g 1027149950

From: ROCK: : SUPNIK 24-AUG-1984 11:25

To: WAFER: : UHLER

Subj: cutler’s proposed high performance architecture
From: WILBUR: : CUTLER 23-AUG-1984 13:06

To ROCK: : SUPNIK

Subj: RE: performance of cvax and rigel

Things always loose in the translation!

We said the architecture was "like" the hypervax modle so people
would have some idea how it worked. Our original thoughts were to do
a four stage pipeline. The first stage was decode and decoded up to
3 specifiers at a time (decode means separated). The next stage had
3 address adders capable of doing displ(rb)[rx] in one cycle. The
next stage had two tb’s and two caches and fetched two operands in
parallel. The final stage executed instructions. And of course there
was some form of branch predicition.

Now after looking at the problem more throughly and doing some
analytical modeling on actual flow data from microvax one we are
convinced we can get 4x780 with the same pipeline and one operand
decoded, adder, and fetcher. Specifiers are decoded one at a time,
the address add (or register fetch) in done in the next cycle
followed by the operand read and then the value is stored in one of
three operand specifier buffers that are 16 bytes wide (they also
act as merge registers for unaligned data). There are two sets of
operand specifier buffers; one that is being written by the fetch
and one that is being read by the execution stage.

Our data says we can get from 3.8-5x780 with this architecture
depending on how well we do with branches. If we predict them all
incorrectly then we get 3.8x780. If we predict them all correctly
we get 5x780. The middle road is about 70% correct which gives us
about 4x780.

The tpi we get is from 4-5.

The reasone this architecture works is because almost all operand
fetching can be hidden behind instruction execution (or at least
a large amount of it can).

I believe this is a simple architecture. It is not a complicated

as Venus. Write comflict is handled by write in progress bits in
both the cache and register file. There is a single write bus and
it need not be arbitrated. There is an icache and a dcache. They
are really the same cache and share control logic. However, two
reads and one write can be done every cycle. There are two register
files. One is in the address add stage and one in the execution stage.
The one in the address add stage is dual port read one port write.
The one in the execution stage is single port read and single port
write (this is one required for access to the registers during
string, decimal, and certain control instructions).

Now the address adder does everything but

(r)+
-(r)
@(r)+
@d(r)

and the context indexed form of these.

The modes that are not done by the address stage cause a trap

in the execution stage when the instruction becomes the current
instruction. All register backup is done in the execution stage.
None is done in the address add stage. Thus there is a single
source of write data and it is on the result bus no matter whether
it is destined for the register file or memory. No arbitration of
who gets to write memory or the register file now.

Complicated instructions like string, decimal, call, etc. stop

the pipe. This means that no further instructions will be decoded
until the execution unit says so. Thus the fetch stage cache and tb
are available for fetching and storing results. This is necessary
for proper memory conflict resolution. Also mtpr and mfpr stop the
pipe.

I'll stop by on Monday or Tuesday of next week and talk to you about
&

I must say that I do not agree that the way we should be trying to
build a fast Vax is by tightening the microcyle time. This does not
have anywhere near the payback that an improved microarchitecture
has. Yes it is important but we could never get 4x780 out of cmos
(currently) by going to a microcyle of 50ns or less. We would have
to have so many pipeline stages that branches would kill us.

dave

From: ROCK: : SUPNIK 13-DEC-1984 11:53

To: WAFER: : UHLER

Subj: request for documentation

From: WILBUR: : CUTLER 13-DEC-1984 11:53
To: ROCK: : SUPNIK

Subj: youyr comments

Thanks for the comments.

Although I know very little about Rigel it seems there is significant
difference. The cahnges we made in our model for branch prediction,
register counters, and decoding register destinations along with the
previous specifier had MAJOR impact on performance. Stopping the pipe
while you wait for a branch to be resolved could cost you up to 25%
in performance assuming you have a four stage pipe and branches occur
every 3-4 instructions.

We will run as many traces as we can and will model things in more
detail.

Could you send me some documentation about Rigel?

d

From:
To:
Subj:

MIST::CUTLER 21-DEC-1984 13:46
WAFER: :UHLER
fortran statistics

Instruction Frequency Data
This data was collected on 21-DEC-1984 09:55:14.62
This data was written to duaO:[cutler]mm32for.cod

Total number of instructions traced was 243068
Name Count Percnt Cumula
MOVL 29970 12,33 12.33
BNEQ 18521 1.62 19.95
BEQL 12412 5.11 25.086
CMPL 11910 4.90 29.96
MOVAB 11624 4.78 34.74
MOVZWL 9271 3.81 38.55
ADDL?2 8902 .66 42.71
BBC 8677 .07 #45,78
MOVZBL 6848 2.82 48.60
PUSHL 6500 207 5128
CMPW 6433 2.65 53.92
RET 5423 2:23: b6:1b
BRB 5385 222 58,37
CALLS 5325 2.19 60.56
SOBGTR 4919 2.02 62.58
CMPB 4900 2.02 64.60
CLRL 4809 1.98 66.58
TSTL 4223 .74 B6R.32
EXTZV 4133 L 70 70502
MOVW 4020 1.:68 71.67
RSB 3904 1561 ' 73,28
INCL 2544 105 74.32
BLBC 2525 1:04 75.386
AOBLEQ 2456 100 T6.37
BRW 2402 0.99 77.36
ASHL 2240 0.92 378.28
SOBGEQ 2163 0.89 79.17
SUBL?2 2058 0.85 80.02
JSB 1813 0.75 '80.786
MOVB 1811 0+75 81.51
CMPZV 1802 0.74 82.25
BSBW 1793 0.74 82.99
BBS 1739 0.72 B83.70
ADDL3 1690 0..:70; 84.40
BGTRU 1552 0.64 85.04
MOVAL 1469 0.60 85.64
BLBS 1266 0.52 86.16
BLEQU 1252 0.52 86.68
BLSS 1251 0.51 87.19
PUSHAW 1238 0.51 87.70
CASEB 1206 0:.50 88.20
MOVQ 1204 0.50 88.69
BLSSU 1191 0.49 89.18
MULL?2 1188 0.49 89.67
BLEQ 1129 0.46 90.14
CASEL 1055 0.43 90.57
BGEQ 1045 0.43 91.00
CLRB 989 0.41 91.41
PUSHAB 955 0.39 91.80
CLRQ 936 0.39 92.18
SUBL3 829 0.34 92.53
BGTR 784 0.32 92.85

BGEQU 131 0.30 93.15

BICB2
INSV
MOVC5
BICL2
SUBW3
POPR
BSBB
BISB2
DECL
TSTB
ADDW3
BITB
PUSHR
MULL3
MNEGL
CLRW
TSTW
BITW
Movc3
BISW2
PUSHAL
MOVAQ
MTPR
BICL3
CASEW
PROBER
BBCC
PROBEW
BISL2
BBSS
SUBB2
ADDW2
DIVL3
BBSC
BVS
DECW
SKPC
INCB
AOBLSS
ROTL
ACBL
REI
SUBB3
EDIV
BISL3
INCW
MOVPSL
MFPR
LOCC
JMP
CVTWL
EMUL
EXTV
PUSHAQ
DIVL2
CVTBL

- ADDB3

MOVZBW
CHMK
CMPC3

700
668
624
612
587
540
520
517
516
515
514

492
485
475
470

0.29
0.27

0.25
0.24
0.22
0.23
0.21
0.21
0.21
0.21
0.21
0.20
0.20
0.20
0.19
0.19
0:19
0.19
0.18
0517
0.16
R |
0':11
0.10
0.09
0.09
0.08
0.08
0.08
0.07
0.07
0.06
0.06
0.06
0.05
0.05
0.05
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02

93.44
93.71
93,97
94.22
94 .46
94.68
94.90
95.11
95.32
95.53
895.75
95.95
96.16
96.36
96.55
96.74
96.94
97.13
97 .31
97.49
97.66
97.82
91.93
98.04
98.14
98.23
98,32
98.39
98.47
9855
98.62
98.68
98:75
98.81
98.87
98.92
98.97
99.02
99.06
9914
99.15
99.19
99.23
99.26
99.30
99.33
99 .37
99.40
99 .43
99.46
99.49
99,52
99.54
99.57
99.59
99.61
99.63
99.65
99.67
99.69

|
\
1
|

CHME
REMQUE
INSQUE
BITL
CVTLB
MULW2
XORL2
DECB
MOVAW
SUBW2
ADDB2
BICW2
ASHQ
BISW3
BBCCI
MNEGB
CVTLW
FFS
BISPSW
BVC
MOVTC
CALLG
ACBW
BICB3
MCOML
CVTWB
CMPV
XORL3
BBCS
BICW3
BBSSI
BISB3
MULW3
MNEGW

F RPN SO WWOWD

0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
00X

0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

99.71
99.73
99.75
99.717
99.79
99.81
99.82
99.84
99.85
99.87
99.88
99.90
99.91
99.92
99.93
99.94
99.95
99.96
99:96
99.97
99.97
99,98
99,98
99,98
99599
99.99
99.99
100.00
100.00
100.00
100.00
100.00
100.00
100.00

Instruction Size

Size Count Percnt Cumula
i 9423 3.88 3.88
2 62829 25.85 29.73
3 63082 25.95 ©55.68
4 48813 20.08 75.76
5 23001 9.46 85.22
6 10212 4.20 89.42
7 16744 6.89 96.31
8 7508 3.09 99.40
9 1180 0.49 99.89

10 72 0.03 99.92
11 73 0.03 99.95
12 43 0.02 99.96
13 84 0.03 100.00
14 1 0.00 100.00
15 0 0.00 100.00
16 3 0.00 100.00
N IE7 0 0.00 100.00
18 0 0.00 100.00
19 0 0.00 100.00
20 0 0.00 100.00
21 0 0.00 100.00
22 0 0.00 100.00
23 0 0.00 100.00
24 0 0.00 100.00
25 0 0.00 100.00
26 0 0.00 100.00
27 0 0.00 100.00
28 0 0.00 100.00
29 0 0.00 100.00
30 0 0.00 100.00
31 0 0.00 100.00
32 0 0.00 100.00
33 0 0.00 100.00
34 0 0.00 100.00
35 0 0.00 100.00
36 0 0.00 100.00
37 0 0.00 100.00
38 0 0.00 100.00
39 0 0.00 100.00
40 0 0.00 100.00
Average Instruction Size = 3.65

Specifier Size

Size Count Percnt Cumula
1 321707 74.95 74.95
2 62904 14.66 89.61
3 13744 3.20 92.81
4 3409 0.79 93.61
5 21449 5.00 98.60
6 5998 1.40 100.00
Average Specifier Size = 1.50
Specifier Type (all)
Type Count Percnt Cumula
s"#0x 51034 11,89 11.89
s"#1x 9678 2-25 14.15
s #2x 2282 0.53 14.68
s #3x 933 0.22 14.89
[Rx] 21053 4.91 19.80
Rn 147093 34.27 54.07
(Rb) 32407 755 61.62
-(Rb) 2051 0.48 62.10
(Rb)+ 15176 3.54 65.63
@(Rb)+ 2125 0.50 66.13
b” (Rb) 46918 10.93 77.06
@b(Rb) 1775 0.41 77.47
w” (Rb) 5100 1.:19 78.66
@w(Rb) 12 0.00 78.66
17 (Rb) 16769 3.91 82,57
@1(Rb) 152 0.04 82.61
Bdb 70350 16.39 99.00
Bdw 4303 1.00 100.00
Specifier Type (index)
Type Count Percnt Cumula
(Rb) 8308 39.46 39.46
-(Rb) 2 0.01 39.47
(Rb)+ 0 0.00 39.47
@(Rb)+ 133 0.63 40.10
b” (Rb) 2956 14.04 54.14
@b(Rb) 395 1.88 56.02
w” (Rb) 3276 15.56 '71.58
@w(Rb) 133 0.63 72.21
17 (Rb) 5835 27.72 99.93
@1(Rb) 15 0.07 100.00

Memory Reads Per Instruction
Cumula

Number Count Percnt
0 169894 69.90
i | 64075 26.36
2 8774 3.61
3 292 002
4 0 0.00
5 33 0.01
6 0 0.00

69.90
96.26
99.87
99.99
99.99
100.00
100.00

Average Memory Reads Per Instruction =
Memory Writes Per Instruction

Number Count Percnt
0 216590 89.11
1 26478 10.89
2 0 0.00

Cumula

8911
100.00
100.00

Average Memory Writes Per Instruction
Register Reads Per Instruction

Number Count Percnt
0 89350 36.76
1 108651 44.70
2 40567 16.69
3 4135 1.70
4 365 0.15
5 0 0.00
6 0 0.00
7 0 0.00
8 0 0.00
9 0 0.00

10 0 0.00
11 0 0.00
12 0 0.00

Cumula

100.00
100.00
100.00
100.00
100.00

Average Register Reads Per Instruction
Register Writes Per Instruction

Number Count Percnt

0 154840 63.70
1 88141 36.26
2 87 0.04
Average Register Writes

Cumula

63.70
99.96
100.00
Per Instruction

0.34

0:11

.84

0.

36

Specifier Access Type

Type Count Percnt Cumula

read 195659 45.59 45.59

write 86433 20.14 65.72

modify 28360 6.61 72.33

addres 26433 6.16 78.49

vield 17673 4.12 82.61

branch 74653 17.39 100.00

Total number of operand specifiers was 429211
Number of nonfetch operand specifiers was 333944

Percent of nonfetch operand specifiers was 77.80

From: MIST::CUTLER 21-DEC-1984 13:50
To: WAFER: : UHLER
Subj: linker statistics

Instruction Frequency Data
This data was collected on 21-DEC-1984 10:00:30.14
This data was written to dualO:[cutler]mm32lnk.cod

Total number of instructions traced was 333074
Name Count Percnt Cumula
MOVL 51250 15.39 15.39
ADDL2 16023 4.81 20.20
MOVZBL 15514 4.66 24.86
BEQL 13224 3.97 28.83
MOVAB 13079 3.93 32.75
CMPL 11899 3.57 36.32
BLBC 8973 2.69 39 02
AOBLEQ 8514 2.56: 41,58
BNEQ 7765 2.33 43.91
BBC 7469 2.24 46.15
MOVZWL 7452 2.24 48.39
CLRL 7000 2.10 50.49
BGTRU 6953 2.09 52.58
BBS 6787 2.04 54.61
RSB 6716 2.02 56.63
BRB 6078 1.82 658.45
PUSHL 6024 1.81 60.26
CMPB 5973 1.79 ©62.06
TSTL 5572 1,67 ©3:773
BLSSU 5201 1.56 65.29
RET 4552 1.37 66.66
CALLS 4318 1.30 67.95
BSBW 4159 1.25 69.20
EXTZV 4055 3.22 7042
SUBL2 3822 138 71,57
BLBS 3692 131 72,68
MOVB 3602 1,08 73576
INSV 3366 103 J4.77
ADDL3 3301 0.99 75.76
MOVW 3222 0:97 76.73
MOVAL 3184 0.96 77.68
INCL 3119 0.94 78.62
SUBL3 2748 0.83 79.44
PUSHAB 2706 0.81 80.26
BGEQ 2338 0.70 BO.96
PUSHR 2157 065 .81.61
CMPW 2138 064 82.:25
BGTR 2121 0.64 82.88
BRW 2085 0.63 83.51
POPR 2032 0.61 84.12
BSBB 1996 0.60 84.72
MOVQ 1932 0.58 85.30
BLEQ 1809 0.54 85.84
BLSS 1783 0.54 86.38
SOBGTR 1768 0.53 86.91
BICL2 1717 0.52 87.42
BGEQU 1675 0.50 87.93
BICB3 1492 0.45 88.38
CLRQ 1454 0.44 88.81
INCW 1425 0.43 89.24
MCOML 1402 0.42 89.66
MTPR 1396 0.42 90.08

BICL3 1294 0.39 90.47

BISB2
JSB
SOBGEQ
BLEQU
CASEW
CLRW
PROBEW
MOVC3
MOvVC5
CMPC5
BICB2
ADDW2
ASHL
MNEGL
EDIV
MOVAQ
PROBER
TSTW
EMUL
BBCC
ROTL
DECL
MOVAW
DECW
BISW3
BBSS
EXTV
TSTB
BISL2
CLRB
ACBW
BBSC
CMPZV
BICW2
REI
SUBB3
CASEB
BISL3
MOVPSL
MFPR
INCB
JMP
REMQUE
CVTBL
CVTWL
INSQUE
PUSHAL
BVS
BISW2
PUSHAQ
CHMK
CMPV
MOVZBW
BITW
MULL2
DECB
SUBW3
ADDB3
CVTLB
MULW?2

1260
1242
1098
1040
1039
1010
975
966
963

934
916
843
806
714
710
673
673
664
650
611
584
572
539
925
225
487
433
424
396
358
353
299
296
294
292
290
289
275
268
263
256
255
253
231
221
217
213
209
208
205
185
176
171
129
125
123
118
118
114

0.38
0.37
0.33
0.31
0.31
0.30
0.29
0.29
0.29
0.28
0.28
0.28
0:25

0.21
.21
0.20
0.20
0.20
0.20
018
0.18
0.17
0.16
016
0.16
0.15
0.13
0.13
032
0.11
00 i
0.09

0.09
0.09
0.09
0.09
0.08
0.08
0.08
0.08
0.08
0.08
0.07
0.07
0.07
0.06
0.06
0.06
0.06
0.06
0.05
0.05
0.04
0.04
0.04
0.04
0.04
0.03

99.30
99.34
99.37
99.41
99.44
99.48

XORL2
SBWC
CHME
DIVL2
XORB2
BITB
ASHQ
AOBLSS
BBCCI
SUBW2
BITL
ADDW3
MULL3
FFS
BBCS
LOCC
CMPC3
ADDB2
PUSHAW
SUBB2
MNEGB
BICW3
XORL3
CASEL
MULW3
SKPC
DIVL3
BBSSI
CALLG
MNEGW
ACBL
MATCHC
BISB3
DIVW3
ADWC

0.03
0.03
0.03
003
0.03
0.03
0.03
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.02
05102
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

99.51
99.55
99.58
99.61
99.64
99.67
99.70
99.72
99575
99.77
99.19
99.82
99.84
99.86
99.88
99.89
99.91
99.92
99.94
99,895
99.96
99.96
99.97
99.98
99.98
99.99
99.99
99.99
99.99
100.00
100.00
100.00
100.00
100.00
100.00

Instruction Size

Size Count Percnt Cumula
1 11562 3,47 3.47
2 77385 2347 26.64
3 104811 31.47 58.11
4 75220 22.58 80.70
5 33308 10.00 90.70
6 9373 2.81 93.51
7 13379 4.02 97.53
8 6726 2.02 99.55
9 1391 0.42 99.96

10 85 0.03 99.99
11 22 0.01 100.00
12 11 0.00 100.00
13 1 0.00 100.00
14 0 0.00 100.00
15 0 0.00 100.00
16 0 0.00 100.00
17 0 0.00 100.00
18 0 0.00 100.00
19 0 0.00 100.00
20 0 0.00 100.00
21 0 0.00 100.00
22 0 0.00 100.00
23 0 0.00 100.00
24 0 0.00 100.00
25 0 0.00 100.00
26 0 0.00 100.00
27 0 0.00 100.00
28 0 0.00 100.00
29 0 0.00 100.00
30 0 0.00 100.00
31 0 0.00 100.00
32 0 0.00 100.00
33 0 0.00 100.00
34 0 0.00 100.00
35 0 0.00 100.00
36 0 0.00 100.00
37 0 0.00 100.00
38 0 0.00 100.00
39 0 0.00 100.00
40 0 0.00 100.00
Average Instruction Size = 3.50

Specifier Size

Size Count Percnt Cumula
X 479696 78.23 78.23
2 93126 15.19 93.42
3 15041 2.45 95.87
4 5995 0.98 96.85
5 17226 2.81 99.66
6 2106 0.34 100.00
Average Specifier Size = 1.36
Specifier Type (all)
Type Count Percnt Cumula
s #0x 63534 10.36 10.36
s #1x 9913 .02 11598
s #2x 3544 0.58 12.58%
s #3x 2018 033 12.88
[Rx] 13473 2.20 15.08
Rn 239508 39.06 54.14
(Rb) 51483 8.40 62.54
—(Rb) 3175 052 6306
(Rb)+ 24665 4.02 67.08
@(Rb)+ 2550 0.42 67.49
b” (Rb) 74334 12.12 79.62
@b(Rb) 6557 1.07 80.69
w”(Rb) 8316 1.36 82.04
@w(Rb) 78 0.01 82.05
1°(Rb) 10908 1,78 83.83
@1 (Rb) 265 0.04 83.88
Bdb 92264 15.05 98.92
Bdw 6605 1.08 100.00
Specifier Type (index)
Type Count Percnt Cumula
(Rb) 2461 18.27 18.27
-(Rb) 31 0.23 18.50
(Rb)+ 0 0.00 18.50
@(Rb)+ 404 3.00 21.49
b"(Rb) 1818 13.49 34.99
@b(Rb) 1071 7+95 42.94
w” (Rb) 2043 15.16 58.10
@w(RDb) 3865 28.69 86.79
1°(Rb) 1023 7.59 94.38
@1 (Rb) 757 5.62 100.00

Memory Reads Per Instruction
Number Count Percnt Cumula

0 222070 66.67 66.67
1 99420 29.85 96.52
2 11324 3.40 99.92
3 260 0.08 100.00
4 0 0.00 100.00
5 0 0.00 100.00

6 0 0.00 100.00
Average Memory Reads Per Instruction = 0.37
Memory Writes Per Instruction
Number Count Percnt Cumula

0 291474 87.51 87.51

| 41600 12.49 100.00
2 0 0.00 100.00
Average Memory Writes Per Instruction = 0.12
Register Reads Per Instruction
Number Count Percnt Cumula
0 111687 33.53 33.53
1 145748 43.76 77.29
2 68862 20.67 97.97
3 5611 1.68 99.65
4 1166 0.:35 100,00
5 0 0.00 100.00
6 0 0.00 100.00
i 0 0.00 100.00
8 0 0.00 100.00
9 0 0.00 100.00
10 0 0.00 100.00
b B | 0 0.00 100.00
12 0 0.00 100.00
Average Register Reads Per Instruction = 0.92
Register Writes Per Instruction
Number Count Percnt Cumula

0 198184 59,50 59.50
1 134197 40.29 99.79
2 693 0.21 100.00
Average Register Writes Per Instruction = 0.41

Specifier Access Type

Type Count Percnt Cumula

read 2717942 45.33 45.33

write 132852 21.67 66.99

modify 44331 1.23 74.22

addres 34796 5.67 179.90

vield 24400 3.98 83.88

branch 98869 16.12 100.00

Total number of operand specifiers was 613190
Number of nonfetch operand specifiers was 476819

Percent of nonfetch operand specifiers was 77.76

From: MIST::CUTLER 21-DEC-1984 13:55
Tos WAFER: : UHLER
Subj: sort statistics

Instruction Frequency Data
This data was collected on 21-DEC-1984 10:05:51.15
This data was written to dua0O:[cutler]sort.cod

Total number of instructions traced was 402831
Name Count Percnt Cumula
MOVL 5d261 12,73 12.73
CMPL 23039 5.72 18.44
BBC 20659 5<l3 2357
ADDL2 20420 907 2864
BLSS 18915 4.70 33.34
BLSSU 18339 4.55 37.89
SUBL3 17640 4.38" 42.29
RSB 16367 4.06 46.33
BNEQ 16216 4.03 50.36
BLBC 13632 3.38 53.74
MOVZWL 12864 3.19 56.94
EXTZV 12280 3.05 59.98
TSTL 11491 285 62.84
BEQL 11400 2.83 65.67
PUSHL 11352 2.82 68.48
MOVAL 10611 2.63 71.12
JSB 9885 2,45 = PR 6T
DECL 8224 2.04 75.61
SOBGEQ 8138 202 7763
BSBW 4674 1.16 78.79
MOVZBL 4066 1.01 79.80
BBS 3970 0.99 80.79
ADDL3 3704 0.:92 8171
CMPB 3538 0.88 82.59
BRB 3496 0.87 83.45
INCL 2876 00l S LY
CLRL 2656 0.66 84.83
POPR 2652 0.66 85.49
MTPR 2333 0.58 86.07
BSBB 2279 0.57 86.63
BRW 2254 0.56 87.19
BLBS 2069 0.851 B7.70
MOVAB 2040 0.51 88.21
EXTV 1846 0.46 88.67
CMPW 1609 0.40 89.07
PUSHR 1533 0.38 89.45
PUSHAB 1420 0.35 89.80
BGEQU 1413 0.35 90.15
MOVW 1399 0.35 90.50
MOVB 1362 0.34 90.84
BGTRU 1355 0.34 91.17
CASEB 1352 0.34 91.51
SOBGTR 1316 0.33 91.84
SUBL2 1294 0.32 92.16
CMPZV 1180 0.29 92.45
BICB2 1105 Q.27 92,72
MOVPSL 1017 0.25 92.98
MFPR 1009 0,25 93.23
BBSC 1002 0.25 93.48
BGTR 993 0.25 93,72
RET 966 0.24 93.96
BGEQ 957 0.24 94.20

BBCC 929 0.23 94.43

MOVQ
MOVC3
ROTL
BLEQU
BBSS
CASEW
ASHL
CLRQ
TSTB
PROBER
CMPC3
MNEGL
BLEQ
CALLS
CLRW
ADDW2
PROBEW
TSTW
BICL3
DECW
MULL3
BISB2
AOBLSS
CVTWL
SUBW3
REI
BISW2
BICL2
BVS
CLRB
INCW
ADDB3
INSQUE
INSV
CVTLB
MOvVC5
MULW?2
CHME
REMQUE
AOBLEQ
CMPV
BITB
BITL
BICB3
SUBW2
DECB
SUBB3
BITW
BISL3
CHMK
EDIV
ADDW3
EMUL
JMP
CVTBL
INCB
XORL3
MOVAQ
BISB3
PUSHAQ

909
843
838
821
800
782
763
743
742
714
703
690
656
642
591
587
492
469
467
439
430
400
360
3587
345
328
283
260
255
252
251
239
233
228
226
225
218
213
212
185
163
158
149
147
146
139
129
125
122
116
113
110
108
107
103

98

93

89

85

1

0.23
0..21
d. 21
0.20
0.20
0.19
0.19

0.18
0.18
037
0.17
0.16
0.16
0:15
015
459

0.11

0.03
0.02
0.02
0.02
0.02
0.02

94.66
94.87
95.07
95.28
95.48
95,67
95.86
96.04
96.:23
96.41
96.58
96.75
96.91
97.07
97.22
9 1537
97.49
97.60
97 .72
97.83
97.94
98.04
98.13
98.21
98.30
98.38
98.45
98.52
98.58
98.64
98.70
98.76
98.82
98.88
98.93
98.99
99.04
99.10
99.15
99.19
99 .24
99.27
99 .31
99.35
99.38
99.42
99,45
99.48
99.51
99.54
99.57
99.60
98 .62
99.65
99,68
99:70
99.72
99.74
99.77
99.79

PUSHAL
MOVZBW
BICW2
MULL2
BISL2
BBCCI
MOVAW
XORL2
ASHQ
LoCC
FFS
ACBW
ADDB2
DIVL2
MNEGB
BBCS
CASEL
PUSHAW
DIVL3
CALLG
MCOML
BBSSI
SUBB2
XORB2
BISW3
CVTLW
SVPCTX
CMPC5
BICW3
MNEGW
BVC
SKPC
MULW3
FFC

FRERERRDNDNDND WO O]

0.02
0.02
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

99.80
99.82
99.84
99.86
99.88
99.89
99.90
99.92
99.93
99.94
99.95
99.95
99.96
99.97
99.97
99.97
99.98
99.98
99.98
99.99
99.99
99.99
99.99
99.99
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

Instruction Size

Size Count
1 17663
2 100032
3 101448
4 81518
5 59734
6 15616
7 21382
8 4120
9 1017

10 100
11 186
12 14
13 0
14 3
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 0

Average Instruction Size

Percnt Cumula

Ul w

ODODDQDDOODDOOODOQQQDODQODODOOOOH
. . . e T

00

100.
100.
100.
100.
100.
100.

.38
.l

Specifier Size

Size Count Percnt Cumula
i 4 533131 74.08 74.08
2 121259 16.85 90.93
3 33007 4.59 95,52
4 3910 0.54 96.06
5 27499 3.82 99.89
6 827 0.11 100.00
Average Specifier Size = 1.44
Specifier Type (all)
Type Count Percnt Cumula
s #0x 70885 9.85 9.85
s #1lx 30401 4.22 14.07
s #2x 27155 0.38 14.46
s #3x 1025 0.14 14.60
[Rx] 24937 3.47 18.07
Rn 257110 35.73 53.79
(Rb) 24352 3.38 5§7.18
-(Rb) 11533 1.60 58.78
(Rb)+ 12923 1.80 60.58
@(Rb)+ 18811 2.61 $3.19
b” (Rb) 100904 14.02 77.21
@b(Rb) 8720 1.21 78,42
w”(Rb) 10986 LoB3 79.95
@w(Rb) 35 0.00 79.95
17 (Rb) 6836 0.95 80.90
@1 (Rb) 221 0.03 80.93
Bdb 130239 18.10 99.03
Bdw 6960 0.97 100.00
Specifier Type (index)
Type Count Percnt Cumula
(Rb) 1030 4.13 4.13
-(Rb) 2 0.01 4.14
(Rb)+ 0 0.00 4.14
@(Rb)+ 389 1.:56 $:70
b” (Rb) 1084 4.35 10.05
@b(Rb) 18025 72.28 82.33
w” (Rb) 986 3.95 86.28
@w(Rb) 2922 11.72 98.00
17 (Rb) 469 1.88 99.88
@1l(Rb) 30 0.12 100.00

Memory Reads Per Instruction

Number Count Percnt

0 258897 64.27

1 121574 30.18
2 22176 DL
3 182 0.05
4 2 0.00
5 0 0.00
6 0 0.00

Cumula

64.27
94.45
99.95
100.00
100.00
100.00
100.00

Average Memory Reads Per Instruction =
Memory Writes Per Instruction

Number Count Percnt

0 3556111 88.15
1 47720 11.85
2 0 0.00

Cumula

88.15
100.00
100.00

Average Memory Writes Per Instruction
Register Reads Per Instruction

Number Count Percnt

154528 38.36
175647 43.60
54253 13.47
18331 4.55
72 0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LoOoOJOUTEBEWNDEO

(=fefleoflelelelele]

Cumula

38.36
81.96
95.43
99.98
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

Average Register Reads Per Instruction
Register Writes Per Instruction

Number Count Percnt

0 271266 67.34
1 131456 32.63
2 109 0.03
Average Register Writes

Cumula

67.34
99.97
100.00
Per Instruction

0.

41

w12

.84

0.33

Specifier Access Type

Type Count Percnt Cumula

read 329359 45.77 45.77

write 132292 18.38 64.15

modify 47102 6 5% 70,70

addres 30507 4.24 74.94

vield 43174 6.00 80.93

branch 137199 19.07 100.00

Total number of operand specifiers was 719633
Number of nonfetch operand specifiers was 546693

Percent of nonfetch operand specifiers was 75.97

LEEC A)

From: ROCK: : SUPNIK 2-JAN-1985 12:46

To: WAFER: : UHLER

Subj: fyi

From: WILBUR: :CUTLER 2-JAN-1985 11:41
To: ROCK: : SUPNIK

Subj: RE: update on rigel modelling

Let me respond to a couple of things:
1. 1k x 1 does indeed give > than 80% in most cases.
2. Branch prediction is good!

3. I have converted you traces and run them. I also changed the
way strings are modelled to take into account the lengths of
the strings. And you’ll be happy to knwo that we also see 6-7
TPI. BUT these are only very small excerpts from the overall
traces. They are VERY heavily weighted toward string and call
return instructions. We have run the entire trace of the linker
(not with system space however) and it is much better. If we
look at the numbr of page faults and direct I/0’s and multiply
by lms and add the simulation time we still come out 6x780 for
a complete liner trace!

4. You may not see any benefit for register counters since the
traces you are using are so small. The greatest benefit we see
is in Fortran programs. I still think this is a very important
optimization and we intend to leave it in.

Thanks for the comments. 1’11 keep yopu posted on what we are doing. My
spelling above is terrible (I never think to edit these things when I start).

dave

{ ® & & & & o o o & o o O o o o o o o oo oo o o

From? MIST: :SCHNORR ~ 5=DEC=1984 05:06
Tol . ULTRA: ¢ STRECKER,ROCK: :SUPNIK,NOODLE? ¢ PARKER
Subi: Frigate Simulator Description

1 OVERVIEW

The Fricate simulator consists of two proarams; one to gqgenerate a
trace file and one that reads the trace file and simulates the Frigate
hardware pipeline, It should be kept in mind that the simulator does
not actually execute proagrams, Rather it computes the number of
cycles that would be required to execute the proaram on a Frigate
machine,

The trace program is linked as & debugger with the program to be
traced, It then cains control before the subject proaram and solicits
what the name of the output file is to be and how many disk blocks of
data are to be collected. The subject program is then traced and a
data file is written that contains the opcodes, operand specifiers,
and branch destinations of the executed Iinstructions. Specifler
displacements and immediate data are not written into the output file
since they are not reauired by the simulator. At the end of the
subject program or when the specified number of disk_blocks of data
have been collected an end of data sentinel is written and the data
file is closed, The trace procaram then formats and prints instruction
freauency, Iinstruction size, specifier size, specifier type, memory
read, memory write, recister read and reagister write data,

The second part of the simulator is the program that simulates the
actual hardware, This program allows several parameters such as data
cache miss rate and branch orediction counter width to be specified
and then reads the data ¢fille produced by the trace program, The
simulator consists of five subroutines that simulate the individual
pipeline stages and a short control program that calls each of the
stage subroutines for each machine cycle, Instructions are
prefetched, decoded, their operands fetched and then_executed, Each
activity oproceeds in a oipelined fashion uyntil it reaches the
execution stage where it spends the number of cyveles it takes to
execute the respective instruction., Instructions are executed in this
manner until the entire data file has been read. At the end of the
simulation, statistics are output as to the number of ecycles that were
executed, the number of _1lnstructions executed, several branch
statistics and data on the utilization of the oiveline stages,

2 INSTRUCTION CLASSIFICATION

All VAX instructions are classified into agroups derending oOn how their
execution affects opipeline activity, The intent is to have as few
classes as npossible and still execute the VAX instruction set
efficiently. Class information will be stored in a ROM (or RAM) that
is accessed using the (instruction opcode value, The resultant
information is then used to control opipeline operation while the
instruction executes,

Eight instruction classes are defined:

Page 2

Stop Decode = This instruction class inhibits the Decode
stage from _decodina further instructions. Explicit
continuation from the execution unit is reauired before
subsequent instructions will be decoded. The remaining
specifiers for the subject instruction are decoded,
Instructions in this class chanae global machine state (e,q.
MTPR), interact with FPD (e.g. MOVC3), implicitly modify
registers or contain multiple write destinations (e.qg,
EDIV).

Instructions in this class include:

HALT CVTPT MOVP EDIV ASHP
REI MULP CMPP3 CASEB CVTLP
BPT CVTTP CVTPL CASEW CALLG
RET DIVP CMPP4 POPR CALLS
RSB MOVC3 EDITPC PUSHR XFC
CVTPS CMPC3 MATCHC CHMK ESCE
CVTSP SPANC LOCC CHME ESCF
CRC SCANC SKPC CHMS EMODG

ADDP4 MOVCS EMODF CHMU POLYG

ADDP6 CMPCS POLYF CASEL EMODH

SUBP4 MOvVTC EMODD MTPR FOLYH

SUBP6 MOVTUC POLYD MFPR LDPCTX
SVPCTX

These instructions take several cycles to execute and are
generally {infrequent, Note that RSB 1s also iIn the implied
pop class,

Stop Feteh = This instruction class stors the Operand stage
in the same way as _the Decode stage 1is stopped by the
previous class, Explicit continuation is required by the
execution unit before further instruction operands will be
fetched, These instructions read or modify destinations
whose addresses cannot be calculated by the Operand stage
(e.q. BRSS) .

This class includes:

ADAWI INSQHI REMQTI BBSC BBCCI
INSQUE INSQTI BBESS BRCC INSV
REMQUE REMQHI BBCS BRSSI BBC
BBS EXTV EXTZV CMPV CMPZV
FFS FFC

Note that the branch on bit instructions in this class are
also in the conditional branch class,

Conditional Branch = This 1instruction eclass conditionally
branches to a destination based on source or condition code
values, A subset of the instructions also modify the sSource
value, The execution of these instructions is predicted in
the Decode stagce, If a branch is predicted to be taken then
the destination address is computed bv the Decode stage and

5.

Page 3

passed to the Prefetech stage,
This class includes:

BNEQ BLSS BGEQU BBCS BLBS
BEQL BGTRU BLSSU BBSC BLBC

BGTR BLEQU BBS BBCC
BLEQ BVS BBC BBSSI
BGEQ BVC BESS BBCCI

Note that the braneh on bit instructions that modifv their
source are also included in the stop fetch class.

Loop = This instruction class includes all the iterative loop
instructions. This class 1is similar to the conditional
branch class but differs in that the branches are always
predicted to be taken. The branch destination address is
computed by the Decode stage and passed to the Prefetch
stage,

This class includes:

ACBB ACBL ACBD ADBLSS SOBGTR
ACBW ACBF ACBG ADBLEQ SOBGEQ
ACBH

Unconditional Branch = This instruction class Iincludes all
the 4instructions that unconditionallv branch to an address
that_can_be calculated in the Decode or Address stage. _ The
destination address is calculated in the Decode stase 1f it
is PC_relative and in the Address stage if it s Iindirect,
context indexed or not relative to PC. The resultant address
is passed to the Prefetch stage,

This class includes:

BSBB JSB BSBW
BRB JMP BRW

Note that BSBB, BSEW, and JSB are also in the implied push
class,

Implied Push = This instruction class_ocenerates an implied
push onto the stack after the final operand has been
processed., This requires the decode stage to generate an
autodecrement SP operand specifier,

This instruction class includes:

BSBB JSB PUSHAW PUSHAQ PUSHL
BSBW PUSHAB PUSHAL PUSHAD

Note that BSRB, BSBW, and JSB are also in the unconditional
branch class.,

rpage 4

Implied Pop = This class contains only the instruction RSB,
The Decode stage generates an autoincrement SP operand
specifier to remove the return address from the ¢top of the
stack.

This class includes:
RSB
RSB is also in the stop decode class.

General = This instruction class contains all Iinstructions
that reauire no special processing, They cause no pipeline
hazards and can be processed in a pipelined manner without
any interference.

This class includes:

NOP CVTHD INDEX PROBER PROBEW
CVTWL CVIWB MOVZWL MOVAW ADDF?2
ADDF3 SUBF2 SUBF3 MULF2 MULF3
DIVF2 DIVF3 CVTFB CVTFW CVTFL
CVTRFL CVTBF CVIWF CVTLF MOVF

CMPF MNEGF TSTF CVTFD ADDD?2
ADDD3 SUBD2 SUBD3 MULD2 MULD3
DIVD2 DIVD3 CVTDB CVTDW CVTDL
CVTRDL CVTBD CVTWD CVTLD MOVD

CMPD MNEGD TSTD CVTDF ASHL

ASHQ EMUL CLRQ Mova MOVAQ
ADDB2 ADDBE3 SUBR2 SUBB3 MULB?2
MULB3 DIVB2 DIVB3 BISB2 BISB3
BICB2 BICB3 XORB2 XORB3 MNEGB

MOVB CMPB MCOMB BITB CLRB
TSTB INCR DECB CVIBL CVTBW
MOVZBL MOVZBW ROTL MOVAB ADDW2

ADDW3 SUBW2 SUBW3 MULW2 MULW3
DIVW2 DIVW3 BISW2 BISW3 BICW2
BICW3 XORW2 XORW3 MNEGW MOVW
CMPW MCOMW BITW CLRW TSTW
INCW DECW BISPSW BICPSW ADDL2
ADDL3 SUBL2 SUBL3 MULL2 MULL3
DIVL2 DIVL3 BISL2Z BISL3 BICL2
BICL3 XORL2 XORL3 MNEGL MOVL
CMPL MCOML BITL CLRL TSTL
INCL DECL ADWC SBWC MOVPSL
MOVAL CVIHF CVTFG CVTFH MOVAD
MOVO CLRO CVTLB CVTLW CVIDH
CVTGF ADDG2 ADDG3 SUBG2 SUBG3
MULG2 MULG3 DIVG2 DIVG3 CVTGB
CVTGW CVIGL CVTRGL CVTBG CVTWG
CVTLG MOVG CMPG MNEGG TSTG
CVTGH ADDH2 ADDH3 SUBH2 SUBH3
MULH2 MULH3 DIVHE2 DIVH3 CVTHB
CVTHW CVTHL CVTRHL CVIBH CVTWH
CVTLH MOVH CMPH MNEGH TSTH

® 6 & & & & & & & o & o o & & O &6 o o oo o o

Page 5

CVIHG

3 GENERAL OPERATION
3.1 Pipeline Activity

Pipeline stages take input from a previous stace, perform some
transformation and oproduce output which is input for the next stage,
If there is no input to act upon & stage is sald to be idley; that 1Is
the previous stage produced no output and therefore there is nothing
for the stage to do, If the next stage does not consume the data
provided to it in a previous cycle then the precedina stage in the
pipeline stalls.,

In summary, a pipeline stage is idle 1f no data is provided for it to
process and_ a pipeline stage stalls if the subseauent stage does not
process previously pnrovided data,

3,2 Instruction Cache And Translation Buffer

A separate instruction cache and translation buffer are used to access
the instruction _stream, All cache modeling done at DECwest suggests
that the instruction stream cache hit rate will be upwards of 99%. In
addition, two 1levels of buffering are emploved. Therefore the
instruction stream is not modeled explicitly., It is assumed that any
instruction cache or translation buffer misses will have a minimal
atfect on performance,

There is one aspect of the Prefetch stage that is modeled that has to
do with branches, The model keeps track of the virtual PC even though
it does not use it to access the instruction translation buffer and
cache, = The virtual PC is used to determine if a translation buffer
access is reaquired when a branch takes place. In effect the virtual
page number of the new FC 1s compared with the virtual page number of
the old PC, If the comparison fails then an additional cycle |is
required to do the translation buffer access. Otherwise the page
offset is concatenated with the previous ophvsical vpage number to
access the instruction cache, The reason for this 1s that it is not
possible to access the translation buffer, access the instruction
cache and write the prefetch buffer in one cvcle.

3.3 Data Cache And Translation Buffer

A separate translation buffer and cache are used to fetch data from
memory and write results. The organization of the cache is the write
back scheme beina used in Firefly at SRC. (The scheme emploVvs two

Page 6

extra bits per cache 1ine to keep track of shared and modified data,
The shared bit indicates whether it is possible that the data might
also be in another cache, The modified bit indicates whether the data
has been modified but not written to memory,) There is no Problem with
cache coherence even Iin a multiprocessor confiouration. DECwest
modeling of the effects of write back caches suagests that memory
write traffic can be cut by 60-70%, Thus it is possible to bulld a
system without heavy demands for memory bus bandwidth.,

VMS (and other operating systems) will not reguire any special code to
manage the wrlte back cache, The cache will be entirely transparent
except when the power fails. An internal processor reaister will be
orovided so that VMS can sweep the cache and force all unwritten data
to memory,

Modelina of the data translation buffer and cache is on the basis of
how often a miss occurs and how many cycles it takes to process the
miss, This data cache miss rate and the forced write rate are
provided as parameters to the model,

3.4 Register File Write In Progress Counters

Four logical copies of the aceneral purpose registers are maintained,
Two of the coples reside in the Decode stage and two in the execution
stage, These two copies can be thought of as dual vort read sinagle
port write RAMS.

Register values that are needed for address calculation (base or index
register values) are read from the RAMs located in the Decode stage
and the value(s) is (are) passed to the Address stage. Register mode
operands however are not actually read until the execution stage,
This allows a major optimization with regard to allowina outstanding
writes against reagister mode operands to be_iqnored since when the
instruction reaches the execution stage the respective register will
by definition have the most current value,

Associated with each reaister number (excluding PC) is a wWrite in
Progress Counter (4 bits) that is maintained bv the Decode stage and
which records the number of writes outstanding acainst the register,
A counter is used so that it is possible to have multiple writes
against a reagister outstanding (as opposed to a_sinqlg bit which would
allow only one outstanding write), It is not intuitive that multiple
outstanding writes are a common occurrence, but consider the following
instruction seauence:

ADDL3 RO, R1, R2
ADDL2Z2 R3, R2

When the ADDLZ2 Instruction is decoded register R2 will already have an
outstanding write acainst Iit,. But since R2 will_ actually have the
correct value when the ADDL2 reaches the execution stage 1t is
expedient to allow multiple writes against R2., This turns out to be a
very common code seauence generated by most of our compilers,

Page 7

The Decode staqe_monitogs the write bus for tqaister values and
updates its copies of the recisters when approprliate, It also
decrements the respective Write in Progress Counter,

Register File Write in Progress Counters are not uvndated for register
mode operand specifiers if instruction decode nas_been stopped, This
is necessary to avoid deadlock for instructions with _multiple write
destinations (e,qg. EDIV RO, R1,_ R2, (R2)). Write in Progress
Counters, however, are always updated for autolncrement and
autodecrement operand specifiers even when Instruction decode is
stopped, The Execution stage resumes pipeline aetivity when a
consistent state has been reached,

3,5 Data Cache Write In Proaress Bits

Each cache line in the data cache has associated with it a Write 1in
Progress Bit, This bit is written by the Operand stage when a write
destination operand is processed, The bit is cleared when a write on
the write bus to the affected location is executed.

Write in Progress Bits allow subseguent operand reads to occur after a
write has been processed if the read is from a different location than
the write, 1If it is not, the Operand stage will stall untll the Write
in Progress Bit has been cleared,

Data Cache Write in Proagress Bits are not updated I1f instruction
decode has been stopped. _This Is necessarv to avold deadlock for
instructions with multiple write destinations (e.q. EDIV_ RO, R,
(R2), @CR2))., The Execution stage resumes viveline activity when a
consistent state has been reached,

3.6 Autoincrement And Autodecrement Operand Specifiers

The processing oi autoincrement and autodecrement ovperand specifiers
requires the cooperation of the Decode, Address, Operand and Execution
stages of the pipeline,

The Decode stage increments the respective Write in Progress Counter
and passes the register number, register contents, autodecrement value
(1f required), and function to be performed to the Address stage, The
Address stage computes the effective address and passes the register
number, effective address, and function to be performed to the Operand
stage, The Operand stage first passes the reaister number and
autoincrement or autodecrement operation to the Execute state and then
fetches the operand value 1in the next cycle if regquired (i.e. not
address or vield access type). The Execution _stage performs_ the
autoincrement or autodecrement function and writes the new register
value into its own copv of the Reugister File and on the write bus,
The Decode stage then picks the value off the write bus, decrements
the correspondinag Write In Proaress Counter, and writes the new value
into its copy of the Reaister Flle,

Page 8

All told, the processing of an autoincrement or autodecrement operand
saeclfier takes one additional cvycle, Subseguent decoding of operand
specifiers is not blocked unless the register beinc autoincremented or
autodecremented is the one required as a base or index register for a
subsequent operand,

The actual autoincrement or autodecrement in the Execution stage 1is
performed 4in the '"context" of the instruction to_which it belongs;
that {5, it 1is nerformed after the previous instruction has completed
and before the next 1nstruction has started execution. The previous
contents of the respective register are saved in a register 1log when
the FExecution stage performs the increment or decrement operation,
This register log is cleared at the end of an instruction.

