
Alan C. Kay papers. 1977-1993 1 THE -C .• Il , , 1-ICA USE , ==- 1
1Adele Goldberg papers 1 027 3939 |Smalltalk

X5774.2010. Box 1 102739394

To: Don Steininger

From: Alan Kay

1£1 IECIED¥[EP
111

 FEB 21 878
D

L A.J. Goldberg

Subject: a brief summary of my thoughts about Xerox's future in the info-biz.

Don, here is a collection of writings concerning the Long-Range Plan. Much of it was
written at heat -- the subject tends to get my juices flowing! I would suggest that you use
discretion iii copying and distributing this offering. Included are:

' A Simple Vision of the Future -- a brief update of my 1971 Pendery Paper.
' Material and Content -- an analogy between Xerox's current products and those

of its future.
' Arthur C. Clarke's "Laws" -- the betievability of scientists and culture shock.
' Loose Ends -- a summary of long-standing Xerox research concerns which need

to be addressed

' Components and Organization -- a note I prepared for George last year about the
relative approaches of Xerox and H-P to computer development

' My Reactions t·o the Long-Range Plan -- written in 1975, it is an impassioned
reaction to the long-range plan that year.

Though it is a trifle sarcastic and pejorative, it is included as an incentive for
Xerox Research to actually develop a 111® this time rather than the usual simple
extrapolation Of the present combined with expected head-count increases.

' A Wall Street Journal Article About Xerox -- pertinent and penetrating.

To me, a plan is a gadget that has sonie ggali, followed by strategies which generate tactics
to achieve those goals. The so-called "long-range plans" I have seen so far, as far as I can
tell, can be construed as "plans" only by Xerox bean-counters, not by Xerox scientists, and
certainly not by Xerox as a whole.

I really want to help in the planning process and I was quite disappointed when the
Leesburg conference was called off. 1 do not think that exchanging memos will help nearly
as much as some face-to-face confrotitations on the issues.

l

A Simple Vision of the Future

A Brief Update of My 1971 Pendery Paper

In the 1990's there will be millions of personal computers. They will be the size of
notebooks of today, have high-resolution flat-screen reflective displays, weigh less than ten
pounds, have ten to twenty times the computing and storage capacity of an Alto. Let's call
them Dynabooks.

The purchase price will be about that of a color television set of the era, although most of
the machines will be given away by manufacturers who will be marketing the content rather
than the container of personal computing,

The Dynabook will be well along in the process of replacing paper in the home,-school,
and office. The combination of portability and the additional value supplied by flexible
editing and cross-referencing will hasten the changeover.

Though the Dynabook will have considerable local storage and will do most computing
locally, it will spend a large percentage of its time hooked to various large, global
information utilities which will permit communication with others of ideas, data, working
models, as well as the daily chit-chat that organizations need in order to function. The
communications link will be by priva:te and public wifes and by packet radio.

Dynabooks will also be used as servers in the information utilities. They will have-enough
power to be entirely shaped by software.

The Main Points of This Vision

' There need only be a few hardware types to handle almost all of the processing
activity of a system.

' Personal Computers, Communications Links, and Information Utilities are the
three critical components of a Xerox future.

' In the 1990's programming systems will be strong enough to allow the personal
computer owners to specify most of the information handling tools they will need to
go about their life.

0 The major revenue producing systems will be service charges for the
communication links and the functions provided by the information utilities for use
in one's personal computer. In particular, an information utility's ability to provide
dynamic modeling and cross-referencing services will be central to its success.

Now, What About the 1980's ?

The early 1980's should first see a complete Xerox product line based on the simplest
version of the above model.

' User programming will not be possible.
' The services provided by the information utility will be rather sparse. They will

be strong on simple interactive systems, and weak on comprehensive information
storage and retrieval.

' There should be research versions of the Dynabook, its programming sys:tem, and
more comprehensive information utilities.

The -mid '80's will be critical.

' Customer-Service-Representative programming in' the high-level language of the

to

3

Dynabook will help to open up new markets for Xerox. The "programmers" will be
people trained at Leesburg to market and provide tailor-made system services to
customers.

' The information uti lities should be able to handle dynamic models of businesses
and other complex environments.

If alt this works out, the 1980's and '90's will be bright indeed. Unfortunately, Xerox is
not working very hard in a number of important areas.

' The first would be for Xerox to get a firm and uncomplicated-understanding of
the implications arising from an entry into the information -business.

' Hardware technologies, both primary (LSI, ...) and ancillary (flat-screen
displays), need considerably more attention.

' Software technology has to be installed into the company as the stuff from

which the main product line will be fashioned.

Material and Content

An analogy between Xerox' s current products and those of its future

First, it is very important for Xerox's top management to understand some of the key
differences between the hardware pnits they are used to dealing with and the computer-
based hardware-software systems of the 1980's.

Function in a Xerox copier is delivered primarily through the workings of a particular
hardware configuration. This hardware has to be invented, designed, developed, built, (and
later retrofitted), all with some associated cost. Generally, different xerographic functions
are provided by different xerographic engines which are the product of separate
development projects. They look different, act different, and are sold with a different
approach.

For contrast, function in a computer-based sys:tem need have almost nothing to do with
the particular hardware involved. Function is delivered primarily through a software system.

Another way to visualize this is to consider when material becomes content.

Domain Substance Material Content

Xerography atoms, molecules selenium, steel,-plastic, brass 3100
7000
9200

etc.

Computers silicon, steel, ... powerful, general purp. comp. Text Editor
Inf-Str.-Retr.

Inf. Network

etc.

In other words, the material of a computer system is the computer itself, 911 of the content

and function is fashioned in software.

There -are two very important guidelines to be drawn from this:

A Material: If the design and development of the hardware computer material is done as
carefully and completely as Xerox's development of special light-sensitive alloys, then only
one or two computer designs need be built. These one or two designs will be able to handle
gil of Xerox's computer material needs for a considerable number of years, Extra investment
in development here will be vastly repaid by simplifying the manufacturing process and
providing lower costs through increased volume.

$ Content Aside from the wonderful generality of being able to continuously shape new
content from the same material, software has three important characteristics:

* the replication time/cost of a content-function is zefo
' the development time/cost of a content-function is high
* the change time/cost of a content-function can be low

Xerox must take these several points seriously if it is to survive and prosper in its new

5

business area of information media. If it does, the company has an excellent chance for
several reasons:

' Xerox has the financial base to cover the large development costs of a small
number of very powerful computer-types and a large number of software-functions.

' Xerox has the marketing base to sell these functions on a wide enough scale to
garner back to itself an incredible potential profit.

* Xerox has working for it an impressively large percentage of the best software
designers in the world.

Arthur C. Clarke's "Laws"

The Believability of Scientists and Culture Shock

It is interesting to examine the dynamics of human decision making. In the absence of the
clear'cut evidence which forces a particular decision, there springs forth a recognizable
collection of approval tendencies:

- Plans which require little or no change tend to win out over those which differ
with the practices of the past,

' The ability to take risk is inversely proportional to the square of a planner's
distance to retirement and to the cube of the technological complexity of the
planning domain.

' A -planner will tend to believe himself rather than someone else.
' A planner will tend to believe a contemporary rather than someone older or

younger.
* A planner will tend to believe someone distinguished rather than someone who is

not.

All of these tendencies can be neatly summarized by Arthur C. Clarke's two "Laws":

i The technology of a culture appears fts magic to a culture without that
technology.

i When a distinguished middle-aged scientist says something is easy or possible, he
is almost always right -- when he says something is difficult or impossible, he is
almost always wrong.

Let us suppose for the moment that Clarke's Laws are-more than a British'tongue in a
British cheek. What can be drawn from them?

First, in planning, we need to be very careful when soliciting opinions. 'Established
Experts" will be useful when they are enthusiastic about projects, - but advice should be
sought elsewhere when the experts are pessimistic.

Second, the psychological di fference between "magic" and "engineering" is enormous -- in
the former there is no discernable Connection between cause, energy, and effect. There is- no
way to tell the easy from the difficult. And, it is extremely difficult to put together a plan
that has magic as its kernat.

To me, the point of all this is that a new approach needs to be adopted for subsequent
plann ing cycles if a strong focus on the future is :to be achieved. To be sure, the new
Advanced Systems Department headed by Jerry Elkind is an excellent step in that it
effectively short circuits the planners until a venture has been launched and tested. But ASD
is for development. In Research, we need a similar process which allows the people who
think up the ideas and -do the work to also be able to do 'most of the major planning.

More blumtly: can we find the systems presented at Boca Raton in Xerox Research's Long··
Range Plans? I have gone back, looked, and can't find them. As far as I can tell, each of the
major ideas on which PARC computer research, the Boca Ra:ton show, and the upcoming
SDD product line are based does not appear in a Long-Range Plan until it was invented and
built! Concepts such as SLOT, the Alto, the EtherNet, and the like, were heavily opposed by
many in the company who had heard of them. Alto, in fact, did not even appear officially in

0

7

a Short-Range Plan until it had been running for six months! It was a bootleg project at the
end of 1972.

Now, someone might say: but isn't that what serendipity is atl about? The unanticipated
invention and discovery? But I say: serendipitous to whom? One person's serendipity
(magic) is another's clear vision (technology). Gary Starkweather had SLOT clearly in mind
for years until he had a chance to show its promise. I shudder when I think of how close
.Alto was to not being done at its critical time. No. There is such a thing as serendipity we

do rely on it -- but not at this level.

This is not a polemic but a plea! Let's use planning to get the builders and thegoal-setters
together so that we can allocate resources to invent, design,-and build powerful kernals, like
Alto, EtherNet, and SLOT, which can shape the future of this company -- and our entire
civilization.

Loose Ends

Hardware

I am not going to make a plea for the importance of the truly portable personal computer
in this note. Though I think it is one of the three most important foci for Xerox Computer
Research (the others: Communication Networks and Information Storage &-Retrieval), it has
taken so long to get some of higher management in the company just to understand the
difference between computers and other machines, and between Alto and-other computers,
that it would be futile to cover some of the important humani'oriented values of personal
tools.

The leverage to be gained by designing hardwarewith its enabling software in -mind is
discussed in the next major section: Components and Organization. Here, let me just claim
that we have-to do it this way, and not enough of it is being done currently in the company.

LSI Processors and Memories

Currently, the design and fabrication of LSI processing and memory elemen:ts at Xerox is
scattered, unorganized, and sparse, The LSI group at SSL-PARC could form a nucleus for
the kind of research that Xerox needs in this area. It should be seriously examined and
beefed up. The Long-Range Plan should contain specific language concerning new
archjtectures and fabrication techniques, and a 21@Il to considerably build up this area in the
next seven years.

Displays

This is an area which generates a lot of unsubstantiated opinions as to Whether Xerox
should invest heavily in new display technology.

I believe inK opinion can be solidly substantiated: XEROX should definitely make' a
commitment to develop an ambient=light low-power flat·screen display. Interestingly, many of
those at Xerox who oppose this idea are wearing just such a display in their wrist-watch. I
propose that we replace these watch displays with CRTS and re-ask their opinion after a few
daysi

A less facetious analogy is to the development of the Xerox machine itself. It took
considerable daring, money, and energy to develop and market xerography. By having the
guts and the foresight to work out a very shakey technology, Joe Wilson and others brought
Xerox to the su:mmit of American business. Xerox's future in information technology lies
ultimately in being able to provide manipulable convenient images to its customers. It is as
silly for us, as a primary strategy, to rely on (and try to improve) the CRT as it would have
been for the Haloid corporation to stay with the well-understood but future-limited wet-
copy processes.

The real question is: does thli Xerox have the same kind of courage and foresight to take
high risks for high gain? 1 sincerely hope the answer is yes, but so far have not been greatly
cheered by recent Strategies -- particularly those which have encouraged Xerox to rashly buy
random digital companies of very little use for the future, such as Daconics, Diablo, etc.,
rather than try to do some honest internal development of ideas which might have some
return!

Developing a flat-screen display for computer graphics might be quite difficult --

OD

certainly one has not yet trivially appeared, We should note, though, that no one else in the
computer-biz has yet done a system with the comprehensive abilities of the Alto in the past
five years in which it has been possible, But E did the Alto in 1972-3, because we knew
what J wanted and were willing to work out the difficulties to get it. With regard to a flat-
screen display, Xerox can not really claim this until Xerox has put a critical mass of the top
people in the country to qur version of this task. If we can rationalize the expense of low-
return aquisition-ventures with phrases like "market-probe", "experiential-exposure", and
the like, surely we can decide to allocate a fraction of what has been already been lost in a
project which, though of some risk, has a great payoff -- 20 million dollars over four or
five years coupled with a flan would take us to a place where rational decisions about
displays can be made.

Software

The software loose ends are a bit harder to describe since the software area, in general, is
in better shape.

Information Storage & Retrieval

Several starts have been made in this most critical software area for the company: Findit,
Woodstock F. S., Interim File System, Juniper. And, in a very real sense, the Smalltalk
system of LRG, and the Understander project work of Bobrow, Winograd, et. at., are
addressing themselves to the higher-level representation problems of simulation and human-
oriented knowledge,

But, I still don't feel at all well about where we are in ISR, nor do I feel any better about
our plans for the future.

"ISR", like "machine-translation-of-language", is a garbage-term in the Computer Science
field. I am using it in its most general scope to cover 'most everything concerned with
representation, archiving, and recovering useful models,

Part of the difficulty is that ISR isn't just one problem, ifs an entire collection of
problems, many of them as yet unrelated.

Another difficulty is that ISR is not terribly appealing to Computer Scientists: It is Eeg
hard, with high risk, and little glamour at the end of the trail.

However, I would like to apply what I said in the preceding section about planning to
myself and my colleagues: when we start complaining that a goal, which is unarguably useful
and delivers an enormous payoff, is too difficult to work on seriously, we should be
examined in the light of Clarke's laws. After all, middle-age is a state of mind, not a tally of
birthdays!

We need to get going on this, and nowl Otherwise Xerox will end up competing with every
other company which is trying to sell a computerized editing/accounting system to an ever
more sophisticated market.

Higher-Level Programming

In this section, 1 want to point out a possible intermediate future for Xerox marketeers
which lies between the non-user-programmable SDD-OIS systems of the early eighties, and,

10

the dream of the Dynabook, to allow everyone to shape their own tools.

Could Xerox customer-representatives, trained at Leesburg, learn to wield a suitably
higher-level language (perhaps a descendent of Smalltalk) well enough to tailor-make
information systems for their customers? If so, this would be an excellent intermediate step
for a person-oriented company like Xerox to take. The ability to provide unanticipated user
function will very likely be the center strategy in the 1980's for companies in the
information business.

Xerox has the bases and facilities to try an experiment like this within its own borders. I
would very much like to see some interest in this expressed in the long-range plan.

Components and Organization
Just as with Gothic cathedrals, the organization - of components in a computer is as

important as the properties of the components themselves.

As a case in point, consider the story of two computers, the Xerox Alto and the Hewlitt-
Packard 21MX

In 1971, PARC decided to design and build a time-sharing computer facility called
MAXC. The designs called for the use of the first ge·nerally available LSI memory elements,
the Intel 1103, to be used instead of core memory. At that time, Intel had not set-up good
procedures for testing and screening their chips. Several PARC scientists helped Intel in
order to get a quantity of 1103 chips for MAXC. While MAXC was being built, computer
scientists interested in personal computing pooled their ideas and knowledge in 1972 to
design and construct a very different kind of machine, the Alto.

The .4/to had several ambitious goals, First, it was to be more powerful for most tasks than
time-sharing would provide. Second, it had to handle a wide variety of needs, only a few of
which could be explicitly anticipated. Third, it had to supply high-quality programmable
graphics. Fourth, it had to be inexpensive enough to both compete successfully with a
terminal and to -convince Xerox that a strong fu:ture lay in the Alto's direction.

The goals of the Alto were met by hardware design decisions made-in the- presence of
already thought out software constraints. The Alto was built and is still remarkably
successful today as a personal computer.

At about the same time as the Alto was being built, Hewlitt-Packard also became
interested in computers built from integrated circuit memories. The management structure
of H-P is set up to get a potential product quickly to market while taking advantage of
every twist and turn in the fast moving technology.-In particular, H-P has been excellent in
recognizing good ideas of others, and has moved quickly to purchase and develop these ideas
into proprietary devices

As a minor example, BM came out with a remarkable cassette design for high-
quality data storage. But, their design had two Important drawbacks. First, the cassette
was still too bulky for Its most common use. Second, no one (including SM) had been
able to build a reasonably compact drive for the cassette. H-P moved in, got BM to
develop a mini-cassette based on the same technology, and, in a masterstroke, H-P
then designed and developed a proprietary drive for the cassette which is only
available from H-P packaged in their terminal,

Now back to H-P and computers. H-P already had a successful line of minicomputers and
they naturally wished to'stay abreast of the technology in manufacturing them. They sawthe
lK 1103 chip being developed by others, pal'ticlarly Univac and DEC, and decided to take a
gamble on the next level of LS] memory development, the 4K RAM. H-P then did :the next
best thing to having their own chip company. They made a contract with one- of the local
siliconavalley companies which allowed them early access to the 4K RAMs. Thus, at the
same time as the chip company was perfecting their manufacturing and screening process,
H-P was finding out how the chips actually performed in a packaged memory. As a result,
two interesting events happened almost together. First, the chip companies announced that
the 4K RAMs were available, an entirely expected event. Second, H-P announced the 21MX,

a stand-alone microcoded personal computer with 65K 16-bit LSI main memory, a model 31
disk drive, and a display terminal, a most unexpected event! Not only were the gross specs
and appearance similar to the Alto, but the price tag was $20,000, a figure which was less
that what we were paying to just have Altos built. And, the 21MX used the just announced
4K RAMS!

When we examined the fine specs for the 21MX, we disovered something even more
interesting about the machine as compared to the Atto. The discovery was that the 21MX,
though made from the same or better components (and better engineered in many respects
than the Alto), nevertheless performed far less efficiently than PARC's personal computer.
In fact, for many important tasks the 21MX was a factor of 2-5 less efficient than the Alto.

' For example, H-P built their memory only 16-bits wide, a slavish imitation of their
earlier core-based systems, even though there is no reason to do so when using LSI memory.
By contrast, the dUo has a 32-bit wide memory, giving a factor of two greater transfer rate
when moving storage around.

' H-P still relied on a traditional interrupt system and peripheral hardware controllers for
input-output. This increased the cost and lowered the generality of devices which could
easily be connected to their machine. Again by contrast, the Alto uses a well thought-out "no
overhead" process-switching mechanism which allows peripheral controllers to be simulated
in software and permits hardware money to be better used elsewhere.

' Because H-P really wanted to use their nice terminal (developed primarily for their
time-sharing system), it never occurred to them that they would get much more from- having
a tightly coupled, high-bandwidth link between the 21MX and the display. So the 21MX
supplies essentially teletype communication as compared to the dynamically programmable
graphics of the Alto.

' Finally, the overlapped fetch-and-setup instruction execution scheme of the Alto which
permits each instruction to be fully executed in 170ns is not employed on the 21MX: Many
of its instructions must wait for a register cycle before the next one can be executed,

Moral. There are two. First, a company that knows that it must take new technology to
the marketplace quickly can cause much of its needed technology to happen as part of the
development cycle of other companies. Second, in the computer world, as in architecture and
cooking, there is a tremendous range in what can be wrought from the same ingredients.

In the case of the Alto, the main difference was that the important performance specs
were set by people with a strong software background. Chuck Thacker, the primary designer
of the Alto, was well versed in both hardware and software, as were the other participants in
the project, Butter Lampson, Ed McCreight, and Alan Kay.

Corollary. Given the success of the basic Alto architecture, an obvious and rewarding
strategy for Xerox would have been to find the silicon valley company which was producing
the next generation of memory chips (the 16K RAMs by Mostek), get a:n early look at and
buy of these chips, and produce an Atto built from these chips, the mythical Alto III. A few
minor problems of the Alto could also have been remedied. The most important one of these-
would be to separate the display refresh mechanism so it would no longer require half the
memory and micro-cycles of the machine. The result would be an Alto of twice the speed
and from factors of one to four or more capacity.

The Alto III would have buen a fine probe for Xerox's future markets in the-world of

information, For a -start, it could have been all the subsequent Xerox word processors after
the 800. And there are a number of excellent turn-key editing applications for which the
machine would have been ideal. (Note: if Xerox is going to lose some money initially while
learning about these markets, the company should probably decide to at least lose the money
constructively instead of on products which not only have no future, but no present as well,
such as the Xerox 85011

Ingredients

Now let us apply these principles to the ingredients themselves. Computers are currently
made from memory elements of different speeds and capacities whose contents are
manipulated by separate "processor" elements connected to the memories by communications
path$. To a rough degree, it is the nature of the memory system which provides most of the
capability of the computer as a whole. For a company in the computer business, then, it
makes a lot of sense to have as much control as possible over the sources and the design of
the memories and the processors which are to go into a product.

Though it is undoubtably true that it makes little sense to try to duplicate someone else's
technology unless there is a great deal to be gained, it is not the only maxim on which one's
company should be gambled. For memories, there are many paths which may be taken. I
shall consider two: strategies for quantitative and qualitative improvement.

Quantitative improvement is achieved by retaining the simple linear-addressing scheme
which memories have had since the late forties and pushing hard on density, width,
fabrication, and debugging techniques. The device physicists assure us that another factor of
1000 is yet to be gained for both MOS and bipolar technologies. Thus, the companies who
have taken the trouble to understand electron and X-ray lithography and who have the
equipment to perform it will be far ahead of the pack in bringing forth the next ofder of
magnitude improvement. Similar comments apply to those companies who have learned how
to automate the expensive design-fabricate-test cycle for new chips ("compiling silicon").
For various reasons including tradition, pin-counts, and the like, the memories on the
forefront of development have ati been one bit wide. Though this does not seem like much
of a problem (since composite memories of any width may be constructed by putting' though
chips in parallel as was done on the Alto), the average bandwidth-per bit in a memory of a
given size has been dropping steadily siilce the 1103. This simply means that thefe are SO
many bits in a single chip that a memory of enormous size must be configured in order to
have enough chips in parallel to provide decent bandwidth.

Qualitative improvement in memory organization is a more risky path to take. Yet I have
felt strongly from the time I joined PARC that Xerox must attain strength in this area to
survive in the 1980's. The reason I feel confident that we can do something in this area is

that qualitative improvements in memory organizations follow from software needs, and
Xerox PARC, in my opinion has the best collection of software people in the country,

The problem of storage management (allocation, deallocation, relocation, exchange, and so
forth) is an excellent case in point. The current technique of building software systems by
emulating a higher-level environment on a simple fast microcoded computer is likely to
continue for a few more years at least. And, all interesting software environments share

similar storage management problems. For example, in our language Smalltalk,the overhead

for storage management just within primary memory is 90%. This means that only 1 out of
every 10 memory cycles is doing useful work for the Smalitatk user. The reason for all this,
of course, is that the linear "von Neuman" addressing scheme which hardware memories
supply has almost nothing in common with the memory requirements of high-·level
languages. The gap is considerably wider than that between hardware and software
"processors".

Another vexing problem is the narrow bandwidth of the communications paths between
traditional memory and processor elements. This is all the more frustrating since the
technology we use in this day and age, MOS, is used for both memories and processors. It is
natural to consider uniting processing-type and memory-type activities on a single chip. just
as the concepts of processing and memory are united in Smalltalk.

The benefits to be gained from unifying computation fall into several categories. First, a
modest set of processing capabilities at the memory level would permit many storage
management problems to be dealt with efficiently. Second, more comprehensive processing
capabilities would allow many software evaluation procedures to be carried through - locally
and in parallel at the memory level. Although the state of the art of coordinated parallel
processing is not well advanced, there are nonetheless many almost independant parallel
:tasks in process in any advanced software system. It is important to understand that while
personal computing needs enormous processor and memory bandwidths, there are very few
single tasks that require all of the bandwidth of a machine. Rather, most large-bandwidth
computing is formed of parallel, loosely coordinated processes which can be handled by a
number of simpler, slower processors instead of one very fast one. Examples are user
interaction, editing, 2-, 2.5-, and 3-D graphics, signal (audio and visual) processing, music,
mathematical models, and so forth.

Conclusions. Xerox must decide whether or not it wishes to enter the world of digital
information systems. If it does, the company must understand the central role that memories
of al i kinds will play in any products which may be developed. The most important of all of
these memories for computation is so-called "primary memory". Xerox should adopt a
multipronged strategy which combines close tracking of existing chip companies with a
strong effort to give Xerox an independant memory and processor capability with particular
regard to qualitative improvements in architecture which PARC's software expertise can
provide.

As in most technological frontiers, much of the progress is accomplished by "wizards".
Buying a company is 116 a good way to catch a wizard unless the wizard wants to be caught.
It is very important for managers outside of PARC to understand this simple but important
principle. A strong effort must be made to find and recruit more wizards in areas which
Xerox needs to build up. If this involves buying a company, all well and -good. But, .the
important thing is to get the wizard even if it requires an exorbitant salary and fringe
benefits to do so. There is no number of good people which can be combined to produce a
wizard. Therefore, we should be willing to pay some multiple of good people's salaries to get
one wizard.

My Reactions To The Seven Year Plan

by Alan Kay (1915)

The first was to try to remember where I was seven years ago:

...in my second year of grad school, just finishing off the first design of the FLEX
machine, and starting to write my Master's thesis. That was many experiences ago.

The kinds of things we can do today with digital technology and with software are
qualitatively different now than the situation seven years ago.

Memory was 1.5 microsecond core (at 2 to 3 cents/bit), now it's .75 microsecond MOS
4K*1 chips (at.1 cents/bit), a difference of 20 - 30 to 1 in cost and about 2 to 1 in speed.
Even more striking is the amazing reduction in the cost of fast register-memory and the
corresponding drop in CPU cost. There was little serious talk about LSI CPU's on a chip
then, or the notion of being able to dispense with moving hardware for secondary memory.

The world of computer science was almost - exclusively devoted to: developing
comprehensive operating systems for shared, expensive computers; new ways to translate the
necessarily efficient medium-level compiler languages for these machines; developing
massive shared editing systems; and chasing the elusive notion of human interation with a
computer help-mate.

Of course, we all know this. The reason I bring it up is that a qualitative change has
taken place right under our field's collective noses --- many at PARc have even been some
of the prime movers who helped bring it about.

When does a quantitative change become qualitative?

The-kinds of qualitative changes that are hard to grasp are those which come about
through a large enough quantitative change (usually more than an order of magnitude in
some dimension). The trap we so often fall into is to continue to use our old set of values
in this new domain.

This is one Of the basic fatiacies in the paradigm Market 'Survey. Another is the very
strange notion that the past plus the present predicts the future (usually linearly).

The Hewlett Packard HP-35 is a good example. On the one hand, it performed the very
same functions which their LSI desktop machines had long been able to do, on the-other, it
was very small and could be used anywhere. A market survey revealed that not very many
people currently used calculators and concluded that:

a. Not many more people would use a portable version. b. The rangeof users who would
find sine and cosine, etc., useful was very small. c. There did not exist a significant market
for a $500 deluxe portable calculator,

Hmmmmmmm...

The 1974 world market for handheld calculators was ca. 10 million. HP has sold

almost 1 million of their 'marketless' deluxe calculators to date.

Questions XEROX might do well to consider

1. What have been the big money makers of the 20th-century, and why?

Well....,the automobile, the airplane, the telephone, radio, silents, talking pictures,
television, computers, and the xerox machine,.....

2. Are these quantitative changes in their domain? Qualitative? Both?

Well...if the automobile is a quantitative improvement over the horse and buggy, then it is
one of several orders of magnitude. A more fruitful way to look at the phenomenon is that
the auto represents a qualitative change in how a person gets from place a to place b. The
fact that the horse and buggy was in the same business completely misled horse breeders and
buggy manufacturers into the grand misconception of believing that -they had a captive
unassailable market in the transportation domain. And a Market Survey would have
confirmed their beliefs.

Mention might be made of movies and radio vs. the stage. Then TV vs. movies and radio.
Airplanes vs. the railroads. The XEROX copier vs. inexpensive carbons and Ditto machines.
And so on.

Well.„actually, all of the above examples have roughly the same story, including a
meteoric rise in the face of absolutely contradictory marketing information. We all know
the famous story of IBM, Arthur D. Little, and th6 914 copier.

It's interesting to note, for example, that the movies had no difficulty displacing-the stage,
and yet, 30 years later, TV had even less difficulty displacing movies.

How about the papertess, electronic office vs. the XEROX copier?

Most people smart enough to pour water out of a boot might conclude that there is an
important principle here which not only has guidelines about making money,- but also has
something important to say about human beings:

When presented with a service which offers a qualitative change in convenience in some
.large domain of human activity (such as communication, transportation), we-may -surety
predict that a large proportion of the population witt find a way to buy the service 1ven if

it costs more per transaction than it did in the past.

How's that for a marketing theory?

3. Does XEROX management understand these simple, though powerful, -ideas?

well *

4. Has XEROX lost its nerve?

Hmnimmnimniminmm.

5. Does it make any sense at all to try and plan the future of XEROX using metaphors like
'market driven' and 'technology driven'?

The first produces bettier horses and buggies until bankrupcy intervenes, the second
produces 'solutions' looking for 'problems' and generally requires a rather immoral
advertising campaign to convince the public that they are in trouble and should buy to get
out. Neither, in my opinion, has anything to do with a desirable future for XEROX
Corporation.

6, What should XEROX be doing about its future?

First, it should ask the question: What is it that people are goirig about doing in the
world?

Well, a lot of human activity has to do with love, feeding, shelter, and clothing --- it is
interesting, however, that the device more ubiquitous than the flush toilet (a convenience at
the end of the feeding chain), especially in slums and Appalachia, is the TV set. Other
things people do is talk to each other, transmit the culture to their young,-invent businesses
and cities, and move from one place to another.

Att of these involve communication --- humans are ·hooked on it·-

with Others and with themselves.

- both communication

Talking is communication, so is writing, so is 'educationt so is love. A business is a

money-making machine structured to facilitate communication between its parts. A city is a
way to communicate with people, so is transportation, so is a XEROX copier, so is radio, TV,
movies, and so on.

XEROX is in -the communication business, not the 'information' business.

Our archetypal boot emptier musing over his beer and his boot, might conclude from all
this that metaphors for XEROX Corporation's Long Range Plans should -probably have
something to do with hetping people to communicate in a quatitatively better way.

Gee, .it might even sell!

On the other hand, perhaps we should not expect too much from the fact that our friend
was able to pour water from his boot. Is that not making a linear assumption and
prediction from his past to his future?

Although-we can confidently predict that he will avail himself of any qualitatively better
way to communicate whether it costs more or not, we must not rely on him to be able to
understand the somewhat more abstract principles behind these notions. Instead, we need to
not only show him what his future can be like, we must let him try it out for himself.

Metaphors for the Long Range Plan of XEROX Corporation's ord¥ Long Range Research
Center most certainly should be centered about the absolute necessity to:

a. Understand the nature of communication and invent ways to make it qualitatively
better.

b. Communicate these ideas about communication to those in XEROX Who have the·

leverage to get them into the world, by making it possible for them to experience the filture

18

themselves. WORDS WILL NOT DO.

Conclusion

If we are not able to do these things in the next two years, we need not worry about the
following five.

Corrollary

Our best shot at a Long Range Plan should be just a list of those things which should exist
at the end of seven years plus a carefully thought-out workable plan for the first two -of
these years with especial emphasis on having a clear understanding of the concept of critical

mass for successful projects, and XEROX's limitations in using the 'shotgun' approach in
research and development.

: · & 3;9*12*Alitmy¢Efifft-+1
t Ke<*F#*-9£889&135<:

HIts O@RiPait-Stiabess - -9 E
. --. 7 '-fif>j-; ·· .84233112 Pj·t
L *Has T6416(64*9·tiont
*JIh .Copurij Pfidirthy,kiEf-4

·:"The offide'of the future is:fo longer just -1
a buzzword," says John R. Labinski, a man. 1
ager·:in·Xerox's Office- Systems,division.:

: ."The technology 'is here already,zand de:·.· }
mandfor it is growing 25% to 3050 a year.'2 . 1
- The risf-in·moving' ints- this potentially-- t

lucrative ·'automated oftice" market. how--··· €
ever, is that Xerox wil! be de-emphaslzing :'
a neld-copying-in which it still is top dog,
and it will be entexing one already domb?..
ated by a tiger -nearly four times its size, ¢
International Business Machines Corp. And .-
the worders discern signs that Xerox may i.+
not be able to get from here to there with- 9.
out another dtp or two in the copiey protiti f
.it needs to dobbttle with IBM·1.r _i.._22·-4 1 L ··

i -12-Soma E«{Ard«Ar*Ebiu
4.49&=164€24:64

But It Pushed Newt*hcuies--1.

9.-: - By R.ICHAND:AL-SH»pzli,·4.-*-'- 99...
340/1 P.epotteat 11:FY W.ILLSTEEZETUOUNNAXl.·32

:.- STAMPORD, Com-34 Brotner.Dominic, r :7
the Por€y monk in·.Xeroi-Corpt television .- 1
commercials. knows just what -to:-do when ·' I
his abbot wants 500· copies ott 23 medieval ·t
manuscript -quickly.-:He borrowit<*i Xerox'·24
926*) duplicator·and runs' ther€offfin.'min-.)
Utes-*r --·ti ... ·· ./. ,.·.: /2 .../.-..f·/

9 -Ies a mirajeler.thedelighted.bboipto.itt<1
claims. . -C .ijifuu-2.0. 4.j>%%·fi<4*·:234
- 6.Xerox its?U maf 262 need-a"ir.irdcle@utlf-.
it could use,a little heip on a.·copying-prob-:-N
lem of its o.wn-duplcattor its past per»61;
IT.2242- I ?'··2.--··61. :.2.-I >·1441':·.gfil.7.--f.·9·I
I · The company,: whoseimeteoric sucteks-is ji:
kendary. smudged its image in 1975;-prof--4
i:s dropped forthe first.time since iti days N.3,
as n-obscure photographic company.known.·9 1
as Hadoid Corp: morethan two.decades ear-· Ni
Her. Oxer ibe past two years>the-company.,t·-1
with a name thathas:become a synonymfor -ir·'
so-£21red plain-papek'copying has struggled·f i
to regain its repotaME,n for growth. And de-4-·:
spita some·intern·al woes and growing Jap- U.·:
2=asecompedtion, mallagementrecehtlyhas ·ts
been suggesringthattheworstisoyer A.,2? 1,19
ast·nis year will be-another·good.ore for k
Xeroxy sayst Peter?dceolough; chairman ' 2
=d-chief .exeentiveDiticer. "Out-gr·owth --w
target continues toi» 315?6 annuabincrease
in earnings. and:I believe thatis= realisM c'bet :+
Growing Doubts:Fil€-ix--'lt·'1 :t:'.vv -- TC
:e Some-outsiders. 110wevercarenit » sure; 5
-Al eoushz Xerox.. hay- taken---sEveral long f
stride iy the rifht directioinfeiiough other.· ··:
moyes-.have . beemingly --&098*awzy-·that - ' I
cioubtil'.hbouNfits+prospects:. aret-grdwing... -..·
"Xerox.keeps-swtior.ctirecions<»says San-· :...

N ford-12-GarrettzaacuritiesRinalystat Sanmk-
c fcrd (1_Bernstein&.Co«?iotremain<gener-?2'.

ali: bullisho,Xeror-:.:·fhly@+les*And les&44
Con:der.C + thatiter:age-0 @*ril{*¥¢ jwhat-6)-
irs doing.-·i€'215 21...» , r' =»<·71«L·fR@4 ·§32
-2 What. XeitilaysK:it[%.istliing*tolid©F-,fi
ain©unts to I a.netaniorphosis,- a:trEEtion'-1 1
from the office. ottode,:to©abifide bf to-2.1
morrow,·If .its forecasts.are· accura:tej over -·1
the next kevaril years the mountains 6! pa«i
per worki.that. it helped to create-gradually·..·'
will me}Ant»arriunclutter€8 ·worM where·K
files are store# ele©tronically andmalt zips. i
Dom deskto·desk via computers and televi-u
5195 scree]·193,-3<i: - 1.- ··-=---· -

Spectacular-Past
: In a sens* mesa-worri= are therproduct:.·ip i

oi high expe;ctations raised by thespectacti-M i
lar Xe rox put 281 Xerox had a monop«ti
00 machines that made copies on ordinary .

6 paper. its revenue exploded to :3.6'·billion -0
in 197* from $33 milli orr.in 1959,- its profits:to. 3
$331 million·from 32 -million,--and its stock ·'- n
price to nearly. 3172 a share- fromile-sh..than .

-- I.= i. 500- i :a adjusted for several splits. --:-t-n.:.·93:..
"For a.while,MArecalls Mr.>Mccot@ugh, I -

Who,joined»the company-in 1964,9.'people 4
seemed to think wecould walk on water-'·411
Ii:Inevitably,-their feet got wer.An antin·pj,
trust-settlement-with- the .FederaUTrade./ i
Commission· ·in-1975 cost ·Xer{>x it£-patent€f
protection;. essentially, -the --company .was
forced to grant licenses to its.competitors.7
Moreover, Xerox realized that its venturel
into the computer business had failed, and it 3 -
pulled cut; writing off more than $31 million ·:.
in the process.····.f·'····:' 0.. '-9.=:1·,'-If·'250;

.-.-- Competition - in -copiers bedame serious.. f
'· IBM.. which-had entered .the field a· few ····
years-eartier. was maling·inroads,'and..to L
widespread surprist- Eastman Kodak Cd..D
jumped into the business. All that, combined
with·recession,-inflation and the high cost of 5
markezini new products, forced down Xerox A
profits for.the first time since 1951.... {Ir ©3.

, ·- r:v nr...."ihicken Little Syndrome '; .t N T' 7 3 2 5 2
--1 The decline. was-inin}mal-:Mmere·2%20 3
but-the damage wasn't. CWe began-to 0 4-7
this Chickeri-Little syndrome. especially int :
the -middle: and· lower levels.of the com- ·:
panyi :-recalls John C. Lewis,.a.former Xe-. ··'-
rox executiva who now is president of Am-.pr
dahl-Corp. "It was liki a ktd who's neyer :Li
lost a basketball gaine before.-The first time 71
Bings don't go his waf: he thinks the world A
is coming to an end.'9 1·072 -. r =rf- ·t - ·- 1 -·I -4 2··"
A.'f No one expects Xerox to · recapturs its r.
former glory-not, at.least--in- copidrs,; fort.
:mhrket saturation-islending:.that boost?.3
.Whild· the dollars-·spent · on- copying.:have fl
risen at an annual rate of 209 over the past if.
five years, Jobservers predict that the gaillk r
411 dwindle· to less than·hal r that over the -2
nextlive years. 1 J-·.:_ . ,·.. -, . · „-f ... - ... ·, .ir -·-
af Yet Xerox is hard at workon. a· come:. ·
back of sorts. It has clamped down·on costs,
revitalized its research, unleashed a blitz of::
new products,:'charged 'into new··markets t
and so turned itself aroiind that it now is' ,
pushing sales of copiers that it -once would.·
only rent.. , 5-- 23.·-,· 1=-t .::. ..· -..u=. 4: ··:·r-v .* =..
i The comparly'ls-'2190 ·pushing its sales .7
force. ".The pressure te produce has become ?
very intense;"'says George- Funk houser„ a b
Xerox· salesman •in B.Portland.-·Ore: ·brator 71

31dged Image; Xerox Faces :Tougher Competitien'i2
Gthir woki·ih Trfitkfaff®lit i-0-%4i Phit Sufaash-(.·:-

1.Ti> r'4...'.t 1.Z¥... 49,0....9,A-:1-1 9,·.i-t97.:3.1 i;..:e...L:..I ..1
6. : Continued Ff» Fitq Pade 9. 1 i..

:=temers say xerox. representatiyes.:are·
:3112:g more Irequent"'and staying longer-4
1-t 7.Cy Inlr·p::2·44, T)-1,-1.I "our;-#53:21:'347/2.?fii;9 63
2.2 fly has in·907*1 100510,"·comments
22 Of the compmfs largest accomts.?'Ini
tte past; ?th«Yezte>aved like th, cock- of 1
le'*wak. •They;tendedto oversell.:Today,1

wee.ibecom'e more responsive;
2 013:custonibfs:needs.-Keen' comnelitton,
©pears to have had a humblinrette&.11 5.1

5/.SOme. mel.SUreS,? the rebuilding'·at-9ze=p; ge'+high n=rEf.924/1,1.j·.4.b.·21>'··33 - 3.12'·ti¥0 ·yeirs„the.compay's elic-4
tion!€eping systems haye'captured. about -
25 of * market·.that orice. was- exclusively.1
24'4 Xerox Te#ntly hits picked up severd 4
2.-5510Ch®10- a ,e* 1· v:.,Ce-mal¢hlne -,compantes 1
72*trt:grfte&721'12:r'*71
c»uteis. that marries-the copier wi:;.the f
IMEr flamj proyidiag a glimpse of +What
manybelieye t,¥!U become Its lead product In :
the sext generation of office machines-the -
5»Bed: intet.,Hgent copier, 2 single gidget r
eat acts-,s typewrite. 209!er.'and facsimile -:.
21219.9.1519-.21· 3. f- iI.ti:4.- t;..h€.1.,¢·4'....9: f

uP. the D.It..12121 side,· ·earnings 'are perk. !
4 up.-Ne; Income gra¥ 1296 last >ear.@nd .·
=1.-m :se, sinal - quarter,; Moreover :' the'3:1=31 could .be- highet.this yeAr if th; §200 r
:=.:cators,, as expected ·bm '7 to 811'64 T,2729 The- *-Ikkce sheit'haiitdom lookedl·
leithien.Cash ts pouting in. Debt is shrink-. S
22· And ·the·dividend.is being:raised sdt·
91=19--thattthe comparY, says-it coutdi
kins: .it to k.aif of nrofifs l,t,;Phin 9 fe'y eare ri=246*Reaw-i tu·- 'it . Aair.·3 -4,I

-jet bkiddele gobd Raws turk potintially i
Der-9.3 urobler*. -·...f·.9.2-·.249 :.·14.>.i·,2 7-, - h, 2

ify :Yet.·overheak keepi climbilik. Ustyibihi
sellingths»ice..admjnlitrati·r·% a:,0 -gen¢ialiexpenses· cliewed 1.Ii>,42·Sp2O;'total·reventies,I up-·frbm-47.659'jiist pricr·6-the'cost-Butting|

· and 39.1% five years before that }nnation
has rAped out the savings. explains David T.
Kearns. Xerox president„ ··At some point laiUme-perhaps three or bur yeas-we wlli,
have to raise prices, or we·will be cr.able to

. stop this erosion,•'he says...· . .., 1
Pricii#Woes'.'·· G.·0..422- 0.: :r: .
.'f··' Similarly,-: 8. Change -pricing strategy;
seems to 1192 helped I.ttle.2 ...I..
2;. In its.heyday, Xerox prospered by rentt
ind out more and more -copierS. But a few
years ago, management decided to seek
growth by encouraging customers to make
more copl'es on the.machines they already
had.·Shila 1976,'aft# the settle.ment with the
Em-*cleared'thi Way.ixerpx ¢ut,ryntal fees.
.'as mugh.;*221'154 irt the.belief thit'reyerities
·watild rls'filhole-.than,tenough.tio=:overcbm#
theilowd<pric'd par'¢opy.lt @2·4·222*F:
....Xerot .Von t.giy *1160<er thd:nianeuvkr
'worked€ B'tidebrding#·to- industry'>burdes,
, Wh'o= saxX40¥prlvat:ly».nfird¢ their* fir.d

]'1:4§; ?afer?ge.:annual: revenues.· fer- - cOPSe-r
Shiveldroppid:in' thepast:two.kears.for @1-
: Xerox'machinffimilies'except color cop!ers
f-flnd t!]4 hi=*vglurne 9200 dupllcator:·':'9 -4 '
V..GWhatever-·the case,'even Xerox.concedes
:thar it 'watoutflanked- on·- another -pricing

fron-i. fAl thbugli...X¢fta-. fulljit exp 4ted Ithi 1
Jotpanesettto i enter-l.the'Urld·wide :¢opter
market:-elien soon.Or, 1<factithan they'did i

· ..the.gomfany.flov¥.says·ft 18€used so nat· 1
rowly -cir comp.etlng with ·Kodlk· and fIB?,I
that.,the Japaneseislipped.in almost· 111111Qt· .
'' :They- embatraising' €consedue€de:*.The -

·?very,blus-(ty,keroxha&15·4 fi'l.says,
David 'G. Jorgensei' 1. Dataquest '.sentor;
partner. ·'They're Inaklnk the Nght moves,!
if they'd made -themsooner. But now' trld
huge snowball G rolling down 011 Ihem at a
whopping rate and there's just tod much mol
Mentum. 7 '-- 2 - 32 Z· -53 *;C.1 ..7 , 21.4 :.t -:·N- .0-1

i Xerox.won't disbfiss market shari But itt
does terra the situation. serious enough td
warrant reorganitinkltijales force;And H
1"'.., 11'.D q <eyeral · marketing:. chang:q
havi beenmadefin.·an.attempt,to uncoyer
morenew customers rather than' simply:to
sell more-to current ohies; 9·4 99 t:- %,3-0
1 While the.small Xerox machines haven't
-VVy,-1 hA. #1,123'46-4 ••-her hr/a thot
big olle&- that the cqmpapy gal]Flha key 19
Its futard in copying.1.t. €f 1 6 Z -*4{ *:. ef· · :. 1
Battle 'of Duplicatordfiff:·.--'.25·-fi- '---1
21'InY;tding a:market; tdne.:Nled b-Ad-Jdtessograph·Multtgraph i Corf:.and 1. B. 1
Dick Co+Xerox·in·1574 -earns out·MUI the
9200 duplicator>whtch,was· designe-d to. re· §
place the'A·M Andi Dick offset pressed ised Iby large-corpor.ations and government agen· 1
cles'.The 9100 is fast:Iit splts out two.coples*.second.·.But Xerox·was slow In getting it
otttlthe. factory doortand:competttors tookl|
ailyintage of the'delayiq lif·w...353·r··: 7?.·... il
D- Addr.egiograph.'for'one; lid»616 reor· 1
gan:zo it'f sales forcb End launch 4 31 int!406
tkirs Xerqi'grivon vet'.adff D ./31. ' e'4:ree£°r:*:yJ«%44*45:15·lftiA: faup.1 111rdpi·-lddfessorrapu , cir.get·bbe¥#Jailikreil
bounded and now are growing at about their 1
former rate, the company says.

