Box 27 folder 22 3 of 3 102749950 (a) • 1

From: ROCK::SUPNIK 24-AUG-1984 11:25 To: WAFER::UHLER Subj: cutler's proposed high performance architecture

From: WILBUR::CUTLER 23-AUG-1984 13:06 To: ROCK::SUPNIK Subj: RE: performance of cvax and rigel

Things always loose in the translation!

We said the architecture was "like" the hypervax modle so people would have some idea how it worked. Our original thoughts were to do a four stage pipeline. The first stage was decode and decoded up to 3 specifiers at a time (decode means separated). The next stage had 3 address adders capable of doing displ(rb)[rx] in one cycle. The next stage had two tb's and two caches and fetched two operands in parallel. The final stage executed instructions. And of course there was some form of branch predicition.

Now after looking at the problem more throughly and doing some analytical modeling on actual flow data from microvax one we are convinced we can get 4x780 with the same pipeline and one operand decoded, adder, and fetcher. Specifiers are decoded one at a time, the address add (or register fetch) in done in the next cycle followed by the operand read and then the value is stored in one of three operand specifier buffers that are 16 bytes wide (they also act as merge registers for unaligned data). There are two sets of operand specifier buffers; one that is being written by the fetch and one that is being read by the execution stage.

Our data says we can get from 3.8-5x780 with this architecture depending on how well we do with branches. If we predict them all incorrectly then we get 3.8x780. If we predict them all correctly we get 5x780. The middle road is about 70% correct which gives us about 4x780.

The tpi we get is from 4-5.

The reasone this architecture works is because almost all operand fetching can be hidden behind instruction execution (or at least a large amount of it can).

I believe this is a simple architecture. It is not a complicated as Venus. Write comflict is handled by write in progress bits in both the cache and register file. There is a single write bus and it need not be arbitrated. There is an icache and a dcache. They are really the same cache and share control logic. However, two reads and one write can be done every cycle. There are two register files. One is in the address add stage and one in the execution stage. The one in the address add stage is dual port read one port write. The one in the execution stage is single port read and single port write (this is one required for access to the registers during string, decimal, and certain control instructions).

Now the address adder does everything but

(r)+ -(r) @(r)+ @d(r)

and the context indexed form of these.

The modes that are not done by the address stage cause a trap in the execution stage when the instruction becomes the current instruction. All register backup is done in the execution stage. None is done in the address add stage. Thus there is a single source of write data and it is on the result bus no matter whether it is destined for the register file or memory. No arbitration of who gets to write memory or the register file now.

Complicated instructions like string, decimal, call, etc. stop the pipe. This means that no further instructions will be decoded until the execution unit says so. Thus the fetch stage cache and tb are available for fetching and storing results. This is necessary for proper memory conflict resolution. Also mtpr and mfpr stop the pipe.

I'll stop by on Monday or Tuesday of next week and talk to you about it.

I must say that I do not agree that the way we should be trying to build a fast Vax is by tightening the microcyle time. This does not have anywhere near the payback that an improved microarchitecture has. Yes it is important but we could never get 4x780 out of cmos (currently) by going to a microcyle of 50ns or less. We would have to have so many pipeline stages that branches would kill us.

dave

From: ROCK::SUPNIK 13-DEC-1984 11:53 To: WAFER::UHLER Subj: request for documentation

From: WILBUR::CUTLER 13-DEC-1984 11:53 To: ROCK::SUPNIK Subj: youyr comments

Thanks for the comments.

Although I know very little about Rigel it seems there is significant difference. The cannges we made in our model for branch prediction, register counters, and decoding register destinations along with the previous specifier had MAJOR impact on performance. Stopping the pipe while you wait for a branch to be resolved could cost you up to 25% in performance assuming you have a four stage pipe and branches occur every 3-4 instructions.

We will run as many traces as we can and will model things in more detail.

Could you send me some documentation about Rigel?

d

From: MIST::CUTLER 21-DEC-1984 13:46 To: WAFER::UHLER Subj: fortran statistics

. .

Instruction Frequency Data This data was collected on 21-DEC-1984 09:55:14.62 This data was written to dua0:[cutler]mm32for.cod Total number of instructions traced was 243068 Name Count Percnt Cumula MOVL 29970 12.33 12.33 BNEO 18521 7.62 19.95 BEOL 12412 5.11 25.06 CMPL 11910 4.90 29.96 MOVAB 11624 4.78 34.74 MOVZWL 9271 3.81 38.55 ADDL2 8902 3.66 42.21 BBC 8677 3.57 45.78 MOVZBL 6848 2.82 48.60 PUSHL 6500 2.67 51.28 CMPW 6433 2.65 53.92 RET 5423 2.23 56.15 BRB 5385 2.22 58.37 CALLS 5325 2.19 60.56 SOBGTR 4919 2.02 62.58 CMPB 4900 2.02 64.60 CLRL 4809 1.98 66.58 TSTL 4223 1.74 68.32 EXTZV 4133 1.70 70.02 MOVW 4020 1.65 71.67 RSB 3904 1.61 73.28 2544 INCL 1.05 74.32 BLBC 2525 1.04 75.36 AOBLEQ 2456 1.01 76.37 BRW 0.99 2402 77.36 ASHL 0.92 2240 78.28 SOBGEO 2163 0.89 79.17 SUBL2 2058 0.85 80.02 JSB 1813 0.75 80.76 MOVB 1811 0.75 81.51 CMPZV 1802 0.74 82.25 BSBW 1793 0.74 82.99 BBS 1739 0.72 83.70 0.70 ADDL3 1690 84.40 BGTRU 1552 0.64 85.04 MOVAL 1469 0.60 85.64 BLBS 1266 0.52 86.16 BLEQU 1252 0.52 86.68 BLSS 1251 0.51 87.19

PUSHAW

CASEB

BLSSU

MULL2

BLEO

BGEO

CLRB

CLRO

SUBL3

BGEOU

BGTR

PUSHAB

CASEL

MOVO

1238

1206

1204

1191

1188

1129

1055

1045

989

955

936

829

784

731

0.51

0.50

0.50

0.49

0.49

0.46

0.43

0.43

0.41

0.39

0.39

0.34

0.32

0.30

87.70

88.20

88.69

89.18

89.67

90.14

90.57

91.00

91.41

91.80

92.18

92.53

92.85

BICB2	700	0.29	93.44
INSV	668	0.27	93.71
MOVC5	624	0.26	93.97
BICL2	612	0.25	94.22
SUBW3	587	0.24	94.46
POPR	540	0.22	94.68
BSBB	520	0 21	94 90
BISB2	517	0 21	95 11
DECL	516	0.21	05 22
	515	0.21	95.52
IDID ADDW2	515	0.21	95.55
ADDWS	514	0.21	95.75
BITB	506	0.21	95.95
PUSHR	492	0.20	96.16
MULL3	485	0.20	96.36
MNEGL	475	0.20	96.55
CLRW	470	0.19	96.74
TSTW	470	0.19	96.94
BITW	462	0.19	97.13
MOVC3	452	0.19	97.31
BISW2	438	0.18	97.49
PUSHAL	410	0.17	97.66
MOVAO	381	0.16	97.82
MTPR	278	0.11	97 93
BICL3	263	0 11	98 04
CASEW	211	0 10	08 14
PROBER	212	0.10	00.14
PRODER	213	0.09	90.23
BBOBEW	100	0.09	90.32
PROBLW	109	0.08	98.39
BISL2	109	0.08	98.47
BBSS	183	0.08	98.55
SUBBZ	1/4	0.07	98.62
ADDW2	162	0.07	98.68
DIVL3	153	0.06	98.75
BBSC	147	0.06	98.81
BVS	144	0.06	98.87
DECW	130	0.05	98.92
SKPC	129	0.05	98.97
INCB	111	0.05	99.02
AOBLSS	109	0.04	99.06
ROTL	106	0.04	99 11
ACBL	99	0.04	99 15
RET	96	0.04	99.19
SUBB3	92	0.04	99.19
FDIV	00	0.04	99.23
BTCI 2	00	0.04	99.20
TNCM	07	0.04	99.30
NOUDGI	80	0.04	99.33
MOVPSL	86	0.04	99.37
MFPR	82	0.03	99.40
LOCC	76	0.03	99.43
JMP	71	0.03	99.46
CVTWL	67	0.03	99.49
EMUL	67	0.03	99.52
EXTV	62	0.03	99.54
PUSHAQ	56	0.02	99.57
DIVL2	55	0.02	99.59
CVTBL	53	0.02	99 61
ADDB3	51	0 02	99 63
MOVZBW	50	0.02	99.05
СНМК	50	0.02	00 67
CHIII	50	0.02	99.01
CMDC2	10	0 00	00 00

CHME	49	0.02	99.71
REMQUE	47	0.02	99.73
INSQUE	46	0.02	99.75
BITL	46	0.02	99.77
CVTLB	46	0.02	99.79
MULW2	41	0.02	99.81
XORL2	39	0.02	99.82
DECB	38	0.02	99.84
MOVAW	37	0.02	99.85
SUBW2	37	0.02	99.87
ADDB2	34	0.01	99.88
BICW2	34	0.01	99.90
ASHQ	33	0.01	99.91
BISW3	25	0.01	99.92
BBCCI	24	0.01	99.93
MNEGB	21	0.01	99.94
CVTLW	21	0.01	99.95
FFS	18	0.01	99.96
BISPSW	17	0.01	99.96
BVC	12	0.00	99.97
MOVTC	12	0.00	99.97
CALLG	11	0.00	99.98
ACBW	9	0.00	99.98
BICB3	9	0.00	99.98
MCOML	9	0.00	99.99
CVTWB	8	0.00	99.99
CMPV	7	0.00	99.99
XORL3	4	0.00	100.00
BBCS	4	0.00	100.00
BICW3	2	0.00	100.00
BBSSI	2	0.00	100.00
BISB3	1	0.00	100.00
MULW3	1	0.00	100.00
MNEGW	1	0.00	100.00

Instruc	tion Size	Desert	Charmel a	
Size	Count	Percnt	Cumula	
1	9423	3.88	3.88	
2	62829	25.85	29.73	
3	63082	25.95	55.68	
4	48813	20.08	75.76	
5	23001	9.46	85.22	
6	10212	4.20	89.42	
/	16744	6.89	96.31	
8	/508	3.09	99.40	
10	1180	0.49	99.89	
11	72	0.03	99.92	
12	13	0.03	99.95	
13	43	0.02	100 00	
14	1	0.00	100.00	
15	Ō	0.00	100.00	
16	3	0.00	100.00	
17	0	0.00	100.00	
18	0	0.00	100.00	
19	0	0.00	100.00	
20	0	0.00	100.00	
21	0	0.00	100.00	
22	0	0.00	100.00	
23	0	0.00	100.00	
24	0	0.00	100.00	
25	0	0.00	100.00	
20	0	0.00	100.00	
28	0	0.00	100.00	
29	0	0.00	100.00	
30	Ő	0.00	100.00	
31	Õ	0.00	100.00	
32	0	0.00	100.00	
33	0	0.00	100.00	
34	0	0.00	100.00	
35	0	0.00	100.00	
36	0	0.00	100.00	
37	0	0.00	100.00	
38	0	0.00	100.00	
39	0	0.00	100.00	
40	Instructi	0.00	100.00	
		1111 51 770		

Specifier	Size		
Size	Count	Percnt	Cumula
1	321707	74.95	74.95
2	62904	14.66	89.61
3	13744	3.20	92.81
4	3409	0.79	93.61
5	21449	5.00	98.60
6	5998	1.40	100.00
Average Sp	pecifier	Size :	= 1.50
Specifier	Type (a	11)	
Type	Count	Percnt	Cumula
s^#0x	51034	11.89	11.89
s^#1x	9678	2.25	14.15
s^#2x	2282	0.53	14.68
s^#3x	933	0.22	14.89
[Rx]	21053	4.91	19.80
Rn	147093	34 27	54 07
(Rb)	32407	7 55	61 62
-(Bb)	2051	0 48	62 10
(Rb)+	15176	3 54	65 63
$\theta(Bb) +$	2125	0.50	66 13
$h^{(RD)+}$	16010	10.03	77 06
Ob(Rb)	1775	0 41	77.00
$w^{(Rb)}$	5100	1 10	79 66
Qw(Rb)	12	1.19	70.00
1^(Rb)	16760	0.00	/0.00
(RD)	16769	3.91	02.57
Pdb	70250	16.20	82.61
Bdu	10350	10.39	99.00
Specifica	4303	1.00	100.00
Specifier	Type (1	ndex)	~ 1
туре	Count	Percnt	Cumula
(Rb)	8308	39.46	39.46
-(Rb)	2	0.01	39.47
(Rb)+	0	0.00	39.47
@(Rb)+	133	0.63	40.10
$b^{(Rb)}$	2956	14.04	54.14
@b(Rb)	395	1.88	56.02
w^(Rb)	3276	15.56	71.58
@w(Rb)	133	0.63	72.21
1^(Rb)	5835	27.72	99.93
@l(Rb)	15	0.07	100.00

Memory Reads Per Instruction	
Number Count Percnt Cumula	
0 169894 69.90 69.90	
1 64075 26.36 96.26	
2 8774 3.61 99.87	
3 292 0.12 99.99	
4 0 0.00 99.99	
5 33 0.01 100.00	
6 0 0.00 100.00	
Average Memory Reads Per Instruction	n = 0.34
Memory Writes Per Instruction	
Number Count Percnt Cumula	
0 216590 89.11 89.11	
1 26478 10.89 100.00	
2 0 0.00 100.00	
Average Memory Writes Per Instruction	n = 0.11
Register Reads Per Instruction	
Number Count Percnt Cumula	
0 89350 36.76 36.76	
1 108651 44.70 81.46	
2 40567 16.69 98.15	
3 4135 1.70 99.85	
4 365 0.15 100.00	
5 0 0.00 100.00	
6 0 0.00 100.00	
7 0 0.00 100.00	
8 0 0.00 100 00	
9 0 0.00 100 00	
10 0 0.00 100 00	
Average Register Reads Per Instructi	00 - 0.91
Register Writes Per Instruction	.011 = 0.04
Number Count Percet Cumula	
count refere cumura	
0 154840 63 70 63 70	
1 88141 36 26 99 96	
2 87 0 04 100 00	

Specifier Access Type Count Percnt Cumula Type read 195659 45.59 45.59 write 86433 20.14 65.72 6.61 72.33 6.16 78.49 modify 28360 6.61 addres 26433 vield 17673 4.12 82.61 branch 74653 17.39 100.00 Total number of operand specifiers was 429211 Number of nonfetch operand specifiers was 333944 Percent of nonfetch operand specifiers was 77.80 From: MIST::CUTLER 21-DEC-1984 13:50 To: WAFER::UHLER Subj: linker statistics

Instr	uctio	on F	req	uenc	y Da	ata				
This	data	was	co	llec	ted	on 2	1 - DEC - 1	984	10:00:	30.14
This	data	was	wr	itte	n to	dua	0:[cut1	er]r	nm321nk	.cod
Total	numb	ber	of	inst	ruct	cions	traced	was	s 33	3074
Name		Cou	nt	Per	cnt	Cumu	la			

MOVL	51250	15.39	15.39
ADDL2	16023	4.81	20.20
MOVZBL	15514	4.66	24.86
BEQL	13224	3.97	28.83
MOVAB	13079	3.93	32.75
CMPL	11899	3.57	36.32
BLBC	8973	2.69	39.02
AOBLEO	8514	2.56	41.58
BNEO	7765	2.33	43.91
BBC	7469	2 24	46 15
MOVZWI	7452	2 24	48 39
CLRL	7000	2 10	50 49
BGTRU	6953	2 09	52 58
BBS	6787	2.01	54 61
PCB	6716	2.04	54.01
BBB	6078	1 92	50.05
DIIGUI	6024	1 01	50.45
CMDP	5024	1.01	60.26
CHPD	5975	1.79	62.00
TSTL	5572	1.67	63.73
BLSSU	5201	1.50	65.29
RET	4552	1.37	66.66
CALLS	4318	1.30	67.95
BSBW	4159	1.25	69.20
EXTZV	4055	1.22	70.42
SUBL2	3822	1.15	71.57
BLBS	3692	1.11	72.68
MOVB	3602	1.08	73.76
INSV	3366	1.01	74.77
ADDL3	3301	0.99	75.76
MOVW	3222	0.97	76.73
MOVAL	3184	0.96	77.68
INCL	3119	0.94	78.62
SUBL3	2748	0.83	79.44
PUSHAB	2706	0.81	80.26
BGEQ	2338	0.70	80.96
PUSHR	2157	0.65	81.61
CMPW	2138	0.64	82.25
BGTR	2121	0.64	82.88
BRW	2085	0.63	83.51
POPR	2032	0.61	84.12
BSBB	1996	0.60	84.72
MOVQ	1932	0.58	85.30
BLEO	1809	0.54	85.84
BLSS	1783	0.54	86.38
SOBGTR	1768	0.53	86.91
BICL2	1717	0 52	87 42
BGEOU	1675	0.50	87 03
BICBS	1/92	0.45	89 39
CLRO	1/5/	0.45	00.30
TNCW	1425	0.44	00.01
MCOMI	1425	0.43	09.24
MTDD	1206	0.42	09.00
DICL 2	1390	0.42	90.08
BICL3	1294	0.39	90.47

BISBZ	1260	0.38	90.85
JSB	1242	0.37	91.22
SOBGEQ	1098	0.33	91.55
BLEQU	1040	0.31	91.86
CASEW	1039	0.31	92.17
CLRW	1010	0.30	92.48
PROBEW	975	0.29	92.77
MOVC3	966	0.29	93.06
MOVC5	963	0.29	93.35
CMPC5	936	0.28	93.63
BICB2	934	0.28	93.91
ADDW2	916	0.28	94.18
ASHL	843	0.25	94.44
MNEGL	806	0.24	94.68
EDIV	714	0.21	94.89
MOVAQ	710	0.21	95.11
PROBER	673	0.20	95.31
TSTW	673	0.20	95.51
EMUL	664	0.20	95.71
BBCC	650	0.20	95.91
ROTL	611	0.18	96.09
DECL	584	0.18	96.26
MOVAW	572	0.17	96.44
DECW	539	0.16	96.60
BISW3	525	0.16	96.76
BBSS	525	0.16	96.91
EXTV	487	0.15	97.06
TSTB	433	0.13	97.19
BISL2	424	0.13	97.32
CLRB	396	0.12	97.44
ACBW	358	0.11	97.54
BBSC	353	0.11	97.65
CMPZV	299	0.09	97.74
BICWZ	296	0.09	97.83
REI	294	0.09	97.92
SUBB3	292	0.09	98.00
CASEB	290	0.09	98.09
BISL3	289	0.09	98.18
MOVPSL	275	0.08	98.26
MFPR	268	0.08	98.34
INCB	263	0.08	98.42
JMP	256	0.08	98.50
REMQUE	255	0.08	98.57
CVTBL	253	0.08	98.65
LNCOUE	231	0.07	98.72
INSQUE	221	0.07	98.78
PUSHAL	217	0.07	98.85
DVD	213	0.06	98.91
BISW2	209	0.06	98.98
CUME	208	0.06	99.04
CHIL	205	0.06	99.10
CMPV	185	0.06	99.16
MOV2BW	176	0.05	99.21
BTTM	171	0.05	99.26
MULL2	129	0.04	99.30
DECB	125	0.04	99.34
SUBW3	123	0.04	99.37
ADDB3	118	0.04	99.41
CVTLB	118	0.04	99.44
MULW2	114	0.03	99.48

114	0.03	99.51
112	0.03	99.55
111	0.03	99.58
109	0.03	99.61
105	0.03	99.64
94	0.03	99.67
84	0.03	99.70
84	0.03	99.72
82	0.02	99.75
81	0.02	99.77
76	0.02	99.79
74	0.02	99.82
69	0.02	99.84
69	0.02	99.86
62	0.02	99.88
55	0.02	99.89
53	0.02	99.91
49	0.01	99.92
37	0.01	99.94
35	0.01	99.95
32	0.01	99.96
31	0.01	99.96
28	0.01	99.97
19	0.01	99.98
13	0.00	99.98
11	0.00	99.99
11	0.00	99.99
11	0.00	99.99
8	0.00	99.99
6	0.00	100.00
3	0.00	100.00
2	0.00	100.00
2	0.00	100.00
2	0.00	100.00
2	0.00	100.00
	112 112 105 84 82 81 74 69 65 53 97 52 18 93 111 11 86 32 22 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Instruc	tion Size			
Size	Count	Percnt	Cumula	
1	11562	3.47	3.47	
2	77185	23.17	26.64	
3	104811	31.47	58.11	
4	75220	22.58	80.70	
5	33308	10.00	90.70	
6	9373	2.81	93.51	
7	13379	4.02	97.53	
8	6726	2.02	99.55	
9	1391	0.42	99.96	
10	85	0.03	99.99	
11	22	0.01	100.00	
12	11	0.00	100.00	
13	1	0.00	100.00	
14	0	0.00	100.00	
15	0	0.00	100.00	
16	0	0.00	100.00	
17	0	0.00	100.00	
18	0	0.00	100.00	
19	0	0.00	100.00	
20	0	0.00	100.00	
21	0	0.00	100.00	
22	0	0.00	100.00	
23	0	0.00	100.00	
24	0	0.00	100.00	
25	0	0.00	100.00	
27	0	0.00	100.00	
28	0	0.00	100.00	
29	Ő	0.00	100.00	
30	õ	0.00	100.00	
31	Õ	0.00	100.00	
32	0	0.00	100.00	
33	0	0.00	100.00	
34	0	0.00	100.00	
35	0	0.00	100.00	
36	0	0.00	100.00	
37	0	0.00	100.00	
38	0	0.00	100.00	
39	0	0.00	100.00	
40	0	0.00	100.00	
Average	Instructi	on Size	= 3 50	1

Specifier Size	Size Count	Percnt	Cumula	
1 2 3 4 5 6 Average S Specifier Type	479696 93126 15041 5995 17226 2106 pecifier Type (a Count	78.23 15.19 2.45 0.98 2.81 0.34 Size 11) Percnt	78.23 93.42 95.87 96.85 99.66 100.00 = 1.36 Cumula	
<pre>s^#0x s^#1x s^#2x s^#3x [Rx] Rn (Rb) -(Rb) (Rb)+ @(Rb)+ @(Rb)+ b^(Rb) @b(Rb) @b(Rb) @w(Rb) l^(Rb) @w(Rb) l^(Rb) Bdb Bdw Specifier Tupo</pre>	63534 9913 3544 2018 13473 239508 51483 3175 24665 2550 74334 6557 8316 78 10908 265 92264 6605 Type (i	10.36 1.62 0.58 0.33 2.20 39.06 8.40 0.52 4.02 0.42 12.12 1.07 1.36 0.01 1.78 0.04 15.05 1.08 ndex)	10.36 11.98 12.56 12.88 15.08 54.14 62.54 63.06 67.08 67.49 79.62 80.69 82.04 82.05 83.83 83.88 98.92 100.00	
(Rb) -(Rb)+ @(Rb)+ @(Rb)+ b^(Rb) @b(Rb) w^(Rb) @w(Rb) l^(Rb) @l(Rb)	2461 31 0 404 1818 1071 2043 3865 1023 757	18.27 0.23 0.00 3.00 13.49 7.95 15.16 28.69 7.59 5.62	18.27 18.50 18.50 21.49 34.99 42.94 58.10 86.79 94.38 100.00	

Memory	Reads Per	Instru	ction	
Number	Count	Percnt	Cumula	
0	222070	66.67	66.67	
1	99420	29.85	96.52	
2	11324	3.40	99.92	
3	260	0.08	100.00	
4	0	0.00	100.00	
5	0	0.00	100.00	
6	0	0.00	100.00	
Average	e Memorv R	eads Pe	r Instruction =	0 37
Memory	Writes Pe	r Instr	uction	0.57
Number	Count	Percht	Cumula	
	ooune	1010110	cumura	
0	291474	87.51	87.51	
1	41600	12.49	100.00	
2	0	0.00	100 00	
Average	Memory W	rites P	er Instruction	- 0 12
Registe	er Reads P	er Inst	ruction	- 0.12
Number	Count	Percet	Cumula	
	count	rerent	Cullura	
0	111687	33 53	33 53	
1	145748	13 76	77 29	
2	68862	20 67	07 07	
3	5611	1 69	97.97	
3	1166	1.00	99.65	
4	1100	0.35	100.00	
5	0	0.00	100.00	
07	0	0.00	100.00	
/	0	0.00	100.00	
8	0	0.00	100.00	
9	0	0.00	100.00	
10	0	0.00	100.00	
11	0	0.00	100.00	
12	0	0.00	100.00	
Average	Register	Reads H	Per Instruction	= 0.92
Registe	r Writes	Per Inst	ruction	
Number	Count	Percnt	Cumula	
0	198184	59.50	59.50	
1	134197	40.29	99.79	
2	693	0.21	100.00	
Average	Register	Writes	Per Instruction	= 0.41

Specifier	Access	Туре		
туре	Count	Percnt	Cumula	
read	277942	45.33	45.33	
write	132852	21.67	66.99	
modify	44331	7.23	74.22	
addres	34796	5.67	79.90	
vield	24400	3.98	83.88	
branch	98869	16.12	100.00	
Total num	ber of d	operand	specifiers was	613190
Number of	nonfeto	ch opera	and specifiers was	476819
Percent of	f nonfet	ch open	rand specifiers wa	s 77.76

From: MIST::CUTLER 21-DEC-1984 13:55 To: WAFER::UHLER Subj: sort statistics

16

Instruction Frequency Data This data was collected on 21-DEC-1984 10:05:51.15 This data was written to dua0:[cutler]sort.cod Total number of instructions traced was 402831 Name Count Percnt Cumula

MOVL	51261	12.13	12.73
CMPL	23039	5.72	18.44
BBC	20659	5.13	23.57
ADDL2	20420	5.07	28.64
BLSS	18915	4.70	33.34
BLSSU	18339	4.55	37.89
SUBL3	17640	4.38	42.27
RSB	16367	4.06	46.33
BNEO	16216	4.03	50.36
BLBC	13632	3.38	53.74
MOVZWL	12864	3.19	56 94
EXTZV	12280	3.05	59 98
TSTL	11491	2.85	62 84
BEOL	11400	2 83	65 67
PUSHL	11352	2 82	68 48
MOVAL	10611	2 63	71 12
JSB	9885	2 45	73 57
DECL	8224	2 04	75 61
SOBGEO	8138	2.04	77 62
BSBW	4674	1 16	78 79
MOVZBL	4066	1 01	79 80
BBS	3970	0 00	80 70
ADDI.3	3704	0.92	81 71
CMPB	3538	0.92	92 50
BRB	3496	0.87	82.15
INCL	2876	0.71	84 17
CLRL	2656	0.66	84.93
POPR	2652	0.66	85 19
MTPR	2333	0.58	86 07
BSBB	2279	0.57	86 63
BRW	2254	0.56	87 19
BLBS	2069	0.51	87 70
MOVAB	2040	0.51	88 21
EXTV	1846	0.46	88 67
CMPW	1609	0.40	89 07
PUSHR	1533	0 38	89 15
PUSHAB	1420	0.35	89 80
BGEOU	1413	0.35	90 15
MOVW	1399	0.35	90 50
MOVB	1362	0.34	90 84
BGTRU	1355	0.34	91 17
CASEB	1352	0.34	91.51
SOBGTR	1316	0.33	91.84
SUBL2	1294	0.32	92 16
CMPZV	1180	0.29	92 45
BICB2	1105	0 27	92 72
MOVPSL	1017	0 25	92 98
MFPR	1009	0 25	93 23
BBSC	1002	0 25	93 18
BGTR	993	0.25	93 72
RET	966	0.24	93.96
BGEO	957	0.24	94 20
BBCC	929	0.23	94.43
11111 M 112 (11 10 10 10 10 10 10 10 10 10 10 10 10 1			

MOVQ	909	0.23	94.66	
ROTL	838	0.21	94.07	
BLEOU	821	0.20	95.28	
BBSS	800	0.20	95.48	
CASEW	782	0.19	95.67	
ASHL	763	0.19	95.86	
CLRQ	743	0.18	96.04	
TSTB	742	0.18	96.23	
PROBER	714	0.18	96.41	
CMPC3	703	0.17	96.58	
MNEGL	690	0.17	96.75	
BLEQ	656	0.16	96.91	
CALLS	642	0.16	97.07	
CLRW ADDW2	591	0.15	97.22	
PROBEW	102	0.15	97.37	
TSTW	492	0.12	97.49	
BICL3	467	0.12	97 72	
DECW	439	0.11	97.83	
MULL3	430	0.11	97.94	
BISB2	400	0.10	98.04	
AOBLSS	360	0.09	98.13	
CVTWL	357	0.09	98.21	
SUBW3	345	0.09	98.30	
REI	328	0.08	98.38	
BISW2	283	0.07	98.45	
BUS	255	0.06	98.52	
CLRB	255	0.06	98.58	
INCW	251	0.06	98 70	
ADDB3	239	0.06	98.76	
INSQUE	233	0.06	98.82	
INSV	228	0.06	98.88	
CVTLB	226	0.06	98.93	
MOVC5	225	0.06	98.99	
MULW2	218	0.05	99.04	
CHME	213	0.05	99.10	
AORIEO		0.05	99.15	
CMPU	163	0.05	99.19	
BITB	158	0.04	99.24	
BITL	149	0.04	99 31	
BICB3	147	0.04	99.35	
SUBW2	146	0.04	99.38	
DECB	139	0.03	99.42	
SUBB3	129	0.03	99.45	
BITW	125	0.03	99.48	
BISL3	122	0.03	99.51	
CHMK	110	0.03	99.54	
EDIV ADDW2	113	0.03	99.57	
EMIII.	100	0.03	99.60	
JMP	107	0.03	99.02	
CVTBL	103	0 03	99.69	
INCB	98	0.02	99 70	
XORL3	93	0.02	99.72	
MOVAQ	89	0.02	99.74	
BISB3	85	0.02	99.77	
PUSHAQ	77	0.02	99.79	

PUSHAL	77	0.02	99.80
MOVZBW	75	0.02	99.82
BICW2	72	0.02	99.84
MULL2	72	0.02	99.86
BISL2	67	0.02	99.88
BBCCI	57	0.01	99.89
MOVAW	56	0.01	99,90
XORL2	56	0.01	99.92
ASHQ	46	0.01	99.93
LOCC	36	0.01	99.94
FFS	33	0.01	99.95
ACBW	32	0.01	99.95
ADDB2	31	0.01	99.96
DIVL2	20	0.00	99.97
MNEGB	15	0.00	99.97
BBCS	15	0.00	99.97
CASEL	14	0.00	99.98
PUSHAW	12	0.00	99.98
DIVL3	12	0.00	99.98
CALLG	12	0.00	99.99
MCOML	11	0.00	99.99
BBSSI	11	0.00	99.99
SUBB2	7	0.00	99.99
XORB2	6	0.00	99.99
BISW3	6	0.00	100.00
CVTLW	3	0.00	100.00
SVPCTX	2	0.00	100.00
CMPC5	2	0.00	100.00
BICW3	2	0.00	100.00
MNEGW	2	0.00	100.00
BVC	1	0.00	100.00
SKPC	1	0.00	100.00
MULW3	1	0.00	100.00
FFC	1	0.00	100.00

Instruc	tion Size			
Size	Count	Percnt	Cumula	
1	17663	4.38	4.38	
2	100032	24.83	29.22	
3	101448	25.18	54.40	
4	81518	20.24	74.64	
5	59734	14.83	89.47	
6	15616	3.88	93.34	
7	21382	5.31	98.65	
8	4120	1.02	99.67	
9	1017	0.25	99.93	
10	100	0.02	99.95	
11	186	0.05	100.00	
12	14	0.00	100.00	
13	0	0.00	100.00	
14	1	0.00	100.00	
15	0	0.00	100.00	
16	0	0.00	100.00	
17	0	0.00	100.00	
18	0	0.00	100.00	
19	0	0.00	100.00	
20	0	0.00	100.00	
21	0	0.00	100.00	
22	0	0.00	100.00	
23	0	0.00	100.00	
24	0	0.00	100.00	
25	0	0.00	100.00	
20	0	0.00	100.00	
27	0	0.00	100.00	
28	0	0.00	100.00	
29	0	0.00	100.00	
30	0	0.00	100.00	
32	0	0.00	100.00	
32	0	0.00	100.00	
34	0	0.00	100.00	
35	0	0.00	100.00	
36	0	0.00	100.00	
37	Ő	0.00	100.00	
38	0 0	0.00	100.00	
39	Ő	0.00	100.00	
40	Ő	0.00	100.00	
Average	Instructi	on Size	= 3 50	5

Specifier Size	Size Count	Percnt	Cumula
1 2 3 4 5 6 Average Sp Specifier Type	533131 121259 33007 3910 27499 827 pecifier Type (a Count	74.08 16.85 4.59 0.54 3.82 0.11 Size 11) Percnt	74.08 90.93 95.52 96.06 99.89 100.00 = 1.44 Cumula
<pre>s^#0x s^#1x s^#2x s^#3x [Rx] Rn (Rb) -(Rb) (Rb)+ @(Rb)+ b^(Rb) @b(Rb) @b(Rb) @b(Rb) @w(Rb) l^(Rb) @w(Rb) l^(Rb) Bdb Bdw</pre>	70885 30401 2755 1025 24937 257110 24352 11533 12923 18811 100904 8720 10986 35 6836 221 130239 6960	9.85 4.22 0.38 0.14 3.47 35.73 3.38 1.60 1.80 2.61 14.02 1.21 1.53 0.00 0.95 0.03 18.10 0.97	9.85 14.07 14.46 14.60 18.07 53.79 57.18 58.78 60.58 63.19 77.21 78.42 79.95 79.95 80.90 80.93 99.03 100.00
Specifier Type	Type (1 Count	ndex) Percnt	Cumula
(Rb) -(Rb)+ @(Rb)+ @(Rb)+ b^(Rb) @b(Rb) w^(Rb) @w(Rb) l^(Rb)	1030 2 0 389 1084 18025 986 2922 469	4.13 0.01 0.00 1.56 4.35 72.28 3.95 11.72 1.88	4.13 4.14 4.14 5.70 10.05 82.33 86.28 98.00 99.88
GT(KD)	30	0.12	100.00

Memory Reads Per Instruction Number Count Percnt Cumula 0 258897 64.27 64.27 30.18 94.45 1 121574 2 22176 5.51 99.95 3 0.05 100.00 182 4 2 0.00 100.00 5 0 0.00 100.00 6 0 0.00 100.00 Average Memory Reads Per Instruction = 0.41 Memory Writes Per Instruction Number Percnt Cumula Count 0 355111 88.15 88.15 1 47720 11.85 100.00 2 0.00 100.00 0 Average Memory Writes Per Instruction = 0.12 Register Reads Per Instruction Number Count Percnt Cumula 0 154528 38.36 38.36 1 175647 43.60 81.96 2 54253 13.47 95.43 3 18331 4.55 99.98 4 72 0.02 100.00 5 0.00 100.00 0 6 0 0.00 100.00 7 0 0.00 100.00 8 0 0.00 100.00 9 0 0.00 100.00 10 0 0.00 100.00 11 0.00 100.00 0 12 0.00 100.00 0 Average Register Reads Per Instruction = 0.84 Register Writes Per Instruction Number Count Percnt Cumula 0 271266 67.34 67.34 1 131456 32.63 99.97 2 109 0.03 100.00 Average Register Writes Per Instruction = 0.33

1

Specifier Access Type Type Count Percnt Cumula read 329359 45.77 45.77 write 132292 18.38 64.15 modify 47102 6.55 70.70 addres 30507 4.24 74.94 6.00 80.93 vield 43174 branch 137199 19.07 100.00 Total number of operand specifiers was 719633 Number of nonfetch operand specifiers was 54669 Percent of nonfetch operand specifiers was 75.97 546693

.

1 ...

From:	ROCK::SUPNIK	2-JAN	-1985	12:46	
To:	WAFER::UHLER				
Subj:	fyi				
From:	WILBUR::CUTLE	R	2	2-JAN-1985	11:41
To:	ROCK::SUPNIK				
Subj:	RE: update on	rigel	model	lling	

Let me respond to a couple of things:

1. 1k x 1 does indeed give > than 80% in most cases.

2. Branch prediction is good!

- 3. I have converted you traces and run them. I also changed the way strings are modelled to take into account the lengths of the strings. And you'll be happy to knwo that we also see 6-7 TPI. BUT these are only very small excerpts from the overall traces. They are VERY heavily weighted toward string and call return instructions. We have run the entire trace of the linker (not with system space however) and it is much better. If we look at the numbr of page faults and direct I/O's and multiply by 1ms and add the simulation time we still come out 6x780 for a complete liner trace!
- 4. You may not see any benefit for register counters since the traces you are using are so small. The greatest benefit we see is in Fortran programs. I still think this is a very important optimization and we intend to leave it in.

Thanks for the comments. I'll keep yopu posted on what we are doing. My spelling above is terrible (I never think to edit these things when I start).

dave

From: MIST::SCHNORR 5-DEC-1984 05:06 To: ULTRA::STRECKER,ROCK::SUPNIK,NOODLE::PARKER Subj: Frigate Simulator Description

1 OVERVIEW

The Frigate simulator consists of two programs; one to generate a trace file and one that reads the trace file and simulates the Frigate hardware pipeline. It should be kept in mind that the simulator does not actually execute programs. Rather it computes the number of cycles that would be required to execute the program on a Frigate machine.

The trace program is linked as a debugger with the program to be traced. It then gains control before the subject program and solicits what the name of the output file is to be and how many disk blocks of data are to be collected. The subject program is then traced and a data file is written that contains the opcodes, operand specifiers, and branch destinations of the executed instructions. Specifier displacements and immediate data are not written into the output file since they are not required by the simulator. At the end of the subject program or when the specified number of disk blocks of data have been collected an end of data sentinel is written and the data file is closed. The trace program then formats and prints instruction frequency, instruction size, specifier size, specifier type, memory read, memory write, register read and register write data.

The second part of the simulator is the program that simulates the actual hardware. This program allows several parameters such as data cache miss rate and branch prediction counter width to be specified and then reads the data file produced by the trace program. The simulator consists of five subroutines that simulate the individual pipeline stages and a short control program that calls each of the stage subroutines for each machine cycle. Instructions are prefetched, decoded, their operands fetched and then executed. Each activity proceeds in a pipelined fashion until it reaches the execution stage where it spends the number of cycles it takes to execute the respective instruction. Instructions are executed in this manner until the entire data file has been read. At the end of the simulation, statistics are output as to the number of cycles that were executed, the number of instructions executed, several branch statistics and data on the utilization of the pipeline stages.

2 INSTRUCTION CLASSIFICATION

All VAX instructions are classified into groups depending on how their execution affects pipeline activity. The intent is to have as few classes as possible and still execute the VAX instruction set efficiently. Class information will be stored in a ROM (or RAM) that is accessed using the instruction opcode value. The resultant information is then used to control pipeline operation while the instruction executes.

Eight instruction classes are defined:

 Stop Decode - This instruction class inhibits the Decode stage from decoding further instructions. Explicit continuation from the execution unit is required before subsequent instructions will be decoded. The remaining specifiers for the subject instruction are decoded. Instructions in this class change global machine state (e.g. MTPR), interact with FPD (e.g. MOVC3), implicitly modify registers or contain multiple write destinations (e.g. EDIV).

Instructions in this class include:

HALT	CVTPT	MOVP	EDIV	ASHP
REI	MULP	CMPP3	CASEB	CVTLP
BPT	CVTTP	CVTPL	CASEW	CALLG
RET	DIVP	CMPP4	POPR	CALLS
RSB	MOVC3	EDITPC	PUSHR	XFC
CVTPS	CMPC3	MATCHC	CHMK	ESCE
CVTSP	SPANC	LOCC	CHME	ESCF
CRC	SCANC	SKPC	CHMS	EMODG
ADDP4	MOVCS	EMODF	CHMU	POLYG
ADDP6	CMPC5	POLYF	CASEL	EMODH
SUBP4	MOVTC	EMODD	MTPR	POLYH
SUBP6	MOVTUC	POLYD	MFPR	LDPCTX
SVPCTX		and the second second		
The second se				

These instructions take several cycles to execute and are generally infrequent. Note that RSB is also in the implied pop class.

2. Stop Fetch = This instruction class stops the Operand stage in the same way as the Decode stage is stopped by the previous class. Explicit continuation is required by the execution unit before further instruction operands will be fetched. These instructions read or modify destinations whose addresses cannot be calculated by the Operand stage (e.g. BBSS).

This class includes:

ADAWI	INSQHI	REMOTI	BBSC	BBCCI
INSQUE	INSQTI	BBSS	BBCC	INSV
REMQUE	REMOHI	BBCS	BBSSI	BBC
BBS	EXTV	EXTZV	CMPV	CMPZV
FFS	FFC			

Note that the branch on bit instructions in this class are also in the conditional branch class.

3. Conditional Branch - This instruction class conditionally branches to a destination based on source or condition code values. A subset of the instructions also modify the source value. The execution of these instructions is predicted in the Decode stage. If a branch is predicted to be taken then the destination address is computed by the Decode stage and passed to the Prefetch stage.

This class includes:

BNEQ	BLSS	BGEQU	BBCS	BLBS
BEQL	BGTRU	BLSSU	BBSC	BLBC
BGTR	BLEQU	BBS	BBCC	
BLEQ	BVS	BBC	BBSSI	
BGEQ	BVC	BBSS	BBCCI	

Note that the branch on bit instructions that modify their source are also included in the stop fetch class.

4. Loop = This instruction class includes all the iterative loop instructions. This class is similar to the conditional branch class but differs in that the branches are always predicted to be taken. The branch destination address is computed by the Decode stage and passed to the Prefetch stage.

This class includes:

ACBB	ACBL	ACBD	AOBLSS	SOBGTR
ACBW	ACBF	ACBG	AOBLEQ	SOBGEQ
ACBH				

5. Unconditional Branch - This instruction class includes all the instructions that unconditionally branch to an address that can be calculated in the Decode or Address stage. The destination address is calculated in the Decode stage if it is PC relative and in the Address stage if it is indirect, context indexed or not relative to PC. The resultant address is passed to the Prefetch stage.

This class includes:

BSBB	JSB	BSBW
BRB	JMP	BRW

Note that BSBB, BSBW, and JSB are also in the implied push class.

 Implied Push = This instruction class generates an implied push onto the stack after the final operand has been processed. This requires the decode stage to generate an autodecrement SP operand specifier.

This instruction class includes:

BSBB JSB PUSHAW PUSHAQ PUSHL BSBW PUSHAB PUSHAL PUSHAD

Note that BSBB, BSBW, and JSB are also in the unconditional branch class.

7. Implied Pop - This class contains only the instruction RSB. The Decode stage generates an autoincrement SP operand specifier to remove the return address from the top of the stack.

This class includes:

RSB

RSB is also in the stop decode class.

 General - This instruction class contains all instructions that require no special processing. They cause no pipeline hazards and can be processed in a pipelined manner without any interference.

This class includes:

NOP	CVTHD	INDEX	PROBER	PROBEW
CVTWL	CVTWB	MOVZWL	MOVAW	ADDF2
ADDF3	SUBF2	SUBF3	MULF2	MULF3
DIVF2	DIVF3	CVTFB	CVTFW	CVTFL
CVTRFL	CVTBF	CVTWF	CVTLF	MOVE
CMPF	MNEGF	TSTF	CVTFD	ADDD2
ADDD3	SUBD2	SUBD3	MULD2	MULD3
DIVD2	DIVD3	CVTDB	CVTDW	CVTDL
CVTRDL	CVTBD	CVTWD	CVTLD	MOVD
CMPD	MNEGD	TSTD	CVTDF	ASHL
ASHQ	EMUL	CLRQ	MOVQ	MOVAQ
ADDB2	ADDB3	SUBB2	SUBB3	MULB2
MULB3	DIVB2	DIVB3	BISB2	BISB3
BICB2	BICB3	XORB2	XORB3	MNEGB
MOVB	CMPB	MCOMB	BITB	CLRB
TSTB	INCB	DECB	CVTBL	CVTBW
MOVZBL	MOVZBW	ROTL	MOVAB	ADDW2
ADDW3	SUBW2	SUBW3	MULW2	MULW3
DIVW2	DIVW3	BISW2	BISW3	BICW2
BICW3	XORW2	XORW3	MNEGW	MOVW
CMPW	MCOMW	BITW	CLRW	TSTW
INCW	DECW	BISPSW	BICPSW	ADDL2
ADDL3	SUBL2	SUBL3	MULL2	MULL3
DIVL2	DIVL3	BISL2	BISL3	BICL2
BICL3	XORL2	XORL3	MNEGL	MOVL
CMPL	MCOML	BITL	CLRL	TSTL
INCL	DECL	ADWC	SBWC	MOVPSL
MOVAL	CVTHF	CVTFG	CVTFH	MOVAO
MOVO	CLRO	CVTLB	CVTLW	CVTDH
CVTGF	ADDG2	ADDG3	SUBG2	SUBG3
MULG2	MULG3	DIVG2	DIVG3	CVTGB
CVTGW	CVTGL	CVTRGL	CVTBG	CVTWG
CVTLG	MOVG	CMPG	MNEGG	TSTG
CVTGH	ADDH2	ADDH3	SUBH2	SUBH3
MULH2	MULH3	DIVH2	DIVH3	CVTHB
CVTHW	CVTHL	CVTRHL	CVTBH	CVTWH
CUTT U	MOVU	CMDU	MNECU	TCTU

CVTHG

3 GENERAL OPERATION

3.1 Pipeline Activity

Pipeline stages take input from a previous stage, perform some transformation and produce output which is input for the next stage. If there is no input to act upon a stage is said to be idle; that is the previous stage produced no output and therefore there is nothing for the stage to do. If the next stage does not consume the data provided to it in a previous cycle then the preceding stage in the pipeline stalls.

In summary, a pipeline stage is idle if no data is provided for it to process and a pipeline stage stalls if the subsequent stage does not process previously provided data.

3.2 Instruction Cache And Translation Buffer

A separate instruction cache and translation buffer are used to access the instruction stream. All cache modeling done at DECwest suggests that the instruction stream cache hit rate will be upwards of 99%. In addition, two levels of buffering are employed. Therefore the instruction stream is not modeled explicitly. It is assumed that any instruction cache or translation buffer misses will have a minimal affect on performance.

There is one aspect of the Prefetch stage that is modeled that has to do with branches. The model keeps track of the virtual PC even though it does not use it to access the instruction translation buffer and cache. The virtual PC is used to determine if a translation buffer access is required when a branch takes place. In effect the virtual page number of the new PC is compared with the virtual page number of the old PC. If the comparison fails then an additional cycle is required to do the translation buffer access. Otherwise the page offset is concatenated with the previous physical page number to access the instruction cache. The reason for this is that it is not possible to access the translation buffer, access the instruction cache and write the prefetch buffer in one cycle.

3.3 Data Cache And Translation Buffer

A separate translation buffer and cache are used to fetch data from memory and write results. The organization of the cache is the write back scheme being used in Firefly at SRC. (The scheme employs two extra bits per cache line to keep track of shared and modified data. The shared bit indicates whether it is possible that the data might also be in another cache. The modified bit indicates whether the data has been modified but not written to memory.) There is no problem with cache coherence even in a multiprocessor configuration. DECwest modeling of the effects of write back caches suggests that memory write traffic can be cut by 60-70%. Thus it is possible to build a system without heavy demands for memory bus bandwidth.

VMS (and other operating systems) will not require any special code to manage the write back cache. The cache will be entirely transparent except when the power fails. An internal processor register will be provided so that VMS can sweep the cache and force all unwritten data to memory.

Modeling of the data translation buffer and cache is on the basis of how often a miss occurs and how many cycles it takes to process the miss. This data cache miss rate and the forced write rate are provided as parameters to the model.

3.4 Register File Write In Progress Counters

Four logical copies of the general purpose registers are maintained. Two of the copies reside in the Decode stage and two in the execution stage. These two copies can be thought of as dual port read single port write RAMs.

Register values that are needed for address calculation (base or index register values) are read from the RAMs located in the Decode stage and the value(s) is (are) passed to the Address stage. Register mode operands however are not actually read until the execution stage. This allows a major optimization with regard to allowing outstanding writes against register mode operands to be ignored since when the instruction reaches the execution stage the respective register will by definition have the most current value.

Associated with each register number (excluding PC) is a Write in Progress Counter (4 bits) that is maintained by the Decode stage and which records the number of writes outstanding against the register. A counter is used so that it is possible to have multiple writes against a register outstanding (as opposed to a single bit which would allow only one outstanding write). It is not intuitive that multiple outstanding writes are a common occurrence, but consider the following instruction sequence:

> ADDL3 R0, R1, R2 ADDL2 R3, R2

When the ADDL2 instruction is decoded register R2 will already have an outstanding write against it. But since R2 will actually have the correct value when the ADDL2 reaches the execution stage it is expedient to allow multiple writes against R2. This turns out to be a very common code sequence generated by most of our compilers.

Page 7

The Decode stage monitors the write bus for register values and updates its copies of the registers when appropriate. It also decrements the respective Write in Progress Counter.