3.7 Indirect Addressinag

Indirect addressing requires two trips throuah the Address and Operand
stages, The Execution stage gets involved onlv to pass the indirect
address through the ALU and into the write latch. The Address stage
then picks the address ot;_the_write bus, adds the index register 1if
specified, and passes the effective address back to the Operand stage,
The Execution uynit always vprocesses indirect addresses 1in the
"context" of the instruction to which it belonas.

Indirect addressing occurs very infreguently (e,g. aporoximately 1-2%
of the time) and is not expected to adversely affect performance.

4 PIPELINE OPERATION AND STAGES

The Frigate pipeline is executed by & control orogram that calls the
stage subroutines in reverse order, This is necessary to propagate
stalls correctly since each stage is not actuallv executed in parallel
as it would pbe in real hardware,

This seauence, althouah it works nicely for stalls, causes oproblems
when the output of a latter pipeline stase is to be acted upon by an
earlier pipeline stage in the next cvcle., The oproblem 1is that the
earlier pipeline stage executes after the latter pipeline stage in the
current cycle,

An example is register file writes on the write bus which must be
recognized by the Decode and Address stages in the_next cycle, not the
current, The data written by the Execution stace in the current cycle
1s processed by the Decode and Address stages in the next cvecle and
the data written by the Execution stage in the previous cvcle |is
processed by the Decode and Address stages in the current cvcle. The
model accomolishes this bv inserting pipeline variables that delay the
recognition of data until a subseguent cvcle. In the case of register
file writes this is done with a 2 deep arrayvy of reaister numbers and
valid flags. All pipeline stages examine the first member of the
array and the Execution stase writes the second member., At the end of

Page 9

each simulated cycle the second array member is copied to the first
and the second 1s set invalid., Other nineline variables are simply
implemented as_ boolean variables, For example, when a new virtual
instruction PC is available to the Prefetch stace, both the value and
a flag called "prefetch.new.address" are set, The Prefetch stage sees
the flag, copies the new virtual address and then clears the flag, In
the next cycle it will actually start delivering the instruction
information at the destination address,

4.1 Prefetch

The Prefetch stage reads the input flle produced bv the trace progran
and provides the Decode stage with opocode and ooerand specifier
information on each cycle, This information is the actual opcode and
operand speciflier data, including register numbers, that was collected
when the subject program was traced, As Prefetch reads the trace file
it updates the virtual instruction PC by computina the length of each
operand specifier, Two byte opcodes require one extra cycle to
deliver the "escape" opcode to the Decode stage,

If the Decode stage has not processed the data delivered to it during
a previous cvcle then Prefetch stalls,

If a new virtual PC has been delivered bv the Decode, Address or
Execution stage then the old virtual PC*s virtual page number is
compared with the new virtual PC’s page numbér and the new virtual PC
is copied to the old virtusal PC, 1If the virtual pace numbers match
(1.e., a translation buffer access is not reguired) the instruction
data at the target address will be delivered to the Decode stage in
the next cycle. If the page numbers do not match then a translation
buffer cycle 1s reguired in the next cycle and the Prefetch stage will
deliver the instruction data in the cycle after that.

It should be noted that the affects of Instruction Cache and
Translation buffer misses are not modeled., It 1s assumed that this
causes minimal dearadation in performance,

If instruction decode is stopped by the Decode stace then Prefetch
accumulates idle time when a new opcode is to be decoded, Subsequent
operand specifiers for the current instruction are delivered until an
instruction boundary is reached.

If the Decode stage has not processed data delivered iIn a oprevious
cycle then Prefetch accumulates stall time,

If a new virtual PC is 6rovided by one of the Decode, Address, or
Execution stages the Prefetch accumulates wait time until a
translation buffer and/or cache access can be done.

In all other cases Prefetch can do useful work and aecumulates work
time.,

Page 10

4.2 Decode

The Decode stage oprocesses the opcode and operand specifier
information provided by the Prefetch stage, It maintains two copiles
of the Reglster File and the associated Write in Proeress Counters,
determines when information 1is to be passed to the Address stage,
predicts if conditional branches will be taken, and transmits the
destination address for loop and unconditional branches and jumps to
the Prefetch stage,

The Decode stage is modeled as a finite state machine with 4 states,
The states are:

1., Process opcode and first operand specifier if any,

2. Process next operand specifier, branch destination, or Jjump
address,

3, Execute implied push/pop to/from the current stack, and

4, Finish unconditional branch or jump instructioen.

Decode starts at state 1 and cvcles in state 2 if necessary until all
operand specifiers have been processed, If reauired (PUSHL, RSB, ...)
state 3 or 4 is entered to finish the instruction and then back to
state 1 for the next opcode,

Decode always interrogates the write bus at the start of a cvcle to
determine if a register value is being written. If the write bus 1is
valid (i.,e, there is a reagister being written) then the respective
register’s Write in Progress Counter is decremented but never bhelow
zero, A decrement below zero <¢ould happen when a multiple write
destination instruction has stopped the pipeline and a register mode
destination was present. In this case the Write in Proaress Counter
was not incremented to avoid possible deadlock &and when the
instruction is finished the counter must not be decremented,

If the Address stage has not processed data frOm a previous cycle then
the Decode stage stalls, Otherwise the operation associated with the
current state is performed,

1. State 1 = Process opcode and first specifier if any.

If no data has been supplied by the Prefetch stage (1.e, . -
is waliting for a translation buffer or cache access after a
new virtual PC nhas peen received and cannot deliver any data)
gr instruction decode nas been stopped, then the Decode stage
dles,

If the opcode is a two byte opcode then the first byte is
accepted in the current cycle and the two bvte opncode f£lag is
set., The second oncode byte will be delivered in the next
cycle,

Page 11

If the opcode is from the stop decode class or 1s an
unconditional branch or jump the stop decode flag is set,

If the opcode has zero specifiers and is from the implied pop
class, then the state number is set to 3 and the implied pop
is executed immediately, Otherwise the opcode and a no
operation function are passed to the Address stage, NoO
operation implies that the Address and Operand stages perform
no operation for the respective oocode,

If the opcode has one or more specifiers then the state
number 1s set to 2, the specifier number is set to 1, and the
first operand specifier is processed immediately 1f possible,

State 2 = Process next operand specifier, branch destination,
or jump address.

If no data has been supplied by the Prefetch stage then the
Decode stage idles. Otherwise an action 1s executed
depending on the specifier mode and reaister number,
Specifler actions include:

1., Modes 0, 1, 2, and 3 (short literal) = The short 1llteral
value, the specifier datatvpe, the specifler access type
and a function of 1literal are passed to the Address
stage, If the instruction is from the imolied push class
then the state number is set to 3. The autodecrement SP
specifier will be generated iIn the next cvcle, All
instructions from the implied push class have exactly one
operand specifier, If the instruction is not f£rom the
implied push class and this is the last oonerand specifler
then the state number is set to 1. The next cyele will
process the next opcode,

2, Mode 4 (index) - If the 1index reaister or_ the base
register (note there must always be a base register since
short literals cannot be indexed) has a Write in Progress
Count greater than 1 or both reagisters have a Write in
Progress Count of 1, then the Decode stage waits for one
of the registers to be written on the write bus. At that
time the Write in Progress Counter _will be adjusted,
Otherwise the index register invalid flag is set egual to
the value of the respective Write in Progress Counter,
If the Write in Progress Counter is not zero (i.e. there
are outstanding writes acainst the reaister but only one)
then the Address stage will pick the value off the write
bus when it is written, 1Index mode present 1s set and
the base address 1Is oprocessed bv executing its action
routine,

3. Mode 5 (register mode) - If the access tyoe 1s write or
modify and decoding of instructions is not stopped, then
the Write in Proaress Counters for the respective
register(s) are Incremented (note that up to 4 counters
could be Iincremented), The reaister number, the

4.

Page 12

specifier datatype, the specifier access type and a
function of register are passed to the Address stage, If
the instruction 4is from the implied push class then the
state number is set to 3, The autodecrement SP specifier
will be generated in the next cvcle., If the instruction
is not from the implied push class and this is the last
operand specifier then the state number 1s set to 1. The
next cycle will process the next opcode.

Modes 6, 10, 12, and 14 (register deferred and byte, word
and longword displaced) =« If the Write in Progress
Counter for the base register is areater than 1 then the
Decode stage waits for the register to be written on the
write bus, At that time the Write in Proagress Counter
will be_ adjusted, Otherwise if the opcode is from the
unconditional branch class, an 1index register 1iIs not
specified and the base register is PC, then the branch
destination can be calculated immediately and sent to the
Prefetch stage., If the unconditional branch is from the
implied push class then the state number is set to 3 and
the 1implied push is executed immediately. Otherwise the
state number is set to 4 and _the unconditional branch 1is
finished., If the opcode 1s from the unconditlional branch
class and either an index reaister 1s specified or the
base _reaister 1is not PC, then the base register invalid
flag is set to the value of the respective Write in
Progress Counter and the branch destination flag is set,
The base register invalid flag, the base register number,
the base register value, the index reaister invalid flag,
the index register number, the displacement value, the
specifier datatype, the specifier access type and a
function of fetch are passed to the Address stage, If
the Instruction is from the implied push class, then the
state number is set to 3, Otherwise it is set to 4, The
autodecrement SP specifier will be _generated or the
unconditional branch f£inished in the next cvcle. If the
instruction is not from the unconditional branch class,
then the base register invalid flag is set to the value
of the resvective Write in Proaress Counter, The base
register invalid flag, the base reaister number, the base
register _value, the index register invalld flag, the
index _reaister number, the displacement value, and a
function of fetcnh are passed to the Address stage, If
the instruction is from the implied push class _then the
state 1is set to 3, The autodecrement SP specifier will
be cenerated in the next cycle, If the instruction 1is
not from the_ implied push class and this is the last
operand specifier, then the state number 1s set to 1,
The next cycle will process the next opcode,

Modes 7 and 8 (autoincrement and autodecrement) = If the
base reaister is PC (only possible for mode 8 since
autodecrement PC 1s illegal), then the actien for mode 6
is executed. This is immediate mode addressing and the
Operand stage actually fetches the immediate value, If

6.

Page 13

the base register is not PC and the respective Write in
Proaress Counter is greater than 1, then the Decode stage
waits for the realister to be written on the write bus,
If the base register Write in Proaress Counter i{s 0 or 1,
then the base register invalid flag is set to the value
of the Write in Prooress Counter. The base register
invalid flag, the base register number, the base register
value, the index register invalid flag, the index
register number, the specifier datatvpe, the specifier
access type and a function of modifv are passed to the
Address _stage, The Write in Progress Counter for tne
base reaister is incremented. If the oncode 1s from the
unconditional branch and implied push classes, then the
state number is set to 3 and the branch destination flag
is set, The autodecrement SP sSpecifier will be generated
in the _next cvcle, If the opcode is from the
unconditional class and not the implied oush class, then
the state number is set to 4 and the branch destination
flag 1is set, The unconditional branch will be finished
in the next cvcle, If the instructionm is from the
implied push class and not the unconditional branch
class, then the state number is set to 3. The
autodecrement SP specifier will be generated in the next
cycle, If the instruction is not from the wunconditional
branch_ or implied opush class and this 1s the last
specifier, then the state number is set to 1. The next
cvele will process the next opcode.

Mode 9 (autoinecrement deferred) = If the base reaister is
PC, then the action for mode 6 is executed. This is
absolute addressing and the address is treated 1like a
longword displacement with no base reaister, If the base
register is not PC and the respective Write in Progress
Counter is areater than 1, the Decode stace waits for the
register to be written on the write bus, If the Dbase
register Write in_ Progress Counter is 0 or 1. then the
base reagister invalid flag is set to the value of the
Write in Proaress Counter, The base reaister invalid
flag, the base register number, the base register value,
the index reaister 1invalld flaa, the_ index register
number, the specifier datatvpe, the_specifier access type
and a function of 1indirect modifv are passed to the
Address stage. The Write in Proaess Counter for the base
register Iis 1incremented, If the opocode is from the
unconditional branch and implied push classes, then the
state number is set to 3 and the branch destination flag
is set, The autodecrement SP specifier will be generated
in the next cycle, If the opcode is from tnhe
unconditional branch class and not the implied push
class, then the state number is set to 4 and the branch
destination flag is set, The unconditional branch will
pe completed iIn the next cvcle. If the instruction is
from the implied push class but not from the
unconditional branch class, then_the state number is set
to 3. The autodecrement SP specifier will be generated

Te

8.

Page 14

in the _next cvcle. If the instruction is not from the
unconditional branch or implied push class and this 1is
the last specifier, then the state number is set to 1.
The next cycle will process the next instruction.

Modes 11, 13, and 15 (indirect bvte. word, and longword
displaced) = If the Write in Progress Counter for the
base register is greater than 1, then the Decode stage
walts for the register to be written on the write bus,
If the base register Write in Proaress Counter is 0 or 1,
then the base register invalid flag is set to the value
of the Write in Progress Counter, The base reglster
invalid flaa, the base register number, the base register
value, the Index register invalid flag, the index
register number, the displacement value, the svecifier
datatvpe, the specifier access tvpe and a function of
indirect fetch are passed to the Address stage, If the
opcode is from the unconditional branch and implied push
classes, then state number 1is set to 3 and the branch
destination flaa is set., The autodecrement SP specifier
will be generated in the next cvcle, Tf the oocode is
from_the unconditional branch c¢lass and not from the
implied push class, then the state number is set to 4 and
the branch destination flag is set. The unconditional
branch _will be finished the next evcle, If the
instruction_is from the implied push class and not £ronm
the unconditional branch class. then the state number is
set to 3. The autodecrement SP specifier will be
generated in the next cycle. If the instruction is not
from the unconditional branch or implied push class and
thls 1is the last specifier, then the state number is set
to 1. The next cvecle will process the next instruction,

Branch Displacement (byte and word) = If the opecode is
from the unconditional branch class., then the destination
address is sent to the Prefetch stage and the stopn decode
flag is cleared, 1If the opccde is from the unconditional
branch and implied push class then the state number |is
set to 3, The autodecrement SP speecifier will be
generated in the next cycle. 1If the opcode is from the
uncondition branch class and not the implied push class,
then the state number is set to 4. The wunconditional
branch will be completed in the next cycle. If the
instruction is not from the unconditional branch class,
then it is either from the conditional branch or loop
class, The base reaister and index reaister register
invalid_ flaus are set false, The base register invalid
flag, index reaister 1invalid flaa, the specifier
datatvoe, the specifier access tvpe, computed destination
address and a function of displacement are passed to the
Address _stage, The state number 1is set to i1, If the
opcode 1s from the loop class, then it s always
predicted as taken. The computed destination address is
sent_to the Prefetch stage, If the opocode is from the
conditional branch class, then the branch prediction RAM

Page 15

is accessed using bits 2 through 15 of the ending address
of the conditional branch instruction itself (this is
actually the address of the next instruction). If the
high order bit of the prediction value is set, then tnhe
branch is oredicted as taken._ Otherwise it is predicted
as not taken. If the branch is nredicted taken, tnen the
computed destination address is sent toe the Prefetch
stage, The oprediction flag is passed to the Address
stage. The next instruction is oprocessed iIin the next
cycle,

3, State 3 = Execute implied push/pop to/from the current stack,

If the Write in Proaress Counter for SP_is greater than 1,
then the Decode staae walts for the reaister to be written on
the write bus. If the Write in Progress Counter is 0 or 1,
then the base reagister invalid flag is set to the value of
the write in Progress Counter, 1If the ovncode 1is from the
implied pop class, then the specifier access is set to read,
Otherwise the opcode is from the implied push class and the
specifier access is set to write. The base register invalid
flag, the reagister number 14, the snecifier datatype (always
lonagword), the specifier access tvpe and a function of modify
are passed to the Address stage, The state number is set to
1 and the \Write in Progress Counter for SP is incremented,
The next oncode will be processed in the next cvcle.

4, State 4 = Finish unconditional branch or fump instruction,

Unconditional branches and jumps, although executed in the
Decode stage, cannot be evaporated, Thev must continue
throuagh to the Execution stage so that trace traps canm occur
if enabled (this may be eliminated later by sending the
opcode throuah the nine if and only if te=hit is set or the
address mode is autoincrement, autodecrement or autodecrement
deferred)., The branch destination flac is set false, A
function code of displacement i1s passed to the Address stage,
The Decode stace closely simulates what the actual hardware will do,
It is believed to be very accurate,

If instruction decodina is stopped by the Decode stace itself or no
input has been provided bv the Prefetch stage, then the Decode stage
accumulates idle time,

If the Address stage has not processed data dellvered to it in a
previous cvele, then the Decode stage accumulates stall time,

If the Write in Progress Count of a base register or_ index register is
greater than 1, or both a base register and an index reaister are
specifled and thelr respective Write in Progress Counters are egqual to
1, then the Decode stage accumulates wait time.

In all other cases Decode can do useful work and aecumulates work

Page 16

time,

4.3 Address

The Address stage computes the effective address of an operand or
passes through the data it recelves to the Operand stage. It 1is
capable of performina a 3 inout add in one cvcle (i.e. disnlacement,
base register, and context shifted index register) and operates from a
function and data supplied by the Decode stage., This stage processes
indirect addressing,

The Address stage_always interrogates the write bus at the start of a
cycle to determine if a reaister value is being written that matches
an invalid register that it requires to operform the address
computation, Either the base or index reagister may be reauired but
not both, The base reaister and index reagister invalid flags are used
for this purpose. If the write bus specifies a partial write (i.e.
byte or word), then the value is merged with the value passed to the
Address stage by the Decode stage, Note that there can onlyv be one
outstanding write at this time, This s guaranteed by Decode and
therefore the first write on the write bus that matches the invalid
register number 1is the one required to coMplete the address
calculation, As soon as the corresponding register value has been
recelved the respective invalid flag is Cleared,

If the Operand stage has not processed data from a previous cvele then
the Address stage stalls.

If no data has been supplied by the Decode stage, then the Address
stage idles,

If the Address stage has not vet received an indirect address from the
Execution stace, then the Address stage waits,

If the base register or index register invalid flacs are set, theén the
Address stage walits. Otherwlse an action is performed according to
the function specified by the Decode stage, Address stage actions
include:

1. Displacement = The branch destination address is computed by
adding the sian extended branch disvlacement with the
displacement PC (the PC is provided throuah special 1logic
that adjusts for the length of the branch disolacement)., The
destination address and a function of displacement are passed
to the Operand staace.

2. Fetch and Modify = The effective address is computed, If the
branch destination f£lag 1s set, then the effective address is
sent to the Prefetch stage and the stop decode flag |{is
cleared, 1If the oriainal function was fetch, then no further
processing is necessary, Otherwise the effective address,
the base register number, the svecifier datatvoe, the
specifier access tvpe and a function of fetech or modify are

Page 17

passed to the Operand stage,

3. Register = The base register number, the specifier datatype,
the specifier access type and a function of register are
passed to the Operand stage,

4, Literal = The literal value, the specifier datatvoe, the
specifier access type and a function code of literal are
passed to the Operand stage,

5. No Operation = A no operatioen function is passed to the
Operand stage.

6. Indirect Fetch and Indirect Modify - The effective base
address is calculated, This calculation does not include the
index reqister if it 1is opresent. The context shifted
contents of the index register will be_ added to the indirect
address when it is received from the Execution stage, The
indirect flaa is set, the operand access tvpe is set to read
and the operand datatype is set to lonaword.,K The indirect
flag will cause the Address stage to wait in subseguent
cycles until cleared by the Execution staae, The effective
address, the base register number, the svecifier datatype,
the specifier access tvpe and a function of indirect fetch or
indirect modify are passed to the Operand stage, When the
indirect address is received from the Execution stage on_ the
write bus the _Address stage will add the context snifted
index reaister, if any, to the indirect address and then pass
the original specifier datatype, the orialnal specifier
access tvpe and a function of fetch to _the Operand stage,
Note that while the Address stage is waiting for an indirect
address the Decode stage i{s stalled because it cannot delliver
new data to the Address stage,

4.4 Operand

The Operand stage reads operand values from_ memory, checks the
validity of write destinations, increments register numbers, manages
the Write in Proaress Bits in the data cache and dellvers subsequent
zero longwords for _short 1literals, It is also responsible for
assigning pointer register numbers to address the operand buffers,
The Operand staace operates from data and a function code passed to 1t
by the Address stage,

It is worth explainina the function of the pointer registers and
operand_ buffers althouah they are not actually modeled 1In_ the
simulation, Three pointer reagister FIFO’s are used to store pointer
registers and operand status, One 1is £for _odd numbered source
specifiers, one for even numbered source specifiers. and one for
destinations. Each cvcle, one of the source FIFD’s and the
destination FIFO can be written with a register number. The number
that is written is either a general reaister number, an operand buffer

Page 18

number, or an address buffer number, Operand buffers are used to hold
operand values, Address buffers are used to hold the nhysical address
of the destination (this is always available since a translation
buffer access 1s performed on the destination orerand te determine if
it is accessible), If the destination address crosses a page
boundary, then two address buffer entries are used (i.e, two
translation buffer accesses are required), A status code s also
included with each register, The status code indicates if tnhere was
an access violation, translation not valld, translation buffer miss, a
modify refuse (write access to a page that does not have the modify
bit set) or an attempt was made to read an_I/0 address. (This latter
tvype 1s a VERY stickv problem in a pipelined machine, Since we have
such a wonderful I/0D architecture that allows people to bulld devices
where register reads have side effects we have to cuarantee that I/0
addresses are read exactly once, The way this is done_1is To dump the
address of the operand into the allocated operand buffer and tag the
pointer register with a status code that will _cause the Execution
stage to dispatch to a routine that will explicitly read the I/0
address.) The Execution stage microword orovides control over the
reading of the pointer register FIFO’s. For example, the microword
for an ADDL3 would read the register numbers from the source 1, sSource
2, and destination FIFO’s. It should be noted that ADDL2 would do the
same thing since the modify source/destination overand Wwould cause
both the even numbered source FIFD and the destination FIFO to be
written., The net effect is to allow the Operand stage to fetch
operands somewhat ahead of the Execution stage (e.a. some elasticity
is provided by the address and operand buffers) and provides
parametric microcode in the Execution stage,

If no data has been supplied by the Address stage, then the Operand
stage idles,

If there are no address or operand buffers avallable and one 1is
required the Operand stase stalls until the Execution stage has
emptied one,

If operand fetchina has been stopped, then the Overand stage idles,

The Operand stage executes an action determined by the functien code
supplied to it by the Address stage. The following actions are
performed:

1. No Operation = No operation is pverformed. In the simulation
model thils takes one cvele. In the real machine tnis will
not require any cvcles because the oncode dispatch
information 1is kepot separatelv from the overand speciflier
information. _In the model it is not., This functlon is used
for zero specifier opcodes,

2. Literal = The first lonaword of a short 1literal value s
formatted (e,a, 2zero extended, shifted. bits inserted, etc,)
in the Decode stage and passed throuah the Address stage,
The Operand stage assigns an operand buffer and stores the
first longword of the short literal in the buffer, If the
context 1s cuadword or octaword, then the Operand stage will

’oooo

3.

5.

Panme 19

allocate additional operand buffers and deliver zero
longwords in subseguent cvycles. O0One cvcle is reauired for
each lonaword.

Fetch = If the access tvype 1is address or vield, then an
operand buffer is allocated and the value received from tnhe
Address staage {s written into the buffer. If the access type
is read, write, or modify, then a translatlon buffer access
must be performed to determine the ©ohvsical address and
accessibility of the operand (the translation buffer is not
modeled), For each 1longword in the ovperand (and each
longword takes at least one cycle) a random number is
generated and compared with the data cache miss rate that was
selected when the simulation was bequn, If the random number
is less than or equal to the data_ cache miss rate tnhen 5
additional cvcles (the cache £ill1 time) will be spent
fetching the ooerand value, If the random number is greater
than the data cache miss rate then only 1 cvcle is required
to fetch the operand value, 1If the data cache misses there
is also a probability that the location that will be
displaced from the cache has been modified but not written,
Another random number 1is generated and compared with the
forced write rate which was also selected when the simulation
was begqun, _ If found to "miss" then 5 additional cvcles are
required to first write the current contents of the cache
line and then read the new value. This amounts to 11 cycles
in all 1f the data cache misses and a forced vwrite |1is
required. As 1lonagwords are fetched_ an ooerand buffer 1is
allocated, the reaister number written into one or more of
the FIFND’s and the operand value placed in the operand
buffer.

Modify = The reqgister number of the general recister that |{s
to be modified 1is written into the aopropriate FIFO with a
status that encodes the context and whether the operation to
be performed is an autoincrement or autedecrement., The
Execution stage will dispatch to a routine that actually
performs the overation when an attempt is made to read the
respective FIFO. In the next cvcle a feteh function |is
performed,

Indirect fetch = The indirect lonaword address 15 read and
written into an operand buffer., The register number of the
operand buffer and a status code that indicates _that the
operand buffer contains an indirect address 1s written into
the operand buffer, The Execution staace will dispatech to a
routine that writes the indirect address on the write bus
when an attempt is made to read the resvective FIFO,

Indirect modify = The register number of the general register
that 1s to be updated is written into the appropriate FIFO
with a status code that encodes a context _of lonaword and
autoincrement, In the next cvcle an indirect feteh is
performed.

Page 20

7. Register = The general register number is written into the
appropriate vpointer FIFO, If the operand specifier s
context guadword or octaword, then the reaister number |{is
incremented iIn successive cycles and written into the same
FIFO.

8. Displacement = An_operand buffer 1is allocated and the
displacement value is stored,

4.5 Execute

The Executlion stage executes instructions, performs autoincrement and
autodecrement oOperations, and writes indirect addresses on the write
bus., The Execution stage closely models the real hardware but of
course computes no answers, It does, however, keep track of which
registers are being written bv an Instruction and at the end of
instruction execution it writes the reaisters one ver cycle on the
write bus,

The Execution stasge is modeled as a finite state machine with 4
states, The states are:

1. Dispatch
2. Execute
3. Clean Up
4, Register wWrite

Execute starts at state i and cycles there unti)l an opcode and all its
specifiers arrive, During the time that it waits it can perform
autoincrements, autodecrements and send indirect addresses to the
Address stage which each take 1 cycle. This is not exactly how the
hardware will work but there should be no difference in the
performance, The hardware actually starts the instruction early and
then ends up waltinag 1f an operand is not readv.

When a complete instruction has arrived state 2 1s entered where the
number of cycles estimated for the Instruction are scent,

State 3 releases operand buffers, continues piveline activity, and
sends branch addresses to the prefetch stage., If a register value s
to be written state 4 is entered, 1In state 4 a register value |{is
transmitted on the write bus every cycle,

The Executlon stage alwayvs performs the action associated with the
current state.

1., State 1 = Dispatch., If there are no operand buffers that
contain ovperands, then the Execute stace idles. Otherwise
the operand buffers are examined one at a time to determine

3.

Page 21

if a complete instruction is present or there are
autoincrements, autodecrements, Or indirect addresses to
process, If an_autoincrement or autodecrement is found, then
the operand buffer is removed and the reaister number IS
written on the write bus, This consumes the entire cycle,
If an indirect address is found, then the opverand buffer 1Is
removed and the indirect address is written on the write bus
to signal the Address stage that the address it is waiting
for is present (and thank God _indirect addresses are
infrequent = the whole pipeline is backed up while we
segquence 1 indirect address throuah the pipeline). This also
consumes the entire cycle,) % no autoincrments,
autodecrements, or indirect addresses are found pefore a
complete instruction has been assembled then the sState number
is set to 2 and_the_cycle counter is set to the number of
cycles the instruction i1s estimated to take. Estimates used
in the simulator are as close to realitv as possible since we
must make judgements about the final operformance of the
actual hardware, State 2 is executed.

State 2 = Execute. The number of cvcles remaininag 1is
decremented. If the result is nonzero. then the instruction
execution is not complete, The number of cycles will be
decremented again in the next cvcle., If the remainina cCycCles
is zero,_then instruction_ execution 4is _comolete, If the
instruction has no specifiers and is not from the implied pop
class but is from the decode stop or fetch stop classes, then
either the Decode or Operand stage is continued, If the
opcode also caused a branch (e,g, REI) then a new PC is sent
to the Prefetch stage., If the instruction has one or more
speciflers or is from the implied pop class, then the state
number is set to 3 and state 3 1s executed.

State 3 = Clean Up, The operand buffers are released, 1f
the instruction writes a destination reaister., then the state
number is set to 4 and state 4 is executed, Otherwise If the
instruction is from the decode or fetch stop classes, then
either the Decode or Operand stage 1is continued, If the
opcode also caused a branch (e.g, CHMK) then a new PC is
sent to the Prefetch stage, If th€ instruction is from the
conditional branch or loop <classes and the branch was not
predicted correctly, then the entire piveline is flushed, the
correct PC is sent to the Prefetch stage and the Pranch
prediction RAM 1is updated, The state number is set to 1,

State 4 = Register Write. The destination recister number is
written on the write bus and the number of registers
remaining to write is decremented. If the result is zero,
then the state number is set to 3 and state 3 is executed,
If the result s nonzero, then realster number is
incremented. The next register will be written in the next
cycle,

[end of fb.,rnol

*

1 OVERVIEW

The Frigate simulator consists of two proarams: one to generate a
trace file and one that reads the trace file and simulates the Frigate
hardware pipeline., It should be kept in mind that the simulator does
not actually execute oproagrams, _ Rather it computes the number of
eveles that would be required to execute the proaram on a Frigate
machine,

The trace progqram is linked as a debugger with the program to be
traced, It then gains control before the subject proagram and solicits
what the name of the output file is to be and how many disk blocks of
data are to be collected, The subject program is then traced and a
data flle is written that contains the opcodes, operand specifiers,
and branch destinations of the executed Iinstructions. Specifier
displacements and immediate data are not written into the output file
since they are not reaquired by the simulator, At the end of the
subject program or when the specified number of disk_ blocks of data
have been collected an end of data sentinel is written and the data
file is closed. The _trace proaram then formats and prints instruction
freaquency, Iinstruction size, specifier size, specifier type, memory
read, memory write, register read and register wyrite data,

The second part of the simulator is the program that simulates the
actual hardware, This proagram allows several parameters such as data
cache miss rate and branch orgqictiqn counter width to be specified
and then reads the data file produced by_the trace program._ The
simulator consists of five subroutines that simulate the individual
pipeline stages and a short control program that calls each of the
stage subroutines for each machine cycle, Instructions are
prefetched, decoded, their operands fetched and then_executed., Each
activity proceeds in a_ npipelined fashion until it Treaches the
execution stage where it spends the number of cvecles it takes to
execute the respective instruction. Instructions are executed in this
manner until the _entire data file has been read. _At the end of the
simulation, statistics are oputput as to the number of cycles that were
executed, the number of _instructions executed. several branch
statistics and data on the utilization of the nipeline stages.

2 INSTRUCTION CLASSIFICATION

All VAX instructions are glassitled_into aroups dependinag on how their
execution affects pipeline activity, The intent is to have as few
classes as possible and still execute the VAX instruction set
efficiently, Class information will be stored in a ROM (or RAM) that
iIs accessed “usina the instruction oacode value, The resultant
information is then used to control pipeline operation while the
instruction executes.,

Eight instruction classes are defined:

Page 2

Stop Decode = This instruction class inhibits the Decode
stage from _ deceding _further instructions, Explicit
continuation from the execution unit 1is reaquired before
subsequent instructions will be decoded, The remaining
specifiers for the subject instruction are decoded,
Instructions in this class change global machine state (e.q.
MTPR), interact with FPD (e.g. MOVC3), impolicitly modify
registers or contain multiple write destinations (e.qg.
EDIV).

Instructions in this class include:

HALT CVTPT MOVP EDIV ASHP

REIX MULP CMPP3 CASEB CVTLP
BPT CVITP CVTPL CASEW CALLG
RET DIVP CMPP4 POPR CALLS
RSB MOVC3 EDITPC PUSHR XFC

CVYTPS CMPC3 MATCHC CHMK ESCE
CVTSP SPANC LOCC CHME ESCF
CRC SCANC SKPC CHMS EMODG
ADDP4 MOVCS EMODF CHMU POLYG
ADDP6 CMPCS5 POLYF CASEL EMODH

SUBP4 MOVTC EMODD MTPR POLYH
SUBP6 MOVTUC POLYD MFPR LDPCTX
SVPCTX

These 1nstructions take several cvcles to execute and are
generally infreauent, Note that RSB is also in the implied
poOp class.

Stop Fetch = This instruction class stops the Operand stage
in the same way as the Decode stage 1s stopped by the
previous class, Explicit continuation is required by the
execution unit before further instruction_gperands_wiil be
fetched, These 1instructions read or modify destinations
whose addresses cannot be calculated by the Operand stage
(e.q. BBSS).

This class includes:

ADAWI INSQHI REMQTI BBSC BEBCCI

INSQUE INSQTI BBSS BBCC INSV
REMQUE REMQHI BBCS BRSSI BBC
BBS EXTV EXTZV CMPV CMPZV
FFS FFC

Note that the branch on bit instructions in this class are
also in the conditionel branch class.

Conditional Branch = This instruction class conditionally
branches to a destination based on source or condition code
values. A subset of the instructions also modlfy the source
value, The execution of these instructions 1s predicted in
the Decode stage, If a branch is predicted te be taken then
the destination address 1s computed bv the Decode stage and

4,

Page 3

passed to the Prefetch stage,
This class includes:

BNEQ BLSS BGEQU BBCS BLBS

BEQL BGTRU BLSSU BBSC BLBC
BGTR BLEQU BBS BBCC
BLEQ BVS BBC BESSI
BGEQ BVC BBSS BRCCIX

Note that the branch on bit instructions that modifv their
source are also included in the stop fetch class,

Loop = This instruction class inclUdes all the iterative loop
instructions. This_ class is similar to the conditional
branch class but differs in that the branches are ajlways
predicted to be taken, The branch destination address is
computed by the Decode stage and passed tn the Prefetch
stage.

This class includes:

ACBB ACBL ACBD AOBLSS SOBGTR
ACBW ACBF ACBG AOBLEQ SOBGEQ
ACBH

Unconditional Branch = This instruction class includes all
the instructions that unconditionallv branch to an address
that can be calculated in the Decode or Address Stage, _ The
destination_ address 1is calculated in the Decode stage if it
is PC_relative and in the Address stage if it {is ({indirect,
context indexed or not relative to PC. The resultant address
i1s passed to the Prefetch stage,

This class includes:

BSBB JSB BSBW
BRB JMP BRW

Note that BSBB, BSBW, and JSB are also in the implied push
class.

Implied Push = This instruction class_ ocenerates an implied
push onto the stack after the final operand has been
processed., This reaquires the decode stace to generate an
autodecrement SP operand specifier,

This instruction class includes:

BSBB JSB PUSHAW PUSHAQ PUSHL
BSBW PUSHAB PUSHAL PUSHAD

Note that BSRB, BSBW, and JSB are also in the unconditional
branch class.

7. Implied Pop = This class contains only the imstruction RSB,
The Decode stage aenerates an autoincrement SP operand
specifier to remove the return address from the too of the
stack,

This class includes:
RSB
RSB iIs also in the stop decode class,

8, General = This instruction class _contains all instructions
that require no special processina, They cause no pipeline
hazards and can be processed in a pivelined manner without
any interference.

This class includes:

NOP CVTHD INDEX PROBER PROBEW
CVTWL CVTWB MOVZWL MOVAW ADDF2
ADDF3 SUBF2 SUBF3 MULF2 MULF2
DIVF2 DIVF3 CVIFB CVTFW CVTFL
CVIRFL CVTBF CVIWF CVTLF MOVF
CMPF MNEGF TSTF CVTFD ADDD2
ADDD3 SUBD2 SUBD3 MULD2 MULD3
DIVD2 DIVD3 CVIDB CVTDW CVTDL
CVIRDL CVTBD CVTWD CVTLD MOVD
CMPD MNEGD TSTD CVIDF ASHL
ASHO EMUL CLRO MOVQ MOVAQ
ADDB2 ADDB3 SUBB2 SUBB3 MULB2
MULB3 DIVB2 DIVB3 BISE2 BISB3
BICB2 BICB3 XORB2 XORB3 MNEGB
MOVB CMPB MCOMB BITB CLRB
TSTB INCB DECB CVTBL CVTBW
MOVZBL MOVZBW ROTL MOVAB ADDW2
ADDW3 SUBW2 SUBW3 MULW2 MULW3
DIVW2 DIVW3 BISW2 BISW3 BICW2
BICW3 XORW2 XORW3 MNEGW MOVW
CMPW MCOMW BITW CLRW TSTW
INCW DECW BISPSW BICPSW ADDL2
ADDL3 SUBL2 SUBL3 MULL2 MULL2
DIVL2 DIVL3 BISL2 BISL3 BICL2
BICL3 XORL2 XORL3 MNEGL MOVL
CMPL MCOML BITL CLRL TSTL
INCL DECL ADYC SBWC MOVPSL
MOVAL CVIHF CVTFG CVTFH MOVAD
MOVD CLRO CVTLE CVTLW CVTDH
CVTGF ADDG2 ADDG3 SUBG2 SUBG3
MULG2 MULG3 DIVG2 DIVG3 CVTGB
CVTGW CVIGL CVTRGL CVTBG CVTWG
CVTLG MOVG CMPG MNEGG TSTG
CYTGH ADDH2 ADDH3 SUBH2 SUBH3
MULH2 MULH3 DIVH2 DIVH3 CVTHB
CVTHW CVTHL CVTRHL CVTBH CVTWH
CVTLH MOVH CMPH MNEGH TSTH

Page 5

CVTHG

3 GENERAL OPERATION
3.1 Pipeline Activity

Pipeline staces take input from @& previous stace. perform sSome
transformation and produce output which is input for the next stage,
If there is no inobut to act upon @ stage is said to be idle; that is
the previous stage produced no output and therefore there is nothing
for the stace to do, If the next stage does not consume the data
provided to it in a previous cyvcle then the precedina stage in the
pipeline stalls.

In summary, a pipeline stage is idle 1f no data is provided for it to
process and a pipeline stage stalls if the subseauent stage does not
process previously provided data,

3.2 1Instruction Cache And Translation Buffer

A separate instruction cache and translation buffer are used to access
the instruction stream, All cache modeling done at DECwest suggests
that the instruction stream cache hit rate will be upwards of 99%. 1In
addition, two levels of buffering are emploved. Therefore the
instruction stream is not modeled explicitly., It is_assumed that any
instruction cache or translation buffer misses will have a minimal
affect on performance,

There is one aspect of the Prefetch stace that is modeled that has to
do with branches, The model keeps track of the virtual PC even though
it does not use it to access the instruction translation buffer and
cache, The virtual PC i{s used to determine if a translation buffer
access is reauired when a branch takes place, In effeet the virtual
page number of the new PC is comnared with the virtua1 page number of
the old PC, 1If the comparison fails then an additional cyele is
required to do the translation buffer access. Otherwise the page
offset is concatenated with the previous phvsical opage number to
access the instruction cache. The reason for this 1s that it 1s not
possible to access the translation buffer, access the {nstruction
cache and write the orefetch buffer in one Cycle.

3.3 Data Cache And Translation Buffer

A separate translation buffer and cache are used to fetch data fronm
memory and write results., _The organization of the cache is the write
back scheme being used in Firefly at SRC. (The scheme emploYys two

Page 6

extra bits per cache line to keep track of shared and modified data,
The shared bit indicates whether it is possible that the data might
also be in another cache., The modified bit indicates whether the data
has been modified but not written to memory,) There is no pProblem with
cache coherence even in a_ multiprocessor confiouration. DECwest
modeling of the effects of write back caches sucgests that memory
write ¢traffic can be cut by 60-70%, Thus it is possible to build a
system without heavv demands for memorv bus bandwidth,

VMS (and other operating systems) will not reguire any special code to
manage the write back cache. The cache will be entirely transparent
except when the power fails. An internal orocessor reaister will be
provided so that VMS can sweep the cache and force all unwritten data
to memorv,

Modeling of the data translation buffer and cache is on the basls of
how often a miss occurs and how many cycles it takes to porocess the
miss. This data cache miss rate and the forced write rate are
provided as parameters to the model,

3.4 Register File Write In Proaress Counters

Four loaical copies of the general purpose reaisters are maintained,
Two of the copies reside in the Decode stage and two in the execution
stage, These two cooies can he thouaght of as dual port read single
port write RAMs.

Register values that are needed for address calculation (base or index
register values) are read from the RAMs located in the Decode stage
and the value(s) is (are) passed to the Address stage, Register mode
operands however are not actually read until the execution stage,
This allows a major ootimization with regard to allowina_ outstanding
writes against register mode operands to be_iqnpred since when the
instruction reaches the execution stage the respective register will
by definition have the most current value,

Associated with each register number (excludina PC) {is a Write 1in
Progress Counter (4 bits) that is maintained bv the Decode stage and
which records the number of writes outstanding acainst the register,
A counter is used so that it is possible to have multiple writes ’
against a reqgister outstandina (as opposed to a single bit which would
allow only one outstanding write), It is not intuitive that multiple
outstanding writes are a common occurrence, but consider the following
instruction seaquence: |
1
|

ADDL3 RO, R1, R2
ADDL2 R3, R2

When the ADDL2 instruction is_decoded register R2 will alreadv have an
outstanding write against it, But since R2 will_actuallv have the
correct value when the ADDL2 reaches the execution stage it {is
expedient to allow multiple writes against R2, This turns out to be a |
very common code seauence generated by most of our comnilers,

The Decode staace monitors the write bus for register values and
updates 1its copies of the reaisters when appropriate, It also
decrements the resvective Write in Progress Counter.

Register File Write in Progress Counters are not updated for register
mode operand specifiers if instruction decode has_been stopped., This
is necessary to avold deadlock for instructions with _multiple write
destinations (e.aq, EDIV RO, R1, R2, (R2)). Write in Progress
Counters, however, are always updated for_ auteincrement and
autodecrement operand specifiers even when instruction decode is
stopped, The Execution stage resumes pipceline activity when a
consistent state has been reached.

3.5 Data Cache Write In Proaress Bits

Each cache line in the data cache has associated with it a Write in
Proagress Bit, This bit is written by the Operand stage when a write
destination operand is processed, The bit is cleared when a write on
the write bus to the affected location is executed.

Write in Progress Bits allow subsequent operand reads to occur after a
write has been processed if the read is from a different location than
the write, If it is not, the Operand stage will stall until the wWrite
in Progress Bit has been cleared,

Data Cache Write in Progress Bits are not updated if instruction
decode has been stopped, _This 1s necessary to avold deadlock for
instructions with multiple write destinations (e.g. EDIV_ RO, R},
(R2), Aa(R2)). The Execution stage resumes pipeline activitv when a
consistent state has heen reached,

3.6 Autoincrement And Autodecrement Operand Specifiers

The processing of autoincrement and autodecrement operand specifiers
requires the cooperation of the Decode, Address, Operand and Execution
stages of the pipeline,

The Decode stage increments the respective Write in Progress Counter
and passes the reagister number, register contents, autodecrement value
(i1f reguired), and function to be performed to the Address stage, The
Address stage computes the effective address and passes the register
number, effective address, and function to be performed to the Operand
stage, The Operand stage f£first passes the reaister number and
autoincrement or autodecrement operation to the Execute state and then
fetches the operand value in the next cycle if required (i.e. not
address or vield access type). The Execution stage performs the
autoincrement or autodecrement function and writes the new register
value into its own copy of the Register File and on the write bus,
The Decode stage then picks the value off the write bus, decrements
the corresponding Write in Proaress Counter, and writes the new value
into its copy 0f the Register File,

|
!
(

Page 8

All told, the processina of an autoincrement or autodecrement operand
specifier takes one additional cvcle, Subseguent deceding of operand
specifiers is not_blocked unless_the register beineg autoincremented or
auytodecremented 1is the one required as a base or Index register for a
subsequent operand.

The actual autoincrement or autodecrement in the Execution stage |{is
performed in the '"context" of the instruction to_which it belongs;
that is, it is oerformed after the orevious instruction has completed
and before the next instruction has started execution. The orevious
contents of the resnective reagister are saved in a register 1lpg when
the Execution staqge performs the Increment or decrement operation,
This reagister log is cleared at the end of an instruection.

3.7 Indirect Addressing

Indirect addressing reguires two trips through the Address and_ Operand
stages, The Execution stage gets involved onlv to pass the indirect
address_throuagh the ALU and into the write latch. The Address stage
then nicks the address off the write bus, adds the index register if
snecified. and passes the effective address back to the Operand stage,
The Execution unit always processes indirect addresses in the
"context" of the instruction to which it belonas.

Indirect addressing occurs verv infrecuently (e.g. approximately 1=2%
of the time) and is not expected to adversely affect performance,

4 PIPELINE OPERATION AND STAGES

The Frigate pipeline is executed by a control program that calls the
stage subroutines in reverse order, This is necessary to propagate
stalls correctly since each stage is not actuallv executed in parallel
as it would be in real hardware,

This seauence, althouah it works nicely for stalls, causes oproblems
when the output of a latter pipeline stage is to be acted upon by an
earlier pipeline stage in the next cycle, The bproblem is that the
earlier pipeline stage executes after the latter pipeline stage in the
current cvycle,

An example is reaister file writes on the write bus which must be
recognized by the Decode and Address stages in the_next cycle, not the
current, The data written by the Executlion stage in the current cycle
is poprocessed Dby the Decode and Address stages in the next cvcle and
the data written by the Execution stage iIn_ the previous cycle {is
processed by the Decode and Address stages in the current cvcle., The
model accomplishes this bv inserting pipeline variables that delay the
recognition of data until a subsequent cvcle. In the case of register
flle writes this is done with a 2 deep array of reaister numbers and
valid flags. All npipeline stages examine the first member of the
array and the Execution stage writes the second member. At the end of

Page 9

each simulated cvecle the second array member is conied to the first
and the second 1s set lnvalid. Other nineline variables are simply
implemented as boolean variables, For example, when a new virtual
instruction PC is available to the Prefetch staae, both the value and
a flag called “orefetch-new-address" are set. The Prefetch staae sees
the flag, copies the new virtual address and then clears the £lag, In
the next cvele it will actually start delivering the instruction
information at the destination address,

4.1 Prefetch

The Prefetch stage reads the input file produced bv the trace program
and provides the Decode stage with oocode and oocerand specifier
information on each cyvcle. This information is the actual opcode and
operand specifier data, including register numbers, that was collected
when the subject proaram was traced, As Prefetch reads the trace file
it updates the virtual instruction PC by computina the length of each
onerand specifier. Two byte opcodes reguire one extra cvcle to
deliver the "escape" opncode to the Decode stage,

If the Decode stage has not orocessed the data delivered to it during
a previous cvcle then Prefetch stalls,

If a new virtual PC has been delivered by the Decode, Address or
Execution stage then the old virtual PC’s virtual page_number is
compared with the new virtual PC’s page numPer and the new virtual PC
is copied to the old virtual PC, 1If the virtual page numbers match
(1.e. a translation buffer access is not reguired) the instruction
data at the target address will be delivered to the Decode stage in
the next cycle, 1If the page numbers do not match then_a translation
buffer cycle is reaguired in the next cycle and the Prefetch stace will
deliver the instruction data in the cycle after that.

It should be noted that the affects of Instruction Cache and
Translation buffer misses are not modeled. It is assumed tnat this
causes minimal degradation in performance,

If instruction decode is stopped by the Decode stage then Prefetch
accumulates idle time when a new oncode is to be decoded, Subsequent
operand specifiers for the current instruction are delivered until an
instruction boundarv is reached,

If the Decode stage has not orocessed data delivered in a oprevious
cvcle then Prefetch accumulates stall time.

If a new virtual PC is provided by one of the Decode, _Address, or
Execution stages the Prefetch accumulates wait time until a
translation buffer and/or cache access can be done.

In all other cases Prefetch can do useful work and accumulates work
time.

