
3 of 3
■ »<ili

V

H '

*

'.‘it, '•h

;

h .?
£ri^

ROCK::SUPNIK 24-AUG-1984 11:25

WAFER::UHLER

cutler's proposed high performance architecture

From:

To:

Sub j :

From:

To:

Subj :

Things always loose in the translation!

We said the architecture was "like" the hypervax modle so people
would have some idea how it worked. Our original thoughts were to do

a four stage pipeline. The first stage was decode and decoded up to
3 specifiers at a time (decode means separated). The next stage had
3 address adders capable of doing displ(rb)[rx] in one cycle. The
next stage had two tb's and two caches and fetched two operands in
parallel. The final stage executed instructions. And of course there

was some form of branch predicition.

Now after looking at the problem more throughly and doing some
analytical modeling on actual flow data from microvax one we are

convinced we can get 4x780 with the same pipeline and one operand
decoded, adder, and fetcher. Specifiers are decoded one at a time,
the address add (or register fetch) in done in the next cycle
followed by the operand read and then the value is stored in one of

three operand specifier buffers that are 16 bytes wide (they also
act as merge registers for unaligned data). There are two sets of

operand specifier buffers; one that is being written by the fetch
and one that is being read by the execution stage.

Our data says we can get from 3.8-5x780 with this architecture
depending on how well we do with branches. If we predict them all

incorrectly then we get 3.8x780. If we predict them all correctly
we get 5x780. The middle road is about 70% correct which gives
about 4x780.

23-AUG-1984 13:06WILBUR: -.CUTLER

ROCK::SUPNIK

RE: performance of cvax and rigel

us

The tpi we get is from 4-5.

The reasone this architecture works is because almost all operand
fetching can be hidden behind instruction execution (or at least
a large amount of it can).

I believe this is a simple architecture. It is not a complicated
as Venus. Write comflict is handled by write in progress bits in

both the cache and register file. There is a single write bus and

it need not be arbitrated. There is an icache and a dcache. They
are really the same cache and share control logic. However,
reads and one write can be done every cycle. There are two register
files. One is in the address add stage and one in the execution stage.
The one in the address add stage is dual port read one port write.
The one in the execution stage is single port read and single port
write (this is one required for access to the registers during
string, decimal, and certain control instructions).

Now the address adder does everything but

two

(r) +
-(r)

@(r) +

@d(r)

and the context indexed form of these.

The modes that are not done by the address stage cause a trap
in the execution stage when the instruction becomes the current

instruction. All register backup is done in the execution stage.
None is done in the address add stage. Thus there is a single
source of write data and it is on the result bus no matter whether

it is destined for the register file or memory. No arbitration of

who gets to write memory or the register file now.

Complicated instructions like string, decimal, call, etc. stop
the pipe. This means that no further instructions will be decoded

until the execution unit says so. Thus the fetch stage cache and tb

are available for fetching and storing results. This is necessary
for proper memory conflict resolution. Also mtpr and mfpr stop the
pipe.

I'll stop by on Monday or Tuesday of next week and talk to you about
i t.

I must say that I do not agree that the way we should be trying to
build a fast Vax is by tightening the microcyle time. This does not

have anywhere near the payback that an improved microarchitectur e

has. Yes it is important but we could never get 4x780 out of cmos

(currently) by going to a microcyle of 50ns or less. We would have

to have so many pipeline stages that branches would kill us.

dave

From:

To:

Subj :

ROCK::SUPNIK 13-DEC-1984 11:53

WAFER::UHLER

request for documentation

From:

To:

Subj :

WILBUR::CUTLER

ROCK::SUPNIK

youyr comments

13-DEC-1984 11:53

Thanks for the comments.

Although I know very little about Rigel it seems there is significant
difference. The cahnges we made in our model for branch prediction,
register counters, and decoding register destinations along with the
previous specifier had MAJOR impact on performance. Stopping the pipe
while you wait for a branch to be resolved could cost you up to 25%
in performance assuming you have a four stage pipe and branches
every 3-4 instructions.

occur

We will run

detail.
as many traces as we can and will model things in more

Could you send me some documentation about Rigel?

d

MIST::CUTLER 21-DEC-1984 13:46

WAFER::UHLER

fortran statistics

From:

To:

Sub j :

Instruction Frequency Data
This data was collected on 21-DEC-1984 09:55:14.62
This data was written to duaO:[cutler]mm32for.cod
Total number of instructions traced was

Count Percnt Cumula

243068
Name

MOVL

BNEQ

BEQL
CMPL

MOVAB

MOVZWL

ADDL2

29970

18521

12412

11910

11624

9271

8902

8677

6848

6500

6433

5423

5385

5325

4919

4900

4809

4223

4133

4020

3904

2544

2525

2456

2402

2240

2163

2058

1813

1811

1802

1793

1739

1690

1552

1469

1266

1252

1251

1238

1206

1204

1191

1188

1129

1055

1045

12.33

7.62

5.11

4.90

4.78

3.81

3.66

3.57

2.82

2.67

2.65

2.23

2.22

2.19

2.02

2.02

1.98

1.74

1.70

1.65

1.61

1.05

1.04

1.01

0.99

0.92

0.89

0.85

0.75

0.75

0.74

0.74

0.72

0.70

0.64

0.60

0.52

0.52

0.51

0.51

0.50

0.50

0.49

0.49

0.46

0.43

0.43

0.41

0.39

0.39

0.34

0.32

0.30

12.33

19.95

25.06

29.96

34.74

38.55

42.21

45.78

48.60

51.28

53.92

56.15

58.37

60.56

62.58

64.60

66.58

68.32

70.02

71.67

73.28

74.32

75.36

76.37

77.36

78.28

79.17

80.02

80.76

81.51

82.25

82.99

83.70

84.40

85.04

85.64

86.16

86.68

87.19

87.70

88.20

88.69

89.18

89.67

90.14

90.57

91.00

91.41

91.80

92.18

92.53

92.85

93.15

BBC

MOVZBL

PUSHL

CMPW

RET

BRB

CALLS

SOBGTR

CMPB

CLRL

TSTL

EXTZV

MOVW

RSB

INCL

BLBC

AOBLEQ
BRW

ASHL

SOBGEQ
SUBL2

JSB

MOVB

CMPZV

BSBW

BBS

ADDL3

BGTRU

MOVAL

BLBS

BLEQU

BLSS

PUSHAW

CASEB

MOVQ
BLSSU

MULL2

BLEQ
CASEL

BGEQ
CLRB

PUSHAB

CLRQ
SUBL3

BGTR

BGEQU

989

955

936

829

784

731

BICB2

INSV

Move 5

BICL2

SUBW3

POPR

BSBB

BISB2

DECL

TSTB

ADDW3

BITB

PUSHR

MULL3

MNEGL

CLRW

TSTW

BITW

Move 3

BISW2

PUSHAL

MOVAQ
MTPR

BieL3

eASEW

PROBER

BBee

PROBEW

BISL2

BBSS

SUBB2

ADDW2

DIVL3

BBSe

700 0.29

0.27

0.26

0.25

0.24

0.22

0.21

0.21

0.21

0.21

0.21

0.21

0.20

0.20

0.20

0.19

0.19

0.19

0.19

0.18

0.17

0.16

0.11

0.11

0.10

0.09

0.09

0.08

0.08

0.08

0.07

0.07

0.06

0.06

0.06

0.05

0.05

0.05

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.03

0.03

0.02

0.02

0.02

0.02

0.02

0.02

0.02

93.44

93.71

93.97

94.22

94.46

94.68

94.90

95.11

95.32

95.53

95.75

95.95

96.16

96.36

96.55

96.74

96.94

97.13

97.31

97.49

97.66

97.82

97.93

98.04

98.14

98.23

98.32

98.39

98.47

98.55

98.62

98.68

98.75

98.81

98.87

98.92

98.97

99.02

99.06

99.11

99.15

99.19

99.23

99.26

99.30

99.33

99.37

99.40

99.43

99.46

99.49

99.52

99.54

99.57

99.59

99.61

99.63

99.65

99.67

99.69

668

624

612

587

540

520

517

516

515

514

506

492

485

475

470

470

462

452

438

410

381

278

263

244

213

207

189

189

183

174

162

153

147

BVS 144

DEew

SKPe

iNeB

AOBLSS

ROTL

AeBL

REI

SUBB3

EDIV

BISL3

I New

MOVPSL

MFPR

Loee

130

129

111

109

106

99

96

92

88

87

86

86

82

76

JMP 71

eVTWL

EMUL

EXTV

PUSHAQ
DIVL2

eVTBL

ADDB3

MOVZBW

eHMK

eMPe3

67

67

62

56

55

53

51

50

50

49

49 0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

99.71

99.73

99.75

99.77

99.79

99.81

99.82

99.84

99.85

99.87

99.88

99.90

99.91

99.92

99.93

99.94

99.95

99.96

99.96

99.97

99.97

99.98

99.98

99.98

99.99

99.99

99.99

100.00

CHME

REMQUE

INSQUE
BITL

CVTLB

MULW2

XORL2

DECB

MOVAW

SUBW2

ADDB2

BICW2

ASHQ
BISW3

BBCCI

MNEGB

CVTLW

FFS

BISPSW

BVC

MOVTC

CALLG

ACBW

BICB3

MCOML

CVTWB

CMPV

XORL3

BBCS

BICW3

BBSSI

BISB3

MULW3

MNEGW

47

46

46

46

41

39

38

37

37

34

34

33

25

24

21

21

18

17

12

12

11

9

9

9

8

7

4

4

2

2

1

1

1

Instruction Size

Size Count Percnt Cumula

1 9423

62829

63082

48813

23001

10212

16744

7508

1180

3.88

25.85

25.95

20.08

9.46

4.20

6.89

3.09

0.49

0.03

0.03

0.02

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.88

29.73

55.68

75.76

85.22

89.42

96.31

99.40

99.89

99.92

99.95

99.96

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

2

3

4

5

6

7

8

9

10 72

11 73

12 43

13 84

14 1

15 0

16 3

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 0

34 0

35 0

36 0

37 0

38 0

39 0

40 0

Average Instruction Size = 3.65

Specifier Size
Size Count Percnt Cumula

321707

62904

13744

3409

21449

5998

Average Specifier Size =
Specifier Type (all)
Type

1 74.95

14.66

3.20

0.79

5.00

1.40 100.00

1.50

74.95

89.61

92.81

93.61

98.60

2

3

4

5

6

Count Percnt Cumula

s"#0x

s"#lx
s"#2x

s"#3x

[Rx]

51034

9678

2282

11.89

2.25

0.53

0.22

4.91

34.27

7.55

0.48

3.54

0.50

10.93

0.41

1.19

0.00

3.91

0.04

16.39

1.00 100.00

11.89

14.15

14.68

14.89

19.80

54.07

61.62

62.10

65.63

66.13

77.06

77.47

78.66

78.66

82.57

82.61

99.00

933

21053

147093

32407

2051

15176

2125

46918

1775

5100

Rn

(Rb)
-(Rb)

(Rb) +

@(Rb) +

b"(Rb)
@b(Rb)
w"(Rb)

@w(Rb)
l^(Rb)
@l(Rb)

12

16769

152

Bdb 70350

4303

Specifier Type (index)
Count

Bdw

Type Percnt Cumula

(Rb)
-(Rb)
(Rb) +

@ (Rb) +
b''(Rb)
@b(Rb)
w"(Rb)
@w(Rb)
l^(Rb)

@l(Rb)

8308 39.46

0.01

0.00

0.63

14.04

1.88

15.56

0.63

27.72

0.07 100.00

39.46

39.47

39.47

40.10

54.14

56.02

71.58

72.21

99.93

2

0

133

2956

395

3276

133

5835

15

Reads Per Instruction

Percnt Cumula
Memory
Numbe r Count

0 169894

64075

8774

69.90 69.90

26.36 96.26

3.61 99.87

0.12 99.99

0.00 99.99

0.01 100.00

0.00 100.00

Average Memory Reads Per Instruction = 0.34
Memory Writes Per Instruction
Number

1

2

3 292

4 0

5 33

6 0

Count Percnt Cumula

0 216590

26478

89.11

10.89 100.00

0.00 100.00

Average Memory Writes Per Instruction
Register Reads Per Instruction
Number

89.11

1

2 0

0.11

Count Percnt Cumula

0 89350

108651

40567

4135

36.76

44.70

16.69

1.70

0.15 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

Average Register Reads Per Instruction
Register Writes Per Instruction
Numbe r

36.76

81.46

98.15

99.85

1

2

3

4 365

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

0.84

Count Percnt Cumula

0 154840

88141

63.70

36.26

0.04 100.00

Average Register Writes Per Instruction

63.70

99.961

2 87

0.36

Specifier Access Type
Type Count Percnt Cumula

195659

86433

28360

26433

17673

74653

Total number of operand specifiers was
Number of nonfetch operand specifiers was
Percent of nonfetch operand specifiers was

read

write

modify
addres

vield

branch

45.59

20.14

6.61

6.16

4.12

17.39 100.00

45.59

65.72

72.33

78.49

82.61

429211

333944

77.80

MIST::CUTLER 21-DEC-1984 13:50

WAFER::UHLER

linker statistics

From:

To:

Subj :

Instruction Frequency Data
This data was collected on 21-DEC-1984 10:00:30.14

This data was written to duaO:[cutler]mm321nk.cod
Total number of instructions traced was

Percnt Cumula

333074

Name Count

51250

16023

15514

13224

13079

11899

8973

8514

7765

7469

7452

7000

6953

6787

6716

6078

6024

5973

5572

5201

4552

4318

4159

4055

3822

3692

3602

3366

3301

3222

3184

3119

2748

2706

2338

2157

2138

2121

2085

2032

1996

1932

1809

1783

1768

1717

1675

1492

1454

1425

1402

1396

1294

15.39

4.81

4.66

3.97

3.93

3.57

2.69

2.56

2.33

2.24

2.24

2.10

2.09

2.04

2.02

1.82

1.81

1.79

1.67

1.56

1.37

1.30

1.25

1.22

1.15

1.11

1.08

1.01

0.99

0.97

0.96

0.94

0.83

0.81

0.70

0.65

0.64

0.64

0.63

0.61

0.60

0.58

0.54

0.54

0.53

0.52

0.50

0.45

0.44

0.43

0.42

0.42

0.39

15.39

20.20

24.86

28.83

32.75

36.32

39.02

41.58

43.91

46.15

48.39

50.49

52.58

54.61

56.63

58.45

60.26

62.06

63.73

65.29

66.66

67.95

69.20

70.42

71.57

72.68

73.76

74.77

75.76

76.73

77.68

78.62

79.44

80.26

80.96

81.61

82.25

82.88

83.51

84.12

84.72

85.30

85.84

86.38

86.91

87.42

87.93

88.38

88.81

89.24

89.66

90.08

90.47

MOVL

ADDL2

MOVZBL

BEQL
MOVAB

CMPL

BLBC

AOBLEQ

BNEQ
BBC

MOVZWL

CLRL

BGTRU

BBS

RSB

BRB

PUSHL

CMPB

TSTL

BLSSU

RET

CALLS

BSBW

EXTZV

SUBL2

BLBS

MOVB

INSV

ADDL3

MOVW

MOVAL

INCL

SUBL3

PUSHAB

BGEQ
PUSHR

CMPW

BGTR

BRW

POPR

BSBB

MOVQ

BLEQ
BLSS

SOBGTR

BICL2

BGEQU
BICB3

CLRQ
INCW

MCOML

MTPR

BICL3

BISB2 1260

1242

1098

1040

1039

1010

0.38

0.37

0.33

0.31

0.31

0.30

0.29

0.29

0.29

0.28

0.28

0.28

0.25

0.24

0.21

0.21

0.20

0.20

0.20

0.20

0.18

0.18

0.17

0.16

0.16

0.16

0.15

0.13

0.13

0.12

0.11

0.11

0.09

0.09

0.09

0.09

0.09

0.09

0.08

0.08

0.08

0.08

0.08

0.08

0.07

0.07

0.07

0.06

0.06

0.06

0.06

0.06

0.05

0.05

0.04

0.04

0.04

0.04

0.04

0.03

90.85

91.22

91.55

91.86

92.17

92.48

92.77

93.06

93.35

93.63

93.91

94.18

94.44

94.68

94.89

95.11

95.31

95.51

95.71

95.91

96.09

96.26

96.44

96.60

96.76

96.91

97.06

97.19

97.32

97.44

97.54

97.65

97.74

97.83

97.92

98.00

98.09

98.18

98.26

98.34

98.42

98.50

98.57

98.65

98.72

98.78

98.85

98.91

98.98

99.04

99.10

99.16

99.21

99.26

99.30

99.34

99.37

99.41

99.44

99.48

JSB

SOBGEQ

BLEQU
CASEW

CLRW

PROBEW

Move 3

Move 5

eMPe5

BieB2

ADDW2

ASHL

MNEGL

EDIV

MOVAQ
PROBER

TSTW

EMUL

BBGG

ROTL

DEGL

MOVAW

DEGW

BISW3

BBSS

EXTV

TSTB

BISL2

GLRB

AGBW

BBSe

GMPZV

BIGW2

975

966

963

936

934

916

843

806

714

710

673

673

664

650

611

584

572

539

525

525

487

433

424

396

358

353

299

296

REI 294

SUBB3

GASEB

BISL3

MOVPSL

MFPR

INGB

JMP

REMQUE
eVTBL

eVTWL

INSQUE
PUSHAL

BVS

BISW2

PUSHAQ
CHMK

GMPV

MOVZBW

BITW

MULL2

DEGB

SUBW3

ADDB3

eVTLB

MULW2

292

290

289

275

268

263

256

255

253

231

221

217

213

209

208

205

185

176

171

129

125

123

118

118

114

X0RL2

SBWC

CHME

DIVL2

X0RB2

BITB

ASHQ
AOBLSS

BBCCI

SUBW2

BITL

ADDW3

MULL3

114 0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

99.51

99.55

99.58

99.61

99.64

99.67

99.70

99.72

99.75

99.77

99.79

99.82

99.84

99.86

99.88

99.89

99.91

99.92

99.94

99.95

99.96

99.96

99.97

99.98

99.98

99.99

99.99

99.99

99.99

100.00

112

111

109

105

94

84

84

82

81

76

74

69

FFS 69

BBCS

LOCC

CMPC3

ADDB2

PUSHAW

SUBB2

MNEGB

BICW3

XORL3

CASEL

MULW3

SKPC

DIVL3

BBSSI

CALLG

MNEGW

ACBL

MATCHC

BISB3

DIVW3

ADWC

62

55

53

49

37

35

32

31

28

19

13

11

11

11

8

6

3

2

2

2

2

Instruction Size

Size Count Percnt Cumula

1 11562

77185

104811

75220

33308

9373

13379

6726

1391

3.47

23.17

31.47

22.58

10.00

2.81

4.02

2.02

0.42

0.03

0.01 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

3.47

26.64

58.11

80.70

90.70

93.51

97.53

99.55

99.96

99.99

2

3

4

5

6

7

8

9

10 85

11 22

12 11

13 1

14 0

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 0

34 0

35 0

36 0

37 0

38 0

39 0

40 0

Average Instruction Size 3.50

Specifier Size
Size Count Percnt Cumula

1 479696 78.23 78.23

93126 15.19 93.42

15041 2.45 95.87

5995 0.98 96.85

17226 2.81 99.66

2106 0.34 100.00

Average Specifier Size = 1.36
Specifier Type (all)
Type Count Percnt Cumula

2

3

4

5

6

s"#0x

s"#lx
s"#2x

s"#3x

[Rx]

63534

9913

3544

2018

13473

239508

51483

3175

24665

2550

74334

6557

8316

10.36

1.62

0.58

0.33

2.20

39.06

8.40

0.52

4.02

0.42

12.12

1.07

1.36

0.01

1.78

0.04

15.05

1.08 100.00

10.36

11.98

12.56

12.88

15.08

54.14

62.54

63.06

67.08

67.49

79.62

80.69

82.04

82.05

83.83

83.88

98.92

Rn

(Rb)
-(Rb)

(Rb) +

@(Rb) +
b"(Rb)
@b(Rb)
w" (Rb)
@w(Rb)
l"(Rb)
@l(Rb)

78

10908

265

Bdb 92264

6605

Type (index)
Count Percnt Cumula

Bdw

Specifier
Type

(Rb)

-(Rb)
(Rb) +

@(Rb)+

b"(Rb)
@b(Rb)

w"(Rb)
@w(Rb)

l^(Rb)
@l(Rb)

2461 18.27

0.23

0.00

3.00

13.49

7.95

15.16

28.69

7.59

18.27

18.50

18.50

21.49

34.99

42.94

58.10

86.79

94.38

5.62 100.00

31

0

404

1818

1071

2043

3865

1023

757

Memory Reads Per
Numbe r

Instruction

Percnt CumulaCount

0 222070

99420

11324

66.67

29.85

3.40

0.08 100.00

0.00 100.00

0.00 100.00

0.00 100.00

Average Memory Reads Per Instruction
Memory Writes Per Instruction
Number

66.67

96.52

99.92

1

2

3 260

4 0

5 0

6 0

0.37

Count Percnt Cumula

291474 87.51 87.51

41600 12.49 100.00

0.00 100.00

Average Memory Writes Per Instruction = 0.12
Register Reads Per Instruction
Number

0

1

2 0

Count Percnt Cumula

0 111687

145748

68862

5611

1166

33.53

43.76

20.67

1.68

0.35 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

Average Register Reads Per Instruction
Register Writes Per Instruction
Numbe r

33.53

77.29

97.97

99.65

1

2

3

4

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

0.92

Count Percnt Cumula

0 198184

134197

59.50

40.29

0.21 100.00

Register Writes Per Instruction

59.50

99.791

2 693

Average 0.41

Specifier Access Type
CountType Percnt Cumula

277942

132852

44331

34796

24400

98869

Total number of operand specifiers was
Number of nonfetch operand specifiers was
Percent of nonfetch operand specifiers was

read

write

modify
addres

vield

branch

45.33

21.67

7.23

5.67

3.98

16.12 100.00

45.33

66.99

74.22

79.90

83.88

613190

476819

77.76

MIST::CUTLER 21-DEC-1984 13:55

WAFER::UHLER

sort statistics

From:

To:

Subj ;

Instruction Frequency Data
This data was collected on 21-DEC-1984 10:05:51.15
This data was written to duaO:[cutler]sort.cod
Total number of instructions traced was

Percnt Cumula

402831
Name Count

51261

23039

20659

20420

18915

18339

17640

16367

16216

13632

12864

12280

11491

11400

11352

10611

9885

8224

8138

4674

4066

3970

3704

3538

3496

2876

2656

2652

2333

2279

2254

2069

2040

1846

1609

1533

1420

1413

1399

1362

1355

1352

1316

1294

1180

1105

1017

1009

1002

MOVL

CMPL

12.73

5.72

5.13

5.07

4.70

4.55

4.38

4.06

4.03

3.38

3.19

3.05

2.85

2.83

2.82

2.63

2.45

2.04

2.02

1.16

1.01

0.99

0.92

0.88

0.87

0.71

0.66

0.66

0.58

0.57

0.56

0.51

0.51

0.46

0.40

0.38

0.35

0.35

0.35

0.34

0.34

0.34

0.33

0.32

0.29

0.27

0.25

0.25

0.25

0.25

0.24

0.24

0.23

12.73

18.44

23.57

28.64

33.34

37.89

42.27

46.33

50.36

53.74

56.94

59.98

62.84

65.67

68.48

71.12

73.57

75.61

77.63

78.79

79.80

80.79

81.71

82.59

83.45

84.17

84.83

85.49

86.07

86.63

87.19

87.70

88.21

88.67

89.07

89.45

89.80

90.15

90.50

90.84

91.17

91.51

91.84

92.16

92.45

92.72

92.98

93.23

93.48

93.72

93.96

94.20

94.43

BBC

ADDL2

BLSS

BLSSU

SUBL3

RSB

BNEQ
BLBC

MOVZWL

EXTZV

TSTL

BEQL
PUSHL

MOVAL

JSB

DECL

SOBGEQ
BSBW

MOVZBL

BBS

ADDL3

CMPB

BRB

INCL

CLRL

POPR

MTPR

BSBB

BRW

BLBS

MOVAB

EXTV

CMPW

PUSHR

PUSHAB

BGEQU
MOVW

MOVB

BGTRU

CASEB

SOBGTR

SUBL2

CMPZV

BICB2

MOVPSL

MFPR

BBSC

BGTR

RET

BGEQ
BBCC

993

966

957

929

MOVQ
Move 3

ROTL

BLEQU
BBSS

CASEW

ASHL

CLRQ
TSTB

PROBER

CMPC3

MNEGL

BLEQ
CALLS

CLRW

ADDW2

PROBEW

TSTW

BICL3

DECW

MULL3

BISB2

AOBLSS

CVTWL

SUBW3

909 0.23

0.21

0.21

0.20

0.20

0.19

0.19

0.18

0.18

0.18

0.17

0.17

0.16

0.16

0.15

0.15

0.12

0.12

0.12

0.11

0.11

0.10

0.09

0.09

0.09

0.08

0.07

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.06

0.05

0.05

0.05

0.05

0.04

0.04

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.02

0.02

0.02

0.02

0.02

94.66

94.87

95.07

95.28

95.48

95.67

95.86

96.04

96.23

96.41

96.58

96.75

96.91

97.07

97.22

97.37

97.49

97.60

97.72

97.83

97.94

98.04

98.13

98.21

98.30

98.38

98.45

98.52

98.58

98.64

98.70

98.76

98.82

98.88

98.93

98.99

99.04

99.10

99.15

99.19

99.24

99.27

99.31

99.35

99.38

99.42

99.45

99.48

99.51

99.54

99.57

99.60

99.62

99.65

99.68

99.70

99.72

99.74

99.77

99.79

843

838

821

800

782

763

743

742

714

703

690

656

642

591

587

492

469

467

439

430

400

360

357

345

REI 328

BISW2

BICL2

BVS

CLRB

INCW

ADDB3

INSQUE
INSV

CVTLB

Move 5

MULW2

CHME

REMQUE

AOBLEQ
CMPV

BITB

BITL

BICB3

SUBW2

DECB

SUBB3

BITW

BISL3

CHMK

EDIV

ADDW3

EMUL

JMP

CVTBL

INCB

XORL3

MOVAQ
BISB3

PUSHAQ

283

260

255

252

251

239

233

228

226

225

218

213

212

185

163

158

149

147

146

139

129

125

122

116

113

110

108

107

103

98

93

89

85

77

PUSHAL

MOVZBW

BICW2

MULL2

BISL2

BBCCI

MOVAW

XORL2

ASHQ
LOCC

77 0.02

0.02

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 99.99

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

99.80

99.82

99.84

99.86

99.88

99.89

99.90

99.92

99.93

99.94

99.95

99.95

99.96

99.97

99.97

99.97

99.98

99.98

99.98

99.99

99.99

99.99

99.99

75

72

72

67

57

56

56

46

36

FFS 33

ACBW

ADDB2

DIVL2

MNEGB

BBCS

CASEL

PUSHAW

DIVL3

CALLG

MCOML

BBSSI

SUBB2

XORB2

BISW3

CVTLW

SVPCTX

CMPC5

BICW3

MNEGW

32

31

20

15

15

14

12

12

12

11

11

7

6

6

3

2

2

2

2

BVC 1

SKPC

MULW3

1

1

FFC 1

Instruction Size

Size Count Percnt Cumula

1 17663

100032

101448

81518

59734

15616

21382

4120

1017

4.38

24.83

25.18

20.24

14.83

3.88

5.31

1.02

0.25

0.02

0.05 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00
0.00 100.00

4.38

29.22

54.40

74.64

89.47

93.34

98.65

99.67

99.93

99.95

2

3

4

5

6

7

8

9

10 100

11 186

12 14

13 0

14 1

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 0

34 0

35 0

36 0

37 0

38 0

39 0

40 0

Average Instruction Size 3.56

Specifier Size
Size Count Percnt Cumula

1 533131

121259

33007

3910

27499

74.08

16.85

4.59

0.54

3.82

0.11 100.00

1.44

74.08

90.93

95.52

96.06

99.89

2

3

4

5

6 827

Average Specifier Size =
Specifier Type (all)

CountType Percnt Cumula

s"#0x

s"#lx

s"#2x
s"#3x

[Rx]

70885

30401

2755

1025

24937

257110

24352

11533

12923

18811

100904

8720

10986

9.85

4.22

0.38

0.14

3.47

35.73

3.38

1.60

1.80

2.61

14.02

1.21

1.53

0.00

0.95

0.03

18.10

0.97 100.00

9.85

14.07

14.46

14.60

18.07

53.79

57.18

58.78

60.58

63.19

77.21

78.42

79.95

79.95

80.90

80.93

99.03

Rn

(Rb)
-(Rb)

(Rb) +
@(Rb) +
b"(Rb)
@b(Rb)
w" (Rb)
@w(Rb)
l^(Rb)
@l(Rb)

35

6836

221

Bdb

Bdw

130239

6960

Type (index)
Count Percnt Cumula

Specifier
Type

(Rb)

-(Rb)
(Rb) +
@ (Rb) +

b"(Rb)
@b(Rb)
w" (Rb)
@w(Rb)
l"(Rb)
@l(Rb)

1030 4.13

0.01

0.00

1.56

4.35

72.28

3.95

11.72

1.88

0.12 100.00

4.13

4.14

4.14

5.70

10.05

82.33

86.28

98.00

99.88

2

0

389

1084

18025

986

2922

469

30

4 •

Reads Per Instruction

Count Percnt Cumula

Memory
Number

0 258897

121574

22176

64.27

30.18

5.51

0.05 100.00

0.00 100.00

0.00 100.00

0.00 100.00

Average Memory Reads Per Instruction
Memory Writes Per Instruction
Numbe r

64.27

94.45

99.95

1

2

3 182

4 2

5 0

6 0

0.41

Count Percnt Cumula

0 355111

47720

88.15

11.85 100.00

0.00 100.00

88.15

1

2 0

Average Memory Writes Per Instruction
Register Reads Per Instruction
Numbe r

0.12

Count Percnt Cumula

0 154528

175647

54253

18331

38.36

43.60

13.47

4.55

0.02 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

Average Register Reads Per Instruction
Register Writes Per Instruction
Number

38.36

81.96

95.43

99.98

1

2

3

4 72

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

0.84

Count Percnt Cumula

0 271266

131456

109

Average Register Writes Per Instruction

67.34

32.63

0.03 100.00

67.34

99.971

2

0.33

Specifier Access Type
Type

read

write

modify
addres

vield

branch

Total number of operand specifiers was
Number of nonfetch operand specifiers
Percent of nonfetch operand specifiers

Count Percnt Cumula

329359

132292

47102

30507

43174

137199

45.77

18.38

6.55

4.24

6.00

19.07 100.00

45.77

64.15

70.70

74.94

80.93

719633

546693

75.97

was

was

From:

To:

Subj: fyi

ROCK::SUPNIK

WAFER::UHLER

2-JAN-1985 12:46

From:

To :

Subj :

WILBUR::CUTLER

ROCK::SUPNIK

RE: update on rigel modelling

Let me respond to a couple of things:

1. Ik X 1 does indeed give > than 80% in most cases.

2. Branch prediction is good!

2-JAN-1985 11:41

3. I have converted you traces and run them. I also changed the
way strings are modelled to take into account the lengths of

the strings. And you'll be happy to knwo that we also see 6-7

TPI. BUT these are only very small excerpts from the overall

traces. They are VERY heavily weighted toward string and call

return instructions. We have run the entire trace of the linker

(not with system space however) and it is much better. If we

look at the numbr of page faults and direct I/O's and multiply
by 1ms and add the simulation time we still come out 6x780 for
a complete liner trace!

4. You may not see any benefit for register counters since the

traces you are using are so small. The greatest benefit we see

is in Fortran programs. I still think this is a very important
optimization and we intend to leave it in.

Thanks for the comments. I'll keep yopu posted on what we are doing. My
spelling above is terrible (I never think to edit these things when I

dave

start).

5-DEC-1984 05:06From: mist::SCHnorr

ultra:JSTRECKER,ROCK::SUPNIK,NOODLE

Frigate simulator Descrlotion
PARKERTo: ::

Subj:

1 OVERVIEW

The Frigate simulator consists of two programs; one to generate a

trace file and_one that reads the trace file and simulates the Frigate

hardware pipeline. It should be Kept in mind that the simulator does

not actually execute programs. , Rather It computes the number of

cycles that would be regulred to execute the oroaram on a Frigate
machine.

The trace program is linked as a ,debugger with the program tp be
traced. It then gains control before the subject orogram and solicits
what the name of the output file Is to be and how many disk blocks of

data ,are to be collected. The subject program Is then traced and a

data Mle Is written that contains the opcodes, operand specifiers,
and branch destinations of the executed Instructions. Specifier

displacements and Immediate,data are not written into the output file

since they are not regulred by the simulator. At the end of the

subject orogram or when the specified number of,disk^ blocks of data

have been collected an end of data sentinel Is written and the data

file is closed. The.trace,program then formats and prints instruction
frequency, instruction, size, specifier.size, specifier type, memory

read, memory write, register read and register write data.

The second part of the simulator is the program that_ simulates the

actual .hardware. This program.allows several parameters such as,data
cache miss rate and branch prediction counter width to be specified

and then reads the .data file .produced by,the trace program,. The
simulator consists of five subroutines that simulate the individual
pipeline stages and a short control orogram that calls each of the

stage subroutines for each machine cycle. Instructions are

prefetched, decoded, their.operands fetched and then,executed, Each

activity proceeds in a. pipelined fashion until It reaches the

execution stage where. It spends the number of cycles It takes to

execute the,respective instruction. Instructions are executed in this

manner .until the .entire data file has been read. .At the end of the
simulation, statistics are output as to the number of cycles that were

executed, the number of .instructions executed, several branch

statistics and data on the utilization of the pipeline stages.

2 INSTRUCTION CLASSIFICATION

All VAX instructions .are classified into groups depending on how their

execution affects pipeline activity. The Intent is to have as few

classes as possible, and still .execute the .VAX Instruction set

efficiently. Class Information will be stored In a ROM Cor RAM) that

is accessed .using the instruction opcode value. The resultant

information Is then used to control pipeline operation while the

Instruction executes.

Eight instruction classes are defined:

Page 2

1. StoD Decode - This instruction class Inhibits
stage from _ decoding ^further instructions,
continuation,from the execution unit Is
subsequent instructions will be decoded,
soeclflers for the subject instruction , are
Instructions in this class change global machine.state (e,g,
MTPR5, interact with FPD Ce.o. MOVC3)* imolicltlv modify
registers or contain multiple write destinations (e.g.
EDIV).

the Decode

Explicit
reaulred before

The remaining
decoded.

Instructions in this class Include:

ASHP

CVTLP

CALLG

CALLS

CVTPT

MULP

CVTTP

DIVP

M0VC3

CMPC3

SPAfJC

SCANC

M0VC5

CMPC5

MOVTC

MOVTUC

MOVP

CMPP3

CVTPL

CMPP4

EDITPC

MATCHC

LOCC

SKPC

EMODF

POLYF

EMODD

POLYD

EDIV

CASES

CASEW

POPR

PUSHR

CHMK

CHME

CHMS

CHMU

CASEL

MTPR

MFPR

HALT

REI

BPT

RET

XFCRSB

ESCE

ESCF

EMODG

POLYG

EMODH

POLYH

LDPCTX

CVTPS

CVTSP

CRC

ADDP4

ADDP6

SUBP4

SUBP6

SVPCTX

These Instructions take several cycles .to execute and. are
generally Infrequent, Note that RSB is also in the implied

pop class.

2. Stop Fetch - This instruction class stoos the Operand stage

in the same way. as ,the Decode, stage is stopped by the

previous class. Explicit continuation is required by the

execution unit before further instruction operands,will be

fetched. These instructions read or modify destinations
whose addresses cannot be calculated by the Operand stage

(e.g, BBSS).

This class Includes:

BBCCI

INSV

ADAWI 1N5QHI

INSQUE INSOTI

REMQUE REMOHI

EXTV

REMOTI

BBSS

BBCS

EXTZV

BBSC

BBCC

BBSSI BBC

CMPV CMPZVBBS

FFCFFS

Note that the branch on bit instructions in this class are

also in the conditional branch class.

3, Conditional Branch This instruction class conditionally
branches to a destination based,on source or condition code

values, A subset of,the instructions also modify the. source

yalue. The execution of these Instructions is predicted in

the Decode stage. If a branch is. predicted to be taken then

the destination address is computed by the Decode stage and

page 3

passed to the Prefetch stage.

This class Includes:

BLBS

BLBC

BGEQU

BLSSU

BBCS

BBSC

BBCC

BBSSI

BRCCI

BNEQ

BEQL

BGTR

BLEQ

BGEO

BL5S

BGTRU

BLEOU BBS

BBCBVS

BBSSBVC

Note that the branch on bit instructions that modify their

source are also included in the stoo fetch class.

4, liOOD - This instruction class, includes all the iterative^ loop
This Class is similar to the conditional

that the branches are always
The branch destination address is

stage and passed to the Prefetch

Instructions.

branch class but differs In
predicted to be taKen,

computed by the Decode

stage.

This class includes:

AOBLSS SOBGTR
AOBLEQ SOBGEQ

ACBL

ACBF

ACBD

ACBG

ACB8

ACBW

ACBH

5. unconditional,Branch - This instruction class Includes all

the instructions that, unconditionally branch to an address

that.can be calculated in the Decode.or Address stage,
destination, address Is calculated in the Decode stage If It

is PC.relatiye and in the Address stage if it is indirect,
context indexed or not relatlye to PC. The resultant address

is passed to the Prefetch stage.

The

This class Includes:

JSBBSBB BSBW

BRB JMP BRW

Note that BSBB, BSBW, and JSB are also In the Implied push

class•

6, Implied Push • This Instruction class, generates an Implied

push onto the stacic after the final operand has been
processed. This reguires the.decode stage to generate an

autodecrement SP ooerand specifier.

This Instruction class includes:

PUSHAW PUSHAQ PUSHL

PUSHAB PUSHAL PUSHAO

JSBBSBB

BSBW

Note that BSBB, BSBW, and JSB are also In the unconditional

branch class.

page 4

7. implied Poo - This class contains onlv the instruction RSB.

The _pecode staqe generates an autolncrement SP operand
specifier to remove the return address from the too of the

stack.

This class Includes:

RSB

RSB Is also in the stoo decode class.

General - This instruction .class ,contains all Instructions
that reauire no special processing, . They cause no pipeline

hazards and can be processed in a pipelined manner without

any interference.

fl.

This class Includes:

PROBEW

ADDF2

MULF3

CVTFL

MOVF

ADDD2

MULD3

CVTDL

MOVD

A5HL

MOVAO

MULB2

BISB3

MNEGB

CLPB

CVTBW

ADDW2

MULW3

BICW2

MOVW

TSTW

ADDL2

MULL3

BICL2

MOVL

T5TL

MOVPSL

MOVAO

CVTDH

SUBG3

CVTGB

CVTWG

TSTG

SUBH3

CVTHB

CVTWH

TSTH

CVTHD

CVTWB

SUBF2

DIVF3

CVTBF

MNEGF

SUBD2

DIVD3

CVTBD

MNEGD

EMUL

ADDB3

DIVB2

BICB3

CMPB

INCB

MOVZBW

SUBW2

DIVW3

XORW2

MCOMW

DECW

SUBL2

DIVL3

XOBL2

MCOML

DECL

CVTHF

CLRO

ADDG2

MULG3

CVTGL

MOVG

ADDH2

MULH3

CVTHL

MOVH

INDEX

MOVZWL

SUBF3

CVTFB

CVTWF

TSTF

SUBD3

CVTDB

CVTWD

TSTD

CLRQ

SUBB2

DIVB3

X0RB2

MCOMB

DECB

ROTL

SUBW3

BISW2

XORW3

BITW

BISPSW

SUBL3

BISL2

XORL3

BITL

ADWC

CVTFG

CVTLB

ADDG3

DIVG2

CVTRGL

CMPG

ADDH3

DIVH2

CVTRHL

CMPH

PROBER

MOVAW

MULF2

CVTFW

CVTLF

CVTFD

MULD2

CVTDW

CVTLD

CVTDF

MOVO

SUBB3

BISB2

XbRB3
BITB

CVTBL

MOVAB

MULW2

BISW3

MNEGW

CLRW

aicpsw

MULL2

6ISL3

mnegl

CLRL

SBWC

CVTFH

CVTLW

SUBG2

DIVG3

CVTBG

MNEGG

SUBH2

DIVH3

CVTBH

MNEGH

NOP

CVTWL

ADDF3

DIVF2

CVTRFL

CMPF

ADDD3

DIVD2

CVTRDL

CMPD

ASHO

ADDB2

MULB3

BICB2

MOVB

TSTB

MOVZBL

ADDW3

DIVW2

BICW3

CMPW

INCW

ADDL3

DIVL2

BICL3

CMPL

INCL

MOVAL

MOVb
CVTGF

MULG2

CVTGW

CVTLG

CVTGH

MULH2

CVTHW

CVTLH

Page 5

CVTHG

3 GENERAL OPERATION

3.1 Ploellne Activity

Pipeline stages take, input froitt a ,previous stage, perform some

transformation and produce output which, is input for the next stage.

If there is no Inout to act upon a stage is said to be Idie?^ that is
the previous stage produced no output and therefore there is nothing

for the stage 50 dp. If the,next stage does not consume the data

provided to it in a previous cycle then the preceding stage In the

pipeline stalls.

a pipeline stage is idle if no data is provided for It

a pipeline stage stalls if the subseouent stage does not

toIn summary,

process

process previously provided data.

and

3.2 Instruction Cache And Translation Puffer

A separate instruction cache and translation buffer are used to access

the instruction ,stream. All cache modeling done at DECwest suggests

that the instruction stream cache hit rate will be.upwards of.99%. In
addition, two levels of buffering .are emoioved. Therefore the

instruction stream is not modeled explicitly,. It is.assumed that any
instruction cache or translation buffer misses will have a minimal

affect on performance.

There is one aspect of the Prefetch stage that is.modeied that has to

do with branches. The model keeps track of the virtual PC even though

it does not use it to access the Instruction translation buffer and

cache,

access is required when a branch takes place, in.effect the virtual

page number of the new PC is compared with tne virtual page number of

the old PC, If the comparison fails then an additional cycle is

required to do the translation buffer access. Otherwise the page

offset is concatenated with the previous physical page number to

access the instruction cache. The reason for this is that it is not
possible to access the translation buffer, access the instruction
cache and write the prefetch buffer In one cvcle.

The virtual PC Is used to determine if a translation buffer

3,3 Data Cache And Translation Buffer

A separate translation buffer and cache are used to fetch data from

memory and write results. .The organization of the cache is the write

back scheme being used in Firefly at SRC, (The scheme employs two

Page 6

extra bits oer cache line to xeep trade of shared and modified data.

The shared bit indicates whether it Is possible^that the data might

also be in another cache. The modified bit indicates whether the data

has been modified but not written to memorv.) There is no^Probiem with
cache coherence _even in a. multiprocessor conflauration. DECwest

modeling of the effects of write bade caches suagests that memory

write traffic can be cut bv 60-70%, Thus it Is possible to build a
system without heavy demands for memory bus bandwidth.

VMS (and other operating systems) will not reoulre any special code to
manage the write back cache. The cache will be entirely transparent

except when the power fails. An Internal processor reoister, will be
provided so that VMS can sweep the cache and force all unwritten data
to memorv.

Modeling of the data translation buffer and cache Is on the^ basis of
how often a miss occurs and how many cvcles.it takes to process the

miss. This data cache miss rate and the forced write rate are

provided as parameters to the model.

3.4 Register File Write In Progress Counters

Four logical copies of.the.general purpose registers are maintained.

Two of the copies reside in the Decode stage and two in the execution

stage. .These two copies can be thought of as dual oort read single

port write rams.

Register values that are needed for address calculation (base or Index

register values), are read from the raMs located In the Decode stage

and the value(s) is (are) passed to the Address stage. Register mode
operands however are .not actually read until the execution stage.

This allows a major optimization with regard to .allowing^ outstanding

writes against register, mode operands to be ignored since when the
instruction reaches the execution stage the resoectlve register will
bv definition have the most current value.

Associated with each register number (excluding PC) is a Write In

Progress Counter (4 bits) that Is maintained bv the Decode stage and

which records the number of writes outs.tanding aaainst the_ register,
A counter is used so that it Is possible to.have multiple writes

against a register outstanding.(as opposed to asingle bit which would
allow only one outstanding write). It Is not intuitive that.multiple
outstanding writes are a common occurrence, but consider the following
instruction seouence:

ADDL3

ADDL2

RO, Rl, R2

R3, R2

When the.ADDL2 Instruction Is.decoded register R2 will already have an

But since R2wlll_actually have the
the ADDL2_ reaches the execution stage It is

This turns out to be a

outstanding write aoalnst It,

correct value when

expedient to allow multiple writes against R2,
verv common code seouence generated by most of our compilers.

Page 7

register values and
aoDroprlate,

The Decode stage monitors the write bus for
updates Its copies of the registers when
decrements the respective Write in Progress Counter.

It also

Register File Write-in Progress Counters are not undated for, register
operand specifiers if instruction decode has.been stooped. This

with ^multiple write
EDIV RO. Rl,. R2. CR2)). Write in Progress

Counters, however, are always updated for. autoincrement and

autodecrement operand, specifiers even when Instruction decode Is

stopped. The Execution stage resumes pipeline activity when a

consistent state has been reached.

mode

is necessary to avoid deadlocic for Instructions
destinations (e.g.

3.5 Data Cache Write In Progress Bits

Each cache line in the data cache has associated with it a Write in

This bit Is written by the.Operand stage when a write
The bit is Cleared when a write on

the write bus to the affected location Is executed.

Bit.Progress

destination operand is processed.

Write In Progress Bits allow subseguent operand reads to occur.after a
write has been processed If the read Is from a different location than

the write, if It is not, the Operand stage will stall until the write

in Progress Bit has been cleared.

Data Cache write in Progress Bits are not updated If instruction

decode has been stopped. .This is.necessarv to avoid deadlocic for

instructions with multiple write destinations .Ce.g. EDIV. RO, Rl,
CR2). 9CR2)). The Execution stage resumes pipeline activity when a
consistent state has been reached.

3.6 Autoincrement And Autodecrement Operand Specifiers

specifiersThe processing of autpincrement and autodecrement .operand
requires the cooperation of the Decode. Address, Operand and Execution

stages of the pipeline.

The Decode stage increments the respective Write In Progress Counter

and passes the register number, register contents, autodecrement value

(if required), and function to.be performed to the Address stage.. The
Address stage computes the effective address ,and passes the register
number, effective address, and function to be performed to the Operand

The Operand stage first passes the register number andstage.

autoincrement or autodecrement operation to the Execute state.and then
fetches In the next cycle If required Cl.e, not

The Execution .stage performs, the
function and writes the new.register

on the write bus.

the. operand
address or yield access
autoincrement

value Into its own copy of.the Register File and
Decode

value

type),

autodecrementor

The then.PlcKs the value off the write bus, decrements
value

stage

the corresponding Write In Progress Counter, and writes the new

Into its copy of the Register File,

Page 8

All told, the processing of an autolncrement or autodecretnent^ operand

specifier takes one additional cycle, Subseouent decoding of operand

specifiers is not.blocked unless.the register being autolncremented or

autodecremented is the one reouired as a base or index register for a
subsequent operand.

The actual autolncrement or autodecrement in the Execution, stage Is

performed in the. "context" of the Instruction to.which it belongs;

that Is, It Is performed after.the previous Instruction has completed

and before the next instruction has started execution. The previous

contents of.the respective register are saved in a register log when

the Execution stage performs the Increment.or decrement operation.

This register loo Is cleared at the end of an Instruction.

3.7 Indirect Addressing

Indirect addressing reouires two trips through the Address and.Operand
stages. The Execution stage gets Involved oniv to pass the Indirect

address.through the ALU and.into the write latch. The Address stage

then picks the address off the.write bus. adds the index register if

specified, and passes the effective address back to the Operand stage.