Register File Write in Progress Counters are not updated for register mode operand specifiers if instruction decode has been stopped. This is necessary to avoid deadlock for instructions with multiple write destinations (e.g. EDIV RO, R1, R2, (R2)). Write in Progress Counters, however, are always updated for autoincrement and autodecrement operand specifiers even when instruction decode is stopped. The Execution stage resumes pipeline activity when a consistent state has been reached.

3.5 Data Cache Write In Progress Bits

Each cache line in the data cache has associated with it a Write in Progress Bit. This bit is written by the Operand stage when a write destination operand is processed. The bit is cleared when a write on the write bus to the affected location is executed.

Write in Progress Bits allow subsequent operand reads to occur after a write has been processed if the read is from a different location than the write. If it is not, the Operand stage will stall until the Write in Progress Bit has been cleared.

Data Cache Write in Progress Bits are not updated if instruction decode has been stopped. This is necessary to avoid deadlock for instructions with multiple write destinations (e.g. EDIV RO, R1, (R2), G(R2)). The Execution stage resumes pipeline activity when a consistent state has been reached.

3.6 Autoincrement And Autodecrement Operand Specifiers

The processing of autoincrement and autodecrement operand specifiers requires the cooperation of the Decode, Address, Operand and Execution stages of the pipeline.

The Decode stage increments the respective Write in Progress Counter and passes the register number, register contents, autodecrement value (if required), and function to be performed to the Address stage. The Address stage computes the effective address and passes the register number, effective address, and function to be performed to the Operand stage. The Operand stage first passes the register number and autoincrement or autodecrement operation to the Execute state and then fetches the operand value in the next cycle if required (i.e. not address or vield access type). The Execution stage performs the autoincrement or autodecrement function and writes the new register value into its own copy of the Register File and on the write bus. The Decode stage then picks the value off the write bus, decrements the corresponding Write in Progress Counter, and writes the new value into its copy of the Register File.
The actual autoincrement or autodecrement in the Execution stage is performed in the "context" of the instruction to which it belongs; that is, it is performed after the previous instruction has completed and before the next instruction has started execution. The previous contents of the respective register are saved in a register log when the Execution stage performs the increment or decrement operation. This register log is cleared at the end of an instruction.

3.7 Indirect Addressing

Indirect addressing requires two trips through the Address and Operand stages. The Execution stage gets involved only to pass the indirect address through the ALU and into the write latch. The Address stage then picks the address off the write bus, adds the index register if specified, and passes the effective address back to the Operand stage. The Execution unit always processes indirect addresses in the "context" of the instruction to which it belongs.

Indirect addressing occurs very infrequently (e.g. approximately 1-2% of the time) and is not expected to adversely affect performance.

4 PIPELINE OPERATION AND STAGES

The Frigate pipeline is executed by a control program that calls the stage subroutines in reverse order. This is necessary to propagate stalls correctly since each stage is not actually executed in parallel as it would be in real hardware.

This sequence, although it works nicely for stalls, causes problems when the output of a latter pipeline stage is to be acted upon by an earlier pipeline stage in the next cycle. The problem is that the earlier pipeline stage executes after the latter pipeline stage in the current cycle.

An example is register file writes on the write bus which must be recognized by the Decode and Address stages in the next cycle, not the current. The data written by the Execution stage in the next cycle and the data written by the Decode and Address stages in the next cycle and the data written by the Execution stage in the previous cycle is processed by the Decode and Address stages in the current cycle. The model accomplishes this by inserting pipeline variables that delay the recognition of data until a subsequent cycle. In the case of register file writes this is done with a 2 deep array of register numbers and valid flags. All pipeline stages examine the first member of the array and the Execution stage writes the second member. At the end of each simulated cycle the second array member is copied to the first and the second is set invalid. Other pipeline variables are simply implemented as boolean variables. For example, when a new virtual instruction PC is available to the Prefetch stage, both the value and a flag called "prefetch_new_address" are set. The Prefetch stage sees the flag, copies the new virtual address and then clears the flag. In the next cycle it will actually start delivering the instruction information at the destination address.

4.1 Prefetch

•

The Prefetch stage reads the input file produced by the trace program and provides the Decode stage with opcode and operand specifier information on each cycle. This information is the actual opcode and operand specifier data, including register numbers, that was collected when the subject program was traced. As Prefetch reads the trace file it updates the virtual instruction PC by computing the length of each operand specifier. Two byte opcodes require one extra cycle to deliver the "escape" opcode to the Decode stage.

If the Decode stage has not processed the data delivered to it during a previous cycle then Prefetch stalls.

If a new virtual PC has been delivered by the Decode, Address or Execution stage then the old virtual PC's virtual page number is compared with the new virtual PC's page number and the new virtual PC is copied to the old virtual PC. If the virtual page numbers match (i.e. a translation buffer access is not required) the instruction data at the target address will be delivered to the Decode stage in the next cycle. If the page numbers do not match then a translation buffer cycle is required in the next cycle and the Prefetch stage will deliver the instruction data in the cycle after that.

It should be noted that the affects of Instruction Cache and Translation buffer misses are not modeled. It is assumed that this causes minimal degradation in performance.

If instruction decode is stopped by the Decode stage then Prefetch accumulates idle time when a new opcode is to be decoded. Subsequent operand specifiers for the current instruction are delivered until an instruction boundary is reached.

If the Decode stage has not processed data delivered in a previous cycle then Prefetch accumulates stall time.

If a new virtual PC is provided by one of the Decode, Address, or Execution stages the Prefetch accumulates wait time until a translation buffer and/or cache access can be done.

In all other cases Prefetch can do useful work and accumulates work time.

4.2 Decode

The Decode stage processes the opcode and operand specifier information provided by the Prefetch stage. It maintains two copies of the Register File and the associated Write in Progress Counters, determines when information is to be passed to the Address stage, predicts if conditional branches will be taken, and transmits the destination address for loop and unconditional branches and jumps to the Prefetch stage.

The Decode stage is modeled as a finite state machine with 4 states. The states are:

- 1. Process opcode and first operand specifier if any,
- Process next operand specifier, branch destination, or jump address,
- 3. Execute implied push/pop to/from the current stack, and
- 4. Finish unconditional branch or jump instruction.

Decode starts at state 1 and cycles in state 2 if necessary until all operand specifiers have been processed. If required (PUSHL, RSB, ...) state 3 or 4 is entered to finish the instruction and then back to state 1 for the next opcode.

Decode always interrogates the write bus at the start of a cycle to determine if a register value is being written. If the write bus is valid (i.e. there is a register being written) then the respective register's Write in Progress Counter is decremented but never below zero. A decrement below zero could happen when a multiple write destination instruction has stopped the pipeline and a register mode destination was present. In this case the Write in Progress Counter was not incremented to avoid possible deadlock and when the instruction is finished the counter must not be decremented.

If the Address stage has not processed data from a previous cycle then the Decode stage stalls. Otherwise the operation associated with the current state is performed.

1. State 1 - Process opcode and first specifier if any.

If no data has been supplied by the Prefetch stage (i.e. it is waiting for a translation buffer or cache access after a new virtual PC has been received and cannot deliver any data) or instruction decode has been stopped, then the Decode stage idles.

If the opcode is a two byte opcode then the first byte is accepted in the current cycle and the two byte opcode flag is set. The second opcode byte will be delivered in the next cycle. If the opcode is from the stop decode class or is an unconditional branch or jump the stop decode flag is set.

If the opcode has zero specifiers and is from the implied pop class, then the state number is set to 3 and the implied pop is executed immediately. Otherwise the opcode and a no operation function are passed to the Address stage. No operation implies that the Address and Operand stages perform no operation for the respective opcode.

If the opcode has one or more specifiers then the state number is set to 2, the specifier number is set to 1, and the first operand specifier is processed immediately if possible.

 State 2 - Process next operand specifier, branch destination, or jump address.

If no data has been supplied by the Prefetch stage then the Decode stage idles. Otherwise an action is executed depending on the specifier mode and register number. Specifier actions include:

- 1. Modes 0, 1, 2, and 3 (short literal) The short literal value, the specifier datatype, the specifier access type and a function of literal are passed to the Address stage. If the instruction is from the implied push class then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. All instructions from the implied push class have exactly one operand specifier. If the instruction is not from the implied push class and this is the last operand specifier then the state number is set to 1. The next cycle will process the next opcode.
- 2. Mode 4 (index) If the index register or the base register (note there must always be a base register since short literals cannot be indexed) has a Write in Progress Count greater than 1 or both registers have a Write in Progress Count of 1, then the Decode stage waits for one of the registers to be written on the write bus. At that time the Write in Progress Counter will be adjusted. Otherwise the index register invalid flag is set equal to the value of the respective Write in Progress Counter. If the Write in Progress Counter is not zero (i.e. there are outstanding writes against the register but only one) then the Address stage will pick the value off the write bus when it is written. Index mode present is set and the base address is processed by executing its action routine.
- 3. Mode 5 (register mode) If the access type is write or modify and decoding of instructions is not stopped, then the Write in Progress Counters for the respective register(s) are incremented (note that up to 4 counters could be incremented). The register number, the

specifier datatype, the specifier access type and a function of register are passed to the Address stage. If the instruction is from the implied push class then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the implied push class and this is the last operand specifier then the state number is set to 1. The next cycle will process the next opcode.

- Modes 6, 10, 12, and 14 (register deferred and byte, word 4. and longword displaced) - If the Write in Progress Counter for the base register is greater than 1 then the Decode stage waits for the register to be written on the write bus. At that time the write in Progress Counter Otherwise if the opcode is from the will be adjusted. unconditional branch class, an index register is not specified and the base register is PC, then the branch destination can be calculated immediately and sent to the Prefetch stage. If the unconditional branch is from the implied push class then the state number is set to 3 and the implied push is executed immediately. Otherwise the state number is set to 4 and the unconditional branch is finished. If the opcode is from the unconditional branch. class and either an index register is specified or the base register is not PC, then the base register invalid flag is set to the value of the respective Write in Progress Counter and the branch destination flag is set. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the displacement value, the specifier datatype, the specifier access type and a function of fetch are passed to the Address stage. If the instruction is from the implied push class, then the state number is set to 3. Otherwise it is set to 4. The autodecrement SP specifier will be generated or the unconditional branch finished in the next cycle. If the instruction is not from the unconditional branch class, then the base register invalid flag is set to the value of the respective Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the displacement value, and a function of fetch are passed to the Address stage. If the instruction is from the implied push class then the state is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the implied push class and this is the last operand specifier, then the state number is set to 1. The next cycle will process the next opcode.
- 5. Modes 7 and 8 (autoincrement and autodecrement) If the base register is PC (only possible for mode 8 since autodecrement PC is illegal), then the action for mode 6 is executed. This is immediate mode addressing and the Operand stage actually fetches the immediate value. If

the base register is not PC and the respective Write in Progress Counter is greater than 1, then the Decode stage waits for the register to be written on the write bus. If the base register Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the specifier datatype, the specifier access type and a function of modify are passed to the Address stage, The Write in Progress Counter for the base register is incremented. If the opcode is from the unconditional branch and implied push classes, then the state number is set to 3 and the branch destination flag is set. The autodecrement SP specifier will be generated in the next cycle. If the opcode is from the unconditional class and not the implied bush class, then the state number is set to 4 and the branch destination flag is set. The unconditional branch will be finished If the instruction is from the in the next cycle. and not the unconditional branch implied push class class, then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the unconditional branch or implied push class and this is the last specifier, then the state number is set to 1. The next cycle will process the next opcode.

Mode 9 (autoincrement deferred) - If the base register is 6. PC, then the action for mode 6 is executed. This is absolute addressing and the address is treated like a longword displacement with no base register. If the base register is not PC and the respective Write in Progress Counter is greater than 1, the Decode stage waits for the register to be written on the write bus. If the base register Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the specifier datatype, the specifier access type and a function of indirect modify are passed to the Address stage. The Write in Progess Counter for the base register is incremented. If the opcode is from the unconditional branch and implied bush classes, then the state number is set to 3 and the branch destination flag is set. The autodecrement SP specifier will be generated next cycle. If the opcode is from the in the unconditional branch class and not the implied push class, then the state number is set to 4 and the branch destination flag is set. The unconditional branch will be completed in the next cycle. If the instruction is from the implied push class but not from the unconditional branch class, then the state number is set to 3. The autodecrement SP specifier will be generated

in the next cycle. If the instruction is not from the unconditional branch or implied push class and this is the last specifier, then the state number is set to 1. The next cycle will process the next instruction.

- 7. Modes 11, 13, and 15 (indirect byte, word, and longword displaced) - If the Write in Progress Counter for the base register is greater than 1, then the Decode stage waits for the register to be written on the write bus. If the base register Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the displacement value, the specifier datatype, the specifier access type and a function of indirect fetch are passed to the Address stage. If the opcode is from the unconditional branch and implied push classes, then state number is set to 3 and the branch destination flag is set. The autodecrement SP specifier will be generated in the next cycle. If the opcode is from the unconditional branch class and not from the implied push class, then the state number is set to 4 and the branch destination flag is set. The unconditional branch will be finished the next cycle. If the instruction is from the implied push class and not from the unconditional branch class, then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the unconditional branch or implied bush class and this is the last specifier, then the state number is set to 1. The next cycle will process the next instruction.
- 8. Branch Displacement (byte and word) - If the opcode is from the unconditional branch class, then the destination address is sent to the Prefetch stage and the stop decode flag is cleared. If the opcode is from the unconditional branch and implied push class then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the opcode is from the uncondition branch class and not the implied push class, then the state number is set to 4. The unconditional branch will be completed in the next cycle. If the instruction is not from the unconditional branch class, then it is either from the conditional branch or loop class. The base register and index register register invalid flags are set false. The base register invalid flag, index register invalid flag, the specifier datatype, the specifier access type, computed destination address and a function of displacement are passed to the Address stage. The state number is set to 1. If the opcode is from the loop class, then it is always predicted as taken. The computed destination address is sent to the Prefetch stage. If the opcode is from the conditional branch class, then the branch prediction RAM

is accessed using bits 2 through 15 of the ending address of the conditional branch instruction itself (this is actually the address of the next instruction). If the high order bit of the prediction value is set, then the branch is predicted as taken. Otherwise it is predicted as not taken. If the branch is predicted taken, then the computed destination address is sent to the Prefetch stage. The prediction flag is passed to the Address stage. The next instruction is processed in the next cycle.

3. State 3 - Execute implied push/pop to/from the current stack.

If the Write in Progress Counter for SP is greater than 1, then the Decode stage waits for the register to be written on the write bus. If the Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. If the opcode is from the implied pop class, then the specifier access is set to read. Otherwise the opcode is from the implied push class and the specifier access is set to write. The base register invalid flag, the register number 14, the specifier datatype (always longword), the specifier access type and a function of modify are passed to the Address stage. The state number is set to 1 and the Write in Progress Counter for SP is incremented. The next opcode will be processed in the next cycle.

4. State 4 - Finish unconditional branch or jump instruction.

Unconditional branches and jumps, although executed in the Decode stage, cannot be evaporated. They must continue through to the Execution stage so that trace traps can occur if enabled (this may be eliminated later by sending the opcode through the pipe if and only if t-bit is set or the address mode is autoincrement, autodecrement or autodecrement deferred). The branch destination flag is set false. A function code of displacement is passed to the Address stage.

The Decode stage closely simulates what the actual hardware will do. It is believed to be very accurate.

If instruction decoding is stopped by the Decode stage itself or no input has been provided by the Prefetch stage, then the Decode stage accumulates idle time.

If the Address stage has not processed data delivered to it in a previous cycle, then the Decode stage accumulates stall time.

If the Write in Progress Count of a base register or index register is greater than 1, or both a base register and an index register are specified and their respective Write in Progress Counters are equal to 1, then the Decode stage accumulates wait time.

In all other cases Decode can do useful work and accumulates work

time.

4.3 Address

The Address stage computes the effective address of an operand or passes through the data it receives to the Operand stage. It is capable of performing a 3 input add in one cycle (i.e. displacement, base register, and context shifted index register) and operates from a function and data supplied by the Decode stage. This stage processes indirect addressing.

The Address stage always interrogates the write bus at the start of a cycle to determine if a register value is being written that matches an invalid register that it requires to perform the address computation. Either the base or index register may be required but not both. The base register and index register invalid flags are used for this purpose. If the write bus specifies a partial write (i.e. byte or word), then the value is merged with the value passed to the Address stage by the Decode stage. Note that there can only be one outstanding write at this time. This is guaranteed by Decode and therefore the first write on the write bus that matches the invalid register number is the one required to complete the address calculation. As soon as the corresponding register value has been received the respective invalid flag is cleared.

If the Operand stage has not processed data from a previous cycle then the Address stage stalls.

If no data has been supplied by the Decode stage, then the Address stage idles.

If the Address stage has not yet received an indirect address from the Execution stage, then the Address stage waits.

If the base register or index register invalid flags are set, then the Address stage waits. Otherwise an action is performed according to the function specified by the Decode stage. Address stage actions include:

- Displacement The branch destination address is computed by adding the sign extended branch displacement with the displacement PC (the PC is provided through special logic that adjusts for the length of the branch displacement). The destination address and a function of displacement are passed to the Operand stage.
- 2. Fetch and Modify The effective address is computed. If the branch destination flag is set, then the effective address is sent to the Prefetch stage and the stop decode flag is cleared. If the original function was fetch, then no further processing is necessary. Otherwise the effective address, the base register number, the specifier datatype, the specifier access type and a function of fetch or modify are

passed to the Operand stage.

- Register The base register number, the specifier datatype, the specifier access type and a function of register are passed to the Operand stage.
- Literal The literal value, the specifier datatype, the specifier access type and a function code of literal are passed to the Operand stage.
- No Operation = A no operation function is passed to the Operand stage.
- Indirect Fetch and Indirect Modify The effective base 6. address is calculated. This calculation does not include the index register if it is present. The context shifted contents of the index register will be added to the indirect address when it is received from the Execution stage. The indirect flag is set, the operand access type is set to read and the operand datatype is set to longword. The indirect flag will cause the Address stage to wait in subsequent cycles until cleared by the Execution stage. The effective address, the base register number, the specifier datatype, the specifier access type and a function of indirect fetch or indirect modify are passed to the Operand stage. When the indirect address is received from the Execution stage on the write bus the Address stage will add the context shifted index register, if any, to the indirect address and then pass the original specifier datatype, the original specifier access type and a function of fetch to the Operand stage. Note that while the Address stage is waiting for an indirect address the Decode stage is stalled because it cannot deliver new data to the Address stage.

4.4 Operand

The Operand stage reads operand values from memory, checks the validity of write destinations, increments register numbers, manages the Write in Progress Bits in the data cache and delivers subsequent zero longwords for short literals. It is also responsible for assigning pointer register numbers to address the operand buffers. The Operand stage operates from data and a function code passed to it by the Address stage.

It is worth explaining the function of the pointer registers and operand buffers although they are not actually modeled in the simulation. Three pointer register FIFO's are used to store pointer registers and operand status. One is for odd numbered source specifiers, one for even numbered source specifiers, and one for destinations. Each cycle, one of the source FIFO's and the destination FIFO can be written with a register number. The number that is written is either a general register number, an operand buffer number, or an address buffer number. Operand buffers are used to hold operand values. Address buffers are used to hold the physical address of the destination (this is always available since a translation buffer access is performed on the destination operand to determine if accessible). If the destination address crosses a page it is boundary, then two address buffer entries are used (i.e. two translation buffer accesses are required). A status code is also included with each register. The status code indicates if there was an access violation, translation not valid, translation buffer miss, a modify refuse (write access to a page that does not have the modify bit set) or an attempt was made to read an I/D address. (This latter type is a VERY sticky problem in a pipelined machine. Since we have such a wonderful I/O architecture that allows people to build devices where register reads have side effects we have to quarantee that I/O addresses are read exactly once. The way this is done is to dump the address of the operand into the allocated operand buffer and tag the pointer register with a status code that will cause the Execution stage to dispatch to a routine that will explicitly read the I/O address.) The Execution stage microword provides control over the reading of the pointer register FIFO's. For example, the microword for an ADDL3 would read the register numbers from the source 1. source 2, and destination FIFO's. It should be noted that ADDL2 would do the same thing since the modify source/destination operand would cause both the even numbered source FIFO and the destination FIFO to be written. The net effect is to allow the Operand stage to fetch operands somewhat ahead of the Execution stage (e.g. some elasticity is provided by the address and operand buffers) and provides parametric microcode in the Execution stage.

If no data has been supplied by the Address stage, then the Operand stage idles.

If there are no address or operand buffers available and one is required the Operand stage stalls until the Execution stage has emptied one.

If operand fetching has been stopped, then the operand stage idles.

The Operand stage executes an action determined by the function code supplied to it by the Address stage. The following actions are performed:

- No Operation No operation is performed. In the simulation model this takes one cycle. In the real machine this will not require any cycles because the opcode dispatch information is kept separately from the operand specifier information. In the model it is not. This function is used for zero specifier opcodes.
- 2. Literal The first longword of a short literal value is formatted (e.g. zero extended, shifted, bits inserted, etc.) in the Decode stage and passed through the Address stage. The Operand stage assigns an operand buffer and stores the first longword of the short literal in the buffer. If the context is guadword or octaword, then the Operand stage will

allocate additional operand buffers and deliver zero longwords in subsequent cycles. One cycle is required for each longword.

- Fetch = If the access type is address or vield, then an operand buffer is allocated and the value received from the 3. Address stage is written into the buffer. If the access type is read, write, or modify, then a translation buffer access must be performed to determine the physical address and accessibility of the operand (the translation buffer is not modeled). For each longword in the operand (and each longword takes at least one cycle) a random number is generated and compared with the data cache miss rate that was selected when the simulation was begun. If the random number is less than or equal to the data cache miss rate then 5 additional cycles (the cache fill time) will be spent fetching the operand value. If the random number is greater than the data cache miss rate then only 1 cycle is required to fetch the operand value. If the data cache misses there is also a probability that the location that will be displaced from the cache has been modified but not written. Another random number is generated and compared with the forced write rate which was also selected when the simulation was begun. If found to "miss" then 5 additional cycles are required to first write the current contents of the cache line and then read the new value. This amounts to 11 cycles in all if the data cache misses and a forced write is required. As longwords are fetched an operand buffer is allocated, the register number written into one or more of the FIFO's and the operand value placed in the operand buffer.
- 4. Modify The register number of the general register that is to be modified is written into the appropriate FIFD with a status that encodes the context and whether the operation to be performed is an autoincrement or autodecrement. The Execution stage will dispatch to a routine that actually performs the operation when an attempt is made to read the respective FIFD. In the next cycle a fetch function is performed.
- 5. Indirect fetch The indirect longword address is read and written into an operand buffer. The register number of the operand buffer and a status code that indicates that the operand buffer contains an indirect address is written into the operand buffer. The Execution stage will dispatch to a routine that writes the indirect address on the write bus when an attempt is made to read the respective FIFO.
- 6. Indirect modify The register number of the general register that is to be updated is written into the appropriate FIFO with a status code that encodes a context of longword and autoincrement. In the next cycle an indirect fetch is performed.

- Register The general register number is written into the appropriate pointer FIFO. If the operand specifier is context quadword or octaword, then the register number is incremented in successive cycles and written into the same FIFO.
- 8. Displacement An operand buffer is allocated and the displacement value is stored.

4.5 Execute

The Execution stage executes instructions, performs autoincrement and autodecrement operations, and writes indirect addresses on the write bus. The Execution stage closely models the real hardware but of course computes no answers. It does, however, keep track of which registers are being written by an instruction and at the end of instruction execution it writes the registers one per cycle on the write bus.

The Execution stage is modeled as a finite state machine with 4 states. The states are:

- 1. Dispatch
- 2. Execute
- 3. Clean Up
- 4. Register Write

Execute starts at state 1 and cycles there until an opcode and all its specifiers arrive. During the time that it waits it can perform autoincrements, autodecrements and send indirect addresses to the Address stage which each take 1 cycle. This is not exactly how the hardware will work but there should be no difference in the performance. The hardware actually starts the instruction early and then ends up waiting if an operand is not ready.

When a complete instruction has arrived state 2 is entered where the number of cycles estimated for the instruction are spent.

State 3 releases operand buffers, continues pipeline activity, and sends branch addresses to the prefetch stage. If a register value is to be written state 4 is entered. In state 4 a register value is transmitted on the write bus every cycle.

The Execution stage always performs the action associated with the current state.

 State 1 - Dispatch. If there are no operand buffers that contain operands, then the Execute stage idles. Otherwise the operand buffers are examined one at a time to determine

a complete instruction is present or there are ĺf autoincrements, autodecrements, or indirect addresses to process, If an autoincrement or autodecrement is found, then the operand buffer is removed and the register number is written on the write bus. This consumes the entire cycle. If an indirect address is found, then the operand buffer is removed and the indirect address is written on the write bus to signal the Address stage that the address it is waiting for is present (and thank God indirect addresses are infrequent - the whole pipeline is backed up while we sequence 1 indirect address through the pipeline). This also consumes the entire cycle. If no autoincrments, autodecrements, or indirect addresses are found before a complete instruction has been assembled then the state number is set to 2 and the cycle counter is set to the number of cycles the instruction is estimated to take. Estimates used in the simulator are as close to reality as possible since we must make judgements about the final performance of the actual hardware. State 2 is executed.

- 2. State 2 Execute. The number of cycles remaining is decremented. If the result is nonzero, then the instruction execution is not complete. The number of cycles will be decremented again in the next cycle. If the remaining cycles is zero, then instruction execution is complete. If the instruction has no specifiers and is not from the implied pop class but is from the decode stop or fetch stop classes, then either the Decode or Operand stage is continued. If the opcode also gaused a branch (e.g. REI) then a new PC is sent to the Prefetch stage. If the instruction has one or more specifiers or is from the implied pop class, then the state number is set to 3 and state 3 is executed.
- 3. State 3 Clean Up. The operand buffers are released. If the instruction writes a destination register, then the state number is set to 4 and state 4 is executed. Otherwise if the instruction is from the decode or fetch stop classes, then either the Decode or Operand stage is continued. If the opcode also caused a branch (e.g. CHMK) then a new PC is sent to the Prefetch stage. If the instruction is from the conditional branch or loop classes and the branch was not predicted correctly, then the entire pipeline is flushed, the correct PC is sent to the Prefetch stage and the branch prediction RAM is updated. The state number is set to 1.
- 4. State 4 Register Write. The destination register number is written on the write bus and the number of registers remaining to write is decremented. If the result is zero, then the state number is set to 3 and state 3 is executed. If the result is nonzero, then register number is incremented. The next register will be written in the next cycle.

[end of fb.rno]

1 OVERVIEW

The Frigate simulator consists of two programs; one to generate a trace file and one that reads the trace file and simulates the Frigate hardware pipeline. It should be kept in mind that the simulator does not actually execute programs. Rather it computes the number of cycles that would be required to execute the program on a Frigate machine.

The trace program is linked as a debugger with the program to be traced. It then gains control before the subject program and solicits what the name of the output file is to be and how many disk blocks of data are to be collected. The subject program is then traced and a data file is written that contains the opcodes, operand specifiers, and branch destinations of the executed instructions. Specifier displacements and immediate data are not written into the output file since they are not required by the simulator. At the end of the subject program or when the specified number of disk blocks of data have been collected an end of data sentinel is written and the data file is closed. The trace program then formats and prints instruction frequency, instruction size, specifier size, specifier type, memory read, memory write, register read and register write data.

The second part of the simulator is the program that simulates the actual hardware. This program allows several parameters such as data cache miss rate and branch prediction counter width to be specified and then reads the data file produced by the trace program. The simulator consists of five subroutines that simulate the individual pipeline stages and a short control program that calls each of the Instructions stage subroutines for each machine cycle. are prefetched, decoded, their operands fetched and then executed. Each activity proceeds in a pipelined fashion until it reaches the execution stage where it spends the number of cycles it takes to execute the respective instruction. Instructions are executed in this manner until the entire data file has been read. At the end of the simulation, statistics are output as to the number of cycles that were executed, the number of instructions executed, several branch statistics and data on the utilization of the pipeline stages.

2 INSTRUCTION CLASSIFICATION

All VAX instructions are classified into groups depending on how their execution affects pipeline activity. The intent is to have as few classes as possible and still execute the VAX instruction set efficiently. Class information will be stored in a ROM (or RAM) that is accessed using the instruction opcode value. The resultant information is then used to control pipeline operation while the instruction executes.

Eight instruction classes are defined:

Stop Decode - This instruction class inhibits the Decode 1. stage from decoding further instructions. Explicit continuation from the execution unit is required before subsequent instructions will be decoded. The remaining specifiers for the subject instruction are decoded. Instructions in this class change global machine state (e.g. MTPR), interact with FPD (e.g. MOVC3), implicitly modify registers or contain multiple write destinations (e.g. EDIV).

Instructions in this class include:

HALT	CVTPT	MOVP	EDIV	ASHP
REI	MULP	CMPP3	CASEB	CVTLP
BPT	CVTTP	CVTPL	CASEW	CALLG
RET	DIVP	CMPP4	POPR	CALLS
RSB	MOVC3	EDITPC	PUSHR	XFC
CVTPS	CMPC3	MATCHC	CHMK	ESCE
CVTSP	SPANC	LOCC	CHME	ESCF
CRC	SCANC	SKPC	CHMS	EMODG
ADDP4	MOVCS	EMODE	CHMU	POLYG
ADDP6	CMPC5	POLYF	CASEL	EMODH
SUBP4	MOVIC	EMODD	MTPR	POLYH
SUBP6	MOVTUC	POLYD	MFPR	LDPCTX
SVPCTX				

These instructions take several cycles to execute and are generally infrequent. Note that RSB is also in the implied pop class.

Stop Fetch - This instruction class stops the Operand stage 2. in the same way as the Decode stage is stopped by the previous class. Explicit continuation is required by the execution unit before further instruction operands will be fetched. These instructions read or modify destinations whose addresses cannot be calculated by the Operand stage (e.g. BBSS).

This class includes:

ADAWI	INSQHI	REMOTI	BBSC	BBCCI
INSQUE	INSQTI	BBSS	BBCC	INSV
REMQUE	REMOHI	BBCS	BBSSI	BBC
BBS	EXTV	EXTZV	CMPV	CMPZV
FFS	FFC			

Note that the branch on bit instructions in this class are also in the conditional branch class.

3. Conditional Branch - This instruction class conditionally branches to a destination based on source or condition code values. A subset of the instructions also modify the source The execution of these instructions is predicted in value. the Decode stage. If a branch is predicted to be taken then the destination address is computed by the Decode stage and

passed to the Prefetch stage.

This class includes:

DNFO	BLSS	BCFOU	BBAS	PL BS
DIVEG	0000	DOLGO	DDCD	DIDD
BEQL	BGTRU	BLSSU	BBSC	BLBC
BGTR	BLEQU	BBS	BBCC	
BLEQ	BVS	BBC	BESSI	
BGEQ	BVC	BBSS	BBCCI	

Note that the branch on bit instructions that modify their source are also included in the stop fetch class.

4. Loop - This instruction class includes all the iterative loop instructions. This class is similar to the conditional branch class but differs in that the branches are always predicted to be taken. The branch destination address is computed by the Decode stage and passed to the Prefetch stage.

This class includes:

ACBB	ACBL	ACBD	AOBLSS	SOBGTR
ACBW	ACBF	ACBG	AOBLEQ	SOBGEQ
ACBH				

5. Unconditional Branch - This instruction class includes all the instructions that unconditionally branch to an address that can be calculated in the Decode or Address stage. The destination address is calculated in the Decode stage if it is PC relative and in the Address stage if it is indirect, context indexed or not relative to PC. The resultant address is passed to the Prefetch stage.

This class includes:

BSBB	JSB	BSBW	
BRB	JMP	BRW	

Note that BSBB, BSBW, and JSB are also in the implied push class.

 Implied Push = This instruction class generates an implied push onto the stack after the final operand has been processed. This requires the decode stage to generate an autodecrement SP operand specifier.

This instruction class includes:

BSBB JSB PUSHAW PUSHAQ PUSHL BSBW PUSHAB PUSHAL PUSHAO

Note that BSBB, BSBW, and JSB are also in the unconditional branch class.

 Implied Pop - This class contains only the instruction RSB. The Decode stage generates an autoincrement SP operand specifier to remove the return address from the top of the stack.

This class includes:

RSB

RSB is also in the stop decode class.

8.

General - This instruction class contains all instructions that require no special processing. They cause no pipeline hazards and can be processed in a pipelined manner without any interference.

This class includes:

NOP	CVTHD	INDEX	PROBER	PROBEW
CVTWL	CVTWB	MOVZWL	MOVAW	ADDF2
ADDF3	SUBF2	SUBF3	MULF2	MULF3
DIVF2	DIVF3	CVTFB	CVTFW	CVTFL
CVTRFL	CVTBF	CVTWF	CVTLF	MOVF
CMPF	MNEGF	TSTF	CVTFD	ADDD2
ADDD3	SUBD2	SUBD3	MULD2	MULD3
DIVD2	DIVD3	CVTDB	CVTDW	CVTDL
CVTRDL	CVTBD	CVTWD	CVTLD	MOVD
CMPD	MNEGD	TSTD	CVTDF	ASHL
ASHQ	EMUL	CLRQ	MOVQ	MOVAQ
ADDB2	ADDB3	SUBB2	SUBB3	MULB2
MULB3	DIVB2	DIVB3	BISB2	BISB3
BICB2	BICB3	XORB2	XORB3	MNEGB
MOVB	CMPB	MCOMB	BITB	CLRB
TSTB	INCB	DECB	CVTBL	CVTBW
MOVZBL	MOVZBW	ROTL	MOVAB	ADDW2
ADDW3	SUBW2	SUBW3	MULW2	MULW3
DIVW2	DIVW3	BISW2	BISW3	BICW2
BICW3	XORW2	XORW3	MNEGW	MOVW
CMPW	MCOMW	BITW	CLRW	TSTW
INCW	DECW	BISPSW	BICPSW	ADDL2
ADDL3	SUBL2	SUBL3	MULL2	MULL3
DIVL2	DIVL3	BISL2	BISL3	BICL2
BICL3	XORL2	XORL3	MNEGL	MOVL
CMPL	MCOML	BITL	CLRL	TSTL
INCL	DECL	ADWC	SBWC	MOVPSL
MOVAL	CVTHF	CVTFG	CVTFH	MOVAO
MOVO	CLRO	CVTLB	CVTLW	CVTDH
CVTGF	ADDG2	ADDG3	SUBG2	SUBG3
MULG2	MULG3	DIVG2	DIVG3	CVTGB
CVTGW	CVTGL	CVTRGL	CVTBG	CVTWG
CVTLG	MOVG	CMPG	MNEGG	TSTG
CVTGH	ADDH2	ADDH3	SUBH2	SUBH3
MULH2	MULH3	DIVH2	DIVH3	CVTHB
CVTHW	CVTHL	CVTRHL	CVTBH	CVTWH
CVTLH	MOVH	CMPH	MNEGH	TSTH

CVTHG

3 GENERAL OPERATION

3.1 Pipeline Activity

Pipeline stages take input from a previous stage, perform some transformation and produce output which is input for the next stage. If there is no input to act upon a stage is said to be idle; that is the previous stage produced no output and therefore there is nothing for the stage to do. If the next stage does not consume the data provided to it in a previous cycle then the preceding stage in the pipeline stalls.

In summary, a pipeline stage is idle if no data is provided for it to process and a pipeline stage stalls if the subsequent stage does not process previously provided data.

3.2 Instruction Cache And Translation Buffer

A separate instruction cache and translation buffer are used to access the instruction stream. All cache modeling done at DECwest suggests that the instruction stream cache hit rate will be upwards of 99%. In addition, two levels of buffering are employed. Therefore the instruction stream is not modeled explicitly. It is assumed that any instruction cache or translation buffer misses will have a minimal affect on performance.

There is one aspect of the Prefetch stage that is modeled that has to do with branches. The model keeps track of the virtual PC even though it does not use it to access the instruction translation buffer and cache. The virtual PC is used to determine if a translation buffer access is required when a branch takes place. In effect the virtual page number of the new PC is compared with the virtual page number of the old PC. If the comparison fails then an additional cycle is required to do the translation buffer access. Otherwise the page offset is concatenated with the previous physical page number to access the instruction cache. The reason for this is that it is not possible to access the translation buffer, access the instruction cache and write the prefetch buffer in one Cycle.

3.3 Data Cache And Translation Buffer

A separate translation buffer and cache are used to fetch data from memory and write results. The organization of the cache is the write back scheme being used in Firefly at SRC. (The scheme employs two VMS (and other operating systems) will not require any special code to manage the write back cache. The cache will be entirely transparent except when the power fails. An internal processor register will be provided so that VMS can sweep the cache and force all unwritten data to memory.

Modeling of the data translation buffer and cache is on the basis of how often a miss occurs and how many cycles it takes to process the miss. This data cache miss rate and the forced write rate are provided as parameters to the model.

3.4 Register File Write In Progress Counters

Four logical copies of the general purpose registers are maintained. Two of the copies reside in the Decode stage and two in the execution stage. These two copies can be thought of as dual port read single port write RAMs.

Register values that are needed for address calculation (base or index register values) are read from the RAMs located in the Decode stage and the value(s) is (are) passed to the Address stage. Register mode operands however are not actually read until the execution stage. This allows a major optimization with regard to allowing outstanding writes against register mode operands to be ignored since when the instruction reaches the execution stage the respective register will by definition have the most current value.

Associated with each register number (excluding PC) is a Write in Progress Counter (4 bits) that is maintained by the Decode stage and which records the number of writes outstanding against the register. A counter is used so that it is possible to have multiple writes against a register outstanding (as opposed to a single bit which would allow only one outstanding write). It is not intuitive that multiple outstanding writes are a common occurrence, but consider the following instruction sequence:

> ADDL3 R0, R1, R2 ADDL2 R3, R2

When the ADDL2 instruction is decoded register R2 will already have an outstanding write against it. But since R2 will actually have the correct value when the ADDL2 reaches the execution stage it is expedient to allow multiple writes against R2. This turns out to be a very common code sequence generated by most of our compilers.

The Decode stage monitors the write bus for register values and updates its copies of the registers when appropriate. It also decrements the respective Write in Progress Counter.

Register File Write in Progress Counters are not updated for register mode operand specifiers if instruction decode has been stopped. This is necessary to avoid deadlock for instructions with multiple write destinations (e.g. EDIV RO, R1, R2, (R2)). Write in Progress Counters, however, are always updated for autoincrement and autodecrement operand specifiers even when instruction decode is stopped. The Execution stage resumes pipeline activity when a consistent state has been reached.

3.5 Data Cache Write In Progress Bits

•

Each cache line in the data cache has associated with it a Write in Progress Bit. This bit is written by the Operand stage when a write destination operand is processed. The bit is cleared when a write on the write bus to the affected location is executed.

Write in Progress Bits allow subsequent operand reads to occur after a write has been processed if the read is from a different location than the write. If it is not, the Operand stage will stall until the Write in Progress Bit has been cleared.

Data Cache Write in Progress Bits are not updated if instruction decode has been stopped. This is necessary to avoid deadlock for instructions with multiple write destinations (e.g. EDIV RO, R1, (R2), G(R2)). The Execution stage resumes pipeline activity when a consistent state has been reached.

3.6 Autoincrement And Autodecrement Operand Specifiers

The processing of autoincrement and autodecrement operand specifiers requires the cooperation of the Decode, Address, Operand and Execution stages of the pipeline.

The Decode stage increments the respective Write in Progress Counter and passes the register number, register contents, autodecrement value (if required), and function to be performed to the Address stage. The Address stage computes the effective address and passes the register number, effective address, and function to be performed to the Operand stage. The Operand stage first passes the register number and autoincrement or autodecrement operation to the Execute state and then fetches the operand value in the next cycle if required (i.e. not address or vield access type). The Execution stage performs the autoincrement or autodecrement function and writes the new register value into its own copy of the Register File and on the write bus. The Decode stage then picks the value off the write bus, decrements the corresponding Write in Progress Counter, and writes the new value into its copy of the Register File. The actual autoincrement or autodecrement in the Execution stage is performed in the "context" of the instruction to which it belongs; that is, it is performed after the previous instruction has completed and before the next instruction has started execution. The previous contents of the respective register are saved in a register log when the Execution stage performs the increment or decrement operation. This register log is cleared at the end of an instruction.

3.7 Indirect Addressing

Indirect addressing requires two trips through the Address and Operand stages. The Execution stage gets involved only to pass the indirect address through the ALU and into the write latch. The Address stage then picks the address off the write bus, adds the index register if specified, and passes the effective address back to the Operand Stage. The Execution unit always processes indirect addresses in the "context" of the instruction to which it belongs.

Indirect addressing occurs very infrequently (e.g. approximately 1-2% of the time) and is not expected to adversely affect performance.

4 PIPELINE OPERATION AND STAGES

The Frigate pipeline is executed by a control program that calls the stage subroutines in reverse order. This is necessary to propagate stalls correctly since each stage is not actually executed in parallel as it would be in real hardware.

This sequence, although it works nicely for stalls, causes problems when the output of a latter pipeline stage is to be acted upon by an earlier pipeline stage in the next cycle. The problem is that the earlier pipeline stage executes after the latter pipeline stage in the current cycle.

An example is register file writes on the write bus which must be recognized by the Decode and Address stages in the next cycle, not the current. The data written by the Execution stage in the next cycle and the data written by the Decode and Address stages in the next cycle and the data written by the Execution stage in the previous cycle is processed by the Decode and Address stages in the current cycle. The model accomplishes this by inserting pipeline variables that delay the recognition of data until a subsequent cycle. In the case of register file writes this is done with a 2 deep array of register numbers and valid flags. All pipeline stages examine the first member of the array and the Execution stage writes the second member. At the end of each simulated cycle the second array member is copied to the first and the second is set invalid. Other pipeline variables are simply implemented as boolean variables. For example, when a new virtual instruction PC is available to the Prefetch stage, both the value and a flag called "prefetch_new_address" are set. The Prefetch stage sees the flag, copies the new virtual address and then clears the flag. In the next cycle it will actually start delivering the instruction information at the destination address.

4.1 Prefetch

The Prefetch stage reads the input file produced by the trace program and provides the Decode stage with opcode and operand specifier information on each cycle. This information is the actual opcode and operand specifier data, including register numbers, that was collected when the subject program was traced. As Prefetch reads the trace file it updates the virtual instruction PC by computing the length of each operand specifier. Two byte opcodes require one extra cycle to deliver the "escape" opcode to the Decode stage.

If the Decode stage has not processed the data delivered to it during a previous cycle then Prefetch stalls.

If a new virtual PC has been delivered by the Decode, Address or Execution stage then the old virtual PC's virtual page number is compared with the new virtual PC's page number and the new virtual PC is copied to the old virtual PC. If the virtual page numbers match (i.e. a translation buffer access is not required) the instruction data at the target address will be delivered to the Decode stage in the next cycle. If the page numbers do not match then a translation buffer cycle is required in the next cycle and the Prefetch stage will deliver the instruction data in the cycle after that.

It should be noted that the affects of Instruction Cache and Translation buffer misses are not modeled. It is assumed that this causes minimal degradation in performance.

If instruction decode is stopped by the Decode stage then Prefetch accumulates idle time when a new opcode is to be decoded. Subsequent operand specifiers for the current instruction are delivered until an instruction boundary is reached.

If the Decode stage has not processed data delivered in a previous cycle then Prefetch accumulates stall time.

If a new virtual PC is provided by one of the Decode, Address, or Execution stages the Prefetch accumulates wait time until a translation buffer and/or cache access can be done.

In all other cases Prefetch can do useful work and accumulates work time.

4.2 Decode

The Decode stage processes the opcode and operand specifier information provided by the Prefetch stage. It maintains two copies of the Register File and the associated Write in Progress Counters, determines when information is to be passed to the Address stage, predicts if conditional branches will be taken, and transmits the destination address for loop and unconditional branches and jumps to the Prefetch stage.

The Decode stage is modeled as a finite state machine with 4 states. The states are:

- 1. Process opcode and first operand specifier if any,
- Process next operand specifier, branch destination, or jump address,
- 3. Execute implied push/pop to/from the current stack, and
- 4. Finish unconditional branch or jump instruction.

Decode starts at state 1 and cycles in state 2 if necessary until all operand specifiers have been processed. If required (PUSHL, RSB, ...) state 3 or 4 is entered to finish the instruction and then back to state 1 for the next opcode.

Decode always interrogates the write bus at the start of a cycle to determine if a register value is being written. If the write bus is valid (i.e. there is a register being written) then the respective register's Write in Progress Counter is decremented but never below zero. A decrement below zero could happen when a multiple write destination instruction has stopped the pipeline and a register mode destination was present. In this case the Write in Progress Counter was not incremented to avoid possible deadlock and when the instruction is finished the counter must not be decremented.

If the Address stage has not processed data from a previous cycle then the Decode stage stalls. Otherwise the operation associated with the current state is performed.

1. State 1 - Process opcode and first specifier if any.

If no data has been supplied by the Prefetch stage (i.e. it is waiting for a translation buffer or cache access after a new virtual PC has been received and cannot deliver any data) or instruction decode has been stopped, then the Decode stage idles.

If the opcode is a two byte opcode then the first byte is accepted in the current cycle and the two byte opcode flag is set. The second opcode byte will be delivered in the next cycle. If the opcode is from the stop decode class or is an unconditional branch or jump the stop decode flag is set.

If the opcode has zero specifiers and is from the implied pop class, then the state number is set to 3 and the implied pop is executed immediately. Otherwise the opcode and a no operation function are passed to the Address stage. No operation implies that the Address and Operand stages perform no operation for the respective opcode.

If the opcode has one or more specifiers then the state number is set to 2, the specifier number is set to 1, and the first operand specifier is processed immediately if possible.

 State 2 - Process next operand specifier, branch destination, or jump address.

If no data has been supplied by the Prefetch stage then the Decode stage idles. Otherwise an action is executed depending on the specifier mode and register number. Specifier actions include:

- 1. Modes 0, 1, 2, and 3 (short literal) The short literal value, the specifier datatype, the specifier access type and a function of literal are passed to the Address stage. If the instruction is from the implied push class then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. All instructions from the implied push class have exactly one operand specifier. If the instruction is not from the implied push class and this is the last operand specifier then the state number is set to 1. The next cycle will process the next opcode.
- 2. Mode 4 (index) = If the index register or the base register (note there must always be a base register since short literals cannot be indexed) has a Write in Progress Count greater than 1 or both registers have a Write in Progress Count of 1, then the Decode stage waits for one of the registers to be written on the write bus. At that time the Write in Progress Counter will be adjusted. Otherwise the index register invalid flag is set equal to the value of the respective Write in Progress Counter. If the Write in Progress Counter is not zero (i.e. there are outstanding writes against the register but only one) then the Address stage will pick the value off the write bus when it is written. Index mode present is set and the base address is processed by executing its action routine.
- 3. Mode 5 (register mode) If the access type is write or modify and decoding of instructions is not stopped, then the Write in Progress Counters for the respective register(s) are incremented (note that up to 4 counters could be incremented). The register number, the

specifier datatype, the specifier access type and a function of register are passed to the Address stage. If the instruction is from the implied push class then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the implied push class and this is the last operand specifier then the state number is set to 1. The next cycle will process the next opcode.

- Modes 6, 10, 12, and 14 (register deferred and byte, word 4. and longword displaced) - If the Write in Progress Counter for the base register is greater than 1 then the Decode stage waits for the register to be written on the write bus. At that time the Write in Progress Counter will be adjusted. Otherwise if the opcode is from the unconditional branch class, an index register is not specified and the base register is PC, then the branch destination can be calculated immediately and sent to the Prefetch stage. If the unconditional branch is from the implied push class then the state number is set to 3 and the implied push is executed immediately. Otherwise the state number is set to 4 and the unconditional branch is finished. If the opcode is from the unconditional branch class and either an index register is specified or the base register is not PC, then the base register invalid flag is set to the value of the respective Write in Progress Counter and the branch destination flag is set. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the displacement value, the specifier datatype, the specifier access type and a function of fetch are passed to the Address stage. If the instruction is from the implied push class, then the state number is set to 3. Otherwise it is set to 4. The autodecrement SP specifier will be generated or the unconditional branch finished in the next cycle. If the instruction is not from the unconditional branch class, then the base register invalid flag is set to the value of the respective Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the displacement value, and a function of fetch are passed to the Address stage. If the instruction is from the implied push class then the state is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the implied push class and this is the last operand specifier, then the state number is set to 1. The next cycle will process the next opcode.
- 5. Modes 7 and 8 (autoincrement and autodecrement) If the base register is PC (only possible for mode 8 since autodecrement PC is illegal), then the action for mode 6 is executed. This is immediate mode addressing and the Operand stage actually fetches the immediate value. If

the base register is not PC and the respective Write in Progress Counter is greater than 1, then the Decode stage waits for the register to be written on the write bus. If the base register Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the specifier datatype, the specifier access type and a function of modify are passed to the Address stage. The Write in Progress Counter for the base register is incremented. If the opcode is from the unconditional branch and implied bush classes, then the state number is set to 3 and the branch destination flag is set. The autodecrement SP specifier will be generated in the next cycle. If the opcode is from the unconditional class and not the implied push class, then the state number is set to 4 and the branch destination flag is set. The unconditional branch will be finished in the next cycle. If the instruction is from the implied push class and not the unconditional branch class, then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the unconditional branch or implied push class and this is the last specifier, then the state number is set to 1. The next cycle will process the next opcode.