Industry sources estimate that place· '
ments of the 9200 are running at less thani
half .the company's original expectations.1prime-Xerox foe·ha#-tufned out·nof t4 be a However. Xerox is calling the machine -alFor example, a major factor In'the eam;{ fellow·.corpbrkte'(mimmottr'bit a' pygmy'.i I R. 6•r·{Aiw ' i=:s uprum--s .u. .. vt•°.p:ce ·01 cppleri ' valhallal·N.Y.f:company,-..Savin- }Business j success, although it acknowledges that it ov·st}es.-pite·reve..Fies fqp'rented m acnines i· Machinei Corp.9vhoje amitill rey?nues are j 2 erestimated the 929(Ps. prospects.and misunlave *en stotying·295:t.(07 several ea less thart hale trze Dize of the Xerox research 9 derstood the market.-Sg Xerox h-ad to-fiddlei1 with the machina's price: And whanit Intro· |ril. r.94 repreierit/about.117% of total. reve-S'=33: from:copiers, ar.d.:dupticators.-That i top- copiWAnade by Ricoh Co. of Toky; 4 duced the Imotoyed 9400 duplicator last fall, say; it' placed more tha4 49,000 plain-papeD Xerox pitted 'the older 'mad. ine · · 4. lpitch boost, nit·incomibechuse.sold K,a- slower equipment from Kodak'gnd Urd in·-4_=. 4-,%AI NApFI--4ptorits. than ren . . copiets·:in'theiT..'21astici '.up from' a---k-L ;AU,Nuv €·-h---i - 14- · handful £46 -yed?2€!arlier·.'By·contrasti- Dd· ··9tead ot the offset pressesk.:" tr·-. .02:532 290 it €Isb·.tends:.to:cut.·prollt margin4. taquest Ine,'...t 081[forn!% .rnark42·research106 -i- -u' B ' 6-1·6* ,-4-•als ar-frorf 'prolita- .€1731 Yfus, 1 742 corap=4'strreveAve · companyi estimites Phaf Xeroi added only , f lasco."· a former-director Toys.:t-Itlwasal

23 24% in 1974, Iniddltion, the sheervol· m'ki tink b ack : i {-44 i f,3.til 1.t 2:8 . : . sary iny,n,tory.+44' tQgling expl-..:,s :, , , ,3...:.9-{fi3.1C.me of saless'*72•3'C tht thapace, nowsol .ti>Lately' Xerox-·has'.beelin' flghting bpii, b'oubt4Abdht':Alatiac,ement-f:,3·tti<;,1mcia topronts,·e·.'entually will moderate. slashinr. prices.·on'low-¥6ium¢:machlnes, .·-fokerill·. ·-bat: Xettxt'folowers.·' ar 21 :There's a time £:se<on the company," where Japainese compitittonis h-eb,Ytest. The mostlbout W:ille,quality:of ·'44:122.1Ely;..Brian. Ferhandez, a.securitie, ,naly;t. price of the popular:Model ?10.0,:for exaM: Guiding. r.:'fast-gbowing.:company--wlth: a ,* r# .Manhatia:i Co.. -32;-.i -*i.'2 2 .·... .i i.i) ' ple, was¢ut from 312,000 to as littleas 34,400 noyel, producels dlut¢ulti but· dealing wit>. ..ssessments cf someother Xerox r.dcon for customers·who-want toibily,t]14·int- today's increasingly coniDE:IMYS' environ:i227 e:forts are equally negatit•Al....kE>35. chinel they'now are renting.·· 1. ':9:j'.1,1-·I ; mentiseven harder,·andinanycriticsdoubt-'Or.Ce·'so free-spe..dingthat empiojes flew ,i'. Howeveri-Xerox till seems to bellos[ng Clat:Xerox executives'ha.Ye ths:requ!$112Utclass ard stayed in the best hotel©Xe- grolftid,· Althgugh,the:number:of.'146.illed I .,,: s:ra:.-
st two yearf ago lauached Its first coniba· Xerox-machines far surpasses theetal of
2/Aide cost-cutting drive. With ttle'·antbE all other.brands combined,·more and more ·
15:3 223] et a 40* cutback 14 0921*ead, the new customers for small copiers are 'going
02222=y : firect thousands : of.) employ¢% elsewhere.:· Dataquest.has: conctuded ·that
chbal lacillee, and delayed construction QI Xerox's share of new business in low-Volume
3 LE ..7 corpor#te Eadquar i e.rs.: 3 .f.e..56,15' j copiets plut] ged !.ist year to 2279. from ?95%

two'years.eariter,fr'·* t,i .IN RU; -> r :··

f 1

·-1, Mostot the cilticism'natundly cefiteys'-4
, * 24 7.%Colough.:The Xerox ehalrind isAbEl

'coursel' crtedit.24 wfth# key role in the topil
ban*s plienoni?nal growth. SanforidKaplan,1
a rettred Xerox director, descrfbeg ?,Irl Me. &colough'as -4'aibor# marketing·type.M,addi 11
Ing,. "nes Very bright and quic:k wlth'hu 611
be)·s.N..1. A·-6.9 5t·. y.. ' ·: i'.-:.9:-A. it ··.i .P 1,I , ' ...1 :·+ .: I '-, i ./, I:/·p./' ':401]-·r Be.310.Mcc:104&15 blaftied:forfilichj
mistakes as the venture into computer-niak-ti
inK an} the failure to acquire CIT Financt#!11Corp. when Xerox had the,chance. ·In addi- b
lion,· critics contend that wheh competitors 4
began making inroads, his reactica was toofi
Uitte land too late. ' 3 7.,59 : . 1 42· 2.-4 4-2. i
-·I A handsome, budig man,:.Mt. McCok joughls a Canadiu-born lawyerwith a Har· 1
Yard ?.5.3.A.· and an idealistic view of Xe· 1
rox's social obligationg. At one annual meep .
ing when an angry shareholder assailed the :
company's hefty donations ig*artly/he. rt: i

i tortect,·"You, can V sell,yout .stock or try' tol,
throw' Eis out, ·but }we.· ar¢n't.,cgoin:-,to jchange.'1·:. -D.t;@12 ..,·t'14*4.22;1*Atio--3241His mariagerfient stild'ik eq-daily' diNdt.· 1
UPeter listens to the men under hint'but'it 1
is always Y¢41 very clear who lhakes the fif· 1
n.al decisions,'!.says Rober#/Aw,;Be¢k.,prdifi' 1
dent of Prudatial'·InsurancE·Andua·Xerok' j
direetor..0,12*Jdrmet. associati?ofFMrphit.J j
CoIO!101'§ destr'lbes'him as„t'a loneri-*'8old.. 1
eyed businessman with *few'passions' bds!dei· 4
sal!1:r and politics.".>12>19·4 .11¥><»fetMany luepahEe;}AJ%&90£*%'mmi
·,':.Aftef..working' hk 'owN Why'2*ki'}0igh'

:the ranks, Mr.'M¢Colough.recfulted most or
hil·top·aides·from Qutsile-from Fo'rd,·' G¢04

, eral Mptor?-And]EMAand,lately.iome haya 1
ileft. In the past. few.'years,teight)>taY.playil
i ers hive quit the teim, Intituding the.compa:.
.ny's general counsel,Tiour.,tice-?Pies[dents
! and eren Ole president. Primarity; ·they left
; for a char.ce to ¢2211 their·own p!2347).thm·
panret.Nke'+ Singer,3-LTV. aild -Whit# Motoi
Corp,, sources atxerox Lay. B.ut m?ney %156,
east its spell, For example, although Archid
RL Alcordell will earn abou; the sam? sal-
ary es·president of International Harvester
as he did When president of Xerox-$460,000
a year-:he also wil! get bonuses In stock and .
Cash that could total nearly.$3 million..UN-i; :

. The departure3 ate putdng some Impor· i
tant segments 01 the bpsiness through their 1

fdth''mi}Uk®tchige ihithree yeak.1
A' 'fe# I deparla ents j Kif. i"dis fupt ed, fiu>:
tyate¢ end delayed,J: on b @xeqlt tiyq slaygr..,7
*:.The new.prestdbatiMrl Kearp:,13 a !62
mer IBM.exccully<.XESOIYet[416 pilot and
fitness buff ,who take;-5 119¢41%11}t and trick ·
shoes on business trips,·11* comel' en as· 6001
agkressIYe.and ·candid, Defart[ng frbm .the
guarded comments that-had become typical
of Xeroxikhe readilf Eon.de-des. that Xerbx
has .made 'several: 82#steps,·cand -he tvows :
that he will:cdrre,ct,themt, f.,4% -t<·3 ., 2204.
/ 7 Talking 361.5 edurit!23 €*nalyst£ '-Xerox
tikr.ed and ':the'media;.' Mrikearns hasJ
Criticized the company for b*g slow to' »

i act to cor,perition>affic lent In researd]C
' and scmetmes guile of followlng strategies
at cross-purposa tomich other.·.:6.I ' f v rt.-1

t, .2 '- .1 .%011:23. flult:trb.·Problemy!+Solvablel.9., 4«23*:77+t 4
45.$>I'vebedn-pa'rt if kdme Bf -i}ii·lita'26
Xerox ·he.3 'made h -th# -Fait:1.but' I'm 'i:ot
afraid of mistaket:'.he"say#.'·"There fire-2-
lot of things wrong with' thgcompany,· but
th'ey are solvable.52{{·.Wll! bbih'tour,liee job
fhap 14 the PAsti'bu.1 1.46 entld@! ft Call be
Al. }Its'Enance will'cont& filld ddlly.' MI,'·-1,[6;
Colough, chiff executlve slrt¢e 19§8, has five
more years to-go before -stapping down.un-
def a Xerox poucy' calling for executive, to
retire at age 0*.*IDA]ent. tH¢ entire cQrpo-
rate staff reports dire,6tly-JoiMr, McColop#h.
} i: t'I'm sure 83 time goe, tby'Dave Will get

i added responsibility,·biltiI don't'want to put
I too mitch of j .bur#VOWN* 2.11.Et.once,"
1 Mt. MCColough says, -f'Keep jn mind that
11'm also impress.ed w.jitt Mir], pough,·.4{ter
all; I.picked him,1,1'133'·.W' 1·4 - .1 1.1i> ':.22221€2 02.9 4}J, i't

1 THE WALL STREET JOURNAL
P · Thursday, Feb. 16,1978

IF

THE EARLY HISTORY OF SMALLTALK

Alan C. Kay
Apple Computer

kay2@apple.corn.Intemet#

Abstract

Most ideas come from previous ideas. The sixties, particularly in t.he ARPA
community, gave rise to a host of notions about "human-computer symbiosis"
through interactive time-shared computers, graphics screens and pointing
devices. Advanced computer languages were invented to simulate complex sys-
tems such as oil refineries and semi-intelligentbehavior. The soon to follow para-
digm shift of modern personal tomputing, overlapping window interfaces, and
object-oriented design came from seeing the work of the sixties as something
more than a "better old thing". That is, more than a better way: to do mainframe
computing; for end-users to invoke functionality; to make data structures more
abstract. Instead the promise of exponential growth in computing/$/volume
demanded that the sixties be regarded as "almost a new thing" and to find out
what the actual 'new things" might be. For example, one would compute with a
handheld "Dynabook" in a way that would not be possible on a shared main-
frame; millions of potential users meant that the user interface would have to
become a learning environment along the lines of Montessori and Bruner; and
needs for large scope, reduction in complexity, and end-user literacy would
require that data and control structures be done away with in favor of a more
biological scheme of protected universal cells interacting only through messages
thal could mimic any desired behavior.

Early Smalltalk was the first complete realization of these new points of view
as patented by its many predecessors in hardware, language and user interface
design. It became the exemplar of the new computing, in part, because we were
actually trying for a qualitative shift in belief structures-a new Kuhnian para-
digm in the same spirit as the invention of the printing press-and thus took
highly extreme positions which almost forced these new st),les to be invented.

Table Of Contents

Introduction ..,,,w.,,,,..6
1. 1960*66-Early oop and other formatlve ideas of the sixties 4

BED File System
Sketchrad & Simula

11. 1967-69-The FLEX Machine, an oop-based personal computer ... 6
Doug Englebart and NLS
Ptasma Panel, CRAIL, LOGO, 1]ynabook

m. 1970-72-Xerox PARC .,,...... .. 12

KiddiKomp
miniCOM
Smalltalk-71
Overlapping Windows
Font Editing, Painling, Animation, Music
Byte Codes
konic Programming

tv. 1972-76-Xerox PARe: The first real Smatitalk €72) 0 17
The two bets: birth of Smalltalk and Interim Dynabc*>k
Smalltalk·72 Principles
The Smalltalk User interface

Development of Ihe Smalltalk Applications & System

Alan C. Kay. The Early History Of Smalitaik 2
Evolution of Smalltalk: ST-74, ooze storage management
Smalltalk and Children

V. 1976-80-The first modern Smalitalk {€76) ...,,..... + 29
'Let's burn our disk packs"
The Notetaker

Smalltalk-76
Inheritance

More Tmubles With Xerox
ThingLab
Apple Demo

VI. 1980-83-Thereleaseversion of Smalltalk €80)38
Transformations

Coda

References CIted In Text,.''''... .41

Appendixt: KiddiKemp Memo......................45
Appendix lt: Smailtalk-72 Interpreter Design47
Appendix 111: Acknowledgements50
Appendix IV: Event Driven Loop Example 53
Appendix V: Smalltalk:76 Internal Structures54

-To Dan Ingalls, Adele Goldberg
and the rest of the Xerox PAM ERC
gang
-To Dave Evans, Bob Barton,
Marvin Minsky. and Seymour
Papert
-To SKETCHPAD, loss. LISP. and
SIMULA, the 4 great programming
conceptions of the sixtiesIntroduction

I'm writing this introduction in an airplane at 35,000 feet. On my lap is a five pound note
book computer-1992's "Interim Dynabook"-by the end of the year it sold for under $700. It
has a flat, crisp, high-resolution bitmap screen, overlapping windows, icons, a pointing device,
considerable storage and computing capacith and its best software is objectoriented. It has
advanced networking built-in and there are already options for wireless networking.
Smalltalk runs on this system. and is one of the main systems I use for my current work with
children. In some ways this is more than a Dynabook (quantitatively), and some ways not
quite there yet (qualitatively). All in all, pretty much what was in mind during the late sixties.

Smalltalk was partof this larger pursuit of ARFA, and later of Xerox PARC, that I called person-
al computing. There were so many people involved in each stage from the research commuri-
ties that the accurate allocation of credit for ideas is intractably difficult. Instead, as Bob Barton
liked to quote Goethe, we should "share in the excitement of discovery without vain at<tempts
to claim priority".

I will try to show where most of the influences came from and how they were transformed
in the magnetic field formed by the new personal computing metaphor. It was the attitudes as
well as the great ideas of the pioneers that helped Smalltalk get invented. Many of the people I
admired most at this time-uch as Ivan Sutherland, Ma rvinMinsky; Seymour Papert, Gordon
Moore, Bob Barton, Dave Evans, Butler Lampson, Jerome Bruner, and others-„seemed to have
a splendid sense that their creations, though wonderful by relative standards, were not near to
the absoiute thresholds that had to be crossed. Small minds try to form re[igons, the great ones
just want better routesup the mountain. Where Newton said he saw further by standing on
the shoulders of giants, computer scientists all too often stand on each other's toes. Myopia is
stfil a problem when there are giants' shoulders to stand on-"outsight" is better than
insight-but it can be minimized by using glasses whose lenses are highly sensitive to esthet
ics and criticism.

Programming languages can be categorized in a number of ways: imperative, applicative,
logic-based, problemoriented, etc. But they all seem to be either an "agglutination of features"
or a "crystalization of style". COBOL, PL/1, Ada, etc., belong to the first kind. USP, Apt-and
SmalltaM<-are the second kind. It is probably not an accident that the agglutinative languages

j3¢1

69 2 ' ACM SIGPLAN Notices, Volume 28. No. 3 March 1993

#m u. My. 1 ne ta,iy Misto,y ul Smailtalk 3
affiia-EEive-beeninsfigiERTEycommittees, and the crystalization languages by a singte person.

malltalk's design-and existence-is due to the insight that everything we can describe can be
represented by the recursive composition of a single kind of behaviorat building block that hides its
combination of state and process inside itself and can be dealt with only through the exchange of
messages. Philosophically, Smalltalk's objects have much in common with the monads of Leibriz and
the notions of 20th century physics and biology. Its way of making objects is quite Matoric in that
some of them act as idealisations of concept5-Ideas-from which mang?stations can be created. That
the Ideas are themselves manifestations (of the Idea-Idea) and that the Idea-Idea is a-kind-of
Manifestation-Idea-which is a-kind-of itself, so that the system is completely self-describing-
would have been appreciated by Plato as an extremely practicai joke [Plato].

In computer terms, Smalltalk is a recursion on the notion of computer itself. Instead of tdividing
"computer stuff" into things each less strong than the whole-like data structures, procedures, and
functions which are the usual paraphenatia of programming languagee-each Smalltalk object is a
recursion of the entire possibilities of the computer. Thus its semantics are a bit like having thousands
and thousands of computers all hooked together by a very fast network, Questions of concrete repre-
sentation can thus be postponed almost indefinitely because we are mainly concerned that the corn-
puters behave appropriately, and are interested in particular strategies only if the results are off or
come back too slowly.

Though it has noble ancestors indeed, Smalltalk's contribution is a new design paradigm-which I
called object-oriented=for attacking large problems of the professional programmer, and making
small ones possible for the novice user. Object-oriented design is a successful attempt to qualitatively
improve the efficiency of modeling the ever more complex dynamic systems and user relationships
made possible by the silicon explosion,

'We would know what they thought
when they did it"
-Richard Hamming

"Memory and Imagination are but two
words for the same thing"
-'Thomas Hobbes

In this history I will try to be true to Hamining's request as moderated by Hobbes' observation. I
have had difficulty in previous attempts to write about Sma[!talk because my emotional involvement
has always been centered on personal computing as an amplifier for human reach-rather than pro-
gramming system design-and we haven't got there yet. Though I was the instigator and original
designer of Smalltalk, it has always belonged more to the people who made it work and got it out the
door, especially Dan Ingalls and Adele Goldberg. Each of the LRGers contributed in deep and remark-
able ways to·the project and I wish there was enough space to do them all justice. But I think all of
us would agree that for most of the development of Smalltalk, Dan was the central figure.
Programming is at heart a practical art in which real things are built, and a real implementation thus
has to exist. In fact many if notmost languages are in use today not because they have any real merits
but because of their existence on one or more machines, their ability to be bootstrapped, etc. But Dan
was far more than a greatimplementer, he also became more and more of the designer, not justof the
language but also of the user interface as Smalltalk moved into the practicai world.

Here, I will try to center focus on the events leading up to Smalltalk-72 and its transition to its
modem form as Srnalltalk-76. Most of the ideas occured here, and many of the earliest stages of oop
are poorly documented in references almost impossible to find.

This history is too long, but I was amazed at how many people and systems that had an influence
appear only as shadows or not at all. I am sorry not to be able to say more about Bob Balzer, Bob
Barton, Danny Bobrow. Steve Carr, Wes Clark, Barbara Deutsch, Peter Deutsch, Bill Duvall, Bob
Flegal. Laura Gould, Bruce Horn, Butler Lampson, Dave Liddle, William Newman, Bill Paxton,
Trygve Reenskaugr Dave Robson, Doug Ross, Paul Rovner, Bob Sproull, Dan Swinehart, Bert
Sutherland, Bob Taylor, Warren Teitelman, BonMe Tennenbaum, Chuck Thacker, and John Warnock.
Worse, I have omitted to mention many systems whose design I detested, but that generated consid-
erable useful ideas and attitudes in reaction. In other words "histories" should not be believed very
seriously but considered as "FEEBLE CEsTURES off" done long after the actors have departed the stage.

Thanks to the numerous reviewers for enduring the many drafts they had to comment on. Special
thanks to Mike Mahoney for helping so gently that I heeded his suggestions and so well that they

I,al .. 6/y, 4 llc G/, ly rlt:.,/iy vi oi 4,0,1©13. 4

greatly improved this essay-and to lear Sammet an old old friend, who quite literally frightened
me into finishing it-I did not want to find out what would happen if I were late. Sherri Mcioughlin
and Kim Rose were of great help in getting all the materials together.

1.1960-66-Early oop and other formative ideas of the sbales
Though oop came from many motivations, two were central. The large scale one was to find a bet-

ter module scheme for complex systems involving hiding of details, and the small scale one was to
find a more flexible version of assignment and then to try to eliminate it altogether. As with most
new ideas, it originally happened in isolated fits and starts.

New ideas go through stages of acceptance, both from within and without. From within, the
sequence moves from "barely seeing' a pattern several times, then noting it but not perceiving its
"cosmic" significancer then using it operationally in several areas, then comes a "grand rotation" in
which the pattern becomes the center of a new way of thinking, and finally, it turns into the same
kind of inflexible religon that it originally broke away from. From without, as Schopenhauer noted,
the new idea is first denounced as the work of the insane, in a few years it is considered obvious and
mundane, and finally the original denouncers will claim to have invented it.

True to the stages, I "barely saw" the idea several times ca. 1961 while a programmer in the Air
Force. The first was on the Burroughs 220 in the form of a style for J USA ATG Randolph AFB
tranSporting files from one Air Training Command installation to L B220 File Format M. 1961
another. There were no standard operating systems or file formats
back then, so some {to this day unknown) designer decided to
finesse the problem by taking each file and dividing it into three /C
parts. The third part was all of the actual data records of arbitrary 4-size and format. The second part contained the B220 procedures

--' Procedures
that knew how to get at records and fields to copy and update the >p
third part And the first part was an array of relative pointers into /14 6
entry points of the procedures in the second part (the initial point- - Pointers

ers were in a standard order representing standard meanings).
Needless to say, this was a great idea, and was used in many subsequent systems until the enforced
use of COBOL drove it out of existence.

The second barely-seeing of the idea came just a little later when Aic decided to replace the 220
with a B5000. I didn't have the perspective to really appreciate it at the time, but I did take note of its
segmented storage system, its efficency of HLL compilation and byte-coded execution, its automatic
mechanisms for subrountine calling and multiprocess switching, its pure code for sharing, its protec-
tion mechanisms, etc. And, I saw that the access to its Program Reference Table corresponded to the
220 file system scheme of providing a procedural interface to a module. However, my big hit from
this machine at this time was not the oOp idea, but some insights into HLL transiation and evaluation.
{Barton,1961] [Burroughs,1961]

After the Air Force, I worked my way through the rest of college by programming mostly retrieval
systems for large collections of weather data for the National

LOG* OF THE NuMOER OF
Center for Atmospheric Research. I got interested in simulation COMPONENTS PER TNTEGRATED FUNCTION
in general-particularly of one machine by another-but aside e-Ne.......:=73:81;
from doing a one-dimensional version of a bit-field block trans- &4
fer {bitbit) on a CDC 6600 to simulate word sizes of various 56 :
machines, most of my attention was distracted by school, or I lgAT 7

19(. bshould say the theatre at school. While in Chippewa Faits help- #,ggs. 1
ing to debug the 6600,1 read an article by Gordon Moore which & 952 \
predicted that integrated silicon on chips was going to exponen- ./ I

tially improve in density and cost over many years [Moore 65]. igji- :
At that time in 1965, standing next to the room-sized freon- \
cooled 10 MIr 6600, his astounding predictions had little projec- ' ' Gordon Moords 'Law'
tion into my horizons.

0

'Data"
Records

Sketchpad and Simula
Through a series of flukes, I wound up in graduate school at the University of Utah in the Fal[of

1966, "knowing nothing". That is to say, 1 had never heard of ARPA or its projects, or that Utah's main
goal in this community was to solve the "hidden line" problem in 3D graphics, until I actually

oL

walked into NVE-Evans' office looking for a job and a desk. On Davers desk was a foot-high stack of
brown covered documents, one of which he handed to me: "Take this and read it".

Every newcomer got one. The titte was "Sketchpad: A man-machine graphical communication sys-
tem"[Sutherland, 1963]. What it could do was quite remarkable, and completely foreign to any use of
a computer I had ever encountered. The three big ideas that were easiest to grapple with were: it was
the invention of modern interactive computer graphics; things were described by making a "master
drawing" ttiat could produce "instance drawings"; control and dynamics were supplied by "con-
straints", also in graphical form, that could be applied to the masters to shape and inter-relate parts.
Its data structures were hard to understand-the only vaguely familiar construct was the embedding
of pointers to procedures and using a process called reverse indexing to jump though them to rou-
times, like the 220 file system[Ross,19611. It was the first to have clipping and zooming windows-
one "sketched" on a virtual sheet about 1/3 mile square!

 When there was only One personal con·puter
Ivan at the TX-2 ca. 7962

00 ConstraintsIii© 439 -14riwi.IMI !represented

000
t.......,1/014

(DO

@

L aons I =.m

ConstfaintS1
 merged
with picture

 Drawing in Sketchpad programming *!ith constraints

2 /1, ./

EE]
E»£ * I.€ 1
E M.

1/1/L

CE}€N,0 CEZ}CO
'luE A 4i . '1rt =1 == 52:/8

= 82
CZMZO

Pul\1111*•
1,2*3 •generic biock· showing Tketchpad·s ·inheritance'

Sketchpad Structure# procedural attachment hierarchy

Head whirling, I found my desk. On it was a pile of tapes and listings, and a note: "This is the
Algol for the 1108. It doesn't work. Please make it work." The latest graduate student gets the latest
dirty task.

The documentation was incomprehensible. Supposedly, this was the Case-Western Reserve 1107
Algol-but it had been doctored to make a language called Simula; the documentation read tike
Norwegian transliterated into English, which in fact it was. There were uses of words like activity and
process that didn't seem to coincide with normal English usage.

Finally, another graduate student and I unrolled the program listing 80 feet down the hall and
crawled over it yelling discoveries to each other. The weirdest part was the storage ailocator, which
did not obey a stack discipline as was usual for Algol. Afew days later, that provided the clue. What
Simula was allocating were structures very muth kike the instances of Sketchpad. There were descrip-
tions that acted like masters and they could create instances, each of which was an independent enti-
ty. What Sketchpad called masters and instances, Simula called activities and processes. Moreover,
Simula was a procedural language for controlling Sketchpad-like objects, thus having considerably
more flexibility:than constraints (though at some cost in elegance) [Nygaard,1966, Nygaard, 1983].

This was the big hit, and I've not been the same since. 1 think the reason the hit had such impact
was that I had seen the idea enough times in enough different forms that the final recognition was in
such genefal terms to have the quality of an epiphany. My math major had centered on abstract alge-

bras with their few operations generally applying to many structures. My biology major had focused
on both cet! metabolism and larger scale morphogenesis with its notions of simple mechanisms con-
trolling comptex processes and one kind of building block able to differentiate into all needed build-
ing blocks. The 220 file system, the 85000, Sketchpad, and finalty Simula, all used the same idea for
different purposes. Bob Barton, the main designer of the B5000 and a professor at Utah had said in
one of his taiks a few days earlier. "The basic principle of recursive design is to make the parts have
the same poweras the whole". For the first time I thought of the whole as the entire computer and
wondered why anyone would want to divide it up into weaker things called data structures and pro··
cedures. Why not divide it up into little computers, as time.sharing was starting to? But not in
dozens. Why not thousands of them,each simulating a useful structure?

I recalled the monads of Leibniz, the "dividing nature at its joints" discourse of Plato, and other
attempts to parse complexity. Of course, philosophy is about opinion and engineering is about deeds,
with science the happy medium somewhere in bet'ween. It is not too much of an exageration to say
that most of my ideas from then on took their roots from Simula=but not as an attempt to improve
it. It was the promise of an entirely new way to structure computations that took my fancy. As it
turned out, it would take quite a few years to understand how to use the insights and to devise effi-
cient mechanisms to execute them.

it. 196749-The FLEX Machine, a first attempt at an oop-based personal computer
Dave Evans was not a great believer in graduate school

as an institution. As with many of the ARPA "contractors"
he wanted his students to be doing "real things"; they
should move through graduate school as quickly as possi-
ble; and their theses should advance the state of the art.
Dave would often get consulting jobs for his students, and
in early 1967, he introduced me to Ed Cheadle, a friendly
hardware genius at a local aerospace company who was
working on a "little machine". It was not the first personal
computer-that was the uNC of Wes Clark-but Ed want-
ed it for noncomputer professionals, in particular, he want-
ed to program it in a lhigher level language, like BASIC. I ·The LI NCwas early and small"
said: "What about J055? It's nicer." He said: "Sure, whatev- Wes Clark and the UNC, ca 1962
er you think", and that was the start of a very pleasant col-
laboration we called the FLEX machine. As we got deeper into the design, we realized that we wanted
to dynamically simulate and extend, neither of which JOSS (or any existing language that I knew of)
was particularly good at The machine was too small for Simula, so that was out. The beauty of Joss
was the extreme attention of its design to the end-user-in this respect, it has not been
surpassed[Joss,1964, Joss,1978}.loss was too slow for serious computing (but cf. Lampson 65), did not
have real procedures, variable scope, and so forth. A language that looked a little like JOSs but had
considerably more potential power was Wirth's EULER[Wirth 1966] This was a generalization of Algol
along lines first set forth by van Wijngaarden [van Wijngaarden 1963}in which types were discarded,
different features consolidated, procedures were made into first class objects, and so forth. Actually
kind of Lisplike, but without the deeper insights of LiSP.

But EULER was enough of "an almost new thing" to suggest that the same techniques be applied to
simplify Simula. The EUUR compiler was a part of its formal definition and made a simple conversion
into B5000-like byte-codes. This was appealing because it suggested that Ed's little machine could
run byte-codes emulated in the longish slow microcode that was then possible. The EULER compiler
however, was torturously rendered in an "extended precedence" grammar that actually required
concessions in the language syntax (e.g. 7 could only be used in one role because the precedence
scheme had no state space). I initially adopted a bottom-up Floyd-Evans parser {adapted from Jerry
Feldman's original compiler-compiler [Feldman 1977]) and later went to various top-down schemes,
several of them related to Shorre's META n[Shorre 19631 that eventually put the translater in the name
space of the language.

The semantics of what was now catled the FLEX language needed to be influenced more by Simula
than by Agot or EULER. But it was not comp[etely clear how. Nor was it clear how the user 5hould
interact with the system, Ed had a display (for graphing, etc.) even on his first machine, and the uNc

IL

Alan C. Kay. The Eal,y History or Smalitalk 7

had a ··glass tetetype", but a Sketchpad-like system seemed far beyond the scope that we could
accomplish with the maximum of 16k 16-bit words that our cost budget allowed.

Doug Engelbart and NLS
This Was in early 1967, and while we were pondering

the nEX machine. Utah was visited by Doug Engelbart A
prophet of Biblkal dimensions, he was very much one oi
the fathers of what on the M.Ex machine I had started k
call "personal computing". He actuaUy traveled with his

own 16mm projector with a remote control for startinE
andstopping it to show what was going on (people we¤
not used to seeing and following cursors back then). Hia
notion of the ARPA dream was that the datitly of oNLinf
Systems (NIS) was the 'augmentation of human intel·
[ect" via an interactive vehicle navigating througt
"thought vectors in concept space". What his syst 4®bart ¢8 1987

could do then-aven by today's standards-was incri
ble. Not iust hvpertext, but graphies. muttipje panes, i
dent navigation and command input. interactive colla r all
rative work, etc. An entire conceptual world and w€ r,J
view[Engetbart 68]. The impact of this vision was to F .Wduce in the minds of those who were "eager to be a
mented" a compelling metaphor of what interact , *Na,a..mi
¢omputing should be like, and I immediately adop
many of the ideas for the sux machine.

In the midst of the ARIA context of human-comf
symbiosis and in the presence of Ed's "Uttle machir
Gordon Moofe's "Law" again came to mind. this tj .-9

with great impact. For the first time I made the leap of + .1

putting the mom-sized interaetive TX.z or even a 10 Mip . I t.. +-WV/1,1*. .il

6600 on a desk. I was almost frightened by the implka-0

tions; computing as we knew it couldn't survive-the 77.-ractual mearring of theword changed-it must have been
the same kind of disorientation people had after reading .'..... -
Coperricus and first looked up from a different Earth to a .ar--'.'
different Heaven. . f= -1.12*:7==672-¥ - M

In*M of R Innqt fAw Ihfulanrq ;ed'64/,1.07 MAN

frames in the world-even today in 1992 it is estimated L
that there are only 4000 IBM mainframes in the entire f- Mul,#90 Panes and View specs n NIS
world-and at most a few thousand users trained for

each application, there would be millions of penonal
machines and users, mostly outside of direct institutional
control. Where would the applications and Eraining come
from? Why should we expect an applications program-
mer to anticipate the specific needs of a particular one of
the millions of potential usersy An extensionni system
seemed to:be called for in which the end-users would do

most of the talloring (and even some of the direct coe-
struction) of their tools. ARPA had already figured this out
in the context of their early successes in time-sharing.
Their larget metaphor of human-computer symbiosis
helped the community avoid making a religon of their subgoats and kept them focused on the
abstract holy grail of "augmentation".

One of the interesting features of NiS was that its user interface was parametric and coutd be sup
plied by the end user in the form of a "grammar of interaction" given in their compiler-compiler
TreeMeta. This was similar to W-Uliam Newman's early "Reaction Handler" INewman 661 work in

-4.-/*

C,Nlatorain,0 work using NLS -1

4.**f 4
»AID:« ' ./

Atan C Kay. The Eally HiMk,7 Of Smalhalk 8
specifying interfaces by having the end-user or developer construct through tablet and stylus an
iconic regular expression grammar with action procedures at the states (NEs allowed embeddings via
its context free ndes). This was attractive in many ways, panicularly William'$ scheme, but to me
there was a monstrous bug in this approach. Namely these grammars forced the user to be in a sys-
tem state which required getting out of before any new kind of interaction could be dorle. In hierar-
chical menus or "screens" one would have to backtrack to a master state in order to go somewhere
else. What seemed to be required were states in which theze was a transition arrow to every cther
stat-not a fruitful concept in formal grammar theory In other words, a much 'flatter" interface
seemed called for·-but could such a thing be made interesting and rich enough to be useful?

Again, the scope of the FLEX machine was too small for a miniNIS. and we were forced to find
alternate designs that would incorporate some of the power of the new ideas. and in some cases to
improve them. I decided that Sketchpad's notion of a general window that viewed a larger virtual
world was a better idea than restricted horizontal panes and with Ed came up with a clipping algo-
rithm very similar to that under development at the same time by Sutherland and his students at
Harvard for the 30 "virtual reality" helmet project [Sutherland 19681.

Object references were handled on the FLEX macne as a generalization of 85000 descriptors.
Instead of a few formats for referencing aumbers. arrays, and procedures, a FLEK descriptor corp·
tained two pointers: the first to the "master" of the object and the second to the object instance (later
we realized that we should put the master pointer in the instance to save space). A different method
was taken for handling generalized assignment. The B5000 used 1-values and r-values{Strachey*1
w hich worked for some cases but couldn't handle more complex objects. For example: a<55, := 0, if a
wasa sparsearraywhosedefaultelementwase wouldstillgenerateanelementinthearravbecause
:= is an "operator" and 455J is derniereneed into an bvalue before anyone gets to see that the rvalue
is the default element, regardless of whether O is an array or a procedure fronting for an amy What
is needed is something [ike: &(55, ':=t W. which caa look at al] relevant operands before any store is
made. In other words,:= is not an operator, buta kind of a index that tan select a behavior from a
complex obiect. It took me a remarkably long time to see this, partly I think because one has to invert
the traditional notion of operators and functions. etc.. to see that objects need to privately own ail of
their behaviors: that objees an a kind qf mapping whose uatua ard its behaviors. A book on logic by

(3) ed/3 _

The FLEX Machine Self Portrait, ca 1968 EK. 891
FLEX User tnierlaci

'01105"assufendedprocessee p;#DI

 'Schedula' 10*IN• 1

i> r.r-
If , r L„ I#- I

T

% 1-

F Ex mach ./ moN;p Ie windowl

4/74

Virtual Screen CR

„Inucninewindowei©ping,45@11 Toble k
t =Patent' Mater),gl| E

I .„X mach.neot},ect M.ctura i...1 1

EL

Carnap{Ca helped by showing that -intensional" definitions covered the same territory as the
more traditional extensionai technique and were often more intuitive and convenient.

As in Simula, a coroutining control structure[Conway, 1963] was used as a way to suspend and
resume objects. Persistant objects like files and documents were treated as suspended processes and
were organized according to their Algot-Uke static variable scope These were shown on the screen
and could be opened by pointing at them. Coroutining was also used as a control structure for loop-
ing. A single operator while was used to test the generators which returned false when unable to
furnish a new value. Booleans were used to link multiple generators. So a "for-type" loop would be
written as:

while i <= 1 to»30 by 2 A j <= 2 to k by 3 do j<- j • i
where the... to,- by.. was a kind of coroutine object. Many of these ideas were reimplemented in a
stronger style in Smalltalk later on.

Alaher controi stfuctureof interestin FIE[was a kindof when .<bA (x)•10£95) iE
event-driven "soft interupt" called when. Its boolean T
expression was compiled into a "tournement sort" tree that compiled Tree A
cached all possible intermediate results. The relevant vari- 01 partial r0sults /1 \
ables were threaded through all of the sorting trees in all of 44* 4: true
the whens so that any change onty had to compute through 011 40,1
the necessary parts of the booleans. The efficiency was very high and was similar to the techniques now used for 1 0

spreadsheets. This was an embarrassment of riches with
 Fl Ex when statement .9/ 1difficulties often encountered in event-driven systems.

Namely it was a complex task to control the context of just when the whens should be sensitive. Part
of the boolean expression had to be used to check the contexts, where I felt that somehow the struc*
turn of the program should be able to set and unset the event drivers, This turned out to beyond the
scope of the FLEx system and needed to wait for a better architecture.

Still, quite a few of the original FLEX ideas in their proto-object form did turn out to be small
enough to be feasible on the machine. I was writing the first compiler when something unusual hap-
pened: the Utah graduate students got invited to the ARM contractors meeting held that year at Alta,
Utah. Towards the end of the three days, Bob Taylor, who had succeeded Ivan Sutherland as head of
ARPA-IPTO, asked the graduate students (sitting in a ring around the outside of the 20 or so contrac-
tors) if they had any comments. John Warnock raised his hand and pointed out that since the ARPA
grad students would all soon be colleagues (and since we did all the real work anyway}, ARPA should
have a contractors-type meeting each year for the grad students. Taylor thought this was a great idea
and set it up for the next summer,

Another ski-lodge meeting happened in Park City later that spring. The general topic was educa-
tien and it was the first time I heard Marvin Minsky speak. He put forth a terrific diatribe against tra-
ditional educational methods, and from him I heard the ideas of Piaget and Papert for the first time.
Marvin's talk was about how we think about complex situations and why schools are really bad
places to learn these skills. He didn't have to make any claims about computers+kids to make his
point, It was clear that education and learning had to be rethought in the light of 20th century cogni-
tive psychology and how good thinkers really think. Computing enters as a new representation sys-
tem with new and useful metaphors for dealing with complexity, especially of systems [Minsky 70].

For the summer 1968 ARpA grad students meeting at
Allerton House in Illinois, I boiled all the mechanisms in
the FLEX machine down into one 2'x3' chart. This inctud
ed all of the "object structures", the compiler, the byte
code interpreter, i/O handlers, and a simple display edi-
tor for text and graphics. the grad students were a dis-
tinguished group that did indeed become colleagues in
Subsequent years. My FLEX machine talk was a success,
but the big whammy for me came during a tour to U of
Illinois where I saw a 1" square lump of glass and neon
gas in which individual spots would light up on com-
mand-it was the first flat-panel display I spent the rest
of the corderence calculating just when the silicon of the The First Plasma Panel

Awl i L. ray, i ne early Mislory U arnalltalk 10

FLEX machine could be put on the back of the display. According to Gordon Moore's "Law", the
miswer seemed to be sometime in the late sevenhes or early eighties. A long time off-it seemed too
long to worry much about it then.But later that year at RAND I saw a truly beautiful sys- fI F«»439·fe
tem. This was GRAIL, the graphical followon to Joss. The ti324*ff :: :t:= M
first tablet (the famous RAND tablet) was invented by li ji 0§j©fvme s €3
Tom Ellis [Davis 1964] in order to capture human ges- 49€lf f€*934
tures, and Gabe Groner wrote a program to efficiently t:4 11%12*FF,te .2
recognize and respond to them[Groner 1966], Though 9>FEF{i ft,tkilt 1everything was fastened with bubble gum and the sys-
tem crashed often, I have never forgotton my first inter-
actions with this system. It was direct manipulation, it :4„444:.:,44*
was analogical, it was modeless, it was beautiful. I real- ///1*L

ized that the FLEX interface was all wrong, but how could)44442:3. twy**ilk#a 4

something like cKAIL be stuffed into such a tiny machine t »*f=4V*AP-#FF' : ,#440$.Id.11f&&since itrequired all ofa stand-alone 360/44 torin·lin? j*«0 **11< *4**i-"'654#w
A month later, I finally visited Seymour Papert. Wally

Feurzig, Cynthia Solomon and some of the other origi-
nal researchers who had built Loco and were using it
with children in the Lexington schools. Here were chil-
dren doing real programming with a specially designed
language and environment. As with Simula leading to
oop, this encounter finally hit me with what the destiny
of personal computing really was going to be. Not a per-
sonal dynamic uehicte, as in Engelbart's metaphor SE m te' r a

E.<6 11 -W
opposed to the IBM "railroads", but something much *0 -
more profound: a personal dynamic medium. With a **21 Seymour Papert and LOGO Tulile F
vehicie one could wait until high school and give "dri
vers ed", but if it was a medium, it had to extend int
the world of childhood.

Now the collision of the FLEX machine, the flat.screer
display, CRAIL, Barton's "communications" talk
McLuhan, and Papert's work with children all eamc
together to form an image of what a personal compute:
really should be. I remembered Aldus Manutius who 4[
years after the printing press put the book into its mod.
ern dimensions by making it fit into saddlebags. It hac
to be no larger than a notebook, and needed an interfaci
as friendly as JOBS', CRAIL's, and LOGO'S, but with thi

-Dr,/ i./.r -/ r. = I l•.ill.Ill -, I., w. ill

Y

i

reacn or blmula ana k-LEA. A ue.11 lull:,11„,L volvit ,a. a ..1. .ca,u, .Ul.123 'v 'V 4-4.56•• ••,6.- 1• .•·

Now it was easy to know what to do next, I built a cardboard model of it to see what it would look
and feel like, and poured in lead pellets to see how light it would have to be (less than two pounds). I
put a keyboard on it as well as a stylus because, even if handprinting and writing were recognized
perfectly {and there was no reason to expect that it would be), there still needed to be a balance
between the lowspeed tactile degrees of freedom offered by the stylus and the more limited but faster
keyboard, Since ARPA was starting to experiment with packet radio, I expected that the Dynabook
when it arrived a decade or so hence, would have a wireless networking system.

Early next year (1969) there was a conference on Extensible Languages in which almost every
famous name in the field attended. The debate was great and weighty-it was a religious war of
unimplemented poorly thought out ideas. As Alan Perlis, one of the great men in Computer Science,
put it with characteristic wit:

It has been such a long time since I have seen so many familiar faces
shouting among so many familiar ideas. Discovery of something new in
programming languages. like any discovery. has somewhars the same
sequence of emotions as falling in love. A sharp elation followed by
euphoria, a feeling of uniqueness, and ultimately the wandering eye
(the urge to generalize) {ACM 691.

EL

stvlus·

k Removable

storage
The Dynabook Model 4 - = -„,-<-

; 4 Alan C. Kay, lhe Early History Of Smainalk 11
But it was all talk-no one had dgne anything-yef. In the midst of all this, Ned Irons got up and

presented IMP, a system that had already been working for several years that was more elegant than
most of the nonworking proposals. The basic idea of IMP was that you could use any phrase in the
grammar as a procedure heading and write a semantic definition in terms of the language as extend-
ed so far [lrons, 1970].

I had already made the first version of the FLEX machine syntax driven, but where the meaning of a
phrase was defined in the more usual way as the kind of code that was emitted. This separated the
compiler·extensor part of the system from the end-user. In Irc)ns' approach, every procedure in the
system defined its own syntax in a natural and useful manner. I incorporated these ideas into the see-
ond version of the FLEX machine and started to experiment with the idea of a direct interpreter rather
than a syntax directed compiler Somewhere in al! of this, I realized that the bridge to an object-based
system could be in terms of each object as a syntax directed interpreter of messages sent to it. In one
fett swoop this would unify object-oriented semantics with the ideal of a completely extensible lan-
guage. The mental image was one of separate computers sending requests to other computers that
had to be accepted and understood by the receivers before anything could happen. In today's terms
evtry object would be a server offering Services whose deployment and discr@tion depended entirely
on the server's notion of relationship with the servee. As Liebniz said: "To get everything out of
nothing, you only need to find one principle». This was not well thought out enough to do the FLEX
machine any good, but formed a good point of departure for my thesis [Kay 69}, which as Ivan
Sutherland liked to say was "anything you can get three people to sign".

After three people signed it (Ivan was one of them), I went to the Stanford AI project and spent
much more time thinking about notebook KiddyKomputers than AI. But there were two AI designs
that were very intriguing. The first was Carl Hewitt's PLANNER, a programmable logic system that
formed the deductive basis of Winogradfs SHRDLU [Sussman 69, Hewitt 69], I designed several lan-
guages based ona combination of the pattern matching schemes of FLEX and PLANNER [Kay 70]. The
second design was Pat Winston's concept formation system, a scheme for building semantic net-
works and comparing them to form analogies and learning processes [Winston 70].It was kind of
·'object«iented". One of its many good ideas was that the arcs of each net which served as attributes
in AOV triples should themselves be modeled as nets, Thus, for example a first order arc called LEFT-
of could be asked a higher order question such as 'What is your converse?" and its net could answer:
RIGHT·oF. This point of view later formed the basis for Minsky's frame systems [Minsky 75]. A few
years later I wished I had paid more attention to this idea.

That fall, I heard a wonderful talk by Butler Lampson about CAL-TSS, a capability-based operating
system that seemed very "object-oriented"{Lampson 1969]. Unforgable pointers (ala 85000) were
extehded by bit-masks that restricted access to the object's internat operations. This confirmed my
"objects as server" metaphor. There was also a very nice approach to exception handling which
reminded me of the way failure was often handled in pattern matching systems. The only problem-
which the CAL designers did not see as a problem at atl-was that only certain (usually large and
slow) things were "objects". Fast things and small things, ete., weren't. This needed to be fixed,

The biggest hitfor me while at SAIL in late '69 was to really understand usp. Of course, every stu-
dent knew about car, cdr, and cms, but Utah was impoverished in that no one there used usp and
hence, no one had penetrated the mysteries of aol and apply. I could hardly believe how beautiful
and wonderful the Wed of UsP was IM¢Carthy,1960]. I say it this way because LISP had not only been
around enough to get some honest barnacles, but worse, there were deep flaws in its logical founda-
tions. By this, I mean that the pure language was supposed to be based on functions, but its most
important component9=such as lambda expressions, quotes, and conds-were not functions at all,
and instead were called special forms. Landin and others had been able to get quotes and conds inn
terms of lambda by tricks that were variously clever and useful, but the fiaw remained in the jewel.
In the practical language things were better. There were not just ExpRs (which evaluated their arp
ments), but FEXPRS (which did not). My next question was. why on earth call it a functional language?
Why not just base everything on FEXPRs and: force evaluation on the receiving side when needed? I
could never get a good answerl, but the question was very helpful when it came time to invent
Smalltalk, because this started a line of thought that said "take the hardest and most profound thing
you need to do, make it great and then buNd every easier thing out of it". That was the promise of
LisP and the lure of tambda-needed was a better "hardest and most profound" thing. Objects should
beit

Alan C. Kay, The Eally Hislory Of Smalltalk 12
m. 1970-72-Xerox PARC: The KiddiKomp, miniCOM, and Smalltalk-71
in July 1970, Xerox, at the urging of its chief scientist Jack Goldman, decided to set up a long range
research center in Palo Alto, California. In September, George Fake, the former chancellor at
Washington University where Wes Clark's ARPA project was sited, hired Bob Taylor (who had left the
ARPA office and was taking a sabbatical year at Utah) to start a "Computer Science Laboratory". Bob
visited Palo Alto and we stayed up all night talking about it, The Mansfield Amendment was threat-
ening to bhndty muzzle the most enlightened ARPA funding in favor of directly military research, and
this new opportunity looked like a promising alternative. But work for a company? He wanted me to
consult and I asked for a direction. He said: follow your instincts. I immediately started working up a
new version of the KiddiKomp that could be made in enough quantity to do experiments leading to
the user interface design for the eventual notebook. Bob Barton liked to say that "good ideas don't
often scale". He was certainly right when applied to the FLED< machine. The B5000 just didn't directly
scale down into a tiny machine. Only the byte-codes did, and even these needed modification, I
decided to take another look at Wes Clark's LINC, and was ready to appreciate it much more this time
[Clark,1965].