4,2 Decode

The Decode stage processes the opcode and operand specifier
information provided by the Prefetch stage. It maintains two coples
of the Register File and the associated Write in Proaress Counters,
determines when_ information is to be nassed to the Address staage,
predicts if conditional branmches will be taken., and transmits the
destination address for loop 2nd unconditional branches and jumps to
the Prefetch stage,

The Decode stage is modeled as a finite state machine with 4 states,
The states are:

1. Process opcode and first operand specifier 1f any,

2. Process next operand specifier, branch destination, or jump
address,

3. Execute implied push/pop to/from the current stack, and

4, Finish unconditional branch or jump instructien.

Decode starts at state 1 and cvcles In state 2 1f necessarvy until all
operand svecifiers have been orocessed, 1If regulred (PUSHL, RSB, ,,.)
state 3 or 4 is entered to finish the instruction and then back to
state 1 for the next opncode.

Decode always interrogates the write bus at the start of a cvcle to
determine {f a register value is being written. 1If the write bus is
valid (i,e, there is a register being written) then the respective
register’s Write in Progress Counter 1s decremented but never below
zero, A decrement below zero <¢ould happen when a multiple write
destination instruction has stopped the pipeline and a register mode
destination was present. In this case the Write in Progress Counter
was not incremented to avoid possible deadlock éand when the
instruction is finished the counter must not be decremented,

If the Address stage has not nrocessed data frOm a previous cycle then
the Decode stage stalls., Otherwise the operation associated with the
current state is performed,

1. State 1 = Process opcode and first specifier if anvy.

If no data has been supplied by the Prefetch stace (i.e. it
is walting for a translation buffer or cache access after a
new virtual PC has been received and cannot deliver any data)
or instruction decode has been stopped, then the Decode stage
1dleﬁo

If the oocode is a two byte opcode then the first byte is
accepted in the current cycle and the two bvte opcode flag is
set. The second opcode byte will be delivered in the next
cvcle,

Page 11

If the oocode is from the stoo decode class or 1is an
unconditional branch or jump the stop decode flag is set,

If the opcode has zero speclfiers and {s from the implied pop
class, then_the state number is set to 3 and the implled pop
is executed immediately, Otherwise ¢the opecode and a no
operation _function are passed to the Address stage, No
operation_ 1mn11es that the Address and Dperand stages perform
no operation for the respective oncode,

If the oncode has one or more specifiers then the state
number is set to 2, the specifier number is set to 1, and the
first operand specifier is processed immediately if possible,

State 2 = Process next operand specifier, branch destination,
or jump address.

If no data has been supplied by the Prefetch stage then the
Decode staage idles., Otherwise an action 1s eXxecuted
depending on_the_ specifier mode and reaister number,
Speciflier actions include:

1. Modes 0, 1, 2, and 3 (short literal) = The short literal
value, the specifier datatype, the specifier access tvpe
and a function of 1literal are passed to the Address
stage, If the instruction is from the imelied push class
then_the state number is set to 3., The autodecrement SP
specifier will be generated in the next cvcle, All
instructlons from the implied push class have exactlv one
overand specifier, If the instruction is not f£rom the
implied push class and this is the last ocerand specifier
then the state number is set to 1. The next cvcle will
process the next opcode,

2., Mode 4 (index) = If the Iindex register or_ the base
register (note there must always be & base register since
short literals cannot be indexed) has a Write in Proaress
Count agreater than 1 or both registers have a Write in
Progress Count of 1, then the Decode stage walts for one
of the reaisters to be written on the write bus, At that
time the Write in Progress Counter _will be adjusted,
Otherwise the index register invalid flag 1s set equal to
the value of the respective Write 1in Pregress Counter,
If the Write in Progress Counter 1s not zero (i.e. there
are outstanding writes acainst the reaister but only one)
then the_ Address stage will pick the value off the write
bus when it is written., Index mode present 1Is set and
the base address Is processed bv executing its action
routine,

3. Mecde 5 (register mode) = If the access tyrme is write or
modify _and decodina of instructions is not stooped, then
the Write iIn Proagress Counters for the respective
register(s) are incremented (note that up to 4 counters
could be incremented). The reaister number, the

Paage 12

specifier datatype, the specifier access tvpe and a
function of register are passed to the Address stage, If
the instruction 1is from the implied push class then the
state number is set to 3, The aytodecrement SP specifier
will be generated in the next cvcle, If_the instruction
is not from the implied push class and this is the Jlast
operand specifier then the state number is set to 1., The
next cvecle will process the next opcode.

Modes 6, 10, 12, _and 14 (register deferred and byte, word
and longword displaced) = If the Write in Progress
Counter for the base register is greater than i1 then the
Decode stage waits for the register to be written on the
write bus, At that time the wWrite in Progress Counter
will be adjusted. Otherwise if the opcode is from the
unconditional branch class, an index register 1is not
specified and the base register is PC, then the branch
destination can be calculated immediately and sent to the
Prefetch stage. If the unconditional branch is from the
implied push class then the state number 1s set to 3 and
the 1implied push is executed immediate;y, Otherwise the
state number is set te 4 and the unconditional branch s
finished, If the opcode is from the unconditional branch
class and either_an index register is specified or the
base reaister 1is not PC, then the base register invalid
flag 1s set to the value of the respective Write 1In
Proagress Counter and the branch destination flag is set,
The base reqgister invalld flag, the base register number,
the base register value, the index reocister invalid flag,
the index reaister number, the _diseclacement value, the
specifier datatvpe, the speclfier access typre and a
function of fetch are passed to the Address stage, If
the instruction is from the implied push class, then the
state number is set to 3, Otherwise it is set to 4, The
autodecrement SP specifier will be _generated or the
unconditional branch finished in the next cvcle. If the
instruction 1s not from the unconditional branch class,
then the base register invalid flag is set to the valuye
of _the respective VWrite in Proaress Counter, The base
register invalid flag, the base reaister number, the base
register _value, the index register invalid flag, the
index_ register number, the displacement value, and a
function of tetch are passed to the Address stage, If
the 1nstructlon is from the implied push class _then the
state is set to 3. The autodecrement SP specifier will
be generated in the next cycle, If the instruction is
not from_ the_ implied push <class and this is the last
operand specifier, then the state number is set to 1,
The next cycle will process the next opeode.

Modes 7 and 8 (autoincrement and aytodecrement) = If the
pase reagister {s PC (onlv possible for mode 8 since
autodecrement PC is illegal), then the action for mode 6
is executed, This is immediate mode addressina and the
Operand stage actually fetches the immediate value, 1f

Paage 13

the base register is not PC and the respective Write in
Progress Counter is greater than 1, then the Decode stage
walts for the register to be written on the write bus,
If the base register Write in Proaress Counter is 0 or 1,
then the base register invalid flag is set to the value
of the Write in Proaoress Counter, The base register
invalid flaa, the base register number, the base register
value, the index register invalld flaa, the index
register number, the specifier datatvpe, the specifier
access tvpe and a function of modifv are passed to the
Address stace, The Write {in Progress Counter for the
base reaister is incremented., If the opocode 1s from the
unconditional branch and imolied opush classes, then the
state number is set to 3 and the branch destination flag
is set, The auntodecrement SP Snec;fier will be generated
in the _next cvcle, If the opcode is from the
unconditional class and not the implied push class, then
the state number is set to 4 and the branch destination
flag 1is _set, The unconditional branch will be finished
in the next cvcle, If the instruction is from the
implied push class and not the unconditional branch
class, then the state number is set to 3. The
autodecrement SP specifier will be cenerated in the next
cycle, If the instruction is not from the unconditional
branch or implied push class _and this is the last
specifier, then the state number is set to 1, The next
cvycle will process the next oocCode,

Mode 9 (autoincrement deferred) = If the base reagister is
PC, then the action for mode 6 is executed., This is
absolute addressing and the address 1is treated 1like a
longword displacement with no base reaister., If the base
register is not PC and the respective Write 1in Proaress
Counter is agreater than 1, the Decode staase waits for the
reaister to be written on the write bus, If the base
register Write in_ Progress Counter is 0 or 1, then the
base register invalid flag i{s set to the value of the
Write in Proaress Counter, The base reaister invalid
flaa,_the_ base reagister number, the base register Value,
the 4index register {nvalid flag, the_ index register
number, the specifier datatvpe, the_specifler access type
and a function of indirect modifv are passed to the
Address stage,_ The Write in Progess Counter for the base
register is incremented, _If the oocnde 1s from the
unconditional branch and implied push classes, then the
state number is set to 3 and the branch destination flag
is set, The autodecrement SP snecifier will be generated
in the next cycle, If the opcode is from the
unconditional branch class and not the implied push
class, then_ the state number is set to 4 and the branch
destination flag is set, The unconditional branch will
be completed in the next cvcle. If the instructlion is
grom the implied push class but not from the
unconditional branch class, then_the state number 1s set
to 3, The autodecrement SP specifier will be generated

Page 14

in the next cvcle., If the instruction is not from the
unconditional branch or implied push class and this |is
the last specifier, then the state_number is set to 1.
The next cycle will process the next instruction.

Modes 11, 13, and 15 (indirect byte, word, and 1longword
displaced) = _If the Write in Progress Counter for the
base register is greater than 1, then the Decode stage
waits for the_ reglister to be written on the write bus,
If the base register Write in Progress Counter is 0 or 1,
then the_ Bbase register invalid flag is set to the value
of the Write in Proagress Counter, The base register
invalid flaa, the base register number,_the base register
value, the Index reglster invalid flag, the index
register number, the displacement value, the specifier
datatype, the specifier access type and a function of
indirect fetch are passed to the Address stage, If the
opcode is from the unconditional branch and implied push
classes, then state number is set to 3 and the branch
destination flaa is set, The autodecrement SP specifier
will be aenerated in the next cycle, 1If the oocode is
from_the unconditional branch class and not from the
implied push class, then the state number 1s set to 4 and
the branch destination flag is set. = The unconditional
branch _will _be finished the next cvcle, If the
instruction_is from the implied oush class and not from
the unconditional branch class, then the state number is
set to 3. The autodecrement SP specifier will be
generated in the next cyvcle., 1If the instruction is not
from the unconditional branch or implied push class and
this 1is the last specifier, then the state number 1is set
to 1. The next cvcle will process the next instruction,

Branch Displacement (byte and word) = If the opcode 1is
from the unconditional branch class. then the destination
address is sent to the Prefetch stage and the stop decode
flag 1s cleared, 1If the opcode is from the unconditional
branch and implied push class then the state number 1is
set_ _to 3, The autodecrement SP specifier will be
generated in the next cycle, 1If the opcode is from the
uncondition branch class and not the implied push class,
then the state number is set to 4. The unconditional
branch will_ be completed in the next cvcle, If the
instruction is not from the unconditional branch class,
then it 1is either £from the conditional branch or_loop
class, The base reaister and index reaister register
invalid_ flaags are set false, The base register invalid
flag, index reaister 1invalid flaa, the specifier
datatvpe, the specifier access tvpe, computed destination
address and a function of displacement are passed to_ the
Address _stage, The state number is set to 1. If the
oncode 1is from the loop class, then 1t s always
predicted as taken. The computed destination address is
sent_to the Prefetch stage, 1If the oncode is from the
conditional branch class, then the branch prediction RAM

Page 15

is accessed using bits 2 through 15 of the endinao address
of the conditional branch Iinstruction itself (this is
actuallv the address of the next instruction), If the
hiagh order bit of the prediction value 13 set, then the
branch is nredicted as taken, otherwise it is opredicted
as not taken,_ If the branch is predicted taken, then the
computed destination address 1is sent to the Prefetch
staae, The prediction flag 1is passed to the Address
stage, The next instruction is orocessed in the next
cvcle,

3, State 3 = Execute implied push/pop to/from the current stack.

If the Write in Prooress Counter for SP_is qreater than |,
then the Decode stace waits for the register to be written on
the write bus., If the Write in Progress Counter is 0 or 1,
then the base reagister invalid flag 1s set to the value of
the Write in Progress Counter. If the opocode is from the
implied pop class, then the specifier access 1s set to read,
Otherwise the oocode is from the implied push class and the
speciflier access is set to write. The base register invalid
flaag, the reagister number 14, the specifier datatype _(always
longword), the specifier access tvpe and a function of modlify
are passed to the Address stage, The state number is set to
1 and the Write in Progress Counter for SP 1s incremented,
The next opcode will bhe processed in the next cvcle.

4, State 4 = Finish unconditional branch or fump instruction,

Unconditional branches and jumps, although executed in the
Decode stage, cannot be evaporated, Thev must continue
through to the Execution stage so_that trace traps canm_occur
if enabled (this may _be eliminated later by sendina the
opcode throuah the nine 1f and only if t=bit is set or the
address mode is autoincrement, autodecrement or autodecrement
deferred). The branch destination f£laa 1is set false, A
function code of disclacement is passed to the Address stage,

The Decode stage closely simulates what the actual hardware will do,
It is believed to be very accurate,

If instruction decodina is stopped by the Decode stace itSelf or no
input has been orovided bv the Prefetch stage, then the Decode stage
accumulates idle time,

If the Address stage has not orocessed data delivered to it in a
previous cycle, then the Decode stage accumplates stall time.

If the Write in Proaress Count of a base register or_ index register is
greater than 1, or both & base reglister and an index reagister are
specified and their respvective Write in Progress Counters are equal to
1, then the Decode staage accumulates wait time.

In all other cases Decode can do useful work and aecumulates work

Page 16

time,

4.3 Address

The Address stage computes the effective address of an operand or
passes throuah the data it receives to the Operand stace, It is
capable of performinag a 3 inout add in one cvcle (1.0, displacement,
base register, and context shifted index register) and operates from a
function and data supplied by the Decode stage. This stage processes
indirect addressina,

The Address stage_ alwayvs interrogates the write bus at the start of a
cycle to determine if a reaister value is beino written that matches
an invalid register that it requires to operform the address
computation, Either the base or index register may be required byt
not both, The base reagister and index reagister invalid flaags are used
for this purpose, If the write bus specifies a partial write (1.e.
byte or word), then the value is merged with the value passed to the
Address stage by the Decode stage, Note that there can onlv be one
outstanding write at this time., This is guaranteed by Decode and
therefore the first write on the write bus that matches the invalid
register number is the one reguired to complete the address
calculation, As soon _as the corresponding reaister value has been
received the respective invalid flag is cleared,

I1f the Operand stage has not processed data from a previous cyele then
the Address stage stalls.

If no data has been supplied by the Decode stage, then the Address
stage idles,

If the Address stage has not vet received an indirect address from the
Execution stace, then the Address stage walits.

If the base reaister or index reagister invalid flags are set, then the
Address staage waits. Otherwise an action is performed according to
the function specified bv the Decode staage, Address stage actions
include:

1. Displacement = The branch destination address is computed by
adding the sian extended branch disclacement with the
displacement PC (the PC is provided through_ special 1logic
that_adjusts for the lenath of the branch displacement). The
destination address and a function of displacement are passed
to the Operand stage.

2. Fetch and Modify = The effective address is_computed., If the
branch destination flaq is set, then the effective address is
sent to the Prefetch _stage and the stop decode flag |is
cleared, If the original functlion was fetch, then no further
processing is necessary. Otherwise the _effective address,
the @ base register number, the specifier datatvpe, the
specifier access tvpe and a function of fetech or modify are

|

Page 17

passed to the Operand stage,

3, Register = The base realster number, the specifier datatyoe,
the specifier access type and a function of reacister are
passed to the Operand stage,

4, Literal = The literal value, the specifier datatype, the
specifier access tvpe and a function code of literal are
passed to the Operand stage,

5. No Operation = A ne ovperation function is passed to the
Operand stage,

6. Indirect Fetch and Indirect Modifvy - The effective base
address is calculated, This calculation does not include the
index reaister {f it is opresent, The context shifted
contents of the index register will be added to the indirect
address when it is received from the FExecution stage, The
indirect flaag is set, the operand access tvpe 1s set to read
and the_operand datatype is set to 1lonaword, The indirect
f£lag will <cause the Address stage to wait in subseguent
cvecles until cleared by the Execution staae. The effective
address,_ _the base reqgister number, the specifier datatype,
the specifier access tvpe and a function of indirect fetech or
indirect modify are passed to the Operand stage, Wwhen the
indirect address is received from the Executien stage on_ the
write bus the _Address stage will add the context shifted
index reaister, if any, to the indirect address and then pass
the oriqginal specifier datatvpe, the oriainal specifier
access type and a function of fetch to _the Operand_ stage.
Note that while the Address stage is waliting for an indirect
address the Decode stage is stalled because it cannot deliver
new data to the Address stage,

4.4 Operand

The Operand stage reads operand values from memory, checks the
validity of write destinations, increments register numbers, manages
the Write in Proaress Bits in the data cache and delivers subseaquent
zero longwords for _short 1literals, It is also responsible for
assigning pointer register numbers to address the ovnerand buffers,
The Operand stage operates from data and a function code passed to it
by the Address staage,

It is worth explainina the function of the pointer reaisters and
operand buffers although thevy are not actuyally modeled in the
simulation, Three pointer register FIFD’s are used to store pointer
registers and operand status., One 1s €for _odd numbered source
specifiers, one for even numbered source specifiers, and one for
destinations. Each cvcle, one of the source FIFO’s and the
destipation FIFO can_be written with a register number. The number
that is written is either a general register number, am operand buffer

Page 18

number, or an address buffer number, Operand buffers are used to hold
operand values. Address buffers are used to hold the physical address
of the destination (this is always available since a translation
buffer access is performed on the destination operand to determine if
it 1s accessible), If the destination address crosses a page
boundary, then two address buffer entries are used (i.e. two
translation buffer accesses are required), A status code Is also
included with each reaister, The status code indicates 1f there was
an access violation, translation not valid, translation buffer miss, a
modify refuse (write access to a page that does not have the modify
bit set) or an attempt was made to read an I/0 address. (This latter
tvpe 1is a VERY sticky problem in a pipelined machine, Since we have
such a wonderful I/D architecture that allows people te builld devices
where register reads have side effects we have to auarantee that I/0
addresses are read exactly once. The way this is done is to dump the
address of the onerand into the allocated operand buffer and tag the
pointer register with a status code that will _cause the Execution
stage to dispateh _to a routine that will expliecitly read the I/0
address,) The Execution stage microword nrovideg control over the
reading of the pointer reaister FIFO’s., For examole, the microword
for an ADDL3 would read the reaister numbers from the source 1, source
2, and destination FIFO’s, It should be noted that ADDL2 would do the
same thing since the modifv source/destination opnerand would cause
both the even numbered source FIFO and the destination FIFO to be
written, The net effect is to allow the Operand stage to £etch
operands_somewhat ahead of the Execution stage (e.c. some elasticity
is oprovided by the_ address and operand buffers) and orovides
parametric microcode in the Execution stage,

If no data has been supplied by the Address stage, then the Operand
stage idles,

If there are no address or operand buffers avallable and one 1is
reaquired the Operand stage stalls until the Execution stage has
emptied one,

If operand fetchinag has been stopped, then the (Operand stage idles,

The Operand stage executes an action determined by the function code
supplied to it by the Address stage, The following actions are
performed:

1. No Operation = No operation i1s performed, In the simulation
model this takes one cycle, In the real machine this will
not reauire _anv cvcles because_ the oncode dispatch
information 1s kepot separately from the ovnerand specifier
information. _In the model it is not. This function is used
for zero specifier opncodes,

2., Literal = The first longword of a _short 1literal value |is
formatted (e.a. zero extended, shifted, bits inserted, otc,)
in the Decode stage and passed throuah the Address stage,
The Operand stage assigns an operand buffer and stores the
first longword of the short literal in the buffer, If the
context is auadword or octaword, then the Operand stage will

Pace 19

allocate additional operand buffers and deliver zero
lonawords in subsecuent cycles. One cvcle is required for
each lonaword.,

Fetch = If the access tvpe Is address or vield, then an
operand buffer is allocated and the value received from the
Address stage 1s written intc the buffer. If the access type
is read, write, or modify, then a translation buffer access
must be performed to determine the ophvsical address and
accessibility of the operand (the translation buffer 1s not
modeled), For each longword in the operand (and each
longword takes at least one c¢cycle) a random number is
generated and compared with the data cache miss rate that was
selected when the simulation was bequn, If_the random number
is less than or egual to the data cache miss rate then 5
additional cvecles (the cache f£ill time) will be spent
fetching the omerand value, 1If the random number is greater
than the data cache miss rate then only 1 cvcle is required
to fetch the operand value, If the data cache misses there
is also a probability that the location that will be
displaced from the cache has been modified but not written,
Another random number is generated and compared with the
forced write rate which was also selected when the simulation
was _beaun, __If found to "miss" then 5 additional cycles are
required to first write the current contents of the cache
line and then read the new value, This amounts to 11 cycles
in all if the data cache misses and a forced write (s
required. As lopnawords are fetched_ an ooerand buffer 1s
allocated, the register number written Into one or more of
the FIFD’s and the operand value nprlaced in the operand
buffer.

Modify = The reqister number of the general register that |is
to be modified {s written into the approoriate FIFD with a
status that encodes the context and whether the opPeration to
be performed is an _autoincrement or autodecrement, The
Execution stage will dispatch to a routine that actually
performs the operation when an attemot is made to read the
respective FIFO, In the next cyCle a feteh function s
performed,

Indirect fetch = The indirect lonaword address 18 read and
written into an ovperand buffer. The reglster number of the
operand buffer and a status code that indicates _that the
operand buffer contains an indirect address is written into
the overand buffer, The Execution stage will dispateh to a
routine that writes the Iindirect address on the write bus
when an attempt is made to read the resvective FIFO,

Indirect modify = The reaister number of the general register
that 1s to be updated is written into_the aporopriate FIFO
with_ a status code that encodes a context of Jlonaword and
autoincrement. In the next cvcle an indirect fetch is
performed.

Page 20

7. Register = The general register number is written into the
appropriate npointer FIFO, If the operand specifier |is
context quadword or octaword, then the reocister number 1is
incremented in successive cycles and written into the same
FIFO.

8. Displacement = An_ operand buffer is allecated and the
displacement value is stored,

4.5 FExecute

The Execution stage executes instructions, performs autoincrement and
autodecrement operations, and writes indirect addresses on the write
bus, The Execution stage closely models the real hardware but of
course computeés no answers, It does, however, keep track of which
registers are being written by an Iinstruction and at the end of
instruction execution it writes the reaisters one per cycle on the
write bus,

The Execution stage is modeled as a finite state machine with 4
states, The states are:

1. Dispatch

2. Execute

3. Clean Up

4. Register Write

Execute starts at state 1 and cvcles there until an opcode and all its
specifiers arrive. Durina the time that it waits it can perform
autoincrements, autodecrements and send {indirect addresses to the
Address stage which each take 1 cycle. This is not exactly how the
hardware will work but there should be no _differenCe 1in the
performance, The hardware actually starts the instruction early and
then ends up waitino if an operand is not readv,

When a complete inst;uction,has arrived state 2 is entered where the
number of cycles estimated for the instruction are spent,

State 3 releases operand buffers, continues opiveline activity, and
sends branch addresses to the prefetch stage, If a register value 1is
to be written state 4 is entered, 1In state 4 a reaister value |is
transmitted on the write bus every cycle,

The Execution stage always performs the actlon associated with the
current state,

i. State 1l = Qisnatch. If there are no oOperand buffers that
contain operands, then the Execute stace idles., Otherwise
the operand buffers are examined one at a time to determine

3.

Page 21

if _a complete instruction is opresent or there are
autoincrements, autodecrements, oOr indirect addresses to
process, If an autoincrement or autodecrement is found, then
the omerand buffer is removed and the reaister number |is
written on the write bus. This consumes the entire cvcle,
If an indirect address is found, then the operand buffer |is
removed and the indirect address is written on the write bus
to siagnal the Address stage that the address 1t is waiting
for is present (and thank God indirect addresses are
infrequent = the whole vpipeline is bhacked up while we
sequence 1 indirect address throuah the pipeline). _This also
consumes the entire cycle. If no autoincrments,
autodecrements, or Iindirect addresses are found before a
complete instruction has been assembled then the state number
is set to_ 2 and the_cycle counter is set to the number of
cycles the instruction is estimated to take. Estimates used
in the simulator are as close to realitv as possible since we
must make judgements about the £inal performance of the
actual hardware. State 2 {s executed.

State 2 = Execute, The number of cvcles remaining 1is
decremented. If the result 1s nonzero. then the instruction
execution is not complete, The number of cycles will be
decremented again in the next cvcle. If the remainina cycCles
is zero, then instruction execution is _comnlete, If the
instruction has no specifiers and {s not from the implied pop
class but is from the decode stop or fetch step classes, then
either the Decode or Operand stage is continued. If the
opcode also caused a branch (e,a. REI) then a new PC is sent
to the Prefetch stage., If the instruction has one or more
specifiers or is from the implied pop class, then the state
number is set to 3 and state 3 is executed,

State 3 = Clean Up, The operand buffers are released, 4
the instruction writes a destination reaister. then the state
number is set to 4 and state 4 is executed., Otherwise 1if the
instruction 1is from the decode or fetch stop classes, then
elther the Decode or Operand stage is continued, IE the
opcode also caused a branch (e,a, CHMK) then a new PC is
sent_to the Prefetch stage, If theé instructien is from the
conditional branch or loop classes and the branch was not
predicted correctly, then the entire pireline is flushed, the
correct PC 1is sent to the Prefetch stage and the branch
orediction RAM is updated, The state number is set to 1,

State 4 = Reaister Write, The destination reaister number is
written on the write bus and the number of registers
remaining to write is decremented, If the result is zero,
then the state number 1s set to 3 and state 3 is executed,
If the result is nonzero, then reaister number is
incremented. The next register will be written in the next
cvcle,

[end of fb,.rnol

ML~

BVAX

Fromi RICKS: :CALLANDER "Mike Callander 225-5591 HLO1-1/511

To: DURDAN, URLER, SULLIVAN, MARCELLO

cCr

Subj: "BVAX" simulations on XMI-2

Hugh,

I've completed the "BVAX" simulations you asked for. I ran the Mariah
performance model at an 8Bns cycle time with a 4KB PCACHE. I made 2 runs

17-Nov=-1988 0843" 17-NOV-1988 08:43:04.09

with

different backup cache sizes. All other parameters(like cache flush frequency)
were left the same as we use on Mariah.

/Mlke

Run Mariah.l.l - Mariah at

Bns with 128KB cache

| € Computed Mariah —-——-->|
| Instn | 780 |] | Sngl Totall | % bus |
Trace | Count | TPI | |CPU| | Cyecles | TPI | x780 | x780 | | Used |
H i + + g +
MAIL | 284986 | 11.4 | | 1| | 5145886 | 18.1 | 15.8 | 15.8 | | 17.86 |
oy + + HIH +
NLINKU | 375297 | 11.4 | | 1 | | 4433011 | 11.8 | 24.1 | 24.1 | | 10.9 |
NFORT | 424294 | 10.8 | | 5219893 | 12.3 | 21.9 | 21.9 | | 12.1 |
RUNOEF ; 403552 | 9.8 i I 11 | 4878005 | 12.1 | 20.3 | 20.3 | | 12.1 |
+ A==t +
SORT | 402831 | 9.1 | | 1 | | 3955004 | 9.8 | 23.2 | 23.2 | | 11.7 |
+ + I Sl i + +
Summary | 1890960 | | | 23631799 | 12.5 | 20.9 | 20.9 | | I
Geo Mean| | 10.5 | I .6 | 20.8 | 20.8 | | 12.7)
EF =100.0%
Run Mariah.l1.2 - Mariah at 8ns with 1MB cache
|{====== Computed Mariah =-—--=3|
| 1Instn | 780 | | | Sngl Totall | W bus |
Trace | Count | TPI | | Cycles | TPI | x780 | x780 | | Used |
MAIL | 284986 | 11.4 | | 4481662 | 15.7 | 18.1 | 18.1 | | 14.4 |
NLINKU | 375297 | 11.4 | | 4202547 | 11.2 | 25.5 | 25.5 | | 9.0 |
NEORT | 424294 | 10.8 | | 1 | | 4740861 | 11.2 | 24.2 | 24.2 | | 9.0 |
+ PR Sy O +
RUNOFF | 403552 | 9.8 | | 1 | | 4671781 | 11.6 | 21.2 | 21.2 | | 10.9 |
+ + o h=—mt
SORT | 402831 | 9.1 | | 1 | | 3884460 | 9.6 | 23.6 | 23.6 | | 11.0 |
+ -k - +
Summary | 1890960 | I | 21981311 | 11.6 | 22.4 | 22.4 | |]
Geo Mean| 1 10.5 | | I 01 022.3 1 22,311 0.7 1

EF =107.5%

Fromi RICKS: :DURDAN "21-Nov-1988 1058" 21-NOV-1988 10:58:06.62

To: ‘DISIVEC‘IDR_ST”F. UHLER

cC:

Subj: BVAX - FYI

From: RICKS: :FISHER 21-NOV-1988 09:12
To: DURDAN, GRUNDMAN

Subj: BVAX

From: RICKS: ;CASALETTO 18-NOV-1988 18:25
To: AMNON, MARCELLO, SULLIVAN, LAPRADE
Subj}: FYI - direct and to the point.

From: ROCK: : SUPNIK "New locatlion HLO2-3/Cl1 1B-MNov-1988 1752" 18-NOV-1988 17:53
To1 RICHS: :CASALETTO, WONDER: : RARBERT
Subj: BVAX will not happen - copy of message to MSB and SCO staff

From: ROCK: : SUPNIK "New location HLO2-3/C11" 18-NOV-1988 17:51:57.86
To: NMACHIPS: :WALKER, : t PALMER, 5::DEMMER, 1 A
cC: NMRYAD : : BIDERMANN, SUPNIK

Subj: BVAX will not happen

I don’t like being the bearer of bad news, but the thrashing about the
short term VAX strategy has got to stop.

S0, simply put: BVAX will not happen. Here’'s why.

1. There's no team. The project plan is built on the assumption that
HLO would supply the architecture expertese and the chip deslgners.
NO ONE from HLO is signed up: no architects, no chlp designers.

Further, no senior pecple are going to sign up. Why should anyone work
on an ECL project that bounced in and cut of the corporate plans,
that still is not officially approved, that ls characterized as an
insurance program for Aquarius and Raven, and that will be under
constant political attack from ancther engineering group, when there

ia important, high payback, lower stress CMOS work to do?

2. The cpportunity window has passed. To meet the proposed schedule,
logic deslgn had te start October 1. Right now, there’s not even
an architectural design. BVAX was a great opportunity in June, when
it was proposed. It lsn’'t any more.

3. There's no platform. Performance studies show that in the CMAX (XMI-1)
box, BVAX delivers 13 vups - little more than Mariah. XMI-2 systems
won’'t accomodate an ECL CPU. WNo ECL platform is planned for the
required timeframe.

4. A direct CMOS to ECL translation wen’t work. Raven attempted, with
the best intent in the world, a direct translation of the Rigel d.uiin
from CMOS to ECL. It did not work out, for many reasons (see Appendix)
BVAX canpot just translate CVAX; an architectural rework ls needed.
This will add more time to the achedule.

BVAX ls vaporware. It's time to recognize that, and move on. lah

PG's its Ffirst chip (floating point) NEXT MONTH. Let’s put the limited
budget, rescurces, and energy that are avallable into making Mariah, Raven,
and NVAX succesaful.

Appendix: Why Direct Translatlon Fails
Here are some of the reasons why direct translation falls.

1. Certain CMOS structures don’t work in ECL. For example, fully
assoclative TB's can’t be built. Changing the TB to direct mapped
roquires rethinking (and receding) all the memery management
algorithms and microcede.

2. Certain CMOS design practices don't work in ECL. For example,
precharged busses with many sources translate into ultra-wide
multiplexors, which are slow and costly in gates. Pass gate
structures (like shifters) must be completely redesigned.

3. The ratioc between the access time of regular structures and the
target microcycle changes drastically. For example, in CVAX,
the control store access is 50% of the microeyecle. In Raven, it
is 75%, and in BVAX it might be worse. This requires rethinking
the amount of logic in the sequencing path, which in turn alters
the entire contral structure of the mlcromachine. The same effect
occurs in the TB/cache path.

4. CMOS uses too many gates. Studles have shown that, without cache
and control store, CVAX is 30k to 35k simple gates {and Rigel is
45k simple gates) - more than the Fujltsu arrays can handle.
Reductions in gate count are needed, usually at the expense of
a wider microword, to simplify deceding, and of more microcode,
to reduce hardwired control.

MicroECL ls a promising technology, but llke VLSI MOS, it poses lts own
unique preblems for chip designers and will require its own unigue
solutions. There won’'t be any free lunches.

/Bob Supaik

From: RICKS::CASALETTO "27-Dec-1988 0313" 27-DEC-1388 09:08:40.38
To: @AFLSTAFF

(=]

Subij: FYI

From: AD::BIDERMANN 22-DEC-1988 12:30
(]

To!: BVAX
Subj: Hudson Support for BVAX

ld)jilglijelalll INTEROFFICE MEMNO
TO: FRANK BOMBA DATE: DECEMBER 20, 1988

BILL DEMMER FROM: BILL BIDERMAN

SAS DURVASULA DEPT: ADVANCED DEVELOPMENT

BOB PALMER NET: NULL;: : BIDERMANN

BOB SUBNIK EXT: 225-5049

LARRY WALKER L/MS: HLO2-3/H3

SUBJECT: BVAX SUPPORT

At our meeting on December 2nd, I committed to attespt
to find a team of 3 Hudson pecple to assist the BVAX
development effort. I have been unable to assemble this team
due to the oon\',.inul.n, uncertainty, perceived or otherwise, of
the st ilng the prog Th £ despite the
exparience which Hudson could gain and the impact on the
program, I have come to the conclusicn that we will not be
able to asslst in the development of BVAX as proposed.

Sincerely,

Bill Bidermann

From: HYDRA: :BOMBA "Soul of an Old Machine 30-Mar-1989 14437 30-MAR-1989 15:01:48.95
To: @DESREV.DIS A, MSBCS: @

Subj: BVAX Technlcal Review

I INTEROFFICE MEMORANDUM

TO: Distribution DATE: 30 Mar 89
FROM: Frank Bomba
€C: Sas Durvasula DEPT: BVAX Developsmsant
Paul Neuman EXT: 226-6595

LOC/MAIL STOP: LIN1-1/G08
ATT: Review agenda
SUBJECT: BVAX Technical Review

The BVAX Project Team has scheduled a technical review for the afterncon
of April 27. We lnvite you to attend. The review will be held in the
TAY2 Ffacility which is the lower of the twe new Taylor St. buildings
accross the street from LTN2Z. The meeting will be {n the Harvard
conference rcom from 1:00 te 5:00.

The purpose of this revliew is to get your critical feedback on our
design early in the project. Note we have not scheduled a more
lengthy, detailed review due to:

= The nature of this implementation (copy wherever posaible)

= The expediency of ocur schedule and the value of our time
as well as your own

You will receive a package of specifications before the review. If you
are unable to attend, we would still appreciate your comments on our
documentation. Feel free to send any comments via electronic mail or call:

Frank Bomba
DIN 226-6595
HYDRA: : BOMBA

Attached is the agenda for the meeting. Since the review will move

quickly from one lﬂiﬂ: topic to another, questions will be ansawered when

we can within the time limits. More detailed responses, especially those that
require additional work on our part will be answered as scon as possible
after the meeting by mall etc. P will be copied to all those

in attendance.

We sincerely hope you can take time to attend and help BVAX succeed.
Thanks,

Frank

AGENDA FOR BVAX TECANICAL REVIEW -- APRIL 27, 1989

1100 = 1:15 Welcome/introduction = Bomba

1:15 - 2:15 System Overview = Polzin
XBP Module functional overview
Performance modeling results

2:15 - 2:30 Break
2:30 - 3:30 pP=-chip/R=chip/F=-chip architecture and status
= Schumann
= Chip CAD process
= Key differences from CVAX/CFPA
- Partitioning/gate count
= Clocks
= On chip and chip to chip critical paths
- Custom cell plans
- Microcode
3:130 - 3:45 C-chip functicnallity - Polzin
3:45 - 4:00 X-chip functlionality - Keefer
4:00 - 4145 Module Physlcal Design - Stefanski
= Module CAD process
- Layout

- Module level critieal timing paths
= Thermsal management

4:45 - 5:00 Actions/lssues = Bomba

From: HYDRA: :BOMBA "Soul of an Old Machine 14-Apr-1989 1145" 14-APR-1989 11:51:21.36
Ta: @JUSTMYGROUP .DIS, PERFORMANCE .D1S, MSBCS ; : DEMMER
cC:
Subj: BVAX PROJECT UPDATE
|ldigi | INTEROFFICE MEMORANDUM
TO: Bill Demmer DATE: 14 April 89
FROM! Frank Bomba
©C: Distribution DEPT: BVAX Development

EXT: 226-6595
LOC/MAIL STOP: LTN1-1/G08

ATT: Performance modeling results
SUBJECT: BVAX Project Update

I am happy to report excellent BVAX implementation progress over
the
a rather small but dedicated team of individuals. Even more
commendable is that this magnitude of progress has been made
given the limited external support we have come to expect for
this "unfunded” project.

past few months. As you know, this is due to the efforts of

this polnt, BVAX can hardly be called vaporware!:

We have more than 50 percent of the CVAX processcr gate-level
design now translated to bipolar BVAX schematics.

We have confldence that our design approach of direct gate
mapping will work. We have confidence that we can mske the
design fit based on the Fujitsu Iinformation that we have
today.

We now have a running BVAX-speclific performance model that
again validates an achlevable goal of 22+ VUPs per processor
== a commitment by the program made more than six months ago.

Wa have done enocugh anTinn:ing investigation te know that
the CMAX platform will date a th P! BVAX
with minimal incremental changes (still impingement,
three-processor cage support, and one additional BVAX
regulator.)

We will scon have draft specifications of all our key chips,
module, and system avallable for a public design review later
this month.

We have had very positive comments on the technical aspect of
cur design approach [from Strecker, Supnik, and Stewart and
Rubinson.

We are also investigating the poaaibility of additional
microcode support for n commerclal instructions to
improve the COBOL performance of this machine.

Paga 2

We still do have a way to go. Design team staffing and the
physical gate array CAD tool processes remaln cur key rlsks
{outside of the obvicus funding/MSB strategy). There iz a
willingness on the part of Kusik's team to help, but availability
of resources is not clear. Only you can help us here...

In any case, I am pleased to report that at this time, BVAX
remains a good opportunity for a minimlized risk, time-to-nmarket
MSB product.

Page 3
™

| I | 1 | | I I
jdal i1 g1 i|le|lalll] INTEROFFICE MEMORANDUM
] I | | | I I [}
TO: Frank Bomba DATE: 12 April 19839

FROM: Steve Polzin

DSE'I‘ BVAX Development
CC: Kathy Barrington, 226-6292

Reinhard Schumann, IDC/M_IL STOP: LTN1-1/G08

Mark Stefanski
Subject: BVAX Performance Modeling Results
0.0 Executive Summary

A performance modal of the BVAX CPU has been created based on the
original CVAX model wrltten Joel Emer (in Pascal). The model
represents a conservative mode of the current BVAX design. It
includes models of the XMI-2 bus protocol and XMA2 memory module.
The model wuses context switch cache flush and invalidate traffic
aimilar te that implemented for the Rigel and Mariah performance

The model shows that a single BVAX CPU should yleld 22.81 VUPs over
:h. "Uhler-5" set of benchmark traces and 21.73 VUPs over the
14" set of benchmark traces. The model also confirms earller
work by Mike Uhler and Rick Gillett that the XMI-2 can easily support
threse 22 VUP BVAX CPUs. The model iz conservative in many ways,
particularly in the modeling of floating-point instructions.

1.0 Detailed Results

BVAX Performance

Benchmark VAX 11/780 BVAX BVAX
TPI TPI VUPs @ Bnsec

| Mail I 11.36 | 13.82 I 20.54 i
| Fort] 10.8 | 11.92 I 22.65 L
| Link I 11.4 | 11.26 1 25.31 ;
I Runoff I 9.8 1 11.51 ! 21.29 ;
E Sort I 9.09 I 9.36 I 24.28 AI
! . "Uhler-5" Average] 22.81 |
| DirBrief | 11.11 I 16,39 1 16.94 I
| pir | 11.11] 14.29 1 19.43 |
| Banoi ! 4.11 | 4.11 I 25.00 T
! LASL2D ! 20.0 | 20.25 [} 24.69 I'
| LASL2S I 9.91 ! 14.37 1 17.24 ;'
| EoT 1 12.2 | 12.83 | 23.77 I
| PL/1 I 9.8 | 11.42 [21.45 I
| WHETD I 16.44 I 19.4 I 21.19 "
| WHETS] 10.78 I 13.18 I 20.45 !‘
I "Aqua-14" Average] 21.73 [}

* BVAX Model Uses ‘Worse-Case’ CFPA cycle counts.

Page 5

2.0 BVAX Performance Model Detalls

The BVAX performance model is based on the original CVAX perforsance
model written by Joel Emer. The XCP version of this model (modified

Doug Williams) was used as the base for BVAX. Extensive
modifications were made to the XMI, memory, primary cache, secondary
cache and statistics reporting routines. In addition, the ‘u-code’
file that drives the model was changed for certain instructions to
reflect the current CVAX Iimplementation (Certain floating point
instructions, MULL,DIVL}.

The BVAX performance model implements the following features:
- Simplistic XMA2 Memory

‘Roal’ XMA2 cycle counts

Consecutlve data cycles

Write recovery time
Single Memory Module

LI

- 1 Mbyte, direct-mapped Write-back secondary cache (3 cycles on B-DAL
given the current l2nsec Taa spec).

16 Entry Invalldate Queue

8 Entry Writeback Queue

Context Switches are handled as follows:

- Every 2msec, the primary cache and TB are completely flushed
- Every 2msec, the secondary cache has half of 1 ags
{chosen at randos) written with an address of -1 (remains
wvalid) .

Also the secondary cache is initlalized with all tags
valld with address = =1 and 33% dirty.

o

8 other XMI commanders are modeled for invalidate traffic as follows:

- Whenever the semory gets a request from BVAX , 8 invalldates are
generated. 95% are random addresses, 5% are the same
address of the last memory write. Read/write type invalidates
are randomly generated.

- Primary Cache writes incur a 50% cycle 'stutter’ as defined by
Reinhard.

- F=Chip ls modeled simply as a cycle count for a given instructlon.
The CFPA (and therefore the F-Chip) uses algorithms that are highly
data dependent . The F-Chip cycle counts for (fleatling peint
instructions are for ‘worse-case’ data patterns. The tight LINPACK
and WHET benchmark locps should yleld very close te 10x CFPA
performance.

The current BVAX performance model reflects a conservative estimate

Page &

of what we think the BVAX design is. Transfer times from the C-Chip
to/from the X-Chip are conservative, as is the invalldate processing
rate. The model includes the known restrictions on the BiCMOS rams
that will comprise the secondary cache.

3.0 Future Work

The BVAX performance model will be maintained so that it will reflect
the BVAX design as it evolves, Pericdic updates will be made and the
suite of benchmark traces will be re-run to verify the design.

The F-Chip routine could be upd d to cycle ding to the data
pattern in the operands. It currently takes a simple cycle count
from the .UCD (pseudc pcode) flle.

We are currently investigating the addition of a few of the packed
docimal instructions to take advantage of our ‘extra’ 400 or so
pwords available in the R-Chip. I have cbtained a set of COBOL
benchmarks (GTE and the Jalics set) from Bhagyam Moses and we will
atte te quantify the performance of BVAX with and without the
addition of these instructions across the various code sequences
generated by the COBOL compller (V3.3, V4.2/ins=generic,
V4.2/ins=decimal, V4.2/ina=ro_decimal).

To do this we will take the benchmarks and using the VAXITR ram,
run them on a Macho VAX (8800) and create a set of .ITR trace files.
We will then modify the VAXEMUL image of VMS to not toggle the T bit
in the PSL when entering and leaving instruction emulation routines
and create another set of .ITR fliles that reflects the TRUE
instruction sequence on a pVAX (6200). Finally, we will modify
VAXEMUL again to only toggle tha T bit on the instructions that we do
NOT Aimplement in pcode and create another set of traces from a 6200,
By then applying these traces to the BVAX performance model with a
new .UCD file that reflects the added pcode to support these packed
docimal instructions we should be able to predict the performance of
BVAX for certain commercial benchmarks.

4.0 Acknowledgment
My thanks to the following who have helped with this effort.

- Joel Emer and Doug Williams for creating the model.

Mitch Rosich (SOC) for supplying the source

= Mike Callander (Mariah) for supplying the Mariah perf model sources and

a bunch of valuable advice.

Reinhard Schumann (BVAX) for p-cache and p/f/r chip specifics.

Dan oonn.u\? {BVAX) for help in wading through the real CVAX pcode to get

the .UCD file in shape.

Dwight Manley (Aquarius) for his Aquarius traces and also the VAXITR program.
Kip Landingham (SPAG) for the set of COBOL traces.

From: ROCK: :UBLER "Mike Uhler, DTN 225-4735, HLO2-3/C11" 24-APR-1985 08:15:19.48
Tot HYDRA: : BOMBA
cC:

UHLER
Subj: RE: BVAX PROJECT UPDATE

Although I haven’t had time to go thru the BVAX specs in detail, here
are two observations:

= The context switch rate that you indicate that you're using is 2ms. At
an Bns cycle time and 11.49 TPI (geometric mean of the Uhler 5), this
amounts to a context awitch every 21758 instructions Lf I've done the
calculations correctly. For NVAX, we are using a 10000 instruction

switch fregq ¥, which cor P to 854 us on the same set

of traces. So, although BVAX and NVAX are roughly the same spaed in
VUPS, you are using a context switch interval that is 2.3 times ocurs.
Have you made any sensitivity runs to determine the performance impact
of changing the frequency?

You note that you are investigating adding certain of the packed decimal
instructions back in to improve Cobol performance. Page 11-3 of

Rev H of the SRM says "Instructions in an application extenslon

group may be implemented or omitted only as a group". That means you
can’t add a few instructlons in the group without adding them all. If
you really intend teo pursue this as a seriocus option, I suggest that
you immediately submit an ECO to VAXB since this has the potential of
becomming a glant rat hole.

faMu

From: HYDRA: :POLZIN "Steve Polzin in LTN1 24-Apr-1989 1139" 24-APR-1989 11:43:35.61
To: ROCK: :UHLER

cCs BOMBA, SCHUMANN, STEFANSKI, POLZIN
Subj: RE: BVAX PROJECT UPDATE
Hi Mike,

Thanks for your questions te Frank, I'll try to answer them.

On context switches, I asked many pecple as to just what flush
frequency I should use (I think I even talked to you about this). The
numbers ranged from every 150,000 instructions (Simon Steely) to
overy 2msec (Mike Callander). The impression that I got was that
context itch flush rates are functions of time and not absolute
numbers of instructions. I'd be very int d to d why you
chose such a high rate of context switch flushing for NVAX. ;1
seens to be the number that was used on CVAX, Rigel and Mariah. The

rf numbers that I published use a context switch rate of 20000
nstructions. I‘ve run some traces with context switch flush rate at
every 10000 inuructinﬂl and uu: "Uhler-5" average VUPs is 21.75,
about a 4.6% Alse, note that we didn‘t simply
implement a simple .Il.lull but rnﬁ.x I tried to emulate what you and
ML ;f.id:d for the Rigel and Mariah models (to stimulate writeback
teaffic).

On packed decimal, we are very aware of what the SRM says and we have
talked with a number of people lncluding Tom Eggers, Rich Brunner,
Cheryl niauk, and Wayne Cardoza. The bottom line appears to be that
the SRM was 1 d in an attespt to establish some
conslstent expectations as to what a glven processor performance
would be. The architecture group and VMS have no cbjections to us
implementing a few of the instructions (and would not oppose such an
ECO to this affect when we !“t to that point). VMS currently tries
DIVFE in SYSBOOT to determine if the emulator image should be loaded.
We certainly would not Iimplement DIVP and VMS has alsc offered to
conditionally load the emulator image based on our SID.

