
-^li-ey /O

C

Windows NT, 1993

Digital Equipment Corporation records
Engineers' papers: Mike Uhler papers: Alpha and PRISM devel

X2675.2004, Box 34

r

102749943

)

• .=r
;/

i- <■-■i

I .
r

i

■

. ■ ~

N'i

5

pCA^ AtP ^^ST- ^
/yo f)/iciiijze^'^lr' jjj Ctk>^B is .

- 6j^piP^ f^ AT /4>i- /toS)^ -X ^1^.

— TS ^/rut^ 0)7H pf^P 'EXzH^^Cr of^

J@6>^ ^IWT SiIS Sb6^b ^^HT,

- IYla^ T<^0^v»6^ /?Nfe.HS> <>0 (>^, 0^ /2>ir^^

^ r|9

- pr /M5 liPr-o-<^t-<? dl^ g/ee^c> uA|u^ ger

IWT \MtA 7^ puAXA^\i^ /t^TWV-

(Message ev6:41)
Return-Path: gmu
Received: by snaab.cdad.hlo.dec.com (5.57/ULTRIX-fma-041391);

id AA19715; Wed, 5 May 93 12:22:41 -0400
To: AD::FIELDING

Cc: AD::MEYER, ad::lowney, gmu
Reply-To: uhler@ad.enet.dec.com
Subject: Agenda for the DECwest visit

Wed, 05 May 93 12:22:41 -0400
"Mike Uhler, DTN 225-4735, HL02-3/D11" <gmu>

Date:

From:

X-Mts: smtp

Here are the list of topics that we'd like to discuss with

the DECwest folks, as reviewed and updated by Dirk and Geoff:

Here are the list of topics that I'd like to discuss with

the DECwest folks.

/Speculative execution and the potential impacts on NT.

will sketch the alternatives to provoke discussion.

NT management of the virtual and physical address space including
such things as page coloring.

Any modifications?

Geoff

0>

, / NT support for the performance monitoring utilities (e.g
y sampling, IPROBE, PERFMON/PMT, etc.) that ho'w run on VMS

PC• r

and OSF/1.

/ Methods of thread and MP synchronization.

- The NT calling standard, exception handling standard, and the

dynamics of library and system calls to determine what the

weight" of each type of call is.

- NT impact of putting restrictions on virtual aliases (to

evaluate the possibility of a large virtual Dcache).

■j Other more generic topics like access to sources (with restrictions) ,
for analysis purposes, etc.

If

/gmu

-^\(G> I3>v<2jC
-z^.

P^V^:iLO ^^0^1 Pl2<C>0 V-A<5T

I^TSCp /

A£>'. '. 'Z.XS *

v^aoud'** tmB\ Nkkw^i^V,

SY^ '^8r 38'Si'Ve-uG. X^i^Aeks NT/?EAi^ -.; 3’E(0(OeSSio-rS(;v

Vi"A-5,^ o»-v>e O r ■beCtoEi:; c>R&3^S

AyT/f^qi^ r:A/TSC

'O { (.'^
.K c J-/ c.r_ 6 /.-r? c, 'h.

rY^-c>^f5'^A>^A:2Uc:

rus-t,:: f"ek2 R-€ I /JVS^ j W'i«A /Mode
(^vTipVnx: ,
C\ic^+-StA\M^S9u«

n' c vr\
>>\

sve-
4,’ Ifyir4I):' Xc^rGA/ '

/(///4 e/hO ■■
v;

^73 jy] 1 '7. rnCL ^2r■e^-7
C'^,

f)l'X

^ r

fJrsy ^<Hyo3DbCR'C-T'.;

7 ^7/ : :
- '/7 f

\

HARDWARE REQUIREMENTS FOR
EISA AND PCI BASED ALPHA AXP SYSTEMS

RUNNING THE WINDOWS NT OPERATING SYSTEM

David G. Conroy

dgc@dgcvax.cdad.hlo.dec.com
Last edit: 04-Feb-93

1.0 Introduction

This document is a specification for Alpha AXP systems, intended to run the Microsoft

Windows NT operating system and its applications, which use the EISA and/or PCI

busses as their principal VO busses. There are a number of reasons why it is desirable to

have such a specification.

1) Windows NT applications must be able to make functional assumptions about the

systems upon which they will run when they design their user interfaces. This results in

requirements surrounding display resolution, number of display colors, keyboard key
labels, number of mouse buttons, and so on. Since these requirements must be the same

on all systems upon which the Windows NT system runs (that is, the same set of

requirements must apply to Intel, MIPS, and Alpha AXP systems) most are determined

by the existing Intel base.

2) The Windows NT operating system itself makes unwritten, but nevertheless

fundamental, assumptions about the hardware upon which it runs. Violating these

assumptions can make porting the operating system impossible. This results in

requirements surrounding low-level aspects of the system architecture. Most of these

requirements are architecture independent; a small set of them are Alpha AXP specific.

3) The Windows NT system is an open system, and it is expected that the same industry

which builds expansion hardware for Intel based systems will build expansion hardware

for Alpha AXP based systems. This results in requirements to ensure that certain key

pieces of system software (for example, device drivers) can be shrink-wrapped, and may,

eventually, result in recomendations surrounding external connectors.

This document does not define a system which can be cloned mindlessly, and which will
run some standard version of the Windows NT software. Rather, it defines the edge of

the envelope within which a certain class of Alpha AXP systems should be designed, and
offers some recommendations, which, if followed, may make building a version of the
Windows NT software easier.

Cloning of hardware is vital in the world of Intel based PCs. MS-DOS provides such a

threadbare set of services to its applications that many are forced to manipulate the

hardware directly, and the only way to achieve application compatibility is to have

absolute hardware compatibility. Although the Windows NT operating system shields its

applications (and, in fact, almost all of itself as well) from most of the low level details

of the system upon which it runs, it is hard for the designer of an Intel-based system to

exploit this fact as long as it is possible that the system might run MS-DOS.

Alpha AXP systems have no such history. Designers of Alpha AXP systems are free to

exploit the fact that the Windows NT operating system has a very abstract view of
hardware, and can build their systems in whatever manner they desire, as long as they are

willing to accept the additional cost of building system specific software. Designers of

systems which are far from the traditional PC design center (very high performance

systems, multiprocessor systems, and so on) may be willing to accept this additional cost.

It is, therefore, important to understand exactly where the edge of the envelope lies.

This is not to say that certain standardized Alpha AXP system configurations will not

become popular. Building new versions of software, even if it is easy, takes time and

costs money, and so there will be pressure (especially within large organizations, like

Digital itself, where even doing nothing takes a long time and costs a lot of money) to

make new systems copy most of the attributes of their predecessors. The availability of

standardized integrated circuits with interesting characteristic s (like the LCA

microprocessor, and the HARLEY and APECS chipsets) will encourage this even more.

However, it seems naive to believe that a single system configuration can suffice, or that

Digital can determine all of the characteristics of such configuration(s).

A particular system can implement functions beyond those described in this document

(that is, the absence of a function in this specification does not imply that a function is

forbidden), and it can implement a particular function described in this document in a

way which is not compatible with the recommended implementation. In both these cases

the system developer must provide the additional software required to support the
function.

This document does not discuss Alpha AXP systems which do not use the EISA and/or

PCI busses as their principal I/O busses, nor does it discuss systems which access these

busses indirectly. Much of the information in this document is relevant to the design of

Alpha AXP systems which are bounded and/or are built around other system busses;

determining what sections are relevant is (unfortunately) left as an exercise to the

designers of such systems.

This document only describes details which are visible to high-level software (in this

specification, the term high-level software means the operating system and above,

including device drivers and system initialization; the term low-level software means

PAL, HAL, and any console functions). It does not describe system specific registers

which would only be manipulated by low-level code, nor does it describe internal busses

within the processor or I/O systems which are not directly visible to software (note that

the PCI bus will fit into this class in many systems).

2.0 Processor Section

The processor section is the collection of processors, caches, memories, and internal

busses which can execute programs defined by the Alpha AXP architecture. Most of the

requirements imposed upon the processor section are imposed by the Alpha AXP

architecture, and are described in detail in the Alpha AXP System Reference Manual

(SRM).

The SRM (section I, 4.1.1) allows floating point support to be subsetted. The Windows

NT operating system requires full support for IEEE floating point (S and T format), and

does not require any support for DEC floating point (F, D, and G format). Any gaps in

the processor section's support of floating point must be filled in by PAL code; there is

no floating point emulation in HAL or in any high-level software.

Like VMS and OSF/1, the Windows NT operating system has, in addition to the standard

PAL functions required by the Alpha AXP architecture, its own operating system

specific PAL functions. These functions are not described in this specification;

eventually a description of the PAL functions used by the Windows NT operating system
will be ECOed into the SRM.

2.1 Regions

The SRM (section I, 5.2) specifies that the physical address space is divided into four

regions based on the two most significant implemented physical address bits. The actual

address bits which function as region selection bits are known only by low-level
software.

2.1.1 Memory Region

The system must implement at least 16M of memory, and this memory must appear to

high-level software as a contiguous memory-like region (as defined in section I, 5.2.4 of

the SRM) starting at offset 0 in region 00. Small areas of this contiguous block may be

marked as unavailable to high-level software because low-level software has claimed

them for it own use or has determined that they are defective.

It is TBD how this information is passed to high-level software, but something very

similar or identical to that described in the bootstrapping sections of the SRM is likely.

Memory systems built from interchangeable array modules of differing sizes (for

example, SIMMs) must include hardware which can select the array modules in a way

which allows a contiguous view. Memory systems are not required to do this

automatically (that is, completely in hardware) as long as the necessary low-level

software runs before any high-level software.

The memory region is allowed to be, but not required to be, a cached region. The cache

policy (write-through, write-back, and so on) is unspecified, but all caches must comply
with the coherence rules detailed in the SRM (section I, 5.4) assuming that the EISA

DMA transfer controller and EISA bus direct masters are processors; software enforced
cache coherence is forbidden.

Clearly it is possible to run Windows NT on a machine with software cache coherence,

because if it wasn't possible, the JAZZ machine would not work. If we don't forbid

software cache coherence we have to define a set of Alpha AXP specific software cache

coherence HAL procedures, arrange that these procedures are called from all the

appropriate places in the high-level software, and have stubs for these procedures on the
machines which have hardware cache coherence, which is probably most of them. Given

that building coherent caches isn't that hard, it seems easier to just kill software cache
coherence here and now.

It is unspecified what happens if high-level software references a physical address in the

memory region beyond the actual size of physical memory reported by low-level

software. This eliminates any need for the memory system to detect such references, lets

the memory system introduce physical addressing aliases to simplify the implementation

of the contiguous view, and lets the system eliminate tag storage for physical address bits

beyond those needed to address its largest possible physical memory.

It is unspecified if the memory system provides any error checking and/or error
correction hardware. The format of the information logged on memory errors (and, in

fact, on any machine check) is system specific, since all machine checks are processed in

PAL or HAL. The logging interrupt generated when a correctable error is actually

corrected is delivered at IRQL 7; the system must contain whatever hardware (if any) is

necessary to make the delivery of the intermpt subject to the current IRQL.

Jeff and Joe: The Windows NT PAL code implements a non mapped kernel space
between virtual addresses 80000000 and BFFFFFFF. Because the space is non mapped

(that is, a virtual address in this space can be transformed into a physical address in the

memory region using simple arithmetic) the actual location of the kernel's pages in the

memory region is somewhat visible. Does this have any implications on console andlor

diagnostic software; for example, would it be better for console andlor diagnostic

software to steal any pages it needs from the high end of the memory region so that the

system would always be loaded at location 0?

2.1.2 Non-Memory Regions

The system has almostunlimitedflexibilityin regions 01, 10, and 11. These regions will

contain control and status registers for the memory system (manipulated by low-level
software), bootstrap and diagnostic ROMs, control and status registers for system

specific I/O devices (manipulated by system specific device drivers) and so on.

The memory and I/O spaces of the EISA and/or PCI bus(es) must be assigned blocks of

addresses in one of the non-memory regions. The base address of these blocks can be

system specific, since the base addresses are supplied by HAL, but the blocks must have
the same behavior as viewed by high-level software (that is, it must be possible to use the

READ_PORT and WRITE_PORT macros in both memory and I/O space; the

recommended way to accomplish this is to make their semantics exactly the same).

2.2 Locks in the Memory Region

The system must implement the standard semantics of load-locked (section I, 4.2.4) and

store-conditional (section I, 4.2.5) in the memory region. Uniprocessor systems will, in
most cases, implement an extremely degenerate implementation of the lock hardware,

consisting only of the lock flag (that is, the lock flag is set on load-locked, cleared and
tested on store-conditional, and cleared on DMA writes to any address in the memory

region). Multiprocessor systems will, in most cases, implement the lock address register
and the lock address comparator as well.

The Windows NT operating system uses its standard interlocks on uniprocessor systems.

System performance will suffer if uniprocessor systems use low-performance

implementations of load-locked and store-conditional under the (incorrect) assumption

that they will only be extensively used on multiprocessors.

If you arrange that the Alpha AXP lock flag cannot be set when there is an outstanding

EISA or PCI lock (that is, wire the EISA or PCI lock signal to the asynchronous reset of

the lock flag) then you can write Alpha AXP sequences with the same semantics an Intel

LOCK XCHG as long as the program does not depend on byte or word atomicity.

Recently I have been working on a feasability study for building an Alpha AXP

processor chip which is functionally compatible (and perhaps even pin compatible) with
the Intel Pentium processor. Since the Pentium specification promises much about what

can happen when the Pentium LOCK# signal is asserted, it seems that the only way it can

be implemented is in PAL. This means that a Pentium compatible Alpha AXP processor

would implement both Alpha AXP locks (with a lock flag and a lock address register)

and Intel locks (with some special hardware to assert the LOCK# signal at the right time,

and the appropriate CALL_PAL instructions to request services). This seems to be an

acceptible solution (and perhaps the only one, if it is necessary to implement locks with

byte granularity) since the only clients of such locks would be the miniport drivers for

some peripherals.

Joe: The SRM says that the lock flag is cleared by a CALL PAL REI. There is no

mention of any change to the state of the lock flag in the description of CALLPAL RTI

or CALL PAL RETSYS, at least in the ancient version of the PAL speciifcation which I

have. Is this just an oversight?

2.3 Multiprocessor Considerations

The Windows NT operating system can support multiprocessor Alpha AXP systems, as

long as the system meets certain requirements. Most of the requirements (read and write

ordering, synchronization facilities, and so on) are part of the general Alpha AXP

architecture, and are covered by the SRM; however, the Windows NT operating system
imposes additional requirements.

1) All processors in a multiprocessor system must be identical. It must be possible to
suspend a thread on one processor and resume it on any other processor. In addition, the

same suspend/resume code is used on all processors, so no reformatting of machine state

is possible.

2) All processors in a multiprocessor system must have identical views of the memory

system and the I/O system. Asymmetric arrangements in which the I/O system can only

be seen by distinguished processors (and in which I/O can only initiated on those

processors) are unacceptable. In addition, asymmetric arrangements in which the physical

address of registers in the I/O system differ from processor to processor are unacceptable

as well, since the same set of page tables are used on all processors.

3) Each processor in a multiprocessor system must have a block of per-processor

memory associated with it, which is accessed in exactly the same way (that is, by exactly

the same code) on each processor. This can be implemented by having a per-processor

base register which is accessed the same way on each processor (for example, by a PAL

call which returns the address of the per-processor data block for the current CPU), or by

having distinct physical memory mapped to the same address in the virtual address space

of each processor (by means of a PAL code hack and/or dedicated DTB entries, since the

same set of page tables is used by all processors).

4) At system startup time a distinguished processor (the boot processor) must begin

running, and all other processors must be stopped. The other processors must be able to

be initialized and started by software running on the boot processor (that is, it must be

possible to implement the HalStartNextProcessor procedure).

5) Each processor in a multiprocessor system must be able to send interprocessor

interrupts to all other processors (including itself) in order to implement the
HalRequestIpi procedure. Interprocessor interrupts must be delivered to a processor at an

IRQL above all device interrupts and above the interval timer interrupt, and be masked

by IRQL in the usual way.

6) It must be possible to deliver all inteirupts to the boot processor. It is recommended,

but not required, that interrupts be delivered to all processors in a way that distributes the

interrupt load over all processors, taking care to avoid executing multiple copies of the

interrupt handler for a particular source (that is, interrupts through a particular interrupt

vector) on multiple processors at once; executing multiple interrupt handlers from

distinct sources which just happen to be assigned the same IRQL is fine.

3.0 I/O Section

There were several requirements on the design of the EISA and/or PCI I/O section.

1) The EISA bus and the PCI bus are longword wide busses with four byte enables (that

is, they allow byte and word width reads and writes), whereas the Alpha AXP

architecture allows only longword and quadword width reads and writes. This makes it

necessary to devise a scheme which uses Alpha AXP longword and quadword loads and

stores to generate masked reads and writes. In addition, neither bus makes any attempt to

conceal its Intel heritage, so it is also necessary to devise a schemes to generate I/O space

cycles, interrupt acknowledge cycles, PCI configuration cycles, and PCI special cycles.

2) The Windows NT operating system assumes that a block of physically contiguous

addresses in I/O or memory space corresponds to a block of physically contiguous

addresses in the address space seen by the processor section (the HalTranslateB us Address

procedure returns a single address, not a vector of addresses). This prohibits

implementations which use high order physical address bits to generate byte enables.

3) The Windows NT operating system assumes that all locations in memory space on all

I/O busses can be directly accessed at all times. It expects to be able to compute the

physical address corresponding to a particular memory space address on a particular I/O

bus (by calling HalTranslateBusAddress), to be able to map that block of physical

addresses into some virtual address space (by calling MmMapIoSpace), and then be able

to context switch between that address space other address spaces (which may also

contain mapped regions of EISA memory space) without special actions. This prohibits
implementations which use bank switching registers to generate high order I/O bus

memory space address bits or to select between multiple I/O busses. No such assumption

is made in I/O bus I/O space or in I/O bus memory space which is accessed only by

device drivers, since all references are made through the READ_PORT and

WRITE PORT macros.

3.1 Byte Enable Encoding

The EISA bus and the PCI bus require the ability to generate byte masked longword read

and write cycles. Although many implementations are possible, encoding this
information in the address makes synchronization easier, since masked cycles are

generated by unprivileged code.

One possible implementation (which has been more-or-less proven in practice) uses bits

a[04..03] of the physical address as size bits. The remaining physical address bits are

used as I/O bus address bits, with the physical address bit a[05] taken to be byte address

bit a[00]. The two size bits and the two least significant address bits determine which

byte(s) participate in a read or write. In EISA systems the two least significant physical

address bits are only used to generate the byte enables on some internal bus which is

eventually transformed into the EISA bus. In PCI systems somewhat more complicated

logic is needed because of the more complicated rules regarding what is driven on
AD[01..00] during PCI address phase.

This implementation is only more-or-less proven in practice because JENSEN shifts
everything two bits to the left; that is, it places the size bits in a[06..05]. This simplifies

the logic a little, but restricts the size of the external address space to 32M. The described

implementation is being used on all new machines (actually, I heard through the grapvine

recently that there is a PCI design for TurboLaser which uses the old Jensen scheme).

The described implementation can always be built, since the SRM mandates quadword

granularity of reads and writes in all regions of the address space.

The size encoding is described in the following table. It is unspecified what byte enables

are generated for address and length combinations not in this table, but since regions of

I/O bus memory space will be mapped into areas of the virtual address space which are

accessible by non privileged software, they must not be security holes (so designs cannot,

for example, hide configuration or interrupt acknowledge cycles in the unspecified

encodings).

a[06..05] a[04..03] Enables
FFFT

FFTF

FTFF

TFFF

FFTT

FTTF

TTFF

FTTT

TTTF

TTTT

00 00

01 00

10 00

11 00

00 01

0101

10 01

00 10

01 10

00 11

Reads and writes of I/O and memory spaces must always be performed using longword

loads and stores; systems built using CPU chips with cache-line external interfaces are

unlikely to be able to determine the size (longword vs quadword) of a read. The system

performs no repositioning or masking of data on reads or writes; data is always read or

written from the natural byte lane of the longword, and software must perform the

necessary shifting and masking. The system performs no special sequencing of reads and
writes of I/O and memory spaces; if software needs to ensure that a sequence of reads

and writes happen in a particular order, then it must include the necessary MB
instructions.

This implementation has no way to generate a 64 bit read or write on a 64 bit PCI bus.

This is harder than it sounds, because on EV4 there is no way to determine the size

(longword vs quadword) of the load instruction which caused a read miss.

This encoding is fairly low performance, because it discards much of the potential

bandwidth of the processor chip's pins, and much of the data gathering abilities of the

processor chip's write buffers. This is not mueh of an issue on pure EISA systems like

Jensen, since the EISA bus is slow, the ISA option cards which are plugged into many of

the EISA slots are worse, and the processor chip side of most EISA ehipsets can only

handle single longword transactions (and most cannot even run those cycles back-to-

back). Systems which allow PCI options may have higher expectations, and higher

performance encodings may need to be developed.

The longword dense address space implemented by the HARLEY chipset is a step in this

direction. Note that if it were quadword dense then standard Alpha byte manipulation

sequences aimed at a block of memory would work; the performance might be very poor,

but the code would function. The longword dense vs quadword dense arguments happen

because the Alpha SRM requires only quadword granularity in non-memory regions,

which encouraged EV4 to adopt an external interface in which it was not possible to tell

the size of the load instruction which caused a read miss (writes in non-memory regions

on EV4 have longword granularity, but it's an artifact), which forced systems to assume

some size for I/O space reads. The EV4 external interface was changed between pass 1

and pass 2, at the request of the workstation group, to bring a[2] to the pins on read

misses; this makes the HARLEY longword dense space possible. In retrospect, one

wonders why the workstation group didn't ask for a size indication at the same time,

and/or why nobody noticed that their request put the correctness of the quadword non

memory region access granularity in doubt.

3.2 Memory Space Accesses

Processor reads and writes in the region of the physical address space assigned to I/O bus

memory space are translated into the appropriate masked memory space reads and writes

on the I/O bus, using the encoding for low order address bits and byte enables defined for

the system. Such references must be uncached.

Since several of the processor's low order address bits may be consumed by a size field

and by any shift required to ensure that the all the necessary address bits are visible

outside the CPU chip, there may not be enough CPU physical address bits left to generate

full 32 bit I/O bus memory space addresses, or even I/O bus memory space addresses

beyond the end of system memory. The inability to generate I/O bus memory space

addresses beyond the end of system memory on systems which use direct-mapped DMA

addressing (section 3.4) is serious, since I/O bus memory space devices must be

configured so that their contribution to I/O bus memory space lies beyond the end of
system memory to prevent their memory from casting a configuration-dependent shadow
on system memory where DMA does not work.

Since the Windows NT operating system assumes that all locations in I/O bus memory

space on all I/O buses can be directly accessed at all times, and since the I/O bus memory

space will be wildly discontiguous in any system which has an Intel style address map

(network cards and VGAs have memory space buffers between 640K and 896K, and

large frame buffers need to be placed in memory space above system memory, which is

hundreds of megabytes away), the missing high order address bits cannot be supplied
from a single register. However, in systems which have an Intel style address map two
registers are enough; one would always contain 0 (and be used to access the low 16M of

memory space) and the other would contain a system and/or configuration specific value
(and be used to access the large frame buffers, which are configued above system

memory in memory space). The registers would be loaded once, early in the life of the

system, and never changed. Note that since one register always contains 0 it does not

really need to me implemented as a register; a set of carefully placed AND gates will
suffice.

The Jensen implementation has a single register, and uses it at all times. System software

puts a 0 in this register, and configuration restrictions arrange that all EISA memory

space devices are assigned addresses in the low 32M. With this implementation it is all

but impossible use a device which needs a large block of EISA memory space. If it is

necessary to address an EISA memory device above IM (which would cast a shadow on

main memory at a place where it might matter) then system software can avoid the

problem by simply arranging to not use the memory upon which the shadow is cast. One

way to do this would to be to mark it as defective.

3.3 I/O Space Accesses

Processor reads and writes in the region of the physical address space dedicated to I/O

bus I/O space are translated into the appropriate masked I/O space reads and writes, using

the encoding for low order address bits and byte enables defined for the system. Such
references must be uncached.

EISA I/O space addresses are only 16 bits wide so there will always be enough physical

address bits to allow direct access. PCI I/O space addresses are 32 bits wide, but since

Intel processors cannot generate such addresses, and since Intel is very strongly

recommending that peripheral chips not use PCI I/O space addresses above 64K, it seems

pointless for systems to be able to generate, and unwise for systems to require the use of,

PCI I/O space addresses above 64K. However, all 32 PCI address bits must be driven.

Note that an address in the low 64K of an address space is also in the low 16M of an

address space, so high order PCI address bits can be generated the same way in memory

space and in I/O space.

3.4 DMA Accesses

Memory space addresses generated by I/O bus direct masters (or, in EISA systems, by

the DMA transfer controller) sometimes need to be treated as DMA references to the

cache and memory system in the processor section. Two implementations are possible.

In the direct-mapped scheme memory space reads and writes between location 0 and the

highest physical memory address implemented by the system (which is not necessarily

installed in the system) are treated as DMA references, with the exception, in EISA

systems, of any holes needed to allow correct operation of ISA options.

Holes are needed because ISA memory space options respond based on a 24 bit address

decode and the MEMR/MEMW strobes (this is even true on old 8-bit cards, since

a[23..20]=0000 is implied by the SMEMR/SMEMW strobes), resulting in address

conflicts during DMA between the option and the (direct-mapped) main memory. Most

conflicts happen between 640K and 896K, where the BIOS ROMs and the display

memory window of VGA compatible display cards lie; a single hole between 512K and

IM is recommended. Correct operation of DMA transfers targeted at ISA memory space

options which must be addressed between IM and 16M requires additional holes. Note

that the Windows NT system has no mechanism for dealing with the fact that a DMA

transfer cannot be targeted at the main memory whose addresses conflict with such an

option; in a system using direct-mapped DMA little can be done with such main memory

other than mark it bad to keep it away from the system.

In the scatter-gather mapped scheme memory space reads and writes in a system specific

address space window are treated as DMA references. Address translation hardware,

manipulated by the loMapTransfer and loFlushAdaptorBuffers procedures, determines

the system memory address corresponding to each memory address in the window. The

address translation hardware must have 8K (that is. Alpha AXP minimum pagesize) byte

granularity.

The Windows NT operating system makes extensive use of DMA transfers to and from

buffers which are virtually contiguous, but not necessarily physically contiguous. The

inability to perform these transfers directly may have serious performance consequences,

since it may force a large fraction of I/O transfers to be copied through a contiguous

staging buffer.

Experience with DMA devices in other operating systems has shown that scatter-mapped

DMA is a good thing, and there is no reason to believe that the Windows NT operating

system will be different (especially considering that there is a wonderful comment in one

of the workbooks which talks about "certain archaic systems" which require that DMA

transfers be aimed and physically contiguous pages). The LCA and APECS PCI

interfaces implement scatter-mapped DMA, and do so in a compatible fashion, which

uses a table in main memory to hold the physical page numbers, and keeps a small

translation buffer to avoid looking at the table in main memory on every DMA cycle.

The designers of the HARLEY chipset have agreed to implment this scatter-mapping

scheme in a future version of the HARLEY chipset should performance measurements

on the MORGAN system justify the change.

The use of the direct mapped DMA addressing and peripheral controllers which

implement their own scatter-gather can be, in many systems, a reasonable alternative to
dedicated scatter-mapping hardware, as long as the consequences of having to deal with

devices which do not have scatter-gather capability and/or ISA device which cast main

memory shadows between IM and I6M are understood.

The cache and memory system never responds to I/O space addresses generated by direct
masters or by the EISA DMA transfer controller. The cache and memory system never

responds to lACK, configuration, or special cycles generated by PCI masters.

3.5 DMA Transfer Controller

EISA systems must implement a DMA transfer controller which is functionally

compatible to that described in the EISA specification (that is, each of the seven DMA

channels must support type A/B/C/compatible timing, 8/16/32 bit devices,

single/demand/block transfer modes, and extended addressing). Since the DMA transfer

controller is manipulated only by HAL code, it need not be register compatible to with

the controller described in the EISA specification.

Jejf: It looks to me like there are features on the standard EISA DMA controllers which

are not accessible via the HAL interface, like ring buffer mode, and ISA compatible

segmentioffset addressing Can we eliminate these features from this speciifcation, so that

systems which are not using the Intel chips can eliminate them, or do device drivers

sometimes stuff bits into the DMA controllers behind the back of HAL?

3.6 Interrupt Controller

The system must implement an interrupt controller which is prioritizes the various

interrupt sources, and, if the priority of an interrupt source is above a priority level set by

HAL, delivers an interrupt request and the identity of the intermpt source to the

processor section.

The interrupt controller in EISA systems is not required to be register compatible to the

interrupt controller described in the EISA specification, since it is only manipulated by

HAL. The interrupt controller is required to implement programmable mode control

(active high edge trigger vs active low level trigger) on any request line which connects
to an EISA slot.

If a system's interrupt controller is implemented using Intel components then its

processor section will need to implement a system specific register to generate the Intel-

style interrupt acknowledge read cycle. Hardware need only generate a read cycle with

the correct semantics; HAL can mimic the interrupt acknowledge behavior of an Intel
processor by generating two interrupt acknowledge reads separated by an appropriate

delay, and discarding the result of the first.

The following table is a list of EISA interrupt requests (listed in priority order, from

highest priority to lowest priority) and the conventional use, if any, in Intel PCs.

ISP Timer (Windows NT profile clock)

Keyboard
(RTC on Intel, unused on Alpha AXP)
EISA bus

EISA bus, (COM3)

EISA bus, (COM4)

Mouse (see section 4.1)

(NDP on Intel, unused on Alpha AXP)
EISA bus. Hard disk

IRQO

IRQl

IRQ8

IRQ9

IRQIO

IRQll

IRQ 12

IRQ 13

IRQ14

IRQ15

IRQ3

IRQ4

EISA bus

EISA bus, COM2

EISA bus, COMl

EISA bus, (LPT2)

EISA bus. Floppy disk
EISA bus, LPTI

IRQ5

IRQ6

IRQ?

Note that some interrupt requests, like IRQ3, might be shared by the EISA bus and by

an I/O device, masquerading as an EISA device, which is, in fact, on the system board. It

is unclear what is the best way to hook up such interrupts. One approach, which does

work, is to just connect the local I/O device interrupt request to the EISA bus wire, on

the grounds that any conflict which happens is no worse than the conflict which would

have happened in an Intel based system. A better approach is to add the OR gates needed

to cleanly share the interrupt request wires, and to implement a clean interrupt request

sharing scheme. This software part of this is straightforward, since the interrupt handlers

of Windows NT device drivers are required to return a BOOLEAN which indicates if

they serviced an interrupt, and the interrupt dispatcher is required to keep walking the

chain of device objects associated with a particular interrupt source as long as interrupt

handlers keep returning FALSE. The hardware part (the OR gate) is a little tricky, since

the polarity of EISA bus interrupt requests is programmable. This may not actually be a

problem, since the EISA bus interrupt requests upon which these sharing situations occur

have stong de-facto assertion levels (IRQ3 and IRQ4 are, for example, active high).

3.7 Interval Clock

The system must implement an interval clock which generates periodic timer interrupts.

Although the Windows NT operating system prefers an interval timer rate of about 100

timer interrupts per second, and prefers that the interval clock generate an integral

number of timer interrupts per second (that is, 100 ticks per second is better than 102.4
ticks per second), just about any interval timer rate can be used.

Systems whose interval clock cannot generate timer interrupts which meet the Alpha

SRM requirements (section II, 6.4.3) may be unable to run alternative operating systems

such as OpenVMS andOSF/1.

Interval clock interrupts must be delivered to software at a higher IRQL than any device

interrupt; the system must take care when bringing interval clock interrupts through the

interrupt controllers that interval clock interrupts are never masked by device interrupts.

It must be possible to mask interrupt clock interrupts, since there are IRQLs at which

interval clock interrupts are blocked.

In a multiprocessor system interval clock interrupts must be delivered to all processors.

There is no need for these interrupts to be synchronized.

3.8 Profile Clock

The system must implement a profile clock which generates periodic interrupts between

TBD Hz and TBD Hz. The delivery of profile clock interrupts need not be precise (it is,

after all, only used by the profiler), so they can be treated just like device interrupts if

desired. It must be possible to mask profile clock interrupts, since there are IRQLs at

which profile clock interrupts are blocked.

In a multiprocessor system profile clock interrupts must be delivered to all processors.

There is no need for these interrupts to be synchronized.

The EISA specified interval timer 1 of counter 0, which counts at 1.193MHz and delivers

an interrupt through IRQO of the EISA interrupt controller, is used as the profile clock in

all Intel based systems and in the Jensen system. Nobody seems to have any idea how the

rate of the profile clock should be related to the cycle time of the processor.

3.9 Realtime Clock

The system must implement the BB_WATCH hardware as described in the SRM; that is,

a realtime clock with at least 1 second resolution, with at least 50 ppm long term

stability, with an update time of 1 second or less, and with battery backup with powerfail
detection.

Any of the PC standard time-of-year clocks, such as the Motorola MCI4681A or the

Dallas DS1287A can be used to implement the realtime clock. In addition, these chips all

provide a periodic interrupt source, one configuration of which generates an interrupt

every 976.562 uS, which can be used as an SRM compliant interval clock.

3.10 Configuration Memory

The system must provide at least TBD bytes of non-volatile configuration memory. This

configuration memory can be implemented as a CMOS RAM backed up by a battery, or

it can be implemented as an electrically erasable ROM. There is no need for powerfail

detection on a battery backed up configuration memory since all data in it is protected by
software means.

John: The value of TBD will actually be a formula, since the size is a function of the

number of HO busses and the number of slots per bus. Do you have any idea for the

actual values would be in the formula? Does anybody have any idea what the formula

would be for PCI?

3.11 Error Registers

The system board I/O control function section of the EISA specification requires that
system errors be reported to the CPU via a non-maskable interrupt controlled by a

number of special purpose registers (NMI status, NMI enable, extended NMI, software

NMI). The system is not required to implement these registers as described; instead, they

should implement whatever error detection and reporting hardware is appropriate, and

control it with system specific registers. EISA systems should support lOCHK*

detection, EISA bus timeouts, and programmable EISA bus reset. The software fail-safe

timer and the software generated NMI features of EISA can be omitted, because they are
useless.

The Windows NT operating system treats the non-maskable interrupt as a fatal condition

which prevents even orderly system shutdown. It is not appropriate for the system to

report recoverable I/O errors, power failures, or recoverable memory errors using a non

maskable interrupt.

3.11 Power Fail

The Windows NT operating system supports power fail recovery.

A system which implements power fail recovery must arrange that its memory system

retains data during the power failure (and no bits can be scrambled as the system

transitions from normal power to battery power), and must report the power failure to all

processors using a distinctive power fail interrupt. It must be possible mask the power

fail interrupt, since there are IRQLs at which power fail interrupts are blocked.

It must be possible for a system which implements power fail recovery to differentiate

between a cold start (where the content of memory is unknown) and a warm start (where

the content of memory is a Windows NT system whose state was saved by a power fail

interrupt). In multiprocessor systems only the boot processor needs to be able to
differentiate between these two situations.

3.12 Copy Acceleration

Digital's Windows NT development team has suggested to Microsoft that standard HAL

procedures be defined for bulk transfers between main memory and I/O bus memory,

much like the procedures which already exist for bulk transfers between main memory

and FIFO-like devices in I/O space, and it seems likely that Microsoft will accept this

recommendation. This means that if a system implements specialized hardware to assist
in these bulk transfers (which should be common; this is the operation used to transfer a
screen image created in main memory to a frame buffer on the I/O bus) that high level

software can use it in a standardized way.

Systems are not discouraged from investigating special hardware for the purpose of

accelerating these bulk transfers. However, since there is no hard data to defend or refute

the value of such hardware, systems should not be designed so that the acceleration

hardware reduces the performance of the standard access methods.

4.0 Required Peripherals

The system is required to implement a number of peripherals. It is usually preferable to

implement a required function in a way which is completely compatible to the Intel based

PC implementation, since such an implementation would be very cost effective, and the
standard driver from the Windows NT system can be used.

The system has considerable flexibility in assigning physical addresses to the peripherals,

since they are manipulated by high-level software via READ_PORT and WRITE_PORT

HAL calls, and almost any addressing model can be accommodated by the appropriate

collusion between HalTranslateBusAddress and procedures invoked by the macros.

However, introducing complexity into these often used paths is not good, so it is

recommended that peripherals be accessed via regions of the physical address space

which have the same semantics as I/O bus cycles (section 3.1). In EISA systems

peripherals which are Intel compatible can placed at their normal locations in EISA I/O

space, since there is no danger of them casting a shadow; such peripherals will often

resist being hooked up in any other way.

4.1 Keyboard and Pointing Device

The system must support a keyboard and a pointing device.

The Windows NT keyboard model is based on a virtual keyboard, which reports all

events as key-up and key-down transitions, and uses a set of virtual keycodes which are

keyboard hardware independent (the VK_ codes in "winuser.h"). The actual keycodes

used by the keyboard hardware are mapped into virtual keycodes by the keyboard driver.
It must be possible to generate virtual key-up and key-down events for all keys on the

keyboard, including modifier keys like the shift keys and the control key(s).

The virtual keycode set was designed with the key labeling of the 102- key IBM-PC

keyboard in mind, and so it is easy to write a portable program whose user interface is

aware of that labeling. Such applications will be very hard to use on keyboards with

unusual labeling, or which generate some of the virtual keycodes using multikey

sequences.

The Windows NT pointing device model is based on a mouse. The pointing device driver

uses the positioning data provided by the hardware to update the current X-Y position,

and transforms the actual pushbutton codes used by the hardware into virtual left, middle,

and right mouse button presses and releases (the three mouse buttons are assigned virtual

keycodes just like the keyboard). Windows NT applications expect to have at least two
mouse buttons.

The standard Windows NT keyboard driver handles a 102-key PS/2 compatible

keyboard, using the standard pre-programmed microcontroller (or its gate-array

equivalent), addressed at its standard place (ports 0060H and 0064H) in EISA I/O space.
The standard Windows NT mouse driver handles a PS/2 compatible mouse, sharing a

controller with the keyboard. The keyboard interrupt is active high edge triggered, and is

brought to IRQl on the EISA interrupt controller. The mouse interrupt is active high

edge triggered, and is brought to IRQ 12 on the EISA interrupt controller.

Systems whose mouse interface cannot handle a 3 button mouse may be difficult to use

with alternative operating systems such as OpenVMS and OSF/1.

Jejf: / think that we should recommend that the keyboard and mouse use the same

interrupt request (IRQl), rather than two different interrupt requests (IRQl, IRQ12) like

an Intel PC. Using different interrupt requests for the keyboard and mouse creates the

situation where there are two interrupt handlers at two different priority levels accessing

the same registers in the keyboard and mouse interface, which means the low priority

handler will need to raise IRQL to access the registers.

4.2 Display

The systems must support a display.

The display must have at least 1024x768 pixels (with a 1:1 aspect ratio). It is

recommended that systems use color displays (even though the Windows NT GDI can

correctly deal with bilevel and grayscale displays) since many Windows NT applications
will have their roots in Windows, where color displays are the norm.

The standard format bitmaps manipulated by the Windows NT GDI have 1,4, 8, 16, 24,

or 32 bits per pixel. Although the Windows NT GDI can correctly deal with display

devices which use device-specific bitmap formats (and, in fact, the VGA is an example
of a device in this class), it is recommended that the display be able to be accessed as a

simple frame buffer holding pixels in one of the standard formats, since the driver for

such a device is extremely simple.

4.3 Disk

The system must support a disk (there are no diskless Windows NT systems). A disk 120

megabytes in size will hold the basic system software, although a disk TBD megabytes in

size is needed to hold the complete system, along with a useful suite of utilities and a

reasonable quantity of user data.

The system assumes that disk reads and writes which are aligned on sector boundaries on
the disk and are for multiples of full sectors can be performed directly to and from client

buffers (that is, it assumes the NO_BUFFERING open option does something). The
system does not assume that unbuffered disk reads and writes can be performed to

memory addresses which are not aligned on 512 byte boundaries (code in the system can

determine the actual required alignment by calling NtQueryInformationFile, but always
has to deal with being told the required alignment is 512 bytes).

The I/O system documents sometimes express the disk and/or memory address alignment

requirements as "sector boundary" and sometimes as "512 byte boundary". The

description of the FILE_FLAG_NO_BUFFERING option of CreateFile and OpenFile

calls in the Win32 API demands sector alignment of both disk and memory addresses.

The FILE_ALIGNMENT_INFORMATION subfunction of NtQueryInformationEile has

no return code for alignments stricter than 512 bytes. I think what is really being said

here is that the disk address must be on a sector boundary, that the transfer count must be

for full sectors, that drivers cannot demand memory address alignment more strict than

512 bytes, and that programs coded to the Win32 API will overly-constrain their memory

addresses (or, more likely, will use 512 byte alignment).

Is a more general statement being made here regarding devices which might ever be used
in a NO BUFFERING context, like the CD-ROM? Also, is there, in fact, a hidden

assumption here that disks have 512 byte physical sectors? How much code in, say, the

file system would keep working if it could not use 512 as a count on a file which was

opened with the NO BUFFERING option, because the ifle was aimed at a disk with a

1024 byte sector?

4.4 Audio

The system must support a small speaker driven by a tone generator which can generate

tones between TBD Hz and TBD Hz, so that the HalMakeBeep procedure can be

implemented. This can be a simple square wave generator; in EISA systems the standard

tone generator, implemented by interval timer 1 of counter 2, and enabled by bits in the

NMI status and control port, is acceptable.

The speaker, the tone generator, and the HalMakeBeep procedure seem to be historical

dregs left overfrom Intel PCs, which use them to make irritating noises during system

startup . They make little sense on an unattended server machine. Can we just delete the

hardware and no-op the HAL procedure?

5.0 Recommended Peripherals

It is recommended that the system implement a number of additional peripherals, because

there is an important standard function for that peripheral. Note that the fact that a

peripheral would be generally useful is not enough for inclusion in the recommended

peripherals list; for example, there is no mention of audio, although most systems will, in

fact, be required by the force of the market to have audio capabilities.

5.1 Serial Line

It is recommended that the system support an RS232 compatible serial port interface,

with modem control, for use by the Windows NT kernel debugger.

The standard Windows NT serial port driver handles standard PS/2 serial ports (including

the deep silos, as implemented in the newer versions of the serial I/O chips) addressed at

the standard locations (line 1 at 03F8H - 03FFH, line 2 at 02F8F1 - 02FFH) in EISA I/O

space. Serial port intermpts are active high edge triggered. If they are connected directly

to an EISA bus line, interrupts from line 1 go to IRQ4 on the EISA interrupt controller,

and interrupts from line 2 go to IRQ3 on the EISA interrupt controller.

Systems which use standard PS/2 serial interface chips but which do not bring the serial

port interrupts through the EISA interrupt controllers should be aware of the fact that

much existing serial port code uses bit 3 of the MCR as a global interrupt enable,

blissfully unaware that the word enable in this context refers to the tristate enable on the

chip's interrupt output pin (quite a different meaning from the word enable as used in the

description of the bits in the lER). The interrupt output from the serial chip is active high

and has a pullup on it, so disabling the interrupt in the MCR actually unconditionally

asserts the interrupt request. Because the EISA interrupt controllers are low-to-high edge

triggered, as long as interrupts are disabled when there is an interrupt pending, it appears

that the right thing happened. The driver is tristate (not open-drain) so gentle pulldowns

may be more appropriate if the serial port interrupt request is brought to a level triggered
interrupt request input.

5.2 Floppy Diskette

It is recommended that the system be able to read and write 720K, 1.44M, and 2.88M 3.5

inch floppy diskettes which follow the formatting conventions of Intel based systems.
Such diskettes are used both as a distribution media for shrink-wrapped applications and

for the exchange of small amounts of data between systems not interconnected by a

network. Some systems will deliver part of the Windows NT distribution kit on floppy

diskette as well (the platform independent parts of the system will be on the CD-ROM,

and the platform specific parts will be on floppy diskette); in such systems support for

the floppy diskette is, of course, required.

The standard Windows NT floppy diskette driver handles the standard PS/2 compatible

controller addressed at its standard place (ports 03F0H - 03F7H) in EISA I/O space.

Floppy diskette controller interrupts are active high edge triggered, and,

if connected to an EISA bus line, go to IRQ6 on the EISA interrupt controller.

5.3 CD-ROM

It is recommended that the system support a CD-ROM drive. CD-ROMs are used as the

primary distribution medium for the Windows NT system itself, as well as for large

shrink-wrapped applications.

It is recommended that a SCSI CD-ROM drive be used, since this enables the system to
share a controller between the disk and the CD-ROM, and, courtesy of the external SCSI

connector, enables users to share a single CD-ROM drive among a group of Windows
NT systems, which will reduce cost-of-ownership in environments where the CD-ROM

is only used as a distribution medium. It is also recommended that a CD-ROM drive with

a audio jacks be used, since the incremental cost of having such a drive is low (often it is

zero), and the Windows NT systems includes standard software to use the CD-ROM

drive as an audio player.

I need to understand some low-level CD-ROM issues. What is the format used by the

Microsoft distribution CD-ROMs. What is the extra functionality needed in the CD-ROM

drive to allow Kodak PHOTO-CD disks to be read (I know that there is something,

because the QuickTime kit says that some old drives cannot read the Kodak disks).

Digital Equipment Corporation Proprietary & Confidential

For Internal Use Only

Windows NT for Alpha AXP Calling Standard

Revision: 1.6

15-March-1993

Issued by:

Ron Brender, Digital Equipment Corporation

Copyright© 1989, 1992, 1993 Digital Equipment Corporation, Maynard, Mass.

All rights reserved.

Alpha AXP™, AXP™, DEC™, VAX™, VMS™, ULTRIX™, and DECthreads™ are trademarks of

Digital Equipment Corporation.

Windows NT™ is a trademark of Microsoft Corporation.

Digital Equipment Corporation
Maynard, Massachusetts

i %

CONTENTS

Preface

Acknowledgements

Revision History

Notation Used in This Document

XI

xni

XV

xvn

Chapter 1 INTRODUCTION

1.1 Applicability

1.2 Architectural Level

1.3 Related Documents

1.4 Definitions

1

2

2

2

3

Chapter 2 BACKGROUND

2.1 Goals

7

7

2.2 Constraints 8

Chapter 3 BASIC CONSIDERATIONS 9

3.1 Address Representation . . .

3.2 Procedure Representation . .

3.3 Register Usage Conventions

3.3.1 Integer Registers

3.3.2 Floating Point Registers

3.3.3 Register Names

3.4 Program Image Layout. . . .

9

9

9

10

10

11

12

Chapter 4 FLOW CONTROL 15

4.1 Procedure IVpes

4.1.1 Procedure Descriptor Overview

4.1.2 Stack Frame Procedure

4.1.3 Register Frame Procedure
4.1.4 Null Frame Procedure

4.2 Transfer of control

4.2.1 Call Conventions

4.2.2 Linkage

4.2.3 Link-Time Optimization

4.2.4 Calling Computed Addresses . .
4.2.5 Bound Procedure Values

4.2.6 Entry and Exit Code Sequences

15

15

16

19

19

20

20

21

21

22

22

23

iii

Chapter 5 DATA MANIPULATION 31

5.1 Data Passing

5.1.1 Argument Passing Mechanisms

5.1.2 Normal Argument List Structure

5.1.3 Homed Memory Argument List Structure .

5.1.4 Argument Lists and High Level Languages
5.1.5 Unused Bits in Passed Data

5.1.6 Sending Data

5.1.7 Returning Data

5.2 Data Allocation

5.2.1 Alignment

5.2.2 Granularity

5.2.3 Record Layout Conventions

31

31

32

33

34

34

36

37

39

39

39

39

Chapter 6 EVENT PROCESSING 41

6.1 Exception Handling

6.1.1 Exception Handling Requirements

6.1.2 Exception Handling Overview

6.1.3 Kinds of Exceptions

6.1.4 Status Values and Exception Codes

6.1.5 Exception Records

6.1.6 Exception Handlers

6.1.7 Establishing Handlers

6.1.8 Raising Exceptions

6.1.9 Invocation of Exception Handlers

6.1.10 Modification of Exception Records and Context by Handlers

6.1.11 Handler Completion and Return Value

6.1.12 Other Considerations

6.2 Unwinding
6.2.1 Unwind Basic Considerations

6.2.2 Types of Unwind

6.2.3 Unwind Invocation Types

6.2.4 Unwind Initiation

6.2.5 Multiply Active Unwind Operations

6.2.6 Unwind Completion

6.2.7 Unwinding Coexistence with setjmp/longjmp

6.2.8 Exceptions Raised During Unwinding

41

41

41

42

43

44

47

47

48

49

52

52

53

55

55

56

56

57

58

58

59

59

Chapter 7 MULTITHREADED ENVIRONMENT CONVENTIONS

7.1 Stack Limit Checking

7.1.1 Stack Guard Region

7.1.2 Stack Reserve Region

7.1.3 Methods for Stack Limit Checking

7.1.4 Stack Overflow Handling

61

61

62

62

62

64

IV

Chapter 8 PROCEDURE INVOCATIONS AND CALL CHAINS 65

658.1 Referring to a Procedure Invocation

8.2 Invocation Context Block

8.3 Gretting a Procedure Invocation Context with a Routine

8.4 Walking the Call Chain

8.5 Updating an Invocation Context

65

66

68

68

Chapter 9 PROCEDURE DESCRIPTORS 69

9.1 Procedure Descriptor Representation

9.2 Procedure Descriptor Access Routines

9.2.1 Current Procedure

69

71

71

FIGURES

Fixed Size Stack Frame Format

Variable Size Stack Frame Format

In Memory Homed Argument List Structure

Status Value Representation

Exception Record Format

Procedure Descriptor

174-1

184-2

335-1

436-1

6-2 44

699-1

TABLES

General Purpose, Integer Register Usage

Floating Point Register Usage

Procedure Properties Summary

Argument Item Locations
Unused Bits in Passed Data

3-1 10

113-2

164-1

5-1 32

5-2 35

V

Preface

This document defines the Windows NT for Alpha AXP Calling Standard. There are, at
present, three closely related Alpha calling standards. This document describes the Windows

NT for Alpha AXP flavor which is used for the Windows NT for Alpha AXP product.