4. 11.6 k u.il..+14 .: - - 2%57
L. E.&65 :LU 4.-t 0////' -lidi4- *. 1- i

- 1•--:t€£*/-·©4.a.0- t.-£1 -plt:.*4
4.16·hIR,

A 1&4 1 d..f# 4.4:I.
. ('00 4,4+J

16#a 14 *.4- vu.• ·L F.•J 4*t-

'0 13127*j A

' 1.El.El y '" r.119 7.L 'u® 1%06*
£ LaMEWN#**9 ..m, 06- 6 It, --1

MI//Efor +44*41,
- 6.4-0..JI,1 L 5 1X li•-8 · 1 '

6.25

4/killil

I still liked pattern·directed approaches and oop so I came up with a language design called
"Simulation LOGO" or SLOCO for short (I had a feeling the first versions might run nice and slow). This
was to be built into a 5ONY "tummy trinitron" and would use a coarse bit-map display and the FLEx
machine rubber tablet as a pointing device.

Another beautiful system that I had come across was Peter Deutsch's PDF-1 usp (implemented
when he was only 15) [Deutsch,19661. It used only 2K (18-bit words) of code and could run quite well
in a 4K machine (it was its own operating system and interface). It seemed that even more could be
done if the system were byte-coded, run by an architecture that was hospitable to dynamic systems,
and stuck into the ever larger ROMs that were becoming available. One of the basic insights Ihad got-
ten from Seymour was that you didn't have to do a lot to make a computer an "object for thought"
for children, but what you did had tobe dole well and beableto apply deeply.

Right after New Years 1971, Bob Taylor scored an enormous coup by attracting most of the strug-
gling Berkeley Computer Corp to PARC. This group included Butler Lampson. Chuck Thacker, Peter
Deutsch, Jim Mitchell, Dick Shoup, Willie Sue Haugeland, and Ed Fiala. Jim Mitchell urged the group
to hire Ed Mcereight from CMU and he arrived soon after. Gary Starkweather was there already,
having been thrown out of the Xerox Rochester Labs for wanting to build a laser printer (which was
against the local religon). Not long after, many of Doug Englebart's people joined up-part of the rea-
son was that they want to reimplement NIS as a distributed network system, and Doug wanted to
stay with time-sharing. The group included Bill English (the cominventor of the mouse), Jeff Rulifson,
and Bill Paxton.

Almost immediately we got into trouble with Xerox when the group decided that the new lab
needed a PDF-10 for continuity with the AR['A community. Xerox (which had bought SIS essentially
sight unseen a few years before) was horrified at the idea of their main competitor's computer being
used in the lab. They balked. The newly formed pARC group had a meeting in which it was decided

DL

Awn u. Aay, I ne t=afiy Mision' ul t>maliial# 13

that it would take about three years to do a good operating system for the xEs sIGMA-7 but that we
could build "our own'PDP-10' in a year. My reaction was "Holy cow!". In fact they pulled it off with
considerable panache. MAxc was actually a microcoded emulation of the PDP-10 that used for the first
time the new integrated chip memories (lK bits!} instead of core memory. Having practical in house
experience with both of these new technologies was critical for the more radical systems to come.

One little incident of usp beauty happened when Allen Newell visited PARC with his theory of hier
achical thinking and was challenged to prove it. He was given a programming problem to solve
while the protocol was collected. The problem was: given a list of items, produce a list consisting of
all of the odd indexed items followed by all of the even indexed items. Newell's internal program-
ming language resembled IPL-V in which pointers are manipulated explicitly, and he got into quite a
struggle to do the program. In 2 seconds I wrote down:

oddsEvens(x) = append(odds<x), evens(x))
the statement of the problem in Landires LIsp syntax-and also the first part of the solution. Then a
few seconds later:

where odds(x) = if Mul(x) vnull(ti(x)) then x
else hd(x) 6 odds(ttl<x)) -

evens(x) = if?1141£(x) vnul!(tl(x)> then nit
exist odds(tli))

This characteristic of writing down many solutions in declarative form and have them also be the
programs is part of the appeal and beauty of this kind of language. Watching a famous guy much
smarter than I struggle for more than 30 minutes to not quite solve the problem his way (there was a
bug} made quite an impression, It brought home to me once again that "point of view is worth 80 IQ
points". I wasn't smarter but I had a much better internal thinking tool to amplify my abilities. This
incident and others like it made paramount that any tool for children should have great thinking pat-
terns and deep beauty "builtin".

Right around this time we were involved in another conflict with Xerox management, in particular
with Don Pendery the head "planner". He really didn't understand what we were talking about and
instead was interested in "trends" and

"what was the future going to be like" bt,- I

and how could Xerox-defend against r m / \1it". I got so upset I said to him. "Look. - . 131 / 1/The best way to predict the future isto - 15«
Invent it. Don't worry about what all w d>li-1.1.-74Z©29those other people might dor this isthe century in which almost any clear .0T0 i6<4
vision can be made!" He remained 49592/5/R/*ei:.JW#%
unconvinced. and that ted to the TTE=low i
famous "Pendery Papers for PARC 14,4,•SION;:ile'Z M'172 %Planning Purposes", a collection of 161.'.Ir :4 0,6 tnatow 2

essays on various aspects of the ; Cl
huture. Mine proposed a version otthe eurve..,a ¢4.,4...1,-1 21 0„'* 4- P-,1,-m.1 - 0-,9

notebook as a "Display Transducer", @ U. 4, Crv#At. r-Ul
and Lim Mitchell's was entitled "NLS ·Pendery Paper Display Transducer' Design
ona Minicomputer".

Bill English took me under his wing and helped me start my group as I had always been a lone
wolf and-had no idea how to do it. One of his suggestions was that I should make a budget.I'm
afraid that I really did ask Bill, "What's a budget?". I remembered at Utah, in pre-Mansfield
Amendment days, Dave Evans saying to me as he went off on a trip to ARPA. "We're almost out of
money. Got to go get some more." That seemed about right to me. They give you some money You
spend it to find out what to do next. You run out. They give you some more. And so on. PARC never
quite made it to that idyllic standard, but for the first half decade it came close. I needed a group
because I had finally realized that I did not have all of the temperaments required to completely fin-
ish an idea. I ta[led it the Learning Research Group (LRC) to be as vague as possible about our charter.
I only hired peopie that got stars in their eyes when they heard about the notebook computer idea. I
didn't like meetings: didn't believe brainstorming could substitute for cool sustained thought. When
anyone asked me what to do, and I didn't have a strong ideay I would point at the notebook model

Alan C. Kay, The Earjy History Of Smalitalk 14
and say, "Advance that". [RG members developed a very close relationship with each other-as Dan
Ingalls was to say later: "...the rest has enfolded through the love and energy of the whole Learning
Research Group". A lot of daytime was spent outside of PARC, playing tennis, bikeriding, drinking
beer, eating chinese food, and constantly talking about the Dynabook and its potential to amplify
human reach and bring new ways of thinking to a faltering civilization that desperately needed it
(that kind of goal was common in California in the aftermathof the sixties).

In the summer of'71 1 refined the KiddiKomp idea into a tighter design called miniCOM, It used a
bit-slice approach likie the NOVA 1200, had a bit-map display, a pointing device, a choice of "sec-
ondary" (really tertiary} storages, and a language I now called "Smalltalk"-as in "programming
should be a matter of,*." and "children should program in ...':The name was also a reaction against
the "IndoEuropean god theory" where systems were named Zeus, Odin, and Thor, and hardly did
anything. I figured that "Smalltalk" was so innocuous a label that if it ever did anything nice people
would be pleasantly surprised.

9

H . I #44%11

KEV'COARI
7APC

Mouse

PL©er·r"
2.2 Din< Dmvt

'6*3323
04&*861 3

lCE]%

'D:

This Smalltalk language·(today labeled -71) was very Smauta-n Programs
influenced by FLEX, PLANNER, LOGO, META It, and my own

to T'and' -v do 'v'
derivatives from them. It was a kind of parser with to F'and' :ydo F
object-attachment that executed tokens directly. (I think
the awkward quoting conventions came from META). I to 'factorid' 0 is 1
was less interested in progranis as algebraic patterns to'factorial':n do'n•factorial n-1'
than I was in a clear scheme that could handle a variety to 'fact' tr, do'to 'fact' n do factorial n. A fact r¢
of styles of programming. The patterned front-end
allowed simple extension, patterns as "data" to be to:eis-inember·of [1 do F
retrieved, a simple way to attach behaviors to objects, to:e 'is-member«of :group
and a rudimentary but clear expression of its not in do'ife = first of group then T
terms that I thought children could understand after a else e is-men*erd rest of group'

few years experience with simpler programming. tocons':x:visself
Program storage was sorted into a discrimination net and to'hd' ('conk :a :b) do 'a'
evaluation was straightforward pattern matching to lid' ('cons' :a :b) '<-0 z do ·a <> c·

As I mentioned previously, it was annoying that the to't]' ('cons':a :b) do'b'
surface beauty of usp was marred by some of its key to *tr Ccons' :a :b}'<' r do 'b <- c'
parts having to be introduced as "special forms" rather to :robot 'pickup':block
than as its supposed universal building block of func- do 'robot clear-top-of block.
tions. The actual beauty of LISP came more from the robot hand move-to block.

promise of its metastructures than its actual model. I spent robot hand lift block 50.

a fair amount of time thinking about how objects could to height-of block do 50'

5L

Alan C. Kay, The Early History Of Smalltalk 15
be characterized as universal computers without having to have any exceptions in the central
metaphon What seemed to be needed was complete control over what was passed in a message send;
in particular when and in what environment did expressions get evaluated?

An elegant approach was suggested in a CMU thesis of Dave Fisher [Fisher 70] on the synthesis of
control structures. ALGOU;0 required a separate link for dynamic subroutine linking and for access to
static global state. Fisher showed how a generalization of these links could be used to simulate a
wide variety of control environments. One of the ways to solve the "funarg problem" of LISP is to
associate the pmper global statelink with expressions and functions that are to be evaluated later so
that the free variables referenced are the ones that were actually implied by the static form of the lan-
guage. The notion of "lazy evaluation" is anticipated here as well.

Nowadays this approach would be called r<lective design. Putting it together with the FLEX models
suggested thatall that should be required fof "doing usp right" or "doing oop right" would be to
handle the mechanics of invocations between modules without having to worry about the details of
the modules themselves. The difference between usp and oop (or any other system) would then be
what the modules could contain. A universal module (object) reference-ala 85000 and usp-and a
message holding structure-which could be virtual if the sienders and receivers were sympatico-
that could be used by all would do the job.

If all of the fields of a messenger structure were enumerated according to this view; we would
have:

GLOBAL:

SENDER:

RECEIVER:

REPLY-STYLE:

STATUS:

REFLM

OPERANON SELECTOR:

OF PARAMETERS:

the enuamment €f the pammefer values
the sender of themessage
the receiver of the message
wait,fork, ..
progress of the message
eventual result (fany)
relative to tlte receiver

Pl

PN

This is a generalization of a stack frame, Elicit as used by the 85000. and very similar to what a good
intermodule scheme would require in an operating system such as CAL-Tss-a tot of state for every
transaction, butuseful to think about.

Much of the pondering during this state of grace {before any workable implementation) had to do
with trying to understand what "beautiful" might mean with reference to object-oriented design. A
subjective definition of a beautiful thing is fairly easy but is not of much help: we think a thing beau-
tiful because it evokes certain emotions. The cache has it lie "in the eye of the beholder"so that it is
difficult to think of beauty as other than a relation between subject and object in which the predispo-
sitions of the subject are all important.

If there are such a thing as universally appealing forms then we can perhaps look to our shared
biological heritage for the predispositions. But, for an object like usp, it is almost certain that most of
the basis of our judgement is learned and has much to do with other related areas that we think are
beauti ful, such as much of mathematics.

One part of the perceived beauty of mathematics has to do with a wondrous synergy between par-
simony, generality, entightenment, and finesse. For example, the Pythagorean Theorem is expressable
ina single [ine, is true for all of the infinite number of right triangles, is incredibly useful in under-
standing many other relationships, and can be shown by a few simple but profound steps.

When we turn to the various languages for specifying computations we find many to be general
and a few to be parsimonious. For example, we can define universal machine languages in just a few
instructions that can specify anything that can be computed. But most of these we would not cati
beautifu 1, in part because the amount and kind of code that has to be written to do anything interest-
ing is so contrived and turgid. A simple and small system that can do interesting things also needs a
"high slope"--that is a good match between the degree of interestingness and the level of complexity
needed tO expiess it.

A fertilized egg that can transform itself into the myriad of speciatizations needed to make a coin-
plex organism has parsimony, generality, entightenment and finesse-in short. beauty. and a beauty

Alan e. Kay, The Early History Of Smalltalk 16
much more in line with my own esthetics. I mean by this that Nature is wonderful 1*h at elegance
a,id practicality-the cell membrane is partly there to allow useful evolutionary kludges to do their
necessary work and still be able act as component by presenting a uniform interface to the world,

One of my continual worries at this time was about the size of the bit-map display. Even if a mixed
mode was used (between fine-grained generated characters and coarse-grained general bit-map for
graphics) it would be hard to get enough information on the screen. It occured to me (in a shower,
my favorite place to think) that FLEXtype windows on a bit-map display could be made to appear as
overlapping documents ona desktop. When an overiapped one was refreshed it would appear to
come to the top of the stack. At the time, this did not appear as illa wonderful solution to the problem
but it did have the effect of magnifying the effective area of the display enormously, so I decided to
go with it.

To investigate the use of video as a display medium, Bill English and Butler Iampson specified an
experimental character generator (built by Roger Bates) for the POLOS (PARC OnLine Office System)
terminals. Gary Starkweather had justgotten the first laser printer to work and we ran a coax over to
his lab to feed him some text to print The 'sLoT machine" (Scanning Laser Output Terminal> was
incredible. The only Xerox copier Gary could get to work on went at 1 page a second and could not
be slowed down. So Gary just made the laser run at that rate with a resolution of 500 pixels to the
inch!

The character generator's font memory turned out to be large enough to simulate a bit-map dis-
play if one displayed a fixed -strike" and wrote into the font memory. Ben Laws built a beautiful font
editor and he and I spent several months learning about the peculiarities of the human visual system
(it is decidedly non-linear). I was very interested in high-quality text and graphical presentations
because I thought it would be easier to get the Dynabook into schools as a "trojan horse" by simply
replacing school books rather than to try to explain to teachers and school boards what was really
great about personal computing.

f fet<t
1 U # 9 J

' . it & r
14$'. ...

't +

11 't, -
11 !:6 +" 4.

m *1
i. 81; Bil !111 • 1 I . f :11! :

 The 'Old Character Generalof«,-ea 5 1972

Use a Specia Font

Things were generally going well all over the lab until May of 72 when I tried to get resources to
build a few miniCOMs. A relatively new executive ("X") did not want to give them to me. I wrote a
memo explaining why the system was a good idea (see Appendix 11), and then had a meeting to dis-
cuss it. "X" shot it down completely saying among other things that we had used too many green
stamps getting Xerox to fund the time-shared MAX{Z and this use of resources for personal machines
would confuse them. I was shocked. I crawled away back to the experimental character generator
and made a plan to get 4 more made and hooked to NOVAS for the initial kid experiments.

I got Steve Purcell, a summer student from Stanfordf to build my design for bit-map painting so
the kids could sketch as wel as display computer graphics. John Shoch built a line drawing atid ges-
ture recognition system (based on Ledeen's [Newman and Sproull 72]) that was integrated with the
painting. Bill Duvall of Polos built a miniNLS that was quite remarkable in its speed and power. The
first overlapping windows started to appear. Bob Shur (with Steve PurceWs heip) built a 23/2 D ani
motion system. Along with Ben Laws' font editor, we could give quite a smashing demo of what we
intended to build tor real over the next few years. I remember giving one of these to a Xerox execui

9L

mil"/ te'. f:Emillif.Af•

Ty.9: 3.' :>t· 2: F.,4*Ne'*- 9/
, The First Painting System- mmer *72

, n.intine Aveem. andtive, including doing a portrait of him in the nei. r.--- o i--- '·
wound it up with a Mourish declaring: "And what's really great about Portrait of the Xerox

this is that it only has a 20% chance of success. We're taking risk just like
'RISK' executive

you asked us to!" He looked me straight in the eye and said, "Boy, thaes great, but just make sure it
works". This was a typical executive notion about risk. He wanted us to be in the "20%" one hundred
percent of the time.

That summer while licking my wounds and getting the demo simulations built and going, Butter
Lampson, Peter Deutsch and I worked out a general scheme for emulated HLL machine languages. I
liked the B5000 scheme; but Butler did not want to have to decode bytes, and pointed out that since
an 8-bit byte had 256 total possibilities, what we should do is map different meanings onto different
parts of the "instruction space". this would give us a "poor man's Huffman code" that wouid be
both flexible and simple. All subseqent emulators at PARe used this general scherne.

I also took another pass at the language for the kids. Teff Rulifson was a big fan of Piaget (and
semiotics) and we had many discussions about the "stages" and what iconic thinking might be
about. After reading Piaget and especially krome Bruner, I was worried that the directty symbolic
approach taken by FLEX, LOGO (and the current Smalltalk) would be difficult for the kids to process
since evidence existed:that the symbolic stage for mentality) was just starting to switch on. In fact, ali
of the educators that I admired (including Montessori, Holt, and Suzuki) all seemed to call for a more
figurative, more iconic approach Rudolph Arnheim [Arnheim 69] had written a classic book about
visual thinking, and so had the eminent art critic Gombrich [Gombrich **]. It really seemed that
sometting better needed to be done here. GRAIL wam't it, because its use of imagery was to portray
and edit flowcharts, which seemed like a great step backwards. But Rovrer's AMBIT«: held consider-
ably more pfomise [Rovner 68], It was kind of a visual SNoBoL [Farber 63] and the pattern matching
ideas looked like they would work for the more PLANNE]dike scheme I was using.

Bill English was still encouraging me to do more reasonable appearing things to get higher credi-
bility, like makingbudgets, writing plans and milestone notes, so I wrote a plan that proposed over
the next few years that we would build a real system on the character generators cum NovAs that
would involve oop, windows, painting, music, animation, and "iconic programming". The latter was
deemed to be hard and would be handled by the usual method for hard problems, namely, give them
to grad students.

wap

Chndren with Dynabookiltom 'A Personal Con·puter
For Children Of All Ager [A 721 CA !conie Bubble Sort from

1972 LAG Plan 1 x* 704

"Simple things should be simple. complex
things should be possible"

IV. 1972-76-The first real Smalltalk (.72), its birth, applications, and improvements
In Sept, within a few weeks of each other, two bets happened that changed most of my plans. First,

But[er and Chuck came over and asked: "Do you have any money?" I said, "Yes, about $230K for
NovAs and ccs, Why?" They said. "How would you like us to build your little machine for you?" I

Alan u. Ray, ine Early MIstory ut bmantalk 18
said, "I'd like it fine. What is it?" Butler said: "I want a '$500 FD?-10', Chuck wants a '10 times faster
NOVA', and you want a 'kiddicompt What do you need on it?" I told them most of the results we had
gotten from the fonts, painting, resolution, animation, and music studies. I asked where this had
come from ail of a sudden and Butler told me that they wanted to do it anyway, that Executive "X"
was away for a few months on a "task force" so maybe they could "Sneak it in", and that Chuck had
a bet with Bill Vitic that he could do a whole machine in just 3 months- "Oh't I said.

The second bet had even more surprising results. I had expected that the new Smalitalk would be
an iconic language and would take at least two years to invent, but fate intervened. One day, in a typ
ical PARC hallway bullsession, Ted Kaehler, Dan Ingalls, and I were standing around talking about
programming languages- The subject of power came up and the two of them wondered how large a
language one would have to make to get great power. With as much panache as I could muster, I
asserted that you could define the "most powerful language in the world" in "a page of code". They
said. "Put up or shut up".

Ted went back to CMU but Dan was still around egging me on. For the next two weeks I got to
PARC every morning at four o'clock and worked on the problem until eight when Dan, joined by
Henry Fuchs, John Shoch, and Steve Purcell showed up to kibbitz the morning's work.

I had originally made the boast because McCarthy's self-describing [.Ep interpreter was written in
itself- It was about "a page", and as far as power goes, Lmp was the whole nine-yards for functional
languages. I was quite sure I could do the same for object-oriented languages plus be able to do a rea-
sonable syntax for the code a M some of the FLEX machine techniques.

It turned out to be more difficult than I had first thought for three reasons. First I wanted the pro-
gram to be more like McCarthy's second non-recursive interpreter-the one implemented as a loop
that tried to resemble the original 709 implementation of Steve Russell as much as possible. It was
more "real". Second, the intertwining of the "parsing" with message receipt-the evaluation of para-
meters which was handled separately in LISP-required that my object-oriented interpreter re-enter
itself "sooner" (in fact, much sooner) than LISP required. And, finally, I was still not clear how send
and receive should work with each other.

The first few versions had flaws that were soundly criticized by the group. But by morning 8 or so,
a version appeared that seemed to work (see Appendix lit for a sketch of how the interpreter was
designed). The major differences from the official Smalltalk-72 of a little bit later were that in the first
version symbols were byte-coded and the receiving of return-values from a send was symmetric-4.e.
receipt could be like parameter binding-this was particutarly useful for the return of multiple val-
ues. For various reasons, this was abandoned in favor of a more expression-oriented functional
returnstyle,

Of course, I had gone to considerable pains to avoid doing any "reat work" for the bet, but I felt I
had proved my point. This had been an interesting holiday from our official "iconic programming"
pursuits, and I thought that would be the end of it Much to my surprise, only a few days later. Dan
Ingatis showed me the scheme working on the NOVA. He had coded it up (in BANCD, added a lot of
details, such as a token scanner, a list maker, etc., and there it was-running. As he like to say: "You
just do it and it's done-.

It evaluated 3+4 very stowly (it was -glacial", as Butter liked to say) but the answer always
came out 7. Well there was nothing to do but keep going. Dan loved to bootstrap on a system that
"always ran", and over the next ten years he made at least 80 major releases of various flavors of
Smalltalk.

In November, I presented these ideas and a demonstration of the interpretation scheme to the MIT
AI tab. This eventually ted to Carl Hewitt's more format "Actor" approach[Hewitt 73]. In the first
Actor paper the resembience to Smalltalk is at its closest The paths later diverged, partly because we
were much more interested in making things than theorizing, and partly because we had something
no one else had: Chuck Thacker's Interim Dynabook (later known as the "Aero").

Just before Chuck started work on the machine I gave a paper to the National Council of Teachers
of English [Kay 72c] on the Dynabook and its potentiat as a learning and thinking amplifier-the
paper was an extensive rotogravure of "20 things to do with a Dynabook" [Kay 724. By the time I got
back from Minnesota, Stewart Brand'$ Refling Stone article about FARC [Brand,1972] and the suround-
ing hacker community had hit the stands. To our enormous surprise it caused a major furor at Xerox
headquarters in Stamford, Connecticut. Though it was a wonderful article that really caught the spir-
it of the whole culture, Xerox went berserk, forced us to wear badges (over the years many were

LL

printed on t-shirts),and severely restricted the kinds of pu
particularly disastrous for LRG. since we were the "[unatic 3
scientists), were planning to go out to the schools, and ne,
with our colleagues such as Seymour Papert and Don Norm<

Executive "X" apparently heard some harsh words at
returned around Christmas and found out about the interim
tried to kill it. Butter wound up writing a masterful defenci
went back to his "task force".

Chuck had started his "bet" on November 22,1972. He ar
except for the disk interface which was done by Ed McCr
bitmap displah its microcode instruction rate was about 6M
entire machine (exclusive of the memory) was rendered in 1,
was beautiful Irhacker,1972,1986]. One of the wonderful f
head" tasking. It had 16 program counters, one for each task
events (such as "horizontal retrace pulse", and "disk sector i
flags while.the current instruction was executing and picked
fetch from next. The machine never had to wait and the r
{particularty those tha t involved i/0 Oike feeding the di:
replaced by microcode. Even the refresh of the MOS dyna
words, this was a coroutine architecture. Chuck claimed tt
given on corountines a few months before, but I rememberc
machine> had used the idea first, and I
probably mentioned that in the talk.

In early April, justa little over three
months from the start, the first Interim
Dynabook, known as 'Bilbo;' greeted the
world and we had the first bit-map pie-
ture on the screen within minutes: the
Muppets' Cookie Monster that I had *
sketched on our painting system. : 2

Soon Dan had bootstrapped Smalltalk
across, and for many months it was the
sole software system to run on the
Interim Dynabook. Appendix I has an
"acknowledgements" document I wrote
from this time that is interesting in its *1 11 4:1
allocation of credits and the various pri- lib; 6
orities associated with them. My $230K
was enough to get 15 of the original pro-
jected 30 machines Cover the years some 2000 Interim D)
Schopenhauer's observation, Executive "X" now decided tha
and he wanted all but two for his lab (I was in the other tab
get our machines back, but finally succeeded.

By this time most of Smalltalk's schemes had beer· sorted
out into six main ideas that were in accord with the initial
premises in designing the interpreter. The first three princi-
ples are what objects "are about"-how they are seen and
used from "the outside". These did not require any modifF
cation over the years. The last three-·objects from the
inside-were tinkered with in every version of Smalltalk
(and in subsequent oop designs). In this scheme (1 & 4)
imply that classes are objects and that they must be
instances of themself. (6) implies a Usplike universal syntax,
but with the receiving object as the first item followed by the
message. Thus 4 <- de (with subscripting rendered as "c"
and multiplication as "*>') means:

dicitions }hal £66]3 be maheJ-Tfus 41
·inge" (socalled by the other computer
ded to share our ideas (and programs)

Stamford about us, because when he
Dynabook, he got even more angry and
of the machine to hold him off, and he

i two technicians did all of the machine
ight. It had a -500,000 pixel (606x808)
Ps. it had a grand total of 12814 and the
0 MSI chips distributed on two cards. It
atures of the machine was "zero-over-
Condition flags were tied to interesting
Lils© etc.). Lookaside logic scanned the
the highest priority program counter to
suit was that most hardware functions
play and handling the disk) could be
iic RAM was done by a task. In other
it he got the idea from a lecture I had
i that Wes Clark's TX-2 {the Sketchpad

BILBO, the first
interim Dynabook",

and Cookie

Monster'* the first
I /*.,25/*I*1 graphics it dis-
13*- played.

April, 1973

nabooks were actually built). True to
the Interim Dynabook was a mad idea
I had to go to considerable lengths to
1. Everything is an object
2. Objects communicate by sending and

3. Objects have their own memoty (In terms of
objects>

4. Ever, 1,bject jsan instani e of a dass (which
must beantibiect)

6. To eval a pr(,gram list, control is passed to
the firstit,ject and the remainder is treated
8 its message

3461 :

Alane. Kay, The Eady Histoty Of Smalltalk 20
iver I message

c lei<-di*e

The c is bound to the receiving object and all ofe i <- d*e is the message iD it. The message is made
up of a literal token 'V, an expression to be evaluated in the sender's context {in this case i), another
literal token <-, followed by an expression to be evaluated in the sender's context (d*4 Since "Lisr
pairs are made from 2 element objects they can be indexed more simply: c hd. £ ttand c hd <- 700, etc.

"Simple" expressions like a-+b and 3+4 seemed more troublesome at first- Did it really make sense
to think of them as:

mggi= 1mgisage
a 1+5
3 1+4

It seemed silty if only integers were considered, but there are many other metaphoric readings of
"4", such as:

"kitty" 1 + "kat" => "kittykat-

345 I +4 =>P 8 91
671 /20 11 12

This led to a style of finding generic behaviors for message symbols. "Polymorphism" is the official
term (Ibelieve derived from Strachey), but it is not really apt as its original meaning applied only to
functions that could take more than one type of argument. An example class of objects in Smalltalk-
72, such as a model of CONS pairs, would look like.

to likeLOGO, except makes a temporaryvanable Instancevanable;Ciass imm its message

<SNEW is tmle if a new :stancel
4 -I -

has beeri created / te p. b j hi "b is temp. h, a ape imler,id instalte *ars"
OSNEW » (:h,:t) con»f no explicit return is gium, SELF m reD,rned

#e any object not false acts as ohii » (¤<- (A:h)*h) .replacti And cay"
be ati "re?laed and ¢dr"

true'* mn will waluate mand oiSP#ir » (Atme)
eupe from sut. ©ptint 1* <'<pnnt. SCLF mp,Dit)
mund·mg i j emp rint » Ch print. t iEN iI • {') Frbit) t isPair :» (t 11®nu » '* print. 1 wi,lt. ') pri nt)

- Weeth • 01-sairi (Al+tiength) 11)
WE »mn will evaluate n -

evals the next part of mege
and binds result to the vari-

ablein its mes!;Dge

eyeball looks to see ifils A send-lack returns
message is a literat bken its value to sendet
mae messagestream -

'sure ment Mepaca *r··
value is following mesage

Since control is passed to the class before any of the rest of the message is considered-the ciass
can decide net to receive at its discretion-complete protection is retained. Smalltalk-72 objects are
"shiny" and impervious to attack Part of the environment is the binding of the SENDER in the 'Ines.
senger object" (a generalized activation record) which allows the receiver to determine differential
privileges (see Appendix # for more details). This looked ahead to the eventual use of Smatitaik as a
network OS {see [Goldstein & Bobrow 19803), and I don't recall it being used very much in Smalltalk-
72.

One of the styles retained from Smalltalk,71 was the comingling of function and class ideas. In
other works, Smatttaik-72 classes looked tike and could be used as functions, but it was easy to pro-
duce an instance (a kind of closure) by using the object MNEW. Thus factorial could be written "exten
sionally" as:

to,#let n (Aff:19=0 then 1 else N.Act n-1)

or "intensionally", as part of class integer:

(... Of » (A:"=0 * m (nil)/)

Of course, the whole idea of Smantalk (and oop in general) is to define everything intensionally
And this was the direction of movement as we learned how to program in the new style. I never
liked this syntax (too many parentheses and nestings) and wanted something flatter and more gram-

8Z

Alan C. Kay. The Early History Of Smalltalk
mardike as itt Smatitalk-71. To the right is an exam- r pair:
ple syntax from the notes of a talk I gave around i hdthen. We will see something more like this a few U
years later in Dan's design for Smalltalk-76. I think N ·
something similar happened with usp-that the 2 Ni d
"reality" of the straightforward and practical syntax ,

you could program in prevailed against the flights of fancy that never quite got built

4:t Proposed
<-:h 1==2==

» h

&:i

• t

Wir . true

int » Y Ind. SELF mpKint·
Irint . h prin i. <f tism, then ') p:int

else ¢ t <Pair thent mprint
else'•print. tprint.') print.

Wth » I+ift isList then £ length els¢ 0

Development Of The Smalltalk-72 System And Applications
The advent of a real Smalltalk on a real machine start-

ed off an explosion of parallel paths that are too difficult
to intertwine in strict historical order. Let me first present
the general development of the Smalltalk,72 system up to
the transistion to Smalltalk-76, and then follow that with
the several years of work with children that were the pri-
mary motivation for the project. The Smalltalk-72 inter-
preter on the Interim Dynabook was not exactly zippy
("majestic" was Butler's pronouncement), but was easy
to change and quite fast enough for many real-time inter-
active systems to be built init.

Overlapping windows were the first project tackled
(with Diana Merry) after writing the code to read the
keyboard and create a string of text. Diana built an early
version of a bit field block transfer (bitblt) for displaying

variable pitch fonts and generally writing on the display. riminMmr.rk,0 •a "d The first window versions were done as real 21/2D drag- r-
gable objects that were just a little too slow to be useful,
We de<ided to wait until Steve Purcell got his animation /$,WIrn[K wink. /t T*

system going to do it right, and opted for the style that is 0
still in use today, which is more like "21/41)", Windows U=*54.1.-'
were perhaps the most redesigned and reimplemented }

class in Smalltalk because we didn't quite have enough - 9compute power to just do the continual viewing to L-
"world coordinates" and refreshing that my former Utah
colleagues were starting to experiment with on the mght
simulator projects at Evans & Sutherland. This is a sim-
ple, powerfd model but itis difficult to do in real-time Eaft,Sr,Glitalk WS#bwi-38 Interim eynabook
even in 21/:D. The first practical windows in Smalltalk
used the GRA11. conventions of sensitive corners for mov- r
ing, resizing, cloning, and closing. Window scheduling
used a simple"loopiess" control scheme that threaded all
of the windows together.

One of the next classes to be implemented on the
Interim Dynabook (after the basics of numbers, strings, 0

. etc.,) was an objectworiented version of the Loco turtle a
implemented by Ted. This could make many turtle .M

instances that were used both for drawing and as a kind sfif .,6. 1

of value for graphics transformations. Dan created a class .***'-- 1
of "commander" turtles that could control a troop of tur- *T378A f

1/Lf drik.

tlek. Soon the turtles were made so they could be clipped bl.*1,10

by the windows. 1 Tuittes
John Shoch built a mousedriven structured editor for

Smalltalk code.

fir

Alan C. Kay, The Early History Of Smalltalk
Larry Tester (then working for pc)1>s) did not like the Fie

modiness and general approach of NLS, and he wanted IC
both show the former NI.Sers an alternative and to con- 6-

duct some user studies (almost unheard of in tho,se
days) about editing. This led to his programming mmi p.r•,
MOUSE in Smalltalk, the first real WYSIWYG galley editor ,6
at PARC- It was modeless (almost) and fun to use, not
just for us but for the many people he tested it on (I ran
the camera for the movies we took and remember their
delight and enjoyment). mbliMousE quickly became an
alternate editor for Smalltalk code and some of the best
demos we ever gave used it.

One of the "small program" projects I tried on an
adult class in the Spring of '74 was a one-page para-
graph editor. It turned out to be too complicated, but
the example I did to show them was completely mode-
tess (it was in the air) and became the basis for much of
the Smalltalk text work over the next few years. Most of
the improvements were made by Dan and Diana Merry.
Of course, objects mean multi-media documents, you
almost get them for free. Early on we realised that in
such a document each component object should handle
its own editing chores. Steve Weyer built some of the
earliest multi-media documents, whose range was
greatly and variously expanded over the years by Bob
Flegal, Diana Merry, Larry Tester;Ilm Mott, and trygve
Reenskaug.

Steve Weyer and I devised Findit, a -retrieval by c
example" interface that used the analogy of classes to EL
their instances to form retrieval requests. This was used A-
for many years by the PARc library to control circula- „M'%
tion.

*U."'.'-; 4/jec *.1.w.

-•rA*erm,™¢

31 *&Mb**' *4,k f Ji 7%

Findit Retrieval By Example

d."larn

9/&-/%3:tmxt:tmt:M
lt2.7-" *-" 1 -4 1* .1.0
44*4%14;'./.

n

3
Ll
114--*-,0-*-

r.....3ELF.b-•.

Retrieved HyperDocument

The sampling synthesis music I had developed on --5 --,..-------'
the NOVA could generate 3 high-quality real-time voices. _
Bob Shur and Chuck Thacker transfered the scheme to ,,_q .-- J.1. -9> .4.

* 02 Y•$ ari*2""75,0, d,4,1¢ '*14

the Interim Dynabook and achieved 12 voices in real- TWANG Music

time. The 256 bit generalized irtput that we had speci- Sy&tem ./--··-··· -1

fied for low speed devices (used for the mouse and key-
board) made it easy to connect 154 more to wire up two
organ keyboards and a pedal. Effects such as portamen-
to and decay were programmed. Ted Kaehier wrote
TWANC, a music capture and editing system, using a tab>·
uiature notation that we devised to make music clear to
children [Kay,1977a]. One of the things that was hard to m. 244# -»> A./. Ch./1

1**-*"Wt.:I #.., U,lk 0*1·Rvk <41¢do with sampling was the voltage controlled operator FM Timbre Editor

(vco) effects that were popular on the 'Well Tempered It--&_I.-*ff:ze€*E#-2-
Synthesizer". A summer later, Steve Saunders, another 7
of our bright summer students, was challenged to find *(.
a way to accomplish John Chowning's very non-real-
time FM synthesis in real-time on the ID. He had to find
a completely different way to think of it than "IM", and A,=i=====
succeeded brilliantly with 8 real-time voices that were BEE#ExiEE
integrated into TwANG [Saunders *].Chris Jeffers (who was a musician and educator, not
a computer scientist) knocked us out with opus, the first #4%*t
real-time score capturing system. Unlike most systems OPUS Score Capture

6'L

i *Wl.0111

Alan a. Aay, j ne tany History ot Smalitalk 23

today it did not require metronomic playing but £

0 1
instead took a first pass looking for strong and weak ·
beats (the phrasing) to establish a local model of the
likely tempo fluctuations and then used curve fittingand extrapolation to make judgements about just [_wherein the measure, and for what time value, a
given note had been struck.

The animations on the NOVA ran 3-5 objects at about " 77"
2-3 frames-per second. Fast enough for the phi phe- Eff ifitft<32
nomenon to work (if double buffering was used), but 4443*44%4 4474 K *
we wanted "Disney rates" of 10-15 frames a second 141212.124. fla- «;3;1
for 10 or more large objects and many more smaller j Shazarn iconic user interface (above) i
ones. This task was put into the ingenious hands of A sample animation (below)
Steve Purcell. By the Fall of '73 he could demo 80
ping-pong balls and 10 flying horses running at 10
frames per second in 21/2 D. his next task was to make
the demo into a general systems facility from which

-***g Ally-/te»*'.a£we could construct animation systems. His CHAOS sys-
tem started working in May '74, justin time for sum-
mer visitors Ron Baecker, Tom Horseley, and profes-
sional animator Eric Martin to visit and build SHAZAM

R»,4 flit«et,a marvelously capable and simple animation system
based on Ron's CENESYS thesis project on the TX-2 in
the late sixties [Baecker 69]. --

1/0.0 -WrThe main thesis project during this time was Dave =2
Smith's PYGMALION [Smith 751, an essay into iconic r'·{e -11-programming (no, we hadn't quite forgotton). One *

-lili-programmed by showing the system how changes ,®
should be made, much as one would illustrate on a b:*

-1

blackboard with another programmer. This program- T'7'
became the starting place from which many subse- : .

:4 -
quent programming by example" systems took off, 0,=t

I should say something about the size of these pro- co.1 I
grams. PYGMAL.toN was the largest program ever writ- zc•t
ten in Smalltalk-72. It was about 20 pages of code-al! ret-

411*,

that would fit in the interim dynabook ALTc»and is >ther,

given in full in Smith's thesis. All of the other applica- & r- 1 ..,---1tions were smaller. For example, the SHAZAM anima- dr-
tion rsystem was written and revised several times in t;:te ,
the summer of 1974, and finally wound up as a 5-6 et ..„tall

page application which included its icon··controlled
muitiwindowed user interface.

Given its roots in simulation languages, it was easy
to write in a few pages, Simpula, a simple version of
the SIMULA sequencing set approach to scheduling. By
this time we-had decided that coroutines could be

more cleanly be rendered by scheduling individual
methods as separate simulation phases. The generic
siMuLA example was a job shop. This could be general-
ized into many useful forms such as a hospital with
departments of resources serving patients-(see to the
right). The children did not care for hospitals but saw
they could model amusement parks, like Disneyland,
their schools, the stores they and their parents
shopped in, and so forth. Later this model formed the

PYGMALION ICOnic Programm ing

1-tuy . 1 C..112. -
*Wf 1

.

....:

60 * 03 21**#'
.m .4 1-,guiy

kn:Sh,1., 414

'Simpula· Hospital Simulation

4

Alan C. Kay, 1 he t any History 01 Smailtalk 24
basis of the smalltalk Sim-kit, a high-level end-user programming environment (described ahead).

Many nice "computer sciency" constructs were easy to make in Smalltalk-72. For example, one of
the controversies of the day was whether to have gotos or not (we didn't), and if not, how could cer-
tain very useful control structures-such as multiple exits from a loop-be specified? Chuck Zahn at
s]Ac proposed an event-driven case structure in which a set of , (until Return or Delete do

events could be defined so that when an event is encountered, I ('chamcter <-dispitty <- keybcui
the loop will be exited and the event will select a statement in chayacker = rd. Utefum)
a case block[Zahn, 1974, Knuth, 19741. Suppose we want to @ character = def. (Ddefe)
write a simple loop that reads characters from the keyboard @)
and outputs them to a display. We want it to exit normally men case

1 Reficni .· ('deat with 0 hi$ non,wl exit') 1
when the <return> key is struck and with an error if the Djae. ('handie then,Dion,laicil')} •
<delete> key is hit. Appendix IV shows how John Shoch 6-0-••==-••-m-,..,.,.,..,..A
defined this control structure.

The Evolution Of Smalltalk-72

Smalltalk-74 (sometimes known as Fast'raik} was a version of Smalltalk-72 incorporating major
improvements which included providing a real "messenger" object, message dictionaries for classes
(a step toward5 real class objects), Diana Merry:s bitbit (the now famous 2D graphics operator for
bitmap graphics) redesigned by Dan and implemented in microcode, and a better, more general win-
dow interface. Dave Robson while a student at UCIrvine had heard of our project and made a pretty
good stab at implementing an OOPL. We invited him for a summer and never let him go back-he was
a great help in formulating an official semantics for Smalltalk.

The crowning addition was the OOZE (Object Oriented Zoned Environment) virtual memory sys-
tem that served Smalltalk-74, and more importantly, Smalltalk-76 [Ing 78, Kae *]. The At:ro was not
very large (128-256K), especially with its page-sized display (64k>,and even with small programs, we
soon ran out of storage. The 2.4 megabyte model 30 disk drive was faster and larger than a floppy
and slower and smaller than today's hard drives. It was quite similar to the HP dimct contact disk of
the FLEX machine on which I had tried a fine-grain version of the B5000 segment swapper. It had not
worked as well as I wanted, despite a few good ideas as to how to choose objects when purging.
When the gang wanted to adapt this basic scheme, I said: "But I never got it to work well." I remem-
ber Ted Kaehler saying, "Don't worry; we'll make it work!"

The basic idea in all of these systems is to be able to gather the most comprehensive possible work-
ing set of objects- This is most easily accomplished by swapping individual objects. Now the problem
becomes the overhead of purging non-·working set objects to make room for the ones that are needed.
(Paging sometimes works better for this part because you can get more than one object (OOZE) in
each disk touch.) Two ideas help a lot. First, Butter's insight in the GENIE os that it was worthwhile to
expend a small percentage of time purging dirty objects to make core as clean as possible
ILampson,1966]. Thus crashes tend not to hurt as much and there is always clean storage to fetch
pages or objects from the disk into. The other is one from the FLEX system in which I set up a stochas-
tic decision mechanism (based on the class of an object) that determined during a purge whether or
not to throw an object out. This had two benefits: important objects tended not to go out, and a mis-
take would just bring it back in again with the distribution insuring a low probablity that the object
would be purged again soon.

The other problem that had to be taken care of was object-pointer integity (and this is where I had
failed in the FLEX machine to come up with a good enough solution). What was needed really was:a
complete tmnsaction, a brand new technique (thought up by Butler?) that ensured recovery regardless
of when the system crashed, This was called "cosmic ray protection" as the early ALToi had a way of
just crashing once or twice a day for no discernable good reason. This, by the way did not particular·.
ly bother anyone as it was fairly easy to come up with undo and rEplay rnechanisms to get around the
cosmic rays. For pointer-based systems that had automatic storage management, this was a bit more
tricky.

Ted and Dan decided to control storage using a Resident Object Table that was the only place
machine addresses for objects would be found. Other useful information was stashed there as well to
help LRU aging. Purging was done in background by picking a class, positioning the disk to its
instances (all of a particular class were stored together), then running through the ROT to find the
dirty ones in storage and stream them out. This was pretty efficient and, true to Butler'S insight, fur-

08

nished a good sized pool of clean storage that could be overwritten. The key to the design though
(and the implementation of the transaction mechanism) was the checkpointing scheme they came up
with, This insured that there was a recoverable image no more than a few seconds old, regardless of
when a crash might Occur. ONE swapped objects in just 80kb of working storage and could handle
about 65K objects Cup to several megabytes worth, more than enough for the entire system, its inter-
face, and its applications)

"Object-oriented" Style
This is probably a good place to comment on the difference between what we thought of as cop-

style and the superficial encapsulation called "abstract data types" that was just starting to be investi„
gated in academic circles. Our early lisp-pair" definition is an example of an abstract data type
because it preserves the "field access" and "field rebinding" that is the hallmark of a data structure.
Considerable work in the 608 was concerned with generalizing such structures[DSP *]. The "official"
computer science world started to regard Simula as a possible vehicle for defining abstmet datatypes
(even by one of its inventors[Dahl 1970]), and it formed much of the later backbone of ADA. This led
to the ubiquitous stack data-type example in hundreds of papers. To put it mildly, we were quite
amazed at this, since to us, what Simula had whispered was something much stronger than simply
reimplementing a weak and ad hoc idea. What I got from Simula was that you could now replace
bindings and assignment with goots. The last thing you wanted any programmer to do is mess with
internal state even if presented figuratively. Instead, the objects should be presented as sites of higher
level behavion more appropriate,R,7 use as dynamic components.

Even the way we taught children (cf. ahead) reflected this way of looking at objects. Not too sur-
prisingly this approach has considerable bearing on the ease of programming, the size of the code
needed, the integrity of the design, etc. It is unfortunate that much of what is called "object-oriented
programming" today 15 simply old style programming with fancier constructs. Many programs are
loaded with "assignment-style" operations now done by more expensive attached procedures.

Where does the special efficiency of object-oriented design come from? This is a good question
given that it can be viewed as a slightly different way to apply procedures to data-structures. Part of
the effect comes from a much clearer way to represent a complex system. Here, the constraints are as
useful as the generalities. Four techniques used together-persistent state, polymorphism, instantia-
tion, and methods-as-goals for the object-account for much of the power. None of these require an
"object-oriented language" to be employed-ALCOL 68 can almost be turned to this style--an COPL
merely focuses the designer's mind in a particular fruitful direction. However, doing encapsulation
right is a commitment not just to abstraction of state, but to eliminate state oriented metaphors from
programming

Perhaps the most important prin¢*le-again derived from operating system architectures-is that
when you give someone a structure, rarely do you want them to have unlimited privledges with it.
Just doing type-matching isret even close to what's needed. Nor is it terribty useful to have some
objects protected and others not. Make them all first class citizens and protect all,

I believe that the much smaller size of a good oop system comes not just by being gently forced to
come up with a more thought out design. I think it also has to do with the "bang per line of code"
you can get with oop. The object carries with it a lot of significance and intention, its methods suggest
the strongest kinds of goals it can earry out, its superclasses can add up to much more code·function-
amy being invoked than most procedures-on-data-structures. Assignment statements-even abstract
ones-express very low-level goals, and more of them will be needed to get anything done.
Generally, we don't want the programmer to be messing around with state, whether simulated or
not. The ability to instantiate an object has a considerable effect on code size as well. Another way to
think of all this is: though the late-binding of automatic storage allocation doesn't do anything a pro>-
grammer can't do, its presence leads both to simpler and more powerful code. oop is a late binding
strategy for many things and all of them together hold off fragility and size explosion much longer
than the older methodologies. In other words, human programmers aren't Turing machines-and the
less their programming systems require Turing machine techniques the better.