I agree that the whole issue of packed decimal instruections is a rat
hole (ref Supniks memo on Cobol perf of 13-Apr). We are trying to
'patch’ the problem given that we do have 400-500 extra pwords. If
the problem of packed decimal instructlons is resclved ‘globally’ (as
Supnik suggests) then there would be no need. We agree with Bob on
the issue of the VMS emulator routines. We've been going through them
in detail and they could use a good clean up and/or re-coding from a
hardware perspective and we might get 10-20% right there.

We are getting a wvery loud message from marketing that we have a
problem. In July, the high-end VAX will be 2 pVAX. We are trylng to
sea if by lmplementing only a few of the packed decimal instructlons
{CVTTP, CVIPT seem to be the most likely candidates), we can get a
;90‘ solution’, I'd be very interested {n your perspective on this
ssue.

Thanks for your comments.

From: ROCK: : URLER "Mike Uhler, DTN 225-4735, HLO2-3/C11" B-MAY-1983 08:37:07.06
To: HYDRA: 1 POLZIN
cc: ER

UHLI
Subj: RE: BVAX PROJECT UPDATE

We've been quite busy lately, sc I only got a chance te loock over your
mail this weekend.

Relative to context switch rates, here are the algorithms used for Rigel,
Mariah, and NVAX:

Rigel: Full flush of TB and Pcache every 7500 instructions,
random displacement of Bcacha every 7500 instructions. At
11 TPI and 28ns cycle, this ls 2.3ms between context switches.

Mariah: Full flush of TB and Pcache every 1500 lnstructions,
full flush of Beache every 35000 instructions. At 11 TPI and
20ns cycle, this is 1.5ms between TB and Pcache flushes and
Tms between Becache flushes.

NVAX: Full flush of TB and VIC every 10000 instructions, run
50000 instructions worth of address traces thru the cache
subsystem every 10000 instructions to displace data. At
7 TPI and l4ns cycle, this la lms between context switch.

You asked whether context switch rates were functions of time or

number of instructions. The answer ls a function of the kind of workload
being executed. Early in Nautilus, Cheryl Wiecek worked with the VMS
performance group to try to estimate the context switch rate for Nautilus.
They came up with the following events that lead to a context switch:

Conditional gquantum end

Rescheduling lnterrupt (process premption)

One second conditional processing (VMS cleanup)

Voluntary wait end due to I/0, event flag, process hibernation
or suspenaion, etec.

= Involuntary wait end due to page fault, resource depletion,
mutex walt, etc.

Of these, the first three are a function of tlme and the last two are
a function of lnstructions. According to their analysis at that time
(1984), most of the context switches were due to voluntary or involuntary
waits of cne form or another. This is just a restatement of what has
always been observed: most processes block rather than expire quantum.

Therefore, we have always used Instructions rather than cycles to trigger
context switches. As you can see, this resulted in the context switch
interval decreasing from 2.3ms in Rigel to about lms in NVAX. If you think
that you can justify a different workload than we've been assuming, then
2ms as your context switch rate ls reasonable. If not, then 4.6% error

in performance is Ffairly large in my opinion, and it's not a good idea

to set expectations and then fall te deliver.

I have no opinion about the viahl.u:y of adding certain of the decimal
instructions to imp peck the enly data that I've seen
is Bob's memo. If you reach the conclusion that there are only a few
instructions that really matter (CVITP and CVIPT as you indicated), I'd
be very interested in seelng the analysls. While we don’t have 400 -T".
microwords in NVAX, we might be able to implement something, especially if
there ls a big leverage.

oMU

From: HBYDRA: 1POLZIN "Steve Polzin in LTN1 08-May-1989 1922 8-MAY-1989 19:25:11.20

To! ROCK: :UHLER
oCt POLZIN
Subj: RE: BVAX PROJECT UFDATE

Hi Mike,

Thanks for your explanation of modeling context switching. I tend to
agres with you but we are in a welrd sltuation. We are being forced
into a rather awkward (for me at least) position of belng an Aquarius
alternative/replacement and hence 1 am being pressured to publish
performance numbers for BVAX relative to Agqua.

In order to level tlu playing fleld I want to use the same
assumpticna that gh: Manley did when he did the Aqua performance
work. According to Dwight, he NEVER flushed any caches on any of the
A.qun pnrl‘arme- work. He simply flushed the TB on SVPCTX and LDPCTX.

when we to Agquarius, I do the same and BVAX comes
ln at 23 VUPs va. 25.3 VUPs for Aqua running the "Uhler-5". Aquarius
does much better on the "Aqua-14" set of benchmarks due to the
hand-optimized LASL loop 2s and the Whetstones using lots of fleating
point (the one cycle 32x32 multiplier and 3 oycle 32x32 divider
really scream).

I think I need to publish/advertise two sets of numbers: One set that
never flushes for wuse when comparing BVAX to Aqua and then ancther
set that flushes according te your specificatlons for use when
comparing BVAX to Rigel/Mariah/NVAX. I‘m running both sets now, It
looks like the BVAX numbers to compare to Aqua come in around 23-24
VUPs and the BVAX numbers to compare to Rigel/Mariah/NVAX come in
around 20-21 VUPs.

I*1l let you know what we can come up with for decimal string
performance. We've been spending most of our time fighting for our
lives. Fortunately, Relnhard has more than 70% of the CVAX tranalated
into Fuji already. Hopefully we will be done before the managers get
around to canceling us.

Thanks

1.0 CHIP SIZE

Frigate TB/cache chip == Earlv Feasibility Study Results

The address comparator array is composed of 1 bit tag
register and comparator cells (°comparand registers®), each
about 58 microns wide by 100 microns high, By interleaving
the data reagisters for two fullv associative cells, we
expect to obtain a height of only 64 comparand registers,
This represents a neight of about 250 mils, Thirty=two bits
of comparand reaister abutted to 32 bits of interleaved data
array, abutted to 32 more bits of comparand aives a width of
about 220 mils, We do not haVe estimates of the carry
ladder loaic (which will add to the width) but we expect it
to be less than 30 microns. The resulting chip is about 250
X 250 mils, exclusive of pads,

2 Interleaved Fully Associative Cells

| <mmmm 5568 micron (219 mils) w=ee>|
+-II-----------+-------¢.----;------.ﬂ--.--* - -

I : | Data 1 | _ | .

| Comparand | +==esewee=e===s COmparand 2 | | 100 micron
|] Data 2] I v (3.94 mil)

+-------------+-----.-------+.--‘---------+ - -

2.0 SPEED ESTIMATES

Given the high performance of the N=-channe)l devices, we have
adopted a "mostly N=channel" desian approach, To determine
a hnhit in the Frigate TB/cache chip, three important
propagation times must be calculated:

1. the pull=down of precharged address lines goina to the
comparand reaisters,

2. the pull=down of all precharaged missine hit 1lines 1low,
and

3. the pull=down of the precharged commen data bus lines,
SPICE simulation shows @ 3 ns tvpical=typical transistor

model time and 4 to 5 ns slow=slow transistor model time to
pull=down the address lines, (These results were obtained

TB/cache chip == Early Feasibility Studv Results pPage 2

using the Hudson CMOSTT,MOD and CMOSSS.MOD SPICE models,)
This assumes the following:

- each address line 1s 6400 x 5 microns in metal 2
- address line resistance of 28 ohms
= address line capacitance of 2.3 oF, and

- a transistor gate capacitance loading 1.6 PpF (64
transistors, each gate 2 x 12 micron).

The worst case performance for pulling down a hit 1line is
when a single bit of the comparand register differs from the
search address, resulting in a single XOR structure having
to discharge the hit line. The SPICE simulation model
vields 3 ns for the tvpicaletypical case and 4 to 5 ns for
the slow=slow case, This model assumes:?

- an 1800 by 4 micron metal 1 comparand hit line,

- a comparand hit line resistance of 22 ohnms,

- a comparand hit line capacitance of 0,40 oF,

- a regenerating inverter propagation delay,

- an 1800 by 4 micron metal 1 data arrav hit line,

- a data array hit line resistance of 22 ohms,

- a data arrav hit line capacitance of 0.40 pf, and

- a data array hit transistor gate capacitance loadina of
0.86 oF.

Finally, the SPICE simulation for drivine _the common data
bus 1lines vields a typical~tyvpical time of 4 to 5 nsec, and
S to 6 nsec for the slow=slow case. This assumes:?

- data lines are in metal 2, 6400 by 5 microns.,

- data line resistance is 28 ohms.

= data line capacitance is 2.3 pF, and

- the discharge path is through two series 2 bv 12 micron
gate n=channel transistors.

Neglectina input and output pad times, it appears that we
should be able to register a hit and orevide the data for
that hit:

TB/cache chip == Early Feasibility Studv Results page 3

« in 3+ 3 + 5 = 11 ns for the tvpical-tvpical transistor
case, and

- in 5+ 5 + 6 = 16 ns for the slow=slow transistor case,

After a hit has been determined, the Fricate TB/cache chip
;eaulreg a rotation of the matching address and data to the
input of their respective arravs. Note that the address
l1ines are already charged with the address and the data
lines are alreadv charged with the data, The two major
timina phases for the shift are:

- determining the extent of the reaisters participating in
the shift, and

- the actual shift,

We expect to use Manchester=carrv-ladder=like 1loaic to
determine the registers which must aarticiaate 1n the shift,
We currently do not have any estimates of this timing, The
comparand registers are made of 3 clocked=inverters with a
cross=coupnled pair in overedrive _confiocuration. SPICE
modeling indicates that these reaisters should be able to
shift in 3 ns typically and in_4 to 5 ns for the slow case,
This timing is not as critical as it is done in “shadow’
time, We are closely modellina the over=drive
characteristics of this overdrive realster.

3,0 OVERALL SPEED

A _Xyervx _ preliminary model of
address~in/comparand=-hit/data=-out agives a time of 9 ns,
This _assumes the timing generator starts discharaing
distribution cavacitance in anticipation of final values,
This might be possible with a self~timed timing oenerator,
It should also be noted that not all carmacitive loads are
taken into account in this overall timina model,

{ end of mist:lkenhlltlb.rno tk 12/3/84 }

FRIGATE WORKING DESIGN DOCUMENT

VERSION 1.0

DIGITAL EQUIPMENT CORPORATION - CONFIDENTIAL AND PROPRIETARY

Abstract

This document describes the Frigate product.

DOCUMENT IS CONFIDENTIAL
tne company.

Issued by: DECwest Engineering

Reason for Change

Revision History Date

Version 1.0 4 Dec B4 Initial Distribution

THIS
THIS

DOCUMENT 1S CONFIDENTIAL. Do not distribute it outside

P.

Author

Schnorr

FRIGATE WORKING DESIGN DOCUMENT

Version

CHAPTER

CHAPTER

1

1

LS}

[Qs [P ST g G e g e g

MNMRENRKNNNNRNNNNNENNNNRNNRRRRNRORNRNRNRRNRNRNRR

LB AEBSLDLEDLDLDLWWWWWWHR -

B bbb DWWl LWL WMWWL WL LWL WA = — — e o oo

U bW —

~NoOUb WK =~

UL W RN —

LCOoONOU L WWW R —

Decode PC Adder

.0 - Company Confidential 05 Dec B84
FRIGATE SYSTEM OVERVIEW
FRIGATE SYSTEM OVERVIEW P 4 R o W% 1-1
CONSTRAINTS AND GOALS =9
SYSTEM DESCRIPTION ; 1=2
Frigate CPU -2
Frigate System Bus (FSB) 1-3
Frigate Memory Controller 1-4.
Frigate Memory Arrays F 1-5
Frigate BI Adapter (FBI) 1=5
TECHNOLOGY . - . 1—8
F-Series Modules .1-6
Custom VLSI Chips . . R T EEE 16
1 Frigate TB/Cache Chip SE W P AR 2 T BN 1-6.
2 Frigate FIFO Chip 1-6
AMD 29300 Family P . 1-7
RAM Technology 1-7
Bipolar Gate Arrays g w 1-7
Miscellaneous Buffar1ng And Cnntrol Logic 1=-7
FRIGATE PROCESSOR
FRIGATE CPU OVERVIEW 2-%:
Prefetch Stage 2-2
Decode Stage s 2-2-
Address Add Stage 2=32
Operand Fetch Stage 2=2
Execution Stage Lol
System Clock BoEow 2=3:
Pipeline Reg1sters And Sta]1 Signals L T
FRIGATE TIMING CHART . SR, 2-4
PREFETCH STAGE 2-6
Prefetch Bus 2-6
ITB Address Latch 2-6
Instruction Translat1on Buffer (ITB) 2=7
1 Reading The ITB B o 2-7 -
2 wWriting The ITB 2-B
ICache Page Register 2-8
ICache Address Bus 2-9
Instruction Cache . 29
ICache Output Latch . 2-10
Instruction Buffer And 5h1fter5 2-10
ICache Address Latch 2-10
Prefetch PC Incrementer Anu Reg1ster 2-10
Instruction Buffer PC Register (IBPC Register] 2-11,
Prefetch PC Adder ¥ B o s ® ¥ o 2-11
Miscellaneous Control Lines 2-11-
DECODE STAGE 2=-12
Instruction Buffer 2=12:,
Instruction Decode 2-13
Opcode Decode Logic 2-15
Specifier Decode Laogic 2-16

2212

FRIGATE WORKING DESIGN DOCUMENT

Version 1.0 - Company Confidential 05 Dec 84
2.4.6 Branch LOQYC o i s (& o s % w v e o W8 T8 WL E 2-17"
Y. Decode PC Register . . . = giey 3 B
2.4.8 Displacement Multiplexer knd Reg\ster 5 owed & Al
2.4.9 General Processor Registers 2-20
2.4.10 REASE MUTETRIXRT o o v w = & o0 5 @ "5 4 e 5w 2=2%
2.4.11 Base RepISTer: i v o & 4% & &% o4 W& & e W G 2-21-
i N2 Rindex Multiplexer S0 Gl W min B 8t 3 peiileRigy
2.4.13 ITndes i BeRIBERr = +.¢ .o 5 o % 6, % & = moisim 0. R=2%
2.4.14 T T T S e A - MUPEURR
2.4.15 Rt REOIREBE " oo'a v s 5w om om o w cw ow e w5 BB
2.4.16 IPC FIFO S G w0 @ oTEL D @ R EC OE wW 8o wy o e =il
2.4.17 Control Regilsters . . v v o & o % & e s W = 2=23,
b8 P 7) Opcode Register . . SE § o i o8 S
2o N2 Address Add Function Reg1ster i e el = 2TRE
07 T By A Operand Fetch Function Register 2-24
28374 Execution Function Register 2-25
2.4.18 Miscellaneous Control Signals 2-25°
2.5 ADDRESS :ADE STAGE "3 W 5 5 kel d % % 5 o e wihe o 2225
2:5:41 IRps e AW o ey g W s AT e 2-25.
LDl QUEDUERE I &0 4 e T RN ey aerTe i e ar s b PSSR
2.5.3 Operation . . E T ST T IR T SRR - Y
2.5.4 Base Mu!tiplaxar wo0E R NS w e TG R ® B0 el E & 2-27
2.5.5 Index Multiplexer . . o & & o o & & & 5 4 o 2-27 -
2.5.6 AUOCERS RADEr: s 3 v 4 W5 § @RI o8 ¥ osi i w5 272F
2.5.7 VAR Multiplexer . . e I L &
2.5.8 Virtual Address Reg1ster . T 2=2ZB
2.5.9 Register Number Incrementer And Regxster G @ 228
2.5.10 Jump Register 5 o e A E W A A W W § EC e W 2=-29"
2.6 OPERAND FETCH ST&GE RN - - T N "]
2.6.1 Inputs . 2-29;
2.6.2 Outputs . T TN
2.6.3 Data Manipulation T R e R R B e ¢
2.6.4 Bypass Multiplexer+ « .« . . 2=31-
2.6.5 Bypass: RAQASEEr. . o i ute Pl B oo w s % . 2=31.
2.6.6 Adaress Buffers . . iy e My W s wr o w R
2.6.7 Memory Address Reg1ster e eta m & b oGn B 5 B e=at
2.6.8 Oata Traastation Buffar . . o4 o o o s oo o 280
2.6.9 Physical Addraess R.ai;tor NS e W 08 el E & =y n3eeaR
2.6.10 Data Cache . . . I R (2L L]
2.6. 11 Memory Data Register T T e T |-
2.6.12 Rotator Control Register o e W ame e e w0 e
2.6.13 DV apaten "ConErod TLoETG v w i 5w e B w e ot E=EEN
2.6.14 Dispatch FIFOs . . . AT
2.6.15 Sourcel Pointer Mult1plexer nnd Register i . a0 2=38
2.6.16 Source2 Pointer Multiplexer And Register . . . 2-34 °
2.6 17 Destination Pointer Multiplexer And Register . 2-34
2,.6.18 Operand Write Pointer Register 2-35°
2.6.19 Dispatch Microwords: < o o o wiw & @G w5 % . 2=387
2.6.20 MACPOWGEH BUS” F N L L 5 M e Y. ok, (290G
2.86,21 Microword Register . . e T =
2.6, .22 Operand Fetch Stage SEQUBHCEF ¥ ® GLtwgR @ e GEmEBl
2.7 EXECUTION: STAGE « . woosl & e w 2 & ag 4 & o 5 2=38
2075 DApULs el G0 A AR a0 E e e o L
b o e OUEpuEs Tet L DT e o e e N B L L L e 2

FRIGATE WORKING DESIGN DOCUMENT

Version 1

RMAMMNMNRNRNMNRKRRMNRDRNRMNR R

.0

L2 R R e e I B B I B B S BN IR AR |

Co~N~oUmbw

-0

oUmbBWwWN

Company Confidential

Data Rotators

Operand Bus

ALU

FPU ® omas o W TR 5 A
Source! Input Mux ., . . .
Source2 Input Mux
Reserved Operand Uetection
Register File

Temporary Registers
Register Log

State Gate Array

Control Store
Microsequencer

Write Bus

FSB PORT

05 Dec B4

2-37-
2-37
2-37 .
2-37
2-38
2-38
2-38
2-39
2-39 .
2-39
2-39.
2-40
2-40
2-40
2-41

CHAPTER 1

FRIGATE SYSTEM OVERVIEW

153 FRIGATE SYSTEM OVERVIEW

Frigate is a Bl-bpased VAX hardware system under development at DECwest
Engineering for FCS in September of 1987. The system consists of a
processor which executes the complete VAX instruction set (without
compatibility mode), a 64-bit Frigate System Bus (FSB), a memory,
subsystem consisting of a memory controller and up to eight memory:
arrays, a console subsystem, a BI adapter which supports up to two
Bl's, a FSB backplane, and a power system and package.

The kernel system consists of a single processor and consolé]
subsystem, a memory controller and 4 MB of memory, a BI adapter which
includes support for a single Bl backplane, a FSB backplane, and a
power system and package.

Frigate will support symmetric multiprocessing for wup to six
processors in a single backplane.

Vo2 CONSTRAINTS AND GOALS ‘

Constraints are product attributes which define the minimum product;

as such, they must be delivered, or the product is not viable.

Constraints are: >
1. FCS must occur by September, 1987 (Q1FY88)

2. Kernel cost must not exceed $20K

3. Single-processor performance must be at least four times the
11/780.

4. Processor must execute the VAX instruction set
5. System must be compatible with BI and Bl cptions

6. System must support at least two Bl's

FRIGATE WORKING DESIGN DOCUMENT Page 1-2
VERSION 1.0 - Company Confidential 0S5 Dec B4
i Processor must be implemented on three F-Series modules
max imum) L
8. System must include support for up to four processors in a
single backplane; this implies commensurate: ;

o main memory capacity
0o main memory bandwidth
0 system bus bandwidth

0 power, cooling and packaging

8., RAMP metrics must equal or petter those of Nautilus

Goals define the product attributes beyond the minimum constraints.”
and are tradged-off in the order in which they appear:

¢
14 Single-processor performance six times the 11/7B80 "
2. Implement processor on two F-Series modules
3. Support up to six processors in a single backplane

4., FCS in March, 1987
5. $15K Kernel transfer cost

6. Support up to 4 Bl's

1.3 SYSTEM DESCRIPTION

The major components of tne Frigate System are implemented on F-Series
(Nautilus) modules, which plug into the FSB (Frigate System Bus)
Backplane. A FSB to BI Adapter Module, located in the FSB packplane,
provides the interface to one or two BI backplanes via cables and a BI

module located in each of the BI backplanes (Nautilus-style).

I | Frigate CPU

The Frigate CPU consists of F-Series modules which plug into the FSB .,
Backplane. The CPU executes the entire VAX instruction set (not.
including compatibility mode): this includes hardware support for F, -
D, and G_Floating, with H_Floating and Decimal instructions
implemented in microcode. The CPU is implemented as a five-stage
machine with a basic cycle time of 100 nsec. To achieve the stated

performance constraint (4» 11/780), Frigate must retire an instruction

FRIGATE WORKING DESIGN DOCUMENT ' Page 1-3
VERSION 1.0 - Company Confidential 05 Dec 84

every 500 nsec, or once every five cycles.
The first stage 1in the Frigate processor pipeline accesses the

Instruction TB and Cache for I-Stream data. The second stage decodes
the I-Stream data at the rate of one instruction and one specifier, or

one specifier (for subsequent specifiers), per cycle, for most
specifiers (including context indexing). The next stage calculates
operand addresses. The fourth stage accesses the Data TB and Cache.
for operand values, and the final stage executes instructions ang

writes results.

All writes are unuer tne control of the final, ex«ecution stage. . To

facilitate pipelining, Write-In-Progress indications are maintained in

the General Registers and Data Cache as appropriate.

The caching scheme wused 1in the Frigate CPU includes separate,

Instruction and Data Caches, both implemented using a custom chip,.

called the Frigate TB/Cache Chip. Both the I and D Caches are fully-

associative and include least-recently-used replacement. They are
organized as H170 quaawords (4 KB), with & fil] size of 2 cache lines
(128 pits), =

The Data (ache is write-back, and implements the scheme wutilized in
Firefly unger development at SRC. This scheme requires the storing of.

two additional bits with each cache line:

1. MODIFIED - indicates that this cache line has been locally

modified

2. SHARED - indicates that another cache has a copy of this data

A CACHED signal on the FSB is 'asserted if read data is supplied by
another cache when a Read With Cache Intent function is executed.
This causes the SHARED bit to be asserted for this cache line.

The CPU is described in detail in the next chapter.

1.3.2 Frigate System Bus (FSB)

The Frigate System Bus (FSB) is a synchronous bus interconnecting the

CPU(s), the Main Memory Controller, and the Frigate BI Adapter. Tha:

FSB is centrally arbitrated and controlled, and is TTL-based,
utilizing FAST-family drivers and receivers. The basic cycle time is'
100 nsec, and the data path 1is 64 bits wide, resulting in a
theoretical bandwidth of B0 MB. The FSB can support up to six Frrgate
processors, a dual-Bl Adapter, and the memory subsystem.

Address and Command information is time-multiplexed with data .

transfers; up to two Quadwords may be transferred for every
Command/Address cycle, yielding an effective bus bandwidth of
2/3(80OMB) = 53 MB. Up to two transactions may be in progress on the

bus at any time. All transfers are naturally aligned, such that no-

FRIGATE WORKING DESIGN DOCUMENT Page 1-4.
VERSION 1.0 - Company Confidential 05 Dec B4
data rotation logic need be implemented in the memory controller.
The FSB supports the following basic transactions:

1. Read Quadword / Octaword

2. Read Quadword / Octaword Interlockea

3. Read Quaaword / Octaword With Cache Intent

4. Write Quadword / Octaword

5. Write Quadword / Octaword Unlock

6. Write Quadword / Octaword Cached

7. Read Word / Longword

B. Read Word / Longword Interlochked

9., Write Masked Long "

10. Write Masked Long Unlock

The FSB also includes the capability to handle wvarious types of ~
interrupts, including Interprocessor Interrupts. E

1.3.3 Frigate Memory Controller B
The Frigate Memory Controller is implemented on a single module, and:’
provides the interface and control between the FSB and up to eight
memory array modules, thereby controlling up to 128 Mbytes of Frigate:
system memory. It accepts commands, addresses, and data from the FSB,
generates and checks ECC, and multiplexes this information to the °*
Frigate memory arrays. Additionally, it decodes addresses to select -
the proper memory array to be enabled for a particular operation,: and
attempts to hide refresh cycles by selecting idle arrays for refresh.

With the Frigate writeback cache scheme causing only aligned 64-bit
memcry words to move between caches and the memory subsystem, the'
memory controller needs to implement only three basic operations: e
1, Aligned octaword read,
2 Aligned gquadword write, ana

3. Aligned octaword write.

The memory controller also implements interlock capability on a memory .
line basis.

All memory ECC generation and checking is done by the memory

FRIGATE WORKING DESIGN DOCUMENT Page 1-5°
VERSION 1.0 - Company Confidential 05 Dec B4

controller., ECC checking is done in an ‘offline’ manner. Read data
is assumed good, and transmitted to its destination while ECC checking
takes place. If an ECC error is discovered, it is reported, and the
data transrter is aborted. This effectively removes the time spent
checking ECC from the critical path of memory reads, thereby
increasing system throughput.)

1.3.4 Frigate Memory Arrays

Frigate memory arrays are organized as arrays of 64 bit, ECC-corrected
words., Since the Frigate writeback cache scheme causes write data to
be mergea in the cache, only 64-bit cache lines move between cache and
memory, simplifying both the system bus and memory subsystem design.
Memory arrays support 64-bit reads and writes only, allowing the.
economy of B4-bit ECC without any overhead due to read/modify/write
operations.

Memory array cards will contain up to 16 MB of DRAM, This implies

multiple ‘banks’ of B4-bit-wide arrays per array card, such that it is
practical to simultaneously access two memory ‘banks’, and with
buffering, to do aligned octaword reads and writes to memory .

Utilizing octaword transfers increases maximum memory bandwidth from
roughly 16M bytes/second to almost 32M bytes/second, and both the CPU"’
cache fill size and FBI adapter operations are designed to capitalize.
on this feature.

1.3.5 Frigate Bl Adapter (FBI)

The Frigate BI Adapter (FBI) serves as the interface between the,
Frigate System Bus (FSB) and up to two Bl‘s. It is very similar to

the Nautilus BI Adapter (NBI), in that it consists of two types of-
modules. The first, identified as the FBIA, is implemented on an
F-Series module and resides 1in the FSB backplane. The other,

identified as the FBIB, is a Bl module which resides in a BI

backplane. An FBIB is required for each BI included in a Frigate.
system (up to two). The FBIA connects to one or two FBIB modules as -
appropriate via cables.

The FBI:
1. Appears as a memory node to DMA devices on the BI;

2. Handles CPU memory requests in Bl address space as a BI
processor node;

3. Fields Bl device interrupts

FRIGATE WORKING DESIGN DOCUMENT Page
VERSION 1.0 - Company Configential 05 Dec B4
1.4 TECHNOLOGY

There are several key components utilized in the implementation of
Frigate which are worthy of mention nere.

1.4.1 F-Series Modules

Frigate uses the F-Series modules pioneered in Nautilus. These -
modules are similar in size to extended hex modules, and interface to:
the FSB backplane through 4B0-position ZIF connectors mounted on one
side of the card.

1.4.2 Custom VLSI Chips

Frigate is envisioned to have at least two Custom VLSI Chips based

the Hudson CMOS I Process:

1.4.2.1 Frigate TB/Cache Chip

This chip implements a 128-entry, fully-associative

1-6

on-

cache structure,

of

including least-recently-used replacement. It includes logic for data
and address paths up to 32 bits wide, single cycle clear, locking
cache locations, and support of a write-back cache algorithm.

part is cascadeable in both width and
includes 20 such chips.

1.4,2,2 Friyatre FIFO Chip

depth.

Each Frigate

The
CPU

This chip implements a 32-bit-wide by 16-entry-deep First-In-First-0Out

storage structure. § o has separate input

explicit control inputs for reading, writing,
Standard cells or the Genesil design approach are possibilities here.

and
and advancing the

output ports,

Additionally, an FPU cnip based on the Hudson CMOS I process will

pursued, perhaps based on the MicroVAX
modifications to the weitek 1164 Floating Point i
Floating Point ALU to completely implement DEC Floating Point are

being worked with Weitek,

FPU Chip.

and’
FIFO.

be

Alternatively,
Multiplier and 1165

FRIGATE WORRING DESIGN DOCUMENT Page 1-7
VERSION 1.0 - Company Confidential 05 Dec B4

1.4.3 AMD 29300 Family

Trhe main ALU ana Register File in the Execution Unit are implemented
using the AMD 29332 and AMD 29334, respectively. These parts have
TTL-compatiule outputs. The AMD 29332, packaged in a 168-pin PGA,
implements a 32-bit data path, with two 32-bit input ports, and a

32-pit output part. The AMD 29334 is a dual-port-read,
dual-port-write Register File, organized as 64 16-bit locations. It
is packaged in a 120-pin PGA. Two Register File parts are utilized in

each Frigate processor.

1.4.4 RAM Technology

Main memory RAMs will be industry-standard 256 Kbit dynamic RAMs;
provision will be included to utilize the 1 Mbit RAMs when they become:’
available. -

The Frigate CPU is also dependent on the availability of 35 nsec 16K
RAMs, preferably organized as Z2KxB.

1.4.5 Bipolar Gate Arrays

wWherever possible, the remaining logic is sized wusing the Motorola
2800ALS Bipolar Gate Array. This array uses the Mosaic Il technology’

with three-layer metal, offering ECL internal speeds with
FAST-equivalent 1/0 speeds, for about 3 watts of power. Current
packaging is in 149-pin PGAs; alternative packaging will be pursued.-

Each Frigate CPU utilizes approximately 12 such gate arrays, of which_
7 are unique designs.

1.4.6 Miscellaneous Buffering And Control Logic

The remainger of the data buffering and control logic will Dbe
accomplished with off-tne-shelf components from the FAST logic family.

CHAPTER 2

FRIGATE PROCESSOR

2.1 FRIGATE CPU OVERVIEW

The Frigate CPU is a five-stage machine with a basic cycle time of 100.
nsec. To achieve the stated performance goal, Frigate must retire an.
instruction every 500 nsec, or once every five cycles. '

The five pipeline stages are:

1. Prefetch

2. Decode

3. Aouress Agd

4. Operand Fetch

5. Execute
Tne CPU includes separate Instruction and Data Translation Buffers ana
Caches. The instruction TB and Cache are utilized by the Prefetch.
Stage to supply instruction stream data, while the Data TB and Data.
Cache, which 1is write-back, are used by the Operand Fetch Stage to
access operands. Both TB/Cache structures use the same TB/Cache Chip
as a building block; the chip organization is fully associative, with -

least-recent ly-used replacement.

The CPU also includes a four-port-readable and single-port-writeable

general register structure, Two copies of the GPR‘s are accessed
during operand specifier decode, and two other copies are available to
the execution wunit. The write logic 1is shared, and is under the _

control of the execution unit.

Write-In-Progress indications are associated with the Data Cache and.
the GPR’'s accessed during operand specifier decode. These are
necessary to utilize tne pipeline efficiently while providing only one-
write path to these structures; this write path is under the control
of the execution unit, such that all register logging and faulp,
recovery logic is implemented in one place.

FRIGATE WORKING DESIGN DOCUMENT Page 2-2
VERSION 1.0 - Company Confidential 05 Dec B84

2.1.1 Prefetch Stage

The Prefetch Stage uses a Prefetch PC to access the Instruction TB and

Cache in parallel to continually supply instruction stream bytes to
the Decode Stage via the Instruction Buffer. Major logic elements
include the Instruction TB (ITB), Instruction Cache (ICache);

Instruction Buffer Snifters, and the Instruction Buffer (IB).

Two cycles are reguired to traverse this stage from virtual address to
1B data - one cycle to access the ITB for a physical address, and a’
second cycle to access the ICache ana load the IB. However, hardware
is implemented to access the ITB and ICache in parallel, and the extra
cycle 1is paid only when accessing a different page than that
previously accessed. =

2.1.2 Decode Stage

The Decode Stage operates on the contents of the ' Instruction Buffer
(IB) to parse an opcode and specifier or a subsequent specifier every-
cycle. Two copies of the GPRs are accessed for base and index
register wvalues as appropriate. In addition to the two GPR copiesJ
this stage includes substantial opcode and specifier decode logic and
the Decode PC Adder. .

2.1.3 Address Ada Stage

The Address Add Stage forms operand addresses (or passes operand data) y
from the specifier information presented by the Decode Stage. The"
major logic structure is a three-input adder; each input is presented
via a mux which formats data based on control information supplied by
the Decode Stage.

2.1.4 Operand Fetch Stage

The Operand Fetch Stage accesses the Data TB and Cache to obtain

operands from memory. The Cache may be read AND written once every
cycle. Writes occur during the first half of the cycle - data is’
presented via tne DCache Data Bus, and tne write (and WIP bit clear).
occurs at the address specified on tne DCache Address Bus. In
parallel, the address generated by the Address Add Stage is presented .
to the TB and translated. During the second half of the cycle, the,
resulting physical address is used to access the cache to yield data

and/or to mark a cache line as Write-In-Progress (WIP). 2
The Operand Fetch Stage also stages operands and builds the first,
microword (as a function of the specifier and opcode) for the
Execution Stage.

FRIGATE WORKING DESIGN DOCUMENT Page 2-3
VERSION 1.0 - Company Confidential 05 Dec B4

2.1.5 Execution Stage

The Execution Stage operates on data suppliea by the Operand Fetch,
Stage to produce the result specified by the instruction. All paths

and register elements within this unit are 32-bits wide; the intent

is to operate on two 32-bit input operands and produce a 32-bit result

every cycle. Results are presentea via the Write Latch and Write Bus3

all writes to the GPR’s and memory are under the control of this unit.

Major elements of this unit include the main ALU and barrel shifter, a.
floating point wunit (FPU), a set of Working Registers which includes

copies of the GPRs (dual-port-readable, single-port-writeable), a set

of Operand Buffers, a Register Log, and the main Control Store and

microsequencer.

2.1.8 System {Ulock

The system clock structure consists of a free-running, four-pnase:
clock with a 100 ns period. The four phases are labelled TO, T1, T2,.
and T3. The leading edge of TO defines the start of a cycle. The

leading edge of T1 occurs at TO + 25, the leading edge of T2 occurs at
TO + 50, ana the leading edge of T3 occurs at TO + 75,

2.1.7 Pipeline Registers And Stall Signals 5

The cutput of each stage in the machine pipeline is a set of pipeline
registers; these registers are also the input to the next stage in
the pipeline. The pipeline registers at the output of each stage are
manipulatea by that stage as a group. Associated with each set of -
pipeline registers 1is a VALID bit, which 1indicates when these,
registers contain wvalid data; that is, when their contents may be
usea by the succeeding stage. -

Each stage also implements a STALL signal, which is propagated to the
previous stage in the pipeline. The assertion of such a signal
indicates that a stage was unable to process the data presented by the '
preceding staye within the current cycle, such that the input state -
(ie: pipeline registers) must be maintained. The effect is to freeze
the pipeline registers between the two stages. The propagation of
these signals "back up the pipe” is one of the critical paths in the
machine, and is integrally related to the clocks and clock skew.

A pipeline stage that cannot accomplish work because the pipeline
registers at its input are not VALID is said to be IDLE. A pipeline
stage which cannot accomplish work because the pipeline registers at
its outputs are not available, as indicated by a STALL signal from the:

succeeding stage, is said to be STALLED. Conditions exist in the.
machine which cause a particular stage to cease processing until some
sort of outside intervention occurs; a stage in this situation is-

said to be in the WAIT state.

FRIGATE WORKING DESIGN DOCUMENT Page 2-4
VERSION 1.0 - Company Confidential 05 Dec 84

2.2 FRIGATE TIMING CHART

The following timing chart illustrates the critical paths 1in Frigate
from a timing standpoint. ’

Prefetch [#*#%%3 s kb fd bbb st s 5 s b bbb bR n AR AR R AR AR R R AP AN R AR AR R A SR AR R R AR A &

ICache Page Reg Prop | Control Register Prop | Write Bus Prop
10 mr===r=rsm=r—— e e e, e e ————d and Dist
20 ICache Address Buf Prop Write Bus Prefetch Latcﬁ Prop
30 ITB Address Latch Prop
I Cache RAM Address = |=====-=-—ommmmm
40 Setup (Read)
ITB RAM Address
e e e e e e e e o e e e e T] Setup (Read)
Ctrl Reg Prop ICache Output "
Gl =orrsmansansseny Eatoh & Dist| --—rrssmeestocseane cnanssans e e e
ICache Addr Buf |-—-—-=-=-===-- Data Comp | Addr Comp | s
70 ————mmmmm e Prop | * Prop | Protection
----------------------- | Legic Prop
80 ICache RAM IB Shift XXAXK '
Access (Write) and Setup |[---------mmmmmmmmmmmeee B
90 : .
wWrite Recovery 7?7 Prefetch valid Bit Setup
Decode [T T T e
1B Propagation Delay | Write Bus Prop
e e ~and Dist
20 Address Mux Prop
First-Level IB Decode = = |==——===memmmme
30 :
————————————————————————————————— GPR Write Access
a0 ..
50 Second-Level IB Cecode Bt et et et A S B e S R B T e B 2
Control Reg Prop
L e)
--------------------------------- Address Mux Prop
70 --------- - -
|
80 IB Shift Control | Decode PC | GPR Read Access
Setup | Adaer Prop | :
90
|95 Register Setup
Add 0 i’F’i***¥¥t#’l*!#**t*¥“tl**t‘?‘!"t!**“**#¥¥'ttt**‘t'¥¥¥*¥¥‘i*lt*i**t
Pipeline Register Prop | Write Bus Prop.
L R e s | and Dist
e R O Sy
20 . X KKK | Deskew Latch Prop
30 Address Adder Input Mux Prop

FRIGATE
VERSION

Fetch

Executel

Execute?

WORKING DESIGN DOCUMENT
- Company Confidential

1.0

44

50

60

0]

30

40

50

60

70

0

Address Add

Virtual Addre
and VAR

Page 2-5
05 Dec 84 °

er Prop

ss Mux Prop
Setup

R R R R R R R R R e T T T T T T

VAR Prop

T8 RAM Address Setup

(Read

DCache Address Bus Prop
and PAR Setup

(Read)

)

PAR Prop (Write)| Write Bus Prop
and distribution] and dist

XXX | Rotatﬁr Prop
|DCacne 'DBus Prop
Cache RAM Address|------- et
Setup (write) | Cache RAM Data
Setup

e e e e e e e e e e e e o S S S S

PAR Prop (

and distribution

Cache RAM Address Setup
(Read/WIP)

DCache Data Bus Prop, MDR Setup

Read/wWlP)

PA Valid for Cache Write
DCache Address Bus Pﬁop
and PAR Setup

14*1****s‘*‘*##‘***i*"I!‘t*‘***#**t*#tttt‘¥tt‘!*##‘**t**ik'ttt‘l‘#
Uword Reg Prop | Operand Ptr and Control Reg Prop| MDR Reg Prop

Register File

Address Setup |

|
|

ALU Prop

Operand Register| Rotater Prop
Address Setup |

KX KX

OR RAM
Data Setup

L Y ittt s T

Write Latcn Prop

|Uworda Reg Prop

| CC Latch Prop |

FRIGATE WURRKRING DESIGN DOCUMENT 2 Page 2-6
VERSION 1.0 - Company Confidential 05 Dec 84

20 P T N [
et i S XXX CS Address Mux

30 Beshkew; Latol Proglto' 4. " [esmeestansscaean

B Tt 1=’ B BT NEEREASET ot ! Bhsecss e S
50 - R e T T T
AARAKK Ptr Reg Prop
60 A T) g
——————————————— Control Store
70 RAM Access
------------- -=-=--| Register File 5
BO Register File RAM Addr Setup
RAM Data Setup L e e e
R e T T Mo e st Ptr Mux Prop,
Write Recovery Time Uword Reg Setup]|

I

Note: Execute? occurs in parallel with Executel - it just wouldn‘t-
fit norizontally on the page! :

2.3 PREFETCH STAGE

P el | Prefetcn Bus

N

The Prefetch Bus supplies bits <31:0> of a wvirtual address to the
Instruction TB and Cache structure, from one of four possible sources:

1. The Write Bus via the Write Bus Prefetch Buffer
2 Tne Pretetch PC Register

3. The Branch Register

4. The Jump Register
The derault Prefetcn Bus driver is the Prefetch PC Register, which
supplies the address of the next guadword beyond the one currently
being processed. The bus enable lines are a function of the opcode

and speciftier decode logic and the execution unit (for TB management,
branch correction, and interrupts). ;

2.3.2 ITB Address Latch

The ITB Address Latch captures bits <31:0> of the Prefetch Bus for
presentation to the ITB and ICACHE. Bits <31:9> are presented to the
ITB and bits <8:0> are presented directly to the ICACHE. The latch is
open ftrom T1 to T2, and 1is implemented to efficiently handle the -

FRIGATE WORKING DESIGN DOCUMENT Page 2-7
VERSION 1.0 - Company Confidential 05 Dec 84

capture of addresses supplied via the Write bus (the Write Bus Latch-
opens from T3 to TO). On a cache miss or access violation, ‘the
contents of this latch are passed down the pipeline to the execution
unit via the ICache Address Latch and the IPC FIFO.

2.3.3 Instruction Translation Buffer (1ITB)

The Instruction Translation Buffer (ITB) consists of a tag store and
data store, and two sets of comparators. ITB Address Latch bits
<31:9> are used to access the ITB for the corresponding PTE, from,
which bits <29:9> of a physical address are extracted. These bits are
compared with ICache Page Register <29:9> to determine if the physical-
adaress presented to the Instruction Cache in parallel was valid. The
validity of this physical address is also conditional on whether a TB
hit occurs, and whether the access is allowed, as defined by the
protection bits and processor mode. '

The ITB itself consists of 256 entries, 128 for system space and 128
for process space, and is implemented with two custom Frigate TB/Cache.
chips. The organization is fully associative, with
least-recently-used replacement. -

2.3.3.1 Reading The ITB

Accessing the ITB to read a PTE proceeds as follows:
1. ITB Address Latch <31:9> are presented to the ITB to yieiq'
the corresponding PTE; ITB Address Latch <31> selects system -
or process space (one of the two TB/Cache chips).

2. In parallel:

1. PFN<20:0> from the accessed PTE are compared with bits .
<29:9> of the ICache Page Register to determine if the
physical address used to access the cache in parallel was
correct; ;

2 The Protection bits from the accessed PTE are examined:
relative to the processor mode to determine whether the®
access is allowed,

3. PTE <20:0> are wunconditionally Jloaded into ICache Page
Register <29:9> at the end of the cycle. N

4. A valiag inadicator associated with the ICache Page Register is *
asserted as follows:

FRIGATE WORKING DESIGN DOCUMENT
VERSION 1.0 - Company Confidential

) e If the PTE is cached, tne access is allowed,

addresses match, the wvalid indication is asserted;

1 If the PTE is cached, the access is allowed,
addresses don‘'t match, the wvalid indication
asserted - the result is that the cache access

Page
05 Dec B4
and the”
and the.
is not
will be ~

repeated 1{in the next cycle, this time with the correct

address;

3 It the PTE is cached but the access is not allowed, or
the PTE 1is not cached, the wvalid indication is not’
asserted. Additionally, the contents of the ICache.
Address Latch are loaded unmodified into the IBPC
Register (once the IB nas been emptied), and a TB error

indication is presented to the Decode Logic. The Decode,

logic propagates this error indication thru the

control -

register pipeline, and the virtual address is propagated

via the IPC FIFO, to the Execution Stage. The
unit then waits for execution unit intervention.

Prefetch

Tne ICache Page Register valid indication is ANDed with the Cache Hit
signal from the parallel cache access to indicate to the IB Shift

logic that the accessed cache line contains wvalid Instruction St
data.

2.3.3.2 writing The ITB

The 1TB is always written under the control of the Execution U

ream

nit.

The address to be written is presented via the Write Bus and Write Bus

Pretetch Buffer and loaded into the ITB Address Latch (in fact, in:
most cases the address will already be there). In the next cycle the _
PTE to be written is presented via the Write Bus through a deskew.
latch, and the write into the appropriate ITB chip occurs, based on

ITB Addaress Latch <31>. 3

When mapping is not enabled, the ITB will be managed as an iden

map by the Eaecution Unit microcode.

2.3.4 1Cache Page Register

The ICache Page Register is loaded every cycle from PFN <20:0> of
PTE accessed in the 1TB. The output of this register is presented to
the 1Cache Address Mux as bits <29:9> of the cache address to be

during tne first half of every cycle. During the second half of the

cycle, its contents are compared with the output of the
oetermine if the cache access was valid.

178

tity:

the -

read

to

FRIGATE WORKING DESIGN DOCUMENT Page 2-9
VERSION 1.0 - Company Confidential 05 Dec B4

2.3.5 ICache Address Bus

The ICache Address Bus consists of two portions, a page portion, wnicﬁ
supplies bits <29:9> of the physical address to the cache, and the.
offset portion, which supplies bits <B8:0> of the physical address.

The page portion nhas two sources, the ICache Page Register, which
supplies the read address during the first half of every cycle, and
the ICache Address Bus Latch, which supplies the write address during
the second half of the cycle. -

The offset portion also has two sources. During the first half of the’
cycle, the read address 1is sourced from ITB Address Latch <8:0>.

During the second half of the cycle, the ICache Address Bus Latch

supplies the write address.

Bits <29:3> of the 1Cache Address Bus are presented to the ICache for
reading or writing the quadword cache lines. Bits <29:0> of this
latch may also pe driven onto the Internal Bus to access “main memory.
on a cache miss. ¥

[Mote: The critical path reading the instruction cache is when the
address is supplied wvia the write bus (bits <8:3> only). This path
could be handaled aifferently if it proves to be a problem as currently.
implemented. Note that no state element is necessary in this path

since the cache output itself is captured at T2, and the Write Bus
Latch does not re-open until T3.]) ah

2.3.6 Instruction Cache

Bits <29:3> of tne ICache Adoress Bus are used to access the-
Instruction Cache for the next quadword in the instruction stream.
The Instruction Cache is implemented utilizing 8 Frigate TB/Cache -
thips, worganized as 64 bits wide (+tparity), and 512 locations deep (4
KB) . It is fully associative, and implements the least-recently-used
replacement algorithm. g

fhe cacne is accessed during tne first half of every cycle for read
data, reyardless of the state of any valid / not valid 1ndications;‘
the cacne output is captured at TZ in the ICacne QOutput Latch. The
cache hit/miss indication is ANDed witn the ICache Page Register valid
indication to generate an inaication regarding the validity of the
accessed cache line. This signal, ICACHE_LINE_VALID is used by the
instruction buffer control logic to conditionally mark bytes valid in’
the Instruction Buffer at the end of the cycle. '

The ICache may be accessed during the second half of each cycle to do
a write or invalidate, The write address comes from the ICache.
Aadress Bus Latch, and the write oata is sourced onto the ICache Data -
Bus from the Internal Bus via the Internal Bus Buffer.

FRIGATE WORKING DESIGN DOCUMENT Page 2-10
VERSION 1.0 - Company Confidential 05 Dec B4

2.3.7 ICache Qutput Latch

The ICache Output Latch captures the 64-bit output of the Instruction : N
Cache. It is conditionally opened from T1 to T2 under the control of

the Instruction Burfer control legic whenever the previous contents of

the latch have been used by the IB, or are no longer needed (such as

after a taken brancnhn); this is indicated by the assertion of the

signal LOAD_CACHE_LINE_BUF (defined below).

[NOte: Conditioning tne opening of this latch allows the following
cache line to be accessed before tne current contents of the ICache
Output Latch have been loaded into the Instruction Buffer. Otherwise;
the latch could be unconditionally opened every cycle.]