Preface xi

Acknowledgements

It should be noted that this document has been derived from various other works related

to the Alpha program. The following people contributed significant amounts of time and
energy towards the creation of this and related source documents:

• Gary Barton

• Ron Brender

• Peter Craig

• Mark Davis

• Terry Grieb

• Rich Grove

• Steve Hobbs

• Ayub Khan

• Ray Lanza

• Ken Lesniak

• Bill Noyce

• Chip Nylander

• Mike Rickabaugh

• Tom Van Baak

and of course the numerous others that have provided "special" review.

In addition, some specifications are based in part on published specifications and related
correspondence from Microsoft Corporation, whose assistance is hereby acknowledged.

Acknowledgements xiii

Revision History

Revision

Num-

Date ber Author Summary of Changes

This document has a lot of history from the AlphaA/MS and

Alpha/OSF-1 versions as well as other documents. As such

the authoring part of the following notes is somewhat bogus

and should more appropriately be called edited by. (A version)

Start with Alpha/OSF-1 document and "NT"-ize it. Change GP

def and change register mix. (Spring version)

Integrate Windows NT exception handling, collect procedure
descriptor and call chain material in new Chapter 9, update

with applicable recent ECOs to the Alpha VMS calling stan

dard.

Continue editorial cleanup, re-organize topics between Chap
ters 8 and 9, conditionalize to enable creation of either OSF/1

or Windows NT versions.

Revise GP handling and procedure descriptors to match Win

dows NT MIPS, add actual target names where known.

Updates from reviews.

Resolve open issues, updates from reviews.

Cleanup typos, minor clarifications

23-Mar-1992 T. Group0.0

23-Mar-1992 1.0 T. Grieb

12-Jun-1992 R. Brender1.1

18-Jun-1992 1.2 R. Brender

5-JUI-1992 R. Brender1.3

R. Brender

R. Brender, M. Davis

R. Brender, M. Davis

26-JUI-1992

15-Jan-1993

15-Mar-1993

1.4

1.5

I1.6

Revision History xv

Notation Used in This Document

The specifications in this document are presented as follows:

• Editorial Comment

W

All text enclosed in double backslashes, illustrated by this paragraph, is

editorial comment, is not formally a part of the specification, and will not

necessarily be in future revisions of this document.
W

Constants

Constants are presented symbolically with their value given at the point of definition
in this standard. Concrete language bindings for each constant are provided in system
definition files external to this standard.

W

Note that the symbols used in this document do NOT follow any particular

naming conventions nor do they adhere to POSIX or other conventions.

We need to decide what we want the Alpha naming conventions to be (e.g. are

future naming conventions affected by the presence of open, standard APIs on

multiple operating systems), and then this document will be brought into
conformance.

W

Functional Interfaces

Functional interface S3mtax is presented in abstract form. Concrete language bindings
for each functional interface are provided in system definition files external to this

standard.

The semantic capabilities of each functional interface are defined in American English.

Algorithms

Algorithms are presented precisely, as a series of steps, in American English.

Conventions

All conventions that are important to correct program execution are presented in a form
appropriate to each convention.

Methods

Actual or recommended methods are presented informally, using examples, suggestions,
or other appropriate form.

Numbering

All numbers are represented as decimal values unless otherwise indicated. Non decimal

numbers are t5^ically represented with the name of the base in parentheses following
then number, E.G. IB(Hex).

Figures

Figures that represent memory or register layouts follow the convention that increasing

addresses run from the top to bottom and right to left of a page. Most significant bits
are on the left and least significant bits are on the right.

Code Examples

Notation Used in This Document xvii

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

All code examples in this document are supplied strictly for purposes of explanation.
They are presented in a form that expresses the relevant concept with clarity. They
do not reflect optimized and properly scheduled code sequences that a compiler would
generate.

Assembler syntax used follows the Alpha System Reference Manual (including Appendix
A, section A.4.3 on Stylized Code Forms) and does not represent actual Alpha Assembler
notation.

• Data Structures

Data structures are defined in terms of the physical memory format of each structure.

Concrete language bindings for each data structure are provided in system definition
files external to this standard.

• Data Structure fields

Record fields are referred to by using the name of the record or subrecord followed by a
dot, followed by the field name; as in RECORD_NAME.SUB_RECORD.FIELD.

xviii Notation Used in This Document

CHAPTER 1

INTRODUCTION

This standard defines the run time data structures, constants, algorithms, conventions,

methods, and functional interfaces that enable a native user mode procedure to operate
correctly in a multilanguage and multithreaded environment on Windows NT for Alpha

AXP systems. These properties include the contents of key registers, the format and con
tents of certain data structures, and actions that procedures must perform under certain
circumstances.

This standard also defines properties of the run time environment that must apply at various
points during program execution. These properties vary in scope and applicability. Some
properties apply at all points throughout the execution of user mode code, and must therefore

be held constant at all times. Examples of such properties include those defined for the stack

pointer and various properties of the call chain navigation mechanism. Other properties
apply only at certain points, such as call conventions that apply only at the point of the
transfer of control to another procedure.

Furthermore, some properties are optional depending on circumstances. For example, com

pilers are not obligated to follow the argument list conventions when a procedure and all of
its callers are in the same module, have been analyzed by an interprocedural analyzer, or
have private interfaces (such as language support routines).

NOTE

The specifications in this document are presented in an as i/* definition. This simply
means that all conformant code must behave as if the specifications have been

met. In particular, this calling standard is designed such that additional link-time

information can be utilized to optimize or even remove instructions in critical code

paths and as such achieve higher performance levels.

In addition, in many cases significant performance gains can be realized by selective
use of non-standard calls when the safety of such calls is known. Compiler writers

are encouraged to make optimal use of such optimizations as appropriate while

always ensuring that procedimes outside the compilation unit can proceed as if the
letter of the standard were met.

The conventions specified in this standard are intended to fully exploit the architectural
and performance advantages of the Alpha AXP hardware architecture and are designed to

provide a leadership execution environment for applications and languages on Windows NT

for Alpha AXP. Some of these conventions are visible to the high level language program

mer, and therefore may require source level changes in high level language programs when
moving them from other environments.

Windows NT for Alpha AXP - Introduction - 15-March-1993 1

Digital Equipment Corporation Proprietary and Confidentiai
For Internal Use Only—Do Not Copy or Disclose (yet)

Tb achieve source level compatibility and portability between the Windows NT for Alpha AXP
environment and various other environments users should not depend on the properties of
this architecture except indirectly through high level language facilities that are portable
across architectures.

By definition, many of the conventions described in this standard differ from other soft

ware implementation architectures. Therefore programs that depend on properties of this
architecture may not be portable to other architectures.

1.1 Applicability

This standard defines the rules and conventions that govern the native user mode run time
environment on Alpha AXP systems. It is applicable to all products executing in native user
mode on the Windows NT for Alpha AXP operating system.

Specific examples of uses of this standard are:

• All externally callable interfaces in standard system software

• All intermodule calls to major software components

• All external procedure calls generated by language processors without the benefit of
interprocedural analysis or permanent private conventions (such as those used for lan

guage support runtime library routines).

1.2 Architectural Level

This standard defines an implementation level run time software architecture for Alpha AXP

operating systems.

The interfaces, methods, and conventions specified in this document are primarily intended
for use by implementors of compilers, debuggers and other run time tools, run time li

braries, and base operating systems. These specifications may be, but are not necessarily,

appropriate for use by higher level system software and applications.

Compilers and run time libraries may provide additional support of these capabilities via
interfaces that are more appropriate for compiler and application use. This specification
neither prohibits nor requires such additional interfaces.

1.3 Related Documents

This calling standard is a component of the larger Alpha AXP Software Architecture, and
depends on certain standards and conventions that are not described by this document.

Those standards, described by other documents, include:

• Object language (including link-time optimizations) and object file format

• Status values and message definition, formatting, and reporting

• Heap memory management and dynamic string management

• Multithread Architecture

2 Windows NT for Alpha AXP - Introduction - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

• Names and naming conventions

The above topics as well as other related topics may be found in:

• Digital Equipment Corporation, Alpha AXP System Reference Manual

• Digital Equipment Corporation, OpenVMS Calling Standard, October 1992

• Digital Equipment Corporation, OSF/1 for Alpha AXP Calling Standard, Revision 1.6,
November 1992

• POSIX 1003.1, IEEE Standard Portable Operating System Interface for Computer En
vironments - IEEE Std 1003.1-1988

• American National Standard for Information Systems Programming Language C - ANSI
X3.159-1989 (or its ISO equivalent, ISO 9899)

1.4 Definitions

The following terms are used in this standard:

• Address: A 32-bit value used to denote a position in memory. In the case of Windows

NT for Alpha AXP systems, an address is sometimes represented by a 64-bit value in

which case the high-order 33 bits of that value must be the same (that is, the 64-bit

value must equal the sign-extended 32-bit value).

• Argument list: A vector of quadword entries that represents a procedure parameter list
and possibly a function value.

• Asynchronous procedure call: An asynchronous interruption of normal code flow caused

by some software event. This interruption shares many of the properties of hardware
exceptions that includes forcing some out-of-line code to execute.

• Bound procedure: A type of procedure that requires knowledge (at run-time) of a dy

namically determined larger enclosing scope to execute correctly.

• Call frame: The body of information that a procedure must save to allow it to properly
return to its caller. A call frame may exist on the stack or in registers. A call frame

may optionally contain additional information required by the called procedure.

• Descriptor: A mechanism for passing parameters where the address of a descriptor is

an entry in the argument list. The descriptor contains the address of the parameter,

data type, size, and additional information needed to fully describe the data passed.

• Dynamic-link library (DLL): A form of shared image on Windows NT for Alpha AXP

systems which can be loaded into a process for execution.

• Exception code: A 32-bit value used to uniquely identify an exception condition. An

exception code can be returned to a calling program as a function value (status) or

raised using the exception handling mechanism.

• Exception condition (or exception): Some exceptional condition in the current hardware

and/or software state that should be noted or flxed. Its existence causes an interrupt in

program flow and forces execution of out of line code. Such an event may be caused by

Windows NT for Alpha AXP - Introduction - 15-March-1993 3

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

exceptional hardware state such as arithmetic overflows, memory access control viola
tions, and so on or by actions performed by software, such as subscript range checking,
assertion checking, or asynchronous notification of one thread by another.

While the normal control flow is interrupted by an exception, that condition is termed
active.

Exception handle.r A procedure designed to handle exceptions (conditions) when they
occur during the execution of a thread.

Function: A procedure that returns a single value in accordance with the standard con

ventions for value returning. Additional values are returned by means of the argument
list.

Hardware exception: A particular category of exceptions that directly reflect an excep
tional condition in the current hardware state that should be noted or fixed by the soft
ware. Hardware exceptions may occur synchronously or asynchronously with respect to
the normal program flow.

Image: A collection of compiled modules that are combined by a linker into a form that
is ready to be loaded for execution.

Immediate value: A mechanism for passing input parameters where the actual value is

provided in the argument list entry by the calling program.

Language support procedure: A procedure called implicitly to implement higher-level
language constructs. Such procedures are not intended to be explicitly called from user
programs.

Library procedure: A procedure explicitly called using the equivalent of a call statement
or function reference. Such procedures are usually language independent.

Natural alignment: An attribute of certain data types that refers to the placement of the
data, such that the lowest addressed byte of the data has an address that is a multiple
of the size of the data in bytes. Natural alignment of an aggregate data type generally
refers to an alignment, such that all members of the aggregate are naturally aligned.

There are five natural alignments defined by this standard:

— Byte—any byte address

— Word—any byte address that is a multiple of two

— Longword—any byte address that is a multiple of four

— Quadword—any b3fte address that is a multiple of eight

— Octaword—any byte address that is a multiple of 16

Procedure: A closed sequence of instructions that is entered from and returns control to

the calling program.

Procedure value: An address value that represents a procedure - the address of the first
instruction of the procedure to be executed.

Process: An address space and at least one thread of execution. Selected security and
quota checks are done on a per process basis.

4 Windows NT for Alpha AXP - Introduction - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

This standard anticipates the possibility of the execution of multiple threads within a

process. An operating system that only provides a single thread of execution per process

is considered a special case of a multithreaded system where the maximum number of

threads per process is one.

• Reference: A mechanism for passing parameters where the address of the parameter is

provided in the argument list by the calling program.

• Shareable image: An image that can shared by multiple processes. On Windows NT
for Alpha AXP, a single copy of the image C£in be simultaneously included at the same

address in multiple using processes. (That is, a shareable image is generally not position
independent.)

• Signal: A POSIX defined concept used to cause out-of-line execution of code.

• Standard call: Any transfer of control to a procedure by any means that presents the
called procedure with the environment defined by this document and does not place
additional restrictions, not defined by this document, on the called procedure.

• Standard conforming procedure: A procedure is said to be standard conforming if it
adheres to all the relevant rules set forth in this document.

• Thread of execution (or thread): An entity scheduled for execution on a processor. In
language terms, a thread is a computational entity utilized by a program unit. Such a
program unit might be a task, procedure, loop, or some other unit of computation.

All threads executing within the same process share the same address space and other
process context, but have unique per-thread hardware context that includes program
counter, processor status, stack pointer, and other machine registers.

This standard applies only to threads that execute within the context of a user mode

process and are scheduled on one or more processors according to software priority. All
subsequent uses of the term thread in this standard refer to such user mode process
threads only.

• Thread safe code: A property of code compiled in such a way as to ensure it will execute

properly when run in a threaded environment. This usually adds extra instructions

to do certain run-time checks and requires that thread local storage be accessed in a

particular fashion.

• Undefined: Operations or behavior for which there is no directing algorithm used across

all implementations that support this standard. Such operations may or may not be
well defined for a single implementation, but still remain undefined with reference to

this standard. The actions of undefined operations may not be required by standard
conforming procedures.

• Unpredictable: Any results of an operation that cannot be guaranteed across all im

plementations of this standard. These results may or may not be well defined for a

single implementation, but remain unpredictable with reference to this standard. All

results caused by operations defined in this standard but where the results are not ex

plicitly specified in this standard are considered unpredictable. No standard conforming
procedure may depend on unpredictable results.

Windows NT for Alpha AXP - Introduction - 15-March-1993 5

CHAPTER 2

BACKGROUND

This section describes various background information that served as the basis for many of

the decisions made during the process of generating this standard.

2.1 Goals

The design of the Windows NT for Alpha AXP calling standard was accomplished with the
following goals in mind:

• The standard must support nearly perfect compatibility with the user visible charac

teristics of the NT operating system as implemented on Intel x86 and MIPS RxOOO

systems.

• The standard must be applicable to all intermodule callable interfaces in the native

software system. Specifically, the standard must consider the requirements of important
compiled languages including Ada, BASIC, BLISS, C, C++, COBOL, FORTRAN, Pascal,

LISP, PIVI, and calls to the operating system and library procedures. The needs of
other languages that may be supported in the future must be met by the standard or

by compatible revision to it.

• The standard should not include capabilities specifically for lower level components
(such as assembler routines) that cannot be invoked from the higher level languages.

• The calling program and called procedure can be written in different languages. The

standard attempts to reduce the need for use of language extensions for mixed language

programs.

• The standard should contribute to the writing of error free, modular, and maintainable

software. Effective sharing and re-use of software modules are specific goals.

• The standard should provide the programmer with control over fixing, reporting, and
flow of control when various types of exceptional conditions occur.

• The standard should provide subsystem and application writers with the ability to over

ride system messages to provide a more suitable application oriented interface.

• The standard should add no space or time overhead to procedure calls and returns that
do not establish exception handlers and should minimize time overhead for establishing
handlers at the cost of increased time overhead when exceptions occur.

• The standard should be optimized for newer, more complex compilation techniques in
cluding interprocedural analysis, link-time code transformations , and other mechanisms

that are conducive to optimal performance. While holding this goal in mind, the stan

dard must not require any such mechanisms for correctness.

• Provide support for a multilanguage, multithreaded execution environment.

Windows NT for Alpha AXP - Background - 15-March-1993 7

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Provide an efficient mechanism for calling lightweight procedures that do not need to
pay the overhead of setting up a stack call frame.

Provide for the use of a common calling sequence to invoke lightweight procedures that
maintain only a register call frame and heavyweight procedures that maintain a stack
call frame. This should allow a compiler to determine whether or not to use a stack frame

based on the complexity of the procedure being compiled. A recompilation of a called
routine that causes a change in stack frame usage should not require a recompilation
of its callers.

Provide exception handling, traceback, and debugging for lightweight procedures that
do not have a stack frame.

Make efficient and effective use of the Alpha AXP hardware architecture.

Minimize the cost of procedure calls

Support a 32-bit address user mode environment

Provide a building block for the next 20 years of computing

2.2 Constraints

This standard was developed under the following constraints:

• The standard must be implementable on all Alpha AXP platforms

• The standard must be implementable by third party compiler writers.

• There is a short development cycle for the first wave of products

• The standard must not require any complex compilation techniques (such as link-time
code movement) for correctness.

8 Windows NT for Alpha AXP - Background - 15-March-1993

CHAPTER 3

BASIC CONSIDERATIONS

This section describes some fundamental concepts of the Windows NT for Alpha AXP calling
standard.

3.1 Address Representation

One feature of the Windows NT for Alpha AXP flavor of the calling standard is that in all
cases bits <63:31> of all values that represent addresses are identical. In most cases this fact

is used to save storage since only 32 bits are needed to represent an address. Structures
that contain low-level machine state sometimes allocate a full 64 bits for addresses even

though bits <63:31> are always the same.

3.2 Procedure Representation

One of the distinguishing characteristics of any calling standard is how procedures are

represented. The term used to denote the value which uniquely identifies a procedure is a
procedure value. If the value identifies a bound procedure then it is called a bound procedure
value.

In the Windows NT for Alpha AXP calling standard a simple (not bound) procedure value is
defined as the address of the first instruction of that procedure’s entry code (see Section 4.2.6,
Entry and Exit Code Sequences).

A bound procedure value is defined as the address of the first instruction of an instruction

sequence that establishes the correct execution context for the bound procedure.

In addition, procedures in the Windows NT for Alpha AXP calling standard are associated

with a data structure called a procedure descriptor. This structure describes various aspects

of the procedure’s code which aire required for correct and robust exception handling. The

exception processing described by this standard is based on the assumption that any given

program counter value can be mapped to an associated procedure descriptor that describes
the currently active procedure.

3.3 Register Usage Conventions

This section describes the usage of the Alpha AXP hardware general purpose (integer) and
floating point registers.

Windows NT for Alpha AXP - Basic Considerations - 15-March-1993 9

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

3.3.1 Integer Registers

In a standard-conforming procedure the general purpose, integer registers are used as shown
in Table 3-1.

Table 3-1: General Purpose, Integer Register Usage

Function value register. In a standard call that returns a non-floating point function result in a register,
the result must be returned in this register. In a standard call, this register may be modified by the
called procedure without being saved and restored.

Conventional scratch registers. In a standard call, these registers may be modified by the called

procedure without being saved and restored.

Conventional saved registers. If a standard-conforming procedure modifies one of these registers, it
must save and restore it.

FP, Stack Frame Base register. For procedures with a run time variable amount of stack, this register

is used to point at the base of the stack frame (fixed part of the stack). For all other procedures this
register has no special significance. If a standard-conforming procedure modifies this register, it must
save and restore it.

Argument registers. In a standard call, up to six non-floating point items of the argument list are passed
in these registers. In a standard call, these registers may be modified by the called procedure without
being saved and restored.

Conventional scratch registers. In a standard call, these registers may be modified by the called

procedure without being saved and restored.

RA, Return Address register. In a standard call, the return address must be passed and returned in
this register.

Conventional scratch register. In a standard call, this register may be modified by the called procedure
without being saved and restored.

Volatile scratch register. The contents of this register are always unpredictable after any external
transfer of control either to or from a procedure. This applies to both standard and nonstandard
calls. This register may be used by the operating system for external call fixup, autoloading and exit
sequences.

GP, Global Pointer or saved register. In a main (static) image, this register contains a pointer to a
region of global storage (addresses and variables) constructed by the linker. In a Dynamic-Link Library

(DLL), this register must not be used in any way.

SP, the Stack Pointer. This register contains a pointer to the top of the current operating stack. Aspects

of its usage and alignment are defined by the hardware architecture. Various software aspects of its
usage and alignment are defined in Section 4.2.1, Call Conventions.

RZ, ReadAsZero/Sink. Hardware defined: binary zero as a source operand, sink (no effect) as a result

operand.

RO

R1..R8

R9..R14

R15

R16..R21

R22..R25

R26

R27

R28

R29

R30

R31

3.3.2 Floating Point Registers

In a standard-conforming procedure the floating point registers are used as shown in Ta
ble 3-2.

10 Windows NT for Alpha AXP - Basic Considerations - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Table 3-2: Floating Point Register Usage

FO Floating point function value register. In a standard call that returns a floating point result in a register,
this register is used to return the real part of the result. In a standard call, this register may be modified
by the called procedure without being saved and restored.

Floating point function value register. In a standard call that returns a complex floating point result in
registers, this register is used to return the imaginary part of the result. In a standard call, this register

may be modified by the called procedure without being saved and restored.

Conventional saved registers. If a standard-conforming procedure modifies one of these registers, it
must save and restore it.

Conventional scratch registers. In a standard call, may be modified by the called procedure without
being saved and restored.

Argument registers. In a standard call, up to six floating point arguments may be passed by value in
these registers. In a standard call, these registers may be modified by the called procedure without
being saved and restored.

Conventional scratch registers. In a standard call, these registers may be modified by the called
procedure without being saved and restored.

ReadAsZero/Sink. Hardware defined: binary zero as a source operand, sink (no effect) as a result
operand.

F1

F2..F9

F10..F15

F16..F21

F22..F30

F31

3.3.3 Register Names

The register names used in this standard follow the conventions used in the Alpha System
Reference Manual. That is, the names of general registers begin with "R" and the names of
floating point registers begin with "F". These same names are also used in the examples in
this text.

This register naming convention is not necessarily followed by compiler or assembler tools
that are used on Alpha AXP systems. However, in most cases a simple name substitution
can convert from the notation used here to the appropriate convention. For example, the
following might be used in conjunction with the standard C preprocessor as a prelude to the
examples in this text.

/* replacement also known as

/* vO

/* to

*/

♦define RO $0 */

$1 */♦define R1

$8 /* t7 */♦define

♦define

R8

/*R9 $9 sO */

♦define

♦define

♦define

R14 $14 /* s5

/* fp or s6

*/

$15 */R15

$15FP

Windows NT for Alpha AXP - Basic Considerations - 15-March-1993 11

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

♦define R16 $16 /* aO */

♦define

♦define

$21 /* a5

/* t8

*/R21

$22 */R22

♦define

♦define

♦define

♦define

♦define

♦define

♦define

♦define

♦define

♦define

$25 /* til

/* ra

*/R25

R2 6 $26 */

$26RA

/R27 $27 / tl2

/* at

/* gp

R28 $28 */

*/R2 9 $29

$29GP

$30 /* sp */R30

$30SP

$31R31 /* zero */

$f0♦define

♦define

♦define

FO

$flFI

$f2F2

♦define

♦define

$f9F9

FIO $fl0

$fl5

$fl6

♦define

♦define

F15

FI 6

♦define

♦define

F21 $f21

$f22F22

♦define

♦define

$f30

$f31

F30

F31

3.4 Program Image Layout

The Windows NT for Alpha AXP calling standard does not define many aspects of an exe
cutable image. However, there is one basic concept that is defined to permit optimal access
to static data.

A hardware architecture that has the property that instructions cannot contain full virtual

addresses is sometimes referred to as a base register architecture. The Alpha AXP archi
tecture is such an architecture. In a base register architecture, normal memory references

within a limited range from a given address are expressed by using displacements relative
to the contents of some register which contains that address (usually referred to as a base

register). Base registers for external program segments, either data or code, are usually

loaded indirectly through a program segment of address constants.

To optimize this base register access method, this standard allows the main (static) image of

an executable program to have a single global storage region that is addressable by the GP

register. Together, the linker and the compilers arrange that various static data is collected

together into a single such region that is shared across all procedures in the main image.

During the compilation process a compiler generates object language to designate data as
belonging in the global segment. The linker pools these contributions to form the segments;

in particular, address constants, literals and external storage from multiple compilations
can often be combined. The total contributions of all modules of the main image must not

exceed 64K bytes of contributions after pooling.

12 Windows NT for Alpha AXP - Basic Considerations ■ 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

For dynamic-link libraries, no shared global segment is provided. A separate compilation
mode is required that neither makes contributions to a global segment nor assumes the
availability of a global pointer for addressing. (In this latter compilation mode, the GP
must not be used in any way.)

Windows NT for Alpha AXP - Basic Considerations - 15-March-1993 13

CHAPTER 4

FLOW CONTROL

The following sections contain descriptions of various aspects of the calling standard that
deal with the flow of control of a program (as opposed to data manipulation which comes
later in Chapter 5).

4.1 Procedure Types

This standard defines three basic types of procedures. A compiler may chose which type to
generate based on the requirements of the procedure in question.

The standard procedure types are:

• Stack frame procedure - A procedure that maintains its caller’s context on the stack

• Register frame procedure - A procedure that maintains its caller’s context in registers

• Null Frame procedure - A procedure that executes in the context of its caller

Some procedures maintain their call frame on the stack, others maintain their call frame

entirely in registers (although they may use the stack). Very simple procedures do not
necessarily maintain any call frame at all and simply execute in the context of their caller.

The calling procedure need not distinguish these cases.

4.1.1 Procedure Descriptor Overview

Every procedure other than a null procedure (see Section 4.1.4) must have a structure asso

ciated with it that describes which type of procedure it is as well as various other character

istics of the procedure. This structure, called a procedure descriptor, is a longword-aligned
data structure that provides basic information about a procedure. This data structure is

used to interpret the call chain at any point in a thread’s execution. It is normally built

at compile time and is not normally accessed at run time except in support of exception
processing or other rarely used code execution.

Table 4-1 contains a brief summary of the properties of a procedure that can be determined
from its associated procedure descriptor. Some of these properties are explicitly represented
in the procedure descriptor and others must be derived by examination of the code in a
procedure’s prologue. (Some fields only apply to certain kinds of procedures.) This summary
is included here because many of these properties are mentioned in the descriptions that
follow in this Chapter. For a complete description of procedure descriptors, see Section 9.1,
Procedure Descriptor Representation.

Windows NT for Alpha AXP - Flow Control - 15-March-1993 15

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Table 4-1: Procedure Properties Summary

Field Name Description

1
REGISTER FRAME Indicates a register (or null) frame procedure rather than a stack frame

procedure

Indicates register R15 is used as a frame pointer rather than as just
a preserved register

Indicates there is an associated exception handler

Indicates the error reporting behavior expected of certain called math

ematical library routines

Register that contains the return address at the time of a call. This

is always R26

Register in which the return address is saved (when not saved on

the stack)

Size in longwords of the (fixed part of the) stack frame

Offset in instructions from the beginning of the procedure to the in

struction that changes the stack pointer

Number of instructions in the procedure prologue

Address of the first instruction (and entry point) of the procedure

Address of the first instruction following the prologue of the procedure

Address of the first location following the last instruction of the pro
cedure

Address of an associated exception handling procedure

Supplementary per procedure data to be passed to an associated

exception handler

1
BASE REG IS FP

1
HANDLER_VALID

EXCEPTION MODE

1
ENTRY RA

1
SAVE RA

1

FRAME_SIZE

SP SET
1

1
ENTRY_LENGTH

BEGIN_ADDRESS

PROLOG_END_ADDRESS

END ADDRESS

HANDLER_ADDRESS

HANDLER DATA

^ This field is not explicitly represented in the procedure descriptor (see Section 9.1).

4.1.2 Stack Frame Procedure

A stack frame procedure is one that allocates space for and saves its caller’s context on the

stack. This t3rpe of procedure is sometimes called a “heavyweight procedure” referring to
the cost of storing this context in memory.

Such a procedure can save and restore registers and may make standard calls to other
procedures.

The stack frame of this type of procedure consists of a fixed part (the size of which is known
at compile time) and an optional variable part. Certain optimizations can be done if the
optional variable part is not present. Compilers must be careful to recognize situations that

can effectively cause a variable part of the stack to exist in non-intuitive ways such as:

• A called routine may use the stack as a means to return certain types of function values
(see Section 5.1.7, Returning Data, for details).

If any such situation exists a compiler must choose to use a variable size stack frame pro
cedure when compiling the caller so that an unwind operation can be done correctly.

16 Windows NT for Alpha AXP - Flow Control - 15-March-1993

4

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Stack Frame Format

Even though the exact contents of a stack frame are determined by the compiler there are

certain properties common to all stack frames. The two basic flavors of stack frames are

described below.

The following figure illustrates the format of the stack frame for a procedure with a fixed
amount of stack which uses the SP as the stack base register (i.e. BASE_REG_IS_FP is 0).

In this case, R15 is simply another saved register and otherwise has no special significance.

Some parts of the stack frame are optional and occur only as required by the particular
procedure. Brackets surrounding a field’s name indicate the field is optional.

Figure 4-1: Fixed Size Stack Frame Format
octaword-aligned

■+■+■+ ++

:0 (From SP)

[fixed temporary locations]

[argument home area]

•+■+■+ ++

:FRAME_SIZE
(From SP)

[arguments passed in memory]

•+ ■+•+ ++

The following figure illustrates the format of the stack frame for procedures with a varying
amount of stack which use the FP as the stack base register (i.e. BASE_REG_IS_FP is 1).

Some parts of the stack frame are optional and occur only as required by the particular
procedure. Brackets surrounding a field’s name indicate the field is optional.

Windows NT for Alpha AXP - Flow Control - 15-March-1993 17

I*

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Figure 4-2: Variable Size Stack Frame Format

octaword-aligned
+ •+ ■+ ■+

I :0 (From SP)

[stack temporary area]

I

I
+ ■+ ■+ ■+

:0 (From FP)I

I

I

[fixed temporary locations]I

I [argument home area]

+ •+ •+

:FRAME_SIZE
(From FP)I [arguments passed in memory]

I

I
+ •+ •+ •+■+

In either case the portion of the stack frame designated hy FRAME_SIZE must be allocated

and initialized by the entry code sequence of a called procedure with a stack frame.

Fixed temporary locations are optional sections of the stack frame that contain language-

specific locations required by the procedure context of some high level languages. This may

include, for example, register spill area, language-specific exception handling context (such
as language dynamic exception handling information), fixed temporaries, etc.

If a compiler chooses, the fixed temporary locations adjacent to the area pointed to by the
frame base register plus FRAME_SIZE can be used for a special purpose termed the ar
gument home area. The argument home area is a region of memory used by the called
procedure for the purpose of assembling in contiguous memory the arguments passed in
registers, adjacent to the arguments passed in memory, so that all arguments can be ad

dressed as a contiguous array. This area may also be used to store arguments that are

passed in registers if an address for such an argument must be generated. Generally, either
6 or 12 contiguous quadwords of stack storage will be allocated by the called procedure for
this purpose (see Section 5.1.3, Homed Memory Argument List Structure for details).

A compiler may use the stack temporary area for fixed local variables, such as constant

sized data items and program state, as well as for dynamically sized local variables. The
stack temporary area may also be used for dynamically sized items with a limited lifetime,

for example, a dynamically sized function result or string concatenation that can’t be directly

stored in a target variable. When a procedure uses this area, the compiler must keep track
of its base and reset SP to the base to reclaim storage used by temporaries.

The high-address end of the stack frame is defined by the value stored in FRAME_SIZE
plus the contents of SP or FP, as indicated by BASE_REG_IS_FP. The high-address end is

used to determine the value of SP for the predecessor procedure in the calling chain.

18 Windows NT for Alpha AXP - Flow Control - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

NOTE

Floating registers saved in the stack are stored as a 64-bit exact image of the reg

ister, i.e. no reordering of bits is done on the way to or from memory. Compilers

must use a STT instruction to store the register regardless of floating point type.

RATIONALE

The above note is so that an imwind routine can properly restore the floating point

registers without more complete type information.

4.1.3 Register Frame Procedure

A register frame procedure does not maintain a call frame on the stack and must therefore

save its caller’s context in registers. This type of procedure is sometimes referred to as a
“lightweight procedure” referring to the relatively fast way of saving the call context.

Such a procedure cannot save and restore nonscratch registers. Because a procedure without
a stack frame must therefore use scratch registers to maintain the caller’s context, such a

procedure cannot make a standard call to any other procedure.

A procedure with a register fraime can have an exception handler and can handle exceptions

in the normal way. Such a procedure can also allocate local stack storage in the normal way,

although it will not necessarily do so.

NOTE

Lightweight procedures have more ft^edom than might be apparent. By use of
appropriate agreements with callers of the lightweight procedure, with proce

dures that the lightweight procedure calls, and by the use of unwind handlers,

a lightweight procedure may modify nonscratch registers, and may call other pro
cedures.

Such agreements may be by convention (as in the case of language support routines

in the RTL) or by interprocedural analysis. Calls employing such agreements are,

however, not standard calls, and might not be fully supported by a debugger since,
for instance, it might not be able to find the contents of the preserved registers.

Since such agreements must be permanent (for upwards compatibility of object

code), lightweight procedures should in general follow the normal restrictions.

4.1.4 Null Frame Procedure

A null frame procedure is a particularly simple, special case of a register frame procedure,
in which;

• The entry return address register is R26 (ENTRY_RA = 26).

• The return address is not saved in any other register (SAVE_RA = ENTRY_RA)

• No stack space is allocated (SP_SET = 0 and FRAME_SIZE 0)

• As a result of the above, the prologue requires no instructions (ENTRY_LENGTH = 0)

• There is no associated exception handler (HANDLER_ADDRESS = 0).

This special case of a register frame procedure is of interest because such a procedure
need not have an associated procedure descriptor (see Section 9.1, Procedure Descriptor

Representation).

Windows NT for Alpha AXP - Flow Control - 15-March-1993 19

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

4.2 Transfer of control

A standard procedure call can use any sequence of instructions that presents the called
routine with the required environment (see Section 1.4, Definitions). Although this is true

it is believed that the vast majority of standard conforming external calls will be done with

a common sequence of instructions and conventions. This common set of call conventions is

so pervasive that it is included for reference as part of this standard.

One important feature of the calling standard is that it is designed such that the same

instruction sequence can be used to call each of the different types of procedure. That is,
the caller does not have to know which type of procedure is being called.

4.2.1 Call Conventions

The call conventions describe the rules and methods used to communicate certain infor

mation between the caller and the called procedure during invocation and return. For a

standard call these conventions include the following:

• Return Address

The calling procedure must pass to the called procedure the address to which control

must be returned during a normal return from the called procedure. In most cases the
return address is the address of the instruction following the one which transferred

control to the called procedure. For a standard call the return address is passed in the
return address register (R26).

• Argument List

The argument list is an ordered set of zero or more argument items, that together
comprise a logically contiguous structure known as an argument item sequence. This
logically contiguous sequence is in practice mapped to registers and memory in a fashion
that produces a physically discontiguous argument list. In a standard call, the first six

items are passed in registers R16..R21 and/or registers F16..F21. (See Section 5.1.2,

Normal Argument List Structure, for details of argument-to-register correspondence).
The remaining items are collected in a memory argument list that is a naturally-aligned

array of quadwords. In a standard call, this list (if present) must be passed at 0(SP).

• Function Result

If a standard-conforming procedure is a function, and the function result is returned

in a register, then the result is returned in RO, FO, or F0..F1. Otherwise, the function

result is returned via the first argument item or dynamically as defined in Section 5.1.7,

Returning Data.

• Stack usage

SP must at all times denote an address that has octaword alignment. (This has the side

effect that the in memory portion of the argument list, if any, will start on an octaword

boundary.) During a procedure invocation the SP may never be set to a value that is

higher than the value of the SP at entry to that procedure invocation.

The contents of the stack located above the portion of the argument list which is passed
in memory (if any) belong to the calling procedure and should therefore not be read or

written by the called procedure, except as specified by indirect arguments or language-
controlled up level references.

20 Windows NT for Alpha AXP - Flow Control - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

The stack pointer (SP) is used by the hardware in raising exceptions and asynchronous
interrupts. It must be assumed that the contents of the stack below the current SP

value and within the stack for the current thread are continually and unpredictably
modified, as specified in the Alpha AXP System Reference Manual and as a result of

asynchronous software actions.

4.2.2 Linkage

In a main (static) image, the GP register is initialized to point to the shared global storage
region at the beginning of program execution. The GP register must not be modified by any
procedure that is included in either the main image or a dynamic-link library.

Because there is no GP or other base pointer available to code that is part of a d3mamic-link
library image, addressing data that is not part of the same compilation generally requires
using a LDAH/LDA sequence to dynamically create a suitable base address. Such code

thereby becomes non-position independent (non-PIC). That is, it requires relocation if it is
to be moved and executed at a different virtual address. The number of such relocations in

the code stream can be minimized by loading a linkage pointer (a sort of "procedure local GP"
value) near the beginning of a procedure’s execution with the address of a linkage section, if
needed, where the linkage section contains variables, addresses and/or literal data that is

needed by the code. (This decreases the density of non-PIC references in the code stream.)

4.2.3 Link-Time Optimization

The design of this calling standard assinnes that the system linker will assist in imple
menting a transfer of control to a target location that is too far away to reach with a BSR
instruction.

A typical standard call looks like:

FOO'

where FOO’ is the displacement from the location of the BSR instruction to the entry point
of the target procedure FOO. If the displacement is too large to be represented in the 21-bit
displacement field of the BSR instruction, or if the displacement is not known at link-time,
then the linker must intervene to create an exit transfer vector such as the following:

FOO": LDAH R28, FOO-hi(R31)

R28, FOO-lo(R28)

(R28)

The value of FOO’ is then the displacement from the location of the BSR instruction to the

FOO" entry in the exit transfer vector. The exit transfer vector loads the full absolute target
address for procedure FOO and completes the transfer of control. Note that control does not

return to the transfer vector; rather, it returns to the location following the BSR instruction.

NOTE

This design requires that the Windows NT for Alpha AXP operating environment
manage the offsets in the LDAH/LDA instructions of the exit transfer vector when

ever a dynamic-link library image is loaded and/or relocated.

BSR

LDA

JMP

Windows NT for Alpha AXP - Flow Control - 15-March-1993 21

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

4.2.4 Calling Computed Addresses

Most calls are made to a fixed address whose value is completely determined by the time the
program starts execution. There are, however, certain cases which cause the exact address

not to be determined until the code is actually executed. In this case the procedure value
representing the procedure to be called will be computed in a register.

Suppose R4 contains such a computed procedure value (simple or bound). An example of
the code to call the procedure that it describes is:

R26, (R4)JSR

4.2.5 Bound Procedure Values

There are two distinct classes of procedures:

• Simple procedure

• Bound procedure

A simple procedure is a procedure that does not need direct access to the stack of its execution

environment. A bound procedure is a procedure that does need direct access to the stack

of its execution environment, t5rpically to reference an up-level variable or to perform a
non-local goto. Both a simple procedure and a bound procedure will have an associated
procedure descriptor as described in previous sections. Bound procedure values are designed
for multilanguage use and allow callers of procedures to use common code to call both bound

and simple procedures.

When a bound procedure is called, the caller must pass some kind of pointer to the called code
that allows it to reference its up-level environment; typically such a pointer is the frame
pointer for that environment but many variations are possible. When the caller is itself
executing within that outer environment then it can usually make such a call directly to

the code for the nested procedure without recourse to any additional mechanism. However,
when a procedure value for the nested procedure must be passed outside of that environment
to a call site that has no knowledge of the target procedure, a special bound procedure is
created so that the nested procedure can be called just like a simple procedure.

The procedure value of a bound procedure is defined as the address of the first instruction

of a sequence of instructions that establish the proper environment for the bound procedure
and then transfer control to that procedure.

One direct scheme for constructing a jacket to a bound procedure that can be called like a
simple procedure is to allocate a sequence of instructions on the stack and use the address

of those instructions as the procedure value. Assume that a bound procedure named PROG
expects its static link to be passed in Rl. Then, a suitable sequence of instructions might
look like the following:

LDAH Rl, frame-hi(R31)

Rl,frame-lo(Rl)

R28,PROC-hi(R31)

R28,PROC-lo(R28)

(R28)

Create up-level pointer in Rl
LDA

Materialize address of bound procedureLDAH

LDA

Transfer to the bound procedure

Note that this sequence can only be created by code that is executing within the context of
the containing procedure so that the appropriate frame pointer value is known and can be

JMP

22 Windows NT for Alpha AXP - Flow Control - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

easily incorporated in the sequence illustrated. The lifetime of this sequence is, of course,
limited to the lifetime of the stack frame in which it is allocated.

After creating the above jacket instructions, it is necessary to execute an IMB instruction

prior to execution of them to assure instruction cache coherence, as described in the Alpha
AXP System Reference Manual.

4.2.6 Entry and Exit Code Sequences

This section describes the steps that must be executed in procedure entry and exit sequences.
These conventions must be followed in order for the call chain to be well defined at every

point during thread execution.

Entry Code Sequence

Since the value of the PC defines the currently executing procedure, it must be possible
using the procedure descriptor associated with that PC, as well as the instructions of the

procedure itself, to recover the identity (PC) and environment of the caller. This leads to

the following restriction: A standard call cannot be made from the prologue.

NOTE

If an exception is raised or an exception occurs in the prologue of a procedure, that

procedure’s exception handler (if any) will not be invoked since the procedure is
not current yet. This implies that if a procedure has an exception handler compilers
may not move code into the procedure prologue that might cause an exception that
would be handled by that handler.

When a procedure is called, the code at the entry address must synchronize (as needed)
any pending exceptions caused by instructions issued by the caller, save the caller’s context,

and make the called procedure current (by executing the last instruction of the procedure
prologue).

This is done by performing the following actions in the order given:

1. If stack space is allocated (FRAME_SIZE 0), then set register SP = SP - FRAME_
SIZE.

After any necessary calculations and stack limit checks, this step must be completed by
exactly one instruction that modifies SP.

2. For a stack frame procedure (REGISTER_FRAME is 0): Store the return address and

any registers that are being preserved in the stack frame. The stack frame reference

must use SP.

NOTE

If the locations allocated for saving the registers must be more than 32768 bytes
away from the top of staek (for example, because the procedure contains an

actual parameter list whose size exceeds 32768 bytes) then it is not possible to
allocate the entire stack in a single step. In this case, the variable stack size

form of stack frame must be used. (Recall that memory reference instructions

in the Alpha AXP architecture can address at most 32768 bytes relative to the
contents of some general register.)

Execute TRAPB if required (see Section 6.1.12, Other Considerations, for details).3.

Windows NT for Alpha AXP - Flow Control - 15-March-1993 23

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

4. For a variable sized stack frame procedure (BASE_REG_IS_FP is 1), copy register SP
to register FP.

This step must be completed by exactly one instruction that modifies FP.

When the above steps have been completed, the executing procedure is said to become
current for the purposes of exception handling. The handler for a procedure will not be
called except when that procedure is current.

For each of the steps described above, there are specific instructions or sequences of in
structions that must be used. These are the only instructions that are interpreted when
unwinding a stack frame for purposes of exception dispatching or stack walking. (Such

prologue interpretation is sometimes called reverse execution. See Section 8.3, Getting a
Procedure Invocation Context with a Routine for related discussion.)

1. Allocate stack

Let N be the number of bytes to allocate for the fixed part of the stack. The simpler
case occurs when the size of the extension does not exceed the value of MAX_NOCHK_

EXTEND (4096, see Implicit Stack Limit Checking) and can therefore be represented
in the 16-bit offset field of an LDA instruction. In this case, use

LDA SP, -N(SP)

If the previous case does not apply, then use the sequence

load Rx, N

SUBQ SP, Rx, SP

where Rx is a scratch register for the procedure and load stands for one of a number

of alternatives for loading the constant N into register Rx. The load of Rx and update
of the stack pointer are separated by instructions that check that the stack limit is not

exceeded by the allocation as described in Section 7.1, Stack Limit Checking.

The following instructions may be used to load a constant value N into a register Rx:
0 < N < 255R31, N, RxBIS

or

0 < N < 32767LDA Rx, N(R31)

or

0 < Hi < 32767, N = Hi*65536LDAH Rx, Hi(R31)

or

0 < Hi < 32767,
-32768 < Lo < 32767,
N = Hi*65536 + Lo

In the last case, the LDAH and LDA instructions need not be contiguous. ^

2. Save return address and preserved registers

General purpose registers that are saved on the stack must be saved using

Rx, n(SP)

where Rx is the register being saved (including the return address register) and n is

the offset in the stack for saving that register. Similarly, floating point registers that
are saved on the stack must be saved using

Rx, Hi(R31)

Rx, Lo(Rx)

LDAH

LDA

STQ

^ As a short term expedient, the instruction ADDQ R31, N, Rx is also interpreted during reverse execution.

24 Windows NT for Alpha AXP - Flow Control - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Fx, n(SP)

where Fx is the register being saved and n is the offset in the stack for saving that

register. (Note that floating point registers are never saved using STF, STD, STG or
STS because the called routine has no a priori information about the type of the variable
contained in the register. Similarly, LDT is always used to restore a floating register.)

Preservation of registers in this manner is not limited to just the standard preserved
registers defined in Section 3.3.1, Integer Registers and Section 3.3.2, Floating Point

Registers.

A register that is preserved may also be saved by moving it to a scratch register in the

case of a register frame procedure.

There are no requirements concerning the order in which registers are saved or the
position within the stack frame where they are saved.

The first use of a register that is preserved within a prologue must be to save it. The save
operation may consist of a sequence of moves that start with a given register, copy the
contents to other registers, and optionally store the register in the stack. (This may be

necessary, for example, to temporarily preserve the return address if a routine is called

in the prologue to perform stack limit checking (see Section 7.1, Stack Limit Checking).
Note that such a called routine is necessarily non-standard.) The last location in this

sequence (whether a register or a stack location) must thereafter not be modified during

the execution of the procedure. The registers involved in such a sequence (other than the
last if the contents is not stored in the stack) can be used for other purposes provided,
either

• they do not occur in any of the instructions described in this section, or

• they occur following the last instruction of the sequence.

3. Force pending exceptions

The TRAPS instruction is used to assure that any pending exceptions occur prior to the
end of the prologue (prior to the routine becoming current).