Execution unit always processes indirect addresses In the

"context" of the instruction to which it belongs.
The

aporoxlmatelv 1-2%Indirect addressing occurs verv Infreguentlv Ce.g,
of the time) and is not expected to adversely affect performance.

4 PIPELINE OPERATION AND STAGES

The Frigate pipeline.is executed by a control.program that calls the

stage subroutines in reverse order. This is necessary to propagate

stalls correctly since each stage is not actuallv executed in parallel
as It would be In real hardware.

This seauence, although It works nicely for stalls, causes oroblems

when the. output of a latter pipeline stage is to be acted upon by an

earlier pipeline stage in the next cycle. The oroblem is that the
earlier pipeline stage executes after the latter pipeline stage In the

current cycle.

An example Is register file writes on the write bus which must be

recognized bv the Decode and Address stages in the.next cycle, not the

current. The data written bv the Execution stage.in the current cycle

is processed bv the Decode and Address stages in the next cvcle and

the data written bv the Execution stage In the previous cvcle Is

processed bv the Decode and Address stages In the current cvcle. The

model accomplishes this.bv inserting pipeline variables that.delay the
recognition of.data until a subsequent cvcle. .in the case of register

file writes this is done with a 2 deep array of register numbers and

valid flags,

array and the Execution stage writes the second member. At the end of

All Pipeline stages examine the first member of the

page 9

each simulated cvcle, the_second array member Is copied to the first

and the second Is set invalid. Other pipeline variables are simply
implemented as boolean variables. For example, when a new virtual

instruction PC is available to the prefetch staae, both the value and

a flag called,"prefetch-new-address" are set. The Prefetch stage sees

the flag, copies the new virtual address and then clears the flag. In

the next cvcle it will _actuallv start delivering the instruction
information at the destination address.

4.1 Prefetch

The Prefetch stage reads the input file produced bv the trace .program
and provides the Decode stage with opcode and ooerand .specifler
information on,each cvcle. This Information is the actual opcode and

ooerand specifier .data, including register numbers, that was collected

when the subject program.was traced, as Prefetch reads the trace file

it updates the virtual instruction PC bv computing the length of each

operand specifier. Two byte opcodes reoulre one extra cvcle to

deliver the "escape" opcode to the Decode stage.

duringIf .the.Decode stage has not processed the data delivered to It

a previous cvcle then Prefetch stalls.

If a new virtual PC has been delivered bv the .Decode, Address pr

Execution stage then the old virtual PC's virtual page.numoer is

compared with the new virtual PC's page number and the new virtual PC
is copied to the oldvirtuel PC. If the virtual cage numbers match

Ci.e, a translation buffer access is not. regulred) the instruction

data at the target address will be delivered to the Decode stage in

the.next cycle. If the cage numbers do not match then, a translation

buffer cvcle.is reguired in the next cvcle and the Prefetch stage will

deliver the instruction data in the cycle after that.

It should be noted .that the affects of instruction Cache and

Translation buffer misses, are not modeled, it is assumed that this
causes minimal degradation In performance.

If Instruction decode is stooped by the Decode staae then Prefetch

accumulates .idle time when a new opcode is to be decoded, Subseguent

operand specifiers for the current instruction are delivered until an

instruction boundarv is reached.

If the Decode stage has not processed data delivered In a previous

cvcle then Prefetch accumulates stall time.

If a new virtual PC is provided bv one of the Decode, .Address, or
Execution stages the Prefetch accumulates wait time until a

translation buffer and/or cache access can be done.

In all other cases Prefetch can do useful work and accumulates work

time.

Paae 10

4.2 Decode

and operand soecifler
It maintains two copies

Prooress Counters,

be oassed to the Address stage,

and. transmits the
for loop and unconditional branches and lumps to

The Decode .staae processes the opcode
information provided bv the Prefetch stage,
of the Register File^and the associated Write in
determines when, information is _to
predicts if conditional branches will be, taken#
destination address
the Prefetch staae.

The Decode stage is modeled as a finite state machine with 4 states.

The states are;

Process opcode and first operand specifier if any#

Process next operand specifier, branch destihation, or jump

address.

Execute imolied oush/pop to/from the current stack, and

Finish uncohditlonal branch or jump instructioh.

1.

2.

3.

4.

Decode starts.at state 1 and cvcies in state 2 if necessary until all

operand specifiers have been,processed, if reauired CPUSHL, RSB,

state 3 or 4 is entered to finish the instruction and then back to

state 1 for the next opcode.

• • •

Decode,always interrogates the write bus at the start of a cycle to

determine if a register value is being written. If the write bus is
valid (i.e. there is a register being written) then the respective

register's Write in Progress Counter is decremented but ne.ver below
zero. A,decrement below zero could happen, when a multiple write

destination instruction has stopped the pipeline and a register mode
destination was present. In this case the Write in Progress Counter

was not Incremented to avoid possible deadlock and when the

instruction is finished the counter must not be decremented.

If the Address stage has not processed data from a previous cycle then
Otherwise the ooeration associated with theDecode stage stalls.the

current state is oerformed.

State 1 - Process opcode and first specifier If any.1.

If no data has been supplied by the Prefetch stage (i.e,

is waiting for a translation buffer or cache access after a

new.virtual,PC has been received and cannot deliver any data)

or instruction decode has been stopped, then the Decode stage

idles.

it

If the opcode is a two oyte opcode then the first byte is

accepted in the current cycle and the two bvte opcode flag is
set. The second opcode byte will be delivered in the next

cycle.

page 11

If the^opcode is from the stoo decode class _or Is an

unconditional branch or jump the stop decode flag is set.

If the opcode has zero soeclfiers and is from the implied pop

then the state number Is set to 3 and the implied pop
Otherwise the opcode and a no

operation function are passed to the Address stage. No

operation implies that the Address and Operand stages perform

no operation for the respective opcode.

If the opcode has one or. more specifiers then the state

number is set to 2f_the specifier number Is set to_l, and the

first operand specifier Is processed Immediately If Possible.

class*

is executed Immediately.

State 2 - Process next operand specifier, branch destination,
or lump address.

2.

If no data has been supplied oy the Prefetch stage then the

Decode stage idles. . Otherwise an action is executed
depending on_ the_ specifier mode and reolster number.
Specifier actions include:

1. Modes 0, 1, 2, and.3 (short literal) - The short literal

value,. the_specifier datatype, the specifier access type

and a function of literal .are passed, to. the Address
stage. If the instruction is from the implied push class

then.the state number is set to 3. The autgdecrement SP

specifier will be generated in the next cycle. All
instructions from the implied push class have exactly one

If the instruction is not from theoperand .specifier,
implied push class and this is the last operand specifier
then the state number is set to 1. The next cycle will
process the next opcode.

2. Mode 4 (index) - If the index register or. the base
register (note there must.always be a base register since

short literals cannot be indexed) has a Write in progress
count greater than I or both registers have a write in
Progress Count of 1. then the Decode stage waits for one

of the registers to be written on the write bus. At that

time the Write_in progress Counter .will be adjusted.
Otherwise the index register Invalid flag is set equal to

the value.of the respective write, in Progress Counter.
If the Write in Progress Counter is not zero (i.e. there

are outstanding writes against the register but only one)

then the.Address stage will picx the value off the write

bus when it is written. Index mode present is. set and

the .base address is processed bv executing its action
routine.

3. Mode.5 (register mode) -If the access type is .write or

modify .and decoding of instructions.is not stooped, then

the. Write in Progress Counters for the respective
register(s)_ are Incremented (note that uP to 4 counters
could be incremented). The register number, the

Paqe 12

soeclfier datatype, the specifier access type and a
function of reqlster are passed to the Address stage, if

the instruction is from the implied push class then the

state number is set to 3, The autodecrement sp soeclfler
will be Generated .in the next cycle, If^the instruction
is not from the implied push class and this is the last

operand specifier then the state number is set to 1. The

next cycle will process the next oocode.

4, Modes 6, 10, 12, and 14 (register deferred and byte, word

and longword displaced) - if the Write in Progress
Counter for the base register is greater than 1 then the

Decode stage waits for the register to be written on the

write bus. At that time the_write in Progress Counter
will be., adjusted. Otherwise if the oocode is from the

unconditional branch class, an index register is not
specified and the base register is PC, then the branch
destination can be calculated immediately and sent to the

Prefetch stage. If the unconditional branch is from the

implied push class then the state number is set to 3 and

the implied push is executed immediately. Otherwise the

state number_ls set to 4 and the unconditional branch is

finished. If the opcodeis from the unconditional oranch
class and elther_an index register is specified or the

base ..register Is not PC, then the base register Invalid
flag is set to the value of the respective write in
Progress Counter and the branch destination flag is set.

The base register invalid flag, the base register.,numoer,
the base^register value, the index register invalid flag,

the index register number, the ..displacement value, the

specifier .datatype, the specifier access tvpe and a

function of fetch.are passed to the Address stage. If

the instruction is from the implied push class, then the

state number is set to 3._ Otherwise it is set to 4, The

autodecrement SP specifier will be .generated or the
unconditional branch finished in the.next cycle. If the

instruction is not from the unconditional branch class,
then the base reqlster invalid flag is set to the value

of .the resoectiye Write in Progress Counter. The base
register invalid flag, the base register number, the base

register .value, the index register invalid flag, the
index.register.number, the displacement value, and a

function of fetch, are passed to the Address stage. If

the instruction is from the implied push class .then the

state is set to 3. The autodecrement SP specifier will
be generated in the next cycle. If the instruction is

not from. the. implied push class and this is the last
operand specifier, then the state number is set to 1,

The next cycle will process the next opcode.

5, Modes 7 and 8 (autoincrement and. autodecrement) - If the

base register i.s PC (only possible for mode 8 since
autodecrement PC is illegal),.then the action for mode 6

is executed. This is immediate mode addressing and the

Operand stage actually fetches the immediate value. If

Paqe 13

the base register is not PC and the resoective write in

Progress Counter is greater than i. then the Decode stage

waits for the, register to be written on the write bus.

If the base register Write in Progress Counter is 0 or 1,

then the base register invalid flag is set to the value
of the Write in Progress Counter. The base register

invalid flagf_the oase register number* the base register
value, the index register,,invalid flag, the, index
register number, ,the specifier,datatype, the specifier
access tvpe and a function of modify are passed to the

Address ,stage. The Write in Progres,s Counter for the

base register is incremented. , If the opcode is from the

unconditional, branch and implied push classes,,then the

state number is set to 3 and the, branch destination flag

is set. The autodecrement SP specifier will be,generated
in the ,next cycle. If the oocode ,1s from the
unconditional class and not the implied push class, then

the state number is set to 4 and the branch destination

flag is _set. The unconditional branch will be_flnished
in the next cvcle. If the instruction is from the
implied push class and not the unconditional branch
class, then the state number is set to . 3.
autodecrement

cycle. If the ,instruction is not from the
branch, or implied push class .and this is
specifier, then the state,number is set to 1,
cvcle will process the next opcode.

The

SP specifler.will be generated in the,next
unconditional

the last

The next

6, Mode 9 (autolnerement deferred) - if,the,base register is

PC, then the action for mode 6 is executed. This is
absolute addressing and the address is treated like a

longword displacement with no base,register, If the base

register,is not PC and the respective Write in Progress
Counter is greater than 1. the Decode staae waits for the

register to be written on the write bus. If the base
register. Write in. Progress Counter is 0 or 1. then the

base register invalid flag is set to the value of the
Write in Progress Counter. The base register Invalid

flag, the,base register number,.the base register value,
the index register invalid flag, the, index register
number, the specifier datatype, the,specifler access type

and a function of indirect modify are passed to the
Address stage.. The Write in Proaess Counter for the base

register, is incremented, , if the opcode is from the
unconditional branch and implied push classes, then the

state number is set to 3 and the branch destination flag

is set. The autodecrement SP specifier will be generated
in the. next cvcle. If the opcode is from the
unconditional branch class and not the implied push
class, then, the state number is set to 4 and the branch
destination flag is set, .The unconditional, branch will

be completed in the next cvcle. If the instruction is

from the implied push class but not from the
unconditional branch class, then,the state number is set

to 3. The autodecrement SP specifier will be generated

Paqe 14

In the _next cvcle. If the instruction Is not from the

unconditional branch or implied push class and this is

the last specifier, then the state,number Is set to 1.

The next cvcle will process the next Instruction.

7. Modes 11, 13, and 15 (indirect bvte, word,
displaced)

and lonqword

If the Write in Proqress Counter for the

base reqlster Is qreater than 1, then the Decode staqe
waits for the, reqister to be written on the write bus.

If the base reoister Write In Progress Counter is 0 or 1,

then the, base reoister Invalid fiaq Is set to the value

of the Write in Proctress Counter. The base reqlster
Invalid flao, the base reqlster number,,the base register
value, the index register invalid flag, the_ index
register number, ,the displacement value, the specifier
datatvpe, the specifier access tvoe and a function of

indirect fetch are passed to the Address staae. If the

opcode Is from the unconditional branch and implied push

classes,, then state number Is set to 3 and the branch
destination flao Is set. The autodecrement SP specifier
will be generated in the next cvcle, Tf the opcode Is

from,the,unconditional branch class and not from the
implied push class, then the,state number Is set to 4 and

the branch,destination flag is set. , The unconditional
branch ,will _be finished, the next cycle. If the
Instruction,Is from the implied push class and not from

the unconditional branch class, then the state number is

set to 3., The autodecrement .sP specifier will be
generated in the next cvcle. if the Instruction Is not

from the unconditional,branch or implied push class and

this is the last specifier, then the state number is set

to 1, The next cveie will process the next Instruction,

8. Branch Displacement (bvte and word) - If the opcode is

from the,unconditional branch class, then the destination
address is sent to the Prefetch stage and the stoo decode

flao is cleared. If the opcode Is from the unconditional
branch and implied push class then the state number is

set to 3, The autodecrement SP specifier will be
generated in the next cvcle. if the opcode is from the

uncondition branch class and not the implied push Class,
then the state number is set _to 4. The unconditional
branch will, be completed in the, next cycle. If the
instruction is not from the unconditional branch
then it is either
class. The base reqlster and
invalid, flags are set false,
flao, index reoister Invalid flao, the
datatype, the specifier access tvoe, computed destination
address and a function of displacement are Passed to the

Address .stage,
opcode is from the
predicted as taken,
sent.to the Prefetch stage,
conditional branch class, then the branch prediction RAM

Class,

from the conditional branch or.loop
index reoister register
The base register ,invalid

specifier

The state number Is set to 1. If the

loop class, then It is always
The computed destination address is

If the opcode is from the

Paqe 15

is accessed uslno bits 2 through 15 of the ending address
of the conditional branch instruction itself (this is

actually the address of the next instruction),
high order bit of the prediction value is set. then the

branch is predicted as taKen._ Otherwise it is predicted
as not taken,

computed destination address

stage,

stage,

cycle.

If the

If the branch is predicted taken, tnen the

is. sent to the Prefetch
The prediction ,flaq is passed to the Address

The next instruction is processed in the next

State 3 - Execute implied push/pop to/from the current stack.3.

If the Write in Progress,Counter for SP.ls greater than 1,

then the Decode stage waits for the register to be written on

the write bus. If the Write in Progress Counter is 0 or 1,

then the ,base register invalid,flag is .set to the.value of

the. write .in Progress Counter. If the opcode is from the

implied POP class, then.the specifier access is set to read.

Otherwise the opcode is from the implied push.class and the

specifier access is set to write. .The.base register invalid

flag, the register number 14, the specifier.datatype (always

longword), the specifier access type and a function.of modify

are passed to the Address stage. The state number is set to

1 and the Write in Progress Counter for SP is Incremented,
The next opcode will be processed in the next cycle.

State 4 - Finish unconditional branch or 1umo instruction.4.

Unconditional branches and Jumps, although executed in the

Decode stage, cannot be evaporated. They must continue

through to the Execution stage so.that trace traps can. occur
if enabled (this may be eliminated later by sending the

opcode through the oioe if and only if t-blt is set or the

address mode is autoincrement, autodecrement or autodecrement
deferred). The.branch destination flao is .set false, A

function code of displacement is passed to the Address stage.

The.Decode stage closely simulates what the actual hardware

It is believed to be very accurate.
do.will

If instruction decoding is stopped by the Decode staoe itself or no

input has been provided bv the Prefetch staoe, then the Decode stage

accumulates idle time.

If the Address stage has not processed data delivered to it in a

previous cycle, then the Decode stage accumulates stall time.

If the Write in Progress Count of a base register or,index register is

greater than 1,. or both, a base register and an Index register are
specified and their respective Write in Progress Counters are equal to

1, then the Decode stage accumulates wait time.

In all other cases Decode can do useful work and accumulates work

page 16

time.

4.3 Address

The Address stage comoutes the effective address ^of an ooerand or

passes through the data^ It receives to the Operand stage. It is
capable of performing a 3 Inout add In one cycle (i.e, dlsoiacement,
base register, and context shifted Index register) and.operates from a
function and data supplied bv the Decode stage. This stage processes

indirect addressing.

The Address stage.always Interrogates the.write bus at,the start of a
cvcle to determine if a register value is being written that matches

an invalid register that it reguires to. perform the address

computation. Either the base or index register mav be reouired but
not both. The base register and Index register invalid flags.are used
for this purpose. If the write bus specifies a partial write Cl.e,
bvte or word), then the value is merged with the value passed to the

Address stage bv the.Decpde stage. Note that there can onlv be one

outstanding write.at this.time. This is guaranteed bv Decode and

therefore the first write on the write bus that matches the Invalid

register, number is the one regulred to complete the address

calculation. As soon .as the corresponding register value has been

received the respective invalid flag is cleared.

If the Operand stage has not processed data from a previous cvcle then

the Address stage stalls.

If no data has been supolled bv the Decode stage, then the Address

stage idles.

If the.Address stage has not vet received an indirect address from the

Execution stage, then the Address stage waits.

If the base register or index register Inyalld flags are set. then the

Address stage, waits,
the function specified bv the Decode stage,
include:

otherwise an action is performed according to

Address stage actions

Displacement - The branch destination address is computed
adding

1. by

the sign extended branch displacement with the

displacement PC Cthe PC is provided through, special logic
that adjusts for the length of the branch .displacement). The

destination address and a function of displacement are passed

to the Operand stage.

2. Fetch and Modify - The effective address Is.computed. If the

branch destination flag is set, then the effective address is

sent to the,Prefetch stage and the stop decode flag is
cleared, if the original function was fetch,.then no further

processing is necessarv. Otherwise the..effective address,
the ..base register number, the specifier datatvpe, the

specifier access tvpe and a function of fetch or modify are

page 17

passed to the Operand stage.

Register r„The base register nutnberi the specifier datatype,

the specifier access type and a function of register are

passed to the Operand stage.

3.

Literal - The literal value, the specifier, datatype, the

specifier access tvpe and a function code of literal are

passed to the Operand stage.

4.

No Operation - A no operation function Is passed to the

Operand stage.

5.

Indirect.Fetch and Indirect Modify The effective base
address is.calculated, This calculation does not include the

index register if It Is present. The context .shifted
contents of the.index register will be.added to the indirect

address when it.is received from the Execution stage. The

indirect .flag is set,.the operand access tvpe Is set.to.read
and the.operand datatype is set to lonaword,. The indirect
flag will cause the Address stage to wait in subseguent
cycles until cleared bv the Execution staoe. The effective
address,. .the base register number,.the specifier datatype,

the,specifier.access type and a function of indirect fetch or

Indirect modify are passed.to the Operand.stage. When the

indirect address is received from the Execution stage on. the
write bus the .Address stage will add the context shifted
index register, if anv, to the indirect address and then.pass
the original specifier datatype, the original specifier
access tvpe and a function of fetch, to .the Operand, stage.

Note that while the Address stage is waiting for an Indirect
address the Decode stage Is stalled because It cannot deliver

new data to the Address stage.

6.

4.4 Operand

The.Operand, stage reads operand, values from, memory, checKs the

validity of write destinations, increments register.numbers, manages

delivers subseguent
It Is also .responsible for

address the operand buffers.

The Operand staoe operates from data and a function code passed to it
bv the Address stage.

the Write in Progress Bits in the data cache and

zero longwords for .short literals,
assigning pointer register numbers to

It is worth.explaining the function of the pointer registers and
operand, buffers although they are not actually modeled In. the
simulation. Three pointer register FIFO's are used to store pointer

registers and operand status. One Is for .odd numbered source

specifiers, one for even numbered source specifiers, and one for

destinations. Each cvcle, one of the source FIFO's and the

destination FlFO.can.be written with a register number. . The number
that is written is either a general register number, an operand buffer

Paqe 18

number, or an address buffer,number, Operand buffers are used to hold

operand values. Address buffers are usedto hold the physical address

of the destination (this is always available since a translation

buffer access Is performed on the destination operand to determine if
it Is accessible). If the destination address crosses a paqe

boundary, then two address buffer entries are used (i.e. two
translation buffer accesses are required). a status code is also

included with each reqister. The status code indicates If there was

an access violation, translation not valid, translation buffer miss, a

modify refuse (write access to a paqe that does not have the modify

bit set) or an attempt was made to read an,i/o address. (This latter

type is a VERY sticKv problem in a pipelined .machine. Since we have

such a wonderful I/O architecture that allows people to build devices

where register reads have side effects we have to Guarantee that I/O

addresses are read .exactly once. The wav this, is done..ls to dump the
address of_ the operand into the allocated operand buffer and^taq the
pointer register with a status code that will _cause the Execution

stage to dispatch ,to a routine that will,explicitly read tne I/O

address.) The Execution stage, microword provides control oyer the
reading of the pointer register FIFO's. For example, the microword
for an AD0L3 would read the register numbers from the source 1. source

2, and destination FIFO's. It should be noted that ADDL2 would do the

same thing since the modify source/destlnatlon operand would cause

both the even numbered source FIFO and the destination FIFO to be

written. The net effect is to allow the operand stage to fetch

operands, somewhat ahead of the Execution stage (e.g. some elasticity
is provided, by the, address and operand buffers) and provides

parametric microcode In the Execution stage.

If no data has been supplied bv the Address stage, then the Operand

stage idles.

If there are no address or operand buffers available and one Is

required the Operand stage stalls until the Execution stage has

emptied one.

If operand fetching has been stopped, then the operand stage idles.

The Operand stage executes an action determined by the function code

supplied to it bv the Address stage. The following actions are
performed;

No Operation - No operation Is performed. In the simulation

model this takes one cycle, in the real machine this will

not reouire .any cycles, because, the opcode dispatch
information is keot separately from the otjerand specifier
information. _In the model it is not. This function is used
for zero specifier opcodes.

1.

Literal

formatted (e.g,

in the Decode stage and passed

Operand

2. The first lonqword of a .short ,literal value is
zero extended, shifted# bits inserted, etc,)

through the Address stage,
stage assigns an operand buffer and stores the

buffer.

The

first longword of the short literal in the
context

If the

is ouadword or octaword. then the Operand stage will

pame 19

allocate additional ooerand buffers and deliver zero

lonowords in subsequent cycles. One cvcle is reauired for

each lonqword.

3. Fetch - If the access tvoe Is address or yield, then an

operand buffer is_allocated and the,value received from the

Address staqe,is written into the buffer. If the access type

is read, write, or modify, then a translation buffer access

must be performed to determine the ohvsical address and

accessibility of the operand (the translation buffer is not

modeled). For each longword in the operand (and each
lonqword takes at least one cycle) a random number is

generated and compared with the data cache_mlss rate that was

selected when the simulation was begun. If,the random number

is less than or equal to the data, cache, miss rate then 5

additional cycles (the cache fill time) will be spent
fetchino the ooerand value, if the random number is greater

than the data cache miss rate then only 1 cvcle is required

to fetch the operand value, if the data cache misses there

is also a probability that the location that will be
displaced from the cache has been modlHed but not written.
Another random number is generated and compared,with the

forced write rate which was also selected when the simulation

was _bequn, ,,If found to "miss" then 5 additional cycles are

required to first write the current contents of the cache

line and then read the new value. This amounts to 11 cycles

in all if the data cache misses and a forced write is

required. As lonqwords are fetched, an operand buffer is

allocated, the register number written into one or more of

the, FIFO's and the operand value Placed in the operand
buffer,

4. Modify ■■ The_reqlster number of the general ,register that is

to be modified is written into the appropriate FIFO with a

status that encodes the context and whether the operation to

be performed is, an .autolncrement or autodecrement. The

Execution stage will dispatch to a routine that actually
performs the operation when an attempt is made to read the

respective FIFO, In the next cvcle a fetch function is

performed.

5, Indirect fetch - The indirect lonqword address is read and

written into an operand buffer. The register number of the

operand buffer and a status code that indicates that the

operand buffer, contains an indirect address is written into

the operand buffer. The Execution staqe will dispatch to a

routine that writes the indirect addres.s on the write bus

when an attempt is made to read the respective FIFO,

6, Indirect modify ■ The register number of the general register

that is to be undated is written into,the appropriate FIFO

with.a status code that encodes a context ,of lonqword and

autoincrement. In the next cvcle an indirect fetch is

performed.

Paqe 20

written into the
If the ooerand specifier is

reoister number is
cycles and written Into the same

Reqlster - The general register.number Is
aporopriate pointer FIFO,
context quadwprd or octaword, then the
incremented in successive
FIFO.

7.

An operand buffer is allocated and theDisplacement
displacement value is stored.

8.

4.5 Execute

The Execution staqe executes instructionsperforms autoincrement and

autodecrement operations, and writes Indirect addresses on the write

bus. The Execution staqe closely models the real hardware but of

course computes^, no answers,
registers are beinq_written bv_ an instruction and at the end of

instruction execution It writes the registers one oer cycle on the

write bus.

It does, however, keen track of which

The Execution staqe Is modeled

states.

a finite state machine with 4as

The states are:

Dispatch1.

2. Execute

3. Clean Up

4. Register Write

Execute starts at state l,and cycles,there until an opcode and all Its

specifiers arrive. During the time that, it waits it can perform

autoincrements, autodecrements and send indirect addresses to the

Address stage which each take 1 cycle. This Is not exactly,how the
hardware will work but there should be no _difference in the
performance. The hardware actually starts the instruction early and

then ends up waiting if an operand is not ready.

When a complete instruction,has arrived state 2 Is entered where the

number of cycles estimated for the instruction are scent.

State 3 releases operand buffers, continues pipeline activity, and

sends branch addresses to the prefetch stage. If a register value is
to be written state 4,is entered, in state 4 a register value is
transmitted on the write bus every cycle.

The Execution staqe always performs the action associated with the
current state.

1. state,1 - Dispatch. If there are no operand buffers that

contain operands, then ,the Execute staoe_idles. Otherwise
the operand buffers are examined one at a time to determine

page 21

If .a comolete instruction is present or there are
autoincrements, autpdecrements, or indirect addresses to

orocess. If an.autpincrement or autodecrement is found, then

the ooerand buffer is removed and the reolster number is

written on the write bus. This consumes the entire cycle.

If an Indirect address is found, then the ooerand buffer is
removed and the Indirect address is written on the write bus

to signal the Address stage that the address it is waiting
for is present (and thanic God .indirect addresses are

infreouent - the whole pipeline is backed up while we

sequence 1 indirect address through the pipeline). This also

consumes the entire . cycle, if no autoincrments,
autpdecrements, pr Indirect addresses are_ found before a

comolete instruction has been assembled then the state number

is set to., 2 and, the. cycle counter is set to the number of

cycles the instruction is estimated tp take. Estimates used

in the simulator are as close to reaiitv as possible since we

must make ludoements about the final performance of the

actual hardware. State 2 is executed.

2. State 2 -

decremented,

execution is not complete, .The number, of cycles, will be

decremented again in the next cycle, if the remaining cycles

is zero,then instruction, execution is .complete.
Instruction has no specifiers and is not from the implied pop

class but is from the decode stop or fetch stop classes, then

either the Decode or Operand stage is continued. If the

opcode also caused a branch (e.g. RED then a new PC is sent

to the Prefetch stage. .If the instruction has one or more

specifiers or is from the implied pop class, then the state

number is set to 3 and state 3 is executed.

The number of cvcles remaining isExecute.

If the result is nonzero, then the instruction

If the

3, State 3 - Clean Up, The operand puffers, are released,
the instruction writes a destination register, then.tne state

number is set,to 4 and state 4 is executed, otherwise if the

Instruction is from .the decode or fetch stop classes, then

either the Decode or Operand stage is continued,
opcode also caused a branch (e.g, CHMK),then a new PC is

sent.to the Prefetch stage, if th® instruction is from the

conditional branch or loop classes.and the branch was not

predicted correctly, then the entire pipeline is flushed, the

correct, PC is, sent to the Prefetch stage and the ©ranch

prediction RAM is updated. The state number is set to 1.

If

If the

4, State 4 - Register Write, The destination register number is

written on the write bus and the number of registers
remaining to write is decremented, if the result is zero,

then the state .number is set to 3 and state 3 is executed.
If the result is nonzero, then register number is
Incremented, The next register will be written in the next

cycle.

lend of fb.rno]

1 OVERVIEW

The Frlqate simulator consists of two orparamsj one to generate a

trace fileand^one that reads the trace file and simulates the Frigate
hardware olDeline. It should be kept In mind that the simulator does
not actually execute oroorams.

cycles that would be required to execute the oroaram on a

machine.

Rather It comoutes the number of

Frigate

The trace program Is linked as a ,debugger with the program to be

traced. It then gains control before the subiect program and solicits
what the name of the output file is to be and how many disk blocks of
data are .to be collected. The subject program Is then traced and a

data file is written that contains the opcodes, operand specifiers,
and. branch destinations of the executed instructions. Specifier

displacements and immediate.data are not written into the output .file
since they are not required .by the simulator. At the end of the

subiect program or when the specified number of.disk, blocks of data

haye been collected an end of data sentinel is written and the data

file is closed. The.trace.program then formats and prints instruction
frequency, instruction, size, specifier.size, specifier type, memory

read, memory write, register read and register write data.

The second part of the simulator Is the program

actual .hardware,
cache miss rate and branch prediction counter width
and then reads the .data
simulator consists of five subroutines that
pipeline stages and
stage subroutines for each machine
prefetched, decoded.,
activity proceeds In a. Pipelined fashion until
execution stage where. It spends the number of eyries It takes to

execute the.respective instruction. Instructions are executed in.this
manner until the .entire data file has been read, .At the end of the

simulation, statistics are output as to the number of cycles that were

executed, the number of .instructions executed, several branch

statistics and date on the utilization of the pipeline stages.

that, simulates the

This program.allows several parameters such.as.data
to be specified

file .produced by.the trace program,. The
simulate the individual

a Short control Program that calls each of the

cycle. Instructions are
their operands fetched and then.executed, Each

' it reaches the

2 INSTRUCTION CLASSIFICATION

All VAX instructions .are classiHed.Into groups depending on how their
execution affects pipeline activity. The intent Is to have as few

classes as possible, and still execute the .VAX Instruction set

efficiently. Class information will be .stored In a ROM (or RAM) that

is accessed .using the instruction opcode value. . The resultant

information is then used to control pipeline operation while the

instruction executes.

Eight Instruction classes are defined:

Page 2

1. stoD Decode - This instruction class inhibits the Decode

staae from ^ decodincj _further instructions,
continuation_from the execution unit is reoulred
subseauent instructions will be decoded. The remaining
soeciflers for the subject instruction . are decoded.
Instructions in this class chanoe global machine state (e,g,

MTPR), interact with FPD (e,g, MbvC3), imolicltlv modify
registers or contain multiple write destinations (e,g,
EDIV),

Explicit

before

instructions In this class include:

ASHP

CVTLP

CALLG

CALLS

CVTPT

MULP

CVTTP

DIVP

MOVC3

CMPC3

SPANC

SCANC

MOVC5

CMPC5

MOVTC

MOVTUC

MOVP

CMPP3

CVTPL

CMPP4

EDITPC

MATCHC

LOCC

SKPC

EMODF

POLYF

EMODD

POLYD

EDIV

CASES

CASEW

POPR

PUSHR

CHMK

CHME

CHMS

CHMU

CASEL

MTPR

MFPR

HALT

REI

BPT

RET

XFCR5B

ESCE

ESCF

EMODG

POLYG

EMODH

POLYH

LDPCTX

CVTPS

CVTSP

CPC

ADDP4

ADDP6

SUBP4

SUBP6

SVPCTX

These instructions take several cvcles .to execute and are

generally infreouent. Note that RSB is also in the implied
POD class.

2, Stop Fetch - This Instruction class stoos the Operand stage

in the same wav. as .the Decode, stage is stopoed by the

previous class. Explicit.continuation is required by the

execution unit before further instruction.operands.will be

fetched. These instructions read or modify destinations
whose addresses cannot be calculated bv the Operand stage

(e.g, BBSS),

This class Includes:

ADAWI INSQHI

IN5QUE INSQTl

REMQUE REMOHI

EXTV

REMOTI

BBSS

BBCS

EXTZV

BBCCI

INSV

8BSC

BBCC

BRSSI BBC

CMPV CMPZVBBS

FFCFFS

Note that the branch on bit Instructions In this class are

also in the conditional branch class.

conditionallyConditional Branch -

branches

values,

value,

the Decode stage,

destination

Instruction

a destination based.on source or condition code
A subset of the Instructions also modify the

This3, class

to

source

execution of these Instructions Is predicted in
If a branch Is predicted to be taken

address is computed bv the Decode stage and

The

then

the

Page 3

oassed to the Prefetch stage.

This class Includes:

BLBS

BLBC

BLSS

BGTPU

BLEOU

BGEOU

BLSSU

BNEQ

BEQL

BGTR

BLEO

BGEQ

BBCS

BBSC

BBCC

BBSSI

BBCCI

BBS

BBCBVS

BVC BBSS

Note that the branch on bit Instructions that modifv their

source are also included in the stoo fetch class.

4. LooD - This Instruction class,includes all the iterative loop

Th^-S, class is similar to _the conditional
that the branches are always

The branch destination address is

and oassed to the Prefetch

instructions.

branch class but differs in

predicted to be taKen.
computed bv the Decode stage

stage.

This class Includes:

AOBLSS SOBGTR

AOBLEQ SOBGEQ

ACBD

ACBG

AC8L

ACBF

ACB8

ACBW

ACBH

This instruction class Includes all

unconditionallv branch to an address
5, Unconditional,Branch -

the instructions that
that,can,be calculated in the Decodeor Address stage,
destination, address is calculated in the Decode stage if it

is PC.relative and in the Address stage if it is indirect,
context indexed or not relative to PC. The resultant address

is passed to the Prefetch stage.

The

This class Includes:

JSBBSBB BSBW

JMPBRB BRW

Note that BSBB, BSBW, and JSB are also in
class.

Imolied pushthe

6. Imolied Push - This instruction class, oenerates an implied

push onto the stack after the final operand has been
processed. This reouires the,decode staoe to generate an

autodecrement SP operand specifier.

This instruction class Includes:

JSB PUSHAW PUSHAO PU5HL

PUSHAB PUSHAL PUSHAO

BSBB

BSBW

Note that BSBB, BSBW, and JSB are also in the unconditional
branch class.

Page 4

imDlled Pod - This class contains onlv the .instruction RSB,

The .Decode staoe Generates an autoincrement SP operand
specifier to remove the return address from the top of the

stacic.

7.

This class includes;

RSB

RSB is also in the stoo decode class.

General - This instruction .class .contains
that

hazards and can be processed in a
any interference.

instructions

Thev cause no Pipeline
manner

all8.

no special processing.reaulre

withoutpipelined

This class Includes:

NOP PROBEW

ADDF2

MULF3

CVTFL

MOVF

ADDD2

MULD3

CVTDL

MOVD

ASHL

MOVAQ

MULB2

BISB3

MNEGB

CLRB

CVTBW

ADDW2

MULW3

BICW2

MOVW

TSTW

ADDL2

MULL3

BICL2

MbVL
tstl

MOVPSL

MOVAO

CVTDH

SUBG3

CVTGB

CVTWG

TSTG

SUBH3

CVTHB

CVTWH

TSTH

CVTHD

CVTWB

SUBF2

DIVF3

CVTBF

MNEGF

SUBD2

DIVD3

CVT8D

MNEGD

EMUL

ADD83

DIVB2

BICB3

CMPB

INCB

MOVZBW

SUBW2

DIVW3

XORW2

MCOMW

DECW

SUBL2

DIVL3

XORL2

MCOML

DECL

CVTHF

CLRO

ADDG2

MULG3

CVTGL

MOVG

ADDH2

MULH3

CVTHL

MOVH

INDEX

MOVZWL

SUBF3

CVTFB

CVTWF

TSTF

SUBD3

CVTDB

CVTWD

TSTD

CLRQ

SUBB2

DIVB3

XORB2

MCOMB

DECB

ROTL

SUBW3

BISW2

XORW3

BITW

BISPSW

SUBL3

BISL2

XORL3

BITL

ADWC

CVTFG

CVTLB

ADDG3

DIVG2

CVTRGL

CMPG

ADDH3

DIVH2

CVTRHL

CMPH

PROBER

MOVAW

MULF2

CVTFW

CVTLF

CVTFD

MULD2

CVTDW

CVTLD

CVTDF

MOVQ

SUBB3

BISB2

xbRB3
BITB

CVT6L

MbVAB
MULW2

BISW3

MNEGW

CLRW

BICPSW

MULL2

BISL3

MNEGL

CLRL

SBWC

CVTFH

CVTLW

SUBG2
DIVG3

CVTBG

MNEGG

SUBH2

DIVH3

CVTBH

MNEGH

CVTWL

ADDF3

DIVF2

CVTRFL

CMPF

AODD3

DIV02

CVTRDL

CMPD

ASHO

ADDB2

MUL83

BICB2

MbVB
TSTB

MOVZBL

ADDW3

DIVW2

BICW3

CMPW

INCW

ADDL3

DIVL2

BICL3

CMPL

INCL

MOVAL

MOVb
CVTGF

MULG2

CVTGW

CVTLG

CVTGH

MULH2

CVTHW

CVTLH

Page 5

CVTHG

3 general operation

3.1 Pipeline Activity

Pipeline stages take, input from a previous^ stage, perform some

transformation and produce output which,is input for the next stage.

If there is no input to act upon a stage is said to be idle;, that is
the previous stage produced no output and therefore there is nothing

for the stage to dp. If the,next stage does not consume the data

provided to it in a previous cycle then the preceding stage in the

Pipeline stalls.

In summary, a pipeline stage is idle if no data is provided for it to

process and, a pipeline stage stalls if the subseguent stage does not

process previously provided data.

Instruction Cache And Translation Buffer3.2

A separate instruction cache and translation buffer are used to access

the instruction ,stream. All cache modeling done at nECwest suggests

that the Instruction stream cache hit rate will be upwards of,99%, In

addition, two levels of buffering .are employed. . Therefore the

instruction stream is not modeled explicitly.. It is,assumed that any

instruction cache or translation buffer misses will have a minimal

affect on performance.

There is one aspect of the Prefetch stage that is modeled that has to

do with branches. The model keeps track of the virtual PC even though

it does not use it to access the instruction translation buffer and

The virtual PC is used to determine if a translation buffer

in,effect the virtual
number of the new PC is compared with the virtual page numoer of

If the comparison .fails ,then an additional cycle is

to do the translation buffer access. Otherwise the page

” 1 the previous physical .page number to
access the instruction cache. ,The reason for this is that it is not
possible to access the translation buffer, access the instruction
cache and write the prefetch buffer in one cycle.

cache.

access is reoulred when a branch takes place.

page

the old PC,

reguired
offset is concatenated with

3.3 Data Cache And Translation Buffer

A separate translation buffer and cache are used to fetch data from

memory and write results. ,The organization of the cache is .the write
back scheme being used in Firefly at SRC. (The scheme employs two

Page 6

extra bits ^oer cache line to Keep track of shared and modified data.

The Shared bit indicates whether it.is possible that the data might

also be in another cache. The modified bit indicates whether the data

has been modified but not written to memory.) There.Is no.Problem with
cache, coherence .even in a. multiprocessor confiouration, DECwest

modeling of.the effects of write back caches suogests that memory

write traffic can be cut by 60-70%. Thus it is oossibie to ouild a
system without heavy demands for memory bus bandwidth.

VMS (and other ooerating systems) will not reauire any special code to
manage the write back cache. The cache will be entirely transparent

excebt when the power fails. An internal processor reoister. will be
provided so that VMS can sweep the cache and force all unwritten data

to memory.

Modeling of the data translation buffer and cache is on the. basis of
how often a miss occurs and how many cycles it takes to process the

miss. This data cache miss rate and the forced write rate are

provided as parameters to the model.

Register File Write In Progress Counters3.4

Four logical copies of.the.general purpose registers are maintained.

Two of the conies reside in the Decode stage and two in the execution

stage. .These two copies can be thought of as dual port read single
port write rams.

Register values that are needed for address calculation (base or index

register values), are read from the raMs located in the Decode stage

and the value(s) is (are) passed to the Address.stage... Register mode

operands however are .not actually read until the execution stage.

This allows.a mador optimization with regard to .allowing, outstanding

writes against reoister. mode operands to be ignored since when the
instruction reaches the execution stage the respective register will
by deHnition have the most current value.

Associated with each register number (excluding PC) Is a Write

Progress Counter (4 bits) that is maintained bv the Decode stage and

which records the number of writes outstanding aoainst the. register.
A counter is used so that it is .possible to.have multiple writes

against a register outstanding, (as opposed to a.^single bit which would
allow only one outstanding write). It is not intuitive that.multiple
outstanding writes are a common occurrence, but consider the following
instruction seouence:

n
✓

/
ADDL3

ADDL2

RO, Rl, R2

R3, R2

When the ADDL2 instruction is.decoded register r2.will .already have an
outstanding write against it,
correct value when the ADDL2. reaches the execution stage it is

expedient to allow multiple writes against *^2. This turns out to be a

very common code seouence generated bv most of our compilers.

But since R2 will actually have the

Page 7

The Decode stage monitors the write bus for register values and

UDdates its cooies of the registers when aoDropriate, It also

decrements the resoectlve Write in Progress Counter.

Register File Write-in Progress Counters are not uodated for. register
mode operand soecifiers if instruction decode has_been stopped. This
is necessary to avoid deadlocK for instructions with _,muitioie write
destinations (e.g, EDIV RO, Rl, R2. CR2)). Write in Progress

Counters, however, are always uodated for, autoincrement and

autqdecrement operand, specifiers even when instruction decode is
stooped. The Execution stage resumes oioeiine activity when a

consistent state has been reached.

3.5 Data Cache write In Progress Bits

Each cache line in the data cache has associated with it a Write in

Progress, Bit. This bit is written bv the boerand stage when a write

destination operand is,processed. The bit is cleared when a write on

the write bus to the affected location is executed.

Write in Progress Bits allow subsequent operand reads to occur,after a
write has been processed if the .read is from a different location than
the write. If it is not, the Operand stage will stall until the write

in Progress Bit has been cleared.

Data Cache Write in Progress Bits are not undated if instruction
decode has been stopped, ,This is,necessary to avoid deadlock for

instructions with multiple write destinations fe.g. EDIV, RO, Rl,
CR2), !?(R2)). The Execution stage resumes oioeiine activity when a
consistent state has been reached.

3.6 Autoincrement And Autodeerement Operand Soeclflers

The processing of autplncrement and autodecrement ooerand specifiers

requires the coooeration of the Decode, Address, boerand and Execution

stages of the pipeline.

The Decode stage Increments the respective Write in Progress Counter
and passes the register number, register contents, autodecrement value

Cif required), and function to,be performed to the Address stage. The

Address stage, comoutes the effective address .and passes the register

number, effective address, and_functlpn to be oerformed to the Operand

stage. The Operand stage first passes the _reolster number and

autoincrement or autodecrement,operation to the Execute state,and then
fetches the, operand value in the next cycle if required ci.e, not
address or yield access tvoe). The Execution ,stage performs, the
autoincrement or autodecrement function and writes the newregister
value into its own coov of the Register File and on the write bus.
The Decode stage then oleks the value off the write bus, decrements

the corresponding Write in Progress Counter, and writes the new value

into its copy of the Register File,

I

Page 8

All told, tne orocesslna.of an autoincrement or autodeerement^ operand

specifier takes one additional cvcle. Subseouent decodinq of operand

specifiers Is not^blocked unless^the register being autoincremented or
autodecremented is the one required as a base or index register for a
subsequent operand.

The_actual autoincrement or autodecrement In the Execution^ stage is

performed in the ’

that is. It is oerfgrmed after^the orevlous instruction has completed

and before the next instruction has started execution. The orevlous

contents of^the resoective^register are saved in a register log when

the Execution stage performs the increment.or decrement operation.

This register loo is cleared at the end of an instruction.

M Of the instruction to which it belongs?context II

3.7 Indirect Addressing

Indirect addressing reoulres two trips through the Address and^Operand
stages. The Execution stage gets involved onlv to pass the indirect

address.through the ALU and.into the write latch. The Address stage

then..picks the address off.the.write bus, adds the index register if
soeciHed, and passes the effective address back to the Operand stage.

The Execution unit alwavs processes indirect addresses in the

context" of the instruction to which it belongs.II

approximately 1-2%Indirect,addressing occurs verv Infreouentlv (e.g,
of the time) and is not expected to adverseiv affect performance.

4 PIPELINE OPERATION AND STAGES

The Frigate pipeline.is executed by a control,program that calls the

stage subroutines, in reverse order. This is necessary tg propagate
stalls correctly since each stage is not actually executed in parallel
as it would be in real hardware.

This sequence, ,although it works .nicely for stalls, causes problems

when. the. outout of a latter pipeline stage is to be acted upon by an

earlier pipeline stage in the next cycle. The problem is that the
earlier pipeline stage executes after the latter pipeline stage in the

current cvcle.

An example is register file writes on the write bus. ..which must be
recognized bv the Decode and Address stages in the.next cvcle, not the

current. The data written bv the Execution stage.in the current cycle

is processed bv the Decode and Address .stages in the next cvcle and

the data written bv the Execution stage in. the previous cvcle is

processed bv.the Decode and Address stages in the current cvcle. The

model accomplishes this.bv inserting pipeline variables that.delay the
recognition of.data until a subsequent cvcle. .in the case of register

file writes this is done with a 2 deep array of register numbers, and
valid flags. .All .pipeline stages examine the first member of the

array and the Execution stage writes the second member. At the end of

page 9

each simulated cvcle. the,second array,member Is cooled to the first

and the second is set invalid,. Other oioellne variables are simply

implemented as boolean variables.
Instruction PC is available,to the Prefetch staae, both the value and

a flag called,, "orefetch-new.address" are set. The Prefetch staqe sees

the flag, copies the new virtual address and then clears the flag. In

the next cvcle it will ,actually start delivering the instruction
information at the destination address.

For examole. when a new virtual

4.1 Prefetch

The Prefetch stage reads the input file produced bv the, trace .program
and provides the Decode stage, with opcode and operand .specifler
information on.each cvcle. This information is the actual opcode and

operand specifier .data, including register numbers, that was collected

when the sublect nrooram.was traced. As Prefetch reads the trace file

it updates the virtual instruction PC bv computing the.length of each
operand specifier. Two bvte opcodes reouire one extra cvcle to

deliver the "escape" opcode to the Decode stage.

duringIf the.Decode staqe has not processed the data delivered to it

a previous cvcle then Prefetch stalls.

If a new virtual PC has been delivered bv the .Decode, Address or

Execution .stage then .the old, virtual PC's virtual page,number is
compared with the new virtual PC's page number and the new virtual PC
is copied to the old.virtual PC.. If the virtual cage numbers match

(i.e. a translation buffer access is not. regulred) the instruction

data at the target address will be delivered to the Decode staqe in

the.next cycle. If the page numbers do not match then, a translation

buffer cvcle.is required in the next cvcle and the Prefetch stage will

deliver the instruction data in the cvcle after that.

It should be noted .that the affects of instruction Cache and

Translation buffer misses, are not modeled. It is assumed that this

causes minimal degradation in performance.

If Instruction decode is stooped by the Decode stage then Prefetch

accumulates .idle time when a new opcode is to be decoded. Subsequent

operand specifiers for the current instruction are delivered until an

instruction boundarv is reached.