This latch is implemented in the Instruction Buffer Gate Arrays.

2.3.8 Instruction Buffer And Shifters

Thne Instruction Buffer and Shifter structure is utilized to provide.
the next 7 bytes in the instruction stream to the Decode Stage. Thne’
shifters are used to accomplish this by selecting the appropriate 7
bytes from the 22 bytes formed from the Instruction Buffer (14 bytes)’
and the output of the Instruction Cache latched in tnhe ICache Output,
Latch (B bytes).

The Instruction Buffer and Shifter is implemented through the use of
four Instruction Buffer Gate Arrays. The structure is partitioned
vertically, such that each gate array implements the entire structure.
for two of the eight bits in each byte. These gate arrays also
include the ICache Output Latch. .

2.3.9 ICache Address Latch

The ICache Audress Latch is loaded from the Prefetch Bus whenever the
signal LOAD_CACHE_LINE BUF (defined below) is asserted. This latch. '
captures the virtual address associated with the quadword in the-
ICache Output Latch. Its output is presented to the PC Offset logic
to calculate the next Prefetch PC and IBPC. 7

[Note: This latch exists only to allow prefetching another cache |ine
beyond the contents of the ICache Output Latch]. i

2.3.10 Prefetch PC Incrementer And Register

The Prefetch PC Incrementer supplies the contents of the ICache
Address Latch + B to the Prefetch PC (PPC) Register every cycle. The
Prefetcn PC Register is the default driver of the Prefetch Bus.

. FRIGATE WORKING DESIGN DOCUMENT Page 2-11
VERSION 1.0 - Company Confidential 05 Dec 84

.

2.3.11 Instruction Buffer PC Register (IBPC Register)

Associated with the Instruction Buffer (IB) is an Instruction Buffer N
PC Register, which identifies the next byte in the instruction stream
to be operated on by the Decode Unit (ie: the byte in position 0 or 1
of the Instruction Buffer). This register is input to the Prefetch PC
Adder in the Prefetch Stage, and the Decode PC Adder in the Decode,
Stage. e

The IBPC Register is loaded as follows:

1. Bits <31:3> are loaded from the ICache Address Latch if .the
signal LOAD_CACHE_LINE is asserted; otherwise, the bits are
re-circulated from the corresponding IBPC outputs; .

2. Bits <2:0> are loaded from either the Prefetch PC Adder or.
the ICacne Address Latch, depending upon whether or not &
branch occurred, as indicated by the signal’
BRANCH_ADDRESS_BUF. k

This logic 1s implemented in the PC Gate Array.

2.3.12 Prefetch PC Aader ; E

Tne 3-bit Pretetcnh PC Adder is used to calculate the address of the
first Dbyte Leyond the opcode (for instructions with no specifiers) or ’
specifier currently being decoded (that is, the address of the first’
byte of the the opcode or specifier to be decoded in the next cycle).
One input to the adder is Instruction Buffer PC Register <2:0>. The
other input is PC_OFFSET<2:0> from the specifier decode logic.

The output of the Prefetcn PC Adder is conditionally loaded into bits "’
<2:0> of the IBPC Register at the end of the cycle.

Carry-out of tnis adoer is one of the signals OR'd to generate the
signal LOAD_CACHE LINE. This signal causes bits <29:3> of the ICache
Address Latch to be loaded into the corresponding bits of the IBPC.

This logic is implemented in the PC Gate Array.

[Note: The updating of tne PC after gquadword ana octaword immediates
is nandled in the Decoue PC Adder and via the Branch Register.] .

2.3.13 Miscellaneous Control Lines

ICACHE_LINE_VALID - indicates that the contents of the ICache Output
Latch are wvaliag.

PREFETCH_PREGISTERS_VALID - specifies that the Prefetch Pipeline~

FRIGATE WORKING DESIGN DOCUMENT Page 2-12
VERSION 1.0 - Company Confidential 05 Dec B84

Registers are wvalid.

PREFETCH_STALL - pipeline stall from Decode Stage; inhibits the
updating of the Prefetch Pipeline Registers.

PC_OFFSET <2:0> - output of Decode Stage which specifies the number of
bytes consumed by the Decode Stage, and therefore the number of bytes
by which the Instruction Buffer PC 1is to be incremented and the
Instruction Buffer is to be advanced, ie: right-shifted.

LOAD_OPCODE - output of Decode Stage which specifies that byte 0 of
the Instruction Buffer 1is to be loaded. IBO always.contains tha
opcode of tne instruction being decoded, and is therefore not loadeao
every cycle. %

BRANCH_ADDRESS - signal from decode stage indicating that the next
prefetch address is not-sequential. Used to select the source of thg
Prefetch Bus and to generate the signal LOAD_CACHE_LINE.

BRANCH_ADDRESS_BUF - Registered version of BRANCH_ADDRESS used in the
next cycle to select the source of IBPC<2:0>. -

LOAD_CACHE_LINE - tne OR of the carry from the Prefetch PC Adder and

BRANCH_ADDRESS. Specifies that IBPC Register bits <29:3> be loaded

with the ocutput of the ICache Address Latch.

LOAD_CACHE_LINE_BUF - Registered version of LOAD_CACHE_LINE wused in
the next cycle 1o conditionally open the ICache Qutput Latch and
ICache Address Latch.

IBn Valio - valid bits associated with each of the bytes in the

Instruction Buffer, IBn where n = 0 to 13.

2.4 DECODE STAGE

The Decode Stage coperates on the contents of the Instruction Buffer-

(IB) and Instruction Buffer PC Register (IBPC) to generate operand
information for tne Adaress Add Stage, and control information for the
Prefetcn Stage. Major structures include the operand decode logic,
the specifier decodge logic, the Decode PC Adder and two copies of the
General Registers. S

2.4.1 Instruction Buffer

The Instruction Buffer (IB) is 14 bytes wide. Up to 7 bytes (théT
low-order bytes) may be consumed by the Decode Stage in any one cycle;

the remaining 7 bytes in the buffer are used to insure that, whenever,

possible, the next 7 bytes in the IStream will be available to the

decode logic in the next cycle. Each byte may be loaded from any

succeeding byte in the IB and ICache Output Latch.

FRIGATE WORKING DESIGN DOCUMENT Page 2-13
VERSION 1.0 - Company Confidential 05 Dec Ba

The 7 bytes available to the decode logic are identified as IBn, n = O
to 6. IB0 always contains the opcode of the instruction being
decoded. &

The Instruction Buffer and Shifter is implemented through the use of
four Instruction Buffer Gate Arrays. The structure is partitioned
vertically, such that each gate array implements the entire structuré
for two of the eight bits in each byte. These gate arrays alse
include the ICache QOutput Latch.

[Note: The width of the IB beyond the 7 bytes which may be used by
the Decode Stage in any one cycle is a function of the fact that theé
ICache Output Latch which supplies the IB cannot be re-loaded until
all 8 bytes in the Latch have been used. Simulation is under way to
determine the optimum IB length.]

2.4.2 Instruction Decode

The instruction decode unit is implemented as a state machine with
twelve major states corresponding to the type of decode being
performed. The twelve states are defined by four state signals,
collectively called the decode state, which are generated each cycle
by the state machine:

1. SECOND_OPCODE - when asserted, indicates that the cpcode byte-
being decoded 1s the second byte of the opcode; deasserted
fnuicates that the byte is to be Iinterpreted as the first
byte of the opcode.

2. SPECIF1ER<Z2:0> - identifies the position of the specifier
being decoded, as follows: .
1. 000 - First Specifier - decode first specifier
2. 001 - Second Specifier - decode second specifier -

< 010 - Third Specifier - decode thira specifier .

4. Url - Fourth Specifier - dgecode fourth specifier
5. 100 - Fiftn Specifier - decode fifth specifier
6. 101 - Sixth Specifier - decode sixth specifier
4 110, 111 - uUndefined

The guiescent state of the machine is SECOND_OPCODE not asserted and

SPECIFIER<2:0» = 0, specifying decode first specifier (the machine
enters this state wupon initialization, and at the end of each"
instruction)., In this state, there are six possible interpretations _
of the data in the instruction buffer (ignoring quadword and octaword

.

FRIGATE WORKING DESIGN DOCUMENT Page 2-14
VERSION 1.0 - Company Confidential 05 Dec B84

immediates for the moment).

[Note: This assumes that there is no decode of the instruction streaﬁ

done on the input side of the instruction buffer to align data -.
alignment is solely under the control of control logic in the decode
stage on the cutput side of the instruction buffer. To do otherwise
would add intolerable delay in the prefetch stage. | -

The six possible data formats are:

1. Single-byte opcode, no specifiers

l x { x I X I X I x I i I x

2. Single-byte opcode, first specifier is not index mode

| X | X | Disp 3 | Disp 2 | Disp 1 | Disp O |Base SPC| Opcode |

| === |-mmmmemn | -mmomem- -==mmn- | === mmn | === et Pt |
< Single-byte opcode, first specifier is index mode

e | st i i i | e T et e et [ttt |

| A | Disp 3 | Disp 2 | Disp 1 | Disp O |Base SPC|IndeaSPC| Opcode |

5. Dounle-pyte opcode, first specifier is not index mode

o

Double-byte opcode, first specifier is index mode

Tne double-bLyte opcode cases are handled by detecting these formats (
180 = FD), specifying a single-byte advance (shift) of the,

FRIGATE WORKING DESIGN DOCUMENT Page 2-15
VERSION 1.0 - Company Confidential 05 Dec B4

instruction stream, and specifying that the next decode state be’

SECOND_OPCODE asserted, SPECIFIER<2:0> wunchanged (specifying decode .
first specifier). The effect is that the instruction buffer contents

in the next cycle will be identical to one of the single-byte opcodé
formats, with tne decoce state specifying SECOND_OPCODE.

The net result of this strategy is that there are only four possible
interpretations of the instruction buffer by the specifier decode
logic wnen SPECIFIER<2:0> indicates that the first specifier is to " be
decoded. This means:

1. The index mode specifier, if there is one, always appears in

IB1;
2% Tne pase operand specifier appears in IB2 or IB1;
3. Displacements appear as follows:

1. Branch Displacements in IB1 or IB2|1B1;
2. Byte Displacements in IB2 or IB3;
3. word Displacements in IB3|IB2 or IB4|IB3:

4 . Longword Displacements, or the first longword of a
quadword or octaword immediate, in IBS5|IB4|IB3|1B2 or
I1BG|IBS5|1B4|1B3.

To minimize the multiplexing in the decoder stage, it is desirable to-
maintain this positioning for all decoue states, that is, independent .
of which specifier is being decoded.

This is done by snifting one less Dbyte-position when transitioning -«
into a SPECIFIER state other than that specifying the decode of the
first specifier, i
In this manner, an cpcode ang specifier may be decoded in one cycle,
for all cases except guadword and octaword immediate mode specifiers.
One adaitional cycle is required for the quadword immediate case, and
three addgitional cycles for the octaword immediate case. During such

cycles, the immeaiate value is extracted one laongword at a time from
I1B4|1B3|1B2|1B1. .

2.4.3 Upcuode Decode Logic

The opccde decoder implemented in the Decode Stage is logically a 4kK.
oy n PROM witn tne following inputs:

FRIGATE WORKING DESIGN DOCUMENT Page 2-16

VERSION 1.0 - Company Confidential 05 Dec BQ
1. I1BO<7:0>
2. DECODE_STATE<3:0> (=5ECONDHOPCODE1SPECIFIER‘?:U)? .

It's output includes the following fielaoas:

1. DATA TY¥PE<3:0> - specifies the data type of the specifier
being decoded; DATA_TYPE<3:0> = F is used to indicate that’
the instruction has no specifiers (ie: no first specifier
erxists);

2. ACCESS_TVYPE<2:0> - specifies the access type of the specifier
being decoded; .

3. NEXT_DECODE_STATE<3:0> - specifies the next decode state to
be loaded into the Decode State Register. 2

4. LOAD_OPCODE - specifies that an opcode is to be loaded 1intp
1B0; this affects the PC Offset, and gates the clocking of
1B0.

Additionally, the opcode decode logic will decode instruction class,
particularly as it affects pipeline waits.

2.4.4 Specitier Decode Logic

181 contains the index specifier, {if there is ocne, or may contain a

base specifier. Aduitionally, IB2 may contain a base specifier for .
inde» mode. The only fast. decode needed, therefore, is a

determination ot whether index mode s specified; the signal

INDEX_MODE is asserted if 1B1<7:4> = 4, This signal is used as a

select on the muxes at the inputs of the base specifier GPRs and the’
displacement register.

The remainder of the specifier decode is accomplished wvia a Iugid‘
Structure with tne following inputs:

3 IB1<7:4>

B 1B2<7:4>

3. DATA_TYPE<3:0>

4, ACCESS>_TYPE<2:0>

5. LOAD OPCODE
[Note: The B-bit combination of 1IB1<7:4> and IB2<7:4> can be reduced..-
to ftive bits by decoding IB1<7:4> = 4 (Index Mode) quickly, and using

it to select a mur Detween IB1 and 1B2.]

The specifier decode logic generates: =

FRIGATE WORKING DESIGN DOCUMENT Page 2-17

VERSION 1

1.

2.4.5 De

The Decoa
generate

address cC
to the Pr

One input
adaress

Decode 5t
based on
specifier
DPC Adde
anua IPC F

The Decod

2.4.6 EBr

when a pr
notirtied
I-Stream
Register.
longer so
occurs.
“invalid.

The Branch Register is loaded from the Decode PC Adder in the Decode

Stage.,

.0 - Company Confidential 05 Dec 84

PC_OFFSET<2:0> - {nput to the Prefetch Stage to specify the

number of bytes to aavance (right shift) the Instrucfiop
Buffer, and input to the Prefetch PC and Decode PC Adders to
calculate the appropriate updated PC's;

Caontrol signals for subsequent stages propagated through the-

machine via Function Registers defined below;

Displacement Multiplexer select bits to specify the format of
short literals or displacements in the Displacement Registar;

WIP Control Bits - to specify the number of seguential WIPR,
counters to be incremented or checked in a particular cycle;

Brancn Control Bits used by the Branch Logic to specify how
to set wup the Decode PC Adder, whether the Branch or Jump

Register is driving the Prefetch Bus, and when the branch.

address is valia.

coue PC Aduer

e PC (DPC) Adder operates on the contents of the IBPC to’

the wpoated PC to be used by the Address Add Stage for

alculations, or to generate the target address to be suppl1ed:

eretchn Stage for some classes of brancnes.

to the DPC Adder is the IBPC Register, which supplies the,

of the first byte of the I-Stream to be processed by the
age in this cycle. The other input is a mux which is setup

opcade information (brancn or no branch), specifier size and"

type to supply the appropriate addend. The output of the-
r is input to the Branch Register, Decode PC (DPC) Register,
I'FQ.

e PC Agaer 1s implemented in the PC Gate Array. .

anch Logic

ogyram flcw change is to be made, the Prefetch Stage isl

(by the assertion of the signal BRANCH_ADDRESS) that the next
Address will come from either the Branch Register or Jump
In response to this signal, the Prefetch PC Register no

urces the Prefetcn Bus, and a flush of the Instruction Buffer,
The latter is accomplished by marking all valid indications

It provides the Branch Address (ie: drives the Prefetch Bus)

when the signal JUMP_REGISTER is not asserted by the decode logic.

FRIGATE WORKING DESIGN DOCUMENT Page 2-18
VERSION 1.0 - Company Confidential 05 Dec 8%

The next 1-Stream address is supplied via this path for all”
conditional and unconditional branches and locop instructions that are
absolute or PC-relative, and as the result of decoding quadword and
octaword immediate mode specifiers. For these cases, the Decode PC.
Adder is set up to supply one of:

¥ PC # 1 -+ SEXT(IB1) 0
2. PC = 2 + SEXT(IB2|IB1)
3. PC + 8 (quadword immediate)

4, PC + 16 (octaword immediate)

Loop instructions are always predicted to be taken, hence the targetn

branch address is always supplied for these instructions. A 4K x 1
RAM is used for prediction of conditional branches. Bits =<13:2> of
the address @re presented to this RAM, which contains a single bit
indicating wnetner a branch was taken the last time the corresponding .
location was accessed. Based on this bit, either the target branch
address or the incremental address are supplied wvia the Branch
Register. The RAM 1is corrected by the Execution Unit microcode via.

the Write Bus when an incorrect prediction is made, and the pipeline,
is flusned.

The Jump Address Register is loaded from the output of the 3-input -
agder in the Adgdress Add Stage. It drives the Prefetch Bus when the
signal JUMP _REGISTER is asserted. This path is wused to supply the’
neat I1-Stream address for JMP‘s and JSB‘s that are not PC-relative or

absolute.

The Branch Logic, except for the Jump Address Register and the.
Prediction RAM, is implemented in the PC Gate Array.

2.4.7 Decooe PC Register :

This register presents the address of the first byte in the
instruction stream beyond the specifier or opcode (for instructions
Wwith no specifiers) being decoded. It is loaded from the output of
the DPC Acoer, and conditionally drives tne Base Bus, which is one of
the inputs to the three-input adder in the .Address Add Stage. The
other source for Base Bus data is the Base Register; the specifier :
decode logic specifies the source.

FRIGATE WORKING DESIGN DOCUMENT
VERSION 1.0 - Company Confidential

2.4.8

The Displacement Register
ana tormatted
the base specifier mode
size is passed via this

is autodecrement,
logic,

The inputs
as follows:

Spec Data Byte3 Byte2
Mode Type
sAglit BwLQO 0 0
FL 0 0
i 0 0
H I1B1<2:0>|00000 0
-(Ro) B FF FF
W FF FF
LF FF FF
QDG FF FF
O FF FF
INDEX B SEXT(IB3<7>) SEXT(IB3<«<7>)
] SEXT(IB4<7>) SEXT(IB4<7>)
L I1BE IBS
SUBSEQUENT 184 IB3
IMMEDIATE
(after first ltungeord)
ALL
GTHERS B SEXT(IBZ2<7>) SEXT(IB2<7>)
W SEXT(1B3<7>) SEXT(IB3<7>)
L 185 I1B4

to this register are four byte-wide

Displacement Multiplexer And Register

is used to pass sign-extended
literals to the Address Add stage.

Bytel

0

010000 1B1<5:4>

01000000

01000000

FF
FF
FF
FF

FF

SEXT(IB3<7>)
184

IB4

IB2

SEXT(1IB2<7>)

183

IB3

multiplexers,

Page 2-19
05 Dec B84

displacements
Additionally,
the two’'s complement of

when
the

def ined
Bytel

00|1B1<5:0>
1B1<3:0>|0000
0] 1B1<5:0> 0

00000|IB1<5:3>

FF
FE
FC
F8

FO

IB3
B3

183
I
1B2

IB2

1B2

FRIGATE WORKING DESIGN DOCUMENT) Page 2-20.
VERSION 1.0 - Company Confidential 0S5 Dec B4

The Displacement Multiplexer and Register are implemented in the
Displacement Gate Array. The pinouts incluge:

1. 4B data inputs (IB<6:1>)

2. 4 data type inputs

3. 3 format control inputs

4. I clock enable i

e 1 clochk .
The Displacement Register must also be capable of supplying O. The

Displacement Register is one .input to the three-input adder in the.
Adaress Aad Stage.

2.4.9 General Processor Registers

Two copies of the GPRs are implemented in the Decode Stage, one to
supply the register contents associated with the base specifier, anag,
one to nandle the index specifier, Each GPR set may be read AND
written once every cycle; writes occur during the first half of the.
cycle, anad reads occur during the second half of the cycle. i

Associated with the GPRs in this stage are 15 Write-In-Progress (wWIP) *
counters. These 4-pit counters maintain the number of outstanding -
writes to tne corresponding GPR (except PC). Attempting to read a GPR~

whose WIP Counter is non-zero for any mode but register mode causes a
pipeline stall.

Read ana WIP bit addresses for the two GPR copies come from bits <3:0>
of 1B1 for the copy associated with the index specifier, and

((IBZ¥*INDEX_MODE)+(IB1*/INDEX MODE)) for the copy associated with the -

base specifier.

wWrite Addresses and the corresponding data size come from the address

portion of the WwWrite Bus. The three data size bits are used to
specify a byte, word, or longword write. Write data comes from Write
Bus <31:0>. when a write occurs, the corresponding WIP counter is’

decrementea.

Multiple WIP counters (up to four) may be read .-and/or incremented in a
single «cycle, based on the WIP control bits, which are a function of "
data type, access mode, and specifier type. Only one WIP counter need!’
be decrementen per cycle,

A non-zero WIPF counter does not cause a stall if the mode is register.'’

WIP counters may pe read AND set during the second (read) half of the
cycle [(ie: read at the address supplied by the index specifier mux, -

FRIGATE WORKING DESIGN DOCUMENT Page 2-21

VERSION 1.0 - Company Confidential 0S5 Dec B4
and read ana/or incremented at the address supplied by the base
specifier mux). The WIP counters are decremented during the first

{(write) nalr of the cycle.

A register bypass mechanism is implemented to gain a cycle when a
stall OCCurs due to a non-zero WIP counter. The base and index
register numbers are captured in the Rb and Ri Registers,
respectively, for presentation to the Address Add stage. A wvalid bit
associated with each of these registers indicates whether the Decode
Stage was able to supply valid register data. If the valid bit is not
set, the Address Add Stage stalls and watches the Write Bus for the.
updated register contents,

The bypass mechanism is utilized only when there is one outstanding

write to a reqguested register. That is, it is used only when one or

the other of the base or index registers is not available; it cannot

be used when both are not available, since the Address Add stage has®
no state element available to store the first operand that becomes '
available while waiting for the second. Thus, when both register
values are not available, the Decode Stage stalls until one of them
becomes available, and then transmits the specifier information to the
Addaress Add Stage, which waits for the other to become available wvia-
the Write Bus.

Similarly, the bypass mechanism cannot be utilizea when a WIP counter
is greater than one. g

Logic prevents tne WIP counters from being decremented beyond zero.

2.4.10 Rpase Multiplexer

The Ruase Multiplexer selects the address presented to the oDase
specifier copy of the GPRs; the output of this mux i1s also capturea ,

in the Rb Register. The mux selects one of three possible address
sgurces: .
: [IB1<4:0> - read / WIP (increment/check) cycle and not index
mode i
2% Ibs~3:0> - read / WIP (increment/check) cycle and index mode
3. Write Bus Address - write and WIP decrement cycle

2.4.11 Base Reuyister

The 32-bit Base Register contains the contents of the GPR specified by
the Rbase Multiplexer. It is locaded agirectly from the base specifier-
copy of the GPRs at the end of every cycle. It conditionally drives
the Base Bus, which is one of the inputs to the three-input adder in

FRIGATE WORKING DESIGN DOCUMENT Page 2-22
VERSION 1.0 - Company Confidential 05 Dec 84

the Address Add Stage. The Base Register drives the Base Bus whenever
the contents of a GPR other than PC are required to calculate the base
address.

2.4.12 Rinvex Multiplexer r

The Rinoex Multiplexer selects the address presented to the index .
specifier copy of the GPRs; the output of this mux is also captured
in the Ri Register. The mux selects one of two possible address
sources: .

1. 1IB1<3:0> - read / WIP (chechkh only) cycle

2. write Bus Address - write and WIP decrement cycle

2.4.713 Inagex Register

The 32-bLit lndex Register contains the contents of the GPR specified

in the inaesx operana specifier, that is, Index Register = (IB1<3:0>) .
It is loadeo directly from the index specifier copy of the GPRs every
cycle. 1t is one of the inputs to the three-input adder in the.

Adaress Ada Stage. b
2.4.14 Rb Register
This 4-bit Register is loaded from the Rbase Multiplexer every cycle.,

It is used to pass the base register number ta the Address Add Stage.
Tc implement the register bypass mechanism, a valid bit is associatea -

witn this register. If- set, the required register contents were
supplied by the Decode Stage via the Base Register. If clear, the
register contents were not available due to an outstanding write. In

this case, the Address Add Stage monitors the Write Bus: for the."
updated register countents, and stalls until such data is available.

2.4.15% HR1 Hegister

This 4-pit Register is loaded from the Rindex Multiplexer every cycle.
It is used tu pass the index register number to the Address Add Stage,
and exsists., along with the associated Vvalidg Bit, only to implement the

Wwrite bus register Dbypass mechanism. If the Valid Bit is set, the-
required register contents were supplied by the Decode Stage via the
Index Register, It clear, the register contents were not available

due to an cutstanding write. In this case, the Address Add Stage. .

moenitors the WwWrite Bus for the updated register contents, and stalls
until such data is available.

FRIGATE WORKING DESIGN DOCUMENT Page 2-23
VERSION 1.0 - Company Confidential 05 Dec 84

2.4.16 IPC FIFO -
The IPC Bufrers are organized as a 32-bit-wide FIFQ, loaded under the
control of the Decode 5tage, and read under the control of the
Execution Stage. These buffers combine the functions of pipeline PC
registers and buffering at the ocutput of the Operand Fetch Stage into.
a single structure, There are B 32-bit-wide buffers, organized as a.
FIFO which may o©oe read and written every cycle. Read data is
available to the Execution Unit during the first half of the cycle,
and the structure may be written by the Decode Stage during the second
half of the cycle. This write occurs from the output of the DPC Adder
under the control of the decode state machine, <
The Virtual PC useo to access the ITB is loaded into the IPC Buffers
and passed to the Execution Stage for managing the ITB when necessary.

The PC Buffers are not explicitly addressable by the Execution Unit-

microcodge, in that only the Top-of-Fifo 1is available to be read’
However., the removal of an entry from the FIFO 1is explicitly
controllea by the microcode, in order to manage First-Part-Done cases.
[Notel: Currently, this structure is read by the Execution Stage wvia
the Write Bus to save pins. If this proves to be a bottleneck, .
dedicated pins could pe used, in which case the structure could alse

be moved closer to the Execution Stage.] .

[Note?2: The deptn of this structure is TBD as the result of
simulation, It seems like B is a reasonable number, effectively"
allowing us to burfer up to 6 instructions (4 instructions is probably

i

enough), anda nold 2 in the pipeline.]

2.4.17 Control Registers

b T N R | Opcode Register
This nine-bit register contains a single bit indicating single- or
double-byte opcode, and the contents of I1BO. It is loaced every

cycle, and is propagated through the machine for use 1in succeeding
stages.

2.4.17.2 Address Aad Function Register .

This register contains control information to be used by the Address -

Add Staye ta construct the operand or operand address in the next-

cycle. The control information for the Address Add Stage is fully”’
decoded in the Decode Stage so as to keep decode out of the critical -
path in the Address Add stage. The register is made up of the

following fields:

FRIGATE WORKING DESIGN DOCUMENT Page 2—24.
VERSION 1.0 - Company Confidential 05 Dec B4
1. Base Mux Control
| B Base Register
2. Decode PC Register
3. Write Bus

4, 0

L Index Mux Control
Ya Index Register
2. Index Register left shift by 1
3 Index Register left shift by 2
4., Index Register left shift by 3
B Indesx Register left shift by 4 g

6. write Bus

7. Wwrite Bus left shift by 1 -

B. write Bus left shift by 2

9. Wwrite Bus left shift by 3 :
10. Write Bus left shift by 4

IR ¢

3. BASE_VALID - indicates that the Base Register is valid (usea
by register bypassing logic)

49, INODEX_VALID - indicates that the Index Register is valid"

(used by register bypassing logic)

2.4.17.3 Operand Fetch Function Register

The contents of tne Uperand Fetch Function Register are passed through. '

a pipeline register in the Address Add Stage to ultimately be used by

the Operand Fetch Unit.

The Operand Fetch Stage must have some knowledge of the specifier type -
and position, size, and access mode 1in order to allocate operand
buffer locations and pointers appropriately, in addition to being able

FRIGATE WORKING DESIGN DOCUMENT Page 2-25
VERSION 1,0 - Company Confidential 05 Dec B4

to access the data TB and Cache. Exact definition and encoding of
this informaticon TBD, but worst case it is no more than the 9-bit
Upcode Register, four bits of specifier mode, and a synchronization’
signal (tu indicate the start of a new instruction).

2.4.17.4 Erecution Function Register

TBD control and status information from the decode logic in the Decode
Stage to be passed via pipeline registers to the Execution Stage.

2.4.18 Miscellaneous Control Signals

DECODE_STALL - input to Prefetcn Stage to inhibit update of PrefetcH
Pipeline Registers. v

DECUDE_VALID - specifies that the contents of the (pipeline) registeri
at tne output of tne Decode Stage are valid, ie: wsable by the
Adcress Add Stage.

2.5 ADDRESS ADD STAGE ' »

Z.5.1 Inputs

L.

The ftullowing pipeline registers described in the previous section are

inputs tu the Aduress Add Stage; associated with these pipalin&'

registers is the signal DECODE_VALID, which indicates that all of
these registers contain valid data. :

{ Displacement Register
v Base Register
i Inae»r Register

q, Decode PC Register

used in the Write Bus bypass mechanism for the Base Register

6. Ri Register - used only to implement the Write Bus bDypass.
mechanism for the Index Register

T Auuress Auggd Function Register (includes Index and Base-
Register Valid indications)

8. Opcude Register - passea wunmodified to the Operand Fetch
Stage

5. Rb Register - passed unmogified to Operand Fetch Stage, and

FRIGATE WORKING DESIGN DOCUMENT Page 2-26
VERSION 1.0 - Company Confidential 05 Dec B4

9. Operand Fetch Function Register - passed unmodified to the”
Operand Fetch Stage b

10. Execution Function Register - passed wunmodified to the
Operand Fetcn Stage

The signal FETCH_STALL is received from the Operand Fetch Stage to.
indicate tnat the pipeline registers at the ocoutput of the Address Add
Stage snould not be updated.

2.5.2 Qutputs .

The following pipeline registers are input to the Operand Fetch Stage;
associated with these registers is the signal ADD_VALID, which
indicates that these registers contain valid data. 3

| X Virtual Address Register - generally loaded with the uutput:
of the adder in the Address Add Stage for presentation to the ,
Operand Fetch Stage. 3

2. Register MNumber HRegister - generally Jloaded with the”

unmogdified contents of the Rb Register at the output of the

Decode Stage.
3. Opcode Register - passed unmodified from Decode Stage

4. Operand Fetch Function Register - passed unmodified from,
Decode Stage

L Execution Function Register - passed unmodified from Decode
Stage

The Jump Register is loaded with the output of the adder 1in the .
Address Ado Stage, but is not a pipeline register between the Address
Add and Operand Fetch Stages. Rather, it is wused to present Jump
Addresses to the Prefetch Stage via the Prefetch Bus. :

The signal ADD _STALL is input to the Decode Stage to inhibit the.

loading of the pipeline registers at the input of the Address Add-

Stage.

2.5.3 Operation .

This stage includes a 32-bit 3-input adder. The inputs to the adder °

are formatted under the control of the Address Add Function Register.
This control information results in three operands being input to the
adder each cycle; the output of the adder is loaded into the Jump
Register and the virtual Address Register.

FRIGATE WORKING DESIGN DOCUMENT Page 2-27,
VERSION 1.0 - Company Confidential 05 Dec B4

2.5.4 Base Multiplexer

The Base Multiplexer is controlled by the Base Mux Control Field in’
the Address Add Function Register, and the Base Register bypass logic.'
The Base Musx Fileld explicitly selects one of the following wvalues to
be presented to the Address Adder: T

1. Base Register i
2. Decode PC Register

3. Write Bus

4. 0 s

Additicnally, «hen the Base Register is specified as the source and |
the BASE_VALID dndication is not set, the bypass logic monitors the.
Write Bus for a write to the address specifieo in the Rb Register.
When this aodress 1s detected, the data is routed directly through the
Write Bus input to tne Address Adder.

Note that to facilitate partitioning, tne multiplexing between the,

Base Register and tne DPC Register 1is done using a tri-state bus
called the Base Bus.

2.5.5 Index Multiplerer

The Index Multiplexer provides the capability to shift the Index

Register or write Bus by 0, 1, 2, 3, or 4. The Write Bus is never
explicitly selected, but is used by the Ri bypassing logic when,
necessary. The output of this mux may also be forced to zero. The

Inder Mux Control Field of the Address Add Function Register controls
this mux.

2.5.6 Address Aduer

The Aadress Adaer is a 3-input adder wnichn produces 32-bit results.
The three inputs are: i

1. Base Mux <31:0>

2. Displacement Register <31:0>

3. Indes Mux <31:0>
The aduaer always performs a three input add, and its output is loadea
into the Virtual Address Register and Jump Register every cycle. -’

Bypassing is accomplished by specifying that the appropriate input
musls) supply zero.

FRIGATE WORKING DESIGN DOCUMENT Page 2-28.

VERSION 1.0 - Company Confidential 05 Dec 84

The Address Adder is implemented in 3 identical Gate Arrays. The

low-order 16 wits of the three-input add are accomplished in one gate-,
array, and the add of the high-order 16 bits is done in each of the

other twd ygate arrays, one with carry-in hard-wired low, the other.
with carry-in hard-wired high. The carry-out from the low-order

portion of the operation determines which of the high-order results

will be used. .

The Aadress Adder Gate Arrays include the Index and Base Muxes
descriped above, and the corresponding register bypassing logic. §

2.5.7 VAR Multiplexer

The VAR Multiplexer presents a virtual address to the Virtual Address
(VAR) Register from one of three possible sources:

M. Adaress Adder
2 Virtual Address Adder

33 Write Bus via Deskew Latch

Tne virtual Address Adder provides the capability to add 4 or B to the

contents of the VAR under the control of the Operand Fetch state

sequencar or Execution Unit microcode. The write Bus is selected as_-

the source under Execution Unit microcode control.

2.5.B Virtual Addaress Register

The virtual Address Register (VAR) is loaded from the VAR Multiplexer.’

The output of the VAR is presentea to the Data TB and Cache structure - .

for accessing memory cperands, and is one of the inputs to the Bypass
Multipleaer.

2.5.9 Register Numnpoer Incrementer And Register

The 4-bit Register Number Register is loadea from the Rb Register at
the output of the Decode Stage. The contents of this register may be
incremented by one under the control of the Operana Fetch state
machine. *

FRIGATE WORKING DESIGN DOCUMENT pPage 2-29°
VERSION 1.0 - Cuompany Confidential 05 Dec B4

2.5.10 Jump Register

The 32-pit Jump Register is loaded directly from the Address Adder.
It s wused to present VIPCs via the Prefetch Bus for JMP ana JSB
instructions that are not absolute or PC-relative. :

/* Other cases TBS +/ .

2.6 OPERAND FETCH STAGE
This stage performs tnree major functions:

1. Accesses the data TB and Cache structure for operand data;

2z Presents operands to the Execution Stage based on the operand?
size and specifier position, and assigns corresponding
gperand pointers;

3. Presents a dispatch address to the main control store based.
on the specifier (for specifier completion) or opcode.

2.6, Inputs A
The following pipeline registers described in the previous section are’
inputs to the Operand Fetch Stage; associated with these pipeling
registers is the signal ADD_VALID, which indicates that all of these
registers contain valid data.

1. WVirtual Address Register

2 Reyister Number Register

3. Cpcode Register ’
4. Operana Fetch Function Register

5. Execution Function Register

2.6.2 OQutpurts

The following pipeline registers are input to the Execution Stage; .
assocciated with these registers is the signal FETCH_VALID, which
indicates that thnese registers contain valid data.

FRIGATE WORKING DESIGN DOCUMENT ' Page 2-30.
VERSION 1.0 - Company Confidential 05 Dec B4

1. Memory Address Register
2. Bypass Register
3 Memory Data Register
4., Rotator Control Register
5. Pointer Registers

i Sourcel

2. Source?2

3. Destination

4. Operang wWrite

6. Microword Register (contents supplied by Operand Fetch Stage
if based on specifier or opcode; otherwise supplied by.
Erecution Stage).

The signal FETCH_STALL is input to the Address Aaod Stage to inhibi{’
the loading of the pipeline registers at the input of the Operand,

Fetch Stage.

2.6.3 Data Manipulation

Thne output of the 3-input Aagder in the Address Add Stage is passed to
the Operand Fetch Stage via the Virtual Address Register. The Operana_

Fetch Stage uperates on the contents of this register to:

1. Access the TB to produce a physical addreaess; this

address. .

may be wused to access the data cache for date or may be

passeda directly to the Address FIFO; or

2. Access the cache or (on a cache miss) main memory for
data ~hicn is loaded into the Memory Data Register;

i 8 Pass tne contents of the Virtual Address Register directly to

the Bypass Register or Aadress FIFO.

or

memory

”

FRIGATE WORKING DESIGN DOCUMENT Page 2-31
VERSION 1.0 - Company Confidential 05 Dec B4

2.6.4 Bypass Multiplexer

The two-to-one Bypass Multiplexer provides a path for operands aroundg
the data TB and Cache structures. Its inputs are the Virtual Addraess
Register and the Physical Address Register. Its output s input. to
both the Bypass Register and the Address FIFO. Operand Data is passed
via this multipleser from the Virtual Address Register to the Bypass
Register, and wvirtual and physical addresses may be loaded into the
Address FIFO via this mux. .

2.6.5 Bypass Register

Tne 32-pit Bypass Register is loaded from the Bypass Multiplexer. It
is one of the trnree possible sources for the Operand Bus, and is used
to pass virtual and physical addresses, as well as operand data from:

the Aodress Aud Stage, to the Execution Unit.

2.6.6 Address Buffers %

Tne Andress Butfers are organized as a 32-bit-wide FIFO which may be .
read ana ascritten every cycle, There are 8 puffers which may be read

auring the first half of the cycle for presentation to the Physical-
Address Register ur the Erecution Unit, and which may be loaded during
the second half of the cycle from the Bypass Multiplexer. The output:

may be wused to drive the DCache Address Bus when accessing cache, or
may be presented to the main ALU for manipulation wvia the Address
Register and Operand Bus. Reads are under the control of the.
Execution Unit microcode.

2.6.7 Memory Address Register

The Memory Adaress Register is loaded from the top of the Address

FIFO. This Register is used to pass virtual and physical addresses to -
the Execution unit via the Operand Bus under Execution microcode *
control,

2.6.8 Data Translation Buffer

The Data Translation Buffer (DTB) consists of 256 entries, 128 for

system space ana 128 for process space, ang is implemented with two
Frigate TB/Cache Chips. The organization is fully associative, with
least-recentiy-used replacement. VAR <31:9> are presented to the DTB

during the first half of the cycle, yielding the corresponding PTE, -
During the second half of the cycle, access validity is checked while
PFN <20:0> are presented to the Data Cache via the Physical Adaress

FRIGATE WORWING DESIGN DOCUMENT Page 2-32
VERSLION 1.0 - Company Confidential 05 Dec B4

Register.

2.6.9 Physical Aadress Register
The Physical Address Register (PAR) captures the physical address to
be presented to the Data Cache twice every cycle. The input to the

PAR is the DCache Audress Bus, which may be sourced by DTB|VAR<B:0>,
the Write Bus via a deskew latch, or the top of the Address FIFO.

2.6.10 Data Cache

The Data Caciie is organized as 64 bits wide (+parity) by 512 locations

deep (4 KB}, and is implemented utilizing B Frigate TB/Cache chips.
It is Tully associative, with least-recently-used replacement,. The
Data Cache implements the write-back scheme being used in Firefly at-

SRC. This includes implementing two additional status bits, ‘the,
Modified bit ang the Shared bit, The Modified bit indicates that a
cache line has been «ritten locally, while the shared bit indicates
that another processor also has this line cached, such that any writes
to this line must be broadcast on the FSB, !

To facilitate pipelining, Write-in-Progress bits are associated with
each ©4-wit cache line. These bits are set as the result of a mogify
or write specifier access type during the pipeline read cycle. They
ara cleared when the cache line is writtean, or may be cleared as a
group when ftlushing the pipeline. i

writes and the clearing of WIP bits occur during the first half of the.
cycle, and reads and the setting of WIP bits occur during the second
half of the cycle. :

2.6.11 Memory Data Register

Tne Memory Data Register is G4-bits wide. Its input is the DCache.
Data Bus, and its output goes to the Output Rotators, which source the
Operand Bus.

2.6.12 HRotator Control Register

The Rotator Control Register s inpput to the OQOutput Rotators to
specify the extraction of a 32-pbit quantity from the 64-bit Memory.
Data Register in the next cycle.

FRIGATE WORKING DESIGN DOCUMENT Page 2-33
VERSION 1.0 - Company Confidential 05 Dec 84.

2.6.13 Dispatch Control Logic -

The Dispatch Control Logic manipulates the Pointer FIFOs and controls
the generation of the specifier and opcode dispatch microwords.

Inputs tu this logic include the Operand Fetch Function Register,
Opcode Register, and Register Number Register. This logic manipulates.
the three Pointer FIFOs, and generates the addresses to be loaded into.
them. Aaditionally, this logic generates the dispatch address to.
potentially be used to supply the dispatch microword at the end of the
cycle, either directly to handle specifier completion, or indirectly

via the opcode.

2.6.14 Dispatch FIFOs

The Dispatch FIFOs include a command FIFO, which buffers the Opcode -
Register (and any other relevant contral information), and the Operand”
Pointer FIFUs, of wnich there are tnree. The Operand Pointer FIFOs
are loadey under tne control of the Dispatch Control Logic with the
address of the GPR or Operand Buffer into which the operand data is to;

be placed, or with an indication that an address has been loaded into
the Adaress FIFO. Each of these pointer FIFO's are eight bits wide (5
address Dbits and 3 status bits) and 16-deep; they are identified as-
follows: .

: Sogurcel Pointer FIFO - used to address the Sourcel Operand
Buffer, or the Sourcel copy of the GPRs. Pointers to source™
Specitiers wnich appear 1in positions 1,3 and 5 in the
instruction are loaded into the Sourcel Pointer FIFO. It is.
one of two sources for Sourcel read addresses, and as such'
its output goes to the Sourcel Pointer Multiplexer.)

2. Sourcel Pointer FIFO - used to address the Source2 Operand.
Buffer, or the Source2 copy of the GPRs. Pointers to source
specifiers which appear in positions 2, 4 and 6 in the
instruction are loaded into the Source2 Pointer FIFO. It is
one of teo sources for Source? read addresses, and as such.
its output goes to the Source2 Pointer Multiplaexer, '

3. Destination Pointer FIFO - used to specify a read from the:
Aodress FIFO, or to supply a register number as a write.
destination. It specifies the location(s) to be written by-.
the corresponaing instruction, and thus may contain either a’
GPR number or an indication that the write is to memory, such
that the address at the top of the Address FIFQ should be
read. Its output goes to the Destination Pointer- °
Multipleser.

The Address FIFO is lcaded during the Operand Fetch Stage at the same
time as the Address FIFO bit is set in the Destination Pointer FIFO.
The Operand Buffers, however, are loaded in the next cycle over the
Operand Bus from either the Bypass Register or the Memory Data
Register (via the rotators) at the address specified in the Operand

FRIGATE WORKING DESIGN DOCUMENT Page 2-34
VERSICN 1.0 - Company Confidential 05 Dec B4

Write Pointer Register. There is also a bypass mechanism implemented
which allows either of these outputs (including rotated memory data)

to be used by the Execution Unit in this cycle. =
The Operand Fetch Stage handles specifiers which require more than-one.
cycle to produce the requested specifier data (except for quadword and
octaword immediates). Logic in this stage interprets size, access

mode, and specifier position in the instruction to supply operands via

the Operand Buffers ana Pointer FIFOs symmetrically to the Execution

unit. This logic also guarantees that all entries in the Pointer

FIFOs and Operand Buffers for a particular sgpecifier go into the same .
set of FIFUs and Buffers.

2.6.15 Sourcel Pointer Multiplexer And Register

The Sourcel Pointer Multiplexer specifies the Sourcel Read Address.
used 10 acvess (he Register File or Temporary Registers in the:

execution stage. It is 7 bits wide and selects the next address to be- b
loadea into the Sourcel Pointer Register from one of two sources: :
1. Sourcel Pointer FIFO (5 bits) - 1indirect read of GPR or

Sourcel Operana Buffer

2. Sourcel Field of Microword Bus (7 bits) - explicit read of"
Register File or Temporary Register under microcode control

2.6.16 Source? Pointer Multiplexer And Register

The Source? Pointer Multiplexer specifies the Source2 Read Address
used to access the register file in the execution stage. It 18 6 bits .
wide and selects the next address to' be loaded 1into the Source?2
Pointer Register from one of two sources: A
1. Source2 Pointer FIFD (5 bits) - indirect read of GPR or .
Source? Uperand Buffer z

)

Source2 Field of Microword Bus (6 bits) - explicit read of-
Regyister File under microcode control

2.6.17 Destination Pointer Multiplexer And Register

The Destination Pointer Multiplexer is used to specify the address to.
be written. It is B bpits wide ana selects the next address to be
loaded into the Destination Register from one of two sources:]

FRIGATE WORKING DESIGN DOCUMENT Page 2-35

VERSION 1.0 - Company Confidential 05 Dec B4
1. Destination Pointer FIFO (5 bits) - indirect write of GPR, or

write to memory at address at top of Address FIFO :

2. Destination Field of Microword Bus (B bits) - explicit write
of any Write Bus destination under microcode control

2.6.18 (Operand Write Pointer Register

This 4-bit-wide register contains the address of the next Operand-
Buffer to be written; that is, the address of the next available
entry in the Operand Buffer FIFO. It is supplied from the Dispatch
Control Logic.

2.6.19 Dispatch WMicrowords

The Dispatcn Microword is the first microword to be- executed in
response to a new instruction, or when execution intervention is
required to supply the required operand(s). A bit in the previous
microwura enables dispatch; this causes the next microaddress to beé

supplied to tne main control store from .the dispatch logic. This

microaddress is a function of the opcode or a specifier associated
witn the opcode, determined by whether the operands associated with a.
particular instruction were supplied by the preceding stages in the
pipeline (ie: without the help of the execution wunit). Execution
unit intervention occurs as a function of tne specifier mode (ie:
autoincrement mode) or because of an error which occurred in a
preceding pipeline stage while attempting to process this specifier.

In some cases, exceptional conditions occur in tne Operand Fetch Stage

too lare to arrect tne dispatch microaddress. These cases trap the

microseguencer ana generate the appropriate microword directly via
hard-wired logic.

2.6.20 Microworda Bus

The Microword Bus supplies the next microword to be loaded 1into the

Microword Register and the Pointer Registers. Most often, the

microword comes Trom the main control store PROM/RAM structure; in’
dispatch vcases, portions of the microword come from the Pointer FIFOs-
or hard-wired logic.

oy

FRIGATE WORKING DESIGN DOCUMENT Page 2-36
VERSION 1.U - Company Confidential 05 Dec B4

2.6.21 Microword Register “

Definea in Execution Unit Section.

2.6.22 Operand Fetch Stage Sequencer

The Operand Fetch Stage includes an n-bit finite state sequencer to
tanale multiple cycle Bccasnses, such as octawerd reads from cache.

2.7 EXECUTION STAGE 5

The Execution Stage operates on up to two 32-bit operands per cycle to

produce a 32-bit result. It 4is micro-program controlled. Major-
functional units include the ALU, main control store, main
microsequencer , the Register File (which include Operand Buffers,
copies of tne GPRs, and working registers), a set of Temporarf

Registers, and a Register Log. Results are presented on the Write Bus
via the write Latcn; all writes to GPRs and memory are under the
control of the Execution Unit.

7 S S | Inputs

The following pipeline registers described in previous sections are
inputs to the Execution Stage; associated with these pipeline,
registers is the signal FETCH_VALID, which indicates that all of these'
registers contain valid data. '
1. Memory Address Register (top of Adaress Buffer FIFO)
2. Bypass Register

3. Memory Data Register

4. Rotator Control Register
5 Pointer Registers:

1. Sourcel

2. Source2

3. Destination

4. Operand wWrite

FRIGATE. WORKING DESIGN DOCUMENT Page 2-37
VERSION 1.0 - Caompany Confidential 05 Dec B4

6. Microword Register (supplied by Operand Fetch Stage if based
on specifier or opcode, otherwise supplied by Execution
Stage) . :

2.7.2 Outputs

The Execution Unit writes results over the 32-bit Write Bus via the
Write Bus Latch, which contains valid data from TO to T3.