Mode 9 (autoincrement deferred) - If the base register is 6. PC, then the action for mode 6 is executed. This is absolute addressing and the address is treated like a longword displacement with no base register. If the base register is not PC and the respective Write in Progress Counter is greater than 1, the Decode stage waits for the register to be written on the write bus. If the base register Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the specifier datatype, the specifier access type and a function of indirect modify are passed to the Address stage. The Write in Progess Counter for the base register is incremented. If the opcode is from the unconditional branch and implied push classes, then the state number is set to 3 and the branch destination flag is set. The autodecrement SP specifier will be generated the next cycle. If the opcode is from the in unconditional branch class and not the implied push class, then the state number is set to 4 and the branch destination flag is set. The unconditional branch will be completed in the next cycle. If the instruction is from the implied push class but not from the unconditional branch class, then the state number is set to 3. The autodecrement SP specifier will be generated

in the next cycle. If the instruction is not from the unconditional branch or implied push class and this is the last specifier, then the state number is set to 1. The next cycle will process the next instruction.

- Modes 11, 13, and 15 (indirect byte, word, and longword 7. displaced) - If the Write in Progress Counter for the base register is greater than 1, then the Decode stage waits for the register to be written on the write bus. If the base register Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. The base register invalid flag, the base register number, the base register value, the index register invalid flag, the index register number, the displacement value, the specifier datatype, the specifier access type and a function of indirect fetch are passed to the Address stage. If the opcode is from the unconditional branch and implied push classes, then state number is set to 3 and the branch destination flag is set. The autodecrement SP specifier will be generated in the next cycle. If the opcode is from the unconditional branch class and not from the implied push class, then the state number is set to 4 and the branch destination flag is set. The unconditional branch will be finished the next cycle. If the instruction is from the implied bush class and not from the unconditional branch class, then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the instruction is not from the unconditional branch or implied push class and this is the last specifier, then the state number is set to 1. The next cycle will process the next instruction.
- Branch Displacement (byte and word) If the opcode is 8. from the unconditional branch class, then the destination address is sent to the Prefetch stage and the stop decode flag is cleared. If the opcode is from the unconditional branch and implied push class then the state number is set to 3. The autodecrement SP specifier will be generated in the next cycle. If the opcode is from the uncondition branch class and not the implied push class, then the state number is set to 4. The unconditional branch will be completed in the next cycle. If the instruction is not from the unconditional branch class, then it is either from the conditional branch or loop class. The base register and index register register invalid flags are set false. The base register invalid flag, index register invalid flag, the specifier datatype, the specifier access type, computed destination address and a function of displacement are passed to the Address stage. The state number is set to 1. If the opcode is from the loop class, then it is always predicted as taken. The computed destination address is sent to the Prefetch stage. If the opcode is from the conditional branch class, then the branch prediction RAM

is accessed using bits 2 through 15 of the ending address of the conditional branch instruction itself (this is actually the address of the next instruction). If the high order bit of the prediction value is set, then the branch is predicted as taken. Otherwise it is predicted as not taken. If the branch is predicted taken, then the computed destination address is sent to the Prefetch stage. The prediction flag is passed to the Address stage. The next instruction is processed in the next cvcle.

3. State 3 - Execute implied push/pop to/from the current stack.

If the Write in Progress Counter for SP is greater than 1, then the Decode stage waits for the register to be written on the write bus. If the Write in Progress Counter is 0 or 1, then the base register invalid flag is set to the value of the Write in Progress Counter. If the opcode is from the implied pop class, then the specifier access is set to read. Otherwise the opcode is from the implied push class and the specifier access is set to write. The base register invalid flag, the register number 14, the specifier datatype (always longword), the specifier access type and a function of modify are passed to the Address stage. The state number is set to 1 and the Write in Progress Counter for SP is incremented. The next opcode will be processed in the next cycle.

4. State 4 - Finish unconditional branch or fump instruction.

Unconditional branches and jumps, although executed in the Decode stage, cannot be evaporated. They must continue through to the Execution stage so that trace traps can occur if enabled (this may be eliminated later by sending the opcode through the pipe if and only if t-bit is set or the address mode is autoincrement, autodecrement or autodecrement deferred). The branch destination flag is set false. A function code of displacement is passed to the Address stage.

The Decode stage closely simulates what the actual hardware will do. It is believed to be very accurate.

If instruction decoding is stopped by the Decode stage itself or no input has been provided by the Prefetch stage, then the Decode stage accumulates idle time.

If the Address stage has not processed data delivered to it in a previous cycle, then the Decode stage accumulates stall time.

If the Write in Progress Count of a base register or index register is greater than 1, or both a base register and an index register are specified and their respective Write in Progress Counters are equal to 1, then the Decode stage accumulates wait time.

In all other cases Decode can do useful work and accumulates work

time.

4.3 Address

The Address stage computes the effective address of an operand or passes through the data it receives to the Operand stage. It is capable of performing a 3 input add in one cycle (i.e. displacement, base register, and context shifted index register) and operates from a function and data supplied by the Decode stage. This stage processes indirect addressing.

The Address stage always interrogates the write bus at the start of a cycle to determine if a register value is being written that matches an invalid register that it requires to perform the address Either the base or index register may be required but computation. not both. The base register and index register invalid flags are used for this purpose. If the write bus specifies a partial write (i.e. byte or word), then the value is merged with the value passed to the Address stage by the Decode stage. Note that there can only be one outstanding write at this time. This is guaranteed by Decode and therefore the first write on the write bus that matches the invalid register number is the one required to complete the address calculation. As soon as the corresponding register value has been received the respective invalid flag is cleared.

If the Operand stage has not processed data from a previous cycle then the Address stage stalls.

If no data has been supplied by the Decode stage, then the Address stage idles.

If the Address stage has not yet received an indirect address from the Execution stage, then the Address stage waits.

If the base register or index register invalid flags are set, then the Address stage waits. Otherwise an action is performed according to the function specified by the Decode stage. Address stage actions include:

- Displacement The branch destination address is computed by adding the sign extended branch displacement with the displacement PC (the PC is provided through special logic that adjusts for the length of the branch displacement). The destination address and a function of displacement are passed to the Operand stage.
- 2. Fetch and Modify The effective address is computed. If the branch destination flag is set, then the effective address is sent to the Prefetch stage and the stop decode flag is cleared. If the original function was fetch, then no further processing is necessary. Otherwise the effective address, the base register number, the specifier datatype, the specifier access type and a function of fetch or modify are

passed to the Operand stage.

- Register The base register number, the specifier datatype, the specifier access type and a function of register are passed to the Operand stage.
- Literal = The literal value, the specifier datatype, the specifier access type and a function code of literal are passed to the Operand stage.
- No Operation = A no operation function is passed to the Operand stage.
- 6. Indirect Fetch and Indirect Modify - The effective base address is calculated. This calculation does not include the index register if it is present. The context shifted contents of the index register will be added to the indirect address when it is received from the Execution stage. The indirect flag is set, the operand access type is set to read and the operand datatype is set to longword. The indirect flag will cause the Address stage to wait in subsequent cycles until cleared by the Execution stage. The effective address, the base register number, the specifier datatype, the specifier access type and a function of indirect fetch or indirect modify are passed to the Operand stage. When the indirect address is received from the Execution stage on the write bus the Address stage will add the context shifted index register, if any, to the indirect address and then pass the original specifier datatype, the original specifier access type and a function of fetch to the Operand stage. Note that while the Address stage is waiting for an indirect address the Decode stage is stalled because it cannot deliver new data to the Address stage.

4.4 Operand

•

The Operand stage reads operand values from memory, checks the validity of write destinations, increments register numbers, manages the write in Progress Bits in the data cache and delivers subsequent zero longwords for short literals. It is also responsible for assigning pointer register numbers to address the operand buffers. The Operand stage operates from data and a function code passed to it by the Address stage.

It is worth explaining the function of the pointer registers and operand buffers although they are not actually modeled in the simulation. Three pointer register FIFO's are used to store pointer registers and operand status. One is for odd numbered source specifiers, one for even numbered source specifiers, and one for destinations. Each cycle, one of the source FIFO's and the destination FIFO can be written with a register number. The number that is written is either a general register number, an operand buffer

Page 18

number, or an address buffer number. Operand buffers are used to hold operand values. Address buffers are used to hold the physical address of the destination (this is always available since a translation buffer access is performed on the destination operand to determine if it is accessible). If the destination address crosses a page boundary, then two address buffer entries are used (i.e. two translation buffer accesses are required). A status code is also included with each register. The status code indicates if there was an access violation, translation not valid, translation buffer miss, a modify refuse (write access to a page that does not have the modify bit set) or an attempt was made to read an I/O address. (This latter type is a VERY sticky problem in a pipelined machine. Since we have such a wonderful I/O architecture that allows people to build devices where register reads have side effects we have to guarantee that I/O addresses are read exactly once. The way this is done is to dump the address of the operand into the allocated operand buffer and tag the pointer register with a status code that will cause the Execution stage to dispatch to a routine that will explicitly read the I/O address.) The Execution stage microword provides control over the reading of the pointer register FIFO's. For example, the microword for an ADDL3 would read the register numbers from the source 1. source 2, and destination FIFO's. It should be noted that ADDL2 would do the same thing since the modify source/destination operand would cause both the even numbered source FIFO and the destination FIFO to be written. The net effect is to allow the Operand stage to fetch operands somewhat ahead of the Execution stage (e.g. some elasticity is provided by the address and operand buffers) and provides parametric microcode in the Execution stage.

If no data has been supplied by the Address stage, then the Operand stage idles.

If there are no address or operand buffers available and one is required the Operand stage stalls until the Execution stage has emptied one.

If operand fetching has been stopped, then the Operand stage idles.

The Operand stage executes an action determined by the function code supplied to it by the Address stage. The following actions are performed:

- No Operation No operation is performed. In the simulation model this takes one cycle. In the real machine this will not require any cycles because the opcode dispatch information is kept separately from the operand specifier information. In the model it is not. This function is used for zero specifier opcodes.
- 2. Literal = The first longword of a short literal value is formatted (e.g. zero extended, shifted, bits inserted, etc.) in the Decode stage and passed through the Address stage. The Operand stage assigns an operand buffer and stores the first longword of the short literal in the buffer. If the context is guadword or octaword, then the Operand stage will

allocate additional operand buffers and deliver zero longwords in subsequent cycles. One cycle is required for each longword.

- Fetch If the access type is address or vield, then an 3. operand buffer is allocated and the value received from the Address stage is written into the buffer. If the access type is read, write, or modify, then a translation buffer access must be performed to determine the physical address and accessibility of the operand (the translation buffer is not modeled). For each longword in the operand (and each longword takes at least one cycle) a random number is generated and compared with the data cache miss rate that was selected when the simulation was begun. If the random number is less than or equal to the data cache miss rate then 5 additional cycles (the cache fill time) will be spent fetching the operand value. If the random number is greater than the data cache miss rate then only 1 cycle is required to fetch the operand value. If the data cache misses there is also a probability that the location that will be displaced from the cache has been modified but not written. Another random number is generated and compared with the forced write rate which was also selected when the simulation was begun. If found to "miss" then 5 additional cycles are required to first write the current contents of the cache line and then read the new value. This amounts to 11 cycles in all if the data cache misses and a forced write is required. As longwords are fetched an operand buffer is allocated, the register number written into one or more of the FIFO's and the operand value placed in the operand buffer.
- 4. Modify = The register number of the general register that is to be modified is written into the appropriate FIFO with a status that encodes the context and whether the operation to be performed is an autoincrement or autodecrement. The Execution stage will dispatch to a routine that actually performs the operation when an attempt is made to read the respective FIFO. In the next cycle a fetch function is performed.
- 5. Indirect fetch The indirect longword address is read and written into an operand buffer. The register number of the operand buffer and a status code that indicates that the operand buffer contains an indirect address is written into the operand buffer. The Execution stage will dispatch to a routine that writes the indirect address on the write bus when an attempt is made to read the respective FIFO.
- 6. Indirect modify = The register number of the general register that is to be updated is written into the appropriate FIFO with a status code that encodes a context of longword and autoincrement. In the next cycle an indirect fetch is performed.

- Register = The general register number is written into the appropriate pointer FIFO. If the operand specifier is context guadword or octaword, then the register number is incremented in successive cycles and written into the same FIFO.
- Displacement An operand buffer is allocated and the displacement value is stored.

4.5 Execute

The Execution stage executes instructions, performs autoincrement and autodecrement operations, and writes indirect addresses on the write bus. The Execution stage closely models the real hardware but of course computes no answers. It does, however, keep track of which registers are being written by an instruction and at the end of instruction execution it writes the registers one per cycle on the write bus.

The Execution stage is modeled as a finite state machine with 4 states. The states are:

- 1. Dispatch
- 2. Execute
- 3. Clean Up
- 4. Register Write

Execute starts at state 1 and cycles there until an opcode and all its specifiers arrive. During the time that it waits it can perform autoincrements, autodecrements and send indirect addresses to the Address stage which each take 1 cycle. This is not exactly how the hardware will work but there should be no difference in the performance. The hardware actually starts the instruction early and then ends up waiting if an operand is not ready.

When a complete instruction has arrived state 2 is entered where the number of cycles estimated for the instruction are spent.

State 3 releases operand buffers, continues pipeline activity, and sends branch addresses to the prefetch stage. If a register value is to be written state 4 is entered. In state 4 a register value is transmitted on the write bus every cycle.

The Execution stage always performs the action associated with the current state.

 State 1 = Dispatch. If there are no operand buffers that contain operands, then the Execute stage idles. Otherwise the operand buffers are examined one at a time to determine

if a complete instruction is present or there are autoincrements, autodecrements, or indirect addresses to process. If an autoincrement or autodecrement is found, then the operand buffer is removed and the register number is written on the write bus. This consumes the entire cycle. If an indirect address is found, then the operand buffer is removed and the indirect address is written on the write bus to signal the Address stage that the address it is waiting is present (and thank God indirect addresses are for infrequent - the whole pipeline is backed up while we sequence 1 indirect address through the pipeline). This also consumes the entire cycle. If no autoincrments, autodecrements, or indirect addresses are found before a complete instruction has been assembled then the state number is set to 2 and the cycle counter is set to the number of cycles the instruction is estimated to take. Estimates used in the simulator are as close to reality as possible since we must make judgements about the final performance of the actual hardware. State 2 is executed.

- 2. State 2 = Execute. The number of cycles remaining is decremented. If the result is nonzero, then the instruction execution is not complete. The number of cycles will be decremented again in the next cycle. If the remaining cycles is zero, then instruction execution is complete. If the instruction has no specifiers and is not from the implied pop class but is from the decode stop or fetch stop classes, then either the Decode or Operand stage is continued. If the opcode also gaused a branch (e.g. REI) then a new PC is sent to the Prefetch stage. If the instruction has one or more specifiers or is from the implied pop class, then the state number is set to 3 and state 3 is executed.
- 3. State 3 Clean Up, The operand buffers are released. If the instruction writes a destination register, then the state number is set to 4 and state 4 is executed. Otherwise if the instruction is from the decode or fetch stop classes, then either the Decode or Operand stage is continued. If the opcode also caused a branch (e.g. CHMK) then a new PC is sent to the Prefetch stage. If the instruction is from the conditional branch or loop classes and the branch was not predicted correctly, then the entire pipeline is flushed, the correct PC is sent to the Prefetch stage and the branch prediction RAM is updated. The state number is set to 1.
- 4. State 4 = Register Write. The destination register number is written on the write bus and the number of registers remaining to write is decremented. If the result is zero, then the state number is set to 3 and state 3 is executed. If the result is nonzero, then register number is incremented. The next register will be written in the next cycle.

[end of fb.rno]

RICKS;:CALLANDER "Mike Callander 225-5591 HLO1-1/S11 17-Nov-1988 0843" 17-NOV-1988 08:43:04.09 DURDAN, UHLER, SULLIVAN, MARCELLO

MAILS BVAX

From: To: CC: Subj: "BVAX" simulations on XMI-2

Hugh,

I've completed the "BVAX" simulations you asked for. I ran the Mariah performance model at an 8ns cycle time with a 4KB PCACHE. I made 2 runs with different backup cache sizes. All other parameters(like cache flush frequency) were left the same as we use on Mariah.

/Mike

Run Mariah.1.1 - Mariah at 8ns with 128KB cache

Trace	Instn Count	780 TPI	ICPUI	Sngl Total & bus Cycles TPI x780 x780 Used
MAIL	284986	1 11.4	111	5145886 18.1 15.8 15.8 17.6
NLINKU	375297	11.4	111	4433011 11.8 24.1 24.1 10.9
NFORT	424294	10.8	111	5219893 12.3 21.9 21.9 12.1
RUNOFF	403552	9.8	111	4878005 12.1 20.3 20.3 12.1
SORT	402831	9.1	111	3955004 9.8 23.2 23.2 11.7
Summary Geo Mean	1890960	10.5		23631799 12.5 20.9 20.9 12.6 20.8 20.8 12.7 EF =100.0%

--- Computed

.....

10-

Run Mariah.1.2 - Mariah at 8ns with 1MB cache

	Tests	700 1		<> Computed Mariah>
Trace	Count	TPI	CPUI	Cycles TPI x780 x780 Used
MAIL	284986	11.4	111	4481662 15.7 18.1 18.1 14.4
NLINKU	375297	11.4	111	4202547 11.2 25.5 25.5 9.0
NFORT	424294	10.8	111	4740861 11.2 24.2 24.2 9.0
RUNOFF	403552	9.8	111	4671781 11.6 21.2 21.2 10.9
SORT	402831	9.1	111	3884460 9.6 23.6 23.6 11.0
Summary Geo Mean	1890960	10.5	,,	21981311 11.6 22.4 22.4 11.7 22.3 22.3 10.7 EF =107.5%
RICK5::DURDAN "21-Nov-1988 1058" 21-NOV-1988 10:58:06.62 @DIS:VECTOR_STAFF,URLER From:

To: CC: Subj: BVAX - FYI

RICKS::FISHER DURDAN, GRUNDMAN BVAX From 21-NOV-1988 09:12

To: Subj:

- From
- RICKS::CASALETTO 18-NOV-1988 18:25 AMNON, MARCELLO, SULLIVAN, LAPRADE FYI direct and to the point. Subj:
- ROCK::SUPNIK "New location HL02-3/Cl1 18-Nov-1988 1752" 18-NOV-1988 17:53 Fromi
- RICKS::CASALETTO, WONDER::HARBERT BVAX will not happen copy of message to MSB and SCO staff To: Subj:

ROCK::SUPNIK "New location HLO2-3/Cll" 18-NOV-1988 17:51:57.86 NM&CHIPS::WALKER,NM&SHARE::PALMER,NM&MSBIS::DEMMER,NM&HYDRA::DURVASALA NM&AD::HIDERMANN,SUPNIK BVAX will not happen From: To: CC: Subj:

I don't like being the bearer of bad news, but the thrashing about the short term VAX strategy has got to stop.

So, simply put: BVAX will not happen. Here's why.

There's no team. The project plan is built on the assumption that HLO would supply the architecture expertese and the chip designers.
 NO ONE from HLO is signed up: no architects, no chip designers.

Further, no senior people are going to sign up. Why should anyone work on an ECL project that has bounced in and out of the corporate plans, that still is not officially approved, that is characterized as an insurance program for Aquarius and Raven, and that will be under constant political attack from another engineering group, when there is important, high payback, lower stress CMOS work to do?

The opportunity window has passed. To meet the proposed schedule, logic design had to start October 1. Right now, there's not even an architectural design. BVAX was a great opportunity in June, when it was proposed. It isn't any more.

- There's no platform. Performance studies show that in the CMAX (XMI-1) box, BVAX delivers 13 vups little more than Mariah. XMI-2 systems won't accomodate an ECL CPU. No ECL platform is planned for the required timeframe.
- 4. A direct CMOS to ECL translation won't work. Raven attempted, with the best intent in the world, a direct translation of the Rigel design from CMOS to ECL. It did not work out, for many reasons (see Appendix). BVAX cannot just translate CVAX; an architectural rework is needed. This will add more time to the schedule.

BVAX is vaporware. It's time to recognize that, and move on. Mariah PG's its first chip (floating point) NEXT MONTH. Let's put the limited budget, resources, and energy that are available into making Mariah, Raven, and NVAX successful.

Appendix: Why Direct Translation Fails

Here are some of the reasons why direct translation fails.

- Certain CMOS structures don't work in ECL. For example, fully associative TB's can't be built. Changing the TB to direct mapped requires rethinking (and recoding) all the memory management algorithms and microcode.
- 2. Certain CMOS design practices don't work in ECL. For example, precharged busses with many sources translate into ultra-wide multiplexors, which are slow and costly in gates. Pass gate structures (like shifters) must be completely redesigned.
- 3. The ratio between the access time of regular structures and the target microcycle changes drastically. For example, in CVAX, the control store access is 50% of the microcycle. In Raven, it is 75%, and in BVAX it might be worse. This requires rethinking the amount of logic in the sequencing path, which in turn alters the entire control structure of the micromachine. The same effect occurs in the TB/cache path.
- 4. CMOS uses too many gates. Studies have shown that, without cach and control store, CVAX is 30k to 35k simple gates (and Rigel is 45k simple gates) more than the Fujitau arrays can handle. Reductions in gate count are needed, usually at the expense of a wider microword, to simplify decoding, and of more microcode, to reduce hardwired control.

MicroECL is a promising technology, but like VLSI MOS, it poses its own unique problems for chip designers and will require its own unique solutions. There won't be any free lunches.

/Bob Supnik

RICK5::CASALETTO "27-Dec-1988 0913" 27-DEC-1988 09:08:40.38 @AFLSTAFF Fromt To: CC: Subj: FYT AD::BIDERMANN 22-DEC-1988 12:30 @BVAX Budson Support for BVAX From:

To: Subj:

| d | i | g | i | t | a | l |

INTEROFFICE MEMO

TO: FRANK BOMBA BILL DEMMER SAS DURVASULA BOB PALMER BOB SUPNIK LARRY WALKER

DECEMBER 20, 1988 BILL BIDERMAN ADVANCED DEVELOPMENT NULL: BIDERMANN 225-5049 HL02-3/H3 DATE: FROM: DEPT: NET: EXT: L/MS:

SUBJECT: BVAX SUPPORT

At our meeting on December 2nd, I committed to attempt to find a team of 3 Hudson people to assist the BVAX development effort. I have been unable to assemble this team due to the continuing uncertainty, perceived or otherwise, of the strategy surrounding the program. Therefore, despite the experience which Hudson could gain and the impact on the program, I have come to the conclusion that we will not be able to assist in the development of BVAX as proposed.

Sincerely.

Bill Bidermann

HYDRA::BOMBA "Soul of an Old Machine 30-Mar-1989 1443" 30-MAR-1989 15:01:48.95 @DESREV.DIS,DURVASULA,MSBCS::NEUMAN From:

To: CC: Subj: BVAX Technical Review

| digital | INTEROFFICE MEMORANDUM

TO: Distribution

CC: Sas Durvasula Paul Neuman

DATE: 30 Mar 89 FROM: Frank Bomba DEPT: BVAX Development EXT: 226-6595 LOC/MAIL STOP: LTN1-1/G08

ATT: Review agenda

SUBJECT: BVAX Technical Review

The BVAX Project Team has scheduled a technical review for the afternoon of April 27. We invite you to attend. The review will be held in the TAY2 facility which is the lower of the two new Taylor St. buildings accross the street from ITN2. The meeting will be in the Harvard conference room from 1:00 to 5:00.

The purpose of this review is to get your critical feedback on our design early in the project. Note we have not scheduled a more lengthy, detailed review due to:

- The nature of this implementation (copy wherever possible)

- The expediency of our schedule and the value of our time as well as your own

You will receive a package of specifications before the review. If you are unable to attend, we would still appreciate your comments on our documentation. Feel free to send any comments via electronic mail or call:

Frank Bomba DTN 226-6595 HYDRA::BOMBA

Attached is the agenda for the meeting. Since the review will move quickly from one major topic to another, questions will be answered when we can within the time limits. More detailed responses, especially those that require additional work on our part will be answered as soon as possible after the meeting by mail etc. Responses will be copied to all those in attendance.

We sincerely hope you can take time to attend and help BVAX succeed. Thanks,

Frank

AGENDA FOR BVAX TECHNICAL REVIEW -- APRIL 27, 1989

1:00 -	1:15	Welcome/introduction	- Bomba
1:15 -	2:15	System Overview XBP Module functional overview Performance modeling results	- Polzin
2:15 -	2:30	Break	
2:30 -	3:30	P-chip/R-chip/F-chip architecture and - Chip CAD process	d status - Schumann
		 Key differences from CVAX/CFI Partitioning/gate count Clocks On chip and chip to chip crit Custom cell plans Microcode 	PA tical paths
3:30 -	3:45	C-chip functionality	- Polzin
3:45 -	4:00	X-chip functionality	- Keefer
4:00 -	4:45	Module Physical Design - Module CAD process - Layout	- Stefanski
		 Module level critical timing Thermal management 	paths
4:45 -	5:00	Actions/issues	- Bomba

BYDRA::BOMBA "Soul of an Old Machine 14-Apr-1989 1145" 14-APR-1989 11:51:21.36 @JUSTMYGROUP.DIS.@PERFORMANCE.DIS.MSBCS::DEMMER From: To: CC: Subj: BVAX PROJECT UPDATE

| digital | INTEROFFICE MEMORANDUM

TO: Bill Demmer CC: Distribution

DATE: 14 April 89 FROM: Frank Bomba DEPT: BVAX Development EXT: 226-6595 LOC/MAIL STOP: LTN1-1/G08

ATT: Performance modeling results

SUBJECT: BVAX Project Update

I am happy to report excellent BVAX implementation progress over the past few months. As you know, this is due to the efforts of a rather small but dedicated team of individuals. Even more commendable is that this magnitude of progress has been made given the limited external support we have come to expect for this "unfunded" project.

At this point, BVAX can hardly be called vaporware:

- We have more than 50 percent of the CVAX processor gate-level design now translated to bipolar BVAX schematics.
- We have confidence that our design approach of direct gate mapping will work. We have confidence that we can make the design fit based on the Fujitsu information that we have today.
- We now have a running BVAX-specific performance model that again validates an achievable goal of 22+ VUPs per processor -- a commitment by the program made more than six months ago.
- We have done enough engineering investigation to know that the CMAX platform will accommodate a three-processor BVAX with minimal incremental changes (still impingement, three-processor cage support, and one additional BVAX regulator.) •
- We will soon have draft specifications of all our key chips, module, and system available for a public design review later this month.
- o We have had very positive comments on the technical aspect of our design approach from Strecker, Supnik, and Stewart and Rubinson.
- We are also investigating the good possibility of additional microcode support for certain commercial instructions to improve the COBOL performance of this machine.

We still do have a way to go. Design team staffing and the physical gate array CAD tool processes remain our key risks (outside of the obvious funding/MSB strategy). There is a willingness on the part of Kusik's team to help, but availability of resources is not clear. Only you can help us here...

In any case, I am pleased to report that at this time, BVAX remains a good opportunity for a minimized risk, time-to-market MSB product.

d i g i t a 1 TM

TO: Frank Bomba

INTEROFFICE MEMORANDUM

DATE: 12 April 1989 FROM: Steve Polzin DEPT: BVAX Development EXT: 226-6292 LOC/MAIL STOP: LTN1-1/G08

Page 3

CC: Kathy Harrington, Reinhard Schumann, Mark Stefanski

Subject: BVAX Performance Modeling Results

0.0 Executive Summary

A performance model of the BVAX CPU has been created based on the original CVAX model written by Joel Emer (in Pascal). The model represents a conservative model of the current BVAX design. It includes models of the XMI-2 bus protocol and XMA2 memory module. The model uses context switch cache flush and invalidate traffic similar to that implemented for the Rigel and Mariah performance models.

The model shows that a single BVAX CPU should yield 22.81 VUPs over the "Uhler-5" set of benchmark traces and 21.73 VUPs over the "Aqua-14" set of benchmark traces. The model also confirms earlier work by Mike Uhler and Rick Gillett that the XMI-2 can easily support three 22 VUP BVAX CPUs. The model is conservative in many way, particularly in the modeling of floating-point instructions.

1.0 Detailed Results

BVAX Performance

Benchmark	VAX 11/780 TPI	BVAX TPI	BVAX VUPs @ 8nsec	
Mail	11.36	13.82	20.54	1
Fort	10.8	11.92	22.65	ī
Link	1 11.4	11.26	25.31	1
Runoff	9.8	11.51	21.29	1
Sort	9.09	9.36	24.28	1
	"Uhler-5"	Average	22.81	1
DirBrief	1 11.11	16.39	1 16.94	1
Dir	1 11.11	14.29	1 19.43	1
Hanoi	4.11	4.11	1 25.00	1
LASL2D	1 20.0	20.25	24.69	1
LASL2S	9.91	14.37	1 17.24	
EDT	1 12.2	12.83	23.77	1
PL/1	9.8	11.42	1 21.45	1
WHETD	1 16.44	1 19.4	1 21.19	1
WHETS	10.78	13.18	1 20.45	1
	"Aqua-14"	Average	21.73	1
			and the second se	

* BVAX Model Uses 'Worse-Case' CFPA cycle counts.

Page 5

2.0 BVAX Performance Model Details

The BVAX performance model is based on the original CVAX performance model written by Joel Emer. The XCP version of this model (modified by Doug Williams) was used as the base for BVAX. Extensive modifications were made to the XMI, memory, primary cache, secondary cache and statistics reporting routines. In addition, the 'p-code' file that drives the model was changed for certain instructions to reflect the current CVAX implementation (Certain floating point instructions, MULL,DIVL).

The BVAX performance model implements the following features:

- Simplistic XMA2 Memory

- 'Real' XMA2 cycle counts Consecutive data cycles Write recovery time Single Memory Module
- 1 Mbyte, direct-mapped Write-back secondary cache (3 cycles on B-DAL given the current 12nsec Taa spec).
- 16 Entry Invalidate Queue
- 8 Entry Writeback Queue
- Context Switches are handled as follows:
 - Every 2msec, the primary cache and TB are completely flushed
 Every 2msec, the secondary cache has half of its tags (chosen at random) written with an address of -1 (remains valid).
 Also the secondary cache is initialized with all tags valid with address = -1 and 33% dirty.
- 8 other XMI commanders are modeled for invalidate traffic as follows:
 - Whenever the memory gets a request from BVAX , 8 invalidates are generated. 95% are random addresses, 5% are the same address of the last memory write. Read/write type invalidates are randomly generated.
- Primary Cache writes incur a 50% cycle 'stutter' as defined by Reinhard.
- F-Chip is modeled simply as a cycle count for a given instruction. The CFPA (and therefore the F-Chip) uses algorithms that are highly data dependent. The F-Chip cycle counts for floating point instructions are for 'worse-case' data patterns. The tight LINPACK and WHET benchmark loops should yield very close to 10x CFPA performance.

The current BVAX performance model reflects a conservative estimate

Page 6

of what we think the BVAX design is. Transfer times from the C-Chip to/from the X-Chip are conservative, as is the invalidate processing rate. The model includes the known restrictions on the BiCMOS rams that will comprise the secondary cache.

3.0 Future Work

The BVAX performance model will be maintained so that it will reflect the BVAX design as it evolves. Periodic updates will be made and the suite of benchmark traces will be re-run to verify the design.

The F-Chip routine could be updated to cycle according to the data pattern in the operands. It currently takes a simple cycle count from the .UCD (pseudo µcode) file.

Ne are currently investigating the addition of a few of the packed decimal instructions to take advantage of our 'extra' 400 or so pwords available in the R-Chip. I have obtained a set of COSOL benchmarks (GTE and the Jalics set) from Bhagyam Moses and we will attempt to quantify the performance of BWAX with and without the addition of these instructions across the various code sequences generated by the COBOL compiler (V3.3, V4.2/ins=generic, V4.2/ins=decimal, V4.2/ins=no_decimal).

V4.2/Insmedelmal, V4.2/Insmed_unclmal). To do this we will take the benchmarks and using the VAXITR program, run them on a Macho VAX (8800) and create a set of .ITR trace files. We will then modify the VAXEMUL image of VMS to not toggle the T bit in the PSL when entering and leaving instruction emulation routines and create another set of .ITR files that reflects the TRUE instruction sequence on a yVAX (6200). Finally, we will modify VAXEMUL again to only toggle the T bit on the instructions that we do NOT implement in wcode and create another set of traces from a 6200. By then applying these traces to the BVAX performance model with a new .UCD file that reflects the added wcode to support these packed decimal instructions we should be able to predict the performance of BVAX for certain commercial benchmarks.

4.0 Acknowledgment

My thanks to the following who have helped with this effort.

- Joel Emer and Doug Williams for creating the model.
 Mitch Rosich (SCC) for supplying the source
 Mitke Callander (Marlah) for supplying the Marlah perf model sources and a bunch of valuable advice.
 Reinhard Schumann (SVAX) for p-cache and p/f/r chip specifics.
 Don Denning (BVAX) for help in wading through the real CVAX ucode to get the .UCD file in shape.
 Dwight Manley (Aquarlus) for his Aquarius traces and also the VAXITR program.
 Kip Landingham (SPAG) for the set of COBOL traces.

ROCK: : UHLER HYDRA: : BOMBA From: To:

"Mike Uhler, DTN 225-4735, HL02-3/C11" 24-APR-1989 08:15:39.48

CC UHLER RE: BVAX PROJECT UPDATE Subj:

Although I haven't had time to go thru the BVAX specs in detail, here are two observations:

- The context switch rate that you indicate that you're using is 2ms. At an 8ms cycle time and 11.49 TPI (geometric mean of the Uhler 5), this amounts to a context switch every 21738 instructions if T've done the calculations correctly. For NVAX, we are using a 10000 instruction context switch frequency, which corresponds to 854 us on the same set of traces. So, although BVAX and NVAX are roughly the same speed in VUPS, you are using a context switch interval that is 2.3 times ours. Have you made any sensitivity runs to determine the performance impact of changing the frequency?

You note that you are investigating adding certain of the packed decimal instructions back in to improve Cobol performance. Page 11-3 of Rew H of the SRM says "Instructions in an application extension group may be implemented or omitted only as a group". That means you can't add a few instructions in the group without adding them all. If you really intend to pursue this as a serious option, I suggest that you immediately submit an ECO to VAXB since this has the potential of becomming a giant rat hole.

HYDRA::POLZIN "Steve Polzin in LTN1 24-Apr-1989 1139" 24-APR-1989 11:43:35.61 ROCK::UBLER BONEM,SCHUMANN,STEFANSKI,POLZIN RE: BVAR PROJECT UPDATE

From: To: CC: Subj:

Hi Mike.

Thanks for your questions to Frank, I'll try to answer them.

On context switches, I asked many people as to just what flush frequency I should use (I think I even talked to you about this). The numbers ranged from every 150,000 instructions (Simon Steely) to every 2msec (Mike Callander). The impression that I got was that context switch flush rates are functions of time and not absolute numbers of instructions. I'd be very interested to understand why you chose such a high rate of context switch flushing for NVXX. Zemec seems to be the number that was used on CVXX, Rigel and Mariah. The perf numbers that I published use a context switch rate of 2000 instructions. I've run some traces with context switch rate of 2000 instructions. I've run some traces with context switch flush rate at every 10000 instructions and our "Uhler-5" average VUPs is 21.75, about a 4.6% decrease. Also, please note that we didn't simple implement a simple flush but rather I tried to emulate what you and Mike did for the Rigel and Mariah models (to stimulate writeback traffic).

On packed decimal, we are very aware of what the SRM says and we have talked with a number of people including Tom Eggers, Rich Brunner, Cheryl Wiecek, and Wayne Cardoza. The bottom line appears to be that the SRM statement was inserted in an attempt to establish some consistent expectations as to what a given processor performance would be. The architecture group and VMS have no objections to us implementing a few of the instructions (and would not oppose such an ECC to this affect when we get to that point). VMS currently tries DIVP in SYSBOOT to determine if the emulator image should be loaded. We certainly would not implement DIVP and VMS has also offered to conditionally load the emulator image based on our SID.

I agree that the whole issue of packed decimal instructions is a rat hole (ref Supniks memo on Cobol perf of 13-Apr). We are trying to 'patch' the problem given that we do have 400-500 extra ywords. If the problem of packed decimal instructions is resolved 'globally' (as Supnik suggests) then there would be no need. We agree with Bob on the issue of the VMS emulator routines. We've been going through them in detail and they could use a good clean up and/or re-coding from a hardware perspective and we might get 10-20% right there.

We are getting a very loud message from marketing that we have a problem. In July, the high-end VAX will be a vVAX. We are trying to see if by implementing only a few of the packed decimal instructions (CVTTP, CVTPT seem to be the most likely candidates), we can get a '90% solution'. I'd be very interested in your perspective on this issue.

Thanks for your comments.

From:

"Mike Uhler, DTN 225-4735, HL02-3/C11" 8-MAY-1989 08:37:07.06

ROCK::UHLER "Mike HYDRA::POLZIN UHLER RE: BVAX PROJECT UPDATE To: CC: Subj:

We've been quite busy lately, so I only got a chance to look over your mail this weekend.

Relative to context switch rates, here are the algorithms used for Rigel, Mariah, and NVAX:

Rigel: Full flush of TB and Pcache every 7500 instructions, random displacement of Bcache every 7500 instructions. At 11 TFI and 28ns cycle, this is 2.3ms between context switches.

Mariah: Full flush of TB and Pcache every 7500 instructions, full flush of Bcache every 35000 instructions. At 11 TPI and 20ns cycle, this is 1.5ms between TB and Pcache flushes and 7ms between Bcache flushes.

NVAX: Full flush of TB and VIC every 10000 instructions, run 50000 instructions worth of address traces thru the cache subsystem every 10000 instructions to displace data. At 7 TPI and 14ns cycle, this is 1ms between context switch.

You asked whether context switch rates were functions of time or number of instructions. The answer is a function of the kind of workload being executed. Early in Nautlius, Cheryl Niecek worked with the VMS performance group to try to estimate the context switch rate for Nautlius. They came up with the following events that lead to a context switch:

- Conditional quantum end
- Conditional quantum end
 Rescheduling interrupt (process premption)
 One second conditional processing (VMS cleanup)
 Voluntary wait end due to I/O, event flag, process hibernation or suspension, etc.
 Involuntary wait end due to page fault, resource depletion, mutex wait, etc.

Of these, the first three are a function of time and the last two are a function of instructions. According to their analysis at that time (1984), most of the context switches were due to voluntary or involuntary waits of one form or another. This is just a restatement of what has always been observed: most processes block rather than expire quantum.

Therefore, we have always used instructions rather than cycles to trigger context switches. As you can see, this resulted in the context switch interval decreasing from 2.3ms in Rigel to about ims in NVAX. If you think that you can justify a different workload than we've been assuming, then 2ms as your context switch rate is reasonable. If not, then 4.6% error in performance is fairly large in my opnion, and it's not a good idea to set expectations and then fail to deliver.

I have no opinion about the viability of adding certain of the decimal instructions to improve performance because the only data that I've seen is Bob's memo. If you reach the conclusion that there are only a few instructions that really matter (CVTTP and CVTPT as you indicated), I'd be very interested in seeing the analysis. While we don't have 400 spare microwords in NVAX, we might be able to implement something, especially if there is a big leverage.

/GMU

HYDRA::POLZIN "Steve Polzin in LTN1 08-May-1989 1922" 8-MAY-1989 19:25:11.20 ROCK::UHLER POLZIN RE: BVAX PROJECT UPDATE From: To: CC: Subj:

Hi Mike.

Thanks for your explanation of modeling context switching. I tend to agree with you but we are in a weird situation. We are being forced into a rather awkward (for me at least) position of being an Aquarius alternative/replacement and hence I am being pressured to publish performance numbers for BVAX relative to Aqua.

In order to level the playing field I want to use the same assumptions that Dwight Manley did when he did the Aqua performance work. According to Dwight, he NEVER flushed any caches on any of the Aqua performance work. He simply flushed the TB on SVETX and LOPCTX. Therefore, when we compare to Aquarius, I do the same and BVAX comes in at 23 VUPs vs. 25.3 VUPs for Aqua running the "Uhler-5". Aquarius does much better on the "Aqua-14" set of benchmarks due to the hand-optimized LASL loop 2s and the Whetstones using lots of floating point (the one cycle 32x32 multiplier and 3 cycle 32x32 divider really scream).

I think I need to publish/advertise two sets of numbers: One set that never flushes for use when comparing BVAX to Aqua and then another set that flushes according to your specifications for use when comparing BVAX to Rigel/Wariah/NVAX. I'm running both sets now, it looks like the BVAX numbers to compare to Aqua come in around 23-24 VUPs and the BVAX numbers to compare to Rigel/Mariah/NVAX come in around 20-21 VUPs.

I'll let you know what we can come up with for decimal string performance. We've been spending most of our time fighting for our lives. Fortunately, Reinhard has more than 70% of the CVAX translated into Fuji already. Hopefully we will be done before the managers get around to canceling us.

Thanks 8

1.0 CHIP SIZE

Frigate TB/cache chip -- Early Feasibility Study Results

The address comparator array is composed of 1 bit tag register and comparator cells ('comparand registers'), each about 58 microns wide by 100 microns high. By interleaving the data registers for two fully associative cells, we expect to obtain a height of only 64 comparand registers. This represents a height of about 250 mils. Thirty-two bits of comparand register abutted to 32 bits of interleaved data array, abutted to 32 more bits of comparand gives a width of about 220 mils. We do not have estimates of the carry ladder logic (which will add to the width) but we expect it to be less than 30 microns. The resulting chip is about 250 x 250 mils, exclusive of pads.

2 Interleaved Fully Associative Cells

<	5	568	mic	ron	(219	mij	ls)		:	>1					
+			+							+					
1			1	Data	1 1	1				1	•				
I Compar	and	1 1	+===			+	Compar	and	2	1	1	100	mi	cror	٦
1			1	Data	2					1	v	(3.	94	mil;)
+			+===			+-			-	-+					

2.0 SPEED ESTIMATES

Given the high performance of the N-channel devices, we have adopted a "mostly N-channel" design approach. To determine a hit in the Frigate TB/cache chip, three important propagation times must be calculated:

- the pull-down of precharged address lines going to the comparand registers,
- the pull-down of all precharged missing hit lines low, and

3. the pull-down of the precharged common data bus lines.

SPICE simulation shows a 3 ns typical-typical transistor model time and 4 to 5 ns slow-slow transistor model time to pull-down the address lines. (These results were obtained TB/cache chip == Early Feasibility Study Results

Page 2

using the Hudson CMOSTT.MOD and CMOSSS.MOD SPICE models.) This assumes the following:

- each address line is 6400 x 5 microns in metal 2
- address line resistance of 28 ohms
- address line capacitance of 2.3 pF, and
- a transistor gate capacitance loading 1.6 pF (64 transistors, each gate 2 x 12 micron).

The worst case performance for pulling down a hit line is when a single bit of the comparand register differs from the search address, resulting in a single XOR structure having to discharge the hit line. The SPICE simulation model yields 3 ns for the typical-typical case and 4 to 5 ns for the slow-slow case. This model assumes:

- an 1800 by 4 micron metal 1 comparand hit line.
- a comparand hit line resistance of 22 ohms,
- a comparand hit line capacitance of 0.40 pF,
- a regenerating inverter propagation delay,
- an 1800 by 4 micron metal 1 data array hit line,
- a data array hit line resistance of 22 ohms,
- a data array hit line capacitance of 0.40 pf, and
- a data array hit transistor gate capacitance loading of 0.86 pF.

Finally, the SPICE simulation for driving the common data bus lines vields a typical-typical time of 4 to 5 nsec, and 5 to 6 nsec for the slow-slow case. This assumes:

- data lines are in metal 2, 6400 by 5 microns.
- data line resistance is 28 ohms,
- data line capacitance is 2.3 pF, and
- the discharge path is through two series 2 by 12 micron gate n=channel transistors.

Neglecting input and output pad times, it appears that we should be able to register a hit and provide the data for that hit:

TB/cache chip -- Early Feasibility Study Results

- in 3 + 3 + 5 = 11 ns for the typical-typical transistor case, and
- in 5 + 5 + 6 = 16 ns for the slow-slow transistor case.

After a hit has been determined, the Frigate TB/cache chip requires a rotation of the matching address and data to the input of their respective arrays. Note that the address lines are already charged with the address and the data lines are already charged with the data. The two major timing phases for the shift are:

- determining the extent of the registers participating in the shift, and
- the actual shift.

We expect to use Manchester-carry-ladder-like logic to determine the registers which must participate in the shift. We currently do not have any estimates of this timing. The comparand registers are made of 3 clocked-inverters with a cross-coupled pair in over-drive configuration. SPICE modeling indicates that these registers should be able to shift in 3 ns typically and in 4 to 5 ns for the slow case. This timing is not as critical as it is done in 'shadow' time. We are closely modelling the over-drive characteristics of this overdrive register.

3.0 OVERALL SPEED

A *very* preliminary model of address-in/comparand-hit/data-out gives a time of 9 ns. This assumes the timing generator starts discharging distribution capacitance in anticipation of final values. This might be possible with a self-timed timing generator. It should also be noted that not all capacitive loads are taken into account in this overall timing model.

{ end of mist: [kehl]tlb.rno tk 12/3/84 }

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Abstract

This document describes the Frigate product. THIS THIS DOCUMENT IS CONFIDENTIAL. Do not distribute it outside DOCUMENT IS CONFIDENTIAL the company.

. .

Issued by: DECwest Engineering

Revision History	Date	Reason for Change	Author
Version 1.0	4 Dec 84	Initial Distribution	P. Schnorr

CHAPTER 1 FRIGATE SYSTEM OVERVIEW

1.1	FRIGATE SYSTEM OVERVIEW
1.2	CONSTRAINTS AND GOALS
1.3	SYSTEM DESCRIPTION
1.3.1	Frigate CPU
1.3.2	Frigate System Bus (FSB) 1-3
1.3.3	Frigate Memory Controller
1.3.4	Frigate Memory Arrays
1.3.5	Frigate BI Adapter (FBI) 1-5
1.4	TECHNOLOGY
1.4.1	F-Series Modules
1.4.2	Custom VLSI Chips
1.4.2.1	Frigate TB/Cache Chip 1-6
1.4.2.2	Frigate FIFO Chip 1-6
1.4.3	AMD 29300 Family
1.4.4	RAM Technology
1.4.5	Bipolar Gate Arrays 1-7
1.4.6	Miscellaneous Buffering And Control Logic 1-7

CHAPTER 2

FRIGATE PROCESSOR

2.1	FRIGATE CPU OVERVIEW	
2.1.1	Prefetch Stage	
2.1.2	Decode Stage	
2.1.3	Address Add Stage	
2.1.4	Operand Fetch Stage	
2.1.5	Execution Stage	
2.1.6	System Clock	
2.1.7	Pipeline Registers And Stall Signals	
2.2	FRIGATE TIMING CHART	
2.3	PREFETCH STAGE	
2.3.1	Prefetch Bus	
2 3 2	ITB Address Latch	
2 3 3	Instruction Translation Ruffer (ITR)	
2 3 3 1	Reading The ITR	
2332	Weiting The ITB	
2 3 4	I Cache Page Pagistor	
2 3 5	ICache Addesse Rus	
2 3 6		
2.3.7		
2.3.7		
2.3.0	Instruction Burrer And Shifters	
2.3.9	Icache Address Latch	
2.3.10	Prefetch PC Incrementer And Register	
2.3.11	Instruction Buffer PC Register (IBPC Register) 2-11	
2.3.12	Prefetch PC Adder	
2.3.13	Miscellaneous Control Lines	
2.4	DECODE STAGE	
2.4.1	Instruction Buffer	
2.4.2	Instruction Decode	
2.4.3	Opcode Decode Logic	
2.4.4	Specifier Decode Logic	
2.4.5	Decode PC Adder	

.