If the Decode stage has not processed data delivered in a orevlous

cvcle then Prefetch accumulates stall time.

If a new virtual PC is provided bv one of the Decode, .AddresSj or
Execution stages the Prefetch accumulates wait time until a

translation buffer and/or cache access can be done.

In all other cases Prefetch can do useful work and accumulates work

time.

Paqe 10

4.2 Decode

The Decode stage orocesses the oocode and operand soeclfier
information orovided bv the Prefetch stage, it maintains two copies

of the,Register File,and the associated Write in Progress Counters,

determines when, information is _to be nassed to the Address stage,

predicts.if conditional branches will be, taken, and„ transmits the
destination address for looo and unconditional branches and lumps to

the Prefetch stage.

The Decode stage is modeled as a finite state machine with 4 states.

The states ares

Process oocode and first operand specifier if anv»

Process next operand specifier, branch destination, or jump

address,

1.

2.

3. Execute implied push/ooo to/from the current stack, and

Finish unconditional branch or jump instruction.4.

Decode starts,at state 1 and cvcies in state 2 if necessary until all

operand specifiers have been,processed, if required (PUSHL, RSB,

state 3 or 4 is entered to finish the instruction and then back to

state 1 for the next oocode.

)• • •

Decode.always interrogates the write bus at.the start of a cycle to

determine if a register value is being written. If the write bus is
valid (i.e. there is a register being written) then the respective

register's Write in Progress Counter is decremented but never below

zero. A.decrement below zero could happen, when a multiple write

destination instruction has stooped the pipeline and a register mode
destination was present. In this case the write in Progress Counter

was not incremented to avoid possible deadlock, and when the

instruction is finished the counter must not be decremented.

If the Address stage has not processed data from a previous cycle then

the Decode stage stalls. Otherwise the operation associated with the
current state is performed.

1. state 1 - Process oocode and first specifier if any.

If no data has been supplied by the Prefetch stage (i.e,

is waiting for a translation buffer or cache access after a

new.virtual,PC has been received and cannot deliver any data)

or instruction decode has been stopped, then the Decode stage

idles.

it

If the oocode is a two byte oocode then the first byte is

accepted in the current cycle and the two bvte opcode flag is
set. The second oocode byte will be delivered in the next

cycle.

page 11

If the opcode is from the stoo decode class ^or is an

unconditional branch or lutip the stop decode flag is set.

If the opcode has zero specifiers and is from the implied pop

class(then_the state number is set to 3 and.,the implied pop

is executed immediately,
operation _function
ooeratlon_imolies that the Address and Operand stages perform

no operation for the respective opcode.

Otherwise the opcode and a no

are passed to the_ Address stage. No

If the pocode has one or _ more specifiers then the state

number is set to 2,^the specifier number is set tp_l, and the

first operand specifier is processed immediately if Possible,

2. State 2 - Process next operand specifier, branch destination,
or lump address.

If no data has been supplied by the Prefetch.stage then the

Decode stage idles, ..Otherwise an action is executed
depending on. the. specifier mode and reolster number.
Specifier actions include;

1. Modes 0, 1, 2, and.3 (short literal) - The short literal

value,. the.speciHer datatype, the specifier access type

and a function of literal .are passed, to. the Address
stage. If the instruction is from the implied push class

then.the state number is set to 3, The autodecrement SP

specifier will be generated, in the next cycle. All
Instructions from the implied push class have exactly one

peer and specifier. .
implied push class and this is the last operand specifier
then the state number is set to 1. The next cycle will
process the next opcode.

If the instruction is not from the

2. Mode 4 (index) - If the index register or. the base
register (note there must.always be a base register since

short literals cannot be indexed) has a Write in Progress
Count greater than 1 or both registers have a Write in

Progress Count of 1. then.the Decode stage waits for one

of the registers to be written on the w^lte bus. At that

time the Write.in .progress Counter .will be adjusted,
otherwise the index register invalid flag is set equal to

the value,of the respective Write, in Progress Counter.
If the Write.in Progress counter is not zero (i.e. there

are outstanding writes against the register but only one)

then the.Address.stage will pick the value off the write

bus when it is written, .index mode present is, set and

the base address is processed bv executing its action
routine.

3, Mode.5 (register mode).-,If the access type is .write or

modify and decoding of instructions.is not stooped, then

the. Write in Progress Counters for the respective
register(s). are incremented (note that up to 4 counters
could be incremented). The register number, the

Paqe 12

soeclfler ^datatype, the. soeclfler access type and a

function of renister are passed to^the Address stage, if

the instruction is from the Imolied push class then the

state number is set to 3. The autodecrement SP soecifler
will be generated in the next cycle, If.,the instruction
is not from the implied push class and this is the last

operand specifier then the state number is set to !• The

next cycle will process the next oocode.

4, Modes 6, 10, 12,_and 14 Creqlster deferred and.byte, word

and longword displaced) - if the Write in Progress
counter for the base,register Is greater than 1 then the

Decode stage waits for the register,to ba written on the

write bus. At that time the,write in Progress .Counter
will be. adjusted. Otherwise if the opcode is from the

unconditional branch class, an index register Is not
specified and the base register is PC, then the branch
destination can be calculated immediately and sent to the

Prefetch, stage. If the unconditional branch is from the

implied push class.then the state number is set to. 3 and

the implied push is executed Immediately. Otherwise the

state number.is set .to 4 and,the unconditional branch is

finished. If the opcode.is from the unconditional branch
class and.either,an index register is specified or the

base .register is not PC, then the base register Invalid
flag is set to the value of the respective Write in
Progress Counter and the branch destination,flag is set.

The base register invalid flag, the base register,number,
the base.register value, the index register invalid flag,

the index register number, the .displacement value, the

specifier .datatype, the specifier access type and a

function of fetch.are passed to the Address stage. If

the instruction is from the implied push class, then the

state number is set to 3,. Otherwise it is set to 4, The

autodecrement SP specifier will be .generated or the
unconditional.branch finished in the.next cycle. If the

instruction is not from the unconditional branch class,
then the base, register Invalid flag Is set to the value

of .the respective Write in Progress Counter, The base
register invalid flag, the base register.number, .the base

register .value, the Index register invalid flag, the
index,register.number, the displacement value, and a

function of. fetch are passed to the Address stage. If

the instruction is from the implied push class .then the

state is set to 3. The autodecrement SP specifier will
be generated in the next cycle. If the Instruction is

not from, the. implied push class and this is the last
operand speciHer, then the state number is set to 1,
The next cycle will process the next oocode.

5, Modes 7 and 8 (autoincrement and autodecrement) - If the

base register is PC (onlv possible for mode 8 since
autodecrement PC is illegal),.then the action for mode 6

is executed. This is Immediate mode addressing and the

Operand stage actually fetches the immediate Ifvalue.

Paqe 13

the base reqlster is not PC and the resoectlve write in

Proaress Counter is oreater than 1_, then the Decode stage

waits for the_ register to be written on the write bus.

If the base register Write in Progress Counter is 0 or 1,

then the^ base register invalid flag is set to the value

of the Write in Progress Counter. The base register
invalid flag,_the.base register number,.the base register
value, the index register..invalid flag, the index
register number, .the soecifier.datatype, the specifier
access tvoe and a function of modify are passed to the

Address .stage, .The Write in.Progress Counter for the

base register is incremented.^ If the opcode is from the

unconditional, branch and implied push classes, then the

state number is set to 3 and the branch destination flag

is set. The autodecrement SP specifier will be.generated
in the .next cvcle. If the opcode .is from the
unconditional class and not the implied push class, then

the state number is set to.4.and the branch destination
flag is .set. The unconditional branch will be,finished
in the next cvcle. If the instruction .is from the
implied push class and not the unconditional branch
class, then the state, number is set to . 3. The
autodecrement SP specifier.will be generated in the.next
cvcle. If the instruction is not from the unconditional
branch, or implied push class .and this is the last
specifier, then the state.number is set to 1. The next
cvcle will process the next opcode.

6, Mode 9 (autoincrement deferred) - if the.base register is

PC, then the action for mode 6 is executed. This is
absolute addressing end.the address is treated ll*«e a

longword displacement with no base.register, .If the base

register.is not PC and the respective Write in Progress
counter is greater than 1. the Decode stage waits for the

register to be written on the write bus. If the base
register. Write in. Progress Counter is 0 or 1. then the

base register invalid flag is set to the value of the
Write in Progress Counter. The base register Invalid
flag,the.base register number,.the base register value,
the index register invalid flag. .the. index register
number, the specifier datatype, the.specifier access type

and a function of indirect modify are passed to the
Address stage,. The Write in Process Counter for the base

register, is incremented, . if the opcode is from the
unconditional branch and implied push classes, then the

state number is set to 3 and the branch destination flag

is set. The autodecrement sp specifier will.be generated
in the. next cvcle. If the opcode is from the
unconditional branch class and not the implied push
class, then, the.state number is set to 4 and the branch
destination flag is set, .The unconditional, branch will

be completed in the next cvcle. If the instruction is

from ^he implied push class but not from the
unconditional branch class, then,the state number is set

to 3, The autodecrement SP soecifier will be generated

Paqe 14

In the _next cvcle. If the Instruction Is not from the

unconditional branch or implied oush class and this is

the last soecifier. then the state,number Is set to 1.

The next cvcle will process the next instruction.

7. Modes 11, 13, and 15 (Indirect bvte, word, and

disolaced)
base register Is areater than 1, then the Decode stage
waits for the, register to be written on the write bus.

If the base register Write in Progress Counter is 0 or 1,

then the, base register Invalid flag Is set to the value

of the Write in Progress Counter, The base register
invalid flag,_the base register number,,the base register-
value, the index register invalid flag, the, index
register number, ,the displacement value, the specifier
datatvoe, the specifier access tvoe and a function of

Indirect fetch are passed to the Address stage. If the

opcode is from the unconditional branch and implied push

classes,, then state number Is set to 3 and the branch
destination flag is set. The autodecrement SP specifier
will be generated in the next cvcle. If the opcode is

from,the ,unconditional branch class and not from the
implied push class,,then the,state number,Is set to 4 and

the branch,destination flag is set. . The unconditional
branch .will ,be finished, the next cycle. If the
instruction,is from the implied oush class and not from

the unconditional branch class, then the state number is

set to 3., The autodecrement .sP specifier, will be
generated in the next cvcle. if the ins,truction Is not

from the unconditional,branch or implied push class and

this is the last specifier, then the state number Is set

to 1, The next cvcle will process the next instruction.

longword

If the Write In Progress Counter for the

8, Branch Displacement (bvte and word) - If the opcode Is

from the,unconditional branch class, then the destination
address is sent to the Prefetch stage and the stoo.decode
flag Is cleared. If the opcode Is from the unconditional
branch and implied push class then the state number is

set to 3, The autodecrement SP soecifier .will be
generated in the next cycle. If the opcode is, from the

uncondition branch class and not the implied push.class,
then the state number is set ,to 4. The unconditional
branch will, be completed in the, next cycle. If the
instruction is not from the unconditional branch class,
then it is either, from the conditional branch or,loop
class. The base register and index register register
Invalid, flags are set false. The base register .Invalid
flag, .index register invalid flao, the soecifier
datatvoe, the soecifier access tvoe, computed destination
address and a function of displacement are Passed to. the

Address .stage. The state number is_set to 1. If the
gocode is from the loop class, then It Is always
predicted as taken. The computed destination address is
sent.to the Prefetch stage, if the opcode is .from the

conditional branch class, then the branch prediction RAM

Paqe 15

is accessed usinc bits 2 through 15 of the endlna address

of the conditional branch instruction_itsei:f (this is
actually the address of the next instruction),
high order bit of the prediction value is set, then the

branch is predicted as taken._ Otherwise it is predicted
as not taken,

computed destination address is sent to the
staoe.

staoe.

cvcle.

If the

If^the branch is predicted taken, then the
Prefetch

The prediction .flag is passed to the Address
The next instruction is processed in the next

state 3 - Execute implied push/ooo to/from the current stack.3.

If the Write in Proaress.Counter for SP.ls .greater than 1,

then the Decode stage waits for the register to be written on

the write bus. If the Write in.Progress Counter is 0 or 1,

then the ,base register invalid.flag is .set to the.value of

the Write.in Progress Counter. If the opcode is from the

implied POP class, then.the specifier access is set to read.

Otherwise the oocode is from the implied push class and the

specifier access is set to write. The,base register invalid

flag, the register number 14, the soecifier.datatype .(always
lonoword), the speciMer access tvpe and a function.of modify
are passed to the Address stage. The state number is set to

1 and the Write in Progress Counter for 5P is incremented.
The next oocode will be processed in the next cycle.

State 4 - Finish unconditional branch or lump instruction.4.

unconditional branches and jumps, although executed in the

Decode staoe, cannot be evaporated, Thev must continue

through to the Execution stage so.that trace traps can. occur

if enabled (this .may .be eliminated later bv sending the

opcode through the oioe if and only if t-bit is set or the

address mode is autoincrement, autodecrement or autgdecrement
deferred). The.branch destination flao is set false. A

function code of displacement is passed to the Address stage.

The.Decode stage closely simulates what the actual hardware will do.

It is believed to be verv accurate.

If instruction decoding is stopped by the Decode staoe itself or no

input has been provided bv the Prefetch stage, then the Decode stage

accumulates idle time.

If the Address stage has not processed data delivered to it in a

previous cvcle, then the Decode stage accumulates stall time.

If the Write in Progress Count of a base register or.index register is
greater than 1,. or both, a base register and an index register are
specified and their respective Write in Progress Counters are equal to

1, then the Decode staoe accumulates wait time.

In all other cases Decode can do useful work and accumulates work

Paqe 16

time,

4.3 Address

The Address stage comoutes the effective address ,of an ooerand or

through the data it receives to the Operand staae. It is
dlsDiacement,

base register, and context shifted Index register) and operates from a

function and data sucolied bv the Decode stage. This stage processes

indirect addressing.

passes

capable of performing a 3 Inout add_in one cycle Cl.e,

The Address stage,always Interrogates the,write bus at the start of a

cycle to determine if a register value is being written that matches

an invalid register that it requires to, oerform the address

computation. Either the base or Index register mav.be required but

not both. The ,base register and index register invalid fiaas,are used
for this purpose. If the write bus soeclHes a partial write Cl,e,
byte or word), then the value is merged with the value passed to the

Address ,stage, bv the,Decode stage. Note that there can onlv be one

outstanding write_at this,time. This Is guaranteed bv Decode and

therefore the first write on the write bus that matches the invalid

register, number is the one required to complete the address

calculation. As soon .as the corresponding register value has been

received the respective invalid flag is cleared.

If the Ooerand stage has not processed data from a previous cvcie then

the Address stage stalls.

If no data has been supplied bv the Decode stage, then the Address

stage idles.

If the.Address stage has not vet received an Indirect address from the

Execution stage, then the Address stage waits.

If the base register or Index register Invalid flags are set, then the

Address stage, waits,
the function specified bv the Decode stage,
include*

Otherwise an action Is performed according to

Address stage actions

Displacement - The branch destination address.Is computed by

adding the sign extended, branch displacement .with the

displacement PC (the PC is provided throuah . special logic
that.adlusts for the length of the branch .displacement), The

destination address and a function of displacement are passed

to the Ooerand stage.

1.

2. Fetch and Modify - The effective address Is,computed. If the

branch destination flag Is set, then the effective address is

sent to the,Prefetch .stage and the stop decode flag is
cleared. If the original function was fetch,_then no further

processing is necessary. Otherwise the,.effective address,
base register number, the specifier datatvpe, the

specifier access tvpe and a function of fetch or modify are

the

Paqe 17

passed to the Operand stage.

Register r,The base register number, the specifier datatype,

the specifier, access type and a function of register are

passed to the Operand stage.

3.

Literal - The literal, value, the specifier datatype, the

specifier access tvoe and a function code of literal are

passed to the Operand stage.

4.

No Operation - A no operation function is passed to the

Operand stage.

5.

The effective base6. Indirect^Fetch and Indirect Modifv
address is,calculated, This calculation does not Include the

index register if it is present,
contents of the,index register will be,added to the indirect

address when it,is received from the Execution, stage,
indirect .flag is set, the operand access tvpe is set to read

and the.operand datatype is set to longword.
flag will, cause the Address stage to wait in subsequent
cycles until cleared bv the Execution stage,
addres.s,, .the base register number,.the specifier datatype,

the,speciHer,access tvoe and a function of indirect fetch or

indirect modifv .are passed to the Ooerand,stage. When the

Indirect address is received from the Execution stage on. the
write bus the .Address stage, will add the context shifted
index register, if anv, to the indirect address and then.pass
the original sneciMer datatype, the original specifier
access tvoe and a function of fetch, to .the Ooerand, stage.

Note that while the Address stage is waiting for an indirect
address the necode stage is stalled because it cannot deliver

new data to the Address stage.

The context shifted

The

The indirect

The effective

4.4 Operand

The,Operand, stage reads operand, values from, memory, checks the

validity of write destinations, increments register.numbers, manages

the Write in Progress Bits in the data cache and delivers subsequent

It is also Responsible for
address the ooerand buffers.

Operand stage operates from data and a function code passed to it
bv the Address stage.

zero longwords for .short literals,
assigning pointer register numbers to
The

It is worth explaining the function of the oointer registers and
operand, buffers although thev are not actually modeled in, the
simulation. Three oointer register.FIFO's are used to store pointer
registers and operand status. One is for .odd numbered source

specifiers, one for even numbered source specifiers, and one for

destinations. Each cycle, one of the source FIFO's and the

destination FIFO.can.be written with a register number. The number

that is written is either a general register number, an ooerand buffer

page 18

number, or an address buffer^number. Operand buffers are used to hold

operand values. Address buffers are usedto hold the physical address

of the destination^(this is always available _since a translation

buffer access.is performed on the destination operand to determine if
it is accessible). If the destination address crosses a page

boundary, then, two address buffer entries are used (i.e. two
translation.buffer accesses are required). A status code is also
included with each register. The status code indicates if there was

an access violation, translation not.valid, translation buffer miss,.a
modify refuse (write access to a page that.does not have the modify

bit set) or an attempt was made to read an.I/b address, (This latter

type is a VERY sticicv problem in a pipelined .machine, Since we haye

such a wonderful i/b architecture that allows people to build devices

where register reads have side effects we have to Guarantee that I/O

addresses are read .exactly once. The wav this is done^is to dump the

address of the operand into the allocated operand buffer and.tag the
pointer register with a status code that will .cause the Execution

stage to dispatch .to a routine that will.explicitly read the I/O

address.) The Execution stage, microword provides control oyer the
reading of the pointer register FIFO's. For example, the microword
for an ADDL3 would read the register numbers from the source 1. source

2. and destination FIFO's, It should be noted that ADDL2 would do the

same thing since the modify source/destlnatlon operand would cause

both the even numbered source FIFO and the destination FIFO to be

written. The net effect is to allow the Operand stage to fetch

operands, somewhat ahead of the Execution stage (e.g. some elasticity

is provided, by the. address and operand buffers) and provides

parametric microcode in the Execution stage.

If no data has been supplied bv the Address stage, then the Operand

stage idles.

If there are no address or operand buffers available and one is

required the Operand stage stalls until the Execution stage has

emptied one.

If operand fetching has been stopped, then the ooerand stage idles.

The Operand stage executes an action determined by the function

supplied to it bv the Address stage,
performed;

code

The following actions are

1. No Operation - No operation is performed. In the simulation

model this taices one cycle. in the real machine this will

not reauire .anv cycles because, the opcode dispatch
information is Iceot separately from the operand specifier
information, .In the model it is not. This function is used
for zero specifier oocodes.

Literal - The first longword of a .short .literal value is

formatted (e.g, zero extended, shifted* bits inserted, etc,)

in the .Decode stage and passed through the Address stage.

The Operand stage assigns an operand buffer and stores the

fir St.longword of the short literal in the .buffer. If the

context is ouadword or octaword, then the Operand stage will

2.

Paae 19

allocate additional ooerand buffers and deliver zero

lonawords In subseouent cycles, one cvcle Is required for

each lonqword.

3. Fetch - If the access tyoe Is address or vleld, then an

operand buffer Is^allocated and the^value received fron the

Address staqe_is written into the buffer. If the access tyoe

is read, write, or modify, then a translation buffer access

must be performed to determine the ohvsicel address and

accessibility of the ooerand Cthe translation buffer Is not

modeled). For each lonqword in the ooerand (and each
lonqword takes at least one cycle) a random number is

generated and compared with the data cache,miss rate that was

selected when the simulation was beoun. If^the random number

is less than or equal to the data, cache, miss ,rate then 5

additional cycles (the cache fill time) will, be spent
fetchinq the ooerand yaiue. If the random number is greater

than the data cache miss rate then only 1 cycle.is required

to fetch the ooerand value, if the data cache misses there

is also a probability that the location, that will be

displaced from the cache has been modified but not written.

Another random number is generated and compared.with the

forced write rate.which was also selected when the simulation

was .begun. ..If found to "miss" then 5 additional cycles are

required to first write the current contents of the cache

line and then read the new value. This amounts to 11 cycles

in all if the data cache misses and a forced write is

required. As lonowords are fetched, an ooerand buffer is
allocated, the register number written into one or more of

the FIFO's and the ooerand value olaced In the operand

buffer.

4, Modify - The.register number of the general register that Is

to be modified Is written Into the aooroorlate FIFO with a
status that encodes the context and whether the operation to

be performed is. an .autoincrement or autodecrement. The

Execution stage will dispatch to a routine that actually
performs the operation when an attempt is made to read the

respective FIFO. In the next cycle a fetch function is
performed.

5. indirect fetch - The Indirect.lonoword address is read, and
written Into an operand buffer. The register number of the

operand buffer and a status code that Indicates that the

ooerand buffer, contains an Indirect address Is written Into

the operand buffer. The Execution stage will dispatch to a

routine that, writes the indirect address on the write bus

when an attempt Is made to read the respective FIFO,

6. Indirect modlfv - The register.number of the general.register
that Is to be undated Is written into.the appropriate FIFO

with.a status code that encodes a context .of lonqword and

autpincrement. In the next cvcle an indirect fetch is
performed.

Paqe 20

Reqlster - The general register.number Is written into the

aporopriate pointer FIFO,
context auadwprd or octaword. then the reolster number is

incremented in successive cycles and written into the same

FIFO.

7.

If the operand specifier Is

Displacement - An. operand buffer is allocated and the

displacement value Is stored.
8.

4.5 Execute

The Execution stage executes instructions performs autoincrement and

autodecrement operations# and writes Indirect addresses on the write

bus. The Execution stage closely models the real .hardware but of

It does, however, keen track of which
instruction and at the end of
the registers one oer cycle on the

course computes, no answers,
registers are being.written bv. an
instruction execution it writes
write bus.

The Execution stage is modeled
states.

a finite state machine with 4as

The states are;

1. Dispatch

2. Execute

3. Clean Up

4. Register Write

Execute starts at state l.and cycles there until an opcode and all Its

specifiers arrive. During the time that, it waits it can perform

autoincrements, autodecrements and send indirect addresses to the

Address stage which each take 1 cycle. This Is not exactly.how the
hardware will work but there should be no .difference in the
performance. The hardware actually starts the instruction early and

then ends up waiting if an operand is not ready.

When a complete instruction.has arrived state 2 is entered where the

number of cycles estimated for the instruction are soent.

State 3 releases operand buffers, .continues pipeline activity, and

sends branch addresses to the prefetch stage. If a register value is
to be written state 4.1s entered. In state 4 a register value is

transmitted on the write bus every cycle.

The Execution stage always performs the action associated with the

current state.

1. state,! - Dispatch. If there are no operand buffers that

contain operands, then the Execute stage.idles. Otherwise
the operand buffers are examined one at a time to determine

page 21

If comolete Instruction is present or there are
autoincrernents, autpdecrements, or indirect addresses to

process. If an_autpincrement or autodecrement is found, then

the operand buffer is removed and the reoister number is

written on the write_bus. This consumes ,the entire cycle.

If an indirect address is found, then the ooerand buffer is
removed and the indirect address is written on the write bus
to signal the Address stage that the address it is waiting
for is oresent Cand thanK .God indirect addresses are
infreouent - the whole pipeline is backed up while we

seguence 1 indirect address through the pipeline), .This also
consumes the entire . cycle. if no autoincrments,
autpdecrements, or indirect addresses are found before a

complete instruction has been assembled then the state number

is set to. 2 and.the.cycle.counter is set to the number of

cycles the instruction is estimated to take. Estimates used

in the simulator are as close to reality as possible since we

must make ludgements about the final performance of the

actual hardware. State 2 is executed.

2. State 2 - Execute,

decremented,

execution is not complete. The
decremented again in the next cycle,
is zero, then instruction execution

The number of cycles remaining is

If the result is nonzero# then the instruction
number, of cycles, will be

If the remaining cycles
is comolete.̂ the

instruction has no specifiers and is not from the implied pop

class but is from the decode stop or fetch stop.classes, then

either the Decode or Operand stage is continued. If the

opcode also caused a branch (e.u. .RED then a new PC is sent

to the Prefetch, stage. .If the instruction has one or more

specifiers or is from the implied poo class, then the state

number is set to 3 and state 3 is executed.

3. State 3 - Clean Up. The operand buffers, are released, if

the instruction writes a destination register, then.the state

number is set.to 4 and state 4 is executed. Otherwise if the

instruction is from the decode or fetch stop classes, then

either the Decode or Operand stage is continued. If the

opcode also caused a branch (e.g. CHMK) then a new PC is
sent.to the Prefetch stage, if the instruction is from the

conditional branch or loop classes and.the branch was not

predicted correctly, then the entire pipeline is flushed, the

correct. PC is. sent to the Prefetch stage and the branch

prediction RAM is updated. The state number is set to 1.

4. State 4 - Reoister Write. The destination reoister number is

writi:en on the write bus and the number of registers
remaining to write is decremented, if the result is zero,

then the state .number is set to 3 and state 3 is executed,
.If the result is nonzero, then reoister number is
incremented. The next register will be written in the next

cycle.

tend of fb.rno)

17-NOV-1988 0843- 17-NOV-1988 08:43:04.09RICKS::CALLANDER "Mik* Callanctor 225-5591 HLOl-l/Sll

DUROAN, UHLER,SULLIVAN,MARCELLO
From:

To

CC:

"BVAX" simulations on XMl-2Subj

Hugh,

I'va complotad tha "BVAX" simulations you askad for. I ran the Mariah

parformanca modal at an Sns cycla tima with a 4KB PCACHE. I nada 2 runs with

dlffarant backup cacha sizas. All othar paramatars(lika cacha flush fraquancy)
wara left tha same as wa use on Mariah.

/Mika

Run Mariah.1.1 - Mariah at dns with 128KB cacha

Computed Mariah
I Sngl

>1l<-

I Instn I 780
I Count I TPI

TotalI

|CPU| I Cycles | TPI | x780 | x780 |
% bus I
Used ITra(

• +

MAIL I 264986 | 11.4 I 1 I I
+-—+ +

11)1
+ + +

I 1 I I
+—_+ +—

I 1 I I
+—_+

5145886 I 16.1 | 15.8 | 15.8 | 17.6 1

NLINKU \ 375297 | 11.4 4433011 I 11.8 I 24.1 | 24.1 |

5219893 I 12.3 | 21.9 \ 21.9 |

10.9 I

12.1 I

12.1 I
——+

11.7 I

NFORT I 424294 | 10.8

RUNOFF I 403552 |

SORT I 402831 | 9.1

+ ■+

4878005 I 12.1 | 20.3 | 20.3 |

9.8 I 23.2 I 23.2 |

9.8

-+ +

1111 3955004 I

Summary | 1890960 |
Geo Mean I

I 23631799 | 12.5 | 20.9 | 20.9 |
I 12.6 I 20.8 I 20.8 |I 10.5 12.7 II

EF -100.0%

Run Mariah.1.2 - Mariah at Sns with 1MB cacha

Computed Mariah
I Sngl

l< >1
I Instn I 780

Trace | Count | TPI

Total I

CPU I } Cycles | TPI | x780 | x780 |

I % bus I

Used I

MAIL I 284986 | 11.4 1 I I 4481662 I 15.7 | 18.1 | 18.1 | 14.4 I

NLINKU I 375297 | 11.4 1 I I 4202547 I 11.2 | 25.5 t 25.5 | 9.0 I
+.

NFORT i 424294 | 10.8 1 I I 4740861 I 11.2 I 24.2 | 24.2 | 9.0 I
—+ +• •+

RUNOFF t 403552 | 9.8 1 I I 4671781 I 11.6 I 21.2 | 21.2 | 10.9 I
+— + +

I 1 I I 3884460 I 9.6 (23.6 | 23.6 |
+ + +

+ 4-

SORT t 402831 | 9.1 11.0 I

I 21981311 1 11.6 1 22.4 | 22.4 |
I I 11.7 I 22.3 I 22.3 |

Summary I 1890960 |
Gao Mean|

I
I 10.5 10.7 I

EF -107.5%

Fton:

To:

RICKS::DURDAN "21-NOV-1988 1058* 21-NOV-1988 10:58:06.62

9DIS:VECTOR_STAFF,UHLER
CC:

Subj: BVAX - FYI

From:

To:

Subj:

RICKS::FISBER

DURDAN,GRUNDMAN
BVAX

21-NOV-1988 09:12

Froa:

To:

Subj:

RICKS::CASALETTO

AMNON,MARCELLO,SULLIVAN,LAPRACE

FYI - diroct and to th* point.

18-NOV-1988 18:25

Froa:

To:

Subj:

ROCK::SUPNIK "N*w location HL02-3/C11

RICKS::CA5ALETT0,WONDER:iHARBERT

BVAX will not haf^n - copy of mosaage to MSB and SCO ataff

18-NOV-1988 1752" 18-NOV-1988 17:53

"Now location HL02-3/C11" 18-NOV-1988 17:51:57.86From

To:

ROCK::SUPNIK

NM%CBIPS: :WALKER,NM%SHARE::PALMER,NMtMSBIS: :DEra<!ER,NM%HYDRA: :DURVASALA

NM%A0::BIOERMANN,SUPNIK
BVAX will not happen

CC

Subj:

I don't llko being the bearer of bad news, but the thrashing about the
short term VAX strategy has got to stop.

So, simply put BVAX will not happen. Here's why.

The project plan is built on the assumption that1. There's

HLO would supply the architecture expertese and the chip designers.
NO ONE from HLO is signed up: no architects, no chip designers.

senior people e going to sign up.Further,

on an ECL project that has bounced in and out of the corporate plans,
that still is not officially approved, that is characterized as an

insurance program for Aquarius and Raven, and that will be under

constant political attack from another engineering group, when there
is important, high payback, lower stress CMOS work to do?

Why should anyone work

2. The opportunity window has passed. To meet the proposed schedule,

logic design had to start October 1. Right
an architectural design. BVAX was a great opportunity in June, when
it was proposed. It isn'

3. There's no platform. Performance studies show that in the CMAX (XMI>1)

box, BVAX delivers 13 vups - little more than Hariah. XMI-2 systems
won't accomodate an ECL CPU. No ECL platform is planned for the

required timeframe.

4. A direct CMOS to ECL translation won't work. Raven attempted, with
the best intent in the world, a direct translation of the Rigel design
from CMOS to ECL. It did not work out, for many reasons (see ^pendix).
BVAX cannot just translate CVAX; an architectural rework is needed.

This will add more time to the schedule.

, there's not even

t any more.

BVAX is vaporware. It's time to recognize that, and move

PC's its first chip (floating point) NEXT MONTH,
budget, resources, and energy that are available into making Marlah, Raven,
and NVAX successful.

Marlah

Let's put the limited

Appendix: Why Direct Translation Falls

Here are some of the reasons why direct translation fails.

1. Certain CMOS structures don't work in ECL. For example, fully
associative TB's can't be built. Changing the TB to direct mapped
requires rethinking (and recoding) all the memory management
algorithms and microcode.

2. Certain CMOS design practices don't work in ECL. For example,

precharged busses with many sources translate into ultra-wide

multiplexors, which are slow and costly in gates. Pass gate

structures (like shifters) must be completely redesigned.

3. The ratio between the access time of regular structures and the

target microcycle changes drastically. For example, in CVAX,

the control store access is 50% of the microcycle. In Raven, it
is 75%, and in BVAX it might be worse. This requires rethinking
the amount of logic in the sequencing path, which in turn alters

the entire control struct

occurs in the TB/cache path.

4. CMOS uses too many gates. Studies have shown that, without cache

and control store, CVAX is 30k to 35k simple gates (and Rigel is
45k simple gates) - more than the Fujlt
Reductions in gate count are needed,
a wider microword, to simplify decoding, and of
to reduce hardwired control.

MicroECL is a promising technology, but like VLSI MOS, it poses it

unique problems for chip designers and will require its own unique

lutions. There won't be any free lunches.

/Bob Supnik

of the micromachine. The same effect

handle.

ually at the expense of
e microcode.

ricks:sCASALETTO -27-D«c-1988 0913" 27-DEC-1988 09:08:^0.38
0AFLSTAFF

From:

To:

CC:

Subj: FYI

22-DEC-1988 12:30From:

To:

Subj:

AO::BIDERMANN

8BVAX

Hudaon Support for BVAX

|d|ll9|l|t|a|l|
♦— +

INTEROFFICE MEMO

DECEMBER 20, 1988
BILL BIDERMAN

ADVANCED DEVELOPMENT

NULL::BIDERMANN

225-5049

HL02-3/H3

TO: FRANK BOMBA

BILL DEMMER

SAS DURVASULA

BOB PALMER

BOB SUPNIK

LARRY WALKER

DATE:

FROM:

DEPT:

NET:

EXT

L/MS:

SUBJECT: BVAX SUPPORT

mltted to attompt
to find a team of 3 Hudson people to assist the BVAX
development effort. I have been unable to assemble this

due to the continuing uncertainty, perceived or otherwise, of

the strategy surrounding the program. Therefore, despite the

experience which Hudson could gain and the impact on the

program, I have come to the conclusion that we will not be

able to assist in the development of BVAX as proposed.

At our meeting on December 2nd, I

Sincerely,

Bill Bidermann

HYDRA::BOMBA "Soul of an Old Machine 30-Mar-1989 1443" 30-MAR-1989 15:01:48.95

9DESREV.DIS,DURVASULA,MSBCS::NEUMAN

From

To:

CC:

Subj: BVAX Technical Review

I d i g i t a 1 I INTEROFFICE MEMORANDUM

TO: Distribution 30 Mar 89DATE:

FROM:

DEPT:

EXT:

LOC/MUL STOP: LTN1-1/G08

Frank Bomba

BVAX Development
226-6595

CC: Sas Durvasula

Paul Neuman

ATT: Review agenda

SUBJECT: BVAX Technical Review

The BVAX Project Team has scheduled a technical review for the afternoon

of i^ril 27. We invite you to attend. The review will be held in the

TAY2 facility which is the lower of the two new Taylor St.

accross the street from LTN2. The meeting will be in the B

conference room from 1:00 to 5:00.

. buildings
Harvard

The purpose of this review is to get your critical feedback on our

design early in the project. Note we have not scheduled a more

lengthy, detailed review due to:

— The nature of this implementation (copy wherever possible)

- The expediency of
as well as your own

You will receive a package of specifications before the review. If you
are unable to attend, we would still appreciate your comments on our

documentation. Feel free to send any comments via electronic mail or call:

Frank Bomba

DTN 226-6595

HYDRA::BOMBA

tilschedule and the value of

Attached is the agenda for the meeting. Since the review will move

quickly from one major topic to another, questions will be

we can within the time limits. More detailed responses, especially those that
require additional work
after the meeting by mail etc. Responses will be copied to all those

in attendance.

swered when

part will be answered as soon as possible

We sincerely hope you take til to attend and help BVAX succeed.

Thanks,

Frank

✓

AGENDA FOR BVAX TECHNICAL REVIEW — APRIL 27, 1989

1:00 - 1:15 Welcome/introduction Bomba

1:15 - 2:15 Syatmm Ovmrvimw
XBP Module functional overview

Performance modeling results

Polsin

2:15 - 2:30 Break

P-chip/R-chip/F-chip architecture and status

- Chip CAD pr
- Key differences from CVAX/CFPA
- Partltlonlng/gate count
- Clocks

- On chip and chip to chip critical paths
- Custom cell plans
- Microcode

2:30 - 3:30

Schumann

C-chip functionality

X-chlp functionality

- Polzin3:30 - 3:45

3:45 - 4:00 Keefer

4j00 - 4:45 Module Physical Design
- Module CAD process
- Layout
- Module level critical timing paths
- Thermal

Stefanski

inagement

4:45 - 5:00 Actions/Issues - Bomba

HYDRA::80MBA "Soul of an Old Machine 14-Apr-1989 1145" 14-APR-1989 11:51:21.36

8JUSTMYGROUP.DIS,8PERFORMANCE.DIS,MSBCS::DEHMER

From:

To:

CC:

Subj: BVAX PROJECT UPDATE

MEMORANDUMI d i g i t a 1 I INTEROFFICE

TO: Bill Demmer DATE:

FROM:

DEPT:

EXT:

LOC/MAIL STOP: LTN1~1/G08

14 April 89
Frank Bomba

BVAX Development
226-6595

CC: Distribution

ATT: Performance modeling results

SUBJECT: BVAX Project Update

I am happy to report excellent BVAX impl
the past few months,
a rather small but dedicated team of individuals,
commendable is

given the limited external support we have
this "unfunded" project.

At this point, BVAX can hardly be called vaporware

ntation progress over

As you know, this is due to the efforts of
Even more

that this magnitude of progress has been made
come to expect for

Me have more than 50 percent of the CVAX processor gate-level

design now translated to bipolar BVAX schemati

We have confidence that our design approach of direct gate

mapping will work. We have confidence that we can
design fit based on the Fujitsu information that
today.

We now have a tunning BVAX-specific performance model that

again
— a commitment by the program made mote than six months ago.

We have done enough engineering investigation to know that

the CMAX platform will accommodate a three-processor BVAX

with minimal incremental changes (still impingement,
three-processor cage support, and one additional BVAX
regulator.)

We will soon have draft specifications of all
module, and system available for a public design review later

this month.

ke the

have

o

lidates an achievable goal of 22+ VUPs per processor

key chips.o

the technical aspect ofWe have had very positi
our design approach from Strecker, Supnik, and Stewart and

Rubinson.

mts

We are also investigating the good possibility of additional
microcode support for certain commercial instructions to

improve the COBOL performance of this machine.

o

Page 2

We atill do have a way to go. Design team staffing and the

physical gate array CAO tool processes remain our key risks

(outside of the obvious funding/MSB strategy). There Is a

willingness on the part of Kusik's team to help, but availability
of resources is not clear. Only you can help us here...

In any case, I am pleased to report that at this time, BVAX

remains a good opportunity for a minimized risk, time-to-market
MSB product.

Page 3

+ TM

I

|d|i|g|i|t|a|l|
I I

INTEROFFICE MEMORANDUM

I I I

TO: Frank Bomba DATE: 12 April 1989
FROM: Steve Polzin

DEPT: BVAX Development
EXT:

LOC/MAIL STOP: LTN1-1/G08
CC: Kathy Harrington,

Reinhard Schumann,
Mark Stefanski

226-6292

Subject: BVAX Performance Modeling Results

0.0 Executive Summary

A perfor
original CVAX model written by Joel Emer (in Pascal).
represents a conservative model of the current BVAX design. It
includes nwdels of the XMI-2 bus protocol and XMA2 memory module.
The model uses context switch cache flush and Invalidate traffic

similar to that implemented for the Rigel and Mariah performance
models.

model of the BVAX CPU has been created based on the

The model

The model shows that a single BVAX CPU should yield 22.81 VUPs over

the ”Uhler-5" set of benchmark traces and 21.73 VUPs over the

"Aqua-14" set of benchmark traces. The model also confirms earlier

work by Mike Uhler and Rick Glllett that the XMI-2 can easily support
22 VUP BVAX CPUs. ‘

particularly in the modeling of floating-point inst
three The model is conservative in many ways.

ctions.

✓

Pa^e 4

1.0 Datailed Raaults

BVAX Parformanca

VAX 11/780Benchmark BVAX BVAX

VUPs 8 SnsacTPl TPI

I Mail 11.36 I 13.82 20.54 II

10.8 11.92 22.65I Fort

1 Link

I I
■+

11.4 11.26 25.311
•++—

I Runoff 9.8 11.51 21.29I I
+• •+

9.09 9.36 24.28I Sort I
•++ •

"Uhlar-5" Avataga 22.81I
•+

16.94I OlrBrlaf 11.11 1 16.39

•+

I Dir 11.11 19.43i 14.29 I

I Hanoi 25.00I 4.11 .1 4.11 I

20.0 20.25 24.69I LASL2D I I I*

I LASL2S 9.91 14.37 17.24 I*I

12.2 12.83 23.77 II BDT I

9.8 11.42 21.45I PL/1

I WHETD

I I

16.44 19.4 21.19 I*
■+

10.78 13.18 20.45 I*} WHETS
•+

"Aqua-14" Avaraga 21.73 II

■Casa' CFPA cycle counts.* BVAX Modal Uses 'Mors.

Page 5

2.0 BVAX Performance Model Details

The BVAX performance modal is baaed on the original CVAX parforsanca
model written by Joel Emar. The XCP version of this model (modified

by Doug Williams) was used as the base for BVAX. Extensive
-jdifications were made to the XMI, memory, primary cache, secondary
cache and statistics reporting routines. In addition, the ')i~code'
file that drives the modal was changed for certain instructions to

reflect the current CVAX Implementation (Certain floating point
instructions, MULL,DIVL).

The BVAX performance model ing^lements the following features:

- Simplistic XMA2 Memory

- 'Real' XMA2 cycle counts
- Consecutive data cycles
- Write recovery time
- Single Memory Module

- 1 Mbyte, direct-mapped Write-back secondary cache (3 cycles

given the current 12nsec Taa spec).

- 16 Entry Invalidate Queue

- 8 Entry Writeback Queue

B-DAL

- Context Switches are handled as follows:

- Every 2msec, the primary cache and TB are completely
- Every 2msec, the secondary cache has half of its tags

(chosen at random) written with an address of -1 (remains
valid).

- Also the secondary cache is initialired with all tags

valid with address - -1 and 33% dirty.

- 8 other XMI commanders are modeled for invalidate traffic as follows:

- Whenever the memory gets a request from BVAX , 8 invalidates ate

generated. 95% are random addresses, 5% are the same
address of the last memory write. Read/write type invalidates
are randomly generated.

flushed

incur a 50% cycle 'stutter' as defined by- Primary Cache wrlti
Reinhard.

- F-Chip is modeled simply as a cycle count for a given Instruction.

The CFPA (and therefore the F-Chip) uses algorithms that are highly

data dependent. The F-Chip cycle counts for floating point
instructions are for 'worse-case' data patterns. The tight LINPACK
and WHET benchmark loops should yield very close to lOx CFPA

performance.

iservatlve estiiThe current BVAX performance model reflects a tte

Page 6

of what wo think the BVAX design is. Transfer tines fron the C~Chip
to/from the X-Chip are conservative, as is the invalidate processing
rate. The model includes the known restrictions on the BiCMOS rams

that will comprise the secondary cache.

3.0 Future Mork

intained so that it will reflect

Periodic updates will be made and the
The BVAX performance model will be
the BVAX design as it evolves,
suite of benchmark traces will be re-run to verify the design.

routine could be updated to cycle according to the data

the operands. It currently takes a simple cycle count
The F-Chi

pattern
from the .UCD (pseudo pcode) file.

currently investigating the addition of a few of the packed
decimal instructions to take advantage of our 'extra' 400 or so

pwords available in the R-Chlp. I have obtained a set of COBOL

benchmarks (GTE and the Jallcs set) from Bhagyam Moses and we will

attempt to quantify the performance of BVAX with and without the

addition of these instructions across the various code sequences

generated by the COBOL compiler (V3.3, V4.2/in8-generlc,
V4.2/ins'^cimal, V4.2/ins-no decimal).

We are

To do this we will take the benchmarks and using the VAXITR

run them

program,

a Macho VAX (8800) and create a set of .ITR trace files,
will then modify the VAXEMUL image of VMS to not toggle the T bit

in the PSL when entering and leaving instruction emulation routines

and create another set of .ITR files that reflects

instruction sequence on a pVAX (6200).
VAXEMUL again to only toggle the T bit on the instructions that we do

NOT implement in pcode and create another set of traces from a 6200.

By then
new .UCD

decimal instructions we should be able to predict the performance of
BVAX for certain commercial benchmarks.

the TRUE

Finally, we will modify

allying these traces to the BVAX performance model with a

file that reflects the added pcode to support these packed

4.0 Acknowledgment

My thanks to the following who have helped with this effort.

- Joel Emer and Doug Williams for creating the model.
- Mitch Rosich (SOC) for supplying the source
- Mike Callander (Mariah) for supplying the Marlah perf model sources and

a bunch of valuable advice.

- Reinhard Schumann (BVAX) for p-cache and p/f/t chip specifics.
- Don Denning (BVAX) for help in wading through the real CVAX pcode to get

the .UCD file in shape.
- Dwight Manley (Aquarius) for his Aquarius traces and also the VAXITR program.

- Kip Landingham (SPAG) for the set of COBOL traces.

"Mike Uhler, OTN 225-4735, flL02-3/Cll" 24-APR-1989 08:15:39.48ROCK::UHLER

HYDRA::BOMBA

UHLER

RE: BVAX PROJECT UPDATE

From:

To:

CC:

Subj:

Although I haven't had time to go thru the BVAX specs in detail, here
are t observations:

- The context switch rate that you Indicate that you're using is 2n8. At
an 8ns cycle time and 11.49 TPI (geometric
amounts to a context switch every 21758 instructions if I've done the

calculations correctly. For NVAX, we are using a 10000 instruction

context switch frequency, which corresponds to 854 us

of traces. So, although BVAX and NVAX are roughly the sa

VUPS, you are using a context switch Interval that is 2.3 tiRMS ours.

Impact

of the Uhler 5), this

the same set

speed in

Have you made any sensitivity
of changing the frequency?

to determine the performa

- You note that you are investigating adding certain of the packed decimal
instructions back in to improve Cobol performance. Page 11-3 of
Rev H of the SRM says "Instructions in an application extension

group may be implemented or omitted only as a group". That mea

can't add a few instructions in the group without adding them all. If

you really intend to pursue this as a serious option, I suggest that

you immediately submit an ECO to VAXB since this has the potential of
becommlng a giant rat hole.

you

/GMU

Froms

To:

CCS

Subj:

HYDRA:sPOLZIN "Stove Pol*in In LTNl

ROCKs:UHLER

BOMBA,SCHUMANN,STEFANSKI,POLZIN
RE: BVAX PROJECT UPDATE

24-Apr-1989 1139" 24-APR-1989 11:43:35.61

Hi Mike,

Thanks for your questions to Frank, I'll try to answer them.

On context switches, I asked many people as to just what flush

frequency I should use (I think I even talked to you about this). The
numbers ranged from every 150,000 instructions (Simon Steely) to
every Zmsec (Hike Callander). The impression that I got was that
context switch flush rates are functions of time and not absolute

numbers of instructions. I'd be very interested to understand why you
chose such a high rate of context switch flushing for NVAX. Zmsec

seems to be the number that was used on CVAX, Rigel and Mariah. The

perf numbers
instructions,

every 10000 instructions and out "Uhler-5" average VUPs is 21.T5,
about a 4.6% decrease. Also, please note
implement a si
Mike did for

traffic) .