2.7.3 Data Rotators

The Data Rotators extract a 32-bit quantity from the ®64-bit Memory

Data Register every cycle, based on the contents of the Rotator
Centrol Regiuter. The output {8 one of the sources of Operand Bus
data.

2.7.4 Operand Bus

Tne Uperana Bus 15 the medium over which operand data is passed to thé,
Esecutiun Stage. The Operand Bus is an input to both ALU Input Muxes;
and supplies data tou be written to the Operand Buffers. The Operand
Bus may be driven froem the Memary Data Register (via the rotators)) .
the Memory Audress Register, or tne Bypass Register.,

2.7.5 ALU

Two 32-pit source operands are supplied to the ALU every cycle via the
Sourcel ana Scurce? Input Multiplexers. "

A 32-bit result is input to the Write Latch, and condition codes are
captured, at the end of the cycle.

The ALU is controlled directly by the ALU Function Field in the
microword, Functions and encoding TBD. ?

The ALU is implementea using the AMD 29332.

2.7.6 FPU

The FPU structure will provide hardware support for F, D, and’
G Floating #Point instructions. FPU inputs are the 32-bit Sourcel and
Source2 Input Muxes; the FPU output will drive the Write Bus via the
write Latch wunder microcode control.,

FRIGATE WORRKRING DESIGN DOCUMENT Page 2—3&
VERSION 1.0 - Company Confidential 05 Dec B4

2.7.7 Sourve!l Input Mux

The Scourcel Input Mux provides one of the 32-bit source operands to

the ALU ana FPu ewvery cycle. Sourcel may come from one of four
places:
T Register File

2. Temporary Registers
3. Write Bus
4. Operand Bus
The selects on the mux are controlled by the microword and the output

of bypass lugic whicn monitors addresses associated with the Write and
Operand Buses. .

2.7.8 Source2 Input Mux

The Source2 Input Musx provides one of the 32-bit source bperanus to

the ALU and FPU every cycle. Source2 may come from one of five
places: . .
1. Register File

2 Register Log
% State Gate Array
4. Operand Bus
5. Write Bus
The selects on the mux are controlled by two bits in the microword and

the output of bypass logic which monitors addresses associated with:
the Write and Operand Buses.

2.7.9 Heserved Operand Detection

Reserved operand detection will be done in hardware under the control
of an enable bit in the microcode. Hardware will monitor the outputs -
of both Source Input Muxes. J

FRIGATE WORKING DESIGN DOCUMENT Page 2-39
VERSION 1.0 - Company Confidential 05 Dec B84

2.7.10 Register File

The Register File is two-port-readable and two-port-writeable, and i&
implemented using two AMD 29334 Register File cnips. It is 32 bits
wide and 64 entries deep, and can be reaa and written on both ports.
every cycle. Reads occur during the first half of the cycle, and
writes occur during the second half of the cycle.

The Register File includes copies of the GPR's, 32 Working Registers,
ana 16 Operand Buffers, The Operana Buffers are managed as a FIFO
Structure by the Dispatch Control Logic. The Operand Write Pointer
Register contains the address of the next available entry in this
Operand Buffer FIFO structure, into which an operand supplied from the
Operand Fetch Stage via the Operand Bus may be written every cycle.
This address is alsc maintained in the appropriate Pointer FIFO, so
that this location (ie: the top of the FIFO) may be indirectly read
by the microcode w~hen the time comes. :

The cther write port is under the control of the execution microcode.
The aodress is supplied from the Destination Pointer Register, and -the '
data is supplied from tne Write Bus via a deskew latch.

The two reaa ports are inputs to the two Source Input Muxes, and ar;
adogressed by the Sourcel and Source2 Pointer Registaers, £

2.7.11 Temporary Registers !
The Temporary Register File consists of 64 32-pit entries, addressed
by tne >sourcel Pointer Register. This register file is one of the
inputs to the Scurcel Input Mux. Write data is supplied from the.

write Bus.

2.7.12 Register Log i
The Register Log is a LIFO structure which is used to capture register .’
contents for backup. It is 36 pits wide and 7 entries deep.

2.7.13 State Gate Array
The State Gate Array contains miscellaneous logic and state.
information which may be input to the ALU data path.

FRIGATE WORKING DESIGN DOCUMENT Page 2-40
VERSION 1.0 - Company Confidential 05 Dec 84

2.7.14 Control Store

The Control Sture is BK deep and 96 bits wide. Initialization
microcode will pe implemented in PROM; the remainder of the control
store will be implemented in RAM, and will be Iloadable wunder the

control of the console subsystam.

Micraword encoding TBS.

2.7.15 Micrusequencer

The microsequencer controls the generation of microaddresses which are.
used to select the next microword from the control store. The
functions provided are: :

| A Jump to address :
2 Jump tc subroutine

3. Branch

4. CASE

o Return from subroutine

A 13-bit adaress is specified for all microinstructions except return.
Branch instructions go to either the specified target address or to -
the current adaress plus one. Case instructions go to the specified‘
address with haraware conditicns logically OR‘ed into the low 4 bits.

The microaddress may also come from either the instruction/specifier:

aecode logic, or from the microtrap logic for certain late-occuring
error conditions.

2.7.16 MWrite Bus

The Write Bus is driven by the write Latch, and is wvalid from,

approximately TO+15 to T3. It is driven by the Write Bus Latch. This .,

is the main write path in the CPU, and is distributed to all stages in
the machine. Thus, it generally needs to be received by a deskew'
latch. In particular, the Write Bus goes to: y

: JI the Prefetch Stage for ITB manipulation and to supply branch -
addresses

2. the Decode Stage for GPR writes

FRIGATE WORKING DESIGN DOCUMENT Page 2-41
VERSION 1.0 - Company Configential 05 Dec 84-

3. the Address Adder in the Address Add Stage

4. tne Operand Fetch Stage to update the TB, and to supply write
data to tne cache and main memory '

2.8 FSB PORT

The Frigate System Bus (FSB) Port is the interface between the 64-bit
Internal Bus in the Frigate CPU, and the 64-bit FSB. The port
includes input and ocutput buffers, and port control logic. X

VAX/VMS SUPNIK
VAX/VMS SUPNIK
VAX/VMS SUPNIK
VAX/VMS SUPNIK
VAX/VMS SUPNIK
VAX/VMS SUPNIK
cccccccc
ccccccce
cc
cc
cc
- CC
cc
ccC
cc
cc
cc
ccC
cccccccce
[of of ef efefclede
RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RR RR
RR RR
VAX/VMS SUPNIK
VAX/VMS SUPNIK
VAX/VMS SUPNIK

cp
cp
cp
cp
cP
cp

PPPPPPPP

PPPPPPPP

PP

PP

PP

PP

PPPPPPPP

PPPPPPPP

PP

PP

PP

PP

PP

PP

NN

NN

NN

NN

NNNN

NNNN

NN NN

NN NN

NN NN

NN NN

NN

NN

NN

NN
cP
cP
cp

S
S

5

PP
PP
PP
PP

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

S
S

S

5=DEC=1984
5=DEC~-1984
5=DEC=1984

5-DEC=1984
5=-DEC=1984
5«DEC=1984

5888

u
u
U
588§ U
g U
S U
585 U

uuu

L
L]
TR

000000

14:21
14:21
14:21

14:21
14:21
14:2]}

coccccoccca
o
o
o
o

000000

00

00

00

00

00

00

00

00

00

80, .-
000000
a]slajuls]a]

5888

U
U
U
85S8 U
s U
s U
588 uuuuy

5=-DEC=1984
5=DEC=1984
5=DEC~=1984

00
00
00
00
00
00
00
00
00
00

U
U
U
U PPPP
U
U
U

14:21
14:21
14:21

LPAO:
LPAO:
LPAO:

LPAO:
LPAO
LPAO:

SZ===Z2=2=
=
Z2Z2Z2Z2=2=2=2

iz
R
1z
102

iri
it
rrry
R
i
‘2

- we
s w8

2=2=2=2=Z2==
=
2=2=2==2=Z=

LPAOS
LPAO?
LPAO:

5=DEC=1984
S=DEC=1984
S=DEC=1984

5=DEC=1984
S=DEC=1984
5=DEC=1984

11
11
1111
1111
11
11
i1
11
11
11
11
11
151144
1111114

S=PEC=1984 15:00
5=DEC=1984 15:00
S=DEC=1984 15:00

15:00 UVWD$: [SUPNIK,FRIGATE)JCP,RNO;15
15300 UVWD$: [SUPNIK,FRIGATEJCP,RNO;15
15300 UVWDS$: [SUPNIK,FRIGATE)JCP,RNO715
15:00 UVWDS: [SUPNIK.FRIGATEICP,.RNO;15
15:00 UVWDS$: [SUPNIK.FRIGATE]JCP,RNO;15
15:00 UVWDS: [SUPNIK.FRIGATEICP,RNO715
" 270
L o YOMEL
£ oo 6 f
K .ﬁ'_."\ /
A 1Y$ & 100
K TN
K)h(/"U' —
P TS
L\)’J’M W‘\,\ﬂw? W
Ok AV
\)
o™
55555555585
5555555555
55
55
555555
555555
55
55
55
55
55 55
55 55
555555
555555
K
K
K
K
K
K

UVWDs: [SUPNIK,FRIGATE]ICP,RNO}15
UVWDs: [SUPNIK.FRIGATEICP,RNO}15
UVWDS: [SUPNIK,FRIGATEICP,RND; 15

VAX/VMS
VAX/VMS
VAX/VMS

VAX/VMS
VAX/VMS
VAX/VMS

VAX/VMS
VAX/VMS
VAX/VMS

Summary of three alternative cache orqanizationsi
»>> (Calculated I-stream and data stream effective access times

The following calculations utilize data obtained from cache simulations

to estimate the effective access times for I-stream and data accesses,
I=-stream accesses are broken into cache hits_and misses, and_the effective
I=-stream access time is calculated as the weighted average of these two cases,
Since the data cache 1is write~back, data cache accesses are a welghted average
of:

1) read and write cache hits » :
2) read and write misses that cause cache £1i1ls to oecur, and
3) data writebacks and writes of unwritten modified cache lines,

Finally, from the actual system memory demand thus caleulated, and an estimated
instruction execution rate, bus demand is calculated as svstem memory demand
divided by elasped time,

Assumptions:
a) read time . = 500 nsec
b) write time (writeback) = 400 nsec
c) cache hit read cost = 100 nsec
d) cache hit write cost ; = 100 nsec
e) instruction execution time = 400 nsec

The following hit rate and writeback data taken from EPASMM,LOG, a complete
trace of the EPASCAL compiler compiling a simpole prooram, Of a1l of the
benchmark proarams input to the cache simulator program, this seems to be
most representative of a large system programs. and preved to he the most
taxing in terms cache performance,

Overall statistics:

total number of instructions 455,914
total number of reads 540,148
I=stream reads 309,439
data reads 230,709
total number of writes 116,843
Analysis:

Cost of I=stream reads =

ETrT L A T R B B L B BB L A R N B B R R A J

(I=-stream hit rate * 100 nsec) +
(I=-stream miss rate ¥ 500 nsec¢)

Average I-stream Read Tinme

Cost of data reads and writes =

{ ((read data hits + write data hits) * 100 nsec) +

((read data misses + write cache fills) * 500 nsec) +

((data writebacks + unwritten modified cache lines) * 400 nsec) }

/ (total number of data reads + total number of data writes) = Average Data Cache Access Time

Bus Demand =

{ (read data misses + write cache £ills) * £i11 size +
(data writebacks + unwritten, modified cache lines) * cache line size)
divided by (elapsed time)

= bus demand in bytes / second

Case 1 == 4k bvte, fully associative, LRU cache

I-stream hit rate = 96,5%
data hit rate = 95,9%
data writebacks = 7351
write cache £ills = 4037

unwritten modifv lines = 4073
for I-stream: (cache model assumes straight Bebyte I buffer)
0.965 * 100 nsec + (1 = 0.965) * 500 nsec

= 114 nsec effective I=stream read access time

for data reads and writes:
Average Data Cache Access Time =

{ €231k * 0,959 + 117k = (7351 + 4073)) * 100 + (231k * 0,041 + 4037) * 500 + (7351 + 4073) * 400 }

(231k + 117k)

= 127 nsec Average Data Cache Access Time

Bus Demand = { (231k * 0.041 + 4037) * 16 + (7351 + 4073) * 8 } /
(455,914 instr, * 400 nsec / instr.)

= 1,69 Mb / sec

CASE 2 == 32 kbvte direct map cache

I-stream hit rate = 97.0%
read data hit rate = 96,0%
data writebacks = 2710
write cache f£ills _ = 3988
unwritten modify lines = 8616

l

for I-stream: (cache model assumes straight 8=byte I buffer)
0.97 * 100 nsec + (1 = 0,97) * 500 nsec

= 112 nsec effective I-stream read time

for data reads and writes:
Average Data cache Access Time =

{ €231k * 0,960 + 117k = (2710 + 8616)) * 100 + ((231k * 0,040) + 3988) * 500 + (2710 + 8616) * 400 }

(231k + 117k)

= 126 nsec Average Data Cache Access Time

{ (231k * 0,040 + 3988) % 16 + (2710 + B616) * 8 } /
(455,914 instr. * 400 nsec / instr.)

Bus Demand

1.66 Mb / sec

CASE 3 == 16 kbyte 2=way Set=Associative cache

CrCL T AL R R R L A B B L B B B B B L A A L A B & B 0 L L R B 0 B B L 0 L B 0 11

97.1%
96.2%

I-stream hit rate
read data hit rate

data writebacks = 2728
write cache fills _ = 3790
unwritten modify lines = 8130

for I=stream: (cache model assumes straight 8=byte I buffer)
0,971 * 100 nsec + (1 = 0.971) % 500 nsec

= 111.6 nsec Average I=stream Read Access Time

for data reads and writes:
Average Data Cache Access Time =
{ (231k * 0,962 + 117k = (2728 + 8130)) * 100 + (231 * 0,038 + 3790) % 500 + (2728 + 8130) % 400)}

(231k + 117k)

= 125 nsec Average Data Cache Access Time

{ (231k * 0,038 + 3790) * 16 + (2728 + 8130) * 8 } /
(455,914 instr, * 400 nsec / instr.)

Bus Demand

1.58 Mb / sec

® & & & & ¢ & ¢ o & o &6 o oo o o o oo o oo o o {

Cache Performance Summary

Cache I=stream Read
4kb FALRU “114.0 nsec
32kb direct map 112,0
16kb 2=way SA 111.6

{ end of cache performance summary == 11/28/84, mist::lbutts.deceastlcp.rno }

Data Read/Write
127 nsec
126

125

Bus Demand

1.69 Mb / sec

Packages
32
122

224

Board Space
30,9 sg.in.
55.8

98,4

Power
20.1 watts
41,5

70.4

R

Custom 4k byte Fullv Associative, LRU Data TB/cache

1) Data Cache TB

a) pescription

1) 128 fully associative, least recently used (FALRU) system entries,
128 FALRU process entries

2) inqle cycle clear ot either system or orocess entries

3) full internal byte parity

b) Parts Count, Board Space, 2nd Power Estimates

virtual Address Register 74F374 4 20 pin 2,0 sq.in, 1.38 watts
TB FALRU chips XXXXXX 2 100 pin LCC 4,0 2,00
Phvsical Address Reaister 74F374 4 20 2,0 1.38
Hit Buffer 74F244 1. 20 0.5 0.37
SRS 11 packages 8.5 sq.in. 5.13 watts
¢) Timing
0.0 nsec VA available at input to virtual address register
8,0 VA available at output of virtuval address register
8,0 VA available at TB FALRU chins
%k 33,0 Data available at output of FALRU chips
0,0 nsec VA available at inout £ virtual address register
8.0 VA available at output of virtuai address register
8.0 VA avallable at TR FALRU chins
33.0 Data available at output of FALRU chips
¥k 40,0 Hit indication available at output of nit buffer
0.0 nsec VA available at input to_virtual address reaister
8,0 VA available at output of virtual address register
8.0 VA available at TR FALRU chins
33,0 Tag, data. and hit indication available at output of FALRU chips
%% 41,0 PTE available at output of physical address register
*¥ tbs parity indication available

2) Data Cache

a) Description

1) 4k byvtes fullv associative, least recentlv used
2) 64 bit_cache lines_

3) £111 size is 128 bits

4) writeback_) .

5) control bits = valid, modified, shared, and WIP

6) direct clear on WIP bits, all others must be cleared via explicit writes

b) Parts Count, Board Space, and Power Estimates

Physical Address Buffer 747244 4 49 2,0 1.47
FALRU Chip selector 74F139 1 16 0.4 0.08
FALRU data cache chips XXXXX 8 100 pin LCC 16,0 12,00
Memoryv Data Reaister 747374 8 20 4,0 1.38

o= 21 packages 22,4 sq.in. 14,93 watts
¢) Timing
41,0 physical address (PA) available at output of PA register
48,0 PA avallable at output of PA buffers
52,0 PA at data cache address bus
55.0 PA at data cache FALRU chips
* % 80,0 Data and hit indication available at output of data cache FALRU chips
41,0 physical address (PA) available at outout of PA register
48,0 PA avallable at output of PA buffers
52,0 PA at data cache address bus
55.0 PA at data cache FALRU chips
80,0 Data and hit indication avalilable at output of data cache FALRU chios
* X 87.0 Hit indication available at output of hit buffer
41,0 physical address (PA) avallable at outout of PA reagister
48.0 PA available at output of PA buffers
52,0 PA at data cache address bus
55,0 PA at data cache FALRU_chips y 3
80,0 Tag, data, and hit indication available at output of data cache FALRU chips
% 88,0 data available at output of memorv data latch
{ end of custom 4k FALRU cache, 11/29/84 MIST::[butts,cachelfalrucc,rno }

® © & & ¢ ¢ o & o & & o o o & O & O & oo o o

Frigate TB/cache Chip == Description of Operation

Y'Y A T T L P R R R L P P R T L P T L Tttt Ll L A

The fully associative, least-recentlv-used (FALRU) Frigate
TB/cache chip 1s _intended to be a fast. ageneral ourpose,
inteqgrated cache building block for _use in the Frigate
processor, _ The desiagn incorporates features that allow it
to be used in the instruction and data cache translation
buffers, and in the instruction and data caches. The 128
entry by 32 bit desion {ncorporates sinale cvcle direct
clear, suopport for locking of cache locations (as required
for use in a pipelined processor), and loaic for the suoport
of a writeback cache scheme, The renlacement alaorithm is
true least recentlv used (LRU).

This particular desian has evolved from a discussion of
cache oracanizations found in Peter Kogoce’s book "The
Architecture of Pipelined Computers," paaes 260=262, Koage
suggests that a FIFO=like scheme., altered to recirculate the
most recently used cache entry to the top of the FIFO, can
be used to implement the least-recentlv~-used replacement
algorithm in hardware, New entries are written to the top
of the FIFO, with all other entries being forced down one
location., If the FIFO is full, the oldest entry {is forced
out the bottom and_ lost. This desian emulates the FIFO with
a shift reaister~-1ike organization, in which each shift
register location_ holds a cache entrv’s address tag, valid
and other status bits, and data.

Each entrv_has a comparator, which compares the presSented
address with the _stored addreSs tag, Comparison of the
presented address with the address tag of each cache entry
proceeds simultaneously. When a hit occurs, the data of the
matching entry is enabled ontoe the common data bus, and
transmitted bv output drivers to the external data pins,
The matchinag data is also presented via the common data bus
as Iinput to the top location of the entry shift register,
The hit indication is used to enable the matehing entry and
all entries above the matching entry to shift when the clock
arrives, thus shifting the matching entrv into the top
location and all successive entries down to the matching
entry, down by one shift register location.

Since the address taag can_be re-created from the _matching
address, and the valid bit can be re=-marked as valid, there
is no need to include additional bus structures to
recirculate the matching entrv’s tag and valid bit to the
top of the shift register, Defining the valid bit of the
torp entrvy from an external pin also allows an entry to be
marked invalid, thereby giving_a mechanism for 1invalidating
single TB entries. While this nas the undesirable feature
of causing a “dead’ entrv to exist within the TB until it
finally 1is shifted out the bottom. it cests no additional
logic, and_ with a reasonablv sized TB, results iIin a
negligible performance loss,

Fully Associative Chip == Descriptien of Operation page 2

Writes are done bv asserting the write data on the common
data bus, the corresponding address on the FALRU cache c¢hip
address pins, and asserting the valid bit en_ the valid Iin
pin, Write enable is ORed with the hit indication from the
bottom (‘oldest’) entry, causing all the entries of the
shift register to shift with the risina clock edge., The new
data 1s _written into the top entrv, all intermedlate entries
are shifted down one entry, and, i1f the chip is full, the
oldest entry is lost,

The addition of a_second single cycle direct clear status
bit, the write=ineprogress (WIP) bit. alona with the means
to read and write this bilt upon a cache hit, gives the FALRU
chip a mechanism_ for marking a cache location as naving a
pending write., This hardware simplifies the management of a
pipelined processor’s accesses to cache, and allows stalling
the processor onlv in c¢ases where a_ write to cache s
pending and a successive instruction in the ©pipeline
attempts to access the same memory location. The ability to
independently_ clear all WIP bits in a sincle cycCle prevents
this feature from becoming a performance bottleneck during
pipeline flushes.

Two additional status bits, along with a £inal Treaister to
buffer entries being 1lost out the bottem of the shift
register, allow the overation of the FALRU_cache chio 1in a
writeback cache mode, The first status bit 1s used to mark
a modified cache entry as needing eventual writeback to
system memorv. The second bit marks a cache entrv as being
shared between two or more caches in the system, and as
needing to have anv modifications of this location broadcast
to the entire system, These two status bits_are treated as
two additional data bits, and must be initialized by the
processor before cache operation {s begun, An OR=AND
structure on the input of each of these bits allows either
bit to be reset upon a cache entry write, Simply
recirculated with its current valuye, or set upon a hit,
Only the_shared bit is available externallv, as the state of
the modified bit is reflected by the state of the writeback
flaag,

When an entry 1s shifted out of the shift recgister into the
lost entrv buffer, its valid and modifv bits are ANDed
together to create an external writeback flaa. If the entry
is both valid and modified, the writeback flag 1s asserted,
and the lost entry_address tag and data must be read fronm
the FALRU cache chip before anv suyccessive cache chip Wwrites
are_allowed, else the modified data will be 1lost, Two
additional external signals exist to allow the reading of
the address taag and data from the lost entry buffer,

To proyide a means of monitoring the inteority of the
operating FALRU cache chip, paritv is cenerated in rougnly
eight bit aroups of the address taqg, status bits, and data,
This paritv is checked upon a hit, or when data is read from

|
|
|
|
|
I
|
|
|
|
|
|
l

l

Fully Associative Chip == Description of Operation Page 3

the lost entry buffer, A discrepancv in parity 1s reported
externally by a parity error flag sianal. A means_will pe
provided to allow the testing of the paritv generation and
checking loaic.

Testina of the FALRU cache chip will involve several phases,
Phase I will ovperate the FALRU cache ehip as a shift
reagister onlyv, presenting test patterns desioned to test the
integritv of each bit of memorv in the address tag, status
bits, and data pertions of each entrv. Phase II will
attempt to determine that each entrv’s comparator is fully
functional, and can produce a hit indication and cause the
correct data and status to be produced at the data I/0 pins,
Phase III will confirm the feedback of matehing entries to
the top of the shift register. A final test will be of a
statistical nature., It will put the chip through a seguence
of writes and reads, and then read the entire state of the
chip and compare it against the correct state. By operating
the FALRU cache chip in a non=standard mode, the number of
test vectors can be qreatly reduced, For example, there {s
no need to have the chip do the shift reworganization during
the comparator test phase,

FALRU cache chips are cascadable in both width and depth to
allow the construction of larger caches. To increase the
width of a cache entry, chips mav be accessed in »arallel by
addressing several chips with the same address, and routing
& slice of the wider cache word to each individual chip., To
increase the denth of a cache, the least significant address
bits can be used to select which chip or_ chips routing
perform _the given operation, This assumes an even
distribution of accesses are made to each chip? clearly
cases exist where the distribution of data accesses is
skewed, such as reqularly accessina a_ data array, The
impact of reqular accessing upon a multiple FALRU cache chip
based system can be estimated bv examining the cache
performance simulation for a cache of the corresponding
smaller size., Thus, the 4K byte Fricate data cache would
operate worstcase much 1like a 1k bvte cache, and cache
performance simulation data predicts that the data cache hit
rate will fall from 96% to 92% under such conditions.

{ MIST::[butts.frigatelfalrudes.rno Nev, 29, 1984 hbb }

OPCODE

I
I
|
|
|
|
i

00000001
00000002
00000004
00000003
00000010
00000020
00000040
00000080
00000100

00000000
00000001
00000002
00000003
00000004

00000300
00000001
00000002
00000003
00000004
00000005

0000
0000
Cco0o0
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0600
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

e N N

el T Nl SRV S P VI

10 un

-title

local symbols

a3

Q
L LI 1 1 {1 B 1}
SO F M -

w
-~
i n
~n
wn
o

Wononown
Ul O

([I | A [t | B |
WS N - D

-4
¥
-y
"

program

«macro
-irpc

«endr
<ascii
«rept
~ascii
«endr
-byte

-iro
o 1 N
-.endr
-byte
-.irp
-byte
-2ndr
<blkb
-irp
<byte
-endr
«-blkb

7-DEC-1984 13:53:14

VAX/VMS Macro V04-00 Page 1

7-DEC-1984 13:53:07 OPCODE.MAR:Z36 N

opcode

sstop decode and branch after execution
sstop decode and continue after execution
sconditional branch

sstop pipe and unconditionlly branch
simplied push for unconditional branch

sstop operand fetch and continue after execu
simolied pop for return from subroutine
slooping instruction - predicted taken
sregister destintion optimization allowed

sbyte
sword
slongword
squadword
roctaword

sread access

surite access

smodify access (read and write)
raddress access

suield access

sbranch displacement

defines the opcode data base.

define
Xxr<name>
Iname/

& =N
I/
cycles
Xr<access?>
n

Xr<access>
X

6 = n
xr<datatype>
X

& - n

names, cycless access, datatype, flags

& w
® orcone 7-DEC-1984 13:53:14 VAX/VMS Macro v04-00 Page 2 ®
7-DEC—1984 13:53:07 OPCODE.MARZ36 (1)

L] 0000 58 .irp xs<flags> L
0000 59 =W X
0000 &0 -2ndr

. 0000 61 «word n ®
0000 62 «endm define
0000 63

® 0000 64 3 e
0000 65 7 Define opcode data base
0000 66 7

® 0000 67 ®

00000000 AR .psect Sdatarrdswrtspiceslongenoshrsnoexeslclsconsrel

0000 69 opcode:z:

& 0000 70 define HALT,10,<>,<>,<brch> &
0016 71 define NOP,0,<>,<>
002c 72 define REI,10,<>,<>,<brch>

® 0042 73 define _BPT,10,<>,<>,<brch> L4

| 0058 74 define *‘:Ebﬁ);(),():(brch:’
| 006E 75 define RSB,1,,<>,<brchspop>

® 0084 76 define LDPCTX,S50,<>,<>,<cont> ®
NDO9A 77 define SVPLTIX,50,<>,<>,<cont>
0080 78 define CVTPS,100,<rdradsrdsad>,<urbsur,b>,<cont>

‘. 0o0cé 79 define CVTSP.100,<rdsadsrdrad>,<usbrusbd>,<contd> "
0oDC 20 define INDEX,sE8,<rdoerdsrdrrdrrdrur>,<l sl >, <dest>
COF2 21 define CRC,100,<adsrdsrdrsad>,<b,L,wsb>,<cont>

. 0103 22 define PROPER,10,<rdrrdsad>,<bruw,b>,<dest> &
011E 23 define PROREW,10,<rdrrd-sad>,<bsruesb>,<dest>
0134 R4 define INSQUE,15,<adrad>,<bsb>,<ftch>

. D14A 85 define REMAUE,15,<adswr>,<h s>, <ftch> .
01460 Bé define B8SBB,1,<bd>,,<uncdrpush>
0176 87 define BRB,1,<bd>,,<uncd>

» 018c 8 define BNEQ,1,<bd>,s<cond> ®
01A2 89 define BFQL,1,<bd>,,<cond>
0188 °0 define B8BGTR,1,<bd>,,<cond>

. 01cE %1 define BLEQ,1,<bd>,,<cond> .
D1E4 92 define JSB,1,<ad>,,<uncd,push>
C1FA 93 define JMPr1,<a3d>,,<uncd>

® 0210 24 define BGEQ,1,<bd>,,<cond> ®
0226 95 define BLSS-,1,<bd>,,<cond>
023C 96 define BGTRU,1,<bd>,,<cond>

. 0252 7 define BLEQU,1,<bd>,,<cond> .
0263 98 define BVCrs1,<hd>,,<cond>
N27E 99 define BVS,s1,<bhd>,,<cond>

® 0294 100 define BGEQU,1,<bd>,,<cond> ®
02AA 101 define BLSSU,1,<bd>,,<cond>

P 02co 102 define ADPDP4,100,<rdradsrdsad>,<w-bswrsb>,<cont> ®
D206 103 define ADDPE,100s<rdradsrrdradserdrad>,<usbrusbrusb>,<cont>
02EC 104 define SUBP4,100,<rdsadsrdr,ad>,<wsbswsb>,<cont>

. 0302 105 define SUBPS,100,<rdradsrdraderdrsad>s<usbrusbrusb>,<cont> .
0318 106 define CVTPT,100,<rdradraderdsad>,<usbrsbrwr,b>,<cont>
032€ 107 define MULP,100,<rdsadrrdraderd ad>,<wrsbrurbrursb>,<contd

% 0344 108 define C(VITP,100,<rdsradradsrdsad>,<wsbsbrursbd>,<cont> ®
035A 109 define DIVP,10 <rdsadsrdesaderd,ad>s€usDrrbrrisb>,<contd>
0370 110 define MOVC3, <rdsadsad>s<Msbrb>s<cont>

® 03856 131 define C(MPC3,100,<rdradsad>,<urbrb>,<cont> ®
D39C 112 define SCANC,100,<rdsadrsrad,rd>,<wrsbrsbrsb>,<cont>
03n2 113 define SPANC,100r,<rdradrsadsrd>,<w,bsebrsb>,<cont>

. 03cCs8 114 define HOVCS<rd:ad;rd:rdoad);<wb:b;wb>:<cont> .

OPCODE

03DE
03F4
040A
0420
0436
D&4C
0462
0478
048E
04A4
048A
0400
D4ES
0D4FC
0512
0528
053E
0554
0564
0580
0596
OSAC
05C2
05p8
05EE
0604
061A
0630
06456
065¢C
0672
0688
069E
0684
D&6CA
06ED
06F6
070cC
0722
0738
OT74E
0764
077A
0790
D746
0O7AS
07ad
O7E8
O7FE
0814
0B2A
0840
0856
086¢C
0882
0898
0BAE

115
116
117
118
119
120
121
122
123
124
125
126

127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

define
define
define
define
agefine
define
define
define
define
define
define
define
define
define
define
define
define
agefine
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
«rTept

define
-endr

define
define
define
define
define
define
define
define
define
define

7=DEC-1984 13:53:214 VAX/VMS Macro V0O4-00
7-DEC-1984 13:253:07 OPCODE.MAR’;36

CMPC5,100,<rdradsrdsrdrad>,<urbrbrusb>s<cont>
MOVTC,100,<rdsadsrdradsrdrsad>,<wsbrsbrsbrursb>,<contc>
MOVTUC,100,<rdsraderdraderdsad>,<wsbrbebrusb>s<cont>
3SBW,1,<0d>,<u>,<uncdspush>

BRWz1,<bd> s <u>,<uncd>

CVTHLA1,<rdsur>,<wesl>,<dest>
CVTWE,1,<rdrur>,<ursb>,<dest>
MOVP,100,<rdsadrad>,<usbrsb>,<cont>
CMPP3,100,<rdsradrad>,<ursrbro>,<cont>
CVTPL,100,<rdradsur>,<wsb,L>,<cont>
CMPP4,100,<rdsadrrdrad>,<wsbrsw,b>,<cont>
EDITPC,100,<rdsradradrad>s<vusbrsbrsb>,<cont>
MATCHC,100,<rdsadsrds,ad>,<uwrbrursb>,<cont>
LOCC-,100,<rdsrdrad>,<brwsb>,<cont>
SKPC,100,<rdsrdsad>,<bswsehb>,<cont>

MOVIWL,1,<rdrur>,<ursl>,<dest>
AC5\\‘:3'(?'51Pdlﬂdrbd)t‘ci.r!'ﬂlu)r
MOVAW,1,<ad,ur>,<us1l>,<dest>

PUSHAW,1,<ad>,<w>,<push>
ADDF2,2,<rdsmd>,<L,1D>,<dest>
ADDF3,2,<rdrrdsur>,<ls s> ,<dest>
SUBF2,2,<rdsmd>,<l,s1L>,<dest>
SUBF3,2,<rdsrdswr>,<lslsL>,<dest>
MULF2,3,<rdrmd>,<Ll,L>,<dest>
MULF3,3,<rdrrdsur>,<lsL,1L>,<dest>
DIVF2,12%,<rdrmd>,<l,L1>,<dest>
DIVF3,13,<rdsrdsur>,<lsls1>,<dest>
CVTFBs2s<rdrur>,<l,b>,<dest>
CVTFW-s2,<rdrur>,<lsu>s<dest>
CVTFL,s2,<rdeswr>,<l.,1l>,<dest>
CYTRFL,2,<rdrur>,<l s> ,<dest>
CVTRF,2,<rdrur>,<b,1>,<dest>
CVIWFr2,<rdrur>,<wsl>,<dest>

CVTLF,2,<rd ur>,<l,1>,<dest>
ACBF,Ss<rdordemdrbdds<lel sl rv>,
MOVF-,1,<rdreur>,s<ls1L>+,<dest>

CMPF,2,<rdsrd>s<ls1l>,<dest>
MNECF,1-,<rdrur>,<l,1>,<dest>
TSTF,1,<rd>, <L >
EMODFrbrs<rdsrrdsrdswrsur>,<l,b,l,L,1>,<cont>
POLYF-100,<rdsrdrad>,<lsusb>,<cont>
CVTFDs2s<rdrur>,<lsq>,<dest>
RESRV,0,<>,<>,<brch>
ADAWI,S5,<rd,vd>,<usrw>,<ftch>

3

RESRV,0,<>,<>,<brch>

INSQHI-,20,<adsrad>,<b.,b>,<ftch>
INSOTI,20,<adrsad>,<brsb>,<ftch>
REMOHT,20s,<adrwr>,<bs1>,<ftch>
REMOTI,20,<adswr2>,<b,1>,<ftch>
ADDD2,s4s<rdsmd>,<0,q>,<dest>
ADDD3,4,<rdrrdsur>,<qrqgrg>rs<dest>
SUBRD2s4,<rd,md>,<grq>,<dest>
SUBD3,4-,<rdsrdsvr>,<qrqrq>,<dest>
MULDZ2,7s<rdrmd>,<grq>,<dest>
MULD3,7-,<rds,rdswr>,<qgrqrq>-,<dest>

Page

n

J
i

OPCODE

08C4
O8DA
08FO0
0906
091cC
0932
0948
095E
0974
098A
D9A0
0986
09cc
09E2
N9F3
OADE
0A24
CA3A
0ASO
DA66
OA7C
0A92
DAAS
DABE
OAD4
OAEA
0800
0B16
0B82C
0842
0858
0B6E
0884
0B9A
0880
08cs
OedcC
0BF2
0cos8
OC1E
0Cc34
OC4A
0Cé60
0Cc76
0csc
0CAZ2
0cses
OCCE
OCES
OCFA
0p10
OD256
OoD3C
0p52
0D68
0DTE
0D94

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

7-DEC-1%84 13:53:14 VAX7VMS Macro VO04-00
7-DEC-1984 13:53:07 OPCODE.MAR:36

DIVYD2,31,<rdsmd>,<qrq>,r<dest>
DIVDP3,31,<rdsrdrur>,<ararq>,<dest>
CVIDB,37,<rdrr>,<a-,b2>,<dest>
CVIDWrs3,s<rdsrwr>,<gr,w>,<dest>
CVTIDLA37<rdrwr>,s<arl>,<dest>
CVTRDL,3s<rdswr>,<grl>,<dest>
CVTBD,3,<rdewr>,<brqg>,<dest>
CVTHD,3-,<rdsur>,<wsa>,<dest>
CVTLD,3,<rdrwr>,<l,g>s<dest> .
ACBD,Ss<rderdrmd,bd>,<qrarqr H);
MOVD,3,<rdsur>,<qrq>,<dest>
CMPD,3s<rdord>,<qgrq>r<dest>
MNEGD,3,<rdsur>,<gr,q>s,<dest>
TSTD,2,<rd>,<qg>
EMODD,10s<rdsrderdswrsur>,<arurgslsa>,<cont>
POLYD,100,<rdsrdrad>,<qgeumsb>-<cont>
CVIDF,2,<rdrur>,<qesl>
RESRV,0-,<>,<>,<brch>
ASHL,2,<rdsrdsur>,<b,ls1>,<dest>
ASHQ 4 ,<rdsrdrur>,<brqra>r,<dest>
EMUL,&/,<rdsrdrsrdrur>,<lsLslrq>,<dest>
EDIV,A18,<rdordenrswrds<lesasl,1>,<cont>
CLROB,2,<ur>,<q>
MOVR,3,<rdswr>,<qrq>s<dest>
MOVAQ,1,<adsrwur>,<arsl>,<dest>
PUSHAR,1,<ad>,<a>,<push>
ADDBZ2,1,<rdsmd>2s<bsh>s<dest>
ADDB3,1,<rderdsur>,<brsbsb>,<dest>
SUBR2,1,<rdsmd>,<b,b>,<dest>
SUBE3,1,<rderdswr>,<bsbrb>,<dest>
MULB2,2,<rdsrmd>,<bsb>,<dest>
MULB3,2,<rdrerdsur>,<brsbrb>,<dest>
DIVB2,17+<rdemd>,<b,b>,<dest>
DIVB3,17+<rdsrdsur>,<bsbrb>,<dest>
BISB2,1,<rdsmd>,<bsrbd>,<dest>
BISB3,1,<rdrsrd,ur>,<b,bro>,<dest>
BICEB2,1,<rdsmd>,<brb>,<dest>
8ICRB3,1,<rdsrd,wr>,<brbrb>,<dest>
XO0RB2,1,<rdsmd>,<b,b>,<dest>
XORB3,1,<rdrrdsur>,<brbrb>,<dest>
MNECB,1,<rdswr>,<b,b>,<dest>
CASFE,b6,<rdsrd,rd>+,<brD,0>,<brch>
MOVB,1,<rdswr>,<bsb>,<dest>
CMPRE,1,<rdrrd>s<bsrb>s<dest>
MCOMB,1,<rdsur>,<b,b>,<dest>
BITB,1,<rdsrd>,<b,b>,<dest>
CLRB,1,<ur>,

TSTBL,1,<rd>,

INCB,1,<md>,

DECB,1,<md>,
CVTBL,1,<rdswr>s<b s>, <dest>
CVTBW,1,<rdsur>,<b,u>,<dest>
MOVIBL,1,<rd,wr>,<D,1>,<dest>
MOVIBW,1,<rdswr>,s<bru>s<dest>

ROTLA1,<rdrrdrur>s<b,ls1>,<dest>
Atb"‘lr34-<rd:rd:nd:bd>:<b:b:b:u>:
MOVAB,1,<2dswr>,<b,Ll>,<dest>

(D)

OPCODE

ODAA
0pco
goDé
ODEC
0ED2
DE18
QE2E
0e44
ODESA
DE7O
0EBS
DEYC
0EB2
0:cC8
DEDE
DEF4
OFOA
0F20
OF36
OF&4C
0F62
OF78
DFBE
OFA4
OFBA
OFDO
OFES
OFFC
1012
1028
103E
1054
106A
1080
1096
10AC
10c2
1008
10EE
1104
1114
1130
1146
115¢C
1172
1188
T19E
1184
11CA
11E0
11F6
120¢C
1222
1238
124€
1264
127A

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2456
247
2438
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
gefine
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

7-DEC—-1984 13:53:14 VAX/VYMS Macro VO4-00

7=DEC-1984 13:53:07 OPCODE.MAR?36

PUSHAR,1,<ad>,,<push>
ADDMZ2,1,<rdsrmd>,<urw>r<dest>
ADDH3,1,<rdrrdsvirds<usrsri>,<dast>
SUBWZ2,1,<rdsmd>,<sud>sr<dest>
SUBN3,1,<rdrrdsurds<urwsru>s<dest>
MULWZ2,2,<rdsmd>,<usud>s<dest>
MULW3,2,<rderdsurd>,s<usrnrn>r<dest>
DIVHZ,17s<rdemd> s <usrw>,<dest>
DIVH3,17,<rdserdswr>,<ussru>s<dest>
BISW2,1,<rdsmd>,<u,w>r<dest>
BISW3,,1,<rdrrdsur>,<ururu>s<dest>
BICWZ2,1,<rdsmdd>s<uru>,<dest>
BICW3,1s<rdrrdsur>,<usuru>,<destd
XORWZ2,1,<rdomdd>s<usrwd>s<dest>
XORW3,1,<rdrrdswr>,<urwru>rs<dest>
MNECW,1,<rd ur>,<uw,w>,<dest>
CASEWs6-,<rdsrderd>s<uwsrru>,<brch>
MOVWNA1,<rdsur>,<Wsu>s<dest>
CHMPW,1s<rderd>,<uru>r,<dest>
MCOMUL,T17<rdrur>,s<weru>,<dest>
BITW,1,<rdsrd>,<wrw>,<dest>
CLRWA1,<ur>,<u>

TSTHA1,<rd> - <u>

INCH A1 ,<mdD> s <>

DECW,1,<md>,<u>

BISPSW,2,<rd>,<u>

2s<rd>,<u>

<rd>,<w>s,<cont>
<rd>,<w>,<cont>
CHMK,T0,<rd>+<w>,<brch>
CHME,10,<rd>+,<u>,<brch>
CHMS,10,<rd>,<w>s,<brch>
CHMU,10,<rd>,<w>,<brch>
ADDLZ,1,<rdemd>s<LlsL>,<dest>
ADDL3,1,<rdrrdrur>,<lsLsL>,<dest>
SUBL2,1/,<rdsmd>, <L, L>,<dest>
SUBL3,1,<rdrrdsur>s<lslsL>,<dest>
MULLZ2,2/,<rdremd>,<l,L>,<dest>
MULL3,2/,<rdrrdsur>,<lslsL>,<dest>
DIVLZ2,17,<rdsmd>,4<Lls1>,<dest>
DIVL3,17s<rdsrdewr>,<l,1s1>,<dest>
BISLZ2,17<rdrmd>, <L, >,<dest>
BISL3,1,<rdrerdsur>,<ls,L,L>,<dest>
BICLZ2,1,<rdsmd>,<Ll,1>,<dest>
BICL3,1,<rdrrdsur>s<lslsl>s<dest>
XORLZ2-,1,<rdrmd>,<ls1>,<dest>
XORL3,1-<rdrrdswr>,<lsL,1>,<dest>
MNEGLAT1,<rdsuwr2,<l,1>,<dest>
CASELsSs<rdsrd,rd>,<lsL,1>,<brch>
MOVLA1r<rdsuwr>,<ls1>,<dest>
CMPL,1»<rd,rd>,<Lls1>s<dest>
MCOML,1,<rd,wr>,<l,L1>,<dest>
BITL,1/<rdsrd>,<l s>, <dest>
CLRLAY17<ur>,<1>

TSTLA12<rd>, <1 >

INCLA12<md> <>

DECL,1,<md>, <>

Page

5
1

OPCODE

1290
1246
128C
1202

- 12€8

12FE
1314
132A
13240
1356
1346C
1382
1398
13AE
13¢C4
13DA
13F0
1406
141¢C
1432
14438
145¢
1474
148A
1440
1486
14CC
14E2
14F8
150E
1524
153A
1550
1566
157¢
1592
15A8
15BE
1504
15EA
1600
1600
1600
1A4C
1462
1A78
1A78
1A78
1880
1896
18AC
18C2
18D8
1BEE
1CN4
1C1A
1C30

286
287
2BS8
289
290
291
292
293
294
295
296
297
298
29%
300
301
302
303
304
305
306
307
308
ing
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
326
330
331
332
333
334
335
336
337
3338
339
340
341
342

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
-rept

define
«2ndr

define
define
«rept

define
«2ndr

define
define
define
define
define
define
define
define
define

7-DEC-1984 13:53:14 VAX/VMS Macro V04

7-DEC-1984 13:53:07 OPCODE.MAR?36

ADWC,1s<rdsmd>,<LsL>,<dest>
SBUC,1,€<rdsmdd> <l s> s<dest>
MTPR,10,<rdrsrd>,<l,1>,<cont>
MFPR,10,<rdrur>,s<ls1>,<cont>
MOVPSL,10-,<ur>,<L>
PUSHL,T1,<rd>,<L>,<push>
MOVAL,T1,<adsdr>,<l,L>,<dest>
PUSHAL,1,<ad>,<1>,<push>
88S,7,s<rdsvdsbd>,<lsbsb>s<cond-ftch>
EEC,77<rdrvd,bd>,<l,bsb>,<cond,ftch>
BRSS,7,<rd,vdsbd>,<lsbsb>,<cond,ftch>
BBCS,7s<rd,vdsbDd>,<1l,beb>,<cond-,ftch>
8BSC,7s<rd,vdsrbd>,<lsbsb>sr<condrsftch>
88CC,7,<rdsvdrbd>,<l,sbsb>s<cond,ftch>
88SS51,12,<rdsvdebd>,<lsbsb>s<cond,ftch>
SECCI,12,<¢rdrsvdrbd>s<lsbsb>,<conds,ftch>
BLBS,3,<rdsbd>,<Llrb>,<cond>
BLBC,3s<rd,bd>,<l,b>,<cond>
FFS,7rs<rdrrdsvdrur>,<lsbsbs,1>,<ftch>
FFCr7x<rderdsvdenr>,<lsbsb 1>, <ftch>
CMPV Crdsrdsvderd>,<ls0s,bs1>,<ftch>
CMPZYV <rdrerdsvdrsrd>,<lsbrb,L>,<ftch>
EXTV, drdsrdrsvdrsurd,<l,sbrsbrsl>,<ftch>
EXTZ <rd:rd:vd:ur>:<l,b:b’l>;<ftch>
INSVX

CVTLE-1,<rdrur>,<l,b>,<dest>
CVTLW,12<rdrur>,<l,u>,s<dest>

ASHP,100,<rdsrdradsrdrrdsad>,<bsrwrbrbrusb>,<cont>

CVTLP,lB8¢<rdsrrdsadd>,<lsuWrb>s<cont>
pdsad>s<beseb>+,<brch>
drad>,<lrsb>,<brch>
r<>¢+<brch>

ESCDL10,<50,<>

ESCEL1D0,X>,<>,<brch>
ESCFs10,<>,<>s<brch>

50

RESRV,0,<>,<>,<brch>

CVIDH,20,<rdrur>,<gr0>
CVTIGF,3,<rdsur>,<g-1>
12
RESRV,0,<>,<,<brch>

ADDG2,4,<rdsmd>,<gra>
ADDE3,4,<rdsrdsur>,<qrqrq>
SUBG2,4,<rd,md>,<q,q>
SUBGE3,4,<rdsrds,ur>,<g-q,q>
MULGZ2,7,<rdr,md>,<grqg>
MULG3,7,<rd,rd,ur>,<grqrq>
DIVGE2,28,<rdsmd>,<qrq>
DIVGE3,238,<rdsrdswr>,<qsqra>
CVTCGB,3,<rdsrur>,<qr,b>

-00

Page

6
N

E.......-.........