Smalltalk And Children
Now that I have summarized the "adult" activities (we were actually only semiadults) in Smalltalk

up to 1976, [et me return to the summer of '73, when we were ready to start experiments with chil-

Alan C. Kay, rhe Early History Ot Smalltalk 26
dren. None of us knew anything about working with chil- =m •f
dren, but we knew that Adele Goldberg and Steve Weyer
who were then with Pat Suppes at Stanford had done --r [-1 -,
quite a bit and we were able to entice themto join us.

Since we had no idea how to teach object-oriented pro- I

ments Adele did mimicked Logo turtle graphics, and she
got what appeared to be very similar results. That is to 1 U
say, the children could get the turtle to draw pictures-on
the screen, but there seemed to be little happening IM„FEW I„„„,M,w„,tirifi
beyond surface effects. At that time I felt that since the Adele holding forth at Jordan Middle Sch
content of personal computing was interactive tools, that
the content of this new kind of authoring Uteracy should box new named 'joe·1

be the creation of interactive tools by the children. box: toe

Procedural turtle graphics just wasn't it.
Then Aaele came up with a brilliant approach to teach,

ing Smalltalk as an object-oriented language: the "Joe
Book". I believe this was partly influenced by Minsky's joe tunik30!
idea that you should teach a programming language
holistically from working examples of serious programs.

Several instances of the class box are created and sent
messages, culminating with a simple multiprocess ani. loe grow -15I

Okmation. After getting kids to guess what a box might be
like-they could come surprisingly close-they would be
shown: joe erase!

ok
to box I x y size till
Codrate » (@place x y tunt tilt. square size.)
Oundraw. {@ white. SE.u diaw. 9} black) Joe show!
oturn . (sar undrate. 'tilt <-tilt 4-:. sELE dma} ok
Ogrow I f SELF undraw. 'size <- size + 4 SELF dirmo}
ISNEW » (sanindraw. 'size<-size=i·:.sm,tran,) ...-- ...--,:3-r---9

£

0

0
0

0
What was so wonderful about this idea were the myrl- box: jiad of children's projects that could spring off the humble

boxes. And some of the earliest were tools! This was
loj

when we got really excited. For example, Marion i\\\ turn -toi ./1
Goldeeres (12 yrs old) painting system was a full-fledged ©k
tool. A few years later, so was Susan Hamers (12 yrs old)
oop illustration system (with a design that was like the 6
MacDraw to come). Two more were Bruce Horn's (15 yrs 1 to 101
old) music score capture system and Steve Putz's (15 yrs inteNal: 12345678910
old) circuit design system. Looking back, this could be
called another example in computer science of the "early forever!
success syndrome". The successes were real, but they interval: 1234567891011 -

weren't as general as we thought. They wouldn't extend

51tcheotyrcr CorVA$*hhse yoaWtter 1 to lolt? eiti> Kilage background) and we tended to be much more excited A
about the successes than the difficulties. In part, what we
were seeing was the "hacker phenomenon", that, for any f1given pursuit, a particular 5% of the Population will ,/
jump into it naturally, while the 80% or so who can learn forever do (joe tum 11, jill tum -13)!
it in time do not find it at all natural. Aok

We had a dim sense of this, but we kept on having rel-
ative successes. We could definitely see that learning the i \ <mechanics of the system was not a major problem. The 4 chi[dren could get most of it themselves by swarming 74._ rN.
over the A[Tos with Adele's JOE book. The problem U <J

IE

seemern{>re to be thatof design.
It started to hit home in the Spring of'74 after I taught

Smalltalk to 20 pARC nonprogrammer adults. They were
able to get through the initial material faster than the chil-
dren, but just as it looked like an overwhelming success
was at hand, they started to crash on problems that didret
look to me to be much harder than the ones they had just
been doing well on. One of them was a project thought
up by one of the adults, which was to make a little data-
base system that could act like acard file or rolodex.They
couldn't even come close to programming°it. I was very
surprised because I "knew" that such a project was well
below the mythical "two pages" for end-users we were
working within. That night I wrote it out and the next
day I showed al! of them how to do it. Still, none of them
were able to do it by themselves. Later, I sat in the room
pondering the board from my talk. Finally> I counted the
number of nonobvious ideas in this little program. They
came to 17: And some of them were like the concept of
the arch in building design: very hard to discover, if you
don't already know them.

The connection to literacy was painfully clear. It isn't
enough to just learn to read and write. There is also a lit-
erature-that renders ideas- Language is used to read and
write about them, but at some point the organization of
ideas starts to dominate mere language abilities. And it
helps greatiy to have some powerful ideas under one's
belt to better acquire more tpowerful ideas {Papert 704
So, we decided we should teach design. And Adele came
up with another brilliant stroke to deal with this. She
decided that what was needed was an intermediary
between the vague ideas about the problem and the very
detailed writing and debugging that had to be done to
get it to run in Smalltalk. She called the intermediary
forms design templates.

Using these the children could look at a situation they
wanted to simulate, and decompose it into classes and
messages without having to worry just how a method
would work. The method planning could then be done
informally in English, and these notes would later serve
as commentaries and :guides to the writing of the actual
code. This was a terrific idea, and it worked very well„

But not enough to satisfy us. As Adele liked to point
out, it is hard to claim success if only some of the children
are successful-Hand if a maximum effort of both children
and teachers was required to get the successes to happen.
Real pedagogy has to work in much less idealistic set-
tings and be considerably more robust. Still, some sue-
cesses are qualitatively different from Ilg successes. We
wanted more, anti started to push on the inheritance idea
as a way to let novices build on frameworks that could
only be designed by experts. We had good reason to
believe that this could work because we had been
impressed by Lisa van Stone's ability to make significant
changes to SHAZAM <the five of six page Smalltalk anima-
tien tool done by relatively expert adults). Unfortunately,

The author in the Interim Dynabook playroom. 1
Working with the kids was my favome parl of this

Romance

*2:1. P.¢:Mitnf - "- Saillan 44=#04

* d *hy M..10,

11.,O,M,apmen,•=q=e- . 4

:ltmk m,·...d:.r„. t7=1:1
En'.1. I. 633

- E€AF.:E
lk.n ,$4. inelf -bi*,*r =-»L
01.1.41-1,

Af- ..,1.; -r.,hile. la,-cm #......#
Mive $ m#* 90 h in,0/r./d

*- -*** b•.

==m=r-box- =-

Adele's planning template for Smalltalk (above)
New behav tor added by child (below}

R'Infik E.*14#dprip,ia•40§4-
*.,i•t INe6,It,irroul Sm»m,A da¢r$0#,11

+I-*bh¢ bn, inan¢¢ $4 -dri••,

*rilld*2,1-e441*4# *#*.
of ./ b. M./ i./ * PE•. .-

the * * 0 t,F Ehe ,- . *
1=0 / ..n,- 10.,1-

ED© 0,1-01.(11
EE0088[313EED[210

,+A:if'; 4'' O L
i Marion Goldeen's painting progmm {above)
 Susan Hamers 00 Ilustmtor (below)

4

inheritance-though an incredibly powerful technique-
has turned out to be very difficult for novices (and even
professionals) to deal with.

At this point, let me do a look back from the vantage
point of today. I'm now pretty much convinced that our
design template approach was a good one after all. We
just didn't apply it longitudinally enough. I mean by this
that there is now a large accumulation of results from
many attempts to teach novices programming [Soloway,
1989]· They all have similar stories that seem to have little
to do with the various features of the programming tan-
guages used, and everything to do with the difficulties
novices have thinking the special way that good pro-
grammers think. Even with a much better interface than
we had then (and have today), it is likely that this area is
actually more like writing than we wanted it to be.
Namely, for the "80%", it really has to be learned gradual-
ty over a period of years in order to build up the struc-
turns that need to be there for design and solution look-
ahead. 41

The problem is not to get the kids to do stuff-they
love to da even when they are not sure exactly what they
are doing. This correlates well with studies of early learn-
ing of language, when much rehearsal is done regardless
of whether content is involved. Just doing seems to help.
What is difficult is to determine what ideas to put forth
and how deeply they should penetrate at a given child's
developmental level. This Es a confusion still persists for
reading and writing of natural language-and for mathe-
matics-despite centuries of experience, And it is the
main hurdle for teaching children programming. When,
in what order and depth, and how should the powerful
ideas be taught?

Should we even try to teach programming? I have met
hundreds of programmers in the last 30 years and can see
no discernable influence of programming on their general
ability to think well or to take an enlightened stance on
human knowledge. If anything, the opposite is true.
Expert knowledge often remains rooted in the environ-
ments in which it was first learned-and most metaphori-
cal extensions result in misleading analogies. A remark-
able number of artists, scientists, philosophers are quite
dull outside of their specialty (and one suspects within it
as well). The first siren's song we need to be wary of is
the one that promises a connection between an interest-
ing pursuit and interesting thoughts. The music is not in
the piano, and it is possible to graduate Jutliard without
finding or fee[ing it.

I have atso met a few people for whom computing pro-
vides an important new metaphor for thinking about
human knowledge and reach. But something else was
needed besides computing for enlightenment to happen.

Tools provide a path, a context, and almost an excuse
for developing entightenment, but no tool ever contained
it or can dispense it. Cesare Pavese observed: to know the

11°195*.41
il#nii-

Circuit design system by Steve Putz (age 15)

Tangram designs are created by select-
ing shapes from a ·'menu· displayed at
the top of the screen. This system was
implemented In Smalltalk by a fourteen-

year old girl [Kay 771

927%

44/

SpaceWar by Dennis (age 12))

-22-

SHAZAM modified to "group' multiple
images by Lisa van Stone (age 12)

28

world we must construct it. In other words, we make not just to have, but to know. But the having can
happen without most of the knowing takingplace.Another way to look at this is that knowledge is in its least interesting state when it is first beinglearned. The representations-whether markings, allusions, or physical controls-get in the way
(almost take over as goals) and must be laboriously and painfully interpreted. Prom here there are
several useful paths, two of which are important and intertwined.

The first is #uency, which in part is the process of building mental structures that disappear the
interpretations of the representations. The letters and words of a sentence are experienced as mean-
ing rather than markings, the tennis racquet or keyboard becomes an extension of ore's body, and soforth. If carried further one eventually becomes a kind of expert-but without deep knowledge in
other areas, attempts to generalize are usually too crisp and ill formed.The second path is towards taking the knowledge as a metaphor than can illuminate other areas.
But without fluency it is more likely that prior knowledge will hold sway and the metaphors from
this side will be fuzzy and misleading.T'he "trickt and I think that this is what liberal arts eduation is supposed to be about, is to get flu-
ent and deep while building relationships with other fluent deep knowledge. Our society has low-ered its aims so far that it is happy with "increases in scores" without daring to inquire whether any
important threshold has been crossed. Being able to read a warning ort a pill bottle or write about a
summer vacationis not literacy andour society should not treat it so. literacy, for example, is being
able to fluently read and follow the 50 page argument in Paine's Common Sense and being able (andhappy) to fluently write a critique or defence of it. Another kind of 20th century literacy is being ableto hear about a new fatal contagious incurable fdisease and instantly know that a disastrous exponen.
tial relationship holds and early action is of he highest priority. Another kind of literacy would take
citizens to their personal computers where they can fluentty and without pain build a systems simu-
lation of the disease to use as a comparison against further information.At the liberal arts level we would expect that connections between each of the fluendes would
form truly powerful metaphors for considering ideas in the light of others.

The reason, therefore, that many of us want children to understand computing deeply and fluently
is that like literature, mathematics, science, music, and art, it carries special ways of thinking about
situations that in contrast with other knowledge and other ways o f thinki:ng g:iticallx boost our abili-
ty to understand our world.We did not know then. and I'm sorry to say from 15 years later, that these critical questions still do
not yet have really useful answers. But there are some indications. Even very young children can
understand and use interacuve transji,mmtional tools. The first ones are their hands! They can readily
extend these experiences to computer objects and making changes to them. They can often imagine
what a proposed change will do and not be surprised at the result. Two and three year olds can use
the Smatitalk-style interface and manipulate object-oriented graphics. 3rd graders can (in a few days)learn more than 50 features-most of these are transformational tools-f a new system including its
user interface. They can answer any question whose answer requires the application of just ang of
these tools, But it is extremely difficult for them to answer any question that requires kEQ or moretransformations. Yet they have no problem applying sequences of transformations, exploring "for-ward". It is for conceiving and achieving even modest goals requiring several changes that they
almost completely lack navigation abilities.It seems that what needs to be learned and taught is how to package up transformations in twosand three ina manner similar to learning a stfategic game like checkers. The vague sense of a "three-
some" pointing towards one's goal can be a set up for the more detailed work that is needed toaccomplish it. This artis possible for a large percentage of the population, but for most, it will need to
be learned gradually over several years.

V. 1976·80-The first modern Smalltalk (·76), its birth, applications, and improvements
By the end of 1975 1 felt that we were losing our balance-that the "Dynabook for children" idea

was slowly dimming out=or perhaps starting to be overwhelmed by professional needs. In January
1976, I took the whole group to Pajaro Dunes for a three day offsite to bring up the issues and try to
reset the compass, It was called "Let's Burn Our Disk Packs". There were no shouting matches, the
group liked (I would go so far to say: loved) each other too much for that. But we were troubled. I
used klie old aphorism that "no biological organism can live in its own waste products" to plead for a

/*c/1 V. Aly, i nt; Ut:,Ily i UNV,y L I /11ktm/0 Jo
really-freshithrifiU» system very different from the ALTO and Smalltalk. One thing we all did
agree on was that the current Smalltalk's power did not match our various levels of aspiration. I
thought we needed something different, as I did not see how oop by itself was going to solve our
end-user problems. Others, particularly some of the grad students, really wanted a better Smalltalk
that was faster and could be used for bigger problems. I think Dan felt that a better Smalltalk could
be the vehicle for the different system I wanted, but could not describe clearly. The meeting was not a
disaster, and we went back to PARC still friends and colleagues, but the absolute cohesiveness of the
first four years never rejelled. I started designing a new small machine and language I called the
Notekker· and Dan started to design Smalltalk-76.

The reason I wanted to "burn the disk packs" is that I had a very Mctuhanish feeling about media
and environments: that once we've shaped tools, in his words, they turn around and "reshape us".
Of course this is a great idea if the tools are really good and aimed squarely at the issues in question.
But the other edge of the sword cuts as deep-that inadequate tools and environments still reshape
our thinking in spite of their problems, in party because we want paradigms to guide our goals.
Strong paradigms like LIspand Smalltalk are so compelling that they eat their young when you look
at an application in either of these two systems, they resemble the systems themdelves, not a new
idea. When I looked at Smalltalk in 1975, I was looking at something great, but I did not see an
enduser language, I did not see a solution to the original goal of a "reading" and "writing" computer
medium for children. I wanted to stop, dynamite everything and start from scratch again.

The Notelaker was to be a "laptop" that could be built ina few years using the (almost) available
16K RAMS (a vast improvement over the lK RAMS that the A[To employed). A laptop couldn't use a
mouse (which I hated anyway) and a tablet seemed awkward (not a lot of room and the stylus could
flop out of reach when let go), so I came up with an embedded pointing device I catted a "tabmouse".
It was a relative pointer and had an up sensor so it coutd be stroked like a mouse and would also stay
where you teft it, but it felt like a stylus and used a pantograph mechanism that eliminated the
annoying hysteresis bias in the x and y directions that made it hard to use a mouse as a pen. I
planned to use a multiprocessor architecture of slow but highly integrated chips as originally speci-
fied for the Dynabook and wanted a new bytecoded interpreter for a friendlier and simpler system
than Smalltalk-72.

A hul# 44

4
4 2 6,#i- 84·.zi.==i

'14"Y5 -2.2- 'f

*764. 4

i 1 %3

Meanwhile Dan was proceeding with his total revamp of Smalltalk and along somewhat similar
lines Un 781. The first major thing that needed to be done was to get rid of the function/class dualism
in favor of a completely intensional definition with every piece of code as an intrinsic method. We
had wanted that from the beginning, (and most of the code was already written that way). There
were a variety of strong desires for a real inheritance mechanism from Adele and me, from Larry
Tester, who was working on desktop publishing, and from the grad students. Dan had to find a better
way than Simula's very rigid compile·time conception. It was time to make good on the idea that
"everything was an object", which included all of the internal "systems" objects like "activation
records", etc. We were all agreed that the flexible syntax of the earlier Smalitaiks was 1QQ flexible, and
this level of extensibility was not desirable. All of the extensions we liked used various keyword
schemes, so Dan came up with a combination keyword/operator syntax that was very flexible, but
allowed the language to be read unambiguously by both humans and the machine. This allowed a
FLEX machine-like byte-code compiler and efficient interpreter to be defined that ran up to 180 times

Wy.

E8

Alan C. Kay, 1 ne Early Mistoky Ut Smailtalk 31

as fast as the previous direct interpreter. The oozE VM system could be modified to handle the new
objects and its capacity was weit matched to the ALTO'S RAM and disk.
Inheritance

A word about inheritance. Simula-I had neither classes as objects nor inheritance. Simula-67 added
the latter as a generalization to the AL¢OL-60 <block> structure. This was a great idea. But it did have
some drawbacks: minor ones like name clashes in multiple threaded lists (no one uses threaded lists
anymore), anti major ones like a rigidity inthe extended type structures, need to qualify types, only a
single path of inheritance, and difficulty in adapting to an interactive development system with
incremental compiling and other needs for instant changes. Then there were a host of problems that
were really outside the scope of Simula's goats: having to do with various kinds of modeling and
inkrencing that were of interest in the world of artificial inteiligence. For example, not all useful
questions; could be answered by following a static chain. Some of them required a kind of "inheri-
tance" or "inferencing" through dynamicatly bound "parts" (i.e. instance variables). Multiple inheri-
tance also looked important but the corresponding possible clashes between methods of the same
name int different superclasses looked difficult to handle, and so forth.

On the other hand, since things can be done with a dynamic language that are difficult with a stati.
daily compiled one,JI just decided to leave inheritance out as a feature in Smalltalk-72, knowing that
we could simulate it back using Smalltalk's usplike flexibility. The biggest contributer to these Al
ideas was Larry Tesler whoused what is now called "slot inheritance" extensively in his various ver-
sions of early desktop publishing systems. Nowadays, this would be called a "delegation-style"
inheritance scheme [Lieberman 84]. Danny Bobrow and Terry Winograd during this period were
designing a "frame-based" Al language called KRL which was "object-oriented" and I believe was
influenced by early Smalltalk. It hada kind of multiple inheritance-called perspectives-which per-
mitted an object to play multiple roles in a very clean way. Many of these ideas a few years later went
into-ME, an interesting extension of Smalltalk to networks and higher level descriptions by Ira
Goldstein and Bobrow [Goldstein & Bobrow 1980].

By the time Smalltalk-76 came along, Dan Ingalls had come up with a scheme that was Simula-like
in its semantics but could be incrementally changed on the fly to be in accord with our goals of close

4 interaction. I was not completely thrilled with it because it seemed that we needed a better theory
3 about inheritance entirely {and still do). For example, inheritance and instancing (which is a kind of
< inheritance) muddles both pragmatics (such as factoring code to save space) and semantics (used for
1 way too many tasks such as: specialization, generalization, speciation, etc.) Alan Borning employed a
4 multiple inheritance scheme in Thinglab [Borning 77] which was implemented in Smalltalk-76. But
61,0 comprehensive and clean multiple inheritance scheme appeared that was compelling enough to
 f surmount Dan's original Simuladike design.
3 9 Meanwhile, the running battle with Xerox continued. There were now about 500 AUTOS linked with
4 *thernets to each other and to Laserprinter and file servers, that used Arros as controllers. I wrote

many memos to the Xerox planners trying to get them to make plans that included personal comput-
ing as one of their main directions. Here is an example:

A Simple Vision orthe Future

A Brief Update Of My 1971 PendeD Paper

In the 1990's there will be millions of personal computers. l'hey wlll be the size of notebooks of
today, have Mgh-resolution nat-screen reflective displays. weigh less than ten pounds, have ten to
twenty times the computing and storage capacity of an Atm. Let's call them Dynabooks.

The purchase price will be about that of a tutor television set of the era, although most of the
machines will be given away by manufacturers who will be marketing the content rather Ihan the con-
tainer of personal computing.

Though Ihe Dynabook will have considerable local storage and will do most computing locally, it
will Spend a large percentage of its time hooked to vanous large. global informadon utilities which
will permit communication with others of ideas. data, working models, as well as the daily chit·chat
mal organizations need in order to function. The communications link will be by private and public
wires and by packet radio. Dynatx,oks will also be used as servers in the inronnarion utilities, They
willhave enough power to be entire[y shaped by software.

Alan C. Kay, The Early History Of Smaillark 32
The Main Points Of This Vision

•There need only be a few hardware types to handle almost alt of the processing activity of a system.
· Personal Computers, Communications Links, and Information Utilities are the three critical compo-

nents of a Xerox future.

In other words. the nwterial of a computer system is the computer itself, all of the content and
funcdon is fashioned in software.

There are two impoftant guidelines to be drawn from this:

» Material: If the design and development of the hardware computer material is done as carefully
and completely as Xerox's developmentof special tight-sensitive alloys, thenonly oneortwo comput«
er designs need to be built... Extra:Investment tn development here wiI[1>c vastly repaid by simplify-
ing the manufacturing process and providing lower costs through increased volume.

» Content: Aside from the wondedul generality of being amd to continously shape new content
from Ihe same materie. sq#ware has three important characterisecs

• the mplication time and cost of a contentfunction is zem
• the development time and cost fo a content-functionishigh
. the change time and cost of a content-function can be la

Xerox must take these several points seriously if it is to survive and prosper in its new business are
of information media. Iflt does, the company has an excellent chance for several reasons:

• Xerox has the financial base to cover the large development costs of a small number of very
powerful computer-types and a large number of software functions.

a Xerox has the marketing base to sell these functions on a wide enough scale to garner back to
1tsel f an incredible profit

• Xerox has working for it animpressively large percentage of the best software designers in the
world.

In 1976, Chuck Thacker designed the AUTO nI that would use the new 16k chips and be able to fit o n
a desktop. It could be marketed for about what the large cumbersome special purpose "word-proces-
sors" cost, yet could do so much more. Nevertheless, in August of 1976, Xerox made a fateful deci-
sion: not to bring the ALTO m to market. This was a huge blow to many of us-even I, who had never
really really thought of the ALTO aS anything but a stepping stone to the "real thing". In 1992, the
world market for personal computers and workstations was $90 million-twice as much as the main-
frame and mini market, and many times Xerox's 1992 gross. The most successful company of this
era-Microsoft-is not a hardware company, but a software company.

The Smalltalk User Interface

I have been asked by several of the reviewers to say more about the development of the "Smalltalk-
style" overlapping window user interface since there are now more than 20 million computers in the
world that use its descendents. A decent history would be as long as this chapter, and none has beenwritten so far. There is a summaryof some of the ideas in {Kay.89]-let me add a few more points. (f

All of the elements eventually used in the Smalltalk user interface were already to be found in the
sixties-as different ways to access and invoke the functionality provided by an interactive system.
The two major centers of ideas were Lincoln Labs and RAND corp--both ARPA funded. The big shift
that consolidated these ideas into a powerful theory and long-lived examples came because the LRG
focus was on children. Hence we were thinking about learning as being one of the main effects we
wanted to have happen, Early on, this led to a 90 degree rotation of the purpose of the user interface
from "access to functionality" to "environment in which users learn by doing". This new stance
could now respond to the echos of Montessori and Dewey, particularly the former, and got me, on
rereading Jerome Bruner, to think beyond the children's curriculum to a "curriculum of the user
interface".

The particular aim of LRG was to find the equivalent of writing-that is learning and thinking by
doing in a niedium--our new "pocket universe". For various reasons I had settled on "iconic pro-
gramming" as the way to achieve this, drawing on the iconic representations used by many ARPA pro-
jects in the sixties. My friend Nicholas Negroponte, an architect, was extremely interested in how
environments affected peoples' work and creativity He was interested in embedding the new com-
puter magic in familar surroundings. I had quite a bit of theatrical experience ina past life, and
remembered Coleridge's adage that "people attend 'bad theatre' hoping to forget, people attend

1,8

r

fl Paul Rovner showing the iconi81
il 'Uncoln Wand'ca. 1968 t 1

%32= lou

ik

'fmzl.....'good theatre' aching to mnember. In other words,it is EL....
the ability to evoke the-audience's own intelligence IESEE:u !.y -9**,4and experiences thatmakes theatre work 1* , 11... S:.=17

putting ail this together, we want an apparently free 1. p,=*.5;44"I' MYTNM'BJ SEenvironment in which exploration causes desired I*CF.*4,"' 12,4,„sequences to happen (Montessori); one that allows '#•·
kinesthetic, iconic, andsymbolic learning-'Woing with , 2%2144
never trapped in a mode (CRAIL); the magic is embed- 7-
ded in the familiar (Negroponte); and which acts as a 1
magnifying mirror for the user's own intelligence ./.../.
(Coleridge). It would be a great finish to this story to
say that having articulated this we were able to move
straightforwardly to the design as we know it today.
In fact the UI :design work happened in fits and starts
in between feeding Smalltalk itself, designing chil
dren's experiments, trying to understand iconic con-
struction, and just playing around. In spite of this
meandering, the context almost forced a good design
to turn Out anyway. Just about everyone at PARC at this
time had opinions about the IJI, ours and theirs. It is .1.4.1.

impossible to give detailed credit for the hundreds of '*lh. 1ideas and discussions. However, the consolidation can --····-1
certainly be attributed to Dan Ingalls, for listening to The last Smalltalk-72 Interface
everyone, contributing original ideas, and constantly
building a design for user testing. I had a fair amount
to do with setting the context inventing overlapping
windows> etc., and Adele and I designed most of the
experiments. Beyond that, Ted Kaehler, and visitor
Pan 1%38,6. ras,1. 1,4-6tw .1..Al, .-„*.k.W*a.,

9=02-0

*1 1¢(JX

.'.'.-.-.. ..."- ...6...1 ...uu... ..AL.,1.U.A.lt..

Dave Smith desigaq*#maliStar, the prototype iconic
interfzme;fd? the Xerox'Star product [Smith 831.

frl?11

Meanwhile, I had gotton Doug Fairbairn interested
in the Notefaken He designed a wonderful "smart bus"
that could efficiently handle slow multiple processors
and the system looked very promising, even though
most of the rest of FARc thought I was nut# to abandon Ted Kaehler's iconic painting interlace
the fast b*olar hw of the ALTO. But I couldn't see that
bipolar was ever going to make it into a laptop or Dynabook. On the other hand I hated the 8-bit
micros that were just starting to appear, because of the silliness and naivete of their designs-there
was no hint that anyone who had ever designed software was involved.

1 w. i.ay, i ii. r.:14}y #11.liy vi 04#.mid#h #4
Smalltalk.76Dan finished the Smalltalk476 design in November, and · r*i7;'·F?I't'-- j+ It
he, Dave Robson, Ted Kaehler, and Diana Merry; success- 1 L,„41.,4,1, II 7.31 :
fully implemented the system from scratch (which includi- · · 6-GE <=" 2
ed rewriting all of the existing class definitions) in just : I .--...-*.,
seven months. This was such a wonderful achievement j'-: -U-'-1,1 -
that I was bowled over in spite of my wanting to start ., es
over. It was fast, lively; could handle "big" problerns, and -i,_0_ 1.=was great fun. The system consisted of about 50 classes f j ZEE'itfu-, bEED-=
described in about 180 pages of source code„ This included ,,,*yw,-
all of the os functions, files, printing and other Ethernet E.E
services, the window interface, editors, graphics and E 521•11„ m,AK'
painting systems, and two new contributions by Larry i J IiTr»jaimmr--
Tesler, the famous browsers for static methods in the : 2% 49&#LE=·*"7?#
inheritance hierarchy and dynamic contexts for debugging ": 8 *imilialr/P;illifili =:
in the runtime environment In every way it was the con- 1 6 1
solidation of all of our ideas and yearnings about IMI -©227'- IL
Smalltalk in one integrated package. All Smalitalks since 1 1 0.,,A&'have resembled this conception very closely. tn many smatttalk-76 Usermterface wilhavariety 01 applia-
ways, as Tony Hoare once remarked about Algot, Dan's tions, including ack,ek, fohl editor, painting and illus+
Smalltatk-76 was a great improvement on its successors! tration editor wilh iconic menus and programmable

radio buttons. a word processor document editor, andHere are two stylish ST-76 classes written by Dan. a class edabrshowing mndowinterfaceco{ie.
Class new tide:'Window';

fields: 'frame';
asFollows!

This is a supercia55 for presenting windows on the displak. it
hoids contrm *it the stl/lus is depressed critside. While it holds
coitty#. it distributes messar to iMelf based on liser Actions.
Scheduling J: means keyword whose following i
Startup - expression will be senl *by value· 1

[frame contains: Stylus =>
self enter. -- : means key-

repeat - word whose

[frame contains: stylus loc => following

[keyboard active=> [self keyboardl expression
stylus down => [self pendown]1 *|nbasentfelf outside=> []

stylus down » {Udgeavelli
Afalse] -A means

Default Event Responses x hend baer;
enter Iself showl 1=> meansl F
leave his. 1
outside [I false]
pendown
keyboard [keyboard next frame flash]
Image
show

[frame oueine: 2.
titleframe put se] f title at frame origin + title loc.
titleframe complement]

...etc.

Class new title: 'DocWindow';
wbelassof: Window;
fields: *document scrollbareditMenut
asFollows!

User events nre passed on to me document while me window is
ttiue. If the Stylus goes out of the wigdow, scrollbar a#d the
¢ditMent are ime}t given a clwnce to gain control.
Event Responses
enter {self show. editMenu show. scrollbar show]
leave idocument hideselection. ediLMenu hide. scrollbar hide]
outside

[editMenu startup » 0
scrollbar startup=>[self showDoc]
.false]

pendown Mocument pendownj super means dele-
keyboard [document keyboardl- gale message to next
Image - higher superclass
show [super show. self showDoc]
showDoc [documentshowin: frame at scrollbar position]
title [Adoeument litte]

CLASS CLASS ·+--- CLASS 08JECT

0
1

Notice, particularly in class Window, how the code is
expressed as goals for other objects (oritselt) to achieve. - A NUMSER

The superciass Window's main job is to notice events and T '
distribute them as messages to its subclasses. In the 43example, a document window (a subclass of
Do©Window) is going to deal with the effects of user CLASS FLOAT CLASS INTEGER

interactions. The Window class will notice that the key-
board i5 active and send a message to itself which will be _ Af
intercepted by the subclass method. If there is no method 13 -61 IT;-1
the character will be thrown away and the window witl

i Smalltaik.76 Metaphysics

3.Al (x,y> U·* 92· JA»..0
9 ,-4.0 >rL Gojjo.,013333

'0 091

98

fO

flash. In this case, it finds DocWindow method: keyboard,
which tells the held document to check it out.

In January of 1978 Smalltalk-76 had its first real test. CSL
had invited the top ten executives of Xerox to PARC for a
two day seminar on software, with a special emphasis on
complexity and what could be done about it. LRG got asked
to give them a hands-on experience in end-user program-
mingso "they could do 'something real' over two 11/2 hour
sessions't We immediately decided asa to teach them

: Smalltalk-76 (my "burn our disk packs" point in spades),
. but to create in two months in Smalltalk-76 a rich system
1 <·lespecially tailored for adult nonexpert users (Dan's point in

. 63 trumps)- We took our "Simpula" job shop simulation model
: >R as a starting point and decided to build a user interface for4 ..a generalized job shop simulation tool that the executives

46> could make into specific dynamic simulations that would
35 1_ act out their changing states by artimating graphics on the

Y f« scmen. We called it the Smalltalk SimKit. This was a maxi-
23.44 -murn effort and everyone pitched iIi. Adele became the
33 4 design leader in spite of the very recent appearence of a
< new baby. I have a priceless memory of her debugging

 away on the Sirmi<it while simultaneously nursing Rachell
2 There were many interesting problems to be solved. The
f systemitselfwasstraightforward butithadtobe complete-

 ly seated off from Smalltalk proper, particularly with regard
1 to efror messages. Dave Robson came up with a nice

:. f . scheme (almost an expert system) to capture complaints
*1 from thebowels of Smalltalk and translated them into

(0 1 meaningful SimKit terms. There were many user interface
ch Irtfdetails-some workaday, like making new browsers that

9 kcould only look at the four Siml<it classe5 (Station, Worker,
421ob, Report), and some more surptising as when we tried it
h ' on ten PARC nontechnical adults of about the same age and

h b found that they couldn't read the screen very well. The
1 42 small fonts our thirtysomething year-old eyes were used to
42.15 didn't work for those in their 50s. This led to a nice int:o-
J j duction to the system in which the executives were encour-

S.4 aged to customize the screen by choosing among different
44 2 fonts and sizes with the side effect that they learned how to

use the mouse unselfconsciously.
#2€7 On the morning of the "big day" Ted Kaehler decided to

U make a change in the virtual memory system oozE to speed
it up a little. We all held our breaths, but such was the clari-
ty of the design and the confidence of the implementers
that it did work, and the executive hands-on was a bowling
success. About an hour into the first session one of the vps
0•iho had written a few prOgrainS in FORTRAN 15 years
before) finally realized he was programming and mused
"so tes finally come to this". Nine out of the ten executives
were able to finish a simula tion problem that related to
their specific interests. One of the most interesting and
sophisticated was a re board production line done by the
head of a Xerox owned company using actual figures (that
he carried around in his head) to prime a model that could
not be solved easily by ciosed form mathematics-it
revealed a serious flaw in the disposition of workers given

:«Li.¢fy

w. d/y, 5 i,n. -Uny 5 11/KU'f - 0ih<Un/' 40

:.Wd..Af

Vt

1*,JAN-4*40*Px-1%*
Dan Ingalls, the main implementer of

Smalltalk, creator of Smalltalk-76, and
his implementation plan (below)

PEOJEcT */SToey

A A.,t

¥' ,#58- 1.1.*L-

0/ 1

644 46 £26£62
27152 9%4„4

JacK bolaman nnally uses me sysiem ne pala
for all those years (with Alan Boming helping)

Que. 1 , al[1 Er
9 2=On

Immr--1

106

./,Rf I V, I- n,1
IW-11 § 1./.- 21 . '.I

WEL.SEL... fn
lilli

An end-user simulation by a Xerox executive, 1
in SimKit.Total time including training: 3 hours 1

UJUL

i v. 92.i>+ 1*10 -liy i 11/>iul y uri 'i#la//Icibl 30

the iine's average probability of manufacturing defects.
Another important system done at this time was Alan , 727 F-=z=,...'2 - te,!F,1,

Borning's Thinglab [Borning, 1979]-the first serious 318,3, "" 761''br 2@=,-- Prf,-#
attempt to go beyond Ivan Sutherland's Sketchpad. Alan .tf..'='-
devised a very nice approach for dealing with constraints ''"'t" "
that did not require the solver to be omnicient (or able to -'.
solve Fermat's last theorem).

We could see that the "pushing" style of Smalltalk
could eventually be relaced by a "pulling" style that was -----7-
driven by changes to values that different methods were 1=1* 5

based on. This was an old idea but Thinglab showed how .E]-2
the object-oriented definition could be used to automati-
cally limit the contexts for event-driven processing. And , - ,
we soon discovered that "prototypes" were more hos- Alan Boming's Thinglab. a constraint-
pitable than classes and that multiple inheritance would, based iconic problem solver
be well served if there were classes for methods that knew

generally what they were supposed to be about {inspired L EE-
by Pat Winston's 2nd order models).

Meanwhile, the Notelaker was getting realler, bigger,
and slower. By this time the Western Digital emulation-
style chips I hoped to use showed signs of being "diffu-
sion-ware", and did not look like they would really show
up. We started looking around for something that we anfit#*-1 ,
could count on, even if it didn't have a good architecture. i "r?>6€Zr--.„, .,.,:
In 1978, the best candidate was thie Intel 8086, a 16-bit chip *22-· · -..
(with many unfortunate remnants of the 8008 and! 8080), 95%3??=·=fi.ex·- t.'„·14· '...7.2'3'7.
but with (barely) enough capacity to do the job-we SEES*TE:g.#,ire.j#:..:t„..
would need three of them to make up for the AUTO. one for Smalltalk-76 hierarchical class browser
the interpreter, one for bitmapped graphics, and one for designed and built by Larry Tester
i/o (networking, etc). •MI=JR_

Dan had been interested in the Notetaker all along and a?:*$2359£E321*61--4xiEE3

wanted to see if he could make a version of Smalltalk-76 *S€ EE=4·:that could be the Not€Taker system. In order for this to - A
happen it would have to run in 256K (the maximum .
amount of RAM that we had planned for the machine.

6,--"raw#lt ..19,4///-,44'-,4-None of the NOVA-like emulated "machine-code" from the 11-2-Ne i. 0- •I - -t 0,• •••fa -,•
Acro could be brought over, and it had to fit in memory as 21'=g=ZIL,2&----I
well-there would only be floppies, no swapping memory IEESS-#2:222 -U-7&22
existed. This challenge led to some excellent improve- 52536*·mBE.RE.
ments in the system design. Ted Kaehter's system tracer N'- r-(which could write out new virtual memories from old
ones) was used to clone Smalltalk-76 into the Notaker.
The indexed object table (as was used in early Smalltalk The author's pen-based interface for
80) first appeared here to simptify object access. An exper- ST-76
iment in stacking contexts contiguously was tried: to save
space and gain speed. Most of the old machine code was
rewitten in Smalltalk and the total machine kernal was

reduced to 6K bytes of (the not very strong) 8086 code.
All of the re-engineering had an interesting effect.

Through the 8086 was not as good at bitblt as the AUTO
(and much of the former machine code to assist graphics
was now in Smalltalk), the overall interpreter was about
twice as fast as the ALTO version (because not all the
Smalltalk byte-code interpreter would fit into the 4k
microcode memory on the ALTO). With various kinds of
tricks and tuning, graphics display was "largely compen-

Doug Failbairn using his NoteTaker

r Lv- _, C j JU *»»·'9 3
» Le &«46)44 942
 Qu.J GOL.'44

Aw" v ivy, ilie rliny nibluy .4 4.0...

sated" (in Dan's words). This was mainly because the ALTO -
did not have enough microcode memory to take in all of
the Smalltalk emulation code--some of it had to be ren-
dered in emulated "NOVA" code which forced two layers of
interpretation. In fact, the Notetaker worked extremely well,
though it woutd have crushed any lap. It had hopped back

./0 m : 1/rn..·..1 I ./Pyon the desk, and looked suspiciously like minicoM (and10 cal
w=-im

several computers that would appear a few ye,ars later). It a,Al, Iti CZ
10. Ill C.*C=1

really did run on batteries and several of us had the plea- ... Ill

sure of taking Notelhker on a plane and running an object- = 18 - =
oriented system with a windowed interface at 35,000 feet /22._Ll

We eventually built about 10 of the machines, and 1 Design for Noleraker inte:face [Ka 79]

though in many senses an engineering success, what had to :i=:g= I al·-87,· -a ..2 -4 ·*·:'tm=
be done to make them had once again squeezed out the real i.FiE' 1 &023*f-7 -:>m ,%.%253
end-users for whom it was originally aimed, If Xerox (and m_ - 1 3.21: Eii .'* I-7.:;ir=

€0PARC> as a whole had believed in these smaller scale ideas,
we could have put much more silicon muscle behind the *-- ,",*3*„w -·---4.. _ -
dreams and successfully built them in the 70'3 when they
were first possible. It was a bitter disappointment to have n c,% F. 1 2 i FTE:w. .: r
to get the wrong kind of CPU from Intel and the wrong 17 31- 1 I' f ! Me-12
kindoldisplayfromHPbecausetherewasnotenoughcor- i......___14 -ir:.1 :..r. :...7023
porate will to take advantage of internal technological ---'-1 "£- ; » 3 ' * 2 33=2expertise. 15 f

By now it was already 1979, and we found ourselves
doing one of our many demos, but this time for a very
interested audience: Steve Jobs, Jeff Raskin, and other tech- |
ideal people from Apple. They had started a project called
Lisa but weren't quite sure whatit shouid be like, until Jeff g* :A-*¥.....fui'./75:.eA©'f kH» **h« *msaid to Steve, "You should redly come over to FARC and see t: f . 44€1.44* 1 'F.*,#**»=

what they are doing". Thus, more than eight years after h 7
overlapping windows had been invented and more than : g .,Al,
six years after the AI:TO started running, the people who 5694<z7-1*Am.--,
could really do something about the ideas, finally got to see /
them. The machine used was the Dorado, a very fast "big ,=2 !1 gElt*k *11"Mul""91'lle.
brother" of the ALTO, whose Smalltalk microcode had been li'im6.PM*imiwil
largely written by Bruce Horn, one of our original
"Smalltalk kids" who was still only a teen-ager. Larry
Tesier gave the main part of the demo with Dan sitting in |
the copiloes chair andi Adele and I watched from the rear.
One of the best parts of the demo was when Steve Jobs said **f&91*8%he didn't like the blt-style scrolling we were using and *44#0
asked if we could do it in a smooth continuous style. In less *flthlkj
than a minute Dan found the methods involved, made the *

What Steve Jobs saw. Multivlawson complex
stfuctures by Trygve Reeskaug {above}

Multimedia documents by Bobflegal and
Diana Merry (below}

(relatively major) changes and scrolling was now continu- otis! This shocked the visitors, especially the programmers
among them, as they had never seen a really powerful
incremental system before.

Steve tried to get and/or buy the technology from Xerox
(which was one of Apple's minority venture capitalists),
but Xerox would neither part with it nor would come up
with the resources to continue to develop it in house by
funding a better Notelaker cum Smalltalk.

11

Diana Merry at her trusty ALTO

¢»

7,

92%0314, 4
f 441 Alan C. Kay, The Early History Of Smalltalk 38

1 .ty
9 7he greatest sin in Art is not Boredom,

as is commonly supposed, but lack of
Proportion"-Paut Hindemith

VI. 1986·83-The release version of Smalltalk (-80)
As Dan said "the decision not to continue the Note?aker project added motivation to release

Smalltalk widely". But not for me. By this time I was both happy about the cleantiness and ele-
gance of the Smalltalk conception as realized by Dan and the others, and sad that it was farther
away than ever from the children-it came to me as a shock that no child had programmed in any j.
Smalltalk since Smalltall-76 made its debut. Xerox (and PARC) were now into "workstations" as<
things in themselves-but I Still wanted "playstations". The romance of the Dynabook seemed less 44
within grasp, paradexically just when the various needed technologies were starting to be commer- g
cially feasible--5ome of them, unfortunately, like the flat-screen display, abandoned to the Japanese v
by the US companies who had invented them. This was a major case of "snatching defeat from the 3
jaws Of victory". Larry Tester decided that Xerox was never going to "get it" and was hired by 4
Steve Jobs in May 1980 to be a principal designer of the Lisa. I agreed, had a sabbatical coming, and ·*
took it

Adele decided to drive the documentation and re!ease process for a new Smalltalk that could be f
distributed widely almost regardtess of the target hardware. Only a few changes had to be made to 4
the NoteTaker Smalltalk-78 to make a releasabte system. Perhaps the change that was most ironic 1 2
was to turn the custom fonts that made Smalltalk more readable (and were a hallmark of the entire .1
PARC culture) back into standard pedestrian ASCII characters, According to Peter Deutsch this "met j *
with heated opposition within the group at the time, but has turned out to be essential for the 4
acceptance of the system in the world". Another change was to make blocks more like lambda
expressions which, as Peter Deutsch was to observe nine years later"In retrospect this prolifera-
tion of difkrent kinds of instantiation and scoping was probably a bad idea". The most puzzling
strange idea-at least to me as a new outsider-was the introduction of metaciasses (mally just to
make instance initialization a little easier--a very minor improvement over what Smalltalk-76 did
quite reasonably already). Peter's 1989 comment is typical and true: "metaclasses have proven con-
fusing to many users, and perhaps in the balance more confusing than valuable". In fact, in their
PIE system, Goldstein and Bobrow had already implemented in Smalltalk an "observer language",
somewhat following the view-oriented approach I had been advocating and in some ways like the
"perspectives" proposed in KRL [Goldstein,*]. Once one can view an instance vi:a multiple perspec-
tives even "semi-metaclasses" like Class Class and Class Object are not really necessary since the
object-rote and instance-of-a<lassrole are just different views and it is easy to deal with life-history
issues including instantiation. This was there for the taking (along with quite a few other good
ideash but it wasrl't adopted. My guess is that Smalltalk had moved into the final phase I men-
tioned at the beginning of this story, in which a way of doing things finally gets canonized into an
inflexible betief structure.

Coda

One final comment. Hardware is really just software crystallized early. It is there to make pro
gram schemes run as efficiently as possible. But far too often the hardware has been presented as a
given and it is up to software designers to make it appear reasonable. This has caused low-level
techniques and excessive optimization to hold back progress in program design. As Bob Barton
used to say: "Systems programmers are high priests of a low cult".

One way to think about progress in software is that a lot of it has been about finding ways to
late-bind, then waging campaigns to convince manufacturers to build the ideas into hardware. Early
hardware had wired programs and parameters; random access memory was a scheme to tate-bind
them. Looping and indexing used to be done by address modification in storage; index registers
were a way to late-bind. Over the years software designers have found ways to late-bind the loca-
tions of computations-this ied to base/bounds registers, segment relocation, paging MMus, migra-
tory processes, and so forth. lime-sharing was held back for years because it was "inefficient"-
but the manufacturers wouldn't put MMu's on the machines, universities had to do it themselves!
Recursion late-binds parameters to procedures, but it took years to get even rudimentary stack
mechanisms into cpus. Most machines still have no support for dynamic allocation and garbage

L8

41«U r, Al

--

collection, and so forth. In short, most hardware designs today are just reoptimizations of moribund
architectures.

Frorn the late-binding perspective, oop can be viewed as a comprehensive technique for late-bind-
ing as many things as possible: the mix of state and process in a set of behaviors, where they are locat-
ed, what they are called, when and why they are invoked, which HW Es used, etc., and more subtle. the
strategies used in the oop scheme itself. The art of the wrap is the art of the trap.

Consider the two cases that must be handled efficiently in order to completely wrap objects. It
would be terrible if a+b incurred an* overhead if a and b were bound, say, to "3" and '·4" in a form
that could be handled by the ALIJ. The operation should occur full speed using look-aside logic (in
the simplest scheme a single und gate) to trap if the operands aren't compatible with the ALU. Now all
elementary operations that have to happen fast have been wrapped without slowing down the
machine.