4. Initialize frame pointer register

The frame pointer must be set using

SP, FP

5. Move a register to another register

A general register Rx must be moved (MOV) to another general register Ry using ^

R31, Rx, Ry

A floating point register Fx must be moved to another general register Fy using

Fx, Fx, Fy

STT

MOV

BIS

CPYS

NOTE

The SP register is normally "saved" and "restored" by adjusting its contents by a fixed

value that is part of the instruction stream rather than by copying its contents to

another register or to a location on the stack. However, a STx SP,n(SP) or MOV
SPJlx instruction is reverse executed as just described in bullets 2 and 5 above.

As a short term expedient, the instructions BIS Rx, Rx, Ry and BIS Rx, R31, Ry are also interpreted during reverse

execution.

Windows NT for Alpha AXP - Flow Control - 15-March-1993 25

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

It follows that these instructions can be included in a procedure prologue only if

their reverse execution is in fact intended as part of restoring the SP contents.
In particular, code scheduling must not allow such instructions, whose use of the

SP contents is unrelated to SP maintenance, to be moved into the prologue of a
procedure.

Prologue Length As a general rule, it is valid to include instructions in the prologue in
addition to those required above in order to take advantage of available processor cycles that
are not otherwise used. However, to avoid undesirable reverse execution overhead during

exception dispatching or unwinding the length of the prologue should not be increased in
ways that do not exploit such available cycles except possibly to include instructions that
have an unusually long latency. In any case, it must not be possible for such additional
instructions to cause an exception that would be handled by that procedure if that exception
were raised after the procedure became current. (An exception may be considered to be not
handled by a procedure if it is known a priori that the handler will always resignal that

exception.)

It follows from these considerations that the length of the prologue of a procedure should
t5rpically be no larger than two instructions times the number of registers that are preserved
in that procedure, in addition to those instructions that perform stack limit checking (if any).
In Windows NT for Alpha AXP, there must not be more than 1024 instructions in a prologue.
If a larger number is detected, then the containing program may be aborted.

Frame Pointer Conventions

After procedure prologue completion, the register indicated by BASE_REG_IS_FP must con
tain the frame pointer of the stack frame, which is the address of the lowest-addressed byte

of the fixed portion of the stack frame allocated by the procedure prologue. The value of the
frame pointer is the value of FRAME_SIZE subtracted from the value of the stack pointer
upon procedure entry.

For fixed frame procedures, the frame pointer is the stack pointer, which is not modified by
that procedure after the instruction in that procedure prologue specified by SP_SET.

Entry Code Example for a Stack Frame

This example assumes that this is a stack frame procedure, that registers R9..R11 and
F2..F3 are saved and restored, that the procedure has a static exception handler that does
not reraise arithmetic traps, and that the procedure uses a fixed amount of stack (BASE_

REG_IS_FP is 0).

;Allocate space for new stack frame
;Save return address

;Save first integer register

;Save next integer register

;Save next integer register
;Save first floating point register

/Save last floating point register

/Force any pending hardware exceptions to be raised

LDA SP,-SIZE(SP)

R26,16 (SP)

R9,24(SP)

RIO, 32(SP)

Rll, 40(SP)

F2,48 (SP)

F3,56(SP)

STQ

STQ

STQ

STQ

STT

STT

TRAPS

/Called procedure is now the current procedure

Entry Code Example for a Register Frame

The following entry code example is for a called procedure that has no static exception
handler, both SAVE_RA and ENTRY_RA specify R26 and the procedure utilizes a fixed
amount of stack storage (BASE_REG_IS_FP is 0).

LDA

/Called procedure is now the current procedure

SP,-SIZE(SP) /Allocate space for new stack frame

26 Windows NT for Alpha AXP - Flow Control - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Exit Code Sequence

The end of procedure entry code can be determined easily given a PC value together with
the ENTRY_LENGTH value. Since there may be multiple return points from a procedure,
detecting that a procedure exit sequence is being executed is not quite as straight forward.
Unwind support routines must be able to detect if the stack pointer has been reset or not
and if not, how to reset it. This is done by using a reserved instruction sequence.

Reserved Instruction Sequence for Procedure Exit
Ta allow the stack to be properly restored during an unwind, a reserved instruction or

sequence of instructions must be used. None of these sequences may be used in any other
way.

The following reserved instruction must appear at every exit point from any procedure that
uses stack (FRAME_SIZE ^ 0):

;Return to caller with usage hint 0001R31,(Rn),0001RET

NOTE

Usage hint refers to the value of the branch prediction bits encoded in the RET

instruction. The Alpha AXP System Reference Manual documents that these bits,

<13:0> of the instruction longword, are reserved to software when the instruction

is RET or JSRJCOROUTINE. (See Section 4.3 of the Alpha AXP System Reference

Manual.) This calling standard further requires that these bits contain the value

0001 (hex) for procedure returns and 0000 otherwise. It is the occiurence of the

usage hint value 0001 that identifies a RET instruction as one that is reserved for use

only as described in this section. RET instructions may be used for other pvuT)oses

provided they contain a usage hint of 0000. Such RET instructions will not be

recognized and treated in a special way for the purposes of exception handling or

unwinding.

Furthermore, for any such procedure that does not return a value on the stack, the above

instruction must be directly preceded by one of the two reserved stack resetting instructions
as in:

/Reset stack

/Return to caller with usage hint

LDA SP,*

R31, (*), 0001RET

or

/Reset stack

/Return to caller with usage hint
*, *,SP

R31, (*) , 0001

That is, any LDA instruction whose destination is the SP register or any ADDQ instruction

whose destination is the SP register is interpreted as part of a procedure exit sequence when
immediately followed by the reserved procedure return instruction. The LDA instruction

must have the form LDA SP,n(Rx) if the amount by which the stack is being adjusted can

be represented as the offset n. Otherwise, the latter form is used, in which case the ADDQ
instruction must have the form ADDQ Rx, Ry, SP where, in particular, Ry is the name of a
register rather than a literal operand.

ADDQ

RET

Windows NT for Alpha AXP - Flow Control - 15-March-1993 27

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

A stack resetting instruction may not be present (in the case of a procedure that returns a
result on the top of the stack). However, if present, it will occur immediately preceding the
reserved RET instruction.

Furthermore, for any such procedure that has BASE_REG_IS_FP set to 1, the resulting

sequence must be directly preceded by the FP reloading instruction as in:

/Restore FP

;Or ADDQ *,*,SP to Reset stack

/Return to caller with usage hint

FP, *

SP, *

R31, (*),0001

That is, any LDQ instruction whose destination is the FP register (R15) is interpreted as

part of a procedure exit sequence when it is immediately followed by the reserved procedure
return instruction or by a stack resetting instruction as described above that is immediately

followed by the reserved procedure return instruction.

Procedures that do not use the stack need not use these reserved instruction sequences.

The unwind support code uses the above sequences to make the following assumptions about

an interrupted PC value:

• If the PC points within the prologue then the effect of the prologue performed so far is
undone via reverse execution starting at PC - 4 (see Section 8.3, Getting a Procedure
Invocation Context with a Routine , and the unwind can proceed.

• If the PC points at a RET R31,(*),0001 instruction then SP has already been reset, the

registers have already been restored and the unwind can proceed.

• If the PC points to either a LDA SP,* or an ADDQ *,*,SP instruction that is immedi

ately followed by the instruction described previously then the registers have already
been restored but the SP must be incremented by FRAME_SIZE before the unwind can

proceed.

• If the PC points to a LDQ FP,* instruction that is immediately followed by either of the
instructions described previously and REGISTER_FRAME is 0, then all registers other
than FP have been restored, FP still retains the frame base pointer which should be
copied to SP, then FP must be restored, SP must be incremented by FRAME_SIZE and

the unwind can proceed.

• Otherwise, the registers must be restored, SP reset, and the unwind can proceed.

When a procedure has executed the first instruction of one of the reserved sequences just
described, the procedure becomes no longer current for the purposes of exception handling.

The handler for a procedure will not be called in the midst of one of these reserved instruction

sequences in that procedure.

Exit Code Sequence Steps
When a procedure returns, the exit code must restore the caller’s context, synchronize any

pending hardware exceptions, and make the calling procedure current by returning control
to it.

This is done by performing the following actions:

Perform step 1, followed by steps 2 - 5 in any order, followed by steps 6 - 8 in that order.

1. For a variable size stack frame procedure that does not return a value on the top-of-stack
(BASE_REG_IS_FP is 1), copy FP to SP.

LDQ

LDA

RET

28 Windows NT for Alpha AXP - Flow Control - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

For a stack frame procedure (REGISTER_FRAME is 0), reload any saved registers. (For

a fixed size stack frame procedure (BASE_REG_IS_FP is 0), R15 is reloaded if it was

saved on entry.)

Reload the register that held the return address on entry with the saved return address
if necessary. For a stack frame procedure (REGISTER_FRAME is 0), load the register

designated by ENTRY_RA (R26 in a standard call) with the return address.

Execute TRAPB if required (see Section 6.1.12, Other Considerations, for details).

For a variable size stack frame procedure (REGISTER_FRAME is 0 and BASE_REG_

IS_FP is 1), reload R15 (FP) as for any other saved register.

After any necessary calculations, this step must be completed by exactly one instruction
as described above.

If a function value is not being returned on the stack, then restore SP to the value it

had at procedure entry by adding the value that was stored in FRAME_SIZE to SP. (In

some cases the returning procedure will leave SP pointing to a lower stack address than

it had on entry to the procedure, as specified in Section 5.1.7, Returning Data).

After any necessary calculations, this step must be completed by exactly one instruction
as described above.

Execute the RET R31,(Rn),0001 instruction as described above to return control to the

calling procedure.

Note that the called routine does not adjust the stack to remove any arguments passed in
memory. This responsibility falls to the calling routine which may choose to defer their
removal due to optimizations or other considerations.

Exit Code Example for a Stack Frame

The following is the return code sequence for the stack frame example above.

R26,16 (SP)

R9,24 (SP)

RIO,32(SP)

Rll,40(SP)

F2,48(SP)

F3,56(SP)

2.

3.

4.

5.

6.

7.

LDQ ;Get return address

/Restore first integer register

/Restore next integer register
/Restore next integer register

/Restore first floating point register

/Restore last floating point register

/Force any pending hardware exceptions to be
/ raised (see Section 6.1.12)

/Restore SP

/Return to caller with usage hint

LDQ

LDQ

LDQ

LDT

LDT

TRAPB

SP,SIZE(SP)

R31,(R26),0001

Exit Code Example for a Register Frame

The following is the return code sequence for the register frame example above.

LDA

RET

LDA SP,SIZE(SP)

R31,(R26),0001

/Restore the SP

/Return to caller with usage hintRET

Windows NT for Alpha AXP - Flow Control - 15-March-1993 29

CHAPTER 5

DATA MANIPULATION

This section deals with the passing and storage of data.

5.1 Data Passing

The fundamental unit of data which gets passed between procedures has been abstracted for
purposes of discussion to a concept called an argument item. An argument item represents

one unit of data being passed.

5.1.1 Argument Passing Mechanisms

This calling standard distinguishes three classes of argument items according to the mech
anism used to pass the argument:

• Immediate value

• Reference

• Descriptor

Argument items are not self-defining; interpretation of each argument item depends on
agreement between the calling and called procedures.

This standard does not dictate which of the above mechanisms must be used by a given

language compiler. Language semantics and/or interoperability considerations may require
different mechanisms to be used in any given situation.

Immediate Value

An immediate value argument item contains the value of the data item. The argument item,

or the value contained in it, is to be directly associated with the parameter.

Reference

A reference argument item contains the address of a data item such as a scalar, string, array,

record, or procedure. That data item is to be associated with the parameter.

Descriptor

A descriptor argument item contains the address of a descriptor, which contains structural
information about the argument’s t3rpe (such as array bounds) and the address of a data

item. That data item is to be associated with the parameter.

This standard does not define a standard set of descriptors. Consequently, descriptors cem
not be used as part of a standard call.

Windows NT for Alpha AXP - Data Manipulation - 15-March-1993 31

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

5.1.2 Normal Argument List Structure

The argument list in an Alpha AXP call is an ordered set of zero or more argument items,

which together comprise a logically contiguous structure known as the argument item se

quence. An argument item is represented in 64 bits.

An argument item may be used to pass immediate arguments, arguments by reference, and

arguments by descriptor. The standard permits any combination of these mechanisms in an

argument list.

Although the argument items form a logically contiguous sequence, they are in practice

mapped to integer and floating point registers and to memory in a fashion that may produce
a physically discontiguous argument list. Registers R16..R21 and F16..F21 are used to pass

the first six items of the argument item sequence. Additional argument items must be

passed in a memory argument list which must be located at (XSP) at the time of the call.

RATIONALE

The caller needs to have enough scratch registers to compute arguments. In addi

tion, if the caller must make a call to compute some of the arguments, any that are

in scratch registers must be saved to memory (but only once - so this is no worse

than passing them in memory).

The following table specifies the standard locations in which argument items can be passed.

Table 5-1: Argument Item Locations

Floating Point Registers StackInteger RegistersItem

R16 F161

FI 7R172

F18R183

FI 9R194

R20 F205

R21 F216

0(SP)...(n-7)*8(SP)7...n

The general rules that determine the location of any specific argument can be summarized
as follows:

All argument items are passed in the integer registers or on the stack, except argument

items that are floating point data passed by immediate value.

Floating point data passed by immediate value is passed in the floating point registers
or on the stack.

Only one location in any row in the above table may be used by any given argument

list. So, for example, if argument item 3 is an integer passed by value, and argument
item 4 is a single precision floating point number passed by value, then argument item
3 is assigned to R18 and argument item 4 is assigned to F19.

1.

2.

3.

Windows NT for Alpha AXP - Data Manipulation - 15-March-199332

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

4. A single or double precision complex value passed by immediate value is treated as two
arguments for the purpose of these rules, with the real part coming first. In particular,

the real part of a complex value may happen to be passed as the sixth argument item
in register F21 in which case the imaginary part will then be passed as the seventh
argument item in memory.

The argument list, including both the in memory portion as well as the portion that is
passed in registers, may be read and written by the called procedure. The calling procedure
must therefore not make any assumptions about the validity of any part of the argument
list after the completion of a call.

5.1.3 Homed Memory Argument List Structure

In certain cases (for example, for C procedures that use varargs), it is useful to form a
contiguous in memory structure that includes the contents of all of the formal parameter
values. In nearly all cases, a compiler can arrange to allocate and initialize this structure so

that the parameter values that are passed in registers are placed adjacent to the parameters
that are passed on the stack (without making a copy of the stack arguments). Storage

for the parameters passed in registers is called the argument home area (see Figure 4-1
and Figure 4-2). The resulting in memory homed argument list structure is illustrated in

Figure 5-1.

Figure 5-1: In Memory Homed Argument List Structure

octaword aligned
+■ +

I fit arg #1:F16 | :-48 <- start of argument block
+ +

1 F17 I :-40
■++

I F18 I :-32
+ ■+

F19 I :-24I
+ ■+

F20 I :-16
+ ■+

1 fit arg #6:F21 | :-8
+ •+

I int arg #1:R16 | :0 <- start of contiguous integer arguments
+ •+

R17 I :8
+ ■+

R18 I :16
+ ■+

R19 1 :24
+ ■+

I R20 I :32

+ ■+

I int arg #6:R21 | :40
+■ ■+

I arg #7: memory | 48 <- SP on entry (octaword aligned)
+ ■+

memory :

I

Windows NT for Alpha AXP - Data Manipulation - 15^March-l993 33

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Because it is generally not possible to tell statically whether a particular argument is an
integer or floating point argument, it is necessary to store both integer and floating point
register argument contents in this structure. However, it is sometimes possible to determine
statically that there are no floating arguments anywhere at all (either in registers or on the
stack), in which case the first six entries can be omitted. To facilitate this special case, the
address used to reference this structure is always the address of the first integer argument

position.

The C language type vajist is defined as follows:

typedef longlong quad;

typedef struct {

quad
int

} va_list;

To load the next integer argument, read the quadword at location {base+offset), and add 8

to offset. To load the next floating argument, if offset < 6*8, read the quadword at location
{base+offset-Q*S)', otherwise, read the quadword at location {base+offset)\ in either case add

8 to offset.

*ba set

off set;

5.1.4 Argument Lists and High Levei Languages

High level language functional notations for procedure call arguments are mapped into
argument item sequences according to the following rules:

1. Arguments are mapped from left to right to increasing offsets in the argument item

sequence. R16 or F16 is allocated to the first argument, and the last quadword of the
memory argument list (if any) is allocated to the last argument.

2. Each source language argument corresponds to one or more contiguous Alpha AXP

calling standard argument items.

3. Each argument item consists of 64 bits.

4. A null or omitted argument, for example CALL SUB(A„B), is represented by an argu
ment item containing 0.

No arguments passed by the immediate mechanism may be omitted unless a default

value is supplied by the language. (This is to enable called procedures to distinguish
an omitted immediate argument from an immediate value argument with the value 0.)

Trailing null or omitted arguments, for example CALL SUB(A„), are passed by the same
rules as embedded null or omitted arguments.

5.1.5 Unused Bits in Passed Data

Whenever data is passed by value between two procedures either in registers, as is the

case for the first six input arguments and return values, or in memory, as is the case for
arguments after the first six, the bits not used by the data are usually sign extended or zero
extended as appropriate.

The table below defines the rules for setting or clearing the unused bits.

Key:

• Sign32 means sign extended to 32 bits - The state of bits <63:32> is unpredictable

34 Windows NT for Alpha AXP - Data Manipulation - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Sign64 means sign extended to 64 bits

Zero32 means zero extended to 32 bits - The state of bits <63:32> is unpredictable

Zero64 means zero extended to 64 bits

Data32 means data is 32 bits - The state of bits <63:32> is unpredictable

2*Data32 means two single precision parts of the complex value are stored in memory

as independent floating point values (each handled as Data32)

Data64 means data is 64 bits

2*Data64 means two double precision parts of the complex value are stored in memory

as independent floating point values (each handled as Data64)

Hard means passed in the layout defined by the Alpha AXP System Reference Manual

2*Hard means two double precision parts of the complex value are stored in a pair of
registers as independent floating point values (each handled as Hard)

Nostd means that the state of all high order bits not occupied by the data is unpredictable
across a call or return

Table 5-2: Unused Bits in Passed Data

Register
Data Size Extension

(bytes) Type
Memory Ex
tension TypeData Type Type Designator

byte logical

word logical

longword logical

quadword logical

byte integer

word integer

longword integer

quadword integer

F floating

D floating

G floating

F floating complex

D floating complex

G floating complex

IEEE floating single S

IEEE floating double T

IEEE floating single S complex

IEEE floating double T complex

Structures

Small arrays of 8 bytes or less

32-bit address

64-bit address

BU 1 Zero64

Zero64

Sign64

Data64

Sign64

Sign64

Sign64

Data64

Hard

Hard

Hard

2* Hard

2*Haid

2*Hard

Hard

Hard

2*Hard

2*Hard

Nostd

Nostd

Sign64

Data64

Zero64

Zero64

Sign64

Data64

Sign64

Sign64

Sign64

Data64

Data32

Data64

Data64

2*Data32

2*Data64

2*Data64

Data32

Data64

2*Data32

2*Data64

Nostd

Nostd

Sign64

Data64

WU 2

LU 4

QU 8

B 1

W 2

L 4

Q 8

F 4

D 8

G 8

FC 2 * 4

2 * 8

2 * 8

DC

GC

FS 4

FT 8

FSC 2 * 4

2 * 8FTC

N/A

N/A <8

N/A 4

N/A 8

Windows NT for Alpha AXP - Data Manipulation - 15-March-1993 35

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

NOTE

Sign64 applied to a longword logical duplicates bit 31 through bits <63:32>, which
may cause the 64-bit integer value to appear negative. However, careful use of 32-

bit arithmetic and 64-bit logical instructions (but no right shifts) will preserve the
32-bit unsigned nature of the argument.

Because of the varied rules for sign extension of data when passed as arguments it is
important that both calling and called routines must agree on the datatype of each argument.
No implicit data type conversions can be assumed between the calling procedure and the
called procedure.

5.1.6 Sending Data

Sending Mechanism

The following represents the rules which govern the allowable mechanisms for sending data.

By immediate value An argument may be passed by immediate value only if the argument
is one of the following:

• One of the noncomplex scalar data types with a size known (at compile time) to be < 64
bits

• A record with a known size (at compile time)

• A set, implemented as a bit vector, with a size known (at compile time) to be < 64 bits

No form of string, array or complex data type may be passed by immediate value in a
standard call.

A standard immediate argument item must fill 64 bits. This means that unused high-

order bits of all data types (excluding records) must be zero-extended or sign-extended, as

appropriate depending on the data type, to fill all unused bits. (See Table 5-2, Unused Bits

in Passed Data, for details.)

Large Immediate Arguments Record values are passed by immediate value as follows:

• Allocate as many fully occupied argument item positions to the argument value as are

needed to represent the argument.

• The value of the unoccupied bits is undefined in a final, partially occupied argument

item position.

• An argument item that is passed in one of the registers is passed in the integer registers
(never in a floating register).

Non-Standard Immediate Arguments Non-record argument values that are larger than

64 bits can be passed by immediate value using non-standard conventions, t5rpically using a
method similar to that used for records. Thus, for example, a 26-byte string could be passed
by value in four integer registers.

By Reference—Non-parametric Non-parametric arguments (that is, arguments for
which associated information such as string size and array bounds are not required) may
be passed by reference in a standard call.

36 Windows NT for Alpha AXP - Data Manipulation - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

By Reference—Parametric Parametric arguments (that is, arguments for which associ

ated information such as string size and array bounds must be passed to the caller) may
be passed by reference followed by one or more immediate arguments for the parametric
values. (The parametric values need not immediately follow the reference arguments to

which they apply.)

NOTE

Interlanguage conventions for such calls are not defined by this standard.

By Descriptor Parametric arguments (that is, arguments for which associated information

such as string size and array bounds must be passed to the caller) may be passed by a single
descriptor.

NOTE

A standard set of descriptors for interlanguage use is not defined by this standard.

Order of Argument Evaluation

Since most higher level languages do not specify the order of evaluation (with respect to side
effects) of arguments, those language processors can evaluate arguments in any convenient
order. The choice of argument evaluation order and code generation strategy is constrained
only by the definition of the particular language. Programs should not be written that
depend on the order of evaluation of arguments.

5.1.7 Returning Data

A standard function must return its function value by one of the following mechanisms:

• immediate value

• reference

• descriptor

These mechanisms are the only standard means available for returning function values,

and they support the important language independent data types. Functions that return
values by any mechanism other than those specified here are non-standard, language-specific
functions.

Function Vaiue Return By Immediate Value

This section describes the two types of immediate value function return.

Non-Floating Function Value Return By Immediate Value
A function value is returned by immediate value in register RO only if the type of function
value is one of the following:

• Non-floating point scalar data type with size known (at compile time) to be < 64 bits

• Record with size known (at compile time) to be < 64 bits

• Set, implemented as a bit vector, with size known (at compile time) to be < 64 bits

No form of string or array may be returned by immediate value.

Two separate 32-bit entities cannot be returned in RO.

Windows NT for Alpha AXP - Data Manipulation - 15-March-1993 37

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

A function value < 64 bits returned in RO must have its unoccupied bits extended as ap
propriate, to a full quadword, depending on the data type. (See Table 5-2, Unused Bits in
Passed Data for more details).

Floating Function Value Return By Immediate Value

A function value is returned by immediate value in register FO if, and only if, it is a non

complex single or double precision floating point value (F,D,G,S,or T).

A function value is returned by immediate value in registers F0..F1 if, and only if, it is a
complex single or double precision floating point value (complex F,D,G,S,or T). The real part
is in FO and the imaginary part is in FI.

Function Value Return By Reference

A function value is returned by reference only if the function value satisfies both of the

following criteria:

• Its size is known to both the calling procedure and the called procedure, but the value
cannot be returned by immediate value (because the function value requires more than
64 bits, the data type is a string or an array type, and so on).

• It can be returned in a contiguous region of storage.

The actual-argument list and the formal-argument list are shifted to the right by one ar

gument item. The new, first argument item is reserved for the address of the function

value.

The calling procedure must provide the required contiguous storage and pass the address
of the storage as the first argument. This address must specify storage that is naturally
aligned according to the data type of the function value.

The called function must write the function value to the storage described by the first

argument.

Function Value Return By Descriptor

A function value is returned by descriptor only if the function value satisfies all of the

following criteria:

• It cannot be returned by immediate value (because the function value requires more
than 64 bits, the data t3rpe is a string or an array type, and so on).

• Its size is not known to either the calling procedure or the called procedure.

• It can be returned in a contiguous region of storage.

Function results may not be returned by descriptor in a standard call.

Typically, the called routine creates the return object on its stack and leaves it there on

return. This is referred to as the stack return mechanism. The exit code of the called

routine does not restore SP to its value before the call (otherwise the return value would be

left unprotected in memory below SP). The calling routine must be prepared for SP to have
a different value after the call.

38 Windows NT for Alpha AXP - Data Manipulation - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

5.2 Data Allocation

5.2.1 Alignment

On the Alpha AXP architecture, memory references to data that is not naturally aligned

may result in alignment faults, which can severely degrade the performance of all procedures
that reference the unnaturally aligned data.

For this reason, data values on Alpha AXP systems (including variables, aguments, function

results and so on) should be naturally aligned. For example, 8-bit character strings should
start on byte boundaries; 16-bit integers should start at addresses that are a multiple of at
least 2 (word alignment); single precision real values should start at addresses that are a

multiple of at least 4 (longword alignment); double precision real values should start at ad
dresses that are a multiple of at least 8 (quadword alignment); and so forth. Single precision
complex values should start at addresses that are a multiple of 4 (longword alignment) and
double precision complex values should start at addresses that are a multiple of 8 (quadword
alignment).

Data types larger than 64 bits should use quadword or greater alignment. Alignments larger
than quadword are language-specific or application defined.

For aggregates such as strings, arrays, and records, the data type to be considered for
purposes of alignment is not the aggregate itself, but the elements of which the aggregate is
composed. The alignment requirement of an aggregate is that all elements of the aggregate

should be naturally aligned. Varying 8-bit character strings must, for example, start at

addresses that are a multiple of at least 2 (word alignment) because of the 16-bit count at

the beginning of the string; 32-bit integer arrays start at a longword boundary, irrespective
of the extent of the array.

5.2.2 Granularity

On the Alpha AXP architecture, memory is byte addressable but the smallest unit in which

memory may be accessed (the granularity) is a longword. Moreover, even for longword sized
data it is often expedient for execution efficiency to access memory in quadword units. In
the presence of multiple threads of execution (whether on multiple processors or just one
processor), allocation of more than one data element within a single quadword can lead
to more complicated access sequences (for example, using LDx_IVSTx_C) and/or latent and
hard to diagnose bugs because of non-obvious and implicit data sharing. As a result, it is
generally recommended that independent variables (that is, variables not combined in a

larger aggregate) should be allocated on quadword boundaries.

5.2.3 Record Layout Conventions

The Alpha AXP calling standard record layout rules are designed to provide good run time
performEmce on all implementations of the Alpha AXP architecture.

Only the standard record layouts may be used across standard interfaces or between lan

guages. Languages may support other language-specific record layout conventions, but such
other record layouts are not standard.

Windows NT for Alpha AXP - Data Manipulation - 15-March-1993 39

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Aligned Record Layout

The aligned record layout conventions ensure that:

• All components of a record or subrecord are naturally aligned.

• The layout and alignment of record elements and subrecords is independent of any
record or subrecord in which they may be embedded.

• The layout and alignment of a subrecord is the same as if it were a top level record.

• Declaration in high level languages of standard records for interlanguage use is reason

ably straightforward and obvious, and meets the requirements for source level compat

ibility between Alpha AXP environments and other environments.

The aligned record layout is defined by the following conventions:

• The components of a record must be laid out in memory corresponding to the lexical
order of their appearance in the high level language declaration of the record.

• The first bit of a record or subrecord must be directly addressable; i.e. it must be byte

aligned.

• Records and subrecords must be aligned according to the largest natural alignment

requirements of the contained elements and subrecords.

• Bitfields (packed subranges of integers) are characterized by an underlying integer type

which is a byte, word, longword or quadword in size together with an allocation size in
bits. A bitfield is allocated at the next available bit boundary provided that the resulting
allocation does not cross an alignment boundary of the underljdng type. Otherwise, the
field is allocated at the next byte boundary that is aligned as required for the underlying
type. (In the latter case, the space skipped over is left permanently not allocated.) In
addition, the alignment of the record as a whole is increased to that of the underlying

integer type (if needed).

• Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must
start at the next available bit in the record; no fill is ever supplied preceding an un
aligned bit string, unaligned bit array, or unaligned bit array element.

• All other components of a record must start at the next available naturally aligned

address for the data t5q)e.

• Strings and arrays must be aligned according to the natural alignment requirements of

the data type of which the string or array is composed.

• The length of an array element is a multiple of its alignment, even if this leaves unused

space at its end. The length of the whole array is the sum of the lengths of its elements.

Windows NT for Alpha AXP - Data Manipulation ■ 15-March-199340

CHAPTER 6

EVENT PROCESSING

This chapter discusses specifications related to events that are outside the normal program
flow.

6.1 Exception Handling

This section on exception handling discusses the considerations involved in the notification

and handling of exceptional events during the course of normal program execution.

6.1.1 Exception Handling Requirements

The exception handling capabilities specified in this standard are for support of:

• Reliable programmer and program control over response to exceptions and reporting of
such exceptions, and over the flow of control when exceptions occur.

• Orderly termination of layered applications.

• Correct and predictable exception handling in a multilanguage environment

• The construction of modular, maintainable multilanguage applications.

• Support for parallel multithreaded application execution, including

• Per-thread exception handling.

• Handling of asynchronous exceptions.

• Safe thread exit in a multithreaded environment.

• Capability for subsystems and applications to override system messages to provide a
more suitable application oriented interface, specifically including modular, multina

tional message and error reporting.

6.1.2 Exception Handling Overview

When an exception occurs (is raised), the normal flow of control in the current thread is

interrupted, the context is saved, and control is transferred to the exception handling support
code. This support code marshals the exception information and then enters a section of the

support code called the exception dispatcher. The exception dispatcher searches for exception
handlers and invokes them in the proper sequence.

When a handler is invoked, it is called as a procedure with arguments that describe the

nature of the exception, the environment within which the exception was raised, and the
environment within which the handler was established. When the handler is called the

exception is said to be delivered to the handler.

Windows NT for Alpha AXP ■ Event Processing - 15-March-1993 41

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

The handler may respond to the exception in several ways, including various combinations
of the following:

• Perform some action that affects the context of the thread (possibly correcting the cir
cumstances that led to the exception being raised).

• Modify or augment the description of the exception.

• Raise a nested exception, causing another exception to occur in the context of the excep

tion handler or in a procedure called directly or indirectly by the handler.

When an exception handler has finished processing an exception, it must indicate this in
one of the following ways:

• Indicate that the exception handling support code should Reraise the exception and
resume the search for another handler.

• Indicate that the exception handling support code should Continue execution of the

interrupted thread at the location indicated by the saved exception program counter.

• Unwind, which causes the exception handling support code to resume execution of the

thread at a point different than the point at which it was interrupted, or terminate the
execution of the thread.

All exceptions are handled with the same interfaces, data structures, and algorithms. That

is, there is unified exception handling for all kinds of exceptions, regardless of their origi
nation.

Each exception has an exception value, which identifies the exception (such as subscript
range violation, or memory access control violation). Exceptions may also have associated
with them one or more exception qualifiers (such as the name of an array and the subscript
which was out of range, or an adi^ess associated with a memory access control violation).

6.1.3 Kinds of Exceptions

Exceptions may be divided into these kinds:

• Those caused by general software or hardware notification mechanisms (called general

exceptions).

• Those caused by an unwind operation (called unwind exceptions).

Generai Exceptions

General exceptions may be further categorized as one of:

Software Caused

A software caused general exception is raised as the result of the invocation of an exception

raising procedure and is always delivered to the thread which made the call.

Such an exception may be raised at any point during thread execution. Applications and

language run time libraries may raise general exceptions to notify a thread of some ex

ceptional (noteworthy) state in the current thread context. For example, subscript range
checking failures and assertion checking failures may be raised as general exceptions.

Hardware Caused

42 Windows NT for Alpha AXP - Event Processing ■ 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

A hardware exception occurs when a thread performs some action which causes an excep
tional state to exist in the hardware. Such a state will cause the currently active thread to

be interrupted. A hardware caused general exception is always delivered to the thread that
executed the instruction which caused the exception.

Exactly which hardware events can result in an exception, the state of the machine when a

hardware exception occurs, the interpretation of the exception-related information which is
delivered to a user mode thread, £md circumstances under which execution can be continued

are specific to individual hardware exceptions. Hardware exceptions are fully defined by the
Alpha AXP System Reference Manual which should be consulted for additional information.

In the Windows NT for Alpha AXP environment, hardware exceptions (that are not handled
by the operating system itself) are reported to user level in the form of a general exception.

Unwind Exceptions

An unwind exception results from the invocation of the unwind support code by a thread,
and is always delivered to the thread which invoked the unwind.

Unwind exceptions are delivered as part of the notification process that an unwind is in
progress (see Section 6.2, Unwinding, for details).

6.1.4 Status Vaiues and Exception Codes

A status value can be used as a return value from a procedure call to indicate success,
failure and/or other information about the requested operation. A status value can also be
used as an exception code to indicate the reason that an exception is being raised.
A status value is represented as shown in Figure 6-1.

Figure 6-1: Status Value Representation

3322222222221111111111

10987654321098765432109876543210

+-+

ISev1CI
+-+

+ ■+

Facility CodeI I
++ ■+

The components of this representation are as follows:

Sev is a severity code, which can hold the following values.

Bit Encoding Meaning

Success

Informational

Warning

Error

00

01

10

11

C is a flag that indicates that this status value is customer defined.

Windows NT for Alpha AXP - Event Processing - 15-March-1993 43

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Facility is a facility code that indicates the software component that defines this status
value.

Code is an identifier value for a particular status condition.

6.1.5 Exception Records

The fundamental data structure for describing exceptions is the exception record.

Exception records can form a linked list. Each record in a list describes one exception.

The first exception record in the list describes the primary exception. Additional secondary
exceptions may be specified by additional exception records in the list. Secondary exceptions
qualify or elaborate the primary exception; they may be raised at the same time as the

primary exception, or a handler may add new secondary exceptions to the list before handling
or reraising the exception.

Storage for exception records may be allocated in read-only memory. The exception record
that is passed to a handler is a separate copy constructed from information in the original
exception record augmented with additional information.

Exception records are defined as shown in Figure 6-2, Exception Record Format.

Figure 6-2: Exception Record Format

EXCEPTION RECORD longword-aligned
+■ ■+' ■+ '+

ExceptionCodeI I :0

I I
+ ■+ + ■+

ExceptionFlags I :4

I
+■ ■+ +■ ■+

ExceptionRecordI I :8

I I
+ +■ + +

I ExceptionAddre s s I :12

I I
+■ +■ +■ ■+ ■+

I NumberParameters :16

I
+ ■+ '+■ + ■+

ExceptionInformation[0] I :20

I I
+ ■+ ■+ +■ ■+

+■ ■+ +■ ■+

Exceptioninformation[NumberParameters-l] I :x

I I

+• +■ + •+

sizeof(EXCEPTION_RECORD) 80

ExceptionCode is a status value (see Section 6.1.4, Status Values and Exception Codes).

44 Windows NT for Alpha AXP - Event Processing - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

ExceptionFlags is a bitfield of fiags which further qualify the exception. These flag bits are
significant only in the primary exception record; their state is unpredictable in secondary
exception records. ExceptionFlags bits are logically divided into two groups. The first group
(called detail flags) provide additional information about the exception. The second group
(called environment flags) provide additional information about the environment in which

the exception is being delivered.

Valid ExceptionFlags bits that give additional detail are:

• EXCEPTION_NONCONTINUABLE

If EXCEPTION_NONCONTINUABLE is 1, an exception handler must not return Ex-

ceptionContinueExecution.

• EXCEPTION_EXIT_UNWIND

If EXCEPTION_EXIT_UNWIND is 1, the exception handler is being invoked because
of an unwind operation that will terminate execution of the thread.

• EXCEPTION_UNWINDING

If EXCEPTION_UNWINDING is 1, the exception handler is being invoked because of
a general unwind operation (with the semantics of longjmpO).

Valid ExceptionFlags bits that give additional information about the environment at the

time of exception delivery are:

• EXCEPTION_NESTED_CALL

If EXCEPTION_NESTED_CALL is 1, an exception or unwind is in progress at the time
this exception is delivered.

• EXCEPTION_STACK_INVALID

If EXCEPTION_STACK_INVALID is 1, the stack is invalid.

NOTE

This flag is for use by system software, and will never be 1 in an exception
record delivered to a normal handler.

• EXCEPTION_TARGET_UNWIND

If EXCEPTION_TARGET_UNWIND is 1, this is the target frame of an unwind op

eration. (This may be useful to allow a language specific handler to perform proper
handling for the last step of an unwind.)

• EXCEPTION_COLLIDED_UNWIND

If EXCEPTION_COLLIDED_UNWIND is 1, an unwind collision has occurred (see Sec

tion 6.2.5, Multiply Active Unwind Operations).

All FLAGS bits other than those defined above must be zero.

ExceptionRecord is either zero or is the address of the next exception record in the list.

ExceptionAddress is the address of the instruction causing the exception.

For a hardware exception or asynchronous software exception, this is the address of the in

struction at which the hardware exception or asynchronous exception, interrupted execution
of the thread.

Windows NT for Alpha AXP - Event Processing - 15-March-1993 45

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

For synchronous software exceptions and unwind exceptions, this is the address of the call

instruction that invoked the library routine for raising the exception or starting the unwind,
respectively.

This field is significant only in the primary exception record; its contents are unpredictable
in secondary exception records.

NumberParameters is the number of exception-specific qualifiers in the exception record.

Each Exceptionlnformationln] value is a single longword which provides additional in
formation specific to the exception, and may contain information intended for display in

messages.

Exception Records for General Exceptions

Software Caused Exceptions The information in exception records for general and un

wind exceptions may vary widely from a simple single exception value to a long chain of
exceptions and exception qualifiers. This specification defines the conventions for construct

ing these exception records. A complete enumeration of all possible combinations is beyond
the scope of this document.

Hardware Caused Exceptions All Alpha AXP hardware exceptions have exception in
formation associated with them. This information may be as little as the exception type and
exception PC or as much as three additional registers worth of information. The specific

information that is supplied with each exception type is defined by the Alpha AXP System
Reference Manual.

When a hardware exception occurs, the Windows NT for Alpha AXP operating system may
handle the exception internally or it may cause the exception to be raised in user mode.
When a hardware exception is raised in user mode, the exception record passed to exception
handlers includes the exception information supplied by the operating system. This infor
mation is marshaled into the exception record to produce an exception record, typically as
follows:

ExceptionCode is an operating system defined code unique to the exception condition.

ExceptionFlags is as appropriate (see above).

ExceptionRecord is 0 (null).

ExceptionAddress is the PC of the instruction that caused the hardware exception.

NumberParameters and each ExceptionInformation[n] contain additional information

specific to the exception condition.

Details on the treatment of particular hardware exceptions are system defined.

Exception Records for Unwind Exceptions

Unwind exceptions are characterized by having at least one ofthe EXCEPTION_UNWINDING

or EXCEPTION_EXIT_UNWIND or EXCEPTION_TARGET_UNWIND fiags set to 1.

The reason code for the unwind as well as any supplied qualifiers is represented in the

ExceptionCode in the same way as for general exceptions.

46 Windows NT for Alpha AXP ■ Event Processing - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

6.1.6 Exception Handlers

A frame-based handler is established when a procedure whose descriptor specifies an ex
ception handler becomes current. Thus, frame-based handlers are usually associated with a
procedure at compile time, and are located at run time via the procedure descriptor. These
exception handlers are normally used to implement a particular language’s exception han
dling semantics.

The frame-based handlers which may be invoked are those established by active procedures,
from the most current procedure to the oldest predecessor.

Handling Exceptions

An exception handler that conforms to this standard generally should not handle any excep
tion that its establisher did not cause unless there is a prior agreement between the writers
of the exception handler and the writers of the code that raised the exception.

Access to Memory

Exceptions can be raised and unwind operations (which cause exception handlers to be
called) can occur when the current value of one or more variables is in registers rather than
in memory. Because of this, a handler, and any descendant procedure called directly or
indirectly by a handler, must not access any variables except those explicitly passed to the
procedure as arguments or those that exist in the normal scope of the procedure.

This rule can be violated for specific memory locations only by agreement between the

handler and all procedures which might access those memory locations. The effects of such
agreements is not specified by this standard.

6.1.7 Establishing Handlers

The list of established frame-based handlers for a thread is defined by the thread’s procedure
invocation chain (see Chapter 8, Procedure Invocations and Call Chains).

A procedure descriptor for which HANDLER_VALID is 1 must specify in HANDLER_
ADDRESS the procedure value of an exception handler. The exception handler specified by
a procedure descriptor is established when that descriptor is added to the invocation chain

(that is, when the procedure designated by the descriptor becomes current), remains estab

lished as long as that procedure invocation is part of the invocation chain, and is revoked

when that descriptor is removed from the invocation chain (that is, when the procedure
invocation designated by the descriptor terminates, either by returning or being unwound).

Thus, the set of frame-based handlers which is established at any moment is defined by the
current procedure call chain.

Dynamic activation and deactivation of exception handlers is not defined by this calling

standard (and in fact not permitted within the semantics of many language standards). If

this capability is required it must be defined on a language by language basis. Compil
ers which choose to support this functionality may set up language-specific static exception
handlers that provide the dynamic exception handling semantics of that language. These
static handlers would be established by means of the procedure descriptor of the establish
ing procedure. If a language compiler decides to support dynamic activation of exception
handlers it must be prepared to recognize code that intends to use this feature. This re

quirement stems from the need to add appropriate TRAPB instructions and other compile
time considerations needed to make dsnamic exception handling function correctly.

Windows NT for Alpha AXP - Event Processing - 15-March-1993 47

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

NOTE

There may be additional protocols and conventions for dynamic exception han

dling. These may be needed, for example, to enable a debugger to do a good

job within the language exception handling environment. These conventions are

driven by the requirements of the languages and the language support utilities, and
are not addressed by this calling standard.

6.1.8 Raising Exceptions

Raising Generai Exceptions

A thread may raise a general exception in its own context by calling a system library routine
defined as follows:

RtlRaiseException (ExceptionRecord)

Arguments:

ExceptionRecord

Function Value:

None.

The address of a primary exception record.

RtlRaiseExceptionO sets ExceptionAddress to the address of the invoking call instruction.

URtlRaiseExceptionO detects that the exception record passed via the first argument is not
a valid exception record, it raises the exception STATUS_INVALID_EXCEPTION.

Raising Generai Exceptions Using GENTRAP

The Alpha AXP System Reference Manual defines a GENTRAP PALcall which provides a
means for software to raise hardware-like exceptions at minimum cost.

This mechanism is suitable for use in low levels of the operating system or during boot

strapping when only a limited execution environment may be available. In a constrained
environment, the GENTRAP can be handled directly via the SCB Vector by which the trap is

reported. In a more complete environment, the GENTRAP parameter is transformed into a

corresponding exception code and reported as a normal hardware exception. Because of this,
low level software can use this mechanism to report exceptions in a way that is independent
of the execution environment. Compiled code may also use this means to raise common

generic exceptions more cheaply than making a full procedure call to RtlRaiseException.

The PALcall is defined as follows:

GENTRAP (EXPT_CODE)

48 Windows NT for Alpha AXP - Event Processing - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Argument:

EXPT CODE Code for the exception to be raised.

If the EXPT_CODE value is one of the small negative values shown in the following table,
then that value is mapped to a corresponding Windows NT for Alpha AXP exception code
as shown. Otherwise, STATUS_ALPHA_GENTRAP is raised with the unmapped value
included in the exception record as the (first and only) qualifier value. Note that there is no
means to associate any parameters with an exception raised using GENTRAP.

GENTRAP sets ExceptionAddress to the address of the PALcall instruction.

Status CodeCode Symbol

-1 GENTRAPJNTEGER_OVERFLOW

GENTRAPJNTEGER_DlVIDE_BY_ZERO

GENTRAP_FLOATING_DIVIDE_BY_ZERO

GENTRAP_FLOATING_OVERFLOW

GENTRAP_FLOATING_UNDERFLOW

GENTRAP_FLOATINGJNVALID_OPERAND

GENTRAP FLOATING INEXACT RESULT

STATUSJNTEGER_OVERFLOW

STATUSJNTEGER_DlVIDE_BY_ZERO

STATUS_FLOAT_DIVIDE_BY_ZERO

STATUS_FLOAT_OVERFLOW

STATUS_FLOAT_U N DERFLOW

STATUS_FLOATJNVALID_OPERATION

STATUS_FLOATJNEXACT_RESULT

STATUS_STACK_OVERFLOW

STATUS ARRAY BOUNDS EXCEEDED

-2

-3

-4

-5

-6

-7

-14

-18

Raising Unwind Exceptions

The mechanism used to raise an unwind exception is described in Section 6.2, Unwinding.

6.1.9 Invocation of Exception Handiers

The search for an exception handler begins with the program counter value that indicates
the address at which the exception was raised. As a general rule, a program counter value
is associated with a procedure descriptor (Section 9.1, Procedure Descriptor Representation)
which provides information needed to identify the procedure that contains the code and to

interpret those parts of the stack frame that are needed to walk the procedure call chain.
(See also Chapter 8, Procedure Invocations and Call Chains.)

If a null frame procedure or other fragment of code does not have an associated procedure
descriptor, then it is assumed that an appropriate initial program counter value is located in
the normal return address register (R26). If there is a procedure descriptor associated with
this address, then the search for an exception handler begins using that address. Otherwise,

a fatal exception is raised (and the executing thread is terminated).

Order of Invocation

When an exception is raised, established exception handlers are invoked in a specific order.

Any frame-based handlers are invoked in order from that established by the most current
procedure invocation to the oldest predecessor in the invocation chain.

Windows NT for Alpha AXP - Event Processing - 15-March-1993 49

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

If no frame-based handlers have been established, or if all reraise the exception, then the
system last chance handler is invoked.

Nested Exceptions A nested exception occurs if an exception is raised while an exception
handler is active.

When a nested exception occurs, the structure of the procedure invocation chain, from the
most recent procedure invocation to the oldest predecessor, is as follows:

1. The procedure invocation within which the nested exception was raised.

2. Zero or more procedures invoked indirectly or directly by the most recently invoked
(most current) handler.

3. The most current handler.

This is the same invocation as item 1 (that in which the nested exception was raised)
if there are zero invocations in item 2. If this case, items 1 and 3 count as just one
invocation.

4. The procedure invocation within which the active exception that immediately preceded
the nested exception was raised; that is, the invocation in which the exception was
raised for which the most current handler was invoked.

5. Zero or more procedure invocations, all established handlers which were invoked for the

exception that immediately preceded the nested exception, and all of which reraised.

6. The establisher of the most current handler.

This is the same as item 4 (the invocation in which the exception that immediately
preceded the nested exception was raised) if there are zero invocations in item 5.

7. Zero or more procedure invocations for which no established handlers have yet been
invoked.

Established handlers are invoked in reverse order with respect to that in which their es-
tablishers were invoked; that is, the search of stack frames for procedure invocations which
have established handlers is in order from 1 to 7.

If further nested exceptions occur, this procedure invocation chain structure is repeated
for those further nested exceptions, and frame-based handlers are invoked according to
the above rules, in order from those established by the most current procedure to those

established by the oldest predecessor.

Steps for Locating and Invoking Handlers for Exceptions When an exception is
raised, the steps that implement the above explanation are detailed in the following. (Note

that these steps cover only the search of stack frames for a handler proper and do not
address the mapping of a POSIX signal to an exception.)

• Let current_invocation be the procedure invocation in which the exception was raised.

• [loop]: currentJnvocation does not establish a handler, go to step [check-begin] below.

• Invoke the handler established by currentJnvocation.

• If the handler returns ExceptionContinueExecution or initiates an unwind, exit these

steps.

• [check-begin]: If current_invocation is the beginning of the procedure invocation chain,
go to step [last-chance] below.