OPCODE

1046
1C5¢C
1€72
1C88
1C9E
1CB4
1CCA
1CEQ
1CFé6
100C
1022
1D38
1D4E
1064
1D7A
107A
1D7A
1E40
1E56
1€6C
1E82
1E98
1EAE
1EC4
1EDA
1EFO
1F06
1F1C
1F32
1F438
1F5E
1F74
1F8A
1FAD
1F86
1FCC
1FE2
1FF8
200E
2024
2034
203A
203A
20A8
20BE
2004
20EA
2100
2100
2100
2310
2326
233¢C
233C
233C
2824
2B3A

343
364
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
¥ i
376
377
378
379
380
381
382
383
ing
385
386
387
388
389
390
321
392
393
394
395
396
397
398
399

define
define
define
define
define
define
define
define
define
define
define
define
define
define
«rept

define
«2ndr

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
arept

define
«-2ndr

define
define
define
define
«-Tept

define
«endr

define
define
-rept

define
-2ndr

define
define

7-DEC—-1984 13:5%3:14 VAX/VMS Macro V04-00

7-DEC-1984 13:53:07 OPCODE.MAR:36

CVTGH,3,<rdrur>,<qru>
CVIGL,3,<rdrur>,<ag-,1l>
CVTRGL,3,<rdrwr>,<g- 1>
CVIBG,3,<rdrur>,<b,q>
CVTHG,3,<rdeur>,<wrsq>

CVTLG,3,<rdsur>,<l,0>
ACBG,5,<rdsrd,md,bd>,<qgrGgrgrsw> @
MOVG,3,<rdrur>,<q-q>

CHPG'3;<rd:rd>:<q,q>

MNEGG,3,<rdrur>,<arq>

TSTE,2,<rd>,<q>
EMODG,10,<rdsrdordowrsur>,<qgevrsarslrq>,<cont>
POLYG,100,<rdsrdrsad>,<qrsursb>s<cont>
CVTGH,20,<rdswr>,<qr0>

9

RESRV,0,<>,<>,<brch>

ADDH2,8,<rdsmd>,<0s0>
ADDH3,8,<rdsrdswr>,<o0-,0-,0>
SUBHZ2,8,<rdsmd>,<0-,0>
SUBH3,8,<rdsrdswr>,<0,0,0>
MULHZ,14,<rdsemd>,<0-0>
MULH3,14,<rdsrdser>,<0-,0-0>
DIVHZ2,56,<rd,md>,<0-,0>
DIVH3,568,<rdsrdsur>,<0,0,0>
CVTHB,6,<rdsur>,<o,b>
CVTHR-6,<rdswr>,<0,w>
CVTHL,6,<rdswr>,<0.,1>
CVTRHL,S,<rdewr>,<orLl>
CYVTBHsb62<rdsvr>,<h,0>
CVTWH,s0s<rdswr>,<w,0>

CVTLH,G,<rdsur>,<l,0> !
ACBH,10,<rdrrdsmdebd>,<0,0,0,%>,4
MOVH,s8,<rdeswr>,<0,0>

CRPH,6,<rdrsrd>,<0s0>

MNEGH,G6,<rdsvr>,<0,0>

TSTHsL,<rd>,<0>
EMODH,20,<rdsrderdsesrsur>,<cswsorls,0>,<cont>
POLYH,100,<rdsrdr,ad>,<crursb>,<cont>
CVTHG,20,<rdsur>,<o0rq>

5

RESRVs0,<>,<>,<brch>

CLRO4s<ur>s<0>
MOVOs6/,<rdeswr>,<0r0>
MOVAO-r1,<adrur>,<o0.,l>
PUSHAO,1,<ad>,<o0>,<push>
24

RESAV,0,<>,<>,<brch>

CVTFH,20,<rdruir>,<l,0>
CVTFGr3s<rdrur>,<l,q>
92
RESRV,0,<>,<>,<brch>

CVTHF-20,<rdsur>,<or1l>
CVTHD#20,<rd,wr>,<0,q>

Page

7
1)

OPCODE 7-DEC-1984 13:53:14 VAXJVMS Macro V0O4-00 Page 8
7-DEC-1984 13:53:07 OPCODE.MARZ36 (1)
2850 £00 -rept :]
2850 401 define RESBV,0,<>,<>,<brch>
2850 402 -2ndr
2C00 403
2C00 404 «end

: I

. I 7 I I | 3 [2 !
Mamory
‘and Bus
Control lar
FRIGATE SYSTEM BUS (FSB)
Frigate BI
BI Modules Adaptar CPU § CPU 1 CPU @
¢(FBI)
0O 0O 0O ©°
0 0
0) Y
040 | 1040 /)
o° 0’
' 000
BI
0| /1 of
/ Y 040
gﬂﬂ gaﬂ aﬂ FSYSTEM. LOGIC
I ' oo0o0 TITLE: DATE:
. BI Frigate System Block Diagran 4 Dacember B4
Pﬂtm:" Schnorr PRGE: 1
] | 7 2 1

8 7 | 8 | 5 | 4 | a I i - | 1 I

Eﬂh—_l Prafatch Bus : A~]
? ITB Addrass Latch 9V W“ﬂﬂ c"*r““fd’-?
I:;J:I i W Yy !
/T’:J"'*ﬂm _ P M > U UICTRL
D) | oAt i c*ﬂ%“"""n% 4o
e (o’) 7 D
— - — ! . e |
= — p ICACHE ADDRESS BUS $ o
) s (&
\
ICACHE ICACHE

ITB
Status

2]
E
2
a
>]
b
g

IB GA IB GA

|
IB GA
]
&=
W
| e
X w;u'n:—-m-me‘; éi:L s A - I I -
Lihle- L- IBD Dacode
= quencer ROM
:l (I;I'I’:.x . I
‘{ \ @r -

| | Displ GA [I
[CBane Reg 1 [Tndex Rag | =3 Conical]
| T

1 i

Adder GA Adder GA Addar GA

1 4 | 8
jm REG \l{ FCTRL ECTRL
> L5 1S: >
1 &4 1 a8 A U

TITLE: DATE:
R IBD Module 0> LOGIC 4 Dacembar B4
Internal Bus [] U Write Bus “:El i I8D>
<3l: > ' PAGE:
Petar Schnorr 1

° | g | g | : | : | ; : . :

| | 5 " | 3 | 2 | 1
UFCTRL U U FCTRL
<4: B> s
strcy s 77 Funy
’/5 //B
,/64
=1
«3L: B> <B: 2>
DTB
iatch] Iaten] NET
—@—fi Saquaencar
DCACHE ADDRESS BUS ¢
\ e g [| <
4 64 o0 & .74 Control
DCACHE DCACHE
Input Addrass
Rotators FIFO
/
/B4
DCACHE DATA BUS
84 Clock Gan
Init Ctrl
FSB
Control — .
B4
Consola
Output
Rotators
[I]
[{ |) L [
L~ 32
B4 A48 1
ISYNC ESYNC
[j U 4: 2> <4: 9>
FRIGATE SYSTEM BUS Write Bus dirand Wi L8505 TITLE: DATE:
W MCT MODULE 4 Ducwber B4
(FSB) MCT. LOGIC
[ENGINEER: oF
Peter Schnorr 1o0f1
: | | : : | 4 T a | : | x

diyo ayoen Jo gl 8sodund |edauss RJuiul ¢

auibu3z 3eemo3Q

seaJdppe
yB6ET ‘2 4800320

doeq B3idm — pEET ‘TT "NON nBd

vlEp pue
BuiJa

1
L]
a
o
o+
m
2
o

.'I *

eted

H%}i

LT l‘-ﬂ

naEhna

ARLRI Ny RJNE BN

1

gt

<

==,

\

A

H

RIEE YRS B4 IABI SN B IR

| 8 | s [4 | 3 [2 | 1
STORAGE CELL SHIFT TIMING
vdd Ir‘\‘.3 Clk= Clk vdd Clk PULLING DOWN THE ADDRESS LINE
. I [15 I 140 5 Il‘“’ Udd R= 28
e DA | 1 'S =] 4
M1 M2 M3 ﬁ M8
=],
é R= 26800
2 R=14B0 to naext reg.
Cc=8. BEE-3
In Cik Clk- Clk=- 1
|13 | 14 | 1580 |15§ |[—_—— C= 1.BBE-2
7] 1 —= -] B
= = M2 Mt faal—L
Uss Uss
a 2
Uaas Uas
R=2poa
R= 28
5 c= 1.8P |4 4C=
—— c=12£-%% o e . o
5
2]]
Ves
};"“ HIT I:..u Vas Vas
1 l
o 2]
PULLING DOWN THE HIT LINE ”: o Ves
8 Ri= 22 10 4 e HIT
VLD 3 co= . =3
—Ifm Ci= .29p ca= .17 —][ma[6 c3=.20p l Eany
Y -] 2
UHLD 3
_| 2 -]
D‘E Unue Uaas ves Ves Uss Vas Vas
2
VEVAL 1
—440m
2]
Vss
TITLE: DATE:
TLB Spice Model 11-27-84
: _o
TR Ted Kahl PAGE:
8 | 7 | 8 [5 | 3 1

8 I 7 I 8 I | 4 | 3 I 2 | !
addr addr
2 : 4 decaoder FALRU FALRU
; 128 x 32b 128 x 32b
Internal Bus gjce —— (Jc»
—ua L (Que
oa L (Qoe
from Address Add Stage -G
dutuh't—l datah‘t—l
virtual address rngustnr—l i
¢———|addr addr
FALRU FALRU
VA <3e: s> vA <B: 3> 128 x 320 128 x 32b
o Clce — (lc®
—uwa Qua ® m!
addr addr —(Joe —(oe
FALRU FALRU — datah't datah't
128 x 32b 128 x 32
wA <3 H _ccs VA <31> L _fcs I o
mamory data register
(ua —(ua
—oe —CJoe ;_0
t hit
datah '—I data™! & addr sdir
" FALRU FALRU rotator
Dcache Address Bus CELQEB x 32 ciaa x 32b \ /
¢ —CJwe wa !
[—Qjoe oe A
hit hit
Iphyslcnl addrass rngwter] data data |
74F244 T ey e n n
20
:-;dn —| accaas “;{/ & s SO mt:to:lchn o;:;:ar;)&u
7 R— :
Vialation FALRU FALRU 2
128 x 32 128 x 32n
Logie gjce ———qca
—(jwa —we
L —(Joe ———(loe
nu:dticfg refusaed, datah't d“lmt_l
TB Hit H [>0
Dcachae Data Bus falrucc. logic
TITLE: DATE:
Frigat2 FALRU TBs/cacha Chip Nov. 29, 1884
[ENGINEER: PAGE:
Bruce Butts 1,1
B8 | 7 6 [| 4 | 3 | | 1

R ——

===

8 | 7 | 8 s | 3 | 2 | 1
uFCTRL U FCTRL
Intarnal Bus U <4: 8> <7: 2>
A5 /./8
A~ B4
o]
<3L: B B: 2>
DTB
 —=T ey — | [Iatch]
MCT
[§ I 75 Saquencer
DCACHE ADDRESS BUS ¢
ey | | <
/’54 I— Control
DCRCHE
Input Addreas DERIE
Rotators FIFO
G
LD_I 764
DCACHE DATA BUS
A 64 Clock Gan
FsSB Init Ctri
Control TERIY
A~ B4
Console
output
Rotators
I]
| == 1
1 1 { P /f& P
L~ 32
B4 P 1
ISYNC ESYNC
n U e <4: 2>
FRIGATE SYSTEM BUS Wri1te Bus erand Bus I<:51:B> TITLE: DATE:
s MCT MODULE 4 Dacember 84
(FSB»> MCT. LOGIC
‘Peter Schnorr 10f 1
8 | 7 | 8 s | 4 [3 [2 [1

| T | 8 S | 4 | 3 | 2 | 1
Write Bus [] U Operand Bus REG <32: & ECTRL «<15: &
<31: D
A4~ 48 A=
] = — |
Dispatch Dispatch i =
Saguencer |_ FIFO i .
Main
Cantrol
Store
Ccap [atch]
YT — | Microword Ragiater
[1 =F]
’ DA DB DA 0B
|— R v
I Duml Duml RB UECTRL
STATUS RLOG Port Port WA USEQUENCER
GA RAM RAM WB
EB 18 Ixa 18 s A
] TEMP REG |
32
SRC2 Mux 32 SRC1 Mux
| =
AU FPU s 5
[[\/ U UICTRL UFCTRL
| <4: 83> <4:
Liatch [imteh]
Data Addrass Command TITLE: DATE:
EXE Modul 4 mb
A = e A s 18 i EXE. LOGIC ismualag
ita L] TRETRET BAGE <
Patar Schnorr 1l of 1
| 7 | 8 | 5 | 4 | 3 2 | 1

.Frigate pipeline simulation model analysis of file dual:lcutlerlpjacobi.cod
Simulation was run on 29-N0OV=-1984 09:20:27.73

Data cache miss rate is set at 0%

Data cache miss forced write rate is set at 0¥

Static branch prediction was used to predict conditional branches

Total number of simulation cycles = 33244377

Total number of instructions executed = 13;&%313

Averacge number of cycles per instruction = ' 2_.82

Number of instructions that stop decode = 36686 A—
Number of instructions that stop fetch = A ey
Total number of branching instructions = B22576 6°
Number of branches targets within the same virtual page = 717362
Percent branches targets within the same virtual page = 387.21

Number of conditional branch instructions = 707332

Percent conditional branch instructions = 85.99

Percent of branches predicted correctly = 91.99

Percent of branches incorrectly predicted = 8.01

Number of unconditional branches = 25893

Percent unconditional branches = 10.44

Number of instructions that stop pipe and then branch = 293%1

Percent stop and branches = 3.57

Pipeline Utilization Cycles

Stage Idle Stall Wait Work

Prefetch 1381562 4322688 803487 31736550

Decode 2239542 2007957 2284080 31712708

Address 4524255 476418 1512348 31731365

Operand 6120074 7372 0 32116941

Execute 11756385 0 0 26017291
Autoinc/dec register write wait cycles = 0

Register base wait cycles = 0

Double invalid recister wait cycles = 2284080

Indirect autoinc/dec register write wait cycles = 0

Pipeline Utilization Percent

Stage Idle Stall Wait Work
Prefetch 3.6 11.3 2.7 83.0
Decode 5.9 5uS 6.0 82.9
Address 11.8 1.2 4.0 83.0
Operand 16.0 0.0 0.0 84.0
Execute 30.7 0.0 0.0 68.0
$ run fb

dual:zCcutlerlpjacobi

0

¢]

10

1

2

Frigate pipeline simulation mcdel analysis of file dual:zlcutlerlpiacobi.cod
Simulation was run on 30-NOV-1924 04:50:32.76¢
Data cache miss rate is set at 0%
Data cache miss forced write rate is set at OX
Dynamic bSranch prediction was used to predict conditional branches
sranch table size is 1024 entries

Eranch counter width is 1 bits
sranch block size is 4 bytes
Total number of simulation cycles = 3821210¢
Total number of instructions executed = 13569313
Average number of cycles per instruction = Z2.32
Number of instructions that stop cdecode = 36625
Number of instructions that stop fetch = LA
Total number of branching instructicns = 8225756
Number of branches targets within the same virtual page = 679322
Percent branches targets within the same virtual page = BZ2.59
Number of conditional branch instructions = 707332
Percent conditional branch instructions = 25,99
Percent of branches predicted correctly = G$4.3°%
Percent of branches incorrectly predicted = 5«62
Number of unconditional branchess = 285893
Percent unconditional branches = 10.44
Number of instructions that stop pipe and then branch = 29351
Percent stop and branches = 357

Pipeline Utilization Cycles

Stage Idle stall wait work

Prefetch 133100°S 4309803 321155 31640143

Decode 2297082 19966487 2284075 31634462

Address 4566146 4745683 1503483 314567694

Operand 6132400 59932 0 320737132

Execute 11724704 0 0 26017291
Autoinc/dec register write wait cycles = ¢

Recister base wait cycles = 0

Doudble invalid register wait cycles = 2284075

Indirect autoinc/dec recister write wait cycles = 0

Pipeline Utilization Percent

Stage Idle Stall wWait work
Prefetch 36 1%.3 2a3 "B248
Deconde 6.0 5«2 6.0 82.%2
Address 1%1.9 1.2 3.9 B2.¥
Operand 16.0 0.0 0.0 B3.9
Execute 30.7 0.0 0.0 468.1
$ run fb

dual:{cutlerlpjacodi

0

0

10

2

2

Frigate pipeline simulation mcdel analysis of file dual:{cutlerlpjacobi.cod
Simulation was run on 1-DEC-1984 00:28:29.43
Data cache miss rate is set at 0X
Data cache miss forced write rate is set at 0%
Dynamic branch prediction was used to predict conditional branches
Branch table size is 1024 entries

sranch counter width is 2 bits

sranch block sjize is 4 bytes
Total number of simulation cycles = 23103771
Total number of instructions executed = 13569313
Average number of cycles per instruction = 2.81
Number of instructions that stopr decode = 36485
Number of instructions that stop fetch = 34
Total number of branching instructions = 822576
Number of branches targets within the same virtual page = 707199
Percent branches targets within the same virtual pace = 85.97
Number of conditional branch instructions = 707232
Percent conditional branch instructions = 85_.99
Percent of branches predicted correctly = 96.65
Percent of branches incorrectly predicted = 3.35
Number of unconditional branches = 85893
Percent unconditional branches = 10.44
Number of instructions that stop pipe and then branch = 29351
Percent stop and branches = 337

Pipeline Utilization Cycles

Stage Idle Stall Wait Work
Prefetch 13810385 4317812 823796 31586078
Decode 2224092 2004492 2224073 31596113
Address LL4T773812 475963 1511678 31643742
Operand 6038039 7372 0 32063360
Execute 11620769 0 0 26017291
Autoinc/dec register write wait cycles = 0
Register base wait cycles = 0
Double invalid register wait cycles = 2284073
Indirect autoincs/dec register write wait cycles = 0

Pipeline Utilization Percent

Stase Idle Stall Wait Work
Prefetch 2:6 11.3 2.2 B82.9
Decode 58 53 6.0 82.9
Adcress ; g 1.2 40 83.0
Cperand 15.8 0.0 0.0 84.1
Execute 30.5 0.0 0.0 68.3

$ run fb
dual:{cutlerlpjacobi

N W -0
o

frigate pipeline simulation model analysis of file dual:Lcutlerlpjacobi.cod
Simulation was run on 1-DEC-1984 19:438:16.37
' Data cache miss rate is set at 0X
Data cache miss forced write rate is set at OX
Dynamic branch prediction was used to pradict conditional branches
Aranch table size is 1024 entries

8ranch counter width is 3 bits
sranch block size is 4 bytes
Total number of simulation cycles = 38109608
Total number of instructions executed = 13569313
Average number of cycles per instruction = 2.81
Number of instructions that stoo decode = 36486
Number of instructions that stop fatch = 636
Total number of branching instructions = §2257%
Number of branches targets within the same virtual page = 707247
Percent branches targets within the same virtual page = 85.98
Number of conditional branch instructions = 707332
Percent conditional branch instructions = B5.9%
Percent of branches predicted correctly = 96.43
Percent of branches incorrectly predicted = 3.37
Number of unconditional branches = 858393
Percent unconditional branches = 10.44%
Number of instructions that stop pipe and then branch = 29351
Percent stop and branches = 3.57

Pipeline Utilization Cycles

Stage Idle Stall Wait Work

Prefetch 138119 4317785 823540 31587154

Decode 2224181 2004446 2284071 31596890

Address L4777%1 475956 1511659 31644202

Operand 6038374 7372 0 32063862

Execute 114621506 0 0 26017291
Autoinc/dec register write wait cycles = 0

Register base wait cycles = 0

Double invalid recister wait cycles = 2284071

Indirect autoinc/dec register write wait cycles = 0

Pipeline Utilization Percent

Stage Idle Stall wWait work
Prefetch I=6 131.3 22 B2e9
Decode 5.8 Se3 6.0 B2.9
Adcdress 111 Yal 4.0 83.0
Operand 15.8 0.0 D.0 84.1
Execute 30.5 0.0 0.0 68.3
$ run fb

dual:lcutlerlpjacobi

0

0

10

4

rd

‘Frigate pipeline simulation model analysis of file dual:[cutlerlpjacobi.cod
Simulation was run on 2-DEC-1984 14:456:15.9¢
Data cache miss rate is set at 0¥
Data cache miss forced write rate is set at 0%
Dynamic dbranch prediction was used to predict conditional branches
8ranch table size is 1024 entries

sranch counter width is 4L bits

sranch block size is 4 bytes
Total number of simulation cycles = 33111133
Total number of instructions executed = 13569313
Average number of cycles per instruction = 2,31
Number of instructions that stop decode = 36536
Number of instructions that stop fetch = 836
Total number of branching instructions = 822575
Number of branches targets within the same virtual page = 708763
Percent branches targets within the same virtual page = 85.92
Number of conditional branch instructions = 707332
Percent conditional branch instructions = 85.99
Percent of branches predicted correctly = 96.60
Percent of branches incorrectly predicted = 3.40
Number of unconditional branches = 85893
Percent unconditional branches = 10.44
Number of instructions that stop pipe and then branch = 29351
Percent stop and branches = 3.57

Pipeline Utilization Cycles

Stage Idle stall Wait Work
Prefetch 1321163 4317744 824336 31587890
Decode 2225102 2004432 2284074 31597525
Address 4475036 475937 1511644 31444516
Operand 6039656 7372 0 32064105
Execute 11623131 0 0 26017291
Autoinc/dec register write wait cycles = 0
Register base wait cycles = 0
Double invalid register wait cycles = 2284074
Indirect autoinc/dec register write wait cycles = 4]

Pipeline Utilization Percent

Stage Idle Stall wWait work
Prefetch 26 11.3 2.2 382.9
Decoge 5.8 5«3 6.0 B82.9
Address 11.8 Y2 4.0 83.0
Operand 15.8 0.0 0.0 B84.1
Execute 30.5 0.0 0.0 #%38.3
$ run fb

dual:z:Ccutlerlpjacobi

v =00
rJd

Frigate pipeline simulation model analysis of file dual:({cutlerlpjacobi.cod
Simulation was run on 3-DEC-19%4 09:19:4°.71
Data cache miss rate is set at OX
Data cache miss forced write rate is set at 02X
Dynamic branch prediction was used to predict conditional branches
Branch table size is 4096 entries

8ranch counter width is 2 bits
3ranch block size is 4 bytes
Total number of simulation cycles = 381027C3
Total number of instructions executed = 135589313
Averace number of cycles per instruction = 2.81
Number of instructions that stop decode = 36486
. Number of instructions that stop fetch = £34
Total number of branching instructions = 822576
Number of branches targets within the same virtual page = 707229
' Percent oranches targets within the same virtual page = 25.98
Numpber of conditional branch instructions = 707332
Percent conditional branch instructions = B85.%°%
Percent of branches predicted correctly = 94.6°%
Percent of branches incorrectly predicted = 335
Number of unconditional branches = 85893
Percent unconditional branches = 10.44%
Number of instructions that stop pipe and then branch = 29351

Percent stop and branches = Xa57

Pipeline Utilization Cycles

Stane Idle stall Wait Work

Prefetch 1381089 4317820 823729 31536065

Decode 2224025 2004437 2284080 31595610°S

Address 447731° 475%63 1511681 31643744

Operand 6037366 7372 0 32063365

Execute 11620701 0 0 26017291
Autoinc/dec register write wait cycles = 0

Register base wait cycles = 0

Double invalid recgister wait cycles = 22840%0

Indirect autoinc/dec register write wait cycles = 0

Pipeline Utilization Percent

Stage Idle Stall Wait wWork
Prefetch 38 Fla3 22 B2.9
Decode 5.8 5«3 5.0 82.9
Address 11.7 Vw2 4.0 B83.0
Operand 15.% 0.0 0.0 84.1
Execute 30.5 0.0 0.0 68.3
$run fb

dual:Ccutlerlpjacobi

a

0

12

4

2

Frigate pipeline simulation mogel analysis of file dual:lcutlerlpjacobi.cod
Simulation was run on 4=DEC-1984 04:468:54.57
Data cache miss rate is set at 0OX%
Dats cache miss forced write rate is set at ©D¥%
Dynamic branch prediction was used to predict conditional branches
Branch table size is 409¢ entries

8ranch counter width is 4 bits
8ranch block size is 4 bytes
Total number of simulation cycles = 33111020
Total number of instructions executed = 13569313
Average number of cycles per instruction = 2.31
Number of instructions that stop decode = 35688
Number of instructions that stop fetch = 635
Total number of branching instructions = 822576
Number of Dranches targets within the same virtual paoce = 70678¢
Percent bdranches targets within the same virtual page = B85.92
Number of conditicnal branch instructions = 707332
Percent conditional branch instructions = B5.99
Percent of branches predicted correctly = 96.5461
Percent of branches incorrectly predicted = 3.39
Number of unconditional branches = 85893
Percent unconditional branches = 10.44
Number of instructions that stop pipe and then branch = 29351
Percent stop and branches = 557

Pipeline Utilization Cycles

Stage IdLe Stall wait Work

Prefetch 13811467 4317744 824273 31587836

Decode 2225026 2004426 22R4030 31597488

Address 4475949 475931 15116456 31644494

Operand 6039549 7372 0 3206409%

Execute 11623018 0 0 26017291
Autoinc/dec register write wait cycles = 0

Register base wait cycles = Q

Double invalid register wait cycles = 22840820

Indirect autoinc/dec register write wait cycles = 0

Pipeline Utilization Percent

Stage Idle Stall wWait Work
Prefetch a6 113 2.2 £2.9
Decode 5.8 Sa3 6.0 B82.9
Address 11.8 ba2 4.0 83.0
Operand 15.8 0.0 0.0 B4.1
Execute 30.5 0.0 0.0 68.73
¢ run fb

dual:lcutlerlnjacobi

0

0

14

2

2

fFrigate pipeline simulation model analysis of file dual:lcutlerlpjacobi.cod
Simulation was run on 5-DEC-19%34 00:11:12.74
Data cache miss rate is set at 0O%
Data cache miss forced write rate is set at O0X
Dynamic branch prediction was used to predict conditional branches
Branch table size is 163E4 entries

Branch counter width is Z bits
Branch block size is 4 bytes
Total number of simulation cycles = 331082672
Total number of instructions executead = 13569313
Average number of cycles per instruction = 2.381
Number of instructions that stop decode = 3K685
Number of instructions that stop fetch = 634
Total number of branching instructions = 822576
Number of branches targets within the same virtual page = 707237
Percent branches targets within the same virtual page = £5.98
Number of conditional branch instructions = 707332
Percent conditional branch instructions = B5.%9
Percent of branches predicted correctly = 9665
Percent of branches incorrectly predicted = 3.35
Number of unconditional branches = 85893
Percent unconditional branches = 10.44
Number of instructions that stop pipe and then branch = 29351
Percent stop and branches = . S 3 4

Pipeline Utilization Cycles

Stage Idle Stall Wait Work

Prefetch 1381095 431781% 823715 31586049

Decode 2224011 2004493 224080 31594094

Address 447729°% 475983 1511681 31643739

Operand 6037942 7372 0 32063364

Execute 11620676 0 0 25017291
Autoinc/dec register write wait cycles = 0

Register base wait cycles = 0

Double invalid register wait cycles = 2284080

Indirect autoinc/dec register write wait cycles = 0

Pipeline Utilization Percent

Stage Idle Stall wWait Work
Prefetch 346 T1al 22 B2aY
Decode 5;8 5-3 6-0 82-
Address 117 1«2 4.0 B3.0
Operand 15.8 0.0 0.0 84.1
Execute 30.5 0.0 0.0 68.3
3 run fb

dual:Ccutlerlpjacobi

0

0

14

AVER o

Frigate pipeline simulation model analysis of file dual:[cutlerlpjacochi.coc
Simulation was run on S5-DEC-19f4 19:46:22.92
Data cache miss rate is set at 0%
Data cache miss forced write rate is set at O0OX%
Dynamic branch prediction was used to predict conditional branches
dranch table size is 16234 entries

Branch counter width is 4 bits
Branch block size is 4 bytes
Total number of simulation cycles = 38110977
Total number of instructions executed = 13569313
Average number of cycles per instruction = 2.381
Number of instructions that stop decode = 36486
Number of instructions that stop fetch = 636
Total number of branching instructions = 822576
Number of branches targets within the same virtual page = 706816
Percent oranches targets within the same virtual page = R£5.93
Number of conditional branch instructions = 707332
Percent conditional branch instructions = 85,99
Percent of branches predicted correctly = 96.¢1
Percent of branches incorrectly predicted = 339
Number of unconditional branches = 85893
Percent unconditional branches = 10.44
Number of instructions that stop pipe and then branch = 29351
Percent stop and branches = 8, P 4

Pipeline Utilization Cycles

Stage Idle Stall Wait wWork

Prefetch 1381173 4317763 824219 315R7822

Decode 2224969 2004432 2284080 31597495

Address 4478853 475931 1511652 31644511

Operand 6037478 7372 0 32064127

Execute 11622975 0 0 26017291
Autoinc/dec register write wait cycles = 0

Register base wait cycles = 4]

Double invalid register wait cycles = 22840820

Indirect autoincs/dec register write wait cycles = Q

Pipeline Utilization Percent

Stage Idle Stall Wait Work
Prefetch 3.6 T1a3 2.2 82+9
Decode 5.8 5«3 6.0 82.9
Address 11.8 T2 4.0 B83.0
Operand 15.% 0.9 0.0 84.1
Execute 30.5 0.0 0.0 68.3
% run fb

dual:Tcutlerlpjacobi

5

33

12

2

2

S Crae reeru

Frigate 6 stage pipeline simulation model analysis of file ph.cod

Simulati®n was run on 30-NOV=-1984 14:44:31.°2

Data caches miss rate is set at 5%

Data cache miss forced write rate is set at 3%

Dynamic oranch preciction w2s used to pre”ict conditicnal branches
granch table size is 4D%& entries

Branch counter width is Z bits

Branch block size is 4 cytes
Total number of simulation cycles = 1355145
Total number of instructions executed = £2°374
Averace number of cycles per instructicn =
Number of instructions that stop decode = 259
Number of instructions that stoop fotch = 169
Total numt2r of branching instructicns = 195276
Number of branches tarjets within the same virtual page = 1%4%26
Percent branches targets within the same virtuzl page = 992.382
Number of conditional branch instructions = 130054
Percent conditional branch instructions = 64,40
Percent of branches predicted correctly = S&.39
Percent of branches incorrectly predicted = 41,61
Number of unconditional branches = £€5042
Percent unconditional branches = 3I3.31
Number of instructions that stop pice and then branch =]
Percent stop and branches = 0,06

Pipeline Utilization Cycles

Stage Idle Stall Wait Work
Prefetch 9241 215135 163223 1166570
Decode 225611 216542 215 1112430
Address 272846 128559 87320 10582324
Translate 6212273 1292590 0 1004471
Operand 449207 0 0 1105342
Execute 9154682 1 9] £39375
Autoinc/dec register write wait cycles = 0
Register base wait cycles = 0
Double invalid recister wait cycles = c14
Indirect sutoinc/dec register write wait cycles = U

Pipeline Utilization Percent

Stage Idle Stall Wait Work

Prefetch 046 13:9 1005 Z5:0
Decodz 14.5 13.9 00 T3a5
Address 13.0 8.3 526 63a)
Translate 27.1 833 0.0 Ab4.5
Operand 28.9 0.0 0.0 7TEd
Exscute 58.79 0.C 0.0 &1.1

5 QyCLe rerrue

Frigate 2. stage pipeline (tb/cache) simulation model analysis of file ph.cod
Simulation was run on 4-DEC-1984 17:52:55.66
Data cache data miss rate is set at 52X
Pata cache address miss rate is set at S0%
Data cache miss forced write rate is set at 33X
Dynamic branch prediction was used to predict conditional branches
Branch table size is 4096 entries

sranch counter width is 1 bits
SBranch block size is 4 bytes
Total number of simulation cycles = 1505467
Total number of instructions executed = 2924
Average number of cycles per instruction = |2.39
Number of instructions that stop decode = 259
Number of instructions that stop fetch = 169
Total number of branching instructions = 195276
Number of branches targets within the same virtual page = 194940
Percent branches targets within the same virtual page = 99.83
Number of conditional branch instructions = 130058
Percent conditional branch instructions = 66.60
Percent of branches predicted correctly = 66.69
Percent of branches incorrectly predicted = 33,31
Number of unconditional branches = 65042
Percent unconditional branches = 33.31
Number of instructions that stop pipe and then branch = 17¢é

Percent stop and branches = 0.09

Pipeline Utilization Cycles

Stage Idle Stall Wait Work

Prefetch 8915 259072 152410 1035070

Decode 204391 2589359 162 1041955

Address 247492 214942 44142 992321

Operand 3142938 0 0 1191169

Execute 865975 26 0 639375
Autoinc/dec register write wait cycles = 0

Register base wait cycles = 0

Double invalid register wait cycles = 162

Indirect autoincsdec register write wait cycles = 0

Pipeline Utilization Percent

Stage Idle Stall Wait Work

Prefetch 0e6 172 "10.1.572:1
Decode 13.6 172 0.0 69.2
Address 16.4 14.3 2.9 664
Operand 20.9 0.0 .0 791
Execute 5Ta5 0.0 0.0 &2.5

.] Qycre ReERTL_

‘ Frigate 4 stage pipeline (tb]|cache, register destination) simulation model analy:
Simulation was run on 7-DEC-1984 10:35:27.12
Data cache data miss rate is set at SX
Data cache address miss rate is set at 50X
Data cache miss forced write rate is set at 33%
Dynamic branch prediction was used to predict conditional branches

Sranch table size is &09% entries M‘z

dranch counter width is 1 bits

Sranch block size is 4 bytes
Total number of simulation cycles = 1261300
Total number of instructions executed = 628924
Averace number of cycles per instruction = 2.01

r——

Number of instructions that stop decode = 259
Number of instructions that stop fetch = 169
Total number of branching instructions = 195276
Number of branches targets within the same virtual page = 194944
Percent branches targets within the same virtual page = 99.83
Number of conditional branch instructions = 130058
Percent conditional branch instructions = 66.60
Percent of branches predicted correctly = 66.69
Percent of branches incorrectly predicted = 33.31
Number of unconditional branches = 65042
Percent unconditional branches = 3I3_.31
Number of instructions that stop pipe and then branch = 176
Percent stop and branches = 0.09

Pipeline Utilization Cycles

Stage Idle Stall Wait Work

Prefetch 3555 232039 152399 868307

Decode 203792 232204 108 825196

Operand 226751 0 327 1034222

Execute 621804 30 0 639375
Autoinc/dec register write wait cycles = 0

Register base wait cycles = 0

Double invalid register wait cycles = 108

Indirect autoinc/dec register write wait cycles = 9]

Pipeline Utilization Percent

Staage Idle Stall wWait Work

Prefetch 0.7 18.4 12.% 63.8
Decode 16.2 18.4 0«0 &5.4
Operand 18.0 0.0 050 82.0
Execute 49.3 0.0 =0 SO.7

Is "XSYSTEM-S-NORMAL, normal successful completion®
Command syntax error at or near "EXITEXIT®

PIANA,LNGY] ; B=DEC=1G84 102170 Page 2

Frigate pipeline simulation model analysis of file dbaldt[eutlerlicp,.cod
Simulation was run on 3@=NOVe{19B84 143151147,34

Deta cache miss rate {s set at @X

Data cache miss forced write rate is set at ©@X

S8tatic bremech prediction was used te predict comditional branches

Total number of simulation cycles & 48244771
Tota)l number of imstructions executed 9908733
Averace mrumber of cycles per imstruction :) 4, 85

Nurber of imstructions that stop decode = SegpSS
Nurber of instructions that stop fetch = 578558

Tota]l number of branching instructions = 1281253

Numbepr of branches tarcets within the game viptual peage & 25n3697
Peprcent bramches targets withim the same virtua)l page = 76,30
Number of comditional branch {nstruetions = e218er7y

Percent cenditional brarch instructions s 67,6F7

Percent of branches predicted correctly = 47,29

Percent of branches {necorrectly predicted = 52,71

Number of unmconditional brenches E 562427

Percent urmconditional brermches 8 17,14

Number of instructions that stop pipe and then branch = 52819
Percent stor and breanches = 15,26

Pipelime Util{zation Cycles

Stage Idle Sta)) Wait Work
Prefetch 15608359 7884557 IIB3247 21368908
Decode 19769?@? 7574364 Ip7682 21592818
Address 2ouU9P4Ul Spéedznpe 2816725 19873421

Operand 28374475 ? @ 19878296

Execute 18317844 2) EQPGQQSB
Autoimc/dec register write wait cycles = 1902

Register base wait cycles = 2448

Double invalid register wait cycles = = 304844

Indirect autoinc/dec recister write wait cycles = @

Pipelime Ut{l{zatiorn Percent

Stece Idle Stal) Waft Work
Prefetech 32,4 16,3 Te? 44,3
Decoce 41,8 15,7 .6 42,7
Address 42,5 10,5 5.8 41,2
Operand 58,8 2,0 2,0 41,2
Elccute 38.0 gng @Ig 61!5

Page 3

"PIANA,LDG? BeDEC=1984 1030FD
Frigate pipeline simulation mode] analysis of file dba3s[cutler)iep,cod
S{mulation was run on 1=DEC=1984 B1:45352,77

Data cache miss rate is set at 0O%

Data cache miss forced write rate is set at 2% ;

Dynamic branch prediction wes used to predict conditional branches

Bramnch table size is

ia

Branch counter width {s
Braneh block size {8

Tetal number of gimulation eyeles =

24 entries
1 bits
4 bytes

45635643

Tota)! number of {mstructions executed = 9948733
Averace number of cycles per instrucetion 3 4,59
Number ©f {mstructions that stop decode & 594655
Number of {mstpructions that stop fetech = 578555
Total number of branching {mstructions = 3281253

Number of branches targets within the same viprtua) page =
Percent branches tarcets within the same virtua) page =
Nymber of conditional branch instructions =
Percent conditiomal branch {mnstrucrtions =
Percent of branches predicted correctly s
Percent of branches incorrect)y predicted =
562427

Number of unconditioma)l branrches =

Percent umcondi{tional brarches =
Number of instructions that stop pipe amnd them branrch =

Percent stop and branches =

15,26

Pipelime Utilizatiom Cyecles

17,14

83,94
16,06

Stage Idle Stal) Wait Werk
Prefetch 15416307 75212299 3745347 18653690
Decode 19223392 7227189 IAT6TS 18897467
Address 19199712 4g1e706 27622802 18863223
Operand 25861947 2 @ 19773696
Execute 15708716) ? 29649233
Autoinc/dec register write wait cycles 183
Register base wait cycles = 2448

Double invalicd recister wait evyeles = Ip48Uy

Ind{rect sutoinc/dec register write wait evcles =

Pipeline Utf{lizatiomn Percent

Stage Icdle Stall wWait Work
Prefetch 33!‘“ 16,5 8,2 “105
Decode 42,1 15,8 2,7 @aj.8
Address 42,1 12,5 6,1 41,3
Operand 56,7 2,0 P, 43,3
Execute 34,4 2,@ .2 65,7

2ug244y

2218007

PIANA,LOGSY

Frigete pipeline simulation mode! amalysis of file dba3t[cutler)licp,ced
S{mulation was rum on
Data cache miss rate is set at

B=DEC=1984 123020

{=DEC=19Rd4 P7:27:04,84

2%

Data cache miss forced write rate is set at ©OX

Dymamic bremch prediction was used te predict conditional branches
Branch tahle si{ze {s

Branch counter width {s
Brareh block size s

Tota) number of simulation eycles =
Yota) mumbepr of {mstructions executed =
Average mnumbepr of cycles per {nstructior =

Number of {mstructiens that stop decode =
Number of {mstructions that stop feteh =
Teta) number of branching imstpuctions =
Number of branches targets within the same virtual page ®
Percent branches targets within the same virtual page =
Number of conditional branch instructions =
Percent conditional branmch {mnstructions s
Percent of branches predicted correctly =&
Percent of branches incorrectly predicted =

1224 entries

e bits

4 bytes

Number of unconditional branches =

Percent unconditiomal branches =
Number of instructions that stop pipe and then branch =
15.26

Percent stop and branches =

Stage
Prefetch
Decode
Address
Operand
Execute

Pipelinmne Ut{lization Cycles

Idle
154p4601
18987402
189M6870
25544147
15385212

Stall
7536476
7248587
4823568

(%)
(7]

Wait
3614994
InT7675
2771748
)

o]

Autoinc/dec register write wait cycles
Register hbase wait cycles =
Double {nvalid recister wait cycles =
Indirect autoinc/dec register write wait cycles

Pipeline
Stage Idle Stell
Prefetch 34,7 16,6
Decode 41,9 16,7
Address 41,7 12,6
Operand 56,4 2.0
Execute 34,0 e,2

W

=T B o~ N L
DS A

- =8 8 8 8 -

2448

Utilizetiom Percent

Work
Uy,4
41,4
41,8
43,6
65,4

45312139

9948733
4,5%

67,60
87,75
562427
17.14

Work
1875668
18768477
18809953
19767992
29649233

383

3A4844

594655
578555
3281253
2u96623

ez218ea7

12,25

Fripete pipeline simulation mode) analysis of file cdbal:[cutler)icp,cod
Simulation was run onm
Data cache miss rate is set at
Date cache miss forced write rate {s set at :
Dyrmamic branch predictifon was used to predict conditional branches

Brarch table sjze is

PIANA,LOGYY

B=DEC=1984 10:70Q

{=DEC=1984 221291:54,65

i@

Branmeh counter width {s
Branch block sfze (s

Teta)l number of simulation eveles =
Total number of inmstructions executed =
Averace rumbepr of cycles per {nstruction =

Number of instructions that stor decode =
Number ©f {nstructions that stop fetch ®
number of bramching imstructions =
Number of branches targets within the gsame virtual page =
Percent branches targets withim the game virtua) page =
Number of conditional branch {nstructions =
Percent conditional bramrch {mstructions =
Percent of brenches predicted correctly s

Toetal

Percent of brenches {incorrectly predicted =

a%

24 entries
32 bits
4 pvtes

Number of unconditional branches =

Percent ynconditional branches =
Number of imstructions that stop pice and them bparmch =

Percent stop and branches =

Stage
Prefetech
Decode
Address
Operand
Execute

15,26

Pipeline Ut{l1{zatien Cyecles

Idle
15423250
18973622
18895486
25537742
1538@962

Stal)
7541786
7254226
4826390

e
2

Wafit
I6M3642
INT653
2773646
@

2

Aytoimc/dec register write wait cvcles
Register base wait cycles =&
Double invalid recister wait cycles =
Indirect autoinc/deec recister write wait cycles =

2448

Pipelime Ut{l{zetion Percent

Stege
Prefetch
Decoge
Address
Operand
Execute

Idle Stall
34,2 16,6
41,9 16,2
41,7 12,7
86,4 e,.2
313.9 e.e

wWeprk
41,4
41,4
41,5
43,6
65,4

ox

4s3evee9

9948733
4,55

594655
578555
3281253

67,60
87,73
12,27
562427
17.14

Work
18759911
18772390
18812367
19770147
29649233

361
3p484ad

2523397
2218007

PIANA,LOG)! B=DEC=1984 10300 Page 6

Frigate pipeline simulation mode! analysis of file dba3s[eutler]iep,.cod
Simuletion was rum on 2=DEC=1984 15313157,76
Data ceche migs rate {3 set ot X%
Date cache miss forced write rate is set at 0OX%
Dynamic bramch prediction was used to prediet condi{tional branches
Branch tahble gize is 1724 entries
Branch courter width (s 4 bits
Branch block sfze is 4 bytes

Tots! number of simulation eyeles = 45309127
Total number of instructions executed = 9948733
Averace number of cycles per instructiom = 4,55

Number of {nstructions that stop decode = 594655

Number of {nstructions that stop fetch = 5785585

Tota)l number of branching instructions = 3281253

Nymber ©f branches targets within the game virtua) page ® e5e3e4é
Percent brenches targets withim the same virtual pace 8 76,28
Nymber of conditional brarch imstructions = cei8eay

Pepcent conditional bramch imstructions &8 67,60

Peprcent of branches predicted coprprectly 8 B7,62

Percent 0f branches imcorreetly predicted = 12,38

Number ©f unconditiona! branches = 562427

Percent umconditional branches = 17,14

Number ©f instructions that stop pipe and then brench = 500819
Percent stop and bremches & 15,26 -

Pipelinme Ut{lization Cveles

Stage Idle Stall Welt Work

Prefetch 15401045 754602702 3595337 18766475

Decode 18943984 7259152 IPT642 18778349

Address 18885628 4829628 2773921 18819952
%]

Operand 25539574 2 19769553

Execute 153822020 ") @ 29649233
Autoinc/dec register write wait cycles = iso

Register base wait cyclea = 2448

Double invelid recister wait cycles = 30uB4d

Ind{rect autoinc/dee recister write wait ecycles = @

Pipeline Utilization Percent

8tege Idle Stal) Wait Work
Prefetch 34,8 16,7 7.9 41,4
Decode 41,9 16,72 2,7 41,4
Address 41,7 12,7 6.1 41,5
OP.F.Hd 56,4 f,0 2.9 4z .6
Execute 33,9 e,n 2,8 65,4

8=DEC~1984 102120 Page 7

PIANA,LOG?Y

Frigate pipeline simulation mode] aralysis of file dbald:[eutler)iecp.ced
S{muletion was run on 3J=DEC=1984 29319146,49

Data cache miss rate {s set ot 2X

Data cache miss forced write rate is set st 2%

Dymamic branch prediction was used to predict condi{tional bramches

Branch table size {s 4@
Brarmech counter width is
Branch block size is

Total number of simulation cycles ®
Tote! number of instructions executed =

96 entries
e bits
4 bytes

45286993

9948733

Average number of cycles per fnstruction ® 4,55
Number of instructions that stop decode E 594655
Number of instructions that stop fetch ®© 578558
Total! numher of branching {nstructions = 3281253

Number of branches targets within the geme virtus! page =
Percent branches tarcets within the gsame virtua) page =
Nymber of conditional branch {nstructions =
branch instructions =
Percent of branches predicted correctly =
Percent cf branches incorrectly predicted =
S62427

Percent conditional

Number of unconditionsl branches =

Percent unconditienal branches =
Number of {mstructions that stop pioe and them branch ®

Percent stop end branches =

Stage ldle Stal) Wait Work
Prefetch (54226902 75402240 3624234 18739829
Decode 18971106 7249544 307675 18758668
Address {BBBUSRY 4823725 2772777 188025987
Operand 25519@94 2 2 19767899
Execute 15360066 ? " 29649233
Autoinc/deec register write wait cycles = 383
Register base wait cycles ® 2448

Deuble invalid recister wait cycles = IPuBuy

15,26

Pipelime Utilizationm Cycles

17.14

67,60
88,06

2497312
2218pa7

11,94

Indirect autoine/dec register write wait cycles =

Pipelime Utilization Percent
Stage Idle Stell Wait WKork
Prefetch 34,7 16,6 8,7 4,4
Decoce 41,9 16,0 2,7 41,4
Address 41,7 18,7 6,1 41,5
Operand S6,3 2,2 0,2 43,7
Execute 33,9 2,0 A0 65,5