On packed decimal,
talked with a nunU^er of people including Tom Eggers, Rich Bru

Cheryl Wiecek, and Wayne Cardoza. The bottom line appears to be that

the SRM statement was Inserted in an attempt to establish
consistent expectations as to what a given processor performance
would be. The architecture group and VMS have
implementing a few of the instructions (and would not oppose such an
ECO to this affect when we ‘

DIVP in SYSBOOT to determine

We certainly would not implement DIVP and VMS'has also offered to

conditionally load the

I agree
hole (ref Supniks memo
'patch'
the

Supn
the Issue of the VMS emulator routines. We've been going through them
in detail and they could use a good clean up and/or re-coding from a
hardware perspective and

tting a very loud message from marketing that we have a

problem. In July, the high-end VAX will be a pVAX. We are trying to
if by Implementing only a few of the packed decimal instructions

(CVTTP, CVTPT seem to be the most likely candidates), we can get a
'90% solution'. I'd be very Interested in your perspective on this

issue.

that I published use a context switch rate of 20000
I've traces with context switch flush rate at

that we didn't simply
mple flush)3ut rather I tried to emulate what you and

the Rigel and Mariah models (to stimulate writeback

are very aware of what the SRM says and we have

objections to us

get to that point). VMS currently tries
if the emulator image should be loaded.

lator image based our SID.

that the whole issue of packed decimal instructions is a rat

on Cobol perf of 13-^r) . Wo are trying to
the problem given that we do have 400-500 extra pwords. If

problem of packed decimal instructions is resolved 'globally' (as
ik suggests) then there would be no need. We agree with Bob on

might get 10-20% right there.

We an

Thanks for your comments.

"Mike Uhler, DTN 225-4735, HL02-3/C11" 8-MAY-1989 08:37:07.06From:

To:

CC:

Subj:

ROCK::UHLER

HYDRA::POLZIN

UHLER

RE: BVAX PROJECT UPDATE

We've been quite busy lately, so I only got a chance to look over your
mail this weekend.

Relative to context switch rates, here are the algorithms used for Rigel,
Mariah, and NVAX:

Rigel: Full flush of TB and Pcache every 7500 instructions,
randdm displacement of Bcache every 7500 instructions. At

11 TPI and 28ns cycle, this is 2.3ms between context switches.

Mariah: Full flush of TB and Pcache every 7500 instructions,
full flush of Bcache every 35000 instructions. At 11 TPI and

20na cycle, this is 1.5ms between TB and Pcache flushes and

between Bcache flushes.7

NVAX: Full flush of TB and VIC every 10000 instructions, r

50000 instructions worth of address traces thru the cache

subsystem
7 TPI and 14ns cycle, this is 1ms between context switch.

You asked whether context switch rates were functions of time or

number of instructions. The answer is a function of the kind of workload

being executed. Early in Nautilus, Cheryl Wiecek worked with the VMS

performance group to try to estimate the context switch rate for Nautilus.

They came up with the following events that lead to a context switch:

- Conditional quantum end
- Rescheduling interrupt (process premption)
- One second conditional processing (VMS cleanup)
- Voluntary wait end due to I/O, event flag, process hibernation

sponsion, etc.
- Involuntary wait end due to page fault, resource depletion,

mutex wait, etc.

Of these, the first three are a function of time and the last two are

a function of instructions. According to their analysis at that time

(1984), most of the context switches were due to voluntary or involuntary
its of one form or another. This is just a restatement of what has

always been observed: most processes block rather than expire quantum.

ery 10000 instructions to displace data. At

Therefore, we have always used instructions rather than cycles to trigger
context switches. , this resulted in the context switch
interval decreasing from 2.3ms in Rigel to about Ims in NVAX. If you think
that you can justify a different workload than we've been assuming, then
2ms as your context switch rate is reasonable. If not, then 4.6% error

in performance is fairly large in my opinion, and it's not a good idea
to set expectations and then fail to deliver.

As you can s

opinion about the viability of adding certain of the decimal

e the

I ha

instructions to improve performs
is Bob's memo. If you reach the concl
instructions that really matter (CVTTP and CVTPT as you indicated), I'd
be very interested in seeing the analysis. While we don't have 400 spare

microwords in NVAX, we might be able to implement something, especially if
there is a big leverage.

ly data that I've seen
ion that there are only a few

beea

/GMU

HYDRA:sPOLZIN "Stove Pol*in in LTNl 08-May-1989 1922" 8-MAY-1989 19:25:11.20

ROCK::UHLER

POLZIN

RE: BVAX PROJECT UPDATE

From:

To:

CC:

Subj:

Hi Mike,

Thanks for your explanation of modeling context switching. I tend to

agree with you but we are in a weird situation. We are being forced
into a rather awkward (for me at least) position of being an Aquarius
alternative/replacement and hence I am being pressured to publish
performance numbers for BVAX relative to Aqua.

In order to level the playing field I want to
assumptions that Dwight Manley did when he did the Aqua performance
work. According to Dwight, he NEVER flushed any caches on any of the
Aqua performance work. He simply flushed the TB on SVPCTX and LDPCTX.

Therefore, when we compare to Aquarius, I do the same and BVAX comes

in at 23 VUPs vs. 25.3 VUPs for Aqua running the "Uhler-5". Aquarius
does much better on the "Aqua-14" set of benchmarks due to the

hand-optimized LASL loop 2s and the Whetstones using lots of floating
point (the one cycle 32x32 multiplier and 3 cycle 32x32 divider

really scream).

the same

I think I need to publish/advertise two sets of numbers: One set that

never flushes for use when comparing BVAX to Aqua and then another

set that flushes according to your specifications for use when

BVAX to Rigel/Marlah/NVAX. I'm running both sets now, it

Aqua come in around 23-24
Rigel/Marlah/NVAX come in

mparing
looks li

VUPs and the BVAX numbers to compare to
around 20-21 VUPs.

CO

ke the BVAX numbers to compare to

up with for decimal string
spending most of our time fighting for our

Fortunately, Relnhatd has more than 70% of the CVAX translated

I'll let

performan
lives.

into Fuji already. Hopefully we will be done before the managers get

around to canceling us.

you know what
We've been

can

Thanks

1.0 CHIP SIZE

Frigate TB/cache chip -- Earlv Feasibility Study Results

The address comparator array is composed of 1 bit tag

register and comparator cells,C'comparand registers'), each

about 58 microns wide by 100 microns high. By _inter leaving

the data registers for two fullv associative cells, we

expect to obtain a height of only 64 comparand registers.

This represents a height of about 250^mlis. Thirtv-two bits

of comparand register abutted to 32 bits of interleaved data

array, abutted to 32 more bits of comparand gives a width of

about 220 mils. We do not have estimates of the carry
ladder logic (which,will add to the width) but we expect it

to be less than 30,microns. The resulting chip is aoout 250

X 250 mils, exclusive of pads.

2 Interleaved Fully Associative Cells

5568 micron (219 mils) ——>1|<

++ ++
m

Data 1I

I 100 micron

V (3.94 mil)
+ comparand 2 II Comparand 1 +

II Data 2
t+ + +

2,0 SPEED ESTIMATES

Given the high performance of the,N-channei devices, we have

adopted ,a "mostly N-channel" design approach. To determine
a hit in the Frigate TB/cache chip, three important
propagation times must be calculated!

the ,oull-down,of orecharoed address lines going to the

comparand registers.
1.

the pull-down of all precharoed missing hit lines low.2.

and

3. the pull-down of the precharged common data bus lines.

SPICE simulation shows a 3 ns tvpical-tvpicai transistor
model time and 4 to 5 ns slow-slow transistor model time to

pull-down the address lines. (These results were obtained

Paqe 2TB/cache chio -- Earlv Feaslbilltv Studv Results

uslnq the Hudson CMOSTT.MOD and CMOSSS.MOD SPICE models.)
This assumes the followlnq;

- each address line is 6400 x 5 microns in metal 2

- address line resistance of 28 ohms

address line caoacltance of 2,3 oF, and

a transistor qate caoacltance loadlno 1.6 pF (64

transistors, each gate 2 x 12 micron).

The worst case performance for oulllnq^down a _hit line is

when a single bit of the cpmoarand register differs from the

search address, resulting in a sinoie XOR structure having
to discharge the hit line. The SPICE simulation model

yields 3 ns for the tvplcal-tvoical case and 4 to 5 ns for

the slow-slow case. This model assumes!

an 1800 ov 4 micron metal 1 comoarand hit line.

a comparand hit line resistance of 22 ohms,

a comoarand hit line capacitance of 0,40 pF,

a regenerating inverter orooagation delay.

an 1800 bv 4 micron metal 1 data array hit line,

a data array hit line resistance of 22 ohms.

a data array hit line caoacltance of 0.40 of. and

a data array hit transistor gate caoacltance loading

0.86 oF,

of

Finally, the^SPICE simulation for driving _the common data

bus lines v|elds a tvpical-tvoical time of 4 to 5 nsec, and

5 to 6 nsec for the slow-slow case. This assumes:

- data lines are in metal 2, 6400 bv 5 microns.

- data line resistance is 28 ohms,

- data line caoacltance is 2.3 oF, and

- the discharge path is through two series 2 bv 12 micron

gate n-channel transistors.

Neglecting input and output oad times, it appears that we

should, be able to register a hit and orovide the data for

that hit!

TB/cache chio -- Earlv Feasibll'itv Study Results Paqe 3

- in 3 + 3 + 5 = 11 ns for the tVDlcal-tvplcai transistor
case# and

- in 5 + 5 + 6 = 16 ns for the slow-slow transistor case.

After a hit has been determined, the Frloate TB/cache chip

reauires a rotation of the matchina address and data to the

input of their respective arrays. Note that the address
lines are already charged with the address and the data

lines are already charged with the data. The two major
timing phases for the shift are:

- determining the extent of the registers participating in

the shift, and

the actual shift.

We expect to use Manchester-carry-ladder-lllce logic, to

determine the registers which must partlcioate in the shift,

we currently do not have any estimates of this timing. The

comparand, registers .are made of 3 clocked-lnverters with a

cross-couoled. pair in over-drive .confiouration. SPICE
modeling indicates that these registers should be able to

shift in 3 ns typically and in,4 to 5 ns for the slow case.

This timing is not as critical as it is done in 'shadow'
time. We . are. closely modelling
characteristics of this overdrive register.

over-drivethe

3.0 OVERALL SPEED

model ofpreliminary♦very*

address-ln/comoarand-hit/data-out gives a time .of 9 ns.

This .assumes the timing generator, starts ..discharging
distribution capacitance in anticipation of final values.
This might be possible with a self-timed timing generator.
It Should also be noted that not all caoacltive loads are

taken into account In this overall timing model.

A

{ end of mist:Ckehlltlb.rno tk 12/3/84 >

I

I

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

DIGITAL EQUIPMENT CORPORATION CONFIDENTIAL AND PROPRIETARY

Abstract

This document describes the Frigate product. THIS

THIS

it outsideDOCUMENT IS CONFIDENTIAL. Do not distribute

DOCUMENT IS CONFIDENTIAL

the company.

Issued by: DECwest Engineering

ReviSion Hi story Date Reason for Change Author

Version 1.0 4 Dec 84 Initial Distribution P. Schnorr

i

FRIGATE WORKING DESIGN DOCUMENT

Version 1.0 Company Confidential 05 Dec 84

FRIGATE SYSTEM OVERVIEWCHAPTER 1

FRIGATE SYSTEM OVERVIEW

CONSTRAINTS AND GOALS

SYSTEM DESCRIPTION

Frigate CPU

Frigate System Bus (FSB)
Frigate Memory Controller

Frigate Memory Arrays
Frigate BI Adapter (FBI)

TECHNOLOGY

F-Series ModuIes

Custom VLSI Chips
Frigate TB/Cache Chip
Frigate FIFO Chip

AMD 29300 Family
RAM Technology

Bipolar Gate Arrays
Miscellaneous Buffering And Control Logic

1 . 1 1 - 1

1-i1 . 2

1 . 3 1-2

1.3.1

1.3.2

1.3.3

1 . 3 .'4

1.3.5

1-3

1 -4-

1-6.

1-5

1 . 4 1-6
1.4.1

1.4.2

1 . 4.2 . 1

1 .4.2.2

1.4.3

1.4.4

1.4.5

1.4.6

1-6

1 -"6

i-e:
1 -6

1-7.

1 -7

1-7

. . 1-7

CHAPTER 2 FRIGATE PROCESSOR

2. 1 FRIGATE CPU OVERVIEW

Prefetch Stage

Decode Stage

Address Add Stage
Operand Fetch Stage .

Execution Stage

Syst em C 1 ock

Pipeline Registers And Stall Signals . .
FRIGATE TIMING CHART

PREFETCH STAGE

Prefetch Bus

ITB Address Latch

Instruction Translation Buffer (ITB) . .
Reading The ITB

Writing The ITB

ICache Page Register
ICache Address Bus
Instruction Cache

ICache Output Latch
Instruction Buffer And Shifters

ICache Address Latch

Prefetch PC Incrementer And Register . .
Instruction Buffer PC Register (IBPC Register)
Prefetch PC Adder

Miscellaneous Control Lines
DECODE STAGE

Instruction Buffer

Instruction Decode

Opcode Decode Logic

Specifier Decode Logic
Decode PC Adder

2-1.

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.1.6

2.1.7

2-2

. 2-2-

2-2

2-2

2-3 •

2-3

2-3

2.2 2-4

2.3 2-6,

2.3.1

2.3.2

2.3.3

2.3.3. 1

2.3.3.2

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8

2.3.9

2.3.10

2.3.11

2.3.12

2.3.13

2-6

. . 2-6

. . 2-7

. . 2-7 ■

2-8

2-8

2-9

2-9

2-ld

2-10'
2-10

2-10-

2-1 1

2-1 1

2-11-

2-12

2-12 .

2-13

2-15

2-16

2.- 1 7 ■

2.4

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

I

I

FRIGATE working DESIGN DOCUMENT

Version 1.0 - Company Confidential 05 Dec 84

2.4.6

2.4.7

2.4.8

2.4.9

2.4.10

2.4.11

2.4.12

2.4.13

2.4.14

2.4.15

2.4.16

2.4.17

2.4.17.1

2.4.17.2

2.4.17.3

2.4.17.4

2.4.18

Branch Logic

Decode PC Register .

Displacement Multiplexer And Register . . . ,
General Processor Registers

Rbase Multiplexer
Base Register

Rindex Multiplexer
Index Register

Rb Register

Ri Register
IPC FIFO

Control Registers

Opcode Register

! Address Add Function Register ,

1 Operand Fetch Function Register

• Execution Function Register

Miscellaneous Control Signals
ADDRESS ADD STAGE

Inputs

Outputs

Operation

Base Mu 1tip1eXer

Index Multiplexer
Address Adder

VAR Multiplexer

Virtual Address Register

Register Number Incrementer And Register . ,
Jump Register

OPERAND FETCH STAGE

Inputs

Outputs

Data Manipulation
Bypass Multiplexer
Bypass Register
Address Buffers

Memory Address Register
Data Translation Buffer

Physical Address Register
Data Cache

Memory Data Register

Rotator Control Register

Dispatch Control Logic
Dispatch FIFOs

Sourcel Pointer Multiplexer And Register . . .
Source2 Pointer Multiplexer And Register .
Destination Pointer Multiplexer And Register .
Operand Write Pointer Register
Dispatch Microwords
Microword Bus

Microword Register

Operand Fetch Stage Sequencer
EXECUTION STAGE

Inputs

Outputs

2-1 7'

2-18

2-19

2-20

2-21

2-21-

2-22

2-22

2-22

2-22

2-23

2-23,
2-23

2-23-

2-24

2-25

2-25.

2-25 .
2-25.

2-26

2-26.

2-27

2-27

2-2T

2-28 •

2-28

2-28

2-29

2-29

2-29-

2-29

2-30

2-31

2-31

2-31

2-31 .

2-31

. 2-32

2-32

2-32

2-32

2-33

2-33-

2-34

2-34

2-34

2-35'■
2-35 ■

2-35 ■

2-36 '
2-36

2-36

2-36

2-37

2.5

2.5.1

2.5.2

2.5.3

2.5.4

2.5.5

2.5.6

2.5.7

2.5.8

2.5.9

2.5. 10

n

2.6

2.6.1

2.6.2

2.6.3

2.6.4

2.6.5

2.6.6

2.6.7

2.6.8

2.6.9

2.6.10

2.6.11

2.6.12

2.6.13

2.6.14

2.6.15

2.6.16

2.6.17

2.6.18

2.6.19

2.6.20

2.6.21

2.6.22

2.7

2.7.1

2.7.2

(

FRIGATE WORKING DESIGN DOCUMENT

Version 1.0 - Company Confidential 05 Dec 84

2.7.3

2.7.4

2.7.5

2.7.6

2.7.7

2.7.8

2.7.9

2.7.10

2.7.11

2.7. 12

2.7.13

2.7.14

2.7.15

2.7.16

Data Rotators

Operand Bus
ALU

FPU

Sourcel Input Mux
Source2 Input Mux
Reserved Operand Detection
Register File

Temporary Registers . . .

Register Log

State Gate Array
Control Store

Microsequencer
Write Bus ■ . .

FSB PORT

2-3T-

2-3T
2-37

2-37

2-38

2-38

2-38

2-39

2-39 .

2-39

2-39-

2-40

2-40'
2-40

2-412.8

I

1

CHAPTER 1

FRIGATE SYSTEM OVERVIEW

1 . 1 FRIGATE SYSTEM OVERVIEW

Frigate

Engineering for FCS

processor which executes the complete VAX
compatibility mode), a 64-bit Frigate System
subsystem consisting of a memory controller and
arrays, a console subsystem, a BI adapter
81's, a FSB backplane, and a power system and package.

is a 0I-based VAX hardware system under development at DECwest

in September of 1987. The system consists of a
instruction set (without

Bus (FSB), a memory,
up to eight memory-

hich supports up to two

The kernel system consists of a single processor
subsystem, a memory controller and 4 MB of memory,
includes support for a single BI backplane, a FSB
power system and package.

and console'

a BI adapter which

backplane, and a

Frigate

processors in a single backplane.

will symmet r1c rnu 111 process 1 ngsupport for s 1 Xtoup

1.2 CONSTRAINTS AND GOALS

Constraints are product attributes which define the minimum

as such, they must be delivered, or the
Constraints are:

product;

product is not viable.

1 . FCS must occur by September, 1987 (Q1FY88)

2. Kernel cost must not exceed $20K

3. Single-processor performance must be at least four times

1 1/780 .

the

4 . Processor must execute the VAX instruction set

5. System must be compatible with BI and BI options

6. System must support at least two BI's

FRIGATE working DESIGN DOCUMENT

VERSION 1.0

Page 1-2
05 Dec 84Company Confidential

7 . Processor must be implemented on three F-Series modules
ma Kimum

8. System must include support for up to four processors in a’
single backplane; this implies commensurate:

o main memory capacity

o main memory bandwidth

o system bus bandwidth

power, cooling and packagingo

9 . RAMP metrics must equal or better those of Nautilus

Goals define the product attributes beyond
and are traded-off in the order in which they appear:

the minimum constraints.

I
Single-processor performance six times the 11/7801 .

2 . Implement processor on two F-Series modules

3 . Support up to six processors in a single backplane

FCS in March. 19874 .

5 . $15K Kernel transfer cost

6. Support up to 4 BI's

1.3 SYSTEM DESCRIPTION

The major components of the Frigate System are implemented on F-Series

(Nautilus) modules. which plug into the
Backplane. A FSB to BI Adapter Module, located in the FSB

provides the interface to one or two BI backplanes via cables and a BI

module located in each of the BI backplanes (Nautilus-style).

FSB (Frigate System Bus)
backplane.

1.3.1 Frigate CPU

The Frigate CPU consists of F-Series modules which plug into the FSB .

The CPU executes the entire VAX instruction set (not ■ ■

this includes hardware support for F..
H_Floating and Decimal

The CPU is implemented as

Backp1ane.

including compatibility mode);
G_F1 oating.

implemented in microcode,
machine

D. and with instructions

a f i ve-stage
a basic cycle time of 100 nsec. To achieve the stated

performance constraint (4x 11/780), Frigate must retire an instruction

with

1

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0
Page 1-3

05 Dec 84Company Confidential

every 500 nsec, or once every five cycles.

Tne first stage in the Frigate processor pipeline accesses the

Instruction TB and Cache for I-Stream data. The second stage decoded
the I-Stream data at the rate of one instruction and one specifier, or

one specifier (for subsequent specifiers), per cycle, for

specifiers (including context indexing). The
operand addresses,

for operand values, and the
writes results.

most

next stage calculates

fourth stage accesses the Data TB and Cache,
final stage executes instructions and

The

All writes are under the control of the final, execution stage. To
facilitate pipelining, Write-In-Progress indications are maintained in

the General Registers and Data Cache as appropriate.

The caching scheme used in the Frigate CPU includes
Instruction and Data Caches,
called the Frigate TB/Cache Chip. Both the I and D Caches

associative and include 1east-recent1y-used

separate,

both implemented using a custom chip,,
are fu 1 1 y

replacement. They are
orgftriiieu as !) I'J quadwordi {A KS) , with a fill alia of 2 cache llnea
(128 bits).

The Data Cache is write-back, and implements the scheme utilized

Firefly under development at SRC. This scheme requires the storing of.
two additional bits with each cache line:

1 n

1 . MODIFIED

modified

indicates that this cache line has been I oca 11y

2. SHARED - indicates that another cache has a copy of this data

A CACHED signal on the FSB is asserted if read
another cache when a Read

This causes the SHARED bit to be asserted for this cache line.

The CPU is described in detail in the next chapter.

data is supplied by
With Cache Intent function is executed.

1.3.2 Frigate System Bus (FSB)

The Frigate System Bus (FSB) is a synchronous bus interconnectin g

CPU(s),
FSB

utilizing

100 nsec,

theoretical bandwidth of 80 MB.

processors,

the

Main Memory Controller, and the Frigate BI Adapter. The

is centrally arbitrated and controlled, and is
FAST-family drivers and receivers,

and the data path is 64 bits wide.

The FSB can support up to six Frigate
a dual-BI Adapter, and the memory subsystem.

the

TTL-based,

The basic cycle time is-
resuIting 1 n a

Address and Command information

t ransfers;
Command/Address

2/3(80MB)

bus at any time. All transfers are naturally aligned.

is time-multiplexed with data .

transferred for every'
bus bandwidth of

Up to two transactions may be in progress on the
such that no

up to two quadwords may be
cycle, yielding an effective

53 MB.

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0— Company Confidential
Page 1-4

05 Dec 84,

data rotation logic need be Implemented in the memory controller.

The FSB supports the followihg basic transactions;

Read Quadword / Octaword1 .

Read Quadword / Octaword Interlocked2 .

3. Read Quadword / Octaword With Cache Intent

Write Quadword / Octaword4 .

5. Write Quadword / Octaword Unlock

6. Write Quadword'/ Octaword Cached

7 . Read Word / Longword

8 . Read Word / Longword Interlocked

9 . Write Masked Long

10. Write Masked Long Unlock

The FSB also includes the capability to handle
interrupts, including Interprocessor Interrupts.

ofvarious t ypes

1.3.3 Frigate Memory Controller

The Frigate Memory Controller is implemented on a single
provides

modu1e , and

the interface and control between the FSB and up to eight
thereby controlling up to 128 Mbytes of Frigate'

It accepts commands, addresses, and data from the FSB,
multiplexes this information to the ’

memory arrays. Additionally, it decodes addresses to select-

the proper memory array to be enabled for a particular operation,' and

attempts to hide refresh cycles by selecting idle arrays for refresh.

memory array modules,

system memory.

generates and checks ECC, and
Frigate

with the Frigate writeback cache scheme causing
memory words to move between

memory controller needs to implement

on 1 y

caches and the memory subsystem,
only three basic operations:

a 1igned 64-bit

the ■

Aligned octaword read.1 .

2. Aligned quadword write, and

3 . Aligned octaword write.

The memory controller also implements interlock capability on a memory
line basis.

A 1 1 memory ECC generation and checking is done by the memory

I

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1 .0

Page 1-5
05 Dec 84Company Confidential

control 1er. ECC checking is done in an 'offline' manner. Read data-
is assumed good, and transmitted to its destination while ECC checking

If an ECC error is discovered, it is reported, and the

This effectively removes the time spent
ECC from the critical path of memory reads, thereby

takes p1 ace.
data transrer is aborted.

checking

increasing system throughput.

1.3.4 Frigate Memory Arreya

Frigate memory arrays are organized as arrays of 64 bit, ECC-corrected
words .

be merged in the cache, only 64-bit cache lines move between cache and

memory, simplifying both the system bus and memory subsystem design.

Memory arrays support 64-bit reads and writes only, allowing the.

economy of 64-bit ECC without any overhead due to read/modify/wr ite

operations.

Since the Frigate writeback cache scheme causes write data to

Memory array cards will contain up to 16 MB of DRAM,
multiple 'banks' of 64-bit-wide arrays per array card,
practical to simultaneously access two memory
buffer!ng,

Utilizing octaword transfers increases maximum memory
rough 1 y

cache fill size and FBI adapter operations are designed to

on this feature.

This implies,
such that it is

*

'banks ' , and with

to do aligned octaword reads and writes to memory,
bandwidth from

16M bytes/second to almost 32M bytes/second, and both the CPLi '

capita 1ize,

1.3.5 Frigate BI Adapter (FBI)

The Frigate BI Adapter (FBI)
Frigate System Bus
the Nautilus BI Adapter (NBI),
modu1es.

F-Series module and resides

identified as the FBIB,

backp1ane.

system (up to two),
appropriate via cables.

interface between the.
It is very similar to

of two types of ■
first, identified as the FBIA, is implemented on an

in the FSB backplane. The other,
IS a BI module which resides in a BI

An FBIB is required for each BI included in a Frigate.
The FBIA connects to one or two FBIB modules as ■

serves as the

(FSB) and up to two BI's.
in that it consists

The

The FBI:

1 . Appears as a memory node to DMA devices on the BI;

Handles CPU memory requests in BI address space as a BI

processor node;

2.

3. Fields BI device interrupts

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

Page 1-6
05 Dec 84Company Confiaential

1.4 TECHNOLOGY

There are several key components utilized

Frigate which are worthy of mention here.
in the implementation of

1.4.1 F-Series Modules

Frigate uses the F-Series
moduIes

the FSB backplane through 480-position 2IF connectors mounted

side of the card.

modules pioneered in Nautilus,

are similar in size to extended hex modules, and interface to-

These ■

on one

1.4.2 Custom VLSI Chips

Frigate is envisioned to have at least two Custom VLSI Chips based
the Hudson CMOS I Process!

on- ■

I

1 . 4.2 . 1 Frigate TB/Cache Chip

This chip implements a 128-entry, fu11y-associative
including 1 east - recent 1y-used replacement,
and address paths up to 32 bits wide, single cycle clear,
cache locations, and

part is cascadeable

includes 20 such chips.

cache structure.
It includes logic for data '

locking of

support of a write-back cache algorithm. The
in both width and depth. Each Frigate CPU •

1.4.2,2 Frluata FIFO Chip

This chip implements a 32-bit-wide by 16-entry-deep First-In-First-Out
storage It has separate input and output ports, and'
explicit control inputs for reading, writing, and advancing the FIFO.

Standard cells or the Genesil design approach are possibilities here.

st ructure.

Additionally, an FPU chip based on the Hudson CMOS I process
pursued, perhaps based on the MicroVAX
modifications to the Weitek

Floating Point ALU to

being worked with Weitek.

will be

FPU Chip. Alternatively.
1164 Floating Point Multiplier and 1165

completely implement DEC Floating Point are

Page 1-7
05 Dec 84 '

FRIGATE wORhlNG DESIGN DOCUMENT

VERSION 1.0 Company Confidential

1.4.3 AMD 29300 Fami1y

The main ALU and Register File in the Execution Unit are implemented
the AMD 29332 and AMD 29334, respectively. These parts have

The AMD 29332, packaged ih a 168-pin PGA,

32-bit data path, with two 32-bit input ports, and a'

The AMD 29334

using

TTL-compatib1e outputs,

implements a

32-Dit Output

dual-port-write
is packaged in a 120-pin PGA.
each Frigate processor.

dual-port-read.

File, organized as 64 16-bit locations.

Two Register File parts are utilized-in

port .
Register

a1 s

11

1.4.4 RAM Technology

Main memory RAMs will be industry-standard 256 Kbit dynamic RAMs;

provision will be included to utilize the 1 Mbit RAMs when they become-
available.

t
The Frigate CPU is also dependent on the availability of 35

RAMs. preferably organized as 2Kx8.

16Knsec

1.4.5 Bipolar Gate Arrays

Wherever possible, the remaining logic is sized using the Motorola

2800ALS Bipolar Gate Array. This array uses the Mosaic II technology'

with three-layer metal. offering ECL internal speeds with

FAST-equiva1ent I/O speeds, for about 3 watts of power. Current

packaging is in 149-pin PGAs; alternative packaging will be pursued.-
Each Frigate CPU utilizes approximately 12 such gate arrays, of which .

7 are unique designs.

Miscellaneous Buffering And Control Logic1.4.6

The remainder of the data buffering and control logic will be

accomplished with off-the-shelf components from the FAST logic family.

CHAPTER 2

FRIGATE PROCESSOR

2.1 FRIGATE CPU OVERVIEW

The Frigate CPU is a five-stage machine
nsec .

instruction every 500 nsec,

with a basic cycle time of 100.
To achieve the stated performance goal, Frigate must retire an.

or once every five cycles.

The five pipeline stages are: I

Prefetch1 .

2 . Decode

3. Aburess Add

4 . Operand Fetch

5 . Execute

The CPU includes separate Instruction and Data Translation Buffers and

Caches. instruction TB and Cache are utilized by the Prefetch.
Stage to supply instruction stream data, while the Data TB

Cache, which is write-back.
Both TB/Cache structures use the same TB/Caehe

the chip organization is fully associative.

The

and Data-

are used by the Operand Fetch Stage to ■

Chip
with ■

access operands,

as a building block;

least-recently-used rep Iacement.

The CPU also includes a four-port-readable
general register structure,

during operand specifier decode,
the execution unit,

control of the execution unit.

and sing1 e-port-writeab1e
Two copies of the GPR's are accessed

and two other copies are available to,
write logic is shared, and is under theThe

Write-In-Progress indications are associated with the Data

the

Cache and

These are

necessary to utilize the pipeline efficiently while providing only
write path to these structures;
of the execution unit,

recovery logic

GPR ' s accessed during operand specifier decode.
one

this write path is under the control

such that all register logging and fault ,■
is implemented in one place.

»

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0
Page 2-2.

05 Dec 84Company Confidential

2.1.1 Prefetch Stage

The Prefetch Stage uses a Prefetch PC to access the Instruction TB and

Cache in parallel to continually supply instruction stream bytes to
the Decode Stage via the Instruction Buffer. Major logic elements

include the Instruction TB (ITB), Instruction Cache (ICache),-
Instruction Buffer Shifters, and the Instruction Buffer (IB).

Two cycles are required to traverse this stage from virtual address to

one cycle to access the ITB for a physical address, and a

second cycle to access the ICache and load the IB. However, hardware

is implemented to access the ITB and ICache in parallel, and the extra

cycle is paid only when accessing a different page than that

previously accessed.

IB data

2.1.2 Decode Stage

The Decode Stage operates on the contents of the Instruction Buffer

(IB) to parse an opcode and specifier or a subsequent specifier every
cycle. Two copies of the GPRs are accessed for base and index

register values as appropriate. In addition to the two GPR copies,
this stage includes substantial opcode and specifier decode logic and
the Decode PC Adder.

2.1.3 Address Add Stage

The Address Add Stage forms operand addresses (or passes operand data)
f roin specifier

major logic structure is a three-input adder;
V i a

informationthe presented by the Decode Stage. The '

each input is presented
information supplied bya mux which formats data based on control

the Decode Stage.

2.1.4 Operand Fetch Stage

The Operand Fetch Stage accesses the Data TB and Cache to obtain

operands from memory. The Cache may be read AND written once every'
cycle. Writes occur during the first half of the cycle
presented via the DCache Data Bus, and tne write (and WIP bit clear),
occurs at the address specified on the DCache Address Bus.

parallei. the address generated by the Address Add Stage is presented
to the TB and translated. During the second half of the cycle. the.
resulting physical address is used to access the cache to yield data-
and/or to mark a cache line as Write-In-Progress (WIP).

data is.

I n

The Operand Fetch Stage also stages
microwdrd

Execution Stage.

operands and builds the first

specifier and opcode) for the(as function of thea

I

Page 2-3
05 Dec 84

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

2.1.5 Execution Stage

The Execution Stage operates on data supplied by the Operahd Fetch,
Stage to produce the result specified by the instruction. All paths '

the intentand register elements within this unit are 32-bits wide;

is to operate on two 32-bit input operands and produce a 32-bit result '

every cycle. Results are presented via the Write Latch and Write Bus',

al 1 writes to the GPR's and memory are under the control of this unit.

Major elements of this unit include the main ALU and barrel shifter, a.

floating point unit (FPU), a set of Working Registers which includes

copies of the GPRs (dua1-port-readab1e, sing1 e-port-writeab1e), a set

of Operand Buffers. a Register Log, and the main Control Store and

microsequencer.

2.1.6 Sys t em Clock

The systeiii clock structure consists of a free-running, four-pnase'
clock with a 100 ns period. The four phases are labelled TO, Tl, T?,,
and T3. The leading edge of TO defines the start of a cycle,

leading edge of Tl occurs at TO + 25, the leading edge of T2 occurs at

TO + 50, and the leading edge of T3 occurs at TO + 75.

The

2.1.7 Pipeline Registers And Stall Signals

The output of each stage in the machine pipeline is a set of

registers:

the pipeline,

manipu1 a t ea

pipeIine

registers contain valid data;
useci by the succeeding stage.

p i p e 1 i n e'
these registers are also the input to the next stage in

The pipeline registers at the output of each stage are

by that stage as a group. Associated with each set of

registers is a VALID bit, which indicates when these,

that is, when their contents may be

Each stage also implements a STALL signal, which is propagated to the

previous stage in the pipeline. The assertion of such a signal
indicates that a stage was unable to process the data presented by the-
preceding stage within the current cycle, such that the input state ■
{ie: pipeline registers) must be maintained. The effect is to freeze

the pipeline registers between the two stages,

these signals "back up the pipe" is one of the critical paths

machine, and is integrally related to the clocks and clock skew.

The propagation of
in the

A pipeline stage that cannot

registers at its input are not VALID is said to be IDLE,

stage which cannot accomplish work because the pipeline
its outputs are not available,
succeeding stage, is said to be
machine

sort of outside intervention occurs; a stage in this
said to be in the WAIT state.

accomplish work because the pipeline
A pipeline

registers at

as indicated by a STALL signal from the
STALLED. Conditions exist in the.,

which cause a particular stage to cease processing until some

situation is ■

(

t

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0
Page 2-4

05 Dec 84Company Confidential

2.2 FRIGATE TIMING CHART

The following timing chart illustrates the critical paths in Frigate
from a timing standpoint.

Prefetch Q 4: « V *** He «***«*««>•<***«* ^ « « **************^*****^**^1

ICache Page Reg Prop | Control Register Prop | Write Bus Prop
and Dist

Write Bus Prefetch Latch Prop

10 I

20 ICache Address Buf Prop

30 ITB Address Latch Prop
I Cache RAM Address

Setup (Read)40

ITB RAM Address

Setup (Read)50

Ctrl Reg Prop (ICache Output]
I Latch 8. Di st I60

ICache Addr Buf Data Comp | Addr Comp |
Prop I ■ Prop I Protection

I Logic Prop

70

80 ICache RAM |
Access (Write) |

IB Shift

and Setup
Ixxxxx

90

Write Recovery ?
0 **T**t#5t:#

I Prefetch Valid Bit Setup

Write Bus Prop-
and Dist

Decode

IB Propagation Delay I
10 I

20 Address Mux Prop
First-Level IB Decode I

30 I
I GPR Write Access

40

50 Second-Level IB Decode

Control Reg Prop
60 I

I Address Mux Prop
70 1

I
30 IB Shift Control

Setup
IDecode PC

Adder Prop |
GPR Read Access

90

95 Register Setup
»♦»♦*♦♦»»*»*»****»♦*»»*♦**

Write Bus Prop ,
and Dist

Add Q ♦♦♦**4.*^*si(**»*4:****#;(c**^t*jtc:*.:*t^t*,jt

Pipeline Register Prop I
10 I

I
20

Deskew Latch PropX X X X

30 Address Adder Input Mux Prop

FRIGATE WORKING DESIGN DOCUMENT

VERSION \.0

Page 2-5
05 Dec S4 ■Company Confidential

40

50

Address Adder Prop
60

70

80

90 Virtual Address Mux Prop
and VAR Setup

PAR Prop (Write)I Write. Bus Prop
and distribution!

Fetch Q f*if*rift<t**************

VAR Prop (Read)
10 and dist

20 TB RAM Address Setup
(Read)

Rotator Prop

IDCacne 'DBus Prop

X X X X

30

Cache RAM Address]
Setup (Write) j Cache RAM Data

Setup
50

PAR Prop (Read/WIP)
and distribution

40 DCache Address Bus Prop
and PAR Setup I

I
I60

I
70 I

1Cache RAM Address Setup
(Read/WIP) I80 PA Valid for Cache Write

I
I90 DCache Address Bus P-rop

and PAR Setup
Executel 0 *+****+***♦*♦**»*****♦+*♦******♦♦**♦*♦*♦»»»*♦***»♦**♦ ♦***♦*♦♦*»♦*»♦

Uword Reg Prop j Operand Ptr and Control Reg Prop]

DCache Data Bus Prop, MDR Setup]

MDR Reg Prop
10

I
20 Register File Address Setup Operand Register]

Address Setup
Rotator Prop

30

40 ALU Input Mux Prop

50]
]■

60]■ X X X X

]
70 ALU Prop

] .
80]• .

]•
90 OR RAM

Data Setup
Execute2 0 *****

Write Latch Prop]Uword Reg Prop] CC Latch Prop]

*

Page 2-6
05 Dec 84

FRIGATE IvORkInG DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

I10

I Branch Mux

20 X X X X

CS Address MuxX X X X

30 Deskex/ Latch Prop
CS Addr Latch

40

50 ■ »-*-*-»-*-*-*-*

Ptr Reg PropX X X X X X

60

I Control Store
I RAM Access70

Register File

RAM Addr Setup80 Register File

RAM Data Setup
90 Ptr Mux Prop, |

Uword Reg Setup]Write Recovery Time
100 ♦****++♦♦♦♦*♦♦**♦*♦♦♦♦♦*♦♦♦******♦♦♦*♦♦♦*♦*

Execute2 occurs in parallelNote :

fit horizontally on the page I

ith Executel it just wouldn't-

\ ••

2.3 PREFETCH STAGE

2.3.1 Prefetch Bus

The Prefetch Bus supplies bits <31:0> of a virtual address to the

Instruction TB and Cache structure, from one of four possible sources: '

The Write Bus via the Write Bus Prefetch Buffer1 .

2 . The Prefetch PC Register

3. The Brancfi Register

4 . The Jump Register

The default Prefetch Bus driver is the Prefetch PC Register, which

supplies the address of the next quadword beyond the one currently
being processed. The bus enable lines are a function of the opcode'
and specifier decode logic and the execution unit (for TB management,
branch ion, and interrupts).

2.3.2 ITB Address Latch

The ITB Address Latch captures bits <31:0> of the
presentation to the ITB and ICACmE.

ITB and bits <8;0> are presented directly to the ICACHE.
open from T1 to T2. and is

Prefetch Bus for'

Bits <31:9> are presented to the
The latch is

implemented to efficiently handle the

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential
Page 2-7

05 Dec 84

capture of addresses supplied via the Write bus (the Write

opens from T3 to TO). On

contents of this latch are passed dowh the pipeline to

unit via the ICache Address Latch ahd the IPC FIFO.

Bus Latch'

a cache miss or access violation, the
the execution •*

2.3.3 Instruction Translation Buffer (ITB)

The Instruction Translation Buffer (ITB) consists of a tag store and
data store, and two sets of comparators. ITB Address Latch bits

<31:9> are used to access the ITB for the corresponding PTE, from,
which bits <29:9> of a physical address are extracted. These bits are

compared with ICache Page Register <29;9> to determine if the physical-
address presented to the Instruction Cache in parallel was valid. The

validity of this physical address is also conditional
hit occurs, and whether the access

protection bits and processor mode.

on whether a

is allowed, as defined by the ■

TB

The ITB itself consists of 256 entries,
for process space,
chips,

least-recently-used replacement.

128 for system space and 128
and is implemented with two custom Frigate TB/Cache,.
organizationThe fully associative, with1 s

2.3.3.1 Reading The ITB

Accessing the ITB to read a PTE proceeds as follows:

ITB Address Latch <31:9> are presented to the ITB to yield’
tlie corresponding PTE; ITB Address Latch <31> selects system

or process space (one of the two TB/Cache chips).

1 .

2 . I n para Mel:

1 . PFN<20:0> from the accessed PTE

<29:9> of the

physical address used to access the cache in parallel
correct;

are compared with bits .

ICache Page Register to determine if the
was

2. The Protection bits from the accessed
re 1 a t i ve

access is all owed.

PTE examined ■

the processor mode to determine whether the-

are

to

3 . PTE

Register <29:9> at the end of the

<20:0> unconditional 1y loaded into ICache Page' '
cycle.

are

4 . A valid indicator associated with

asserted as follows:
the ICache Page Register is

I

Page 2-8
05 Dec 84

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

1 . If the PTE is cached, tne access is allowed, and the"

addresses match, the valid indication is asserted;

2 . If the PTE is cached, the access is allowed, and the

addresses don't match, the valid indication is not
asserted - the result is that the cache access will be

repeated in the next cycle, this time with the correct
address;

3. If the PTE is cached but the access is not allowed, or

the PTE is not cached, the valid indication is not'

asserted. Additionally, the contents of the ICachd
Address Latch are loaded unmodified into the IBPC

Register (once the IB has been emptied), and a TB error
indication is presented to the Decode Logic,
logic propagates this error indication thru

register

via the IPC FIFO, to the Execution Stage,
unit then waits for executionunit intervention.

The Decode,
the cont ro 1 •

pipeline, and the virtual address is propagated
The Prefetch

The ICache Page Register valid indication is ANDed with the Cache Hit

signal from the parallel cache access to indicate to the IB Shift-

logic that the accessed cache line contains valid Instruction Stream

data.

2.3.3.2 Writing The I TB

The ITB is always written under the control
The address to be written

Prefetch Buffer and loaded into the ITB Address

most cases the address will already be there).
PTE to be written is presented via the Write
latch, and the
ITB Address Latch <31>.

of the Execution Unit,

is presented via the Write Bus and Write Bus

Latch (in fact, in■

In the next cycle the
Bus through a deskew

rite into the appropriate ITB chip occurs, based on

When mapping is not enabled, the ITB will be managed
map by the Execution Unit microcode.

i dent i ty ■_as an

2.3.4 ICache Page Register

The ICache Page Register is loaded every
PTE

the ICache Address Mux as bits <29;9> of

during

cycle, its contents are

determine if the cache access was valid.

cycle from PFN <20:0> of the

this register is presented to.
the cache address to be read

During the second half of the

the output of the ITB to ■

accessed in the ITB. The output of

first half of every cycle,
with

the

compared

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0
Page 2-9

05 Dec 84Company Confidential

2.3.5 ICache Address Bus

The ICache Address Bus consists of two portions,
supplies bits <29;9> of

offset portion, which supplies bits <0:O> of the physical address.

The page portion has two sources. the ICache Page Register, which

supplies the read address during the first half of every cycle, and
the ICache Address Bus Latch, which supplies the write address during
the second half of the cycle.

a page portion, which

the physical address to the cache, and the

The offset portion also has two sources,
cycle, the read address is sourced

During the second half of the cycle, the
supplies the write address.

During the first half of the'

from ITB Address Latch <8:0>.

ICache Address Bus Latch

Bits <29:3> of the ICache Address Bus are presented to the ICache

reading

latch may also be driven onto the Internal Bus to access main

on a cache miss.

for

writing the quadword cache lines. Bits <29:0> of thisor

memory.
t

[Note; The critical path reading the instruction cache
address is supplied via the write bus (bits <8:3> only). This path

could be handled differently if it proves to be a problem as currently’,
implemented. Note that no state element is necessary in this path
since the cache output itself is captured at T2, and the Write Bus

Latch does not re-open until T3.]

is when the

2.3.6 Instruction Cache

Bits '■'29:3> of the ICache

Instruction Cache for the

The Instruction Cache is

chips, organized as 64 bits

KB). It is fully associative,
replacement algorithm.

Address Bus are used to access the'

next quadword in the instruction stream.’

implemented utilizing 8 Frigate TB/Cache. •
wide (1-parity), and 512 locations deep (4

and implements the I east-recentIy-used

The cache is accessed during the first half of every
d 3 1 ci ,

cycle for read

regardless of the state of any valid / not valid indications;
the cache output is captured at T2 in the ICache Output Latch,
cache h i t ,qni ss

The

indication is ANDed with the ICache Page Register valid
indication to generate an indication regarding the
accessed cache line.

validity of the .

This signal, ICACHE_LINE_VALID is used by the
instruction buffer control logic to conditionally mark bytes

the Instruction Buffer at the end of the cycle.
valid in

The ICaclie may be accessed during the second half of each cycle to
write

Address Bus Latch, and the write data is sourced onto the ICache

Bus from the Internal Bus via the Internal Bus Buffer.

do

i n V a 1 i d a t e . Theor write address comes from the ICache.

Data

a

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0
Page 2-10
05 Dec 84Company Confidential

2.3.7 ICache Output Latch

The ICache Output Latch captures the 64-bit output of the

Cache.

Inst rue tion

It is conditionally opened from T1 to T2 under the control of

the Instruction Buffer control logic whenever the previous contents of

the latch have been used by the IB, or are no longer needed (such as
after a taken branch); this is indicated by the assertion of the

signal L0AD_CACHE_LINE_BUF (defined below).

(Note:

cache

Output Latch have been loaded into the Instruction Buffer,

the latch could be unconditionally opened every cycle.]

Conditioning the opening of this latch allows the following
line to be accessed before tne current contents of the ICache

Otherwise,

This latch is implemented in the Instruction Buffer Gate Arrays.

2.3.8 Instruction Buffer And Shifters

The Instruction Buffer and Shifter structure is

the

shifters are used to accomplish this by selecting
bytes

and the output of the Instruction Cache latched in the

Latch (8 bytes).

utilized

next 7 bytes in the instruction stream to the Decode Stage,

the appropriate 7
from the 22 bytes formed from the Instruction Buffer (14 bytes)'

I Cache Output,

to provide.
The'

The Instruction Buffer and Shifter is implemented through the

four
use of

Instruction Buffer Gate Arrays. The structure is partitione.d
vertically, suCh that each gate array implements the entire

foi- two of the eight bits in each byte,
include the ICache Output Latch.

structure

These gate arrays also’

2.3.9 ICache Address Latch

The ICache Address Latch is loaded from the Prefetch Bus

signai
whenever the

LOAD_CACHE_LINE_BUF (defined below) is asserted. This latch,

captures the virtual address associated with the

ICache Output Latch,
to calculate the next Prefetch PC and IBPC.

quadword in the•

Its Output is presented to the PC Offset logic

f No t e;

beyond the contents of the ICache Output Latch].
This latcli exists only to allow prefetching another cache line

2.3.10 Prefetch PC Incrementer And Register

The Prefetch PC

Address

Prefetch PC Register is the default driver of the Prefetch Bus.

Incrementer supplies the contents of the ICache

Latch + 8 to the Prefetch PC (PPC) Register every cycle. The

FRIGATE working DESIGN DOCUMENT

VERSION 1.0

Page 2-11
05 Dec 84Company Confidential

2.3.11 Instruction Buffer PC Register (IBPC Register)

Associated with the Ihstruction Buffer (IB) is ah Instructioh Buffer

PC Register, which identifies the hext byte in the instruction stream

to be operated on by the Decode Unit (ie; the byte in position 0 or 1
of the Instruction Buffer). This register is ihput to the Prefetch PC

Adder in the Prefetch Stage, ahd the Decode PC Adder in the Decode.

Stage.

The IBPC Register is loaded as follows:

1 . Bits <31:3> are loaded from the ICache Address Latch

signa 1 _
re-circulated f rom the correspohding IBPC output?;

if .the

l0AD_CACHE_LINE is asserted; otherwise, the bits are

2. Bits <2:0> are loaded from either the Prefetch PC Adder or.

the ICache Address Latch, depending upon whether or not a-

indicatedbranch

BRANCH ADDRESS BUF.

occurred, signaIby theas

t

This logic is implemented in the PC Gate Array.