The second case happens if the trap has determined the objects in questions are too complicated
for the ALU, Now the HW has to dynkmically find a method that can handle the objects. This is very
similar to indexing-the class of one of the objects is ··indexed" by the the desired method-selector in
a slightly more general way. In other words the FirtuaN:ddress of a method is <class><selector>. Since
most HW today does a virtual address translation of some kind to find the real address-a trap»it is
quite possible to hide the overhead of the oop dispatch in the MMU overhead that has already been
rationalized.

Again, the whole point of oop is mi to have to worry about what is insule an object. Objects made
on different machines and with different languages should be able to talk to each other-and will
have to in the future. Late-binding here involves trapping incompatibitities into mcompatibility
methods- good discussion of some of the issues is found in [Popek,1984].

Staying with the metaphor of late-binding, what further late-binding schemes might we expect to
see? One of the rucest late-binding schemes that is being experimented with is the metaobject protocol
work at Xerox PARC [Kiczates,1991]. The notion is that the language designer's choice for the internal
representation of instances, variables, etc., may not cover what the implementer needs, So within a
fixed semantics they allow the implementer to give the system strategies-for example, using a
hashed lookup for slots in an instance instead of direct indexing. These are then efficiently compiled
and extend the base implementation of the system. This is a direct descendant of similar directions
from the past of Simula, FLEX, CDL, Smalltalk, and Actors.

Another late-binding scheme that is already necessary is to get away from direct protocol match-
ing when a new object shows up in a system of objects. In other words, if someone sends you an
object from halfway around the world it will be unusual if it conforms to your local protocols. At
some point it will be easier to have it carry even more information about itself-enough so its specifi-
cations can be "understood" and its configuration into your mix done by the more subtle matching of
inference.

A look beyond oop as we know it today can also be done by thinking about Iate-binding. Prolog's
great idea is that it doesn't need bindings to values in order to carry out computations [Col ••]. The
variable is an object and a web of partial results can be built to be filled in when a binding is finally
found. Eurisko [Lenat ••] constructs its methods-and modifies its basic strategies-as it tries to solve
a problem. Instead of a problem looking for methods, the methods look for problems--and Eurisko
looks for the methods of the methods. This has been called "opportunistic programming"-I think of
it as a drive for more enlightenment, in which problems get resolved as part of the process.

This higher computational finesse will be needed as the next paradigm shift-that of pervasive
networking-takes place over the next five years. Objects will gradually become active agents and
will travel the networks in search of useful information and tools for their managers. Objects brought
back into a computational environment from halfway around the world will not be able to confugure
themselves by direct protocol matching as do objects today. Instead. the objects will carry much more
information about themselves in a form that permits injerential docking. Some of the ongoing work in
specification can be turned to this task [Guttag **] [Goguen **].

Tongue in cheek, I once characterized progress in programming languages as a kind of "sunspot"
theory, in which major advances took place about every 11 years. We started with machine code in
1950, then in 1956 FORTRAN came along as a 'better old thing" which if looked at as -almost a new
thing" became the precursor of ALCOL-60 in 1961. In 1966, SIMULA was the 'better old thing", which if

i v A.IM , 1,10 Cauil '1,4,iwly u' 0 1,19"AciA 40

Looked at as "almost a new thing" became the precursor of Smalltalk in 1972.
Everything seemed set up to confirm the "theory" once more: In 1978, Eurisko was in p[ace as the

"better old thing" that was "aimost a new thing". But 19»-and the whole decade-came and went
without the "new thing". Of course, such a theory is silly anyway-and yet, I think the enormous
commercialization of personal computing has smothered much of the kind of work that used to go

v on in universities and research labs, by sucking the talented kids towards practical applications. With
 companies so risk-adverse towards doing their own Hw, and the HW companies betraying no real
4 -understanding of sw, the result has been a great step backwards in most repects.

A twentieth century problem is that technology has become too "easy". When it was hard to do
anything whether good or bad, enough time was taken so that the result was usually good. Now we
can Inake things almost trivially, especially in software, but most of the designs are trivial as well.
This is inverse vandalism: the making of things because you can. Couple this to even less sophisticat-
ed buyers and you have generated an exploitation marketplace similar to that set up for teenagers. A
counter to this is to generate enormous disatisfaction with one's designs using the entire history of
human art as a standard and goad. Then the trick is to decouple the disatisfaction from self worth-
otherwise it is either too depressing or one stops too soon with trivial results.

I will leave the story of early Smalltalk in 1981 when an extensive
series of articles on Smalltalk-80 was published in Byte magazine,
[Byte,1981] followed by Adele's and Dave Robson's books
[Goldberg,1983] and the official release of the system in 1983. Now
programmers could easily implement the virtual machine without
having to reinvent it, and, in several cases. groups were able to roll
their own image of basic classes. In spite of having to run almost
everywhere on moribund HW architectures, Smalltalk has proliferated
amazingly well (in part because of tremendous optimization efforts
on these machines) [Deutsch 83]. As far as I can tell. it still seems to
be the most widely used system that daims to be object-oriented. It is
incredible to me that no one since has come up with a qualitatively
better idea that is as simple, elegant, easy to program, practical, and comprehensive. (It's a pity that
we didn't know about PROLOG then or vice versa, the combinations of the two languages done subse-
quently are quite intriging.)

While justly applau(ling Dan, Adele and the others that made Smalltalk possible, we must wonder
at the same time: where are the Dans and Adeles of the '806 and '90s) that will take us to the next

stage?

Dave Robson

1 Api

«*, 40
U' 6221'.

/

»*

88

t,C«7/

References Cited In The Text

[ACM, 1969] ACM S[GPLAN. On#rence on Extensibte Langrages, May 1969.
1Ainheim,1969] Amheim, Rudolf. Visual Thinking, Berkeley: University of California Press, 1969, ISBN 0520013786.
[Balzer, 19671 Balzer, R.M., Dataless programming. Proceedings #the F/CC. Juty 1967.
[8atton, 19611 Batton, R.S.. A new approach to the functional design of a d igitat computer. in Procatings 4 the

WJCC, May 1961.
[Baecker, 19691 Baecker, Ronald M., Intern¢€ve computer-mediated animation, Dept of Electrical Engineering, Phd

theais, Mrt, 1969, Supeevisor.Edward L. Glaser.
[Bitter, 1966]-Bitzer, D.Land Slottow, H.G.,-The plasma display panel- a digitally addressable display with

inherent memory, inPateedings qf the FICC, November t966.
mobmw,1977] Bobrow, D.G.,and Winograd, T., An overview of KRL, a knowledge representation language, in

C®litiee Sde#24 Vol. 1, (1} (pp. 3-461 1977.
[Borning, 1979} Borning, Alan,Thinglab -A Constraint-oriented simulation laboratory, Xerox Palo Alto Research

- Center,#SSL-79-3, July 1979.
[Bruner, 19601 Bfunet Jerome S., The Process € Eluedon, Harvard/Betknap Press, 1960,
[Bruner 19661 _a_ Towanis m Thery #I,mt,uction. Harvard/BelknapPress,1966, ISBN 0-674-89700,5.
[Brand, 1972] Brand, Stewart, 1972, Fanatic life & symbolic death among the computer bums, Ro;Ung Stone

Magazine, December 1972.
iBurroughs,19611 Butroughs Corp., Ihe Descriptor-a definitionof the B3000 information processing system,

Detroit:Michigan, Bulletin No. 5000-20002·P, February 1961.
[Bush,1945] Bush,Vannevar..1945, Ascientist tooks at tomorrow as we may think, ANantic Monthly, Vol 176, No.

1, (p. 101), Jury 19415.
[Byte, 19811 7 Byte A'agnzine, Issue or, Smatttalk F Christopher Morgan. ed., Volume 6. number 8. August, 1931.
[Carnap, 1947] Camap> Rudolf.Meming ami Necessity, A Smdy in Semontics and Modal Ifie, Chicago:University of

Chicago Press, 1947.
[Colmetauer,1978] Colmerauer, Alain., Metamorphosis grammars, in Natund Lmigiulge Cominrinialtion with Computers ,

Bok, L., ed., {pp. 133-189), Wes t Germany: Sp ringer-Verla* 1978, 1SB N: 3 540 08911 X .
[Colmerauer,19811 - et al Lagt steps towards an ultimate PROt£)(3, in Proceedings (f the nh Intemationot 10*11}

C*retted oM Art#icu MEdligerlce, Vol. 2,(pp. 947-9481 August 1981. Avaitable from the American
Assodation for Artificial Intelligence, Menlo Park, CA.

[Colmerauer,1983[_ . PROLOG in 10 figures, in Pn,mdings qf the Sth International Joint Conferenceon Artificial
IntejUsence, Vol. 1, Distributed by William Kau fmann Inc, Los Altos. CA. (pp. 487499), August
1983.

[Clark, 19571 Clark, Wesley .A., The lincoln tx-2 computerdevelopment, inProceedings € the WICC, (pp. 143 145),
February 1957.

[Clark,1962]

[Clark,19651

[Clark, 19661

[Clark, 1988]

1lhe General PutposeComputer in the Life Sciences Laboratory, inEnginming And the Le
Scinces, NAS-NRC Report, Washington DC, April 1962.
___, and Motnar, C.E., A Description of the LINC, inComputers in Biomedical Rese#reh , Vol. 1,
Chapter 2, R.W. Stacy and B.D. Waxman,ed., Academic Press, New York, 1965.
- Pfogramming the UNC,Computer Systems Lab, Washington University, St. Louis.
Technical Report, 1966-
___, The LINC was early and small. inA History #Persond Workstations, Adele Coldberg, ed. ,
New York: New York. ACM Press, (pp. 347-39111988,]SBN 020111 2590.

[Conway, 1963] Cortway,Melvin E, Design of a separable transition-diagram compiler, inCommunications orthe ACM,
Vol. 6. No. 7, (pp. 3964081 July 1963.

[bavi#, 1964] Davis, M.R., and Ellis, T.O., The RAND tablet A man»machine graphical communication device,
report.#RM-4122-ARPA, CA: RAND, 1964.

[Dahl, 1972] Dahl, O.-5., and Hoare, CA.R.. Hierarchial Program St™cture. In Dah

iDeuts¢h. 19661 Deuts¢h. L.P., Lisp for the PDP-1, inThe PrognimmMs tang,mge LISP; its Opemtion und Applications.
Editors: Edmund C. Bert<eleyand Daniel G. Bobrow, Cambridge, Mass., MIT. Press, ix, 382p, 1966.

[Deutsch,19731

[Deuts<ch,1983]

- A lisp machine with very compact programes, in Proceedings qf ike 3rd Inh?mationni Joi,it
Con»,te on An@fid Inte#*Mee, Stanford, CA, 1973.

The dorado Smailialle80 implementation: hardware architecture's impact on software
archite€ture, if: Smatifhk-80 Bils € flisforM Words qf Advice., Krasner, G., ed.. Addison-Wesley. { pp.
113-1261 1983.

[Deutsch, 19891 - The past present, and future of smalltalk. in ProEPEings qf the 3rd Europmn Conference on
Object Oriented Pmgnimming, Cambridge University Press, 1989.

[Engelbart, 19681 Engelbart, Douglas, C. and English, William. K.,A research center for augmenting human intell,3ct.
in Pmeeedings qf the JUCC, Vol. 33, Part one, (pp. 395-410). December 1968.

[Farber,1964 Farbet D.I., Griswali R.E., Polensky, F.F.. -SNOBOL, a String Manip#fation Language"JACM 11,1964,
21-INJ

[Feldman. 1977] Feldman, Jerome A., A formal semantics for computer languages and itsapplication in a compiler-
compiler, in Communications (fthe ACM, {pp.3-9) January 1977.

[Fisher. 19701 Fisher, David Allen, Control structures for programming languages. PhD Aesis. Department of
Computer Science, Carnegie Menon University. 1970.

[Goldber* 19771 Goldberg, Adele and Kay, Alan C.,Teaching Smalliatk (2 paper5): Methods for teaching the pro.
gramming language Smalltalkand Smalltalk inthe classroom, Xerox Palo Alto Research Center,
June 1977.

[Goldberg, 1978] . Smatltalksimulation kit documentation, Xefox Pato Alto Researcheenter, LRGInternal
Note, Feb 1973.

[Goidber; 1983] .and Robson, D., Sm#Utatk-80: 77Ye Im,gimgeand its ImplemenWion, Addison Wesley,
Reading,Mass., 1983.

[Gombrich,19601 Gombrich, E.H,Art & Illusion:AStudy in the Psychology of Pictorial Representation, NY: Pantheon
Books, 1960.

[Groner,1966] Groner, Gabriel, Real-tme re¢ognilion of hand printed text, CA: RAND,Report #RM-5016·ARPA.
October 1966.

[Hewitt, 19691

IHewitt, 19731

IHewitt, 1977]

[Ingalls, 1978}

[Ingalls,19811

Hewitt, Cart E., P[anner A language for manipulating models and proving theorems in a robot 1969,
MIT, Cambridge: MA, Project MAC.. AI memo #168

.; Bishop, P.; Greif, I.; Smith, B.; Mabon, T.; Sleiger, R., ACTOR induction and meta·eva]Wa-
tien, inConference Record #AC M Symposium on Prin¢*les of Progrumming U,jigumg¢s, 1-3 Oct 1973,
{pp.153»168), ACM, New York, NY, 1973.

. and Baker, Henry Jr., Actors in continuous functionals, Cambridge: MA, MIT,
Laboratory for Computer Sciences, 1977, MIT/LCS/TR·194, MTI. Laboratory for Computer
Sciences. Technical Report #194.
Ingalis, Daniel H., The Smantalk-76 Programming System, Design and Implementation. in Sth ACM
Symposi111,1 on Prindpies € Programming Langlmges, Tucson, Ariz. jan., 1978

. The smalltalk graphics kemat, Byte, Vol. 6. Number 8, (p. 168), August, 1981.
[ingalls.19831

[Irons, 19701

Boss.19641

The evolution of the smalltalk virtual machine, i n Smalitalk-80 Bits €f H(story, Words of
Advice., Krasner, G., ed., Addison-Wesley, (pp 9-281 1983.
Irons, E.T., 1970, Experience with an extensible languager in Communiattions ofthe ACM. vol.13. no.1.
{pp.31-40),January 1970.
Shaw, J.C., /055: A Designefs Vi¢w € an Expmme,Iml Online Campuk System, CA: RAND, #P-
2922,1964.

Doss, 19781 , JOSS Session, in Hioo,y € PrOgnmmiMg Languagn, ed. Richard L Wexelblat. New York:
Academic Press. xxiii, Chapter X, 1981.]SBN: 0127450408. Conference: History of Programming

{Kaehter, 19811
[Kay, 1968]
IKay, 1969]
IKay. 19701

[Kay,19711

Languages Conference (1978: bs Angeles, Catif.)
Kaehler, Edwin B., 1981, Virtual memory for an object-oriented langauge, Byte, August 1981
Kay, Alan C., Flex: a flexible extensible language, M.S. thesis, University of Utah, May 1968.
- -The reactive engine, PhD thesis. University of Utah, September 1969.

Ramblings towards a KiddiKomp, in Sta'!Ibrd At Project Lat7 Notebook, November 1970.
- Display transducers, in Pende,y Piwersfor Parc Planning Purposes, Xerox Pato Alto Research

[Kay,]971al
[Kay, 1971b]

Center, June 1971.
- Draft desim forminiCOM, inPARC L#b Book, Xerox Pato Alto Resear¢heenter, August 1971.

.Computer Structures-Past Present and Future, Panel paper, in Prxeedings <f the FKC. Vol. 39
November 1971

[Kay, 19721
[Kay, 1972a]
[Kay, 197214

[Kay, 1972(]

1Kay. 1972dl
1 Kay, 19761

. MiniCOM proposal, in PARC Lijb Book, Xerox Palo Alto Research Center, May 1972.
- Learning research group 3 year p}an, Xerox Palo Alto Research Center, July 1972.

. A personal computer for children of all ages. in Proceedings of theACM National Con.frence,
Beston, August 1972.

A dynamic medium for creative thought in Proceedings of the Ndtional Colmcil €f Te#chaN €f
English Conference, Minneapolis, November 1972.

Smalltalk Blue Book, Fall 1972.

Goldberg, Adele.. ed., Smalltalk Instrucbon Manual, 556764, May 1976.

68

[Kay,19771 - 1977, Microelectionics and the personal computer. Scierhyic Ameriam. (pp. 125.136)

(Kay, 19774

D<ay,19,91
IKay, 19841
{Kay,lggo}

[Kay, 19911

September 1977.
and Goldberg, Adele.,Personal dynamic media. IEEE Computer, Vol. 10,(pp 31·41), March

1977. Reprinted in A History €f Person,Worksdations, Academic Press, 1988.
Programming your own computer, Science Ymr 1979, World Book Encyclopedia, 1979.
- 1984, Computer software,Scient* Amen'can, September 1984.

. User interface: a personal view, in The Api #Human-Computer Inte,jace Design, ed., Brenda
Laurel, Addison-Wesleyfublishing Co·,1990,(pp. 191-207) ISBN 0 20151797 3.
- 1991, Computers, networks, and learning Sden* American, vol. 265, No. 3, (pp. 138<148)
September 1991.

[Kiczales, 1991] Kiczates, Gregor, Des Riviees,Jim; Bobrow, Daniel G.. The Art €fthe Memobject Protocol.
Cambridge,Mass.. MIT Press, vili, 335 p.; 1991, ISBN 0262111586.

iKnuth, 19711 Knuth, Donald E and Moyd, Robert W., Notes on avoiding'go to'statements, in *rmation Pmeasing
1.etters,volumer 1, number 1, Februar y 1971.

{Knuth, 19741 : - i. Structuted programmingwith 'go to' statements. in ACM Computing Sumeys, vol· 6. no. 4.
1» 261-3011 December 1974.

[Kfasiter,19831 Kfasner. Glenn., ed., Smailt#R* 8£8 4 Histo,y. Words # Aduice... Addison-Wesley. 19&3. ISB N O 201
116693.

[Lampson,1966] Lamrson., CAL reference manual, Project GENIE documentation, Computer Center, UC Berkeley,
1966.

[lampson,19664 - A user machine in a #rne sharing system. in Procerdings ef the JEEE. 54(12): (pp.174+17661
December 1966.

[Lampson, 19691 .An ove™iew of the CAL time-sharing system, Computer Center, UC. Berkeley, September
1969. Originally entitted Ort reliable and extendable operating systems, September 5, 1969·

[Lampson 19721 - Why Atto?,in PARCIab Book Xerox Palo Alto Research Center.
[Lampion,19881 - Personal distributed computing: alto and ethernet software, in A Histo,y € Pe=MiN

Wortfations, Adele Gotdberg, ed., New York,New York, ACM Press, 1988, ISBN 020 2590.
[Landii 1965] Landin, P.J., A correspondence between ALGOL 60 and Church's lambda notation: Paft 1. in

Communicidons#theACM, Vol. 8, No. 2, February 1965.
[Landin, 19661 - The next 700 programming languages, inCommunkations €f the ACM. Vot. 9. No. 3, March

1966. (pp. 157-164).
[Licklider,19601 Licklider, J.C.R.,Man-computer symbiosis, in IRE Transactions o#Human Factors in Ejectronies, HFE-1:

+11.19601

[LRG, 19761 Learning Research Group. Dynamic Persout Media. Xerox Palo Alto Research Center. Report #SSL-
76-7, June 1976.

tM¢Carthy, 1960] M¢Carthy, John P., Part 1, Recursive functions of symboli¢ expressons and their computation by
machine. in Communkalions of the ACM, Vol. 3, Number 4, (pp. 184-195) April 1960.

[M¢Carthy, 19621 - et.al., LISP 1,5 Pro*mminer's Mkmall. Cambridge: MIT Press. 1962.
[Minsky, 1970] Minsky,Marvin., Form and content in computer science, inThe Jounna! qf the Association,fbr

Comput*g Machnery, Vot 17, Number 2, (pp- 197-215). April 1970.
[Minsky. 19741 . A famework for representing knowledge, MA: Massachusietts Institute of Technology,

Artifidal Inte]Ggence Laboratory Memo No. 306.June 1974. Reprinted in The Psychdogy {¥Computer
Vision, MeGraw-Hill, 1975.

[Newman,19731 Newman W.M.,and Sproult, R.F..Pnnciptes {fintentctiue commaer·graphics, New York: McGraw·Hill,
1973.

INygaard, 19661 Nygaard. Kristen, and Dahl, Ole-Johan, Simula- an ALGOL-baged simulation language, in
Communicafans grthe ACM, IX, 9. (pp. 671-678>.September 1966.

{Nygaard, 19781 __L Early history of simuta, in History of Prognomming I.aguages, ed. Richard L. Wexelbtat. New
York: Academic Press, 1981, ISBN 012 745040 8. This is the proceedings of the ACM Sigplan History
of Programming Languages Conference held in Los Angeles, June 1-3,1978.

[Papeft. 1971] Papeft, S., Teaching children thinking, MA: Massachusetts Institute of Technology, Artifical
intelligence Laboratory Memo 247, LOGO Memo 2,1971.

[Papert, 197181 - i Tenching children to be mathematicians vs. teaching about mathematics, MA:Massachusetts Institute of Technology, Artifical [ntelligence Laboratory Memo 249, LOGO Memo 4,
1971.

{Papert, 19731 . Uses of technology to enhance education, MA: Massachusetts Institute of Technology,
Artifical Intelligence Laboratory Memo 298, LOGO Memo 8. 1973.

{Paperi, 197·61 , Abelson, H., Bamberger. 1, and Goldstein. I.. LOGO Progress Report 1973-1975, MA:
Massachusetts Institute of Technology, AMi ficial Intelligence Laboratory, Memo 356,LOGO Memo
22,1976.

trapert, 1976] Proposal to the National Science Foundation: An Evaluative Study of Modern
Technology in Education, Appendix One: LOGO memo 8, Appendix Two: LOGO memo 27, MA:
Massachusetts Institute of Technology, Artificial intelligence Laboratory, memo 371, LOGO memo
26,1976.

[Papert, 1976a} ,; Solomon, CJ., A Case Study of a Young Chikt doing Turtle Graphics in LOGO, MA:
Massachusetts Institute o f Techrtology, Arti ficial Intelligence Laboratory, Memo 375, LOGO Memo
28,1976.

trapert, 1979]

[Perly,19851

7 Watt, D., DiSessa, A„ Weir, S.. Final Report o f the Brookline LOGO Project. Part II:
Project Summaryand Data Analysis, MA: Massachusetts Institute of Technology, Artificiat
intelligence Laboratory Memo 545, LOGO Memo 53,1979.
Perry, Tekla,Vaside the PARO the -*rmation Ar¢Mfects'- IEEE Spectrurn, October 1985.

Flate]

{Popek, 19841
90419601

[Ross, 19611

P lato, Timaeus & Phaedru s:T he Di#logues of Plate . translated by Benja min lowett. Grea t Books of the
Western World, Robert Maynard Hutchins, ed., En¢yclopelia Britannica, Ine., 1952.
Popek, G., et.al., The Locus Distributed (pemting System, Can*ridge: Mrr Press, 1984.
Ross, D.T., and Ward, J.E., Picture and pushbutton languages, chapter 8 of Invest@ations in Omputti·-
Aided Design. interim engineering report 8436·IR-1, Bectfical Systems Lab, MIT, May 1960.

. A generalized technique for symbol manipulation and numerical calculation, in
Communicatons € the ACM, Vol. 4. no, 3, (pp. 147.150) Mar¢h 1967.

[Rovner,19681 Rovner, P,D, An AMBIT/G progamming language implementation, MIT Uncoln Laboratory,
Lexington. Mass.. June 1968.

[Saunders, 19771 Saunders, Steven E.. Improved FM audio synthesis methods for real-time digital music generation,
in Compulay·Mimic founal. Vol. 1. No. 1. February, 1977. Reprinted in Compute, Mlisie, Roads, C. and
Strawn, J. editors, Cambridge. MIT Press, 1985.

[Schorre. 1963] Shorre, D.V., META Il- A syntax«oriented compiler writinglanguage, UCLA computing facility,
[Shoch, 1979] Shoch, J.F. 1979, An overview of the programming language Smalltalk-72, in SIGPLAN Noticel vol.

14, no. 9, (pm 64€31 September 1979.
[Soloway, 1989] Soloway, Elliot and Spohrer, James C., ed.,Studying the Novice PTagnummer, New Jersey: Lawience

Ertbaum Associates. 1nc., 1989, ISBN 0·8058·002.

[Sniith,19751 Smith, David Canfield. Plxmallien. PhD thesis, Stanford Univ.. 1975
[Strachey] Strachey, Christopher, Toward#jannal samatics. United Kingdom.
[5utheriand, 19631 Sutherland, Ivan C., Sketchpad: A man,rnachine graphical communication system, MIT Lincoln

Laboratory, Technical Report 296, January 1963.
1Sutheriand, 19633] ____ ibid, in Procedings of the SICC, Vol. 23, (pp. 329-346), 1963.
mutheriand, 19681 .Ahead*mounted three dimensional display, inProceedings tf the ACC, (p. 757), 1968.
{Tesler, 1973] Tesier, Lawrence.,etal.. The lisp-70 pattern matcher, in Proceedings €f the 3rd Inter#ational Joint

Co«ence M Angicial Intelligence, Stanford,CA, 1973.
[Tesler. 1977] . Smalltalk-76 do¢umentation. Xerox Palo Alto Research Center, L.eaming Research Group

Internal Note, 1977.

ftesler,19811 - 1981, The smalltalk environment Bybe. Vol. 6. Number 8, (p, 90), August 1981.
Eihacker, 19721 Thacker, C.P., A pedonal computer with microparaltel processing, Xerox Palo Alto Research Center,

December 1972.
trhacker 19821

[Thacker, 1986]

et al., Afto: a pemnal compute inComputer Structures: Prind»and Eumples. Siewiorek. D.
etal. editors, Chapter33, M(Graw-Hill, 1982.

Personal distributed co mpu ting: the al to and ethernet hardware. in A History o f Pe,50,!al
Worksjotions, Adele Goldberi ed., New York: New York. ACM Press, (pp.267-290), 1988. ISBN 020
1112590.

[Van Wtingaarden, 19681 Van Wigngaarden, A., ed., Draft report on ALGOL 68, Mathematisch Centrum, MR 93,
Amsterdam, The Netherlands, 1968.

[Van Wijngaarden] . Generalized ALGO[, Mathematisch Centrum, Amsterdam, Netherlands,
[Wirth, 1966] Wirth. N.K. and Weber, H., EULER. A generalization of ALGOL, and its formal definition: Part I,

inCommunications of the ACM, Vol 9, No. 1, (pp. 13 25), Jan. 1966
[Winston. 19701 Winston, Patrick H., Learning structural descriptions from examples, PhD thesis. MIT, January 1970.
[Zahn, 1974] Zahn, C.T, Jr., A control statement for natural top·down structured programming, inprocredings €f the

Conoque sur Ja Prognmmation. Apil 1974, Paris. A revisedversion ofthis paper appears, under the
same title, in Programming Symposilm, vol. 19 of the lecture notes in Computer Science, Robinet, B.,
ed., Berlin: Springer Veriag, 1974, {pp 170-180).

06

Alan U. Flay, I ne tarly rustory ul al,all,45.

Appendixly-personatomputeruemo
Smalltalk Program Evolution

From a memo on the "KiddiKomputer"To: Butler Lampson, Chuck Thacker, Bill English, Jerry, Elkind, George Pake
Subject: *KiddiKomputer'
Date: May 15, 1972

4. January 1972

The Reading Machinet. Another attempt to work on the actual problem of a per-
sonal computer. Every part of this gadget (except display) is buildable now
but requires some custom chip design and fabrication. This is discussed more
completely later on. A meeting was held with all three labs to try to stimu-
late invention of the display.

B. Utility

1. I think the uses for a personal gadget as an editor, reader, take-home-con-
text, intelligent terminal, etc. are fairly obvious and greatly needed by
adults. The idea of having kids use it implies (possibly) a few more con·,
straints having to do with size, weight. cost and capacity. I have been beg-
ging this question under the assumptions that a size and weight that are good
for kids will be super acceptable to adults, and that the gadget will almost
inescapably have CPU power to burn (more than PDP-·10 >: implies larger scale
use by adults can be gotten by buying more memory and maybe a cache.
2. Although there are many •educational• things that can be done once the
device is built, I have had four basic projects in mind from the start„
a. Teaching •thinking' {a la papert) through giving the kids a franchise forthe strategies, tactics, and model visualization that are the fun (and impor-
tant} part of the design and debugging of programs. Fringe benefits include
usage as a medium for symbols allowing editing of text and pictures.
b. Teaching •models" through •simulation' of systems with similar semantics
and different syntax. This could be grouped with (a) although the emphasis isa bit different. The initial two systems would be music and programming and
would be an extension of some stuff I did at Utah in 1969-70 with the
organ/computer there.

¢. Teaching •interface' skills such as •seeing' and •hearing• . The initial
-seeing• project would be an investigation into how reading might be taught
via combining iconic and audible representation of works in a manner reminis-
cent of Bloomfield and Moore. This would require a corollary ingiry into whygood readers do so much better than average readers. A farther off project in
the domain of sight would be an investigation into the nature and topology ofkids' internal models for objects and an effort to perserve iconic imagery
from being totally replaced by a relational model.
d. Finding out what children would do (if anything) •unofficially• during non-
school hours with such a gadget through invisible 'demons·, which are little
processes that watch surrepticiously.

3. Second Level Projects

a. The notion of evaluation (partly an extension of 2.a.) represents an impor-
tant plateau in •algorithmic thinking•.

b. Iconic programming. If we believe Piaget and Bruner, kids deal mostly with

Alan u. Kay, The Early History 01 Smalltalk 46
icons before the age of 8 rather than symbolic references. Most people who
teach programming say there is a remarkable difference between 3rd and 4th
grades. whatever an iconic programming language is, it had better be consider-
ably more stylish and viable than GRAIL and AMBIT/G. I feel that this is a way
to reach very young kids and is tremendously important.

C. The Viability Of miniCOM

It was noted earlier that miniCOM is only barely portable for a child. Does it
have a future for adults and/or as a functional test bed for kids? If only one

is needed, the answer seems to be no since -$15k will simulate its function in
a non-portable fashion. If more than one is necessary {say 10 or more}. then
the cheapest way to get functions of this kind is to design and build it.

Rationalizations for building a bunch of them:

1. It will allow us to find out some things not predictable or discoverable by
any other path.

A perfect case in point is our character generator through which we have found
some absolutely astounding and unsuspected things about human perception and
raster scan television which will greatly further disply design. It has paid
its way already.

2, The learning experiments not involving portability can be doe for a reason-
able cost and wil allow us to get into the real world which is absolutely nec-
essary for the future of learning research at PARC.

3. It will foster some new thoughts in small computer system design.

It has already sparked the original •jaggies• investigation. The minimal nice
serifed character fonts were done because of cost and space limitations. There
are some details which have been handwaved into the woodwork which really neeed
to be solved seriously: philosophy of instruction set. compile or interpret,
mapping, and I/0 control.

4. It will be a useful •take home* editor and terminal for PARC people. It is
absurd to think of using a multidimensional medium during the day (NLS, etc.>,
then at night going home to a ID AJ or worse: dumping structured structured

ideas on paper.

5. It is not unreasonable to think of the gadget as an attempt at a cost-effec
tive node for a future office system. As such, it should be developed in paral-
lel with the more exotic and greatly more expensive luxury system.

6. It is not clear that the more ideal device (A. 4.). requiring custom chip
design. can be done well without us knowing quite a bit more about this kind of

System.

I6

bian u. Ady, i He tany Mis[Ofy ul amai,[alk 47

Appendix 11: Smalltalk Interpreter Design
When bet out to win the bet I realized that many of the details that have to be stated explicitly in

McCarthy's elegant scheme can be finessM For example, if there were objects that could handle vari-
ous kinds of partial message receipt, such as evaluated, Unetwtuated, literol, etc., then there would be no
need to put any of those details in the eval. This is analogous to not have COND as a "special form",
but instead to find a basic building block in which COND can be defined like any other subpart

One way to do this was to use the approach of Dave Fisher, in which the no-man's land of control
structures is made accessable by providing a protected way to access and change the relationships of
the static and dynamic environment[Fisher 70].In an object-based scheme, the protection can be pro-
vided by the objects themselves and many of Fisher's techniques are even easier to use. The effect of
all this is to extend the eval by distdbuting it both to the individual objects that participate in it and
dynamically as the language is extended,

I also decided to ignore the metaphysies of objects even though it was clear that, unlike Simula, in
a full blown ooPL classes had to exist at run-time as "first-class" objects-indeed, there should be
nothing but Erst-class objects. So there had to be a "class-class" whose instances were dasses, class-
dass had to be an instance of itself, there had to be a "dass"object" that would terminate any sub-
ciassing that might be done, and so forth. All of this could be part of the argument concerning what I
didn'thave to show to win the bet.

The biggest problem remaining was that I wanted to have a much nicer syntax than Lisp and I
didn't want to use any of my precious "half-page" to write even a simple transtator21. Somehow the
eval had to be designed so that syntax got specified as part of the 1122 of the system, not in its basic
definition.22

I wanted the interpretation to go from left to right. In an ooP, we can choose to interpret the syntax
rule for expressions as meaning: the first element will be evaluated into the instance that will receive
the message, and everything that follows wiU be the message. What should expressions like a+D and
ci + de mean? From past experience with FlEx, the second of these had a clear rendering in object-ori-
ented terms, The c should be bound to an object, and All of i <-de would be thought of as the mes-
sage to it. Subscripting and multiplication are implicit in standard mathematical orthography-we
need explicit symbols, say "0" and "•". This gives us:

receiver 1 message
c le i <1 d*e

The message is made up of a literal token "°", an expression to be evaluated in the sender's context
{in this case i}, another literal token <-, followed by an expression to be evaluated in the sender's con-
text {d•e). "usp" pairs are made from 2 element objects and can be indexed more simply: c hd, c tl, and
c hd <-joe, etc.

The expression 3+4 seemed more troublesome at first. Did it really make sense to think of it as:
receiver 1 message
3 1+4

We are so used to thinking of "+" and as operators, function machines. On the other hand
there are many senses of "+" and "*" that go beyond sim-
pie APLish generalizations of scalar operators to arrays-
for example in matrix and string algebras. From this
standpoint it makes great sense to let the objects in ques-
tion decide what the token "+" means in a particular con-
text. This means that 3+45... should be thought of as
31 +4*5.1, and that the way class number chooses to
receive messages should be arranged so that the next
subexpression is handled properly. E.g. 3 could check to
see if a token (like +, or *) follows and then ask to have the
rest of the message evaluated to get its next input. This
would force 45... to be the new sending, as 4 !*5, and so
on. Not only are fewer parentheses needed but FROGlike
sequential evaluation is a byproduet.

By:this point I had been able to finesse and argue away
most of the programmingthat seemed to be required of
the eval. To summarize: , m

This also means that useful elements like lists, atoms,
control structures, quote, receivers (such as "receive evalu-

. message receipt woukt be done by objects in the
midst ofnonrnatmde

• control structures would be handled by objects
that could access the context obiects

• the context objects (e\at acted like stack frames,
schedulers, etc.> could be simulated by stan-
dard objects and thus wouida't have to be
specified in me eval

4 vatiable derefemncing and storage would be
done by having variables be objects and send-
ing them the messages pfurand «

• the evaluation of a code body would be done by
starting evaluation of its first item

• methods would be realized by the contml struc.
ture in the dass code body, This would imple»
ment protection, would make the extemalsof
an object€ntirely virtual and permit vegnexi.
ble messagmg mhemes

• Smalltalk s metaphysics would be covered by

making everything an object and didn t haveto be specified now
I o,td /0 folh

.·tial, v. My, ne Caliy rm>,uiy vi atilailiair, 46

ated", "is the next token this?"' etc.),and the like do nothave to be defined in the kernat interpreter,
as they can be realized quite simply as instances of normat classes with escapes to metacode.

What seemed to remain for the eval was simply to show what a message send actually consisted of.
For this system a send is the equivalent not of a postman delivering a letter, but simply delivering a
notice of where the letter was to be found. It is up to the receiving object to do something about it. In
fact, it could ignore the request, complain about it invoke inferential processes elsewhere, or simply
handle it with one of its own messages.

The final thing I had to do was to extend the uniform syntax idea of receiver message to cover all
cases, including message receipt and simple control structures. So, we need some objects to pattern
match and evaluate, to return and define, etc.

The "LISP" code body would not need any escapes to lower-level code and could look something
like: 3

I hope this is clear enough. por exam- 07 . A<„ I i.-hrk) "repined und car where h B Qn insumt twi@ir

ple, if c is bound to a cons pair,
*repr ed and cdr uhm t 5 1,1 insta= zariable"

lioisPoii » Ang}
c hd <- 3+4 Wength • O istair • 01+1 length) 1)

would be dealt with as follows: Control

is passed to that object and the first test
is to see if the symbol lid appears in the message (¤hd »). It does. The next check is for an "assign-
ment" token (¤<- »). It's there. Last we want to evaluate the rest of the message (we get 7), bind the
value to the internal instance variable f and, finally return this value to the sender ('·1). So this is like:
(REFLACA C 0>LUS 34)).

This is getting a little ahead of the story in that not alI of these ideas were thought out in this
detail, but I want to show the context in which I was thjnking, and it seemed quite clear at the time
that things would come out all right if I pushed in this
direction. This stuff is similar to mathematical or musical F-in=Me=F
thinking where many things can be done "ahead of time" 1 ecal token in themessage steam

m. eval-bind evals the next part of message
if one's intuition whispers that "you're on the right track". i and binds result to its message
The compass setting felt right; I could "see" that all these unval-bindpicks up next part of message

things would eventually work out just because of "what unevaled and binds to its mes-

sageobjects were"· 1' send-back returnxils value to the sender
To motivate the next part, let us examine the ciassic j quote overides any metainterprelation

evaluation of 3+4 using a nonrecursive evaluator. For code, ofits message

we use arrays of pointers and expect that some of the
pointers will be encoded for literal objects (an old LISP trick), The above were used in the first interpreler
We need good old program counters "pC" that we can bump definition. The Yollowing were defined When
along over the code. The wrinkle of delayed receipt of mes- the first•rear implementation was done.
sage (not evaling and passing arguments at send time) will
require us to manipulate 12921 the plogram counter of the

hom it, messagesender and the receiver as the message is reeted in. One ISNEW testinst is true ifa newinstance hasbeenway I worked it out was as a before-after diagram for aeated

"3+4". = equals tme oniy if its receiver and 981We start in the middle of a method of some class of . then
rceiver=true: evats next part of
rameterare theamz object

objects and we need to evaluate "3+4".The essentials of message and exits
the eval are those that successfully take us into the method receiver=false skips over the|
of "3" in class integer. Since all methods are only in terms next part of mesgge and condnl
of sends and all sends are done in a similar manner, this is ues evaling

fence -statement- separator. Quitsenough. It is like an induction proof in which we assume applying ib receiver. serts eval.
"n" and show how to get to"n+1". ing itsarg

Note that the various auxiliary objects (such as 'peek,') L.*m.*--..........,...„.,-p.,.......2
have to responsibly move the sender's program counter when receiving part of the message,

I have hand-evaluated this nonrecursive version in a number of ¢ases and it seems to work pretty
weI, but there are probably some bugs. If a reader feels prompted to come up with an even nicer,
tidier, and smaller scheme, I would be glad to look at it.

26

Alan U. Kay, 1 he Early History Ot Smalltalk 49

Thi"One -Pager" le <ihe environment} will be bound to the current Messenger object
0resutt holds the result of a send, usually to be appfid to next part of message

'Before"

f Kj

IBLOBA,

eval: if nul<e•MSG) Ihen 'fesul <-nil; goto apply;
iescapie•msly then goto escapes;
ifatomfe.ME} then 'Mult <- lookupvalue(e. e•Msc); goto apply;
li nottist(e®MSG) thin'result<„e•26;goteapply;

evlist:'e<-Table(c]LASS, MasEN<=
SENDER, e.
GLOBAL e•G[OBAL

'smp. e•SELP.
pc, 1,
ME, e•ME•K)
RTN, APPLY);

goloeva[;

-1,20 1 lh "apply 'e<-e*SNDER;
e•pe<-e•PC+1;

If4*4 le•4- 1-n·Mil

'During*

a?al I

if e•Pe > tength(MK) then goto dispatchrtn;
Me•MGO•Pc = '. thene•pe<·e•PE+ 1; gotoevtist;
ife•MSG•FC i '» theniresult- 'false

then e•Pc<.e•%+2:gotoevlist.
else e.fc<ve.pC + 1,

'e<·Table(CLASS MiS$ENGER,
SENDER, e,
Gl.OBAL, GLOBAL

CE

SiELP result,
pc, 1,
MSG. e*MSG*PC,
KTN. FROMTRUE];

gotoeval;

/641

K ./-

'e «Table(CLAES, MESSiNGER.
SENDER, e,
GLOBAL, GLOBAL,

SELF. reSU[t,
PC, 1,
MSG. result•CLASS*CODE-
R™, APPLY};

1- i

2+LA:1
goto eval;

ftom™UE:'e <-e•SENDER•SENDER; goto dispalchrtn;

fromm:E: putvalue(e•GLOBAL, e•p. mult); goto apply;

J...1

T.-1 REVT"%/1

dispatchret select e•R™
CaSe APPLY:

ease FROMTRUE

tase FROMEYE

gotoapply;
golo fM>mnuE;
goto fivmEYE;

lescapes: sfilecte•MCIPT+1
"After" etc...

200 (meneW¢jb,of €•SNDE•&50(FC)=e•SNDR•*Dlt•MS*PC)
then bump:(e•SNOR•SNDR•FC); result <- TRUE
else result <- FAISE;

goto apply)J

do: p *p. m*mt*(set up a new context andeval sender))
to :p v (meted*Trv <,· e•*IDRISNDR•MIC.pe;

i< niKe•'p <-e•SNDR•MCIX)
then 'result <· v
elm pp o result 8 v;

gotoapply;»
20 * b (: b. metaeod€offretum <- e.b. goto apply))

Alan C. Kay. The Early History Of Smalltalk 50
Appendix 111: Acknowledgements

1971

Chris Jeffers, + ?

1972

Chris Jeffers, John Shoch, Steve Purcell, Bob Shur, Bonny Tennenbaum, Barbara Deutsch
1973

A document written by me shortly after Smalltalk-72 started working
ACKNOWLEDGEMENTS

Latest revision: March 23, 1973

Much of the philosophy on which our work is based was inspired by the ideas of
Seymour Papert and his group at MIT.

The Dynabook {ka 71) is a godchild of Wes Clark's LINE (cl 1962} and a lineal
descendent of the FLEX machine (ka 67, 68, 69}.

The "interim Dynabook• (known as the ALTO {Th 71, Mc 71) is the beautiful cre-
ation of Chuck Thacker and Ed McCreight of the Computer Science Lab. at PARC.

SMALLTALK is basically a synthesis of wellknown ideas for programming languages
and machines which have appeared in the last 15 years.

The Burroughs B5000 (ba 61) (860) had many design ideas well in advance of its
time {and still not generally appreciated>: compact •addressless code; a uniform
semantics for names (the PRT), automatic coprocesses, •capability" protection
Ialso by the pRT and Descriptors_, virtual segmented memory, the ability to call
a subroutine from ·either side· of the assignment arrow, etc.

The notions of code as a data structure; intensional properties of names (proper-
ty lists of attribute-value pairs on atoms)i evaluation with respect to arbitrary
environments; etc., are found in LISP, probably the greatest single design for a
programming language yet to appear. SMALLTALK is definitely LISPlike.

The SIMULAs {'65 and '67) combined Conway's notions of software coroutines (1963
- hardware version had appeared in the 85000 3 years earlier). ALGOL-60, and
Hoare's ideas about record classes (ca.1964> into an epistemology that allowed a
class to have any number of parallel instantiations (or activation records) con-
taining local state including a separate program counter. Most of the operations
for a SIMULA'67 class are held intrinsically as procedures local to the class
definition.

The FLEX machine and its language ('67-69) took the SIMULA ideas (discarding most
of the AGOLishness>, moved *type· from a variable onto the objects (ala 85000 and
EULER}, formed a total identification between •coprocesses• and •data·: consoli
dating notions such as arrays, files, lists, •subroutine• files (ala SDS-940)
etc.. into one idea. The ·user as a process• also appeared here. A start was made
to allow proccesses to determine their own input syntax-an idea held by many
{notably Irons, Leavenworth, etc.)

The Control Definition Language of Dave Fisher (1970> provided many ideas, solu
tions and approaches to the notion of control. It, with FLEX, is the major source
for the Semantics of SMALLTALK. It is a ·soulmate• to FLEX; independently worry-
ing about many of the same problems and very frequently arriving at cleaner,
nearer ways to do things. Many of Dave;s ideas are used including the provision
for many orthogonal paths to external environments, and that control is basically
a matter of organizing these environments. SMALLTALK removes Fisher's need for a
compiler to provide a mapping between nice syntax and semantics and offers other
improvements over his schemes such as total local control of the format of an
instance, etc.

An extemporaneous talk by R.S. Barton at Alta ski lodge (1968) about computers as
communications devices and how everything one does can easily be portrayed as
sending messages to and fro, was the real genesis of the current version of

E6

Alan U. Kay, lhe Early History Of Smalitalk 51
SMALLTALK.

The fact that kids were to be the users, and the simplicity and ease of use of
the already existing LOGO. whose own parents were LISP and JOSE (which set a
standard Ear the esthetics for interaction that has not yet been surpassed), pro-
vided lots of motivation to have programs and transactions appear as simple as
possible-ice. moving from left to right, procedures gather their own messages,
etc. It is no accident that simple SMALLTALK programs look a bit like LOGO!

Problems discovered years ago in ·lefthand calls" prompted SMALLTALK to make
•store- intensional -i.e. a <- b, means •call ·a' with a message consisting of
the token'<-' and symbol 'by . If anyone can make the right decision for what this
means. it must be the object bound to •a'. The early fall of 1972 saw an evalua-
tsr for SMALLTALK, and the idea that '+' 0 '-', etc. . should also be intensional.
This led to an entire philosophy of use (unlike SIMULA '67) to put EVERYTHING in
class definitions including the sotcalled •infix operators0. This message idea
a 11ows messages to have a wide range of form since all messages can be received
incrementally.

•Control of control- allows control structures to be defined, The language
SMALLTALK itself thus avoids •primitiveh' such as •loop...pool•. synchronous and
asynchronous *ports=, interrupts, backtracking, parallel evel and return. etc.
All of these can be easily simulated when needed.

These are the main influences on our language. There were many other minor and
negative influences from other existing languages and ideas too numerous to men-
tion except briefly in the references,

This particular version of SMALLTALK was designed through the summer and early
fall of 1972 and was aided by discussions with Steve Purcell, Dan Ingalls, Henry
Fuchs, Ted Kaehler, and John Schoch. From the proceeding acknowledgements it can
be seen as a consolidation of good ideas into one simple ides:

Make the PARTS (object subroutines, I/0, etc.} have the same properties and
power as the WHOLE (such as a computer).

This is the basic principle of recursive design, SMALLTALK recurs on the notion
of -computer• rather than of •subroutine.

A talk on SMALLTALK was given at the AI lab at MIT (Nov 1972} which discussed the
process structure and the new, intentional, way to look at properties, messages,
and •infix operators: This led to the just published formal -actors model of
computation• of Hewitt, et. al. (1973)

Dan Ingalls of our group at PARC, the implementor of SMALLTALK, has revealed many
design flaws through his several, excellent qu ick ' throw away• implementation of
the language„ SMALLTALK could not have existed with his help, virtuesity, and
good cheer.