PIANA,LOG:1 8=DEC=1984 10100 Page 8

Frigate pipeline simulation mode! analysis of file dba3t[cutlerlicp,cod
Simuletiom was rum on UW=DEC=1984 P29:08:27,94
Data cache miss rate is set at @X
Data cache miss forced write rate {o set at ©OX%
Dynamic branch prediction was used to prediet conditional branches
Branch table size (s UPG& enmtries
Bramech counter width s 4 bits
Brarmech block size is 4 bytes

Tote) number of simulatiom eycles = 45255738
Total number of instructions executed = 9948733
Average nmnumber of cycles per inmstryction ® 4,55

Number of {nstructiomns that stop decode = 594655

Number of {nstructions that stor fetch = 578555

Total number of branmching instructions & 31281253

Number ©of branches targets within the game virtual page = 2504099
Percent branches targets within the game virtya)l page = 76,32
Number of conditiomal brameh instructions = e218em7

Percert conditiornal bramnch instructions 8 67,60

Percent of bpranches predicted correctly = B8,21

Percent of branches incorrectly predicted = 11,79

Number of umconditional branches = 562427

Percent unconditional branches = 17,14

Number of instructions that stoe pice amd them branch = S00619
Percernt stop and branches &8 (5,26

Pipeline Utilization Cyecles

Stage Idle Stel Wait Werk
Prefetch (5398962 7550495 3570224 18736259
Decode 18927432 7260664 307643 18759999
Address 18831525 483p287 2775132 18818794

Operand 2S4R6328S o @ 19769353

Execute 15328811 2 A 29649233
Autoimc/deec register write wait cycles = 18t

Register base wait eycles = 24us

Double invalid reaister wait cycles = Ip48u4

Indirect autoinc/dec register write wait cycles = ()

Pipeline Util{zation Percent

Stage Icdle Stall Wwait Weork
Prefetch 34,0 1637 7.9 41,4
Decode 41,8 16,2 2.7 41,85
Address 41,6 17,7 6.1 41,6
Operand 56,3 2,2 2.0 43,7
Execute 31,9 2,2 2,8 65,5

PIANA,LOG?Y B=DEC=1984 {0300 Page S

Frigate pipeline simulation mede! amalysis of file dba3i[cutler)icp,cod
Simulation was rum on Se=DEC=1984 13323:25,41
Data ceche miss rate {s set ot X%
Data cache miss forced write rete {8 set at 0%
Dynamic branch predict{ion was used to predict conditional brenches
Bramech table size is 16384 entries
Bramnch counter width {s 2 bits
Bramnch block size {8 4 bytes

Total number of simulation cycles = 45284017
Total! number of {mstructions executed = 9948733
Average number of cyvcles per instruction & 4,55

Number of {nstructions that stop decocde = 594655

Number of {mstructionrs that stop fetch = 578555

Total number of branching instructions = 12€1e53

Nymber of branches targets within the same virtua! page = 2497910
Percent branches tarcets within the same virtua! pasae ® 76,13
Number of conditiomnal brarmech {nstructiors = c218pa7

Percernt conditiora)l bramch instructioms ® 67,60

Percent of brarnches predicted correctly = 88,028

Percent of branches imcorrectly predieted & 11,92

Number ©f umncondi{tional branches = 562427

Perecent umconditiomal brenches = 17,14

Number of {mnstructions that stoe pipe and them branch = 00819
Percent stop ancd branches = (5,26

Pipelime Util{zatiomn Cycles

Stage Idle Stal) Wait Weark

Prefeteh (540P781 7540277 31599865 (BT743174

Decode 18966616 7249586 327675 j87e60140

Address 18BRPTRY 423782 2772926 18BM6LRT
[}

Operanrd 25516235 B 19767782

Execute 15357090 2 @ 29649233
Aytoimc/dec repgister write wait cvycles = 183

Register base weit eycles =& 2448

Douyble invalid recister wait cycles = 304844

Indirect autoinc/dec recister write wait cycles © 2

Pipelime Ut{l{ization Percent

Stage Idle Stell Wait Work
Prefetch 34,7 16,7 7.9 41,4
Decode 41,9 16,0 0,7 41,4
Address 41,7 12,7 6,1 41,5
Operand 56,3 2,0 #,0 43,7
Execute 3.9 2,0 B.? 65,5

PIANA,LOG:! B=DEC=1984 171020 Page 10
Frigate pipeline simulation mode! amalysis of file dbalt[cutler)icp,cod
Simulation was rum on 6=DEC»1984 14328:18,31
Date cache miss rate is set at 2%
Data cache miss forced write rate is set ot 0OX
Dynamic bramch prediction was used to predict conditional branches
Branch table size {s 16384 entries
Bramch counter width {s 4 bits
Branch block size is 4 bytes

Tota]l numker of simulation eyeles & 45245263

Tota! number of {nstructions executed = 9948733
Averace number of eycles per instruction & 4,55
Number of {mstructions that stop decode = 594655
Number of {nstructiors that stor fetch = 5785SS
Total number of branching instructions = 3281253

2505091
76,35

Number ©f branches targets within the game viptual page s
Percent branches targets within the same virtua)l page =
Number of conditional bramch imstructions = 2218007
Percent conditional brarch {imstructions ® 67,60

Percent of branches predicted correctly = 88,34

Percent of brarches incorrectly predicted = 11,69

Number of ymconditional branches = 562427

Percent unconditional brarches = 17,14

Number of {mstructions that stop pipe and them branch =
Percent stop amnd bpamches & 15,26

Seag19

Pipeline Utflizatior Cycles

Stage Idle Stal Wait Work

Prefetch 15396796 7550358 3562880 18735229

Decode 18918395 7260724 3AT642 18758502

Address 18821451 4Ug3p2el 2775372 18818179

Operand 25476351 P P 19768912

Execute 15318336) ? 29649233
Autoinc/dec register write wait cycles = 3s5¢e

Register base wait cycles s 2448

Double invalid register wait cycles 3 3QuBUY

Indirect autoinec/dec register write wait cycles = ")

Pipeline Utiljzation Percent

Stage Idle Stall Waft Werk
Prefetech 34,0 16,7 7.9 41,4
Decode 41,8 16,0 2,7 41,5
Address 41,6 12,7 6,1 41,6
Operand 56,3 2,0 2., 4%,7
Execute 33,9 2,0 0.0 65,5

PIANA,LOG! B=DNEC=1984 10300 Page 11
Frigate pipeline simulation medel armalysis of file dba3t[cutler)icp,cod
Simulatior was rum on T=DEC=19R4 19305:372,53
Data ceche miss rate {s set ot 5%
Data cache miss forced write rote (s set at 33X
Dymamic brameh prediction was used to predict conditional branches
Eramch table size {8 4296 entries
Branmch ecounter width (s 2 bits
Bramch bleck size is 4 bytes

465340028
9048733

Total number of simulation eycles =
Total number of {imrstructions executed =

Averace numbep of cycles per {inatruction B 4,68

Number of {mstructions that stop decode = 594655
Number of {mstructions that stor fetch = 578555
Total number of brarmehing imnstructions = 3281253

2497254
76,11

Nymber of branches targets withim the same virtual page =
Percent bramnches targets within the gsame virtual pace =
Number of conditiomnal branch {mstructions = e218er7
Perecent comditional branch imstructions 3 67,62

Percent of branches predicted correctly & 88,06

Percent of bpranches {ncorrectly predicted = 11,94

Number of unconditional branches & 562427

Percent umconditional brarches = 17,14

Number of instructions that stor pipe and them branch = S@n819

Percent stop and branches ©

15,26

Pipelime Util{zation Cyecles

Stege Idle 8tal) Wait Work
Prefetch 15481525 BTR6728 3604uju 8741341
Decode 19009284 8463582 300971 1B76€173
Address 18851696 6n53578 2821067 18807667
Operand 25485359 4 @ 21048649
Execute 1660870281 P A 29649233
Autoinc/dec register write weit cycles = 156
Register base woait cycles = 24U
Double {nvalid register wait cycles = 298175
Indirect autoine/dec register write wait cycles s %)
Pipeline Ut{l{zation Percent
Stage Idle Stall Wait MWork
Prefetch 33,3 16,7 7.7 4”3
Decede 4r,9 18,2 B.6 4,3
Address 42,5 13,9 b1 4P, 4
Operand 54,8 2,0 P 45,2
Execute 35|7 2,0 0.q 63.?
CUTLER Job termimeted at B8-DEC=-1984 10:0P307,34

Aecoumting {mformationt

Buftfered 1/0 count: 160 Peak working set sizet 600
Direct 1/0 counmtt 53ipe2 Peak page file size! 1244
Page faults: 2292 Meumted velumest]

Elepsed CPU times e Pb6rU2105,08 Elapsed times 7 19328143,19

L =Y

Instructiom Freauemecy Data

This data was eollected on 32=NOV=1984 0B8:54:P2,73
This dats was written to db3i[cutler]phanoi,cod
Total number of {nstructions traced was 152088945

Name Count Perent Cumula
MOVL 3670441 24,13 24,13
BEGL 20897259 13,79 37,92
DECL 2097163 13,79 51,71
BRB 1572942 12,34 62,05
INCL 1048710 6,50 68,95
CMPL 1048657 6,98 75,84
BLEQ 1048656 6,89 B2,74

SuBLz2 1848652 6,89 89,63
SUBL3 1048605 6,89 96,53

MNEGL 524298 3,45 99,98
MOVB 201 .80 99,98
RSB 149 2,00 99,98
JMP 137 .20 99,98
MOVAB 137 .28 99,98
CLRL 116 2,20 99,98
BBC 114 2,22 99,98
BNEQ 112 2,20 99,98
BLBC 105 .20 99,98
CASEB 99 ?,08 99,98
BLSS 87 2,02 99,98
CVTBL 8s .22 99,99
MovaQ 84 2.20 99,99
MOVAL 84 2.00 99,99
CMPB 81 P,22 99,99
PUSHL 78 2,20 99,99
BRW 75 2,22 99,99
INSV 75 2.2 99,99
TSTL 73 2,22 99,99
CLRB 71 .22 99,99
BICL2 71 2.2 99,99
BGTR B o .22 99,99
RET bu 2,00 99,99
MOV W 62 2,20 99,99
CALLS 62 P.,P0 99,99
BSBW 60 2,20 99,99
CMPW 59 a., 22 99,99
ACBR 54 2,20 99,99
ADDL3 53 .20 99,99
MOVZWL 50 2,00 99,99
MOVZEBL 52 NP0 99,99
ADDL2 48 2,20 99,99
SOBGER 46 2,20 99,99
BISL2 4s 2,22 99,99
JSB 36 P,22 99,99
PUSHAR 36 P.20 10@,00
SUBKY 36 2,22 100,00
MOVC3 35 2,70 100,00
BSBA 33 P.P2 100,00
ADDW2 32 B.002 172,00
MOVCS 27 0,20 109,00
PUSHAL 27 P,20 10Q,00
ASHL 26 2,02 100,00
DECw 23 2,00 122,092

BBS e3 2,02 109p,00

PHGEN,£0G11

BLBS
CLRG
MCOMB
BISPSHW
Locc
BICB3
AOBLSS
BGEQ
CLRW
MULLZ2
POPR
PUSHR
SUBW2
EDIV
CHME
CVTLP
SuUBB3
TSTW
EXTZV
BLSSU
PUSHAR
ASHP
CVIPS
BLEQU
SKPC
DIVL3
AOBLEQ
EDITPC
CASENW
CHMK
CVTLW
ROTL
BITL
BBCS
EXTV
CALLG
CMPCS
ADDF2
SUBF2
DIVF2
CVTWF
CVTLF
MOVF
EMUL
TSTB
CVTBHW
MULW3
DIVLe
CVTSP
PUSHAW
CVYFD
MOVD
MULL3
BICLS
BBCC
INSQUE
DIVDZ2
CVTLD
CVTDF

e, VNV NNNVWWHWHRHR R R R W WE S P ENMUANNININNYN D O

f,202
n,02
A,00
2,00
2,00
2,09
P,a0
P20
2,00
B.00
R.00
2,00
P,00
n,00
.20
2,00
A,20
.00
G.QO
2,00
2,00
2,20
2,00
2,00
2.020
2.20
R.00
.00
2,20
2,00
2,00
2,20
2,020
R.20
2,22
2.00
2.20
.00
2,00
B.GB
B.GG
.00
2,02
2,020
2,20
h,00
P,00
2,002
A.,20
0,00
P00
”,00
2.00
0,00
2,00
0,00
P,00
2,00
P,00

109,002
17Q,00
170,00
100,00
i0e,02
iep,.00
100,00
190,00
109,080
100,00
120,002
10@,00
100,00
100,00
100,00
170,00
100,00
109,00
120,080
100,00
100,00
120,00
100,00
170,00
100,00
120,00
120,00
100,00
iP@,00
108,002
100,00
100,00
100,202
120,00
120,00
10,00
100,00
100,09
100,00
100,00
100,00
192,00
120,00
100,00
109,00
172,00
10,00
100,00
100,00
ieg,0m2
100,00
100,00
100,00
100,00
10g,00

33=NOV=1984 17159

PHGEN,LOG?!

BISB2
INCB

1
i

2,20 100,00
2,22 100,00

30=NOV=1G84 17159

Instruction Si{ze
Size Count

213
7865297
2098478
1049684
3146043
1048972

218

16
18

O®JT U E W =

n
wn
OV NNV IO DVW IRV e—=

Perent

2,00
51,71
13,80

6,902
29.69

6,902

2,00

2.20

2,00

2,202

9.9”

2,00

9. 391

A,20

E' OB

8,00

2,20

.20

2,00

a,00

P,00

B.002

ﬂ. BB

2.00

P,00

2,00

G.GG

p, 0

2.00

G.QB

2,00

2,00

2,20

2,20

.00

2,20

2,00

@.3@

A, 00

2.20

Cumula

9,00
51,72
65,51
72.42
93,19

iep,e0
10Q,00
109,00
iee,e0
106,00
100,00
100,00
ieg,.00
iee,07
100,002
100,007
iepg,02
100,002
i0g,00
12,00
iee,00
100,00
10,00
100,00
100,00
100,00
iep,.00
120,00
100,00
100,00
ie@,00
1iP2,80°
170,00
iep. 00
1@, 002
120,00
10@,00
1P0,00
iea, 00

Average Imstruction Size = 3,17

-

Specifier S{ze

Size

1
2
3
4
S
6

Average Specifier Size =

Count

19404530
1655
3145973
1048650
320

2

Percnt

82,22
.01
13,33
4,44
2,00
2,00

Specifier Type (all)

Type

8 #0x
8 %1 x
s ¥2x
s #3x
(Rx)
Rm
(Rb)
=(Rb)
(Rb)+
®(Rb)+
b*(Rb)
eb(Rp)
w*(Rb)
ew(Rb)
1*(Rp)
®1(Rb)
Bdb
Bdw

Count

cessi1ee
138

107

96
4194438
12585969
332

95

155

eé

1144
274

121

2

169

33
4719537
189

Perenmt

8.89
2,00
2,00
2,20
17.77
53,33
2,920
.00
2,00
2,00
0,00
.20
B.GB
2,00
2,00
0.99
e, 00
B.BB

Specifier Type C(imdex)

Type

(Rb)

=(Rb)

(Rp)+
#(Rb)+
b*(Rb)
#b(Rb)
w*(Rb)
éw(Rb)
1*(Rb)
@1 (Rp)

Count

298 ®

3145734
54
1048650
%

2

%]

Perecnt

2,00
2,00
A
2.00
75.00
2,00
25,00
2,00
2,20
2,00

Cumule

82,22
82,23
95,56
170,07
160,00
199,00

1,40

Cumule

8,89
8,89
8,89
8,89
26,66
79.99
79,99
79.99
7Q.°°
79.99
80,00
80,00
80,00
80,00
80,00
80,00
109,00
100,02

Cumule

8.0
2,00
0,00
e,07
75.00
75,020
100,00
ieg,00
100,00
ieg,.e0

-

Memory Reads Per Instruction

Number Count Percnt
P 13110426 86,20
| 2098237 13,80
2 279 2,00
3 2 .72
4 1 2,00
5 [} 2,22
[@ 2,00

Cumula

86,27
170,00
ifp,00
170,80
10,00
1ep,00
ieg,002

Average Memory Reads Per Imstruetiomn = 2,14

Memory Wpi{tes Per Imstruction

Number Coumt Percnt

@ 131110808 86,21
1 2097863 13,79
e 2 2,00

Cumula

86,21
100,80
100,00

Average Memory Werites Per Imstruction = 0,14

Register Reads Per Imstruction

Number Count Percnt

4720151 31,04
5245065 34,49
1146489 20,69
2097208 13,79

27 02.00
2,00
2,00
2,00
2,00
2,00
2,00
2.00
2,00

VRPN NEHN—-S

S99 9w

Cumula

11,04

65,52

86,21
iep,00
10,00
122,00
172,00
iep,.00
102,00
100,00
10g,00
j2e,00
i0e,00

Average Register Reacds Per Instruction = 1,17

Register Wr{tes Per Imstruetion

Number Count Percnt
] 7867335 51,73
1 7341600 4B,27
2 1@ f,00

Average Register Wprites

Cumula

51,73
100,60
ipg,00

Per Instruction = 0@,48

CUTLER Job terminated at 30=NOV=1984 17859159,51

L b

Instruction Frecuency Data

This data was collected on 32=NOV=1984 1p:4F:25,24
This date was written to dbalds[cutler)placobi,cod
Total number of instructions traced was 13567199

Name Coumt Percnhnt Cumula

MOVF 2411961 17,78 17,78
SUBL3 1443589 10,64 28,42
ADDL2 1435118 102,58 39,09
MULL2 1434538 10,57 49,57
MULF3 1324354 9,76 59,33
MULF2 1197322 8,83 68,16

SUBF3 589739 4,35 72,50
ADDF 3 587551 4,33 76,83
CMPL 581551 4,29 81,12
BEQL §71072 4,21 85,33
ADDL3 323167 2,38 87,71
ACBL 315503 2,33 9@,04
ADDF2 273944 2,82 92,06
AOBLEG 207153 1,53 93,58
BLEQ 59895 @,44 94,02
CMPF 59776 P.44 94,46
BICW2 59738 @,44 94,91
DIVF3 59384 0,44 95,34
SUBW2 46019 2,34 95,68
ADDW2 36388 9,27 95,95
BICL3 34442 @,25 96,20
MOVL 33645 0,25 96,45
BLSS 31227 @.23 96,68
DIVF2 39974 2,23 96,91
CLRL 39383 0,22 97.13
BGEQ 30337 @,22 97.36
RSB 25325 2,19 97,54
JMP 24799 2,18 97,73
JSB 24449 9,18 97,91
MOVZWL 23259 0,17 98,28
ROTL 23217 @.17 98,25
CLRB 23281 @,17 98,42
7878 23061 P.17 98,59
CVTFD 23060 0,17 98,76
DIVD2 23004 9,17 98,93
BRN 22711 2,17 99,10
BRB 13157 9,12 99,19
SUBF2 12235 9,79 99,28
BGTR 11805 2,08 99,37
MOVAL 6916 8,05 99,42
MULL3 6289 2,05 99,46
SUBLZ 6798 P,P4 99,51
PUSHAL 5158 2,84 99,55
CVTLF 5A84 0,84 99,58
MNEGF 4199 .23 99,61
CMPW 3958 9,03 99,64
EMUL 3935 2,03 99,67
EDIV 385¢ 0,83 99,70
INCL 3699 2,83 99,73
MOVAB 3236 0,02 99,75
CVTWL 2550 .82 99,77
BICL2 1679 9,01 99,78
RET 1683 0,01 99,79

CALLS 1598 2,21 99,81

PJGEN,LOG?!

CVTBL
DECL
MOVW
SUBW3
INCB
BLSSU
POLYF
CVTDF
MOVAQ
EMODF
ADDDe
BICWY
MOVB
TSTL
CASEB
BNEQ
BSBW
PUSHL
MoveR
INSY
BLBC
BBC
CMPB
PUSHAB
BISLe2
ASHL
MOVCY
BISPSW
CVTLP
CVTPS
BBCC
BBS
SOBGEQ
DIVLY
TISTF
CVTFL
BBSC
CLRQ
MOVZBL
MNEGL
SKPC
EXTZV
DIVLe
MOVD
BvC
ADDB2
MuUuLB2
ACBB
CLRW
83888
MOVCS
BLBS
SOBGTR
XORW3
BLEQU
CHME
ASHP
DECW
PUSHR

1525
1496
1488
1371
1303
1276
1267
1266
1266
1265
1265
1265
1111
816
761
676
671
590
388
356
354
353
331
296

2,921
2,21
0.021
2,01
2,21
.21
.21
P21
2,21
2,01
2,21
2,01
2,01
2,01
P.01
2,00
0.@8
2,0e
2,20
.20
9.93
2,09
P.00
2,2
0,00
g,20
P,00
.00
B. BB
Q,00
n,00
P,29
P,09
2,00
2,002
2,020
.70
2,00
2,00
0,00
.00
2,00
.28
2,20
2,20
2,20
2,00
2,00
2,00
2.00
2,00
Q.20

- P,202

2,00
2,002
9. 93
#,20
2,020
P,80

99,82
99,83
99,84
99,85
99,86
99,87
99,88
99,89
99,92
99,91
99,91
99,92
99,93
99,94
99,94
99,95
99,95
99,96
99,96
99,96
99,97
99,97
99,97
99,97
99,98
99,98
99,98
99,98
99,98
99,98
99,98
99,99
99,99
99,99
99,99
99,99
99,99
99,99
99,99
99,99
99,99
99,99
99,99
99,99
99,99
120,00
182,20
100,00
10,00
100,00
120,00
192,00
100,00
100,00
100,00
100,00
100,00
100,00

3@=NOV=1984 19213

Page 2

PJGEN,LOGs1

MCOMB
POPR
AOBLSS
LoCC
BICB3
TSTW
XORB3
EDITPC
SUBB3
EXTV
PUSHAQG
CALLG
CHMK
BBCS
CASEW
CVTLW
BITL
CMPCS
CVTWF
CVTBW
MULW3
CVTSP
PUSHANW
BITB
MOVPSL
REI
INSQUE
CVTLD
BISBZ
BICBe

NN NN
[NNND

S s s S S s
rapapapas ra YN TVIWIWIWWEBEUVIUNTOOD V==

2,00
@.ﬁ?
.00
.20
0,20
P.00
P,00
2,00
.00
")
2,09
AP0
2,00
.00
2,00
P.20
2,00
.20
2,2¢
2,002
2,00
2,00
n.00
2,20
2,00
2.20
.00
2,00
2.80
2,00

100,00
1rp,00
100,00
160,00
100,00
100,00
12,00
100,00
109,00
100,00
iPg,002
1eg,00
100,00
100,00
100,00
12,00
100,00
120,00
100,00
100,00
102,00
100,00
100,00
{0@,00
100,00
100,00
iee,00
ieg,00
100,00
100,00

30=NOV=1984 19113

Page 3

Instruction Si{ze

S{ze Count Perent Cumula
1 26929 2,22 P.2°7
2 795271 5.86 6.86
L] 4752848 35,02 41,08
4 323492 22,29 63,36
S 2720383 292,85 A83,41
6 1819204 13,41 96,82
7 368493 2.72 99,54
a8 3640 2,03 99,57
El 27021 P.20 99,76

10 29467 0,22 99,98

1 2451 2,02 100,02

12 e 9,00 100,00
13 e 0,00 iP2,e0
14 e 9,00 100,00
15 2 2,00 100,00
16 e 0,00 102,080
17 2 2.00 100,02
18 e 9,00 100,09
19 2 2,00 100,00
20 @ 0,00 100,00
21 P 0,00 10¢,00
22 e 9,20 109,00
23 @ 0,00 100,00
24 ® 2,00 100,00
25 e 0,00 100,00
26 2 90,80 100,00
27 @ 0,00 100,00
28 e 0,00 100,00
29 © 0,00 100,00
30 P 0,00 10,20
31 e 2,29 100,07
32 e 0,00 100,00
33 ® 2,00 100,20
34 @ 0.00 100,00
35 @ 0,00 100,90
36 ? 9,00 100,007
37 © 2.00 100,09
38 ¢ 0,00 102,00
19 (% 2.%9 10@,00
4o e 02,02 10¢,00

Average Imstruction Size = 4,10

Speci{fier Size

S{ze Count Perent
1 24311236 77.29
2 316639802 12,60
3 Ip129141 9,58
4 11399 2,04
) 156449 PS50
6 3 2,202

Average Speci{fier Size =

Specifier Type (al))

Type Count Perecnt
s ¥0x 1838020 5,84
s*m!x 24121 2,08
s*#2x 3144 2,01
s*¥3x 5297 ©,82
[Rx] 29029389 9,25
Rn 19914430 63,31
(Rb) 1274775 4,05
=(Rb) 536 0,00
(Rb)+ 531060 1,69
®(Rb)+ 44 2.00
b*(Rb) 31586808 11,40
®b(Rb) 43393 0,14
w"(Rb) 6592 n,02
ew(Rb)) 2,00
1*(Rb) 27611 2,09
1 (Rb) 24547 9,08
Bdb 927273 2,95
Baw 338939 1,08

Specifier Type (index)

Type Counmt Perent
(Rb) 12783 0,44
=(Rb) "] 2,00
(Rb)+ 2 2,00
®(Rb)+ | 2,00
b*(Rb) 2885231 99,17
®b(Rb) 55 9,00
w*(Rb) 11399 2,39
¢w(Rb) @ 0,20
1*(Rb) 2 0,20
®1(Rp) ? 0,00

Cumula

77.29
89,89
99,47
99.52
0,20
iee,00

1.34

Cumule

5,84
5,92
5,93
5,95
15,29
78.50
82,56
82,56
84,25
84,25
95,65
95,79
95,81
95,81
95,90
95,97
98,92
120,00

Cumuyla

0,44
P, 44
Q.44
Q.44

99,61
99,61

100,00

100,00

100,00

100,00

Memory

Number

2
1
2
3
4
S
6

. -

Reads Per
Count

7884891
5364767
316273
e

1266
2
2

Imstruction

Perent

58,12
39,54
2,33
2,00
P.01
2,00
2,00

Cumule

58,12
97.66
99,99
99,99
100,09
100,00
100,00

Average Memory Reads Per Inmstructiomn = 0,44

Memory Werites Per Inmstructien

Number

4
i
e

Count

10987263
2579922
14

Percnt

80,98
19.02
.20

Cumula

80,98
100,00
i0p,00

Average Memery Wpites Per Imstruction s 0,19

Register Reads Per Imstructionm

Number

DO~ NEWHN—-D

Counmt

881304
1895504
8486543
1706825

597031

12

SS90

Percnt

6,50
13,97
62,55
12,58

4,49

2,00

2.00

2.00

2,00

P.00

2.0

2,080

2,00

Cumula

6,50
20,47
83,02
95,60

100,00
i00,00
100,00
10,00
100,00
100,00
i9p.00
129,00
100,00

Average Register Reads Per Imstruction = 1,94

Register Wri{tes Per Instruction

Numberp

2
1
2

Coymt

40802169
9481929
5101

Parcnt

30,07
69,89
0.04

Average Register Writes

CUTLER

Cumulae
10,07
99,96

i0e,00

Per Imstruction = 0,70

Job terminated at 3@=NOV=1984 19:13:03,.84

Instruction Freguency Data
This data was collected on
This data was written to dual:i{cutlerlicp.cod
Total number of instructions traced was

Name Count Percnt Cumula
MOVL 1743507 17.51 1651
8EQL 567772 S.70 23:21
BNEQ 485003 4.B7 28.08
CMPW 441390 b.64 32.52
MOVZISL 3336673 3+35 . 35487
MovaL 3037656 3.05 33.92
cmPL 292282 2.94 41.86
CVTYL 265602 28T A&.52
CLRL 212242 2313 4&Bsbb
RSH 21114673 2.12 43.78
MOVW 189319 1.90 50.68
83¢C 181495 182 52450
ADDLZ 170716 VoTl - Sksd2
BGTR 169925 171 55,92
BGENQ 165458 166 57.58
MOVAZS 155233 156 59.14
CVT3L 15263R% 153 60.68
cMP3 138147 1.39 62.0%
BRW 136873 1.37 63.44
8BS 136438 1.37 64.81
PUSHL 133715 1.34 66.15
3R3 127014 128 67.43
TSTL 117191 1.18 68.60
ADDL3 113561 1.14 69.74
8333 111727 1.12 T0.87
AD3LSS 110415 11, TA9T
MOVIBW 103055 118 - 73,07
BLSS 108715 1.09 74.16
MOVZ WL 102328 103 75.19
3S3W 984629 0.99 76.18
MOVE 97518 D.98 77.16
SLED 94538 0.95 78.11
RET 94044 0.94 79.05
CASE=SR 93793 0.54 50.00
CALLS 91477 D.%2 80.%2
MULL3 87402 0.83 81.79
BLSSU 24693 0.%5 B8Z.64
33¢CC 82935 0.83 23.48
BL5C 77627 0.78B R4.26
INCL 75126 D0.75 85.01
INSY 73498 0.74 B85.75
ADBLED 70124 D.70 B&S.45
SusL3 59271 .70 B7.15
su=53 69752 0.70 B7.86
SO5GTR 63175 0.63 B83.49
JMp 60383 0.61 29.10
TSTW 59291 0.60 89.70
SusL?2 56405 0.57 90.26
sSusa2 55494 0.56 ©90.82
EXTZIV 55098 Q.58 9337
MNEGHW 51944 B.52 91.90
CVTLW 43892 0.44 92.34

R S o R T O e e rrn e .

6-DEC-1984 22:11:27.56

S e TR e L B B e i b R e

T ~

AC3L 4229% 0.42 92.76
DECL 39371 0.40 93.16
MuLL?2 34942 0.35 93.51
JSB 2463860 D.27 93.78
CLR3 26760 0.27 94.05
MOVAW 26677 0.27 94.31
BGTRU 22420 0.23 94.54
BICLZ2 20556 0.21 94.75
MOVC3 20555 0.21 94.95
ASHL 20362 0.20 95.16
S03GE® 1897 0.19 9535
REMQUE 18727 0.19 95.53
MNEGL 18644 0.19 95.72
CVT3wW 150%7 0.13 95.90
DECW 18051 .13 96.09
B8L3S 17245 0.13 96.26
DIVLZ2 17263 017 96.44
Mova 16236 0.17 96.61
CLRW 16935 0.17 95.78
MCOML 160946 0.16 96.94
INSQUE 15393 0.15 97.09
MOVAQ 144132 0.14 97.24
LOCC 13656 0D.14 97.38
BISB2 13335 0.13 97.51
POPR 13198 0.13 97.64
MOVC5 12444 0.12 97.77
INCW 12305 0.12 97.89
PUSHAL 12113 0.12 98.01
cMPZV 11031 0.11 98.12
VS 11013 0.11 98.23
CLRQ 10822 0.11 98.34
ADDWZ 9541 0.10 98.44
TST8 9434 0.09 98.53
ADDW3 8999 0.09 98.62
PUSHR 8927 0.09 938.71
PUSHASB 8601 0.09 93.80
BGEQU 513 0.07 98.87
EDIV 7244 0.07 98.95
SPANC 6780 0.07 99.01
BICWZ 652% 0.07 99.08
BISL2 62382 0.06 99.14
EMUL 5916 0.06 99.20
CMPCS 5257 0.05 99.25
ADDS3 4891 0.05 99.32
sVC 4334 0.05 99.35
CASEW 4641 0.05 99.40
SU3W3 4413 0.04 9%.44
PRO3ER 42561 0.04 99.49
BICB3 3342 0.04 99.52
BICA2 3791 0.04 9%.56
CMPC3 3568 0.04 99.60
SUswW2 3394 0.03 99.63
ACBA 3258 0.03 99.67
CHME 2928 0.03 9%.69
PUSHAQ 2852 0.03 99.72
EXTV 2834 0.03 99.75
BICW3 4 o 7 4 0.03 99.78
MNEGSB 2591 0.03 9%.81
CALLG 2574 0.03 99.83

3LEQU 2465 0.02 99.86

BISWZ2
BISB3
MOVTC
PUSHAW
BISL3
8ICL3
BE2SS
INCS3
CVTLS
FFS
SKPC
CHMK
XOR32
MCOMB
DIVL3
ADDBZ2
DIVW2
BISW3
MCOMW
DECB
BITHW
susrPé
CVvTPL
BITB
835C
CVvTLD
MULW3
CASEL
CMPD
MOVD
BITL
CVTwWB
MULD3
SuUBsDh3
TSTD
DIVDZ2
cviDL
CVTDF
ACBW
CVTLF
DIVR3
XORrw2
XORL3

2149
1939
1494
1413
1394
944
530
550
513
508
450
368
352
254
191
176
156
144

b
-
~J

116

wvi o on
- b)

NN W
[+ s s Aee]

rn
L%,]

- b P
ek b ok wd N NN O8O O B P

0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.21
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0‘00
0.00
0.00
0.00
0.00

99.88
99.90
99.91
99.93
99.94
99.95
?9.906
99.96
9%.97
9997
9%.98
?9.98
99.98
99.99
09.%%
99.99
97.99
99.99
99.99
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
10C0.00
100.00
100.00
100.00
100.00
100.00
100.00

Instruction Size

Size

-
O OO0~ E NN -

1
12
13
14
15
16
17
18
19
20
21
22
23
| 24
| 25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Average Instruction Size

Count

305212
2440090
2194528
2142629
1418012

523898

424733

411772

33334
52167
3402
2417
32

67

0

-
[

CO000000O000L0O0O000OD0O0UODODO00 0O

Percnt

3.07
24.51
22.04
21.52
14.24

5.26

£.27

4.14

.39

0.52

C.03

.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Cumula

3.07
27.57
49.61
71.13
85.37
90.63
94.90
99.03
99.42
99.94
99.97

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

105.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

105.00

100.00

100.00

100.00

= 3.79

Sopecifier Size

Size Count Percnt Cumula
1T 12195247 68.41 6€8.41
2 3066385 17.20 85.61
2 1559437 B.75 94.36
4 331437 1.86 96.22
5 4471580 2.51 93.73
é 226171 1.27 100.00
Averace Specifier Size = 1.57

Specifier Type (all)

Type Count Percnt Cumula
s*#0x 1475654 8.28 8.28
s ¥1x 143239 0.80 9.08
s*E2x 69521 0.39 9.47
s*#3x 77850 0.44 9.91
[Rx] 1282570 719 17.10
Rn 6723786 37.72 54.82
(Rb) 487733 262 S57.45
=(Rb) 80794 0.45 57.90
(RD)+ 9916386 556 63.46
a(Rb)+ 12854 0.07 63.54
b*(R’b) 2107775 11.82 75.36
ab(Rb) 132002 0.74 76.10
w*(Rb) 910439 S-11 81.21
aw(RD) 23978 0.13 81.34
LA{RD) 284528 1.60 B82.9%94
al(Rrb) 37754 0.21 83.15
8db 2722547 15.27 98.42
Bdw 2810460 1.58 100.00

Specifier Type (index)

Type Count Percnt Cumula
(R2) 265422 20.69 20.69
-(Rb) 8] 0.00 20.69
(Ph)+ 0 0.00 20.69
a{Rb)+ § 0.00 20.69
b*(RD) LE3739 36.16 S€.86
ab(RrRb) 49170 3.83 A0.69
w*(RD) 276170 21.53 82.22
2wl(Rb) 58460 D.46 B82.68
L2 (RD) 214441 16.72 99.40

aL(RrRD) 7708 0.60 100.00

Memory Reads Per Instruction

Number Count Percnt Cumula
0 6087915 51.14 61.14
1 35744652 35.720 97.04
2 289517 2.91 69,95
3 5333 0.05 100.00
L 4 0.00 100.00
5 0 0.00 100.0C
6 0 0.00 100.00

Average Memory Reads Per Instruction

Memory Writes Per Instruction
Number Count Percnt Cumula

0 B640952 B86.78 B6.78
1 1316467 13.22 100.00
2 0 0.00 100.00

Average Memory Writes Per Instruction

Register Reads Per Instruction

Number Count Percnt Cumula
0 3077047 30.90 30.90
1 4655170 46.75 77.45
2 1720713 17.98 95.64
3 319065 31.20 98.84
4 111307 1.12 99596
5 4118 0.04 100.00
6 0 0.00 100.00
7 0 0.00 100.00
8 0 0.00 105.00
9 0 0.00 100.00

10 0 0.00 100.00
11 C 0.00 100.00
12 0 0.00 100.00

Averace Register Reads Per Instruction

Register Writes Per Instruction

Number Count Percnt Cumula

0 6008515 60.34 60.34
1 3941662 39.59 99.93
2 7244 0.07 100.00

Averace Register Writes Per Instruction

0.4

“f

0.13

0.97

‘?1WAV
pra

Y

Specifier Access Type

Type Count Percnt Cumula
read 81259487 45.5% 45.5°9
Wwrite 4417811 24.78 70.37
modify 354808 4.80 75.16
addres 8379241 £+93 8D.)0
vield S44453 Ja05 8315

branch 3003607 16.85 100.00

Total number of operand specifiers was 17825887
- Number of nonfetch operand specifiers was 1312270¢
- Percernt of nonfetch operand specifiers was 73.%42

Al

PIGEN,LOG?1

Instruction Freauency Data

This data was collected on 3@=NOV~1984 PB1S53151,46

I0«NOV=1984 14350

This data was written to dbaldt[cutler]li{cp,cod
Total number of {mstructions traced was 9948733

Name

MOVL
BEQL
BNEQ
CMPW
MOVZBL
MOVAL
CMPL
CVTWL
RSB
CLRL
MOVW
BBC
ADDL2
BGTR
BGEQ
MOVAB
CVTBL
CMPR
BRW
BBS
PUSHL
BRB
TSTL
ADDL3Z
BSB8
AOBLSS
MOVZBW
BL8S
MOVZWL
BSBW
MOVB
BLEQ
CASEB
RET
CALLS
MULL3Z
BLSSU
BBCC
BLBC
INCL
INSV
AOBLEQ
SUBL3J
SUBB3J
SOBGTR
JMP
TSTw
SUBB2
EXTZV
SuUBRL?2
MNEGW
CVTLW

Count

1739602
564686
48U989
441337
IIIRUR
In3765S
292195
266086
21114
21@74?
189294
189912
171129
169916
165458
156565
152638
138236
137319
137010
133535
127044
115383
113320
111727
112415
129QSS
{08727
182236

98630
97676
94587
93969
93894
91323
87398
84846
8293S
77562
75121
73498
72124
69846
69754
63175
60856
59545
55494
55096
SSe20
£1944
43892

Percnt Cumula

17,49
5,68
4,87
4,44
3,36
3,05
2,94
2.67
2.12
2s12
1,92
1.82
1.72
1.74
1,66
1.57
1.53
1,39
1.38
1.38
1.34
1,28
1.16
1.14
1.12
1,11
1.12
1.99
1,03
B.99
2,98
.95
2,94
2,92
2,88
2,85
2,83
2,78
.76
2,74
.72
8,70
2,70
.64
2,61
0,60
2.56
2,55
2,55
2,52
P,44

17,49
23,16
aa.ﬂﬂ
32,47
15,83
38,88
41,82
44,49
46,62
48,73
50,64
52,45
54,17
55,88
57,55
59,12
60,65
62,04
63,42
64,80
66,14
67,42
69,72
70,84
71,95
73,05
74,14
75,17
T6.16
77.14
78,029
79,03
79.98
89,90
81,77
82,63
83,46
84,24
85,00
85,74
86,44
87,14
87,84
88,48
89,09
89,69
90,25
90,89
91,35
91,88
92,32

Page 2

PIGEN,LOGy!

ACBL
DECL
MULL2
JSB
CLRB
MOVAW
BGTRU
BICL2
MOVC3
ASHL
SOBGEQ
REMOUE
MNEGL
MOVQ
DECW
CVTBW
BLBS
DIVLZ
CLRW
MCOML
INSQUE
MOVAQ
LOCC
BISB2
POPR
MOVCS
INCW
PUSHAL
CMPZV
BVS
CLRG
TSTB
ADDW2
ADDW3
PUSHR
PUSHAB
BGENU
EDIV
SPANC
BICwW2
BISL2
EMUL
CMPCS
ADDB3Z
BvVC
CASEwW
SUBW3
PROBER
BICB3
BICR2
CMPC3
SUBW2
ACBB
CHME
PUSHAQR
EXTV
BICW3
MNEGRB
CALLG

42299
393169
34940
26851
26760
26677
2aueg2
20556
20548
20358
191145
18727
18643
18348
18051
17952
17756
17263
16926
16096
15393
14413
13632
13296
13197
12431
12325
12089
11026
11813
18815
9670
9541
8999
8927
8452
7264
7245
6780
6528
6282
5917
S5u88
4889
4834
4641
4418
4261
3848
3751
3568
3394
3258
2928
28s%2
2834
2757
2591
2574

2.43
2,40
2,35
2,27
2.27
2.27
0,23
P21
2.21
9,20
2,19
2.19
P.19
9.18
2,18
2.18
2,18
2,17
8,17
2,16
2,15
?,14
2,14
Q.13
2,13
2,12
B.12
.12
B.11
2,11
2,11
2,10
2,10
2.09
2,08
2.07
2.07
2,27
0.27
2,06
0.96
2.06
2.05
2,05
2,05
2,04
9,04
2,04
9,04
0,04
2,03
2,03
2,03
2,03
2,03
2,23
2,03
2.03

92.74
93,14
93,49
93,76
94,03
94,302
94,52
94,73
94,93
95,14
95,33
95,52
9S.71
95,89
96,027
96,25
96,43
96,60
96,77
96,94
97.89
97.24
97.37
97,51
97,64
97.76
97.89
68,01
98,12
98,23
98,34
98,44
8,53
98,62
98,71
98,802
98,87
98,94
99,01
99,08
99,14
99,292
99,26
99,39
99,35
99,492
99,44
99,49
99,53
99,56
99,60
99,63
99,67
99,72
99,72
99,78
99.78
99.81
69.83

30=NOV=1984 14150

Page 3

PIGEN,LOG)

BLEQU
BISW2
BISB3
MOVTC
PUBHAW
BISLS
BICLZ
BBSS
INCR
CVTLB
FF§
SKPC
XO0RB2
CHMK
MCOMB
DIVLS
ADDBZ
DIVwW?
BISW3
MCOMW
DECB
BITW
SuUBPé
CVTPL
BBSC
BITHB
CVTLD
MULW3
CASEL
CMPD
MOVD
BITL
CVTWB
MULD3
SuBD3
TSTD
DIvDe
CVTOL
CVTDF
ACBW
CVTLF
DIVE3
XORW2
XORL3

eued
2149
1989
1470
1418
1394
941
580
551
513
Sp8
448
358
5e5
254
191

. S A s e
NNV NNINEW U O = U~
EWMoOCoCE =IO~

e
ars e ram WA WO OO DO D

.02
.02
P02
k.01
P.01
2.21
.04
2,21
2,21
P,21
2,21
2,20
2,20
.00
2,00
.00
.00
.20
0.90
P,20
2,00
2,00
P,00
A,00
2,00
n,00
0,00
2,00
0,00
.00
A.00
2,00
p,202
e,o0
.00
2,00
e.00
.00
2,00
2,00
2,00
2,00
0,092
2.00

99,86
99,88
99,90
99,91
99,93
99,94
99,95
99,96
99,96
99,97
99,97
99,98
99,98
99,98
99,99
99,99
99,99
99,99
99,99
99,99

100,00

100,00

100,00

100,00

100,00

100,00

100,08

100,00

100,00

190,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,00

100,080

100,00

190,00

JA=NOV=1984 14150

Page 4

Instruction Size
Si{ze Count Perenmt Cumula

i 325034 3,07 3,07
2 2434232 24,47 27,53
3 2191878 22,23 49,57
4 2142094 21,53 71,10
5 1419257 14,27 85,36
é 523420 5,26 90,62
7 424538 4,27 94,89
8 411787 4.14 99,03
9 38381 2,39 99,42
10 52167 2,52 99,94
11 3378 2,23 99,97
12 2397 2,02 190,00

13 312 0,00 100,00
14 67 2.°0 180,00
15 e 0,02 108,00
16 73 2,00 102,080
17 ? 0,00 100,00
18 ¢ 0,00 102,00
19 e 0,00 190,00
20 e .72 100,00
21 ¢ ©2.00 120,00
22 @ ©0.00 190,00
23 e 0,00 100,00
24 2 0,00 100,00
2s e 0,00 140,00
26 2 0,00 100,00
27 e 0,02 100,00
28 e 2,00 100,00
29 e 9,00 1PQ,00
30 @ 9.00 100,00
33 ? 0.00 100,00
32 ® 2,92 199,00
33 e 0,02 100,00
34 e 0.00 100,00
35 © 0,00 100,00
36 e 0,00 100,00
37 e 0,00 100,00
18 e 2,00 192,00
39 e 0,00 100,00
40 ® 0.00 100,00

Average Instructiomn Size = 3,80

Specifier Si{ze

S{ze

RN -

Average Specifier Size =

Count

12184479
365682
1560462

331484
446636
226167

Peremt Cumula

68,39
17.21
8.76
1.86
2,51
1.27

Speeifier Type (a11)

Tvpe

s #0x
8 ¥ 1x
s ¥2x
8 #3x
[Rx]
Rn
(Rb)
e(Rb)
(Rb)+
#(Rb)+
b*(Rb)
oh(Rb)
wo(Rb)
ew(Rb)
1*(Rb)
®1 (Rb)
Bdb
Bdw

Count

1473957
143101
69491
77848
1282513
6717369
467911
8R795S
991926
12628
2106409
132297
911709
23978
284337
37727
2719627
281507

68,39
85,60
94,36
96,22
98,73
100,00

1,57

Perent Cumyle

8,27
2,802
.39
2,44
7.208
37.714
2,63
2,45
5.57
2,07
11.82
N.74
S.12
2,13
1,60
A,21
15.27
1,58

Specifier Type (index)

Type

(Rb)

=(Rb)

(Rb)+
0 (Rb)+
b*(Rb)
#b(Rb)
w*(Rb)
ew(Rb)
1%(Rb)
) (Rb)

Count

265398
e

]

2
463773
49170
276167
5860
2140441
7704

Perent

20,69
2,00
2,00
2,00

36,16
1,83

21,53
D,46

16,72
2,60

8.27
9.08
9.47
9.90
17.12
S4,81
ST7.44
57.89
63,46
63,53
75.35
76,09
81,21
81,35
82,94
83,15
98,42
iep,00

Cumule

20,69
20,69
20,69
20,69
56,85
60,69
82,22
82,68
99,40
100,00

-

Memory Reads Per Inmstruction

Number Count Percnt
@ 6880177 61,12
| 3573927 135,92
2 2893596 2,91
3 5266 2,05
4 4 2,00
5) 2,00
6 @ 2,00

Cumula

61,12
97.04
99,95
17g,00
{ep,00
170,00

Average Memory Reads Per Instruction = 0,42

Memory Writes Per Inmstruction

Number Count Perent

@ 8632443 86,77
1 1316290 13,23
2 2 2,00

Cumula

86,77
100,020
190,00

Average Memory Werites Per Imstruetion = 02,13

Register Reads Per Imstruction

Number Count Percnt
a 072137 32,88
| 4651471 46,75
2 1790468 18,00
3 319025 3.21
4 111514 1.12
s 4118 2,24
6 a 2,002
7 2 2,20
8 2 .00
9 2 2,00

ia) 2,00
11 @ 2,20
12 2 2,00

Cumyla

3p,88
77,63
95,63
98,84
99,96
i29,@02
ieg,02
irp,00
iee,e0
100,002
ire,07
ieg,00
100,00

Average Register Reads Per Imstruction = 2,97

Register Wpites Per Imstruction

Number Count Perent
[} 6003116 602,34
i 3938372 39,59
2 T245 2,07

Average Register Wpites

Cumula
60,34
99,93

ieg, e

Per Imstruction = 0,40

CUTLER Job terminated at 30=NOV=1984 14:50:05,31