2.4.6	Branch Logic	2-17
2.4.7	Decode PC Register	2-18
2.4.8	Displacement Multiplexer And Register	2-19
2.4.9	General Processor Registers	2-20
2.4.10	Rbase Multiplexer	2-21
2.4.11	Base Register	2-21-
2.4.12	Rindex Multiplexer	2-22
2.4.13	Index Register	2-22:
2.4.14	Rb Register	2-22 .
2.4.15	Ri Register	2-22
2.4.16	IPC FIFO	2-23
2.4.17	Control Registers	2-23.
2.4.17.	1 Opcode Register	2-23
2.4.17.2	2 Address Add Function Register	2-23-
2.4.17.3	3 Operand Fetch Function Register	2-24
2.4.17.4	4 Execution Function Register	2-25
2.4.18	Miscellaneous Control Signals	2-25
2.5	ADDRESS ADD STAGE	2-25
2.5.1	Inputs	2-25.
2.5.2	Outputs	2-26
2.5.3	Operation	2-26.
2.5.4	Base Multiplexer	2-27
2.5.5	Index Multiplexer	2-27 .
2.5.6	Address Adder	2-27
2.5.7	VAR Multiplexer	2-28
2 5 8	Victual Address Register	2-28
2 5 9	Register Number Incrementer And Register	2-20
2 5 10	Jump Register	2-20
2 6	OPERAND FETCH STAGE	2-29
2 6 1	Inouts	2-29
262	Outputs	2-29;
2 6 3	Data Macioulation	2-29
2 6 4	Bypase Multiplayer	2-30
2 6 5	Bypass Multiplexer	2-31
2.6.6	Addross Rufford	2-31.
2.0.0	Mouress bullers	2-31
2.0.7	Data Tapaslation Buffas	2-31 .
2.0.0	Data franslation buffer	2-31
2.0.9	Physical Address Register	2-32
2.0.10		2-32
2.0.11	Memory Data Register	2-32
2.0.12	Rotator Control Register	2-32
2.0.13	Dispatch Control Logic	2-33
2.0.14	Dispatch FIFUS	2-33
2.0.15	Sourcel Pointer Multiplexer And Register	2-34
2.6.16	Source2 Pointer Multiplexer And Register	2-34
2.6.17	Destination Pointer Multiplexer And Register .	2-34
2.6.18	Operand Write Pointer Register	2-35
2.6.19	Dispatch Microwords	2-35
2.6.20	Microword Bus	2-35
2.6.21	Microword Register	2-36
2.6.22	Operand Fetch Stage Sequencer	2-36
2.7	EXECUTION STAGE	2-36
2.7.1	Inputs	2-36
2.7.2	Outputs	2-37

05 Dec 84

12

•

2.7.3	Data Rotators	2 X			2-37.
2.7.4	Operand Bus	2 2	21.121.12		2-37
2.7.5	ALU				2-37
2.7.6	FPU				2-37
2.7.7	Sourcel Input Mux				2-38
2.7.8	Source2 Input Mux	12			2-38
2.7.9	Reserved Operand Detection	a a	S 162 1		2-38
2.7.10	Register File				2-39
2.7.11	Temporary Registers		21 1511 18		2-39
2.7.12	Register Log			2.2	2-39
2.7.13	State Gate Array	<u>.</u>	20 0.20 02	0.0	2-39-
2.7.14	Control Store		10,000,00		2-40
2.7.15	Microsequencer .	3 8	2 100 0	· ·	2-40
2.7.16	Write Bus	S 8 .	:	ं ं	2-40
2.8	ESB PORT	0 O	N 1997 19	· ·	2-41
2.0		18 - 18 -	• • • • •	• •	2-41

CHAPTER 1

FRIGATE SYSTEM OVERVIEW

1.1 FRIGATE SYSTEM OVERVIEW

Frigate is a BI-based VAX hardware system under development at DECwest Engineering for FCS in September of 1987. The system consists of a processor which executes the complete VAX instruction set (without compatibility mode), a 64-bit Frigate System Bus (FSB), a memory, subsystem consisting of a memory controller and up to eight memory; arrays, a console subsystem, a BI adapter which supports up to two BI's, a FSB backplane, and a power system and package.

The kernel system consists of a single processor and console subsystem, a memory controller and 4 MB of memory, a BI adapter which includes support for a single BI backplane, a FSB backplane, and a power system and package.

Frigate will support symmetric multiprocessing for up to six processors in a single backplane.

1.2 CONSTRAINTS AND GOALS

Constraints are product attributes which define the minimum product; as such, they must be delivered, or the product is not viable. Constraints are:

- 1. FCS must occur by September, 1987 (Q1FY88)
- 2. Kernel cost must not exceed \$20K
- Single-processor performance must be at least four times the 11/780.
- 4. Processor must execute the VAX instruction set
- 5. System must be compatible with BI and BI options
- 6. System must support at least two BI's

- 7. Processor must be implemented on three F-Series modules maximum
- System must include support for up to four processors in a single backplane; this implies commensurate:
 - o main memory capacity
 - o main memory bandwidth
 - o system bus bandwidth
 - o power, cooling and packaging
- 9. RAMP metrics must equal or better those of Nautilus

Goals define the product attributes beyond the minimum constraints, and are traded-off in the order in which they appear:

- 1. Single-processor performance six times the 11/780
- 2. Implement processor on two F-Series modules
- 3. Support up to six processors in a single backplane
- 4. FCS in March, 1987
- 5. \$15K Kernel transfer cost
- 6. Support up to 4 BI's

1.3 SYSTEM DESCRIPTION

The major components of the Frigate System are implemented on F-Series (Nautilus) modules, which plug into the FSB (Frigate System Bus) Backplane. A FSB to BI Adapter Module, located in the FSB backplane, provides the interface to one or two BI backplanes via cables and a BI module located in each of the BI backplanes (Nautilus-style).

1.3.1 Frigate CPU

The Frigate CPU consists of F-Series modules which plug into the FSB. Backplane. The CPU executes the entire VAX instruction set (not including compatibility mode); this includes hardware support for F, D, and G_Floating, with H_Floating and Decimal instructions implemented in microcode. The CPU is implemented as a five-stage machine with a basic cycle time of 100 nsec. To achieve the stated performance constraint (4x 11/780), Frigate must retire an instruction

Page 1-3 05 Dec 84

every 500 nsec, or once every five cycles.

The first stage in the Frigate processor pipeline accesses the Instruction TB and Cache for I-Stream data. The second stage decodes the I-Stream data at the rate of one instruction and one specifier, or one specifier (for subsequent specifiers), per cycle, for most specifiers (including context indexing). The next stage calculates operand addresses. The fourth stage accesses the Data TB and Cache for operand values, and the final stage executes instructions and writes results.

All writes are under the control of the final, execution stage. To facilitate pipelining, Write-In-Progress indications are maintained in the General Registers and Data Cache as appropriate.

The caching scheme used in the Frigate CPU includes separate. Instruction and Data Caches, both implemented using a custom chip, called the Frigate TB/Cache Chip. Both the I and D Caches are fully associative and include least-recently-used replacement. They are organized as 512 quadwords (4 KB), with a fill size of 2 cache lines (128 bits).

The Data Cache is write-back, and implements the scheme utilized in Firefly under development at SRC. This scheme requires the storing of, two additional bits with each cache line:

- 1. MODIFIED indicates that this cache line has been locally modified
- 2. SHARED indicates that another cache has a copy of this data.

A CACHED signal on the FSB is asserted if read data is supplied by another cache when a Read With Cache Intent function is executed. This causes the SHARED bit to be asserted for this cache line.

The CPU is described in detail in the next chapter.

1.3.2 Frigate System Bus (FSB)

The Frigate System Bus (FSB) is a synchronous bus interconnecting the CPU(s), the Main Memory Controller, and the Frigate BI Adapter. The FSB is centrally arbitrated and controlled, and is TTL-based, utilizing FAST-family drivers and receivers. The basic cycle time is 100 nsec, and the data path is 64 bits wide, resulting in a theoretical bandwidth of 80 MB. The FSB can support up to six Frigate processors, a dual-BI Adapter, and the memory subsystem.

Address and Command information is time-multiplexed with data transfers; up to two quadwords may be transferred for every Command/Address cycle, yielding an effective bus bandwidth of 2/3(80MB) = 53 MB. Up to two transactions may be in progress on the bus at any time. All transfers are naturally aligned, such that no-

data rotation logic need be implemented in the memory controller.

The FSB supports the following basic transactions:

- 1. Read Quadword / Octaword
- 2. Read Quadword / Octaword Interlocked
- 3. Read Quadword / Octaword With Cache Intent
- 4. Write Quadword / Octaword
- 5. Write Quadword / Octaword Unlock
- 6. Write Quadword / Octaword Cached
- 7. Read Word / Longword
- 8. Read Word / Longword Interlocked
- 9. Write Masked Long
- 10. Write Masked Long Unlock

The FSB also includes the capability to handle various types of interrupts, including Interprocessor Interrupts.

1.3.3 Frigate Memory Controller

The Frigate Memory Controller is implemented on a single module, and provides the interface and control between the FSB and up to eight memory array modules, thereby controlling up to 128 Mbytes of Frigate system memory. It accepts commands, addresses, and data from the FSB, generates and checks ECC, and multiplexes this information to the 'Frigate memory arrays. Additionally, it decodes addresses to select the proper memory array to be enabled for a particular operation, and attempts to hide refresh cycles by selecting idle arrays for refresh.

With the Frigate writeback cache scheme causing only aligned 64-bit memory words to move between caches and the memory subsystem, the memory controller needs to implement only three basic operations:

- 1. Aligned octaword read.
- 2. Aligned quadword write, and
- 3. Aligned octaword write.

The memory controller also implements interlock capability on a memory . line basis.

All memory ECC generation and checking is done by the memory

controller. ECC checking is done in an 'offline' manner. Read data is assumed good, and transmitted to its destination while ECC checking takes place. If an ECC error is discovered, it is reported, and the data transfer is aborted. This effectively removes the time spent checking ECC from the critical path of memory reads, thereby increasing system throughput.

1.3.4 Frigate Memory Arrays

Frigate memory arrays are organized as arrays of 64 bit, ECC-corrected words. Since the Frigate writeback cache scheme causes write data to be merged in the cache, only 64-bit cache lines move between cache and memory, simplifying both the system bus and memory subsystem design. Memory arrays support 64-bit reads and writes only, allowing the economy of 64-bit ECC without any overhead due to read/modify/write operations.

Memory array cards will contain up to 16 MB of DRAM. This implies multiple 'banks' of 64-bit-wide arrays per array card, such that it is practical to simultaneously access two memory 'banks', and with buffering, to do aligned octaword reads and writes to memory. Utilizing octaword transfers increases maximum memory bandwidth from roughly 16M bytes/second to almost 32M bytes/second, and both the CPU cache fill size and FBI adapter operations are designed to capitalize.

1.3.5 Frigate BI Adapter (FBI)

The Frigate BI Adapter (FBI) serves as the interface between the, Frigate System Bus (FSB) and up to two BI's. It is very similar to the Nautilus BI Adapter (NBI), in that it consists of two types of modules. The first, identified as the FBIA, is implemented on an F-Series module and resides in the FSB backplane. The other, identified as the FBIB, is a BI module which resides in a BI backplane. An FBIB is required for each BI included in a Frigate. system (up to two). The FBIA connects to one or two FBIB modules as appropriate via cables.

The FBI:

- 1. Appears as a memory node to DMA devices on the BI;
- Handles CPU memory requests in BI address space as a BI processor node;
- 3. Fields BI device interrupts

Page 1-6. 05 Dec 84

1.4 TECHNOLOGY

There are several key components utilized in the implementation of Frigate which are worthy of mention here.

1.4.1 F-Series Modules

Frigate uses the F-Series modules pioneered in Nautilus. These modules are similar in size to extended hex modules, and interface to the FSB backplane through 480-position ZIF connectors mounted on one side of the card.

1.4.2 Custom VLSI Chips

Frigate is envisioned to have at least two Custom VLSI Chips based onthe Hudson CMOS I Process:

1.4.2.1 Frigate TB/Cache Chip

This chip implements a 128-entry, fully-associative cache structure, including least-recently-used replacement. It includes logic for data and address paths up to 32 bits wide, single cycle clear, locking of cache locations, and support of a write-back cache algorithm. The part is cascadeable in both width and depth. Each Frigate CPU. includes 20 such chips.

1.4.2.2 Frigate FIFO Chip

This chip implements a 32-bit-wide by 16-entry-deep First-In-First-Out storage structure. It has separate input and output ports, and explicit control inputs for reading, writing, and advancing the FIFO. Standard cells or the Genesil design approach are possibilities here.

Additionally, an FPU chip based on the Hudson CMOS I process will be pursued, perhaps based on the MicroVAX FPU Chip. Alternatively, modifications to the Weitek 1164 Floating Point Multiplier and 1165 Floating Point ALU to completely implement DEC Floating Point are being worked with Weitek.

Page 1-7 05 Dec 84 '

1.4.3 AMD 29300 Family

The main ALU and Register File in the Execution Unit are implemented using the AMD 29332 and AMD 29334, respectively. These parts have TTL-compatible outputs. The AMD 29332, packaged in a 168-pin PGA, implements a 32-bit data path, with two 32-bit input ports, and a 32-bit output port. The AMD 29334 is a dual-port-read, dual-port-write Register File, organized as 64 16-bit locations. It is packaged in a 120-pin PGA. Two Register File parts are utilized in each Frigate processor.

1.4.4 RAM Technology

Main memory RAMs will be industry-standard 256 Kbit dynamic RAMs; provision will be included to utilize the 1 Mbit RAMs when they become available.

The Frigate CPU is also dependent on the availability of 35 nsec 16K RAMs, preferably organized as $2K \times 8$.

1.4.5 Bipolar Gate Arrays

Wherever possible, the remaining logic is sized using the Motorola 2800ALS Bipolar Gate Array. This array uses the Mosaic II technology with three-layer metal, offering ECL internal speeds with FAST-equivalent I/O speeds, for about 3 watts of power. Current packaging is in 149-pin PGAs; alternative packaging will be pursued.-Each Frigate CPU utilizes approximately 12 such gate arrays, of which. 7 are unique designs.

1.4.6 Miscellaneous Buffering And Control Logic

The remainder of the data buffering and control logic will be accomplished with off-the-shelf components from the FAST logic family.

CHAPTER 2

FRIGATE PROCESSOR

2.1 FRIGATE CPU OVERVIEW

The Frigate CPU is a five-stage machine with a basic cycle time of 100. nsec. To achieve the stated performance goal, Frigate must retire an. instruction every 500 nsec, or once every five cycles.

The five pipeline stages are:

- 1. Prefetch
- 2. Decode
- 3. Address Add
- 4. Operand Fetch
- 5. Execute

The CPU includes separate Instruction and Data Translation Buffers and Caches. The instruction TB and Cache are utilized by the Prefetch. Stage to supply instruction stream data, while the Data TB and Data. Cache, which is write-back, are used by the Operand Fetch Stage to access operands. Both TB/Cache structures use the same TB/Cache Chip as a building block; the chip organization is fully associative, with least-recently-used replacement.

The CPU also includes a four-port-readable and single-port-writeable general register structure. Two copies of the GPR's are accessed during operand specifier decode, and two other copies are available to the execution unit. The write logic is shared, and is under the control of the execution unit.

Write-In-Progress indications are associated with the Data Cache and the GPR's accessed during operand specifier decode. These are necessary to utilize the pipeline efficiently while providing only onewrite path to these structures; this write path is under the control of the execution unit, such that all register logging and fault, recovery logic is implemented in one place.

Page 2-2. 05 Dec 84.

2.1.1 Prefetch Stage

The Prefetch Stage uses a Prefetch PC to access the Instruction TB and Cache in parallel to continually supply instruction stream bytes to the Decode Stage via the Instruction Buffer. Major logic elements include the Instruction TB (ITB), Instruction Cache (ICache), Instruction Buffer Shifters, and the Instruction Buffer (IB).

Two cycles are required to traverse this stage from virtual address to IB data - one cycle to access the ITB for a physical address, and a second cycle to access the ICache and load the IB. However, hardware is implemented to access the ITB and ICache in parallel, and the extra cycle is paid only when accessing a different page than that previously accessed.

2.1.2 Decode Stage

The Decode Stage operates on the contents of the Instruction Buffer (IB) to parse an opcode and specifier or a subsequent specifier everycycle. Two copies of the GPRs are accessed for base and index register values as appropriate. In addition to the two GPR copies, this stage includes substantial opcode and specifier decode logic and the Decode PC Adder.

2.1.3 Address Add Stage

The Address Add Stage forms operand addresses (or passes operand data) from the specifier information presented by the Decode Stage. The major logic structure is a three-input adder; each input is presented via a mux which formats data based on control information supplied by the Decode Stage.

2.1.4 Operand Fetch Stage

The Operand Fetch Stage accesses the Data TB and Cache to obtain operands from memory. The Cache may be read AND written once every cycle. Writes occur during the first half of the cycle - data is presented via the DCache Data Bus, and the write (and WIP bit clear). occurs at the address specified on the DCache Address Bus. In parallel, the address generated by the Address Add Stage is presented. to the TB and translated. During the second half of the cycle, the resulting physical address is used to access the cache to yield data and/or to mark a cache line as Write-In-Progress (WIP).

The Operand Fetch Stage also stages operands and builds the first. microword (as a function of the specifier and opcode) for the Execution Stage.

2.1.5 Execution Stage

The Execution Stage operates on data supplied by the Operand Fetch. Stage to produce the result specified by the instruction. All paths and register elements within this unit are 32-bits wide; the intent is to operate on two 32-bit input operands and produce a 32-bit result every cycle. Results are presented via the Write Latch and Write Bus; all writes to the GPR's and memory are under the control of this unit. Major elements of this unit include the main ALU and barrel shifter, a floating point unit (FPU), a set of Working Registers which includes copies of the GPRs (dual-port-readable, single-port-writeable), a set of Operand Buffers, a Register Log, and the main Control Store and microsequencer.

2.1.6 System Clock

The system clock structure consists of a free-running, four-phase clock with a 100 ns period. The four phases are labelled T0, T1, T2, and T3. The leading edge of T0 defines the start of a cycle. The leading edge of T1 occurs at T0 + 25, the leading edge of T2 occurs at T0 + 50, and the leading edge of T3 occurs at T0 + 75.

2.1.7 Pipeline Registers And Stall Signals

The output of each stage in the machine pipeline is a set of pipeline registers; these registers are also the input to the next stage in the pipeline. The pipeline registers at the output of each stage are manipulated by that stage as a group. Associated with each set of pipeline registers is a VALID bit, which indicates when these, registers contain valid data; that is, when their contents may be used by the succeeding stage.

Each stage also implements a STALL signal, which is propagated to the previous stage in the pipeline. The assertion of such a signal indicates that a stage was unable to process the data presented by the preceding stage within the current cycle, such that the input state (ie: pipeline registers) must be maintained. The effect is to freeze the pipeline registers between the two stages. The propagation of these signals "back up the pipe" is one of the critical paths in the machine, and is integrally related to the clocks and clock skew.

A pipeline stage that cannot accomplish work because the pipeline registers at its input are not VALID is said to be IDLE. A pipeline stage which cannot accomplish work because the pipeline registers at its outputs are not available, as indicated by a STALL signal from the succeeding stage, is said to be STALLED. Conditions exist in the machine which cause a particular stage to cease processing until some sort of outside intervention occurs; a stage in this situation is

2.2 FRIGATE TIMING CHART

The following timing chart illustrates the critical paths in Frigate from a timing standpoint.

ICache Page Reg Prop | Control Register Prop | Write Bus Prop 10 ----- and Dist ICache Address Buf Prop | Write Bus Prefetch Latch Prop 20 30 ITB Address Latch Proo I Cache RAM Address 40 Setup (Read) ITB RAM Address 50 *-*-*-*-*-*-*-*-*-*-*-*-*-*-* Setup (Read) Ctrl Reg Prop |ICache Output| 60 ----- Latch & Dist ICache Addr Buf |----- Data Comp | Addr Comp | + 70 -----Prop | Prop | Protection -| Logic Prop 80 ICache RAM IB Shift XXXXX Access (Write) | and Setup | -----and the second sec 90 Write Recovery ?| Prefetch Valid Bit Setup Decode *********************** IB Propagation Delay Write Bus Prop 10 ----and Dist 20 Address Mux Prop First-Level IB Decode 30 -----GPR Write Access 40 50 Second-Level IB Decode -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-Control Reg Prop 60 _____ ------------Address Mux Prop 70 80 IB Shift Control Decode PC GPR Read Access Setup Adder Prop 90 95 Register Setup Add Pipeline Register Prop Write Bus Prop. 10 ----and Dist ------20 XXXX Deskew Latch Prop -----30 Address Adder Input Mux Prop -----

Page 2-5 05 Dec 84

Note: Execute2 occurs in parallel with Execute1 - it just wouldn'tfit horizontally on the page!

2.3 PREFETCH STAGE

2.3.1 Prefetch Bus

The Prefetch Bus supplies bits <31:0> of a virtual address to the Instruction TB and Cache structure, from one of four possible sources:

- 1. The Write Bus via the Write Bus Prefetch Buffer
- 2. The Prefetch PC Register
- 3. The Branch Register
- 4. The Jump Register

The default Prefetch Bus driver is the Prefetch PC Register, which supplies the address of the next quadword beyond the one currently being processed. The bus enable lines are a function of the opcode and specifier decode logic and the execution unit (for TB management, branch correction, and interrupts).

2.3.2 ITB Address Latch

The ITB Address Latch captures bits <31:0> of the Prefetch Bus for presentation to the ITB and ICACHE. Bits <31:9> are presented to the ITB and bits <8:0> are presented directly to the ICACHE. The latch is open from T1 to T2, and is implemented to efficiently handle the

capture of addresses supplied via the Write bus (the Write Bus Latch opens from T3 to T0). On a cache miss or access violation, 'the contents of this latch are passed down the pipeline to the execution unit via the ICache Address Latch and the IPC FIFO.

2.3.3 Instruction Translation Buffer (ITB)

The Instruction Translation Buffer (ITB) consists of a tag store and data store, and two sets of comparators. ITB Address Latch bits <31:9> are used to access the ITB for the corresponding PTE, from, which bits <29:9> of a physical address are extracted. These bits are compared with ICache Page Register <29:9> to determine if the physicaladdress presented to the Instruction Cache in parallel was valid. The validity of this physical address is also conditional on whether a TB hit occurs, and whether the access is allowed, as defined by the protection bits and processor mode.

The ITB itself consists of 256 entries, 128 for system space and 128 for process space, and is implemented with two custom Frigate TB/Cache chips. The organization is fully associative, with least-recently-used replacement.

2.3.3.1 Reading The ITB

Accessing the ITB to read a PTE proceeds as follows:

- ITB Address Latch <31:9> are presented to the ITB to yield the corresponding PTE; ITB Address Latch <31> selects system or process space (one of the two TB/Cache chips).
- 2. In parallel:
 - PFN<20:0> from the accessed PTE are compared with bits.
 <29:9> of the ICache Page Register to determine if the physical address used to access the cache in parallel was correct;
 - The Protection bits from the accessed PTE are examined relative to the processor mode to determine whether the access is allowed.
- PTE <20:0> are unconditionally loaded into ICache Page Register <29:9> at the end of the cycle.
- A valid indicator associated with the ICache Page Register is asserted as follows:

- 1. If the PTE is cached, the access is allowed, and the addresses match, the valid indication is asserted;
- 2. If the PTE is cached, the access is allowed, and the. addresses don't match, the valid indication is not asserted - the result is that the cache access will be repeated in the next cycle, this time with the correct address:
- 3. If the PTE is cached but the access is not allowed, or the PTE is not cached, the valid indication is not asserted. Additionally, the contents of the ICache. Address Latch are loaded unmodified into the IBPC Register (once the IB has been emptied), and a TB error indication is presented to the Decode Logic. The Decode logic propagates this error indication thru the control. register pipeline, and the virtual address is propagated via the IPC FIFO, to the Execution Stage. The Prefetch unit then waits for execution unit intervention.

The ICache Page Register valid indication is ANDed with the Cache Hit signal from the parallel cache access to indicate to the IB Shift. logic that the accessed cache line contains valid Instruction Stream data.

2.3.3.2 Writing The ITB

The ITB is always written under the control of the Execution Unit. The address to be written is presented via the Write Bus and Write Bus Prefetch Buffer and loaded into the ITB Address Latch (in fact, in. most cases the address will already be there). In the next cycle the PTE to be written is presented via the Write Bus through a deskew. latch, and the write into the appropriate ITB chip occurs, based on ITB Address Latch <31>.

When mapping is not enabled, the ITB will be managed as an identity. map by the Execution Unit microcode.

2.3.4 ICache Page Register

The ICache Page Register is loaded every cycle from PFN <20:0> of the PTE accessed in the ITB. The output of this register is presented to. the ICache Address Mux as bits <29:9> of the cache address to be read during the first half of every cycle. During the second half of the cycle, its contents are compared with the output of the ITB to .. determine if the cache access was valid.

2.3.5 ICache Address Bus

The ICache Address Bus consists of two portions, a page portion, which supplies bits <29:9> of the physical address to the cache, and the offset portion, which supplies bits <8:0> of the physical address.

The page portion has two sources, the ICache Page Register, which supplies the read address during the first half of every cycle, and the ICache Address Bus Latch, which supplies the write address during the second half of the cycle.

The offset portion also has two sources. During the first half of the cycle, the read address is sourced from ITB Address Latch <8:0>. During the second half of the cycle, the ICache Address Bus Latch supplies the write address.

Bits <29:3> of the ICache Address Bus are presented to the ICache for reading or writing the quadword cache lines. Bits <29:0> of this latch may also be driven onto the Internal Bus to access main memory on a cache miss.

[Note: The critical path reading the instruction cache is when the address is supplied via the write bus (bits <8:3> only). This path could be handled differently if it proves to be a problem as currently implemented. Note that no state element is necessary in this path since the cache output itself is captured at T2, and the Write Bus Latch does not re-open until T3.]

2.3.6 Instruction Cache

Bits <29:3> of the ICache Address Bus are used to access the Instruction Cache for the next quadword in the instruction stream. The Instruction Cache is implemented utilizing 8 Frigate TB/Cache chips, organized as 64 bits wide (+parity), and 512 locations deep (4, KB). It is fully associative, and implements the least-recently-used replacement algorithm.

The cache is accessed during the first half of every cycle for read data, regardless of the state of any valid / not valid indications; the cache output is captured at T2 in the ICache Output Latch. The cache hit/miss indication is ANDed with the ICache Page Register valid indication to generate an indication regarding the validity of the accessed cache line. This signal, ICACHE_LINE_VALID is used by the instruction buffer control logic to conditionally mark bytes valid in the Instruction Buffer at the end of the cycle.

The ICache may be accessed during the second half of each cycle to do a write or invalidate. The write address comes from the ICache. Address Bus Latch, and the write data is sourced onto the ICache Data Bus from the Internal Bus via the Internal Bus Buffer.

Page 2-10. 05 Dec 84

2.3.7 ICache Output Latch

The ICache Output Latch captures the 64-bit output of the Instruction Cache. It is conditionally opened from T1 to T2 under the control of the Instruction Buffer control logic whenever the previous contents of the latch have been used by the IB, or are no longer needed (such as after a taken branch): this is indicated by the assertion of the signal LOAD_CACHE_LINE_BUF (defined below).

[Note: Conditioning the opening of this latch allows the following cache line to be accessed before the current contents of the ICache-Output Latch have been loaded into the Instruction Buffer. Otherwise; the latch could be unconditionally opened every cycle.]

This latch is implemented in the Instruction Buffer Gate Arrays.

2.3.8 Instruction Buffer And Shifters

The Instruction Buffer and Shifter structure is utilized to provide. the next 7 bytes in the instruction stream to the Decode Stage. The shifters are used to accomplish this by selecting the appropriate 7 bytes from the 22 bytes formed from the Instruction Buffer (14 bytes) and the output of the Instruction Cache latched in the ICache Output Latch (8 bytes).

The Instruction Buffer and Shifter is implemented through the use of four Instruction Buffer Gate Arrays. The structure is partitioned vertically, such that each gate array implements the entire structure for two of the eight bits in each byte. These gate arrays also include the ICache Output Latch.

2.3.9 ICache Address Latch

The ICache Address Latch is loaded from the Prefetch Bus whenever the signal LOAD CACHE LINE BUF (defined below) is asserted. This latch. 'captures the virtual address associated with the quadword in the ICache Output Latch. Its output is presented to the PC Offset logic to calculate the next Prefetch PC and IBPC.

[Note: This latch exists only to allow prefetching another cache line] beyond the contents of the ICache Output Latch].

2.3.10 Prefetch PC Incrementer And Register

The Prefetch PC Incrementer supplies the contents of the ICache Address Latch + 8 to the Prefetch PC (PPC) Register every cycle. The Prefetch PC Register is the default driver of the Prefetch Bus.

2.3.11 Instruction Buffer PC Register (IBPC Register)

Associated with the Instruction Buffer (IB) is an Instruction Buffer PC Register, which identifies the next byte in the instruction stream to be operated on by the Decode Unit (ie: the byte in position 0 or 1 of the Instruction Buffer). This register is input to the Prefetch PC Adder in the Prefetch Stage, and the Decode PC Adder in the Decode Stage.

The IBPC Register is loaded as follows:

- Bits <31:3> are loaded from the ICache Address Latch if the signal LOAD_CACHE_LINE is asserted; otherwise, the bits are re-circulated from the corresponding IBPC outputs;
- Bits <2:0> are loaded from either the Prefetch PC Adder or the ICache Address Latch, depending upon whether or not a branch occurred, as indicated by the signal BRANCH ADDRESS BUF.

This logic is implemented in the PC Gate Array.

2.3.12 Prefetch PC Adder

The 3-bit Prefetch PC Adder is used to calculate the address of the first byte beyond the opcode (for instructions with no specifiers) or specifier currently being decoded (that is, the address of the first byte of the the opcode or specifier to be decoded in the next cycle). One input to the adder is Instruction Buffer PC Register <2:0>. The other input is PC_OFFSET<2:0> from the specifier decode logic.

The output of the Prefetch PC Adder is conditionally loaded into bits ' <2:0> of the IBPC Register at the end of the cycle.

Carry-out of this adder is one of the signals OR'd to generate the signal LOAD_CACHE_LINE. This signal causes bits <29:3> of the ICache Address Latch to be loaded into the corresponding bits of the IBPC.

This logic is implemented in the PC Gate Array.

[Note: The updating of the PC after quadword and octaword immediates is nandled in the Decode PC Adder and via the Branch Register.]

2.3.13 Miscellaneous Control Lines

ICACHE_LINE_VALID - indicates that the contents of the ICache Output Latch are valid.

PREFETCH_PREGISTERS_VALID - specifies that the Prefetch Pipeline

Page 2-12 05 Dec 84

Registers are valid.

PREFETCH_STALL - pipeline stall from Decode Stage; inhibits the updating of the Prefetch Pipeline Registers.

PC_OFFSET <2:0> - output of Decode Stage which specifies the number of bytes consumed by the Decode Stage, and therefore the number of bytes by which the Instruction Buffer PC is to be incremented and the Instruction Buffer is to be advanced, ie: right-shifted.

LOAD_OPCODE - output of Decode Stage which specifies that byte 0 of the Instruction Buffer is to be loaded. IBO always contains the opcode of the instruction being decoded, and is therefore not loaded every cycle.

BRANCH_ADDRESS - signal from decode stage indicating that the next prefetch address is not-sequential. Used to select the source of the Prefetch Bus and to generate the signal LOAD CACHE LINE.

BRANCH_ADDRESS_BUF - Registered version of BRANCH_ADDRESS used in the next cycle to select the source of IBPC<2:0>.

LOAD CACHE_LINE - the OR of the carry from the Prefetch PC Adder and BRANCH_ADDRESS. Specifies that IBPC Register bits <29:3> be loaded with the output of the ICache Address Latch.

LOAD_CACHE_LINE_BUF - Registered version of LOAD_CACHE_LINE used in the next cycle to conditionally open the ICache Output Latch and ICache Address Latch.

IBn Valid - valid bits associated with each of the bytes in the Instruction Buffer, IBn where n = 0 to 13.

2.4 DECODE STAGE

The Decode Stage operates on the contents of the Instruction Buffer (IB) and Instruction Buffer PC Register (IBPC) to generate operand information for the Address Add Stage, and control information for the Prefetch Stage. Major structures include the operand decode logic, the specifier decode logic, the Decode PC Adder and two copies of the General Registers.

2.4.1 Instruction Buffer

The Instruction Buffer (IB) is 14 bytes wide. Up to 7 bytes (the low-order bytes) may be consumed by the Decode Stage in any one cycle; the remaining 7 bytes in the buffer are used to insure that, whenever, possible, the next 7 bytes in the IStream will be available to the decode logic in the next cycle. Each byte may be loaded from any succeeding byte in the IB and ICache Output Latch.

The 7 bytes available to the decode logic are identified as IBn, n = 0 to 6. IBO always contains the opcode of the instruction being decoded.

The Instruction Buffer and Shifter is implemented through the use of four Instruction Buffer Gate Arrays. The structure is partitioned vertically, such that each gate array implements the entire structure for two of the eight bits in each byte. These gate arrays also include the ICache Output Latch.

[Note: The width of the IB beyond the 7 bytes which may be used by the Decode Stage in any one cycle is a function of the fact that the ICache Output Latch which supplies the IB cannot be re-loaded until all 8 bytes in the Latch have been used. Simulation is under way to determine the optimum IB length.]

2.4.2 Instruction Decode

The instruction decode unit is implemented as a state machine with twelve major states corresponding to the type of decode being performed. The twelve states are defined by four state signals, collectively called the decode state, which are generated each cycle by the state machine:

- SECOND_OPCODE when asserted, indicates that the opcode bytebeing decoded is the second byte of the opcode; deasserted indicates that the byte is to be interpreted as the first byte of the opcode.
- SPECIFIER<2:0> identifies the position of the specifier being decoded, as follows:
 - 1. 000 First Specifier decode first specifier
 - 2. 001 Second Specifier decode second specifier
 - 3. 010 Third Specifier decode third specifier
 - 4. 011 Fourth Specifier decode fourth specifier
 - 5. 100 Fifth Specifier decode fifth specifier
 - 6. 101 Sixth Specifier decode sixth specifier
 - 7. 110, 111 Undefined

The quiescent state of the machine is SECOND_OPCODE not asserted and. SPECIFIER<2:0> = 0, specifying decode first specifier (the machine enters this state upon initialization, and at the end of each instruction). In this state, there are six possible interpretations of the data in the instruction buffer (ignoring quadword and octaword).

immediates for the moment).

[Note: This assumes that there is no decode of the instruction stream done on the input side of the instruction buffer to align data -. alignment is solely under the control of control logic in the decode stage on the output side of the instruction buffer. To do otherwise would add intolerable delay in the prefetch stage.]

The six possible data formats are:

1. Single-byte opcode, no specifiers

	×	×	×	x	x	x	x	Opcode
9								

2. Single-byte opcode, first specifier is not index mode

×	x	Disp 3	Disp 2	Disp 1	Disp 0	Base SPC	Opcode

3. Single-byte opcode, first specifier is index mode

×	Disp 3	Disp 2	Disp 1	Disp 0	Base SPC	IndexSPC	Opcode

4. Single-byte branch opcode

x	x	х	x	x	Disp 1	Disp.0	Opcode	

5. Double-byte opcode, first specifier is not index mode

×	Disp 3	Disp 2	Disp 1	Disp 0	Base SPC	Opcode 1	Opcode 0

6. Double-byte opcode, first specifier is index mode

Disp 3	Disp 2	Disp 1	Disp 0	Base SPC	IndexSPC	Opcode 1	Opcode 0

' The double-byte opcode cases are handled by detecting these formats (1B0 = FD), specifying a single-byte advance (shift) of the.
instruction stream, and specifying that the next decode state be SECOND_OPCODE asserted, SPECIFIER<2:0> unchanged (specifying decode first specifier). The effect is that the instruction buffer contents in the next cycle will be identical to one of the single-byte opcode formats, with the decode state specifying SECOND_OPCODE.

The net result of this strategy is that there are only four possible interpretations of the instruction buffer by the specifier decode logic when SPECIFIER<2:0> indicates that the first specifier is to be decoded. This means:

- The index mode specifier, if there is one, always appears in IB1;
- 2. The base operand specifier appears in IB2 or IB1;
- 3. Displacements appear as follows:
 - 1. Branch Displacements in IB1 or IB2 [IB1;
 - 2. Byte Displacements in IB2 or IB3;
 - 3. word Displacements in IB3/IB2 or IB4/IB3;
 - Longword Displacements, or the first longword of a quadword or octaword immediate, in IB5/IB4/IB3/IB2 or IB6/IB5/IB4/IB3.

To minimize the multiplexing in the decoder stage, it is desirable to maintain this positioning for all decode states, that is, independent. of which specifier is being decoded.

This is done by shifting one less byte-position when transitioning . into a SPECIFIER state other than that specifying the decode of the first specifier.

In this manner, an opcode and specifier may be decoded in one cycle, for all cases except quadword and octaword immediate mode specifiers. One additional cycle is required for the quadword immediate case, and three additional cycles for the octaword immediate case. During such cycles, the immediate value is extracted one longword at a time from [B4][B3][B2][B1.

2.4.3 Opcode Decode Logic

The opcode decoder implemented in the Decode Stage is logically a 4K. by n PROM with the following inputs:

- 1. IB0<7:0>
- 2. DECODE STATE<3:0> (=SECOND OPCODE | SPECIFIER<2:0>)

It's output includes the following fields:

- DATA_TYPE<3:0> specifies the data type of the specifierbeing decoded; DATA_TYPE<3:0> = F is used to indicate that' the instruction has no specifiers (ie: no first specifier' exists);
- ACCESS_TYPE<2:0> specifies the access type of the specifier being decoded;
- NEXT_DECODE_STATE<3:0> specifies the next decode state to be loaded into the Decode State Register.
- LOAD_OPCODE specifies that an opcode is to be loaded into IBO; this affects the PC Offset, and gates the clocking of IBO.

Additionally, the opcode decode logic will decode instruction class, particularly as it affects pipeline waits.

2.4.4 Specifier Decode Logic

IB1 contains the index specifier, if there is one, or may contain a base specifier. Additionally, IB2 may contain a base specifier for index mode. The only fast decode needed, therefore, is a determination of whether index mode is specified; the signal INDEX_MODE is asserted if IB1<7:4> = 4. This signal is used as a select on the muxes at the inputs of the base specifier GPRs and the displacement register.

The remainder of the specifier decode is accomplished via a logic structure with the following inputs:

- 1. IB1<7:4>
- 2. 182<7:4>
- 3. DATA TYPE<3:0>
- 4. ACCESS TYPE<2:0>
- 5. LOAD OPCODE

[Note: The B-bit combination of IB1<7:4> and IB2<7:4> can be reduced. to five bits by decoding IB1<7:4> = 4 (Index Mode) quickly, and using it to select a mux between IB1 and IB2.]

The specifier decode logic generates:

- PC_OFFSET<2:0> input to the Prefetch Stage to specify the number of bytes to advance (right shift) the Instruction Buffer, and input to the Prefetch PC and Decode PC Adders to calculate the appropriate updated PC's:
- Control signals for subsequent stages propagated through the machine via Function Registers defined below;
- Displacement Multiplexer select bits to specify the format of short literals or displacements in the Displacement Register:
- WIP Control Bits to specify the number of sequential WIP, counters to be incremented or checked in a particular cycle;
- Branch Control Bits used by the Branch Logic to specify how to set up the Decode PC Adder, whether the Branch or Jump Register is driving the Prefetch Bus, and when the branch, address is valid.

2.4.5 Decode PC Adder

The Decode PC (DPC) Adder operates on the contents of the IBPC to generate the updated PC to be used by the Address Add Stage for address calculations, or to generate the target address to be supplied. to the Prefetch Stage for some classes of branches.

One input to the DPC Adder is the IBPC Register, which supplies the; address of the first byte of the I-Stream to be processed by the Decode Stage in this cycle. The other input is a mux which is setup based on opcode information (branch or no branch), specifier size and specifier type to supply the appropriate addend. The output of the DPC Adder is input to the Branch Register, Decode PC (DPC) Register, and IPC FIFO.

The Decode PC Adder is implemented in the PC Gate Array.

2.4.6 Branch Logic

When a program flow change is to be made, the Prefetch Stage is notified (by the assertion of the signal BRANCH_ADDRESS) that the next I-Stream Address will come from either the Branch Register or Jump Register. In response to this signal, the Prefetch PC Register no longer sources the Prefetch Bus, and a flush of the Instruction Buffer occurs. The latter is accomplished by marking all valid indications 'invalid.

The Branch Register is loaded from the Decode PC Adder in the Decode Stage. It provides the Branch Address (ie: drives the Prefetch Bus) when the signal JUMP REGISTER is not asserted by the decode logic.

The next I-Stream address is supplied via this path for all conditional and unconditional branches and loop instructions that are absolute or PC-relative, and as the result of decoding quadword and octaword immediate mode specifiers. For these cases, the Decode PC. Adder is set up to supply one of:

1. PC + 1 + SEXT(IB1)

2. PC + 2 + SEXT(IB2|IB1)

3. PC + 8 (quadword immediate)

4. PC + 16 (octaword immediate)

Loop instructions are always predicted to be taken, hence the target branch address is always supplied for these instructions. A 4K x 1. RAM is used for prediction of conditional branches. Bits <13:2> of the address are presented to this RAM, which contains a single bit indicating whether a branch was taken the last time the corresponding location was accessed. Based on this bit, either the target branch address or the incremental address are supplied via the Branch Register. The RAM is corrected by the Execution Unit microcode via the Write Bus when an incorrect prediction is made, and the pipeline is flushed.

The Jump Address Register is loaded from the output of the 3-inputadder in the Address Add Stage. It drives the Prefetch Bus when the signal JUMP_REGISTER is asserted. This path is used to supply the next I-Stream address for JMP's and JSB's that are not PC-relative or absolute.

The Branch Logic, except for the Jump Address Register and the. Prediction RAM, is implemented in the PC Gate Array,

2.4.7 Decode PC Register

This register presents the address of the first byte in the instruction stream beyond the specifier or opcode (for instructions with no specifiers) being decoded. It is loaded from the output of the DPC Adder, and conditionally drives the Base Bus, which is one of the inputs to the three-input adder in the Address Add Stage. The other source for Base Bus data is the Base Register; the specifier decode logic specifies the source.

2.4.8 Displacement Multiplexer And Register

The Displacement Register is used to pass sign-extended displacements and formatted literals to the Address Add stage. Additionally, when the base specifier mode is autodecrement, the two's complement of the size is passed via this logic.

The inputs to this register are four byte-wide multiplexers, defined as follows:

Spec Mode	Data Type	Byte3	Byte2	Bytel	ByteO	
s^#lit	BWLQ	0 0	0	0	00 181<5:0	>
	FD	0	0 0	10000 IB1<5:4>	IB1<3:0> 0	000
	G	D	0	0100000	0 181<5:0>	10.
	, н	IB1<2:0> 00000	0 0	01000000	00000 181<	5:30
-(Rp)	в	FF	FF	FF	EE	20
	w	FF	FF	- FF	FE	۰.
	LF	FF	FF	FF	FC	
	QDG	FF	FF	FF	F8	• •
	Он	FF	FF	FF	FO	
						j.
INDEX	В	SEXT(IB3<7>)	SEXT(IB3<7>) SEXT(IB3<7>)	IB3	- 40 - 12
	W	SEXT(IB4<7>)	SEXT(IB4<7>) IB4	IB3	4
	L	IB6	IB5	IB4	IB3	
SUBSEQUE IMMEDIAT	NT E	IB4	IB3	IB2	IB1	
(after f	irst 1	ong∢ord)				5
ALL .						3
OTHERS	в	SEXT(IB2<7>)	SEXT(IB2<7>) SEXT(IB2<7>)	IB2	1
	W	SEXT(IB3<7>)	SEXT(IB3<7>) IB3	IB2	\$
	L	IBS	IB4	IB3	IB2	

The Displacement Multiplexer and Register are implemented in the Displacement Gate Array. The pinouts include:

- 1. 48 data inputs (IB<6:1>)
- 2. 4 data type inputs
- 3. 3 format control inputs
- 4. 1 clock enable
- 5. 1 clock

The Displacement Register must also be capable of supplying 0. The Displacement Register is one input to the three-input adder in the Address Add Stage.

2.4.9 General Processor Registers

Two copies of the GPRs are implemented in the Decode Stage, one to supply the register contents associated with the base specifier, and, one to handle the index specifier. Each GPR set may be read AND written once every cycle; writes occur during the first half of the, cycle, and reads occur during the second half of the cycle.

Associated with the GPRs in this stage are 15 Write-In-Progress (WIP) counters. These 4-bit counters maintain the number of outstanding writes to the corresponding GPR (except PC). Attempting to read a GPR: whose WIP Counter is non-zero for any mode but register mode causes a pipeline stall.

Read and WIP bit addresses for the two GPR copies come from bits <3:0> of IB1 for the copy associated with the index specifier, and ((IB2*INDEX_MODE)+(IB1*/INDEX_MODE)) for the copy associated with the base specifier.

Write Addresses and the corresponding data size come from the address portion of the Write Bus. The three data size bits are used to specify a byte, word, or longword write. Write data comes from Write Bus <31:0>. When a write occurs, the corresponding WIP counter is decremented.

Multiple WIP counters (up to four) may be read and/or incremented in a single cycle, based on the WIP control bits, which are a function of data type, access mode, and specifier type. Only one WIP counter need: be decremented per cycle.

A non-zero WIP counter does not cause a stall if the mode is register."

WIP counters may be read AND set during the second (read) half of the cycle (ie: read at the address supplied by the index specifier mux.

and read and/or incremented at the address supplied by the base specifier mux). The WIP counters are decremented during the first (write) half of the cycle.

A register bypass mechanism is implemented to gain a cycle when a stall occurs due to a non-zero WIP counter. The base and index register numbers are captured in the Rb and Ri Registers, respectively, for presentation to the Address Add stage. A valid bit associated with each of these registers indicates whether the Decode Stage was able to supply valid register data. If the valid bit is not set, the Address Add Stage stalls and watches the Write Bus for the. updated register contents.

The bypass mechanism is utilized only when there is one outstanding write to a requested register. That is, it is used only when one or the other of the base or index registers is not available; it cannot be used when both are not available, since the Address Add stage has no state element available to store the first operand that becomes available while waiting for the second. Thus, when both register values are not available, the Decode Stage stalls until one of them becomes available, and then transmits the specifier information to the Address Add Stage, which waits for the other to become available viathe Write Bus.

Similarly, the bypass mechanism cannot be utilized when a WIP counter.

Logic prevents the WIP counters from being decremented beyond zero.

2.4.10 Rbase Multiplexer

The Rbase Multiplexer selects the address presented to the base specifier copy of the GPRs; the output of this mux is also captured, in the Rb Register. The mux selects one of three possible address sources:

- IB1<3:0> read / WIP (increment/check) cycle and not index mode
- 2. IB2<3:0> read / WIP (increment/check) cycle and index mode -
- 3. Write Bus Address write and WIP decrement cycle

2.4.11 Base Register

The 32-bit Base Register contains the contents of the GPR specified by the Rbase Multiplexer. It is loaded directly from the base specifier copy of the GPRs at the end of every cycle. It conditionally drives the Base Bus, which is one of the inputs to the three-input adder in

the Address Add Stage. The Base Register drives the Base Bus whenever, the contents of a GPR other than PC are required to calculate the base address.

2.4.12 Rindex Multiplexer

The Rindex Multiplexer selects the address presented to the index. specifier copy of the GPRs; the output of this mux is also captured in the Ri Register. The mux selects one of two possible address sources:

1. IB1<3:0> - read / WIP (check only) cycle

2. Write Bus Address - write and WIP decrement cycle

2.4.13 Index Register

The 32-bit Index Register contains the contents of the GPR specified in the index operand specifier, that is, Index Register = (IB1<3:0>). It is loaded directly from the index specifier copy of the GPRs every cycle. It is one of the inputs to the three-input adder in the. Address Add Stage.

2.4.14 Rb Register

This 4-bit Register is loaded from the Rbase Multiplexer every cycle. It is used to pass the base register number to the Address Add Stage. To implement the register bypass mechanism, a valid bit is associated with this register. If set, the required register contents were supplied by the Decode Stage via the Base Register. If clear, the register contents were not available due to an outstanding write. In this case, the Address Add Stage monitors the Write Bus for the updated register contents, and stalls until such data is available.

2.4.15 Ri Register

This 4-bit Register is loaded from the Rindex Multiplexer every cycle. It is used to pass the index register number to the Address Add Stage, and exists, along with the associated Valid Bit, only to implement the write bus register bypass mechanism. If the Valid Bit is set, the required register contents were supplied by the Decode Stage via the Index Register. If clear, the register contents were not available due to an outstanding write. In this case, the Address Add Stage, until such data is available.

2.4.16 IPC FIFO

The IPC Buffers are organized as a 32-bit-wide FIFO, loaded under the control of the Decode Stage, and read under the control of the Execution Stage. These buffers combine the functions of pipeline PC registers and buffering at the output of the Operand Fetch Stage into a single structure. There are 8 32-bit-wide buffers, organized as a. FIFO which may be read and written every cycle. Read data is available to the Execution Unit during the first half of the cycle, and the structure may be written by the Decode Stage during the second half of the cycle. This write occurs from the output of the DPC Adder under the control of the decode state machine.

The Virtual PC used to access the ITB is loaded into the IPC Buffers, and passed to the Execution Stage for managing the ITB when necessary.

The PC Buffers are not explicitly addressable by the Execution Unitmicrocode, in that only the Top-of-Fifo is available to be read. However, the removal of an entry from the FIFO is explicitly controlled by the microcode, in order to manage First-Part-Done cases.

[Note1: Currently, this structure is read by the Execution Stage via the Write Bus to save pins. If this proves to be a bottleneck, dedicated pins could be used, in which case the structure could also be moved closer to the Execution Stage.]

[Note2: The depth of this structure is TBD as the result of simulation. It seems like 8 is a reasonable number, effectively allowing us to buffer up to 6 instructions (4 instructions is probably enough), and hold 2 in the pipeline.]