2.3.12 Prefetch PC Adder

The 3-bit Prefetch PC Adder

first

is used to calculate the address of the

byte beyond the opcode (for instructions with no specifiers) or '

specifier currently being decoded (that is, the address of the first

byte of

One input to the adder is Ihstruction Buffer PC Register <2:0>.

other input is PC_0FFSET<2;0> from the specifier decode logic.

the the opcode or specifier to be decoded in the next cycle).
The

The output of the Prefetch PC Adder is conditionally loaded into

<2:0> of the IBPC Register at the end of the cycle.
bits'

Carry-out of this adder is one of the signals
signa1

Address Latch to be loaded into the corresponding bits of the IBPC.

OR'd to generate the
This signal causes bits <29;3> of the ICacheLOAD CACHE LINE.

This logic is implemented in the PC Gate Array.

[Note;

is nand1ed in the Decode PC Adder and via the Branch Register.]

The updating of the PC after quadword ahd octaword immediates

2.3.13 Miscellaneous Control Lines

ICAChE_LINE_VALIU
Latch are valid.

indicates that the contents of the ICache Output

PREFETCH PREGISTERS VALID specifies that the Prefetch Pipel.ine'

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

Page 2-12
05 Dec 84

Registers are valid.

PREFETCH_STALL - pipeline stall from Decode Stage;
updating of the Prefetch Pipeline Registers,

inhibits the

PC_0FFSET <2;0> - output of Decode Stage which specifies the number of

bytes consumed by the Decode Stage, and therefore the number of bytes
by which the Instruction Buffer PC is to be incremented and the

Instruction Buffer is to be advanced, ie: right-shifted.

LOAD OPCODE

the

opcode of the instruction being decoded, and is therefore
every cycle.

output of Decode Stage which specifies that byte 0 of

Instruction Buffer is to be loaded. IBO a 1 ways.contains the

not loaded

BRANCH_ADDRESS - signal from decode stage indicating that the next

prefetch address is not-sequentia 1 . Used to select the source of thp

Prefetch Bus and to generate the signal L0AD_CACHE LINE.

BRANCH_ADDRESS_BUF -
next cycle to select

Registered version of BRANCH_ADDRESS used in the
the source of IBPC<2:0>.

LOAD_CACHE_LINE
BRANCH_ADDRE3S.
with the output of the ICache Address Latch.

the OR of the carry from the Prefetch PC Adder and
Specifies that IBPC Register bits <29:3> be loaded

L0AD_CACHE_lInE_BuF -
the ft ext cycle to
ICaclie Address Latch.

Registered version of L0AD_CACHE_LINE used
conditionally open the ICache Output Latch and

1 n

I Bn Valid

Instruction Buffer, IBn where n
valid bits associated with each of the bytes in the

0 to 13.

2.4 DECODE STAGE

The Decode Stage operates on the contents of
Inst rue tion

the Instruction Buffer

PC Register (IBPC) to generate operand
information for the Address Add Stage, and control information for the

Prefe tch Stage.

the specifier decode logic, the Decode PC Adder and two copies of
General Registers.

(IB) Bufferand

Major structures include the operand decode logic,
the'

2.4.1 Instruction Buffer

The Instruction Buffer (IB) is 14 bytes wide,
low-order tjytes) may be consumed by the Decode Stage in any one cycle;
the remaining 7 bytes in the buffer are used to insure that,
possible. the next 7

decode logic in the next cycle. Each byte
succeeding byte in the IB and ICache Output Latch.

Up to 7 bytes (the.

whenever,

bytes in the (Stream will be available to the

may be loaded from any

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential
Page 2-13
05 Dec 84

The 7 bytes available to the decode logic are idehtified as IBh, h = 0-

IBO always contains the opcode of the ihstructioh beihgto 6.

decoded.

The Instruction Buffer and Shifter is implemented through the

four Ihstruction Buffer Gate Arrays. The structure is partitioned
vertically, such that each gate array implements the entire

for two of the eight bits in each byte,
include the ICache Output Latch.

use of

s t rue t urfe

These gate arrays also

(Note; The
the Decode

idth of the IB beyond the 7 bytes which may be used
Stage in any one cycle is a function of the fact that thfe

be re-loaded until

bytes i ti the Latch have been used. Simulation is under way to
determine the optimum IB length.)

by

ICache Output Latch which supplies the IB cannot
al I 8

2.4.2 Instruction Decode

e
The instruction decode unit

twelve major states

performed. The twelve states

collectively called

by the state machine;

is implemented as a
corresponding to the

are defined

state machine with

type of decode being
by four state signals,

the decode state, which are generated each cycl^

SECOND OPCODE

be i ny

Indicates that the byte is to be
byte of the opcode.

1 . when asserted, indicates that the opcode byte-
is the second byte of the opcode;

Interpreted

decoded deassert ed

as the first

2 . SPECIF1ER<2;0>

being decoded, as follows;

identifies the position of the specifier

1 . 000 First Specifier decode first specifier

2. 00 1 Second Specifier - decode second specifier

Third Specifier - decode third specifier

Fourth Specifier - decode fourth specifier

Fifth Specifier - decode fifth specifier

Sixth Specifier - decode sixth specifier

3. 010

4 . 01 1

5 . 100

6. 1 0 1

7 . 110, 111 Undefined

The quiescent state of the machine is SEC0ND_0PC0DE not

SPECIFIER<2;0>

enters this

instruction),

of the data in the

asserted and .

0, specifying decode first specifier (the machine
state upon initialization, and at the end of each

In this state,

instruction buffer (ignoring quadword and
there are six possible interpretations'

octaword

I

'amaouBApea}Aq_3|6uiss6uiA4L3ads
)SIBIUJ04asapieui^paqapAqpaipuEqajesaseoapoodoaiAq_o|tinopblu.

■(Od081

IIIII
|0apopdoll3P03do|OdS'oPui|3dSssBgj0clsigj1dsigjZdsiQjCfisiaI

IIIIIIII

apOLuvapuiSLjai^LoadsiSJL^‘apoDdoa^/q.a|nnoo‘9

IIII
|0apoDdolapopdoOdSsseg|gdsig|tdsigjZdsigjgdsigj
IIII

epoujX9pu^louStjet4t3»dsjsji^‘apoodoajAa-aiqnog•9

IIII
apoodo0dsioIdsiaIIII

XX
I

XXX

IIIII

apoadoqauejqai-<q_ai6uis‘V

IIII
IapoodoIDdS''apuiIOdsaseg[0dsiaIdsiQIzdstoICdBioI

IIIII

apoujxapuisijat^ioadsisjij‘apoodoaiAq-9|6uis•e

IIIII
IapoodolOdS3seg0dsiQ.|tdsiQ[ZdsigedsiQII

XX

IIIII

apoiuxapui40Usijai^ioads4SJ14‘apoodoa4Aq_0[6uis■J

III
1apoodoI

X
II

XXXXXX

IIII

sjaijioadsou‘apoodoaiAq_0(auis•I

:ajeS4E1UJO4Bjepaiqissodxisaux

(•a6e4sMOiaxajdaqxutAetapaiqeja[oiuippepinoM
estMjeqxoopox■jejj.nguotioo-ijauiauj40apt*jnd^no9i|juo«e«4«

apooep8U4utotBoi10-14U0040lOJiuooauijopunAiaiossvjuauiuOtio

-B4BPu6iiB04ja44nquoi4onj4Sui314440apis4nduiaq4uoauop

1JJB3-14Suoi40nj4sut314440apooapousi33314446q4sauinsSBsiqx:a40N]

■(4uaujouiaq4J04s34Bipauiuii

lBi4uapL4UO0AuBduJOO-o'IN0ISH3A
iNdwnooQNoisaaonimhomaivoiad

178pao90

t7t-2a6Bd

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0
Page 2-15
05 Dec 8A 'Company Confidential

instruction stream, and specifying that the next decode state be

SECOND_OPCODE asserted, SPEC IFIER<2:0> unchanged (specifying decode

first specifier). The effect is that the instruction buffer contents

in the next cycle will be identical to one of the single-byte opcode

formats, with the decode state specifying SECOND_OPCODe.

The net result of this strategy is that there are only
interpretations of the instruction buffer

logic when SPECIFIER<2;0> indicates that

decoded. This means:

four

by the specifier decode

the first specifier is to be

possib1e

1 . The index mode specifier, if there
IB1 :

is one, always appears 1 a

2 . The base operand specifier appears in IB2 or IBl;

3 . Displacements appear as follows:

Branch Displacements in IBl or IB2|IBli

Byte Displacements in IB2 or IB3;

1 .

»

2 .

3 . word Displacements in IB3|IB2 or IB4|IB3;

A . Longword Displacements, or the

quadword or octaword immediate,
IB6|IB5|IB4|IB3.

first longword of a
in IB5|IB4|IB3|IB2 o r

To minimize the multiplexing in the decoder stage,
main t ain

of which specifier is being decoded.

it is desirab1e

that is, independent.-

to’

this positioning for all decode states.

This

into a

first specifier.

is done by shifting one
SPECIFIER

less by t e-position

state other than that specifying the decode of the
t cans i t i on i'ng •when

In this manner,
for all

an opcode and specifier may be decoded in

cases except quadword and octaword immediate mode specifiers.
One additional cycle is required for the quadword immediate case,
three

one cycle.

and

During such
time from

additional cycles for the octaword immediate case,

cycles, the immediate value is extracted one longword at a

IB4|IB3|IB2|IBl.

2.4.3 Opcode Decode Logic

The opcode decoder Implemented in the Decode Stage is logically a
by n PROM with the following inputs:

4K.

I

Page 2-16
05 Dec 84

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

1. IB0<7:0>

DEC0DE_STATE<3:0> (= SECOND_OPCODE|SPEC IFIER<2:0>)2 .

It's output includes the following fields:

DATA_TVPE<3:0>
being decoded; _
ttie instruction has no specifiers (ie:
exists) ;

specifies the data type of the specifier-
DATATVPE<3:0> = F is used to indicate that'

no first specifier

1 .

ACCESS_TYPE<2:0> - specifies the access type of the specifier
being decoded;

3 . NEXT_DEC0DE_STATE<3:0>
be loaded into the Decode State Register.

specifies the next decode state to

4 . LOAD OPCODE

IBO;

IBO.

specifies that an opcode is to be loaded intp
this affects the PC Offset, and gates the clocking of

Additionally, the opcode decode logic will decode
particularly as it affects pipeline waits.

i ns t ruc tion class,'- •■

2.4.4 Specifier Decode Logic

IBl contains the Index specifier, if there Is one, or may contain a

base specifier. Additionally, IB2 may contain a base specifier for.
index inode. The only fast, decode needed, therefore,
determination of whether index mode is

INDEX_MODE is asserted if IB1<7:4> = 4. This
select on the muxes at the inputs of

displacement register.

1 s a

specified;

signaI

the base specifier GPRs and the'

the si gna I'
is used as a

The remainder of the specifier decode
structure with the following inputs:

is accomplished via a logic

1 . IB1<7:4>

2 . IB2x7:4>

3. DATA TVPE<3:0>

ACCESS TYPE<2:0>4 .

5. LOAD OPCODE

(Note: The 8-Dii combination of 1B1<7:4> and IB2<7:4> can be

five bits by decoding IB1<7:4> = 4 (Index Mode) quickly, and using

it to select a mux between IBl and IB2.)

reduced.'

t o

The specifier decode logic generates:

I
i

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

Page 2-17
05 Dec 84

1 , PC_OFFSeT<2;0> -
numPer of bytes to advance

Buffer, and input to the Prefetch PC and Decode PC Adders to

calculate the appropriate updated PC's;

input to the Prefetch Stage to .specify
(right shift) the Instruct'ioh

the'

2 . Control signals for subsequent stages propagated through
machine via Function Registers defined below;

the-

3 . Displacement Multiplexer select bits to specify the format of

short literals or displacements in the Dleplacement Register;

VJI P Con t ro 1 Bits

counters to be incremented or checked in a particular cycle;

4 . to specify the number of sequential WIP.

5 . Branch Control Bits used by the Branch Logic to specify how

to set up the Decode PC Adder, whether the Branch or Jump
Register is driving the Prefetch Bus, and when the branch,'
address is valid.

2.4.5 Decode PC Adder

The Decode PC (DPC) Adder operates on the contents of the IBPC to

generate the updated PC to be used
address calculations,

to the Prefetch Stage for some classes of branches.

by the Address Add Stage for

or to generate the target address to be supplied.

One input to the DPC Adder is the IBPC Register,
address of tlie first byte of

Decode Stage in this cycle. The other input is a mux which

based on opcoiJe information (branch or no branch),

specifier type to supply the appropriate addend.
DPC Adder is

and IPC FIFO.

which supplies the,-
the I-Stream to be processed by the

is setup
specifier size and'

The output of the-
input to the Branch Register, Decode PC (DPC) Register,

The Decode PC Adder is implemented in the PC Gate Array.

2.4.6 Branch Logic

When a program flow change is to be made, the Prefetch Stage is
notified (by the assertion of the signal BRANCH ADDRESS) that the next

I-Stream Address will come from either the

Register,

longer sources the Prefetch Bus,
occurs .

' invalid.

Branch Register or Jump
In response to this signal, the Prefetch PC Register no'

and a flush of the Instruction Buffer"

The latter is accomplished by marking all valid indications

The Branch Register is loaded from the Decode PC Adder in

Stage. It provides the Branch Address (ie;

when tiie signal JUMP_REGISTER is not asserted

the Decode

drives the Prefetch Bus)

by the decode logic.

t

Page 2-18
05 Dec 84

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

The next I-Stream address is supplied via this path for a 1 1'

conditional and unconditional Drahches and loop instructions that are.'

absolute or PC-relative, ahd as the result of decoding quadword and

octaword immediate mode specifiers. For these cases, the Decode PC

Adder is set up to supply one of:

1 . PC 1 + SEXTCIBl)

PC 2 f SEXT(IB2| IBl)2 .

3 . PC + 8 (quadword immediate)

PC f 16 (octaword immediate)4 .

Loop instructions are always predicted to be taken, hence the target-
bratich address is always supplied for these instructions. A 4K x 1.

RAM is used for prediction of conditional branches,
the address

indica ting s
location was accessed,

the incremental

The RAM

Bits <13:2> of

are presented to this RAM. which contains a single bit

nether a branch was taken the last time the corresponding.
Based on this bit, either the target branch

address are supplied via the Branch
is corrected by the Execution Unit microcode

is made, and the

address or

Register,

the Write Bus when an incorrect prediction
is f1usned.

V 1 a.

p i pe 1 i ne.

The Jump Address Register is loaded from the
adder

output of the 3-input ■
It drives the Prefetch Bus when thethe Address Add Stage,

signal JUMP_REGISTER is asserted,
next

absolute.

i n

This path is used to supply the.
I-Stream address for JMP's and JSB's that are not PC-relative or

The Branch Log 1c , .

Prediction RAM, is implementea In the PC Qete Array,
except for the Jump Addrese Regieter and the.

2.4.7 Decode PC Register

This register presents the address of the first
instruction stream beyond
with no specifiers) being decoded,

the DPC Adder, and conditionally drives the Base Bus,
the inputs to the three-input adder in the

other source for Base Bus data is the Base Register;
decode logic specifies the source.

byte in the ■
the specifier or opcode (for instructions

It is loaded from the output of
which is one of

Address Add Stage. The

the specifier

I
I

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential
Page 2-19

05 Dec 84

2.4.8 Displacement Multiplexer And Register

The Displacement Register is used to pass sign-extended
and

disp1acements

Additiona11y. when
the two's complemeht of the

literals to the Address Add stage,
the base specifier mode is autodecrement,
size is passed via this logic.

f onna t ted

The inputs to this register are four byte-wide
as foilows;

multiplexers. defined

Spec
Mode

Data

Type

By te3 By te2 Byte 1 ByteO

s^ff i it Bv.lQO 0 0 00|IB1<5:0>

OlOOOOlIB1<5:4> IB1<3:0>|0000

0 I1B1<5:0> fO

0

f U 0 0

0 0 01000000b

)

IB1<2;0>|00000 0h 01000000 00000 1IB1<5;3.> t

-(Ro) B FF FF FF FF

W FF FF FF FE

lF FF FF FF FC

QDG FF FF FF F8

OH FF FF FF FO

INDEX B SEXT(IB3<7>) SEXT(IB3<7>) SEXT(IB3<7>) IB3

SEXT(IB4<7>) SEXT(IB4<7>)W IB4 IB3

L IB6 IBB IB4 IB3

SUBSEQUENT

IMMEDIATE

(after first lorigword)

IB4 IB3 IB2 IBl

ALL

OTHERS B SEXT(IB2<7>) SEXT(IB2<7>) SEXT(IB2<7>) IB2

SEXT(IB3<7>) SEXT(IB3<7>)W IB3 IB2

IBBL IB4 IB3 IB2

(

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

Page 2-20.
05 Dec 84Company Confidential

The Displacement Multiplexer and Register are implemented
Displacement Gate Array. The pinouts include:

the1 n

48 data inputs (IB<6:1>)1 .

2 . 4 data type inputs

3 . 3 format control inputs

4 . I clock enadle

5 . I clock

The Displacement Register must also be capable of supplying 0.

Displacement Register is one input to the three-input adder in the.

Address Add Stage.

The

2.4.9 General Processor Registers

Two copies of ttie GPRs are implemented in the Decode Stage, one to
supply tlie register contents associated with the base specifier,

one to handle the index specifier. Each GPR set may be read

written orice every cycle;

cycle, and reads occur during the second half of thecycle.

and .

AND

writes occur during the first half of the.

Associated with the GPRs in this stage are 15 Write-In-Progress
count er s.

(WIP) ■

These 4-bit counters maintain the number of outstanding
Attempting to read a GPR,'

WIP Counter is non-zero' for any mode but register mode causes a

pipeline stall.

writes to the corresponding GPR (except PC),
whose

Read and WIP bit addresses for the two GPR copies come from bits <3:0> ■

and

the •

of IBl for the copy associated with the specifier ,

((IB2*INDEX_M0DE)+(IB1*/INDEX_M0DE)) for the copy associated with

base specifier.

i nde X

Write Addresses and the corresponding data size come from the

The three data size bits are used to

word, or longword write. Write data comes from Write

When a write occurs, the corresponding WIP counter is'

address

portion of tlie Write Bus.

specify a byte.
Bus <3 1 : 0>.

dec remen t ed.

Multiple WIP counters (up to four) may be read and/or incremented in a

single cycle,

data type, access mode, and specifier type,
be decremented per cycle.

based on the WIP control bits, which are a function of'

Only one WIP counter need:

A non-zero IP counter does not cause a stall if the mode is register.'

WIP counters may be read AND set during the second (read) half of

cycle

the

read at the address supplied by the index specifier mux , .(i e :

FRICiATE WORKING DESIGN DOCUMENT

VERSION 1.U - Company Confidential

Page 2-21
05 Dec 8.4 •

I

and read and/or Incremented

spec 1f1er mu *) .
(write) naif of the cycle.

at the address supplied by the base
counters are decremented during the firstThe WIP

A register bypass mechanism is implemented to gain a cycle when a
stall occurs due to a non-zero WIP counter. The base and index'

register numbers are captured in the Rb and R1

respectively, for presentation to the Address Add stage,
associated with each of these registers indicates whether
Stage was able to supply valid register data,
set, the Address Add Stage stalls and watches the Write Bus for the.

updated register contents.

Registers.,
A valid bit

the Decode

If the valid bit is not

The bypass mechanism is utilized only when there
write to a requested register. That is, it
the other of the base or index registers
be used when both are not available,
no state element available to store the

available while waiting for the
values are not available,

becomes available.

Address Add Stage, which waits for the other to become
the Write Bus.

is one outstanding

is used only when one or
is not available; it cannot

since the Address Add stage has'
first operand that becomes'

second. Thus, when both register'
the Decode Stage stalls until one of them'

and then transmits the specifier information to the
I

aval Iable via-

Similarly, the bypass mechanism cannot be utilized when a WIP

is greater than one.
counter ,

Logic preveiits the WIP counters from being decremented beyond zero .

2.4 . 1 D Roase Mu Itip1exer

The Rbase Multiplexer selects the
specifier copy of the GPRs;
in the Rb Register. The mux selects one
sources;

address presented to the base

the Output of this mux is also captured .
of three possible address

IB1<'J:0> - read / WIP (i nc remen t / check) cycle and

mode

1 . not index

IB2<3:0>2 . read / WIP (increment/check) cycle and index mode

Write Bus Address - write and WIP decrement cycleJ .

2.4.11 Base Retiister

The 32-bit Base Register contains the contents of the GPR specified by
the Rbase Multiplexer,

copy of the GPRs at the end of every cycle. It
the Base Bus, which

It is loaded directly from the base specifier'
conditionaI Iy drives

is one of the inputs to the three-input adder in

FRIGATE WORKING DESIGN DOCUMENT

VERSION).0 - Company Confidential
Page 2-22
05 Dec 84

the Address Add Stage,

the contents of a GPR other than PC are required to calculate the bas§
address.

The Base Register drives the Base Bus whehever-

*.

2.4.12 Rindex Multiplexer

The Rindex Multiplexer selects the

specifier copy of the GPRs;
in the Ri Register. The mux selects
sources:

address presented to the index

the output of this mux is also captured
one of two possible address

1B1<3:0> - read / WIP (check only) cycle

Write Bus Address - write and WIP decrement cycle

1 .

f
2.4.13 Index Register

The 32-tjit Index Register contains the contents of the GPR

in the index operand specifier, that is,
It is loaded directly from the
cycle. It is one of the

Address Add Stage.

specified

(IB1<3;0>) .'
every

to the three-input adder in the.

IndeX Register

index specifier copy of the GPRs
input s

2.4.14 Rb Register

This 4-bit Register is loaded from the Rbase Multiplexer every cycle.,
is used to pass the base register number to the Address Add Stage.’

To implement the register bypass mechanism, a valid bit is associated-

with this register. If set, the required register contents were

supplied by the Decode Stage via the Base Register,
register contents were not available due to an outstanding
this case, the Address Add Stage monitors the Write
updated register contents.

11

If clear,

write,

for

and stalls until such data is available.

the

I n

Bus the. ■

2.4.15 Ri Register

This 4-Dit Re.gister is loaded from the Rindex Multiplexer every cycle.
It is used to pass the index register number to the Address Add Stage,
and exists, along with the associated Valid Bit, only to implement the' ■
write bus register bypass mechanism. If the Valid Bit is set ,
required register contents were supplied by the Decode Stage
Index Register. If clear,
due to an outstanding write,
monit ors

the -

VI a the

the register contents were not available '

In this case, the Address Add Stag§.
the Write Bus for the updated register contents, and stalls-

until such data is available.

I

FRIGATE WORKING DESIGN DOCUMENT

VERSION).0
Page 2-23
05 Dec 84Company Confidential

2.4.16 IPC FIFO

The IPC Buffers are organized as a 32-bit-wide FIFO, loaded under the

control of the Decode Stage, and read under the control of the

These buffers combine the functions of pipeline PC
and buffering at the output of the Operand Fetch Stage into,

organized as a
Read data is

of the cycle.

Execution Stage.

registers

a single structure.
FIFO

There are 8 32-bit-wide buffers,
which may be read and written every cycle,

available to the Execution Unit during the first half

and the strLicture may be written by the Decode Stage during the
half of the eye Ie.
under the control of the decode state machine.

second

This write occurs from the output of the DPC Adder 1

The Vii tual PC used to access the ITB is loaded into the

and passed to the Execution Stage for managing the ITB when necessary.

IPC Buf f ers.

The PC Buffers are not explicitly addressable by
microcode, in tnat only the Top-of-Fifo
However, the removal of an entry from the FIFO
controlled by tlie microcode.

the Execution Unit

is available to be read.’'

explicitly ■
in order to manage First-Part-Done cases.'

1 s

»

[Notel; Currently, this structure
the Write Bus to save pins,
dedicated pins could be used,

be moved closer to the Execution Stage.]

is read by the Execution Stage via'
this proves to be a bottleneck,,

in which case the structure could also

If

[Not e2:
s 1 mu 1 a t on .

The depth of this structure is TBD as the result of
It seems like 8 is a reasonable number, effectively'

allowing us to buffer up to 6 instructions (4 instructions is probably
enough), and hold 2 in the pipeline.]

2.4.17 Control Registers

2.4.17.1 Opcode Register

This nine-bit

double-byte

cycle, and is propagated through the machine
s t ayes.

register contains a single bit
opcode, and the contents of IBO.

indicating single- or

It is loaded 'every
for use in succeeding.

2.4. 17.2 Address And Function Register

This register contains control

Add Stage to construct the
cycle. The control
decoded in

path in the Address Add stage,
following fields;

information to be used by the
operand or operand address in the next-

information for the Address Add Stage

Address- ■

is fully'
the Decode Stage so as to keep decode out of the critical ;

The register is made of theup

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company ConfiOential
Page 2-24
05 Dec 84 •

Base Mux Control1 .

'• Xx,1. Base Regist er

2. Decode PC Register

3. Write Bus

4. 0

2. Index Mux Control

Index Register1 .

2 . Index Register left shift by 1

3 . Index Register left shift by 2

4 . Index Register left shift by 3 I

5 . Index Register left shift by 4

write Bus6 .

7 . Write Bus left shift by 1

8 . Write Bus left shift by 2

9 , Write Bus left shift by 3

10. Write Bus left shift by 4

01 1 .

3. BASE_VALID
by register bypassing logic)

indicates that the Base Register is valid (used

4 . INDEX_VALID
(used by register bypassing logic)

indicates that the Index Register is valid'

2.4.17.3 Operand Fetch Function Register

The contents of the Operand Fetch Function Register are passed through,

a pipeline register in the Address Add Stage to ultimately be used by '
the Operand Fetch Unit.

The Operand Fetch Stage must have some knowledge of the specifier type ■
and position, size, and access mode

buffer locations and pointers appropriately.
in order to allocate operand

in addition to being able

i

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

Page 2-25
05 Dec 84'Company Confidential

to access the data TB and Cache. Exact definition and encoding of
this information TBD, but worst case it is no more than the 9-Dit.

Opcode Register, four bits of specifier mode, and a synchronization'
signal (to indicate the start of a new instruction).

2.4. 17.4 Execution Function Register

TBD control and status information from the decode logic in the Decode

Stage to be passed via pipeline registers to the Execution Stage.

2.4.13 Miscellaneous Control Signals

DEC0D£_STALL
Pipeline Registers.

input to Prefetch Stage to inhibit update of Prefetch

0EC0DE_VALID - specifies that the contents of the (pipeline) registers.-

at the output of the Decode Stage are valid, ie; dsable by the
Address Add Stage.

2.5 ADDRESS ADD STAGE

2.5.1 I n(.!u t s

The following pipeline registers described in the previous section are

inputs to the Address Add Stage; associated with these pipeline

registers is the signal DECODE_vAlID, which indicates that all of

these registers contain valid data.

Displacement Register1 .

2 . Base Register

3 . Index Register

4 . Decode PC Register

5 . Rb Register

used in the Write Bus bypass mechanism for the Base Register

passed unmodified to Operand Fetch Stage, and

6. Ri Register

mechanism for the Index Register
used only to implement the Write Bus bypass ■

7 . Address Add Function Register (includes Index and Base ■

Register Valid indications)

8 . Opcode Register

Stage
passed unmodified to the Operand Fetch

Page 2-26
05 Dec 84

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

Operand Fetch Function Register

Operand Fetch Stage

unmodified to the'9 . passed

10. Execution Function Register

Operand Fetcn Stage

unmodified to thepassed

The signal FETCH_STALL is received from the Operand Fetch Stage to,

indicate that the pipeline registers at the output of the Address Add

Stage should not be updated.

2.5.2 Outputs

The following pipeline registers are input to the Operand Fetch Stage:

associated with these registers is the signal ADD_VALID, which/
indicates that these registers contain valid data.

virtual Address Register

of the adder in the Address Add Stage for presentation to the.

Operand Fetch Stage.

generally loaded with the output1 .

2 . Register Number Register
unmodified contents

Decode Stage.

1oaded

of the Rb Register at the output of the •
genera I 1 y with the'

3 . Opcode Register - passed unmodified from Decode Stage

Operand Fetch Function Register

Decode Stage

4 . passed unmodified from^.

5. Execution Function Register
S t age

passed unmodified from Decode

The Jump Register is loaded with the output of the adder in the

Address Ado Stage, but is not a pipeline register between the Adtjress
Add and Operand Fetch Stages. Rather, it is used to present Jump

Addresses to tiie Prefetch Stage via the Prefetch Bus.

The signal ADD_STALL is input to the Decode Stage to inhibit the ■

loading of the pipeline registers at the input of the Address Add--

Stage.

2.5.3 Operation

This stage includes a 32-bit 3-input adder. The inputs to the adder ”

are formatted under the control of the Address Add Function Register.

This control information results in three operands being input to the
adder each cycle;
Register and the virtual Address Register.

output of the adder is loaded into the Jump 'the

■i

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential
Page 2-27

05 Dec 84

2.5.4 Base Multiplexer

The Base Multiplexer is controlled by the Base Mux Control Field in'

the Address Add Function Register, and the Base Register bypass logic.'
The Babe Mux Field explicitly selects one of the following
be presented to the Address Adder:

w,

values to

Base Register1 .

Decode PC Register

3 . Write Bus

4 . 0

Additional1y,
the BASE VALID indication

wlien the Base Register is specified as the source and

is not set. the bypass logic monitors the.
Write Bus for a .xrite to the address specified in the Rb Register.

When this address is detected, the data is routed directly through the
Write Bus input to tne Address Adder. I

Note that to facilitate partitioning, tne
Base Register and the DPC Register
called the Base Bus.

multiplexing between the,
is done using a tri-state bus'

2.5.5 I tide X Mu I t i p 1 e X e r

The Index Multiplexer provides
Register

explicitly selected, but is
The

the capability to shift
or write Bus by 0, 1, 2, 3, or 4.

the Index .

The Write Bus is never ■

the Ri bypassing logic when
of this mux may also be forced to zero. The
the Address Add Function Register controls

used by
necessary.

Index Mux Control Field of
output

this mu X.

2.5.6 Address Adder

The Address Adder is a 3-input adder which
The three inputs are:

produces 32-bit results .

1 . Base Mux <31:0>

2 . Displacement Register <31:0>

3 . Inde X Mux <31 :0>

The adder always performs a three input add.
into the Virtual Address Register and
Bypassing is accomplished by specifying that the
mux(s) supply zero.

and its output is

Jump Register every
appropriate

Ioaded

cycle. ■■

i nput

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

Page 2-28,
05 Dec 84Company Confidential

The Address Adder is implemented in 3 identical Gate Arrays.
1OK-orde(

array, and the add of the high-order 16 bits is done in

other two gate

with carry-in hard-wired high,

portion of the
will he used.

The

16 bits of the three-input add are accomplished in one gate-,

each of the

arrays, one with carry-in hard-wired low, the other.
The carry-out from the low-order

operation determines which of the high-order results

The Address Adder Gate Arrays include the Index and Base Muxes

described above, and the corresponding register bypassing logic.

2.5.7 VAR Multiplexer

The VAR Multiplexer presents a virtual address to the Virtual

(VAR) Register from one of three possible sources;
Address

1. Address Adder

1
2. Virtual Address Adder

3. Write Bus via Deskew Latch

The Virtual Address Adder provides the capability to add 4 or 8 to th^
contents ot the VAR under the control of the Operand Fetch state

sequencer or Execution Unit microcode. The Write Bus is selected as. •
the source under Execution Unit microcode control.

2.5.8 Virtual Address Register

The Virtual Address Register (VAR) is loaded from the VAR Multiplexer.;
The

for accessing memory operands, and is one of the inputs to the

Multiplexer.

output of the vAR is presented to the Data TB and Cache structure •

Bypass

2.5.9 Register Number Incrernenter And Register

The 4-bit Register Number Register is loaded from the Rb

the output of the Decode Stage,
incremented by one under the control of
machine.

Register at

The contents of this register may be
the Operand Fetch state

1

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1 . 0
Page 2-29
05 Dec 84Company Confidential

2.5.10 Jump Register

The 32-Dit Jump Register is loaded directly from the
It is used to preseht VIPCs
ihstructions that are hot absolute or PC-relative.

Address Adder,

via the Prefetch Bus for JMP ahd JS'B

/* Other cases TBS ♦/

2.6 OPERAND FETCH STAGE

This stage peifordis three major functions:

1 . Accesses the data TB and Cache structure for operand data;

2 . Presents operands

size and specifier position, and assigns
operand pointei'S;

to the Execution Stage based on the operand
corresponding

%3 . Presents a dispatch address to the main control store

the specifier (for specifier completion) or opcode.
based

on

- 2.6.1 Inputs

The following pipeline registers described in the previous section are.

inputs to tne Operand Fetch Stage;

registers is the signal ADD_VALID,
registers contain valid data.

associated with these pipeline
which indicates that all of these

Virtual Address Register1 .

2 . Register Number Register

3. Opcode Register

4. Operand Fetch Function Register

5 . Execution Function Register

2.6.2 Out pu t s

The following pipeline registers are input to the
associated with these registers is the
indicates that these registers contain valid data.

Stage; .

signal FETCH VALID, which

Execution

Page 2-30
05 Dec 84

FRIGATE WORrInG DdiIGN DOCUMENT

VERSION I.0 Cotiipany Confidential

Memory Address Register1 .

Bypass Register2.

. r

Memory Data Register3 .

Rotator Control Register4 .

Pointer Registers5 .

Source 11 .

2. Source2

3 . Destination

Operand Write4 .

IMicroword Register (contents supplied by Operand Fetch Stage

if based on specifier or opcode; otherwise supplied by.
Ewecution Stage).

o .

The signal FETCH_STALL is input to the Address Add Stage to inhibit

the loading of the pipelihe registers at the input of the Operand.

Fetch Stage.

2.6.3 Data Manipulation

The output of the 3-input Adder in the Address Add Stage is passed

the Operand Fetch Stage via the Virtual Address Register.
Fetch Stage operates on the contents of this register to:

to

The Operand

Access tiie TB to produce a physical address;
iiioy tie used to access the data cache for data or may be

passed directly to the Address FIFO; or

this address..1 .

Access the cache or (on a cache miss) main memory for
data which is loaded into the Memory Data Register;

2. memory

or

Pass the contents of the Virtual Address Register directly to '

theBypassRegisterorAddressFIFO.

3.

I

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

Page 2-31
05 Dec 84 '

Bypass Multiplexer2.6.4

The two-to-one Bypass Multiplexer provides a path for operands
the datu TB and Cache structures.

Register and the Physical Address Register,
both the Bypass Register and the Address FIFO,

via this multiplexer from the Virtual Address Register to

Register, and virtual

Address FIFO via this mux.

around

Its Inputs are the Virtual Address

Its output is input, to
Operand Data is passed'

the Bypass
and physical addresses may be loaded into the

2.6.5 Bypass Register

The 32-bit Bypass Register

one of the tnree possible sources for the Operand Bus,
to pass virtual and physical addresses,
the Address Add Stage, to the Execution Unit.

is loaded from the Bypass Multiplexer,
and is used

as well as operand data from-

11

i s

I
2.6.6 Address Buffers

Tne Address Buffers are organized as a 32-bit-wide FIFO which

read ano written every cycle,

during the first iialf of the cycle for presentation
Address Register or the Execution Unit, and which may be loaded during-

The output■
be used to ijrive the DCache Address Bus when accessing cache,

for manipulation via the Address
Reads are under the control of the.

be .

read

may

There are 8 buffers which may be
to the Physical-

tire second Ira 1 f of the cycle from the Bypass Multiplexer,
may or

may be presented to the nia i n ALU

Register and Operand Bus.
Execution Ui'iit microcode.

2.6.7 Memory Address Register

The Memory Addi'ess Register is
FIFO,

the Execution unit via

cont ro1 .

loaded from the top of the Address
Tfiis Register is used to pass virtual and physical addresses to ■

Operand Bus under Execution microcodethe

2.6.8 Data Translation Buffer

The Data Translation Buffer (DTB) consists of

system space and

Frigate TB/Cache Chips,

least-recently-used replacement.

during the first half of the cycle, yielding the
During the second half of the cycle,
PFN <20:0> are presented to the Data Cache

256 entries, 128 for

128 for process space, ano is implemented with two
'

The organization is fully associative, with’
VAR <31:9> are presented to the DTB

corresponding PTE. •

access validity is checked while

via the Physical Address

FRIGATE working DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

Page 2-32'
05 Dec 84

Register.

V

2.6.9 Physical Address Register

The Physical Address Register (PAR) captures the physical address to

be presented to the Data Cache twice every cycle. The input to the

PAR is the DCache Address Bus. which may be sourced by DTB|VAR<a:0>,
the Write Bus via a deskew latch, or the top of the Address FIFO.

2.6.10 Data Cache

The Data Cache is organized as 64 bits wide C+parity) by 512 locations
deep (4 KB). and is implemented utilizing 8 Frigate TB/Cache chips.
It is fully associative, with least-recently-used replacement. The

Data Cache implements the write-back scheme being used in Firefly at-
SRC. This includes implementing two additional status bits.
Modified bit and the Shared bit.

Ithe

The Modified bit indicates that a

cache line fias been written locally, while the shared bit

that another processor also has this line cached, such that any writes
to this line must be broadcast on the FSB.

indicates

To facilitate pipelining, Write-in-Progress bits are
each 64-bit cache line,

or write sfiecifier access type during the pipeline read

ar-a cleared whan the cache line is written,

group when flushing the pipeline.

associated

These bits are set as the result of a modify.'
They

or may be cleared as a

with

eye 1e,

Writes and the clearing of WIP bits occur during the first half of the.

cycle, and reads and the setting of WTP bits occur during the second
halfofthecycle. '

2.6.11 Memory Data Register

The Memory Data Register is 64-bits wide.

Data Bus, and its output goes to the Output Rotators,
Operand Bus.

Its input is the DCache.
which source the

2.6.12 Rotator Control Register

The Rotator Control Register

specify the extraction of

Data Register in the next cycle.

is input to the Output Rotators to' .
a 32-Dit quantity from the 64-bit Memory-

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential
Page 2-33.
05 Dec 84

2.6.13 Dispatch Control Logic

The Dispatch Control Logic manipulates the Pointer FIFOs and controls

the generation of the specifier and opcode dispatch microwords.

Inputs to this logic include the Operand Fetch Function Register,.
Opcode Register, and Register Number Register. This logic manipulates,
the three Pointer FIFOs, and generates the addresses to be loaded into..

Additionally, this logic generates the dispatch address to;

potentially be used to supply the dispatch microword at the end of the

cycle, either directly to handle specifier completion, or indirectly
via the opcode.

them.

2.6.14 Dispatch FIFOs

The Dispatcli FIFOs include a command FIFO, which
Register (and any other relevant control
Pointer FIFOs, of which there are three,
are

buffers the Opcode-

information), and the Operand"'
The Operand Pointer FIFOs,

loaded under the control of the Dispatch Control Logic with the'
address of tlie GPR or Operand Buffer into which the operand data is to
be placed, or with an indication that an address has been loaded into"

Each of these pointer FIFO's are eight bits wide (5 .

address bits and 3 status bits) and 16-deep;
foilows :

f

the Address FIFO.

they are identified as-

1 . Sourcel Pointer FIFO - used to address

Buffer,

specifie.s which appear in
ins t rue tion

the Sourcel Operand
Pointers to source -

1 ,3 and 5 in the'

It is.

and as such'

tput goes to the Sourcel Pointer Multiplexer.

or the Sourcel copy of the GPRs.

positions
are loaded into the Sourcel Pointer FIFO.

one of two sources for Sourcel read addresses,
its ou

2 . Source2 Pointer FIFO

Buffer,

specifiers
instruction

the Source2 Operand.
Pointers to source

positions 2, 4 and 6 in the ,
are loaded into the Source2 Pointer FIFO. It is

and as such

output goes to the Source2 Pointer Multiplexer.

used to address

or the Source2 copy of the GPRs.
which appear in

one of two sources for Source2 read addresses
i t s

3 . Destination Pointer FIFO

A a d r e s s

destination.

used to specify a read from
FIFO, or to supply a

It specifies the location(s) to be

the corresponding instruction,
GPR number or an indication that the write
that the address at

read. Its output goes to the Destihation
Multiplexer.

the

register number as a write,

writ ten

and thus may contain either a'

is to memory, such "
the top of the Address FIFO should be

by ..

Pointer-

The Address FIFO is loaded during the Operand Fetch Stage at the
time as the Address FIFO bit is set

The Opei-and Buffers, however, are loaded in the next

Operand Bus frodi either

Register (via the rotators) at the address specified

same -

in the Destination Pointer FIFO.

eye 1e over the

the Bypass Register or the Memory Data •
ih the Operand

FRIGATE WORKING DESIGN DOCUMENT

VERSION l.Q

Page 2-34
05 Dec 84 ■Company Confidential

Write Pointer Register. There is also a bypass mechanism implemented
which allows either of these outputs (including rotated memory data)
to be used by the Execution Unit in this cycle.

The Operand Fetch Stage handles specifiers which require more than one

cycle to produce the requested specifier data (except for quadword and'
octaword immediates). Logic in this stage interprets size, access

mode, and specifier position in the instruction to supply operands via

the Operand Buffers and Pointer FIFOs symmetrically to the Execution

Unit. This logic also guarantees that all entries in the Pointer

FIFOs and Operand Buffers for a particular specifier go into the same .
set of FlFOsand Suffers.

2.6. 15 Souicel Pointer Multiplexer And Register

Tne Sourcel Pointer Multiplexer specifies the Sourcel Road Address

used 10 Fti'iin.ii the Kegleter F’1 Ig or Teinporiiiry Reoi&tars in the'
execution stage. It is 7 bits wide and selects the next address to be

1oadeu into trie Sourcel Pointer Register from one of two sources;
■|

Sourcel Pointer FIFO (5 bits)

Sourcel Operand Buffer

1 . indirect read of GPR or

2 , Sourcel Field of Microword Bus (7 bits)

Register File or Temporary Register under microcode control

exp 1 icit read of'

2.6.16 Source2 Pointer Multiplexer And Register

The Source2 Pointer Multiplexer specifies

used to access the register file in the execution stage,
wide and selects the next address tO' be

Pointer- Register from one of two sources:

the Source2 Read Address

It is 6 bits .

loaded into the Source2

1 . Source2 Pointer FIFO (5 bits)

Source2 Operand Buffer

indirect read of GPR or

Source2 Field of Microword Bus (6 bits)
Register File under microcode control

exp 1 i cit read of

2.6.17 Destination Pointer Multiplexer And Register

The Destination Pointer Multiplexer is used to specify the address

bits wide and selects the next address to be

loaded into the Destination Register from one of two sources:

to .

w r- i t t en . 8be I t 1 s

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1 .IJ - Company Confidential
Page 2-35
05 Dec 84

Destination Pointer FIFO (5 bits) - indirect write of GPR, or

write to memory at address at top of Address FIFO

1 .

7 Destination Field of Microword Bus (8 bits)
of any Write Bus destination under microcode control

explicit write

2.6.18 Operand Write Pointer Register

This 4-bit-wide register contains the
Buffer to be written;
entry in the Operand Buffer FIFO.
Con t r oI Logic .

address of the next Operand
that is, the address of the next available

It is supplied from the Dispatch

2.6.19 Dispatch Microwords

•*
The Dispatch Microword is the
response to

first microword to be- executed iri

new instruction, or when execution intervention i^
required to supply the required operand(s). A bit in the

microwora enables dispatch;

supplied to the main control store from . the dispatch
mi croaddress is

a

preVious
this causes the next microaddress to be

This

a function of the opcode or a specifier associated
opcode, determined by whether the operands associated with a,

itistruction were

without the help of

logic.

with the

particuIar

pipeline (ie:
supplied by the preceding stages in the

the execution unit). “ ‘ ‘
a function of the specifier mode (ie;

because of an error which occurred

Execution
uni t

autoincrement mode) or

preceding pipeline stage while attempting to process this specifier.

intervention occurs as

1 n a

In some cases,

too late to

microsequencer and generate the
hard-wired logic.

exceptional conditions occur in the Operand Fetch Stage
affect thedispatchmicroaddress.

appropriate
These cases trap the

microword directly via

2.6.20 Microword Bus

The Microword Bus supplies the next microword to be

Microword Register and the Pointer Registers,
microword comes from the main control store PROM/RAM
dispatch

or hard-wired logic.

loaded into

Most often.

the

the

St ructure;

cases, portions of the microword come from the Pointer FIFOs-

1 n

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.U

Page 2-36
05 Dec 84Company Confidential

Microword Register2.6.21

Defined in Execution Unit Section.

2.6.22 Operand Fetch Stage Sequencer

The Operand Fetch Stag* includes sn n-bit finite state sequencer to

liunule inylclplu cycle Bccetiit, such ee octSMord reads from cache,

2.7 EXECUTION STAGE

The Executiori Stage operates on up to two 32-Dit operands per cycle to
produce a 32-bit result. It is micro-program controlled. Major-

functional units include the ALU, main control store, main

microsequencer, the Register File (which include Operand Buffers,

copies of tne GPRs, and working registers), a set of Temporary
Registers, and a Register Log. Results are presented on the Write Bus

via the Write Latch; all writes to GPRs and memory are under th.e‘
control of the Execution Unit.

%

2.7.1 I npi.it s

The following pipeline registers described in
inputs to the Execution Stage;

registers is the signal FETCFI_VALID,
registers contain valid data.

previous sections are

associated with these pipeline,
which indicates that all of these’

1 . Memory Address Register (top of Address Buffer FIFO)

2. Bypass Register

3 . Memory Data Register

Rotator Control Register4 .

5 . Pointer Registers:

Source 11 .

2 . Source2

3. Des tina tion

4 . Operand Write

i

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

Page 2-37
05 Dec 84Company Confidential

6. Microword Register (supplied by Operand Fetch Stage if based

on specifier or opcode, otherwise supplied by Execution
Stage) . '■ ■ w.

2.7.2 Ou t pu t s

The Execution Unit writes results over the 32-bit Write Bus via the

Write Bus Latch, which contains valid data from TO to T3.

2.7.3 Data Rotators

The Data Rotators extract a 32-bit quantity
Data

Control Rogistar.
data.

from the 64-bit Memory
Register every cycle, based on the contents of the Rotator

The Output la one of the sources of Operand Bus

2.7.4 Operand Bus

Tne Operand Bus is the medium over which operand data is passed to the
Execution Stage. The Operand Bus is an input to both ALU Input Muxes,'
and supplies Ouca to be written to the Operand Buffers.
Bus

The Operand
may be driven from the Memory Data Register (via the rotators)', ■

the Memoiy Address Register, or the Bypass Register.

2,7.5 ALU

Two 32-bit soiirce operands are supplied to the ALU every cycle via the
Sourcel and Source2 Input Multiplexers.

A 32-bit

captured , a t

result is input to the Write Latch, and condition

the end of the cycle.

codes are

The ALU is controlled directly by the ALU Function Field

microword. Functions and encoding TBD.
in the

The AlU is implemented using the AMD 29332.

2.7.6 FPU

The FPU wi 1 I provide hardware
ins t rue tions.

the FPU output
microcode control.

structure

Point
support for F, D, and'

FPU inputs are the 32-bit Sourcel and
will drive the Write Bus via the

G_FI oating
Sour'ce2 Input Muxes;
write Latch under

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential

Page 2-38
05 Dec b4

2.7.7 Sni.ri'iil Input Mux

The Sourcel Input Mux provides one of the 32-bit

the ALU and FPu every cycle,

pI aces:

source operands to

Sourcel may come from one of four

Register File1 .

2 . Temporary Registers

W I' i t e Buso .

4 . Operand Bus

The selects on the mux are controlled by the microword and the output
of bypass logic whicn monitors addresses associated with the Write and

Operand Buses.

2.7.8 Source2 Input Mux

The Source2 Input Mux provides one of the 32-bit source operands to

the ALU and FPU every cycle. Source2 may come from one of five'

places;

Register File1 .