Windows NT for Alpha AXP - Event Processing - 15-March-199350

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

• If currentJnvocation is an active handler, let currentJnvocation be the invocation in

which the exception was raised that invoked this active handler, and go to step [loop]
above.

• Let current_invocation be the procedure invocation which invoked currentJnvocation.

• Go to step [loop] above.

• [last-chance]: Invoke the system last chance handler.

Invalid Thread Stack If, during the search for and invocation of frame-based handlers,

the exception dispatcher detects that the thread’s stack is corrupt, then the following steps
take place:

1. The EXCEPTION_STACK_INVALID flag is set to 1.

2. The search for handlers immediately proceeds to the system last-chance handler.

Handler Invocation and Arguments

Every exception handler is invoked as a function which returns a status value. The function

call is deflned as follows:

(*ExceptionHandler)
(ExceptionRecord, EstablisherFrame, ContextRecord, DispatcherContext)

Arguments:

ExceptionRecord

EstablisherFrame

The address of a primary exception record.

Virtual frame pointer of the establisher (see Section 8.1, Referring to a
Procedure Invocation).

Address of an invocation context block containing the saved original context
at the point where the exception occurred. During an unwind, this is the
address of the invocation context block for the establisher.

Address of a control record for the exception dispatcher (see below).

ContextRecord

DispatcherContext

Function Value:

A value indicating the action to be taken upon handler return. The valid

values are ExceptionContinueExecution and ExceptionContinueSearc h.

Note; the exception dispatcher allows additional return values from its own

exception handlers.

STATUS

The control record pointed to by DispatcherContext provides communication between the
handler and the exception dispatcher (the system routine that actually invokes the han

dler). This record provides information about the establisher. Of the flelds listed below, all

but ControlPC are read-only to exception handlers (except for handlers for the exception
dispatcher itself).

ControlPC contains the PC where control left the establisher of the exception handler, i.e.,
the PC of the call instruction or the instruction that caused the exception. This fleld may
be updated by a handler. If a nested exception occurs during unwinding while the handler
is still active, then the value of the PC used for the establisher will be the updated value
of ControlPC. This mechanism can be employed to retire nested exception handling scopes
local to a procedure to assure that each is executed at most once (even in the presence of

Windows NT for Alpha AXP - Event Processing - 15-March-1993 51

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

a nested exception within such a handler). The ControlPC value must, however, always be

an address within the procedure whose handler is executing.

FunctionEntry contains a pointer to the procedure descriptor for the establishes

6.1.10 Modification of Exception Records and Context by Handiers

The exception records, exception qualifiers, invocation context blocks, and control records

that are passed to an exception handler are always allocated in writable memory. Handlers

may write to any location in these data structures. The exception records and exception
qualifiers that are passed to a handler are copies of the original ones. Modifications to them

are seen by other subsequently called handlers (within the limits defined below) but do not

affect the original data structures.

The effect of a handler modifying passed exception information is as follows:

1. If the EXCEPTION_NONCONTINUABLE flag in the primary exception record is
changed from 0 to 1, then the exception handler which made the modification must

not return ExceptionContinueExecution, nor may any handler subsequently invoked for
the exception return ExceptionContinueExecution.

If ExceptionContinueExecution is returned after the EXCEPTION_NONCONTINUABLE

flag has been changed from 0 to 1, then a nested exception is raised with ExceptionCode
= STATUS_NONCONTINUABLE_EXCEPTION, indicating that an attempt was made
to continue from a noncontinuable exception. This second exception is also noncontinu-
able.

2. If any flags in ExceptionFlags in the primary exception record are modified except as

specified above, there is no effect after the exception handler completes; all handlers

subsequently invoked for the exception receive a primary exception record with the

flags unmodified.

In particular, if an exception handler changes the EXCEPTION_NONCONTINUABLE

flag from 1 to 0, that handler must not return ExceptionContinueExecution, and any

and all handlers subsequently invoked for the exception will be invoked with the EX-

CEPTION_NONCONTINUABLE flag set to 1.

3. If the contents of the record specified by ContextRecord or DispatcherContext are mod
ified by a handler (except for ControlPC), the results are unpredictable, and such a
handler does not conform to this standard.

4. Except as specified above, all changes made to the exception information will be visible
to handlers subsequently invoked for the exception. Any other effects of modifying the

exception information are not defined by this standard.

6.1.11 Handler Completion and Return Value

When an exception handler has finished all its processing, it completes by performing one
of the following actions:

• reraising the exception

• continuing execution of the thread

• initiating procedure invocation unwinding

52 Windows NT for Alpha AXP - Event Processing ■ 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Completion by Reraise

If an exception handler determines that additional handlers should be invoked for the ex

ception (because it could not completely handle the exception), it can reraise the exception
by returning ExceptionContinueSearch.

Reraise causes the next exception handler to be invoked (see Section 6.1.9, Invocation of

Exception Handlers).

If all exception handlers established by the thread reraise the exception, the system last
chance handler is invoked, with system dependent results.

Completion by Continue

By returning ExceptionContinueExecution, an exception handler can continue execution of

the thread at the address specified by the continuation PC in the ContextRecord, with the

context of the interrupted procedure restored.

If ExceptionContinueExecution is returned and the EXCEPTION_NONCONTINUABLE flag

is 1, then a nested exception is raised with ExceptionCode = STATUS_NONCONTINUABLE_

EXCEPTION. This second exception is also noncontinuable.

Continuation from Unwind

When an unwind is in progress, the status returned by handlers must be ExceptionCon
tinueSearch; otherwise STATUS_INVALID_DISPOSITION is raised. That is, handlers may

not continue during an unwind operation.

Continuation from Signal Exceptions

The legality and effects of continuation from a signal exception are governed by the under-
l5ang signal, as specified by the implementation of the POSIX environment.

Completion by Unwinding

The unwind type of completion is more complex than simply returning a value. See Sec
tion 6.2, Unwinding, for details and considerations on unwinding.

6.1.12 Other Considerations

The following details certain aspects of the Alpha AXP architecture that have significant

implications for exception handling. The rules presented are designed to assure correct

operation across all implementations of that architecture. As with all aspects of this call
ing standard, optimization information may assure correct behavior as if these rules were

followed without appearing to explicitly do so.

Alternative approaches that exploit implementation specific characteristics are also possible,
but are outside the scope of this standard.

Exception Synchronization

The Alpha AXP hardware architecture allows instructions to complete in a different order
than that in which they were issued, and for exceptions caused by an instruction to be raised

after subsequently issued instructions have been completed. Because of this, the state of

the machine when a hardware exception occurs cannot be assumed with precision unless
it has been guaranteed by bounding the exception range with the appropriate insertion of
TRAPB instructions.

Windows NT for Alpha AXP - Event Processing - 15-March-1993 53

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

The rules for bounding the exception range are as follows:

• If a procedure has an exception handler that does not simply reraise all arithmetic traps
caused by code not contained directly within that procedure then it must issue a TRAPB

instruction before it establishes itself as the current procedure.

RATIONALE

The above is required because a standard procedure is not allowed to handle

traps that it might not have caused.

• If a procedure has an exception handler that does not simply reraise all arithmetic traps
caused by code not contained directly within that procedure or by any procedure that
might have been called while that procedure was current then it must issue a TRAPB

instruction in the procedure epilogue while it is still the current procedure.

RATIONALE

The above is required because handlers established by previous invocations in

the call chain might not be able to handle exceptions from a procedure invoca

tion that is no longer active.

• If a procedure has an exception handler that is sensitive to the invocation depth then
it must issue a TRAPB instruction immediately before and after any call. Further
more, the handler must be able to recognize exception PC values that represent TRAPB
instructions immediately after a call and adjust the depth appropriately.

These rules ensure that exceptions are detected in the context within which exception han
dlers have been set up to handle them.

These rules do not ensure that all exceptions are detected while the procedure within which
the exception-causing instruction was issued is current. For example, if a procedure without
an exception handler is called by a procedure that has an exception handler which is not
sensitive to invocation depth, an exception detected while that called procedure is current
may have been caused by £m instruction issued while the caller was the current procedure.
This means that the frame, designated by the exception handling information, is the frame

that was current when the exception was detected, not necessarily the frame that was
current when the exception-causing instruction was issued.

Continuation from Exceptions

The Alpha AXP architecture neither guarantees that instructions are completed in the same
order in which they were fetched from memory nor that instruction execution is strictly

sequential. Continuation after some exceptions is possible, but there are restrictions as

reflected in the following discussions.

Software raised general exceptions are, by deflnition, synchronous with the instruction
stream and can have a well defined continuation point. Thus, a handler may have the

option of requesting continuation from a software raised exception. However, since compiler
generated code typically relies on error free execution of previously executed code, continuing
from a software raised exception may produce unpredictable results smd unreliable behav

ior unless the handler has explicitly fixed the cause of the exception in such a way as to be
transparent to subsequent code.

54 Windows NT for Alpha AXP - Event Processing - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Hardware faults on Alpha AXP systems follow rules that, loosely paraphrased, state that
if the offending exception is fixed, re-execution of the instruction (as determined from the

supplied PC) will yield correct results. This does not imply that no instructions following
the faulting instruction have been executed (see the Alpha AXP System Reference Manual
for more details). Hardware faults can therefore be viewed as similar to software raised

exceptions and can have well defined continuation points.

Arithmetic traps cannot be restarted since all the information required for a restart is not
available. The most straightforward and reliable way in which software may guarantee the
ability to continue from this t3q)e of exception is by placing appropriate TRAPB instructions
in the code stream. Although this does allow continuation, this technique must be used
with extreme caution due to the negative side effect on application performance. A more
sophisticated technique that requires typicadly one TRAPB per basic block is described in
the Alpha AXP System Reference Manual, Section 4.7.5.1, Imprecise/Software Completion
Trap Modes.

6.2 Unwinding

The unwinding capabilities specified in this section are for support of:

• Correct and predictable nonlocal GOTO support in a multilanguage environment

• Support for the construction of modular, maintainable multilanguage applications

6.2.1 Unwind Basic Considerations

Unwinding refers to the action of returning from a procedure or a chain of procedures by a
mechanism other than the normal return path. Performing an Unwind operation in a thread
causes a transfer of control from the location at which the unwind operation is initiated to a
target location in a target invocation. This transfer of control also results in the termination

of all procedure invocations, including the invocation in which the unwind request was

initiated, up to the target procedure invocation. Thread execution then continues at the

target location.

Before control is transferred to the unwind target location, the unwind support code invokes
all frame-based handlers which were established by procedure invocations that are being
terminated, plus the handler for the target invocation. These handlers are invoked with

an indication that an unwind is in progress. The exception record passed to the target
invocation’s handler also has EXCEPTION_TARGET_UNWIND set to 1. This gives each

procedure invocation the chance to perform clean-up processing before its context is lost.

Once all the relevant frame-based handlers have been called and the appropriate frames
have been removed from existence, the target invocation’s saved context is restored and

execution is resumed at the specified location.

The results of attempting an unwind operation to any invocation previous to the top level
procedure of a thread is undefined by this standard.

Unwinding does not require an exception handler to be active; it may be used by languages

to implement non-local GOTO.

Windows NT for Alpha AXP - Event Processing - 15-March-1993 55

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

6.2.2 Types of Unwind

There are two types of unwind requests:

General unwind

general unwind transfers control to a specified location in a specified procedure invocation.

The target procedure invocation is specified by a frame pointer (see Section 8.1, Referring
to a Procedure Invocation).

The target location is specified with an absolute PC value.

When a general unwind is completed, the registers are updated from the invocation context
for the target frame. Register RO obtains its value from the ReturnValue argument to

unwind, allowing a status to be returned to the target of the unwind.

Exit Unwind

It is valuable for a thread which is terminating execution to be able to clean up its use

of shared resources. In a single-threaded process, these might be global resources shared
among processes, such as files, locks, or shared memory. For multithreaded processes, global

resources plus process-wide resources like a heap might need to be restored to a known state.

Because of this, user mode thread exit may be accomplished only by unwinding. A special
case form of unwind, termed exit unwind, invokes all established frame-based handlers with

an exception record specif5ring that an exit unwind is in progress, terminates all procedure
invocations up to the beginning of the call chain, and terminates execution of the thread.

Threads that use any other mechanism are not considered to be standard and their behavior

is undefined.

6.2.3 Unwind Invocation Types

There are two cases under which an unwind may be invoked. Those initiated while an

exception is active and those initiated while no exception is active.

Unwind with No Active Exception

An unwind which is initiated when no exception is active is usually done to perform a non
local (jrOTO, that is, to transfer control directly to some code location which is not part of

the currently executing procedure or is not statically known. Even this t5q)e of operation

must provide a mechanism to allow cleanup operations of terminated invocations (including

restoring a consistent set of register values) to be performed. The unwind mechanism is
used to support this type of operation.

Unwind during an Active Exception

The handler, or any descendant procedure called directly or indirectly by the handler, can
continue execution of the thread at a different location than that at which the exception was

raised by initiating an unwind operation.

An unwind operation specifies a target invocation in the procedure invocation chain and
a location in that procedure. The operation terminates all invocations up to the target

invocation, and continues thread execution at the specified location in that procedure.

56 Windows NT for Alpha AXP - Event Processing - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

Before control is transferred to the target location, the unwind operation invokes each frame-
based handler which was established by any procedure invocations being terminated, plus
the handler for the target invocation.

6.2.4 Unwind Initiation

Initiating a General Unwind

A thread may initiate a general unwind operation by calling one of two system library
routines. The routines differ only in how their first argument specifies the target frame:
as a virtual frame pointer or a real frame pointer (see Section 8.1, Referring to a Procedure
Invocation). These routines are defined as follows:

RtlUnwind (VirtualTargetFrame, TargetPC, ExceptionRecord, ReturnValue)

RtlUnwindRfp (RealTargetFrame, TargetPC, ExceptionRecord, ReturnValue)

Arguments:

VirtualTargetFrame If non-zero, the virtual frame pointer of the target procedure invocation to
which the unwind should be done.

If zero, an exit unwind is initiated. In addition, the EXCEPTION_EXIT_

UNWIND flag is set to 1 in the exception record.

If non-zero, the real frame pointer of the target procedure invocation to

which the unwind should be done.

If zero, an exit unwind is initiated. In addition, the EXCEPTION_EXIT_

UNWIND flag is set to 1 in the exception record.

The address within the target invocation at which to continue execution.

If TargetFrame is zero, then TargetPC is ignored.

If non-zero, the address of a primary exception record.

If zero, specifies that a default exception record should be supplied (see

below).

The value to use as the return value (contents of RO) at the completion of
the unwind.

RealTargetFrame

TargetPC

ExceptionRecord

ReturnValue

Function Value:

None.

If the ExceptionRecord argument is zero, then RtlUnwindO or RtlUnwindRfpO supplies a

default exception record which specifies exactly one exception record in which Exception-
Code is STATUS_UNWIND if a non-zero TargetFrame is specified, and STATUS_EXIT_
UNWIND otherwise. For either an explicit or a default exception record, the EXCEPTION_
UNWINDING flag is set to 1, and the EXCEPTION_EXIT_UNWIND flag is set to 1 if a null

TargetFrame is specified. ExceptionAddress is set to the address of the call to RtlUnwindO

or RtlUnwindRfp().

Windows NT for Alpha AXP - Event Processing - 15-March-1993 57

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

If the ExceptionRecord argument is specified when the unwind is initiated, then all other

properties of the exception record are determined by ExceptionRecord. If RtlUnwindO or
RtlUnwindRfpO detects that a specified exception record is not a valid unwind record, it

will raise the exception of STATUS_INVALID_EXCEPTION. If the TargetFrame cannot be

found, then the last chance handler will be called since all procedures have been terminated.

Once an unwind is initiated, control never returns from the call.

6.2.5 Multiply Active Unwind Operations

During an unwind operation, another unwind operation may be initiated. This may occur,
for example, if a handler which is invoked for the original unwind initiates another unwind,

or if an exception is raised in the context of such a handler and a handler invoked for that

exception initiates another unwind operation.

An unwind which is initiated while a previous unwind is active is either a nested unwind

or an colliding unwind.

Nested Unwind

A nested unwind is an unwind which is initiated while a previous unwind is active, and
whose target invocation in the procedure invocation chain is not a predecessor of the most
current active unwind handler. That is, a nested unwind is one which does not terminate any

procedure invocation which would have been terminated by the previously active unwind.

When a nested unwind is initiated, no special rules apply. The nested unwind operation
proceeds as a normal unwind operation, and when execution resumes at the target location

of the nested unwind, the nested unwind is complete and the previous unwind is once again
the most current unwind operation.

Colliding Unwind

An colliding unwind is an unwind which is initiated while a previous unwind is active,

and whose target invocation in the procedure invocation chain is a predecessor of the most
current active unwind handler. That is, an colliding unwind is one which terminates one

or more procedure invocations that would have been terminated by the previously active
unwind.

An colliding unwind is detected when the most current active unwind handler is terminated.

This detection of an colliding unwind is termed a collision.

When a collision occurs, the second (more recent) takes precedence and the prior unwind is
abandoned.

The next action is to reinvoke the most current active unwind handler, since its establisher

has not been unwound. The EXCEPTION_COLLIDED_UNWIND flag will be set in the

exception record to indicate this situation to the handler.

6.2.6 Unwind Completion

When an unwind completes the following conditions are true:

• The target procedure invocation is the most current invocation in the procedure invoca
tion chain.

58 Windows NT for Alpha AXP - Event Processing - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

The environment of the target invocation is restored to the state when that invocation

was last current, except for the contents of scratch registers.

Register GP contains a pointer to the shared global storage region for a target procedure
that is contained in the main image.

Register RO contains the return value which was passed by the routine that invoked
the unwind.

Execution continues at the target location.

6.2.7 Unwinding Coexistence with setjmp/iongjmp

The procedure invocation unwinding facility defined by this standard can coexist and inter
operate with setjmp I longjmp facilities. It is sufficient for the jmpjbuf array to consist ofjust
the frame pointer and program counter values that are needed as arguments to RtlUnwind
or RtlUnwindRfp. A null pointer can be provided for the ExceptionRecord argument and
the value of the longjmp expression can be provided for the ReturnValue argument.

Any environment which conforms to this standard must implement non-local gotos by us
ing RtlUnwind or RtlUnwindRfp (or an equivalent means) to allow all procedures being
terminated to cleanup any local or global state as appropriate.

6.2.8 Exceptions Raised During Unwinding

During an unwind operation, an exception may be raised, causing the invocation of handlers.

This may occur, for example, if a handler which is invoked for the original unwind causes
an exception to be raised in this context.

Unwinding may be implemented in several fashions, including removing each stack frame
after its procedure is processed, and removing all of the procedures’ frames only when the
target invocation is reached. For this reason, if an exception is raised during unwinding, it
is undefined whether handlers for unwound procedures are invoked for this exception.

Windows NT for Alpha AXP - Event Processing - 15-March-1993 59

1

CHAPTER 7

MULTITHREADED ENVIRONMENT CONVENTIONS

This Chapter defines the conventions to support the execution of multiple threads in the
multilanguage Windows NT for Alpha AXP environment. Specifically, it defines how com

piled code must perform stack limit checking. While this calling standard is compatible
with a multithreaded execution environment, the detailed mechanisms, data structures and

procedures that support this capability are not specified here.

For a multithreaded environment, the following characteristics are assumed:

• There can be one or more threads executing within a single process.

• The state of a thread is represented in a thread environment block (TEB).

• The TEB of a thread contains information that determines a stack limit, below which

the stack pointer must not be decremented by the executing code (except for code that

implements the multithread mechanism itself).

• Exception handling is fully reentrant and multithreaded.

• The correct way to terminate a thread is by returning from the initial procedure in
which the thread began execution, or by a call to RtlUnwind specifying a null target
environment or some other procedure that includes this effect. That is, correct thread

termination involves unwind processing for all of the active frames of that thread.

7.1 Stack Limit Checking

A program that is otherwise correct can fail because of stack overflow. Stack overflow occurs

when extension of the stack (by decrementing SP) allocates addresses not currently reserved
for the current thread’s stack.

Detection of a stack overflow situation is important. Without it, a thread, writing into

what it considered to be stack storage, could modify data allocated in that memory for some

other purpose. This would most likely produce unpredictable and undesirable results and/or

unreproducible application failures.

The requirements for procedures that can execute in a multithread environment include

checking for stack overflow. This section defines the conventions for stack limit checking in
a multithreaded environment.

In the following sections, the term new stack region refers to the region of the stack from
the old value of SP - 1 to the new value of SP.

Windows NT for Alpha AXP - Multithreaded Environment Conventions - 15-March-1993 61

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

7.1.1 Stack Guard Region

In a multithreaded environment, the memory beyond the limit of each thread’s stack is

protected by contiguous guard pages, which form the stack’s guard region.

7.1.2 Stack Reserve Region

In some cases it is desirable to maintain a stack reserve region, which is a minimum sized
region that is immediately above a thread’s guard region. A reserve region may be desirable

to assure that exceptions or asynchronous signals have stack space to execute on a thread’s
stack or to assure that the exception dispatcher and any exception handler that it might call
have stack space to execute after an invalid attempt to extend the stack has been detected.

This standard does not require a reserve region.

7.1.3 Methods for Stack Limit Checking

Since there may be accessible memory at addresses lower than those occupied by the guard
region, compilers must generate code such that the stack is never extended past the guard

pages into accessible memory not allocated to the thread’s stack.

The general strategy is to access each page of memory down to and possibly including the
page corresponding to the intended new value for the stack pointer SP. If the stack is to
be extended by an amount that is larger than the size of a memory page, then a series of
accesses is required that works from higher to lower addressed pages. If any access results
in a memory access violation, then the code has made an invalid attempt to extend the stack
of the current thread.

NOTE

An access can be performed using either a load or a store operation. However,

care must be taken to use an instruction that is guaranteed to make an access to

memory. For example, do not use a LDQ R31,* instruction because the Alpha AXP

architecture allows it to result in no memory access at all rather than a memory

read access whose result is discarded as a result of the R31 destination.

There are two methods for stack limit checking; implicit and explicit.

Implicit Stack Limit Checking

Two mutually exclusive strategies for implicit stack limit checking are of interest:

1. If the lowest addressed byte of the new stack region is guaranteed to be accessed prior

to any further stack extension, then the stack can be extended by an increment that is

equal in size to the guard region (without any further accesses).

2. If some byte (not necessarily the lowest) of the new stack region is guaranteed to be

accessed prior to any further stack extension, then the stack can be extended by an in

crement that is equal in size to one-half the guard region (without any further accesses).

The stack frame layout (see Section 4.1.2, Stack Frame Procedure) and entry code rules (see

Section 4.2.6) generally do not make it feasible to guarantee access to the lowest address of a
new stack region without introducing an extra access solely for that purpose. Consequently,
this calling standard uses the second strategy. While the amount of implicit stack extension
that can be achieved is smaller, the check is achieved at no additional cost.

Windows NT for Alpha AXP - Multithreaded Environment Conventions - 15-March-199362

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

This calling standard requires that the minimum guard region size is 8192 bytes, the size

of the smallest memory protection granularity allowed by the Alpha AXP architecture.

These considerations lead to the following rule:

If the stack is being extended by an amount less than or equal to 4096 and no reserve
region is required, then no explicit stack limit checking is required.

However, because asjmchronous interrupts and calls to other procedures may also cause
stack extension without explicit stack limit checking, stack extension with implicit limit
checking must follow a strict set of conventions:

Explicit stack limit checking must be performed unless the amount by which the SP is
decremented is known to be less than or equal to 4096 and no reserve region is required.

Some b5de in the new stack region must be accessed before SP can be decremented for

a subsequent stack extension.

This access can be performed either before or after the SP is decremented for this stack

extension, but it must be done before it can be decremented again.

No standard procedure call can be made before some byte in the new stack region is
accessed.

The system exception dispatcher ensures that the lowest addressed byte in the new stack
region is accessed if any kind of asynchronous interrupt occurs after SP is decremented

but before the access in the new stack region occurs.

These conventions ensure that the stack pointer will not be decremented such that it points
to accessible storage beyond the stack limit without this error being detected (by either the
guard region being accessed by the thread or an explicit stack limit check failure).

As a matter of practice, the system can provide multiple guard pages in the guard region.
When a stack overflow is detected as a result of access to the guard region, one or more

guard pages can be unprotected for use by the exception handling facility, and one or more

guard pages can remain protected to provide implicit stack limit checking during exception

processing. However, the size of the guard region and the number of guard pages is system

defined, and is not defined by this standard.

Explicit Stack Limit Checking

If the stack is being extended by an amount of unknown size or known size greater than the

maximum implicit check size (4096) then a code sequence which follows the rules for implicit
stack limit checking can be executed in a loop to access the new stack region incrementally

in segments smaller than or equal to the minimum page size (8192 bytes). At least one

access must occur in each such segment. The first access must occur between SP and SP -

4096 because, in the absence of more specific information, the previous guaranteed access
relative to the current stack pointer may be as much as 4096 bytes greater than the current

stack pointer address. The last access must be within 4096 b3ftes of the intended new value

of the stack pointer. These accesses must occur in order, starting with the highest addressed
segment and working toward the lowest addressed segment.

NOTE

A simple algorithm that is consistent with this requirement (but makes up to twice

the minimum number of accesses) is to perform a sequence of accesses in a loop

starting with the previous value of SP, decrementing by the minimum no check

1.

2.

3.

4.

Windows NT for Alpha AXP ■ Multithreaded Environment Conventions - 15-March-1993 63

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

extension size (4096), to but not including the first value that is less than the new

value for the stack pointer.

The stack must not be extended incrementally in procedure prologues. A procedure prologue
that needs to extend the stack by an amount of unknown size or known size greater than

the minimum implicit check size must test new stack segments as just described in a loop
that does not modify SP, and then update the stack with one instruction that copies the new
stack pointer value into SP.

NOTE

An explicit stack limit check may be performed either by inline code that is part of
a prologue or by a run-time support routine that is specially tailored to be called

from a procedure prologue.

Stack Reserve Region Checking

The size of the reserve region, if any, must be included in the increment size used for stack

limit checks, after which it is not included in the amount by which the stack is actually
extended. (Depending on the size of the reserve region, this may partially or even completely
eliminate the ability to use implicit stack limit checking.)

7.1.4 Stack Overflow Handling

If a stack overflow is detected, the result will be one of the following:

• Exception STATUS_STACK_OVERFLOW may be raised.

• The system may transparently extend the thread’s stack, reset the TEB stack limit

value appropriately, and continue execution of the thread.

Note that, if a transparent stack extension is performed, a stack overflow that occurs in a

called procedure might cause the stack to be extended. Because of this, the TEB stack limit

value must be considered volatile and potentially modified by external procedure calls and
by handling of exceptions.

Windows NT for Alpha AXP - Multithreaded Environment Conventions - 15-March-199364

CHAPTER 8

PROCEDURE INVOCATIONS AND CALL CHAINS

Mechanisms for each of the following three functions are needed to support procedure call
tracing:

• Mechanism to refer to a given procedure invocation

• Mechanism to provide the context of a procedure invocation

• Mechanism to traverse (walk) the procedure call chain

This chapter describes the data structures and procedures that support these functions.

8.1 Referring to a Procedure Invocation

When referring to a specific procedure invocation at run-time, either the virtual frame

pointer or the real frame pointer for that invocation can be used. The virtual frame pointer
of a procedure invocation is the contents of the stack pointer at entry to the procedure.
The real frame pointer of a procedure is the contents of the stack pointer after the size of
the fixed part of the stack frame has been subtracted from the virtual frame pointer. Note

that the virtual frame pointer of an invocation is not the value used for addressing by the

procedure itself. The contents of the SP register is modified in the procedure prologue and
the resulting real frame pointer value then possibly copied into a FP register (in the case of
a variable size stack frame). The resulting real frame pointer is then used for addressing
local storage throughout the remainder of the procedure.

The real frame pointer is not, of itself, sufficient to unambiguously identify all possible
procedure invocations. For example, a null frame procedure has the same real frame pointer
as its caller because the null frame procedure allocates no stack storage. This ambiguity is of
no consequence for the purposes of this calling standard because the real frame pointer vedue

is always used in combination with a program counter value that identifies an instruction

within a particular procedure.

The static link used in calling nested procedures in languages such as Pascal and Ada is
usually either the virtual frame pointer or the real frame pointer value. The actual choice is
implementation dependent and can vary from language to language and release to release.

8.2 Invocation Context Block

The full context of a specific procedure invocation is provided through the use of a data
structure called an invocation context block. An invocation context block is identical in

structure to the system defined CONTEXT structure.

Windows NT for Alpha AXP - Procedure Invocations and Call Chains - 15-March-1993 65

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

8.3 Getting a Procedure Invocation Context with a Routine

A thread can obtain its own context by calling a system library function defined as follows:

RtlCaptxu’eContext (ContextRecord)

Arguments:

Address of an invocation context block into which the procedure context
of the caller is written.

In fact, the context actually corresponds to that of the called RtlCaptureContextO proce
dure. However, that context is the same as that the caller except for the contents of R16,
R26 and R28. The contents of R26 in the caller prior to the call can be obtained using
RtlVirtualUnwind() (see below).

ContextRecord

A thread can obtain the invocation context of the procedure preceding another procedure
context by calling a system library function defined as:

RtlVirtualUnwind (ControlPC, FunctionEntry, ContextRecord,
InFunction, EstablisherFrame, ContextPointers)

Arguments:

ControlPC

FunctionEntry

ContextRecord

Address where control left the function.

Address of the function table entry for the function.

Address of an invocation context block. The given context block is up

dated to represent the context of the previous (calling) frame.

Address where the value 0 or 1 is written. Zero indicates that the Con

trolPC value is in either the prologue or the epilogue code of the function.

One indicates that the ControlPC is in the body of the function.

Pointer to a structure where both the real frame pointer value and the

virtual frame pointer value of the context is written. Th real frame pointer
value is defined iff InFunction is 1.

Address of a context pointers record.

InFunction

EstablisherFrame

ContextPointers

Function Value:

PreviousControlPC Address where control left the previous frame.

This procedure takes an invocation context block together with its associated procedure
descriptor and updates the context to reflect the state of the caller at the point where it
made the call.

For exception and interrupt frames, the ControlPC is obtained from the trap frame contin
uation address as follows. For faults, ControlPC is both the last instruction that executed

in the previous frame and the next instruction to execute if control were to resume in that

frame. For synchronous or asynchronous traps, the ControlPC is the continuation address.

For normal call frames, the ControlPC "where control left the function" is the address of the

call instruction and not the return address for that call.

66 Windows NT for Alpha AXP - Procedure Invocations and Call Chains - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

If the given context corresponds to a leaf procedure, then the ControlPC can he obtained

from the saved PC value found in the context record. Otherwise, the ControlPC should be

the result of a previous call of this procedure for the previous context.

If a context pointers record is specified (non-null), then the address where each register is

restored from is recorded in the appropriate field of the record. This record can then be used

to modify the state of some currently active context when control returns to that context.

See the Windows NT for Alpha AXP documentation for full details.

The operation of RtlVirtualUnwind(), which is also a building block for exception dispatching
and unwinding, is based both on the procedure descriptor and the code of the procedure
associated with the ControlPC.

If the ControlPC points to a reserved RET instruction (see Section 4.2.6) then the context of

the caller is the same as the given context and the ControlPC of the caller is taken as the

contents of the register holding the return address (which need not be R26) minus 4.

If the ControlPC points to stack adjustment instruction that is part of a reserved return
sequence, then the context of the caller is formed by adjusting the value of the SP and the
ControlPC of the caller is taken from the contents of the register holding the return address
minus 4.

Otherwise, the context of the caller is recreated by restoring saved registers and by incre

menting the stack pointer if the function decremented it. This is done by reverse execution

of instructions in the prologue. Instructions are processed in the reverse of the normal order

and their normal effect is reversed: informally speaking, a store becomes a load, a subtract

becomes an add, a move-to becomes a move-from, and so on.

If the ControlPC is within the prologue, then reverse execution begins at the last completely
executed instruction: if the instruction at ControlPC caused a fault, then reverse execution

begins at ControlPC - 4; otherwise, at ControlPC. If the ControlPC is not within the prologue,
then reverse execution begins with the last instruction of the prologue.

The instructions in the prologue are processed backwards sequentially. When reverse exe
cution begins, and before the value of SP is used, it is assumed that either SP has a valid

value, or that FP has a valid value and a "MOV SP, FP" instruction will be encountered

before SP is used.

Basically, the operations performed are:

• If a register was saved on the stack, its value is restored from that location on the stack.

• If a register was copied to another register, its value is restored from that same register.

• If the stack pointer was decremented by a value, it is incremented by that same value.

• Any other instructions contained in the prologue are allowed, but ignored—they are
assumed to have no effect on the context.

• The ControlPC of the caller is the value of register R26 at the conclusion of the reverse

execution minus 4.

See Section 4.2.6, Entry and Exit Code Sequences for a detail description of the instructions

that take part in reverse execution.

I

I

Windows NT for Alpha AXP - Procedure Invocations and Call Chains - 15-March-1993 67

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

8.4 Walking the Call Chain

During the course of program execution it is sometimes necessary to navigate the call chain.
Frame based exception handling is one case where this is done. Call chain navigation is

only possible in the reverse direction (latest to earliest or top to bottom procedure).

The steps to perform for call chain navigation are:

1. Build an invocation context block when given a program state (which contains a register
set).

For the current routine, an initial invocation context block can be obtained by calling

RtlCaptureContext().

2. Repeatedly call RtlVirtualUnwind() until the end of the chain has been reached.

Compilers are allowed to optimize high-level language procedure calls in such a way that
they do not appear in the invocation chain. For example, in-line procedures never appear
in the invocation chain.

No assumptions should be made about the relative positions of any memory used for pro

cedure frame information. There is no guarantee that successive stack frames will always

appear at higher addresses.

8.5 Updating an Invocation Context

A given procedure’s invocation context fields can be updated with new register contents
using the ContextPointers optional parameter of RtlVirtualUnwindO (see Section 8.3).

68 Windows NT for Alpha AXP - Procedure Invocations and Call Chains - 15-March-1993

V

CHAPTER 9

PROCEDURE DESCRIPTORS

Procedure descriptors serve two functions:

1. They provide the means to map from an arbitrary program counter value to the descrip
tive information associated with the code at that address.

2. They provide information about a procedure (what registers are saved and where, how

long the prologue is, and so on) that is needed for call chain walking in general and
exception handling in particular.

Every procedure must have an associated procedure descriptor except for null frame proce
dures (see Section 4.1.4, Null Frame Procedure).

9.1 Procedure Descriptor Representation

Procedure descriptors on Windows NT for Alpha AXP consist of a structure as shown in

Figure 9-1.

Figure 9-1: Procedure Descriptor
RUNTIME FUNCTION longword-aligned

■++■ ■+ ■+

BeginAddress :0

■+ ■+ ■++■ ■+

:4EndAddress

■++■ ■+ ■++

ExceptionHandler :8

■+ ■+ ■++

HandlerData :12

■+ ■+ +

IEM*I :16

•++

PrologEndAddress
I

■+ •+ ++

sizeof (RUNTIME_FUNCTION) 20

* EM is an abbreviation for ExceptionMode

The fields of this structure are defined in the following.

BeginAddress is the address of the first instruction and entry point of a procedure.

EndAddress is the address of the first instruction following the code for the procedure.

ExceptionHandler is the address of the exception handler for the procedure. If there is
no associated handler, then this field contains null (0).

Windows NT for Alpha AXP - Procedure Descriptors - 15-March-1993 69

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

HandlerData is the address of the associated data for use by the handler for this procedure.
If ExceptionHandler is null then this field must also be null.

PrologEndAddress is the address of the first instruction following the prologue of the
procedure. (In a procedure that has no prologue, this will be the same value as the Begi-
nAddress.)

If the procedure descriptor indicates a segment of the procedure that does not include the
prologue, i.e., BeginAddress is not the beginning of the procedure, then PrologEndAddress
contains the beginning address of the procedure. (Note that this is the only case in which
PrologEndAddress will not be between BeginAddress and EndAddress.) This mechanism

permits different segments of a procedure to be represented by different procedure descrip
tors, e.g., the segments are not contiguous, or the segments need different handlers or
handler data.

Note that PrologEndAddress is a longword address. The low two bits of the longword that

contains this field are used for the ExceptionMode field.

ExceptionMode encodes the caller’s desired exception reporting behavior when calling
certain mathematically oriented library routines. The possible values for this field are as
follows:

Name Meaning

EXCEPTION MODE SILENT Raise no exceptions, create only finite values (no infinities, denormals nor

NaNs). In this mode, either the function result or the C language errno
variable must be examined for any error indication. This is the default mode.

Raise exceptions for all error conditions except for underflow, which results in
a zero result.

Raise exceptions for all error conditions (including underflow).

Raise no exceptions except as controlled by separate IEEE exception enable
bits, create infinite, denormal and NaN values according to the IEEE floating
point standard.

EXCEPTION_MODE SIGNAL

EXCEPTION_MODE_SIGNAL_ALL

EXCEPTION MODE FULL IEEE

For a more complete description of these exception modes and how they are used, see the

Windows NT for Alpha AXP system documentation.

The set of procedure descriptors of an image are all collected together in a single contiguous
array and sorted according to the values of the BeginAddress field.

Properties of Procedures

For purposes of call chain tracing (see Chapter 8, Procedure Invocations and Call Chains

and unwinding (see Section 6.2, Unwinding), the properties of a procedure are determined
in part by the values in the procedure descriptor as defined above and in part by reverse
execution of the procedure prologue.

These properties are determined as follows.

REGISTER_FRAME is 1 iff there is no instruction in the prologue that stores into the
stack.

BASE_REG_IS_FP is 1 iff the last instruction in the prologue is an instruction that copies
the contents of the stack pointer (SP) to the frame pointer (FP).

70 Windows NT for Alpha AXP - Procedure Descriptors - 15-March-1993

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

HANDLER_VALID is 1 iff the HandlerAddress field of the procedure descriptor is non-null.

EXCEPTION_MODE is specified in the ExceptionMode field of the procedure descriptor.

SP_SET is the unsigned offset in instructions (longwords) from the entry address of the

procedure given in the BeginAddress field of the descriptor to the one and only one instruc

tion in the procedure prologue which modifies the stack pointer. (This offset is assumed to
be zero when there is no such instruction because the procedure has a FRAME_SIZE of 0.)

ENTRY_LENGTH is the unsigned offset in instructions (longwords) formed by taking the
PrologEndAddress less the BeginAddress and dividing by four.

FRAME_SIZE is the unsigned size in quadwords of the fixed portion of the stack frame
for this procedure. This value is found in the displacement field (divided by eight) of the
instruction that modifies the stack pointer, or is zero if there is no such instruction.

NOTE

If a procedure requires a frame size that is too large to be represented using the

displacement field of an instruction, then the size must be loaded from memory or
otherwise materialized into a register and then subtracted from the stack pointer

using a SUBQ *,*,SP instruction.

BEGIN_ADDRESS is specified in the BeginAddress field of the procedure descriptor.

END_ADDRESS is specified in the EndAddress field of the procedure descriptor.

PROLOG_END_ADDRESS is specified in the PrologEndAddress field of the procedure

descriptor.

HANDLER_ADDRESS is specified in the ExceptionHandler field of the procedure descrip
tor.

HANDLER_DATA is specified in the HandlerData field of the procedure descriptor.

ENTRY_RA is always register R26.

9.2 Procedure Descriptor Access Routines

A thread can obtain information from the descriptor of any procedure in the thread’s virtual
address space by calling system library functions.

9.2.1 Current Procedure

In the course of running and debugging a program there are times when there must be a

way to identify which procedure is currently executing. During normal thread execution

the current procedure must be determined any time an exception arises so that the proper
handlers will be invoked. Also a debugger must know which procedure invocation is cur

rently executing to enable it to find information about the current state of the execution

environment.

In order to completely determine the current execution context not only must the currently

executing procedure be determined but also which instance of that procedure. This context of
the current procedure together with a specific instance of that procedure invocation is called
the current procedure invocation (which is often shortened to current procedure). At any

Windows NT for Alpha AXP - Procedure Descriptors - 15-March-1993 71

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only—Do Not Copy or Disclose (yet)

point in the execution of a thread there is always exactly one procedure that is considered
to be the current procedure.

In the Windows NT for Alpha AXP Calling Standard the value in the PC is used to indicate

the current procedure by means of a lookup table (see Section 9.1, Procedure Descriptor

Representation).

The following system supplied routine may be used to obtain the address of the procedure

descriptor that corresponds with any given PC value within the current address space.

RtlLookupFimctionEntry (ControlPC)

Arguments:

ControlPC A PC value in the current address space for which the procedure value is
to be returned.

If zero, indicates the value should be returned for the routine making the
call.

Function Value:

Address of the procedure descriptor for the procedure containing the re

quested PC.

If the return value is null, then the PC is not currently mapped.

PROC DESC

72 Windows NT for Alpha AXP - Procedure Descriptors - 15-March-1993

vCy 4 %

y t-yW'li'idows NT Program Office /ISVPROG4XLS
8/21/93 4:44 PMr

-7] O

AXP NT Status (8/21/93)

This report is COMPANY CONFIDENTIAL

.‘^Th^rejr^ppro^atelyJO^piicafipris stil! rnis^

I
I

Priority Targalad Commllled Oamo Shipping

. *70 S’
✓ = Work compleled

= Work in pipceii. buc oot completoH
□

5/5 Logicjel - 5/5 Base
_:5/5Logicid-5/5 0CR ' “
.A/^ft Deyelopnrwnt. Irrc. - nu/TPU
ABB Sysl ^nl. - MEM^S _

- Aboriexl - Publisf^r
- AbraxM^ftwar^-CodeCli^
_2.Abraxas So^are - PC YACC
- AcceleraW .:.yMS ot NT Tools
- Accessware (TM) - AccessPoint
-AccuCOB^85 '■
- Accumatoj^ EIS _

. /.ACTFiriandal { Cii^l^^ tradng^ ~
- Acuity Managemenl SyWeim Ud. lAcdfy/ES
- Adamalion - Adamation ~ '

-ADEV -PRO Series ^
* Adobe Illustrator - - —

- Adobe Photoshop
• Adobe Premier - Video Editor

- Adobe Printshop ~
- ADP - FS Trade/FS Partoer " '
- ADRA - CADRA-m

- Advance Geo - ProMAX’

- Advanced Mathematical Software - Lamps
- Advanced Micro Technology, Inc. - EasyAuthor
- Advanced Multiphase Te^. - AMT
- AGA Computing-GUt for SQL Access

: AGA CAiCE • DOT engin^^g software
- AGE Logic- Xoftware NT

- Alcatel-Alsthom - PABX Oper^'ion 4 Control
- Aldus - Freehand

Vortical

_ Vertical
_ VeWic^ USA

Veriical USA
Horizontal

Enabtor

Enabler

Enabler _
Veiiicai USA

Eiiabje^
Horizontal

Vertical USA
Vertical
Horizontal

Vertical USA

Horizontal

Horizontal

Horizontal

Horizontal

Vertical USA

Horizonli^ Technic^ Horiz
Vertical USA

Vertical Europe
Vertical ^USA
Vertical 'USA

Enabler _ ! Other Enablers
Vertical -USA

Enabler

Vertical USA

Horizontal Graphics/lmaginq

M

Europe_ M ✓

M ✓
- ^M □

Publishing
CASETooI

case Tool '
Conversion Tool

M □

H ✓

H ✓

H

M ✓

Compilers
Anafysis/Acoess

M ✓ ✓
M ✓

M □

Europe _
technicaiTloriz. ~

M ✓

M

M

Graphi^lmaging M
Graphics/Imaging H
Graphic^lrpaging H
Graphic^lmaging H

✓

✓

✓

H

H ✓ □
M ✓

M ✓
■ -

M ✓

M ✓

M ✓ □
I

H ✓ /- I
I

M ✓- I

M ✓ □

H ✓ □

Corrections and Updates ot: Ectoiund H. Muth
Page t

This document is Digital Company Confidential

Windows NT Program Office ISVPROG4.XLS
8/21/93 4:44 PM

r Aldus - Pagemaker ^ Horizontal!Publishing
- Aldus ^Persuasion _ _ _ Horizonlal
lAldus^Pholostyler Horizonfal
^Aldus - Tr^vrise Horizontal

^Algorithmics - RISKWAfCH ‘ ’ VerlicS’ JUSA
^Altamira - M^rome^da J Enabler~lother Enables
—lAlysys - ^DA Enabler
--I AMC JCE _ ■ ~ Vertical USA
-lAnsww^P&C ; ^Verlicaf USA
—l.Applied AutoJ'ech., Inc. - AutoQuality ^ Vertical USA

- Applied Auto. Te^., Inc. - AutoShip Vertical USA
. 1 Applied Auto, te^.. Inc. - AutoTime _ J Vertical USA

-I Applied Auto. Tech., Inc. - Autotrack ^ Vertlc^ USA

-■Applied Auto^Tech.. Inc. - AutoWIP ^ Vertical USA
j- Applied inlormatiqn^deiices - UniAccess Vertical USA

- Applied Terrayision - Datavision Horizoril^
- Applied Terravision^Eagie ^ HorizontS
- Applied Jerravision - terraview _ ‘ Horizont^
— Applix, Inc. - Aster'X Horizont^
— Approach Software - Approach ForJ/Vindows Horizont^
- Arbor Software - EssBase ' Enabler

_ - Arcadd. Ir^. - Lottacadd '" ~ Vertical USA
Archibus - ARCH|ByS/fm Vertical ' USA

- ASA Hindsight ' Enabler CASE Tool
--ASK-MANMANX ^Verticar' USA ' “
-Aspen Technology, Inc.-Aspen Plus ‘Vertical USA

- Asymetrix-Multirnedia ToofJ^ok ' 'Enabler Other Eriablwl
. -_Alna ClearC/VSE -Enabler CASE fool

Other Enabteri'
- AUDIOtechs - Hyperkit Enabler ' Other Enablers
- Auto-trol - Technical Hlu^rator Horizontal Publishing
- AutoDesk -3-D Studio Horizontal Technical Horiz.
-AutoDesk -AutoCAD Horizontal Technical Horiz.
: Aulopesk^ Hyperchem Horizontal Technic Horiz:
- Autologic - SoftPIP (high speed postscript print) Horizontal PubUshing
- Automated Office Systems, Inc. - SEARCHmate " ’ ~
- AVP Systems - Sales Tax System

H ✓ □

Graphi^lmaging
Graphic^jmaging
Graphi^lmaging

H □

H □

H □

M ✓

M ✓ □

Compiji^ M ✓

M □

M □

M ✓

M ✓ /

M ✓ ✓

M ✓

M ✓

M ✓ ✓

GIS Systems
GIS Systems
GIS Systems

Groupware/Mail

Analysis/Aco^s
Database

M / □

M ✓ □

M ✓ □

✓M ✓

M

M □

M ✓ ✓

M ✓

M ✓

M ✓

M ✓ ✓

H ✓ ✓

H ✓ □

M

H ✓ ✓

M ✓ □

H ✓ □

H □

✓H □

M ✓ ✓ ✓
Vertical

Vertical

USA ✓M

USA ✓M

Corrections and Updates lo: Edmund H. Muth Page 2‘ This document is Digital Company Confidential

>1 ft.

5

Windows NT Program Oflice ISVPBOG4.XLS
8/21/93 4 44 PM

- jBacg Limited - Data Maintenance
LjfTiiled - tlen^Group Maintenance

- Bacg Limited - item Maintenance

^ Bacg Umiled - Organisational^tmctures
j Bacg Lirniti^j Purchasing Managem^t^_ ~
- Bacg Limiti^ - Warehouse Management
- Backstage ^i^are - LMF
- Baitey Engineers - Baiieys Engn. Imag. Appl.
Banyon - Vines

- BASIS

: BBN^ R^1 “ --
BCR Computing ^rporaUon^OSCAR

- Beacon Expert Systems. Inc. Negotiator Pro
j^Becl^ar^L^ Manager lImS
BeclOT^ - Pea^ro
Beilfiiss i Assocjates -IGrds J

_ .JL®® ijSP jn!®9'’?!®sL^'y^®s Periph.
- Bentley Sysjerns - Mja-gstajion
Biies & Assosciales - AIMStation
BIO N.y. - BIS (R)

- Biorad^adther Division^VAX Search^
; Biosym T^ech - Discover, Etc.
- Blue Sky Magic Fiel^ _ ~
- Blue Sky RoboHelp
- Blue Sky Visual SQL
- Blue Sky WindowMaker

^BMDP ; _ 1_ I
- Boiland - dBase IV -

- Borland - Interbase

- Borland - Paradox ~
- Borland C/C++

- Borland QuattroPro

Borland Turbo Pascal

- Bradly Associates Ltd^^lNO-F
^Bradty AssociatesLtd. - Ginograf
- Bradly Associates Ltd. - Ginosurt ~

- BSO/Tasking - BSQ/Assember ^

Vertical

Vertical

Vedical

Vertica[
Vertical

Vertical

Europe_
Europe

Europe
Europe
Europe
Europe

Vertical_|USA_
yertiMi_ USA^ _ _
Enabler Communications

Enabler _ Database
Horizonta

Vertical

yeit^ical USA
Horizot}!^ Technicaj Hoiiz.
Horizont^ technical HorizT

Vertii^j USA ^
Vertical USA

M / ✓

M /

M /

M

M ✓

M / ✓

M / ✓

M ✓ ✓

M / □

H /

Analysjs/Access
USA

H /

M ✓

M ✓

M ✓

M / □

M ✓

M ✓ ✓

Horizontal Technical Horiz.