2.4.17 Control Registers

2.4.17.1 Opcode Register

This nine-bit register contains a single bit indicating single- or double-byte opcode, and the contents of IBO. It is loaded every cycle, and is propagated through the machine for use in succeeding. stages.

2.4.17.2 Address Add Function Register

This register contains control information to be used by the Address -Add Stage to construct the operand or operand address in the nextcycle. The control information for the Address Add Stage is fully decoded in the Decode Stage so as to keep decode out of the critical: path in the Address Add stage. The register is made up of the following fields:

- 1. Base Mux Control
 - 1. Base Register
 - 2. Decode PC Register
 - 3. Write Bus
 - 4. 0

2. Index Mux Control

- 1. Index Register
- 2. Index Register left shift by 1
- 3. Index Register left shift by 2
- 4. Index Register left shift by 3
- 5. Index Register left shift by 4
- 6. Write Bus
- 7. Write Bus left shift by 1
- 8. Write Bus left shift by 2
- 9. Write Bus left shift by 3
- 10. Write Bus left shift by 4
- 11. 0
- BASE_VALID indicates that the Base Register is valid (used by register bypassing logic)
- INDEX_VALID indicates that the Index Register is valid: (used by register bypassing logic)

2.4.17.3 Operand Fetch Function Register

The contents of the Operand Fetch Function Register are passed through. a pipeline register in the Address Add Stage to ultimately be used by ... the Operand Fetch Unit.

The Operand Fetch Stage must have some knowledge of the specifier type and position, size, and access mode in order to allocate operand . buffer locations and pointers appropriately, in addition to being able

Page 2-25 05 Dec 84

to access the data TB and Cache. Exact definition and encoding of this information TBD, but worst case it is no more than the 9-bit. Opcode Register, four bits of specifier mode, and a synchronization signal (to indicate the start of a new instruction).

2.4.17.4 Execution Function Register

TBD control and status information from the decode logic in the Decode Stage to be passed via pipeline registers to the Execution Stage.

2.4.18 Miscellaneous Control Signals

DECODE_STALL - input to Prefetch Stage to inhibit update of Prefetch Pipeline Registers.

DECODE_VALID - specifies that the contents of the (pipeline) registers, at the output of the Decode Stage are valid, ie: usable by the Address Add Stage.

2.5 ADDRESS ADD STAGE

2.5.1 Inputs

The following pipeline registers described in the previous section are inputs to the Address Add Stage; associated with these pipeline registers is the signal DECODE VALID, which indicates that all of these registers contain valid data.

- 1. Displacement Register
- 2. Base Register
- 3. Index Register
- 4. Decode PC Register
- 5. Rb Register passed unmodified to Operand Fetch Stage, and used in the Write Bus bypass mechanism for the Base Register
- Ri Register used only to implement the Write Bus bypass. mechanism for the Index Register
- 7. Address Add Function Register (includes Index and Base' Register Valid indications)
- Opcode Register passed unmodified to the Operand Fetch Stage

- Operand Fetch Function Register passed unmodified to the Operand Fetch Stage
- Execution Function Register passed unmodified to the Operand Fetch Stage

The signal FETCH STALL is received from the Operand Fetch Stage to indicate that the pipeline registers at the output of the Address Add. Stage should not be updated.

2.5.2 Outputs

The following pipeline registers are input to the Operand Fetch Stage; associated with these registers is the signal ADD_VALID, which indicates that these registers contain valid data.

- virtual Address Register generally loaded with the output of the adder in the Address Add Stage for presentation to the. Operand Fetch Stage.
- Register Number Register generally loaded with the unmodified contents of the Rb Register at the output of the Decode Stage.
- 3. Opcode Register passed unmodified from Decode Stage
- Operand Fetch Function Register passed unmodified from, Decode Stage
- Execution Function Register passed unmodified from Decode -Stage

The Jump Register is loaded with the output of the adder in the. Address Add Stage, but is not a pipeline register between the Address Add and Operand Fetch Stages. Rather, it is used to present Jump Addresses to the Prefetch Stage via the Prefetch Bus.

The signal ADD_STALL is input to the Decode Stage to inhibit the loading of the pipeline registers at the input of the Address Add. Stage.

2.5.3 Operation

This stage includes a 32-bit 3-input adder. The inputs to the adder⁵ are formatted under the control of the Address Add Function Register. This control information results in three operands being input to the ¹ adder each cycle; the output of the adder is loaded into the Jump⁻ Register and the virtual Address Register.

2.5.4 Base Multiplexer

The Base Multiplexer is controlled by the Base Mux Control Field in the Address Add Function Register, and the Base Register bypass logic." The Base Mux Field explicitly selects one of the following values to be presented to the Address Adder:

- 1. Base Register
- 2. Decode PC Register
- 3. Write Bus
- 4. 0

Additionally, when the Base Register is specified as the source and the BASE_VALID indication is not set, the bypass logic monitors the Write Bus for a write to the address specified in the Rb Register. When this address is detected, the data is routed directly through the Write Bus input to the Address Adder.

Note that to facilitate partitioning, the multiplexing between the Base Register and the DPC Register is done using a tri-state bus called the Base Bus.

2.5.5 Index Multiplexer

The Index Multiplexer provides the capability to shift the Index. Register or Write Bus by 0, 1, 2, 3, or 4. The Write Bus is never explicitly selected, but is used by the Ri bypassing logic when necessary. The output of this mux may also be forced to zero. The Index Mux Control Field of the Address Add Function Register controls.

2.5.6 Address Adder

The Address Adder is a 3-input adder which produces 32-bit results. The three inputs are:

- 1. Base Mux <31:0>
- 2. Displacement Register <31:0>
- 3. Index Mux <31:0>

The adder always performs a three input add, and its output is loaded into the Virtual Address Register and Jump Register every cycle. Bypassing is accomplished by specifying that the appropriate input mux(s) supply zero.

The Address Adder is implemented in 3 identical Gate Arrays. The low-order 16 bits of the three-input add are accomplished in one gate, array, and the add of the high-order 16 bits is done in each of the other two gate arrays, one with carry-in hard-wired low, the other with carry-in hard-wired high. The carry-out from the low-order portion of the operation determines which of the high-order results will be used.

The Address Adder Gate Arrays include the Index and Base Muxes described above, and the corresponding register bypassing logic.

2.5.7 VAR Multiplexer

The VAR Multiplexer presents a virtual address to the Virtual Address (VAR) Register from one of three possible sources:

- 1. Address Adder
 - 2. Virtual Address Adder
 - 3. Write Bus via Deskew Latch

The Virtual Address Adder provides the capability to add 4 or 8 to the contents of the VAR under the control of the Operand Fetch state sequencer or Execution Unit microcode. The Write Bus is selected as the source under Execution Unit microcode control.

2.5.8 Virtual Address Register

The Virtual Address Register (VAR) is loaded from the VAR Multiplexer. The output of the VAR is presented to the Data TB and Cache structure . for accessing memory operands, and is one of the inputs to the Bypass Multiplexer.

2.5.9 Register Number Incrementer And Register

The 4-bit Register Number Register is loaded from the Rb Register at the output of the Decode Stage. The contents of this register may be incremented by one under the control of the Operand Fetch state machine.

2.5.10 Jump Register

The 32-bit Jump Register is loaded directly from the Address Adder. It is used to present VIPCs via the Prefetch Bus for JMP and JSB instructions that are not absolute or PC-relative.

A TRADATION

/* Other cases TBS */

2.6 OPERAND FETCH STAGE

This stage performs three major functions:

- 1. Accesses the data TB and Cache structure for operand data;
- Presents operands to the Execution Stage based on the operand size and specifier position, and assigns corresponding operand pointers;
- Presents a dispatch address to the main control store based on the specifier (for specifier completion) or opcode.

. 2.6.1 Inputs

The following pipeline registers described in the previous section are: inputs to the Operand Fetch Stage; associated with these pipeline registers is the signal ADD_VALID, which indicates that all of these registers contain valid data.

1. Virtual Address Register

2. Register Number Register

3. Opcode Register

4. Operand Fetch Function Register

5. Execution Function Register

2.6.2 Outputs

The following pipeline registers are input to the Execution Stage; associated with these registers is the signal FETCH_VALID, which indicates that these registers contain valid data.

Page 2-30 05 Dec 84

- 1. Memory Address Register
- 2. Bypass Register
- 3. Memory Data Register
- 4. Rotator Control Register
- 5. Pointer Registers
 - 1. Sourcel
 - 2. Source2
 - 3. Destination
 - 4. Operand Write
- Microword Register (contents supplied by Operand Fetch Stage if based on specifier or opcode; otherwise supplied by: Execution Stage).

The signal FETCH_STALL is input to the Address Add Stage to inhibit the loading of the pipeline registers at the input of the Operand Fetch Stage.

2.6.3 Data Manipulation

The output of the 3-input Adder in the Address Add Stage is passed to the Operand Fetch Stage via the Virtual Address Register. The Operand Fetch Stage uperates on the contents of this register to:

- Access the TB to produce a physical address; this address, may be used to access the data cache for data or may be passed directly to the Address FIFO; or
- Access the cache or (on a cache miss) main memory for memory data which is loaded into the Memory Data Register; or
- Pass the contents of the Virtual Address Register directly to the Bypass Register or Address FIFO.

2.6.4 Bypass Multiplexer

The two-to-one Bypass Multiplexer provides a path for operands around the data TB and Cache structures. Its inputs are the Virtual Address Register and the Physical Address Register. Its output is input to both the Bypass Register and the Address FIFO. Operand Data is passed via this multiplexer from the Virtual Address Register to the Bypass Register, and virtual and physical addresses may be loaded into the Address FIFO via this mux.

2.6.5 Bypass Register

The 32-bit Bypass Register is loaded from the Bypass Multiplexer. It is one of the three possible sources for the Operand Bus, and is used to pass virtual and physical addresses, as well as operand data from the Address Add Stage, to the Execution Unit.

2.6.6 Address Buffers

The Address Buffers are organized as a 32-bit-wide FIFO which may be, read and written every cycle. There are 8 buffers which may be read during the first half of the cycle for presentation to the Physical-Address Register or the Execution Unit, and which may be loaded during the second half of the cycle from the Bypass Multiplexer. The output may be used to drive the DCache Address Bus when accessing cache, or may be presented to the main ALU for manipulation via the Address Register and Operand Bus. Reads are under the control of the. Execution Unit microcode.

2.6.7 Memory Address Register

The Memory Address Register is loaded from the top of the Address FIFO. This Register is used to pass virtual and physical addresses to the Execution unit via the Operand Bus under Execution microcode control.

2.6.8 Data Translation Buffer

The Data Translation Buffer (DTB) consists of 256 entries, 128 for system space and 128 for process space, and is implemented with two Frigate TB/Cache Chips. The organization is fully associative, with least-recently-used replacement. VAR <31:9> are presented to the DTB during the first half of the cycle, yielding the corresponding PTE. During the second half of the cycle, access validity is checked while PFN <20:0> are presented to the Data Cache via the Physical Address

Page 2-32 05 Dec 84

4. . . .

and the second second

Register.

2.6.9 Physical Address Register

The Physical Address Register (PAR) captures the physical address to be presented to the Data Cache twice every cycle. The input to the PAR is the DCache Address Bus, which may be sourced by DTB|VAR<8:0>, the Write Bus via a deskew latch, or the top of the Address FIFO.

2.6.10 Data Cache

The Data Cache is organized as 64 bits wide (+parity) by 512 locations deep (4 KB), and is implemented utilizing 8 Frigate TB/Cache chips. It is fully associative, with least-recently-used replacement. The Data Cache implements the write-back scheme being used in Firefly at-SRC. This includes implementing two additional status bits, the Modified bit and the Shared bit. The Modified bit indicates that a cache line has been written locally, while the shared bit indicates that another processor also has this line cached, such that any writes to this line must be broadcast on the FSB.

To facilitate pipelining, Write-in-Progress bits are associated with each 64-bit cache line. These bits are set as the result of a modify or write specifier access type during the pipeline read cycle. They are cleared when the cache line is written, or may be cleared as a group when flushing the pipeline.

Writes and the clearing of WIP bits occur during the first half of the cycle, and reads and the setting of WIP bits occur during the second half of the cycle.

2.6.11 Memory Data Register

The Memory Data Register is 64-bits wide. Its input is the DCache. Data Bus, and its output goes to the Output Rotators, which source the Operand Bus.

2.6.12 Rotator Control Register

The Rotator Control Register is input to the Output Rotators to -specify the extraction of a 32-bit quantity from the 64-bit Memory-Data Register in the next cycle.

2.6.13 Dispatch Control Logic

The Dispatch Control Logic manipulates the Pointer FIFOs and controls the generation of the specifier and opcode dispatch microwords. Inputs to this logic include the Operand Fetch Function Register, Opcode Register, and Register Number Register. This logic manipulates the three Pointer FIFOs, and generates the addresses to be loaded into, them. Additionally, this logic generates the dispatch address to potentially be used to supply the dispatch microword at the end of the cycle, either directly to handle specifier completion, or indirectly via the opcode.

2.6.14 Dispatch FIFOs

The Dispatch FIFOs include a command FIFO, which buffers the Opcode Register (and any other relevant control information), and the Operand' Pointer FIFOs, of which there are three. The Operand Pointer FIFOs are loaded under the control of the Dispatch Control Logic with the address of the GPR or Operand Buffer into which the operand data is to be placed, or with an indication that an address has been loaded into the Address FIFO. Each of these pointer FIFO's are eight bits wide (5 address bits and 3 status bits) and 16-deep; they are identified asfollows:

- Sourcel Pointer FIFO used to address the Sourcel Operand Buffer, or the Sourcel copy of the GPRs. Pointers to source specifiers which appear in positions 1,3 and 5 in the instruction are loaded into the Sourcel Pointer FIFO. It is, one of two sources for Sourcel read addresses, and as such its output goes to the Sourcel Pointer Multiplexer.
- Source2 Pointer FIFO used to address the Source2 Operand. Buffer, or the Source2 copy of the GPRs. Pointers to source specifiers which appear in positions 2, 4 and 6 in the instruction are loaded into the Source2 Pointer FIFO. It is one of two sources for Source2 read addresses, and as such its output goes to the Source2 Pointer Multiplexer.
- 3. Destination Pointer FIFO used to specify a read from the Address FIFO, or to supply a register number as a write, destination. It specifies the location(s) to be written by: the corresponding instruction, and thus may contain either a GPR number or an indication that the write is to memory, such that the address at the top of the Address FIFO should be read. Its output goes to the Destination Pointer.

The Address FIFO is loaded during the Operand Fetch Stage at the same f time as the Address FIFO bit is set in the Destination Pointer FIFO. The Operand Buffers, however, are loaded in the next cycle over the f Operand Bus from either the Bypass Register or the Memory Data -Register (via the rotators) at the address specified in the Operand

Write Pointer Register. There is also a bypass mechanism implemented which allows either of these outputs (including rotated memory data) to be used by the Execution Unit in this cycle.

The Operand Fetch Stage handles specifiers which require more than one cycle to produce the requested specifier data (except for quadword and octaword immediates). Logic in this stage interprets size, access mode, and specifier position in the instruction to supply operands via the Operand Buffers and Pointer FIFOs symmetrically to the Execution Unit. This logic also guarantees that all entries in the Pointer FIFOs and Operand Buffers for a particular specifier go into the same set of FIFOs and Buffers.

2.6.15 Sourcel Pointer Multiplexer And Register

The Sourcel Pointer Multiplexer specifies the Sourcel Read Address used to access the Register File or Temporary Registers in the execution stage. It is 7 bits wide and selects the next address to be loaded into the Sourcel Pointer Register from one of two sources:

- Sourcel Pointer FIFO (5 bits) indirect read of GPR or Sourcel Operand Buffer
- Sourcel Field of Microword Bus (7 bits) explicit read of Register File or Temporary Register under microcode control

2.6.16 Source2 Pointer Multiplexer And Register

The Source2 Pointer Multiplexer specifies the Source2 Read Address used to access the register file in the execution stage. It is 6 bits . wide and selects the next address to be loaded into the Source2 Pointer Register from one of two sources:

- Source2 Pointer FIFO (5 bits) indirect read of GPR or Source2 Operand Buffer
- Source2 Field of Microword Bus (6 bits) explicit read of Register File under microcode control

2.6.17 Destination Pointer Multiplexer And Register

The Destination Pointer Multiplexer is used to specify the address to. be written. It is 8 bits wide and selects the next address to be loaded into the Destination Register from one of two sources:

- Destination Pointer FIFO (5 bits) indirect write of GPR, or write to memory at address at top of Address FIFO
- Destination Field of Microword Bus (8 bits) explicit write of any Write Bus destination under microcode control

2.6.18 Operand Write Pointer Register

This 4-bit-wide register contains the address of the next Operand-Buffer to be written; that is, the address of the next available entry in the Operand Buffer FIFO. It is supplied from the Dispatch Control Logic.

2.6.19 Dispatch Microwords

The Dispatch Microword is the first microword to be-executed in response to a new instruction, or when execution intervention is required to supply the required operand(s). A bit in the previous microword enables dispatch; this causes the next microaddress to be supplied to the main control store from. the dispatch logic. This microaddress is a function of the opcode or a specifier associated with the opcode, determined by whether the operands associated with a particular instruction were supplied by the preceding stages in the pipeline (ie: without the help of the execution unit). Execution unit intervention occurs as a function of the specifier mode (ie: autoincrement mode) or because of an error which occurred in a preceding pipeline stage while attempting to process this specifier.

In some cases, exceptional conditions occur in the Operand Fetch Stage too late to affect the dispatch microaddress. These cases trap the microsequencer and generate the appropriate microword directly via hard-wired logic.

2.6.20 Microward Bus

The Microword Bus supplies the next microword to be loaded into the Microword Register and the Pointer Registers. Most often, the microword comes from the main control store PROM/RAM structure; in dispatch cases, portions of the microword come from the Pointer FIFOsor hard-wired logic.

2.6.21 Microword Register

Defined in Execution Unit Section.

2.6.22 Operand Fetch Stage Sequencer

The Operand Fetch Stage includes an n-bit finite state sequencer to handle multiple cycle accesses, such as octaword reads from cache.

2.7 EXECUTION STAGE

The Execution Stage operates on up to two 32-bit operands per cycle to produce a 32-bit result. It is micro-program controlled. Majorfunctional units include the ALU, main control store, main microsequencer, the Register File (which include Operand Buffers, copies of the GPRs, and working registers), a set of Temporary Registers, and a Register Log. Results are presented on the Write Bus via the Write Laton; all writes to GPRs and memory are under the control of the Execution Unit.

2.7.1 Inputs

The following pipeline registers described in previous sections are inputs to the Execution Stage; associated with these pipeline, registers is the signal FETCH_VALID, which indicates that all of these registers contain valid data.

- 1. Memory Address Register (top of Address Buffer FIFO)
- 2. Bypass Register
- 3. Memory Data Register
- 4. Rotator Control Register
- 5. Pointer Registers:
 - 1. Sourcel
 - 2. Source2
 - 3. Destination
 - 4. Operand Write

 Microword Register (supplied by Operand Fetch Stage if based on specifier or opcode, otherwise supplied by Execution Stage).

2.7.2 Outputs

The Execution Unit writes results over the 32-bit Write Bus via the Write Bus Latch, which contains valid data from TO to T3.

2.7.3 Data Rotators

The Data Rotators extract a 32-bit quantity from the 64-bit Memory Data Register every cycle, based on the contents of the Rotator Control Register. The output is one of the sources of Operand Bus data.

2.7.4 Operand Bus

The Operand Bus is the medium over which operand data is passed to the Execution Stage. The Operand Bus is an input to both ALU Input Muxes; and supplies data to be written to the Operand Buffers. The Operand Bus may be driven from the Memory Data Register (via the rotators); the Memory Address Register, or the Bypass Register.

2.7.5 ALU

Two 32-bit source operands are supplied to the ALU every cycle via the Source1 and Source2 Input Multiplexers.

A 32-bit result is input to the Write Latch, and condition codes are captured, at the end of the cycle.

The ALU is controlled directly by the ALU Function Field in the microword. Functions and encoding TBD.

The ALU is implemented using the AMD 29332.

2.7.6 FPU

The FPU structure will provide hardware support for F, D, and G Floating Point instructions. FPU inputs are the 32-bit Sourcel and Source2 Input Muxes; the FPU output will drive the Write Bus via the write Latch under microcode control.

2.7.7 Sourcel Input Mux

The Sourcel Input Mux provides one of the 32-bit source operands to the ALU and FPU every cycle. Sourcel may come from one of four places:

- 1. Register File .
- 2. Temporary Registers
- 3. Write Bus
- 4. Operand Bus

The selects on the mux are controlled by the microword and the output of bypass logic which monitors addresses associated with the Write and Operand Buses.

2.7.8 Source2 Input Mux

The Source2 Input Mux provides one of the 32-bit source operands to the ALU and FPU every cycle. Source2 may come from one of five places:

- 1. Register File
- 2. Register Log
- 3. State Gate Array
- 4. Operand Bus
- 5. Write Bus

The selects on the mux are controlled by two bits in the microword and the output of bypass logic which monitors addresses associated with the Write and Operand Buses.

2.7.9 Reserved Operand Detection

Reserved operand detection will be done in hardware under the control ' of an enable bit in the microcode. Hardware will monitor the outputs ' of both Source Input Muxes.

Page 2-39 05 Dec 84

200

2.7.10 Register File

The Register File is two-port-readable and two-port-writeable, and is implemented using two AMD 29334 Register File cnips. It is 32 bits wide and 64 entries deep, and can be read and written on both portsevery cycle. Reads occur during the first half of the cycle, and . writes occur during the second half of the cycle.

The Register File includes copies of the GPR's, 32 Working Registers, and 16 Operand Buffers. The Operand Buffers are managed as a FIFO structure by the Dispatch Control Logic. The Operand Write Pointer Register contains the address of the next available entry in this Operand Buffer FIFO structure, into which an operand supplied from the Operand Fetch Stage via the Operand Bus may be written every cycle. This address is also maintained in the appropriate Pointer FIFO, so that this location (ie: the top of the FIFO) may be indirectly read by the microcode when the time comes.

The other write port is under the control of the execution microcode. The address is supplied from the Destination Pointer Register, and the data is supplied from the Write Bus via a deskew latch.

The two read ports are inputs to the two Source Input Muxes, and are addressed by the Sourcel and Source2 Pointer Registers.

2.7.11 Temporary Registers

The Temporary Register File consists of 64 32-bit entries, addressed by the Sourcel Pointer Register. This register file is one of the inputs to the Sourcel Input Mux. Write data is supplied from the. Write Bus.

2.7.12 Register Log

The Register Log is a LIFO structure which is used to capture register contents for backup. It is 36 bits wide and 7 entries deep.

2.7.13 State Gate Array

The State Gate Array contains miscellaneous logic and state information which may be input to the ALU data path.

Page 2-40 05 Dec 84

2.7.14 Control Store

The Control Store is 8K deep and 96 bits wide. Initialization microcode will be implemented in PROM; the remainder of the control store will be implemented in RAM, and will be loadable under the control of the console subsystem.

Microword encoding TBS.

2.7.15 Microsequencer

The microsequencer controls the generation of microaddresses which are used to select the next microword from the control store. The functions provided are:

- 1. Jump to address
- 2. Jump to subroutine
- 3. Branch
- 4. CASE
- 5. Return from subroutine

A 13-bit address is specified for all microinstructions except return. Branch instructions go to either the specified target address or to the current address plus one. Case instructions go to the specified address with hardware conditions logically OR'ed into the low 4 bits.

The microaddress may also come from either the instruction/specifierdecode logic, or from the microtrap logic for certain late-occuring error conditions.

2.7.16 Write Bus

The Write Bus is driven by the Write Latch, and is valid from, approximately T0+15 to T3. It is driven by the Write Bus Latch. This is the main write path in the CPU, and is distributed to all stages in the machine. Thus, it generally needs to be received by a deskew latch. In particular, the Write Bus goes to:

- the Prefetch Stage for ITB manipulation and to supply branch² addresses
- 2. the Decode Stage for GPR writes

- 3. the Address Adder in the Address Add Stage
- the Operand Fetch Stage to update the TB, and to supply write data to the cache and main memory

2.8 FSB PORT

The Frigate System Bus (FSB) Port is the interface between the 64-bit Internal Bus in the Frigate CPU, and the 64-bit FSB. The port includes input and output buffers, and port control logic.

VAX/VMS VAX/VMS VAX/VMS	SUPNIK SUPNIK SUPNIK	CP CP CP	5-DEC-19 5-DEC-19 5-DEC-19	984 14:21 984 14:21 984 14:21	LPAO: LPAO: LPAO:	5-DEC-1984 5-DEC-1984 5-DEC-1984	15:00 15:00 15:00	UVWDS: [SUPNIK.FRIGATE]CP.RNO;15 UVWDS: [SUPNIK.FRIGATE]CP.RNO;15 UVWDS: [SUPNIK.FRIGATE]CP.RNO;15	VAX/VMS VAX/VMS VAX/VMS
VAX/VMS VAX/VMS VAX/VMS	SUPNIK SUPNIK SUPNIK	CP CP CP	5-DEC-19 5-DEC-19 5-DEC-19	984 14:21 984 14:21 984 14:21	LPA0: LPA0: LPA0:	5-DEC-1984 5-DEC-1984 5-DEC-1984	15:00 15:00 15:00	UVWDS: [SUPNIK.FRIGATE]CP.RNO;15 UVWDS: [SUPNIK.FRIGATE]CP.RNO;15 UVWDS: [SUPNIK.FRIGATE]CP.RNO;15	VAX/VMS VAX/VMS VAX/VMS
	cccccc	PPPPPPPP PP PP	SSSS U S U SSS U SSS U SSSS UU SSSS UU	U PPPP U P I U PPPP U P U P U P	N N N N N N N N N N N N N N	III K I K I K I K III K	K K K K K K K K	No TPI 247, Jour The # 70ns Low-cro gjorn = 725 cm Hit and gorn = Muni Hit and gorn = Muni Opmmizer Realistic	3 us ans L-MUDE DOSTINATIONS
	cccccc	PP PP PP PP							
RRRR RRR RR RR RR RR RR RR RR RR RR RR	RRRR RRRR RR RRRR RRRR RR RR RR RR RR R	NN P NN P NN P NNN P NNNN P NN NN P NN NN P NN NN P NN NN P NN P NN P	VN 0000 VN 00 VN 0		1 1	11 111 1111 1111 111 11 11 11 1	55555 55 55 55555 55555 55555 55 55 55	55555 55555 55 55 55 55 55 55 55 55 55	
			SSSS U S U S U SSS U SSS U S U S U SSS U S U S U S U S U S U	U PPPP U P U P U P U P U P U P	N N P N N P NN N N N N N N N N N N	I III K I I K I I K I I K I I K I I K	K K K K K K		
VAX/VMS VAX/VMS VAX/VMS	SUPNIK SUPNIK SUPNIK	CP CP CP	5-DEC-1 5-DEC-1 5-DEC-1	984 14:21 984 14:21 984 14:21	LPAO: LPAO: LPAO:	5-DEC-1984 5-DEC-1984 5-DEC-1984	15:00 15:00 15:00	UVWDs:[SUPNIK.FRIGATE]CP.RNO;15 UVWDs:[SUPNIK.FRIGATE]CP.RNO;15 UVWDs:[SUPNIK.FRIGATE]CP.RNO;15	VAX/VMS VAX/VMS VAX/VMS

.

0

Summary of three alternative cache organizations:

>>> Calculated I-stream and data stream effective access times

The following calculations utilize data obtained from cache simulations to estimate the effective access times for I-stream and data accesses. I-stream accesses are broken into cache hits and misses, and the effective I-stream access time is calculated as the weighted average of these two cases. Since the data cache is write-back, data cache accesses are a weighted average of:

- 1) read and write cache hits
- 2) read and write misses that cause cache fills to occur, and
- 3) data writebacks and writes of unwritten modified cache lines.

Finally, from the actual system memory demand thus calculated, and an estimated instruction execution rate, bus demand is calculated as system memory demand divided by elasped time.

Assumptions:

a)	read time	=	500	nsec
b)	write time (writeback)	=	400	nsec
c)	cache hit read cost	=	100	nsec
d)	cache hit write cost	=	100	nsec
e)	instruction execution time	=	400	nsec

The following hit rate and writeback data taken from EPASMM.LOG, a complete trace of the EPASCAL compiler compiling a simple program. Of all of the benchmark programs input to the cache simulator program, this seems to be most representative of a large system programs, and proved to be the most taxing in terms cache performance.

116,843

Overall statistics:

total	number	of	instructions		455,914
total	number	of	reads		540,148
	I-st:	real	m reads	309,439	
	data	rea	ads	230,709	

total number of writes

Analysis:

```
Cost of I-stream reads =
```

(I-stream hit rate * 100 nsec) + (I-stream miss rate * 500 nsec) = Average I-stream Read Time

```
Cost of data reads and writes =
```

{ ((read data hits + write data hits) * 100 nsec) +

```
((read data misses + write cache fills) * 500 nsec) +
```

```
((data writebacks + unwritten modified cache lines) * 400 nsec) }
  / (total number of data reads + total number of data writes) = Average Data Cache Access Time
 Bus Demand =
 -----
 { (read data misses + write cache fills) * fill size +
      (data writebacks + unwritten, modified cache lines) * cache line size }
      divided by (elapsed time)
     = bus demand in bytes / second
Case 1 -- 4k byte, fully associative, LRU cache
    I-stream hit rate = 96.5%
      data hit rate
                        = 95.9%
      write cache fills = 4037
      unwritten modify lines = 4073
for I-stream: (cache model assumes straight 8-byte I buffer)
 0.965 * 100 nsec + (1 = 0.965) * 500 nsec
  = 114 nsec effective I-stream read access time
    for data reads and writes:
Average Data Cache Access Time =
 { (231k * 0.959 + 117k = (7351 + 4073)) * 100 + (231k * 0.041 + 4037) * 500 + (7351 + 4073) * 400 }
        (231k + 117k)
 = 127 nsec Average Data Cache Access Time
   Bus Demand = \{(231k * 0.041 + 4037) * 16 + (7351 + 4073) * 8 \} /
             (455,914 instr. * 400 nsec / instr.)
         = 1.69 Mb / sec
           -----------
CASE 2 == 32 kbyte direct map cache
  I-stream hit rate = 97.0%
read data hit rate = 96.0%
      data writebacks
                        = 2710
                         = 3988
      write cache fills
      unwritten modify lines = 8616
```

for I-stream: (cache model assumes straight 8-byte I buffer)

0.97 * 100 nsec + (1 = 0.97) * 500 nsec

= 112 nsec effective I-stream read time

for data reads and writes:

Average Data Cache Access Time =

```
{ (231k * 0.960 + 117k - (2710 + 8616)) * 100 + ((231k * 0.040) + 3988) * 500 + (2710 + 8616) * 400 }
```

= 126 nsec Average Data Cache Access Time

Bus Demand = { (231k * 0.040 + 3988) * 16 + (2710 + 8616) * 8 } / (455,914 instr. * 400 nsec / instr.)

= 1.66 Mb / sec

```
CASE 3 -- 16 kbyte 2-way Set-Associative cache
```

I=stream hit rate = 97.1% read data hit rate = 96.2%

```
data writebacks = 2728
write cache fills = 3790
unwritten modify lines = 8130
```

for I-stream: (cache model assumes straight 8-byte I buffer)

0.971 * 100 nsec + (1 = 0.971) * 500 nsec

= 111.6 nsec Average I-stream Read Access Time

```
for data reads and writes:
```

Average Data Cache Access Time =

```
{ (231k * 0.962 + 117k = (2728 + 8130)) * 100 + (231k * 0.038 + 3790) * 500 + (2728 + 8130) * 400 }
```

= 125 nsec Average Data Cache Access Time

```
Bus Demand = { (231k * 0.038 + 3790) * 16 + (2728 + 8130) * 8 } / (455,914 instr. * 400 nsec / instr.)
```

= 1.58 Mb / sec

Cache Performance Summary

Cache	I-stream Read	Data Read/Write	Bus Demand	Packages	Board Space	Power
4kb FALRU	114.0 nsec	127 nsec	1.69 Mb / sec	32	30.9 sq.in.	20.1 watts
32kb direct map	112.0	126	1.66	122	55.8	41.5
16kb 2=way SA	111.6	125	1.58	224	98.4	70.4

{ end of cache performance summary -- 11/28/84. mist::[butts.deceast]cp.rno }

Custom 4k byte Fully Associative, LRU Data TB/cache

1) Data Cache TB -----------

a) Description

- 1) 128 fully associative, least recently used (FALRU) system entries, 128 FALRU process entries
- 2) single cycle clear of either system or process entries
- 3) full internal byte parity

b) Parts Count, Board Space, and Power Estimates

Virtual Address Register TB FALRU chips	74F374	4 20 pin 2 100 pin LCC	2.0 sq.in. 4.0	1.38 watts 2.00
Physical Address Register	74F374	4 20	2.0	1.38
Hit Burrer	74F244	1 20	V.5	0.37
		11 packages	8.5 sq.in.	5.13 watts

c) Timing

	0.0 nsec	VA available at input to virtual address register
	8.0	VA available at output of virtual address register
	8.0	VA available at TB FALRU chips
**	33.0	Data available at output of FALRU chips

	0.0 nsec	VA available at input to virtual address register
	8.0	VA available at output of virtual address register
	8.0	VA available at TB FALRU chips
	33.0	Data available at output of FALRU chips
*	40.0	Hit indication available at output of hit buffer

	0.0 nsec	VA available at input to virtual address register
	8.0	VA available at output of virtual address register
	8.0	VA available at TB FALRU chips
	33.0	Tag, data, and hit indication available at output of FALRU chips
**	41.0	PTE available at output of physical address register

parity indication available tbs

2) Data Cache

a) Description

- 1) 4k bytes fully associative, least recently used
 - 2) 64 bit cache lines
 - 3) fill size is 128 bits
 - 4) writeback
- 5) control bits = valid, modified, shared, and WIP
- b) control bits = valid, modified, shared, and WIP
 6) direct clear on WIP bits, all others must be cleared via explicit writes

b) Parts Count, Board Space, and Power Estimates

Physical Address Buffer	74F244	4 20	2.0	1.47
FALRU Chip selector	74F139	1 16	0.4	0.08
FALRU data cache chips	XXXXX	8 100 pin LCC	16.0	12.00
Memory Data Register	74F374	8 20	4.0	1.38

21 packages	22.4 sq.in.	14.93 watts

c) Timing physical address (PA) available at output of PA register 41.0 PA available at output of PA buffers 48.0 PA at data cache address bus 52.0 PA at data cache FALRU chips 55.0 Data and hit indication available at output of data cache FALRU chips 80.0 physical address (PA) available at output of PA register 41.0 PA available at output of PA buffers 48.0 52.0 PA at data cache address bus 55.0 PA at data cache FALRU chips Data and hit indication available at output of data cache FALRU chips 80.0 Hit indication available at output of hit buffer 87.0 physical address (PA) available at output of PA register 41.0 PA available at output of PA buffers 48.0 52.0 PA at data cache address bus PA at data cache FALRU chips 55.0 Tag, data, and hit indication available at output of data cache FALRU chips 80.0 88.0 data available at output of memory data latch

end of custom 4k FALRU cache, 11/29/84

MIST:: [butts.cache]falruCc.rno }

Frigate TB/cache Chip -- Description of Operation

The fully associative, least-recently-used (FALRU) Frigate TB/cache chip is intended to be a fast, general purpose, integrated cache building block for use in the Frigate processor. The design incorporates features that allow it to be used in the instruction and data cache translation buffers, and in the instruction and data caches. The 128 entry by 32 bit design incorporates single cycle direct clear, support for locking of cache locations (as required for use in a pipelined processor), and logic for the support of a writeback cache scheme. The replacement algorithm is true least recently used (LRU).

This particular design has evolved from a discussion of cache organizations found in Peter Kogge's book "The Architecture of Pipelined Computers," pages 260-262. Kogge suggests that a FIFO-like scheme. altered to recirculate the most recently used cache entry to the top of the FIFO, can be used to implement the least-recently-used replacement algorithm in hardware. New entries are written to the top of the FIFO, with all other entries being forced down one location. If the FIFO is full, the oldest entry is forced out the bottom and lost. This design emulates the FIFO with a shift register-like organization, in which each shift register location holds a cache entry's address tag, valid and other status bits, and data.

Each entry has a comparator, which compares the presented address with the stored address tag. Comparison of the presented address with the address tag of each cache entry proceeds simultaneously. When a hit occurs, the data of the matching entry is enabled onto the common data bus, and transmitted by output drivers to the external data pins. The matching data is also presented via the common data bus as input to the top location of the entry shift register. The hit indication is used to enable the matching entry and all entries above the matching entry to shift when the clock arrives, thus shifting the matching entry into the top location and all successive entries down to the matching entry, down by one shift register location.

Since the address tag can be re-created from the matching address, and the valid bit can be re-marked as valid, there is no need to include additional bus structures to recirculate the matching entry's tag and valid bit to the top of the shift register. Defining the valid bit of the top entry from an external pin also allows an entry to be marked invalid, thereby giving a mechanism for invalidating single TB entries. While this has the undesirable feature of causing a 'dead' entry to exist within the TB until it finally is shifted out the bottom. It costs no additional logic, and with a reasonably sized TB, results in a negligible performance loss.

Fully Associative Chip -- Description of Operation

Writes are done by asserting the write data on the common data bus, the corresponding address on the FALRU cache chip address pins, and asserting the valid bit on the valid in pin. Write enable is ORed with the hit indication from the bottom ('oldest') entry, causing all the entries of the shift register to shift with the rising clock edge. The new data is written into the top entry, all intermediate entries are shifted down one entry, and, if the chip is full, the oldest entry is lost.

The addition of a second single cycle direct clear status bit, the write-in-progress (WIP) bit, along with the means to read and write this bit upon a cache hit, gives the FALRU chip a mechanism for marking a cache location as having a pending write. This hardware simplifies the management of a pipelined processor's accesses to cache, and allows stalling the processor only in cases where a write to cache is pending and a successive instruction in the pipeline attempts to access the same memory location. The ability to independently clear all WIP bits in a single cycle prevents this feature from becoming a performance bottleneck during pipeline flushes.

Two additional status bits, along with a final register to buffer entries being lost out the bottom of the shift register, allow the operation of the FALRU cache chip in a writeback cache mode. The first status bit is used to mark a modified cache entry as needing eventual writeback to system memory. The second bit marks a cache entry as being shared between two or more caches in the system, and as needing to have any modifications of this location broadcast to the entire system. These two status bits are treated as two additional data bits, and must be initialized by the processor before cache operation is begun. An OR-AND structure on the input of each of these bits allows either bit to be reset upon a cache entry write, simply recirculated with its current value, or set upon a hit. Only the shared bit is available externally, as the state of the modified bit is reflected by the state of the writeback flag.

When an entry is shifted out of the shift register into the lost entry buffer, its valid and modify bits are ANDed together to create an external writeback flag. If the entry is both valid and modified, the writeback flag is asserted, and the lost entry address tag and data must be read from the FALRU cache chip before any successive cache chip writes are allowed, else the modified data will be lost. Two additional external signals exist to allow the reading of the address tag and data from the lost entry buffer.

To provide a means of monitoring the integrity of the operating FALRU cache chip, parity is generated in roughly eight bit groups of the address tag, status bits, and data. This parity is checked upon a hit, or when data is read from
Fully Associative Chip == Description of Operation

the lost entry buffer. A discrepancy in parity is reported externally by a parity error flag signal. A means will be provided to allow the testing of the parity generation and checking logic.

Testing of the FALRU cache chip will involve several phases. Phase I will operate the FALRU cache chip as a shift register only, presenting test patterns designed to test the integrity of each bit of memory in the address tag. Status bits, and data portions of each entry. Phase II will attempt to determine that each entry's comparator is fully functional, and can produce a hit indication and cause the correct data and status to be produced at the data I/O pins. Phase III will confirm the feedback of matching entries to the top of the shift register. A final test will be of a statistical nature. It will put the chip through a sequence of writes and reads, and then read the entire state of the chip and compare it against the correct state. By operating the FALRU cache chip in a non-standard mode, the number of test vectors can be greatly reduced. For example, there is no need to have the chip do the shift re-organization during the comparator test phase.

FALRU cache chips are cascadable in both width and depth to allow the construction of larger caches. To increase the width of a cache entry, chips may be accessed in parallel by addressing several chips with the same address, and routing a slice of the wider cache word to each individual chip. To increase the depth of a cache, the least significant address bits can be used to select which chip or chips routing perform the given operation. This assumes an even distribution of accesses are made to each chip; clearly cases exist where the distribution of data accesses is skewed, such as regularly accessing a data array. The impact of regular accessing upon a multiple FALRU cache chip based system can be estimated by examining the cache performance simulation for a cache of the corresponding smaller size. Thus, the 4k byte Frigate data cache would operate worstcase much like a 1k byte cache, and cache performance simulation data predicts that the data cache hit rate will fall from 96% to 92% under such conditions.

{ MIST::[butts.frigate]falrudes.rno Nov. 29, 1984 hbb }

7-DEC-1984 13:53:14 VAX/VMS Macro VO4-00 7-DEC-1984 13:53:07 OPCODE.MAR;36

Page 1 (1)

	- 0000	1 .title	opcode
	0000	2 .	
	0000	S /	
	0000	4 / Local symbols	
	0000	2.	
0000001	0000	7 hrch = 1	totop decade and branch often everytime
00000001	0000	8 cont = 2	stop decode and pranch after execution
00000002	0000	9 cond = 4	iconditional branch
00000004	0000	10 upcd = 8	iston size and unconditionally beanch
00000010	0000	11 puch = 16	inclied such for unconditional branch
00000070	0000	12 ftch = 32	iston operand forch and continue often every
00000040	0000	13 000 = 64	implied non for return from subrouting
00000080	0000	$14 \ 1000 = 128$: looping instruction - predicted taken
00000100	0000	15 dest = 256	register destintion optimization allowed
00000100	0000	16	register descrittion optimization actored
00000000	0000	17 b = 0	thyte
00000001	0000	18 w = 1	iword
20000000	0000	19 L = 2	longword
00000003	0000	20 a = 3	iquadword
00000004	0000	21 0 = 4	Joctaword
	0000	22	
00000000	0000	23 rd = 0	iread access
00000001	0000	24 wr = 1	iwrite access
00000002	0000	25 md = 2	imodify access (read and write)
00000003	0000	26 ad = 3	;address access
00000004	0000	27 vd = 4	;vield access
00000005	0000	28 bd = 5	;branch displacement
	0000	29	
	0000	30;	
	0000	31 ; This program	defines the opcode data base.
	0000	32;	
	0000	33	
	0000	34 .macro	define name, cycles, access, datatype, flags
	0000	35 n = 0	
	0000	36 .irpc	x, <name></name>
	0000	37 n = n + 1	
	0000	38 .endr	
	0000	39 .ascii	/name/
	0000	40 .rept	6 - n
	0000	41 .ascii	11
	0000	42 .endr	
	0000	43 .byte	cycles
	0000	44 n = 0	
	0000	45 .irp	x, <access></access>
	0000	46 n = n + 1	
	0000	47 .endr	
	0000	48 .byte	n
	0000	49 .irp	x, <access></access>
	0000	50 .byte	×
	0000	si .endr	
	0000	blkb	0 - n
	0000	53 . 1rp	x, <gatatype></gatatype>
	0000	byte	*
	0000	so .endr	
	0000	.blkb	0 - n
	0000	57 n = 0	

Page 2 (1)

0000	58	.irp	x, <flags></flags>
0000	59	n = n ! x	
0000	60	.endr	
0000	61	.word	n
0000	62	.endm	define
0000	63	A LAND I AND A LAND	
0000	64	· · · · · · · · · · · · · · · · · · ·	
0000	65	: Define ancade	data hase
0000	66	:	uata vase
0000	67	the second second	
00000	6.0		Sdata ad unt nie lang anghe nagyo lel con rol
00000000	00	.psect	soatarowrupicrunginosnrinoexertcurconiret
0000	70	opcode::	HALT 10 () () (heal)
0000	70	define	
0010	71	define	
0020	12	detine	
0042	(3	detine	HP1.10.0.00 corch
0058	14	detine (RET SURVICE CORCHE
006E	15	define	RSB,1,<>,<>rchrpop>
0084	16	define	LDPCTX,5U, <>, << cont>
009A	77	define	SVPCTX,50,<>,<>, <cont></cont>
0080	78	define	CVTPS,100, <rd,ad,rd,ad>,<w,b,w,b>,<cont></cont></w,b,w,b></rd,ad,rd,ad>
0006	79	define	CVTSP,100, <rd,ad,rd,ad>,<w,b,w,b>,<cont></cont></w,b,w,b></rd,ad,rd,ad>
OODC	80	define	INDEX,8, <rd,rd,rd,rd,rd,wr>,<l,l,l,l,l,l,l,< dest=""></l,l,l,l,l,l,l,<></rd,rd,rd,rd,rd,wr>
00F2	81	define	CRC,100, <ad,rd,rd,ad>,<bil,w,b>,<cont></cont></bil,w,b></ad,rd,rd,ad>
0108	82	define	PROBER, 10, <rd, ad="" rd,="">, <b, b="" w,="">, <dest></dest></b,></rd,>
011E	83	define	PROBEW,10, <rd,rd,ad>,<b,w,b>,<dest></dest></b,w,b></rd,rd,ad>
0134	84	define	INSQUE, 15, <ad, ad="">, <b, b="">, <ftch></ftch></b,></ad,>
014A	85	define	REMQUE, 15, <ad, wr="">, <b, l="">, <ftch></ftch></b,></ad,>
0160	86	define	BSBB,1, <bd>,,<uncdpush></uncdpush></bd>
0176	87	define	BRB,1, <bd>,,<uncd></uncd></bd>
0180	88	define	BNEQ,1, <bd>,,<cond></cond></bd>
01A2	89	define	BEQL,1, <bd>,,<cond></cond></bd>
0188	90	define	BGTR,1, <bd>,,<cond></cond></bd>
O1CE	91	define	BLEQ,1, <bd>,,<cond></cond></bd>
01E4	92	define	JSB,1, <ad>,,<uncd,push></uncd,push></ad>
01FA	93	define	JMP,1, <ad>,,<uncd></uncd></ad>
0210	94	define	86EQ,1, <bd>,,<cond></cond></bd>
0226	95	define	BLSS,1, <bd>,,<cond></cond></bd>
0230	96	define	BGTRU,1, <bd>,,<cond></cond></bd>
0252	97	define	BLEQU,1, <bd>,,<cond></cond></bd>
0268	98	define	BVC,1, <bd>,,<cond></cond></bd>
027E	99	define	BVS,1, <bd>,,<cond></cond></bd>
0294	100	define	BGEQU,1, <bd>,,<cond></cond></bd>
. OZAA	101	define	BLSSU,1, <bd>,,<cond></cond></bd>
0200	102	define	ADDP4,100, <rd,ad,rd,ad>,<w,b,w,b>,<cont></cont></w,b,w,b></rd,ad,rd,ad>
0206	103	define	ADDP6,100, <rd,ad,rd,ad,rd,ad>,<w,b,w,b,w,b>,<cont></cont></w,b,w,b,w,b></rd,ad,rd,ad,rd,ad>
02EC	104	define	SUBP4,100, <rd, ad="" ad,="" rd,="">, <w, b="" b,="" w,="">, <cont></cont></w,></rd,>
0302	105	define	SUBP6,100, <rd, ad="" ad,="" rd,="">, <w, b="" b,="" w,="">, <cont></cont></w,></rd,>
0318	106	define	CVTPT, 100, <rd, ad="" ad,="" rd,="">, <w, b="" b,="" w,="">, <cont></cont></w,></rd,>
032E	107	define	MULP,100, <rd,ad,rd,ad,rd ad="">,<w,b,w,b,w,b>,<cont></cont></w,b,w,b,w,b></rd,ad,rd,ad,rd>
0344	108	define	CVTTP, 100, <rd, ad="" ad,="" rd,="">, <w, b="" b,="" w,="">, <cont></cont></w,></rd,>
0354	100	define	DIVP, 100, <rd, ad="" ad,="" rd,=""> <w, b="" b,="" w,=""> <cont></cont></w,></rd,>
0370	110	define	MOVC3. 100 (rd, ad, ad) (w, h, h) (cont)
0386	111	doffino	(MPC3-100. (rd, ad, ad) (w, h, h) (cont)
0300	112	define	SCANC, 100, Scd, ad, ad, rd>, (u, h, h, h), (cont)
0302	117	define	SPANC-100-Srd-ad-ad-rd>-cu-h-h-h-b-scont>
0302	11/	dofie	MOVES (100) Sedeaderderdead - (web-beweb) (cont)
0500	114	uerine	

7-DEC-1984 13:53:14 VAX/VMS Macro V04-00 Page 3 7-DEC-1984 13:53:07 OPCODE.MAR;36 (1) 7-DEC-1984 13:53:14 VAX/VMS Macro V04-00