2. Register Log

State Gate Array3 .

4. Operand Bus

5. Write Bus

The selects on the mux are controlled by two bits in the microword and

the output of bypass logic which monitors addresses associated with-

the Write and Operand Buses.

2.7.9 Reserved Operand Detection

Reserved operand detection will be done in hardware underthe

an enable bit in the microcode,

of both Source Input Muxes.

control

Hardware wi11 monitor the outputs ■of

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 - Company Confidential
Page 2-39
05 Dec 84

2.7. 10 Register File

The Register File is two-port-readab1e and tno-port-writeab1e, and

implemented using two AMD 29334 Register File cnips. It is 32 bit's

wide and 64 entries deep, and can be read and written
every eye 1e.

writes occur during the second half of the cycle.

■■ ■■■ -w..1 s

Oh both ports

the first half of the cycle, and ■Reads occur during

The Register File includes copies of the GPR's, 32 Working
and 16 Operand Buffers,

structure by the Dispatch Control Logic. The
Register contains the address of

Operand Buffer FIFO structure.
Operand Fetch Stage

Registers,

The Operand Buffers are managed as a FIFO
Operand Write Pointer

the hext available entry in this
into which an operand supplied from the

via the Operand Bus may be written every cycle.
This address is also maintained in the appropriate Pointer FIFO,
that this location (ie:

by the microcode when the time comes.

so

the top of the FIFO) may be indirectly read

The other write port
The address is

data is suppiied from the Write Bus via a deskew latch.

The two

addressed by the Sourcel and Source2 Pointer Registers.

is under the cohtrol of the execution microcode.,

supplied from the Destination Pointer Register, and the ft

read ports are inputs to the two Source Ihput Muxes, and are

2.7.11 Temporary Registers

The Temporary Register File consists of 64 32-Dit
by the Sourcel Pointer

inputs to the Sourcel Input Mux.
Write Bus.

entries, addressed

Register. This register file is one of the

Write data is supplied from the.

2.7.12 Register Log

The Register Log is a uIFO

contents for backup.
which is used to capture register ■

is 36 bits wide and 7 entries deep.11

2.7.13 State Gate Array

The State Gate Array
information which may be

contains

input to the ALU data path.

mi see 1 1aneous logic and state

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

Page 2-40
05 Dec 84Company Confidential

2.7.14 Control Store

is 6K deep and 96
be implemented in PROM;

and

bits wide,

the remainder of the control

ill be loadable under the

InitializationThe Control Store

microcode

store will be implemented in RAM,
control of the console subsystem.

i I I

Microword encoding TBS.

2.7.15 Microsequencer

The microsequencer controls the generation of microaddresses which are

used to select the next microword from the control store. The

functions provided are:

1 . Jump to address

»2. Jump to subroutine

3. Brand •. ••

4. CASE

5 . Return from subroutine

A 13-bit address is specified for all microinstructions except return. ‘
Branch instructions go to either the specified target address or to

the Current address plus one. Case instructions go to the specified
address with hardware conditions logically OR'ed into the low 4 bits. ■

The microaddress may also come from either
decode

error conditions.

instruction/specifier-the

from the microtrap logic for certain 1 ate-occuringlogic. or

2.7.16 Write Bus

The Write Bus is driven by the Write Latch, and is valid from,

approximately TO+15 to T3. It is driven by the Write Bus Latch. This

is the main write path in the CPU, and is distributed to all stages in

Thus, it generally needs to be received by a deskew'
Inparticular, the WriteBusgoesto;

tlie macliine.

latch.

the Prefetch Stage for ITB manipulation and to supply
addresses

1 . branch•

2. the Decode Stage for GPR writes

Page 2-41
05 Dec 84 '

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0 Company ConfiOential

the Address Adder in the Address Add Stage3.

the Operand Fetch Stage to update the TB, and to supply write

data to tne cache and main memory

4.

2.8 FSB PORT

The Frigate System Bus (FSB) Port is the interface between the 64-bit

Internal Bus in the Frigate CPU, and the 64-bit FSB. The port
includes input and output buffers, and port control logic.

1
UVWD$;tSUPNIK.FRIGATE3CP.RNO;l5
UVWDS:tSUPNIK,FRIGATE]CP.RNO;15
UVWDSJ CSUPNIK.FRIGATE3CP,RNO;15

VAX/VMS

VAX/VMS

VAX/VMS

5-DEC-1984 15:00

5-DEC-1984 15:00

5-DEC-1994 15:00

5-DEC-1984 14:21

5-DEC-1984 14:21

5-DEC-1984 14:21

CP LPaO:

LPaO:

lpaO:

SUPNIK

SUPNIK

SUPNIK

VAX/VMS

VAX/VMS

VAX/VMS

CP

CP

UVWDS:tSUPNIK.FRIGATE]CP.RNO;15
UVWDS:[SUPNIK.FRIGATE]CP,RNO; 15
UVWDS:[SUPNIK,FRIGATE]CP.RN0;15

VAX/VMS

VAX/VMS

VAX/VMS

5-DEC-1984 15:00

5-DEC-1984 15:00

5-DEC-1984 15:00

5-DEC-1984 14:21

5-DEC-1984 14:21

5-DEC-1984 14:21

CP LPAO:

LPAO:

LPAO:

SUPNIK

SUPNIK

SUPNIK

VAX/VMS

VAX/VMS

VAX/VMS

CP

CP

III K K

K K

K K

U U PPPP

U U P

U U P

U U PPPP

U U P

U U P

UUUUU P

ssss N N

P N N

P NN N

N N M

N NN

Is

Is
VIsss KKK V

I K KS

I KKN N5

KIII Kssss N N

PPPPPPPP

PPPPPPPP

cccccccc

cccccccc

ppppcc
ppppcc

ppppcc

ppppcc

PPPPPPPP

PPPPPPPP

cc

cc

ppcc

ppcc

ppcc • ■ • ■

ppcc

cccccccc

cccccccc

pp • • • •

pp

ooboob
obbbob

5555555555

5555555555

11NNRRRRRRRR

RRRRRRRR

NN ;;;;

11NNNN
• • • •

» 9 9 i

nil

nil

55NN 00

NN 00

00RR RR NN ;;;;

;;;; 5500RR RR NN

555555

555555

11NNNN NN

NNNN NN

NN NM NN

NN NN NN

NN NNNN

NN NNNN

00 00RR RR

110000RR RR

551100 00RRRRRRRR

RRRRRRRR

RR RR

RR RR

;;;;

;;;; 11 5500 00

55110000 ;;;;

;;;; 551100PP
55 5511NN 00 00RR NN ;;RR
55 551100NN 00 ;;RR RR NN

111111

mill

555555

555555

000000

obboob
NNNN ;;RR RR

NNRR ;;RR NN

KIII Kssss U U PPPP N

U U P P N

U U P P NN

SSS U U PPPP

S U U P

S U U P

SSSS UUUUU P

N

KI KNS

I K KS N

I KKKN N N

N NN

N N

N N

I K K

K K

K K

I

III

UVWDS:[SUPNIK.FRIGATE]CP.RN0;15
UVWDS: [SUPNIK.FRIGATE]CP.RN0;15
UVWDS:[SUPNIK.FRIGATE]CP.RN0;15

5-OEC-1984 15:00

5-DEC-1984 15:00

5-DEC-1984 15:00

5-DEC-1984 14:21

5-DEC-1984 14:21

5-DEC-1984 14:21

LPAO:

LPAO:

LPAO;

VAX/VMS

VAX/VMS

VAX/VMS

SUPNIK

SUPNIK

SUPNIK

CPVAX/VMS

VAX/VMS

VAX/VMS

CP

CP

Summary of three alternative cache orqanlzatlons:

Calculated I-stream and data stream effective access times>>>

The followlncr calculations utilize_data_obtained from cache simulations
to estimate the effective access times for I-stream and data accesses, ^

I-stream accesses are bro>cen into cache hits_and misses, and_the effective
I-stream access time is calculated as the weiahted averaae of these two cases,

since the data cache is wrlte-bacic, data cache accesses are a welqhted averaqe

of;

1) read and write cache hits

2) read and write misses that cause cache fllls_to occur, and

35 data writebacks and writes of unwritten modified cache lines.

Finallyfrom^the actual system memory demand thus calculated, and an estimated

instruction execution rate, bus demand is calculated as system memory demand

divided by elasoed time.

Assumptions:

= 500 nsec

s 400 nsec

= 100 nsec

= 100 nsec
= 400 nsec

a) read time

b) write time (writeback)
c) cache hit read cost
d) cache hit write cost
e) instruction execution time

The followino hit rate and writeback data taken from EPASMM.LOG, a complete

trace of the EPASCAL compiler compiling a simple^proaram. Of ail of the

benchmark proqrams inout to the cache simulator proqram, this seems to be

most representative of a large system programs, and proved to be the most

taxing in terms cache performance.

Overall statistics:

455,914

540,149
total number of instructions

total number of reads

I-stream reads

data reads

309,439

230,709

116,843total number of writes

Analysis:

Cost of I-stream reads

(I-stream hit rate * 100 nsec) +

(I-stream miss rate * 500 nsec) Average I-stream Read Time

Cost of data reads and writes

{ ((read data hits + write data hits) ♦ 100 nsec) +

((read data misses + write cache fills) ♦ 500 nsec) +

CCdata writebacks + unwritten modified cache llnes5 ♦ 400 nsec) >

/ (total number of data reads + total number of data writes) Average Data Cache Access Time

Bus Demand

{ (read data misses + write cache fills),* fill slTe,+
(data writebacks + unwritten, modified cache lines) * cache line size }

divided bv (elaosed time)

= bus demand in bvtes / second

Case 1 -- 4k bvte, fullv associative. LRU cache

I-stream hit rate

data hit rate
= 96.5%

= 95.9%

data writebacks

write cache fUls
unwritten modify lines

= 7351

= 4037

a 4073

for I-stream: (cache model assumes straight 8-bvte I buffer)

0.965 * 100 nsec + (1 - 0.965) * 500 nsec

114 nsec effective I-stream read access time

for data reads and writes:

Average Data Cache Access Time =

(231k ♦ 0.041 + 4037) * 500 + (7351 + 4073) * 400)((231k * 0.959 + 117k - (7351 + 4073)) * 100 +

(231k + 117k)

= 127 nsec Average Data Cache Access Time

Bus Demand s { (231k * 0.041 + 4037) * 16 + (7351 + 4073) * 8 } /

(455,914 instr. * 400 nsec / instr.)

1.69 Mb / sec

CASE 2 -- 32 kbyte direct mao cache

I-stream hit rate

read data hit rate
= 97.0%

B 96.0%

data writebacks

write cache fills
unwritten modify lines

= 2710

= 3988

s 8616

for I-stream: (cache model assumes straloht 8-bvte I buffer)

0.97 » 100 nsec + (1 - 0.97) ♦ 500 nsec

= 112 nsec effective I-stream read time

for data reads and writes:

Averaqe Data cache Access Time »

{ (231l< ♦ 0.960 + 117k - (2710 + 8616)) * 100 + ((231k ♦ 0.040) + 3988) ♦ 500 + (2710 + 8616) ♦ 400 >

(231k + 117k)

X 126 nsec Averaae Data Cache Access Time

{ (231k * 0.040 + 3988) ♦ 16 + (2710 + 8616) ♦ 8 > /

(455,914 instr. ♦ 400 nsec / Instr.)
Bus Demand

X 1,66 Mb / sec

CASE 3 -- 16 kbyte 2-wav Set-Associative cache

I-stream hit rate

read data hit rate
X 97.1%

X 96.2%

data writebacks

write cache Hlls
unwritten modify lines

X 2728

X 3790

X 8130

for I-stream: (cache model assumes straight 8-bvte I buffer)

0,971 ♦ 100 nsec + (1 - 0.971) ♦ 500 nsec

111,6 nsec Averaqe I-stream Read Access Time

for data reads and writes:

Averaqe Data Cache Access Time =

{ (231k ♦ 0.962 + 117k - (2728 + 8130)) ♦ 100 + (231k ♦ 0.038 + 3790) ♦ 500 + (2728 + 8130) * 400 >

(231k + 117k)

125 nsec Average Data Cache Access Time

Bus Demand x < (231k * 0.038 + 3790) ♦ 16 + (2728 + 8130) ♦ 8) /

(455,914 instr. * 400 nsec / instr.)

1,58 Mb / sec

Cache Performance Summary

Board SpaceI-stream Read Data Read/Write Bus Demand PowerPacicagesCache

30,9 sq.ln.127 nsec 20.1 watts1.69 Mb / sec 32114,0 nsec4icb FALRU

55.8126 1.66 122 41.5112.032icb direct mao

98.4125 1.58 224 70.4111.616Kb 2-wav SA

{ end of cache performance summary -- 11/28/84, mist *:Cbutts.deceast]cp.rno }

Custom 4K byte Fullv Associative. LRU Data TB/cache

n Data Cache TB

a) Descriotion

1) 128 fullv associative least recently used CFALRU) system entries,

128 FALRU orocess entries
2) sinole cycle clear of either system or orocess entries
3) full internal byte oarity

b) Parts Count, Board Soace, and Power Estimates

2.0 sq.ln.74F374
xxxxxx

74F374

74F244

4 20 pin

2 100 pin LCC
4 20

1 20

Virtual Address Reolster

TB FALRU chips
Physical Address Reoister
Hit Buffer

1,38 watts

2.00

1.38

0.37

4.0
2.0

0.5

8,5 sq.in.11 pacxages 5.13 watts

c) Timing

VA available at incut to.virtual address register
VA available at output of virtual address register
VA available at TB fALRU Chios
Data available at output of FALRU chips

VA available at incut to,virtual address register
VA available at output of virtual address register
VA available at TB FALRU Chios
Data,available at output of FALRU chips
Hit indication available at output of hit buffer

0,0 nsec

8.0

8.0

33.0

0,0 nsec

8.0

8.0

33.0

40.0♦ ♦

VA available at Inout to,virtual address register
VA available at output of vir;tual address register
VA available at TB fALRU Chios
Taq, data, and hit Indication available at output of FALRU chips
PTE available at output of physical address register

0,0 nsec

8.0

8.0

33.0

41.0

oarity Indication availabletbs♦ ♦

2) Data Cache

a) Description

1) 4k bytes fullv,associative, least recently used
2) 64 bit cache lines

3) fill size is 128 bits
4) writeback,
5) control bits = validmodified, shared, and WIP
6) direct clear on WIP bits, all others must be cleared via explicit writes

b) Parts Count, Board Soace, and Power Estimates

74F244

74F139
xxxxx

74F374

Physical Address Buffer

FALRU Chip selector, .
FALPU data cache Chios
Memory Data Reoister

4 20

1 16

8 100 pin LCC 16,0
8 20

2.0 1.47

0.08

12.00

1,38

0.4

4.0

22.4 sq.ln. 14,93 watts21 packaqes

ci Tlmlnq

Dhvslcal address CPA) available at outout of PA reqlster

PA available at outout of PA buffers
PA at data cache address bus

PA at data,cache,FALRU chlos
Data and hit Indication available at output of data cache falRU chips

41.0

48.0

52.0

55.0

80.0♦ ♦

Physical address (PA) available,at output of PA reqlster
PA available at outout of PA buffers
PA at data cache address bus

PA at data,cache,FALRU chlos
Data_and hit Indication available at,output of data cache FALRU Chios

Hit Indication available at output of hit buffer

41.0

48.0

52.0

55.0

80.0

87.0♦ ♦

Physical address (PA) available at output of PA reqlster

PA available at outout of PA buffers
PA at data cache address bus

PA at data cache,falRU,chips
Taq. data, and hit indication available at output of data cache FALRU chips

data available at outout of memory data latch

41.0
48.0

52.0

55.0
80.0

88.0♦ ♦

MIST::[butts.cache]fairucc.rno11/29/84)end of custom 4ic FALRU cache.(

Frioate TB/cache Chip -- Description of Operation

The fullv associative, least-recentlv-used (FAlRU) Frigate

TB/cache chio is intended to be a fast, general purpose,
integrated cache building bloctc for ,use in the Frigate

The design Incorporates features that allow itprocessor.

to_be used in the instruction and data cache translation
buffers, and_ in the instruction and data caches. The 128

entry by 32^bit design incorporates single cycle direct
clear, suooort, for locking of cache locations (as regulred

for use in a pipelined processor), and ,looic_for the support

of a writeback cache scheme. The replacement algorithm is
true least recentiv used (LRU).

This particular design has evolved from a discussion of

cache organizations,, found In Peter Koooe's book "The
Architecture of Pipelined Computers," oaoes 260-262. Kogge

suggests that a FIFO-like scheme, altered to recirculate the

most recentiv used cache entry to the too of the FIFO, can

be used to implement the least-recently-used replacement
algorithm in,hardware. New entries are written to the top

of the FIFO, with all other entries being forced down one

location. If the FIFO is full, the oldest entry is forced

out the bottom and,lost. This design emulates the FIFO with

a shift reolster-like organization, in which each shift
register location, holds a cache entrv's address tag, valid

and other status bits, and data.

Each entry,has a comparator, which compares the, presented
address with the _stored address tag. Comparison of the

presented address with the address,tag of each cache entry

proceeds simultaneously. When a hit occurs, the data of the

matching entry is enabled onto the common data bus,_ and

transmitted bv output drivers to the external data olns.

The matching data is also presented via the common data bus

as input to the too location of the entry shift register.
The hit indication is used to enable the matching entry and

all_entries above,the matching entry to shift when the clock

arrives, thus shifting the, matching entry into the top

location and all successive entries,down to the matching
entry, down bv one shift register location.

Since the address tag,can,be re-created from the ,matching
address, and the valid bit can be re-marked as valid, there

is .no need to include additional bus structures to
recirculate the matching entrv's tao and valid,bit to the

top of the shift register. Defining the valid bit of the

too entry from an external pin also allows an entry to be

marked invalid, thereby giving,a mechanism for. Invalidating
single ,TB entries. While this has,the undesirable feature

of causing a 'dead' entry to exist within the TB until it
finally is shifted out the bottom, it costs no additional
logic,, and. with a reasonably sized TB, results in a

negligible performance loss.

Fully Associative Chio -- Descrlotlon of Ooeratlon Page 2

Writes are done bv asserting the write data on the common

data bus. the corresoonding address onthe FALRU cache chip
address pins, and asserting the valid bit_on^ the valid in

Pin. Write enable is ORed with the hit indication from the

bottom ('oldest') entry, causing all the entries of the

shift register to shift with the rlsina clock: edge. The new

data is.written into the too entry, ail intermediate entries

are shifted ,down one entrv, and, if the chio is full, the

oldest entrv is lost.

The addition of a^second single cycle direct clear status

bit, the write-in-progress ,(WIP) bit. alono with the means

to,read and write this bit uoon a cache hit, gives the falru

chip a mechanism, for marking,a cache location as having a

pending write. This hardware simplifies the management of a

Pipelined processor's accesses to cache, and allows stalling

the processor onlv in cases where a, write to cache is

pending and a successive Instruction in the pipeline
attempts to access the same memory,location. The ability to

independently, clear all WIP bits in a single cycle prevents

this feature from becoming a performance bottleneck during

pipeline flushes.

Two,additional status bits, alono with a final register to

buffer entries being lost out the bottom of the shift
register, allow the ooeratlon_of the fAlRU,cache chio in a
writeback cache mode. The first status bit is used to mark

a modified cache entry as needing eventual writeback to

system memory. The second bit marks a cache entrv as being

shared between two or more caches in the system, and as

needing to,have anv modifications of this,location broadcast

to the entire system. These two status bits,are treated as

two additional data bits, and must be initialized by the

processor before cache operation is begun. An QR-AND
structure on the input of each of these bits allows either

bit, to be reset upon a cache entry write, simply
recirculated with its current value, or set uoon a hit,

Onlv the,shared,bit is available externally, as the state of

the modified bit is reflected bv the state of the writeback
flag.

When an entrv is,shifted out of the shift register into the
lost entrv buffer, its valid and modify bits are ANDed
together to create an external writeback flag. If the entry

is both valid and modified, the writeback flag is asserted,
and the lost entrv,address tag and data,must, be read from

the FALRU cache chio before any successive cache chio writes

areallowed, else the modified data will be lost,
additional external signals exist to allow the reading of

the address tag and data from the lost entrv buffer.

To oroyide a means of monitoring fhe integrity of the
operating FALRU cache chip, oaritv is generated in roughly

eight bit arguos of the address_tag. status bits, and data.

This oaritv is checked upon a hit. or when data is read from

Two

Fullv Associative Chlo -- Descriotion of boeration Page 3

the lost entry buffer, A dlscreoancv,in parity is reported
externally by a parity error flag sional, A means_wlll be

provided to allow the testing of the parity generation and

checiclng logic.

Testing of the FALRU cache chlo will involve^several phases.

Phase I will ooerate the FALRU cache _ehip as a shift
register only, presenting,test patterns designed to test the

integrity of each bit of nemorv in the_address tag, status

bits, and data portions of each entry, ^Phase II ,wlll
attempt to determine that each entry's comparator is fully

functional, and can produce a hit indication and cause, the

correct data and status to be produced at the data I/O oins.

Phase III will confirm the feedbadc of.matching entries to

the .top of the shift register. A final test win be of a

statistical nature. It will put the chip through a sequence

of. writes and reads, and then read the entire state of the

chip and compare it against the correct state. By operating
the FALRU cache chip in a non-standard mode, the number of

test vectors can be greatly reduced, For exampie,^there is

no need,to haye the chip do the shift re-organization during

the comparator test phase.

I

FALRU cache Chios are.cascadable in both width and depth to

allow the construction of larger caches. Tp increase the

width of a cache entry., chips may be accessed in parallel by

addressing several Chios with the same address, and routing

a slice of the wider.cache word to each individual chip. To
increase the deoth of a cache, the least significant address

bits can be used to select which chip or. chips routing
perform .the . given operation. This assumes an even
distribution of accesses are made to each chip» clearly
cases exist where the distribution of data accesses is
skewed, such as regularly accessing a, data array. The

impact of regular accessing.upon a multiple.FALRU cache chip
based system .can be estimated by examining the cache
performance simulation for a cache of the corresponding
smaller size. Thus, the 4k.byte Frioate data cache would

operate worstcase .much like a Ik byte cache, and cache
performance simulation data predicts that the data cache hit

rate will fall from 96% to 92% under such conditions.

< MIST Moy, 29, 1984 hbb >[butts.frigate]fairudes.rnot •
• e

7-0EC-1984 13:53:14

7-0EC-1984 13:53:07

MhX/VnS Macro V04-00

0PC00E-MAR;36

OPCODE 1Page

(1)

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

1 .title oocode

2

3 ;

4 ; local symbols
5 ;

6

00000001

00000002

00000004

00000003

00000010

00000020

00000040

00000080

00000100

7 brch

8 cont

9 cond

10 uncd = 8

11 push =16
12 ftch

1 3 pop

14 loop = 128
15 dest

1 ;stop decode and branch after execution

^stop decode and continue after execution
;conditional branch

2stop pipe and unconditionlly branch
^implied push for unconditional branch
;stop operand fetch and continue after execu
Jifflolied pop for return from subroutine

;iooping instruction - predicted taken
^register destintion optimization allowed

2

4

32

64

256

16

00000000

00000001

00000002

00000003

00000004

17 b = 0 ;byte
;word

;iongword

Jquadword
;octaword

18 w 1

19 I = 2

20 q = 3
21 o = 4

2 2

00000000

00000001

00000002

00000003

00000004

00000005

2 3 rd

24 «r

25 md

26 ad

27 vd

28 bd

0 ;read access

;write access

;modify access (read and write)
;3ddress access

;vield access

;branch displacement

1

2

3

4

5

29

30 ;

31 ; This program defines the opcode data base.
32 ;

33

34 define name^ cycles/’ access^ datatype^ flags.macro

35 n = 0

36 . i roc x/^ <name>

37 n = n t 1

38 .endr

.ascii

.rept

.ascii

• endr

.byte

39 /name/

6 - n

/ /

40

41

42

4 3 cycles
44 n = 0

45 . i ro x/<3ccess>

4 6 n = n + 1

47 . endr

.byt e

. i rp

.byte

.endr

.bUb

. i rp

.byte

.endr

.blkb

48 n

49 xjr <a ccess>

50 X

51

52 6 - n

X/<datatype>53

54 X

55

56 6 ' n

57 n = 0

VAX/V«S f^acro V04-00

OPCODE.«AR;36

7-0EC-198A 13:53:14

7-0EC-1984 13:53:07

Page 2OPCODE

(1)

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

00000000

0000

0000

0016

002C

0042

0058

006E

0084

009A

0030

00C6

OODC

00F2

0103

one

0134

014A

0160

0176

018C

01 A2

0133

01CE

01 E4

01 FA

0210

0226

023C

0252

0268

027E

0294

02AA

02C0

0206

02EC

0302

0318

- 032E

0344

035A

0370

0386

039C

0332

03C8

58 . 1 rp x/^<f lags>
59 n n • X

60 . endr

• word

. endre

61 n

62 define

63

64 ;

65 ; Define opcode
66 ;

data base

67

$data^rd^wrt^pic^long^noshr^noexe^lcl#con^rel68 .psec t

69 opcode::
define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

HALT/^10^<>^<>r<brch>

NOP^-O^OxO

REI,10^<>^<>r<brch>

JiE4;^10^<>/-<><’<brch>
Re^30r<>^<>r<orch>
irs^l ^<>^<>^<brchrpop>
LDPCTX^50^<>-f<>^<cont>

SVPCTXx50#'<>^<>^<cont>

CVTPS^100/^<rd^adrrd^ad>^<wxb</’W/b>jr<cont>

CVTSP^100r<rd^ad^rd^ad>,<H/-b^w>>b>/'<cont>

INDEX^8r<rd/^rd^rd^rd/^rdryr>r<l*^lrlxl/^lrl>#^<dest>

CRC^100^<adrrdrrdrad>x<b/l^M^b>^<cont>

PR08£R/'10^<rdr rd-rad>r<bj'W^b>/-<dest>

PP03£W/>10^-<rd^rd^ad><-<b^w^b>^<dest>

INSQUE/-1 5-r<adxad>#<b^b>^<f tch>

REMQUExI 5r<adxHr><><b#-l>i'<f tch>

8S8B>>1#<bd>^#-<uncdrpush>
8R8/-1r <bd>rx<uncd>

8NEQr1/<bd>r#<cond>

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89 8EQL^1r<bd>^j'<cond>

8GTR^1^<bd>/-^<cond>

8LEQ*-1^<bd>#/-<cond>

J SBr1#<ad>^r<uncdrpush>
j*!p#'1/’<ad>y/^<uncd>

B6EQ<'1y<bd>/-/’<cond>

8LSS^1r<bd>r^<cond>

BGTRU^^ W<bd>^^<cond>

BLEQU/-1^<bd>^x<cond>

8VC# W<bd>x^<cond>

BVSr U<bd>/--r<cond>

8G£0U^1/'<bd>#’/<cond>

BLSSU^I »^<bd>>'/^<cond>

ADDP4#^100^<rd^adrrd^ad>r<w/'bxwxb>^<cont>

ADDP6x100^<rdx adr rd/^ ad^rd^ ad>r <w/’brw^bir w^r b>jr <cont>

SU8P4^100^<rd^ad^rd^ad>r<w^brW/rb>^<cont>

SUSP6^ 100^<rd^ adr rd^ ad^ rd^ad>^ <wrb^ <cont>

CVTPT^100^<rd^ad^ad/'rd^ad>^<w/^b^b^wrb>/^<cont>

MULP^100/^<rd#ad/rd^adrrd ad>r<wrb#tf#^b#tt/^b>r<cont>

CVTTp, 100^<rd^ad/'3d#’rdx3d>^<w/^b<-b<’tf^b>#’<cont>

PI VP^100^rd^adrrdradrrdrad>r<wrarWrbrwrb>r<cont>
HOVC3r^f0^

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

<rdr ad/ad>r<wrbrb>r<cont>

CPIPC3r100r<rdr adrad>r<ur brO>/'<cont>

sc ANCr100r<rdr adradrrd>r<Wrbrbrb>r<Cont>

SPANCrl

MOVCSrd

110

111

112

0r<rdradradrrd>r<Wrbrbrb>r<cont>

0’)<rdradrrdrrdrad>r<«rbrbrWrb>r<COnt>
113

114

7-0EC-1984 13:53:14

7-DEC-1984 13:53:07

VAX/VKS «acro V04-00

OPCODE.har;36

OPCODE Paqe 3

(1)

03DE

03F4

040A

0420

0436

044C

0462

0473

048E

04A4

049A

04D0

04E6

04FC

0512

0528

053E

0554

056A

0580

0596

05AC

05C2

OSDS

05EE

0604

061A

0630

0646

065C

0672

0683

069E

0684

06CA

06E0

06F6

070C

0722

0736

074E

0764

077A

0790

07A6

07A6

07A6

07E8

07 FE

0814

Q82A

0840

0856

086C

0882

0898

08AE

115 define

define

define

define

Define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

. rept

define

. endr

define

define

define

define

define

define

define

define

define

define

CW?C5#100^<rd^ad^rd^rdxad>^<w^brb^w^d>^<cont>

HOM'y Cr^ 00^ <r adr rd^ ad*r dr ati>r <Ufbfb^bry fb>If <cor\t>

nO\/TUZ*^QO*<rd*ad*rd*ad*rd*ad>*<v*b*b*b*u*b>*<cont>

3S8W/’1,<od><-<w>^<uncd/^push>
9Rg^U<bd>/'<«>/<uncd>

CVTWL^I^<rdzwr>r<w#l>r<dest>

CVTWa^U<rd^ar>r<w/'b>/’<dest>

«OVP<'100-f<rd>-ad/ad>^<Wirb#b>^<cont>

Cf^PP3^100x<rd<- 3d,3d>*<u,b*b>*<cont>

Cy^PL*^GO*<^d*ad,\l^>*<M,b*l>,<cont>

C^PP^r']GO*<rd*ad*rd*ad>*<\i*b*ti*b>r<CQnt>

EbnPZ,^QO,<rd,ad*ad*ad>*<)i*b*b,b>*<coT)t>

n^7CHt*'\QQ*<rd*ad*rd*ad>*<M*b*u*b>*<cont>

LOCZ Q0*<rd*rd* 3d>*<brv f b>*<cont>

SKPC*^00r<rd*rd* ad>*<b*y*b>*<cont>

«OVZWL^1»-<rd/'wr>r<wrl>^<dest> ^
KCB)^*Z*<rd*rd*md*bd>*<u*M*¥*u>*<Loop^
MOVAW^1x<ad^wr>r<w^l>^<dest>

PUSHAWrI #-<ad>^ <w>^<push>
A0DF2^2i-<rd>'ffid>>-^<dest>

A00F3r2#<rdxrd^wr>y<l^lrl>^<dest>

SUBF2/>2ir<rd/-ffld>^^<dest>

SUBF3#2r<rd^rd#wr>^<l^l^l>^<dest>

MULF2,3^<rd^md>^^<dest>

MULF3^3i-<rd^rd^«r>x<UUl>^<dest>

DIVF2r13-r<rd^md>ir^<dest>

0IVF3/^13r<rdrrd^wr>^<l^lrl>^<dest>

CVTF8/'2/’<rd/^wr>/^<l>^b>/^<dest>

CVTFWir2#-<rd#-wr>^<l#’W>/’<dest>

CVTFL^2#^<rd^wr>^<l^l>r<dest>

CVTRFL^2-r<rd/>wr>r/-<dest>

CVTPF/’2^<rd#«r>*-<b4'l>r<dest>

CVTWFi'2^<rd^wr>/<w^l>^<dest>

CVTLF^2^<rdrwr>/<lrl>x<dest>

AC3Fr5^<rdrrd^flid^bd>^<t^l^l^ w> copy
«OVFx1^<rdrwr>^^<dest> ^
C?^PF,2^<rd/-rd>^#^<dest>

«NE6F^1*’<rd^wr>^<l/-l>^<dest>

TSTF,1 /-<rd>#<l>

EPiODF/^6/’<rdr rdxrd^ wr^wr>^<trb-f l/l#l>r<cont>

P0LYF#’100-r<rd^rd#ad>^<l^a^b>^<cont>

CVTFDr2#<rd/-tfr>,<lxq>r<dest>
RESPV^-O/-0^0^<brch>

ADAWIr5r<rd/^vd><-<w^w>^<ftch>

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159 3

RESRV/^0^<><'<>r<brch>160

161

INSQHI^20#<ad^ad>^<b#b>/’<f tch>

INSQTI^20^<3dr ad>#<b/’b>/-<f tch>

REM0HI^20#’<ad^wr>^<brl>/-<f tch>

RE«QTT*^20^<ad^wr>r <b^l>r <f tch>

ADDD2r4^<rdrmd>r<q^q>^<dest>

AD00 3-r4^<rd^ rd^wr>;r<qr q^ q>r<dest>
SUaD2^4r<rdi>wd>^<q^q>#<dest>

SU8D3-r4^<pd^rdrMr>x<q/q/-q>^<dest>
rtULD2r7/-<rd^rad>^<qrq>#<dest>

MULD3r7^<rd^rdxwr>y<q^qrq>^<dest>

162

163

164

165

166

167

168

169

170

171

OPCODE 7-0EC-1984 13:53:14

7-DEC-1984 13:53:07

VAX/VHS Wacro V04-00

OPCODE.«AR;36

Page 4
(1)

08C4

08DA

08F0

0906

091C

0932

0948

095E

0974

098A

09A0

09B6

09CC

09E2

09F8

OAOE

0A24

0A3A

0A50

0A66

0A7C

0A92

0AA8

0A8E

0AD4

OAEA

0300

0816

082C

0842

0858

086E

0384

089A

0880

08C6

OBDC

08F2

OCOS

0C1E

0C34

0C4A

0C60

0C76

0C8C

0CA2

0CB8

OCCE

0CE4

OCFA

0010

0D26

003C

0052

0063

007E

0D94

172 DTVD2r31^<rd^md>^<q^q>^<dest>
DlVP3^31^<rd/rd^wr>r<q^a^q>^<dest>

CVT0B^3r<rd#>wr>r<q^b>^<dest>

CVTDy#’3*-<rd#»i(r>/^<q^w>/’<dest>
CVTDL^3^<rd^wr>^<a^l>^<dest>

CVTRDLr3/^<rd^wr>^<q/-l>#^<dest>
CVTBD^3r<rd^wr>^<brq>/<dest>
CVTWD^3/<rd>>wr>#'<w^q>/^<dest>

CVTLDr3^<rd^tfr>/-<lrq>^<dest>

AC80r5^<rd^rd^flid^bd>^<q#qxq^«>^

«0V0x3^<rd^wr>^<q^q>/’<dest>

CMPD^3^<rdxrd>^<q^q>^<dest>

MN£GD^3^<rd4'wr>^<q^q>^<dest>

TST0.r2,<rd>^<q>

EW0DOr10r<rdrrd/rdxwr#wr>^ <qrwrq/I^q>r<ccnt>
POLYD^I00^<rdx rdr3d>^<q^M#b>r<cont>

CVTDF#2^<rd^wr>r<q^l>
RESRV/-0/-<>i-<>^<brch>

ASHL/2/^<rd^rdx wr>^<b#>lxl>#^<dest>

ASHQ/’4^<rd^ rd<'Mr>^<brqrq>ir <des t>
£HULr4^<rd<rrd#rdrwr>>'<l^l^lrq>jr <dest >
E0IV/^18^<rdrrd#«rxur>^<l^q/l^l>^<cont>

CLR0/^2/><wr>/^<q>

M0VQ^3^<rdxwr>^<qrq>y<dest>
MCVAQr1,<ad^yr>,<Qj’l>r<dest>

PUSHAG^1*-<ad>r<q>^<push>
40 08 2^1 y<rd/^ffld>^<b/^b>r<dest>

A0DB3/’1^<rd^rd^wr>^<b/^b#b>^<dest>

SU8P2,1i-<rd#md>#<b^b>^<dest>

30883^1 »’<rd#'rdrwr>r<b^brb>r<dest>

MULe2^2ir<rd/-ffld>^<brb>^<dest>

MULe3<-2^<rdr rdrwr>/'<b»'b^b>r<dest>

Diva2^17,<rd/-i!!d>^<b#b>>’<dest>

0IV83r17^<rd/rd^«r>/ <b^b^b>.r<dest>

8ISB2-r1^<rd<'md>^<brb>/’<dest>

aTS8 3/-1x<rd/^rdywr>^<b#br b>^<dest>

3IC82^1^<r d^ ard>^ <b#b>^<dest>

BICP3^1^<rd^rd^wr>^<b#b^b>^<dest>

X0RB2^1,<rdi-nid>#><b4’b>^<dest>

X0R83,ri,<rdirrd^wr>^<b^b#b>#<dest>

HNEGBr 1 /■<rd/’wr>x<b^b>/’<dest>

CASE8^6^<rd^rd^rd>^<brD^b>^<brch7

M0VB#’1,<rd^wr>^<b/’b>#<dest>

C«PBir1/><rdrrd>#-<brb>>-<dest>

«C0!»!8,1 ,<rd^wr>^<b^b>*-<dest>

alT8^1 ,<rdirrd>/'<b/'b>r<dest>

CLRP^1^<wr>^

TSTB,1,<rd>^

INCBr1,<md><^

DECB,n<md>#

CVT8L*'1/<rd^«r>^<b^l>r<dest>

CVTBy^l ,<rd<-wr>#-<b^w>^<dest>

MOVZSLrl *'<rdi’«r>-r<a^l>/'<dest>

HOVZBy^l ^<rd/>wr>^<b/^ «>#<dest>

R0TL^1^<rdrrd^wr>#<b^l^l>^<dest V—

ACB3 »3r <rd#rdr md/bd>^<b^by^br«>r Eloop>
M0VA8,1,<ad^wr>^<b/'l>^<desf> ^

define

define

de fine

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

de fine

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

173

174

175

176

177

173

179

180

181

182

185

184

185

186

187

188

189

190

191

192

193

194

195

196

197

193

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

7-DEC-1984 13:53:14

7-0EC-1984 13:53:07

VAX/VMS Macro V04-00

OPCODE.MAR;36

P a q e 5OPCODE

(1)

OOAA

ODCO

0006

OOEC

0E02

0E18

QE2E

0E44

0E5A

0E70

0E86

0E9C

0EB2

0EC8

OEDE

0EF4

OFOA

0f20

0F36

0F4C

0F62

0F78

0F8E

0FA4

0F8A

OFDO

0FE6

OFFC

1012

1028

103E

1054

106A

1080

1096

10AC

10C2

10D8

10EE

1104

111A

1130

1146

115C

1172

1138

119E

11e4

11CA

11E0

11 F6

120C

1222

1238

124E

1264

127A

229 define

define

define

define

define

define

de fine

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

PUSHABr1r<ad>r^<push>
AD0W2^1/-<rdrmd>x<u^w>^<dest>

AD0W3x1^<rd^rdrMr>r<M^«^y>#<dest>

SU8W2^1^<rd^ffid>^<w^w>^<dest>

SUBW3^1/^<rdrrd#wr>/^<w#'W^«>^<dest>

MULW2#2#-<rd#md>^<w^w>r<dest>

MULW3^2^<rd^rd^wr>#<w/-y,w>/-<dest>

DIVW2,17^<rdxwd>#<«zw>^<dest>

DIVW3^17/’<rdrrd^yr>r<w^M^M>#^<dest>

aiSW2r1^<rd^iBd>^<«^w>»’<dest>

8ISW3^1»^<rd^rdzyr>^<w^w^w>^<dest>

BICW2^1 i-<rd^md>#-<w#w>r<dest>

BICW3^1^<rd^rd#^«r>#’<w/«^y>r<dest>

X0RW2#1^<rd^md>/<w^w>^<dest>

X0RW3/1r<rdrrd^ttr>r<yr«^w>r<dest>

MNEGy/-1>-<rd^yr>/-<w^w>^<dest>

CASEWr6x<rdrrd#rd>^<

M0VW#1^<rd/-wr>«-<yr«>*-<dest>

CMPWy^1/'<rd#^rd>r<wx«>r<dest>

MC0M«^1#-<rd<’«r>^<w#w>/-<dest>

3ITWr1/<rd^rd>^<w,«>^<dest>

CLRW^1^<wr>^<w>

TSTWxl <’<rd>j-<w>

INCW/’1r<ffld>/’<w>

DECW>>1i-<ind>^<w>

8ISPSW^2x<rd>-f <w>

8TCPS

P0PRir20X<rd>^<H>i-<cont>
PUSHR>20><rd>^<w>#-<cont>
CHHX,

CHME^10#'<rd>>-<w>i-<brch>

CHMS^10^<rd>^<w>,<brch>

CHMUr10r<rd>r<«>/^<brch>

ADDL2/'1 /<rdrmd>^<l/-l>^<dest>

AD0L3/^1^<rd#^rd/^«r>r<l^l/^l>^<dest>

SUaL2r1>-<rd^md>^^<dest>

3UBL3^1^<rd^rdxwr>#<UU l>i-<dest>

MULL2^2r<ra^iBd><'<l<-l><'<dest>

«ULL3/^2*’<rd^rd>^«r>/-<UUl>#'<dest>

0IVL2#^17*’<rd^md>r<U l>/^<dest>

DTVL3^17#<rd^rd^«r>r<l^l^l>^<dest>

8TSL2r1/^<rd/-i«d>>-#<dest>

8ISL3^1r <rd#'rdxwr>^<Ul# l>i'<dest>

8ICL2^1/-<rdi'md>^x<dest>

81CL3#'1^ <rd / rdx wr><r <1, I, l>^<Ge st>

X0RL2r 1 /•<rd#^md>/^<lxl>/^<dest>

X0RL3ir1,<rd^rdirwr>x<U Ul>^<dest>

MNEGL/’1i.<rd^wr>^<l/-l>r <dest>

CASEL>'6^<rd/-rd>-rd>^<l#-t#’l>^<brch>

MOVLrl »'<rd^wr>^<l^l>^<dest>

CMPL^1#’<rd^rd>^^<dest>

MCOML^I »-<rd/-Mr>#<l#l>r<dest>

STTL-r1/'<rdrrd>r<Ut>^<dest>

CLRL/1

TSTLy'1^<rd>r<l>

INCL/’I x<ffld>/^<l>

OECLr1r<ffid>#'<l>

230

231

23 2

233

234

235

236

237

23 8

239

240

241

24 2

243

244

245 >r<br ch>

24 6

247

248

249

250

251

252

25 3

254

2,<r<i>,<v>255

256

257

253 ^<rd>^<y>^<brch>

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

OPCODE 7-DEC-1984 13:53:14

7-0EC-1984 13:53:07

VAX/VHS Macro V04-00

OPCODE.HA8;36

Page 6

(1)

1290

12A6

128C

12D2

. 12E6

12FE

1314

132A

1340

1356

1 36C

1 382

1398

13AE

13C4

13DA

13F0

1406

141C

1432

1443

145c

1474

USA

14A0

1406

14CC

14E2

14F8

150E

1524

153A

1550

1566

157C

1592

15A8

159E

1504

15EA

1600

1600

1600

1 A4C

1 A62

1A78

1A78

1A78

1880

1896

18AC

13C2

1 808

laEE

1C04

1C1 A

1C30

286 define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

. rept

define

. endr

define

define

.rept

define

• endr

define

define

define

define

define

define

define

define

define

ADyCr1z<rd^iBd>/<U l>/^<dest>

SByc>-1^<rdrffid>^<l^l>/-<dest>

MTPRxl 0^<rd^rd>^^<cont>

MFpPr10r<rdrwr>^<l^l>r<cont>

MOVPSL^I 0»'<«r>y<l>

PUSHLi'U<rd>/^<l>^<push>
MOVAL^U<ad#«r>x<l^l>^<dest>

PUSHALr1/<ad>^<l>#<push>
805^7^<rdj'Vd^bd>x<U b^b>r<cond#’f tch>

8BC^7j><rd#^ vdjrbd>^<l^b^b>^<cond^f tch>

80SSy7^<rd#^vd^bd>^<lrb^b>^<cond^ftch>

8BCS^7^<rd/^vd^ bd>r <l ^b/^b>#<cond^ftch>

8PSC^7^<rd^vd^bd>>-<l^b^b>^<cond^ftch>

S0CCx7r<rd^vdybd>#<l^bjrb>^<cond#ftch>

30SSI/12^<rdrvd^bd>^<l^b-rb>^<cond^ftch>

3PCCI^12/^<rd^vd^bd>^<l#bj'b>^<cond^ftch>

dL 3S/3^< rd^ bd># <lrb>^<cond>

3L8Cr34'<rd^bd>#<lrb>/’<cond>

FFSr7r<rd^rdrvd#«r>^<lrb^b^l>^<ftch>

FFC,

CMPV(r7^rd/^rd^ wd^rd>^<l#b#b^ l>^<ftch>
CMPZ'^7><rd/'rd/-vd^rd>/'<Ubrb^l>^<f tch>
£XTVr^^<rd^rd^vd^wr>^<Ub^bxl>^<ftch>
£XTZ\i^7i<rdrrdrvdr«r>^<Ubxfa^l>#<ftch>
IN S V im) < r dr d ^ r d V d > # < UI ^ b ^ b V<f-fc&4i:^
A C BL <rd ^ rdxrod^bd>x<l^lrU

A08LSSx3^<rdriBdrbd>^<l^Ub>#(

A0BLE9^3^^rd^nidj'bd>r <l

303GEQr3^<8>d^bd>^<l^ b>X^

S08GTR,3^<mdxbd>/-<l^b>>;<iS£«>'
CVTLBirU<rd^Mr>#><Ub>^<dest>

CVTLW^I y-<rd/-wr>^<lrM>#'<dest>

ASHP^I OOrCrd^-rdr adx rd#^ rd/^ad>x<b#w/^ b>^<cont>

CVTLP

C ALL^^ 30lr<Vd^ad>^ <br b>4r<prch>
callLsOx
XFC^-lWe^
ESCDr10r<>/-<>

ESCE^10^<>^<>,<brch>

ESCF^10#’<>#^<>^<brch>

287

288

289

290

291

29 2

293

204

295

296

297

208

29 9

300

301

302

303

304

305 <rd^ rd^vd^wr>r<l^bxbxl>^<ftch>

306

307

308

309

310

311 P>
312

313 I oop>
314

315

316

317

31 8

319 <rdr rdrad>^<l^ a#b>^<cont>

320

321 ^d^ad>#<Ub>*’<brch>
#<>^<brch>322

323

324

325

326 50

327 RESRV,0»'<>^<>^<brch>

328

329 CVTDH«-20#-<rd^'wr>*-<qrO>
CVTGF,3/-<rd<>wr>r <q/^l>330

331 12

332 RESPVi-0^<><’<>^<brch>

333

334 AD0G2/^4^<rd^rad>#<q^q>

ADDG3^4^<rd^rdr«r>r<q^qrq>
SUBG2r4^<rd^iad>r<q^q>
SU9G3r4^<rdrrd^wr>r<q^q^q>
MUL6 2,7^ <r d^md>^ <q^Q>
MUL6 3,7^<rdrrd^wr>/^<q^qyq>
DIVG2,2 8r<rd^nid>x<q#q>
0TVG3/’28^<rdzrd^wr>^<q#’q^q>

CVTGa^3^<rdy’wr>r<q#b>

335

336

337

338

339

340

341

342

7-DEC-1934 13:53:14

7-DEC-1984 13:53:07

OPCODE VAX/V«S Hacro V04-00

OPCODE,«A«;36

Page 7

Cl)

