a device which knows

his secret and can demonstrate this by public-key encryption. Such a device is

called a "smart card". An inferior alternative is for the user to type his
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password to a trusted agent. To authenticate a computer system, we need to
be sure that it has been properly loaded with a good operating system image;
DDSA must specify methods to ensure this.

Security depends on naming, since access control identifies the principals that
are allowed access by name. Practical security also depends on being able to
have groups of principals (e.g., the Executive Committee, or the system
administrators for the star cluster). Both these facilities are provided by
DNS. To ensure that the names and groups are defined reliably, digital
signatures are used to certify information in DNS; the signatures are
generated by a special "certification authority" which is engineered for high
reliability and kept off-line, perhaps in a safe, when its services are not

needed. Authentication depends only on the smallest sub-tree of the full DNS

naming tree that includes both the requesting principal and the resource;
certification authorities that are more remote are assumed to be less trusted,

and cannot forge an authentication.

The evolving Distributed Systems Security Architecture incorporates these
ideas, and is progressing rapidly. Much implementation work remains to be

done.

D. Management model

System management is adjustment of system state by a human manager.
Management is needed when satisfactory algorithmic adjustments cannot be
provided; when human judgement is required. The problem in a large-scale
distributed system is to provide each system manager with the means to

monitor and adjust a fairly large collection of geographically distributed

components.

The DDSA management model is based on the concept of domains. Every
component in a distributed system is assigned to a domain. (A component is a
piece of equipment or a piece of management-relevant object state.) Each
domain has a responsible system manager. To keep things simple, domains
are disjoint. Ideally a domain would not depend on any other domains for its
correct operation.

Digital must provide customers with guidelines for organizing their systems
into effective management domains. Some criteria for defining a domain
might be:

• components used by a group of people with common goals;

• components that a group of users expects to find working;
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• largest pile of components under one system manager;

• pile of components that isn't too big.

A user ought to have no trouble figuring out which system manager to

complain to when something isn't working satisfactorily. That manager
ought to have some organizational incentive to fix the user's problem.

DDSA requires that each component define and export a management

interface, using RPC if possible. Each component is managed via RPC calls to
this interface from interactive tools run by human managers. Some
requirements for the management interface of a component are:

• Remote access: The management interface provides remote access to

all system functions. Local error logs are maintained that can be read

from the management interface. A secure channel is provided from
management tools to the interface. No running around by the manager
is required.

• Program interface: The management interface of a component is
designed to be driven by a program, not a person. Actual invocation of

management functions is by RPC calls from management tools. This

allows a manager to do a lot with a little typing. A good management
interface provides end-to-end checks to verify successful completion
of a series of complex actions and provides operations that are

independent of initial component state to make it easier to achieve the

desired final state.

• Relevance: The management interface should operate only on
management- relevant state. A manager shouldn't have to manage

everything. In places where the flexibility is useful rather than just
confusing, the management interface should permit decentralized
management by individual users.

• Uniformity: Different kinds of components should strive for

uniformity in their management interfaces. This allows a single
manager to control a larger number of kinds of components.

The management interfaces and tools make it practical for one person to
manage large domains. An interactive management tool (the Management
Control Center or MCC) can invoke the management interfaces of all

components in a domain. It provides suitable ways to display and correlate
the data, and to change the management-relevant state of components.
Management tools are capable of making the same state change in a large set
of similar components in a domain via iterative calls. To provide the
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flexibility to invent new management operations, some management tools
support Ae construction of programs that call the management interfaces of

domain components.

Phase V DECnet implements a management model called Enterprise
Management Architecture (EMA) that incorporates domains, remote

management interfaces, and interactive management tools.

E. Availability Model

To achieve high availability of a service there must be multiple servers for
that service. If these servers are structured to fail independently, then any
desired degree of availability can be achieved by adjusting the degree of
replication.

Recall from the naming model discussion that the object that represents a
service includes a set of servers and some rules for choosing one. If the
chosen server fails, then the client can fail-over to a backup server and repeat
the operation. The client assumes failure if a response to an operation does
not occur within the timeout period. The timeout should be as short as

possible so that the latency of an operation that fails-over is comparable to the
usual latency.

To achieve transparent fail-over from the point of view of client programs, a
service is structured using a clerk module in the client computer. With a
clerk, the client program makes a local call to the clerk for a service

operation. The clerk looks up the service name and chooses a server. The

clerk then makes the RPC call to the chosen server to perform the operation.
Timeouts are detected by the clerk, which responds by failing over to another
server. The fail-over is transparent to the client program.

As well as implementing server selection and fail-over, a clerk can provide
caching and write behind to improve performance, and can aggregate the
results of multiple operations to servers. As simple examples of caching, a
name service clerk might remember the results of recently looked up names
and maintain open connections to frequently used name servers. Write-

behind allows a clerk to batch several updates as a single server operation
which can be done asynchronously, thus reducing the latency of operations at
the clerk interface.

As an example of how a clerk masks the existence of multiple servers,
consider the actions involved in listing the contents of

DEC. ENG. SRC. udir. BWL.Mail. inbox, a DDSA file System directory.
(Assume no caching is being used.) The client program presents the entire
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path name to the file service clerk. The clerk locates a name server that stores

the root directory and presents the complete name. That server may store the
directories dec and dec . eng. The directory entry for dec . eng . src will

indicate another set of servers. So the first lookup operation will return the
new server set and the remaining unresolved path name. The clerk will then

contact a server in the new set and present the unresolved path
SRC. udir. BWL. Mail. inbox. This server discovers that src . udir is a

junction to a file system volume, so returns the junction information and the

unresolved path name udir. bwl . Mail. inbox. Finally, the clerk uses the

junction information to contact a file server, which in this example actually
stores the target directory and responds with the directory contents. What

looks like a single operation to the client program actually involves RPCs to
three different servers by the clerk.

For servers that maintain state that can be write-shared among multiple
clients, providing high availability is complex. An example is a replicated file
service such as needed for DDSA. The essential difficulties are arranging that
no writes get lost during fail-over from one server to another, and that a
server that has been down can recover the current state when it is restarted.

Combining these requirements with caching and write-behind to obtain good
performance, without sacrificing consistent sharing, can make implementing
a highly available service quite challenging.
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