The original' design of the •painting editor• was by Alan Kay. It was implanted
and tremendously improved by Steve Purcell.

The •Animator' was designed and irrplemented by Bob Shur and Steve Purcell.

Line graphics and the hand-character recognizer were done by John Shoch.

•Music:* was designed and implemented by Alan Kay.

The design and implementation of the font editor was by Ben Laws {POLOS).

We would like to thank CSL and POLOS in general for a great deal of all kinds of
help.

1976

Learning Research Grmp
Alan Kay, Head
Dan Ingalls
Ted Kaehler

Dave Robson

Dick Shoup

Students

Tom Horsley
Steve Saunders

David C. Smith

Chitd Interns

Marian eileen (age 13)
Bruce Horn (age 15)
Kathy Mansfield (age 12)
Visitors

Eric Martin

Alan u. My, I ne tarty History U Smalitalk 52

Adele Goldberg
Chris Jeffers
Diana Merry
John Shoch
Steve Weyer

Barbara Deutsch

Steve Purcell

Bob Shur

Radia Perlman

Dennis Burke (age 12)
Susan Hammet (age 12)
Lisa Jack (age 12)
Steve Putz (age 15)
Ron Baecker

Bonnie Tenenbaum

Help From Other Gmups At PARC Patrick Baudelaire
Dave Boggs Bill Bowman

Larry Clark Jim Cucinitti
Peter Deutsch Bill English
Bob Flegal Ralph Kimball
Butter Lampson Bob Metcalfe

Mike Overton Alvy RaySmith
Bob Sproull Larry Tester
Chuck Thacker Truett Thach

96

Appendix IV: Event Driven Loop Example
First we make a class for events:

b *£nt I mycode
(ISNEW • ('*ye@de <- army 3

mycode[23 <-'dene.1
anewcode • (mycodeill<-1.}
mis .{Brremo
ingcolleemn

Each event stores away code to be executed later (the done will eventu-
ally cause an exit from the driving loop in the until structure, defined
next

,·1=H -· ARM,,$% couy rui.ty un *mainair. b4

Appendix V: Smalltalk-76 Internal Structures
This shows how Smalltalk-76 was implemented. In the center, between "static" and "dynamic" lies a
byte compiled method of Class Rectangle. Slightly above it is the source text string written by the
programmer. The method tests to see whether a point is contained in the rectangle. In the dynamic
part, the program counter is just starting to execute the first less-than. This general scheme goes all
the way back to the B5000 and the FLEX machine, but is considerably more refined.

String

.* 'Rectangle'
aass String 7 tille - %4 ,orner origin

to unfil temptom St, fenrent
frpt f'fempaton»:. 7hifitoop picks,ip at! the ment ida*rs (,inet,aled)-

U-

tempmtom <.evmt im indirects tore to whote©er was in the mesgge
9, . (again) done)

0320 • Cstatent¢nt <- m "the loop body to be evaled-
mease a (m,f¥# f'le,#pltom <- i 'pickup an eurnkase taber

(tenwatom 01 is event .
Co:. tempatcm epal iiau¢ode t.) *pick up the torrsponding code"

part names -
MessageD emonaty

superclass -message diet E : •I 0
Ins! size .2

free list message method source

dot,tm

f-rmait (satement mID) "amt#Wyuntil an eve,t is enemattered aMdrtm" f Unique String ring*the eueni w#t 00:»re exii,#om the untif loop. y *contains:' :entans: pt

This kind of playing around was part of the general euphoria that came with having a really extensi-ble language Its like the festooning of type faces that happens when many fonts are suddenly avail- -
[torigin¢pt and: pt<corner]'

able. We had both, and our early experimentation sometimes got pretty baroque. Eventually we
Method

 Static Structures <setup info Ino. args, etc}>
calmed down and stArted to focus on fewer, simpler structures of higher power. <literals (il any}>

corner Pt < pt origin : < -
Dynamic Structures and: 1 +

'le . ---

Conexf

- sender

method

PC

/ecfor

pt Jporner M
< 11 > 1

• t . ds and ' \ stack ,
, / tamps (if any) 0/

I. J pok,¢
lempframe - -

stack Eltr ··· - - -- -
mclass

\91 x *101 arqument

sell

I y •201

Point t

f Rectangle x .5

V origin y •12 1

-91 x =1201 0

receiver

96

Inter·Office Memorandum

To - LRG and other interested parties Date April 8, 1981

From R Deutsch Location Pato-Alto

subject Smalltalk database **draft ** Organizalion LRG

XEROX

Filed on:{Phylum]<Deutsch>st80db.memo

This memo represents a first incomplete draft of documentation for the data base facilities I've
been boilding for Smalltalk:80. Since this work is still very much in progress, I need comments not
011]yon the quality of the document but (evenmore) on the sysmin itself al-every level from the
choice of message names to the underlying data model.

Before reading this memo, you should probably be familiar with some of the Cedar Data Base
documentation, particularly the "concepts and facilities" document (Rvy]<CedarDB>docs>xxxxx) and
perhaps also the paper written by the Cedar DB group describing tile svstem (xxxxx). You should
also be reasonably--familiar with the Smalltalk world-view, and'be able° to read fragments:of
Smalltalk-80 code (which is enough like Smalltalk-76 that you shouldn't havemuch trouble if that's
all youre familiar with).

World view

A reasonable way to think of the Smalltalk Data-Base world is diat it is just an extension of the
faniiliar Smalltalk worId of classes, objects, instance variables, and messages. The extensions fall
into several categories:

It is possible to dynamically create and detete instance variables in dasses.

4 An instance variable may optionally be typed, and an error message will Yesuit if an
atteinpt is made to store something of ttle wrong type into a variable.

- There are extensive facilities for indexing all the objects of a given class, and retrieving
those instances of a class which satisfy given properties.

At the moment there are some substantial restrictions as well:

There is no subclass hierarchy or inheritance.

r There is no way to write methods in data base dasses -- data base objectsoare passive data
objects.

Data bases are not permanent -- you have to use something equivalent to filin-Land filout
to save them.

- Data bases are not shared between users, except by the brute fol·ec mechanism of filing in
a data base that someone else filed out.

*7¥:

Smalltalk data base ** draft ** 2

l'here is no notion of an atomic transaction.

- There is no protocol for correlating the information in several classes (called a "join" in
the data base world).

Fortunately, designs exist for removing all of these restrictions, so you have something to look
forward to in the future.

Defining classes

One difference between D[3 classes and ordinary classes is that even though Dll classes must all
have unique names (like ordinary classes), they aren't automatically put into the Smalltalk symbol
table. This is partly because the Browser and the Smalltalk system don't support DB classes, so the
current assumption is that creation of classes is something that you do in a program rather than
from the terminal, Likewise, there is no easy way to edit, inspect, etc. a 1)13 class (although as we
will sce later, these things are all possible in a very uniform way).

There are two kinds of DB classes and objects in the world. DB objects which exist in their own
right are called entilies, and their classes are called doillains. DB objects which only exist to record
relationships between other objects arc called relationships, and their classes arc called relations. Al

the time you create a DB class, you must decide whether it is a domain or a relation. To create a
domain,

aDoma ins DomainD omainnamed: 'someName'

Likewise, to create a relation,

aRelation + RelationDomain named: 'someName'

DomainDomain and RelationDomain play the role of metaclasses (more or less). Note that if a
domain or relation by the given name already exists, you will get the existing one, not an error
message.

1)B classes are themselves entities, instances of (as you may have guessed already) either the
Relation domain or the Domain domain.

Defining attributes

Once you have created a I)13 class, the next step is to define its attributes, which correspond to
instance variable names. (DB classes don't have anything corresponding to class variables.) Unlike
Smalltalk classes, where you define the instance variable names all at once, for 1)11 classes you
define the attributes individually. Thus to add an attribute to a DB class,

anAttribute + aDBclass newAttribute: 'attrName'

Again, jf an attribute with that name already exists, you will get it. A different message, which
gives an error if the named attribute does not exist, js

anAttribute e aDBclass attributeNamed: 'attrName'

Note that you can go on adding attrjbutcs to a DB class evell after instances exist: the new attribute
values in existing objects will be whatever the "undefined" value is for the type of data stored
under thal altribute (normally n il).

Attributes created as just shown will allow any kind of Smalltalk object to be stored under them.
Iliere are two ways you can restrict what can be stored under an attribute:

5

/24

Smalltalk data base ** draft ** - -- 3

You can require that the value be an instance of a specific class or domain.

- You can require that tile value be chosen froill a specific set of alternatives (e.g. # red,
#greent #blue).

To define an attribute with one ofthese properties, you need to get holdof an object:(actually an
entity) called a Val ueType. The protocol forgetting ValueTypes is pretty ugly l'ight now: you
can say

ValueTypeDomain named: 'Point'

to get a ValueType that represents "restriction to instances of Point'% or

ValueTypeDomain named: #(red green blue-)

to geta ValueType that represents "restriction to one of #red, #green, or-#blue".,-Then to-get
an attribute with a type restriction,

anAttribute + aDBclass newAttribOte: 'attrName' valueType:
aValueType.

An attempt to store something of the wrong type under an attrib:ute will produce an error message.

Creating instances

To create an instance of a relation,

aRelationship + aRela<lion create.

To create or retrieve an entity in a domain,

anEntity + aDomain named: 'someName'.

Entities without names are not allowed to exist. As remarked above, named : will either retrieve or
create an entity of a given name.

Manipulating instances

DB objects behave very much like (passive) Smalltalk objects in that they have protocol for
accessing and storing into their instance var:iables (attribute values). Unlike Smalltalk objects, in
which each instance variable normally has a sepai·ate message to access it, DB objects have a
protocol more like - dictionaries. To access an instance variable,

value + aDBobject at: anAttribute.

To store into an instance variable,

aDBobject at: anAttribute put: newValue.

The data base world provides an explicit notion of "undefined" which is a slight generalization of
the Smalltalk use of nil. To set an instance vai-iable ici "undefined",

aOBobject deleteAt: anAttribute.

Note that an attribute is only usable in conjunction with instances of the particular DB class it was
created under. This is quite different from the Smalftidk notion that you can take any variable-sized
object and subscript it, or send :a message m any object tilat ui'iderstands it; it is inure like tlie

Smalltalk data base ** drift ** 4

notion of a field of a record in a strongly typed language, For these reasons among others, it isn't
clear that doing things this way is a good idea.

Retrieval

Flexible retrieval is one of the primary purposes of data bases. For this reason, the Smalltalk DB
has a fairly elaborate protocol for retrieving subsets of [)11 classes according to some criterion. The
basic model here is that you build up a request for a retrieval, and then ask for the request to
become a stream: at that moment, the retrieval actually gets done, and you can then treat the object
you have been manipulating as an ordinary stream. 'llic basic pattern for retrievals is something
like .this: c©ke,pi x.. 7,

((aRelation find with: attrl equals: valuel) with: attr2 between:
lowValue and: highValue) do: aBlock.

7 he find message returns an object called a Query which then takes further messages specifying , ,/
what the retrieval conditions are, rlhe do: message implicitly converts the Query into a strealn. i..ID'/»·-
So the essence of the retrieval protocol is the set of messages that turn Que rys into more- fully
specified Querys.

Messages that specify restrictions on individual attributes:

with: anAttribute equals: value

with: anAttribute between: lowValue and: highValue

Messages that allow you to specify an arbitrary condition:

suchThat: aBlock

FiawL: e
I ?r.,2 60

The block should be of the form [-:aDBobjectl someCondition], specifying that only objects
for which the condition is true should be included. This is the most general kind of restriction, but
it is less efficient than specifying attribute restrictions since attribute restrictions can make use of
indexes.

Messages that call for soi·ting the result:

withAscending: anAttribute

withDescending: anAttribute

If you specify sorting on more than one attribute, the first attribute is taken as most significant, the
second will only bc consulted if the values under the first are equal, etc.

In addition, there are two messages designed specifically for situations where you know that there
must be exactly one object satisfying a given set of restrictions and want an error message if this is
not the case:

uniqueWith: anAttribute equals: value

justOne

7hese message return the actual I)13 object satisfying the conditions, so they must be the last one in
the series if they appear.

4

Smalltalk data base :** draft **

In oider to make retrievals run fast, you can ask a DB class to maintain an index on>a particular
attribute. This will'make retrievals using only that attribute run very fast, and retrievals using that
attribute among others run a lot faster. It is not necessary to Ilave an index to do retrievals:.the DB
class will search its instancessequentially if no index is available. To add an -index,

aDEclass addIndex: anAttribute

To delete an index,

aDBelass dropindex: anAttribute

Destroying instances

Unlike Smalltalk, -where an object can disappear as soon as there are no references to il the data
baseaorldhas to retain objects indefinitely, since there is no way for the system to predict that you
won't retrieve the object by giving- a description of it at some future time. (The situation in
Smalltalk- - itself would be analogous if people started making heavy use ofatlass
al]Instances[)0: aBlock.) This isn't actually quite true, as we shall see in a moment, but Ws
pretty close. So to make a -DB - object disappear,

aDBobject Delete. " r<1 Al.,ft:;40/404

What does "disappear" mean? It means that as far as the data base system is concerned the object
ceases to exist no references to it will remain within the data base system. If you still have a
reference to it hanging around in your own data structures somewhere and attempt to use that
refereiic¢, bizarre things will probably happen, although (currently) the data base system doesn't
alter the Object in a way that could bring down the Smalltalk system.

When you delete a relationship, nothing else happens. When you delete an entity, however, two
things happen automatically:

All relationships containing references to that entity get- deleted.

- All entities containing references to diat entity have the reference replaced by nil.

As you might expect, moIra far-reaching things happen if you delete system entities. Deleting an
attribute entity effectively deletes the attribute value from all DB objects to which tliat attribute is
applicable. Deleting a DB class (either a relation or a domain) ailtomatically deletes all its attributes
and instances first. The warning-about not holding -on to a deleted -object through a reference
outside the data base system applies with particular force to system entities!

System objects

All the objects in the data base system itself are DB objects -- no surprise. In particular, there are
four system doinains:

DomainDoma:in
RelationDomain
AttributeDomain

ValueTypeDomain

All of these except for AttributeDomain have only one applicable attribute,

EntityName

Smalltalk data - base - ** draft -** - - - 6

which refers to the name of tile entity. 'Thus, for example, to rename an attribute, doinain, etc.

aSystemObject at: EntityName put: 'newName'

Notice that Enti tyName violates the rule that an attribute is only applicable to a single DB-class:
the system entities don't have to play by the same rules as the ones you create. r

AttributeDomain has two other· attributes:

Attri)Bel ass, the DB class to which the attribute is applicable:
Att rVal ue Type, the type of value which must appear under that attribute.

There ar¢ a number of predefined Va 1 ueTypes for the most comition kinds of values:

VTInteger
VIString
VTBoolean (true or false)
VTAny (any Smal1talk owect)

Indexes aren't currently entities. but they probably should be.

Miscellaneous

aDBclass storeon: a-File will filout a single DB class. You can filin this file ata later time,
and it will reconstruct the class. Note, however, that if any instances of'the class contain references
to other DB objects. you have to filin (or at least creale) that class first. To help with this,
aDBcl ass describeOn: aFile will write out Sometlling which will create theclass properly ifit
doesn't already exist. 'lhus the proper way to float a group of DB classes whose instances can refer
to each other freely is

aDBclassl describeon: afile:.
aDBclass2 describeOn: aFile.

aDBclassN describeOn: *File.
aDBclassl storeOn: aFile.
aDBelass2 storeOn: aFile.

aDBclassN storeon: aFile.

How to run it

The data base- code currently resides on [Phylum)<Deutsch>Data-base-classes.st and Data-base-
kernel.st. Filin these two files in order (i.e. Datirbase-classes.st befote [Data=base-kernel.st). To
initialize the system after filing it in, execute ValueType f inish Init. Thafs all there is to it!

Needless to say, there are surely many bugs, omissions, and quirks not covered in this memo, since
the data base system has only--had one user (Bill Finzer, who has suffered considerably as a user of
a somewhat earlier version of the system.) 1?lease tell me about any problems you encounter.

'1 344 *et•nf Bas,·c .S#.c#- 41, 1.66:ses
.y

1 .

.-AP iNS., t

A-eu;

74,9 *De-f Support, sc-ple
re646-a f 64 60$. 14 Via,/4

1$ A Aud pwrpos€. &*06•c
accis, 400(, otite 4!iastj CA-
au•,< 46 .61.5 64•41- hg,U['fi Pr.,4..c.t,

0 vt¢WW use. 74£ Ah 1=01€4'tSt
10 0-4 ModeR•J - teav:., 4 •e·· 0

%cLJ Noe,<

9114. 3/6/a{ 02¥.eforma-.f- D.,=cR.„, lort# 76*4
. 47(6465

u- bc pr,v:&49< A Ad,Qi·14.. 4..
key.

• Se-e ki••4 4 6dc; ·g of #Aeck
a

EEE
EE

6.1,.rem5%:

-EliE mk Spad/4. 64.56- appl;47,D-' C4- 1/5
F 6 pr,b.--4 8 Fee-pt- resF•-2-

7.,6/4£6 D...

. 6204"4(ID.,A ,09- 410- 76,-0,4 d.;r.
4 J.r- s i.·62,74+44*0:. Ca_ Ap
divelof,4

lk' sy s*- 9401 64 +Wr.Ar-%-cl .6,0.1,47

SCIENTIFIC
AMERICAN OFFPRINTS

Microelectronics

and the Personal Computer
by Alan C. Kay

SCIENTIFIC
AMERICAN
SEPTEMBER 1977

VOL 237 NO 3 PR 230-244

.. PUBLISHED BY W. H. FREEMAN AND COMPANY 660 MARKET STREET, SAN FRANCISCO, CALIFORNIA 94104

Copyright © 1977 by Scientific American. Inc. All right5 reserved. Printed in the U.S A. No part of this offprint may be reproduced by any mechanical, photographic or electronic process, or
m the form of a phonog,aphic recording, nor may it be stored in a retrieval system. transmitted or otherw,5e copied for public or private use without written permission of the publisher.

384

er

-I--

3

L

Microelectronics

and the Personal Computer
Rates of progress in microelectronics suggest that in about a decade

many people will possess a notebook-size computer with the capacity

ofa large computer of today. What might such a system do for them?

T he future increase in capacity and
decrease in cost of microelectron-

ie devices will not only give rise to
compact and powerful hardware but
also bring qualitative changes in the way
human beings and computers interact.
In the 1980's both adults and children

will be able to have as a personal pos-
session a computer about the size of a
large notebook with the power tohandie
virtually all their information-related
needs. Computing and storage capacity
will be many times that of current mi-
crocomputers: tens of millions of basic
operations per second will manipulate
the equivalent of several thousand print-
ed pages of information.

The personal computer can be regard-
ed as the newest example of human
mediums of communication. Various

means of storing. retrieving and manip-
ulating information have been in ex is-
renee since human beings began to talk.
External mediums serve to capture in-
ternal thoughts for communication and.
through feedback processes. to form the
paths that thinking follows. Although
digital computers were originally de-
signed to do arithmetic operations. their
ability to simulate the details of any
descriptive model means that the com-
puter. viewed as a medium. can sin,u-
late any other medium if the methods
of simulation are sumciently well de-
scribed. Moreover, unlike conventional

mediums. which are passive in the sense
that marks on paper, paint on canvas
and television images do not change in

COMPUTER SIMU'LAI'IONS generated on a
& Sutherland Computer (Lorporation show the
possible to present on a compact personal compi
ie-simulation programs thal revise an image 30
motion of objects in projected three-dimenbion a
National Aeronautic, and Space Administratiol
the interior of the •.pace i.huttle. The sequence a
ministration, shows tile movement of tanken in '

by Alan C. Kay

response to the viewer's wishes. the
computer medium is active: it can re-
spond to queries and experiments and
can even engage the user in a two-way
conversation.

The evolution of the personal com-
puter has followed a path similar to that
of the printed book. but in 40 years rath-
er than 6()(}. Like the handmade books

of the Middle Ages. the massive com-
puters built in the two decades before
1960 were scarce. expensive and avail-
able to only a few. Just aS the invention
of printing led to the community use of
books chained in a library. the introduc-
tion of computer time-sharing in the
1960's partitioned the capacity of ex-
pensive computers in order to lower
their access cost and allow community
use. And just as the Industrial Revolu-
tion made possible the personal book by
providing inexpensive paper and mech-
anized printing and binding. the mi-
croclectronic revolution of the 1970's

will bring about the personal comput-
er of the 1980's. with sufficient storage
and speed to support high-level com-
puter languages and interactive graphic
displays.

Tdcally the personal computer will be
1 designed in such a way that people of
all ages and walks of life can mold and
channel its power to their own needs.
Architects should be able to simulate

three-dimensional space in order to re-
fleet on and modify their current de-
signs. Physicians should be able to store

high-resolution television display at the Evans
qualit, of the images it should e, entually be

iter. The pieturehare frama from two dynam-
times per second to reprebent the continuous
I space. The sequence at the top, made for the
1, bhow* a •,pace laboratory being lifted out of
t the bottom, made for the U.S. Maritime Ad-

Weii York harbor. Abilit, of the personal com-
medium of communication.puter to simulate real or imagined phenomena will make it a ievi

and organize a large quantity of infor-
mation about their patients. enabling
them to perceive significant relations
that would otherwise be imperceptible.
Composers should be able to hear a
composition as they are composing it.
notably if it is too complex for them to
play. Businessmen should have an itc-
tive briefcase that contains a working
simulation of their company. Educators
should be able to implement their own
version of a Socratic dialogue with dy-
namic simulation and graphic anima-
tion. Homemakers should be able to

store and manipulate records. accounts.
budgets. recipes and reminders. Chil-
dren should have an active learning tool
that gives them ready access to large
stores of knowledge in ways that are not
possible with mediums such as books.

How can communication with com-
puters be enriched to meet the diverse
needs of individuals? If the computer is
to be truly -personal." adult and child
users must be able to get it to perform
useful activities without resorting to the
services of an expert. Simple tasks must
be simpte. and complex ones must be
possible. Although a personal computer
will be supplied with already created
simulations. such as a general text edi-
tor, the wide range of backgrounds and
ages of its potential users will make any
direct anticipation of their needs very
difficult. Thus the central problem of
personal computing is that nonexperts
will almost certainly have to do some
programming if their personal comput-
er is to be of more than transitory help.

To gain some understanding of the
problems and potential benefits of per-
sonal computing my colleagues and 1 at
the Xerox Palo Alto Research Center

have designed an experimental personal
computing system. We have had a num
ber of these systems built and have stud-
ied how both adults and children make
use of them. The hardware is faithful in

capacity to the envisioned notebook-

3

size computer of the 1980's. although it
is necessarily larger. The software is a
new interactive computer-language sys-
tem called SMALLTALK.

In the design of our personal comput-
ing system we were influenced by re-
search done in the late 1960's. At that
time Edward Cheadle and I, working at
the University of Utah. designed FLEX,
the first personal computer to directly
support a graphics- and simulation-ori-
ented language. Although the FLEX de.
sign was encouraging. it was not com-
prehensive enough to be useful to a wide
variety of nonexpert users. We then be-
came interested in the efforts of Ser
mour A. Papert. Wallace Feurzeig and
others working at the Massachusetts In-
stitute of Technology and at Bolt. Ber-
anek and Newman. Inc.. to develop a
computer-based learning environment
in which children would find learning
both fun and rewarding. Working with a

large time-shared computer. Papert and
Feurzeig devised a simple but powerful
computer language called LOGO. With
this language children (ranging in age
from eight to 12) could write programs
to control a simple music generator. a
robot turtle that could crawl around the

floor and draw lines. and a television
image of the turtle that could do the
same things.

After observing this project we came
to realize that many of the problems
involved in the design of the person-
al computer. particularly those having
to do with expressive communication.
were brought strongly into focus when
children down to the age of six were
seriously considered as users. We also
realized that children require more
computer power than an adult is willing
to settle for in a time-sharing system.
The best outputs that time-sharing can
provide are crude green-tinted line

drawings and square-wave musical
tones. Children. however. are used to
finger paints. color television and stereo-
phonic records, and they usually find the
things that can be accomplished with a
low-capacity time-sharing system insuf-
ficiently stimulating to maintain their in-
terest.

Since LOGO was not designed with all
the people and uses we had in mind, we
decided not to copy it but to devise a
new kind of programming system that
would attempt to combine simplicity
and ease of access with a qualitative im-
provement in expert-level adult pro-
gramming. In thiseffort we were guided.
as we had been with the FLEX system.
by the central ideas of the programming
language sIMuLA. which was developed
in the mid- 1960's by Ole-Johan Dahl
and Kristen Nygaard at the Norwegian
Computing Center in Osto.

Our experimental personal computer

0

.... =00.
r,

H

j
EXPERIMENTAL PERSONAL COMPUTER was built at the Xe-
rox Palo Alto Research Center in part to develop a high-level pro-
gramming language that would enable nonexperts to write sophisti-
cated programs. The author and his colleagues were also interested
in using the experimental computer to study the effects of personal

computing on learning. The machine ia completely self-contained,
consisting of a keyboard, a pointing device, a high.resolution picture
display and a sound system, all connected to a small processing unit
and a removable disk-file memory. Display can present thousands
of characters approaching the quality of those in printed material.

4

is self-contained and fits comfortably
into a desk. Long-term storage isprovid-
ed by removable disk memories that can
hold the equivalent of 1,500 printed
pages of information (about three mil-
lion characters). Although image dis-
plays in the 1980's will probably be
flat-screened mosaics that reflect light
as liquid-crystal watch displays do. vi-
sual output is best supplied today by a
high-resolution black-and-white or col-
or television picture tube. High-fidelity
sound Output is produced by a built-in
conversion from discrete digital signals
to continuous waveforms, which are

then sent to a conventional audio ampli-
fier and speakers. The user makes his
priniary input through a typewriterlike
keyboard and a pointing device called a

I €Et 11 • 11 ,[1"I:111.9,----

i 1..111,
T ,

3iA.ttil ,:

k.=timi, 4/Fj 4: 1,%,:; i,0111

mouse. which controls the position of
an arrow on the screen as it is pushed
about on the table beside the display.
Other input systems include an organ-
like keyboard for playing music. a pen-
cillike pointer, a joystick, a microphone
and a television camera.

The commonest activity on our per-
sonal computer is the manipulation of
simulations already supplied by the
SMALLTALK system or created by the
user. The dynamic state of a simulation
is shown on the display. and its general
course is modified as the user changes
the displayed images by typing com-
mands on the keyboard or pointing with
the mouse. For example, formatted tex-
tual documents with multiple typefaces
are simulated so that an image of the

finished document is shown on the
screen. The document is edited by point-
ing at characters and paragraphs with
the mouse and then deleting, adding
and restructuring the document's parts.
Each change is instantly reflected in the
document's image.

In many instances the display screen is
too small to hold all the information a

user may wish to consult at one time.
and so we have developed "windows.'-
or simulated display frames within the
larger physical display. Windows orga-
nize simulations for editing and display.
allowing a document composed of text,
pictures. musical notation. dynamic ani-
mations and so on to be created and
viewed at several levels of refinement.
Once the windows have been created

they overlap on the screen like sheets of
paper: when the mouse is pointed at a
partially covered window. the window is
redisplayed to overlap the other win-
dows. Those windows containing useful
but not immediately needed informa-
tion are collapsed to small rectangles
that are labeled with a name show-

ing what information they contain.
A -touch" of the mouse causes them

to instantly open up and display their
contents.

M•swil Syut|<7.1, 1. ult.

liM11!Illl,111111,11,Illillil,lill,IlIllill'11111111,111,1,11111,1111,1111'11'11't
ti. w I di,ing --1, M< dii[,i i. ii.
V<!nm• M drihici< u h •,1,1 1„ i Rili, AM-R•, 2< R.di :w er,il
Mlis d, int,d

 Al.in e K.0
4018 1 ·irin.i W.9
1...• Al••. 1-A .4 1-

t, thi·Ord,·ref Ii. 1 9;' h 2 2:.. '24.Z: 1 d $

1)011 A/* 3

XI NOX
3 1. ·· ·4·. ·re"i, 111.1•·14

Sign,•,1
hir ' '.1.•2·I

0,21//Ilill""/
M. All"

1.1, 1,. 147
tal#.1.1

"WINDOWS," display frames within the larger display screen, enable the uher to organize and
edit information at several levels of refinement. Once the windows are created they overlap on
the screen like sheets of paper. When a partially covered window is helected with the pointing
device, the window is redisplayed to overlap the other windows. Images with various degrees
of symbolic content can be displayed simultaneously. Such images include detailed halftone
drawings, analogical images such u graphs and symbolic images such as numbers or words.

T n the present state of the art software
1 development is much more difficult
and time-consuming than hardware de-
velopment. The personal computer will
eventually be put together from more or
less standard microelectronic compo-
nents. but the software that will give life
to the user's ideas must go through a
long and arduous process of refinement
if it is to aid and not hinder the goals of a
personal dynamic medium.

For this reason we have over the past
foiir years invited some 250 children
(aged six to 15) and 50 adults to try ver-
sions of SMALLTALK and to suggest ways
of improving it. Their creations. as imag-
inative and diverse as they themselves,
include programs for home accounts.
information storage and retrieval, teach-
ing. drawing. painting. music synthesis,
writing and games. Subsequent designs
Of SMALI.TAI.K have been greatly influ-
enced and improved by our visitors'
projects,

When children or adults first encoun-

ter a personal computer. most of them
are already involved in pursuits of their
own choosing. Their initial impulse is to
exploit the system to do things they are
already doing: a home or office manager
will automate paperwork and accounts,
a teacher will portray dynamic and pic-
torial aspects of a curriculum. a child
will work on ways to create pictures and
games. The fact is that people naturally
start to conceive and build personal
tools. Although man has been charac-
terized as the toolmaking species, tool-
making itself has historically been the

5

province of technological specialists.
One reason is that technologies fre-
quently require special techniques, ma-
terials, tools and physical conditions.
An important property of computers,
however, is that very general tools for
using them can be built by anyone.
These tools are made from the same ma-
terials and with the same effort as more
specific creations.

Initially the children interact with our
computer by "painting" pictures and
drawing straight lines on the display
screen with the pencillike pointer. The
children then discover that programs
can create structures more complex
than any they can create by hand. They
learn that a picture has several represen-
tations, of which only the most obvi-
ous-the image-appears on the screen.
The most important representation is
the editable symbolic model of the pie-
ture stored in the memory of the com-
puter. For example, in the computer an
image of a truck can be built up from
models of wheels, a cab and a bed, each
a different color. As the parts of the
symbolic model are edited its image on
the screen will change accordingly.

Adults also learn to exploit the prop-
erties of the computer medium. A pro-
fessional artist who visited us spent sev-
eral months building various tools that
resembled those he had worked with to
create images on paper. Eventually he
discovered that the mosaic screen-the

tl-lit "lm¢ des<iipt ion
11'1111¢ k,x: pictut<
1(<ation El

111£1¢ 0
size E
new 1(<atic.n + o

slow 61 inint bh
<1 lk· 21 Juint Mc
shil'C & up: g<,to

1 to 4 do e
{11 e w , i (·1 1 se. S ize +

SMALLTALK is a new programming languag
Center for use on tile experimental personal cor
like entities that can perform a speclic set of &
ities in the system. New activities are created k
additional 'tails," or abilities, which are defini
description of the family "box" shown here is a I
of the family box, a message is sent to the trait "
in terms of specific values for the general trails
"new" has been filled in to specify a box Iocati
zero degrees and a side 100 screen dots long. T
drawing family "brush" is given directions by 11
the specified location, turns in the proper direct
square by traveling the distance given by "size,I

indelible but instantly erasable storage
of the medium-and his new ability to
program could be combined to create
rich textures of a kind that could not be
created with ink or paint. From the use
of the computer for the impoverished
simulation of an already existing medi-
um he had progressed to the discovery
of the computer's unique properties for
human expression.

rlne of the best ways to teach nonex-
</ perts to communicate with com-
puters is to have them explore the levels
of abstraction at which images can be
manipulated. The manipulation of im-
ages follows the general stages of intel-
lectual growth. For a young child an im-
age is something to make: a free mixture
of forms and colors unconnected with
the real world. Older children create
images that directly represent concepts
such as people. pets and houses. Later
analogical images appear whose form is
glosely related to their meaning and pur-
pose, such as geometric figures and
graphs. In the end symbolic images are
used that stand for concepts that are too
abstract to analogize, such as num-
bers. algebraic and logical terms and
the characters and words that consti-

tute language.
The types of image in this hierarchy

are increasingly difficult to represent on
the computer. Free-form and literal im-
ages can be easily drawn or painted with

: activity

ent (1, vngle + 0. size + 100.
ck sllitx·
:41(·und. slapt·
1<<ation: 1 [un ·ingle dcwn.
i £,0 S iN 1 Hrn !V L
sin· + 1]. slic,W

e developed at the Xerox Palo Alto Research
nputer. It is made up of "activities," computer.
iks and can also communicate with other activ.
iy enriching existing families of activities with
4 in terms of a method to be carried out. The
lictionary of its trails. To create a new member
'new" stating the characteristics of the new box
"location, "',angle" and "size." In this example
4 in the center of the screen with an angle of
o "show" the new box, a member of the curve.
ie open trait "shape." First the brush travels to
ion and·appears on the screen. Then it draws a
turning 90 degrees and repeating these actions

pen, indicating that a numerical value is to be
by a message. A box is "grown" by first eras-

three more times. The last trait on the list is 01
supplied by the user when the trait is invoked
ing it, increasing (or decreasing) its size by the value supplied in the message and redisplaying it

lines and halftones in the dot matrix of
the display screen with the aid of the
mouse or in conjunction with programs
that draw curves, fill in areas with tone
or show perspectives of three-dimen-
sional models. Analogical images can
also be ge-nerafted, such as a model of a
simulated musical intrument a time-se-
quenced graph representing the dynam-
ic evolution of amplitude, pitch varia-
tion and tonal range.

Symbolic representations are partic-
ularly useful because they provide a
means of handling concepts that are dif-
ficult to portray directly, such as gener-
alizations and abstract relations. More- -
over, as an image gets increasingly com-
plex its most important property, the
property of making local relations in-
stantly clear, becomes less useful. Com-
munication with computers based on
symbols as they routinely occur in natu-
ral language, however, has proved to be
far more difficult than many had sup-
posed. The reason lies in our lack of
understanding of how human beings ex-
ploit the context of their experience to
make sense of the ambiguities of com-
mon discourse. Since it is not yet under-
stood how human beings do what they
do, getting computers to engage in simi-
lar activities is still many years in the
future. It is quite possible, however, to
invent artificial computer languages
that can represent concepts and activi-
ties we do understand and that are sim-
ple enough in basic structure for them
to be easily learned and utilized by non-
experts.

The particular structure of a symbolic
language is important because it pro-
vides a context in which some concepts
are easier to think about and express
than others. For example, mathematical
notation first arose to abbreviate con-

cepts that could be expressed only as
ungainly circumlocutions in natural lan-
guage. Gradually it was realized that·the
form of an expression could be of great
help in the conception and manipulation
of the meaning for which the expression
stood. A more important advance came
when new notation was created to rep-
resent concepts that did not fit into
the culture's linguistic heritage at all,
such as functional mappings. continu-
ous rates and limits.

The computer created new needs for
language by inverting the traditional
process of scientific investigation. It
made new universes available thalcould

be shaped by theories to produce simu-
lated phenomena. Accordingly symbol-
ic structures were needed to communi-
cate concepts such as imperative de-
seriptions and control structures.

Most of the programming languages
in service today were developed as sym-
bolic ways to deal with the hardware-
level concepts of the 1950's. This ap-
proach led to two kinds of passive build-
ing blocks: data structlires, or inert con-

6

Message Interaction Pictorial Effect Commentary

9 box new named "joe" An offspring of the family "box"
box:joe is created and is named "joe."

Q joe turn 30!
Ok

The box joe receives the
message and turns 30 degrees.

0 joe grow -151 < 4 Joe becomes smaller by 15 units.ok

9 joe erase Joe disappears from the screen.
ok

09 joe show Joe reappears.
ok

O box new named A new box appears.
box:jill

9 jilltum-10!
ok independent activities.l Only jill turns. Joe and jill are

91 to 10!
interval:1 2 3 4 5 6 7 8 910

An interval stands for a sequence
of numbers.

O forever!
interval: 1 234567891011-

Forever is the infinite interval.
It must be terminated by hitting an
escape key.

g9
O 1 to 10 do (joe turn,20) 1 Joe spins

ok

9 forever do (joe turn 11. jill turn -13) 1
ok

A simple parallel movie of joe
and jill spinning in opposite
directions is created by
combining forever with a
turn request to both joe and jill.

·4-* L. t
SMALLTALK LEARNING SEQUENCE teaches students the ba.
sic concepts of the language by having them interact with an already
defined family of activities. First, offspring of the family box are cre-

ated, named and manipulated, and a second family of activities called
"interval" is introduced. Offspring of the interval and box families
are then combined to generate an animation of two spinning boxes.

7

,%,9151 &£7 1 22=alm
1,&..K„ 1 1 C 11...14 1 .

1 9 1: p
1 4 | S

i El,ifil 4.11.0 ,"0= 4•,·. F ,1 W,,|1&....& iii , 14 wn iii

HELICOPTER SIMULATION was developed by a 15-year-old
student. The user directs the helicopter where to go with the pointing

device, which controls the position of the black arrow on the screen.
The window at the top shows the changing topography of the terrain

struction materials, and procedures. or
step-by-step recipes for manipulating
data. The languages based on these con-
cepts (such as BASIC. FORTRAN. ALGOL
and APL) follow their descriptions in a
strictly sequential manner. Because a
piece of data may be changed by any
procedure that can find it the program-
mer must be very careful to choose only
those procedures that are appropriate.
As ever more complex systems are at-
tempted. requiring elaborate combina-
tions of procedures. the difficulty of get-
ting the entire system to work increases
geometrically. Although most program-
mers are still taught data-procedure lan-
guages. there is now a widespread recog-
nition of their inadequacy.

A more promising approach is to de-
vise building blocks of greater generali-
ty. Both data and procedures can be re-
placed by the single idea of 'activities.-'
computerlike entities that exhibit be-
havior when they are sent an appropri-

ate message. There are no nouns and
verbs in such a language. only dynami-
cally communicating activities. Every
transaction. description and control
process is thought of as sending mes-
sages to and receiving messages from
activities in the system. Moreover. each
activity belongs to a family of similar
activities, all of which have the ability'
to recognize and reply to messages di·
rected to them and to perform specific
acts such as drawing pictures. making
sounds or adding numbers. New fami-
lies are created by combining and en-
riching "trails.'' or properties inherited
from existing families.

A message-activity system is inherent-
ty parallel: every activity is constantly
ready to send and receive messages, so
that the host computer is in effect divid-
ed into thousands of computers. each
with the capabilities of the whole. The
message-activity approach therefore en-
ables one to dynamically represent a

system at many levels of organization
from the atomic to the macroscopic. but
with a "skin'' of protection at each quali-
tative level of detail through which ne-
gotiative messages must be sent and
checked. This level of complexity can be
safely handled because the language se-
verely limits the kinds of interactions
between activities, allowing only those
that are appropriate, much as a hor-
mone is allowed to interact with only a
few specifically responsive target cells.
SMALLTAll the programming system of
our personal computer. was the first
computer language to be based entirely
on the structural concepts of messages
and activities.

The third and newest framework for
high-level communication is the observ-
er language. Although message-activity
languages are an advance over the data-
procedure framework, the relations
among the various activities are some-
what independent and analytic. Many

t1

4

1. ZI [1, 't

!3-1 01 #1 2r'"·

4

11 j 14 1. 1 , 4111 11 11

1 1*,!41
1 1 4_i'L,:14„.7

t·
4

Il
f

1 All.

..1 - 1

·1,4

1 f.11 11

• t

Mimi

1-*Ii I

1.i..sJ 1
114 1Te ' ' U1* 1,·

1

¥24
t

.:%-1 3 -=i

... -SAX: Al 1 .=Gr = .*- .11% 9 2/ ,)

CIRCUIT.DRAWING PROGRAM that was developed by a 15-
year-old boy enables a user to construct a complex circuit diagram by

selecting components from a "menu" displayed at the bottom of the
screen. The components are then positioned and connected with the

8

--W#dLI-
- kkiti=74.......

4

1 11''

m g t'

61 W M 1.1 ..9.-I.r. [-1/lu W.J.2,1 I Il,i "I 1./ 4.1 1.

below as the helicopter flies over it. (Actual terrnins were obtained
from Landjat maps.) A third window keeps track of the helicopter'x

altitude, direction and speed. The variety of events that can be simu-
lated at the same time demonstrates the power of parallel processing.

concepts, however, are so richly inter-
woven that analysis causes them virtual-
ly to disappear. For example. 20th-cen-
tury physics assigns equall importance
to a phenomenon and its context, since
observers with different vantage points
perceive the world differently. In an ob-
server language, activities are replaced
by "viewpoints" that become attached
to one another to form correspondences
between concepts. For example, a dog
can be viewed abstractly (as an animal).
analytically (as being composed of or-
gans, cells and molecules). pragmatical
ly (as a vehicle by a child). allegorically
(as a human being in a fairy tale) and
contextually (as a bone's way to fertilize
a lawn). Observer languages are just
now being formulated. They and their
successors will be the communication
vehicles of the 1980's.

Our experience. and that of others
who teach programming, is that a first
computer language's particular style

4- rr

and its main concepts not only have a
strong influence on what a new pro-
grammer can accomplish but also leave
an impression about programming and
computers that can last for years. The
process of learning to program a com-
puter can impose such a particular point
of view that alternative ways of perceiv-
ing and solving problems can become
extremely frustrating for new program-
mers to learn.

At the beginning of our study we first
timidly considered simulating features
of data-procedure languages that chil-
dren had been able to learn, such as BA-
sic and LOGO. Then. worried that the im-
printing process would prevent stronger
ideas from being absorbed, we decided
to find a way to present the message-ac-
tivity ideas of SMALLTALK in COnerete
terms without dilution. We did so by
starting with simple situations that em-
bodied a concept and then gradually in-
creasing the complexity of the examples

411 1

. f
1->w.

to flesh out the concept to its full gener-
ality. Although the communicationlike
model of SMALLTALK is a rather abstract

way to represent descriptions. to our
surprise the first group and succeeding
groups of children who tried it appeared
to find the ideas as easy to learn as those
of more concrete languages.

For example, most programming lan-
guages can deal with only one thing at a
time, so that it is dificult to represent
with them even such simple situations as
children in a school. spacecraft in the
sky or bouncing balls in free space. In
SMALL'rALK parallel models are dealt
with from the start. and the children
seem to have little difficulty in handling
them. Actually parallel processing is re-
markably similar to the way people
think. When you are walking along a
street. one part of your brain may be
thinking about the route you are tak-
ing, another part may be thinking about
the dinner you are going to eat. a third

14 C
•,lk - 4,4 -1

11 &-U 132 17!i.i ,#...

;- 1 0

-4--2'wtrjt 41 .

T

pointing device. An additional menu can be generated on the screen
by pushing a button on the pointing device; this menu supplies solid

and open dots and lines of various widths. in the sequence shown
here two components are selected and added to a circuit diagram.

9

i.,dE

Q. .1,71 ' 1. 11,4,

.Ir.

1 !:ii0 :'

pLIJ

E.1661 .11„>.1..... 1 ...1 1,1,11, 2,1 f il, lii' 1,i, .f' /,1, 86,
91"g

1,1,4 1, 11,10, 0 1 ./.6

07•-
t.1 11 1,"1 U 1 .., 1,1 141'..1. 1 '.' ,
..1 .1,411 0
I u ..i, g g

HORSE-RACE ANIMATION shows the capabilities of the experi-
mental personal computer for creating dynamic halftone images. The
possible range of such simulations is limited only by the versatility of
the programming language and the imagination of the child or adult

user. ln this sequence, images of horses. riders and background are
called up independently from the storage files and arranged for the
racing simulation with the pointing device. A single typed command
then causes the two horses and riders to race each other across screen.

22:

10

part may be admiring the sunset. and
so forth.

Another important characteristic of
SMAI I.'I·At.K is the classification of ob-

jects into families that are generaliza
tions of their properties. Children readi-
ly see themselves as members of the
family·"kids.-- since they have common
traits such as language. interests and
physical appearance. Each individual is
both a member of the family kids and
has his or her own meaning for the
shared traits. For example. all kids have
the trait eye color. but Sam's eyes are
blue and Bertha's are brown. SMALL-
IALK is built out of such families. N um-
ber symbols. such as 2 or 17. are in-
stances of the family 'number.-' The
members of this family differ only in
their numerical value (which is their

sole property) and share a common def-
inition of the different messages they
can receive and send. The symbol of a

brush" in SMA] 11.At K is also a family.
All the brush symbols have the ability to
draw lines. but each symbol has its own
knowledge of its orientation and where
it is located in the drawing area.

"rhe description of a programming
1 language is generally given in terms

of its grammar: the meaning each gram-
matical construction is supposed to con-
vev and the method used to obtain the

meaning. For example. various pro-
gramming languages employ grammati-
cal constructions such as (p[us 34) or 3
1·N·11·R 4 + to specify the intent to add
the number 3 to the number 4. The
meaning of these phrases is the same.
In the computer each should give rise to
the number 7. although the actual meth-
ods followed in obtaining the answer
can differ considerably from one type
of computer to the next.

The grammar of SM.At LT.At.K iS Simple
and fixed. Each phrase is a message to
an activity. A description of the desired
activity is followed by a message that
selects a trait of the activity to be per-
formed. The designated activity will de-
cide whether it wants to accept the mes-
sage (it usually does) and at some later
time will act on the message. There may
be many concurrent messages pending
for an activity. even for the same trait.
T'he sender of the message may decide
to wait for a reply or not to wait. Usual-
ly it waits. but it may decide togo about
other business if the message has in-
voked a method that requires consider-
able computation.

The integration of programming-lan-
guage concepts with concepts of edit-
ing. graphics and information Iretrieval
makes available a wide range of useful
activities that the user can invoke with

little or no knowledge of programming.
Learners are introduced to SMAI I TALK

by getting them to send messagy to at-
ready existing families of activities. such

Mt- SIC CAN BE REPRESENTED on the personal computer in the form of analogical im-
agn. Notes played on the keyboard are ··captured" as a time-sequenced core on the display.

-

-

0--- --

.......

........

.........

..................

............

Pit< h. :1--7 Stretc h Brt ik Syn< Add
Hi' ir rix kin, le-ginning Clitit C<•py Shil, c v

Mt.)SICAI. SCORE shown here waa genernled as music was played oil the keyboard. The sim-
plified notation represents pitch by vertical placement and duration by horizontal length. Note.
can be hhortened, lengthened or changed and the modified piece then played back al. music.

urit k

11

..........
.

........

...
...
..

..........

..

.........
..
.....

.....

......

...
...
..

..........

..

.........
...
......
...
....