1C46

1C5C

1C72

1C88

1C9E

1CB4

1CCA

1CE0

1CF6

1D0C

1D22

1D38

1D4£

1D64

107A

1D7A

107A

1£40

1E56

1E6C

1E82

1E98

. lEAE

1EC4

1EDA

1EF0

1F06

1F1C

1F32

1F48

1 F5E

IF 74

1F8A

1FA0

1F86

1FCC

1FE2

343 define

define

define

define

define

define

define

define

define

define

define

define

define

define

. rept

define

. endr

de fine

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

define

-rept

define

.endr

define

define

define

define

.rept

define

-endr

define

define

-rept

define

.endr

define

define

CVTC«#3^<rd»'wr>^<q^w>

CVTGL^3^<rd^wr>#<q^l>

CVTRGL^3-r<rd-rwr>^<q^ l>
CVT8S#-3^<rd^wr>^<b^q>

CVTW6^3^<rd^-ttr>^<vi^q>
CVTLG^3^<rd^'wr>,-<Uq>

AC8G^5r<rd^rd/ md^bd>^<q^q^q^ w>/Kloop:M

«0VG#3^<rd^wr>^<q>-q>
CJ^P6^3/<rd;rrd>^<q^q>
MNEGG#^3^<rd/’Mr>/^<qrq>

TSTG/^?#<rd><’<q>

£?lODG#10/^<rd^rd^rd^wr^tfr>^<q/^tfrq^l^q>r<cont>
P0LYG#^100^<rd# rd,rad>^<q/w^b>#<cont>
CVTGH,20^<rd#’wr>^<qrO>

344

345

346

347

348

349

350

351

35 2

353

354

355

356

357 9

358 RESPV,Ojr<>r<>/'<brch>

359

360 AD0H2r3^<rdrffld>^<o#o>

A0DH3^8^<rd^rd^i#r>#<o^o^o>

Si}B¥2,B,<rd,m6>^<o,o>

Sli8H3r8^<rd#rd^yr>#<o^o^o^

«ULH2#’14r<rdr«d>#’<o^-o>

«ULH3/’14#<rd/rdrwr>#'<o^o^o>

DIVH2#-56^<rd^i»!d>^’<OxO>

DIVH3^56^<rd^rdywr>#^<o^o#o>

CVTH8^6>’<rd#wr>r<o^b>

CVTHw^d^ <rd^Mr>^ <o^w>

CVTHL/^6x<rd^wr>r<o^l>

CVTRHL^6^<rd/'wr>^<o#-l>

CVT8H^6r<rd>’wr>*-<b#o>

CVTWHy'6#<rd/wr>^<w^o>

CVTLHr6^<rd^Mr>#<lxO>

ACBHr10^<rd^rd^??id^bd^#<o#o^Oxvi>^ oo pM
my»,6,<r<S,ur>^<o*o>

C?<PH/'6^<rdrrd>^<o^o>

HN£GH,6^<rd-rwr>,<o,rO>

TSTHx4«'<rd>#'<o>

£WODH^20/^<rd^rd^rd^^«r^wr>^<Cy«^Oj-l^o>^<cont>

P0LyH^100^<rd^rd/ad>^<o^wrb>^<cont>

CVTH6^20^<rd*'wr>^<o^q>

361

362

363

364

365

366

367

363

369

370

371

37 2

373

374

375

376

377

378

379

3801FF8

200E

2024

203A

203A

203A

20A8

. 20aE

2004

20EA

2100

2100

2100

2 310

2326

233C

233C

233C

2B24

2B3A

381

382

383 5

384 RE SRV*’0^<>,<>,<brch>

355

386 CLR0^44><iar>#-<o>

M0V0^6x<rdrwr>^<o^o>

MOVAO»>1#<ad^wr>»'<o^l>

PUSHAO^I /><ad>^<o>#<push>

387

388

389

390 24

391 RESRV#^0»’<>#<>^<brch>

392

393 CVTFHr 20/^<rd/^wr>^<Uo>

CVTF6#'3/'<rd^wr>#'<Uq>394

39 5 92

396 RESPV^O#<>^<>>><brch>

397

398 CVTHF^20^<rd^wr>^<o/'l>

CVTHD^20#<rd^wr>jr<o<rq>399

OPCODE 7-DEC-1984 13:53:14

7-0EC-1984 13:53:07

VAX/VHS Macro V04-00

OPCODE.HA«;36

Page 8

(1)

2850 400

2850 401

2650 402

2C00 403

2C00 404

8. r ept

define

-endr

RESPV/'Oj'<>>-<>^<brch>

. end

I IB 7 B 5 4 3 2 1

D

0

ManoryC
c

and Bus

OontroIlar

FRIGPITE SYSTEM BUS <FSB)

B
B

rrigata BI

ndaptar

<rBi>

BI ModulQS CPU 5 CPU 1 CPU 0

o o o o

o o o

R BI 1 n

\ FSrSTTM. LOGIC

o o o
TITLE: DRTE:

4 Dacambar B4BI 2 Fngata Syatam Block Diagran

ENfllNEER:
Patar Schnorr

PAGE:
1

I I I I
8 7 8 5 4 3 2 1

II IB B 5 4 37 2 1

1
]L l.a Prafatch Bus

1 ITB Mdrass Latch

]

0
uICTRL

<4: B>
D \

^u/y cJ^
D

ITB U
V

s[

.B^cb.
t-rflcaf .Pfl^D

latr.h
ICOOC ODDHESS BUS

/
32

]La: JltL

ICflChE ICOCHE

ITB

Status
C c

0
IC«>€: DRTfi BUS

/
84 ICnCHE Pi dr Latch

I 1
IB GA IB GA IB GA IB GA

I
[I PPT .Bap IBPT. HTG

PC GA1 I I I

T

V^-
vl L>B B

IBD

Jaquancar

Dacada

ROM

Basa Indax

GPRGPR

S-^
DispI GA Ctrl

I npr Png I ftisa Bag I I Tnriax Hag I fA £001]nal■jnass

1ipc riro
BASE 6us

'I

I

A A I

L
Addar GA Addar GA Addar GA

I

X64 8

RCG

<3: e>

ECTRLFCTRL

<7:0>V
Qfl 0 <15: 0>

64 48 32
TIT1 E: DftTE:

4 Docambar 84IBD Module
IBO>LOGICRDDER

0
Intarnal Bus Mrita Bus

EWeiKSR;<31: 0> PAGE:
V Peter Schnorr 1

I I I I8 7 6 25 4 3 1

♦

I II 47 B 5 3B 2 1

0 U P
RDDER urCTRL

<4: 0>

rCTRL

<7; 0>

0
<31: 0>

Intarnal Bus
]J-a. jih.

i

1
D 7 WftR MUX

□

4B
] [

<31:e> <8:0>

DTB

I Qtrh]]J-a:
MCT

Soquoncsr

DCfiCHE ftDDRESS BUS
I]

c c

r

Control64

DCnCHE DCftCHE

Input

Rotators

MOress

Firo

B4
DCRCHE DftTfi BUS

Clock Gan

In It CtrlB B

FSB

Control

I ftrlrtr Bag I Mamri^ cfita Bap

Oonso la

Output

Rotators

7^

n R

B4 ^48

ISYNC

<4:0>

ESYNC

<4:0> 000
TITLE: DOTE:

4 Dacambar 84
FRIGATE SYSTEM BUS kFita Bus Oparand Bus <31:0>

MCT MODULE
<FSB> MCT. LOGIC

ENCIhCER: PAGE:
Peter Schnorr 1 of 1

I I I I i2B 7 B 35 4 1

cja^EibaJ e:;ep puc eeajppu

>(3eq - t^BBT ‘TT ‘noN noJ

^•9BT ‘Z Jaqo^oo

BuiJoaui6u3 diL|3 3L|OB3 JO ai Bsodjnd lejauao Fijq.u3
I

«z

1 I
I

<]—a “^«*ajaf3

.*.*!*”t -A-j <o>-=1
1 •!'

tiM> mx

IS<}

3~N»3-| ^-E3-i ‘-Sn
<3=1■fIVS>

<}

<0

rt3Tw#r^#fc>?■> 3

<

¥;<J

3-WSrt&—tCFT^ 1

<F

< i

3
j

^5
»4\>tm •VM* •«•»•»> ■ MM

<F
<}-a H «M|»

o
<h-^

M M ■!»•■

< ■t •%*m

< ■<—I N MMIMN

<h°

^ ,

I
J

I
B 7 B 5 4 3 2 1

STORflGE CEXJ. SHIFT TIMING

PULLING DOt-M ThC PDDRESS LIhCIn ClkClk- ClkUddUdd
13 i

15 140 140D 55 Udd
R= 2B 0A A A .a. A

T i f 1 3 r 4J 1 \ Is 1 2 I
M3 MBM2Ml M4

ADDR IN

c i.BP > .5P
3 3

1
C= I.BP

B2
to noxt rag. 0R=14Be

C=B. BBE-3 Uas
0

In Clk Clk- Uaa Uaa UaaClk-
C= 1.B8E-2ise 15013 14

BI 1 T I L B 3I T IM7 MB MU' M12
MIB I

Uaa Uaa
C C

0 0

Uaa Uaa

R= 2B

3
C= I.BP 4 4C= .5P

C= 12E-3P Q-

c-
5

2 0 0 1
Uaa Uaa Uaa

^d HIT

CmB B
1

c
0

M5
PULLING DOMN THE HIT LINE Uaa

R2= 227 8 HITB Rl= 22 I
10

I
C2= .(BP I

UHLD 3 ir' C5= . 17P

CmHrMB
I I

M3 Cl= ,23P C4= .17P C3= .23P

4
0 0

UHLD 3

c- 0 0 00 0 Uaa Uaa
Uaa Uaa UaaUaa Uaa

fl 2 n

UEURL 1

Cm
I

1
Uaa

j TITLE: DRTE;

TLB Spice Model 11-27-64

TRSTTEEHT PPGE:
Tad Kohl

I I I I
8 7 B 5 4 3 2 1

I I
7 Se 6 4 3 2 1

Bddr Bddr

2:4 dacadar rOLRU

128 X 32b

FOLRU

128 X 32b
Intarnal Bus

Y3>

St^YE y

cs c <=»

c

c °»

□

D-c

-cY1
From nddrasa Add Stags

hit hitdata data

1TJI

>
0

uirtual addrssa rsgiatarI

I
addr addr

FRLRU

128 X 32b

FflLRU

128 X 32bun <30:0g> UR <8:3>

C < «=“24b

-C “ ^ us B4b
C

/ c
addr addr _C OB C

FflLRU

128 X 32b

FflLRU

128 X 32b

dataf^'t data^’t

I
Bb

Ufl <31> H -C cs Ufl <31> L _c cs

_C u«

—Q OS

msmory data ragistar
_C M

>-C
hit dataf"*—1data

addr addr

7
FflLRU

128 X 32b

FflLRU

128 X 32b

rotator

Dcacha flddrass Bus
C '=» C «=»

I
-C“ C “

V
_C oa CB B✓ '32b(►

dataf^t hit
data

physical addraas ragistar

i:

>74F244

2b

D>
mods accass Data Cacha

Hit H

Oparand Bus

<31:C)e>

addr addr■e
r/u

Uidlation FflLRU

128 X 32b

FflLRU

128 X 32b
Logic ca

V -C

OQ

— ra-Fuaodp hit hitdata data

I
R

D
fl

>
TB Hit H

■I >
(I

i

Dcacha Data Bus
Falrucc. logic

TITLE: DATE:

Nou. 2S, 1084FrigatB FflLRU TB/cacha Chip

LNUlKtLKr PAGE:
Bruca Butts 1/1

I I <(
8 7 6 5 24 3 1

Ia 7 6 S 4 3 2 1

0 U 0
ADDER

<31: B>

uFCTRL

<4: a>

fctrl

<7; 0>

0
Intarnal Bus

]

1
D

URR MUX
D

48

]] [

1<31: g> <8: B>

DTB

I I ii4nh I

MCT

Soquancsr
32

DCACHE ADDRESS BUS
]PAB

C c

t

ControlB4

DCACHE DCACHE
Input

Rotators

Addrsss

FIFO

DCACHE DATA BUS

Clock Gsn

Init Ctrl
B B

FSB

Control

I Qrtrtf- Ong I I 1 Hog I []■Msmcirij atla.

Conso la

Output

Rotators

A A

B4

ISTNC

<4:0>

ESYNC

<4:0>0 0D 0\

TITLE: DATE:

4 Dacambor 04

FRIGATE SYSTEM BUS

<FSB>

14-Its Bus Oporand Bus <31: B>
MCT MODULE

MCT. LOGIC

PjglhgR: PAGE:
Peter Schnorr 1 or 1

I I I8 7 3 26 5 14

4B 7 6 5 3 12

0 0 0 u ECTRL <15;0>14-ltg Bua Operand Bua

<31: B>

REG <3:B>

1 Ty. 1]

D

D

J-a:]

Diapatch

Saquancar

Diapatch

FIFO
URddraaa Bua

I

Contro

Store

I Trap atnh I

C c

>
[]■ trh Microuiord Regiater

I I I]

DR OB DR OB
N/RR

Dual

Port

Dual

Port

RB uECTRL

STRTLB RLOG MR U3EQLENCER

GR RRM RAM MB

DB BLB LB LB LB R
TEMP REG

32

J^a

7 7
9RC2 Mux 32 9RC1 Mux

32

I
t
i'

PUJ FPU il
n

0V UICTRL

<4: B>

UFCTRL

<4: B>

I Lt-I to I at I

Data

l-La: nh I I ntnh. I

Rddraaa Command
TITLE: DATE:

4 December 84EXE Module
t

EXE. LOGICB‘ 632
L^-lta Bua

meiNEER; PAGE:
Pater Schnorr 1 of 1

I I I I8 7 26 5 4 3 X

^Frigate pipeline sinulation model analysis of file dual:Ccutlerlpjacobi.cod
Simulation uas run on 29-N0V-1984 09:20:27.73
Data cache miss rate is set at

Oata cache miss forced write rate is set at

Static branch prediction was used to predict conditional branches

OX

OX

Total number of simulation cycles =
Total number of instructions executed

Average number of cycles per instruction =

33^44,387
13569313

' 2-82

Number of instructions that stop decode =
Number of instructions that stop fetch =
Total number of branching instructions =

Number of branches targets within the same virtual page =

Percent branches targets within the same virtual page =

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

36686

822576

717362

37-21

707332

85.99

91.99

3.01

85 8 93

10.44

29351

3.57

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

1381562

^23 9,64 2
4524255

6120074

11756385

Stall

4322683

2007957

476418

7 3 72

Wait

803487 31736650

2284080 31712708

151234S 31731366

0 3211 6941

0 26017291

Work

0

AutoincFdec register write wait cycles =
Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

Pipeline Utilization Percent

0

0

22S4080

0

Stage
Prefet ch

Decode

Address

Operand

Execute

$ run fb

dua1:Ccutler3pjacobi

Idle Stall Wait

3.6 11.3 2-1

5.9 5.3 6.0

11.8 1.2 4.0

16.0 0.0 0.0

30.7 0.0 0.0

Work

83.0

82.9

33-0

84.0

68.0

0

0

10

1

2

lFrigat6 pipeline simulation mcdel analysis of file dua1:Ccutlerlpiacobi.cod

Simulation was run on 30“N0V-19?4 04:50:32.76
Data cache miss rate is set at

Data cache miss forced write rate is set at

Dynamic branch prediction was used to predict conditional branches

Branch table size is 1024 entries

Branch counter width is

Branch block size is

02

OX

1 bits

4 bytes

38212106Total number of simulation cycles =
Total number of instructions executed

Average number of cycles per instruction =

13569313

2.82

366?6Number of instructions that stop decode =
Number of instructions that stop fetch =

Total number of branching instructions =
Number of oranches targets within the same virtual oage =

Percent branches targets within the same virtual page
=

Number of conditional branch instructions =
Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

616

822576

679332

82.59

707332

85.99

94.38

5.62

85393

10.44

29351

3.57

Pipeline Utilization Cycles

Wait

3811 55 31640143

2284075 31634462

15036S3 31667694

0 32073713

0 26017291

WorkStall

4309303

1996487

474583

5993

Idle

1331005

2297032

4566146

6132400

11724104

Stage
Prefetch

Decode

Address

Operand
Execute 0

0Autoinc/dec register write wait cycles =
Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

0

2264075

0

Pipeline Utilization Percent

y ai t Work

82.8

82.8

82.9

S3.9

68.1

Idle Stall

3.6 11.3

6.0 5.2

11.9 1.2

16.0 0.0

30.7 0.0

Stage
Prefetch

Decode

Address

Operand

Execute

S run fb

dua1:CcutlerJpjacooi

2.3

6.0

3.9

0.0

0.0

0

0

10

2

2

^Frigate pioeline simulation model analysis of file dual: Cc ut Urlpj acobi . cod
Simulation was run on 1-D£C-1984 00:23:29.43
Data cache miss rate is set at OZ

Data cache miss forced write rate is set at OZ

Dynamic branch prediction was used to predict conditional branches
Branch table size is 1C24 entries

2 bits

4 bytes

Branch counter width is

Branch block size is

Total number of simulation cycles =
Total number of instructions executed

Average number of cycles per instruction =

33108771

13560315

2-£1

Numoer of instructions that stop decode =
Number of instructions that stop fetch =
Total number of branching instructions =
Number of branches targets within the same virtual
Percent branches targets within the same virtual
Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches =

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

36636

636

822576

707199page

pace = 85.9?

707332

85.99

96.65

3.35

85893

10.44

29351

5.57

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

1331035

2224093

4477383

6038039

11620769

Stall

4317312

2004492

475963

7372

Wait

823796 31586078

2284073 31596113

1511678 31643742

0 32063360

C 26017291

Work

0

Autoinc/dec register write wait cycles =
Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

Pipeline Utilization Percent

0

0

2284073

0

Stage
Prefetch

Decode

Address

Operand
Execute

S run fb

dua1:Ccutler3pjacobi

Idle stall

3.6 11.3

Wai t Work

32.9

32.9

3?.0

84.1

68.3

2.2

5.3 5.3 6.0

11.7

15.3

30.5

1.2 4.0

0.0 0-0

0.0 0.0

0

0

10

3

2

frigate pipeline simulation model analysis of file dual:CcutIer3p5acobi.cod

Simulation was run on

Data cache miss rate is set at

Data cache miss forced write rate is set at

Dynamic branch orediction was used to predict conditional branches

1024 entries

3 bits

4 bytes

1-DEC-1984 19:43:16.37

OX

OX

Branch table size is

Branch counter width is

Branch block size is

36109600Total number of simulation cycles
Total number of instructions executed =

Average numoer of cycles oer instruction =

1 356931 3

2.81

36636Number of instructions that stop decode =
Number of instructions that stop fetch =

Total number of branching instructions =
Number of branches targets within the same virtual page

Percent branches targets within the same virtual page
=

707332

636

822576

707247

85.98

Number of conditional branch instructions =
Percent conditional branch instructions =
Percent of branches predicted correctly =
Percent of branches incorrectly oredicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch
3.57

85.99

96.63

3.37

85393

10.44

29351

Percent stop and branches

Pipeline Utilization Cycles

WorkMai t

823540 31587154

22S4071 31596890

1511659 31644202

0 32063862

0 26017291

Stall

4317765

2004466

475956

7372

Idle

1331129

2224181

4477791

603S374

11621606

Stage
Prefetch

Decode

Address

Operand
Execute 0

0Autoinc/dec register write wait cycles =

Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

0

2284071

0

Pipeline Utilization Percent

iiai t

2.2

6.0

4.0

Work

82.9

82.9

33.0

34.1

68.3

Idle Stall

3-6 11.3

5-8 5.3

11.7 1.2

15.3 0.0

30.5 0.0

Stage
Prefetch

Decode

Address

Operand
Execute

S run fb

dua1:Ccutler3pjacobi

0.0

0.0

0

0

10

4

2

'Frigate pipeline simulation model analysis of file dual:Ccutler3pjacob i . cod
Simulation was run on 2-DEC-1984 14:46:15.96
Data cache miss rate is set at OX

Data cache miss forced write rate is set at OX

Dynamic branch prediction was used to predict conditional branches

Branch table size is 1024 entries

Branch counter width is

Branch block sire is

4 bits

4 bytes

Total number of simulation cycles =
Total number of instructions executed =
Average number of cycles per instruction =

3S111133

13569315

2. 31

Number of instructions that stop decode =
Number of instructions that stop fetch =
Total number of branching instructions =

Number of branches targets within the same virtual page =

<>ercent branches targets within the same virtual
Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

36636

636

622576

706763

35.92oage

707332

85.99

9o.60

3.40

85393

10.44

29351

5.57

Pipeline Utilization Cycles

Stage
Prefet ch

Decode

Address

Operand
Execute

Idle

1331163

2225102

4479036

6039656

11623131

Stall

4317744

2004432

475937

73 72

Wait Work

824336 31587890

2284074 31597525

1511644 31644516

0 32064105

0 260172910

Autoinc/dec register write wait cycles =
Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

Pipeline Utilization Percent

0

0

2264074

0

Stage
Prefetch

Oecooe

Address

Operand

Execute

% run fb

dua1:Ccutler3pj3cobi

Idle Stall

3.6 11.3

5.8 5.3

11.8 1.2

15-8 0.0

30.5 0.0

Wait work

32.9

32.9

83.0

84.1

68.3

2.2

6.0

4.0

0.0

0.0

0

0

12

2

2

Friqate pipeline simulation model analysis of file dua1:Ccutlerlpiacobi.cod

Simulation was run on

Data cache miss rate is set at OX

Data cache miss forced write rate is set at

Dynamic branch prediction was used to predict conditional branches

Branch table size is 4096 entries

Branch counter width is

Branch block size is

3-DEC-19S4 09: 19:4<>.71

OX

? bits

4 bytes

Total number of simulation cycles =
Total number of instructions executed

Average number of cycles per instruction =

3810«703

1 356931 3

2.81

36630Number of instructions that stoo decode

Number of instructions that stop fetch =

Total number of branching instructions =
Number of branches targets within the same virtual page =

Percent oranches targets within the same virtual page =

707332

636

322576

707279

85.98

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch

Percent stop and branches

85. 99

96.65

3.35

85? 93

10.44

29351

3.57

Pipeline utilization Cycles

Stall

4317820

2004493

475963

7372

Wait

S25729 31536065

2284030 31596105

1511661 31643744

0 32063365

0 26017291

WorkIdle

1381069

2224025

447731 5

6037966

11620701

Stage

Prefetch

Decode

Address

Operand

Execute 0

Autoinc/dec register write wait cycles =
Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

0

0

2284080

0

Pipeline Utilization Percent

Idle Stall Wait

3.6 11.3

Work

82.9

32.9

83.0

84.1

68.3

Stage
Prefetch

Decode

Address

Operand
Execute

$run fb

dualrOcutlerOpjacobi

2.2

6.05.3 5.3

1.2 4.011.7

15.8

30.5

0.0 0.0

0.0 0.0

0

0

12

4

2

frigate pipeline sinulation moael analysis of file dual:Lcutlerlpjacobi.cod
Simulation was run on

Data cache miss rate is set at

Data cache miss forced write rate is set at

Dynamic branch prediction was used to predict conditional branches

4096 entries

4 bits

4 bytes

4-0EC-19c4 04:48:54.57

OX

OX

Branch table size is

Branch counter width is

Branch block size is

Total number of simulation cycles =
Total number of instructions executed

381110?0

13560313

Average number of cycles per instruction = 2.31

Number of instructions that stop decode =
Number of instructions that stop fetch =
Total number of oranching instructions =
Number of oranches targets within the same virtual page

Percent oranches targets within the same virtual page =

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

36686

636

822576

706788

85.92

707332

85.99

06.61

3.39

85893

10.44

29351

3.57

Pipeline Utilization Cycles

Idle

1381167

2225026

4476949

6039549

1162301 8

Stall

4317744

2004426

475931

7372

Stage
Prefetch

Decode

Address

Operand

Execute

Wai t

824273 31587336

2284030 31597483

1511646 31644494

0 32064099

0 26017291

Work

0

Autoinc/dec register write wait cycles =
Register base wait cycles
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

0

0

2284080

0

Pipeline Utilization Percent

Stage
Prefetch

Decode

Address

Operand
Execute

$ run fb

dua1:Ecutler3Djacobi

Idle Stall

3.6 11.3

5.3 5.3

11.8 1.2

15.3 0.0

30.5 0.0

Wait Work

62.9

82.9

83.0

84.1

68.3

2.2

6.0

4.0

0.0

0.0

0

0

14

2

2

frigate oipeline simulation model analysis of file dua1:CcutIerlpjacobi.cod
Simulation was run on 5-DEC-19fl4 00:11:1?.76

Data cache miss rate is set at OX

Data cache miss forced write rate is set at 02

Dynamic branch prediction was used to predict conditional oranches

Branch table size is 16384 entries

Branch counter width is

Branch block size is

2 bits

4 bytes

Total number of simulation cycles =
Total number of instructions executed

Average number of cycles per instruction =

38108678

13569313

2.31

Number of instructions that stop decode =

Number of instructions that stop fetch =

Total number of branching instructions =
Number of branches targets within the same virtual page =

Percent branches targets within the same virtual page =

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

36686

636

322576

707237

85.98

707332

85.99

96.65

3-35

85893

10.44

2'>351

3.57

Pipeline Utilizatipn Cycles

Idle

1381095

2224011

4477295

6037942

11620676

Stall

4317819

2004493

475963

7372

Wait

82371 5 31 586049

2284060 31596094

1511681 31643739

0 32063364

0 26017291

Stage
Prefetch

Decode

Address

Operand
Execute

Work

0

Autoinc/dec register write wait cycles =
Register base wait cycles
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

0

0

22S4080

0

Pipeline Utilization Percent

Idle Stall

3.6 11.3

5.8 5.3

11.7 1.2

15.8 0.0

30-5 0.0

Wait Work

32.9

32.9

83.0

84.1

68.3

Stage

Pr efet ch

Decode

Address

Operand

Execute

$ run fb

dua1:rcutler]Diacooi

2.2

6.0

4.0

0.0

0.0

0

0

14

4

2

Frigate pipeline siwulation model analysis of file dual:Ccutlerlpjacobi.coa
Simulation was run on

Data cache miss rate is set at

Data cache miss forced write rate is set at

Dynamic branch prediction was used to predict conditional branches

3ranch table size is 1633A entries

Branch counter width is

Branch block size is

5-0EC-19E4 19:46:22.92

02

OX

4 bits

4 bytes

Total number of simulation cycles =
Total number of instructions executed

Average number of cycles per instruction =

33110977

1 3569313

2.SI

Number of instructions that stop decode

Number of instructions that stop fetch

Total number of branching instructions

Number of branches targets within the same virtual page =

Percent branches targets within the same virtual page =

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

36636

636

822576

706816

85.93

707332

85. 99

96.61

3.39

85393

10.44

29351

3.57

Pipeline Utilization Cycles

Idle

1331173

2224969

4478363

6039478

11622975

Stall

4317763

2004432

475931

7372

Wait

824219 31537322

2284030 31597496

1511652 31644511

0 32064127

0 26017291

Stage
Prefetch

Decode

Address

Operand
Execute

Work

0

Autoinc/dec register write wait cycles =
Register base wait cycles
Double invalid register wait cycles =
Indirect autoinc/dec register write wait cycles =

0

0

22S4080

0

Pipeline Utilization Percent

Idle Stall

3.6 11.3

5.3 5.3

11.8 1.2

15.8 0.0

30.5 0.0

Stage
Prefetch

Decode

Address

Operand
Execute

S run fb

dua1:Ecutler3pjacobi

Wait Work

32.9

82.9

83.0

84.1

68.3

2.2

6.0

4.0

0.0

0.0

5

33

12

2

2

S C.yc.i.c. iz^rtu-

Frigate 6 stage pipeline simulation model analysis of file ph.cod

\ Simulation was run on 30-N0V-1984 14:46:31."2
Data cache miss rate is set at

Data cache miss forced write rate is set at 3!*%

Dynamic oranch prediction was used to pre'‘ict conditional branches

branch table size is

Branch counter width is

Branch block size is

5X

4C96 entries

2 bits

4 bytes

Total number of simulation cycles =
Total number of instructions executed

Average number of cycles per instruction = Em
Number of instructions that stop decode
Number of instructions that stoo fetch

Total number of branching instructions

Numoer of oranches targets within the same virtual page =

Percent branches tar.^ets within the same virtual page =

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional brcanches

Percent unconditional branches =

Number of instructions that stop pipe and then brancn
Percent stop and branches

1355149

62’32>4

25?

16?

1?5?76

194926

99.32

130053

6 6.60

53. 39

41.61

65042

33.31

176

0.09

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Translate

Operand

Execute

Idle

9241

225611

273£46

Stall

216135

216642

12S659

120250

Wait

163203

Work

1166570

11126dQ

1 D 5 8 3 2 4

10G4671

110534?

639375

216

37320

421223 0

4493C7

9156B2

0 0

1 0

Autoinc/dec register write wait cycles =
Register base wait cycles
Double invalid register wait cycles =
Indirect autoinc/dec register write wait

0

0

21 6

cycles u

Pipeline Utilization Percent

Stage
Prefetch

Decode

Address

Translate

Operand

Execute

Idle Stall

13.9

1 3.9

Wait Work

10.5 75.G

0.0 71.5

5.6 63.1

0.0 64.6

0.0 71.1

0.0 41.1

0. 6

14.5

18.0

27.1

23. 9

5 3.9

3.3

3.3

0.0

O.C

^ G.ycLe zeRrxju

Frigate ^stage pipeline (tb/cache) simulation model analysis of file ph.cod
Simulation was run on 4-0EC-19S4 17:52:55-66

Data cache data miss rate is set at 5%

Data cache address miss rate is set at 50X

Data cache miss forced write rate is set at 33Z

Dynamic branch prediction was used to predict conditional branches

Branch table size is 4096 entries

Branch counter width is

Branch block size is

1 bits

4 bytes

Total number of simulation cycles =
Total number of instructions executed = 62R9?4

Average number of cycles per instruction = 12.39\

1505467

Number of instructions that stop decode =
Number of instructions that stop fetch =
Total number of branching instructions =

259

169

195276

Number of branches targets within the same virtual page =

Percent branches targets within the same virtual page =

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

Number of instructions that stop pipe and then branch =

Percent stop and branches

194940

99.63

130058

66.60

66.69

33.31

65042

33-31

176

0.09

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Operand
Ex ecute

Idle

8915

204391

247492

314293

865975

Stall

259072

258959

214942

Wait

152410

Mork

1035070

1041955

998391

1191169

639375

162

44142

0 0

26 0

Autoinc/dec register write wait cycles =
Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait

0

0

162

cycles = 0

Pipeline Utilization Percent

Stage
Prefetch

Decode

Address

Operand
Execute

Idle Stall Wait

0.6 17.2 10.1

13.6 17-2 0.0

16.4 14.3 2.9

20.9 0.0 0.0

57.5 0-0 0.0

Work

72.1

69.2

66-4

79.1

42.5

~j dycAJL i2eprn_
\

‘ Frigate 4 stage pipeline (tblcache^ register destination) simulation model analy:
Simulation was run on 7-D£C-1984 10;35:Z7.12

Data cache data miss rate is set at 5%

Data cache address miss rate is set at 5QX

Data cache miss forced write rate is set at 33%

Dynamic branch prediction was used to predict conditional branches

Branch table size is

Branch counter width is

Branch block size is

4096 entries

1 bits

4 bytes

Total number of simulation cycles
Total number of instructions executed =

Average number of cycles per instruction =

1261300

62«'924

2.01

Number of instructions that stop decode =
Number of instructions that stop fetch =

Total number of branching instructions =

259

169

195276

Number of branches targets within the same virtual page =

Percent branches targets within the same virtual page =

Number of conditional branch instructions =

Percent conditional branch instructions =

Percent of branches predicted correctly =
Percent of branches incorrectly predicted =
Number of unconditional branches

Percent unconditional branches =

194944

99.83

130058

66.60

66.69

33.31

65042

33.31

Number of instructions that stop pipe and then branch =

Percent stop and branches

176

0.09

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Operand

Execute

Idle

3555

203792

226751

621804

Stall

232039

232204

Wait

152399

Work

863307

825196

1034222

639375

1C8

0 327

30 0

Autoinc/dec register write wait cycles =
Register base wait cycles =
Double invalid register wait cycles =
Indirect autoinc/dec register write wait

0

0

108

cycles 0

Pipeline Utilization Percent

Stage
Prefet ch

Decode

Operand
Execute

Is * XSYSTE S~NORk!AL# normal successful comoletion*
Command syntax error at or near 'EXITEXIT*

Idle Stall

0.7 13.4

16.2 13.4

18.0

49.3

Wait work

12.1 63.8

0.0 65.4

0.0 0.0 82.0

0.0 0.0 50.7

Page 28-DEC-l9ett lPjf?!0■PIANA.LOGl I

Frigate p<peHne ai^ulatlen frodel analyalt of fHa dba3i [cut 1 ar] lep.cod

simulation was run on 30-MOV-198a U»5lJ^7,31»
Data cache miss rate Is set at
Data cache miss forced write rate Is set at
Static branch prediction was used to predict conditional branches

Total number of simulation cycles * ttft244j771
Total number of Ingtructlons executed r 99^8,733
Ayeraoe number of cycles per Instruction «/ 4,85

^X

594,655
5785'55

3261253

Number of Instructions that stop decode a
Number of Instructions that stop fetch ■
Total number of branching Instructions »
Number of baanches targets within the same virtual Page *

Percent branches targets within the same virtual page a

Number of conditional branch Instructions a
Percent conditional branch Instructions ■
Percent of branches predicted correctly «
Percent of branches Incorrectly predicted *
Number of unconditional branches *
Percent unconditional branches ■ 17,14
Number of Instructions that stop pipe and then branch a

Percent stop and branches • 15,26

2503697

76.30

2P180P7

67,60

47,29
52,71

562437

500819

Pipeline Utllleatlon Cycles

WorkStal 1

7884557

7574364

5064202

Walt

3383247 21368908
307682 20592818

2816705 19873421
0 19870296

0 29^49233

Idle

15608059

19,769,907
20490443

28374475

18317844

Stage
Prefetch

Decode

Address

Operand
Execute

0

0

390Autoinc/dec register write wait cycles «
Register base wait cycles ■
Double Invalid register wait cycles »

2446

304844

Indirect autoinc/dec register write wait cycles « 0

Pipeline Utilisation Percent

Idle Stall
32.4

41,0
42.5

58,8

38,0

Walt Work

44,3

42,7
41.2

41,2

61,5

Stage
Prefetch

Decode

Address

Operand

Execute

7,016.3

15.7
10,5

0.6

5,8

0,0 0.0

0,0 0,0

■PIANA.LOGM 8-DEC-198a IBIP0 P«se 3

Fp<Q«te p<p»lin* •<mu1®t<on model enelysie of file dbe3l[cut 1erl1ep.eod
^Sfmulation was run on 1-DEC-198« 0lja5i52,P7
Data cache m<88 pate la set at 0%

Data cache miss forced write rate Is set at 0%
Dynamic branch prediction was used to predict conditional branches

Branch table s1*e is entries
Branch counter width Is

Branch block size Is
1 bits

<1 bytes

Total number of simulation cycles * <!»56356«3
Total number of Instructions executed »
Averaqe number of cycles per Instruction a 11,59

Number of instructions that stop decode »
Number of Instructions that stop fetch a
Total number of branching Instructions a

Number of branches targets within the same virtual page »

Parcant branches targets within the same virtual page a 75tb6
Number of conditional branch Instructions a
Percent conditional branch Instructions a 67,60
Percent of branches predicted correctly a 83,9K
Percent of branches Incorrectly predicted a 16,06
Number of unconditional branches a

Percent unconditional branches * 17,H
Number of Instructions that stop pipe and then branch a

Percent stop and branches « 15,26

99118733

59A655

576555

3281253

2116244a

2216007

562427

500619

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

15416307
19203392

19199712

25861947

15706716

Stall

7520299
7227109

4810706

Malt

3745347 18953690
307675 18897467

2762002 18863223

0 19773696

0 29649233

Merit

0

0

Autoinc/dec register write wait cycles a
Register base wait cycles a

Double Invalid reolstar wait cycles a
Indirect autoinc/dec register write wait cycles a

Pipeline Utilization Percent

363

2446

304844

0

Stage
Prefetch

Decode

Address

Operand

Execute

Idle Stall Malt

33,8 16,5 6,2
42,1 15,3 0,7
42,1 10,5 6,1
56,7 0,0 0,0
34,4 0,0 0,0

Work

41,5

41,4

41,5

43,3

65,0

p«c« ae-DEC-l9«« 10*00PIANA.LOGll

Frigate p<pe1'lne sir'ul»t<en moael analyaia of file dbo3l [cyt 1 er] <ep.eod

'Simulation waa run on

Data eacHa mlas rata la aat at
Data cache mlaa forced write rata la att at

Dynamic branch prediction waa uaed to predict conditional branchaa

102« entries

2 bits

4 bytes

1-DEC-I9«a 07107104,69
0%

0X

Branch table size Is
Branch counter width Is
Branch block size Is

Total number of simulation cycles *
Total number of Instructions executed •

Average number of cycles per Instruction ■

95312139

9998733

9.55

599655

576555

3261253

Number of Instructions that stop decode «
Number of Instructions that stop fetch a
Total number of branching Instructions a
Number of branches targets within the same.virtual page ■

Percent branches targets within the same virtual page ■ 76,09

Number of conditional branch Instructions ■
Percent conditional branch Instructions «
Percent of branches predicted correctly *
Percent of branches Incorrectly predicted »

Number of unconditional branches •
Percent unconditional branches ■ 17,19
Number of instructions that stop pipe and then branch m

Percent stop and branches * 15,26

2996623

2216007

67,60
87,75

12,25

562927

500619

Pipeline Utilization Cycles

Work

3619999 16756066
307675 18768977

2771798 18809953
0 19767992

0 29699233

Stal 1

7536976

7296587

9623568

halt$tage
Prefetch

Decode

Address

Operand

Execute

Idle

15909601

18967900

18906870
25599197

15365212

0

0

363Autoinc/dec register write wait cycles ■
Register base wait cycles ■
Double Invalid register wait cycles «
Indirect autoinc/dec register write welt cycles ■

2998

309699

0

Pipeline Utilization Percent

Stal 1

16.6

16.0

10,6

Walt Work

91,9

91,9

91,5
93,6

65,9

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

39.0

91,9
91,7

56,9

39.0

8.0

0.7

6,1

7.0 0,0

0,00,0

■PIANA.LOGM A*DEC-I9e« 10JC*0 Page 5

Frigate pipeline adulation model analytla of file dba3»[cut 1 erj 1 cp.cod
'Simulation uas run on 1-DEC-19B4 22129*54,65

Data cache misa rate la aet at 0%

Data cache mlaa tonced write rate la aet at PX

Dynamic brancH prediction waa uaed to predict conditional branches

Branch table aixe is 1P24 entries
Branch counter width la

Branch blocW alze Is

3 bits

4 bvtea

Total number of simulation cycles * 453P)78B9
Total number of Instructions executed a
Avaraoe number of cycles per Instruction a

9948733

4,55

Number of Instructions that stop decode a

Number of Instructions that stop fetch a
Total number of branching Inatructlons *

Number of branches targets within the seme.virtual page ■

Percent branches targets within the same virtual page a 76,29
Number of conditional branch Instructions ■
Percent conditional branch Instructions a 67,60
Percent of branches predicted correctly a 87,73
Percent of branches Incorrectly predicted « 12,27
Number of unconditional branches a

Percent unconditional branches a 17,14
Number of Instructions that stop pipe and then branch a

Percent stoo and branches » 15,26

594655

578555

3261253

2503397

2218007

562427

500619

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

15403250

18973620
18695486

25537742

15380962

Stal 1

7541066
7254226

4626390

Work

3603642 18759911
307653 18772390

2773646 18812367
0 19770147
0 29649233

Walt

0

0

Autoinc/dec register write wait cycles a
Register base wait cycles a

Double Invalid register wait cycles a
Indirect autoinc/dee register write wait cycles «

361

2446

304844

0

Pipeline Utilization Percent

Stage

Prefetch

Decooe

Address

Operand

Execute

Idle Stall Walt

34,0 16,6 6,0

41,9 16,0 0,7
41,7 10,7 6,1

56,4 0,0 0,0
33,9 0,0 0,0

Work

41,4

41,4

41,5

43,6

65,4

Pao« 6e-DEc-iPfla leieepiana.logm

Ppigtte p^oellf^* •imu^«t1on mootl •nelyslt of fHt dbaJj [cut 1 or] 1 ep.eod

€lPulat1on w«i run on 15:13157,76

Oat* eaehe mias rate fa aet at 0%
Data eacHe mfaa forced write rate Is set at

Dynamic branch prediction was used to predict conditional branches

Branch table size Is IP2^ entries
Branch counter width Is
Branch block size Is

« bits

4 bytes

Total number of simulation cycles « 453091P7
Total number of Instructions executed a

Avarape number of cycles oar Instruction *
9948733

4,55

Number of Jnstructlons that aton decode *
Number of instructions that stop fetch a
Total number of branchlnp Instructions a

Number of branches targets within the same virtual oaoe a

Percent branches targets within the same virtual eape a 76,28

Number of conditional branch Instructions a
Percent conditional branch Instructions a
Percent of branches predicted correctlv a

Percent of branches Incorrectly predicted a
Number of unconditional branches »

Percent yncondlt1onal branches a 17,14
Number of instructions thst stop pipe and than branch a

Percent atop and branches a 15,26

594655

576555

3261253

25133046

2218007

67,60
87,62

12,38
562427

500819

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

15401045
18965964

18865628

25539574

15362200

Stal 1

7546070

7259152

4829628

Work

3595337 18766675
307642 18778349

2773921 18619950

0 19769553

0 29649233

Walt

0

0

Autoinc/dec repister write wait cycles a
Register base wait cycles a
Double Invalid register wait cycles a
Indirect auteinc/dee register write wait cycles a

350

2448

304844
0

Pipeline Utilization Percent

Stage
Prefetch

Decode

Address

Operand
Execute

Idle Stall Walt Work

34,0 16,7 7.9 41,4
41,9 16,0 0,7 41,4
41.7 10.7 6.1 41,5
56,4 0.0 0,0 43,6
33,9 0.0 0.0 65.4

PIANA.LOGfl P«0* 78-DEC-198« 101345

Fr<a*te eioellne iimul^tlon itodel •r>«1yg<8 of file dba3: [cut 1 opHcp.coO

■SI rpul at < ort waa run on 3-DEC-1984 09il9l4<>,«9
Data eacKe mUt rate Is set at

Data cache nlas forced write rata Is set at 02

Dynamic branch prediction was used to predict conditional branches

Branch table site Is a096 entries

Branch counter width Is 2 bits
Branch bloc^ site Is 9 bytes

Total number of simulation cycles a 95268993
Total number of Instructions executed »

Averaee number of cycles per Instruction a

Number of instructions that stop decode a
Number of Instructions that stoo fetch a
Total number of branching Instructions *

Number of branches taroets within the same,virtual paoe a

Percent branches taroets within the same virtual page a 76tll
Number of conditional branch Instructions a
Percent conditional branch Instructions a 67,60
Percent of branches predicted correctly « 88,06
Percent of branches Incorrectly predicted ■ 11,99
Number of unconditional branches «

Percent unconditional branches a 17,19
Number of instructions that stop pipe and then branch a

Percent stop and branches a 15,26

9998733

9,55

599655

578555

3281253

2997312

2218007

562927

500819

Pipeline Utilisation Cycles

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

15902690

18971106
18889509

25519099

15360066

Stal 1

7590290
7299599

9823725

Pork

5609239 18739829
307675 18758668

2772777 16805987

0 19767899

0 29699233

Walt

0

0

Autoinc/dec register write wait cycles ■
Raolster base welt cycles a

383

2996

Double Invalid register wait cycles a
Indirect autoinc/dec register write wait cycles a

309899

0

Pipeline Utilisation Percent

Stage
Prefetch

Decode

Address

Operand

Execute

Idle Stall

39,0

91,9
91.7

56,3
33.9

Welt Work

91.9

91.9

91.5

93.7

65,5

16,6

16.0

10.7

8,0

0.7
6.1

0,0 0.0

0,00,0

P«g« 6«-DEC-i9ea 10100PIANA.LOCll

Ff<g«te p<ceHne irodel inilysli of fHe dbaJ* [cut 1 er] IcOtCOd

?iwuUt<on was run on «-DEC-l9e4 09i08i27,99
Data cache mlas rate 4a set at 0X
Data cache nisa forced write rate la set at

Dynamic branch prediction was used to predict condltiona'I branches

Branch table alie la «096 entries

Branch counter width 1$ 4 hits

Branch b1oci« site la U bytes

a5?55738Total number of simulation cycles »

Total number of Instructions executed a

Average number of cycles per Instruction a
99«873J

(i,SS

59fl655

576555

3281255

Number of Instructions that stop decode «
Number of Instructions that stop fetch a
Total number of branching Instructions *
Number of branches targets within the same virtual page a

Percent branches targets within the same virtual page a 76.32

Number of conditional branch Instructions a
Percent conditional branch Instructions •

Percent of branches oredleted correctly ■
Percent of branches Incorrectly predicted a
Number of unconditional branches ■
Percent unconditional branches ■ 17,19

Number of Instructions that stoo ploe and then branch a

Percent atoo and branches ■ 15,26

2509099

2218007

67,60
66,21

11,79
562927

500619

Pipeline Utilisation Cycles

Stage
Prefetch

Decode

Address

Operand

Execute

Idle

15396960
18927932

18831525

25986385

15328811

Stal 1

7550995

7260669

9830287

WorkWalt

3570229 18736059
307693 18759999

2775132 18816799
0 19769353

0 29699233

0

0

351Autoinc/dec register write wait cycles *
Register base wait cycles a
Double Invalid reolster wait cycles ■

2998

309899

Indirect autoinc/dec register write wait cycles ■ 0

Pipeline Utilisation Percent

Stage
Prefetch

Decode

Address

Operand

Execute

Idle Stall Walt Work

39,0 16,7 7,9 91,9
91,8 16,0 0.7 91,5
91.6 10.7 6,1 91,6
56.3 0,0 0,0 93,7
33,9 0,0 0,0 65,5

Page 98-DEC-l9fla 10IPI0PIAMA.LOGfI

Ffigate pipeline almulatlon medel analysis of file dba3t [cut 1er]1ep.cod

Simulation was nun on 5-0EC-1964 13i23»25,«l

Data cache miss rate Is set at 0%

Data cache miss forced write rate Is set at 0X

Dynamic branch prediction was used to predict conditional branchaa

Branch table site ia I636fl entries
Branch counter width Is

Branch block size Is

2 bits

4 bytes

Total number of simulation cycles ■

Total number of Instructions executed «

a52840l7

9948733

Average number of cycles oar Instruction a 4,55

Number of Instructions that stop decode «

Number of Instructions that stop fetch ■

Total number of branching Instructions »

Number of branches targets within the same virtual page ■

Percent branches targets within the same virtual peoe a 76,13
Number of conditional branch Instructions ■
Percent conditional branch Instructions ■
Percent of branches predicted correctly ■
Percent of branches Incorrectly predicted *
Number of unconditional branches a

Percent unconditional branches « 17,14
Number of Instructions that stop pipa and then branch a

Percent step and branches a 15,26

594655

576555

3281253
2497910

2218007

67,60
88,08

11.92

562427

500619

Pipeline Utilization Cycles

Stage
Prefetch

Decode

Address

Operand
Execute

Idle

15400701
18966616

18880704

25516235

15357090

Stall

7540277

7249566

4623763

Work

3599665 18743174
307675 16760140

2772926 18806607

0 19767782

0 29649233

Walt

0

0

Auteinc/dec register write wait cycles a
Register base wait cycles a

Double Invalid register wait cycles a

363

2446

304644

Indirect autoinc/dec register write wait cycles ■ 0

Pipeline Utilization Percent

Stage
Prefetch

Decode

Address

Operand

Execute

Idle Stall

34,0 16.7
41,9 16,0
41,7 10,7

56,3 0,0

33,9 0,0

Walt Work

41,4

41,4

41,5

43,7

65,5

7,9
0.7

6.1

0,0

0,0

Page 10^lANA.LPG?! e*DEC»19Ba 10100

Frigate pipeline almulatlon model analytia of file dba3t[cut 1erl1ep.eed

.Simulation was run on 6-0EC"198<i iai28il8,51
Data cache mlas rate la aet at

Data cache misa forced write rate la aet at 0X

Dynamic branch prediction waa uaed to predict conditional branchaa

Branch table else la 1638a entries

Branch countar width la

Branch blocit alze la

a bita

a bytea

Total number of almuletlon cydea *
Total number of Instructions executed ■

Avaraoe number of cycles oer Instruction a

a5?a5263

9948733

a.55

Number of Instructions that stop decode a

Number of instructiona that stoc fetch s
Total number of branching Instructions ■
Number of branches targets within tha same virtual page a

Percent branches targets within the same virtual page a 76»35
Number of conditional branch Instructiona ■
Percent conditional branch Instructions ■

Parcent of branches predicted correctly »
Percent of branches Incorrectly predicted a
Number of unconditional branches ■

Percent unconditional branches ■ 17,14
Number of Instructions that stop ploe and then branch a

Percent stop and branches a 15,26

Pipeline Utlllietion Cycles

594655

578555

3281253

2505091

2218007

67,60
88,31

11,69
562427

500619

Stage
Prefetch

Decode

Addreas

Operand

Execute

Idle

15396796
18918395

18621451

25476351

15318336

Stal 1

7550358

7260724

4630263

Work

3562880 18735229
307642 18758502

2775370 18018179
0 19768912
0 29649233

Walt

0

0

Autoinc/dec register write wait cycles a
Register base wait cycles ■

350
2448

Double Invalid register wait cycles a
Indirect autoinc/dec register write wait cycles ■

304644
0

Pipeline Utilization Percent

Stage Idle Stall Walt Work

Prefetch 34,0 16.7 7.9 41,4
41,6 16.0 e,7 41,5
41,6 10,7 6.1 41,6

56,3 0,0 0,0 43,7

33.9 0,0 0,0 65,5

Decode

Address

Operand

Execute

Pag* 11PIANA.LOGH

Frleat* elceHne •Emulation model analvais of file db*31 (cut 1 ap] 1 cp«cod

Simulation was pun on 7"DEC*198<» 19|(15l3^.53
Data cache mist pate ia aet at 5%
Data cache mitt fopcad wpite mate it aat at 33X

Dynamic bp*nch ppadiction wa* uaed to ppadict conditional bPanchaa

Bpanch table aiie is 4P96 antpiaa
Bpanch countap width it
Bpanch bloclf sice it

e-DEC-i^ea ipipb

? bit!