OJDE	115	define	CMPC5,100, <rd, ad="" ad,="" rd,="">, <w, b="" b,="" w,="">, <cont></cont></w,></rd,>
03F4	116	define	MOVTC, 100, <rd, ad="" ad,="" rd,="">, <w, b="" b,="" w,="">, <cont></cont></w,></rd,>
040A	117	define	MOVTUC,100, <rd,ad,rd,ad,rd,ad>,<w,b,b,b,w,b>,<cont></cont></w,b,b,b,w,b></rd,ad,rd,ad,rd,ad>
0420	118	define	BSBW,1, <bd>,<w>,<uncd,push></uncd,push></w></bd>
0436	119	define	BRW,1, <bd>,<w>,<uncd></uncd></w></bd>
0440	120	define	CVTWL,1, <rd,wr>,<w,l>,<dest></dest></w,l></rd,wr>
0462	121	define	CVTWB,1, <rd,wr>,<w,b>,<dest></dest></w,b></rd,wr>
0478	122	define	MOVP,100, <rd,ad,ad>,<w,b,b>,<cont></cont></w,b,b></rd,ad,ad>
048E	123	define	CMPP3,100, <rd, ad="" ad,="">, <w, b="" b,="">, <cont></cont></w,></rd,>
0444	124	define	CVTPL, 100, <rd, ad,="" wr="">, <w, b,="" l="">, <cont></cont></w,></rd,>
04BA	125	define	CMPP4,100, <rd, ad="" ad,="" rd,="">, <w,b,w,b>, <cont></cont></w,b,w,b></rd,>
0400	126	define	EDITPC, 100, <rd, ad="" ad,="">, <w, b="" b,="">, <cont></cont></w,></rd,>
04F6	127	define	MATCHC, 100, <rd, ad="" ad,="" rd,="">, <w, b="" b,="" w,="">, <cont></cont></w,></rd,>
04EC	128	define	LOCC, 100, <rd, ad="" rd,="">, <h, h="" w,="">, <cont></cont></h,></rd,>
0512	129	define	SKPC+100+(rd+rd+ad>+(h+w+h>+(cont))
- 0528	130	define	MOV7WL,1, (rd, wr), (w,1), (dest)
0536	131	define	ACBW-3-(rd-rd-hd)-(u-u-u-u)-(loop)
0554	132	define	MOVAW-1-Cad-wr2-Cu-12-Cdest2
0564	132	define	PIISHAW, 1, (ad), (w), (nuch)
0580	134	define	ADDE2-2-Ced-md>-Clall-Cdaet>
0596	135	define	ADDE3.2. (nd. nd. un) (1.1.1.) (doct)
0540	135	define	SUBE2.2. (nd. nd) (1 -1) (doct)
0502	130	define	SUB53-2-Codeodeury-Clalatery
DEDE	170	define	MUL 52 7 And md AL IN Adapts
0506	130	define	MULFZ/J/(FG/MG//(////dest/
OfOL	1/0	define	DIVE2 13 and and a land and and and a land and a land and a land and a land a l
0604	140	define	DIVEZ 17 And and unit all in advent
0670	141	define	DIVESTORATOR ALL ACCESTS
0630	142	derine	CVTFB/2/CFG/WF//CL/D//Cdest/
0040	143	define	CVTFW/2/Srd/Wr//SL/W/Sdest/
0050	144	derine	CVIFL/2/ <rd ()="" <="" dest="" td="" wr=""></rd>
0072	140	derine	LVIRFL/C/Srd/Wr//SL/L/S/Sdest/
0088	140	detine	LVIBF/2/Srd/Wr//SD/L//Sdest/
0096	147	derine	CVIWF/2/ <rd wr="">/<w l=""></w></rd>
0884	148	derine	(VILF, 2, <rd, wr="">, <(, (), <dest></dest></rd,>
USCA	149	define	ACBF,5, <rd,rd,md,bd>,<l,l,l,w>,<loop}< td=""></loop}<></l,l,l,w></rd,rd,md,bd>
06E0	150	define	MOVF,1, <rd,wr>,<l,l>,<dest></dest></l,l></rd,wr>
UOFO	151	define	CMPF,2/ <rd rd="">/<l l=""></l></rd>
070C	152	define	MNEGF,1, <rd,wr>,<l,l>,<dest></dest></l,l></rd,wr>
0722	153	define	TSTF,1, <rd>,<l></l></rd>
0738	154	define	EMODF, 6, <rd, rd,="" wr="" wr,="">, <l, b,="" l="" l,="">, <cont></cont></l,></rd,>
074E	155	define	POLYF,100, <rd,rd,ad>, <l,w,b>, <cont></cont></l,w,b></rd,rd,ad>
0764	156	define	CVTFD,2, <rd,wr>,<l,q>,<dest></dest></l,q></rd,wr>
077A	157	define	RESRV,0,<>,<>rch>
0790	158	define	ADAWI,5, <rd,vd>,<w,w>,<ftch></ftch></w,w></rd,vd>
0746	159	.rept	3
0746	160	define	RESRV, O, <>, <>, brch>
0746	161	.endr	
0788	162	define	INSQHI,20, <ad,ad>, <b,b>, <ftch></ftch></b,b></ad,ad>
07FE	163	define	INSQTI,20, <ad,ad>,<b,b>,<ftch></ftch></b,b></ad,ad>
0814	164	define	REMQHI, 20, <ad, wr="">, <b,l>, <ftch></ftch></b,l></ad,>
- 082A	165	define	REMOTI,20, <ad, wr="">, <b,l>, <ftch></ftch></b,l></ad,>
0840	166	define	ADDD2,4, <rd,md>,<q,q>,<dest></dest></q,q></rd,md>
- 0856	167	define	ADDD3,4, <rd,rd,wr>,<q,q,q>,<dest></dest></q,q,q></rd,rd,wr>
0860	168	define	SUBp2,4, <rd,md>,<q,q>,<dest></dest></q,q></rd,md>
0882	169	define	SUBD3,4, <rd,rd,wr>,<q,q,q>,<dest></dest></q,q,q></rd,rd,wr>
0898	170	define	MULp2,7, <rd,md>,<q,q>,<dest></dest></q,q></rd,md>
08AE	171	define	MULp3,7, <rd,rd,wr>,<q,q,q>,<dest></dest></q,q,q></rd,rd,wr>

Page 4 (1)

0001	470	1	A THE A THE A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A
0864	172	derine	DIVD2/31/ <rd md="">/<q <dest="" q=""></q></rd>
OSDA	173	define	DIVD3,31, <rd,rd,wr>,<q,q,q>,<dest></dest></q,q,q></rd,rd,wr>
08F0	174	define	CVTDB,3, <rd,wr>,<q,b>,<dest></dest></q,b></rd,wr>
0906	175	define	CVTDW,3, <rd,wr>,<q,w>,<dest></dest></q,w></rd,wr>
0910	176	define	CVTDL, 3, <rd, wr="">, <q, l="">, <dest></dest></q,></rd,>
0932	177	define	CVTRDL, 3, <rd, wr="">, <a, 1="">, <dest></dest></a,></rd,>
0948	178	define	(VIRD. 3. (rd. ur). (h. n). (dest)
NOSE	179	dofino	(VTUD.3.(rd.ur).(u.g).(dest)
0074	190	define	CVTID 3 (ad up) (1 a) (death)
0004	100	define	CVILDISK POINT / CIGINGESCI
DODA	101	derine	ACBUISICITAINAIDASICAIAIANSICOOD
UYAU	182	derine	MOVD/S/ <ra wr="">/<q q="">/<dest></dest></q></ra>
0986	185	define	CMPD, 3, <rd, rd="">, <q, q="">, <dest></dest></q,></rd,>
0900	184	define	MNEGD,3, <rd,wr>,<q,q>,<dest></dest></q,q></rd,wr>
0982	185	define	TSTD,2, <rd>,<q></q></rd>
09F8	186	define	EMODD, 10, <rd, rd,="" wr="" wr,="">, <q, l,="" q="" q,="" w,="">, <cont></cont></q,></rd,>
OADE	187	define	POLYD,100, <rd, ad="" rd,="">, <q, b="" w,="">, <cont></cont></q,></rd,>
OA24	188	define	CVTDF,2, <rd,wr>,<q,l></q,l></rd,wr>
0A3A	189	define	RESRV, D, <>, <>, ch>
0A50	190	define	ASHL, 2, <rd, rd,="" wr="">, <b, 1="" 1,="">, <dest></dest></b,></rd,>
0466	191	define	ASH0.4. (rd. rd. wr). (h. a. a). (dest)
0470	102	define	EMUL + 4. (rd. rd. rd. ur) + (1 + 1 + 1 + d) + (dest)
0402	103	define	EDIV-18-(pd-pd-up-up)-(1-p-1-1)-(copt)
DAAO	10/	define	
DARO	194	define	
DADE	195	derine	MUVW/S/ <ra wr="">/<q <dest="" q=""></q></ra>
UAD4	190	define	MUVAQ/1/(ad/wr>/(q/L)/(dest)
UAEA	197	derine	PUSHAQ,1, <ad>,<q>,<push></push></q></ad>
00800	198	define	ADDB2,1, <rd,md>,<b,b>,<dest></dest></b,b></rd,md>
0816	199	define	ADDB3,1, <rd,rd,wr>,<b,b,b>,<dest></dest></b,b,b></rd,rd,wr>
OBSC	200	define	SUBB2,1, <rd,md>,<b,b>,<dest></dest></b,b></rd,md>
0842	201	define	SUBB3,1, <rd,rd,wr>,<b,b,b>,<dest></dest></b,b,b></rd,rd,wr>
0858	202	define	MULB2,2, <rd,md>,<b,b>,<dest></dest></b,b></rd,md>
086E	203	define	MULB3,2, <rd,rd,wr>,<b,b,b>,<dest></dest></b,b,b></rd,rd,wr>
0884	204	define	DIVB2,17, <rd,md>,<b,b>,<dest></dest></b,b></rd,md>
089A	205	define	DIVB3,17, <rd,rd,wr>,<b,b,b>,<dest></dest></b,b,b></rd,rd,wr>
0880	206	define	BISB2,1, <rd,md>,<b,b>,<dest></dest></b,b></rd,md>
0806	207	define	BISB3,1, <rd,rd,wr>,<b,b,b>,<dest></dest></b,b,b></rd,rd,wr>
OBDC	208	define	BICB2,1, <rd,md>,<b,b>,<dest></dest></b,b></rd,md>
OBE2	209	define	BICB3.1. (rd.rd.wr). (h.h.h). (dest)
8030	210	define	X0282.1.(ed.md).(h.h).(dest)
OC1E	211	dofine	VORB3-1-(rd-rd-ur)-(b-b-b)-(dest)
0074	212	define	NUECE 1 and up at by adapty
0034	247	define	ANE OD INTO WITH OUD NOUS LA
UC4A	213	detine	
0000	214	detine	MUVB/1/ <rd wr="">/<d d="">/<dest></dest></d></rd>
0076	215	define	CMPB,1, <rd,rd>, dest></rd,rd>
0680	216	define	MCOMB,1, <rd,wr>,<b,b>,<dest></dest></b,b></rd,wr>
OCAZ	217	define	BITB,1, <rd,rd>,<b,b>,<dest></dest></b,b></rd,rd>
OCB8	218	define	CLRB,1, <wr>,</wr>
OCCE	219	define	TSTB,1, <rd>,</rd>
OCE4	220	define	INCB,1, <md>,</md>
OCFA	221	define	DEC8,1, <md>,</md>
0010	222	define	CVTBL, 1, <rd, wr="">, <b, l="">, <dest></dest></b,></rd,>
0026	223	define	CVT8W,1, <rd,wr>,<b,w>,<dest></dest></b,w></rd,wr>
0030	224	define	MOVZBL,1, <rd,wr>,<p,1>,<dest></dest></p,1></rd,wr>
0052	225	define	MOVZEW, 1, (rd, wr), (h, w), (dest)
0068	226	define	ROTL 1. (rderdewr), (helel), (dest)
OD7F	227	define	ACBB. 3. Srd. rd. nd. hd. ch. h. h. h. S. Flager
	Max. Con. 7	W & 1 1 1 1 1 1	I S MARTIN AND AND AND AND AND AND AND AND AND AN

define ACBB, 3, <rd, rd, md, bd>, <b, b, b, w>, (loop)

define MOVAB, 1, <ad, wr>, <b, l>, <dest>

227

228

0094

7-DEC-1984 13:53:14 VAX/VMS Macro V04-00 7-DEC-1984 13:53:07 OPCODE.MAR;36

Page 5 (1)

ODAA 229 define PUSHAD;1, <d>,<d>,<d>,<d>,<d>,<d>,<dest> ODCO 230 define ADDW2,1,<rd,md>,<dw,w>,<dest> ODEC 231 define ADDW2,1,<rd,md>,<dw,w>,<dest> ODEC 232 define ADDW2,1,<rd,md>,<dw,w>,<dest> ODEC 233 define BUBW2,1,<rd,md>,<dw,w>,<dest> OE12 235 define DUW2,17,<rd,md>,<dw,w>,<dest> OE22 235 define DIW2,17,<rd,md>,<dw,w>,<dest> OE36 237 define DIW2,17,<rd,rd,w2,<dw,w,w>,<dest> OE44 236 define DIW2,17,<rd,rd,w2,<dw,w,w>,<dest> OE57 240 define DIW2,17,<rd,rd,w7,<dw,w,w,w< dest=""> OE58 242 define DIW2,1,<rd,rd,w7,<dw,w,w,w< dest=""> OE58 242 define DIW2,1,<rd,wr>,<dw,w,w< td=""> dest OE56 243 define MOW,1,<rd,wr>,<dw,w,w< td=""> dest OE56 244 define MW,1,<rd,wr>,<dw,w,w< dest=""> OE67 245 define TOW,1,xrd,wr>,<dw,w,<dest> <</dw,w,<dest></dw,w,w<></rd,wr></dw,w,w<></rd,wr></dw,w,w<></rd,wr></rd,rd,w7,<dw,w,w,w<></rd,rd,w7,<dw,w,w,w<></dest></rd,rd,w2,<dw,w,w></dest></rd,rd,w2,<dw,w,w></dest></dw,w></rd,md></dest></dw,w></rd,md></dest></dw,w></rd,md></dest></dw,w></rd,md></dest></dw,w></rd,md></dest></dw,w></rd,md></dest></d></d></d></d></d></d>				
ODCO 230 define ADDW2,1, <rd,md>,<u,u><<dest> ODD6 231 define ADDW2,1,<rd,md>,<u,u><<dest> ODD6 232 define SUBW2,1,<rd,md>,<u,u><<dest> OED2 233 define SUBW2,1,<rd,md>,<u,u> OED2 233 define SUBW2,1,<rd,md>,<u,u> OED2 233 define SUBW2,1,<rd,md>,<u,u> OED2 233 define SUBW2,1,<rd,md>,<u,u> OED4 236 define DTW2,17,<rd,md>,<u,u>,<dest> OES2 236 define DTW2,17,<rd,md>,<u,u>,<dest> OES6 239 define BTSW3,1,<rd,md>,<u,u>,<dest> OES6 240 define BTW2,1,<rd,md>,<u,u>,<dest> OES6 241 define BTW2,1,<rd,md>,<u,u>,<dest> OES6 242 define MOW2,1,<rd,ur>,<u,u>,<dest> OES6 243 define MOW2,1,<rd,ur>,<u,u>,<dest> OES6 244 define MOW2,1,<rd,ur>,<u,u>,<dest> OES6 245 define</dest></u,u></rd,ur></dest></u,u></rd,ur></dest></u,u></rd,ur></dest></u,u></rd,md></dest></u,u></rd,md></dest></u,u></rd,md></dest></u,u></rd,md></dest></u,u></rd,md></u,u></rd,md></u,u></rd,md></u,u></rd,md></u,u></rd,md></dest></u,u></rd,md></dest></u,u></rd,md></dest></u,u></rd,md>	ODAA	229	define	PUSHAB, 1, <ad>, , <push></push></ad>
ODD6 231 define ADDW3_1/>cfdrddv/>vw/w/>cdest> ODEC 232 define SUBW3,1/>cfdrddv/vw/w//dest> ODE2 233 define SUBW3,1/>cfdrddv/vw//dest> DE18 234 define MULW2,2/cfdrddv/vw//dest> DE22 235 define MULW3,2/cfdrdv/v/v/vw//dest> DE44 236 define DIVW2,17/ <cfdrdd dest="" dw="" vw=""> DE54 237 define DIVW2,17/<cfdrdd dest="" dw="" vw=""> DE70 238 define DIVW2,17/<cfdrd dest="" dw="" ww=""> DE70 240 define BISW3,1/>cfdrdd/ww//dw//dest> DE70 240 define BICW2/1/<cfdrd dest="" dw="" ww=""> DE72 240 define BICW2/1/<cfdrd dest="" dw="" ww=""> DE72 241 define MCWJ1/<cfdrd dest="" dw="" ww=""> DE74 244 define MCWJ1/<cfdrd dest="" ww=""> DE74 244 define MCWJ1/<cfdrd dest="" ww=""> DE75 247 define DE70//dw//dw//dw//dest> DF64 246 define</cfdrd></cfdrd></cfdrd></cfdrd></cfdrd></cfdrd></cfdrdd></cfdrdd>	0000	230	define	ADDW2,1, <rd,md>,<w,w>,<dest></dest></w,w></rd,md>
OpEC 232 define SUBW2,1,xrd,rd,wt>,xdest> DE02 233 define SUBW3,1,xrd,rd,wt>,xw,x,dest> DE18 234 define MULW2,2,xrd,wd,xw,xx,wt,xw,xdest> DE24 235 define MULW2,2,xrd,rd,wt>,xw,xx,wt,xw,xdest> DE5A 237 define DIVW2,17,xrd,rd,wt>,xw,xx,xdest> DE70 238 define BISW3,1,xrd,rd,wt>,xw,xx,dest> DE70 238 define BISW3,1,xrd,rd,wt>,xw,xx,dest> DE70 240 define BISW3,1,xrd,rd,wt>,xdest> DE72 240 define BISW3,1,xrd,rd,wt>,xdest> DE72 243 define MNW2,1,xrd,wt>,xdest> DE74 244 define MNEGW,1,xrd,wt>,xdest> DF750 247 define MNW1,xrd,wt>,xdest> DF720 246 define MNW1,xrd,wt>,xdest> DF720 246 define SIW,xrd,rd,rd>,xw,xx,xdest> DF720 246 define SIW,xrd,rd,xw,xx,xdest> DF721 250 define	0006	231	define	ADDW3,1, <rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr>
DED2 233 define SUBW 5.1. SUBW 5.1. <td>ODEC</td> <td>232</td> <td>define</td> <td>SUBW2,1,<rd,md>,<w,w>,<dest></dest></w,w></rd,md></td>	ODEC	232	define	SUBW2,1, <rd,md>,<w,w>,<dest></dest></w,w></rd,md>
0E18 234 define MULW2,2, <rd,rd,rd,vw,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v< td=""><td>OEO2</td><td>233</td><td>define</td><td>SUBW3,1,<rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr></td></rd,rd,rd,vw,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v<>	OEO2	233	define	SUBW3,1, <rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr>
DE22 235 define MULW3.2, MULW3.2, Mulw3.4 <	0E18	234	define	MULW2,2, <rd,md>,<w,w>,<dest></dest></w,w></rd,md>
0E54 236 define DIVW2.17. <rd,rd,rd,v2.< td=""> vw,v,v2.<dest> 0E70 238 define BISW2.1. vc,v,v2. vd,v2. <t< td=""><td>0E2E</td><td>235</td><td>define</td><td>MULW3,2,<rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr></td></t<></dest></rd,rd,rd,v2.<>	0E2E	235	define	MULW3,2, <rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr>
DE5A 237 define DTVW3.17. <rd,rd,rd,vr>,<u,v,v<dest> DE70 238 define BISW2.1,<rd,rd,vr>,<u,v,v<dest> DE86 239 define BISW2.1,<rd,rd,vr>,<u,v,v,<dest> DE92 240 define BICW2.1,<rd,rd,vr>,<u,v,v,<dest> DE82 241 define BICW2.1,<rd,rd,vr>,<u,v,v,<dest> DE52 243 define XORW2.1,<rd,rd,vr>,<u,v,v,<dest> DE54 243 define XORW2.1,<rd,rd,vr>,<u,v,v,<dest> DE54 244 define MNEGW1.1,<rd,vr>,<u,v,v,<dest> DE54 245 define CASEW.6,<rd,rd,rd>,vv,v,<dest> DF70 246 define MNEGW1.1,<rd,vr>,<u,v,v,<dest> DF72 246 define MNEGW1.1,<rd,vr>,<u,v,v,<dest> DF74 244 define MNEGW1.1,<rd,vr>,<u,v,v,<dest> DF74 245 define CASEW.6,<rd,rd,rd>,vv,v,v,<dest> DF76 246 define MNUM1.1,<rd,vr>,<u,v,v,<dest> DF76 250 define CLRW.1,<rd,vr>,<u,v,v,<dest> DF78 250 define DSTW.1,<rd,vr>,<u,v,v,<dest> DF78 250 define BICW.1,<rd>,<u,v,v,<dest> DF78 250 define BICW.1,<u,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,< td=""><td>0E44</td><td>236</td><td>define</td><td>DIVW2,17,<rd,md>,<w,w>,<dest></dest></w,w></rd,md></td></u,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,v,<></u,v,v,<dest></rd></u,v,v,<dest></rd,vr></u,v,v,<dest></rd,vr></u,v,v,<dest></rd,vr></dest></rd,rd,rd></u,v,v,<dest></rd,vr></u,v,v,<dest></rd,vr></u,v,v,<dest></rd,vr></dest></rd,rd,rd></u,v,v,<dest></rd,vr></u,v,v,<dest></rd,rd,vr></u,v,v,<dest></rd,rd,vr></u,v,v,<dest></rd,rd,vr></u,v,v,<dest></rd,rd,vr></u,v,v,<dest></rd,rd,vr></u,v,v<dest></rd,rd,vr></u,v,v<dest></rd,rd,rd,vr>	0E44	236	define	DIVW2,17, <rd,md>,<w,w>,<dest></dest></w,w></rd,md>
DEF0 238 define BISW2.1; <rd,md>;<u,u>;<u,u>;<dest> DE90 240 define BISW3,1;<rd,rd,rd,vr>;<u,u,u>;<dest> DE92 240 define BICW2.1;<rd,rd,rd,vr>;<u,u,u>;<dest> DE82 241 define BICW2.1;<rd,rd,rd,vr>;<u,u,u>;<dest> DE02 243 define MCW2.1;<rd,rd,vr>;<u,u,u>;<dest> DE04 243 define XORW3,1;<rd,rd,vr>;<u,u,u>;<dest> DE72 246 define MNEGW.1;<rd,rd,vr>;<u,uu>;<dest> DF104 245 define CASEW.6;<rd,rd,rd>;<u,uu>;<dest> OF04 245 define CMW1;<rd,rd,vr>;<u,uu>;<dest> OF164 244 define CMW1;<rd,rd,rd>;<u,uu>;<dest> OF165 247 define CMW1;<rd,rd,rd>;<u,uu>;<dest> OF66 250 define CMW1;<uu>;<uu>;<dest> OF78 250 define DCW1;<uu>;<uu>;<uu>;<uu>;<uu>;<uu>;<uu>;<uu< td=""><td>OE5A</td><td>237</td><td>define</td><td>DIVW3,17,<rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr></td></uu<></uu></uu></uu></uu></uu></uu></uu></dest></uu></uu></dest></u,uu></rd,rd,rd></dest></u,uu></rd,rd,rd></dest></u,uu></rd,rd,vr></dest></u,uu></rd,rd,rd></dest></u,uu></rd,rd,vr></dest></u,u,u></rd,rd,vr></dest></u,u,u></rd,rd,vr></dest></u,u,u></rd,rd,rd,vr></dest></u,u,u></rd,rd,rd,vr></dest></u,u,u></rd,rd,rd,vr></dest></u,u></u,u></rd,md>	OE5A	237	define	DIVW3,17, <rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr>
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0E70	238	define	BISW2,1, <rd,md>,<w,w>,<dest></dest></w,w></rd,md>
DE9C 240 define BICW2-1,<	0E86	239	define	BISW3,1, <rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr>
0E82 241 define BICW3-1, <rd,rd,wr>,<u,wr>,<dest> 0E02 242 define XORW2,1,<rd,rd,wr>,<u,wr>,<dest> 0EDE 243 define XORW3,1,<rd,rd,wr>,<u,wr>,<dest> 0EF4 244 define MNEGW,1,<rd,rd,rd,wr>,<u,wr>,<dest> 0F0A 245 define CASEW,6 Cd,rd,wr>,<u,wr>,<dest> 0F10 245 define CMW1,<rd,rd,wr>,<u,wr>,<dest> 0F30 247 define CMW1,<rd,wr>,<u,wr>,<dest> 0F42 248 define CMW1,<rd,wr>,<u,wr>,<dest> 0F42 249 define BITW,1,<<rd,wr>,<u,wr>,<dest> 0F42 249 define BITW,1,<<rd,wr>,<u,wr>,<dest> 0F82 251 define DEFW,2,<<drd>,<wr> 0F84 252 define DEV,1,<<drd>,<wr> 0F84 253 define DEV,2,<</wr></drd></wr></drd></dest></u,wr></rd,wr></dest></u,wr></rd,wr></dest></u,wr></rd,wr></dest></u,wr></rd,wr></dest></u,wr></rd,rd,wr></dest></u,wr></dest></u,wr></rd,rd,rd,wr></dest></u,wr></rd,rd,wr></dest></u,wr></rd,rd,wr></dest></u,wr></rd,rd,wr>	DE9C	240	define	BICW2,1, <rd,md>,<w,w>,<dest></dest></w,w></rd,md>
0EC8 242 define XORW2-1, <rd,md>,<w,w,w>,<dest> 0EDE 243 define XORW3,1,<rd,md>,<w,w,w>,<dest> 0EF4 244 define MNEGW-1,<rd,md>,<w,w>,<dest> 0F0A 245 define CASEW.6<,<rd,rd,rd>,<w,w>,<dest> 0F20 246 define MNEGW-1,<rd,rd>,<w,w>,<dest> 0F36 247 define CASEW.6<,<rd,rd,rd>,<w,w>,<dest> 0F42 248 define MOWN-1,<rd,rd>,<w,w>,<dest> 0F62 249 define BITW-1,<rd,rd>,<w,w>,<dest> 0F62 249 define BITW-1,<rd>,<w,w>,<dest> 0F62 249 define BITW-1,<rd>,<w,w>,<dest> 0F78 251 define DEW-1,<rd>,<ww>,<dest> 0F78 252 define DEW-1,<rd>,<ww>,<dest> 0F84 252 define BICPSW-2,<rd>,<ww> Cot 0F84 253 define DEW-1,<rd>,<ww> Cot 0F66 255 define PUSW-2,<rd>,<ww> Cot 0F66 255 define PUSW-2,<<rd>,<ww> Cot> 1012</ww></rd></ww></rd></ww></rd></ww></rd></dest></ww></rd></dest></ww></rd></dest></w,w></rd></dest></w,w></rd></dest></w,w></rd,rd></dest></w,w></rd,rd></dest></w,w></rd,rd,rd></dest></w,w></rd,rd></dest></w,w></rd,rd,rd></dest></w,w></rd,md></dest></w,w,w></rd,md></dest></w,w,w></rd,md>	0EB2	241	define	BICW3,1, <rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr>
DEDE 243 define XORW3-1, <rd,rd,wr>,<u,wr>,<u,wr>,<dest> DEF4 244 define MNEGW,1,<rd,wr>,<u,wr>,<dest> DF0A 245 define CASEW,6,<rd,rd,rd,wr>,<u,wr>,<dest> DF36 247 define CMPW,1,<rd,wr>,<u,wr>,<dest> DF4C 248 define CMPW,1,<rd,wr>,<u,wr>,<dest> DF62 249 define BITW,1,<rd,rd,rd,vr,wr>,<dest> DF78 250 define BITW,1,<rd,rd,rd,vr>,<uv> Cdest> DF78 250 define TSW,1,<rd>,<uv> Cdest> DF78 250 define TSW,1,<rd>,<uv> Cdest> DF78 250 define TSW,1,<rd>,<uv> Cdest> DF84 253 define DEV,1,<uv><<uv> Cdest> DF10 254 define DEV,1,<uv><<uv> Cont DF22 257 define PUEN,20,<rd>,<uv> Cont> D12 257 define CHW,10,<rd>,<uv>,<uv> Cont> D32 250 define</uv></uv></rd></uv></rd></uv></uv></uv></uv></uv></rd></uv></rd></uv></rd></uv></rd,rd,rd,vr></dest></rd,rd,rd,vr,wr></dest></u,wr></rd,wr></dest></u,wr></rd,wr></dest></u,wr></rd,rd,rd,wr></dest></u,wr></rd,wr></dest></u,wr></u,wr></rd,rd,wr>	0EC8	242	define	XORW2,1, <rd,md>,<w,w>,<dest></dest></w,w></rd,md>
0EF4 244 define MNEGW1,< <rd>vr vr <t< td=""><td>DEDE</td><td>243</td><td>define</td><td>XORW3,1,<rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr></td></t<></rd>	DEDE	243	define	XORW3,1, <rd,rd,wr>,<w,w,w>,<dest></dest></w,w,w></rd,rd,wr>
OFDA 245 define CASEWs6x <rdsrdsrdsrdsrdsrdsrdsrdsrdsrdsrdsrdsrdsr< td=""><td>DEF4</td><td>244</td><td>define</td><td>MNEGW,1,<rd,wr>,<w,w>,<dest></dest></w,w></rd,wr></td></rdsrdsrdsrdsrdsrdsrdsrdsrdsrdsrdsrdsrdsr<>	DEF4	244	define	MNEGW,1, <rd,wr>,<w,w>,<dest></dest></w,w></rd,wr>
0F20 246 define MOVW/1. <rd,wr>><(w,w)><dest> 0F36 247 define CMPW11.<rd,wr>><(w,w)><dest> 0F4C 248 define MCOMW11.<rd,wr>><(w,w)><dest> 0F62 249 define BITW/1.<rd,wr>><(w)</rd,wr></dest></rd,wr></dest></rd,wr></dest></rd,wr>	OFOA	245	define	CASEW.6. <rd.rd.rd>. <w.w.w>. <brch></brch></w.w.w></rd.rd.rd>
OF36 247 define CMPW1/ <rd,rd><<w,w><<dest> OF4C 248 define MCOMW1/<rd,wr><<w,w><<dest> OF62 249 define BITW/1/<rd,rd> OF78 250 define BITW/1/<rd,rd> OF78 250 define DIW1/<rd,rd> OF84 252 define DIW1/ OF84 253 define DIW1/ OF84 253 define DIW1/ OF86 255 define DIV// OF86 255 define POPR OF86 255 define POPR</rd,rd></rd,rd></rd,rd></dest></w,w></rd,wr></dest></w,w></rd,rd>	0F20	246	define	MOVW,1, <rd,wr>,<w,w>,<dest></dest></w,w></rd,wr>
OF4C 248 define MCONW/1. <rd,wr>,<w,w>,<dest> OF62 249 define BITW,1.<rd,wr>,<w,w>,<dest> OF78 250 define BITW,1.<rd>,<w>,<w> OF8E 251 define TSW,1.<rd>,<w> OF8A 252 define BITW,1.<rd>,<w> OF8A 253 define BICV,1.<sd>,<w> OF8A 253 define BISPSW,2.<rd>,<w> OF8C 255 define BISPSW,2.<rd>,<w> OFF0 256 define PDPR,20.<rd>,<w> OFF2 256 define CHMK,T0,<rd>,<w> OFF2 256 define CHMK,T0,<rd>,<w> 1012 257 define CHMK,T0,<rd>,<w> 1038 259 define CHME,10,<rd>,<w> 1054 260 define ADDL2,1,<rd>,<dw> 1055 265 define ADDL2,1,<rd>,<dw> 1080 262 define MDL2,1,<rd>,<dw><<dw> 1042 264 define MDL</dw></dw></rd></dw></rd></dw></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></sd></w></rd></w></rd></w></w></rd></dest></w,w></rd,wr></dest></w,w></rd,wr>	OF36	247	define	CMPW,1, <rd,rd>,<w,w>,<dest></dest></w,w></rd,rd>
OF62 249 define BITW/1>(rd>rd>rd>, <w,w>,<dest> OF78 250 define CLRW/1,<wr>,<w> OF84 252 define TSW/1>(rd>,<w> OF84 252 define DISW,1><wr> GF84 252 define DISW,1><wr> GF84 253 define DISPU Composition OF80 254 define DISPU Composition Composition Composition OF86 255 define DISPU Composition Composition</wr></wr></w></w></wr></dest></w,w>	OF4C	248	define	MCOMW,1, <rd,wr>,<w,w>,<dest></dest></w,w></rd,wr>
OF78 250 define CLRW,1, <ur> CLRW,1,<ur> OF88 251 define TSTW,1,<ur> CM CM CM CM CM OF84 253 define DECW,1,<ur> CM CM CM CM CM OFBA 253 define DECW,1,<ur> CM CM CM CM CM OFBA 253 define DECW,1,<ur> CM CM CM CM CM OFBA 253 define DECW,1,<ur> CM CM CM CM CM OFE6 255 define DECW,2,<<ur> CA CA CM CA CM CA 1012 257 define PUSHR,20,<ur> Crd>,<u>,< Cont> Cont> CO CA CA<</u></ur></ur></ur></ur></ur></ur></ur></ur></ur>	0F62	249	define	BITW,1, <rd,rd>,<w,w>,<dest></dest></w,w></rd,rd>
OF8E 251 define TSTW,1, <rd>,<w> OFA4 252 define INCW,1,<md>,<w> OFBA 253 define BECW,1,<md>,<w> OFD0 254 define BISPSW,2,<rd>,<w> OFFC 256 define BISPSW,2,<rd>,<w> OFFC 256 define BISPSW,2,<rd>,<w> OFFC 256 define BISPSW,2,<rd>,<w> 1012 257 define BISPSW,2,<rd>,<w>, 1012 257 define CHMK,10,<rd>,<w>, 1012 257 define CHMK,10,<rd>,<w>, 1038 259 define CHMK,10,<rd>,<w>, 1054 260 define CHMS,10,<rd>,<w>, 1058 261 define ADDL2,1,<<rd>,<rd,w>, 1080 262 define BUBL2,1,<<rd,wd>,<ll,l,l,l,<dest> 1081 264 define BUBL2,1,<<rd,wd>,<ll,l,l,l,<dest> 1082 266 define MUL12,2,<<rd,wd>,<ll,l,l,l,l,dest> 1082 266 define<td>0F78</td><td>250</td><td>define</td><td>CLRW,1,<wr>,<w></w></wr></td></ll,l,l,l,l,dest></rd,wd></ll,l,l,l,<dest></rd,wd></ll,l,l,l,<dest></rd,wd></rd,w></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></rd></w></md></w></md></w></rd>	0F78	250	define	CLRW,1, <wr>,<w></w></wr>
OFA4 252 define INCW/1×rmd>× <w> OFBA 253 define DECW.1, <md>×<w> OFD0 254 define BISPSW/2, <rd>×<w> OFE6 255 define BICPSW/2, <rd>×<w> OFE6 255 define PUSHR/20, <rd>×<w> 1012 257 define PUSHR/20, <rd>×<w> <cont> 1028 258 define CHMK, T0, <rd>×<w> <cont> 103E 259 define CHME, 10, <rd>×<w> <cont> 1054 260 define CHMU, 10, <rd>×<w> <cont> 1080 262 define ADDL2, 1, <rd>×<dw> <cont> 1080 262 define BUBL2, 1, <rd, rd,="" wd="">, <lot<lot> 1080 263 define BUBL2, 1, <rd, rd,="" wd="">, <lot, <dest="" <lot,="" l,=""> 1006 265 define BUBL2, 1, <rd, rd,="" wd="">, <lot, <dest="" <lot,=""> 1012 265 define BUL2, 2, <rd, rd,="" wd="">, <lot, <="" <lot,="" t<="" td=""><td>OFSE</td><td>251</td><td>define</td><td>TSTW,1,<rd>,<w></w></rd></td></lot,></rd,></lot,></rd,></lot,></rd,></lot<lot></rd,></cont></dw></rd></cont></w></rd></cont></w></rd></cont></w></rd></cont></w></rd></w></rd></w></rd></w></rd></w></md></w>	OFSE	251	define	TSTW,1, <rd>,<w></w></rd>
OFBA 253 define DECW,1, <dd>,<w> OFD0 254 define BISPSW,2,<rd>,<w> OFE6 255 define BISPSW,2,<rd>,<w> OFFC 256 define POPR,200,<rd>,<w> 1012 257 define PUSHR,200,<rd>,<w>,<cont> 1028 258 define CHMK,10,<rd>,<w>,<brch> 1035 259 define CHMK,10,<rd>,<w>,<brch> 1054 260 define CHMK,10,<rd>,<w>,<brch> 1054 260 define CHMK,10,<rd>,<w>,<brch> 1054 260 define CHMK,10,<rd>,<w>,<brch> 1054 260 define CHMK,10,<rd>,<w>,<brch> 1064 261 define CHMK,10,<rd>,<w>,<brch> 1080 262 define ADDL2,1,<rd,md>,<l,l,l,l,<<dest> 1081 263 define SUBL2,1,<rd,md>,<l,l,l,l,l,dest> 1082 266 define SUBL3,1,<crd,rd,wr>,<l,l,l,l,l,dest> 1008 266 1082 266 define DIVL2,2,7r,d,md>,<l,l,l,l,l,l,dest> 1082 267 define</l,l,l,l,l,l,dest></l,l,l,l,l,dest></crd,rd,wr></l,l,l,l,l,dest></rd,md></l,l,l,l,<<dest></rd,md></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></cont></w></rd></w></rd></w></rd></w></rd></w></dd>	OFA4	252	define	INCW,1, <md>,<w></w></md>
OFE0 254 define BICPSW,2, <rd>,<w> OFE6 255 define BICPSW,2,<rd>,<w> 1012 257 define POPR(20)<rd>,<w>,<w>,<cont> 1012 257 define PUSHR)20 ,<w>,<cont> 1012 257 define PUSHR)20 ,<w>,<cont> 1028 258 define CHMK,10,<rd>,<w>,<brc>, ,<w>,<brc>, ,<w>,<brc>, , 1054 260 define CHME,10,<rd>,<w>,<brc>, ,<w>,<brc>, , (w,<brc>, , (w,<brc>, 1064 261 define CHME,10,<rd>,<w>,<brc>, ,<brc>, ,<brc>, (w,<brc>, 1054 260 define CHME,10,<rd>,<w>,<brc>, ,<brc>, (w,<brc>, (w,<brc>, (w,<brc>, (w,<brc>, 1064 261 define CHME,10,<rd>,<w>,<brc>, (w,<brc>, (w,<brc>, (w,<brc>, (define ADDL2,1,<rd,md>, (w,<brc>, (w,<brc>, (define SUBL2,1,<rd,md>, (l,l),<brc>, (dest> 1064 263 define SUBL2,1,<rd,md>, (l,l),<brc>, (dest> 1065 265 define SUBL2,1,<rd,md>, (l,l),<brc>, (dest> 1062 265 define MULL2,2,<rd,md>, (l,l),<brc>, (dest> 1062 266 define MULL3,2,7<brd>,<brd>,<brd>,<brd>,<brd>,<brd>,<brd>,<brd>,<brd></brd></brd></brd></brd></brd></brd></brd></brd></brd></br></brc></br></rd,md></br></brc></br></rd,md></br></brc></rd,md></brc></rd,md></brc></brc></rd,md></brc></brc></brc></brc></w></rd></brc></brc></brc></brc></brc></brc></w></rd></brc></brc></brc></brc></w></rd></brc></brc></brc></w></brc></w></rd></brc></w></brc></w></brc></w></rd></cont></w></cont></w></cont></w></w></rd></w></rd></w></rd>	OFBA	253	define	DECW,1, <md>,<w></w></md>
OFF6 255 define BICPSU-22<	OFDO	254	define	BISPSW,2, <rd>,<w></w></rd>
OFFC 256 define POPRk20A(rd> <u><cont> 1012 257 define PUSHR20A(rd>,<u><cont> 1028 258 define CHMK,10,<rd>,<u><cont> 1035 259 define CHMK,10,<rd>,<u><cont> 1054 260 define CHMK,10,<rd>,<u><cont><cont<< td=""> 1054 260 define CHMK,10,<rd>,<u><cont<< td=""> <u><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<<to><cont<< td=""><td>OFE6</td><td>255</td><td>define</td><td>BICPSW22. <rd>. <w></w></rd></td></cont<<></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></cont<<to></u></cont<<></u></rd></cont<<></cont></u></rd></cont></u></rd></cont></u></rd></cont></u></rd></cont></u></rd></cont></u></rd></cont></u></rd></cont></u></cont></u>	OFE6	255	define	BICPSW22. <rd>. <w></w></rd>
1012 257 define PUSHR/20/ <rd>,<w>,<brch> 1028 258 define CHMK,10,<rd>,<w>,<brch> 103E 259 define CHMK,10,<rd>,<w>,<brch> 1054 260 define CHMS,10,<rd>,<w>,<brch> 106A 261 define CHMS,10,<rd>,<w>,<brch> 1080 262 define ADDL2,1,<rd,rd>,<w>,<brch> 1080 262 define ADDL2,1,<rd,rd,w>,<brch> 1080 262 define ADDL2,1,<rd,rd,w>,<brch> 1080 262 define ADDL2,1,<rd,rd,w>,<brch> 1080 262 define ADDL2,1,<rd,rd,w>,<brch> 1080 264 define SUBL3,1,<rd,rd,w>,<brch> 1081 264 define SUBL3,1,<rd,rd,w>,<brch> 1082 266 define MULL2,2,<rd,rd,wd>,<brch> 1082 266 define DIVL2,17,<rd,wd>, 1014 268 define DIVL2,17,<rd,wd>, 1114 269 define DIVL3,17,<rd,wd>, 1130 270 define</rd,wd></rd,wd></rd,wd></brch></rd,rd,wd></brch></rd,rd,w></brch></rd,rd,w></brch></rd,rd,w></brch></rd,rd,w></brch></rd,rd,w></brch></rd,rd,w></brch></w></rd,rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd>	OFFC	256	define	POPR(20) <rd>, <w>, <cont></cont></w></rd>
1028 258 define CHMK,TD, <rd><w>,<brch> 103E 259 define CHME,10,<rd><w>,<brch> 1054 260 define CHME,10,<rd><w>,<brch> 1054 260 define CHME,10,<rd><w>,<brch> 1080 262 define CHMU,10,<rd><w>,<brch> 1080 262 define ADDL2,1,<rd,md>,<l,l>,<dest> 1096 263 define ADDL2,1,<rd,md>,<l,l>,<dest> 1080 264 define SUBL2,1,<rd,md>,<l,l>,<dest> 1080 265 define SUBL2,1,<rd,md>,<l,l>,<dest> 1081 266 define SUBL2,1,<rd,md>,<l,l>,<dest> 1082 266 define MUL2,2,<rd,md>,<l,l>,<dest> 1082 266 define MUL2,2,<rd,md>,<l,l>,<dest> 1082 266 define MUL2,2,<rd,md>,<l,l>,<dest> 1104 268 define DIVL2,17,<rd,md>,<l,l>,<dest> 1114 269 define DIVL3,17,<rd,md>,<l,l,l>,<dest> 1130 270 define BISL2,1,<rd,md>,<l,l,l,l>,<dest> 1146 271 define</dest></l,l,l,l></rd,md></dest></l,l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd>	1012	257	define	PUSHR 20 <rd>, <w>, <cont></cont></w></rd>
103E 259 define CHME,10, <rd>,<w>, w>,<</w></rd>	1028	258	define	CHMK, 10, <rd>, <w>, <brch></brch></w></rd>
1054 260 define CHMU,10, <rd>,<w>,<brch> 106A 261 define ADDL2,1,<rd>,<w>,<brch> 1080 262 define ADDL2,1,<rd>,<w>,<brch> 1080 262 define ADDL2,1,<rd>,<w>,<brch> 1080 263 define ADDL2,1,<rd>,<w>,<brch> 1080 263 define ADDL2,1,<rd>,<w>,<brch> 1080 264 define ADDL2,1,<cd,md>,<l,l,l,< td=""> 1080 265 define SUBL2,1,<cd,md>,<l,l,l,l,< td=""> 1081 266 define SUBL2,1,<cd,md>,<l,l,l,l,< td=""> 1082 266 define MULL2,2,<cd,md>,<l,l,l,l,< td=""> 1082 266 define MULL3,2,<cd,md>,<l,l,l,l,< td=""> 1082 266 define DIVL2,17,<cd,md>,<l,l,l,l,< td=""> 1082 267 define DIVL3,17,<cd,md>,<l,l,l,l,l,< td=""> 1104 268 define DIVL2,17,<cd,md>,<l,l,l,l,l,l,l,< td=""> 1130 270 define BISL2,1,<cd,md>,<l,l,l,l,l,l,l,< td=""> 1130 270 define BISL2,1,<cd,md>,<l,l,l,l,l,l,l,l,dest> 1150 273 define BI</l,l,l,l,l,l,l,l,dest></cd,md></l,l,l,l,l,l,l,<></cd,md></l,l,l,l,l,l,l,<></cd,md></l,l,l,l,l,<></cd,md></l,l,l,l,<></cd,md></l,l,l,l,<></cd,md></l,l,l,l,<></cd,md></l,l,l,l,<></cd,md></l,l,l,l,<></cd,md></l,l,l,<></cd,md></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd></brch></w></rd>	103E	259	define	CHME, 10, <rd>, <w>, <brch></brch></w></rd>
106A 261 define ADDL2,1, <rd,md>, (l,l),<dest> 1080 262 define ADDL2,1,<rd,md>, (l,l),<dest> 1096 263 define ADDL2,1,<rd,md>, (l,l),<dest> 1080 264 define ADDL2,1,<rd,md>, (l,l),<dest> 1080 265 define SUBL2,1,<rd,md>, (l,l),<dest> 1082 266 define SUBL2,1,<rd,md>, (l,l),<dest> 1082 266 define SUBL2,1,<rd,md>, (l,l),<dest> 1082 266 define MULL2,2,<rd,md>, (l,l),<dest> 1082 266 define MULL2,2,<rd,md>, (l,l),<dest> 1082 266 define MULL3,2, cd,md>, (l,l),<dest> 1084 268 define DIVL2,17, cd,md>, (l,l),<dest> 1104 268 define DIVL2,17, cd,md>, (l,l),<dest> 1114 269 define DIVL3,17, cd,md>, (l,l),<dest> 1130 270 define BISL2,1,<<rd>md>, (l,l),<dest> 1151 272 define BICL3,1,<<rd>md>, (l,l),</rd></dest> 1172</rd></dest></dest></dest></dest></dest></rd,md></dest></rd,md></dest></rd,md></dest></rd,md></dest></rd,md></dest></rd,md></dest></rd,md></dest></rd,md></dest></rd,md>	1054	200	detine	LHMS/TU/ <rd>/</rd>
1080 262 define ADDL2,1, <rd,md>,<l,l>,<dest> 1096 263 define ADDL3,1,<rd,md>,<l,l>,<dest> 10AC 264 define ADDL3,1,<rd,rd,wr>,<l,l,l>,<dest> 10C2 265 define SUBL2,1,<rd,rd,wr>,<l,l,l>,<dest> 10D8 266 define MULL2,2,<rd,rd,wr>,<l,l,l>,<dest> 10EE 267 define MULL3,2,<rd,rd,wr>,<l,l,l>,<dest> 10EE 267 define MULL3,2,<rd,rd,wr>,<l,l,l>,<dest> 104 268 define DIVL3,17,<rd,wr>,<l,l,l>,<dest> 1104 268 define DIVL3,17,<rd,wr>,<l,l,l>,<dest> 1114 269 define DIVL3,17,<rd,wr>,<l,l,l>,<dest> 1130 270 define BISL2,1,<rd,wr>,<l,l,l>,<dest> 1130 270 define BISL2,1,<rd,wr>,<l,l,l,l>,<dest> 1150 272 define BISL2,1,<<rd>,<rd,wr>,<l,l,l,l>,<dest> 1172 273 define BICL3,1,<<rd>,<rd,wr>,<l,l,l,l,<<dest> 1188 274 define XORL2,1,<rd,wr>,<l,l,l,l,l,<<dest> 119E 275 define XORL3,1,<rd,wr>,<l,l,l,l,l,<<< td=""><td>TUGA</td><td>201</td><td>define</td><td>CHMU, TU, <rd>, <w>, brch></w></rd></td></l,l,l,l,l,<<<></rd,wr></l,l,l,l,l,<<dest></rd,wr></l,l,l,l,<<dest></rd,wr></rd></dest></l,l,l,l></rd,wr></rd></dest></l,l,l,l></rd,wr></dest></l,l,l></rd,wr></dest></l,l,l></rd,wr></dest></l,l,l></rd,wr></dest></l,l,l></rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l></rd,md></dest></l,l></rd,md>	TUGA	201	define	CHMU, TU, <rd>, <w>, brch></w></rd>
1090 265 define ADDL3/1/ <rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,r< td=""><td>1080</td><td>202</td><td>define</td><td>ADDL2/1/(rd/md)/(l/l)/(dest)</td></rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,rd,r<>	1080	202	define	ADDL2/1/(rd/md)/(l/l)/(dest)
10AL 204 define SUBL2/1/ <rd,md>/(1/1)/(dest) 10D2 265 define SUBL3/1/<rd,md>/(1/1)/(dest) 10D8 266 define MULL2/2/<rd,md>/(1/1)/(dest) 10EE 267 define MULL3/2/<rd,md>/(1/1)/(dest) 1104 268 define DIVL2/17/<rd,md>/(1/1)/(dest) 1114 269 define DIVL3/17/<rd,md>/(1/1)/(dest) 1114 269 define BISL2/1/<rd,md>/(1/1)/(dest) 1114 269 define BISL2/1/<rd,md>/(1/1)/(dest) 1114 269 define BISL2/1/<rd,md>/(1/1)/(dest) 11130 270 define BISL2/1/<rd> ////////////////////////////////////</rd></rd,md></rd,md></rd,md></rd,md></rd,md></rd,md></rd,md></rd,md></rd,md>	1096	200	detine	AUULS/I/(rd/rd/wr)/(l/l//(dest)
1002 205 define SUBLS/1/krd/rd/wr/kl/l/k/dest/ 1008 266 define MULL2/2/krd/rd/wr/kl/l/k/dest/ 1016 267 define MULL3/2/krd/rd/wr/kl/l/k/dest/ 1104 268 define DIVL2/17/krd/md/kl/l/k/dest/ 1114 269 define DIVL2/17/krd/md/kl/l/k/dest/ 1114 269 define DIVL2/17/krd/md/kl/l/k/dest/ 1130 270 define BISL2/1/krd/md/kl/l/k/dest/ 1130 270 define BISL2/1/krd/md/kl/l/k/dest/ 1146 271 define BISL2/1/krd/md/kl/l/k/dest/ 1150 272 define BICL2/1/krd/md/kl/l/k/dest/ 1152 273 define BICL3/1/krd/md/kl/l/k/dest/ 1172 273 define BICL3/1/krd/md/kl/l/k/dest/ 1188 274 define XORL2/1/krd/md/kl/l/k/dest/ 1188 275 define MNEGL/1/krd/md/kl/l/k/dest/ 1184 276 define MNEGL/1/krd/md/kl/l/k/dest/ 1184 277 define MNL1/krd/md/kl/l/k/dest/ 1186 279 <td< td=""><td>10AL</td><td>204</td><td>define</td><td>SUBLZ/I/(rd/md)/(l/l/(dest)</td></td<>	10AL	204	define	SUBLZ/I/(rd/md)/(l/l/(dest)
1000200defineMULL2/2/Yrd/md//(1/2//dest)10EE267defineMULL3/2/Yrd/md//(1/2//dest)1104268defineDIVL2/17/(rd/md)/(1/2//dest)111A269defineDIVL3/17/(rd/md)/(1/2//dest)1130270defineBISL2/1/(rd/md)/(1/2//dest)1146271defineBISL3/1/(rd/md)/(1/2)/(dest)1150272defineBICL2/1/(rd/md)/(1/2)/(dest)1172273defineBICL3/1/(rd/md)/(1/2)/(dest)1188274defineXORL2/1/(rd/md)/(1/2)/(dest)1184276defineXORL3/1/(rd/md)/(1/2)/(dest)1184276defineMNEGL/1/(rd/mr)/(1/2)/(dest)1184276defineMOUL/1/(rd/mr)/(1/2)/(dest)1160278defineMOUL/1/(rd/mr)/(1/2)/(dest)1176279defineMOUL/1/(rd/mr)/(1/2)/(dest)1184276defineMOUL/1/(rd/mr)/(1/2)/(dest)1184276defineMOUL/1/(rd/mr)/(1/2)/(dest)1184277defineCASEL/6/(rd/rd)/(1/2)/(dest)1180278defineMOUL/1/(rd/mr)/(1/2)/(dest)1200280defineMOUL/1/(rd/mr)/(1/2)/(dest)1222281defineBITL/1/(rd/rd)/(1/2)/(dest)1238282defineCIRL/1/(mr)/(1/2)	1002	200	define	SUBLIGATION CONFORCE (CONTONEST)
1022 207 define MDLL3/2/Crd/rd/Wr//(L/L///dest) 1104 268 define DIVL2/17/ <rd md=""> Crd/md> Control (L/L)//dest) 111A 269 define DIVL3/17/<rd md=""> Crd/md> Control (L/L)//dest) 1130 270 define BISL2/1/<rd md=""> Crd/md> Control (L/L)//dest) 1146 271 define BISL3/1/<rd md=""> Crd/md> Control (L/L)//dest) 1150 272 define BISL2/1/<rd md=""> Crd/md> Control (L/L)//dest) 1152 273 define BISL2/1/<rd md=""> Crd/md> Control (L/L)//dest) 1172 273 define BICL2/1/<rd md=""> Crd/md> Control (L/L)//dest) 1188 274 define BICL3/1/<rd md=""> Crd/md> Control (L/L)//dest) 1188 274 define MORL2/1/<rd md=""> Control (L/L)//dest) 1188 274 define MORL2/1/<rd> Control (L/L)//dest) 1188 275 define MORL3/1/<rd> Control (L/L)//dest) 1184 276 define MOVL/1/<rd> Control (L/L)//dest) 1184 277 define<td>1000</td><td>260</td><td>define</td><td>MULL Z Z And and was all a la address</td></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd>	1000	260	define	MULL Z Z And and was all a la address
1114 269 define DIVL3,17, <rd,rd,wr>,<l,l,l,l>,<dest> 1130 270 define BISL2,1,<rd,rd,wr>,<l,l,l>,<dest> 1146 271 define BISL3,1,<rd,rd,wr>,<l,l,l>,<dest> 1150 272 define BISL3,1,<rd,rd,wr>,<l,l,l>,<dest> 1172 273 define BICL2,1,<rd,rd,wr>,<l,l,l>,<dest> 1172 273 define BICL2,1,<rd,rd,wr>,<l,l,l>,<dest> 1188 274 define BICL3,1,<rd,rd,wr>,<l,l,l>,<dest> 1190 275 define XORL2,1,<rd,wd>,<l,l,l>,<dest> 1191 275 define XORL2,1,<rd,wd>,<l,l,l>,<dest> 1192 275 define XORL2,1,<rd,wr>,<l,l,l>,<dest> 1194 276 define MNEGL,1,<rd,wr>,<l,l,l>,<dest> 1194 276 define MNEGL,1,<rd,wr>,<l,l,l>,<dest> 1194 276 define MNEGL,1,<rd,wr>,<l,l,l,l,l,l,l>,<dest> 1195 277 define CASEL,6,<rd,rd,rd,wr>,<l,l,l,l,l,l,l,k< td=""> 1196 279 define CMUL,1,<rd,wr>,<l,l,l,l,k< td=""> 1200 280 define <</l,l,l,l,k<></rd,wr></l,l,l,l,l,l,l,k<></rd,rd,rd,wr></dest></l,l,l,l,l,l,l></rd,wr></dest></l,l,l></rd,wr></dest></l,l,l></rd,wr></dest></l,l,l></rd,wr></dest></l,l,l></rd,wd></dest></l,l,l></rd,wd></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l,l,l></rd,rd,wr>	11066	267	define	DTVL 2-17 and max all all address
1130 270 define BISL2,1, <rd,md>,<l,l>,<dest> 1146 271 define BISL3,1,<rd,rd,wr>,<l,l,l>,<dest> 1150 272 define BICL2,1,<rd,md>,<l,l>,<dest> 1172 273 define BICL2,1,<rd,md>,<l,l>,<dest> 1188 274 define BICL3,1,<rd,rd,wr>,<l,l,l>,<dest> 1188 274 define XORL2,1,<rd,md>,<l,l>,<dest> 1195 275 define XORL2,1,<rd,md>,<l,l>,<dest> 1196 275 define XORL2,1,<rd,md>,<l,l>,<dest> 1184 276 define MNEGL,1,<rd,wr>,<l,l>,<dest> 1184 276 define MNEGL,1,<rd,wr>,<l,l>,<dest> 1184 276 define MNEGL,1,<rd,wr>,<l,l>,<dest> 1184 276 define MOVL,1,<rd,wr>,<l,l>,<dest> 1180 278 define MOVL,1,<rd,wr>,<l,l>,<dest> 1180 279 define CMPL,1,<rd,wr>,<l,l>,<dest> 1200 280 define MCOML,1,<rd,wr>,<l,l>,<dest> 1222 281 define BITL,1,<rd>,<rd>,<l,l>,<dest> dest> 1238 2</dest></l,l></rd></rd></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l,l></rd,rd,wr></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l,l></rd,rd,wr></dest></l,l></rd,md>	1114	260	define	DIVI3-17 (rd-rd-ur) (lalal) (doct)
1130 271 define BISL2/1/ <rd (ur="" dust)<="" md="" td="" wr=""> 1150 272 define BISL3/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1150 272 define BICL2/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1172 273 define BICL2/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1188 274 define BICL3/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1188 274 define XORL2/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1195 275 define XORL2/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1184 276 define MNEGL/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1184 276 define MNEGL/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1184 276 define MNEGL/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1184 276 define MNEGL/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1184 276 define MOVL/1/<rd (ur="" dust)<="" md="" td="" wr=""> 1185 277 define MOVL/1/<rd (ur="" dust)<="" td="" wr=""> 1180 278 define MOVL/1/<rd dust)<="" td="" wr=""> 1180 279 define MCML/1/<rd dust)<="" td="" wr=""> 1200 280 define MCOML/1/<rd dust)<="" td="" wr=""> 1222 281 define BITL/1/<rd <="" td="" wr=""><td>1130</td><td>270</td><td>define</td><td>BISL2.1.(ed.md).(L.L).(dost)</td></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd></rd>	1130	270	define	BISL2.1.(ed.md).(L.L).(dost)
1150272defineBICL2,1, <rd,md>,<l,l>,<dest>1172273defineBICL3,1,<rd,md>,<l,l>,<dest>1188274defineXORL2,1,<rd,md>,<l,l>,<dest>119E275defineXORL3,1,<rd,rd,wr>,<l,l,l>,<dest>1184276defineMNEGL,1,<rd,wr>,<l,l>,<dest>1184276defineMNEGL,1,<rd,wr>,<l,l>,<dest>1184276defineMNEGL,1,<rd,wr>,<l,l>,<dest>1184277defineCASEL,6,<rd,rd,rd,vd>,<l,l>,<dest>1160278defineMOVL,1,<rd,wr>,<l,l>,<dest>11F6279defineCMPL,1,<rd,rd>,<l,l>,<dest>1200280defineMCOML,1,<rd,wr>,<l,l>,<dest>1222281defineBITL,1,<rd,rd>,<l,l>,<dest>1238282defineCLRL,1,<wr>,<l>283define1264284defineINCL,1,<md>,<l>1274285defineDECL,1,<md>,<l></l></md></l></md></l></wr></dest></l,l></rd,rd></dest></l,l></rd,wr></dest></l,l></rd,rd></dest></l,l></rd,wr></dest></l,l></rd,rd,rd,vd></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l></rd,md></dest></l,l></rd,md></dest></l,l></rd,md>	1146	271	define	BISL3.1. (rd.rd.ur). (l.l.). (dest)
1172273defineBICL2/1/ <rdynd wr=""><tl>1188274defineXORL2/1/<rdynd wr=""><tl>1188274defineXORL2/1/<rdynd wr=""><tl>119E275defineXORL3/1/<rdynd wr=""><tl>119E275defineXORL3/1/<rdynd wr=""><tl>1184276defineMNEGL/1/<rdynd wr=""><tl>1184276defineMNEGL/1/<rdynd wr=""><tl><td< td=""><td>1150</td><td>272</td><td>define</td><td>BTCL 2.1. (rd.md). (l. 1). (dest)</td></td<></tl></rdynd></tl></rdynd></tl></rdynd></tl></rdynd></tl></rdynd></tl></rdynd></tl></rdynd>	1150	272	define	BTCL 2.1. (rd.md). (l. 1). (dest)
1188274defineXORL2,1, <rd,md>,<l,l>,<dest>119E275defineXORL3,1,<rd,rd,wr>,<l,l,l>,<dest>1184276defineMNEGL,1,<rd,wr>,<l,l>,<dest>11CA277defineCASEL,6,<rd,rd,rd>,<l,l>,<dest>11E0278defineMOVL,1,<rd,wr>,<l,l>,<dest>11F6279defineCMPL,1,<rd,wr>,<l,l>,<dest>1200280defineMCOML,1,<rd,wr>,<l,l>,<dest>1222281defineBITL,1,<rd,rd>,<l,l>,<dest>1238282defineCLRL,1,<wr>,<l>defineTSTL,1,<rd>,<l>124E283defineINCL,1,<md>,<l>1264284defineINCL,1,<md>,<l>127A285defineDECL,1,<md>,<l></l></md></l></md></l></md></l></rd></l></wr></dest></l,l></rd,rd></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,rd,rd></dest></l,l></rd,wr></dest></l,l,l></rd,rd,wr></dest></l,l></rd,md>	1172	273	define	BTCL 3-1 (rd. rd. up) (l. l. l.) (doct)
1196275defineXORL3,1, <rd,rd,wr>,<l,l,l>,<dest>1184276defineMNEGL,1,<rd,wr>,<l,l>,<dest>11CA277defineCASEL,6,<rd,rd,rd>,<l,l>,<dest>11E0278defineMOVL,1,<rd,wr>,<l,l>,<dest>11F6279defineCMPL,1,<rd,wr>,<l,l>,<dest>1200280defineMCOML,1,<rd,wr>,<l,l>,<dest>1222281defineBITL,1,<rd,rd>,<l,l>,<dest>1238282defineCLRL,1,<wr>,<l>CLRL,1,<wr>,<l>283defineTSTL,1,<rd>,<l>1264284defineINCL,1,<md>,<l>127A285defineDECL,1,<md>,<l></l></md></l></md></l></rd></l></wr></l></wr></dest></l,l></rd,rd></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,wr></dest></l,l></rd,rd,rd></dest></l,l></rd,wr></dest></l,l,l></rd,rd,wr>	1128	274	define	XOPI 2.1. (rd.md). (1.1). (dest)
1184276defineMNEGL/1/ <rd wr="">1184277defineCASEL/6/<rd rd=""><tl>/<tl>11CA277defineCASEL/6/<rd rd=""><tl>/<tl>11E0278defineMOVL/1/<rd wr=""><tl><tl>////11F6279defineCMPL/1/<rd wr=""><tl><tl>////1200280defineMCOML/1/<rd wr=""><tl><tl>////1222281defineBITL/1/<rd wr=""><tl>///1238282defineCLRL/1/<wr><tl>///124E283defineTSTL/1/<rd><tl>/1264284defineINCL/1/<md><tl>127A285defineDECL/1/<md><tl></tl></md></tl></md></tl></rd></tl></wr></tl></rd></tl></tl></rd></tl></tl></rd></tl></tl></rd></tl></tl></rd></tl></tl></rd></rd>	110F	275	define	XORI 3.1. (rd. rd. ur). (l. l. l. (dest)
11CA277defineCASEL/6/ <rd rd="">11E0278defineMOVL/1/<rd wr="">11E0278defineMOVL/1/<rd wr="">11F6279defineCMPL/1/<rd wr="">1200280defineMCOML/1/<rd wr="">1222281defineBITL/1/<rd wr="">1238282defineCLRL/1/<wr>124E283defineTSTL/1/<rd>1264284defineINCL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>127A285defineDECL/1/<md>1</md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></md></rd></wr></rd></rd></rd></rd></rd></rd>	1184	276	define	MNEGL 1. (rd.ur). (L.L). (dest)
11E0278defineMOVL/1. <rd.wr>.<l.l>.<dest>11F6279defineCMPL.1.<rd.rd>.<l.l>.<dest>1200280defineMCOML.1.<rd.wr>.<l.l>.<dest>1222281defineBITL.1.<rd.rd>.<l.l>.<dest>1238282defineCLRL.1.<wr>.<l>defineSITL.1.<rd.wr>.<l>124E283defineTSTL.1.<rd>.<l>1264284defineINCL.1.<md>.<l>127A285defineDECL.1.<md>.<l></l></md></l></md></l></rd></l></rd.wr></l></wr></dest></l.l></rd.rd></dest></l.l></rd.wr></dest></l.l></rd.rd></dest></l.l></rd.wr>	1104	277	define	CASEL (6 (rd.rd.rd) (1.1.1.) (brch)
11F6 279 define CMPL,1, <rd,rd>,<l,l>,<dest> 120c 280 define MCOML,1,<rd,wr>,<l,l>,<dest> 1222 281 define BITL,1,<rd,rd>,<l,l>,<dest> 1238 282 define CLRL,1,<rd>,<l,l>,<dest> 124E 283 define TSTL,1,<rd>,<l> 1264 284 define INCL,1,<md>,<l> 127A 285 define DECL,1,<md>,<l></l></md></l></md></l></rd></dest></l,l></rd></dest></l,l></rd,rd></dest></l,l></rd,wr></dest></l,l></rd,rd>	11E0	278	define	MOVI 11 (rdwr) (1 1) (dest)
120c 280 define MCOML/1/ <rd,wr>/<l,l>/<dest> 1222 281 define BITL/1/<rd,rd>/<l,l>/<dest> 1238 282 define CLRL/1/<wr> 124E 283 define TSTL/1/<rd> <l> 1264 284 define INCL/1/<md> <l> 127A 285 define DECL/1/<md> <l></l></md></l></md></l></rd></wr></dest></l,l></rd,rd></dest></l,l></rd,wr>	11E6	279	define	CMPL 11 (rdrd) (1.1) (dest)
1222 281 define BITL/1/ <rd rd="">/<l></l>s/<lest> 1238 282 define CLRL/1/<wr> 124E 283 define TSTL/1/<rd> s 1264 284 define INCL/1/<md> s s 127A 285 define DECL/1/<md> s s</md></md></rd></wr></lest></rd>	1200	280	define	MCOML/1/Srd/wr>/(1,1)/(det)
1238 282 define CLRL,1, <wr> CLRL,1,<wr> 124E 283 define TSTL,1,<rd><<l> 1264 284 define INCL,1,<md><<l> 127A 285 define DECL,1,<md><<l></l></md></l></md></l></rd></wr></wr>	1222	281	define	BITL/1/(rd/rd)/(L/L)/(dest)
124E 283 define TSTL,1, <rd>,<l> 1264 284 define INCL,1,<md>,<l> 127A 285 define DECL,1,<md>,<l></l></md></l></md></l></rd>	1238	282	define	CLRL, 1, (Wr>, <1>
1264 284 define INCL/1/ <md>/<l></l></md>	124E	283	define	TSTL/1/(rd>/ <l></l>
127A 285 define DECL 1.(md>.<1>	1264	284	define	INCL,1, <md>,<l></l></md>
The state was a state of the st	127A	285	define	DECL,1, <md>,<1></md>