.....

as the family "box." whose members
show themselves on the screen as
squares. A box can individually change
its size. location. rotation and shape. Af-
ter some experience with sending mes-
sages to cause effects on the display
screen the learner may take a look at the
definition of the box family. Each fami-
ly in SMALLT.ALI is described with a die-
tionary of traits. which are defined in
terms of a method to be carried out. For
example, the message phrase "joe grow
50" says: Find the activity named "joe."
find its general trait called "grow --
and fill in its open part with the specific
value 50. A new trait analogous to those
already present in the family definition
(such as -grow" or "turn") can easily be
added by the learner. The next phase of
learning involves elaboration of this ba-
sic theme by creating games such as
space war and tools for drawing and
painting.

1-'here are two basic approaches to
1 personal computing. The first one.

which is analogous to musical improvi-
sation, is exploratory: effects are caused
in order to see what they are like and
errors are tracked down. understood
and fixed. The second. which resembles
musical composition, calls for a great
deal more planning, generality and
structure. The same language is used for
both methods but the framework is

quite different.
From our study we have learned the

importance of a balance between free
exploration and a developed curricu.
lum. The personal computing experi-
ence is similar to the introduction of a
piano into a third-grade classroom. The
children will make noise and even music
by experimentation. but eventually they
will need help in dealing with the instru.
ment in nonobvious ways. We have also
found that for children the various lev-

els of abstraction supplied by SMALL-
TALK are not equally accessible. The
central idea of symbolization ks to give a
simple name to a complex collection of
ideas, and then later to be able to invoke

the ideas through the name. We have
observed a number of children between

the ages of six and seven who have been
able to take this step in their comput-
er programs. but their ability to look
ahead. to visualize the consequences of
actions they might take, is limited.

Children aged eight to 10 have a grad-

DISPLAY FONTS ean be designed on per-
sonal computer by constructing them from a
matrix of black-and-white squareb. When the
fonts are reduced, they approach the quality
of those in printed material. The image of a
pointing hand shown here isasymbolin SMALL-
TALK representing the concept of a literal word,
such as the name associated with an activity.

ually developing ability to visualize and
plan and are able to use the concept of
families and a subtler form of naming:
the use of trails such as size. which can
stand for different numerical values at
different times. For most children. how-

ever, the real implications of further
symbolic generality are not at all obvi-
ous. By age 11 or 12 we see a consider-
able improvement in a child's ability to
plan general structures and to devise
comprehensive computer tools. Adults
advance through the stages more quick-
ly than children, and usually they create
tools after a few weeks of practice. It is
not known whether the stages of intel-
lectual development observed in chil-
dren are absolutely or only relatively
correlated with age. but it is possible
that exposure to a realm in which sym-
bolic creation is rewarded by wonderful
effects could shorten the time required
for children to mature from one stage
to the next.

The most important limitation on per-
sonal computing for nonexperts appears
when they conceive of a project that.
although it is easy to do in the language.
calls for design concepts they have not
yet absorbed. For example, it is easy to
build a span with bricks if one knows the
concept of the arch, but otherwise it is
difficult or impossible. Clearly as com-
plexity increases '-architecture" domi-
nates "material." The need for ways to
characterize and communicate architec-
rural concepts in developing programs
has been a long-standing problem in the
design of computing systems. A pro-
gramming language provides a context
for developing strategies. and it must
supply both the ability to make tools
and a style suggesting useful approaches
that will bring concepts to life.

We are sure from our experience that
personal computers will become an inte-
gral part of peoples' lives in the 1980's.
The editing. saving and sifting of all
manner of information will be of value
to virtually everyone. More sophisticat-
ed forms of computing may be like mu-
sic in that most people will come to
know of them and enjoy them but only
a few will actually become directly in-
volved.

I-Tow will personal computers affect
1 1 society? The interaction of society
and a new medium of communication
and self-expression can be disturbing
even when most of the society's mem-
bers learn to use the medium routinely.
The social and personal effects of the
new medium are subtle and not easy for
the society and the individual to per-
ceive. To use writing as a metaphor.
there are three reactions to the Introduc-
tion of a new medium: illiteracy, litera-
cy and artistic creation. After reading
material became available the illiterate
were those who were left behind by the

..%7=91.

new medium. It was inevitable that a
few creative individuals would use the
written word to express inner thoughts
and ideas. The most profound changes
were brought about in the literate. They
did not necessarily become better peo-
ple or better members of society. but
they came to view the world in a way
quite different from the way they had
viewed it before. with consequences that
were difficult to predict or control.

We may expect that the changes re-
sitting from computer literacy will be as
far-reaching as those that came from lit-
eracy in reading and writing. but for
most people the changes will be subtle
and not necessarily in the direction of
their idealized expectations. For exam-
ple, we should not predict or expect that
the personal computer will foster a new
revolution m education Just because it
could. Every new communication medi-
um of this century-the telephone. the
motion picture. radio and television-
has elicited similar predictions that did
not come to pass. Millions of uneducat-
ed people in the word have ready access
to the accumulated culture of the centu-

ries in public libraries. but they do not
avail themselves of it. Once an individu-

al or a society decides that education is
essential, however, the book, and now
the personal computer. can be among
the societv's main vehicles for the trans-
mission of knowledge.

The sociai impact of simulation-the
central property of computing-must
also be considered. First. as with lan-

guage. the computer user has a strong
motivation to emphasize the similarity
between simulation and experience and
to ignore the great distances that sym-
bols interpose between models and the
real world. Feelings of power and a nar-
cissistic fascination with the image of
onesel f reflected back from the machine
are common. Additional tendencies are
to employ the computer trivially (simu-
lating what paper. paints and file cabi-
nets can do), as a crutch (using the com-
ritter to remember things that we can
perfectly well remember ourselves) or
as an excuse (blaming the computer for
human failings). More serious is the hu-
man propensity to place faith in and as-
sign higher powers to an agency that is
not completely understood. The fact
that many organizations actually base
their decisions on-worse. take their de-

cisions from-computer models is pro-
foundly disturbing given the current
state of the computer art. Similar feel-
ings about the written word persist to
this day: if something is -in black and
whiter it must somehow be true.

If you like to draw. do not automate
drawing. rather, program your personal
computer to give you a new set of paints.
If you like to play music. do not build a
player pianon instead program your-

self a new kind of instrument.

A popular misconception about com-
puters is that they are logical. Forthright
is a better term. Since computers can
contairrarbitrary descriptions. any con-
ceivable collection of rules, consistent
or not, can be carried out. Moreover.
computers' use of symbols. like the use
of symbols in language and mathemat-
ics, is sufficiently disconnected from the
real world to enable them to create

splendid nonsense. Although the hard-
ware of the computer is subject to natu-
ral laws (electrons can move through the

IIi.

'lli

7,7 ffz:*.

. ;510? 1MF ¥'.

circuits only in certain physically de-
fined ways), the range of simulations the
computer can perform is bounded only
by the limits of human imagination. In a
computer, spacecraft can be made to
travel faster than the speed of light. time
to travel in reverse.

It may seem almost sinful to discuss
the simulation of nonsense. but only if
we want to believe that what we know is
correct and complete. History has not
been kind to those who subscribe to this

view. It is just this realm of-apparent
nonsense that m ust be kept open for the
developing minds of the future. Al-
though the personal computer can be
guided in any direction we choose. the
real sin would be to make it act like a
machine !

'Hiwb:0*44'*2813/., I -

1, 1!C 'C) 41' k

,£·· .1 I idit.gl. pa.i 3030 .4.i ZZI
220 11 c n,li,1..

t6 12 + 1.11,U,1, 1.1]11 200 2*1 0,101
WW. a al,lim
it, 13 + i.zi inbl, 1. in, 10 410 ,<int
2* Zid 7.3 <·whm
[£, Il•,•,t!, Il III, I f.

[12 124.1,1. Iii. d f
U) 13

itt.itz.ligg·ge*la gr.

r--hildren who have not yet lost much
6 of their sense of wonder and fun
have helped us to find an ethic about
computing: Do not automate the work
you are engaged in, only the materials.

INTRICATE PATTERNS can be generated on the personal computer with very compact de.
Scriptions il] +MALLTALK. They are made by repeating, rotating, scaling, superposing and combin-
ing drawings of simple geometric shapes. Students who are learning to program first create in-
teresting free-form or literal images by drawing them directly in the dot matrix of the display
screen. Eventually they learn to employ the symbolic images in the programming language to
direct the computer to generate more complex imagery than they could easily create by hand.

13

The Author

ALAN C. KAY is a principal scientist
and head of the Learning Research
Group at the Xerox Palo Alto Research
Center. He received his B.A. in mathe-

matics from the University of Colorado
at Boulder and, after a short career as a
professional jazz guitarist, studied corn-
puter science at the University of Utah,
obtaining his Ph.D. in 1969. He then be-
came a research associate and lecturer
at the Stanford University Artificial In-
telligence Project. He moved to Xerox
in 1971. "I have always been equally
attracted to the arts and the sciences." he
writes. "Eventually I discovered that the

world of computers provides a satisfy-
ing environment for my blend of inter-
ests."

Bibliography
TOWARDS A THEORY OF INSTRUCrION.

Jerome S. Bruner. Belknap Press of
Harvard University Press. 1966.

ARTIFICIAL INTELLIGENCE. Seymour A.
Papert and Marvin Minsky. Condon
Lectures. Oregon State System of
Higher Education, 1974.

PERSONAL DYNAMIC MEDIA. Alan C.
Kay and Adele Goldberg in Comput-
er, Vol. IO, No. 3, pages 31-41:
March, 1977.

TWARML PAGE 1

INFORMAL.DC smlg.fd smdeleg.fd sroman.fd

An Infdrmal Introduction to SMALLTALK

by

Alan C. Kay
Xerox Palo Alto Research Center

The easiest way to learn SMALLTALK is to just make it do useful things for
you !

Let's get SMALLTALK to draw aSQUARE for us. First we have to tell
SMALLTALK just what it is that we mean by "square".

to square
Iforward 160

Iright 96
Iforward 166
Iright 90
iforward 106
Iright 90
Iforward 100

"To" is part of SMALLTALK. We sent it a message consisting of a
name, ttsquare", and a definition in terms of drawing commands inside Of
ttmargin parentheses".

We can now use our definition just as though it had been part Of
SMALLTALK.

square

and a square is drawn. Try it again.

square

Whoops! We just created some bugs! First, the "pen" was not left pointing
the same way as it was found, and also we forgot to clear the screen and
return the pen to the center.

erase

clears the screen.

home

centers the "pen" pointing up.

white

draws using white' ink on a black background. Try

white home erase forward 56

black

draws using black ink on a white background.

A "cleaner" version of "square" is

to square
Iforward 100
Iright 96
forward 166

Iright 90
Iforward 100

right 90
Iforward 160
Iright 90

What is there about this sequence of actions which has to do with
"squareness"? All the turns are 96 degrees, and they alternate With
forward travel of the same distance. So the following definition should
also work.

to square
repeat 4

Iforward 100
I iright 90

Try it.

"Repeat" is sent a message consisting of two parts. The first is how many
"repeats" are desired, the second is just what to repeat.

What about a square of any size? What is there about the previous
definitions that only has to do with size as opposed to "squareness"?

It seems only to be the distance traveled (which is the message to the
"forward" C ommand) .

Just as we can send messages to "forward", "right" and "repeat" to give
them additional information about our desires, we can send messages to our
own definitions as well. We would like to send "square" a message which
says what length of side we want each time.

such as square 160 or square 50

Any definition can receive a message by saying It:„. Since the message is
different each time, it would be nice to give it a name to allow it to be
used anywhere in the definition.

A definition to draw a square of any size is

to square
i:size
Irepeat 4
I }forward size
i iright 90

Try it and see. The ":" picks up the message and calls it ttsize".
"forward" refers to the message by its name '*size".

Now let's try aTRIANGLE of any size. Well, it's really almost the
same as a square, isn't it?

to triangle
I:size
repeat 3

-

INFRML PAGE 1.2

Iforward size
right 126

Try it.

The two definitions are almost the same except for the number of "repeats"
and the angle. Is it possible to define actions which will draw

ANY POLYGON?

Well, we could certainly send the definition a message of two parts.-One
for the size, the other for the number of sides we want.

to poly
I:sides :size
IRepeat sides
I :forward size

langle ***•

This looks reasonable except for confusion about the angle. "Repeat" will
be sent a message for the correct number of sides and "forward" will get
the right message about side length as before.

Now, what about the angle? When we turned right for the triangle it was
120, for the square 90. What about a pentagon? 72?

One neat way to look at the situation is that a complete trip for any
polygon will get you back EXACTLY where you started and the heading of the
pen WILL HAVE TURNED THROUGH 366 degrees EXACTLY.

The number of turns taken is the same as the number of sides (because the
'repeat" controls this). So, it seems as though the angle taken should be
360/sides. Try it.

to poly
::sides :size
IRepeat sides
I fforward size
I Iright 360/sides

Try a few to see.
poly 5 50

poly 5 106

poly 18 20

poly 56 5

poly 360 1

Hmmmm. Does this make sense for a

CIRCLE?

1 Ji rai•]L VAwl i.4

to circle
poly 360 1

It's nice that we can use any of our definitions exactly like SMALLTALK's
own commands. Now suppose we want circles of DIFFERENT size. What is there
about "poly 360 1" that is "circlelike" and what has to do with size?

We know that "poly 3 ***" does;ret look like a circle and "poly 366 1"
does.

What about "poly 366 16" ?

Try it.

So how does this strike you?

To circle
::size

poly 360 size

Now you may say, "OK, we can change the size of a circle alright, but the
number we are sending as a message·doesn't seem to bear any relationship
to the diameter or radius". True? Well, what do we know about the circle?
What is its circumference?

Well, it seems that poly "repeats" 360 times. Each of those times
"forward" goes forward a distance. So the circumference of any polygon is
sides * size. A relation between the radius of a circle and its
circumference is: Circumference =2*pi* radius.

0, sides * size =2*pi* radius
d, size = (2 * pi * radius) /sides

Let's now define a circle routine where the message we send it is the
radius.

to pi
13.14159

to circle
i:radius
poly 366 (2 * pi * radius)/360

Try it and see.

By now you are probably getting the idea that getting SMALLTALK to do
things is easy. True.

Now what happens if we jiggle some of the things we are doing a little?

Seymour Papert's kids call the following kinds of things

SQUIRALS!

to squiral
!:size :angle
Iforward size
'!right angle
squiral size+16 angle+2

INFRML PAGE 1.4

Notice that this definition goes on forever so the "whoops" key needs to
be used!

******More on this in a bit. It can be found in Seymourts stuff.

An interesting variation on "poly" is a definition that draws
NESTED POLYS!

To star
i:sides :size
lIf size > 4
 then Repeat sides

i forward size
1 tright 360/sides
i istar size/3

Try a few of these.

Now, are you already for aDRAGON? This is a very simple definition
whose actions are hard to predict.

To dragon
£:length
TIf length = 0 then iforward 10

else :If length > 6
 then i dragon length-1

I right 90
1 dragon -length-1

else .dragon -length+1
iright -90
Idragon length+1

A more compact way to say this is

1 To dragon
I:length =6 -0 'forward 10

length >0 -+ idragon length-1. right 96. dragon -length-1

dragon -length+1. right -90. dragon length+1

Experiments with

ACCELLERATED MOTION

To rollick
I:times *figure
'setup
IRepeat times

Ipenup
i Iforward .dist + dist + inc
ilright (.angle + angle + aine) + .turn x turn + inc

Ipendn
I I (figure) size

t

r,Aer .:*te

10%

1 R r ru,11, rawn 1,2

Try rollick loG square

SHOOTING elastic objects into the air.

To shoot
1:xacc :yacc
i.yy A yacc u.U i¢" 4
iRepeat lots

Ipendown. object. penup.

I I forward .yy yy - gravity
 right 90. forward xacc. right 270rb

fel
fle

09
L-

7
U Uwa *3& 4

«41
.j

Iyacc = -yy * i (closeto 6 .yy - .yacc e yacc * elastic) =. i Done

Asimple SPACESHIPI

To drawship
Ipendown
iright 180. forward 5. right 315. forward 7. right 225. forward 26.
Iright 315. forward 7. right 276. forward 7.
iright 315. forward 20. right 225. forward 7.
Iright 315. forward 5.

That was tedious, wasn't it? Later we will discover that we can just
paint, draw Dr sketch any figure to be animated ourselves without having
to make SMALLTALK draw them.

To moveship
:point :thrust
.turn ,- .speed + 0

Repeat forever
penup

I forward .speed + speed + thrust
right .turn + turn + point

Idrawship

Try

moveship 2 1

moveship 1 2

Use the WHOOPS button to kill a version.

Now for the big time! Try

moveship mouseX mouseY

and grab the mouse quickly! 1

SPACEWAR!1

To Spacevehicle

4 3- 91 St

INFRML PAGE 1.6

:shape nat :posx :posy :heading
ospeed :speed
ocontrols :thrust :point :trigger.

·Repeat
Left Roll e Roll + point.
Forward Speed + Speed + thrust.

If thrust > 6 then (Show shape .exhaust : Flame).
If thrust < 6 then (Show shape .nose : Flame)

else (Show shape).

If trigger on and Numberoftorps > 6
then INumberoftorps + Numberoftorps - 1

:create

Spacevehicle .torpedo
i at posx posy direction

speed speed
controls 25 0 .off

If touching something
then (Quit something. Show Crash. Quit self).

This set of actions defines both what a spaceship and a torpedo do in a
somewhat sneaky way. A torpedo is a spaceship with a different shape,
constant thrust, straight direction, and no ability to fire torpedos of
its own.

The pictures "Ship" and "Torpedo" both have a subpart called "exhaust".
This acts as a "hole" where other pictures can be placed, such as "Flame"
when the thrust is on. A special subpart name, "center", defines the axis
of rotation for "left" and "right" turns.

"Crash" in a more elaborate example would probably be a set of actions to
produce ever more grandiose effects.

This particular game starts a ship out with 26 torpedos with no provision
for more when all are fired.

'*Speed" and "Roll" are names for the accumulated velocity o f forward
travel and turning. 50 the "thrust" and "point" controls are
accellerations as in a real spaceship.

The "behaviour" at the bottom signals the actions to be done. The message
received is what "shape" to use, what ini'tial "position" and "direction"
to assume (these names are the ones that are updated by "Forward" and
"Left"), and where the information for "thrust", "attitude", and firing of
torpedos is to be supplied. For spaceships it will be the joystick of each
player, for torpedos, it will be constant information.

The actions are "Repeat"ed over and over.

They are to update the "Roll" and "Speed" accumulations,
to reposition the ship, which will update "position" and "direction",
to display the shape of this object (with "Flame" if thrust is "on"),
to send off a "Torpedo" if the "trigger" is "on" and the "Numberoofotorps"
left is greater than zero.

Then a check is made for a "touch" and, if so, the object touched is
destroyed ("Quit"), the great "Crash" is "Show"n, and finally our object
destroys itself.

As many spaceships as required may be instan·tiated by using t.create".

1 14 rA j¥11, I MU// 1* 0

create

Spacevehicle .Ship at random random random
speed random
controls joy 1 up joy 1 side joy 1 but.

create
Spacevehicle .Ship at random random random

speed random
controls joy 2 up joy 2 side joy 2 but."

New "Datal' Objects and their "functions"

The ease with which an external form can be associated with an internal
meaning in SMALLTALK means that many objects which are t'cast in stone" in
other languages can be defined and modified easily by anyone. Suppose
only the Word and List operations are found in the language, then Numbers
can be described in terms very similar to that of "schoolchild" arithmetic
as shown below.

There are many ways to accomplish arithmetic; the example deliberately
mimics the use of a "plus table" for single digits, the carry rule, and
special cases involving 6, which you already know from school.

.PlusTable 4 + (0 1 2 3 4 5 6 7 8 9)
(1 2 3 4 5 6 7 8916)
(2 3 4 5 6 7 8 9 1(11)
(345678 9 10 11 12)
(45678 9 10 11 12 13)
(5 6 7 8 91011121314)
(6 7 8 9 10 11 12 13 14 15)
(7 8 91611 12 13 14 15 16)
(8 9 10 11 12 13 14 15 16 17)
(9 1011 12 13 14 15 16 17 18)

To Number

0. * i:A. 1 self

"A new •Number" is created and declared by saying (for instance) .x +
Number + 12345. The "." EVALs its third argument, which calls "Number"
which creates an instance, which looks for a tte", finds it, EVALS its
next argument (which is a "Word" 12345), binds it to "A", and RETURNs
the instance."

ovalue + It A

"The Word which is the value of "self" is RETURNed".

ofirst w ET A.first.

" "first" of a "Number" is the same as "first" of the "Word" Which ls
its value. The other "Word Parts" are done in a similar manner."

,+ + i:B. t iA.length =1 and B.length =1 .0 <PlusTable AB

IA.empty or B.empty 4 ·A jointo B

i (A.butlast + B.butlast + carry AB)

INFRML PAGE 1.8

jointo C A.last + B.last).last

"This is a recursive definition which uses several cases to accomplish

The first (A and B are both single digits) uses the childrens
addition table selected by each of the numbers in turn to isolate t;he
sum which is RETURNed.

The next case terminates the routine in the case where either or
bothiof A, B are EMPTY. Remember that anything "jointo" EMPTY is
that#hing. The last case is simply a statement of the goal, namely:
the front digits of A and B are added to the carry found by adding the
last digits of A and B, the result is joined to the single digit
result of the sum of the last digits of A and B.

More branches of the conditional would be added to handle the
Addition of negative numbers, etc."

ow. 4 1 : B. r "Subtraction is handled in a manner analogous
: to Add ition".

o= w i:B. TA= B.value.

"A "Word operation" that is legal can easily be done."

0< 4 !:B. tlit)(B - A).first • .- then <EMPTY else self.

"Doing the definition this way allows x<y<z etc. to work properly."

NOTE! This def of Complex is not completely edited !!

To Complex
0 + 41:value .complex »Et Complex 4

1 re + value.re
im + value.im

·value.fraction a (t Complex + re + value im)
It value G + self

0- „1:value.complex ult Complex
i re - value.re

im-value.im
value.fraction *f Complex •- re - value im
otherwise -+ (1 value G - self

0 * # :value.complex * 1· Complex + (re * value.re - lim * value.im)
(im * value.re + Ire * value.im)

value.fraction q. T Complex x re * value im * i value
otherwise e, T value G * self

,G .+ 4 :value.fraction . T Complex + re + value im
oG 0- „ :value.fraction * t Complex z value - re i-im
.G 0* w :value.fraction * T Complex + re * value im i* value
00 ovalue + r Error"I don't know this operator" value .

are 4 0*· :value.fraction 4 re s value . 2 self
no . t re

0im 4* .•- :value.fraction »im + value . t self
u n :tim

n": :re.fraction »:im.fraction © t self

INPRML r hu Q A•,7

acomplex #t true
*op :value, t value G :op self
*op :value : T value G :op self

no .0 T self

ST PAGE 1

Necessary Information about this paper.
Latest revision: June 6, 1973

(The permanent names of this file are
SMALLTALK.DC. ***
SMALLTALK 1.DC.
SMALLTALK2.DC.

Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with each version.
Look under the structure to discover what file to load.

This file should be displayed using font SROMAN.FD.
To print, edit with SMDELEG. FD and Write Translated,
then print on XGP using font SMDELEG.XG)

ST PAGE 2

SMALLTALK, a Model Building Language
With Intensional Semantics

by
Alan C. Kay

Learning Research Group
Xerox Palo Alto Research Center

Abstract

SMALLTALK is a language which allows children (and adults) to build
semantic models of their ideas in simple uncomplicated ways, and,
dynamically simulate them with respect to arbitrary environments.

Simplicity is achi eved by having
a. only one kind of object in the language (a process) which can
act like all other known computer objects,
b. a single uniform scheme for interobject communication, and,
c. an intensional semantics in which the meaning of an object is
a part of the class to which an object belongs rather than
dispersed through the system as part of more conventional
extensional operations.

Benefits are the abilities to create new "functional", "data",
t'control", etc., entities without the usual problems associated With
updating and coercion of generic functions.

*******ff

Acknowledgements

The main influences on the content of this paper were the coprocess
and data/function equivalences of FLEXIka-68,690, Flex's influence
SIMULA IDahl, et.al.,4 LISP IMcC, et.al.<5, a number of control ideas
of Dave Fisher>fi-760, goals as expressions found in Carl Hewitt's
PLANNER}he-760, and the simplicity and ease of use of
LOGO i pa, et.al-67,...73¢.

Dan Ingalls of LRG in PARC, the implementer of SMALLTALK, has
revealed many design flaws through his several excellent quick
"throw away" implementations of the language. SMALLTALK could not
have existed without his help and good cheer.

Introduction

SMALLTALK is built from a few simple, yet powerful, ideas.

First, SMALLTALK considers every OBJECT in its world to be an
independant entity with local state and control. All distinction
between "datalike" and "procedurelike" objects, such as exist in
other programming languages, is thus removed. This includes ttdata",
such as numbers, strings, arrays, lists, structures, etc.;
"functions", such as 'factorial', 'plus', 'print', etc.; "control
structures", such as conditional branches, repeats, recursion, and
so on; "IO devices", such as 'files', 'the user', 'display and
keyboard', etc.; all are treated alike because they ARE alike.

Next, all objects are composed of PARTS, even if they only contain
themselves. The object can be thought of as a dynamic dictionary
which contains all the relations and rules in which it can take
part.

n A »r 7 4

Third, objects can send and receive MESSAGEs to/from other objects.
This may cause new objects to be created, altered, or even
destroyed.

(Since there are no "special" objects, there is only one message
protocol.)

Finally, each object is considered to be a member (or INSTANCE) of a
CLASS, which is another object that contains the rules of behavior
shared by all the members. Since each class has a class defining
object, they are members of the class of class-defining-objects, as
one might expect.

Messages

A message is a stream of zero or more symbols.
If the stream starts with an open parenthests, its closing
parenthests absolutely terminates the stream.

An embedded "." at the same level will terminate the current
message and will cause the message following it to be sent.

If the message is composed of partshose termination is
ambiguous, a '4 " can be used to clarify matters.

Sending is done from left to
is passed immediately to the
along with information about
the EVALuator does. The
way it chooses.

A common first objec
a LISP atom, all of
composed of letters,
characters).

right using a very simple rule: control
first object encountered in the streams
the context of the send. This is all

may gather in the message in any

with

receiver

t is an instance of the class "name" (as
its members start with a letter and are
digits , underscores, and other special

The action of a name is to look
environment/dictionary to see if
another object). If it does, tha
it to the remainder of the messa
message is consumed.

A venerable example: factorial.

A message
factorial 3.

is sent in the following manner.

itself up in the current
it has a meaning (which is

t object is RETURNed by APPLYing
ge; --- And so it goes until the

Control is passed to the name "factorial" which looks itself
up in the current environment and finds another object as its
value. The new object is a class defining object which
contains the rules for all the instances of the class
"factorial":

:n. t if n = 6 then 1 else (n * factorial n - 11.

The action of the class defining object is to create a new
instance of factorial and APPLY it to the message.

The ft:" is a "receive" (or
EVALuate the input stream
11 3 ") and then to make a new
to define the name {in this
"n" will have the value . 3"

"input") object whose action is to
this case "3", whose value is

entry into the local environment
case un"). After this a lookup of

(in

t

ST PAGE 2.2

The 'tt" is a "send" Cor 'toutput") object which will APPLY the
EVALuation of its argument to the remainder of the message
found in the CALLER's object.

The next message is sent by finding "if" which tries to
receive the message consisting of the EVALuation of "n•6".

Control is passed to "n".
It looks itself up and finds "3".

Control is passed to it.
11 3 " is an instance of the class number which has many
relations it can respond to.
"3" receives the next object (unevaluated) to see
what it is. (It could be any of +, -, */,<,>,
etc.; in this case it is "=").
"3" wants now to evaluate the next part of the
message in order to see whether to RETURN "true" or
"false".

Control is passed to '10" which, as with "3", is an
instance of class number, and thus shares the same
relations.
50, it looks to its right to see if anything like
+, -, *, etc,, is there which it can respond to.
It finds only "then" for which it has no meaning.

So it RETURNs ITSELF to 1,3" which now has enough info
to decide "not true"

which is RETURNed to "i f " whic:h decides not to evaluate the
message following "then", but does try to evaluate the
message following "else".

:tn" looks itself up, finds the value '13"
which picks up the name "*" for which it has a
meaning.
So "3" tries to evaluate the next part of its message
"factorial n - 11".

Control is passed to •factorial" which looks
itself up and discovers (as before) a
class-defining object with the rule:

in. tifn=-0 then 1 else (n * factorial n- 1).

As before, a NEW instance is created which will
try to evaluate the message "n - 11 " to get a new
value for ":n""n" in the 6LD environment looks itself up and

discovers "3"
which looks to its right and finds te," so it

tries to evaluate the next object "1'
which which looks to its right and finds
") " (which terminates any message to "1")
so it RETURNs ITSELF to "3"

which knows how to subtract "1"
which causes a new instance of class number
to be produced for the result "2"

which is RETURNed to the ":" in the CURRENT
instance of "factorial"
which will enter it as a value for un" in the
CURRENT environment.
And so it goes.

The preceding rather long winded explanation of a Well known
example illustrates a number of important points.

First, although the terminology seems to be more general than
is needed, a simple program in SMALLTALK looks simple and can
be discussed in simple terms.

Second, only one rule of correspondence is needed to link
form and content. The evaluator ONLY needs to know how to pass

£ 8.-1. -6 * .,

control and context to an object. All other meanings are found
distribu:ted with the objects in the sys'tem. As shown, even
such a seemingly primary act as creating a new instance is
done by an object and thus can be changed at the user's whim.

Third, there are many cases where this generality of approach
pays off handsomely. If we want to trace the activities of a
name (such as "n" in instance 1) we need only create an object
which can replace "3" as a meaning (so control will be passed
to IT when "n" is touched), AND has a local entry of its own
for "3" so that the meaning of "n" will not change with
respect to its input/output characteristics. This means that
an object can simulate any other object.

Fourth, all "relations" and "operators" (such as <, >, +, *,
-, etc.) can be defined "intensionally" Cor "intrinsically")
as parts of an object or object class, rather than
"extensionally" (or "extrinsically"), as is usually the case,
as global functions.

In fact, "factorial" could have been defined this way as an
intensional relation of a number. We might then have said
1131 " and the class number woul d know what to do.

This means that the information pertaining to a class and
what its members do need only be stored with the class. No
global operations need to be updated. So, a class may be
deleted without changing the rest of the world.

Also, this is a very convenient way to handle problems that
arise from having multiple classes with operations: such as
coercions between classes and the various senses of t'fetch"
and "store" ('4-) .

For instance, the message "a +3+1" means:
pass control to "a" which will look itself up and

pass control to the object it finds
which can gather the rest of the message as it
pleases.
It can look to see if the next name is a %",
if so, it can EVALuate "3 + 1" and decide how
to store it.

So "b 1 + 81" , if ttb" were an instance of an array,
could mean

'store 81 in the ist position'; or
if "b" were an instance of a hash table routine, could
mean

'associate the hash of ul" with tt81" in some way',
etc.

The problem of coercions will be discused a bit further on.
Fifth, instances may be EVALuated "concurrently" using the
very same EVALuation strategy. Here, the generality of message
send/receive becomes much more important.

ST PAGE 3

Class Definitions Already in SMALLTALK

<See SMALLTALKl.DC for this branch>

Some SMALLTALK Programs
<See SMALLTALK2.DC for this branch>

ST1 PAGE 1

Necessary Information about this paper.
Latest revision: June 6, 1973

(The permanent names of this file are
SMALLTALK.DC.
SMALLTALK 1.DC. ***
SMALLTALK2.DC.

Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with each version.
Look under the structure to discover what file to load.

This file should be displayed using font SROMAN. FD.
To print, edit with SMDELEG.FD and Write Translated,
then print on XGP using font SMDELEG.XG)

SMALLTALK, a Model Building Language
With Intensional Semantics

by
Alan C. Kay

Learning Research Group
Xerox Palo Alto Research Center

Abstract

<See File SMALLTALK.DC for this branch>

Acknowledgements

<See File SMALLTALK.DC for this branch>

Introduction

<See File SMALLTALK.DC for this branch>

Messages

<See File SMALLTALK.DC for this branch>

011

Class Definitions Already in SMALLTALK

SMALLTALK is supplied with many useful classes, including quite a
few found in one way or another in other programming languages.

These definitions are written in SMALLTALK as though they were
not primitive objects. In some cases (such as the definition of
"if") a primitive must be used to describe itself---which causes
some obscurity.

Input and Output Objects

Informally (i.e.---more readable)

Input a Value

followed by a name will evaluate the input stream to
produce a new object which will be bound to the name.

This is exactly the same as LOGO.

Example; :value
will bind the result of evaluating the input stream to

"value"

Input a Token
followed by a <name> will not evaluate the input stream

but will bind the next object there to the <name>.

There is no equivalent for this in LISP or LOGO, it acts
as though the next input object were quoted.

Example; ovalue
will bind the next input object to "value"

Check Input for a Token

followed by a <name> will check the input stream to see if
an identical <name> is there. No evaluation will take
place. The Input Stream Pointer (or Program Counter) will
NOT be advanced if the match falls. If the match succeeds,
the ISP will be advanced to the next position.

This is used frequently to check for "operator" tokens
such as +, *, and +-.

Example; p+ will check the input stream for a
"+" and will return TRUE if successful

Input Literal Stream

followed by a <name> will bind a reference to the Input
Stream at the current point.

This is equivalent to PEXPR in LISP 1.5 or NLAMBDA in
BBN-LISP.

Example; :value will bind "value" to the input
stream. EVALuation of this fragment may be delayed
until later.

<Other Input Objects>

t t

ST1 PAGE 2.1

will be mentioned here in a later version of this memo. An
object to EVALuate a sequence of the input stream (like
EVLIST in LISP) will probably be included at the very
least.

! APPLY-RETURN a value.

This output object is used when when a subroutine control
structure and message passing discipline is desired. Its
single argument is EVALuated in the CURRENT environment and
then APPLYed to the program stream of the CALLER process
to which CONTROL also ls RETURNed.
When used in "left: nested" argument gathering (for example
x.first.last or (A + B) + C), APPLY-RETURN will continue
the evaluation process.

t PASSIVE-RETURN a value.
The single argument is evaluated in the CURRENT environment
and RETURNed to the CALLER along with CONTROL.
PASSIVE-RETURN is similar to OUTPUT in LOGO or RETURN in
LISP.

GENERAL-RETURN a value.
9 Value process

is the form.
A value caller.

is the same as PASSIVE-RETURN.
8 (apply value message) caller.

is the same as ACTIVE-RETURN.

<Other Output Objects>

will be explained soon.

Defining a Class (Function)

There are many ways to define a class depending on how much
the user wants to know about the language and how much control
he desires to have over the format of the INSTANCE of a

definition. For now we will only be concerned with semantic
notions (which also require the least amount of explanation to
all concerned}.

LOGO/SIMULA/FLEX Fashion

"To" will define classes of roughly the power of SIMULA or
FLEX which include such things as function, process, and
structure definitions in other languages.

To To .name .body oind.
"As shown, "To" takes the first object in the message
stream unEVALuated to be the name of th
rest of the input stream is a structure
be the code body of the class. A member
is INSTANTIATED and bound to the name.
later passed to.the name a new instance
be created and (rl

e class. All of the
which is taken to
of the class CLASS

When control is
of the class will

End. C

ill , <196•

Examples;

7/7
297 U

9 44 4
W -4

... 29 49-
6 26

9/ 3-'b r
e '. 3
9 92

2 14

To factorial :n.
T if n.0 then 1 else (n*factorial n-1).

End.

This looks a lot like LOGO (intentionally) except tha
the input variable ":n" is not part of the heading (a
in LOGO), but is part of the "body". This reflects th
fact that input objects act like functions and thus ci
be used anywhere in a program. When a 'tfunction" is
instantiated, the first thing that is done in most
languages is to bind the arguments to a new set of
names. The very same effect is achieved in SMALLTALK
when the "evaluating input object", t,:" , is used
in the first set of expressions.

lit <i Conventional Class Definition
"To" as shown above, was included mainly for
with LOGO and LISP. SMALLTALK really treats "
like any other object. That is, any object is
class---so an object which creates a class is
class CLASS.
This means that a more general (and more conv
define factorial would be to say

.factorial « class. (If :n = 6 then 1 else
- 1).

or perhaps

.factorial - class.i :n.
If n=8 then 1 else

people familiar
class objects"
a member of a
a member of

entional) way to

(n * factorial n

En *
Efactorial n-1

using the <tab list> convention. One could even say

.var e .n.

.factorial + class
.(:) 4 var 4 .(• 6 then 1 else)
1(varl .(* factorial n - 1)).

where "1" means "append" pretty much in the LISP sense.

Total Control of the Instance
***for bit pickers, more on this later this summer.

Control (and State changing, etc.)

To If :exp.
!exp.
End.

t,1t Iff, is really just a dummy which computes a value to be
APPLYed to "then" or V'· This means that "TRUE"ness and
"FALSE"ness are properties of objects. This allows us to
consider all legal numbers as TRUE, if we wish. A class
with one instance EMPTY is provided to handle .FALSE"
cases.

(4 .

t f

TO .

PAGE 2.3

4,name ! n. * (:exp. t exp)
"lookup the name in current environment (if not
there, enter it as most global) and replace BINDING
with value of "exp" ".

1 name.
t'note that the value of the expression on the right "exp" is
RETURNed when a rebind is attempted, but when used as QUOTE,
it is the name which is RETURNed."
End.

To Eval :exp :globalenv :return :msg.
"There are many ways to EVALuate expressions in Smalltalk.
This one allows the user to set Hp an arbitrary environment
for f ree variable fetches, an <Ag*tary RETURN process, and j

an arbitrary MESSAGE environment."Eval" is included here
since it is very frequently used in definitions of new
control primitives".

End.

To Repeat .>Loopexp.
Code repeat.
Eval Loopexp Iglobal iself EMPTY.
Code again.
End.

"Repeat EVALs its loop expression in the context of its
caller."

To Again
"RETURNs control to the caller of its caller--i.e. to a
looping control primitive of some kind such as "Repeat"
which can decide what to do next".

End. t\» At
To Done

"RETURNs control to the caller of (the caller of its
caller) --to one level further out than a looping control
primitive. This automatically terminates the loop.
Eventually t,Done" will have an optional argument for
passing the RESULT of the loop back".

1 - 40.1
y-40* <
--·-T AS /49
6fj

End.

To Create
"Reschedule caller to be run instead of waiting for a
subroutine RETURN".

:call.
"This causes an evaluation of the argument. So it will also
be running".

End.
"As seen, "Create" causes a.naltalial fork in control.
Actually, tmis is what haliehs natiurally Iii
SMALLTALK---the default message discipline is
deliberately limited to a subroutine t,wait for reply"
protocol. "Create" simply prevents the caller from being
passivated".

To Word

.Explain»
t"Words are like LISP atoms or ALGOL identifiers. Their basic
operations have to do with assembly and disassembly of their
internal structures.

Words also have a special meaning in the context of
evaluation. An unquoted instance of a word will be looked

N---/mil

0 11

up (look itself up) when encount by the EVALuator. So
cat.first means "look up the met local binding of the
variable "cat" and APPLY it to +first". But .cat.first
means " call routine "." which RETURNs the word "cat"
which is APPLYed to .first, which, as seen below, wil
RETURN l'C" "

Numbers are words also, but have many additional operations
having to do with arithmetic and so are defined as a separate
class.".

p- w. :value.word -
tself.

11 "

.first

t"the first character of theprinvnalef the word".
Di f

T"same as "first"".

nlast „
t"...the last character of the printname of the word"

:t"...the same result as for "last". This is just an
abbreviation."

.butfirst „
t"Somehow return all but the first character of the string
representation of the word."

u b f
T"...same as butfirst."

.butlast c
t"Somehow return all but the last character of the string
representation of the word."

obl
t"...same as butlast."

ejoin 4 :valuel.word? 4
t"This is roughly equivalent to the 1,cons" of LISP. The word
will be connected to the list in "valuel", and a new list
reference will be returned."

0wjoin .:valuel.word? 4
tt,This is roughly
printname of the a
new word which is
.catdog."

nword? :

equivalent to concatenate in SNOBOL. The
two words are joined together to produce
returned. .cat wjoin .dog produces

Tvalue.

.empty? .t
tEMPTY.

./--h
length + ,

t"Somehow calculate the length (in characters) of the
number (including "-" and ". ,"7 "

\7----millil»

21
6. .f D

pprint p
1"Return a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visual representation will have a meaning for
.print. This is much simpler. than having to inform a global
print routine about the format of each new class."

0 474

ST1 PAGE 2.5

othen 4 :valuel us nelse s,- :,dum c t valuel
or . T Valuel.

'Having "then" in 'Word" in this way means that we are
adopting a convention that legal words 'n the context of a
tes- act as TRUE and thus cause the " en" expression to be
eva ated."
0/ b

To Number

1

.Explain-.
t"Numbers work in a very in'tuitive way. The READ program
recognizes number literals and creates instances for them in
storage.The bits that represent the particular instance of a
number are stored in the variable "value" and can be changed
by assignment as shown. This might be illegal if it is
decided that numbers are unique atoms. The opposite is
assumed here."

ne, m :value.number?.
1 self.-.

Ifdp'trt::/ is recognized in the input stream, what follows is
«evalliated and bound to "value" which is applied to number?

7 - which returns TRUE if it is. The actual value of the
number object itself has been changed so that other objects
which have pointers to "self" will feel the change. This
might be made illegal.

nfirst .
T"Somehow return the first character of the number which is
"-" if negative, is 't." if between 0 and 1, and a digit from 0
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around."

r,f
t"...the same resul't as for "first#. This is just an
abbreviation."

clast ,
t"Somehow return the last character of the number which is
"." if greater than 1 and known inexactly, and a digit from 0
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around."

n 1
t«...the same result as for "last". This is just an
abbreviation."

pbutfirst c
t"Somehow return all but the first character of the string
representation of the number."

o b f.o
T"...same as butfirst."

obutlast .t
t"Somehow return all but the last character of the string
representation of the number."

n bl -0
r'. .. same as butlast."

.join 4 :valuel.word? c
t"This is roughly equivalent to the "cons" of LISP. The word
will be connected to the list in "valuel", and a new list
reference will be returned."

.wjoin *:valuel.word? 4
1"This is roughly
printname of the a
new word which is
.catdog."

equivalent to concaterate in SNOBOL. The
two words are joined together to produce
returned. .cat wjoin .dog produces

.number? 2
rvalue.
"Anything not EMPTY will act as TRUE."

0Word?
tvalue

cempty? -
TEMPTY.

nlength o
t"Somehow calculate the length (in characters) of the
number (including "-" and t..1,)

nprint :
T"Return a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visual representation 'will have a meaning for
.print. This is much simpler than having to inform a global
print routine about the format of each new class."

nthen * :valuel * oelse # *dum w t valuel
or . t Valuel.

"Having 'tthen" in "Number" in this way means that we are
adopting a convention that legal numbers in the context of a
test, act as TRUE and thus cause the "then" expression to be
evaluated."

n= 4 :valuel.number? .t"value if value and valuel are numerically EQUAL, otherwise ,
EMPTY. Note that this allows "a•b=c" to work correctly."

•: :valuel.number? +
T"EMPTY if value and valuel are not numerically EQUAL,
otherwise value. Note that this allows "a•b,c'* to work
correctly."

„ :valuel.number? 4
t"value if value is numerically less than valuel, otherWise (
EMPTY. Note that this allows '4<b<c" to work correctly."

24921
244.43

: :value 1.number? .
t"value if value is numerically greater than valuel, otherwise 4 >A> 3
EMPTY.. Note that this allows "a>b>c" to work correctly."

+ :Valuel.number? 0
T 'tvalue added to val ue 1."

0- #:valuel.number? *
t"valuel subtracted from value."

.* u :number? -1
T"value multiplied by valuel."

4.4)4 w#z

PAGE 2.7

a / 1 :Value l .namber? *
t"value divided by valuel."

.mod * :valuel.number?
t"value modulo valuel."

o i p -+
t"...the integer part of value. S,

n fp 4
t"...the fractional part of value."

.exp :
t"...the exponent (to the base 16) of value."

„mag..
T if value < 6 then (0 - value) else value.

<other numeric functions which are stored as attributes>
sin, cos, other trig functions etc.

To List
,Explain
ofirst . .6- c :value.list 4

value.word? 4
u f . nx „ : value.list.,

value.word? .
.last 4 o# 4 :value.list :t

value.word? .
0 1 -* ex u :value.list +

value.word? .
nbutfirst 21 0- 5*1 :valite+list w

value.word? 4
o bf -< o- + :value.list =e

value.word? 4
obutlast * .4- w :value.list .

value.word? .
n bl „ 0 + c :value.list c

value.word? .
ojoin A
n!

asentence? 4
olist? +
.empty? e
olength ..
.print
.= * :value.list .
00 -0 :value +list .
n< -. : value.list c
r> -:·:value.list :*
n makeword .

To String
Position

Here are a set of useful operations for manipulating
two-dimensional space. The convention is adopted that "posx" and
"posy" will refer to position state, and "heading" will refer to
direction state. The programs are written so that the most local
occurance of these variables in the dynamic environment will be
updated. See the program "Spacevehicle" for a simple example.

To Forward :distance.
posx - posx + distance * heading.cos.
posy + posy + distance * heading.sin.

011 g al'W I. * Ial

End.

To Right :angle.
heading x (heading - angle) mod 360.

End.

To Left :angle.
heading + (heading + angle) mod 360.

End.

Output (to displays, music, turtles, etc.)

To Show :picture.
"This comprehensive routine allows the picture to be EVALed
and then copies the picture information into the display area
using either the dynamically available variables "posx"
posy", "heading", if its own bindings for these parameters are
EMPTY.

ST 1 PAGE 3

Some SMALLTALK Programs
<See SMALLTALK2.DC for Program Examples>

ACK PAGE 1

ACKNOW. DC smdeleg.fd ack

ACKNOWLEDGEMENTS

Much of the philosophy on which our work is based was inspired by the
ideas of Seymour Papert and his group at MIT.

The DYNABOOK is a godchild of Wes Clark's LINC and a lineal descendant of
the FLEX Machine.

The "Interim Dynabook" (known as the ALTO) is the beautiful creation of
Chuck Thacker and Ed McCreight of the Computer Science Lab. at PARC.

SMALLTALK is basically a synthesis of well known ideas for programming
languages and machines which have appeared in the last 15 years.

The Burroughs 85000 (1960) had many design ideas well in advance of its
time (and still not generally appreciated) : compact "addressless" code; a
uniform semantics for names (the PRT), automatic coprocesses, t,capability
protection (also by the PRT), virtual segmented memory; the ability to
call a subroutine from "either side" of the assignment arrow; etc.

The notions of code as a data structure; intensional properties of names
(property lists of attribute:value pairs on atoms); evaluation with
respect to arbitrary environments; etc., are found in LISP, probably the
greatest single design for a programming language yet to appear.

The SIMULA's ('65 and '67) combined Conway's notions of software
coroutines (1963-hardware versions had appeared in the 85660 3 years
earlier), ALGOL-60, and Hoare's ideas about record classes (196**) into an
epistemology that allowed a class to have any number of parallel
instantiations for activation records) containing local state including a
separate Program counter. Most of the operations for a SIMULA '67 class
are held intrinsically as procedures local to the class definition.

The FLEX Machine and its language('67-'69) took the SIMULA ideas
(discarding most of the ALGOLishness), moved "type" from variable onto the
objects (ala 85060 and Euler), formed a total identification between
toprocess" and "data"· consolidating notions such as arrays, files,
lists, "subroutine" files (ala SDS-946), etc., into one idea. The user "as
a process" also appeared here. A start was made to allow processes to
determine their own input syntax, an held by many (notably
Leavenworth).