U bytet

a653400eTotal numbap of simulation cyclat ■
Total numbap of inttpuctions executad «

Ayapeoe numbep of cyclat cap instpuetion ■

9948733

4.66

594655

578555

3281253

Numbap of inttpuctions that atop deeoda *

Number of inttpuctions that atop fetch *
Total numbep of bpanching inttpuctions ■

Numbap of bpanchet tappets within the same.virtual page ■

Percent branches target* within the tame virtual bade * 76.11

Numbep of conditional branch instructions «
Percent conditional branch inatructions »

Percent of branches predicted correctly »
Percent of bpanchea incorrectly predicted »
Numbep of unconditional branches ■
Percent unconditional branches • 17,14
Number of inatructions that atop pipe and then branch ■

Percent stop end branche* a 15,26

2097254

22180^7

67.60
86,06

11.94
562427

500819

Pipeline Utiliaation Cycles

Work

3604414 18741341
300971 18760173

2621067 18807667
0 21048649

0 29649233

Stage

Prefetch I546i525
Decode

Address

Operand

Execute

Idle Stall

8706728
19009284 8463560

18651696 6053578
25485359

16607061

Wait

0

0

Autoinc/dec register write wait cycle* ■
Register base wait cycles •

356

2440

Double invalid register wait cycles a
Indirect autoinc/dec register write wait cycles a

298175

0

Pipeline Utiliaation Percent

Stage
Prefetch

Decode

Address

Operand

Execute

CUTLER

Idle Stal1 Wait Work

33.3 16.7 7.7 40,3
40,9 18,2 0,6 40,3
40,5 13,0 6,1 40,4

54,8 0,0 0,0 45,2
35,7 0.0 0,0 63.7

Job terminated at 8«DEC'»1984 10!00|07,3fl

Accounting information!
Buffered I/O count!

Direct I/O count I
Page faults:
Elapsed CPU time:

160 Peak working set siaei
Peak page file siae!
Mounted volumes!

Elaosed time!

600

53062

229?

2 06!42!05.0e

1044

0

7 19!08!43,19

Instruction Frsauencv Data

This oats was eonseted on 30-NOy-1964 08t5<ii(^2.73

This data was written to dbSl [cut 1sr]phanoltcod
Total numbsr of Instructions traced was 152089^5

Count Parent CumulaName

36704ai

2097259

2097163

I5729a0

10a8710

104*8657

104(8656

1048650

1048605

524298

MOVL

BEOL

OECL

244,13

13.79

13.79

10,34

6,90

6,90

6,89
6.89

6,89

3.95

0.00

0.00

0,00

0,00

0.00

0,00

0.00

0,00

0.00

0.00

0.00

0.00

0,00

0,00

0.00

0.00

0.00

0,00

0.00

0,00

0,00

0,00

0.00

0.00

0,00
0.00

0,00

0,00

0,00

0.00

0,00

0,00

0,00

0,00 99,99

0.00 100,00
0,00 100,00

0,00 100,00

0.00 100.00

0,00 100,00

0.00 100.00

0,00 100,00
0.00 100.00

0,00 100.00

0,00 100,00

24,13

37.92

51,71
62.05

68,95

75,84

82,74

89,63
96,53
99,98

99.90

99,98
99,98

99,98
99,98

99.98

99,98

99,98
99,98

99,98
99.99

99,99

99,99
99,99

99,99

99,99

99,99

99,99
99,99

99,99

99,99

99,99

99,99

99,99

99,99
99,99

99,99
99,99

99,99

99,99

99,99

99.99

99,99

6RB

INCL

CMPL

BLEQ

SUBL2

SU6L3

MNEGL

MOVB 201

RS6 149

JMP 137

MOVAB

CLRL

137

116
BBC 114

BNEO

BLBC

CASES

BLSS

CVTBL
MOVQ

MOVAL

CMPB

PUSHU

112

105

99

87

85

84

84

81

70

BRh 75

INSV

TSTL

CURB
BICL2

BGTR

75

73

71

71

69

RET 64

MOVh

CALLS

BSBW

CHPW

ACBB

ADDL3

MOVZWL

MOVZBL

ADDL2

SOBGEQ

6ISL2

62

62

60

59

54

53

50

50

48

46

45

JS6 36

PUSHAB

8UBh3

MOVC3

BSBB

A0DW2

M0VC5

PUSHAL

ASHL

DECW

36

36

35

33

32

27

27

26

23

BBS 23

Page 230-NOV-l98a 17:59PHGEN.tOG:I

23 0,00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0.00

0.00

0.00

0,00

0,00

0,00

0,00

0,00

0,00

0,00

0.00

0,00

0,00

0,00

0,00

0,00

0.00

0.00

0,00

0,00

0.00

0,00

0.00

0,00

0.00

0,00

0,00

0.00

0,00

0.00

0,00

0,00

0,00
0.00

0.00

0.00

0,00

0,00

0,00

0.00

0,00

0,00

0.00

0,00
0.00

0,00

0,00

0,00

0,00

0.00

0.00

100,00

100,00

100,00

100,00
100.00

100,00

100,00

100,00

100.00

100.00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100.00

100.00

100,00

100,00

100,00

100,00

100,00

100.00

100,00
100,00

100.00

100,00

100.00

100,00

100,00

100,00
100,00

100,00

100.00

100,00

100,00

100,00
100,00

100,00

100,00
100,00

100,00
100,00

100,00
100.00

100,00

100,00

100,00
100,00
100.00

100.00

BLBS

CLRQ

MCOHB

BISPSW

LOCC

0ICB3

A06LSS

BGEQ

CLRW

MULL2

POPR

PUSHP

SUBW2

EDIV

CHRE

CVTLP

8UB03

TSTW

EXTZV

BLSSU
PUSriAQ

ASHP

CVTP8

BLEQU
8KPC

DIVL3

AOBLEQ

EDITPC

CASEW

CHMK

CVTLW

ROTL

BITL

BBCS

EXTV

CALLG
CMPC5

ADDF2

SUBF2

0IVF2

CVTWF

CVTLF

MOVF

EHUL

TSTB

CVTBiN

MULW3

DIVL2

CVTSP

PUSHAW

CVTFD

MOVO

MULL3

BICL3

BBCC

INSQUE

DIVD2

CVTLD

CVTDF

22

22

21

20

20

20

19

17

16

15

15

13

12

12

12

11

11

11

10

10

10

9

e

7

7

7

5

5

5

5

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

1

1

1

1

'>y
>

r> -Y
n

A - •S|>0»'--

0.00 100.00
0.00 100.00

•4Vr

>. •^*TLOGll S0-NOV-l9a4# ‘••V

■+’V-^W'-'''V "S

'V-

J;-' '

'if'If
s

..v^1
V’ M ■v: m.‘■r1 k

->* tr’*
■«

/

k f Si/»
,rVi

;m \
• ■> *v .* >5 4 'S'

V/ Vy. f:‘;.r ?r;• V.
-t» ■-‘i^1^j,<-< - ■•

#:*.V
S'r. /■ •'%■*

4;# .A ^

- o•i *c
1

«v • ■:; xv.A'.' -v’
■ 3 <w: ^ 4 • r.
' t'X^’.]r<e •*•,•t''

VZ^‘>'
k

4.-

.-. '-O',
>.

f \r:}(
■V 'S‘#•

if.'

:y5 4 '
'Mtr'

'•

:s ' ."F. A--^IK
' =«‘v .>’s 41,'..A.J-V •T

>■'
'-V- -f*.

A t\."• -.:a \\

’K >■ :v> 4?
>v.

/
• 14

V

■•5.r‘ * .', - 'i’j^ 'ir.V. < .' -W ' 'i V.■-4!^

S5^«iS&'' v
V

'*■
'Tf.r ..-i.

a >•-
5^

i-'-y

rhm
n--:
n^.....

X' ••■^* s■M--1, t-■ff,,.-:
'?>' y;

<r
■W.'-

,-j ...tV
■c

k m V -A
ir

•y y
->V V" ■smmr;‘P

■m: /
. .-w■'V:

+J

rM^-«' v^'.'. 1^ 1* ’*■ > -y'.'v'V;
k-:;^=v ';

V
**j ‘ f

; vf,. f •- '■5 •;••..

»■ «t "

V\-ih t£ti
>.>'*1

M'-'
VV' ■'»'''• "S'
^ ■-*■{■/•:' ,

‘•-yP

• «4< '■Y-*i/-:

V ^ ■ *'5»V!'v\%*• ►:
..-V, •._^

‘’^^i4^■.^ fjt
;. ■'-Yi
^\ ■< t

.■■>' V-.'-V -fW >,,

<?■;■. 'F -y-
\j ' s ■t-

- i “A-.'i'V.aV'

/41^ '^. V

-1 ■

■•■y
i* A. 4irv.’aa '-4'<' ar

•-■.. f
*>s4-1

: -v:;; .4,'
»<A.4- v**-' . ‘1

■’ ‘.'j. '.*w-

-/fv'. -

fA,
■j

fM'.Vit" 4>-'U
^a^•' -

. ^ a
;^.; ,,^ V •''v

’V -tc’
-4.c $0Wi-
■‘'IK'#':! ' <«■'

1, ■»
%;' • '.••1 -v

J
r •.< '* Vt. •'-f'

•y• ■'
M■H'- X1 . ’■» ■'''^'t: <

*• •V.>,'5;v--' i.'-r • f ;.>i ?V ’v^- 1-
,5 x'.-S-- I'- #

';»■“. ..iT
V <1w ■..-«*V

..

• •■'' f A t
t. :» ^.

j'
y j.'

'■ 'A 1
■f K

“.VJf f,'fV' i'•r; I -'i'A'V.■' '-f y’(>:^
't ' '■■^,'‘kt,

.-.i .
<.»■'•■'>ys -s-f

.^Ia.v.

'tvf. i ^;,;„ V

- *

..'•iW' *■'
y.

«/•?-
' I

X'.5"' =’-
%.■ < .* ■' •' .U-,ix‘ 9• Y' "i'' V »' i>.=i. ■iiet

-■*••’. »*•<

\ C i
,*• 1

.f i f. .. *1
.»r.' v‘ ■■'* a;

'A'.
'«■

■h'■;:,■■ A
't'Y,

r *.A A4,; "Jy' ■?
-Iv r, !K ^ -T•f /%<%•'• .0 v'i istS.

,*«“• -»•-
■

.*« 'W>. .« * -V>■ 4\
l>r. •%>

.«v. y
/

. I\' >*

j_.;-|j^vi} r Ijji -
V_^,‘ * » -I •^ •

■•■r
r-.'.

is;''- '^w

vA ,'
-■>.

'>^r.
\

-'
!»>c -Y 5^4tr -A

, ♦ .A
■'T Aj;. . Vi -

s*^ -^:. ■:■v!^%
- •.■*k'i*

"T-i,--yy — ■■'^t 'AV
i ■ 4m

'■^t a ■''(?:«-7.xA 4 V.-I
- • V I ■■■^ V.:;'/*,>

KiV'-''*

•■' iyy
A V.

-ti

i> .V- ■-fI f 14:4
S'-L^

In«truct1on Size

CumuleCount PercntSize

213

51.71
13,80

6,90

22.69

6,90

0,00

0,00

0.00

0.00

0.00

0,00

0.00

0.00

0,00

0,00

0,00

0.00

0.00

0,00

0,00

0.00

0.00

0.00

0.00

0,00

0,00

0,00

0.00

0,00

0.00

0,00

0,00

0.00

0.00

0.00

0,00

0,00
0.00

0.00

1 0.00
51.72
65.51

72,«2
93,10

100,00
100,00

100.00

100.00

100.00

100.00

100,00
100.00

100.00

100.00

100.00

100,00

100,00

100.00

100.00

100,00

100.00

100,00

100,00

100,00

100.00

100.00

100.00

100.00

100.00

100.00
100,00

100,00
100,00

100,00
100,00

100,00
100.00

100,00

100,00

7665297

2098a78

I0a966a

3ia60a3

10^48972

2

3

a

5

6

7 218

8 16

9 18

510

11 1

12 0

13 0

0

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 0

23 0

29 0

25

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 0

39 0

35 0

36 0

37 0

38 0

39 0

90 0

Average Inetructlon Size a 3,17

Spec 1f1er S1*e

Size Count Pepcnt Cumule

19^04530 82,22 82,22
1655 0,01 82.23

3145973 13,33 95,56

1048650 4,44 100,00

320 0,00 100,00

0 0,00 100.00

I

2

3

4

5

6

Averege Specifier Size * 1.40

Specifier Type (ell)

Type

• ^#0K
• **1«
• *#2x
t*#3x

(9x3

Count Percnt Cumule

2098106 8,89

0.00

0,00
0,00

17.77
53.33

0,00

0,00

0,00

0.00

0,00
0,00

0,00

0,00

0,00

0,00

20.00 100.00

0,00 100,00

8.89

6,89

8,89
8,89

26,66
79,99
79,99

79,99
79,99

79,99

80,00
80,00

80,00

80,00

80,00
80,00

138

107
96

4194438
12585969Rn

(Rb)

• (Rb)

(Rb) +

• CRb) +

b*(Rb)
•b(Rb)
w*(Rb)

•w(Rb)
1-(Rb)

•1(Rb)

332

95

355

26

1144

274

121

0

169

33

4719537Bdb

Bdw 169

Specifier Type (Index)

Type Count Percnt Cumule

(9b)

-(Rb)
(Rb)^

•(Rb)f

b*(Rb)
•b(Rb)

w*(Rb)
•w(Rb)

l‘(Rb)
•1(Rb)

0 0,00

0,00

0,00

0,00

75,00 75,00
0,00 75,00

25.00 100,00
0,00 100,00
0,00 100.00
0.00 100.00

0.00

0.00

0.00

0.00

0

0

0

3145734

54

1048650
0

0

0

Memory Reeds Per Instruction

Count Percnt CumuleNumber

P 15112«26 86,20 86,20
1 2096237 13,80 100.00

279 0,00 100,00

2 0,00 100,00

1 0.00 100,00

0 0.00 100,00

0 0,00 100,00

2

3

4

5

6

Averege Memory Reads Per Instruction ■ 0,14

Memory Writes Per Instruction

Count Percnt CumuleNumber

0 13111080 86.21 66.21

1 2097863 13.79 100,00
2 0,00 100.002

Average Memory Writes Per Instruction m 0,14

Register Reads Per Instruction

Count Percnt CumuleNumber

4720151

5245065

3146489

2097206

31,04
65.52

86.21

0 31.04

34.49

20.69

13,79 100,00

0,00 100,00

0,00 100,00

0.00 100,00

0.00 100,00
0.00 100,00
0.00 100.00

0.00 100,00
0,00 100.00

0,00 100,00

I

2

3

274

5 5

6 0

7 0

8 0

9 0

10 0

11 0

12 0

Average Register Reads Per Instruction s 1,17

Register Writes Per Instruction

Count Percnt CumulaNumbe r

7867335 51,73 51,73
7341600 46,27 100,00

0,00 100.00

0

1

2 10

0,46
Job terminated at 30-NOV-1964 I7l59j59,51

Average Register Writes Per Instruction a

CUTLER

L.

Instruction Freouency Data
This data was coHaetad on 30-NOV-l9ea

This data was writtan to dba3l[cut 1erjpjaeobi,cod
Total numbar of Instructions tracad was 15567199

Parent CuitiulaName Count

MOVF

SUBL3

A0DL2

MULL2

MULF3

MULF2

SUBF3

ADDF3

CMPL

BEQL

A00L3

ACBL
A0DF2

AOBLEQ

BLEQ
CMPF

BICW2

DIVF3

SUBW2

A0DM2

BICL3

MOVL

BL8S

DIVF2

CLRL
BGEQ

2411961

1443589

1435118

1434538

1324354

1197322

589739

587551

581551

571072

323167

315503

273944

207153

59895

59776

59738

59384

46019

36388

34442

33645

31227

30974

30383

30330

25325

24799

244i(9

23259

23217

23081

23061

23060

23004

22711

13157

12235

11005

6916

6289

6008

5158

5084

4199

3958

3935

3850

3699

3236

2550

1679

1603

1598

17,78
10.64

10,58
10.57

9,76

8,83

4,35

4,33

4,29

4.21
2.38

2.33

2,02

1.53

0,44

0,44

0,44

0,44

0,34

0,27

0,25

0.25

0.23

0.23

0.22

0,22

0.19

0.16

0.18

0,17

0.17

0,17

0,17

0,17

0.17
0,17

0.10

0,09

0,08

0,05

0,05

0,04

0,04

0,04

0.03

0,03

0.03

0.03

0,03

0,02

0.02

0.01

0.01

0,01

17,78

26,42
39,00
49,57

59,33
66.16

72.50

76.83

81,12
85.33
87.71

90.04

92.06
93,58
94,02
94,46
94,91
95,34
95.68

95,95
96,20
96,45

96,68
96.91

97.13

97,36
97.54
97,73

97.91

98,08
98.25

96,42

96.59
98,76

98,93
99,10

99.19

99,28
99.37

99,42

99,46
99,51
99,55

99,58
99,61
99,64

99,67

99,70

99,73

99,75
99,77
99,78

99,79

99,81

RS6

JMP

JSB

MOVZWL

ROTL

CLRB

T8T8

CVTFD

0IVD2
6RN

BRB

SUBF2

BGTR

MOVAL

MULL3

SUBL2

PUSHAL

CVTLF

MNEGF

CMPW

EMUL

EDIV

INCL

HOVAB

CVTWL

BICL2

RET

CALLS

C/

PJGEN.LOG;1 30-NOV-198a 19113 Page 2

CVTBL

OECL

MOVW

SUBW3

INCB

BLSSU

POLYF

CVTOF

MOVAO

EMODF

AD0D2

BICM3

MOVB

TSTL

CASES

BNEO

BSBW

PUSHL

MOVQ

INSV

BLBC

1505

1496

1466

1371

1303

1276

1267

1266

1266

1265

1265

1265

nil

0.01

0,01
0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0,01

0.01

0.01

0.01

0.00

0.00

0.00

0,00

0.00

0.00

0,00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0,00

0,00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 100.00

0.00 100.00
0.00 100.00

0.00 100.00
0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0,00 100.00

0,00 100.00
0,00 100,00

0,00 100.00

99,82

99,83

99,84

99,65
99,86
99,87

99,88

99,89

99.90

99.91

99,91

99,92

99,93

99.94

99,94
99.95

99,95

99,96
99,96

99,96

99.97

99,97

99.97

99,97

99,98
99,98
99,98

99,98

99,96
99,98

99,98
99,99

99,99

99,99

99,99
99,99

99,99

99,99

99,99
99,99

99,99
99,99

99,99

99,99
99,99

99,99

616

761

676

671

590

368

356

354

BBC 353

331CMPB

PUSHAB

BISL2

ASHL

M0VC3

BISPSW

CVTLP
CVTPS

BBCC

296

265

262

220

199

195

185

167
BBS 150
80BGEQ

DIVL3
TSTF

CVTFL
BBSC

CLRO

MOVZBL

MNEGL
SKPC

EXTZV

0IVL2

MOVD

127

124

121

110

101

68

87

87

68

66

65

57

BVC 55

AODB2

MUL82

AC6B

CLRW

BSBB

M0VC5

BLBS

SOBGTR

XORM3

BLEQU

CHME

ASHP

DECW
PUSHR

55

55

54

45

42

41

37

37

36

28

26

24

23

23

Page 330-NOV-198a 19113PJGEN,L0G»1

22 0.00

0,00

0.00

0.00

0.00

0.00

0,00

0,00

0.00

0,00

0,00

0,00

0,00

0,00

0.00

0,00

0,00

0.00

0,00

0.00

0,00

0,00

0,00

0,00

0,00

0,00

0.00

0,00

0,00

0.00

100,00

100,00

100,00

100,00

100,00

100,00

100.00

100.00

100,00

100,00

100,00

100.00

100,00

100,00

100,00
100,00

100,00
100,00

100,00

100,00

100,00
100,00

100,00

100,00
100,00

100,00

100,00

100.00

100.00

100.00

MCOMB

POPP

AOBLSS

UOCC
BIC03

TSTw

XORB3

EDITPC

SUBB3

EXTV

PUSHAO

CALLG

CHMK

BBCS

CASEW

CVTLW

BITL

CMPC5

CVTWF

CVT8W

MULW3

CVTSP
PUSHAW

BITS

MOVPSL

22

22

20

20

17
16

12

11

11

10

10
9

9

5

5

4

3

3

3

3

2

2

2

2

REI 1

INSQUE

CVTLD

BISB2

BICB2

1
1

1

1

In»truct1en Sire

Count Pepcnt CumulaS i re

26929

795271
4753846

5023492

2720583

1819204
368493

3640

27021

29467

2451

0.20
5.86

35.02

22.29

20.05

13.41
2.72

0.03

0.20

0.22

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.20

6.06

41.00
63.36

83.41
96.82

99,54

99.57

99,76
99.90

100.00
100.00

100.00

100,00
100,00

100,00

100,00
100,00

100,00
100.00

100.00

100,00
100,00
100,00
100,00
100,00

100.00

100,00

100.00
100.00

100.00

100.00

100,00

100.00

100.00

100.00

100.00

100.00
100.00

100.00

I

2

3

4

5

6

7

8

9

10

11

12 0

13 0

14 0

15 0

016

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

33 0

34 0

35 0

36 0

37 0

38 0

39 0

40 0

Aveneqe Inetpuction Sire • 4,10

SpeeHIcp Size

Count Pepcnt CumuleSize

77.29

12.60

9,58

0.0a

0.50 100.00

0.00 100.00

77,29

89,89

99,a7
99,50

2a311236
3963980

3012911

11399

156aa9

1

2

3

a

5

36

Avenaat Soeclfler Size « 1.3a

Soeelflep Type (ell)

Type

•’*#0x
• “Plx
••#2x
• *#3*

[R*3

Count Pepcnt Cumule

1838020

2ai21

3iaa

5297

2909389

199iaa30

127a775

s.ea
5,92
5,93
5,95
15,20

63,31 78.50
a,05 62,56

0,00 82.56

1.69 6a.25
0.00 6a,25
11,a0 95,65
0,ia 95.79

0,02 95.81

0,00 95,81
0,09 95,90
0,08 95,97
2.95 98.92

1,08 100,00

5,ea
0,06
0.01

0.02

9,25
Rn

(Rb)

-(Rb)

(Rb) +

•(Rb)+

b*(Rb)

•b(Rb)

w*(Rb)

PwCRb)

1*(Rb)
•1(Rb)

536

531060
aa

3586808

a3393

6592

0

27611
2a5a7

927273

338939

Bdb

Bdw

Specifier Type (Index)

T ype Count Perent Cumula

(Rb)

-(Rb)
(Rb) +

•(Rb)f

b*(Rb)
•b(Rb)

w*(Rb)
•w(Rb)

l-(Rb)

*](Rb)

12703 0.aa

0.00

0,00

0,00
99.17

0.00

0,39 100,00
0.00 100,00
0,00 100,00
0.00 100,00

0,aa

0.aa
0.aa

0.aa

99,61

99,61

0

0

1

2685231

55

11399

0

0

0

Memory Reads Per Instruction

Count Parent CumulsNumber

58.12

39,5a

2,33

0.01 1P0.00

0.00 100.00

0.00 100.00

58.12
97,66

99,99

99,99

0 7884891

5364767

316273

1

2

23

4 1266

5 0

06

Average Memory Reads Per Instruction « 0,44

Memory Writes Per Instruction

Count Perent CumulaNumber

0 10967263 80.96 60.96

1 2579922 19,02 100,00

14 0,00 100,002

Average Memory Writes Per Instruction a 0,19

Register Reeds Per Instruction

Count Perent CumulaNumber

681304

1695504

6466543

1706805

597031

6,50
13.97

62.55

12.58

4.40 100,00

0.00 100.00

0.00 100.00

0.00 100,00
0,00 100,00

0,00 100,00
0.00 100.00

0.00 100.00

0,00 100,00

6,50
20.47

83,02
95,60

0

1

2

3

4

5 12
6 0

7 0

6 0

9 0

10 0

11 0

12 0

Average Register Reads Per Instruction e 1,94

Register Writes Per Instruction

Count Parent CumulaNumber

0 4080169 30,07 30,07
1 9461929 69,69 99,96

5101 0.04 100,002

0,70
Job terminated at 30-NOV*1984 19il3i03,84

Average Register Writes Per Instruction
CUTLER

B

I

Instruction Frequency Data
This data was collected on

This data was written to dual:Ccjtlerlicp.cod
Total number of instructions traced was

6-0EC-1984 22:11:37.56

9957421

CumulaName Count Percnt

1743507

567772

4P5003

441390

333663

303766

2922S2

265602

212242

21116S

189310

181495

170716

169925

165458

155233

152638

138147

136373

13643S

133715

127014

117191

113561

111727

110415

109056

10S715

102328

98629

97518

94533

94044

93993

91473

37402

34693

82935

77627

75126

73498

701 24

69871

69752

63175

60338

59291

56405

55494

55098

51944

43392

17.51

5.70

4.87

4.44

3.35

3.05

2.94

2.67

2.13

2.12

1.90

1.82

1.71

1.71

1.66

1.56

1.53

1.39

1.37

1.37

1.34

1-28

1.18

1.14

1.12

1.11

1.10

1.09

1.03

0.99

0.98

0.95

0.94

0.92

0.83'
0.35

0.83

0.73

0.75

0.74

0.70

0.70

0.70

0.63

0.61

0.60

0.57

0.56

0.55

0.52

0.44

MOVL

aE3L

BN£Q

CN8W

MOVZBL

»10VAL

C^PL

CVTWL

CLftL

17. 51

23.21

28.08

32.52

35.87

33.92

41.86

44.52

46.66

43.78

50.68

52.50

54.22

55-92

57.53

59.14

60.68

62.06

63.44

64.61

66.15

67.43

63.60

69.74

70.87

71.97

73.07

74.16

75.19

76.18

77.16

76.11

79.05

50.00

80.92

81.79

82.64

33.48

84.26

85.01

85.75

86.45

87.15

87.36

83.49

89.10

89.70

90.26

90.82

91.37

91-90

92.34

RSB

novw

S3C

AD0L2

BGTR

BSEQ

MOVAB

cvraL

CMP3

8RW

BBS

PUSHL

3Rd

TSTL

ADDL3

3SB3

A03LSS

MOVZBW

8LSS

MOVZWL

3S3W

MOVE

BLEO

RET

CASrB

CALLS

MULL3

3LSSU

3BCC

3LoC

INCL

INSV

AOBLEQ

SU3L3

SU3B3

SOBGTR

JMP

TSTW

SU3L2

SU3B2

EXT2V

NNEGU

CVTLW

99*66

£S*66

18*66

8Z*66

SZ*66

Zl’66

69*66

Z9*66

£9*66

09*66

95*66

25*66

6Y*66

^^*66

0tr*66

S£*66

C£*66

SZ*66

02*66

^t*66

80*66

10*66

56*86

Z8*86

08*86

tZ*96

29*86

£5*96

^>*86

V£*86

£2*86

21*86

10*86

68*Z6

ZZ*Z6

^9*Z6

IS*Z6

8£*Z6

^2*Z6

60*Z6

^6*96

SZ*C6

19*96

V^*96

92*96

60*96

06*56

2Z*56

£5*56

S£*£6

91*56

56*^6

SZ*^6

VS*^6

l.£*^6

50*^6

8Z*£6

15*86

9l*£6

9Z*2e

20*0

£0*0

£0*0

£0*0

£0*0

£0*0

£0*0

£0*0

£0*0

^0*0

^0*0

^0*0

^0*0

^0*0

50*0

50*0

50*0

50*0

90*0

90*0

Z0*0

Z0*0

Z0*0

Z0*0

60*0

60*0

60*0

60*0

01*0

U*0

I.t*0

tt"0

21.-0

2t*0

21*0

£1*0

£1*0

M*D

^1*0

5l.*0

9i.*C

Zl*0

Zt*0

Zt*0

81*0

81*0

81*0

6t*0

61*0

6t*0

02*0

t2*0

1.2*0

£2*0

Z2*0

Z2*0

Z2*G

5£*0

0^*0

2^*0

99^2

^ZS2

1652

ZSZ2

^£82

2582

8262

8S2£

^6£f

895£

16Z£

£^££

192^

6

^£8^

t68^

Z52S

9165

2829

8259

08Z9

£t£Z

L098

Z26S

66e8

tY56

2280L

£t.0U

{.£011.

£U2t

S0£2t

*t*T*tZi

S6l£l

S£££l

959£l

£U^l

£6£Sl

96C91.

S£69t

9£69l

£92ZI

6^8Zl

I.SC81

Z608L

^V98l.

Z2Z81

Z26PI

29£C2

55502

95502

02^22

ZZ992

C9Z92

08892

Z*r6*Jt

IZ£6£

6622^

neaie

onvD

S93NW

£rtaiB

A1X3

ovHsnd

3WH3

feeav

2«6ns

£3dW3

28319

£6319

636Odd

£/*,8nS

f3SV3

3AO

£SCQV

S3dfc.3

inw3

zisie

2ft3IS

3NVdS

AI<]3

06398

eVHSOd

dHSOd

£ftCGV

61S1

2A0a¥

e»i3

SA6

AZdW3

IVHSOd

n3Nr

53A0M

ddOd

26Sie

3301

CtrAOW

anosNi

1W03W

rtdl3

CAOW

ZIAIQ

seie

n330

M61A3

193NW

3n6W3d

easeos

IHSV

£3A0W

21318

06198

«\»ACW

6613

esr

2now

1330

ie3v

OO-OOLCO-Q

OO’OOl.00-0

OC-OOl00*0

OO’COlOO’O

00*00100*0

00*00100*0

00*00100*0

00*00100*0

00*001-00*0

00*001.00*0

00*00100*0

00*00t00*0

00*00100*0

00*00t00*0

00*00100*0

00*00100*0

00*00100*0

00*00100*0

00*00100*0

00*00100*0

00*00100*0

00*001-00*0

00*00100*0

00*00L00*0

66*66

66*66

66*66

66*66

66*66

66*66

86*66

86*66

36*66

Z6*66

Z6*66

96*66

96*66

S6*66

^6*66

£6*66

U*66

06*66

88*66

L

2«»0X

£cAia

dniA3

«83V

8aiA3

101A3

2GAia

QlSi

£Gens

£Ginw

eftiA3

1118

GAOU

G8M3

13SV3

Eflinw

QUAD

3S89

8118

ldlA3

9<j6ns

flll8

8330

nM03U

£rtSI6

ZhAIQ

zeoGW

£1AIG

8M03hi

ZBhOX

)IWH3

3dXS

1

L

L

t-

£

£

£

9

9

a

6

S2

92

92

9£

05

IS

IS

S9

911

00*0

00*0

00*0

00*0

00*0

00*0

C0*0

co*o

00*0

10*0

10*0

10*0

10*0

10*0

to*o

10*0

20*0

20*0

c0*0

zu

*1*11

9SI.

9Zt

U1

VS2

£S£

89£

OS^

80SS3J

£ISS11A3

e3NI

SSo8

£1318

flSIS

rtVHSHd

31A0U

£ssia

2ffSI8

OSS

08S

^^6

^6£l

£1-^1

^6^1

6861

6^12

Instruction Size

Count Percnt CumulaSize

305212

24^0090

2194528

2142629

1418012

523898

424733

411772

33334

521 67

3402

2417

3.07

24.51

22.04

21.52

14.24

5.26

4.27

4.14

0.39

0.52

0.03

0.02 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0-00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0-00 100.00

0.00 100.00

0.03 100.00

0.00 100.00

0.00 100.00

0-00 100.00

0.00 100.00

0.03 100.00

0-00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

3.07

27.57

49.61

71.13

85.37

90.63

94.90

99.03

99.42

99.94

99.97

1

2

3

4

5

6

7

S

9

10

11

12

13 32

14 67

15 0

16 73

17 0

18 0

19 0

20 0

21 0

22 0

23 0

24 0

25 0

26 0

27 0

28 0

29 0

30 0

31 0

32 0

033

34 0

35 0

036

37 0

38 0

039

40 0

Average Instruction Size = 3.79

00*00109*0

0^*66

89*28

22*28

69*09

98*95

69*02

69*02

69*02

69*02

iOll

0985

0219Z2

OZ16V

66Z£9^

t96)v1

Cqii)v"

(98)98

(98)v9

■KqH)5

+C9o)

(98)-

(C<l)

2Z*9I.

9^*0

£5*12

£8*£

9l-9£

00*0

00*0

00*0

69*02

C

0

0

22^592

adXi e-jniunoqusudd3uno3

(xapuL)ddXijai^Lsaas

00*00185*1

2^*86

5I*18

^r6*28

^£*t8

I2*t8

0l*9Z

9£*5Z

^S*£9

9^*f9

06*ZS

5V*Z5

28*^5

Ol*Zl

1.6*6

l*r’6

80*6

82*8

090182

Z^522Z2

9SZZ£

825^82

8Z6£2

6£^0L6

ZOOZil

SZZZOU

^5821

989166

V6l0i

£6ZZ9^

98Z£2Z9

0ZS2S21

0S3ZZ

12569

6S2£9l

9595Z^L

«P8

Z2*5l

12*0

09*1.

£1*0

U*5

^Z*0

2S*U

Z0*Q

95*5

5^*0

29*2

2Z*Z£

6l*Z

6£*0

08*0

82*8

qp6

(98)18

{96)vl

(06)«8

(9B)v"

(98)98

(9b)»9

+(9^)8

+(9a)

(9«)-

(9ti)

u»

0*63

*£#vS

X2#vs

*l#vS

XO#vS

adXi e)nain3qu3J3dquno3

(lie)adXijaij^iDads

=dZLsjai^iDddsaoejaAy ZS*1

00*001Z2*l

£Z*86

22*96

9£*^6

1.9*58

1^*89

I.Zl.922

09IZ^^

Zg1?l.££

Z£^655t

58£990£

Z^256t2l

9

I5*c

98*1.

5Z*8

02-Zl.

tV*89

5

i.

2

t

e'|nuin3juaje^)uno3azis

azisJaii^iaaas

Memory Reads Per Instruction

Count Percnt CumulaNumber

60S7R15

3574652

289517

5333

61.14

35-90

2.91

0.05 100.00

0.00 100.00

0.00 100.00

0.00 100.00

61.14

97.04

99.95

0

1

2

3

44

0*:

06

Average Memory Reads Per Instruction 0.42

Memory Writes Per Instruction

Count Percnt CumulaNumber

0 8640952 36.78 86.78

1 1316469 13.22 100-00

0 0.00 100.002

Average Memory Writes Per Instruction

Register Reads Per Instruction

Count Percnt CumulaNumber

3077047

46551 70

1790713

319066

111307

411S

30.90

46.75

17.98

3.20

1.1 2

0.04 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100.00

30.90

77.65

95-64

98.84

99.96

0

1

2

3

4

5

06

7 0

08

9 0

10 0

11 c

012

0-97Average Register Reads Per Instruction

Register Writes Per Instruction

Count Percnt CumulaNumber

0 6008515 60-34 60.34

1 3941662 39.59 99.93

7244 0.07 100.002

Average Register Writes Per Instruction 0.40

Specifier Access Type

Count Percnt CumulaType

8125967

A417811

354305

379241

544453

3003607

read

write

modify
addres

vi el d

branch

45.59

24.76

4.30

4.93

3.05

16.35 100.00

45.59

70.37

75.16

80.10

83.15

Total number of ooerand soecifiers was

Number of nonfetch operand specifiers was

Percent of nonfetch ooerand specifiers was

17825387

13122706

73.62

1

P«ge 25Pl-N0V-l98a iai50PIGEN.LOGt1

Instruction Freouoncy Oats

This data was cellscted on 30-NOV-198a 08i53l5l,afe
This data was written to dba3l[cut 1erl1co.eod
Total number of Instructions traced was 99^8733

Count Parent CumulaName

1739602

569686

969989

991337

333898

303765

292195

266086

211190

21079?

189299

180912

171129
169916

165958

156565

152638

138236

137319

137010

133535

127099

115383
113320

111727

110915
109055

108707

102036

98630

97676

99587

93969

93899

91323

87398

89896

82935

77592

75121

73998

70129

69896

69759

63175

60656

59595

55999

55096

55020

51999

93892

17,99

5,68
9,87

9,99

3,36

3,05

2.99

2,67

2.12

2.12

1.90
1.82

1.72
1.71
1.66
1.57

1.53

1.39
1.38

1.36
1.39
1.28

1.16

1.19

1.12

1.11

1.10

1.09

1.03

0.99
0.98

0.95

0.99
0,99

0.92

0.86

0.85
0.83

0.78

0.76
0.79
0.70

0.70
0.70
0.69

0.61

0.60

0.56

0.55

0.55

0.52

0,99

MOVL

BEQL

BNEQ

CMPW

HOVZBL

MOVAL

CMPL

CVTWL

17,99
23,16

28,09

32,97

35,83
38,88

91,82

99.99
96,6?

98,73
50.69

52.95
59.17

55,88
57,55
59.12
60,65

62,09
63.92

69.80
66.19
67,92
68.58
69.72

70.89

71.95
73,05

79,19
75,17
76,16

77.19

78.09

79,03
79.98
80.90

81,77

82.63
83,96
89.29
85.00

85,79
86,99

87,19
87,89
88.98
89,09

89,69
90.25

90,80

91,35
91.88

92,32

R8B

CLRL

MOVW

BBC

A0DL2
BGTR

B6EQ

MOVAB

CVTBL

CMPB

BRM

BBS

PUSHL
BRB

TSTU
ADDL3

BSBB

AOBLSS
MOVZBW

BUSS

MOVZNL
BSBW

MOVB

BLEQ
CA8EB

RET

CALLS

MULL3
BLSSU

BBCC

BLBC

INCL

INSV

AOBLEQ

8UBL3

SUBB3

SOBGTR

JMP

TSTh

8UBB2

EXTZV

8UBL2

MNEGW

CVTLW

PIGEN.LOGf I 30-NOV-1984 141150 Page 5

«a299

39369

34J94t0

26851

26760

26677

22922

20556

2054*8

20358

19115

18727
1864*3

1634*8

18051

17952

17756
17263

16926

16096

15393

14*4*13
13632

13296

13197

124*31

12305

12089

11026

11013
10815

9670

954*1

8999

8927

84*52

7269

7295

6780

6528

6262

5917
54*88

9689

9839

9691

9916

9261

3898

3751

3568

3399

3258

2928

2852

2839

2757

2591

2579

0.93

0.90

0.35

0.27

0.27
0.27

0.23

0.21

0.21
0.20

0.19

0.19

0.19

0.18

0.18

0.18

0.18

0.17

0.17

0.16

0.15

0.19

0.19

0.13

0.13

0.12

0.12

0.12

0.11

0.11

0.11

92.79
93.19

93.99

93.76

99,03
99,30
99,52

99,73
99,93
95,19

95,33

95,52

95,71
95,89

96,07
96.25

96,93
96,60
96,77

96,99
97,09
97,29

97,37
97,51
97,69
97,76
97,89
98,01
98,12
98,23
98,39

98.99

98,53

98,62
98,71
98,80
98,87
98,99
99,01

99,08
99,19
99,20

99,26
99,30
99,35
99,90
99,99
99,99
99,53
99,56
99,60
99,63

99.67
99,70
99.72

99,75
99.78
99,81

99,83

ACBL

DECL

MULL2

JSB

CURB
MOVAW

BGTRU

BICL2

MOVC3

ASHL
SQBGEO

REMOUE

MNEGL
MOVQ

DEC!-

CVTBW

BIBS
DIVL2

CLRW

MCOML

IN8QUE

MOVAO

LOCC

BIS62
POPR

M0VC5

Iigcw

PUSHAL

CMPZV

BV8

CIRQ
TSTB

ADDW2

AODW3

PUSHR

PUSHAB

BGEQU

EOIV
SPANC

BICW2

BIS12

EmUL

CMPC5

AOOB3

0.10

0.10

0.09

0,09

0,08

0.07

0,07

0.07

0,07

0,06

0.06

0.06

0.05

0.05

0.05
0.04

0,04

0,04
0,04

0,04

0,03

0,03
0,03

0,03

0,03

0.03

0.03

0.03

BVC

CASEM

8UBW3

PROBER

BICB3

BICB2

CMPC3

8UBW2

ACBB

CHME

PUSHAQ

EXTV

BICW3

MNEGB

CALLG

p‘igen;loc»i sei-N0V-i9e« Hi50 Page 4

BLEQU
BISW2

BISB3

MOVTC

PUSHAW

BI8L3
BICL3

BBSS

INCR

CVTLB

2^64

2149

1969

147?

1418

1394

0.02

0.02

0.02

0.01

0.01
0.01

0.01

0.01

0.01

0.01

0.01

0,00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 100.00

0.00 100.00

0.00 100.00

0.00 100,00
0.00 100,00

0.00 100,00
0.00 100.00
0.00 100.00

0.00 100.00
0.00 100,0«
0.00 100,00
0.00 100,00
0,00 100,00
0,00 100,00
0,00 100,00
0,00 100,00
0.00 100,00
0.00 100,00
0.00 100,00
0,00 100,00
0.00 100,00
0.00 100,00
0.00 100,00
0.00 100,00

99,86

99,88
99,90

99,91
99.93
99,94

99,95

99,96

99.96

99,97

99,97

99,90

99,98

99.90

99,99

99,99

99,99
99,99

99,99

99,99

941

580

551

513

FFS 500

8KPC

X0PB2

CHMK

MCOPB

DIVL3

AP0B2

DIVW2

BISW3

MCOMm

DECB

BITW

8UBP6

CVTPL
BBSC

BITB

CVTLD

MULW3

CASEL

CMPO

MOVO

BITt
CVTWB

MUL03

SUBP3

TSTP

DIVP2

CVTPL

CVTPF

ACBM

CVTLF
0IVB3

xnRK/2

X0PL3

440

350

325

254

191

176

156

144

117

116

65

51

51

36

34

26

26

25

24

14

14
9

8

6

6

3

3

3

^g*£■0X^8uof)9nj)0uioC»tJ0Av

^0*00t
00*00T

00*001
00*001
00*00!
00*001
00*001

00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
00*00!

00*00!
00*00!
00*00!
00*00!
00*00!
00*00!
16*66
176*66
2(7*66

£0*66
69*176
29*06
9£*S9

0!*!Z
15*6(7
£S*i2
I0*£

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

00*0

20*0

£0*0

25*0
6£*0

(7!*(7

i2*(7
92*5

i2*(7!

£S*!2
£0*22

1(7*(72

I0*£

00(7

06E

09£

0LI

09£

5£ 0

0(7£

££ 0

2£ 0

!£ 0

0£ 0

62 0

82 0

012

92

52 0

0(72

0£2

22 0

12 0

002

6! 0

9! 0

0^!

9! IL

5! 0

(7! L9

£! 2£

2! I6£2

dlii

L912S
!9£8£

iei!!(7

9£5(72(7

02(7£2S

i.526!(7!

(7602(7!2

eZ.9l6!2

0£2(7£(72

(7£050£

!!

0!

6

9

L

9

5

(7

£

2

!

tinuino!uno3•a(8

sz^Suo^)3nw)tui

i

specifier Size

Count Percnt CumuleSize

1 l21Sa«79 68,39 68,39
2 3065682 17,21 85,60

3 1560a62 8,76 9a,36
a 331«8a 1.86 96,22
5 aa6636 2,51 98,73
6 226167 1.27 100,00

Average Specifier Size ■ 1.57

Specifier Type (ell)

Type Count Parent Cumula

e*#0x
• •#1*
i*#2*
•**3x

[Rzl

ia73957

143101
69491

77848

1282513
6717369

467911

80795

991926

12628

2106409

132097

911709

23978

284337

37727

2719607

281507

8,27

0,80

0,39
0.44

7,20
37.71
2,63

0,45

5,57
0,07

11,82 75,35
0,74 76,09
5,12 81,21
0.13 81,35
1,60 82,94
0.21 83,15

15,27 98.42
1,58 100,00

8.27

9,08
9,47
9,90

17,10
54.81
57,44

57,89
63.46
63,53

Rn

(Rb)

•(Rb)

(Rb) +
• (Rb) +

b*CRb)
•b(Rb)

«*(Rb)
•w(Rb)

l*(Rb)
•1(Rb)
Bdb

Bdw

Specifier Type (Index)

Count Parent CumuleType

(Rb)

•(Rb)

(Rb) +

• (Rb)^

b*(Rb)
•b(Rb)

w*(Rb)
ew(Rb)

1*(Rb)
•1(Rb)

265398 20,69 20,69
0,00 20,69

0,00 20,69

0,00 20,69
36.16 56,85
3.83 60,69

21,53 82.22

0,46 82,68
16,72 99,40
0,60 100,00

0

0

0

463773

49170

276167

5860

214441

7704

Memory Reads Per Instruction

Count Percnt CumuleNumber

61,12

97,0tt
99,95

6080177

5573927

289359
5266

61,12
35.92

2.91

0.05 100,00

0,00 100,00

0,00 100,00
0,00 100,00

0

1

2

3

44

5 0

06

0,42Average Memory Reads Per Instruction ■

Memory Writes Per Instruction

Count Percnt CumulaNumber

0 8632443 86,77 86,77

1 1316290 13.23 100,00
0 0.00 100,002

0,13Average Memory Writes Per Instruction ■

Register Reads Per Instruction

Count Percnt CumulaNumber

3072137

4651471

1790468

319025

111514
4118

30.88
46,75

18,00
3,21
1.12

0,04 100,00

0,00 100,00

0,00 100,00

0.00 100,00
0.00 100,00
0,00 100,00

0,00 100,00
0,00 100,00

30,88
77,63

95,63
96,84

99,96

0

1

2

3

4

5

06

7 0

8 0

9 0

10 0

11 0

12 0

Averege Register Reads Per Instruction « 0,97

Register Writes Per Instruction

Numbe r Count Percnt Cumula

0 6003116 60.34 60,34
1 3936372 39,59 99,93

7245 0,07 100,002

Average Register Writes Per Instruction ■
CUTLER

0,40
Job terminated at 30-NOV"1984 14150*05,31