7-DEC-1984 13:53:14 VAX/VMS Macro V04-00 7-DEC-1984 13:53:07 OPCODE.MAR;36

Page 6 (1)

1290	286	define	ADWC,1, <rd,md>,<l,l>,<dest></dest></l,l></rd,md>
- 12A6	287	define	SBWC,1, <rd,md>,<l,l>,<dest></dest></l,l></rd,md>
1280	288	define	MTPR,10, <rd,rd>,<l,l>,<cont></cont></l,l></rd,rd>
1202	289	define	MFPR,10, <rd,wr>,<l,l>,<cont></cont></l,l></rd,wr>
1258	290	define	MOVPSL, 10, <wr>, <l></l></wr>
12FE	291	define	PUSHL,1, <rd>,<l>,<oush></oush></l></rd>
1314	292	define	MOVAL, 1, <ad, wr="">, <l, l="">, <dest></dest></l,></ad,>
- 132A	293	define	PUSHAL, 1, <ad>, <l>, <push></push></l></ad>
1340	294	define	BBS,7, (rd, vd, bd), (l, b, b), (cond, ftch)
1356	295	define	BBC,7, (rd, vd, bd), (l, b, b), (cond, ftch)
1360	296	define	BBSS.7. (rd. vd. bd). (l. h. h). (cond. ftch)
1382	297	define	BBCS.7. (rd.vd.hd). (1.h.h). (cond.ftch)
1398	298	define	BBSC,7, <rd,vd,bd>,<l,bc>,<cond,ftch></cond,ftch></l,bc></rd,vd,bd>
134F	200	define	BRCC.7. (rd.vd.bd). (L.b.b). (cond.ft.ch)
1304	300	define	BRSCI 12 ced wd.bd. (L.b.b.) ccond.ft.ch)
1304	301	define	BBCCI 12 crd vd bd cl bbb ccondeft ch
1350	302	define	
1406	303	define	
1400	304	define	EES-7- (nd ad up) (1 b b 1) (ftab)
1/32	305	define	FFS////u/u/u/u/v////////////////////////
1436	305	derine	Chord ad ad ad ad a the hord streets
1440	207	define	
1436	200	define	
14/4	300	derine	EXIV///grd/rd/vd/wr>/ <l brown="" tcn=""></l>
140A	309	derine	EXILW//scrard/vd/wr>/sl/b/b/l>/sttch>
14AU	310	derine	INSVALLAGE AL
1480	311	derine	ACBLISICITAINAIDASICIILILIWACLOOPS)
1400	312	define	AOBLSS, S, <rd, bd="" md,="">, <l, b="" l,="">, <toog></toog></l,></rd,>
14E2	313	define	AOBLER, 3, <rd, bd="" md,="">, <l, lob="">+ <loop></loop></l,></rd,>
- 14F8	314	define	SOBGEQ, 3, <md, bd="">, <l, b=""> <loop< td=""></loop<></l,></md,>
1508	315	define	SOBGTR, 3, <md, bd="">, <1, b>, <100p></md,>
1524	316	define	CVTLB,1, <rd,wr>,<l,b>,<dest></dest></l,b></rd,wr>
- 153A	317	define	CVTLW,1, <rd,wr>,<l,w>,<dest></dest></l,w></rd,wr>
1550	318	define	ASHP,100, <rd,rd,ad,rd,rd,ad>,<b,w,b,b,w,b>,<cont.< td=""></cont.<></b,w,b,b,w,b></rd,rd,ad,rd,rd,ad>
1566	319	define	CVTLP=100< <rd>rd=rd=ad><<l=w=b><<cont></cont></l=w=b></rd>
157C	320	define	CALL (30' < pd ad> < b, b> < br ch>
1592	321	define	CALL\$,30,9rd,ad>,<1,b>, <brch></brch>
15A8	322	define	XFC, 18+45, <>,
15BE	323	define	ESCD, 10, <>, <>
1504	324	define	ESCE,10, <>, <>, brch>
15EA	325	define	ESCF,10,<>,<>, brch>
1600	326	.rept	50
1600	327	define	RESRV,0,<>,<>, brch>
1600	328	.endr	
1A4C	329	define	CVTDH, 20, <rd, wr="">, <q, o=""></q,></rd,>
1462	330	define	CVTGF, 3, <rd, wr="">, <q, l=""></q,></rd,>
1A78	331	.rept	12
1A78	332	define	RESRV, D, <>, <>, ch>
1A78	333	.endr	
1880	334	define	ADDG2,4, <rd,md>,<q,q></q,q></rd,md>
1896	335	define	ADDG3,4, <rd, rd,="" wr="">, <q, q="" q,=""></q,></rd,>
1BAC	336	define	SUBG2,4, <rd,md>,<rd,md></rd,md></rd,md>
1802	337	define	SUBG3.4. (rd. vr). (a. a. a)
1808	338	define	MILL 62.7. (rd.md). (d.m)
1855	330	define	NUL G3.7. (rd.rd.ur). (o.o.o)
1004	340	define	DTVG2-28-(rd-rd)
1014	341	define	DTVG3-28-Codendaup)-Coanas
1070	34.2	doffine	CVTCP_7_Cod_up>_Co_b>
1030	346	derine	CALOONDIXLUMLANDA

7-DEC-1984 13:53:14 VAX/VMS Macro V04-00 Page 7 7-DEC-1984 13:53:07 OPCODE.MAR;36

(1)

1046	343	define	CVTGW,3, <rd,wr>,<q,w></q,w></rd,wr>
1050	344	define	CVTGL, 3, <rd, wr="">, <q, l=""></q,></rd,>
1072	345	define	CVTRGL, 3, <rd, wr="">, <q, l=""></q,></rd,>
1088	346	define	CVTBG, 3, <rd, wr="">, <bra></bra></rd,>
1C9E	347	define	CVTWG,3, <rd,wr>,<w,q></w,q></rd,wr>
1CB4	348	define	CVTLG, 3, <rd, wr="">, <l, a=""></l,></rd,>
1CCA	349	define	ACBG,5, <rd,rd,md,bd>,<q,q,q,w>,<loop>)</loop></q,q,q,w></rd,rd,md,bd>
1CEO	350	define	MOVG, 3, <rd, wr="">, <q, q=""></q,></rd,>
1CF6	351	define	CMPG, 3, <rd, rd=""></rd,>
1000	352	define	MNEGG, 3, <rd, wr="">, <q,q></q,q></rd,>
1022	353	define	TSTG,2, <rd>,<q></q></rd>
1038	354	define	EMODG, 10, <rd, rd,="" wr="" wr,="">, <q, l,="" q="" q,="" w,="">, <cont></cont></q,></rd,>
104E	355	define	POLYG,100, <rd, ad="" rd,="">, <q, b="" w,="">, <cont></cont></q,></rd,>
1064	356	define	CVTGH,20, <rd,wr>,<q,o></q,o></rd,wr>
107A	357	.rept	9
- 107A	358	define	RESRV,0,<>,<>, brch>
107A	359	.endr	
1640	360	define	ADDH2,8, <rd,md>,<o,o></o,o></rd,md>
1E56	361	define	ADDH3,8, <rd,rd,wr>,<o,o,o></o,o,o></rd,rd,wr>
1E6C	362	define	SUBH2,8, <rd,md>,<o,o></o,o></rd,md>
1E82	363	define	SUBH3,8, <rd,rd,wr>,<o,o,o></o,o,o></rd,rd,wr>
1E98	364	define	MULH2,14, <rd,md>,<o,o></o,o></rd,md>
- 1EAE	365	define	MULH3,14, <rd,rd,wr>,<0,0,0></rd,rd,wr>
1EC4	366	define	DIVH2,56, <rd,md>,<o,o></o,o></rd,md>
- 1EDA	367	define	DIVH3,56, <rd,rd,wr>,<0,0,0></rd,rd,wr>
- 1EFO	368	define	CVTHB,6, <rd,wr>,<o,b></o,b></rd,wr>
- 1F06	369	define	CVTHW,6, <rd,wr>,<o,w></o,w></rd,wr>
1F1C	370	define	CVTHL,6, <rd,wr>,<o,l></o,l></rd,wr>
1F32	371	define	CVTRHL,6, <rd,wr>,<o,l></o,l></rd,wr>
- 1F48	372	define	CVTBH,6, <rd,wr>,<b,o></b,o></rd,wr>
1F5E	373	define	CVTWH, 6, <rd, wr="">, <w, o=""></w,></rd,>
- 1874	374	define	CVTLH, 6, <rd, wr="">, <l, o=""></l,></rd,>
1F8A	375	define	ACBH, 10, <rd, bd="" md,="" rd,="">, <0,0,0, w>, (100p)</rd,>
1FAO	376	define	MOVH,6, <rd,wr>,<0,0></rd,wr>
1F86	377	define	CMPH,6, <rd,rd>,<o,o></o,o></rd,rd>
1 FCC	378	define	MNEGH, 6, <rd, wr="">, <0,0></rd,>
1FE2	379	define	TSTH,4, <rd>,<o></o></rd>
1FF8	380	define	EMODH, 20, <rd, rd,="" wr="" wr,="">, <o, l,="" o="" o,="" w,="">, <cont></cont></o,></rd,>
- 200E	381	define	POLYH,100, <rd, ad="" rd,="">, <o, b="" w,="">, <cont></cont></o,></rd,>
2024	382	define	CVTHG,20, <rd,wr>,<orq></orq></rd,wr>
- 203A	383	.rept	5
203A	384	define	RESRV, O, <>, <>, ch>
203A	385	.endr	
- 20A8	386	define	CLR0,4, <wr>,<o></o></wr>
- 208E	387	define	MOV0,6, <rd,wr>,<0,0></rd,wr>
2004	388	define	MOVA0,1, <ad,wr>,<o,l></o,l></ad,wr>
20EA	389	define	PUSHA0,1, <ad>,<o>,<push></push></o></ad>
2100	390	.rept	24
- 2100	391	define	RESRV,0,<>,<>, the second
2100	392	.endr	
2310	393	define	CVTFH, 20, <rd, wr="">, <l, o=""></l,></rd,>
2326	394	define	CVTFG,3, <rd,wr>,<l,q></l,q></rd,wr>
2330	395	.rept	92
2330	396	define	RESRV,0,<>,<>, brch>
233C	397	.endr	
2824	398	define	CVTHF,20, <rd,wr>,<o,l></o,l></rd,wr>
283A	399	define	CVTHD, 20, cru, wr>, co, o>

400	.rept	8	
401	define	RESRV,0,<>,<>, brch>	
402	.endr		
403			
404	.end		
	400 401 402 403 404	400 .rept 401 define 402 .endr 403 404 .end	400 .rept 8 401 define RESRV,0,<>,<>, brch> 402 .endr 403

DECweat Engineering October 2, 1984 -- write back rev Nov. 11, 1984 -- write back addreas and data registers

Frigate pipeline simulation model analysis of file dua1:[cutler]pjacobi.cod Simulation was run on 29-NOV-1984 09:20:27.73 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Static branch prediction was used to predict conditional branches

Total number of simulation cycles = 38244387 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.82

Number of instructions that stop decode = <u>366860</u> Number of instructions that stop fetch = <u>636</u> Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 717362 P653M157 Percent branches targets within the same virtual page = 87.21 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 91.99 Percent of branches incorrectly predicted = 8.01 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

n

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381562	4322688	803487	31736650
Decode	2239,642	2007957	2284080	31712708
Address	4524255	476418	1512348	31731366
Operand	6120074	7372	0	32116941
Execute	11756385	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284080 Indirect autoinc/dec register write wait cycles =

Pipeline Utilization Percent

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.1	83.0
Decode	5.9	5.3	6.0	82.9
Address	11.8	1.2	4.0	83.0
Operand	16.0	0.0	0.0	84.0
Execute	30.7	0.0	0.0	68.0
s run fb				
dua1:[cut	ler]p;	jacobi		
0				
0				
10				

2

Frigate pipeline simulation model analysis of file dua1:[cutler]pjacobi.cod Simulation was run on 30-NOV-1984 04:50:32.76 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries Branch counter width is 1 bits Branch block size is 4 bytes

Total number of simulation cycles = 38212106 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.82

Number of instructions that stop decode = 36686 Number of instructions that stop fetch = 636 822576 Total number of branching instructions = Number of branches targets within the same virtual page = 679332 Percent branches targets within the same virtual page = 82.59 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 94.38 Percent of branches incorrectly predicted = 5.62 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381005	4309803	881155	31640143
Decode	2297082	1996487	2284075	31634462
Address	4566146	474583	1503683	31667694
Operand	6132400	5993	0	32073713
Execute	11724104	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284075 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.3	82.8
Decode	6.0	5.2	6.0	82.8
Address	11.9	1.2	3.9	82.9
Operand	16.0	0.0	0.0	83.9
Execute	30.7	0.0	0.0	68.1
s run fb				
dua1:[cut	ler]p	jacobi		
0				
0				
10				
2				
2				

Frigate pipeline simulation model analysis of file dual:[cutler]pjacobi.cod Simulation was run on 1-DEC-1984 00:28:29.43 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries Branch counter width is 2 bits Branch block size is 4 bytes

Total number of simulation cycles = 38108771 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.81

Number of instructions that stop decode = 36686 Number of instructions that stop fetch = 636 Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 707199 Percent branches targets within the same virtual page = 85.97 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 96.65 Percent of branches incorrectly predicted = 3.35 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

0

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381085	4317812	823796	31586078
Decode	2224093	2004492	2284073	31596113
Address	4477383	475963	1511678	31643742
Operand	6038039	7372	0	32063360
Execute	11620769	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284073 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.2	82.9
Decode	5.8	5.3	6.0	82.9
Address	11.7	1.2	4.0	83.0
Operand	15.8	0.0	0.0	84.1
Execute	30.5	0.0	0.0	68.3
\$ run fb			17. TO 17.	
dua1:[cut	ler]p;	jacobi		
0		• • • • • • • • • • • • •		
0				
10				
3				
2				

frigate pipeline simulation model analysis of file dua1:[cutler]pjacobi.cod Simulation was run on 1-DEC-1984 19:48:16.37 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries

Branch counter width is 3 bits Branch block size is 4 bytes

Total number of simulation cycles = 38109608 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.81

Number of instructions that stop decode = 36686 Number of instructions that stop fetch = 636 Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 707247 Percent branches targets within the same virtual page = 85.98 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 96.63 Percent of branches incorrectly predicted = 3.37 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 29351 Number of instructions that stop pipe and then branch = Percent stop and branches = 3.57

0

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381129	4317785	823540	31587154
Decode	2224181	2004466	2284071	31596890
Address	4477791	475956	1511659	31644202
Operand	6038374	7372	0	32063862
Execute	11621606	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284071 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.2	82.9
Decode	5.8	5.3	6.0	82.9
Address	11.7	1.2	4.0	83.0
Operand	15.8	0.0	0.0	84.1
Execute	30.5	0.0	0.0	68.3
s run fb				
dua1:[cut	ler]p.	jacobi		
0				
0				
10				
4				
2				

Frigate pipeline simulation model analysis of file dua1:[cutler]pjacobi.cod Simulation was run on 2-DEC-1984 14:46:15.96 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries Branch counter width is 4 bits

Branch block size is 4 bytes

Total number of simulation cycles = 38111133 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.81

Number of instructions that stop decode = 36536 Number of instructions that stop fetch = 636 Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 706763 Percent branches targets within the same virtual page = 85.92 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 96.60 Percent of branches incorrectly predicted = 3.40 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

0

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381163	4317744	824336	31587890
Decode	2225102	2004432	2284074	31597525
Address	4479036	475937	1511644	31644516
Operand	6039656	7372	0	32064105
Execute	11623131	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284074 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	work
Prefetch	3.6	11.3	2.2	82.9
Decode	5.8	5.3	6.0	82.9
Address	11.8	1.2	4.0	83.0
Operand	15.8	0.0	0.0	84.1
Execute	30.5	0.0	0.0	68.3
\$ run fb				
dua1: [cut	ler]p;	jacobi		
0	2.17			
0				
12				
2				
2				

Frigate pipeline simulation model analysis of file dua1:[cutler]pjacobi.cod Simulation was run on 3-DEC-1984 09:19:49.71 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 2 bits Branch block size is 4 bytes

Total number of simulation cycles = 38108703 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.81

Number of instructions that stop decode = 36686 636 Number of instructions that stop fetch = Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 707229 Percent branches targets within the same virtual page = 85.98 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 96.65 Percent of branches incorrectly predicted = 3.35 85893 Number of unconditional branches = Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

0

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381089	4317820	823729	31586065
Decode	2224025	2004493	2284080	31596105
Address	4477315	475963	1511681	31643744
Operand	6037966	7372	0	32063365
Execute	11620701	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284080 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.2	82.9
Decode	5.8	5.3	6.0	82.9
Address	11.7	1.2	4.0	83.0
Operand	15.8	0.0	0.0	84.1
Execute	30.5	0.0	0.0	68.3
\$run fb				
dua1:[cut	ler]p	jacobi		
0				
0				
12				
4				
2				

Frigate pipeline simulation model analysis of file dua1:[cutler]pjacobi.cod Simulation was run on 4-DEC-1984 04:48:54.57 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 4 bits Branch block size is 4 bytes

Total number of simulation cycles = 38111020 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.81

Number of instructions that stop decode = 36686 Number of instructions that stop fetch = 636 Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 706788 Percent branches targets within the same virtual page = 85.92 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 96.61 Percent of branches incorrectly predicted = 3.39 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

0

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381167	4317744	824273	31587836
Decode	2225026	2004426	2284080	31597488
Address	4478949	475931	1511646	31644494
Operand	6039549	7372	0	32064099
Execute	11623018	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284080 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.2	82.9
Decode	5.8	5.3	6.0	82.9
Address	11.8	1.2	4.0	83.0
Operand	15.8	0.0	0.0	84.1
Execute	30.5	0.0	0.0	68.3
\$ run fb				
dua1:[cut	ler]p;	jacobi		
0				
0				
14				
2				
2				

Frigate pipeline simulation model analysis of file dual:[cutler]pjacobi.cod Simulation was run on 5-DEC-1984 00:11:18.76 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 16384 entries Branch counter width is 2 bits Branch block size is 4 bytes

Total number of simulation cycles = 38108678 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.81

Number of instructions that stop decode = 36686 Number of instructions that stop fetch = 636 Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 707237 Percent branches targets within the same virtual page = 85.98 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 96.65 Percent of branches incorrectly predicted = 3.35 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

n

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381095	4317819	823715	31586049
Decode	2224011	2004493	2284080	31596094
Address	4477295	475963	1511681	31643739
Operand	6037942	7372	0	32063364
Execute	11620676	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284080 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.2	82.9
Decode	5.8	5.3	6.0	82.9
Address	11.7	1.2	4.0	83.0
Operand	15.8	0.0	0.0	84.1
Execute	30.5	0.0	0.0	68.3
s run fb				
dua1: [cut	ler]p;	jacobi		
0				
0				
14				
4				
2				

Frigate pipeline simulation model analysis of file dua1:[cutler]pjacobi.cod Simulation was run on 5-DEC-1984 19:46:22.92 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 16334 entries Branch counter width is 4 bits

Branch block size is 4 bytes

Total number of simulation cycles = 38110977 Total number of instructions executed = 13569313 Average number of cycles per instruction = 2.81

Number of instructions that stop decode = 36686 Number of instructions that stop fetch = 636 Total number of branching instructions = 822576 Number of branches targets within the same virtual page = 706816 Percent branches targets within the same virtual page = 85.93 Number of conditional branch instructions = 707332 Percent conditional branch instructions = 85.99 Percent of branches predicted correctly = 96.61 Percent of branches incorrectly predicted = 3.39 Number of unconditional branches = 85893 Percent unconditional branches = 10.44 Number of instructions that stop pipe and then branch = 29351 Percent stop and branches = 3.57

0

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	1381173	4317763	824219	31587822
Decode	2224969	2004432	2284080	31597496
Address	4478383	475931	1511652	31644511
Operand	6039478	7372	- 0	32064127
Execute	11622975	0	0	26017291

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 2284080 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	3.6	11.3	2.2	82.9
Decode	5.8	5.3	6.0	82.9
Address	11.8	1.2	4.0	83.0
Operand	15.8	0.0	0.0	84.1
Execute	30.5	0.0	0.0	68.3
s run fb				
dua1:[cut	ler]p	jacobi		
5	and an and			
33				
12				
2				
2				

5 CYLLE REFILL

Frigate 6 stage pipeline simulation model analysis of file ph.cod Simulation was run on 30-NOV-1984 14:46:31.92 Data cache miss rate is set at 5% Data cache miss forced write rate is set at 33% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 2 bits Branch block size is 4 bytes

Total number of simulation cycles = 1555149 Total number of instructions executed = 62°924 Average number of cycles per instruction = 2.47

Number of instructions that stop decode = 259 Number of instructions that stop fetch = 169 Total number of branching instructions = 195276 Number of branches targets within the same virtual page = 194926 Percent branches targets within the same virtual page = 99.82 Number of conditional branch instructions = 130058 Percent conditional branch instructions = 66.60 Percent of branches predicted correctly = 58.39 Percent of branches incorrectly predicted = 41.61 Number of unconditional branches = 65042 Percent unconditional branches = 33.31 Number of instructions that stop pipe and then branch = 176 Percent stop and branches = 0.09

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	9241	216135	163203	1166570
Decode	225611	216642	216	1112680
Address	279846	128659	87320	1058324
Translate	421228	129250	0	1004671
Operand	449807	0	0	1105342
Execute	915682	1	0	639375

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 216 Indirect autoinc/dec register write wait cycles =

5 CYCLE REFILL

0

Frigate 5 stage pipeline (tb/cache) simulation model analysis of file ph.cod Simulation was run on 4-DEC-1984 17:52:55.66 Data cache data miss rate is set at 5% Data cache address miss rate is set at 50% Data cache miss forced write rate is set at 33% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 1 bits

Branch block size is 4 bytes

Total number of simulation cycles = 1505467 Total number of instructions executed = 628924 Average number of cycles per instruction = 2.39

Number of instructions that stop decode = 259 Number of instructions that stop fetch = 169 Total number of branching instructions = 195276 Number of branches targets within the same virtual page = 194940 Percent branches targets within the same virtual page = 99.83 Number of conditional branch instructions = 130058 Percent conditional branch instructions = 66.60 Percent of branches predicted correctly = 66.69 Percent of branches incorrectly predicted = 33.31 Number of unconditional branches = 65042 Percent unconditional branches = 33.31 Number of instructions that stop pipe and then branch = 176 Percent stop and branches = 0.09

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	8915	259072	152410	1085070
Decode	204391	258959	162	1041955
Address	247492	214942	44142	998891
Operand	314298	0	0	1191169
Execute	865975	26	0	639375

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 162 Indirect autoinc/dec register write wait cycles =

Stage	Idle S	tall	Wait	Work
Prefetch	0.6	17.2	10.1	72.1
Decode	13.6	17.2	0.0	69.2
Address	16.4	14.3	2.9	66.4
Operand	20.9	0.0	0.0	79.1
Execute	57.5	0.0	0.0	42.5

7 CYCLE REFIL

0

Frigate 4 stage pipeline (tb]cache, register destination) simulation model analy: Simulation was run on 7-DEC-1984 10:35:27.12 Data cache data miss rate is set at 5% Data cache address miss rate is set at 50% Data cache miss forced write rate is set at 33% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 1 bits Branch block size is 4 bytes

Total number of simulation cycles = 1261300 Total number of instructions executed = 628924 Average number of cycles per instruction = 2.01

Number of instructions that stop decode = 259 Number of instructions that stop fetch = 169 Total number of branching instructions = 195276 Number of branches targets within the same virtual page = 194944 Percent branches targets within the same virtual page = 99.83 Number of conditional branch instructions = 130058 Percent conditional branch instructions = 66.60 Percent of branches predicted correctly = 66.69 Percent of branches incorrectly predicted = 33.31 Number of unconditional branches = 65042 Percent unconditional branches = 33.31 Number of instructions that stop pipe and then branch = 176 Percent stop and branches = 0.09

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	work
Prefetch	8555	232039	152399	868307
Decode	203792	232204	108	825196
Operand	226751	0	327	1034222
Execute	621804	30	0	639375

Autoinc/dec register write wait cycles = 0 Register base wait cycles = 0 Double invalid register wait cycles = 108 Indirect autoinc/dec register write wait cycles =

Stage	Idle Stall	Wait Work	
Prefetch	0.7 18.4	12.1 68.8	
Decode	16.2 18.4	0.0 65.4	
Operand	18.0 0.0	0.0 82.0	
Execute	49.3 0.0	0.0 50.7	
Is "XSYST	EM-S-NORMAL.	normal succ	essful completion'
Command s	yntax error	at or near '	EXITEXIT.