Verti^
Vertir^j
Vertical

Vertical USA

Enablw_ CASE Tool
Enabler

Enabler

Enabler CASE Tool

Horizonl^

M / □

M ✓

Europe
USQ

M /

M / ✓

M /

H /

CASE Tool _
CASE tool

H ✓

H ✓

H / ✓

Analysis/Acoess
Enabler Database

Enabler Database

Enabler _ Database
Enabler ,Compilers
Horizorital] Spreadsheets
Enabler Compilers
Vertic^ Europe ’
Vertical Europe” ^
Vertic^_ i Europe
Vertic^ ’USA

/M

M

H ✓

H /

H / □

H /

H ^ J
/M

M

M
r

M ✓ ✓I

Corrections and Updates to: Edmund H. Muth Page 3 ‘ . This document is Digital Company Confideritial

Windows NT Program OMice
ISVPROG4.XLS

8/21/93 4:44 PM

BSO/Tasking - BSO/C cross compilers
ssking - Crossview

- -* BL(Cily Business Products) Lid. - OTS
S H. S.P.A. - Sipert^OOO

. Lld^ Asset Ledger
:CCalLld._^Ba^Cal
- C Cat Ud^Bill oj Materials
C ^t Ltd. - Busi Cal "

-■ P Ltd. - C Comm

C Cat Lld^ C Stale “ “
-:-PjpaLLld^lCC 420
-1 - Daiabse Manager ^
I P- P?l Ltd. - Employee An^ysis '
p.p.g! Ltd. - Fax Cat

Ltd. - Job Costing
- r. P yd^ Nominal iTedger
-1P _P?j Ltd. - PayroU/Personnei
__:, P_pal Ltd. - Picking lists
-■ C Cat Ud^ Pro Cal
C Cal Lld^ Purchase Ledger

-* C Cat Ltd. - Purchas^Order^Pfocessing
- C Cat Ltd. - Routings
,■ C Cal Ltd. - Sales Ledger
- C Cat Ltd.^ S^es Order Processing
- C Cat Ltd - Slock Control

.■.P_pal Ltd. - Synergy DBG
- C^al Lld^ -Synergy DTK i
* P.P®* Ltd. - Synergy ICS
-C Cat Lid-Tabi Cal
- C Cal Ltd. - Travel Cal

C-Pak Corporation - C-Pak’s Financials App
• C-Pak Corporation - C-Pak s Long Term Health
- C-P^ Corporation - C-^k s Manufacturing Sys
- Caa Umited - FMMS - w r

- Caa Umited - Prophecy
-CAD-EPVS'

- Cadance - Allegro

Vertical USA

Vertical USA

Vertical

Vertical

Verticai

Vertical
Vpiiiical
Vad^l

VadL^ai^
Vertical

Verticai
Vedicai

yert<caj
Vertical

Vertical

Vertical

Verticai
Verticai
Vertical
Vertical

Verti^l Europe
Vertical Europe
Vertical

Vertical
Vertical

_ Vertical
Vertical

Vertical

Vertical

j Vertical
'Vertical

i Vertical USA
i Vertical USA
Vertical iturope
Vertical Europe
Vertical ') USA
Horizontal technical Horiz.

M ✓

✓

Europe
Europe
Europe
Europe __

✓ ✓
M ✓
M ✓ ✓

M ✓

M ✓

M ✓
M ✓

Europe
Europe

M ✓

M ✓

M ✓

Europe
Europe

M

M

M ✓

Europe
Europe

M ✓ ✓
M ✓ ✓
M ✓ ✓

Europe M ✓ ✓

M ✓ ✓

M ✓

M ✓

Eur9pe_
Europe
Europe
Europe
Eurof>e^_ _
Europe_
Europe
Europe
USA

M ✓ ✓
M ✓ ✓

M ✓

M ✓

M ✓

M ✓

M ✓

M ✓

✓
.1
M ✓

M ✓

M ✓ ✓

M ✓

M ✓

H ✓ □

Corrections and Updates to; Ednund H. Muth
Page 4 ,

This document is Digital Company Confidential

Windows NT Program Office
fSVPROG4.XLS

4.44 PM

• Cadancaj^ Concept ~
- Cadancej Dracuia
^ Cadancej-Framework
- Cadance - Verifog

j^Cadancoj; Veri^me
j: Cadcentre Ltd. ~GNC~N^~

Cadre Teamwork _
-T- - C^PAC Estate Agency

- C^itornia ^ttware- BABY/AS
Calitorima Sohw^e^BABY/4XX
Cditomia Softw^ej^BAB YA3~6

- C^brklge Scientific Computing - Chemi^aw
^ Cambridge^entitle Computing ^h^DrawJ='lils~

Cambridge_^entitic^Compu«ng - ChemOffice'
Cambridge Tedinotogy Group
CASEVyORKSj;^ASE W^IP

- -.Cegetec - System Con^ljor w/GE FAUC
: CegetedAlcatd^ System Controller SCADA
- Centerline Codecenler

- Cemer - C^eNEf " —
j: Chesape^e Decision fences' MImF
- CIMAG^2_Document Manager (TM)
- CIMAGE ;^Work Row Mgr.
- CIMLINC - Linkage
- Citicorp FAME “ —
- Claris - File Maker Pro

.iClm/systems.inc:-;ceal
- CO-CAM -^rock Phoiie Sdes Admin^kgl.
- Cognos ' —

-■ Springs Harbor - Genetic Mapp. Wkbeh.
- Command Systems - Claims
j Compushare Inc. - EIS ' “

1 Computational Mech: Beasy Ltd. - Beasy Acou '
: Computational Mech. Bea^ Llci; - Beasy Cp
: ComputalkmaJ Mech.jB4asy Ltd. - ^asy Linear'■
- Computer Aided Dev. Corporation - Wmead (R)
- Computer Intemahonat Ltd. - tARC ~ ' '

Horizontal Technical Horiz.
Horizontal Technics Horiz.

Horizontal T^nlcal Horiz.~
technical ’HorizT

Hqrizonti technical Horiz.
Vertical
Enabler

Vertical

Enabler

Enabler

Enabler
Horizontal

HqrizonlaF
Horizontd

Enabier

Enabler _
Vertical

Vorti^ USA _
Ena^ CASE fool
Vertical _ USA
Horizontal Techni^’ni^zr
Vertical USA

Vertical USA ^
VErtical USA
Horizonlal
Enabier

Vertical USA
Vertical USA
Enabler 4 GL

Horizonlal Technical Horiz.' M
Vertical 'uSA
Horizontal
Vertical

Vertical
Vertical
Vertied

Vertied

H ✓ □
H ✓ □

H ✓ □
H ✓ □

H ✓ □

Europe
CASE Tool

M ✓

M ✓

M ✓ □
Conversion Tool

Conversion Tool

Conversion Tool

technical Horiz.
Technical Horiz.
Technical Honz7~

4GL'_
CASE Tool

M ✓

M ✓

M ✓

M ✓

M ✓ ✓
M ✓

H ✓

H ✓

M ✓ □
M ✓ □
M ✓

M ✓ ✓
M / □

M ✓ ✓

M ✓

M

Analysis/Access
Other Errablers

M

H ✓ ✓
M /

M ✓ □

H /

' / ✓
r-M / □

Financid[MgmL
Europe__
Europe_
Europe
Europe
Europe

M ✓

M /

M /

M ✓

M

✓

Corrections and Updates to: Edmund H. Muth
Pages .

This document is Digital Company Confidential

Windows NT Program Office ISVPROG4.XLS 8/21/93 4:44 PM

- Computer Vision - Adv. Tech. Ctr.

- Computer yjsionj^ CV Design, Designview etc.
- Computroi]^Te<^^ Europe, Ud^j Optical Fiche
; Computron Tech^Eumpe, Ltd^ Records Mgt
- Computron Tech. Europe. Ltd. - Workflow Mgt _
- Compulrw Tei^nologies 2_Accounting
- Contact Software Internationa - ACT!
- Control Systems - VXL ~
^ CorelDRAW' ' '
j: CORTEX CORPORAtlON- CorVislw
: CPIj Imageh
^ Cross-Z inti. - Navigator

- Croi^-Z Inti. - Private Eve
- CSA - Retran

^Cybermedix - i^L'lNIPLEX
- Cybersd^ce CoqxH^ation COGS
- Cyberscience Corporation Ltd^- Visual Cyber,
j Cygni^ - <^tj toolchain Modif.
: Cyport (^n Series) - Payro|WR ' ~ ^
; Dash Associates - Xpress-Mp _
- Data Research - DFIA System
- Database Mgmt/Tech.. In^'^-'^DBAnalyzer ’
^Datatab Computer Services Ltd {Disl.i Mgr.

- Datatab Computer Services Ltd. - Dre^
- Datatab Computer Services Ltd. - Rnandals
- Datatab Computer Services Ltd. - Retail MgmI.
-DEC-Plexis _ J 1JT _ “
- DEC ACA^ervices ^
-DEC ADA ■ ~

- DEC AUNT Assembler for Windows NT

-DEC C++ _ ~ '
-DEC COBOL

- DEC DCE NT Client

- DEC pCE NT Server
- DEC DECadmire

DEC DECforms

- DEC DECmessageO - ■

iHorizont^ Technical Horiz.
Horizoni^ Technical Horiz.
Vertic^

Vertical _
Vertical

Vertical
Horizontal Groupware/Mail

Verticd juSA
H^z^nJ^
Vertical USA
Horizontal

Horizonj^
Horizon!^
Vertic^ USA
Vertical USA

Vertical

Vertical

Enabler Other Enablers

Horizon!^
Vertical J Europe
Vertici USA
Vertical USA '

Vertic^
Vertical

Vertical

Vertical

H ✓ ✓
H

Europe M

M ✓

Europe M ✓

M ✓

M ✓

H ✓ ✓

Graphics/Imaging M

✓M /

Graphi^linaging^
Analyd^Acces^
An^ysis/Access

H ✓ / ✓ ✓
H ✓

H ✓

M ✓ □

✓M ✓

Europe
Europe

M ✓ ✓

M ✓

M ✓

Finandal Mgmt. M ✓ ✓

M ✓ ✓

M ✓ ✓

M ✓

M ✓

Europe_ _
Europe_
Europe

Horizon!^ Publishing
Enabler Other Enabjers
Enabler Compilers

j Enabler Compilers
j Enabler _ !Compilers
I Enabler] Compilers
lEnabler Other Enablers

^Enabler Other Enablers
J Enabler ^ CASE Tool ' ^
jEnabler CASE Tool
Enabler 'Other Enablers

M ✓

✓M /

✓M ✓

M □

H ✓

H

✓H ✓ ✓

M ✓ /

M

H ✓ ✓

H /

H ✓ □

/H □<

H /

Corrections and Updates to: Edmund H. Muth Page 6 * This document is Digital Company Confidential

Windows NT Program OHice
ISVPROG4.XLS

8/21/93 4;44 PM

2 DEC DECps - client Enabler

Enabl^
Enabler

Enabler^
Enabjer
Enabier

Other Enablers H

Sys^Managemeni M
Other Enablers _ M
Sys^ Management M
Other Enablers H

Compilers
Enabler Ojher Enablers H

Communications H

Cornpil^
Grqup^e^Mail H
Communications H

Other Enablers__ H
Dat^^e
Sys. Managern^ M
Groupvme/MaH _ H
Sys^Managernem M
Groupware^Maii M
Groupware/Mail M

Groupywe/Mai|_ H
Other Enablers H

✓— DEC DECsch^ler Client'tor NT~ " ’
: DEC DECtalk for^jr^ws NT
- DEC DECtrace

— DEC besidop ACM^
DEC Digital Stand^d Mumps
:DECEDi '

._1 DE^eXcursion
^DEC^bRTRAN
lbEC6bje^o^
^ pE(^Pathwo^forWinSv^~Nf ~
^DEC QFD Expert for Windows NT
._-pECRDB “

- DEC RDB - DBA ioote incTRC^xpert
^DEC RFM
^DECSL^
_:.DEC Tej^ Route
_ 1 DEC Teamlinks ~

DEC X.400Imd'x 500 w^dijrts
.^DECXLIB

-lDe<Mttiion Data Systems j^^LdmEDAL(R)
^ Decathton pata Sysiems^TEAMWARE (TM)
: Design CAD - Design CAD 20, 3D ‘

✓

✓ ✓

✓ ✓ □
H

✓

Enabjer
Enable
Horizontal

EnaWer

fabler
Enabief^_
Enabler

Honzonl^
Ena^r
HorizonteJ

Horizontal
Horizontal

Enabler_
Vertical USA ~

Verlic^ USA ~
Horizontal Tei^riic^ H^z. M
Enabfcw Jother Enablers
Horizon!^
Vertical

Enabter Other Enablers M
Verticai

Horizonl^ GIS Sysiems
_ Enablw_ CASE Tool ~ ~

Enabler CASE tool
'Verticai USA

...Jborizontal Financii Mgmt^ M
^Horizontd; Analysis/Access M
yfrtical. _ USA '

4 horizontal Financi^' Mg^t'~ H
Verli^ lUSA

✓ ✓
H ✓ ✓

✓ □

✓ ✓

✓ ✓

H ✓ ✓

✓

✓ □

✓

✓

/

✓

✓

✓

M /

□_• Desktop Dataj^ Data F^d Toolkit ^
- Desktop Data- NewsEDGE

- Devon Systems Inlemalion^ Devon Securities
- Dialogic CorporaUon - Voice/C^l Processing

_ *. P.'g'*al BCFI AB1 Dec Bank FBS
_-Digital Matrix Services
- Digital Tools Autoplan
Digitallk Smaiilalk_

JlPo^go Droop - Accounting
- Dragon - R^ort Writer
- DRD Corp. - ARIS^l^ '
- Dun and Bradstreet - GL
- Dynix - Dynix

H ✓ ✓

Groupy^^Mail M ✓ ✓
M /

/ ✓ ✓
M ✓

✓ □

M ✓

H /.)

M ✓ ✓

✓ ✓

✓ ✓

M / ✓

✓

M ✓ ✓

Coaections and Updates to: Edmund H. Muth
Page? .

This document is Digital Company Con/idential

Windows ffT Program Office ISVPROG4.XLS
8/21/93 4;44 PM

- Easel-WorkbenchJorVy^r^ws NT
* EBT -Dyna-Tex "

:: Edinburg Peiro Svcs. Pansysfem
_^EpS - Unigr^hics
EDS Scicqn - Setcim

^ED^GDS - MicroGDS ~
Effedive Mgmt^ystemSj^ Inc^ JCM-EMS
EHectiye Mgmi^Syslems, fnc. • TCM SFIS

-* ^M^1^I^.GmbH^_GSS*GKS Kernel System
EMATEK GmbH - GSS‘GGbtj:GI Metafile Drivers'

lEnlropic Resear^ Laboratory - ESPS
- Entropic Researqh Uboratory -
- ESCA Corp. - Process Csontrol SCADA App.‘

-: ESRI - ARC/Info. '

Evets Computers Intl^Ltd^Ada^ _ J _
^ Evets Cqmputere IntJJ.ld.^Asset Scan ~ ^

- Evets^omputers Inti. Ltd. - Data Coll^or
_1 E vets.Computers jnlU^Sdes^Support

- Evets Computere Inji. yd.:iTime Collector
- Excalibur Technologies ^^PixteyEFS
- Executive Software - File a]^
-Exsys. Inc. - EXSYS Prof. Expert System Dev. ~ "
- FCMC - Software Workflow
- Filenet

- Rsher/RosemounI - PROVbX '
- Fisions/VG - VG/CGROM/LiM
- Fluor Daniel. Inc. - CMMS Plus
-FMC-Pacer

- FocusSoft - 2EMAX Opticd Design ~
-FORTE "

- Fraotel Design Corp. - Fracid Design Painter
• Frame - FrameMaker _
- Franklin Quest - Ascend

- Franz Lisp (Allegro CL) _ J
- FSL - IBEX LIM Brolyng__ "
- FTP Software - NFS

- Gaylord - Gaylord Galaxy

Enabler _
Vertical

Vertical

Hqrizqnii
Vertical

Horizontal
Vertical

Vertical
Enabler

Enabler

Vertical

VertiMl_
yerticcU_
Vertical

Vertical _
Vertical

Vertical
Vertical

CASE Tool H

USA M □

Europe
Technical Horiz.

M

M

M

GIS Systems M ✓
USA M ✓ ✓
USA M ✓ ✓

Other Enablers

Other Enablers

H ✓ ✓ ✓ ✓
M ✓ ✓

USA M ✓ ✓
USA M ✓
USA M ✓ ✓
USA M □

Europe_
Europe
Europe

Europe
Vertical _ Europe
Horizontal

M ✓

M ✓

M ✓ ✓

M ✓ ✓

M ✓ ✓

Graphicyirnaging
Enabler Other Enabl^
Vertical USA

Horizonid

Horizonid
Vertical USA

Vertical USA

Vertical USA

Vertical |USA
Horizonial Technical Horiz^
lEnabler ' -CASE Tool
'Horizontal I Technical Horiz.

Horizonid' Publishirtg
Horizontal 'Groupware/Mai|
Enabler iCompilers
Vertical 'USA
Vertical USA

Vertical USA

M ✓ ✓ ✓
H ✓ ✓ ✓
M ✓ ✓

Grqup\^e/Mail
Graphics/Imaging

M □

H

M ✓

M ✓ □

M ✓

M ✓

M / ✓ ✓ ✓

H ✓ □

H

H □

M ✓

M ✓

M ✓ □

M ✓

M ✓ ✓

Corrections and Updates to: Edmund H. Muth Pago 8 . . This document is Digital Company Confidential

Windows NT Program Office ISVPROG4.XLS
8/21/93 4:44 PM

GCb Uomp. Serv^- GENASYS
Gemsoft - Sapphire

- Genisis ^ftwar^ Cabipel Manager ~
-Gensym-G2 —
- GeoGraphixJ- GES ^
- Gerber Alley - Report
j; Gimp(^ l^ftware ^RexeLinl
2.aas^o Park : MicrolTOfMaifTubraiY

-r GWAt^ophysical Icro Computer Ad-^UNIsys
^^GNU Tools
j GP2 - GPIC '
- GP2 - ^dobo^
- Graphic M*PS. jrw^ - Fingr^hlif

-GSI Business jjianagement - Tolas
- GSI Tr^scom -1OLARS_

- SQL Wi^'^ws Appj5e^ Sysi!
G Usher & Co. Ltd - U-Conlact

j^Harnillon'C'^eil _
-•.Hare Resejifi^'- Felix 4
: Hariequin ^KnowledgeWorirs
: Harlequin- LispWorks
: Harlequin- 'ScriptWorks~
- Harley Systems - Matrix Lims
- Harley Systems - Peakmaster
- Harley Systems - Quality Auditor
- Harley Systems - Skylight _ _
- Health Systems Ini. - HSSI
: Helix Systems. Inc. - ResearchSlalion

- Herico Software - Business Intelligent
- Henco Software - Synchrony
- Hilco Tech - Monilrol

- Holistic Systems - E IS

- Honeywell - CMSO Garteway
- Ho^yns Group PLC - Pinnacle
- Hypersoft -^Browser
- IBI Focus

- IBM CICS fclient)

Vertical USA

Vertical USA

Enabler Sys. Management M
yertiMl^ USA
Verticals USA
yertical_ USA
Vertic^" USA
Horizontal

yert|c^ USA
Enabler]JCASE~Tool
yerticai
Vertical

Vert|cal_ USA
yertici
Horizontal

Enabler

Vertical

Enabiw

Horizoni^ Technical Hori^ M
Vertic^
Vertic^
Vertical
Vertical USA

yerticaj USA
Vertical _ USA
Vertical USA

Vertical USA ~ ”
Vertical USA
Vertical USA

'Verticar USA
Vertical 'USA

,'Analysis/Access M
Vertical 1 USA

Vertical Europe
Vertical

Enabler Oalabase
Enabler lother FnaNar^

M ✓

M

✓ ✓ ✓
M □

M ✓

M ✓
M ✓

Analysis/Access M

M ✓
M /

M /

Europe M /

M ✓

M ✓ ✓

GIS Sysiems
CASE tool ~~

Europe
CASE tool

M ✓ ✓
M ✓

M ✓
H ✓ ✓

✓

Europe
Europe^
Europe

M

M / ✓

M ✓ ✓
M

M ✓ □

M / □

M ✓ □

M ✓ ✓
M ✓

M ✓

M

M ✓

M

M ✓

M ; ✓ ✓
t - -

H : ✓

H

Corrections and Updates to: Edmund H. Muth
Page 9

This document is Digital Company Confidential

Windows NT Program Office
ISVPROG4.XLS

8/21/93 4:44 PM

- IBSY Fin^ce S.A. - Ibsy
:ics^x ' '7

I - Idaho Nafioriaf Eng.- Relap 5~
I •D^Software-ihru-Pictures
I - plinicaj Workstation
L: Jm^sen & A^od^les-MSKfO BDSlfW^

4_A^ociales-MSWOlGrds -^
I - Impact Software-Jc^n^ariager
^IMSL^SjajisiicaM^r^ for Windows
I _l*.MSR^ Hyperion_
I _• Indigo ^ftw^re- ReporTSmiih
|-J..!nfinitylnjs. ^Montage '
1-1 Inlormlxj^ Hype^CTpj
I -^.Informix - Viewpoinj —
I - Ingres

Insight AcceM^^oup^^a M-bit Demo
- BiolechnolpgiesjJBI ^uence analysis ~ ~

I -1 Infl Biotechnologies - MAC Vertor ~
InlerCAPj- illustralor
Intercom Data Systems. Ltd. - Helpdesk

- Intergraph - l/EMS
-Intergraph-Microstation ‘ *
- Interleaf- interleaf V6 '

I : Inlermefrics - ADA
I - Iowa State University - GAMMES

IPG: iPG-Car
■ IPG -IPG-Driver

-IPG-IPG-Graph ■
I JPG-IPG-Movie “ '

- IPG - IPG-Test
- IPG - IPG-Tire "

r.lPG -Mesa Verde

: Ippolis Informatique - Avtis
- Ippolis Informatique - Coniis '
- IppoUs Informalique JHuliis " ' "
- Ippojis informalique - Stalls
- Ippoiis Informatique - Biblis

Vertical

Enabler_
Vertical_
Enabler_
yerlicai_
Vertical_
Veriicai

Enabler _
Horizontal

Europe
CASETool~

M ✓

M ✓
USA M ✓ □
CASETool M □
USA M ✓
USA M ✓
USA M ✓

Other Enabjers
An=»ly^s/AcoeM

y°"“nl^ Fjnand^ MgrntT
H.pnzontai Analysis/Access
VerticaiJuSA
Enabler

M

M

M ✓ ✓ ✓
M

M ✓
Database

Database ~

Database ~

Database

technics HprizT^
Ij^hnicai Horiz.
Graphics/lmaginq

H ✓ □
Enabler_
Enabler

Enabler _
Horizonial
Horizonid
Horizontal
Veriicai

Hpnzontd technics Horiz^
Horizonial Technics HorizT"

Publishing
Compilers
Technical Ho£iz.~
Europe _
Europe _
Europe
Europe

Vertical Europe
j Vertical Europe
1Vertical^ ^Europe
i Vertical

H ✓ □
H ✓ ✓
M ✓

M ✓

M ✓

M ✓ □

✓ ✓

M ✓ ✓

M

Horizontal
Enabler

Horizontal

Vertical

Vertical

Vertical

Vertical

H ✓ □

M ✓

M ✓

M ✓ ✓

M ✓

M ✓
M

M ✓

M ✓
M ✓

Europe
Europe
Europe
Europe
Europe

M

Vertical

Vertical
Veriicai
iVertical

M [
M I

M

Corrections and Updates to. Edmund H. Mulh
Page 10 .

This document is Digital Company Confidential

Windows NT Program OHice
ISVPROG4.XLS

8/21/93 4:55 PM

3IRI Express
- Graphics - island/stuff '

llhica Software - HOOPS A. j. R.

Ithica Software - HOOPS Gr^hics Dev System
llhica Software - HOOPS IM

_- ITS - PMIS

jl Ja<^of} Ub - Genetic Mapping Workbench
1JJ Wild - Me^ie(^ bplicaf Mgmt' Appiibaiion

-f J-“^"9-e2nilJos!eQS le^iig S^sl^_
-1* T. Electric - Gener^ M^I Facilily
j^Kapiti Ltd. - Rsl

j Horizontal Analysis/Access
Horizontal

Enable

Enabler

Enabler

Verti^l
Horizon!^ Techni^ Ho't^~
yerti^|_ USA ~
Horizonjal techn^ H^z.
EnaWer case Tool
Vertic^ USA
Vertical

Vertical

Enabiw
Vertical

Verticaf USA

Verti^
Vertic^
Vertic^
Enabler

Enabler

Enabl^
Vertical USA

Horizontal Analysi^Access M
Enabler CASE ~ R
Enabler CASE Tool

. I Vertical _ Europe
.j Enabler Compiler
I^f’^bler _ Compilers' ”
IEnabler

Enabler

H ✓ □

Graphi^lm^ing
CASE tool
CASE Tool

CASE'fool

M □

H

H ✓ ✓ ✓ ✓
H ✓ ✓ ✓
M ✓

M /

M ✓

M ✓

H

M ✓

Europe—-.Kapili Ud^fisV Marioal yvindow'
J •^EAlerm - jermin^ emulajw '
^ Kenan Technologiesj Acurnaie (R)

- Kevin G Bkrkes^cMrisulling^^rvice -Translate
Kiefer4 yeittingerGMBH^Comm. Mgr

[-Kiefer 4 Veminger GMBH - Sales Manager
— Kiefer 4 Viettinger GM^^ryice Manager

I jr. Kodal^-Raster Image Processino
I -. Kuck -ibvP ^

- KurzwelJ Al-VoiceMed ’

: Largo Scale Biology 2 Keptiw^itware””
Uteiner Dataspace - VOX^L Navigator '

- LBMS Process Engineer
I_* LBMS Systems Engineer ~

- Leiden University - Forch^'
- Uant -C/C++ ' ~

-Lianl-Piyi' '

- Uant - RGP II and III
- Uant Fortran 85

: LianVRyan McFartan COBOL ”
1 Lightworks Designs l^. - Ughiworks ADS
Logitech - FoloMan

- Logitech - FotoToucI^ ~
: Logit^ - ^anMan
- Lorentzian - Gaussian 92

M ✓
M / ✓

Communications
USA

M / ✓
M

M

M /

Europe M ✓
M /

Enablem

Compilers
Other Ertablem

M ✓

M /

M / ✓
M ✓

✓ ✓
✓ ✓ ✓

H ✓
M ✓
M

M ✓

Compilers
Compilers

Enabler Compilers
Vertical Europe '

- jLlodzonlal Graphics/imaging
. . i ^iorizonlal Graphics/Imaging

Horizontal Graphics/Imaging
Horizontal Technical Hnriy

M

M
1 t

H /I

M ✓

M ✓

M

M ✓

M ✓

Corrections and Updates to: Edmund H. Muth
Page 11 ,

This document is Digital Company Confidential

Windows NT Program Office ISVPROG4.XLS 8/21/93 4;55 PM

- Lotus - Ami Pro

_ : Lotus - CC Mair “ “
- Lotus - Freelance

• Lotus - Improv

^Lotus^NOTES;CliMl ITIT ZT
- Lotus - NOTES - Server

^Lotus 1-2-3 “7
--I-Lplus One i^urce - C/D Investment

LiX ID C Deyeiopemenl^rwironmenj
Lynx Fteaitime

- M ajE. LW.- ANVIL-SOOO ~7
- Mango Systems - Neiwot^ Driver
- Mark V Systems - ADA Gen

- Mark V Systems - C Gen

- Mark^Systenri^COBOL 77
-I M^ V Systems - ObjectMaker
- Mark y Systen^s - ProcessMaker
- Marketing Profiles, Inc.

- Martin & Associates - CBIS - TelephoniTBilling
j^MASSTECK - MaxEDS PC Board Uyout

- Maira - Datavision

- MC-Te| San Monaco Telematique - Videomail
_ - MC-Tel San Monaco teiematic|ue - Videomask

- MC-Te[Sari Monaco Telematique - Vid^nel
- MC-Tel Sail Monaco teiemalique - Videonet-Dev j Vertical

_■ MC-Tei San Monaco Telematique - Videolelefax Vertical
MC-Tel San Monaco Telematique - Videolelex Vertical

- McCabe ACT/Battlemap Enabler
- McIntyre Cnsll. Inc. - Medimanager
- McIntyre Cnsit. Inc. - MShell/Medit "

:MCS7AnvilV2,y37
:MCS-S^or’
- MCSS, inc. ;^OpenUpTime ~
^ MCSS, inc. - OpenUpTinw Support De^

- MDtv - Prelude 7
-MEC -Mass-11

- Mechanical Dynamics - ADAMS

Horizontal

Horizontal

Horizontal
Horizontal

Horizoni^
Horizontal

Horizont^
Verticai
Enabler

Enabjer _
Vertical
Enabler

Enabler

Enabler

Enabler

Enabler

Enabler

Horizontal

Publishing _ W
Groupware/Mail H
Graphic^lmaging M
Groupw^e/Mail M
Groupware/Mail_ M
Groupwar^Mail H
Spreadsheets H

✓

□

✓ a

✓

USA M / □

CASETooJ
Compilers

Europe
Communications

CASE Tool

CASE Tool

CASE Tool
CASE Tool

CASE tool

✓M

M ✓

M ✓ ✓

✓M ✓ ✓ ✓

✓M ✓ / ✓

M ✓ ✓ ✓ ✓

✓M ✓ ✓ ✓

M / ✓ ✓

M ✓ ✓ ✓

Financial Magmt. L ✓

Vertical US,^
Vertical USA

HorizonlaT technical Horiz.
Vertical

Vertical

Vertical

✓ ✓

M ✓ □

H □

Europe
Europe _ _
Europe
Europe_
Europe
Europe _
CASE Tool

✓M ✓

M ✓

M ✓

✓M

M ✓

✓M ✓

✓!M
USA ✓M /

■

jVertical USA
I Vertical J USA
.Vertical ^USA
Vertical USA

Vertical ^USA
Vertical lUSA

✓;M ✓— I

✓iM ✓

_._lM

✓ □
I

✓ ✓

M ✓

✓M □

IHorizontal PublisMng iM / □
I I
Vertical !USA ✓!M

Corrections and Updates to: Edmund H. Muth Pago 12 This document is Digital Company Confidential

Windows NT Program Office
ISVPROG4.XLS

8/21/93 4;55 PM

^ Mechanic^ Dynamics- ApAK^View
I Medile^, Inc. - Magic His
I Megabyte Ltd. - Consumer Analysis Sys. ’
-■ Megabyte Ltd - Midas 2

J__: Mentor - Desigii ^chtect
I .1 Mentor Graphi(M- ECAD^Suif^

- Metaware C/C++muitipj^rmlool
I : Mfg and Cjisit. ^n/ices, Inc. - ANVIL
liMicroEdg^- SlickEdit
I-.; Microfocus COBOL
I ^ Microfocus~MiCToCICS~

L_:>*^9g"9?i?Jnc^Leadi^"M^err^'.
^Micrognosi^c^Lolu^Reaf^e
^MiCToimagesJ^Mapj^d Image Pfwess.
- Microimagesjnc^ INT-MIPS (TM)

I .* Microsoft Advanc^ Server
I -i MiCTosoft 'Word for Win^vw
I _LMicrosott *C* V7
I - Microsoft Excel _

• Microsoft Flight Simulate
I - Microsoft Foxbase
I - Microsoft Mail

- Microsoft PowerPoint
: Microsoft Project “ - -
- Microsoft SNA Comniunicaiions
7 Microsoft SQL Server
- Microsoft Test ~

- Microsoft Videowoffcs
- Microsoft Visual Basic
- Microsoft Visual C/C++

- Midwest Stock Exchange Exchange System
- Mincqm - MIMS/Lattice/G^log/Minescapa
- Minesoft - Techbase

; Mintec - Mi^ystem ' ~
_- mIt 2 CECI - AthenaMuse2
- Mitech - M/Power-NT
- Mite^ - Naviqator-CGi

Vertical USA

Vertical USA

Vertical Europe
Vertical

Horizont^
Horizon!^
Enabler

Vertical USA

Enabler CASETod

Enabl^
EnaWer

Vertkal I USA

yerticai_ USA
Vertical USA

Vgrticai |USA
Enabler

Hoiizont^
Enabler _
Horizont^
Vertical I USA

Enabler^jDaiab^e
Horizontal
Horizonlaf

Horizontal

Enabler

Enabler

M

M

M

Europe
Technical HoriZ;^
Technical

Compilers

M / ✓

M ✓ ✓
H ✓ □

H ✓

M ✓ ✓

H ✓ ✓ ✓
Compilers
Conversion Tool

H ✓

H ✓

M ✓

M ✓ ✓

M ✓ ✓

M ✓ ✓

Sys. Management
Publishirrg
Compilers
Spreadsheets

H ✓ □
H

H ✓ ✓ ✓ ✓
✓ ✓

M □

H

Groupware/Mail _
Graphi^imaging
Groupware/Mail
Communications

Database _ ~
Enabler ICASE tod

Enabler 3pther Enablers
Enabler

Enabler

M ✓
H

M ✓ □

H ✓ a
H ✓

H ✓ □

H ✓ □

Compilers
Compilers

H ✓ □

H

Vertical USA

Vertical 7 USA
Vertical USA

Vertical USA
Vertical

Vertical USA

Vertical iUSA

M

M □

M □

M

M ✓

M

M

Corrections and Updates to: Edmund H. Muth
Pageta *

. This document is Digital Company Confidential

Windows NT Program Office ISVPROG4.XLS
8/21/93 4:55 PM

- Molecular Applications Group - Macimdad
Montage Group Ud^ Moniage Vi^o Editor

- MSC - Nastran

-Muruo Engineering-_Argu^
- Nation^ Center ^r Biotechnology Inff^ Entrez

_^Nation^jCenterFor^|otechnoi9gy Inf. - Blast
Nation^ Ceriter For Biotec^togyjnf^- Medline
Natron Software Maintenance Ltd. - RTL/2
NO^Bimdmc^w

j^NCSj^^^ries 7/11
_* NCS - U/rriJS| _
--.NejManage^Chameleon 32A - tbP/i^Utitities

Nelrn^t^ - Nelmanage

j Neuron Dala-Njx^rt^Z^T^L ~
j^Neuron Dal^ Open Interlace
: Neuron Dat^ Wnctowbuilder

- j: Nexcorn Ud^ - TArget Hotline Till
• Novell - Netware Client ~

- Numer^ Apps. - Gothic “
- Numetrix - Unx

- Oasys - MOxO CjosTc^pii^ Tods ~ ’
-Object Design-Object Store _
- Objective Interlace System's. Ir^. - Screen Machine
- Objectivity OODB
- Odesta - ODMS

:ODI-OODB ■

7 Oil Systems. Inc. - Pl-Appli^don Prog-
- Oil Systems. Inc. - Plad lntormation System
- OMR %d^s - Trading A^is.
- Oracle

- Oread - OrcadSC

: Orion Sdenjific - LEADS-law Enforcement Svs
- P-Stat. Inc. - P-Stat_
7 P.S.i. - UllraPlanner _
- Pacific^^hwest Laboratory - Argus
- PADS - Productivity Analysis
• PageAhead Software - InfoPublisher '

Vertical USA

Vertical _ USA
Vertical USA

Vertical _ USA
yertical_ USA
Vertical USA

Vertical USA
Vertical

Vertical I USA
yerti^l_ USA
Vertical |uSA
EiTablor_
Enabler_
Enabler

Enabler
Enabler

Vertied _
EnableV
Horizonid
Horizontd

Enable

Enabler

Vertical USA
Enjibler

Horizon^
I Enabler_
j Vertical _ USA
!Vertical USA

' Ve^rtical “ USA
Enabler

Horizontal Technical Horiz.

Vertical USA _
] Vertical I USA ~
Horizontal Groupware/Mail _
]Horizonld Technical Horiz.
I Horizontal Analysis/Access
Horizonid Publishing

M ✓ ✓

M ✓

M □

M ✓ □

M ✓

M ✓ ✓

M ✓ ✓

Europe M ✓

M ✓

M ✓

M ✓

Commuriications

Sys. M^agemenl
CASETool

CASE Too!
CASE tod

Europe _
Comrnuniedions

^®chnicd Horiz.

jeehnied Horiz.
CASETod

CASE Tool

M ✓ ✓ /
M ✓ ✓ ✓

H ✓ □

H ✓ ✓

H ✓ □

M ✓

H ✓

M ✓ ✓

M ✓ ✓

M ✓ ✓

M ✓

M ✓ ✓

Database

Publishing
Database

M

M ✓

H

M ✓

M ✓

M ✓ ✓
—I

'Database i«l ✓ ✓ ✓
M ✓

f
M ✓f

M i ✓

H ✓

M ✓

M ✓
t--

M,

Corrections and Updates to; Edmund H. Muth
Page 14 This document is Digital Company Confidential

Windows NT Program Oflice ISVPROG4.XLS
8/21/93 4:55 PM

-Palette Systems - EBRS ^ '

.1 ParagonJmaging ^^Paragon ELT/2
- ParagonJmagingj Paragof^ELT/2Dev. toolkit

--:/“!?9<?ilniag'«g_:f^ragon jmage ProcTSystom^
^P^agonJmaging^aragon Inrmging Ubrary

j^p^g'pg^j: Visualizatbn Workbench
~ Pyg^^atric technology - ProEngineer

_j: ParcPlacej)bjectworks^'alltalk
_lParksi^ Organization ^26 Migrati^" tools
- iPPy.lS/slemo GBMH:

Jystemsjncoiporaled -)CrRAN
Pentamatirm - Leadership, Open
People - Payroli/HR

-I ^®^9^eooe Computing •^Video Decompression
JLP®iro!echj^.:_Compjetiqn Mgr “
.1 f Lt^-jCommand Center

Piioi Sof^^^Lid^j- Lightship
- Pilot %ftware Lid. - Tim(^rvw
: Platinum^ SeQueL^L ' '
- Posij^ftware lntematio^£t^al STORE
- PowerCore; Network Scheduler 3 ~
- Powersoft - PowerbuHder

.* P'!30*|oe Tei^nology - Cto(^pt^e Image ^rver
- Precision Nesting Systenis, iiK^- pIns
- Premier - Global Plus ~

- Pro Syst^. Inc! - MTCT

- Process Sof^are - tCPw^e ’
- ^erican ^cuiily - SCE

- Progress DB '
- Promark - Rhobol/Win
- Promis - PROMIS '

- Prosig USA Inc! - DAtSplus”
Systems AssodalM 1 LEGIScribe for Wind.

- Publishers Software Sys. - Subscription Mgmt '
- QSM - QSM PADS ^
-QSM-SLIM ' “ “ -

Horizontal Technical Horiz.

Publishing
Graphics/Imaging M
Graphic^imaging M
Graphk^imagin^ M
Graphics/in^ging^ M
Technical Horiz.

C9mpijefs
Conversion TooT H

Europe

M ✓
Horizontal

Horizon!^
Horizontal

Horizon!^

Horizontal

Horizontal

Enabler

Enabler

Vertical

yeilical_ USA
Verticaj

Horizontal

Enabler

Vertica^l
Horizontal

Hori^nl^ai
Ho^ontd
B9P.^.9o!9*Jpinandd Mgmt!
VerticalJJUSA
Horizontal

Enabler _
Horizontal

Vertical [USA
Vertical _ USA
Vertical _ USA
Vertical USA
Verlical USA

Enabler _ Dald>ase
Vertical USA

Vertical' ,USA
Vertical juSA
Vertical n USA

Vertical jUSA
Vertical JUSA ~
Vertical USA

M ✓

✓

✓

/ ✓

H ✓ ✓ ✓
M

M

M ✓

M ✓ ✓

Finandd MgrnL
Other Enablers

M ✓ ✓

M ✓ ✓ ✓ ✓
M ✓

Arialys[s/Access
Anaiysis/Access
Analysis/Access

M ✓ ✓

M ✓

M ✓
H ✓

M ✓

Groupwari^Mail
CASETool

i^aphics/imaging

H ✓

H ✓

M ✓ ✓
M ✓

M ✓

M ✓ ✓

M ✓

✓

H ✓

M ✓

M ✓ ✓

M ✓ ✓

M

M

M ✓ ✓

Ml ✓ ✓

Corrections and Updates to: Edmund H. Muth
Pago

This document is Digital Company Confider.Jal

Windows NT Program Office
ISVPROG4.XLS

8/21/93 4;55PM

^ Qslar Te^nologies. Inc. - ES/Backup .
2 Raima '

-Raindrop SdflwareJ^f^areEnginMr
- Rapid-Gen Systems Ltd - the Genius Sol.

-T. R^sna - Me^ani(» Applied Motion
Rasna 2^Mech^icaAppli^^truclJre
Ra^a - Me^anica Appli^J[henTiai

^ Ready Systemsjj^altimej '
-I-Rg_^[Time - General U/writing (LIM Moior)
--^®3!!'"}®_Perfomiance ^RPCIuster
• Realtime Performance^RPCore

—1 R®^lime Performance - RP^i^
C^oralion - RECitAL

Computer^.
--^®®gy.9ll^Pln9.1»c- - Long Sales’Cyc.’Mgr '
^ Re^arc* & Plng^ iSc.. Profit. Ana i Rpi. Svs^
j Ros^Systems - Accounting
- sap^ sap gl “
j; Sarena - PCM^DEL
SAS Institute SAS familyof pr^iids

- SASI - Ansys ; Z _
- Schtumberger -Bravo ~ "
- Scientific Computing - Urida
: Scott & ^ott - DPA/G
- SDRC - Ideas

Semj^em (Univ. Missouri kcrAMOAC4.0
- SFGL - Ea^ ' ’ ■

_ iSGI CASEvision “ '
• Siemens Analytic - Sheixtt
- Siemens Automation-Inj^triai PCs
^Sierra - Stratlog
- Sigrna besign - ARRIS ~ "
Silicon Valley Softvrare J[(^r^ 77

- SmaJlworld Systems Ltd. - GtS
_:_Srn^ Tools - OCR
^Smartstar

- Smartsystems (UK) Ltd.~-~^^staf

Vertical

Enabler

Enabler _
Vertical

Horizontal

Horizonial

Horizonl^
EnaW^
Horizon^
VertH^I
Verticaj
Verlii^l
Vertical

Vertical
Vertical

USA M ✓ ✓
Database

CASE To^ZI ~
Europe
T^hni^ Horiz.
Technical Horiz.

te<^nicai Horiz.
Compilers

Finand^MgmtT"

H

M

M ✓

M

M ✓ ✓
M ✓
M

M ✓ ✓
USA M ✓ ✓
USA M ✓
USA M ✓ ✓

M ✓

Europe
USA

M /

M ✓

Verti^l
B®n?eQlel
Horizont^
Horizont^
Horizonial
Horizonl^
Honzontal
Horizonial

Verticaj USA
Horizont^ Technic^ Horiz.
Vertic^ USA
Vertical

Enabler CASE Tool
Vertical USA

_ Vertical USA ~

j Vertical USA
_ : Vertical USA

Enabler

Horizonl^ GIS
Enabjer “ ^er Enablers ~
Enabler 4 GL
Vertical

M ✓

Finar^;^ Mgint._
Financial MgmL
Techrijcal Horiz.
An^sis/Access
Technics Horiz.

Technical Horiz.
Technical Horiz.

M ✓

H ✓

M ✓

H ✓ □

M □

H ✓ □

M ✓

M ✓ □
M ✓ ✓

M ✓

M ✓ ✓
M ✓ □

M ✓ ✓

M ✓ ✓

M ✓

M ✓ ✓
I

Compilers M

M ✓ ✓

M ✓

H ✓

Europe M ✓

Corrections and Updates to: Edmund H. Muth
Page 16.

This document is Digital Company Confidential

Windows NT Program Office
ISVPROG4.XLS

8/21/93 4:55 PM

^Sondesk - SOFTDESK/XXX ~~
-Soffoo[-CCC *

—I

—^^ftware Mnfce. & DevejSys. Inc. - Aidchb^m.
_l|9|*^af.^MP‘ceJI.^^S)(^nc. - Ukola Ap.~
_:^flware MniceJl^ve^sJr^-AbC/Ada^
—l?9!*^a£!LMp!ce^APeve^^ Inc^-Ukota
— Ltd. - Software One Exdiange
— Publishing Corp - Harvard Gr^hics
-^fott^arpWoritsJQw^The^fh^a?^^

^l*wLMainlenaric^^De^ApA Scan
-I Solpw Maintenance Dey, • ADA ^n
_:^l*wr M^ienanceeOe^l^ij Lakote Ap^Mgmi~
— Softwr Mainfen^ce & Dev. Aide-de^Camp
- - SOS Software ^fvicw U<^Abs^masler~
-^Pf-fortwareSe^icesUd^Reeim^ter
-Jl SOS Software & S^ces Lld^ HeRMeS
.--SOS SoftwarejetyicesUd^- Paym^fer
— SOS Sof^are A^eivices Ltd. - Recriiitrnaster

SOS^ftware & _^ryicesJ-|d.^Safelymasler
-1 SOS Software AServicoetd^Staffmaster
r SOS Software A l^^ices Ltd. - Tr£uningm^ter"~
Spatial Te^. - ACES '

-JrSpei^easy ~ “ '—
-:SpenjiTi Computer Systems7*LCmfCash Of.
1 Spemai Graphic S.P.A. - ICARO
- SPSS for Windoy^ '

—SQL'Builder^sftwaro’C^p^yTsQ^Builder
--.iSqu^e D Co7CRi^P Auto. Systems. - CRISP
_lSSI - yVori^wch "
j_Sl. ^ncenrs - Cliniplex ’
-^Slere^raphkS'AfystelEye^V^^^^
^lirtngEpi ’

—-Stone^ V^bsli^ ASpSJ^-^od S^. A^.
—l-Slrategic Systems InternationaL^ TRWOS
^ Structur^ Rese^ch A AnaJysis^CM Designer
_ - Structural Research A Anafysis - CM Engineer

Horizontel

Enabler

Enabler

Vertical

yertical
Vertical

Vertical

Technical Horiz.
CASE Tool

Dat^ase

Europe
Europe
Europe
Europe ~

Vertical [Europe
Horizontal

ypriicaflusA
Enabler

Enabler

Enabler

Enabler

M ✓ ✓

H

M ✓

M / ✓

✓ ✓
M ✓

M ✓

Graphics/lmaqing M □

M □
CASE Tool

CASEJooi
CASEJod
CASE To(ir

/ ✓
L ✓ ✓ ✓

/ ✓ ✓
L ✓ ✓ ✓Vertical

Vertical

Vertical

Verli^
Vertical^
Vertical

yerfl^
Vertical

M ✓
M ✓

✓ ✓

Europe M / ✓
M ✓

Europe
Europe

M ✓
M ✓ ✓
M / ✓

Horizontal Technical Horiz.
Horizontal Analysis/Acoess
Vertical

Vertical

M □

M ✓ ✓ ✓
Europe
Europe

- Ho*^^opla!LAnalysis/Acc8ss
- -Vpil'cpi USA
Verlical USA

Horizont^' fechriic^ Horiz
Vertical USA
Enablers

Enabler

Vertical USA
Vertical

Horizontal Technic^"H^'zT
IHorizontai technicai Hori'zT

M /

M ✓ ✓
M ✓

M

M ✓

M ✓

M

Other En^ere

plher^Enablers
M ✓ ✓
H ✓

M /

M ✓ ✓

M ✓ ✓

M ✓ ✓

Corrections and Updates to: Edmund H. Muth
Page 17

This document is Digital Company ConfkJential

Windows NT Program Office ISVPROG4.XLS
8/21/93 4:55 PM

: Slniclural Research & Analysis - COSMOS\M
_;;^Sun Gard - Global ^curilies Mgr.