PIANA, LOGI1

8-DEC-1984 10:00

Ø

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 30-NOV-1984 14:51:47.34 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Static branch prediction was used to predict conditional branches

Total number of simulation cycles = 48244771 Total number of instructions executed = 9948733 Average number of cycles per instruction = / 4.85

Number of instructions that stop decode = 594,655 Number of instructions that stop fetch = 578555 Total number of branching instructions = 3281253 Number of branches targets within the same virtual page = 2503697 Percent branches targets within the same virtual page = 76.30 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.60 Percent of branches predicted correctly = 47.29 Percent of branches incorrectly predicted = 52.71 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 500819 Number of instructions that stop pipe and then branch = Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	15608059	7884557	3383247	21368908
Decode	19769907	7574364	307682	20592818
Address	20490443	5064202	2816705	19873421
Operand	28374475	0	Ø	19870296
Execute	18317844	0	Ø	29649233

Autoinc/dec register write wait cycles = 390 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	32.4	16.3	7.0	44.3
Decode	41.0	15.7	9.6	42.7
Address	42.5	10.5	5.8	41.2
Operand	58.8	0.0	0.0	41.2
Execute	38.0	0.0	0.0	61.5

PIANA.LOG:1

8-DEC-1984 10:00

Page 3

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 1=DEC=1984 01:45:52.07 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries Branch counter width is 1 bits Branch block size is 4 bytes

Total number of simulation cycles = 45635643 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.59

Number of instructions that stop decode = 594655 Number of instructions that stop fetch = 578555 Total number of branching instructions = 3281253 Number of branches targets within the same virtual page = 2482444 Percent branches targets within the same virtual page = 75.66 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.68 Percent of branches predicted correctly = 83.94 Percent of branches incorrectly predicted = 16.06 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	15416307	7520299	3745347	18953690
Decode	19203392	7227109	307675	18897467
Address	19199712	4810706	2762002	18863223
Operand	25861947	Ø	0	19773696
Execute	15708716	0	6	29649233

Autoinc/dec register write wait cycles = 383 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Weit	WOFK
Prefetch	33.8	16.5	8.2	41.5
Decode	42.1	15.8	0.7	41.4
Address	42.1	10.5	6.1	41.3
Operand	56.7	0.0	0.0	43.3
Execute	34.4	0.0	0.0	65.0

PIANA.LOGI1

8-DEC-1984 10:00

Page 4

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 1=DEC=1984 07:07:04.84 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries Branch counter width is 2 bits Branch block size is 4 bytes

Total number of simulation cycles = 45312139 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.55

Number of instructions that stop decode = 594655 Number of instructions that stop fetch = 578555 Total number of branching instructions = 3281253 2496623 Number of branches targets within the same virtual page = Percent branches targets within the same virtual page = 76.09 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.60 Percent of branches predicted correctly = 87,75 Percent of branches incorrectly predicted = 12.25 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	15404601	7536476	3614994	18756068
Decode	18987400	7248587	307675	18768477
Address	18996870	4823568	2771748	18809953
Operand	25544147	Ø	Ø	19767992
Execute	15385212	0	Ø	29649233

Autoinc/dec register write wait cycles = 383 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stell	Wait	Work
Prefetch	34.0	16.6	8.0	41.4
Decode	41.9	16.9	0.7	41.4
Address	41.7	10.6	6.1	41.5
Operand	56.4	0.9	0.0	43.6
Execute	34.0	0.0	8.9	65.4

PIANA.LOGI1

8-DEC-1984 10:00

Page 5

Ø

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 1=DEC=1984 22:29:54.65 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries Branch counter width is 3 bits Branch block size is 4 bytes

Total number of simulation cycles = 45307889 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.55

Number of instructions that stop decode # 594655 Number of instructions that stop fetch = 578555 Total number of branching instructions = 3281253 Number of branches targets within the same virtual page = 2503397 Percent branches targets within the same virtual page = 76.29 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.60 Percent of branches predicted correctly = 87.73 Percent of branches incorrectly predicted # 12.27 Number of unconditional branches = 562427 Percent unconditional branches = 17,14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work
Prefetch	15403250	7541986	3603642	18759911
Decode	18973620	7254226	307653	18772390
Address	18895486	4826398	2773646	18812367
Operand	25537742	6	Ø	19770147
Execute	15380962	0	Ø	29649233

Autoinc/dec register write wait cycles = 361 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	34.0	16.6	8.0	41.4
Decode	41.9	16.0	8.7	41.4
Address	41.7	18.7	6.1	41.5
Operand	56,4	0.0	0.0	43.6
Execute	33.9	0.0	0.0	65.4

PIANA, LOGI1

8-DEC-1984 10:00

Page 6

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 2=DEC=1984 15:13:57.76 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 1024 entries Branch counter width is 4 bits Branch block size is 4 bytes

Total number of simulation cycles = 45309127 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.55

Number of instructions that stop decode = 594655 Number of instructions that stop fetch = 578555 Total number of branching instructions = 3281253 Number of branches targets within the same virtual page F 2503046 Percent branches targets within the same virtual page = 76.28 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67,60 Percent of branches predicted correctly = 87.62 Percent of branches incorrectly predicted = 12.38 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idie	Stall	Wait	Work
Prefetch	15401045	7546070	3595337	18766675
Decode	18963984	7259152	307642	18778349
Address	18885628	4829628	2773921	18819950
Operand	25539574	2	0	19769553
Execute	15382200	0	0	29649233

Autoinc/dec register write wait cycles = 350 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	34.0	16.7	7.9	41.4
Decode	41.9	16.0	0.7	41.4
Address	41.7	10.7	6.1	41.5
Operand	56.4	0.0	0.0	43.6
Execute	33.9	0.0	0.0	65.4

PIANA.LOG:1

8-DEC-1984 10:00

Page 7

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 3-DEC-1984 09:19:46,49 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 2 bits Branch block size is 4 bytes

Total number of simulation cycles = 45286993 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.55

Number of instructions that stop decode = 594655 Number of instructions that stop fetch = 578555 Total number of branching instructions = 3281253 Number of branches targets within the same virtual page = 2497312 Percent branches targets within the same virtual page = 76,11 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.60 Percent of branches predicted correctly = 88.06 Percent of branches incorrectly predicted = 11.94 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idie	Stall	Wait	Hork
Prefetch	15422692	7540240	3694234	18739829
Decode	18971106	7249544	307675	18758668
Address	18884504	4823725	2772777	18805987
Operand	25519094	Ø	0	19767899
Execute	15360066	0	0	29649233

Autoinc/dec register write wait cycles = 383 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stell	Wait	Hork
Prefetch	34.0	16.6	8.2	41.4
Decode	41.9	16.0	8.7	41.4
Address	41.7	10.7	6.1	41.5
Operand	56.3	0.0	0.0	43.7
Execute	33.9	0.0	0.0	65.5

PIANA, LOG:1

8-DEC-1984 10:00

Page 8

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 4=DEC=1984 09:08:27.94 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 4 bits Branch block size is 4 bytes

Total number of simulation cycles = 45255738 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.55

Number of instructions that stop decode = 594655 Number of instructions that stop fetch = 578555 3281253 Total number of branching instructions = Number of branches targets within the same virtual page = 2504099 Percent branches targets within the same virtual page = 76.32 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.60 Percent of branches predicted correctly = 88.21 Percent of branches incorrectly predicted = 11.79 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idle	Stell	Wait	Work
Prefetch	15398960	7550495	3570224	18736059
Decode	18927432	7260664	307643	18759999
Address	18831525	4830287	2775132	18818794
Operand	25486385	Ø	Ø	19769353
Execute	15328811	0	0	29649233

Autoinc/dec register write wait cycles = 351 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Stage	Idle	Stall	Wait	Work
Prefetch	34.0	16.7	7.9	41.4
Decode	41.8	16.0	2.7	41.5
Address	41.6	18.7	6.1	41.6
Operand	56.3	0.0	0.0	43.7
Execute	33.9	0.0	0.0	65.5
PIANA, LOGI1

8-DEC-1984 10:00

Page 9

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 5=DEC=1984 13:23:25.41 Data cache miss rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 16384 entries Branch counter width is 2 bits Branch block size is 4 bytes

Total number of simulation cycles = 45284017 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.55

594655 Number of instructions that stop decode = Number of instructions that stop fetch = 578555 Total number of branching instructions = 3281253 Number of branches targets within the same virtual page = 2497910 Percent branches targets within the same virtual page = 76.13 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.60 Percent of branches predicted correctly # 88.08 Percent of branches incorrectly predicted = 11.92 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idie	Stall	Wait	Work	
Prefetch	15400701	7540277	3599865	18743174	
Decode	18966616	7249586	307675	18760140	
Address	18880704	4823780	2772926	18886607	
Operand	25516235	0	0	19767782	
Execute	15357090	0	0	29649233	

Autoinc/dec register write wait cycles = 383 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Pipeline Utilization Percent

Stage	Idle	Stall	Wait	Nork
Prefetch	34.0	16.7	7.9	41.4
Decode	41.9	16.0	0.7	41.4
Address	41.7	18.7	6.1	41.5
Operand	56.3	0.0	0.0	43.7
Execute	33.9	0.0	Ø.P	65.5

PIANA, LOG: 1

8-DEC-1984 10:00

Frigate pipeline simulation model analysis of file dba3:[cutler]icp.cod Simulation was run on 6=DEC=1984 14:28:18.31 Data cache miss forced write rate is set at 0% Data cache miss forced write rate is set at 0% Dynamic branch prediction was used to predict conditional branches Branch table size is 16384 entries Branch counter width is 4 bits Branch block size is 4 bytes

Total number of simulation cycles = 45245263 Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.55

Number of instructions that stop decode = 594655 578555 Number of instructions that stop fetch = Total number of branching instructions = 3281253 Number of branches targets within the same virtual page = 2505091 Percent branches targets within the same virtual page = 76.35 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.60 Percent of branches predicted correctly = 88.31 Percent of branches incorrectly predicted # 11.69 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 Number of instructions that stop pipe and then branch = 500819 Percent stop and branches = 15.26

Pipeline Utilization Cycles

Stage	Idle	Stell	Wait	Work
Prefetch	15396796	7550358	3562880	18735229
Decode	18918395	7260724	307642	18758502
Address	18821451	4830263	2775370	18818179
Operand	25476351	Ø	Ø	19768912
Execute	15318336	Ø	0	29649233

Autoinc/dec register write wait cycles = 350 Register base wait cycles = 2448 Double invalid register wait cycles = 304844 Indirect autoinc/dec register write wait cycles =

Pipeline Utilization Percent

Stage	Idle	Stall	Wait	Work
Prefetch	34.0	16.7	7.9	41.4
Decode	41.8	16.0	0.7	41.5
Address	41.6	18.7	6.1	41.6
Operand	56.3	0.0	0.0	43.7
Execute	33.9	0.0	0.0	65.5

PIANA, LOG ; 1

8-DEC-1984 10:00

Page 11

Ø

Frigate pipeline simulation model analysis of file dba31[cutler]icp.cod Simulation was run on 7-DEC=1984 19:05:30.53 Data cache miss rate is set at 5% Data cache miss forced write rate is set at 33% Dynamic branch prediction was used to predict conditional branches Branch table size is 4096 entries Branch counter width is 2 bits Branch block size is 4 bytes Total number of simulation cycles = 46534008

Total number of instructions executed = 9948733 Average number of cycles per instruction = 4.68

594655 Number of instructions that stop decode = Number of instructions that stop fetch = Total number of branching instructions = 578555 3281253 2497254 Number of branches targets within the same virtual page = Percent branches targets within the same virtual page = 76.11 Number of conditional branch instructions = 2218007 Percent conditional branch instructions = 67.62 Percent of branches predicted correctly = 88.06 Percent of branches incorrectly predicted = 11.94 Number of unconditional branches = 562427 Percent unconditional branches = 17.14 500819 Number of instructions that stor pipe and then branch = Percent stop and branches # 15.26

Pipeline Utilization Cycles

Stage	Idle	Stall	Wait	Work	
Prefetch	15481525	8706728	3604414	18741341	
Decode	19009284	8463580	300971	18768173	
Address	18851696	6053578	2821067	18807667	
Operand	25485359	Ø	0	21048649	
Execute	16607081	Ø	0	29649233	

Autoinc/dec register write wait cycles = 356 Register base wait cycles = 2440 Double invalid register wait cycles = 298175 Indirect autoinc/dec register write wait cycles =

Pipeline Utilization Percent

Stage	Idle	Stall	Wait	Hork			
Prefetch	33.3	18.7	7.7	49.3			
Decode	40.9	18.2	0.6	40.3			
Address	40.5	13.0	6.1	42.4			
Operand	54.8	0.0	0.0	45.2			
Execute	35.7	0.0	0.9	63.7			
CUTLER		Job te	rminet	ed at	8-DEC-1984	10:00:07.34	

Accounting informatio	n:		
Buffered I/O count:	160	Peak working set size:	600
Direct 1/0 counts	53062	Peak page file size:	1244
Page faults:	2562	Mounted volumes:	0
Elapsed CPU times	2 06:42:05.08	Elapsed time: 7 19	:08:43,19

Instruction Frequency Data This data was collected on 30-NOV-1984 08:54:02.73 This data was written to db3:[cutler]phanoi.cod Total number of instructions traced was 15208945

Name	Count	Percht	Cumula	
MOVL	3670441	24.13	24.13	
BEOL	2097259	13.79	37.92	
DECL	2097163	13.79	51.71	
BRB	1572940	10.34	62.05	
TNCI	10/8710	6 90	48 95	
CMPI	1040/10	6 90	75 8/	
BIED	1040057	4 80	80 74	
SUBLO	1040050	6.07	80 47	
SUBLE	1040030	0.04	04.03	
SUBLS	1040005	0.09	90.55	
MNEGL	524248	5.45	99.98	
MOVE	201	0.00	99.98	
RSB	149	0.00	99.98	
JMP	137	0.00	99.98	
MOVAB	137	0.00	99.98	
CLRL	116	0.00	99.98	
BBC	114	0.00	99.98	
BNEQ	112	0.00	99.98	
BLBC	105	0.00	99.98	
CASEB	99	0.00	99.98	
BLSS	87	0.00	99.98	
CVTBL	85	0.00	99.99	
MOVQ	84	0.00	99.99	
MOVAL	84	0.00	99.99	
CMPB	81	0.00	99.99	
PUSHL	78	0.00	99.99	
BRW	75	0.00	99.99	
INSV	75	0.00	99.99	
TSTI	73	0.00	99.99	
CIRB	71	0.00	00 00	
BICIS	71	0 00	00 00	
BGTP		0 00	00 00	
DET	64	0.00	00 00	
	43	0.00	00 00	
CALLS	43	0.00	00 00	
BEDW	62	0.00	99.99	
CMPW	60	0.00	99.99	
ACRE	54	0.00	99.99	
ACDD 7	54	0.00	99.99	
HOVZWI	53	0.00	99.99	
MOVZAL	50	0.00	99.99	
MUVZDL	20	0.00	99.99	
AUULE	48	0.00	99.99	
SOBGEQ	46	0.00	99.99	
BISLZ	45	0.00	99.99	
JSB	36	0.00	99.99	
PUSHAB	36	0.00	100.00	
SUBW3	36	0.00	100.00	
MOVC3	35	0.00	100.00	
BSBB	33	0.00	100.00	
ADDW2	32	0.00	100.00	
MOVC5	27	0.00	100.00	
PUSHAL	27	0.00	100.00	
ASHL	26	0.00	100.00	
DECM	23	0.00	100.00	
BBS	23	0.00	100.00	
		The second se	and the second se	

	Contract of the		
BLBS	23	0.00	100.00
CLRQ	22	0.00	100.00
MCOMB	22	0.00	100.00
BISPSM	21	0,00	100.00
LUCC	20	0.00	100.00
DILDS	20	0.00	100.00
RCEO	19	0.00	100.00
CIRW	17	0.00	100.00
MULLZ	16	0.00	100.00
POPR	15	0.00	100.00
PUSHR	15	0.00	100.00
SUBW2	13	0.00	100.00
EDIV	12	0.00	100.00
CHME	12	0.00	100.00
CVTLP	12	0.00	100.00
SUBB3	11	0.00	100.00
TSTW	11	0.00	100.00
EXTZV	11	0.00	100.00
BLSSU	10	0.00	100.00
PUSHAG	10	0.00	100.00
ASHP	10	0.00	100.00
RIFOU		0.00	100.00
SKPC	7	0.00	100.00
DIVIS	7	0.00	100.00
ADBLED	7	0.00	100.00
EDITPC	5	0.00	100.00
CASEW	5	0.00	100.00
CHMK	5	0.00	100.00
CVTLW	5	0.00	100.00
ROTL	4	0.00	100.00
BITL	4	0.00	100.00
BBCS	4	0.00	100.00
EXTV	4	0.00	100.00
CALLG	4	0.00	100.00
CMPCS	3	0.00	100.00
ADDF2	3	0.00	100.00
SUBF2	3	0.00	100.00
DIVF2	3	0.00	100.00
CVIMP	5	0.00	100.00
HOVE	2	0.00	100.00
FMUL	ž	0.00	100.00
TSTB	ž	0.00	100.00
CVTBW	3	0.00	100.00
MULW3	3	0.00	100.00
DIVLE	3	0.00	100.00
CVTSP	5	0.00	100.00
PUSHAW	2	0.00	100.00
CVTFD	2	0.00	100.00
MOVD	2	0.00	100.00
MULL3	5	0.00	100.00
BICL3	2	0.00	100.00
BBCC	2	0.00	100.00
INSQUE	1	0.00	100.00
DIVD2	1	0.00	100.00
CVILD	1	0.00	100.00
LVIDE	1	0.00	100.00

BISB2	1	0.00	100.00
INCB	1	0.00	100.00

Instruction Size

Size	Count	Percnt	Cumula
1	213	0.00	0.00
2	7865297	51.71	51.72
3	2098478	13.80	65.51
4	1049684	6.90	72.42
5	3146043	20.69	93.10
6	1048972	6.90	100.00
7	218	0.00	100.00
8	16	0.00	100.00
9	18	0.00	100.00
10	5	0.00	100.00
11	1	0.00	100.00
12	0	0.00	100.00
13	Ø	0.00	100.00
14	e	0.00	100.00
15	0	0.00	100.00
16	0	0.00	100.00
17	0	0.00	100.00
18	Ø	0.00	100.00
19	Ø	0.00	100.00
50	0	0.00	100.00
21	Ø	0.00	100.00
22	0	0.00	100.00
23	0	0.00	100.00
24	Ø	0.00	100.00
25	Ø	0.00	100.00
26	0	0.00	100.00
27	0	0.00	100.00
28	Ø	0.00	100.00
29	0	0.00	100.00
30	6	0.00	100.00
51	0	0.00	100.00
32	6	0.00	100.00
35	0	0.00	100.00
34	6	0.00	100.00
35	0	0.00	100.00
30	0	0.00	100.00
57	0	0.00	100.00
30	8	0.00	100.00
37	2	0.00	100.00
40	6	0.00	100.00

Average Instruction Size = 3.17

Specifier Size

Size		Count	Percnt	Cumula
	1	19404530	82.22	82.22
	2	1655	0.01	82.23
	3	3145973	13.33	95.56
	4	1048650	4.44	100.00
	5	320	0.00	100.00
	6	ø	0.00	100.00

Average Specifier Size = 1.40

Specifier Type (all)

Type	Count	Percnt	Cumule
s"#0x	2098106	8.89	8.89
s"#1x	138	0.00	8.89
8##2x	107	0.00	8.89
s"#3x	96	0.00	8.89
[Rx]	4194438	17.77	26.66
Rn	12585969	53.33	79.99
(Rb)	332	0.00	79.99
-(Rb)	95	0.00	79.99
(Rb)+	355	0.00	79.99
·(Rb)+	26	0.00	79.99
b"(Rb)	1144	0.00	80.00
.b(Rb)	274	0.00	80.00
w"(Rb)	121	0.00	80.00
ew(Rb)	0	0.00	80.00
1"(Rb)	169	0.00	80.00
el(Rb)	33	0.00	80.00
Bdb	4719537	20.00	100.00
Bdw	189	0.00	100.00

Specifier Type (index)

Type	Count	Percnt	Cumula
(Rb)	Ø	0.00	0.00
-(Rb)	0	0.00	0.00
(Rb)+	0	0.00	0.00
*(Rb)+	0	0.00	0.00
b"(Rb)	3145734	75.00	75.00
.b(Rb)	54	0.00	75.00
W"(Rb)	1048650	25.00	100.00
ew(Rb)	Ø	0.00	100.00
1"(Rb)	0	0.00	100.00
el(Rb)	Ø	0.00	100.00

Memor	y R	ea	ds	P	e	-	In	\$1		ue	t	10	n								
Numbe	r		Co	un	e		Pe	-	n	t	C	h	u 1								
	0	13	11	04	26	5	8	6.	, 2	ø		36	. 2	20							
	1	5	09	85	37	7	1	3,	, 8	0	16	10	. 2	0							
	2			2	79	9		Ø,	.0	0	16	00	. 2	0							
	3				ä	2		0,	.0	0	10	00	. 2	90							
	4				1	L		Ø,	.0	0	16	30	. 2	0							
	5				6	8		0,	.0	0	16	10	. 8	96							
	6				6	8		Ø,	.0	0	10	00	. 8	00							
Avera	ge	Me	mo	r y	F	?e	ad	8	P	er	1	In			Jet	10	n		0.1	4	
Memor	y w	-1	te	8	Pe		I	n	st	ru	c	• 1	•	1							
humber														-							
NUMDe	-			un	t		re	-	5 11	τ	L	1	01	a							
	0	13	11	10	8	3	8	6.	. 2	1	8	36	. 2	21							
	1	2	09	78	6	5	1	3.	. 7	9	10	00		0							
	Ż	1				2		0	.0	0	11	00	. 2	00							
Avera		-									-	T			PUE		0		ø.	14	
				• •				-				•									
Regis	ter	R	ea	ds	F	e	•	Ir	1 8	tr	u	t	10	n							
Numbe	-		co	un	t		Pe	-		t	C	Jm	u 1	8							

0	4720151	31.04	31.04
1	5245065	34.49	65.52
2	3146489	20.69	86.21
3	2097208	13.79	100.00
4	27	0.00	100.00
5	5	0.00	100.00
6	0	0.00	100.00
7	Ø	0.00	100.00
8	0	0.00	100.00
9	0	0.00	100.00
10	0	0.00	190.00
11	Ø	0.00	100.00
12	Ø	0.00	100.00

Average Register Reads Per Instruction = 1,17

Register Writes Per Instruction

Number Count Percnt Cumula

Ø	7867335	51,73	51.73
1	7341600	48,27	100.00
2	10	0.00	100.00

Average Register Writes Per Instruction = 0.48 CUTLER Job terminated at 30-NOV=1984 17:59:59.51 Instruction Frequency Data This data was collected on 30-NOV-1984 10:40:05.24 This data was written to dba3:[cutler]p]acobi.cod Total number of instructions traced was 13567199

in an S

Name	Count	Percnt	Cumula
MOVF	2411961	17.78	17.78
SUBL3	1443589	10.64	28.42
ADDL2	1435118	10.58	39.00
MULL2	1434538	10.57	49.57
MULF3	1324354	9.76	59.33
MULF2	1197322	8.83	68.16
SUBF3	589739	4,35	72.50
ADDF3	587551	4,33	76.83
CMPL	581551	4.29	81.12
BEQL	571072	4.21	85.33
ADDL3	323167	2.38	87.71
ACBL	315503	2.33	90.04
ADDF2	273944	2.02	92.06
AOBLEQ	207153	1.53	93.58
BLEQ	59895	0.44	94.02
CMPF	59776	0.44	94.46
BICW2	59738	0.44	94.91
DIVFS	59384	0.44	95.34
SUBW2	46019	0.34	95.68
ADDW2	36388	0.27	95.95
BILLS	34442	0.25	96.20
MUVL	33645	0.25	96.45
DLOO	51227	0.23	96.68
DIVEZ	30974	0.23	96.91
	30303	0.22	97.13
	50550	0.22	97.30
THO	20020	0.19	97.54
TED	24/99	0.10	91.13
JOD TWI	24449	0.10	97.91
POTI	23237	0.17	90.00
LPA	23281	0.17	90.20
TETA	23001	0.17	70.42
VTED	23001	0.17	90.34
TYDE	23000	0.17	98 91
BRW	22711	0.17	99 10
BRB	13157	0.10	99.19
SUBF2	12235	0.09	99.28
BGTR	11005	0.08	99.37
HOVAL	6916	0.05	99.42
MULL3	6289	0.05	99.46
SUBL2	6208	0.04	99.51
USHAL	5158	0.04	99.55
VTLF	5084	0.04	99.58
INEGE	4199	0.03	99.61
MPW	3958	0.03	99.64
EMUL	3935	0.03	99.67
DIV	3850	0.03	99.70
INCL	3699	0.03	99.73
OVAB	3236	0.02	99,75
VTWL	2550	0.02	99.77
BICL2	1679	0.01	99.78
RET	1603	0.01	99.79
ALLS	1598	0.01	99.81

CVTBL	1505	0.01	99.82
DECL	1496	0.01	99.83
MOVW	1488	0.01	99.84
SUBW3	1371	0.01	99.85
INCB	1303	0.01	99.86
BLSSU	1276	0.01	99.87
POLYF	1267	0.01	99.88
CVTDF	1266	0.01	99.89
MOVAQ	1266	0.01	99.90
EMODE	1265	0.01	99.91
ADDD2	1265	0.01	99,91
BICW3	1265	0.01	99.92
MOVB	1111	0.01	99.93
TSTL	816	0.01	99.94
CASEB	761	0.01	99.94
BNEQ	676	0.00	99.95
BSBW	671	0.00	99.95
PUSHL	590	0.00	99.96
MOVU	388	0.00	99.96
INSV	550	0.00	99.96
BLBC	354	0.00	99.97
BBC	353	0.00	99.97
CMPB	331	0.00	99.97
PUSHAB	296	0.00	99.97
BISLZ	265	0.00	99.98
ASHL	262	0.00	99.98
MUVC3	220	0.00	99.98
BISPSH	199	0.00	99.98
CUTPS	195	0.00	99.98
BBCC	105	0.00	99.90
BBCC	107	0.00	99.90
SORCEO	130	0.00	99,99
DIVIZ	12/	0.00	00 00
TSTE	121	0.00	00 00
CUTEI	110	0 00	00 00
BBSC	101	0 00	00 00
CIRO	88	0.00	00 00
MOVZBL	87	0.00	00.00
MNEGL	87	0.00	00.00
SKPC	68	0.00	00.00
EXTZV	66	0.00	99.99
DIVL2	65	0.00	99.99
MOVD	57	0.00	99.99
BVC	55	0.00	99.99
ADD82	55	0.00	99.99
MULB2	55	0.00	100.00
ACBB	54	0.00	100.00
CLRW	45	0.00	100.00
BSBB	42	0.00	100.00
MOVC5	41	0.00	100.00
BLBS	37	0.00	100.00
SOBGTR	37	0.00	100.00
XORW3	36	0.00	100.00
BLEQU	28	0,00	100.00
CHME	26	0.00	100.00
ASHP	24	0.00	100.00
DECW	23	0.00	100.00
PUSHR	23	0.00	100.00

PJGEN.LOG;1

MCOMB	22	0.00	100.00
POPR	22	0.00	100.00
AOBLSS	22	0.00	100.00
LOCC	20	0.00	100.00
BICB3	20	0.00	100.00
TSTW	17	0.00	100.00
XORB3	16	0.00	100.00
EDITPC	12	0.00	100.00
SUBB3	11	0.00	100.00
EXTV	11	0.00	100.00
PUSHAQ	10	0.00	100.00
CALLG	10	0.00	100.00
CHMK	9	0.00	100.00
BBCS	9	0.00	100.00
CASEW	5	0.00	100.00
CVTLW	5	0.00	100.00
BITL	4	0.00	100.00
CMPC5	3	0.00	100.00
CVTWF	3	0.00	100.00
CVTBW	3	0.00	100.00
MULW3	3	0.00	100.00
CVTSP	2	0.00	100.00
PUSHAW	2	0.00	100,00
BITB	2	0.00	100.00
MOVPSL	5	0.00	100.00
REI	1	0.00	100.00
INSQUE	1	0.00	100.00
CVTLD	1	0.00	100.00
BISB2	1	0.00	100.00
BICB2	1	0.00	100.00

Instruction Size

Size	Count	Percnt	Cumula
1	26929	0.20	0.20
2	795271	5.86	6.86
3	4750848	35.02	41.08
4	3023492	55.58	63.36
5	2720383	20.05	83.41
6	1819204	13.41	96.82
7	368493	2.72	99.54
8	3640	0.03	99.57
9	27021	0.20	99.76
10	29467	0.22	99.98
11	2451	0.02	100.00
12	0	0.00	100.00
13	0	0.00	100.00
14	0	0.00	100,00
15	0	0.00	100.00
16	0	0.00	100.00
17	Ø	0.00	100.00
18	0	0.00	100.00
19	Ø	0.00	100.00
20	0	0.00	100.00
21	0	0.00	100.00
22	0	0.00	100.00
25	0	0.00	100.00
24	6	0.00	100.00
25	0	0.00	100.00
20	0	0.00	100.00
21	0	0.00	100.00
20		0.00	100.00
29	0	0.00	100.00
30	0	0.00	100.00
31	0	0.00	100.00
32	0	0.00	100.00
33	0	0.00	100.00
34	0	0.00	100.00
35	0	0.00	100.00
30	0	0.00	100.00
3/	0	0.00	100.00
30	0	0 00	100.00
40	0	0.00	100 00
40	Ø	0.00	

Average Instruction Size = 4.10

Specifier Size

Size		Count	Percnt	Cumula
	1	24311236	77.29	77.29
	2	3963980	12.60	89.89
	3	3012911	9.58	99.47
	4	11399	0.04	99.50
	5	156449	0.50	100.00
	6	3	0.00	100.00

Average Specifier Size = 1.34

Specifier Type (all)

Туре	Count	Percnt	Cumula
**Øx	1838020	5.84	5.84
s"#1x	24121	0.08	5.92
8##2x	3144	0.01	5.93
s*#3x	5297	0.02	5.95
[Rx]	2909389	9,25	15.20
Rn	19914430	63.31	78.50
(Rb)	1274775	4.05	82.56
-(Rb)	536	0.00	82.56
(Rb)+	531060	1.69	84.25
·(Rb)+	44	0.00	84.25
b*(Rb)	3586808	11.40	95.65
.b(Rb)	43393	0.14	95.79
W"(Rb)	6592	0.02	95.81
ew(Rb)	Ø	0.00	95.81
1"(Rb)	27611	0.09	95.90
el(Rb)	24547	0.08	95.97
Bdb	927273	2.95	98.92
Baw	118919	1.08	100.00

Specifier Type (index)

Type	Count	Percnt	Cumula
(Rb)	12703	0.44	0.44
-(Rb)	0	0.00	0.44
(Rb)+	Ø	0.00	0.44
*(Rb)+	1	0.00	0.44
b*(Rb)	2885231	99.17	99.61
.b(Rb)	55	0.00	99.61
W*(Rb)	11399	0.39	100.00
ew(Rb)	0	0.00	100.00
1-(Rb)	Ø	0.00	100.00
el(Rb)	Ø	0.00	100.00

Memory Reads Per Instruction

umber	Count	Percnt	Cumule
0	7884891	58.12	58.12
1	5364767	39.54	97.66
2	316273	2.33	99.99
3	2	0.00	99.99
4	1266	0.01	100.00
5	0	0.00	100.00
6	Ø	0.00	100.00

Average Memory Reads Per Instruction = 0,44

Memory Writes Per Instruction

Number Count Percet Cumula

0	10987263	80.98	80.98
1	2579922	19.02	100.00
2	14	0.00	100.00

Average Memory Writes Per Instruction = 0.19

Register Reads Per Instruction

Number	Count	Percnt	Cumula
8	881304	6.50	6.50
1	1895504	13.97	20.47
2	8486543	62.55	83.02
3	1706805	12.58	95.60
4	597031	4.40	100.00
5	12	0.00	100.00
6	Ø	0.00	100.00
7	0	0.00	100.00
8	0	0.00	100.00
9	Ø	0.00	100.00
10	0	0.00	100.00
11	0	0.00	100.00
12	0	0.00	100.00

Average Register Reads Per Instruction = 1,94

Register Writes Per Instruction

Number Count Percnt Cumula

0	4080169	30.07	30.07
1	9481929	69.89	99.96
2	5101	0.04	100.00

Average Register Writes Per Instruction = 0.70 CUTLER job terminated at 30-NOV-1984 19:13:03.84

FRIGHTE

Instruction Frequency Data This data was collected on 6-DEC-1984 22:11:37.56 This data was written to dual:Ecutlerlicp.cod Total number of instructions traced was 9957421

. .

Name	Count	Percnt	Cumula
MOVL	1743507	17.51	17.51
BEQL	567772	5.70	23.21
BNEQ	485003	4.87	28.08
CMPW	441390	4-44	32.52
MOVZBL	333663	3.35	35.87
MOVAL	303766	3.05	38.92
CMPI	292282	2.94	41.86
CVTWI	265602	2.67	44.52
CLRI	212242	2.13	46.66
RSB	211168	2.12	48.78
MOVW	189319	1.90	50.68
Bar	181495	1 82	52 50
ADDI 2	170716	1 71	54 22
HETP	169925	1 71	55 07
BGEO	165458	1 66	57 58
MOVAD	155279	1.54	50 1/
CUTRI	153630	1.50	59-14
CVICL	1701/7	1.33	00.00
CMPS	130147	1.39	02.00
DRW	130573	1.37	03.44
883	130430	1.57	04.01
PUSHL	133/15	1.34	00.15
BRB	127014	1-28	01.43
ISIL	11/191	1.18	08.00
ADDLS	113561	1.14	69.14
8588	111/2/	1.12	70.87
ADBLSS	110415	1.11	71.97
MOVZBW	109056	1.10	73.07
BLSS	108715	1.09	74-16
MOVZWL	102328	1.03	75.19
BZBW	98629	0.99	76.18
MOVE	97518	0.98	77.16
BLEQ	94588	0.95	78.11
RET	94044	0.94	79.05
CASEB	93993	0.94	80.00
CALLS	91473	0.92	80.92
MULLS	87402	0.88	81.79
alssu	84693	0.85	82.64
BBCC	82935	0.83	83.48
BLBC	77627	0.78	84-26
INCL	75126	0.75	85.01
INSV	73498	0.74	85.75
AOBLEQ	70124	0.70	86.45
SUBL 3	69871	0.70	87.15
SUBB3	69752	0.70	87.86
SOBGTR	63175	0.63	88.49
IMP	60888	0.61	89.10
TSTW	59291	0.60	89.70
SUBL 2	56405	0.57	90.26
SUBB2	55494	0.56	90.82
EXTZV	55098	0.55	91.37
INEGW	51944	0.52	91.90
CVTLW	43892	0.44	92.34

ACBL	42299	0.42	92.76
DECL	39371	0.40	93.16
MULL2	34942	0.35	93.51
JSB	26880	0.27	93.78
CLRB	26760	0.27	94.05
MOVAW	26677	0.27	94.31
BGTRU	22420	0.23	94.54
BICL2	20556	0.21	94.75
MOVC3	20555	0.21	94.95
ASHL	20362	0.20	95.16
SOBGEQ	18927	0.19	95.35
REMQUE	18727	0.19	95.53
MNEGL	18644	0.19	95.72
LVISW	18097	0.18	95.90
DELW	179/0	0.13	90.09
BL 55	17363	0.15	90.20
MOVO	16076	0.17	90.44
FI DW	16035	0.17	96.01
MCOMI	16096	0.16	96 94
TNSOILE	15393	0.15	97.09
MOVAQ	14413	0.14	97.24
1000	13656	0.14	97.38
BISB2	13335	0.13	97-51
POPR	13198	0.13	97.64
MOVES	12444	0.12	97.77
INCW	12305	0.12	97.89
PUSHAL	12113	0.12	98.01
CMPZV	11031	0.11	98.12
BVS	11013	0.11	98.23
CLRQ	10822	0.11	98.34
ADDW2	9541	0.10	98.44
TSTB	9434	0.09	98.53
ADDW3	8999	0.09	98.62
PUSHR	8927	0.09	98.71
PUSHAB	8601	0.09	98.80
BGEQU	7313	0.07	98.87
EDIV	7244	0.07	98.95
SPANC	6780	0.07	99.01
BILW2	0528	0.07	99.05
BISLZ	0202	0.00	99.14
CMOL	5257	0.05	99.20
ADDB3	4891	0.05	00 33
AVC	4834	0.05	00.35
CASEW	4641	0.05	99.40
SUBW3	4418	0-04	99.44
PROBER	4261	0-04	99.49
BICB3	3348	0.04	99.52
BICB2	3791	0.04	99.56
CMPC3	3568	0.04	99.60
SUBW2	3394	0.03	99.63
ACBB	3258	0.03	99.67
CHME	2928	0.03	99.69
PUSHAQ	2852	0.03	99.72
EXTV	2834	0.03	99.75
BICW3	2757	0.03	99.78
MNEGB	2591	0.03	99.81
CALLG	2574	0.03	99.83
BLEQU	2466	0.02	99.86

BISW2	2149	0.02	99.88
BISB3	1989	0.02	99.90
MOVTC	1494	0.02	99.91
PUSHAW	1413	0.01	99.93
BISL3	1394	0.01	99.94
BICL3	944	0.01	99.95
BBSS	580	0.01	99.96
INCB	550	0.01	99.96
CVTLB	513	0.01	99.97
FFS	508	0.01	99.97
SKPC	450	0.00	99.98
СНМК	368	0.00	99.98
XORB2	358	0.00	99.98
MCOMB	254	0.00	99.99
DIVL3	191	0.00	99.99
ADDB2	176	0.00	99.99
DIVW2	156	0.00	99.99
BISW3	144	0.00	99.99
MCOMW	117	0.00	99.99
DECB	116	0.00	100.00
BITW	65	0.00	100.00
SUBP6	51	0.00	100.00
CVTPL	51	0.00	100.00
BITB	50	0.00	100.00
BBSC	30	0.00	100.00
CVILD	20	0.00	100.00
MULWS	20	0.00	100.00
CASEL	25	0.00	100.00
CMPD	24	0.00	100.00
NOVD	14	0.00	100.00
BITL	14	0.00	100.00
LVIWB	4	0.00	100.00
MULUS CURDZ	0	0.00	100.00
50803	0	0.00	100.00
ISID DIVDO	0	0.00	100.00
CUTO1	2	0.00	100.00
CUTDE	2	0.00	100.00
LVIDE	3	0.00	100.00
CUTIE		0.00	100.00
DTV27		0.00	100.00
YORU2		0.00	100.00
XORI 3		0.00	100.00
A ONE J	•	0.00	100.00

Instruction Size

Size	Count	Percnt	Cumula
1	305212	3.07	3.07
2	2440090	24.51	27.57
3	2194528	22.04	49.61
4	2142629	21.52	71.13
5	1418012	14.24	85.37
6	523898	5.26	90.63
7	424738	4.27	94.90
8	411772	4-14	99.03
9	38384	0.39	99.42
10	52167	0.52	99.94
11	3402	0.03	99.97
12	2417	0.02	100.00
13	32	0.00	100.00
14	67	0.00	100.00
15	0	0.00	100.00
16	73	0.00	100.00
17	0	0.00	100.00
18	0	0.00	100.00
19	0	0.00	100.00
20	0	0.00	100.00
21	0	0.00	100.00
22	0	0.00	100.00
23	0	0.00	100.00
24	0	0.00	100.00
25	0	0.00	100.00
20	0	0.00	100.00
20	0	0.00	100.00
20	0	0.00	100.00
30	0	0.00	100.00
31	0	0.00	100.00
32	0	0.00	100.00
32	0	0.00	100.00
36	0	0.00	100.00
35	0	0.00	100.00
36	0	0.00	100.00
37	0	0.00	100.00
38	0	0.00	100.00
39	0	0.00	100.00
40	Ő	0.00	100.00

Average Instruction Size = 3.79

Specifier Size

Size		Count	Percnt	Cumula
	1	12195247	68.41	68.41
	2	3066385	17.20	85.61
	3	1559437	8.75	94.36
	4	331437	1.86	96.22
	5	447160	2.51	98.73
	6	226171	1.27	100.00

Average Specifier Size = 1.57

Specifier Type (all)

Type	Count	Percnt	Cumula
s^#0x	1475656	8.28	8.28
s^#1x	143289	0.80	9.08
s^#2x	69521	0.39	9.47
s^#3x	77850	0.44	9.91
[Rx]	1282570	7.19	17.10
Rn	6723786	37.72	54.82
(Rb)	467798	2.62	57.45
-(Rb)	80794	0.45	57.90
(Rb)+	991686	5.56	63.46
a(Rb)+	12854	0.07	63.54
b*(Rb)	2107775	11.82	75.36
ab(Rb)	132002	0.74	76.10
W^(Rb)	910439	5.11	81.21
aw(Rb)	23978	0.13	81.34
L^(Rb)	284528	1.60	82.94
al(Rb)	37754	0.21	83.15
Bdb	2722547	15.27	98.42
Bdw	281060	1.58	100.00

Specifier Type (index)

Type	Count	Percnt	Cumula
(Rb)	265422	20.69	20.69
-(Rb)	0	0.00	20.69
(Rb)+	0	0.00	20.69
a(Rb)+	0	0.00	20.69
b*(Rb)	463799	36.16	56.86
ab(Rb)	49170	3.83	60.69
W*(Rb)	276170	21.53	82.22
aw(Rb)	5860	0.46	82.68
L^(Rb)	214441	16.72	99.40
al(Rb)	7708	0.60	100.00

Memory Reads Per Instruction

lumber	Count	Percnt	Cumula
0	6087915	61.14	61.14
1	3574652	35.90	97.04
2	289517	2.91	99.95
3	5333	0.05	100.00
4	4	0.00	100.00
5	0	0.00	100.00
6	0	0.00	100.00

Average Memory Reads Per Instruction = 0.42

Memory Writes Per Instruction

Number Count Percnt Cumula

0	8640952	86.78	86.78		01	irm
1	1316469	13.22	100.00		000	ACT
2	0	0.00	100.00		1	min
Average	Memory W	rites P	er Instruc	tion =	0.13	00.
Register	Reads P	er Inst	ruction			

umber	Count	Percnt	Cumula	
0	3077047	30.90	30.90	
1	4655170	46.75	77.65	
2	1790713	17.98	95.64	
3	319066	3.20	98.84	
4	111307	1.12	99.96	
5	4118	0.04	100.00	
6	0	0.00	100.00	
7	0	0.00	100.00	
8	0	0.00	100.00	
9	0	0.00	100.00	
10	0	0.00	100.00	
11	C	0.00	100.00	
12	0	0.00	100.00	

Average Register Reads Per Instruction = 0.97

Register Writes Per Instruction

Nus	ber	Count	Percnt	Cumula	
	0	6008515	60.34	60.34	
	1	3941662	39.59	99.93	
	2	7244	0.07	100.00	

Average Register Writes Per Instruction = 0.40

Specifier Access Type

Туре	Count	Percnt	Cumula
read	8125967	45.59	45.59
write	4417811	24.78	70.37
modify	354808	4.80	75.16
addres	879241	4.93	80.10
vield	544453	3.05	83.15
branch	3003607	16.85	100.00

Total number of operand specifiers was 17825887 Number of nonfetch operand specifiers was 13122708 Percent of nonfetch operand specifiers was 73.62 PIGEN.LOGI1

. . . .

Instruction Frequency Data This data was collected on 30-NOV-1984 08:53:51.46 This data was written to dba3:[cutler]icp.cod Total number of instructions traced was 9948733

Name	Count	Percnt	Cumula
MOVL	1739602	17.49	17.49
BEQL	564686	5.68	23.16
BNEQ	484989	4.87	28.04
CMPW	441337	4.44	32.47
MOVZBL	333848	3.36	35.83
MOVAL	303765	3.05	38.88
CMPI	292195	2.94	41.82
CVTWI	266086	2.67	44.49
DRR	211140	2.12	46 62
CIPI	210742	2.12	48 73
MOVW	18030/	1 00	50 64
BBC	1809214	1 83	53 /15
1001 3	171130	1.02	52.45
BCTP	140014	1.74	54.17
BCEO	145450	1.11	53.00
BGEG	103430	1.00	5/.33
OVEDI	100000	1.5/	59.12
CVIBL	152030	1.33	00.05
CMPB	130230	1.39	02.04
BRW	137319	1.38	63.42
BBS	137010	1.38	64.80
PUSHL	133535	1.34	66.14
BRB	127044	1.28	67.42
TSTL	115383	1.16	68.58
ADDL3	113320	1.14	69.72
8588	111727	1.12	70.84
AOBLSS	110415	1.11	71.95
MOVZBW	109055	1.10	73.05
BLSS	108707	1.09	74.14
MOVZWL	102036	1.03	75.17
BSBW	98630	0.99	76.16
MOVB	97676	0.98	77.14
BLEQ	94587	0.95	78.09
CASEB	93969	0.94	79.03
RET	93894	0.94	79.98
CALLS	91323	0.92	80.90
MULL3	87398	0.88	81.77
BLSSU	84846	0.85	82.63
BBCC	82935	0.83	83.46
BLBC	77592	0.78	84.24
INCL	75121	0.76	85.00
INSV	73498	0.74	85.74
AOBLEQ	70124	0.70	86.44
SUBL 3	69846	0.70	87.14
SUBBS	69754	9.79	87.84
SOBGTR	63175	0.64	88.48
IMP	60856	8.61	80.00
TSTW	595/15	0.40	89 49
SURBO	55404	0 54	00 25
EXTZV	55494	0.50	90 80
SURI 2	55070	0.55	01 75
NECH	55020	0.55	71.35
	51944	0.52	71.00
LVILW	43892	0.44	46.35

PIGEN.LOGI1

ACBL	42299	0.43	92.74
DECL	39369	0.40	93.14
MULL2	34940	0.35	93.49
JSB	26851	0.27	93.76
CLRB	26760	0.27	94.03
MOVAW	26677	0.27	94.30
BGTRU	22422	0.23	94.52
BICL2	20556	0.21	94.73
MOVES	20548	0.21	94.93
ROBCEO	20350	0.20	93,14
DEMONE	19115	8 10	77.33
MNEGI	184/13	0.19	95.32
MOVO	18348	0.18	95.89
DECW	18051	0.18	96.07
CVTBW	17952	0.18	96.25
BLBS	17756	9.18	96.43
DIVL2	17263	0.17	96.60
CLRW	16926	0.17	96.77
MCOML	16096	0.16	96.94
INSQUE	15393	0.15	97.89
MOVAQ	14413	0.14	97.24
LOCC	13632	0.14	97.37
BISB2	13296	0.13	97.51
POPR	13197	0.13	97.64
MOVCS	12431	0.12	97.76
INCW	12305	0.12	97.89
PUSHAL	12089	0.12	98.01
CMPZV	11026	0.11	98,12
BVS	11013	0.11	98.23
CLRQ	10815	0.11	98.34
TSTB	9670	0.10	98.44
ADDW2	9541	0.10	98,53
ADDW3	8999	0.09	98.62
PUSHR	8927	0.09	98.71
PUSHAB	8452	0.08	98.89
BGEGU	7204	0.01	90.07
SPANC	1245	0.01	90.94
BTCWD	6700	0.07	00 00
RISIZ	6282	0 04	00 1/
FMUI	5917	0.06	00.20
CMPC5	5488	0.06	99.26
ADDB3	4889	0.05	99.30
BVC	4834	0.05	99.35
CASEW	4641	0.05	99.42
SUBW3	4418	0.04	99.44
PROBER	4261	0.04	99.49
BICB3	3848	0.04	99.53
BICB2	3751	0.04	99.56
CMPC3	3568	0.04	99.60
SUBW2	3394	0.03	99,63
ACBB	3258	0.03	99,67
CHME	2928	0.03	99.70
PUSHAQ	2852	0.03	99.72
EXTV	2834	0.03	99,75
BICW3	2757	0.03	99.78
MNEGB	2591	0.03	99.81
CALLG	2574	0.03	99.83

BLEQU	2464	0.02	99.86
BISW2	2149	0.02	99.88
BISB3	1989	0.02	99.90
MOVTC	1470	0.01	99.91
PUSHAW	1418	0.01	99.93
BISLS	1394	0.01	99.94
BICL3	941	0.01	99.95
BBSS	580	0.01	99.96
INCH	551	0.01	99.96
CVTLB	513	0.01	99.97
FFS	508	0.01	99.97
SKPC	448	0.00	99.98
XORB2	358	0.00	99.98
CHMK	325	0.00	99.98
MCOMB	254	0.00	99.99
DIVL3	191	0.00	99.99
ADDB2	176	0.00	99.99
DIVW2	156	0.00	99.99
BISW3	144	0.00	99.99
MCOMW	117	0.00	99.99
DECB	116	0.00	100.00
BITW	65	0.00	100.00
SUBP6	51	0.00	100.00
CVTPL	51	0.00	100.00
BBSC	36	0.00	100.00
BITB	34	0.00	100.00
CVTLD	26	0.00	100.00
MULW3	26	0.00	100.00
CASEL	25	0.00	100.00
CMPD	24	0.00	100.00
MOVD	14	0.00	100.00
BITL	14	0.00	100.00
CVTWB	9	0.00	100.00
MULD3	8	0.00	100.00
SUBD3	6	0.00	100.00
TSTD	6	0.00	100.00
DIVD2	3	0.00	100.00
CVTDL	3	0.00	100.00
CVTDF	3	0.00	100.00
ACBW	1	0.00	100.00
CVTLF	1	0.00	100.00
DIVB3	1	0.00	190.00
XORW2	1	0.00	100.00
XORL3	1	0.00	100.00

Instruction Size

Size	Count	Percnt	Cumula
1	305034	3.07	3.07
5	2434230	24.47	27.53
3	2191878	22.03	49.57
4	2142094	21.53	71.10
5	1419257	14.27	85.36
6	523420	5.26	90.62
7	424538	4.27	94.89
e	411787	4.14	99.03
9	38381	0.39	99.42
10	52167	0.52	99.94
11	3378	0.03	99.97
12	2397	0.02	100.00
13	32	0.00	100.00
14	67	0.00	100.00
15		0.00	100.00
10	73	0.00	100.00
17	8	0.00	100.00
18	0	0.00	100.00
19	0	0.00	100.00
20	6	0.00	100.00
21	0	0.00	100.00
27	0	0.00	100.00
23	0	0.00	100.00
26	0	0.00	100.00
24	0	0.00	100.00
27	0	0.00	100.00
28	0	0.00	100.00
29	0	0.00	100 00
30	0	0.00	100.00
31	Ø	0.00	100.00
32	0	0.00	100.00
33	Ø	0.00	100.00
34	a	0.00	100.00
35	a	0.00	100.00
36	0	9.99	100.00
37	0	0.00	100.00
38	0	0.00	100.00
39	0	0.00	100.00
40	0	0.00	100.00
		ALC: NOT	

Average Instruction Size = 3,80

Specifier Size

Size		Count	Percnt	Cumula
	1	12184479	68.39	68.39
	2	3065682	17.21	85.60
	3	1560462	8.76	94.36
	4	331484	1.86	96.22
	5	446636	2.51	98.73
	6	226167	1.27	100.00

Average Specifier Size = 1.57

Specifier Type (all)

Type	Count	Percnt	Cumula
	1473957	8.27	8.27
s*#1x	143101	0.80	9.08
***2×	69491	0.39	9.47
8"#3x	77848	0.44	9.90
[Rx]	1282513	7.20	17.10
Rn	6717369	37.71	54.81
(Rb)	467911	2.63	57.44
-(Rb)	80795	0.45	57.89
(Rb)+	991926	5.57	63.46
*(Rb)+	12628	0.07	63.53
b"(Rb)	2186489	11.82	75.35
.b(Rb)	132097	0.74	76.09
W"(Rb)	911709	5.12	81.21
ew(Rb)	23978	0.13	81.35
1"(Rb)	284337	1.60	82.94
•1(Rb)	37727	0.21	83.15
Bdb	2719607	15.27	98.42
Bdw	281507	1.58	100.00

Specifier Type (index)

Type	Count	Percht	Cumula
(Rb)	265398	20.69	20.69
-(Rb)	0	0.00	20.69
(Rb)+	0	0.00	20.69
•(Rb)+	0	0.00	20.69
b"(Rb)	463773	36.16	56.85
.b(Rb)	49170	3.83	60.69
W"(Rb)	276167	21.53	82.22
ew(Rb)	5860	0.46	82.68
1"(Rb)	214441	16.72	99.40
@1(Rb)	7784	0.60	100.00

Memory	Reads Per	Instruction	
Number	Count	Percnt Cumula	
0	6080177	61.12 61.12	
1	3573927	35.92 97.04	
2	289359	2.91 99.95	
3	5266	0.05 100.00	
4	4	0.00 100.00	
5	0	0.00 100.00	
6	e	0.00 100.00	
Average	Memory R	eads Per Instruction	= 0,42
Memory	Writes Pe	r Instruction	
Number	Count	Percnt Cumula	
0	8632443	86.77 86.77	
1	1316292	13.23 100.00	
2	0	0.00 100.00	
Average	Memory W	rites Per Instruction	= 0.13
	Memory Number Ø 1 2 3 4 5 6 Average Memory Number Ø 1 2 Average	Memory Reads Per Number Count Ø 6080177 1 3573927 2 289359 3 5266 4 4 5 00 6 00 Average Memory R Number Count Ø 8632443 1 1316290 2 00 Average Memory W	Memory Reads Per Instruction Number Count Percnt Cumula 0 6080177 61.12 61.12 1 3573927 35.92 97.04 2 289359 2.91 99.95 3 5266 0.05 100.00 4 4 0.00 100.00 5 0 0.00 100.00 6 0 0.00 100.00 5 0 0.00 100.00 6 0 0.00 100.00 6 0 0.00 100.00 6 0 0.00 100.00 6 0 0.00 100.00 Average Memory Reads Per Instruction Number Count Percent Cumula 0 8632443 86.77 86.77 1 1316290 13.23 100.00 2 0 9.00 100.00

Register Reads Per Instruction

Number	Count	Percnt	Cumula
0	3072137	30.88	30.88
1	4651471	46.75	77.63
2	1790468	18.00	95.63
3	319025	3.21	98.84
4	111514	1.12	99.96
5	4118	0.04	100.00
6	0	0.00	100.00
7	0	0.00	100.00
8	0	0.00	100.00
9	Ø	0.00	100.00
10	ø	0.00	100.00
11	0	0.00	100.00
12	0	0.00	100.00

Average Register Reads Per Instruction = 0,97

Register Writes Per Instruction

Number Count Percnt Cumula

Ø	6003116	60.34	60.34
1	3938372	39.59	99.93
2	7245	0.07	100.00

Average Register Writes Per Instruction = 0.40 CUTLER job terminated at 30-NOV-1984 14:50:05.31