SUN PC NFS 2 _
Sybasej^DEFf CASE tods ' ‘

^ Sybase - Gain tecbnoiogyj^ufti Meda
Syba^_^lnteroper^ilily Produ^
Sybaso^SQL A(^^iage ~

SQL Companion

Sybase ^^L l^bug ZZ
Syb^®lSQL Jool^l

—■ C/C+^__ ’
Symbolics - Concordia

j;; Symbolics - Genera
Symbolics - Jo^ua

. Jl .Symicrori^Compufer Com. Ltd. - Symdrive-nf
-_-.Sys<«H Ltd. - JD^S “
- JT-Syslem ^ftware Assoc. - MRP II
-1 Sys*®»n S^^e Assc^afes - BPCSW^^ Planners
_ - Sysleme^'cs • P^^afe ^paging software)

Systems Unipri Ltd. ^ SunA^unl C^. ZZZ
- Systems Union Lid. - SunAco^ni Fixed Asset
- Systems Union Ltd. ^^SunAccounl Ledger
- Systems Union Ltd. - SunAccouni Multi-Cun-.

- Systems Union Ltd. ^SunBusiness Inventory
- Systems Union Ltd. - SunBusiness Pch. Inv.
* Systems Union Ltd. • SunBusiness Pch. Ord.

, - Syslem^Union Ltd. - SunBusiriess Sales Inv.
- Systems Union Ltd. - SunBusiness Sales Odr.
• Systems Union Ltd. - Sun^ery Report Write
- Systems Union Ltd. - SunSystems Sunlink
- T/One- Merlin

- Tactics International - tactician
- TASC - TASC/MLSPLUS
- Teluieteon - PORTOLA
- Teknekron - JIBLINK ~

Sfi^io bi intormatica - st-Engine
- Tema Studio Pj Intormaiica - sT-Mail

Horizonld Technical Horiz.

Vertical _ USA
Enabler_ Communic^ons
Enabler Database

Enabler Dalabc^
Enabler Database
Enabler

Enabler [Database
Enabler Database

Ermbler Database

Enabler

Enabler

Enabler_ CASE Tool
Enable CASE Tool

Verti^
Vertical USA

Vertical _ USA
Enabler Other Enaders

Enabler Oiher Enablers
Vertical

Vertical

Vertical
Verti^
Vertical

Vertical

M ✓

M

H ✓ □

H □

H □

✓ □

Database H ✓ □

H ✓ □

H ✓ □

H ✓ □

Compilers
CASEtool

M /
M ✓ □

M ✓ □

M ✓ □

Europe M / ✓

M ✓ ✓

✓ □

✓M □

M ✓ ✓

Europe

Europe_ _
Europe_
Europe_
Europe_ _
Europe

Vertical Europe ~
Vertical j Europe
Vertical _ ! Europe
Vertical | Europe ~
Vertical | Europe
■Vertical |USA
Horizontal' Analysis/Access
Vertical jUSA
Horizonlaj;Techni(^
Horizontal jer^nicd
Vertical 'Europe
Vertical 'Europe ~

M ✓ ✓

✓M ✓

M ✓ ✓

M ✓ ✓

✓M

M ✓

M ✓

M ✓

M

M

M ✓

✓M

M
i

✓ ✓ ✓
M

✓M

M ✓ ✓

✓M

M /

Corrections and Updates to: Edmund H. Muth Pago 18 • This document is Digital Company Confidential

Windows NT Program Office ISVPROG4.XLS
8/21/93 4:55 PM

.-lT®‘PPla*®praphira ^FIGT - PHIGS/PEX
- femplale Graphics - PHIGS Development Kii
- Template Graphics - SNAP _
• texas instruments - D^S3

- Texas Instrumente - IeF ^ I
- the Dodge Group • Open^ries Financiais
The Ambers Group, Inc. - NetWeave

Mountain SM - TEMPO

- tradeware Tecfi^ogy S.A. -Toptrader
- friadigm Technology - MediaPoint/Teale
- Triangle Ernst & Young - Eyes

^Trilogy Enterprises - BPS IWS Plann^ Asstl^T
_iTrusted information Systems - T-MACH

- Twinsoft - A^4bo
- Unidata - DBMS

- Uniface - Application Generation Tools
- Universal instruments - Assembly Equipment
- Universal Translated Systems - Lang. Conv.

—-yrt>ap_ Analysis Group, The - Tf^NPLAN
_:^Vectorjjetwofi< Limited - Lanutil tor Pathw<^

- Vendata^ Enforcer 2000
^ Ventura ^icturePro
- Ventura - Pijbli^er 11

- Serv. Creation Envir.lSCE) '
Verbex Voice Processing

- Verdix - Meridian - Open ADA ~
-ll Veniy. Inc - TOPIC, (R) ^ '

- VI Corp. - DataViews

- Viewlogic - ECAD Suite "
; Viewk^icj PowerView
- vis, Inc. - VIStp CICS emultation environ.

- yisiNET

- Visix - Gaiaxy Application Brxkter _
- Vista ContrpI Syst^s - Vsystem
- Visual Numerics - PV Wave

^Vlsud ^utions, Inc. - Vi^mTlin)
• VXM - Pax-2 '

Enabler^_ CASE Tool
Enabler _ CASE Tool ~
Enabler CASE Tool

Horizontal Technical Horiz. M
' EiiaWw CASE Tool
Horizontal Financial Mgmt. M
Vertical USA

Verticaj^JUSA
yerlical
Hoiiz^tal
Horizontal
Vertical USA

Vertical USA

. Enabler Conversion Tool H

Enabjw Oatab^
Enab|er~|4 GL
Vertical

Verti^
Vertjc^
Verti^
Enabler

Horizont^ Graphics/Imaging H
Horizorit^ Pnbjishirrg
Enabler O^^ Enablers M
Enabler Oiher Enablers H
Enabler Compilers
Vertical I USA
Horizontal
Horizont^

Horizon!^ Technical Horiz. H
Enabler

Enabler

Enable

yer1icai _ USA^
Horizontal Analysls/Acoess H
Vertical^ USA '
Enabler Isys. Management M

M ✓

✓M

M

✓ □

H ✓ /

✓ ✓

M ✓ ✓

✓M ✓

Europe
Publishing
Finandai Mgmt.

M ✓ ✓

✓ ✓

M ✓ □

M ✓ ✓

M ✓ □

✓ □

H ✓ ✓
H ✓ ✓ ✓
M ✓ □

M ✓ ✓

✓M ✓

✓M ✓

Other Enablers ✓M ✓

✓ ✓

H ✓ ✓

✓ ✓

✓ ✓ ✓

H ✓

M ✓ ✓

An?*y-^^cce^
technii^ Horiz.

M ✓

H ✓ □

/ ✓

Conversion Tool

Sys. Management
CASE Tool

M /

M / ✓

/H ✓ ✓ ✓

✓M ✓

/ ✓ ✓ ✓

/M ✓

/ ✓

Corrections and Updates to: Edmund H. Muth Page 19 This document is Digital Company Confidentid

Windows MT Program Oifice ISVPROG4.XLS
8/21/93 4;55 PM

-Wall Data - RUMJM - IBM 3270 TE
Image Managmenel Soiuljons

Washington Uniy^ity^omp Chem'i Biomed~
iWashingtonJUniversity - Fast Datalinder
- Watcom C/C++

- Watoom Fortran

_^Wal^o S/W- »4^]eV
- Waterm^ - Image Etuibler
- Wav^unclion - SpartarT

_:J|yaveteck - Wavetest

_j: Wei^/^ynjnc^wj^lM^n^^
-l-Welch Ui^toryJoJlm
_j^yVe|ch M^ical Applied Research Lad) - Genome
j: WejchMj^icd^K^^search Lab - Ornim^
1 Welcom Software - OPEN PLAN
Welcom Software - TEXIM

- lW<%-Leger Cr^rafcn - DCM M^ter
- WilsoiT^WindowWare - WinBadqe
Wijsorii WndowWare - WinEdit

- Wind River Cross Compilers
. r Wolfr^ Research, jnc. ^aihematica

- Word Perfect^Word Perfect Office
: Word JPert^ - Word Wrf^t ' ‘
r.Woi^fiow System Inc. JTowLogic ("trn)~‘
- World Fine Art Exch^ge . fImS/FIMS Plus
WRQj^Refleclion - HP/vt/ASCli
XceJIerate Systems - MAC Emulation"

- Xtensory - f^lkit
- Xlensory Inc. - XV^PC ^
~?^'^.^l^ya'^®:_P9rtabi|iiy fool^ ’

^.IPP-^Pjjcation Framew<^

TntalJ~: ,

Enabjer
Horizontal

_ Horizontal
Horizontal

Enabler

Enabler

- VerticaJi USA
Horizontal

Vertical

Vertol

Vertical [USA
Vertical US/\

Vertical [uSA
Verti^
HpriMnt^
Horizontai

Vertic^ JUSA
Enabler CASETod
Enabler [CASE Tod
Enabler _
Horizontal

Horizon^
Horizonl|d

Vertical "jUSA
Vertical |uSA
Enabler

Enabler

Enabler

Enabler

Vertical JUSA
Enabler CASE Tod
Vertical USA

Enabler ' CASE tod

Cpmmunic^on^
Graphic^imaging
Technical Horiz.
Technical Horiz.

Compilers
Compilers

M ✓ ✓ ✓ ✓
M ✓

M ✓

M ✓

M

H

M ✓

Graphics/lmaginq H ✓ ✓ □
M ✓ ✓

M ✓ □

✓ □

✓

M ✓

M ✓

Groupware/Mail
Groupware/MaS

H ✓ ✓

H ✓ ✓
M ✓

M ✓ ✓

✓ ✓

Compilers
^alysis/Acoess
GroupwardMail
Pubiishing

✓

M ✓ ✓

✓

H ✓ □

M ✓ ✓

M ✓

Communications M

Conversion Tod Jm
bat^^e
Other Enablers M

✓ ✓ ✓

✓

M

✓

M ✓

M

M ✓

M ✓ □

• • I

726 504 61 43

Corrections and Updates to: Edmund H. Muth
Pago 20 This document is Digital bompany Confidential

32-bit Alpha AXP PALcode for the

Windows NT Operating System*

Revision 0.1

Author: Joe Notarangelo, decw^
Engineering Manager: Benn-^irc

Digital ReS|^cte^^St^ltion
Do not ^j|py

NT Systems Group
Digital Equipment Corporation

Bellevue, Washington

Warning:

The interfaces documented in this specification are for provision
by processor/PAL providers and the low-level system maintainers.

These interfaces should not be called directly, even in kernel

mode. Public interfaces are exported for those functions that

would be necessary for execution outside of the lowest levels of

the kernel.

As these interfaces are considered private and tightly coupled to

the operating system, we anticipate that they will change as

necessary to support NT.

Acknowledgments

Revision History...
0. Preface

VI

Vll

1

1Notational Conventions

Related Documents

Document Structure

Audience

1. Overview/Philosophy/Religion
NT is NT is NT

Origins

Binary Compatibility

Platform Independence

Other Design Considerations

First Implementation
2. HAL, Pal, Kernel, OS Loader and Firmware,

Firmware

OS Loader

PALcode

Hardware Abstraction Layer (HAL)
Kernel

3. Initialization

1

1

2

3

3

3

3

4

4

5

5

5

5

5

5

6

6

6Pre-PALcode Initialization

PALcode Initialization

Kernel callback initialization of PALcode,

Interrupt Table Initialization

4. Per-processor data areas

Processor Control Registers(PCR)

Processor Control Block (PRCB)
PALcode Version Control

5. Memory Management

Virtual Address Space

I/O Space Address Extension
Canonical Virtual Address Format

Page Tables

Translation Buffer Management
6. Processes and threads

7. Caches and cache coherency
8. Stacks

9. Processor Status

10. Firmware interfaces

11. Exception dispatch
Overview

Exception Classes
Rfe (return from exception)

Trap Frames

12. Interrupt handling

Interrupt Level Table (ILT)

Interrupt Mask Table (IMT)

Interrupt Dispatch Table (IDT)

Interrupt Dispatch
Interrupt Acknowledge

6

7

7

7

7

8

8

9

9

9

9

10

12

13

14

14

15

16

18

18

18

19

19

19

20

20

20

21

22

111

Synchronization functions
Software Interrupt Requests

14. Memory Management Exception handling....
15. Panic Exception handling

Unrecoverable Hardware Errors

Kernel Stack Corruption

Unexpected PAL exceptions
Panic Exception Dispatch

16. General Exception handling

General Exceptions; Common Dispatch
17. Arithmetic Exceptions

18. Unaligned Accesses Exceptions
19. Illegal Instruction Exceptions
20. Non-Canonical Virtual Address Exceptions..

21. Machine Check Handling

22. Breakpoints and Debugger Support

23. Software Exceptions

24. Floating point

25. Debug vs. Free PALcode

Kernel Stack Checking
I/O Address Checking
Event Counters

22

22

24

24

25

25

25

25

26

27

27

29

29

30

30

33

34

35

35

35

35

36

3626. Call pal listings

Privileged Call PAL functions
Unprivileged Call PAL functions...

27. Architected Internal Processor Registers

28. Appendices

37

71

79

101

101Appendix A. Status code and bugcode values
Appendix B. PCR definitions and offsets
Appendix C. Trap Frame definitions and offsets
Appendix D. Calling standard register usage
Appendix E. Performance priority table
Appendix F. Implications of recursive TB Mappings
3. SRM conflicts

101

101

101

102

103

109

1094. To do list

9Figure 1. Virtual Address Map
Table 1 I/O Address Extension Address Map

Figure 2 Virtual Address (virtual view)
Figure 3 Virtual Address (physical view)
Figure 4 Page Table Entry

Table 2 Page Table Entry Fields

Figure 5 Processor Status Register
Table 3 Processor Status Register Fields

Table 4 Processor Privilege Map

Figure 6 DPC_FLAG
Table 5 DPC_FLAG Fields

Table 6 Interrupt Mask Table
Table 7 Software Entries of the IMT

Figure 7 Software Interrupt Request Register
Table 8 Software Interrupt Request Register Fields
Figure 8 FLOAT_REGISTER_MASK
Figure 9 INTEGER_REGISTER_MASK
Figure 10 EXCEPTION_SUMMARY

9

10

11

12

12

15

15

15

16

16

20

20

23

23

28

28

28

IV

28Table 9 EXCEPnON_SUMMARY Fields

Figure 11 Machine Check Error Summary
Table 10 Machine Check Error Summary Fields

Table 12 Breakpoint Types

Table 14 Exception Class Values
Table 16 Internal Processor Registers

32

32

34

68

79

V

Acknowledgments

The following individuals provided advice, information, review, and code examples that contributed to

the definition of this specification:

Digital Equipment Corporation, NT Systems Group
Digital Equipment Corporation, SEG/AD
Microsoft Corporation, Portable Systems Group
Digital Equipment Corporation, NT Systems Group
Digital Equipment Corporation, NT Systems Group
Digital Equipment Corporation, NT Systems Group
Digital Equipment Corporation, NT Systems Group
Digital Equipment Corporation, NT Systems Group
Digital Equipment Corporation, SEG/AD
Digital Equipment Corporation, SEG/AD
Digital Equipment Corporation, SEG/AD
Digital Equipment Corporation, SEG/AD
Microsoft Corporation, Portable Systems Group
Digital Equipment Corporation, NT Systems Group
Digital Equipment Corporation, SEG/AD (formerly)

Miche Baker-Harvey

Dave Conroy
David Cutler

John DeRosa

Jeff East

Rod Gamache

Steve Jenness

Jeff McLeman

Ed McLellan

Stephan Meier
Steve Morris

Dirk Meyer
Lou Perazzoli

Tom Van Baak

Rich Witek

VI

RevigiQn Higtpry

2-Dec-1992 Internal group review

3-Aug-1993 Incorporate changes to reach Vl.O

Vll

Q. Pr^fapp

Notational Conventions

The symbolic notation used in this document follows essentially the same conventions as those of th

Alpha AXP Architecture SRM and the Alpha AXP Architecture Handbook.

The following additional conventions are also used:

1. The C language convention for specifying radix is followed: all numbers are deciir

preceded by "Ox" which indicates an hexadecimal number. (Octal is not used.)

2. Code examples are listed in an ordered sequence. The code examples martiUBig-or
the results of the sequence of instructions are not altered. In pardci

subsequent to an instruction i and i writes any data that is used by j

:Such that

ipHisted
Id before j.

if an int

j^musf

Related Documents

The following documents are considered part of this specification

between this specification and the following documents, this sp^
the others.

leases whag^iscrepancies exist
pbn will be considered to supersede

Alpha AXP Architecture SRM V5.0
Alpha AXP Architecture Handbook
NT/Alpha AXP Calling Standard
NT/Alpha AXP Hardware Abstraction Layer S
ARC Firmware Specification (what is real

iii

Document Structure

This document is conceptually divi

the Appendicies.

Of(lajor sections: Introduction, Discussion, Reference, and

Introduction:

The first sectie

understand^©
specify aBp|i|

I and 2 provide an overview and the context necessary to

ip^tion. They are not actually part of the specification in that they do not
mlain.

C

the

biS

Discussioj

The se^ iprising chapters 3 through 25, discusses each of the areas of functionality that
^de must address. These sections describe how different functions work together to

'functionality and specify the details for non-call pal functionality.

[ton:

the.

an

26 and 27 are reference chapters that specify the details for the call pal functions and the virtual

internal processor registers, respectively.

Appendicies
The appendicies specify the particular values and address offsets that are used as constant definitions in

the body of the specification (Discussion and Reference).

The call pal functions are a fundamental basis of the specification. Each call pal function is discussed
twice: once in the context of the general topic area that the function supports and once in the alphabetized

call pal listing that comprises a majority of this specification. A similar approach has been taken with the

virtual internal processor registers: they are listed with the topics they support and in a separate section of

their own.

Audience

The intended audiences for this document are the following:

1. Alpha AXP processor designers
2. PALcode authors for new processor implementations

3. Maintainers of the Alpha AXP Architecture-specific portions of the Windows NT kernel

In addition, the specification is provided for review of the 32-bit PALcode for architectural correctness

and completeness. Readers are expected to be familiar with the Alpha AXP Architecture SRM.

1. Overview/PhilosoDhv/Reliaion

NT is NT is NT

The Alpha AXP implementation of NT is designed to look and feel like NT on any other architecture.
Compatibility with NT was the primary design goal for the NT Systems Group which ported NT to the
Alpha AXP architecture. Wherever, a discrepancy was found between the way in which NT handled a
problem versus other Alpha AXP implementations, those discrepancies were resolved in NT's favor. The

PALcode that is part of the Alpha AXP architecture provided us with a flexible mechanism to mold the

processor interface to one that would as simply and cleanly (without performance loss) accommodate NT.

The goal was to make the processor appear to have been especially designed for NT, in as much as that

was possible. The PALcode support for NT is different from other implementations in that the operating
system is designed to run software according to standardized application binary interfaces over which

Digital has no influence.

Origins
The PALcode for NT Alpha AXP is based in spirit upon the Alpha AXP/OSF PALcode that was started

by Rich Witek. The NT PALcode uses similar mechanisms for exception dispatch and includes many of
the same, or very similar, call pals as does the OSF PAL.

The NT PAL diverges from OSF in several fundamental ways:

1. The NT PALcode is a 32-bit implementation

2. The NT PALcode builds NT trap frames when trapping to the kernel

3. The NT PALcode is designed to be platform-independent

1. 32-bit PAL implementation

The NT PALcode supports a 32-bit virtual address space. The page table entries are 32-bits. The

32-bit virtual address space does not take advantage of Alpha AXP's 64-bit virtual address because

for now NT is a 32-bit operating system. The 32-bit PTEs do not match the internal Alpha AXP

representation and so the PALcode must dynamically reformat the PTEs within the TB miss flows.

Currently, NT has set expectations that PTEs are 32-bits - we used the PALcode to bring Alpha

AXP to NT rather than changing NT to run on Alpha AXP machines.

2. NT trap frames

The NT PALcode cooperates closely with the lowest-level kernel exception dispatch by providing

saved state in a format that can be used throughout NT. Generally, this means that more state is

saved in the NT PAL and that NT status codes are directly derived and forwarded by the PALcode.

3. Platform independence

The NT PALcode is designed to be entirely platform-independent so that one version of the

PALcode (for a particular processor implementation) will run on all systems. (More on this topic

below.)

Binary Compatibility
The NT Alpha AXP operating system binaries are designed to be binary compatible across different

processor implementations. Essentially, this implies that the difference between processors will be

entirely hidden by the PALcode for that implementation. This specification then defines the interfaces to
which the combination processor-implementation/PALcode must conform to support the binary

compatible operating system. The NT Systems Group believes that adherence to this goal will give the

Alpha AXP architecture forward compatibility that will enhance Digital's credibility in a commodity

market place. The ability of each new processor to adapt itself to the binary interface via a small layer of

software may be a significant advantage for the future of the architecture.

Currently, there are limitations upon the binary compatibility of the operating system for Alpha AXP

systems. The two current limitations are implementation page size and multi-processor support. Page

size is currently defined as a constant for performance reasons. Page size could be redefined as a variable

(though it may be necessary to define an interface routine for accesses from device drivers). The Alpha

AXP page size is already larger than most architectures (8K vs. 4K) and so we anticipate that for the next

several years a constant 8K page size is a reasonable limitation for binary compatibility. Multi-processor

support is also a compile-time decision. Therefore, there will be one kernel for uniprocessor systems and

a separate kernel for multi-processor systems. Once again, it would be possible to unite both kernels by

forcing the uniprocessor kernel to implement full multi-processor support. We have followed Microsoft’s

lead by compiling 2 separate kernels.

Platform Independence

The NT PALcode is designed to be entirely platform-independent. The PALcode is viewed more as a

component of the kernel (dynamically loaded based on the processor) rather than as embedded micro

code specific to the particular platform. The NT Systems Group believes that this will give us several

advantages over the life of the program.

First of all, we expect that the market for NT Alpha AXP systems will be an open market. System design

teams may build these machines across the world in many different companies. For each processor we

(Digital) build we will write a single PALcode to support the operating system. All systems that use the

processor will run the same PALcode. There are several advantages that follow from a single PALcode

per processor;

1. Operating system PALcode will not be a barrier for system vendors that wish to enter the NT Alpha
AXP Market

2. There will be no need to support obscure bugs or performance problems in other vendors PALcode
3. If we ever need to change the binary interface to the PALcode we will not need to coordinate with an

arbitrarily long and possibly incomplete list of Alpha AXP system vendors

The NT PALcode is designed to be de coupled from the firmware PALcode environment as well. The

NT PALcode image is read from the disk during the boot process just like every other component of the

running operating system. One reason for this de coupling is to not burden the firmware with the

requirement to run with the "correct" PALcode when booting one of the N operating systems the system

might support. The de coupling gives the system team the freedom to implement any manner of

PALcode they choose to support the firmware environment (for examples, (l)un-optimized, very simple

PALcode or (2)another operating system's PALcode). The firmware PALcode need only support two of

the common PAL interfaces: instruction memory barrier and swap pal to allow the operating system to be
loaded and the NT PALcode initialized.

Note that some functions and parameters must be implemented on a per-platform basis. Platform-

dependent functions are implemented in the HAL (hardware abstraction layer) which is a system-specific

library loaded and dynamically linked at boot time. The design of a platform-independent PALcode

definition and binary compatible kernel with system-dependent functions in the HAL is based on David

Cutler's work for NT on the MIPS architecture.

Other Design Considerations
The PALcode was designed to work smoothly with NT (for example, building an NT trap frame and

passing NT status codes) but was also designed to keep the dependencies to a minimum. There are only
2 data structures that the PALcode shares with the operating system: the PCR (processor control region)

and the kernel trap frame definition. Wherever possible, parameters and return values are passed in

registers when the kernel and PALcode communicate.

First Implementation
The first implementation of the NT Alpha AXP PALcode is written for the DECchip 21064-aa processor.

A seperate specification will document the implementation of the PALcode for the 21064-aa processor.

In the future, a specification must be written for each new processor-implementation of the architecture.

2. HAL. Pal. Kernel. OS Loader and Firmware

This section describes how the HAL(Hardware Abstraction Layer), PAL, Kernel, OS Loader and

Firmware cooperate in order to provide system-and processor-spec ific functions so that the kernel may be

binary compatible across different platforms and different processor implementations. The description is

an overview - it is beyond the scope of this specification to cover detailed technical information for all

of these components. The first components used in the boot sequence, the firmware and OS loader, are

responsible for establishing the environment in which the kernel, HAL and PAL will execute.

Firmware

The firmware contributes the following important components to the boot sequence:
1. Maintains the environment in which the OS loader executes (provides I/O services, PAL functions

for imb and swppal)

2. Creates the configuration database: devices, memory size etc.

3. Reads the OS Loader from the disk and executes it

OS Loader

The OS Loader is a linking loader that reads the component operating system images from the disk,

performs necessary relocation, and binds the dynamically linked images together. The OS Loader loads

the appropriate HAL and PAL based on the configuration information provided by the firmware. In

addition, the OS Loader will load the appropriate boot drivers as read from the operating system

configuration files. The OS Loader also builds the loader parameter block structure by using information

provided by the firmware. The loader parameter block includes configuration information (processor,

system, device and memory configuration) and per-processor data structures. Once the operating system

components are loaded, the OS Loader jumps to the beginning of the kernel to begin execution of the

operating system. The OS Loader will load the operating system PALcode on a 64K byte aligned
address. The kernel will activate the operating system PALcode by executing the swppal instruction.

PALcode

The PALcode is specific to a particular processor implementation and must hide the internal workings of

the processor from the kernel. The PAL performs TB management and first level exception dispatch

among other functions. The PALcode for a particular processor may include per-processor functions but

they must only be called by the HAL.

Hardware Abstraction Layer (HAL)

The HAL provides the system-specific layer between the kernel and the system hardware. The HAL

provides interfaces for the following types of operations:

Interrupt handling, including dispatch and acknowledge
DMA control

Timer support

Low-level I/O support

Cache coherency

1.

2.

3.

4.

5.

If a processor implementation requires PAL intervention to support any of these functions then it may

provide call pals to supply the needed services. These processor-specific functions must be provided in a
system-independent manner.

Kernel

The kernel is a binary compatible image that can run on any Alpha AXP processor and on any Alpha

AXP system. The kernel does its job by using the standard interfaces provided for the PAL and the HAL
and by reading the configuration information. The interfaces that the kernel expects from the PALcode
are documented in this specification. The HAL interfaces are specified in a separate document.

3. Initialization

From the perspective of the PALcode environment there are 4 phases of initialization:

Internal processor state established before the PALcode runs

Initialization of the internal processor state by the PALcode

Initialization callbacks used by the kernel to prepare the PAL to handle exceptions

Initialization of the interrupt tables so that standard interrupt support can be used

1.

2.

3.

4.

Pre-PALcode Initialization

The PALcode expects the processor and system to set to a known good state by firmware before the

PALcode entry point is called. The firmware must initialize any internal processor registers that contain
system-specific parameters such as timing or memory size information. This is necessary because the

PAL is entirely independent of the system. The firmware must guarantee that all caches are coherent

with main memory before calling the PAL and that the memory system has been fully initialized.

Implementation Note (Hardware):

If system configuration information is written to write-only IPRs, then those configuration IPRs
cannot have any control bits that need to be written by the platform-independent operating

system PALcode. If this were done, then the firmware will have to pass the configuration
information in internal processor state on a per-implementation basis. Hardware designers

should consider allowing configuration registers to be read as well as written to allow the

platform-independent layer to have visibility to the full internal processor state.

PALcode Initialization

The PALcode will be called at its first instruction which will be the base of the PALcode image. This
will be the reset vector for the PAL. The PALcode is not called with any parameters and essentially must

act as a standard subroutine for purposes of initialization. Namely, the PAL is free to destroy volatile
general purpose integer and floating registers but must preserve the non-volatile register state across the

call. The non-volatile state that must be preserved is listed in the register definition table in an appendix.

The PALcode must accomplish the following initialization:

1. Deassert all interrupt requests and disable all interrupt enables (this includes software, hardware

and asynchronous trap interrupts)
Set the processor to kernel mode

Set the processor status register (PSR) such that: interrupts are enabled, interrupt request level is set

to high level (7), and mode = kernel
Flush all translation buffers

Establish all required super-page mappings: 32-bit i- and d-stream, and 43-bit d-stream mappings

2.

3.

4.

5.

6. Set the PAL_BASE register to the base address of the PALcode image

Set the interrupt level table so that all interrupt enables are off for all interrupt levels

All architected internal processor registers initialized to their specified initialization values

Any implementation-specific initialization that is required, for example unlocking error registers
Set the PREVIOUS_PAL_BASE register to the previous value of the PAL_BASE register

7.

8.

9.

10.

When the PALcode has completed its initialization it resumes execution at the address passed in the ra

(return address) register.

Kernel callback initialization of PALcode

The kernel uses privileged initialization call pals to call back into the PALcode with the initialization

values that will allow exceptions to be handled properly between the PAL and the kernel. Two

privileged call pals are provided for this initialization: initpal and wrentry.

Initpal is used to establish per-processor context for the PAL, system-permanent context, and per-thread

context for the initialization thread. The per-processor context established for the PAL are the processor
control registers (PCR) and the processor control block (PRCB). These addresses are passed to the PAL
as standard arguments. The addresses must be 32-bit super-page addresses. The system-permanent

context passed to initpal is the kernel global pointer (gp) which is passed via the integer general purpose

register gp. The initialization thread data passed in initpal are the page directory page, the initial kernel

stack pointer, and the initialization thread address. The page directory page and thread address are

passed as standard parameters while the kernel stack pointer is passed in the general purpose integer

register sp. The PALcode will also initialize the PAL information section of the PCR as part of the

initpal call pal function.

The kernel uses the wrentry call pal to register the kernel exception entry points with the PALcode. The

wrentry call pal must be called once for each kernel exception entry point. Each call includes the

exception entry point address and the number of the exception class it will handle.

Interrupt Table Initialization

The Interrupt tables in the PCR are system-specific and so are not initialized until HAL initiaUzation.

Until these tables are initiahzed the PALcode will be using interrupt tables that are initialized such that

all interrupts are disabled. An implementation may choose to cache some portion of the interrupt tables

within the processor. If an implementation does cache the interrupt tables then it must provide

implementation-specific call pal(s) to allow the HAL to resynchronize the cached tables with the values
written to the PCR.

4. Per-processor data areas

The operating system has two per-processor data structures. The processor control registers (PCR) is a

one-page data structure that is used to store information that may be specific to a particular architecture.

This type of information would be data that is shared between the PAL, the HAL, and/or the architecture-

specific portions of the kernel. The processor control block (PRCB) is a software structure that would

include data that would not be accessed by the PAL or HAL. The PRCB is a standard structure and

therefore need not require an entire page.

Processor Control Registers(PCR)
The PCR contains many fields that are of importance to the PALcode. In the first place, a 2K region in

the PCR is reserved for PALcode use, this is the only per-processor data region available to the PAL.

The PCR also includes the interrupt level table (ILT) which maps the interrupt enable masks for each

possible interrupt request level. The PALcode may continually read these masks from the PCR or may

read them once and cache them inside the processor. The PCR also includes the interrupt dispatch table

(IDT) which contains the address of an interrupt handler for each possible interrupt vector. The interrupt
mask table (also in the PCR) maps each possible pattern of interrupt requests to the highest priority
interrupt vector and the corresponding synchronization level. The PCR also contains the panic stack

pointer. In addition, the PALcode is responsible for initialization the PAL base address field and several

PALcode revision fields within the PCR. An Appendix is included to describe the fields that would be of

interest to the PALcode and to define their offsets and sizes within the PCR.

The address of the PCR is accessible via the privileged call pal rdpcr. The value returned is the address

supplied to the PALcode in the initpal call pal. Initpal is the only mechanism supplied to write the PCR
address.

Some of the data items that conceptually belong in the PCR are accessible by call pal functions. These
functions allow atomic access to data that is logically in the PCR. In addition, these values can be

retrieved with a single call pal thereby eliminating the need to use the rdpcr call pal followed by a load

instruction. The operating system isolates all accesses to these data items by macros and routines so that

the kernel may choose the best manner to access this data (see fixed PCR issue below). The data items

that logically are part of the PCR are the current thread, the DPC flag, and the Processor Control Block
(PRCB). The thread environment block (TEB) could also be logically stored in the PCR.

Processor Control Block (PRCB)
The privileged call pal rdprcb is supplied to allow the kernel to quickly retrieve the pointer to the current

processor's processor control block. Like the PCR, the address returned by rdprcb is written only by the

initpal call pal.

PALcode Version Control

The PALcode is responsible for populating version information in the PCR. Some of the version

information is for maintenance and debugging purposes, while other version information is used by the

kernel for check-pointing with the PALcode. The PalMajorVersion, PalMinorVersion, and

PalSequenceVersion are provided for maintenance and debugging. The PALcode is responsible for

populating these fields but the values are implementation-specific. The PalMajorSpecification and

PalMinorSpecification are used by the kernel for check-pointing with the PALcode. This document

defines the current major and minor PALcode specification version numbers. The PALcode will

populate the specification fields with the version numbers that correspond to the version of this

specification to which the PALcode image complies. Minor revisions within the same major revision

will be backward compatible. The kernel will read the PalMajorSpecification and determine if it is

compatible with the version of the PALcode. If the kernel is not compatible (the PalMajorSpecification

is greater than the kernel's expected PAL major specification) then the kernel will run-down in a

controlled manner.

5. Memory Management

Virtual Address Space
NT/Alpha AXP as a 32-bit implementation has a 32-bit virtual address space represented in the following
table:

Figure 1. Virtual Address Map

DescriptionAddress Range (32 bits) Permission

0x00000000 :0x7fffffff General user address spaceUser and Kernel

Non-mapped kernel space (32-bit super-page)0x80000000: Oxbfffffff Kernel

OxcOOOOOOO: Oxclffffff Mapped, page table spaceKernel

Mapped, general kernel space0xc2000000: Oxffffffff Kernel

The address map takes advantage of the 32-bit super-page feature of the Alpha AXP architecture. If the

implementation of the 32-bit super-page is not done in hardware then it must be implemented in software

(PALcode). The entire 1GB address space mapped by the 32-bit super-page must be valid at all times for
both instruction fetch and data access.

Implementation Note (Hardware):

It is strongly recommended that implementations include a hardware mapping of the 32-bit

super-page for both instruction and data stream.

I/O Space Address Extension
The Alpha AXP kernel implementation of Windows NT takes advantage of the architecture’s 64-bit

address space to provide a non-mapped extended address for I/O space. The extended address space uses

the 43-bit super-page that is available in the Alpha AXP architecture. The super-page allows kernel

mode access to an address space with a pre-determined translation, therefore, these accesses never require

page table mapping nor will they ever cause a translation buffer miss. The extended super-page provides

non-mapped access to a 41-bit physical address space. The extended address space is important because

the bus mapping scheme that has been designed for industry-standard buses involves using a shifted

physical address where the lower address bits are used to determine the byte enables. The implication is

that the effective page size has become smaller. Without the non-mapped super-page I/O accesses Alpha

AXP systems would suffer a performance disadvantage because of the need to write many more page

table entries and to fill many more translation buffer misses. The extended address space is desirable

because the likely physical address space for an Alpha AXP implementation will be 34 bits or more and

the 32-bit super-page can only allow accesses to 30 bits of physical address space. The extended address

space is the only exception to the 32-bit virtual address map described above. The extended address

space is intended for I/O access only and can only be used in kernel mode.

Table 1 I/O Address Extension Address Map

DescriptionAddress Range (64 bits) Permission

Non-mapped kernel mode I/O
extension

OxfffffcOOOOOOOOOO: Kernel

Oxfffffdfffffffffffffff

Canonical Virtual Address Format

All virtual addresses, with the exception of the large super-page addresses, must be in canonical

longword form. The PALcode must check the faulting virtual addresses in the first level miss flows and

raise an exception if the addresses are not canonical longwords. The check is required because the

processor may generate 64-bit addresses that are not canonical longwords but the common memory
management code only knows about 32-bit addresses and so could not necessarily identify or signal the

exception to the offending code. The PALcode cannot simply resolve the miss by using only the lower

32 bits. When the faulting instruction is re-executed it will again attempt to access the non-canonical
address. If a virtual address fails the canonical form test then the PALcode will raise a general exception

(see below).

Page Tables

Page table entries (PTEs) provide the translation from virtual addresses to their physical addresses. The

physical address, in the form of a page frame number (PEN), protection information, and performance
hints are included in the PTE. The virtual address is related to a page table entry solely based upon the

position of the PTE within a set of page tables.

There are two methods that may be used to traverse the page tables to retrieve the corresponding PTE for

a given virtual address. The first is to view the page tables as a single-level virtually contiguous table.

The second is to view the page tables as a two-level, physical table.

A virtual address must be viewed in the following way for a single-level, virtual traversal:

Figure 2 Virtual Address (virtual view)
31 ..N N-1 ..0

Virtual Page Number (VPN) Byte offset within page

where:

2**N = implementation page size

To access the corresponding PTE for a VA virtual address using the single level, virtual method use the

following algorithm:

Va <-BYTE_ZAP(Va, OxfO)

vpn <- RIGHT_SHIFT(Va, PAGE_SHIFT) ! get virtual page number

pte_va <- VIRTUAL_PTE_BASE + (vpn * 4) ! 4 bytes per pte, offset + base

! get pte

! clear upper bits in case Va is sign-extended

pte <r- (pte_va)

where:

VIRTUAL_PTE_BASE = OxcOOOOOOO

PAGE_SHIFT = N

In cases where the virtual access method cannot be used (for example if the pte address is itself not valid)

the two-level physical method can be used to find the corresponding pte for a virtual address. The key to

traversing the page tables physically is the pointer to the page directory (PPDR). The PPDR is

maintained on a per-process basis whenever process context is swapped. The PPDR is input to the

PALcode as a PEN but it is expected that it will be stored internally as a physical address. The PPDR is
the address of the page directory (PDR) page that forms the first level of the page tables. The first level

of the page tables will easily fit within a single page. Each entry in the PDR is called a PDE (page
directory entry). A PDE maps one page of PTEs.

A virtual address must be viewed in the following way for a two-level, physical traversal of the page
tables:

Figure 3 Virtual Address (physical view)
31 ..N+P N-1 ..0N-^P-l .. N

^^^i^to^Jndex^PDI^ Page Table Index (PTI) Byte offset within page

where:

2**N = implementation page size

2**P = ptes per page = page size / 4

To access the corresponding PTE for a VA (virtual address) using the two-level, physical traversal, use

the following algorithm:

Va <- BYTE_ZAP(Va, OxfO)
extended

pdejndex <- RIGHT_SHIFT(Va, PDE_SHIFT) ! get pde number

pde_offset <- pde_index * 4

pde_pa <- PPDR -t- pde_offset

pde <- (pde_pa)

pte_pfn <- pde<PFN>

pte_page <- LEFT_SHIFT(pte_pfn, PAGE_SHIFT) ! get physical address of pte page

ptejndex <- VA<PTI>

! clear upper bits in case Va is sign-

! 4 bytes per pde, index * 4 <- byte offset
! offset -I- base

! get page directory entry

! get pfn of pte page from pde

! extract page table index from virtual
! address

! calculate offset, 4 bytes per pte
! address <- base + offset

pte_offset <- ptejndex * 4

pte_pa <- pte_page -t- pte_offset

pte ^ (pte_pa) ! read the pte

where:

PDE_SHIFT = N + P

PAGE_SHIFT = N

Page directory entries are themselves page table entries and so they have the same format. There are
some implications for DTB implementation because the PDEs establish a recursive mapping for

addresses within the PTE address space. The implications and a description of the recursive mapping are

described in an Appendix.

The format for a PTE in NT/Alpha AXP is:

Figure 4 Page Table Entry
31..9 8..7 6..5 4 3 2 1 0

PFN SFW GH G R D O V

Table 2 Page Table Entry Fields
Field Description

PFN Page Frame Number

Reserved for software (operating system)SFW

Granularity hintsGH

G Global translation hint (address space match)

O Owner, 0 = kernel access only, 1 = user access

permitted

Dirty, 0 = page is not dirty, 1 = page is dirtyD

ReservedR

Valid, 0 = translation not valid, 1 = valid
translation

V

Notes regarding the PTE fields:

The G or global bit is a hint to an implementation that the indicated translation is global for all

processes and that the translation need not be invalidated when an implicit tbiap is executed. Since

the global bit is considered a hint it is not necessary for an implementation to use this field.

The D or dirty bit is implemented for Alpha AXP as the inverse of FOW (fault on write). The dirty

bit serves double duty by causing faults for the first write to a page. Dirty serves as a write protect
bit and as a marker allowing the operating system to track dirty pages.
The O or owner bit indicates if user-mode is allowed access to this page, either for instruction fetch

or data access. Kernel mode code has implied access to all pages that have a valid translation.
The GH or granularity hint bits provide a method for mapping translations larger than the standard

implementation page size. These large pages must be both virtually and physically aligned. Once

again, the granularity hints are hints only and may be ignored by an implementation. The granularity
hints define the translation in terms of a multiple of the page size where the multiplier = 8**N,

where N is the granularity hint value (0..3).

1.

2.

3.

4.

Translation Buffer Management

The PALcode must also provide call pals to manage the cached translations maintained in the translation

buffers. The following call pals are provided: this, tbisasn, dtbis, and tbia.

This invalidates a translation for a single virtual address. Its purpose is to invalidate a single translation

for a specific virtual address passed as a parameter to this. This invalidates the translation in all TBs

within the processor.

Tbisasn invalidates a translation for a single virtual address for a specified address space number. The

address space number may or may not be the address space number for the currently executing thread.
Tbisasn invalidates the translation in all TBs within the processor.

Dtbis invalidates a single data stream translation for a specified address. It is designed for those cases

when the operating system can determine that the translation is not used in the instruction stream.

Implementations may take advantage of the fact that dtbis is invalidating a data stream only translation

by avoiding the requirement to invalidate instruction stream translations in both, potentially, an ITB and
a virtual ICACHE.

Tbia invalidates all page table translations in all TBs within the processor. (The translations invalidated

are limited to "page table translations" because it is possible that an implementation has used fixed TB
entries to implement one or more of the required super-pages. These fixed translations are considered

"hard-wired" by the operating system and must be valid at all times.

Note, that tbiap (translation buffer invalidate for all processes) is not included explicitly in the PALcode.
Tbiap is used to invalidate translations for all processes but may spare translations with the global (ASM)

bit set. The tbiap operation is an implicit side-effect of swapping from one process to another (essentially
one address space to another). For implementations that do not include ASNs, the tbiap will be implicit

for every address space swap. Processors that implement ASNs need only issue the tbiap when ASNs are

reused. ASN reuse is indicated to the PALcode by a parameter passed to the swpctx and swpprocess call
pal functions.

6. Processes and threads

NT is designed as a multi-threaded operating system with multiple threads executing within the same

process. Each thread has its own processor context, user-mode stack and kernel stack. Memory and the

address space are shared across all threads in the same process.

The PALcode "knows" nothing about the structure of threads or processes in NT. The PALcode

implements the means to swap from one thread context to another and to allow a thread to attach to the

address space of another process. The state to accomplish these operations is passed entirely in registers.

Additionally, the PALcode maintains two internal registers that allow threads to query state about the

currently executing thread. A unique value identifying the current thread is written when the thread

context is swapped. This unique thread value is accessible by the privileged call pal rdthread. In
addition, a user-accessible value is supplied when thread context is swapped. The user-accessible value

is a pointer to the thread environment block (TEB) for the new thread. The TEB is obtained via the rdteb

unprivileged call pal. Once again, the PALcode knows nothing about the structure of the TEB, it simply
returns the written value when context is switched.

The swpctx call pal swaps from the context on one thread to another. The following parameters are

passed to swpctx:

1. Initial kernel stack pointer
2. PTEs for the first two kernel stack pages

3. Unique thread value
4. Thread environment block pointer

5. PEN of the directory table base page for the new process

6. ASN for the new process

Swpctx must switch to the new kernel stack for the new thread. The first parameter is the initial kernel

stack pointer and it is written to the internal processor register IKSP. The next parameters are the PTEs

that map the first two pages of the kernel stack for the new thread. The use of these PTEs is optionally —

they are provided so that an implementation may guarantee the translations are valid in order to avoid the

likely fault when swpctx returns and the kernel stack is accessed. The kernel does not guarantee that

these translations are not already valid in the translation buffers.

The unique thread value and the pointer to the TEB have been described above. Note that these values

are only written at context switch time as they are kernel maintained. The implicit assumption is that

these values for a particular thread cannot change while that thread is executing.

The additional parameters to swpctx allow switching to a new process address space. The pfn of the

directory table base page is an overloaded parameter - it is used to indicate if the process needs to be

swapped. The pfn is set to a negative value in the kernel if the previous thread and the new thread are in

the same process (address space). If the two threads are in the same process then there will be no need to

swap the address space. When the two threads are in the same process the pfn will be set to a negative

value and the value for the ASN parameter is undefined. If the two threads are in different processes then
the pfn will be greater than zero and will be used to write the PDR internal processor register. When the

pfn is valid (greater than zero) then the ASN must be valid also and will be used to write the ASN

internal processor register.

Swapping to a new process address space involves establishing a new directory pointer to the page table
base page for the new process and possibly performing translation buffer operations. If the ASN is equal

to the maximum address space number for the implementation then the PALcode must perform an

invalidation operation for each cached translation in the translation buffers and virtual caches that does

not have the ASM (address space match) bit set.

The swpprocess (swap process) call pal is also provided to allow a thread to attach to an another process.

Swpprocess requires only two parameters: the PFN of the new directory table base page and the new
ASN. Swpprocess performs the same address space swapping operation as does swpcU when the pfn of

the page directory page is valid.

7. Q9ChQ$ gn^l pgph^ pQh^rgnpy

Alpha AXP implementations may include caches that may not be kept coherent with main memory.

Currently there is an architected common way to make the instruction execution stream coherent with

main memory via the imb (Instruction Memory Barrier). Imb is a non-privileged call pal that guarantees

that subsequently executed instructions will be fetched coherently with respect to main memory. Code

that modifies the instruction stream, either through writes or by DMA from an I/O device must issue the
imb instruction to ensure the instruction stream becomes coherent.

The PALcode does not architect a method for future processors to make potentially incoherent data

streams coherent. The first implementation processor maintains data stream coherency. For any systems
that require the need to make the data stream coherent or to flush a write-back cache, native code can be

implemented via the standard HAL interfaces. However, if a future implementation does not permit (for
whatever reason) native code to be able to either make the data stream coherent or flush internal write

back data caches then that implementation must provide a call pal to do so. The interface to such a call

pal will effect the HAL for those systems that use the implementation only.

8. Stacks

Two special-mode stacks are provided for executing in kernel mode: the kernel stack and the DPC stack.

Each thread is allocated its own pages for a kernel stack. The DPC (Deferred Procedure Call) stack is a

processor-wide stack upon which all DPCs are executed.

The initial kernel stack pointer (IKSP) points to the top of the kernel stack currently active kernel stack
for the current thread. Two call pals are provided to access the IKSP, rdksp to read the IKSP and swpksp
to atomically read the current IKSP and write a new one. The kernel stack is the 2 pages of virtual
address space below the IKSP for a thread, where the IKSP points to the byte beyond the top of the 2
pages.

In addition to the kernel stack and the DPC stack a panic stack is provided to allow the operating system
to remain coherent when it crashes.

The DPC stack and the panic stack must remain valid for the lifetime of the system. The kernel stack for

the currently executing thread must also be valid. Software must guarantee that the kernel stack pointer

remains 16-byte aligned as per the NT/Alpha AXP calling standard.

9. Processor Status

Two components define processor status for NT/Alpha AXP: the processor status register and the DPC

flag.

The processor status register (PSR) is defined below:

Figure 5 Processor Status Register
31..6 5.2 1 0

RAZ/IGN IRQL IE M

Table 3 Processor Status Register Fields
Field DescriptionType

Process mode, 0 = kernel mode, 1 = user modeM RW

Interrupt enable, 0 = interrupts disabled, 1 = interrupts enabledIE RW

IRQL Interrupt request level, 0 - 7RW

The IRQL field is used to provide interrupt priority levels in the range of 0..7 where 0 would indicate all

interrupts are enabled and 7 would indicate no interrupts are enabled.

The IE field is a global interrupt enable that can be used to turn interrupts on and off without changing

the IRQL.

The M field describes the current processor privilege mode: user (unprivileged) or kernel (privileged).

The privilege mode of the processor defines the instructions that can be executed and then the memory

protection that will be used according to the following table:

Table 4 Processor Privilege Map

Operation Privileged Unprivileged

nosuper-page access yes

access to only those pages with
the Owner bit = 1

page protection access to all pages

privileged call pal instructions yes no

Two privileged call pals are provided to access the PSR, rdpsr to read the PSR and wrpsr to write the
PSR.

The DPC flag indicates if the processor is currently executing a Deferred Procedure Call (DPC).

The DPC flag is defined below;

Figure 6 DPC FLAG
31..1 0

SBZ DPC

Table 5 DPC FLAG Fields

Field Type Description

DPC RW DPC flag, 0 = not currently executing a DPC, 1 = currently executing a DPC

Two privileged call pals are provided to access the DPC flag, rddpcflag to read the DPC flag and

wrdpcflag to write the DPC flag.

10. Firmware interfaces

The firmware PALcode environment is de coupled from the operating system PALcode. Two PAL

interfaces are provided to permit the operating system to transition to the firmware PALcode context: the

halt and swppal call pals.

The halt call pal is used to perform a controlled transition to firmware. Halt essentially follows the
semantics for a restart to the ARC firmware environment with the addition of Alpha AXP support for

switching to the firmware PALcode. The halt function accomplishes the following tasks:

1. Retrieve the restart block pointer from the PCR

Verify the restart block

Save the general purpose register state in the restart block

Save the architected internal process register state in the restart block

Save the RESTART_ADDRESS in the restart block
Retrieve the firmware restart address from the PCR

Restore the PAL base to the previous PAL base

Complete the restart block by updating the boot status and the checksum

Restart execution at the firmware restart address passing a pointer to the restart block in the aO

register

2.

3.

4.

5.

6.

7.

8.

9.

The restart block is expected to be initialized by the firmware. The pointer to the restart block is passed
by the firmware through the OS Loader to the kernel in the loader parameter block. The kernel writes the

restart block pointer into the PCR during startup. The restart block pointer must be a 32-bit super-page
address.

The firmware environment is responsible for allocating memory for the entire restart block including the
Alpha AXP-specific saved state area. The firmware is also responsible for initializing the restart block as

per the ARC specification.

It would be nice if the ifrmware and the OS loader could cooperate to have the restart block within the

PCR (the space is available) this might save a page of memory per-processor.

The PALcode will verify the restart block by insuring that the restart block signature is valid and that the

restart block and saved state area lengths are of sufficient size to contain the state the PALcode will save.

If the PALcode determines that the restart block is not valid then an alternate restart will be initiated.

The alternate restart will be for the PALcode to restore the previous PAL base to the PAL_BASE register
and to transfer control to the previous PAL base in PAL mode.

The general register state saved wilt include all 32 integer registers and all 32 floating point registers. In

addition, the floating point control register will also be saved. The internal processor register will be

store in its architected format so that it may be interpreted in the firmware environment. In addition,

remaining space will be allocated so that the total size of the restart block is IK bytes. The additional

space will be usable for per-implementation data.

The RESTART_ADDRESS is stored in the saved state area to allow return from halt via the restart call

pal function. The HAL is responsible for populating the Version, Revision, and RestartAddress fields of
the restart block header. Restart will be described in greater detail below.

The PALcode will capture the previous PALcode environment when it is first initialized. The previous
PALcode base address will be read from the PAL_BASE register and written to the

PREVI0US_PAL_BASE register. When the processor executes the halt function it will restore the

previous PALcode environment by writing the value in the PREVIOUS_PAL_BASE register to the

PAL_BASE register.

Implementation Note (Hardware):

There are several restrictions imposed on the hardware design to support this model for
switching PALcode environments:

The currently active PALcode must be settable by writing the base address of the PALcode

image to an internal processor register

No implementation can require an alignment of greater than 64Kfor the base of the
PALcode

The internal processor register used to set the base of the PALcode must be readable for
each byte which is writable

1.

2.

3.

The firmware restart address is the address to which the PALcode will transfer control upon completion

of the halt. The firmware restart address is passed from the firmware through the OS Loader to the kernel

and stored in the PCR as is the restart block pointer. The firmware restart address is read from the PCR

and written to the RESTART_ADDRESS register with implementation- specific (but well-defined)
interpretation.

The restart call pal function is provided to undo the work that has been by a halt and allows the processor
to restart execution. The restart function must simply perform the inverse of the tasks that were

performed in the halt.

The tasks and sequence required for performing a halt and restart are described below:

Firmware allocates restart block, initializing signature, length, id fields and the pointer to next
restart block, restart block pointer and firmware restart address are passed to the kernel

HAL populates the Version and Revision fields during HAL initialization

Some external event triggers an halt or reboot or power-fail

The appropriate HAL routine populates the RestartAddress field of the restart block with the

address of the HAL restart routine

The HAL executes the halt instruction

The PAL saves processor state, including the RESTART_ADDRESS register (which is the address

in the HAL of the instruction after the halt call pal instruction)
The PAL transfer to the firmware environment

The firmware initializes a restart by calling the HAL restart routine (via the address in the restart

block header)

The HAL uses the swppal instruction to restore the operating system PALcode environment
The HAL uses the restart call pal function to restore complete processor state

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

The PAL restores state and then returns execution to the instruction after the halt call pal in the
HAL

The HAL completes the restart

11.

12.

The swppal call pal is a flexible interface that allows kernel code to transition to any PAL environment as

opposed to halt which limits the caller to transition to the previous PAL environment. The swppal call
pal is a subset of the swppal implemented for VMS and OSF. Swppal supports only the address mode:

swppal will resume execution at the address provided in the call pal.

11. Exception dispatch

Overview

When the processor encounters an exception it traps to the PALcode which provides preliminary

exception dispatch for the operating system. Some exceptions (e.g. TB miss) may be entirely handled by
the PALcode without the intervention of the operating system.

The PALcode is designed to provide a simple and efficient dispatching method to the operating system

for those exceptions that require operating system action. In general the following operations

characterize exception dispatch:

Switch to kernel mode (if in user mode).

Allocate a trap frame on the kernel stack.
Save the necessary processor state in the bap frame.

Prepare arguments to the kernel exception handler using the standard argument registers where

possible.

Set the processor state for executing the kernel (establish the stack pointer so it points to the kernel

stack, establish the global pointer to point to the kernel global area).

Restart execution at the address of the kernel exception handler registered for the class of exception
that was encountered.

1.

2.

3.

4.

5.

6.

The details of the actions required for each specific type of exception are described below in a separate
section for each exception type.

Exception Classes
The PALcode categories each of the possible exceptions into one of the following classes:

1. Memory Management Exceptions

Interrupt Exceptions

System Service Calls

General Exceptions

Panic Exceptions

2.

3.

4.

5.

Memory Management Exceptions will be raised for two types of exceptions:
Translation not valid faults: accesses to addresses which do not have a valid translation for the

currently executing context
Access violations: accesses to addresses for which the currently executing context does not have
permission for the access

1.

2.

Interrupt Exceptions will be raised when a software or hardware interrupt is asserted and enabled.

System Service Calls are not exceptions per-se but are handled as such to allow non-privileged code to

request and receive privileged services. System Services may be requested from both non-privileged and

privileged modes (user and kernel mode respectively).

The General Exception class is the catch-all category for all of the other exceptions that may be raised by

non-privileged code:

Illegal instruction execution

Unaligned memory access

Arithmetic exceptions
Software exceptions

Breakpoints
Subsetted instruction execution

1.

2.

3.

4.

5.

6.

Panic Exception is the class reserved for conditions from which execution cannot reliably be continued.

The following general cases of panic exceptions are anticipated:

Invalid kernel stack (including overflow and underflow).
Unrecoverable machine checks.

Unexpected exceptions from PALcode.

1.

2.

3.

Rfe (return from exception)
The rfe (return from exception) call pal is provided to allow the operating system to return from an

exception. Rfe may also be used to transition from kernel mode to user-mode startup code. Note that

two of the classes of exceptions will not use rfe to return to the previously executing context: System

Service Exceptions and Panic Exceptions. A special call pal, retsys, is used for returning from System

Service Calls. Retsys is necessary because a System Service exception has different semantics with

regard to the processor state saved than any of the other exceptions. Panic Exceptions do not return as

they precipitate a controlled crash of the operating system.

Rfe is documented in detail in the call pal portion of this specification. Briefly, rfe reverses the effect of

an exception by restoring the original processor state from the trap frame on the kernel stack. In addition,

rfe accepts a parameter that allows it to set software interrupt requests for the execution context that is
about to be reestablished.

Trap Frames
Trap frames are allocated on the kernel stack for all classes of exceptions in PALcode. The PALcode

will also partially populate the trap frame; the fields populated are based upon the exception being

handled. The kernel stack must be guaranteed to remain aligned on a 16 byte boundary as per the

NT/Alpha AXP calling standard. The trap frame itself will be guaranteed to be a multiple of 32-bytes in

size. The PALcode may over-align the kernel stack pointer when allocating the trap frame in order to

improve memory throughput, with consideration for the extra memory being consumed. The trap frame

will be structured so that writes will aggregate. The register values stored in the trap frame are 64-bit

values - this is required as the register set is 64-bits and may contain 64-bit values (as opposed to

canonical longwords).

Can we allocate a smaller trap frame for system service calls just to conserve space?

12. Interrupt handling

The NT PALcode supports two software interrupt levels and an implementation-specific limit of

hardware interrupt sources. The NT PALcode supports 8 levels of interrupt priority known as interrupt

request levels (IRQL). The supported IRQLs are numbered 0..7.

r

The platform independence of interrupt dispatch is accomplished via three tables: Interrupt Level Table,

Interrupt Mask Table, and the Interrupt Dispatch Table.

Interrupt Level Table (ILT)

The Interrupt Level Table consists of 8 entries, indexed 0..7. Each table entry corresponds to an IRQL by

its index within the table. The value of each entry is an enable mask that indicates which interrupt

sources are to be enabled within the processor for the corresponding IRQL. One full longword is

reserved for each table entry. The interpretation of the bits within the enable mask is processor-specific.

Implementation Note (Software):
The Interrupt Level Table is probably the most important optional set of data that could be

cached within the processor. Implementations should consider implementing a call pal that

causes the ILT to be re-read and re-cached within the processor. Also note, some processors

may have an effectively hard-wired ILT (in such a case, the HAL will have no influence over

which interrupts are enabled for each IRQL).

Interrupt Mask Table (IMT)
The Interrupt Mask Table relates a mask value of requested interrupts to both an interrupt vector and a

synchronization IRQL. The table is an implicit interrupt priority resolver as only one interrupt vector can

be assigned for each request mask. The table is divided into 2 sub-tables as below:

Table 6 Interrupt Mask Table

Interrupt source descriptionIndex Range

Software (2 sources)0..3

Hardware4..131

Each entry in the table is a longword that consists of 2 word values: the interrupt vector number and the

synchronization level. The usage of the software portion of the table is strictly defined and consistent

across all processor implementations. The software entries are used only if no hardware interrupts are

pending. The entries must be initialized so that DPC software interrupts are higher priority than APC

software interrupts. The expected initialization of the software portion of the table is defined below:

Table 7 Software Entries of the IMT

Synchronization Level VectorIndex

Passive release vector0 PASSIVE LEVEL = 0

APC LEVEL = 1 APC Dispatch vector1

DISPATCH LEVEL = 2 DPC Dispatch vector2

3 DISPATCH LEVEL = 2 DPC Dispatch vector

Usage of the hardware portion of the IMT is designed to be flexible. Each implementation must define a

relation/that defines a mapping of requested and enabled hardware interrupt sources to entries in the

IMT. The relation/is implementation-specific but/must be a function in the mathematical sense (for

each input there is a single unambiguous result). All interrupts other than software interrupts will be

considered hardware interrupts. Hardware interrupts could include external interrupt signals,

performance counter interrupts, and correctable read interrupts.

Interrupt Dispatch Table (IDT)
The Interrupt Dispatch Table (IDT) has an entry for each possible interrupt vector. The possible interrupt
vectors are in the range 0..255. Each entry is a longword pointer which is the virtual address of the

interrupt dispatch routine for the vector which corresponds to the index of the entry within the table.

Interrupt Dispatch
Intemipt dispatch within the PALcode will proceed through the following steps:

irr <r- currently requested interrupt mask (from internal processor state)

ier <r- currently enabled interrupt mask (from current IRQL)
irm <- irr AND ier

CASE

! mask of requested and enabled interrupt sources

! retrieve value from interrupt mask table
! any hardware interrupt source is pendingAny Hardware Interrupt Pending ;

index =y(irm)

sirql <- (IMT<{index*4)>)<SynchronizationIRQL>

vector <r- (IMT<{index*4)>)<InterruptVector>

! get synchronization IRQL

! get interrupt vector

Any Software Interrupt Pending

sirql <— (IMT<{irm*4)>)<SynchronizationIRQL> ! get synchronization IRQL

! get interrupt vectorvector <- (IMT<{irm*4)>).InterruptVector

! software interrupt should be setOtherwise:

Passive release, restart execution
ENDCASE

Set processor to sirql IRQL
if(processor interrupt)

{ acknowledge the interrupt}
endif

Issue: This does not work this way today (the PAL does less and the kernel does more)
More on this below in the issues section.

Once synchronization level has been set and the interrupt service routine has been determined the

PALcode builds a trap frame and dispatches to the kernel interrupt exception handler passing in the

interrupt vector. The specification for this is the following:

previousPsr <- PSR
If PSR<Mode> <- User

PSR<Mode> <— Kernel ! set processor to kernel mode

tp <- IKSP - TrapFrameLength ! establish trap pointer
Else

tp <- sp - TrapFrameLength ! establish trap pointer

TrlntSp(tp) <- sp

TrlntFp(tp) <- fp

TrlntGp(tp) <- gp

TrlntAO(tp) <- aO

TrlntAl(tp) <- al

TrIntA2(tp) <- a2

TrIntA3(tp) <- a3

TrFir(tp) <- ExceptionPC

TrPsr(tp) <- previousPSR

TrServiceStack(tp) <- tp

TrlntRa(tp) <- ra

sp <- tp

TrServiceStack(tp) sp

fp <- sp

gp<-KGP
aO <— vector

al PCR

a3 <— previousPSR

RestartAddress <- INTERRUPT_ENTRY

Restart processor

All other general purpose register values must be preserved across interrupt dispatch.

The kernel will use the rfe instruction to restart the interrupted code sequence.

Interrupt Acknowledge

Interrupts will be acknowledged according to their origin. Internal processor interrupts, such as software

interrupts and performance counters, will be acknowledged by the PALcode. System-level interrupts will

be acknowledged in the interrupt dispatch routines.

Synchronization functions

The NT PALcode provides 3 functions to allow the kernel to effect the processor’s current interrupt

enable state: swpirql, di and ei.

Swpirql swaps the current interrupt request level of the processor. Swpirql takes as a parameter the new

IRQL for the processor and returns the previous IRQL.

Di disables all interrupts without changing the current IRQL. Ei enables interrupts at the currently set
IRQL. The usage of these functions and the existence of the interrupt enable bit in the PSR are used as a

global interrupt enable for all interrupts.

Software Interrupt Requests

The PALcode includes an architected internal processor register for controlling software interrupt

requests: the SIRR (Software Interrupt Request Register). The format of the SIRR is as below:

Figure 7 Software Interrupt Request Register
31 ..2 01

RAZ DPC APC

Table 8 Software Interrupt Request Register Fields

Description

APC software interrupt requested.

Field lipe
APC RW

DPC DPC software interrupt requested.RW

The NT PALcode provides 2 functions for effecting the state of software interrupt requests: ssir and csir.

Ssir sets software interrupt requests. Ssir takes as a parameter the software interrupts to be set. The

software interrupt requests levels to be requested are indicated by the bits set in the parameter register.
The NT PALcode support only 2 interrupt levels so only the 2 least significant bits of the parameter

register are used.

Csir clears (or deasserts) software interrupt requests. Csir takes as a parameter the software interrupts to
be cleared. The software interrupt requests levels to be cleared are indicated by the bits set in the
parameter register. The NT PALcode support only 2 interrupt levels so only the 2 least significant bits of

the parameter register are used.

13. System Service Exceptions

System Service Calls are initiated via the callsys call pal. Callsys essentially has the semantics of a

standard routine call, arguments are passed in the argument registers and on the stack, volatile registers

are considered free and non-volatile registers must be preserved across the call. (See appendices for the

calling standard register definitions.) In addition, to the standard calling sequence callsys passes the

number of the desired system service in the return value register vO. System Service Calls may be made
from both user and kernel modes. The details for the callsys call pal are provided in the call pal listing

section; a brief overview is provided here.

Callsys switches to kernel mode, if necessary, and allocates a trap frame on the kernel stack. The volatile

registers may be used freely by the PALcode. The argument registers must be preserved through the call

pal. Standard control information such as the previous PSR is stored in the trap frame. Callsys then

restarts execution at the kernel system service exception entry passing the previous mode as a parameter

in the tO register.

Retsys is provided to return from a System Service back to the caller. For the most part it is very similar

to the rfe call pal with the following exceptions:

Retsys need not restore the argument registers a0..a3 from the trap frame

Retsys need not preserve volatile register state

Retsys returns to the address in the ra register at the point of the callsys rather than the faulting
instruction address (the ra was written to the faulting instruction address by callsys).

1.

2.

3.

A detailed description of retsys is included in the call pal listing section of the specification.

14. Memory Management Exception handling

The NT PALcode will recognize 2 classes of memory management faults: translation not valid faults and

access violations. Translation not valid faults are detected when a page table entry for a virtual address
has the valid bit cleared. The invalid page table entry could be either a first or second level table entry.

Access violations are detected by the hardware when the processor attempts to access a virtual address

and that type of access is not permitted according to the protection mask in the page table entry that maps
the translation for the virtual address.

The PALcode will dispatch to the kernel in the exact same manner for each of these 2 classes of

exceptions according to the following description:

previousPSR <- PSR
IF PSR<Mode> <- User

PSR<Mode> <- Kernel

tp <r- IKSP - TrapFrameLength
ELSE

tp <— sp - TrapFrameLength

TrlntSp(tp) <- sp

TrlntFp(tp) <- fp

TrlntRa(tp) <- ra

TrlntGp(tp) <- gp

TrlntAO(tp) <- aO

TrlntAl(tp) <- al

TrIntA2(tp) <- a2

TrIntA3(tp) <- a3

TrFir(tp) <— ExceptionPC

TrPsr(tp) <— previousPSR

sp tp

TrServiceStack(tp) <— sp

fp <-sp

gp <- KGP

aO <- 1 if faulting operation was a store, 0 otherwise

al <— faulting virtual address

a2 <— previousPSR<Mode>

a3 <r- previousPSR

RestartAddress <— MEM_MGMT_ENTRY

restart the processor

All other general purpose registers must be preserved across the memory management exception

dispatch.

If the kernel can resolve the fault it will use the rfe instruction to restart the faulting thread so as to re

issue the instruction that faulted. Otherwise, the kernel will raise the appropriate exception.

15. Panic Exception handling

There are 3 general classes of severe problems or panics that the NT PALcode may recognize. Severe

problems are not recoverable -- the operating system cannot continue executing normally. Panic

exception handling is used to shutdown the machine in a controlled manner that will assist in debugging

the problem. With the exception of hardware errors, panic exceptions are not expected to occur in the
production operating system. In fact, some of the checks that detect panics may be disabled when the

production PALcode ships.

The PALcode will raise a panic exception to the kernel and will describe the condition that causes the

panic with a bugcheck code. When the kernel receives a panic exception it will enter the kernel
debugger if the kernel debugger is enabled.

The 3 classes of panic exceptions are:

1. Unrecoverable processor or system hardware errors

Kernel stack corruption
Unexpected exceptions in PALcode

2.

3.

Unrecoverable Hardware Errors

The PALcode may be able to continue execution when the hardware exhibits catastrophic and

unrecoverable error conditions. The types of conditions that would be unrecoverable are processor-

specific. If such a condition occurs the PALcode will raise a panic exception with the bugcheck code set
to data_bus_error.

Kernel Stack Corruption
The PALcode may recognize the following types of kernel stack corruption: invalid kernel stack, kernel
stack overflow and kernel stack underflow. The kernel stack for an executing thread must always be
valid, if the processor faults when accessing the kernel stack and the page tables indicate the kernel stack

address is not valid then the PALcode will raise a panic exception. The PALcode will also check for
kernel stack underflow and overflow and will raise a panic exception if either condition is detected.

(Kernel stack checking may be disabled for production releases - maybe, either (l)must be left on or

(2)define distinctions between debug pal and production pal, or (3)punt this - i prefer 1 or 2). The kernel

stack is the 2 pages of virtual address space below the IKSP for a thread, where the IKSP points to the

byte beyond the top of the 2 pages. When raising a kernel stack corruption, the PALcode will set the

bugcheck code to PANIC_STACK_SWITCH.

Unexpected PAL exceptions
When the PALcode detects an exception caused by PALcode that is unexpected, the PALcode may raise

a panic exception. It is anticipated that these conditions will either indicate a bug in the PALcode or that

the processor is no longer correctly executing. The PALcode will raise the bugcheck code

TRAP_CAUSE_UNKNOWN.

The PALcode will build a trap frame for the kernel before it dispatches. The PALcode will also fill in

the exception record that exists within the trap frame. The PALcode may optionally populate the

exception information longwords with information that will assist in debugging the problem. Only

ErExceptionInformation<0..3> may be used. It is highly recommended that the PALcode populate the

first longword with a bugcheck subcode that identifies the particular error condition detected by the

PALcode. The PALcode will strive to maintain all possible register state in order to assist in debugging.

Panic Exception Dispatch

The PALcode will follow the following operations when dispatching a panic exception to the kernel:

previousPSR <r- PSR
IF PSR<Mode> <- User

PSR<Mode> <- Kernel

ENDIF

panicStack <— PcPanicStack(PCR)! get the panic stack

tp <- panicStack - TrapFrameLength

TrlntSp(tp) <- sp

TrlntFp(tp) <- fp

TrlntGp(tp) <- gp

TrlntRa(tp) <- ra

TrlntAO(tp) <- aO

TrlntAl(tp) <- al

TrIntA2(tp) <- a2

TrIntA3(tp) <- a3

TrPsr(tp) <- previousPSR

TrFir(tp) <— ExceptionPC

ErExceptionCode(tp) <- bugcheck code

ErExceptionAddress(tp) <- ExceptionPC

ErExceptionFlags(tp) <- zero

ErExceptionRecord(tp) <— zero

ErNuniberParameters(tp) <— zero

sp <— tp

TrServiceStack(tp) <— sp

fp <— sp

gp<-KGP

aO <— bugcheck code

RestartAddress <- PANIC_ENTRY

Restart processor

! allocate trap frame on panic stack

All other general purpose register must be preserved across the panic exception dispatch.

16. General Exception handling

General Exception is classification for all of the other exceptions that may be raised by hardware or

software. These exceptions are handled in approximately the same manner in the PALcode and in

exactly the same manner in the lowest level kernel exception dispatch.

The following exceptions have been grouped together under the General Exception rubric:

1. Arithmetic Exceptions

2. Unaligned Access Exceptions
3. Illegal Instruction Exceptions

4. Machine Check Exceptions

5. Breakpoints

6. Software Exceptions
7. Subsetted IEEE Instruction Exceptions

A general exception builds a trap frame on the kernel slack and populates the exception record within the
trap frame and then dispatches to the kernel general exception entry point. The differences between each

of these types of exceptions are the population of the exception record and the meaning of the faulting

instruction field within the trap frame. The values for each specific exception are detailed in the sections
that follow.

General Exceptions: Common Dispatch
The common dispatch for all general exceptions takes the following steps:

previousPSR <- PSR
IF PSR<Mode> = User

PSR<Mode> <- Kernel

tp IKSP - TrapFrameLength
ELSE

tp sp - TrapFrameLength
ENDIF

TrlntSp(tp) <- sp

TrlntFp(tp) <- fp

TrlntGp(tp) <- gp

TrlntRa(tp) <- ra

TrlntAO(tp) <- aO

TrlntAl(tp) <- al

TrIntA2(tp) <- a2

TrIntA3(tp) <- a3

TrPsr(tp) <- previousPSR

TrFir(tp) <- ExceptionPC

sp<- tp

TrServiceStack(tp) <- sp

fp <- sp

gpf-KGP

aO <— tp + TrExceptionRecord

a3 <— previousPSR

! aO <- pointer to exception record

All other general purpose registers must be preserved across the general exception dispatch.

17. Arjthmglip Exp^ptign?

Arithmetic exceptions for the Alpha AXP architecture are imprecise, meaning that the processor may not

signal an exception until some arbitrary number of instructions after the instruction that caused the

exception. Special handling is required in the kernel and compiler to deterministically raise the

appropriate exceptions to user programs. These topics are covered in greater detail elsewhere (SRM,

Handbook). Important to this specification is the definition of the ExceptionPC that is written to the

TrFir offset of the trap frame. The exception PC written into the trap frame is the virtual address of the

first instruction after the faulting instruction that has not yet executed.

Arithmetic traps write the following information into the exception record of the trap frame:

ErExceptionCode(er) <- STATUS_ALPHA_ARITHMETIC

ErExceptionInformation<0>(er) <- FLOATING_REGISTER_MASK

ErExceptionInformation<l>(er) <- INTEGER_REGISTER_MASK

ErExceptionInformation<2>(er) <- EXCEPnON_SUMMARY

ErNumberParameters(er) i— 3

ErExceptionFlags(er) <- 0

ErExceptionRecord(er) <- 0

where:

er = exception record pointer

The Floating register masks indicate which floating point registers were destinations of instructions that
caused an exception. A one in the corresponding position for a register indicates that the register was the
destination of an instruction that faulted. A zero indicates that the register was not the destination of an

instruction that faulted. The definition of the correspondence between the floating registers and the bits
in the mask is defined as follows:

Figure 8 FLOAT REGISTER MASK
030 29..2 131

FI FOF31 F30 F29..F2

The Integer register masks indicate which integer registers where destinations of instructions that caused

an exception. A one in the corresponding position for a register indicates that the register was the
destination of an instruction that faulted. A zero indicates that the register was not the destination of an

instruction that faulted. The definition of the correspondence between the integer registers and the bits in
the mask is defined as follows:

Figure 9 INTEGER REGISTER MASK
1 031 30 29..2

ROR29..R2 R1R31 R30

The format of the EXCEPTION_SUMMARY register is as follows:

Figure 10 EXCEPTION SUMMARY
031..7 6 5 4 3 2 1

swcINE UNF OVF DZE INVRAZ lOV

Table 9 EXCEPTION SUMMARY Fields

The software completion option /S was selected for all of the faulting instructions.

One or more of the operands of a floating point operation was an illegal value.

SWC Software Completion

Invalid OperationINV

Floating point divide attempt with a divisor of zero.Division by zeroDZE

Result of floating operation overflowed the destination exponent.

Result of floating operation underflowed the destination exponent.

OVF Overflow

UnderflowUNF

Result of floating operation caused loss of precision.Inexact resultINE

Result of integer operation overflowed the destination's precision.lOV Integer overflow

18. Unaligned Accesses Exceptions

Unaligned access exceptions are reported to and handled by the kernel. Currently, the NT kernel has

implemented the following policies regarding unaligned access fix-ups;

1. Kernel unaligned accesses will not be fixed and when instead cause a bugcheck
User-mode fix-ups are optional on a per-thread basis. The default state will be that user-mode

unaligned accesses will not be fixed up and will instead cause the kernel to raise an exception to
the user-mode program.

2.

Unaligned access exceptions are precise, therefore, the address written to the faulting instruction offset of

the trap frame will be the virtual address of the load or store instruction that accessed the unaligned
address..

The PALcode will write the following information into the exception record of the trap frame for an
unaligned access exception:

ErExceptionCode(er) <- STATUS_DATATYPE_MISALIGNMENT

ErExceptionlnformation<0>(er) <- Faulting opcode

ErExceptionInformation<l>(er) <- Destination register

ErExceptionInformation<2>(er) <- Unaligned virtual address

ErNumberParameters(er) <- 3

ErExceptionFlags(er) 0

ErExceptionRecord(er) <- 0

where:

er = exception record pointer

19. Illegal Instruction Exceptions

The following types of illegal operations will be raised as illegal instruction exceptions by the PALcode:

Attempt to execute an instruction with an opcode reserved for Digital's use (opcode DEC)
Attempt to execute an instruction with an unimplemented call pal code point
Attempt to execute a privileged call pal from user (unprivileged) mode

Attempt to execute an instruction with an illegal operand
Attempt to execute an unimplemented/subsetted instruction

1.

2.

3.

4.

5.

Note: Instructions with illegal operands will cause illegal instruction exceptions to be raised only if the

processor raises an exception for these operations.

Illegal instruction exceptions are precise; the faulting address written into the trap frame will be the
virtual address of the instruction that caused the exception.

The PALcode will write the following information into the exception record of the trap frame for an

illegal instruction exception:

ErExceptionCode(er) <- STATUSJLLEGALJNSTRUCTION

ErNumberParameters(er) <- 0

ErExceptionFlags(er) <- 0

ErExceptionRecord(er) <- 0

where;

er = exception record pointer

20. Non-Canonical Virtual Address Exceptions

If the PALcode detects that a faulting virtual address is not a canonical longword then the PALcode will
raise a general exception. The implementation is required to test for the non-canonical format for both

instruction stream and data stream translation buffer fills. For data stream faults the faulting address

written to the trap frame will be the virtual address of the instruction that caused the reference to the

invalid address. Instruction stream invalid addresses present a more difficult problem because the

exception address itself is invalid and cannot be properly interpreted by 32-bit NT. In the case of
instruction stream virtual addresses the ra (return address) register - 4 will be written to the faulting

address field of the trap frame. The ra register is used because it is very likely to yield a sane address

within the correct program that faulted. In addition, the ra-4 is the most probable faulting address as the

most likely instruction to have caused the fault is; jsr ra, (rx). Certainly it is not perfect.

The PALcode will write the following information into the exception record of the trap frame for a non-
canonical virtual address fault;

ErExceptionCode(er) <- STATUS_INVALID_ADDRESS

ErExceptionInformation<0>(er) <— va<63..32>

ErExceptionInformation<l>(er) <- va<31..0>

ErNumberParameters(er) 2

ErExceptionFlags(er) <— 0

ErExceptionRecord(er) <- 0

where;

er = exception record pointer

21. Machine Check Handling

Machine checks are initiated when the hardware detects an hardware error condition. The hardware error

condition may be correctable or uncorrectable. Machine checks are not the only way that systems may

indicate hardware errors. Systems may choose to signal errors via hardware interrupts. Hardware error

interrupts will be delivered to the kernel as standard interrupts where they may be hooked by the HAL for

system-specific processing.

There are 5 classes of machine checks recognized by the NT PALcode;

1. Catastrophic errors
2. Processor uncorrectable errors

3. Processor corrected errors

4. System uncorrectable errors

5. System correctable errors

Catastrophic Errors

Catastrophic errors are those errors that indicate that the machine is left in a state where execution cannot

be reliably restarted. Errors may be catastrophic if they indicate that the hardware cannot be trusted to
execute properly or if the state of data within the system cannot be determined. The conditions that will
be considered catastrophic are processor-implementation specific. It is likely however, that uncorrectable
machine checks taken while a machine check handler is executing will be considered catastrophic.

IS THIS WHERE WE DO THE MACHINE CHECK HALT?

Processor Uncorrectable Errors

Processor uncorrectable errors are that class of errors that are detected by the processor and exhibit data

errors that cannot be reliably corrected. The actual errors that fit this class are processor implementation
defined.

Processor Corrected Errors

Processor corrected errors are data errors detected by the processor that can be reliably corrected. The

PALcode may or may not have to intervene in order the correct the errors.

System Uncorrectable Errors

System uncorrectable errors are errors that are detected by the system hardware and have not been
corrected.

System Correctable Errors

System correctable errors are detected by the system hardware and have been corrected so that incorrect

data has not been read into the processor.

The general model for machine check handling in NT/Alpha AXP has the following flow:

1. The PALcode corrects the error if possible
2. The PALcode sets the machine to a known state from which restart is possible (if reliable restart is not

possible then the PALcode will raise an unrecoverable hardware error via a panic exception).

3. The PALcode builds a logo frame describing the detected error.

4. The PALcode sets processor IRQL appropriately (see below).

5. The PALcode dispatches a general exception to the kernel.

6. The kernel will forward the exception to the HAL for handling.

7. If the HAL is able to handle the exception then execution resumes

8. If the HAL is unable to handle the exception then

a. If correctable error, the kernel will ignore the error and resume execution

b. If uncorrectable error and the previous mode was user-mode the kernel will raise

the exception to the user thread

c. If uncorrectable error and the previous mode was kernel mode then the kernel will initiate a

bugcheck to shutdown execution

The machine check error summary register is used to indicate and control the current state of machine

check handler for the processor. A description of the MCES register follows:

Figure 11 Machine Check Error Summary
31..6 5 4 3 2 01

Reserved DMCK DSC DPC PCE SCE MCK

Table 10 Machine Check Error Summary Fields
Field Type |Description
DMCK RW Disable all machine checks.

DSC Disable System Correctable error reportingRW

DPC RW Disable Processor Correctable error reporting

Processor Correctable Error reportedPCE RW

SCE System Correctable Error reported

Machine Check (uncorrectable) reported

RW

MCK RW

All machine checks (correctable and uncorrectable) are maskable via the DMCHK bit in the MCES

register. This bit is provided with the intention that it be used to debug systems only. The initial value is

implemenation-specific but wherever possible will attempt to preserve the state of machine check enables
from the previous PALcode environment during initialization.

The correctable errors (both system and processor) are maskable via the MCES internal processor

register. Correctable errors are disabled in PAL initialization and must be explicitly enabled by the HAL.

Correctable errors are delivered from the PALcode to give the HAL a chance to log the errors. It is
optional but recommended that the HAL take advantage of this opportunity. The PALcode will build a
logout frame with per-processor information that will assist the HAL in logging the error.

Uncorrectable errors (both system and processor) are likely to be unrecoverable. The machine check

exception is raised to the HAL to give an opportunity for per-platform error handling. Uncorrectable

errors will be delivered immediately upon detection. The PALcode will create a logout frame with per-

processor information to assist the HAL in handling the error condition.

PALcode will populate the exception record with following the following values for a machine check;

ErExceptionCode(er) <- DATA_BUS_ERROR

ErExceptionInfonnation<0>(er) <- machine check type

ErExceptionInfonnation<l>(er) pointer to logout frame

ErNumberParameters(er) <- 2

ErExceptionFlags <- 0

ErExceptionRecord <- 0

IS THERE A RETRYABLE FLAG AS WELL?

where:

1. er is the exception record pointer, it is anticipated that frequently this will be the aO

register which is set to point to the exception record on entry on the kernel for all

general exceptions.

2. machine check type is determined by the following table

Figure 11 Machine Check Types
Machine check Machine check type code

Processor Uncorrectable 1

Processor Correctable 2

System Uncorrectable 3

System Correctable 4

3. virtual address of the logout frame is a 32-bit super-page address and the logout

frame has a per-processor format

Machine checks differ from all other general exceptions in that they effect and are effected by the current
processor IRQL. Corrected machine checks raise IRQL to 6 before dispatching to the kernel.

Uncorrected machine checks raise IRQL to 7. Where possible, corrected machine checks will only be

delivered if the current processor IRQL is below 7. Correctable machine checks recognized when IRQL

= 7 or when interrupts are disabled will be deferred until IRQL falls below 7 and interrupts are enabled.

Uncorrectable machine checks will be delivered immediately regardless of the current IRQL.

The draina (drain aborts) privileged call pal is provided to allow software to force completion of all

previously executed instructions such that the previous instructions cannot cause machine checks to be

signaled while any instructions subsequent to the draina are executed. Note that due to the per-processor
possibilities for draina the drain operation may require per-processor native code support as well.

22. BrggkpQintg gnd Debugger gyipport

Breakpoint instructions will raise general exceptions. NT/Alpha AXP supports several different

breakpoint instructions. Many of these breakpoints are implemented to support the kernel debugger on

NT and essentially are special subroutine calls. The exact semantics of these calls are not important to

the PALcode - all breakpoints are handled in the same manner and are distinguished only by the

breakpoint type that is written into the exception record.

All breakpoints are implemented as unprivileged call pals which leaves the policy decision as to whether
the breakpoint can be taken in the current mode to the kernel.

The following table lists the breakpoint opcodes and their corresponding breakpoint types:

Table 12 Breakpoint Types

DescriptionBreakpoint

Opcode
Mnemonic

Breakpoint Type

user breakpointUSER BREAKPOINTbpt

kernel breakpointkbpt kernel breakpoint

passed in vO call kernel debuggercallkd

The faulting instruction address for all breakpoints will be the virtual address of the breakpoint call pal
instruction.

PALcode will complete the exception record for Breakpoints as follows:

ErExceptionCode(er) <— STATUS_BREAKPOINT

ErExceptionInformation<0>(er) <- breakpoint type

ErNumberParameters(er) <- 0

ErExceptionFlags(er) <- 0

ErExceptionRecord(er) <- 0

where:

er = exception record pointer

23. Software Exceptions

Software may raise exceptions via the unprivileged call pal gentrap (generate trap). The gentrap

instruction is used to raise exceptions recognized in (possibly)user-mode software for conditions such as

divide by zero. (The Alpha AXP architecture does not provide an integer divide instruction; division is

accomplished by specialized divide routines.)

The gentrap call pal takes a single parameter which is preserved but not interpreted by the PALcode. The
gentrap parameter is written into the exception record where it will be interpreted by the kernel exception

handler. Gentrap uses the status: STATUS_ALPHA_GENTRAP as an exception code. The kernel

exception dispatcher will interpret the gentrap parameter to determine the appropriate NT status to raise

to the currently executing thread.

The faulting address for a gentrap exception will be the virtual address of the executed gentrap call pal
instruction.

The PALcode will write the following information into the exception record for a gentrap:

ErExceptionCode(er) <- STATUS_ALPHA_GENTRAP

ErExceptionInfonnation<0>(er) <- gentrap parameter (aO register upon execution of gentrap)

ErNumberParameters(er) <- 1

ErExceptionFlags <- 0

ErExceptionRecord <- 0

where:

er = exception record pointer

24. Floating pQint

Implementation Note (Hardware)

NT /Alpha AXP requires implementation of IEEE floating point in each processor
implementation.

VAX floating point format is not supported for NT/Alpha AXP.

Subsetted IEEE floating point instructions, that is those not implemented in hardware, will be

raised by the PALcode as illegal instruction exceptions.

We do not support FEN (floating enable) faults in NT. Floating point instructions are always enabled.

25, Debug v§. PALpp^e

Each implementation is required to supply 2 versions of the PALcode to the operating systems group:
debug PALcode and free, or production, PALcode. The debug PALcode is a functional super-set of the
production PALcode which is specified in this document. The debug PALcode includes extra counters

for performance evaluation and additional sanity checks. We cannot burden the production PALcode

with the performance loss necessary to implement these features. The debug PALcode will be used in the
laboratory only.

The debug PALcode contains the following additional features:

Kernel stack underflow/overflow checking
Special I/O address checking
Event counters

1.

2.

3.

Kernel Stack Checking

Whenever, the debug PALcode allocates a trap frame and the previous mode was kernel mode it must
check for kernel stack underflow and overflow. Underflow occurs when the kernel mode sp is greater

than the initial kernel stack pointer (IKSP) for the thread. Two pages of kernel stack are allocated for
each thread. Overflow is detected whenever the kernel mode stack pointer would be less than (IKSP - 2 *

PAGE_SIZE). Kernel stack underflow and overflow are indicated with a panic exception (documented in

the panic exception section).

I/O Address Checking
Alpha AXP systems that use standard buses and drivers cannot provide direct access to I/O space

addresses (as would Intel-based systems). Instead, the Alpha AXP systems provide access to I/O space

by allowing the standard device drivers to use address handles, provided by the HAL, that may be treated

as standard I/O virtual addresses for all operations except the I/O accesses themselves. The I/O accesses

must be performed by specialized routines in the HAL that are able to convert the address handles to the

actual virtual addresses used for the I/O space accesses. The HAL will use the range of numbers
OxaOOOOOOO: Oxbfffffff to represent these address handles whenever possible. This range of numbers
falls into the upper half of the 32-bit super-page address range. The debug PALcode will disable the 32-

bit super-page in hardware and provide support for the lower half of the 32-bit super-page in PALcode

(the range of addresses 0x80000000: 0x9fffffff). Addresses in the range OxaOOOOOOO: Oxbfffffff will be
treated as standard addresses and, since they will not be mapped, will cause memory management faults

(translation not valid). This support in the PALcode will allow easy and precise trapping of device driver
code that attempts to access I/O addresses directly without using the intended access routines provided by
the HAL.

Event Counters

The debug PALcode will provide software counters to count significant events within the PALcode. The

PALcode will also provide a privileged call pal to allow kernel-mode code to read the counters:

rdcounters. Rdcounters is documented in the privileged call listing section of this document. The events

counted are implementation-specific but must include the following: a separate counter for each of the

different call pal functions, TB miss counts, and interrupt counts. The format of the data returned by

rdcounters is also implementation-specific, however, all counters must be 64-bit counters.

26. Qgll pal listings

The call pal functions for NT/Alpha AXP generally follow the NT/Alpha AXP calling standard, that is,

arguments are passed in the argument registers: aO - a5, and return values are returned in the value

register: vO. In some cases exact adherence to the calling standard is inconvenient and/or unnecessary.
The call pals also incorporate the following rules into their own calling standard:

1. Only the argument registers (aO - a5) are considered volatile

2. All parameters are passed in registers

3. The return address register is not used

The argument registers are used as volatile registers because often they contain parameters to the call
pals. In strict accordance to the calling standard the temporary registers: tO - tl2 could also be considered

volatile in the call pal functions but they are not. The reason the temporaries are not considered volatile

is that the call pals generally don't need that many free registers and it is convenient in assembly

language, from which the call pals are most frequently called, to be able to assume that the temporaries

are preserved across the call pal.

All parameters to the call pal functions are passed in registers. If the number of parameters exceeds the

available number of argument registers then additional temporary registers will be used as arguments.

This precludes the need for callers to be build an appropriate stack frame for call pals with more than 6

parameters.

The RETURN_ADDRESS register indicates the next execution address when the PALcode exits. Upon

entry to each of the call pal functions the RETURN_ADDRESS register is considered to contain the

address of the instruction immediately following the call pal instructions.

A range of privileged call pals has been reserved for processor-implementation specific call pals that
allow specialized communication between the HAL and the PALcode.

Privileged Call PAL functions

Figure 13 Privileged Call PALs
OpcodeDescriptionMnemonic

0x00halt the processorhalt

0x01restart the processorrestart

0x02draina drain aborts

0x04initpal initialize the PALcode

0x05write system entrywrentry

0x06swpirql swap IRQL
0x07read current IRQLrdirql
0x08disable interruptsdi

0x09enable interruptsei

OxOaswppal swap PALxode
OxOcset software interrupt requestssir

OxOdclear software interrupt requestcsir

OxOerfe return from exception

return from system service call OxOfretsys

0x10swap privileged thread contextswpctx

swap privileged process context 0x11swpprocess

0x12read machine check error summaryrdmces

0x13write machine check error summarywrmces

0x14tbia translation buffer invalidate all

0x15translation buffer invalidate singlethis

data translation buffer invalidate single 0x16dtbis

0x17translation buffer invalidate single for asntbisasn

0x18read initial kernel stackrdksp

swap initial kernel stack 0x19swpksp
Oxlaread processor status registerrdpsr

read PCR (processor control registers) Oxlcrdper
Oxleread the current thread valuerdthread

write performance monitoring values 0x20wrperfmon

0x30rdcounters read PAL event counters (Debug only)

read internal processor state 0x31rdstate

Opcodes 0x38 - 0x3f are reserved for processor implementation-specific call pal functions.

All other opcodes are reserved for Digital's use.

csir

Clear software interrupt request.

Parameters:

aO = Software interrupt requests to clear.

Return Value:

None.

Description:

Draina is used to drain all aborts, including machine checks from the current processor. Draina

guarantees that no abort will be signaled for an instruction issued before the draina while any

instruction issued subsequent to the draina is executing.

GPR State Change:
None.

IPR State Change:
SIRR <- a0<1..0>.

Operation:

if (PSR<Mode> EQ User) then

{initiate illegal instruction exception)
endif

if (aO<l> EQ 1) then
SIRR<DPC> <-0

endif

if (a0<0> EQ 1) then
SIRR<APC> <-0

endif

Exceptions:

Illegal Instruction, Machine Checks

di

Disable all interrupts.

Parameters:

None.

Return Value:

None.

Description:

Di disables all interrupts by clearing the IE (interrupt enable bit) in the PSR. IRQL is

unaffected. Interrupts may be re-enabled via the ei call pal function.

GPR State Change:
None.

IPR State Change:
PSR<IE> <- 0.

Operation:

if (PSR<Mode> EQ User) then

{initiate illegal instruction exception}
endif

PSR<IE> <- 0.

Exceptions:

Illegal Instruction, Machine Checks

draina

Drain all aborts including machine checks.

Parameters:

None.

Return Value:

None.

Description:

Draina is used to drain all aborts, including machine checks from the current processor. See the

Alpha AXP SRM Common Architecture for a complete definition (of this so vaguely defined
function that it is in fact worthless).

GPR State Change:
None.

IPR State Change:
None.

Operation:

if (PSR<Mode> EQ User) then

{initiate illegal instruction exception)
endif

{ implementation-specific drain }

Exceptions:

Illegal Instruction, Machine Checks

dtbis

Data translation buffer invalidate single.

Parameters:

aO = virtual address of translation to invalidate.

Return Value:

None.

Description:

Dtbis is used to invalidate a single data stream translation. The translation for the virtual address

in aO must be invalidated in all data translation buffers and in all virtual data caches.

GPR State Change:

aO - a5 are unpredictable.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

(invalidate all translations in the data stream for the virtual address in aO]

Exceptions:

Illegal Instruction, Machine Checks

ei

Enable interrupts..

Parameters:

None.

Return Value:

None.

Description:

Ei enables interrupts for the IRQL set in the PSR by setting the IE bit in the PSR.

GPR State Change:
None.

IPR State Change:
PSR<IE> ^ 1.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

PSR<IE> <- 1.

Exceptions:

Illegal Instruction, Machine Checks

halt

Halt the operating system and return to the boot environment.

Parameters:

None.

Return Value:

None.

Description:

Halt stops the operating system from executing and returns execution to the boot environment.

Halt is responsible for completing the ARC Restart Block before returning to the boot

environment. The PALcode must accomplish 2 tasks to restore the boot environment: re

establish the boot environment PALcode and restart execution in the boot environment at the

Firmware Restart Address.

GPR State Change:

All registers are unpredictable.

IPR State Change:
PAL_BASE <- PREVI0US_PAL_BASE.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

RestartBlockPointer <- PcRestartBlock(PCR)

(if cannot verify restart block, restart previous PALcode }

(save general purpose register state in saved state area]

(save internal processor register state in saved state area, includes OS PAL base address }

{ save implementation-specific data in saved state area]

{ set the saved state length in restart block)
{ set PowerFailFinished in BootStatus of restart block)

(compute and store Checksum for restart block }
PAL_BASE 4- PREVI0US_PAL_BASE.

(imb)

(tbia I

(di)

RESTART_ADDRESS <- PcFirmwareRestartAddress(PCR)

Exceptions:

Illegal Instruction, Machine Checks

initpal

Initialize PAL data structures with operating system values.

Parameters:

aO = page directory entry page, super-page 32 address
al = initial thread value

a2 = initial teb value

a3 = maximum kernel stack size

sp = initial kernel stack pointer

gp = kernel global pointer

Return Value:

None.

Description:

Initpal is called early in the kernel initialization sequence to establish values for IPRs that are

needed for trap and fault handling. Some of these values (KGP, PCR, PRCB) are initialized

once and persist throughout the run-time of the operating system.

GPR State Change:

aO - a3 are unpredictable.

IPR State Change:

IKSP <- sp
PDR 4- aO

<-gP

PCR <-al

PRCB <- a2

THREAD <- a3

KGP

Operation:

if (PSR<MODE> EQ User) then

(initiate illegal instruction exception)
endif

PDE

PCR

PRCB <- a2

THREAD <- a3

IKSP

KGP

PcPalBaseAddress(PCR) <- PAL_BASE

PcPalMajorVersion(PCR) <- PalMajorVersion

PcPalMinorVersion(PCR) <— PalMinorVersion

PcPalSequenceVersion(PCR) PalSequenceVersion

PcPalMajorSpecification(PCR) <- PalMajorSpecification

PcPalMinorSpecification(PCR) <- PalMinorSpecification

<- aO

<- al

<- sp

<-gP

where:

PalMajorVersion, PalMinorVersion, PalSequenceVersion are implementation-defined

PalMajorSpecification, PalMinorSpecification are the revision numbers of this

document to which the PALcode image compiles

Exceptions:

Illegal Instruction, Machine Checks

rdcounters DEBUG ONLY

Read the current values of the software event counters within the PALcode.

Parameters:

aO = pointer to counter record.

Return Value:

None.

Description:
Rdcounters causes the PALcode to write the state of its internal software event counters into the

counter record pointed to by the address passed in the aO register. The format and content of
the software event counter record are implementation-specific.

For production PALcode this code point will be treated as an illegal instruction.

GPR State Change:
None.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

(dump event counter values to the counter record }

Exceptions:

Illegal Instruction, Machine Checks

rdirql

Read the current IRQL from the PSR.

Parameters:

None.

Return Value:

vO = current IRQL.

Description:

Rdirql is used to read the current IRQL from the PSR.

GPR State Change:

vO <- PSR<IRQL>.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

(initiate illegal instruction exception}
endif

vO <- PSR<IRQL>.

Exceptions:

Illegal Instruction, Machine Checks

rdksp

Read initial kernel stack pointer for the current thread.

Parameters:

None.

Return Value:

vO = initial kernel stack pointer.

Description:

Rdksp returns the value of the initial kernel stack pointer for the currently executing thread.

GPR State Change:
None.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

(initiate illegal instruction exception}
endif

vO <- IKSP

Exceptions:

Illegal Instruction, Machine Checks

rdmces

Read the machine check error summary register.

Parameters:

None.

Return Value:

vO = machine check error summary.

Description:
Rdmces returns the contents of the machine check error summary register (MCES).

GPR State Change:
None.

IPR State Change:
vO <- MCES.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

vO <- MCES

Exceptions:

Illegal Instruction, Machine Checks

rdpcr

Read the processor control registers base address.

Parameters:

None.

Return Value:

vO = processor control registers base.

Description:

Rdpcr returns the value of the processor control registers.

GPR State Change:
vO <- PCR.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

vO<-PCR

Exceptions:

Illegal Instruction, Machine Checks

rdpsr

Read the current PSR.

Parameters:

None.

Return Value:

vO = current PSR.

Description:

Rdpsr returns the value of the current PSR.

GPR State Change:
vO <- PSR

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

(initiate illegal instruction exception}
endif

vO ^ PSR

Exceptions:

Illegal Instruction, Machine Checks

rdstate

Read the current internal processor state.

Parameters:

aO = pointer to internal processor state record.

Return Value:

None.

Description:

Rdstate causes the PALcode to write the internal processor state to the internal processor state

record pointed to by the address passed in the aO register. The format and content of the

internal processor state record are implementation-specific.

For production PALcode this code point will be treated as an illegal instruction.

GPR State Change:
None.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

(dump internal processor state to the processor state record }

Exceptions:

Illegal Instruction, Machine Checks

rdthread

Read the thread value for the current thread.

Parameters:

None.

Return Value:

vO = thread value for the currently executing thread.

Description:

Rdthread returns the value of the currently executing thread.

GPR State Change:
vO <- THREAD.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

vO <- THREAD

Exceptions:

Illegal Instruction, Machine Checks

restart

Restart the operating system from the restart block.

Parameters:

None.

Return Value:

None.

Description:

Restart restores saved processor state and resumes execution of the operating system.

GPR State Change:

All registers are unpredictable.

IPR State Change:

All registers are unpredictable.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

RestartBlockPointer <- PcRestartBlock(PCR)

{ restore general purpose register state from saved state area)

(restore internal processor register state from saved state area, includes OS PAL base address }

(restore implementation-specific data from saved state area }

(set RestartFinished in BootStatus of restart block]

(compute and store Checksum for restart block)

RESTART_ADDRESS <- RbRetumAddress(RestartBlockPointer)

Exceptions:

Illegal Instruction, Machine Checks

retsys

Return from trap or interrupt.

Parameters:

aO = previous PSR.

al = new software interrupt requests
fp = pointer to Trap Frame

Return Value:

vO = system service completion status.

Description:

Retsys returns from a system service call exception by unwinding the trap frame and returning to

the code stream that was executing when the original exception was initiated. In addition, retsys

accepts a parameter to allow it to set software interrupt requests that have become pending while
the exception was handled.

GPR State Change:

ra <- TrlntRa(TrapFrame).

gp <- TrlntGp(TrapFrame).

fp <- TrlntFp(TrapFrame).

sp <— TrlntSp(TrapFrame).

tO - tl2, aO - a5 are unpredictable.

IPR State Change:
PSR 4- aO.

SSlR<-al<1..0>.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

if (al<l> EQ 1) then
S1RR<DPC> <- 1

endif

if (al<0> EQ 1) then
SIRR<APC> <- 1

endif

ra <- TrlntRa(TrapFrame).

gp 4- TrlntGp(TrapFrame).

fp <r- TrlntFp(TrapFrame).

sp 4- TrlntSp(TrapFrame).

RESTART_ADDRESS 4- TrlntFir(TrapFrame)
PSR 4- aO

Exceptions:

Illegal Instruction, Machine Checks, Invalid Kernel Stack.

rfe

Return from trap or interrupt.

Parameters:

aO = previous PSR.
al = new software interrupt requests,

fp = pointer to TrapFrame

Return Value:

None.

Description:

Rfe returns from exceptions by unwinding the trap frame and returning to the code stream that

was executing when the original exception was initiated. In addition, rfe accepts a parameter to

allow it to set software interrupt requests that have become pending while the exception was
handled.

GPR State Change:

aO <- TrlntAO(TrapFrame).

al <- TrlntAl(TrapFrame).

a2 <- TrIntA2(TrapFrame).

a3 <- TrIntA3(TrapFrame).

ra <- TrlntRa(TrapFrame).

gp <- TrlntGp(TrapFrame).

fp <- TrlntFp(TrapFrame).

sp <- TrlntSp(TrapFrame).

IPR State Change:
PSR <- aO.

SSIR<-al<1..0>.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

if(al<l>EQ 1) then
SIRR<DPC> <- 1

endif

if (al<0> EQ 1) then
SIRR<APC> ^ 1

endif

temp <- aO

aO <- TrlntAO(TrapFrame).

al <- TrlntAl(TrapFrame).

a2 <- TrIntA2(TrapFrame).

a3 <— TrIntA3(TrapFrame).

ra <- TrlntRa(TrapFrame).

gp <— TrlntGp(TrapFrame).

fp <- TrlntFp(TrapFrame).

sp <- TrlntSp(TrapFrame).

RESTART_ADDRESS <- TrlntFir(TrapFrame)

PSR <- temp

Exceptions:

Illegal Instruction, Machine Checks, Invalid Kernel Stack.

swpirql

Swap the current IRQL (Interrupt Request Level).

Parameters:

aO = new IRQL.

Return Value:

vO = previous IRQL..

Description:

Swpirql swaps the current IRQL by setting the processor so that only interrupts that are

permitted are enabled for the new IRQL. Swpirql updates the IRQL field of the PSR and returns

the previous IRQL.

GPR State Change:

vO <-PSR<IRQL>.

aO - a3 are unpredictable.

IPR State Change:

PSR<IRQL> <- aO.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

vO <-PSR<IRQL>.

PSR<IRQL> <- aO.

Exceptions:

Illegal Instruction, Machine Checks

swpksp

Swap the initial kernel stack pointer for the current thread.

Parameters:

aO = new initial kernel stack pointer.

Return Value:

vO = previous initial kernel stack pointer.

Description:

Swpksp returns the value of the previous initial kernel stack pointer and writes a new initial
kernel stack pointer for the currently executing thread.

GPR State Change:
vO <- IKSP

IPR State Change:
IKSP <- aO.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

vO IKSP

IKSP <- aO

Exceptions:

Illegal Instruction, Machine Checks

swppal

Swap the currently executing PALcode.

Parameters:

aO = base address of new PALxode.

Return Value:

None.

Description:

Swppal swaps the currently executing PALcode by transferring to the base address of the new

PALcode image (provided in aO) in PAL mode.

GPR State Change:

All are unpredictable.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

(imb }

{ tbia }

(di)

(jump to address in aO in PAL mode }

Exceptions'.-

Illegal Instruction, Machine Checks

swpprocess

Swap process context (swap address space).

Parameters:

aO = page frame number(PFN) of new page directory pointer (PDR).

al = address space number(ASN) of new process.

Return Value:

None.

Description:

Swpprocess swaps the privileged process context by changing the address space for the currently
executing thread. The address space change is accomplished by establishing a new ASN and a

new PDR. In addition, swpprocess is responsible for executing an implicit tbiap whenever the

ASN wraps. The tbiap is executed by invalidating all translations and virtual cache blocks that

do not have the Global (or Address Space Match) bit set. Address space number wrapping is

signaled whenever the address space number is equal to the maximum address space number

(MaxASN) for the implementation.

GPR State Change:

aO - a3 are unpredictable.

IPR State Change:
PDR <- aO.

ASN<-al.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

temp <- SHIFT_LEFT(aO, PAGE_SHIFT)

temp <- temp OR Super32Base

PDR <- temp.
ASN<-al.

if (ASN EQ MaxASN) then

{ invalidate all translations and virtual cache blocks that do not have the Global bit set)

endif

where:

2**PAGE_SHIFT = implementation page size
Super32Base = base of 32-bit super-page = 0x80000000

Exceptions:

Illegal Instruction, Machine Checks

swpctx

Swap thread context.

Parameters:

aO = va of initial kernel stack pointer for new thread,

al = pte for first kernel stack page of new thread.
a2 = pte for second kernel stack page of new thread.
a3 = new thread value.

a4 = new thread environment block pointer.

a5 = new address space PDR page frame number or a negative number

to = ASN for new address space

Return Value:

None.

Description:

Swpctx swaps the privileged portions of thread context. Thread context is swapped by

establishing the new thread's kernel stack and writing the new thread value and new TEB

pointer. The ptes for the new kernel stack are passed to allow the PALcode to optionally

establish the kernel stack mappings during the context switch. If the PALcode does not use the

ptes then the kernel stack translations will be demand-faulted. Note, if the kernel stack is a 32-

bit super-page address then the PALcode must ignore the ptes and not perform the mapping.

Swpctx may also swap the address space (or process) for the new thread. If the new thread is in

the same process (address space) as the previous thread then the kernel will pass a negative

value for the PDR page frame number indicating that the address space need not be switched. If

the PDR page frame number is zero or a positive number then the PDR PFN and the ASN will

be used to swap the address space just as if swpprocess had been executed.

GPR State Change:

aO - a5 are unpredictable.

IPR State Change:
IKSP <- aO.

THREAD <- a3.

TEB <- a4.

PDR <- a5 (possibly).

ASN <- to (possibly).

Operation:

if (PSR<MODE> EQ User) then

(initiate illegal instruction exception}
endif

IKSP <- aO.

THREAD <- a3.

TEB <- a4.

if (aO GE OxcOOOOOOO) then ! NOT super-page 32 kernel stack

{ optional: map kernel stack (first insuring that kernel stack translations are not already

valid)]
endif

if (a5 GE 0) then

temp ^ SH1FT_LEFT(a5, PAGE_SH1FT)

! swap address space

temp <— temp OR Super32Base

PDR <- temp.
ASN <- to.

if(ASNEQMaxASN)then

{invalidate all translations and virtual cache blocks that do not have the

Global bit set)
endif

endif

where:

2**PAGE_SHIFT = implementation page size
Super32Base = base of 32-bit super-page = 0x80000000

Exceptions:

Illegal Instruction, Machine Checks

ssir

Set software interrupt request.

Parameters:

aO = Software Interrupt Requests to set.

Return Value:

None.

Description:

ssir set software interrupt requests by setting the appropriate bits in the SIRR.

GPR State Change:

aO - a3 are unpredictable.

IPR State Change:
SIRR <-a0<1..0>

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

if(aO<l>EQ 1) then
SIRR<DPC> <- 1

endif

if (a0<0> EQ 1) then
SIRR<APC> <- 1

endif

Exceptions:

Illegal Instruction, Machine Checks

tbia

Translation buffer invalidate all.

Parameters:

None.

Return Value:

None.

Description:
Tbia invalidates all translations and virtual cache blocks within the processor.

GPR State Change:

aO - a5 are unpredictable.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

{invalidate all translations and virtual cache blocks within the processor]

Exceptions:

Illegal Instruction, Machine Checks

this

Translation buffer invalidate single.

Parameters:

aO = virtual address of translation to invalidate.

Return Value:

None.

Description:

This is used to invalidate a single virtual translation. The translation for the passed virtual

address must be invalidated in all processor translation buffers and virtual caches.

GPR State Change:

aO - a5 are unpredictable.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

(invalidate all translations for the virtual address in aO, invalidate in all translation buffers and

in all virtual caches }

Exceptions:

Illegal Instruction, Machine Checks

tbisasn

Translation buffer invalidate single for asn.

Parameters:

aO = virtual address of translation to invalidate,

al = address space number

Return Value:

None.

Description:

Tbisasn is used to invalidate a single virtual translation for a specified address space. The

translation for the passed virtual address must be invalidated in all processor translation buffers
and virtual caches.

GPR State Change:

aO - a5 are unpredictable.

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

{ invalidate all translations for the virtual address in aO, invalidate in all translation buffers and

in all virtual caches }

Exceptions:

Illegal Instruction, Machine Checks

wrentry

Write kernel exception entry routine.

Parameters:

aO = address of exception entry routine, super-page 32 address

al = exception class value

Return Value:

None.

Description:

Wrentry is used to register kernel exception handling routines for an exception class. The

address in aO is registered for the exception class corresponding to the exception class value in

al. The kernel must use wrentry to register an exception handler for each of the exception

classes. The relation between the exception classes and the exception class values is captured in

the following table:

Table 14 Exception Class Values

Exception Class Exception
Class Value

0Panic Exceptions

Memory Management Exceptions 1

2Interrupt Exceptions

System Service Exceptions 3

General Exceptions 4

GPR State Change:

aO - a3 are unpredictable.

IPR State Change:

*_ENTRY <-a0

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

case al begin
0:

PANIC_ENTRY <- aO

break;

1:

MEM_MGMT_ENTRY <- aO

break;

2:

INTERRUPT_ENTRY <- aO

break;

3:

SYSCALL_ENTRY <- aO

break;

4:

GENERAL_ENTRY <- aO

break;
otherwise:

{initiate panic exception}
endcase;

Exceptions:

Illegal Instruction, Machine Checks, Panic Exception

wrDices

Write the machine check error summary register.

Parameters:

aO = new values for the machine check error summary register.

Return Value:

None.

Description:

Wrmces writes new values for the MCES register. Some of the fields of the register are direct

writes while others are writes to reset (clear) bits already set.

GPR State Change:
None.

IPR State Change:
MCES <- aO.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception}
endif

MCES<DSC> a0<4>

MCES<DPC> <- a0<3>

if (a0<2> EQ 1) then
MCES<PCE> 0

endif

if (aO<l> EQ 1) then
MCES<SCE> 4- 0

endif

if(a0<0> EQ 1) then
MCES<MCK> <- 0

endif

Exceptions:

Illegal Instruction, Machine Checks

Unprivileged Caii PAL functions

Figure 15 Unprivileged Call PALs
OpcodeMnemonic Description

0x80bpt breakpoint trap

0x83callsys call system service

instruction memory barrier 0x86imb

Oxaagentrap generate trap

read TEB (thread environment block) Oxabrdteb

kernel breakpoint trap Oxackbpt

Oxadcallkd call kernel debugger

Reserved unprivileged Call PAL Opcodes

0x81

0x9e

0x9f

Oxae

II Oxaf

bpt

Breakpoint trap (standard user-mode breakpoint).

Parameters:

None.

Return Value:

None.

Description:

Bpt raises a breakpoint general exception to the kernel setting a breakpoint type of
user_breakpoint.

GPR State Change:
See General Exception Dispatch and Breakpoint handling.

IPR State Change:

See General Exception Dispatch and Breakpoint handling.

Operation:
See General Exception Dispatch and Breakpoint handling.

Exceptions:

Illegal Instruction, Machine Checks, Kernel Stack Invalid

callkd

Call kernel debugger.

Parameters:

vO = Kernel breakpoint type.

Return Value:

None.

Description:

Callkd raises a breakpoint general exception to the kernel setting the breakpoint type with the

value supplied in vO. This function is used to implement special calls to the kernel debugger
(kd).

GPR State Change:

See General Exception Dispatch and Breakpoint handling.

IPR State Change:
See General Exception Dispatch and Breakpoint handling.

Operation:

See General Exception Dispatch and Breakpoint handling.

Exceptions:

Machine Checks, Kernel Stack Invalid

callsys

System Service Call.

Parameters:

None, aO - a5 preserved through call, vO = system service number.

Return Value:

None.

Description:

Callsys raises a system service exception to the kernel. The system call has the software
semantics of a standard procedure call so that all volatile registers are considered free, callsys

switches to kernel mode if necessary and builds a trap frame on the kernel stack and then enters

the kernel at the kernel system service exception handler.

GPR State Change:
to <- PSR.

IPR State Change:
PSR<MODE> <- KemelMode

Operation:

previousPSR <- PSR

if(PSR<MODE> EQ UserMode) then
PSR<MODE> <- KemelMode

tp <- IKSP - TrapFrameLength
else

tp <— sp - TrapFrameLength
endif

TrlntSp(tp) <- sp

TrlntFp(tp) <- fp

TrlntRa(tp) <- ra

TrlntGp(tp) <- gp

TrFir(tp) <- ra

TrPsr(tp) <-previousPSR

gp <- KGP

sp <- tp

TrServiceStack(tp)

fp<-tp

to <- previousPSR<MODE>

RESTART_ADDRESS <- SYSCALL_ENTRY

sp

Exceptions:

Illegal Instruction, Machine Checks, Kernel Stack Invalid

gentrap

Generate a trap.

Parameters:

aO = trap reason code.

Return Value:

None.

Description:

Gentrap generates a software general exception which will raise an exception to the current

thread. The trap reason code will be used to generate the NT status/exception code raised to the
current thread. Genttap is expected to be used to raise software detected exceptions such as
bound check errors or overflow conditions.

GPR State Change:

See General Exception Dispatch and Software Exception handling.

IPR State Change:
See General Exception Dispatch and Software Exception handling.

Operation:
See General Exception Dispatch and Software Exception handling.

Exceptions:

Machine Checks, Kernel Stack Invalid

imb

Instruction Memory Barrier.

Parameters:

None.

Return Value:

None.

Description:

Imb guarantees that all subsequent instruction stream fetches will be coherent with respect to

main memory. Imb must be issued before executing code in memory that has modified (either

by stores from the processor or DMA from an I/O processor).

GPR State Change:
None.

IPR State Change:
None.

Operation:

[make processor instruction stream coherent with main memory)

Exceptions:

Machine Checks, Kernel Stack Invalid

kbpt

Kernel breakpoint trap.

Parameters:

None.

Return Value:

None.

Description:

Kbpt raises a breakpoint general exception to the kernel setting a breakpoint type of
kernel_breakpoint.

GPR State Change:

See General Exception Dispatch and Breakpoint handling.

IPR State Change:

See General Exception Dispatch and Breakpoint handling.

Operation:

See General Exception Dispatch and Breakpoint handling.

Exceptions:

Machine Checks, Kernel Stack Invalid

rdteb

Read the thread environment block pointer for the currently executing thread.

Parameters:

None.

Return Value:

vO = current TEB

Description:

Rdteb returns the thread environment block (TEB) pointer for the currently executing thread.

GPR State Change:
vO <- TEB

IPR State Change:
None.

Operation:
vO <- TEB

Exceptions:

Machine Checks, Kernel Stack Invalid

27. Architected Internal Processor Registers

The following internal processor registers are defined across all implementations. It is implementation-

dependent how these registers are implemented within the processor.

Table 16 Internal Processor Registers

DescriptionIPR Name

ASN Address Space Number of current process

GENERAL ENTRY General exception class kernel handler address

Initial Kernel Stack PointerIKSP

Interrupt exception class kernel handler addressINTERRUPT ENTRY

KGP Kernel Global Pointer

MCES Machine Check Error Summary

MEM MGMT ENTRY Memory Management exception class kernel handler address

PAL image base addressPAL BASE

PANIC ENTRY Panic exception class kernel handler address

Processor Control Registers base address

Page Directory base address

PCR

PDR

PSR Processor Status Register

RESTART ADDRESS Restart execution address

SIRR Software Interrupt Request Register

SYSCALL ENTRY System Service exception class kernel handler address
TEB Thread environment block base address

Thread unique value (kernel thread address)THREAD

ASN

Address Space Number

31.. 16 15 ..0

RAZ ASN

Field Initial Value DescriptionType
ASN Address space number for current processWO 0

Description:

The Address Space Number is a process tag that may be used by the processor to qualify each

virtual translation. When the translations are qualified it will not be necessary for the processor

to flush all virtual translations for previous processes when performing a context swap or process

swap. If a processor does not implement ASNs then its MaximumASN will equal zero and zero

will be passed for all context and process swaps. The ASN is provided in the call pal functions

swpctx and swpprocess.

GENERAL ENTRY

General Exception Class kernel handler entry address.

31 ..0

ADDR

DescriptionField Type Initial Value

Unpredictable Kernel entry address, 32-bit super-page format.ADDR RW

Description:

The GENERAL_ENTRY register contains the entry address of the kernel exception handler for

the General class of exceptions. GENERAL_ENTRY is written via the wrentry call pal
function.

IKSP

Initial Kernel Stack Pointer.

31 ..0

ADDR

Initial Value DescriptionField Type

Unpredictable Initial kernel stack address.ADDR RW

Description:

The IKSP points to the top of the kernel stack for the currently executing thread. IKSP is read

via the rdksp call pal function and written via the swpksp call pal function. IKSP is also written

in swpctx and during system initialization via initpal.

INTERRUPT ENTRY

Interrupt Exception Class kernel handler entry address.

31 ..0

ADDR

DescriptionField Type Initial Value

Unpredictable Kernel entry address, 32-bit super-page format.ADDR RW

Description:

The INTERRUPT_ENTRY register contains the entry address of the kernel exception handler

for the Interrupt class of exceptions. INTERRUPT_ENTRY is written via the wrentry call pal
function.

KGP

Kernel Global Pointer.

31 ..0

ADDR

Field Im. Initial Value Description

Unpredictable Kernel global pointer (gp) value.ADDR WO

Description:

The KGP is the global pointer value for the kernel. The PALcode restores the kernel global

pointer to the general purpose register gp whenever dispatching to a kernel exception handler.
The KGP is written via the initpal call pal function.

MCES

Machine Check Error Summary

031..5 4 3 2 1

SCE MCKRAZ DSC DPC PCE

Field Type Initial Value Description

MCK 0 Machine check (uncorrectable) in progress.RW

SCE 0 System correctable error in progress.

Processor correctable error in progress.

RW

PCE RW 0

Disable processor correctable error reporting.
1 = disable 0 = enable

DPC RW 1

DSC Disable system correctable error reporting.
1 = disable 0 = enable

RW 1

Description:

The Machine Check Error Summary register is used to report and control the current state of

machine check handling. MCES is read via the rdmces c^l pal function and written via the
wrmces call pal function. The DPC and DSC bits control whether correctable errors are reported

and are fully read/write bits. The MCK, SCE, and PCE are reporting bits that can be reset by

writing a'T to their corresponding positions with the wrmces call pal function. The reporting

bits can only be set by the PALcode machine check handler.

MEM MGMT ENTRY

Memory Management Exception Class kernel handler entry address.

31 ..0

ADDR

Field Type Initial Value Description

Kernel entry address, 32-bit super-page format.ADDR RW Unpredictable

Description:

The MEM_MGMT_ENTRY register contains the entry address of the kernel exception handler

for the Memory Management class of exceptions. MEM_MGMT_ENTRY is written via the

wrentry call pal function.

PAL BASE

PAL image base address.

PA BITS .. K K-1 .. 0

RAZADDR

where:

PA_BITS = physical address bits for the implementation

2**K = minimum PAL byte alignment for the implementation

make note that OS Loader will use 64K boundaries

Field Initial ValueliEe Description

Physical address of currenUy active PAL image.ADDR PAL imageRW

base

Description:

The PAL_BASE register controls which PALcode image is current active. PAL_BASE is the

physical address of the base of the currently active PALcode image. The hardware will vector

into the appropriate PALcode handlers as offsets from the base in the PAL_BASE register. The

offsets for each handler and the type of handler are implementation-specific, except for the reset
vector. The reset vector is the PALcode initialization vector and must begin at offset 0 within
the PALcode image.

PANIC ENTRY

Panic Exception Class kernel handler entry address.

31 ..0

ADDR

Field Type Initial Value Description

Unpredictable Kernel entry address, 32-bit super-page format.ADDR RW

Description:

The PANIC_ENTRY register contains the entry address of the kernel exception handler for the

Panic class of exceptions. PANIC_ENTRY is written via the wrentry call pal function.

PCR

Processor Control Registers.

31 ..0

ADDR

Field Type Initial Value Description

Base address of the processor control registers page. The

address must be in 32-bit super-page format.

ADDR RW Unpredictable

Description:

The PCR is the base address of the processor control registers page. The address must be a 32-

bit super-page address. The processor control registers is a page of per-processor data. The
PCR is written via the initpal call pal function and read via the rdpcr call pal function.

7? ■JT

1 '•^fr
<

V

..i^ 'VV • S

<• \

I*- M

V^'*’ ♦
ir--. ?-r.

I ■*

:a■r
t

>■■K'<■ j' ir.
■ M'

Page Directory Page 4 \

J •i-<
J •s

ri*»

^vV
V

'4
.^-

t '^1

f.c

I-
' *•

f
X/

f

.id
j»

'S•

t

V-- *.<

u■

■^f.' .4’ •t.
>*-

•■-W.4-
/

t
■ ^

>•IV i

>
I •

«

•'TS.'
\

«f-

1

%-

'i::
A

V
>

i ■•:■f -M

■i: 4I 9 »%

^'V
s

•itI
<

V .JA \<

V

I

I 4>

V
-t

V■■*.

»

I

« • ^ ■
■'X-'■'» •

■{, jT: *

Vv-
V

■I
'f.

#'r
«

b

f-

t^4■ "*■.

>.»>.*>■. •J': \ •

•>
<»v

-. tI

!I

t.
f. ¥ 4 ‘f'>1 X .

■»
•%,

t

<; I
»•.

4

4^'m
4.,1

t'

.i*

f.'X, *>. ■ %y
\9’

f. t-i ■h

r n-•4 .•: r : .-»■■X TV
A

.«
■|

• '•*i. ?

4

•f' ‘ n-.-*
'i

svi» Am
•#.'.v•»

1/»
V*

.*

V >■■ .r ■*

■:t ' > ’4
$ »*]f- ■'* ^:y 9

\
i.

..V¥ t. « t A
is

^4,'1 <•-.?»,■-i.'f.
A

■tl-
«

‘ /

>YJ

•‘4 ;•>
.24 U

. i•«

»•’
'■T *i'» • V-»+•

•.A
Hi. , S

k f •1‘- "•i/ 1'
ts

■k
4 . V.• .V-

> r-
.V

ii i>vL
/

y- -1^-

T
'4 i.

J■V,
', .v.

•'i:. V -T

1•t. ♦
A

-♦.I?:-' ??rI p'

*

Ji'. 'M\ *

'■''x< ': *>
VA .'

4.

‘i 'r-^- »

T %■■ •
.* •.

:

I 31-0
■ 4

’S .I

,vI
«

r ■ >

•* *•■f

V, <
A-

■»

1 . .J
f ■ ■r

y V- '"'^^ pi
■i

I

t'J7

:W,> li
s i».

•r

*-i

7

■>,

.i
J

v'

•^r

I'

I

•>
r

>v■J

s

.T|

r ^J »■

fp■• /•/ •' .4

J

%
e t

.{.
V'

v’•A*

' -V,’

• 'r/

»
i

*«t

>

4 ■
V ' J?:

'Jit

y

A>■

• k

1';f.

■4

■’»
> V

ft
J

+- ♦ X
M

::

f

[

\

i
XI A

>*■ X
Hr■ V»

-V 4

-<■
i.

• >

'V i
iV

<. • 4

4■?■-'• <■ .K% . I

<
■

7 ■,•<1 ■•»

7
J

e> *.
-s-

V,V

?
rT»

f. »r

7

♦ '*; AT

V■■•r

; f' >

4 HK
7i •tf' ■I-'-i •

«.

'V. ^

\ JfV ■ i
.

%>- 'iriS’ k'. 'i-.

ir:
4%.V •V •

‘^r 1
y -<

ii- •<r' ■ . '>>/•

\i ■i

-";-t‘!'• 4' c <»•l i •* vJ > ^ -C
f » f-

^ •, J,A ax

II ADDR

I Field Initial Value DescriptionTyge

Unpredictable. Base address of the page directory page in 32-bit super-page
format.

ADDR RW

. l|l!l II

)
fy<

ih
>:

Description:

'•rf ■'#"''
it:.-. ‘•\’i6'-»

' .«fc.‘ •, / ••

y

>vi-;

4>

• YC "■’ (. ■ .’

A\ /''"■
•V-

V •

a; 'i>:».
-iS

- . 'V'*'

-r

y^ft.j.
-^Jv

-

ktf' '^■‘
if

)d
.■\ .'-^

^%1 V.>

. ■ •■■: -U'
'‘•rW-. *';

I*-- V* *:’

j
• n

V. 4 >^--■ ;
•■ ■■y'v..r .:»^'c.-'i.. .-.*

/

<- "i*’ 1

.4' ^
■<

p-M‘ 'f.

.■ ■■ . -.
4»’ '. r** '^'■v.' •\»

•

» t

«» r

P', '1^r..s v-

A* .9^'. 'V .' .,'’:-:X?.
■jf.

fy;i>
4'■V..-*' />.' «■■

s*

.. ;r'Viy-”.'f-

J*

%w>

■N*

f: y--^.'i !
'.j»

k

•T’

5''^ V. •< : ># . ^
<*

.3k-' V'^^^'-"■;r
‘ ■i.)

T> yf

U:. ‘fx
l^.i

‘ f

IK, ■..
►'■ *-^ -• ■ "j ft

•i
3',| ■J

>•
'.v *;i '-,w>

...

-MSw
s. ■

■•.A.'#;'./

jevt-, ■ A -:'-’"
V

•f»

■js-i-' ■.i;i
... . . .

a:
V•V-

'■^‘JT y. .•f> .'V:%

;mzV. ;S
■• ‘j4

.►7 ’.%' ■ ■|XA

•^A•it -‘•Vv-

- -■,

^ .'-'V^-vV' w<1 - 'f

■■■ •ar- V V -c'

/'* v>- ■•
•' it

;
t ■■■■*' Z'

. .V i =^'
•A’ •'• n

' *

:a

■'•-<iW .'’'"c A

.V.

'df

r 'f''X
.

.'-y

^ my¥ 4

>1 jAt >4
y-5- ’'%

'..f-
“

^ % 5- >

' I .:’r'v#l\ k*

■.i 4
'K ■iie /:

•.I. •

zf

S'*
^'4, -

/V ■•

j«4«: i'.

4.
5;

•*’* .VV*,
Vi

1

;»
■'4

Up,;*'

7 'N

' ■»>*' •

y
>■' 'A'' i

s»"':rm
Vy^r

" ' "W
.4.

-r" >4

. ■-

, -^v

» C?’ *

<Jti^l

■% Vt,

•.?^^*■ t:4* ■Ti. f

,• f y. .i • ', Y
.C'i- ‘

!< U v»

.^4, >■ iN V -S tU

JL

The PDR is the base address of the page directory page. The page directory page contains all of

the first-level page table entries (page directory entries or PDEs). As such, the page directory

page defines an address space for a process. The PDR is written whenever the address space is

swapped via the call pal functions swpctx (sometimes) and swpprocess (always). The PDR is
also written with the initpal call pal function.

PSR

Processor Status Register

31 ..5 4..2 1 0

IRQL MODERAZ IE

Field 'Type Initial Value Description

MODE Processor mode: privileged (kernel) or unprivileged (user)
0 = KemelMode 1 = UserMode

RW 0 = KemelMode

IE RW 1 = enabled Interrupt Enable
0 = Interrupts disabled, 1 = Interrupts enabled

Intermpt Request Level (0 .. 7)
where ascending values are higher priority

IRQL RW 7 = HIGH LEVEL

Description:

The PSR controls the privilege state and intermpt priority of the processor. There are 2

processor privilege states: kernel (privileged) and user (unprivileged). When the processor is

privileged it has access to the super-page address spaces and may execute the privileged call pal
instmctions. In addition, the processor may access virtual addresses mapped by any and all valid

page table entries. In unprivileged mode, the processor has no access to the super-page address
spaces (access violations) or the privileged call pal functions (illegal Instmctions). In addition,
the processor may only use virtual addresses mapped by PTEs that have OWNER = User(l).

The interrupt request level controls which interrupt sources are enabled. The intermpt enable bit

is a global enable bit then can be used to disable all intermpts. The PSR can be read with the

rdpsr call pal function and written with the rfe and retsys call pal functions. In addition, call pal

functions are provided to access individual fields within the PSR. The swpirql call pal function

atomically reads and writes the IRQL field of the PSR. The rdirql call pal function reads the
current IRQL field of the PSR. The di and ei functions are provided to, respectively, clear and
set the IE field of the PSR.

This explanation also belongs in the Processor Status section.

RESTART ADDRESS

Restart execution address.

31 ..0

ADDR

Field Initial ValueType Description

WOADDR Unpredictable. The address to resume execution when PALcode is exited.

Description:

The RESTART_ADDRESS is the address where the processor will resume execution when the

PALcode exits. The RESTART_ADDRESS is considered to contain the virtual address + 4 of

the call pal instruction for all call pal functions.
Include this comment when describing call pal listing format.

SIRR

Software Interrupt Request Register

31 ..2 01

APCRAZ DPC

Field Initial Value DescriptionTjpe
APC 0 APC software interrupt requested.RW

DPC software interrupt requested.DPC 0RW

Description:

The SIRR indicates requested software interrupts. The SIRR is also considered the source for

software interrupt requests. The ssir call pal function is used request software interrupts. The

csir call pal function is used to clear software interrupt requests. In addition, software interrupt

requests in the SIRR will be cleared by the PALcode during interrupt dispatch.

SYSCALL ENTRY

System Service Exception Class kernel handler entry address.

31 ..0

ADDR

Initial Value DescriptionField Type
Kernel entry address, 32-bit super-page format.UnpredictableADDR RW

Description:

The S YSCALL_ENTRY register contains the entry address of the kernel exception handler for

the System Service class of exceptions. SYSCALL_ENTRY is written via the wrentry call pal
function.

TEB

Thread Environment Block.

31 ..0

ADDR

Initial Value DescriptionField Type
The address of the user thread environment block.0ADDR RW

Description:

The TEB is the pointer to the user thread environment block. The TEB is written with each

swpctx call pal and read with the rdteb call pal function.

THREAD

Thread Environment Block.

31 ..0

ADDR

Initial Value DescriptionField Type
ADDR 0 The address of the kernel thread structure.RW

Description:

The THREAD is the pointer to the currently executing kernel thread structure. The THREAD is

written with each swpctx call pal and read with the rdthread call pal function.

28. Appendices

Appendix A. Status code and bugcode values

Status Codes:

ValueSymbol

STATUS DATATYPE MISALIGNMENT 0x80000002

OxcOOOOOaaSTATUS ALPHA GENTRAP

STATUS ALPHA ARITHMETIC 0xc0000092

OxcOOOOOldSTATUS ILLEGALJNSTRUCTION

0x80000003STATUS BREAKPOINT

STATUS INVALID ADDRESS 0xc0000141

Bugcodes:

ValueSymbol

data bus error 0x2e

0x2bPANIC STACK SWITCH

0x12TRAP_CAUSE_UNKNOWN

Appendix B. PCR definitions and offsets
pointer to restart block for ARC restart block?

Need another appendix for Saved State offsets within the restart block.

Appendix C. Trap Frame definitions and offsets

Size

Quadword

Longword

Quadword
Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

Quadword

OffsetSymbolic Name

TrIntSp
TrPsr

TrFir

TrServiceStack

TrIntAO

TrlntAl

TrIntA2

TrIntAS

TrIntFp

TrIntGp
TrIntRa

TrIntVO

0x0

0x8

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

0x50

0x58

Appendix D. Calling standard register usage

General purpose integer registers

DESCRIPTIONSymbolic Name VOLATILITYRegister Number

return value registervO volatilerO

temporary registersvolatilerl - r8 t0-t7

saved registerssO - s5 non-volatiler9-rl4

saved register/frame pointerrl5 s6/fp non-volatile

rl6-r21 volatile argument registersaO - a5

r22-r25 t8-tll volatile temporary registers

return address registerr26 weirdra

r27 tl2 volatile temporary register

r28 volatile assembler temporary registerat

r29 non-volatile global pointer

r30 non-volatile stack pointer

RAZ / writes ignoredr31 constantzero

General purpose floating point registers

Register Number Volatility Description

return value register (real part)fO volatile

fl volatile return value register (imaginary

12-19 non-volatile saved registers

temporary registersno - fl5 volatile

volatile argument registers116-121

122-130 volatile temporary registers

RAZ / writes ignoredoi constant

Appendix E. Performance priority table

This table is a rough picture ol the performance prioritization for each ol the call pals and likely

hardware vectors in the PALcode. Certainly, the relative usage ol each ol the flows will vary on an

application by application basis but the table below gives a starting point for PALcode designers to make
tradeoffs in their specific implementations. The numbers below are based on actual counts retrieved

from a running NT system.

The ratings are based on a relative performance ol 1..100. With increasing numbers indicating increasing
frequency ol execution. II a flow or call pal lunction is not listed in the table than its effective rating
could be considered a 0.

Hardware vector/Call PAL lunction Rating

Interrupts 5

I-stream TB miss 50

D-stream TB miss (native) 25

D-stream TB miss (PAL) 5

rle 5

5retsys

swpirql 95

di 5

5ei

1ssir

1csir

this 1

rdpsr 10

1swpctx

1swpprocess

rddpcflag

wrdpcflag

rdpcr

5

5

5

5rdprcb

rdthread 50

callsys 5

10rdteb

More complete measurements must be made under differing loads before we can publish the previous
table.

Appendix F. Implications of recursive TB Mappings

The recursive virtual mapping used by NT has an implication for data translation buffer implementation.

The implication is that it is possible for 2 exactly identical translations to be written in the DTB during

the same miss handling sequence. If the DTB cannot correctly operate with 2 identical translations then

the PALcode must include additional checks to prevent the condition from occurring.

Note: I believe that this condition also occursfor both VMS and OSF/1 implementations on Alpha AXP.

The description of memory management will not be completely re-iterated here. Refer to the memory

management section for details of the page table layout.

The page tables can either be viewed as a virtual contiguous single-level table or as a two-level table that

must be traversed physically. When viewed as a two-level table the first level is a single page called the

PDR (for page directory). Each entry in the PDR, called a PDE, provides the first-level translation so

that the TB fill code can find the page table page that contains the PTE with the translation for the faulted

virtual address. All page table pages are mapped by a PDE in the PDR.

The page tables are recursive in that the PDR is a standard page table page and it is virtually mapped in

the single-level virtual page table. Therefore, there exists one PDE that maps the PDR itself. The PDE

that maps the PDR in a 2 level lookup is also the PTE that maps the PDR for the single level virtual

mapping. This special PDE is called the root PTE or RPTE.

Assume that the processor implementation has 2 data stream TB miss flows: one for the misses taken in

native mode and one for the misses taken in PALmode (the 21064-aa is such processor). For the case

when a native-mode virtual access is made to the PDR page, obvious PALcode will take the following
flows:

PAL Miss FlowNative Miss Flow

1. {get va for pte that maps the
faulted va: VA)

2. (get the pte using its va)
rx, 0(ry)

where ry <— va of pte

Idl

3. { Idl rx, 0(ry) from PALmode faulted }

4. { resolve this fault by making the va of

the missed pte valid }

5. { translation for RPTE is written into

the DTB }

6. {re-execute the load that failed since

the va of the pte is now valid}

7.1 load completes, rx <- RPTE]

8.(write the translation for the faulting va,
VA, into the DTB]

9.1 RPTE is now in the DTB twice)

10. (re-execute the original native-mode
instruction that faulted when accessing
VA]

Since there is only one pte, RPTE, that will exhibit this behavior, the PALcode could check the faulting

pte address in the second-level fill routine to special case for RPTE. Naturally, it would be preferable to
not slow down even the second-level fill flow, however, this is a processor-implementation decision.

D. Dump State

The state written by the PALcode for the rdstate call pal is described by the following structure written in

C language format (UQUAD is a 64-bit unsigned value).

struct _PROCESSOR_STATE_21064{

UQUAD ltbPte[12];

UQUAD Iccsr;

UQUAD Ps;

UQUAD ExcSum;

UQUAD PalBase;

UQUAD Hirr;

UQUAD Sirr;

UQUAD Astrr;

UQUAD Hier;
UQUAD Sier;

UQUAD Aster;

UQUAD DtbPte[32];

UQUAD MmCsr;

UQUAD Va;

UQUAD AltMode;

UQUAD PalTemp[32];

UQUAD DcStat;

UQUAD BiuStat;

UQUAD BiuAddr;

UQUAD FillAddr;

UQUAD FillSyndrome;
} PROCESSOR_STATE_21064, *PPROCESSOR_STATE_21064;

The fields correspond directly to the internal processor registers.

E. Counter State

The counter state written the PALcode for the 21064 is defined by the following C language structure
definition (where UQUAD is an unsigned 64-bit value):

struct _COUNTERS_21064 {

UQUAD MachineCheckCount;

UQUAD ArithmeticExceptionCount;

UQUAD InterruptCount;
UQUAD ItbMissCount;

UQUAD NativeDtbMissCount;

UQUAD PalDtbMissCount;

UQUAD ItbAcvCount;

UQUAD DtbAcvCount;

UQUAD UnalignedCount;

UQUAD OpcdecCount;

UQUAD FenCount;

UQUAD HaltCount;

UQUAD RestartCount;

UQUAD DrainaCount;

UQUAD InitpalCount;

UQUAD WrentryCount;

UQUAD SwpirqlCount;

UQUAD RdirqlCount;
UQUAD DiCount;

UQUAD EiCount;

UQUAD SwppalCount;

UQUAD SsirCount;

UQUAD CsirCount;

UQUAD RfeCount;

UQUAD RetsysCount;

UQUAD SwpctxCount;

UQUAD SwpprocessCount;

UQUAD RdmcesCount;

UQUAD WrmcesCount;

UQUAD TbiaCount;

UQUAD TbisCount;

UQUAD DtbisCount;

UQUAD RdkspCount;

UQUAD SwpkspCount;

UQUAD RdpsrCount;

UQUAD RdprcbCount;

UQUAD RdthreadCount;

UQUAD RddpcflagCount;
UQUAD WrdpcflagCount;

UQUAD RdcountersCount;

UQUAD RdstateCount;

UQUAD InitpcrCount;

UQUAD WrperfmonCount;
UQUAD BptCount;

UQUAD CallsysCount;

UQUAD ImbCount;

UQUAD GentrapCount;
UQUAD RdtebCount;

UQUAD KbptCount;

UQUAD DbgstopCount;

UQUAD DbgprintCount;
UQUAD DbgpromptCount;

UQUAD DbgloadCount;

UQUAD DbgunloadCount;
} COUNTERS_21064, *PCOUNTERS_21064;

wrperfmon

Write performance counter interrupt control information.

Parameters:

aO = performance counter (0 or 1)

al = enable/disable (1 = enable, 0 = disable)
a2 = count control

a3 = performance counter mux

Return Value:

vO = previous enable state for this performance counter

Description:

Wrperfmon is used to write control information for the 2 performance counters within the

21064-aa processor. The first parameter selects which performance counter will be selected.

The second parameter controls if the performance counter is to be enabled or disabled. If it is

disabled then the performance counter will cease to interrupt when its counter overflows and the

last 2 parameters will be ignored. If the performance counter is enabled then the last 2

parameters will be written directly to the ICCSR internal processor register. The count control

parameter will be written to the appropriate PCx (PCO or PCI) field of the ICCSR. This

parameter controls the overflow count for the performance counter (the performance counter

causes and interrupt when it overflows). The final parameter will be written to the appropriate
PCMUXx (PCMUXO or PCMUXl) field of the ICCSR. The performance counter mux controls

which event is counted by the performance counter. See the 21064-aa specification for

programming information.

GPR State Change:

vO <- previous enable state for the selected performance counter.

aO - a3 are unpredictable..

IPR State Change:
None.

Operation:

if (PSR<MODE> EQ User) then

{initiate illegal instruction exception)
endif

case aO begin
0: ! performance counter 0

if(al = 0) then

vO <- previous enable state performance counter 0

[disable performance counter interrupt 0 }
break;

endif

vO <- previous enable state performance counter 0

[enable performance counter interrupt 0 }
ICCSR<PC0> <- a2

ICCSR<PCMUX0> <- a3

break;

I performance counter 1

if(al = 0) then

1:

vO <— previous enable state performance counter 1

{ disable performance counter interrupt 1 }
break;

endif

vO <— previous enable state performance counter 1

{ enable performance counter interrupt 1)
ICCSR<PC1> <- a2

ICCSR<PCMUX1> <- a3

break;

otherwise:

{ ignore the request}
endcase;

Exceptions:

Illegal Instruction, Machine Checks

3. SRM conflicts

a. unaligned access assumptions

The Alpha Architecture handbook states on page 4-2 that "General-purpose layered and

application software that executes in User mode may assume that certain loads ... and certain

stores ... of unaligned data are emulated by system software". NT appUcations cannot make

such an assumption. Unaligned emulation is an operating system policy, NT implements the

policy that unaligned emulation is selectable on a per-thread basis with the default selection
having fix-ups turned off.

b. rdunique/ wrunique/bugchk
The SRM claims that these opcodes must be recognized by opcode and mnemonic but their

effect is implementation dependent. The NT PALcode will raise an illegal instruction exception

if any of these opcodes is executed.

Bugchk is not needed in NT because NT supplies structured mechanisms for raising an

exception. It is not desired for NT because it would provide a user facility that is not source

compatible with the other NT implementations. Any code that would wish to use such a facility

as bugchk should use the common interfaces.

Rdunique and wrunique are also not needed in NT because NT has multi-threadedness built in

with complete with a thread environment block and thread local storage. Any code that would

wish to use rdunique/wrunique should use NT common interfaces to implement the required

effect as these call pals will not be available in other architectures.

4. To do list

a. Determine correct trademark terms to use: Alpha AXP OK? Can we shorten to NT for the

discussions?

b. Make the non-call pal flows look like the call pal code flows.

c. Change name of interrupt tables:
interrupt level table -> interrupt enable table
interrupt mask table -> interrupt vector and synchronization table

d. Separate tables and figures in their own tables of contents

e. Provide table of contents for the call pals and the internal processor registers

g. Condense IPRs by having multiples per page??? (leave call pals as is for readability)

h. Add restricted distribution stuff.