The Control Definition Language of Dave Fisher (1970) provides many ideas,
solutions, and approaches to the notion of control. It, with FLEX, is the
major source for the semantics of SMALLTALK. It is a "soulmate" to FLEX;
independantly .worrying about many of the same problems and very frequently
arriving at. cleaner, neater ways to do thinjgs. Many of Dave's ideas are
used including the provision for maIly othorgonal paths to external
environments; 844"a-hal> control is basically a matter of arranging these
environments. SMALLTALK removes Fisher's need for a compiler to provide a
mapping between nice syntax and semantics and offers other improvements
over his schemes such as total local control of the format of an instance,
etc.

An extemporaneous talk by R. S. Barton at Alta Ski Lodge (1971) about
computers as communications devices and how everything one does can easily
be portrayed as sending messages to and fro, was the real genesis of the
current version of SMALLTALK.

ACK rawn 1 4 1

The fact that kids were to be the users and the simplicity and ease of use
of the already existing LOGO (whose own parents were JOSS and LISP)
provide lots of motivation to have programs and transactions appear as
simple as possible--i.e. moving from left to right, procedures gather
their own messages, etc. It is no accident that simple SMALLTALK programs
look a blt like LOGO!

Problems discovered years ago in "lefthand calls» prompted SMALLTALK to
make "store" intensional-i.e. a e b, means "call "a" with a message
consisting of the token 'V' and "b"". If anyone can make the right
decision for what this means, it must be "a". The early fall of 1972 saw
an evaluat>tor for SMALLTALK and the idea that '4", "-", etc., 411 should
also be intensional. This led to an entire philosophy of use (tinl ike
SIMULA '67) to put EVERYTHING in class definitions including the so-called
"infix operators". The message ideas al lowmes sages to have a wide range
of form since a message can be received incrementally.

"Control of control" allowstontrol structures to be defined. The language
SMALLTALK itself thus avoidkpbrimitives" such as "loop 01", synchronous
and asynchronous "ports'(**4), interrupts, backtracking »*), parallel
eval and return, etc. All of these can be easily simulated when needed.

These are the main influences on our language. There were many other minor
and negative influences from other existing languages and ideas too
numerous to mention except briefly in the references.

microPLANNERTs main influence was negative in that it convinced us finally
that backtracking is not the way to approach problem solving. Instead, we
prefer "trial evaluation" where a "straw process" is run in a "straw
environment" as a coprocess and constantly sends messages as to how badly
it gets creamed back to its originator. If it perishes, its environment is
just discarded rather than backtracked. (A germ of this idea is found in
Fisher's thesis).

The fine idea of microPLANNER ("pattern directed invocation"---1 call it
"call by desire") does not appear as a primitive in the current version of
SMALLTALK (it was in ST-1971) but may be easily added in just the way a
particular user desires.

This particular version of SMALLTALK was designed through the summer and
early fall of 1972 and was aided by discussions with Steve Purcell, Dan
Ingalls, Henry Fuchs, Ted Kaehler, and John Shoch. From the preceding
acknowledgements is can be seen as a consolidation of good ideas into one
simple idea:

Make the PARTS (objects, subroutines, I/0, etc.) have the same
properties and power as the WHOLE (such as a computer).

This is the basic principle of recursive design. SMALLTALK recurs on the
notion of "computer" rather that of "subroutine"

Dan Ingalls of our group at PARC, the implementer of SMALLTALK, has
revealed many design flaws through his several, excellent quick 'tthrow
away" implementations of the language. SMALLTALK could not have existed
without his help, virtuosity, and good cheer.

The original design of the "painting editor" was by Alan Kay. It was
implemented and tremendously improved by Steve Purcell.

The "Animator" was designed and implemented by Bob Shur and Steve Purcell.

ACK . PAGE 1.2

Line Graphics and the hand-character recognizer were done by John Shoch.
Ted Kaehler d;id the "scope turtle" on the ALTO.

"Music" was designed and implemented by Alan Kay. Barbara Deutsch wrote
the program to REGISTER combinations of timbre files. Peter
Deutsch (CSL, PARC) designed and wrote a translator for compact musical
score" notation. Steve Saunders improved most of these programs.

Diana Merry wrote auxilpry systems programs and a very nice '*software
character generator" and text scroller for the ALTO.

The design and implementation of the font editor was by Ben Laws
(POLOS, PARC)

SMSM PAGE 1

This file is called SMSEMANTICS.DC and contains a semantic description of
SMALLTALK written in itself,
This version was last changed on June 16, 1973.
Use font SMDELEG.FD

SMALLTALK and its Semantics
by

Alan Kay

WARNING!! This is an unchecked version done simply to try it out
for basic taste and compactness.

.To + class:.Do + .i>name jactions.
t Find (name) in CALLER + classi.Do + activity

To . 1 +name I .4 » 1 :exp.
: ; {Find (name) in CALLER + exp.

. ! name

To Find :name ioin # i:context
.context e CALLER

Repeat
context.table name OR context.table.global.empty?
i .d es » i :exp. context.table name 4- exp. Done
i.context s context.table.global

T context.table name

To List '.*· a, 1:first :rest. Itself

s first g. i ne- » !:first. tsel f
! first

orest © io * ·:rest. rself
it rest

alength . i! · first-NIL . 30
·1+rest.length

nprint * H "(" f first,print v , rest.print #M)"*tt HA

olist? 1% i! self

oeval 4 .Repeat
i first = ") 4 -+ I Done

j first • "." u .•value + rest.eval
i I .value + first.eval
I value

To Repeat ...program.
CODEFOR :Repeat i clause .eval global message self

SMSM r 80* , • A

To Again In EMPTY CALLER.CALLER

To Done I:value. ft value CALLER ,CALLER.CALLER

To If i:exp * lothen :exp i,else u 16. Texp
Texp

lerror "I can't find a "then ""

othen 4. inelse * I:exp. texp
ITEMPTY

To User IRepeat
,IDisplay Read.eval.print

To *iself.table.name ,- message.table.pc.first.
imessage.table.pc +0 message.table.PC.rest.
imessag e.table name + message.table.message.table.PC.first.
I message.table.mes sage.table.PC ,» message .table.message.table.PC.rest.
1 1 name.

To i©name.
il message.table.name +
: message.table.message.table.PC.first .eval message.message

To o Estoken = message.table.PC.first w '!EMPTY
i message.table.PC + message.table.PC.rest

To » i :clause. 8 clause CALLER.CALLER.CALLER

To EMPTY I 6. 8 self CALLER.CALLER
i rempty? * 1 ! .TRUE
! self

To Apply i :t :g :c :m.
(t 4 .global g .caller c .message m) .eval

To fl i:value :destination.
IApply value destination destination destination.

To Remember I o• 4 1 Repeat
1 inEMPTY g itself
i ·self :name • :value

ocopy * 1! CODEFOR "somehow copy the table"

oeval =* I "Do something or other"

:name ¤4 . i:value.
! CODEFOR "associate name and value somehow"
1Value

I ! CODEFOR "Get the value associated with the name"

SMSM PAGE 1.2

To class I:bindings.
r instantiate i Remember e .class .class

: .global global
i j .caller self

.message message
.PC bindings

.eval

To instantiate j:classdef.
IRepeat
.IPause.
I i tclassdef.copy 4 .class classdef

.global global

.caller caller

.message message

.PC classdef.DO
I.eval

To Word
a 4 .:first :rest.

I.rest e Word + first.butfirst rest.
i.first • first.first.
T self

ofirst * i o•· 4 ·:first.character * Iffirst
lerror"input is not a character"

I ! first

orest + 102 + i:rest.character w itrest
I Error"Input is not a word"

1 1 rest

.length + I! rest = NULL . 1
1 + rest.length

Dprint 4 It first.print. rest.print

eword? + I ! self

0= 4 1 :Value. t (first = value.first) AND next = value.next

oeval „ ..env 4- global.
·Repeat

i env.empty? * 1 TEMPTY
!.temp 4- env.table self + IT apply temp global caller

: message

I.env o global.table.global

CONTENTS

Forward

Part 1: Informal

A Dynamic Medium for Creative Thought
tells what our group is about; introduces the idea of the Dynabook
and its language, SMALLTALK, and shows lots of ways they can be used
by kids (and adults) via many pictures produced on "Interim
Dynabooks" already designed and built at PARC.

Introduction to SMALLTALK

An informal introduction to the language through simple programming
examples, most of which have photographs of their effects. Aimed at
non-programmers but is a good star't for anyone.

How to use SMALLTALK
explains rituals associated with using SMALLTALK on either the NOVA
or ALTO implementations. How to: get file storage; get on a machine;
write a program; run it; fix it; save it; and get off the machine.
Contains explanations of current dangers, kluges, and features not
yet working.

SMALLTALK "Manipulators"
There conceptually exists an "editor" for each kind of object in the
language. All of them are integrated in such a way that pointing at
an object automatically invokes the current editor for that object.
The user can easily write his own or update the existing
manipulators:

Program and Structure Editor
is wnat passes for a text editor/debugger on most machines.

Font Designer
How to modify existing fonts. How to create new fonts.

"Art" and Animation
Handles line drawings, paintings, sketches and shows how easy it
is to animate them.

Music
How to enter and change compositions. How to play them. How to
manipulate 'trimbre" objects. How to make new ones. How to create
new instruments.

"Files"
don't really exis
class Of "memory

t as entities distinct from SMALLTALK but are a
objec·ts" which are useful to know about.

Summary and User's Manual for most kinds of users

Part 2: a bit more formal

A Personal Computer for Children of all Ages
an updated version of the ACM-72 paper which speculates about the
Dynabook.

SMALLTALK: a Model Building Language with Intensional Semantics.

UNTb.ST PAS

CNTS.ST PAGE 2.1

The 'lofficial'", "computer sciency" paper on SMALLTALK and its
epistemology.
1. Introduction to Message Oriented Languages
2. Formal Definition of SMALLTALK (in itself)
3. Manual of current class defintions with explanations

Pragmatic use of SMALLTALK
1. How to extend syntax and semantics, especially in regard to ne
udata" and "control" structures.
2. How to run these extensions "pragmatically" if extra speed and/or
less space is a requirement.
You were going to ask werentt you?

How Animation Works
ine incredible true story of how six Pegasi can be made to fly at 16
frames per second. Find how how pictures can be rotated without
multiplication, etc, The names have not even been changed to protect
the innocent, much less the guilty.

HOW SMALLTALK Works

Why can't the SMALLTALK evaluat:or be found on any listing---or, does
Dan Ingalls really live inside the .ALTO,

How the ALTO works
Why is a machine with more memory bandwidth than a PDP-10 called a
mini? Where did the device controllers go? Enter the wonderful world
of Chuck Thacker and Ed McCreight. Take Dramamine and iron
supplements on the trip.

A Look into the Future
.Ay.The n....b programming system, The next Interim Dynabook.

Acknowledgements
Please read these as SMALLTALK owes many debts to previous work most
of which are interisting in their own right.

References

INFM. ST PAGE 1

INFORMAL.DC smly.fd smdeleg.fd sroman.fd intm

An Informal Introduction to SMALLTALK

by

Alan C. Kay
Xerox Palo Alto Research Center

The easiest way to learn SMALLTALK is to just make it do useful things for
you 1 W

Let's get SMALLTALK to draw aSQUARE
SMALLTALK just what it is that we mean by

for us. First we have to tell
square".

to square **
Fforward 100
right 90

Iforward 160
iright 90
forward 160

{right 90
forward 160

('To" is part of SMALLTALK. We sent
name, "square", and a definition in
. margin parentheses".

it a message consisting of a
terms of drawing commands inside of

We can now use our definition just as though it had been part of
SMALLTALK.

square

and a square is drawn. Try it again.

square

Whoops] We just created some bugst First, the "pen" was not left pointing
the same way as it was found, and also we forgot to clear the screen and
return the pen to the center.

¢ Please see the rest of this handbook for a more detailed description of
SMALLTALK and its use, especially the acknowledgements for a fairly
complete set of historical influences on SMALLTALK's design.

Most of the examples in this paper work, particulary those with photos of
results. However a few of them are still awaiting their baptism of fire so
be careful.

* This document' s approach ·and some of the examples (marked with a **) are
adapted from Papert(pa ****). Simple things look as simple as possible and
hence, resemble LOGO (or JOSS) to some extent. As you will see however,
the semantics of SMALLTALK are quite different in most ways for more
complex ideas.

INFM.ST PAGE 2

erase

clears the screen.

home

centers the t'pen" pointing up.
white

draws using white ink on a black background. Try

white home erase forward 50

black

draws using black ink on a white background.

A "cleaner" version of "square" is

to square
forward 100
right 90

bforward 100
right 90
forward 100

right 90
forward 100

·right 90

What is there about this sequence of actions which has to do with
"squareness"? All the turns are 90 degrees, and they alternate with
forward travel of the Jaul» distance. So the following definition should
also work.

to square
irepeat 4

Eforward 130
 right 90

Try it.

ttRepeat" is sent a message consisting of two parts. The first is how many
repeats" are desired, the second is just what to repeat.

What about a square of any size? What is there about the previous
definitions that only has to do with size as opposed to "squareness"7

It seems only to be the distance traveled (which is the message to the
"forward" command) .

Just as we can send messages to "forward", right" and "repeat" to give
'them additional information about our desires, we can send messages to our
own definitions as well. IKe would like to send "square" a message which
says what length of side we want each time.

such as square 106 or square 50

In SMALLTALK any definition can receive a message by Saying tt:y'. Since the

INFM. ST PAGE 2.1

message is different each timej it would be nice to give it a name to
allow it to be used anywhere in the definition.

A definition to draw a square of any size is

to square
:size

.repeat 4
iforward size
iright 90

Try it and see. The ":" picks up the message and calls it "
tlforward" refers to the message by its name "size".

size".

home erase square 50 home square 106

Now let's try aTRIANGLE of any size. Well, it's really almost the
Same as a square, isn't it?

to triangle
:size

repeat 3
1 : forwa
. .right

rd size
126

Try it.

The two definitions are
and the angle. Is it pos

almost the same except for the number of "repeats"
sible to define actions which will draw

ANY POLYGON?

Wells we could certainly send the definition a message of two parts. One
for the size, the other for the number of sides we want.

to poly
:sides :size
Repeat sides
2 lforward size

angle ****

This looks reasonable except for confusion about the angle. "Repeat" will
be sent a message for the correct number of sides and "forward" will get
the right message about side length as before.

Now, what about the angle? When we turned right for the triangle it was
120, for the square 90. What about a pentagon? 72?

One neat way to look at the situation is that a Complete trip for any
polygon will get you back EXACTLY where you started and the heading of the
pen WILL HAVE TURNED THROUGH 366 degrees EXACTLY.

The number of turns taken is the same as the number of sides (because the
t'repeat" controls this) . So, it seems as though the angle taken should be
366/sides. Try it.

to poly **
•eAA/,e •:ei-.1, / ALAL-3

INFM.ST PAGE 2.2

'Repeat sides
1 'forward size

. right 360/sides

Try a few to see.
poly 5 50

poly 5 100

poly 18 20

poly 50 5

poly 366 1

Hmmmm. Does this make sense for a

CIRCLE?

to circle
poly 360 1

Itts nice that we can use any of our definitions exactly like SMALLTALK's
own commands. Now suppose we want circles of DIFFERENT size. What is there
about "poly 360 1" that is 'tcirclelike" and what has to do with size?

We know that "poly 3 92**" doesnet look like a circle and "poly 360 1"
does.

What about "poly 360 10" ?

Try it.

So how does this strike you?

To circle
:size
poly 360 size

Now you may say, "OK, we can change the size of a circle alright, but the
number we are sending as a message doesn't seem to bear any relationship
to the diameter or radius". True? Well, what do we know about the circle?
What is its circumference?

Well, it seems that poly "repeats" 360 times. Each of those times
"forward" goes forward a distance. So the circumference of any polygon is
sides * size. A relation between the radius of a circle and its
circumference 15: Circumference =2*pi·* radius.

So
and

, sides * size =2*pi* radius
, size = (2 * pi * radius)/sides

Let's now define a circle routine where the message we send it is the
radius.

to pi
3.14159

INFM,ST PAGE 2.3

to Circle
:radius
poly 363 ((2 * pi * radius)/366)

Try it and see,

circle 160

This looks reaJsonable though a question might arise about the second partl
of the message to "poly", "((2 * pi * radius)/3601". What is sent if
radius = 1(JOI Is it "2.****" or "((2 * pi * radius)/366)" or '4(2 *
3.14159 * 100)/360)°?

In SMALLTALK these distinctions are controlled by the receiver.

"poly" receives the message by say}ng ":
receive" but also means "receive . , SO "6.tup" fize"
112.****" not "((2 * pi * radius)/360) ".

The
size

le:" not only means
" will stand for

If ttpoly" had said 't,size". "size" would
message "((2 * pi * radius)/360)", since
message".

nave
le Jj

Stood
means

for the literal
"receive the literal

Try this out by writing

To test
: val form
Print val. Print form

test ((2 * pi * radius) /360) ((2 * pi * radius) /360)

2.****
((2 * pi * radius)/360)

Both parts of the message to "test" are the same, but are received
differently. There are other useful ways to receive messages in SMALLTALK
as we will see later.

By now you are probably getting the idea that getting SMALLTALK to do
things is easy. True.

Now what happens if we jiggle some of the things we are doing a little?

Seymour Papert's kids call the following kinds of things

SQUIRALS!

to squiral %4 *
* 0 4 ,7 1
. .16 L. :angle

iforward size
right angle
squiral size+16 angle+2

Notice that this definition goes on forever so the "whoops" key needs to

I NFM. ST PAGE 2.4

be used!

*****16*More on thi
****Don't forget

s in a bit. It can be found in Seymour's stuff.
to do simple translation and rotation in inertial coords

INFM. ST PAGE 3

We'11 come back to some really far out graphics in just a bit. For now
though, let's look at some of the other things that SMALLTALK can do for
you.

Try
->2+2
4

Suppose you would like to treat the Dynabook as a desk calculator so that
accumulated answers are shown as you go.

To desk
.reg + O

iRepeat lots
EPrint lt.#,1

i i u= , .Print reg. Done
I:input
o+ : Print .reg + reg + input

i i,- + i Print .reg + reg - input

and so on.

".reg <- (f" means t.reg" is REDEFINED to stand for O. This is done by the
object 't." which receives a three part message conssisting of a name (in
this case «ree") an arrow "4", and a value (in this case 0). It finds the
SMALLTALK udictionary entry" for "reg" and redefines it to be O.

" n " is yet another way to receive a message. It looks to see if the word
which follows it is literally there in the message. So "0+" asks if the
current part of the message is literally a "+". EMPTY (which acts like
"false") is returned if the match failed.

"4" is one way to choose one part of a program over another depending on
some condition being "true" or "false" (actually not EMPTY or EMPTY) .
Consider

a = b : Print "Its true! n
Print "Its not true at all"

If the value of "a" is equal to the value of "b" then the %" will cause
the list following it to be evaiuated and then an exit taken completely
out of its enclosing list. So only "Its will be printed. Thistruel "
allows lots of conditions to be checked with a:n appealing form to the
program.

to check
:a :b

a = b * EPrint "They're equal "

a < b + Print "a is less than b"

Print 'ta is greater then b"

"Done" exits from the nearest enclosing "Repeat" and provides a way to
terminate a loop if one wishes. "Again" will restart the loop from the
current point.

INFM.ST PAGE 3.1 L

Now, imitating a desk calculator with all its limitations is a bit silly.
What would you really like to have?

What would De nicer is to be able to enter an arithmetic expression,
have each subexpression's value printed and to retain the entire
expression for editing rather than forcing reentry.

to

To nicedesk

****an amortization scheme would be nice to do ala JOSS

****keeping track of a cookbook?

INFM.ST PAGE 4

An interesting variation on t'poly" is a definition that draws

NESTED POLYS!

To star
:sides :size
If size > 4

then ERepeat sides
forward size
right 360/sides
star size/3

This clever little program was invented by Dan Ingalls.
Try a few of these.

star 5 100 star 6 80

How about some SPACE FILLING curves?

This MAZE curve was invented by Hilbert. The program is by D.Ingalls
and T.Kaehler.

To Maze
5:lev :bend :side.
ilev =6 5 .right 90*bend. forward 10
bend = side : IMazel lev - 1
bend =0- side: Maze2 lev -1
Maze3 lev - 1

To Mazel
i:1.
Maze 10- bend side.
Maze 1 bend 0-side.
Maze 1 bend side.
Maze 1 6 0-side

to Maze2
'.1

Maze 1 0 side
Maze 1 bend side.
Maze 1 bend 0-side

-Maze 1 0-bend side

To Maze3
:1 Maze 1 0-side.
Maze 1 side 0-side.
Maze 1 side side
Maze 1 0-side 0-side

This curve will energetically chug away and will eventually touch every
point in an arbitrarily large space.

Here is a more compact, but; sl ightly more obscure SMALLTALK Honeliner" for
the Hilbert curve.

To Maze
i ****

INFM. ST - · PAGE 4.1

Now, are you all ready for aDRAGON? This is a very simple
definition whose actions are hard to predict.

To dragon
:length
If length = 0 then forward 10

else EIf length > 0
then I dragon length-1

right 90
dragon -length-1

else {dragon -length+1
right -90
dragon length+1

A more compact way to say this is

To dragon
i:length =6» :forward 10

length > 0 -r 'dragon length-1. right 90. dragon -length-1

dragon -length+1. right -96. dragon length+1

Dan Ingalls concocted this neat little program.

INFM. ST PAGE 5

Experiments with

ACCELLERATED MOTION

****There should be some simple stuff here for linear velocity and acc

To rollick
: times :figure
setup

a. timestRepeat
penup
i forward .dist # dist + inc
right (.angle + angle + ainc) + .turn s turn + inc

?penan
(figure) size

Try rollick 106 square

SHOOTING elastic objects into the air.

To shoot
:xvel :yvel

t.currentyval yve1

Repeat lots
.pendown. object. penup.

i forward .yvel + yvel - gravity
right 90. forward xvel. right 270

currentyval -- -yvel
(closeto 6 .yvel s .currentyval + currentyval * elastic) .*
i :Done

This program is very simple
constant representing gravi
component. The x velocity i
distance.

and easy to understand. Each time through a
tational force is subtracted from the vertical
s constant and thus just accumulates horizontal

There is no simple closed form equation in classical mathematics that
expresses the bouncing ball because of the discontinuities at the bounce
points. In SMALLTALK however, it is easy!!

Asimple SPACESHIP!

To drawship
i pendown
right 180. forward 5.
right 315. fo rward 7.

. right 315. forward 26,
i right 315. forward 5,

right 315. forward 7. right 225. forward 26.
I ./

right 270. forwara /.
right 225. forward 7.

That was tedious, wasn't it? Later we will discover that we can just
paint, draw or sketch any figure to be animated: ourselves without having
to make SMALLTALK draw them.

INFM.ST PAGE 5.1

First try SHOOTing the Spaceship by saying

To object
drawship

Why does the preceding definition work?

shoot 6 60

Now for a bit more freedom

To moveship
:point :thrust
.turn + .speed + 0

Repeat forever
penup

i forward .speed + speed + thrust
right .turn + turn + point

idrawship

Try

moveship 2 1

moveship 1

Use the WHOOPS button to kill a version.

Now for the big timel Try

moveship mousex mouseY

and grab the mouse quicklyll

INFM. ST PAGE 6

SPACEWAR!

Now for the first time we need to use the greater generality of SMALLTALK.
We need to be able to create any number of ships and torpedos on the
screens all running together. SMALLTALK allows this to be done as easily
as if just one object were desired.

To Spacevehicle

shape *at :posx :posy :heading
ospeed :speed
ocontrols :thrust :point :trigger.

.Numberoftorps + 26.

Repeat
Left Roll + Roll + point.
Forward Speed + Speed + thrust.

If thrust > 6 then (Show shape .exhaust : Flame).
If thrust < 0 then (Show shape .nose : Flame)

else (Show shape) .

(If trigger on and Numberoftorps > 6
i then :Numberoftorps e Numberoftorps - 1

.create

! Spacevehicle .torpedo
at posx posy direction
speed speed
controls 25 6 .off

If touching something
then (Quit something. Show Crash. Quit self).

Pause

This set of actions defines both what a spaceship and a torpedo do in a
somewhat sneaky way. A torpeao is a spaceship with a different shape,
constant thrust, straight direction, and no ability to fire torpedos of
its own.

The pictures "Ship" and "Torpedo" both have a subpart called "exhaust".
This acts as a "hole" where other pictures can be placed, such as ttflame"
when the thrust is on. A special subpart name, "center", defines the axis
of rotation for 'tleft" and th ight" turns.

"Crash" in a more elaborate example would probably be a set of actions to
produce ever more grandiose effects.

This particular game starts a ship out w j th 2 6 to rpedos with no provision
for more when all are fired.

nipeed" and «Roll" are names for the accumulated velocity of forward
travel and turning. So the "thrust" and "point" controls are
accellerations as in a real spaceship.

The "behaviout " at the bo

received is what "shape"
to assume (these names a
ttleft,), and where the in
torpedos is to be supplie
player, for torpedos, it

ttom signals the actions to be done. The message
to use, what initial "position" and "direction"
re the ones that are updated by "Forward" and
formation for uthrust", "attitude", and firing of
1. For spaceships it will be the joystick of each
will be constant information.

INFM. ST PAGE 6.1

is are "nThe actior nepeat"ed over and over.

They are to update the "Roll" and "Speed" accumulations,
to reposition the ship, which will update 'tposition" and t,direction",
to display the shape of this object (with "Flame" if thrust is t'on") 1
to send off a "Torpedo" if the "trigger" is "on" and the "Numberoofotorps"
left is greater than zero.

Then a check is made for a "touch" and, if so, the object touched is
destroyed ("Quit"), the great "Crash" is "Show"n, and finally our object
destroys itself.

As many spaceships as required may be instantiated by using 'tcreate".

create

Spacevehicle .[Ship at random random random
speed random
controls joy 1 up joy 1 side joy 1 but.

create

Spacevehicle .S]+tip at random random random
speed random
controls joy 2 up joy 2 side joy 2 but.

INFM.ST PAGE 7

New ttData" Objects and their ttfunctions

The ease with which an external form can be associated with an internal
meaning in SMALLTALK means that many objects which are ucast in stone" in
other languages can be defined and modified easily by anyone. Suppose
only the Word and List operations are found in the language, then Numbers
can be described in terms very similar to that of "schoolchild" arithmetic
as shown below.

There are many ways to accomplish arithmetic; the example deliberately
mimics the use of a "plus table" for single digits, the carry rule, and
special cases involving 0, which you already know from school.

.PlusTable s .:(3 1
(1 2
(2 3
(3 4
(4 5
(5 6
(6 7
(78
(8 9
(9 10

2345
3456

"4 of
56/

6789
7 8 9 10
8 91011
9 16 11 12

tu ii 12 13
11 12 13 14

6 7 8 9)
7 8 9 10 1
8 9 1611 1
9 101112)

10 11 12 13 1
11 12 13 14 j
12 13 14 15 1
13 14 15 16)
14 15 16 17)
15 16 17 18)

To Number

ne , : A. 1 self

"A new uNumber" is created and declared by saying (for instance) .x *·
Number + 12345. The "." EVALs its third argument, which calls t,Number
which creates an instance, which looks for a "e", finds it, EVALs its
next argument (which is a "Word" 12345), binds it to "A", and RETURNS
the instance."

ovalue o TA

"The Word which is the value of "self" is RETURNed".

efirst 4 it A.first.

" "first" of a tl Number" is the same as «first" of the t,Word" which is
its value. The other "Word Parts" are done in a similar manner."

0+ 4 1:B. T 'A.length = 1 and B.length = 1 :e l?lusTable A B

A.empty or B,empty · A jointo B

(A.butlast + B.butlast + carry AB)
jointo (A.last + B.last).last

"This is a recursive definition which uses several cases to accomplish
Et+F'.

The first (A and B are
addition table selected b

:sum which is RETURNed,

both single digits) uses the childrens
y each of the n Um bers in turn to isolate the

INFM.ST PAGE 7.1

The next case terminates the routine in the case where either or
both of A, B are EMPL . Re.member that anything t,joint.o" EMPTY is
thatthing. The last case is simply a statement of the goal, namely:
the front digits of A and B are added to the carry found by adding the
last digits of A and B, the result is joined to the single digit
result of the sum of the last digits of A and B.

More branches of the conditional would be added to handle the
Addition of negative numbers, etc."

o- 4 2 :B. T ttSubtraction is handled in a manner analogous
to Addition",

Th• KA :B. TA= B +value,

UA "Word operation" that is legal can easily be done.

n< =: i :B. t if (B - A).first = .- then EMPTY else self.

"Doing the definition this way allows x<y<z etc. to work properly.
Note that '9<z" is done first and returns the value of "y" (if tltrue")
to *' X ,) F,

*****N OTE! This semantic def of Complex is not completely edited !!

To Complex
o. 41:value.Complex .*it Complex A

re + value.re
im + value.im

:value.fraction »(t Complex s re + value im)
T value 0 + self

r- ·.:value.Complex mit Complex A
: . re - value.re

im-value.im
value.fraction :*t Complex x re - value im
otherwise c (t value G - seli

0* 4 :vaiue.complex

value.fraction
Otherwise

T Complex s (re * value.re - lim * value.im)
Cim * value.re + .re * value.im)

o T Complex + re * value im * Ivalue
T value G * self

nG n+ 1. : value.fraction * r Complex 6, re + value im
r,G n- t. :vallte.fraction * t Complex *'· re 1-im¥u lue -
ToG i* 4 :Vallte.fraction 4 1 Complex s re W value im i·* value
nG ovalue .,. t Error"I don't know this operator" value .

Dre 1. nx :value.fraction , re s value . T self
p,, . T re

o im + os :value.fraction im + value , ·t self
c., :Tim

ne . :re .fraction -: 112 + fraction * t self
ocomplex :t true

PAGE 7.21 ArM. 3 1

>op :value + T value G :op self
*op :value u T value G :op self

1 1, , T self

ST.ST PAGE 1

Necessary Information about this paper.
. dLatest revision: June 0, 1973

(The permanent names of this file are
SMALLTALK.DC. ***
FMA 1 1 T A I I. n -·,

K 1

£" "' ' ' r'. I. : ./ r3.UALLi ALAL.DC.
Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with each version.
Look under the structure to discover what file to load.

This file should be displayed using font SROMAN.FD,
To print, edit with SMDELEG. FD and Write Translated,
then print on XGP using font SMDELEG.XG)

ST.ST PAGE 2

SMALLTALK, a Model Building Language
With Intensional Semantics

by
Alan C. v."AC' 3

Learning Research Group
Xerox Palo Alto Research Center

Abstract

SMALLTALK is a language which allows children (and adults) to build
semantic models of their ideas in simple uncomplicated ways, and
dynam-ically simulate them with respect to arbitrary environments.

Simplicity is achieved by having
a. only one kind of object in
act like ali other known comp
b. a single uniform scheme fo
c. an intensional semantics i
a part of the class to which ,
dispersed through the system ,
extensional operations.

the language (a process) which can
iter objects,
r interobject communication, and,
i which the meaning of an object is
in object belongs rather than
is part of more conventional

Benefits are the abilities to create new "functional", "data",
ttcontrol", etc., entities without the usual problems associated with
updating and coercion ot generic functions.

*******9?

Acknowledgements

Please see the end of the handbook for a
historical influences on SMALLTALK's des

fairly complete set of
ign.

Introduction

SMALLTALK is built from a few simple, yet powerful, ideas.

First, SMALLTALK considers every OBJECT in its world to be an
independant entity with local state and control. All distinction
between 'tdatalike" and "procedurelike" objects, such as exist in
other programming languages, is thus removed. This includes "data",
such as numbers, strings, arrays, lists, structures, etc.;
"functions", such as 'factorial', 'plusl, 'print', etc.; "control
structures", such as conditional branches, repeats, recursion, and
so on; "IO devices", such as 'files'j 'the user', 'display and
keyboard:, etc.; all are treated alike because they ARE alike.

Next, all objects are composed of PARTS, even if they only contain
themselves. The object can be thought of as a dynamic dictionary
which contains all the relations and rules in which it can take
part.

Third, objects can send and receive MESSAGES to/from other objects.
This may cause new objects to be created, altered, or even
destroyed.

(Since there are no "special" objects, there is only one message
protocol.J

Finally, each object is considered to be a member (or INSTANCE) of a
CLASS, which is another object that contains the rules of behavior

ST.ST PAGE 2.1

shared by all the members. Since each class has a class defining
object, they are members of the class of class-defining-objects, as
one might expect.

Messages

A message is a stream of zero or more symbols.
If the stream starts with an open parenthesis, its closing
parenthesis absolutely terminates the stream.

An embedded n. "
message and will

at the same level will terminate the current

cause the message following it to be sent.

If the message
1 la. ... I 11ambABUOUb, d

ts composed of partswhose termination is
, " can be used to clarify matters.

Sending is done from left to right using a very simple rule: control
is passed immediately to the first. object encountered in the stream,
along with information about the context of the send. This is all
the EVAl * 4uaior Goes. The receiver may gather in the message in any
way it chooses.

A common first object is an instance of the class "name" (as with
a LISP atom, all of its members start with a letter and are
composed of letters, digits , underscores, and other special
characters),

The action of a name is to look itself up in the current
environment/dictionary to see if it has a meaning (which is
another object). If it does, that object is RETURNed by APPLYing
it to the remainder of the message; --- And so it goes until the
message is consumed.

A venerable example: factorial.

1,14 0 Octho
factorial 3.

is sent in the following manner.

Control is nassed to the name "factorial" which looks itself
up in the clirrent environment and finds another object as its
Value. The new object is a class defining object which
contains the rules for all the instances of the class
"factorial":

in. tifn=J then 1 else (n * factorial n- 1).

ine action of the class defining object is to create a new
instance of factorial and APPLY it to the message.

ceive" f,or "input') object whose action is to
EVALuate the input stream (in this case "3", whose value is
11 3 " 1 and then to make a new entry into the local environment
to define the name (in this case un"). After this a lookup of
"n" will have the value "3".

Thee "t" is a "send" Cor "output") object which will APPLY the
. ion of its argument to the remainder of the messageAVALUAL

found in the CALLER's object.
ine next message is sent by finding "if" which tries to
receive the message consisting of the EVALuation of un=0".

Control is passed to "n".
It looks itself up and finds "3".

Control is passed to it.
"3" is an instance of the class number which has many

ST.Sl PAGE 2.2

relations it can respond to.
'13" receives the next object (unevaluated) to see
what it is. (It could be any of +, -, */,<,>,
etc.; in this case it is "="9.
9' wants now to evaluate the next part of the
message in order to see whether to RETURN utrue" or
"false".

Control is passed to "0" which, as with "3", is an
instance of class number, and thus shares the same
relations.
So, it looks to its right to see if anything like
+ - + at.4., L 9,00. i is there which it can respond to.
It finds only "then" for which it has no meaning.

So it RETURNs ITSELF to "3" which now has enough info
to decide 'Enot true"

which is RETURNed to t'if" which decides riot to evalua'te the
message following "then", but does try to evaluate the
message following "else".

"n" looks itself up, finds the value "3"
which picks up the name "*" for which it has a
meaning.
So "3" tries to evaluate the next part of its message
"factorial n - 1) ".

Lontrol is passed to "factorial" which looks
itself up and discovers (as before) a
class-defining object with the rule:

:n. Tifn=6 then 1 else (n * factorial n - 1).

As before, a NEW instance is created which will
try to evaluate the message "n - 1) " to get a new
Value for ": n".

"n" in the OLD environment looks itself up and
discovers "3"

which looks to its right and finds tt-, SO it
tries to evaluate the next object U 1 "

which which looks to its right and finds
'1) " (which terminates any message to "1')
so it RETURNs ITSELF to "3"

which knows how to subtract 1 5 / 1

which causes a new instance of class number
to be produced for the result "2"

which is RETURNed to the t':" in the CURRENT
instance of "factorial"
which will enter it as a value for un" in the
CURRENT environment.
And so it goes.

The preceding rather long winded explanation of a well known
example illustrates a number of important points.

First, although the terminology seems to be more general than
is needed, a simple Drogram in SMALLTALK looks simple and can
be discussed in simple terms.

Second, only one rule of correspondence is needed to link
form and content. The evaluator ONLY needs to know how to pass
control and context to an object. All other meanings are found
distributed with the objects in the system. As shown, even
such a seemingly primary act as creating a new instance is
done by an object and thus can be changed at the user's Whim,

Third, there are many cases where this generality of approach
pays off handsomely. If we want to trace the activities of a
name (such as "n" in instance 1) we need only create an object
which can replace "3" as a meaning (so control will be passed

ST.ST PAGE 2.3

to IT when "n" is touched), AND has a local entry of its own
for "3" so that the meaning of un" will not change with
respect to its input/output characteristics. This means that
an object can simulate any other object.

Fourth, all "relations" and '*operators" (such as <, >, +, *,
=, etc.) can be defined 'tintensionally" Cor 'tintrinsically")
as parts of an object or object class, rather than
"extensionally" (or ttextrinsically'9, as is usually the case,
as global functions.

In facts "factorial" could have been defined this way as an
relation of a number. We might then have saidn .,..0 1 0 n .1 1

"31 " and the class number would know what to do.

This means that the informat:ion pertaining to a class and
what it: members do need only be stored with the class. No
global operations need to be updated. So, a class may be
deleted without changing the rest of the world.

Also, this is a very convenient way to handle problems tliat
arise from having multiple classes with operations: such as
coercions between classes and the various senses of "fetch"
and "store" (tte),

For instance, the message "a <3+1" means:
pass control to "a" which will look itself up and

pass control to the object it finds
which can gather the rest of the message as it
pleases.
It can look to see if the next name is a "6„,
if so, it can EVALuate "3 + 1" and decide how
to store it.

So "b 1 # 81" , if "b" were an instance of an array,
could mean

'store 81 in the lit position'; or
if "b" were an instance of a hash table routine, could
mean

e
associate the hash of "1" with "81" in some way's
tc.

The problem of coercions will be discused a bit further on.

Fifth, instances may be EVALuated "concurrently" using the
very same EVALuation strategy. Here, the generality of message
send/receive becomes much more important.

ST.ST PAGE-3

Class Definitions Already in SMALLTALK

<See SMALLTALK1.DC for this branch>

Some SMALLIALK Programs
<See SMALLTALKZ.DC for this branch>

ST 1.ST PAGE 1

Necessary Information about this paper.
Latest revision: June 6, 1973

(The permanent names of this file are
SMALLTALK,DC.
SMALLTALKi.DC. * 2 k

SMALLTALK2.DC.
Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with each version.
Look Under the structure to discover what file to load.

This file should be displayed using font SROMAN.FD.
To print, edit with SMDELEG.FD and Write Translated,
then print on XGP using font SMDELEG.XG)

SMALLTALK, a Model Building Language
With Intensional Semantics

by
Alan C. hay

Learning Research Group
Xerox Palo Alto Research Center

Abstract

<See File SMALLTALK.DC for this branch>

Acknowledgements

<See File SMALLTALK.DC for this branch>

Introduction

<See File SMALLTALK.DC for this branch>

Messages,

<See File SMALLTALK.DC for this branch>

ST 1.ST PAGE 2

CAVEAT LEGATOR !!!

WARNING ---The notation and defs in this section are not completely
re-edited from an earlier version and, hence, may not be entirely
consistant. See informal.dc for a more consistant set of programs.

Class Definitions Already in SMALLTALK

SMALLTALK is supplied with many useful classes, including quite a
few found in one way or another in other programming languages.

These definitions are written in SMALLTALK as though they were
not primitive objects. In some cases (such as the definition of
"ift') a primitive may be used to describe itself---which causes
some obscurity.

Evaluation simply proceeds from left to right.

A notation convention is l.margin lists". Regular parentheses "("
9 " and margin parentheses <ctl> C and <ctl>) have the same
meaning. The margin parens print their contents quite differently
however. An open MP prints as (and sets a new margin at that
spot). clinefeeds.> in the list will return to the margin position
an prlnt another i. When the close MP is found, the next token is
examined for a <lf>. If it is, printing resumes at the next outer
set of LIP's. Otherwise the remainder of the line is printed under
the final

Input and Output Objects

INPUTS

Input a Value

followed by a name will evaluate the input stream to
produce a new object which will be bound to the name.

This is exactly the same as LOGO.

Example; :value
will bind the result of evaluating the input stream to

"value"

Input "isolated" evaluation of message
followed by a name will pick up the next object in the
input stream and evaluate it without giving it a message.

Input an Object
followed by a <name> will not evaluate the input stream

but will bind the next object there to the <name>.

There is no equivalent for this in LISP or LOGO, it acts
as though the next input object were quoted.

Example; :value
will bind the next input object to "value"

Check Input for a Token

followed by a <name> will check the input stream to see if

STI.ST -PAGE 2.1

an identical <name> is there.- No evaluation -will take
place. The Input Stream Pointer (or Program Counter) will
NOT be advanced if the match fails. If the match succeeds,
the ISP will be advanced to the next position.

This is used frequently to check for Hoperator" tokens
such as +, 2, and s.

Example; will check the input stream for a
0+" and will return TRUE if successful

; Input Literal Stream

followed by a <name> will bind a reference to the Input
Stream at the current point.

This is equivalent to FEXPR in LISP 1.5 or NLAMBDA in
BBN-LISP.

Exampl
stream
until

e; ; value will bind "value" to the input
. EVALuation of this fragment may be delayed
later.

<Other Input Objects>

will be mentioned here in a later version of this memo. An
object to EVALuate a sequence of the input stream (like
EVLIST in LISP) will probably be included at the very
least.

OUTPUTS

APPLY-SEND a value.

"f a b" will send "f" the message na b" as explained
previously.

1 APPLY-RETURN a value.

This output object is used when when a subroutine control
structure and message passing discipline is desired. Its
single argument is EVALuated in the CURRENT environment and
then APPLYed to the program stream of the CALLER process
to which CONTROL also is RETURNed.
When used in "left nested" argument gathering (for example
x.first.last or (A + B) + C), APPLY-RETURN will continue
the evaluation process.

T PASSIVE-RETURN a value.
The single argument is evaluated in the CURRENT environment
and RETURNed to the CALLER along with CONTROL.
PASSIVE-RETURN is similar to OUTPUT in LOGO or RETURN in
LISP.

GENERAL-RETURN a value.
r value process

is the form.
' value caller.

is the same as PASSIVE*AWRETURN.

ST 1.ST PAGE 2.2

(apply value message) caller.
is the same as ACTIVE-RETURN.

<Other Output Objects>

will be explained later.

Defining a Class (Function)

There are many ways to define a class depending on how much
the user wants to know about the language and how much control
he desires to have over the format of the INSTANCE of a
definition. For now we will only be concerned with semantic
notions (wnlch also require the least amount of explanation to
all concerned).

LOGO/SIMULA/FLEX Fashion

"To" will define classes of roughly the power of SIMULA or
FLEX which include such things as function, process, and
r..
.> 4 A ucture definitions in other languages.

To . name :.body
'As shown, "To" takes the first object in the message
stream unEVALuated to be the name of the class. All of the
rest of the input stream is a structure which is taken to
be the code body of the class. A member of the class CLASS
is INSTANTIATED and bound to the name. When control is
later passed to the name a new instance of the class will
be created and "run.

Examples;

To factorial i:n,
T if n=6 then 1 else (n*factorial n-1).

This looks a lot like LOGO (intentionally) except tha
the input variable ":n" is not part of the heading (a
in LOGO), but is part of the "body". This reflects th
fact that input objects act like functions and thus c
be used anywhere in a program. When a 'tfunction" is
instantiated, the first thing that is done in most
languages is to bind the arguments to a new set of
names. The very same effect is achieved in SMALLTALK

"evaluating input object", ":" , is used4,jAL,1 the

in the first set of expressions.

Conventional Class Definition
f,To" as shown above, was inciuded mainly for people familiar
with LOGO and LISP. SMALLTALK really treats ttclass objects"
like any other object. That is, any object is a member of a
class---so an object which creates a class is a member of
class CLASS.

This means that a more general (and more conventional) way to
define factorial would be to say

.factorial + class. (If :n = 6 then 1 else (n * factorial n
- 1),

or perhaps

ST 1.51 PAGE 2.3

.factorial + class.' :n.
If n , 0 thenlelseln •

: ifactorial n - 1)

Using the <margin list> convention. One could even say

+var + .n.
.factorial + class

.(:) 1 var i .(= 6 then 1 else)
6 (vart .(* factorial n - 11).

where "P' means 'tappend" pretty much in the LISP sense.

Total Control of the Instance
***for bit pickers, more on this later this summer.

Control (and State changing, etc.)

To If : exp. ***** This has changed Il
1 exp.

""If" Y -13 really just a dummy which computes a Value to be
APPLYed to t'then" or Ev. This means that t'TRUE"ness and
"FALSE"ness are properties of objects, This allows us to
consider all legal numbers as TRUE, if we wish. A class
with one instance EMPTY is provided to handle .tFALSE"
cases.

To
c.name I oe ... (:exn. t exp)

'lookup the name in current environment (if not
there, enter it as most global) and replace BINDING
with value of "exp" u.

1 name.
"nolte that the value of the expression on the right "exp" is
RETURNed when a rebind is attempted, but when used as QUOTE,
it is the name which is RETbRNed."

1 0 *.val :exp :globalenv :return :mss.
"There are many ways to EVALuate expressions in Smalltalk.
This one allows the user to set up an arbitrary environment
for free variable fetches, an arbtrary RETURN process, and
an arbitrary MESSAGE environment."Eval" is included here
since it is very frequently used in definitions of new
control primitives".

To Reoeat ,Loopexp.
Code repeat.
Eval Loopexp 'global self EMPTY.
Code again.

"Repeat EVALs its loop expression in the context of its
caller."

To Again
"RETURNs control to the caller of its caller--i.e. to a
looping control primitive of some kind such as "Repeat"
which can decide what to do next".

ST 1.ST PAGE 2.4

To Done
"RETURNs control to the c.aller of (the caller of its
caller)--to one level further out than a looping control
primitive. This automatically terminates the loop.
-Eventually •t)one" will have an optional argument for
passing the RESULT of the loop back".

To Create

"Reschedule caller to be run instead of waiting for a
subroutine RETURN",

. Ual i .

"This causes an evaluation of the argument. So it will also
be running".

"As seen, "Create" causes a parallel fork in control.
Actually, this is what happens naturally in
SMALLTALK---the default message diSCipline iS
deliberately limited to a subroutine 'twait for reply"
protocol. "Create" simply prevents the caller from being
passivated",

To Word

s.Explain
t"Words are like LISP atoms or ALGOL identifiers. Their basic
operations have to do with assembly and disassembly of their
internal structures.

Words also have a special meaning in the context of
evaluation. An unquot:ed instance of a word will be looked
up (look itself up) when encounted by the EVALuator. So
cat.first means "look up the most local binding of the
variable "cat" and APPLY it to .first". But .cat.first
means " call routine V' which RETURNs the word "cat",
which is APPLYed to +first, which, as seen below, will
D#Tr,-3,· itcl" "A,= i Ua.\

Numbers are words also, but have many additional operations
having to do with arithmetic and so are defined as a separate
class.".

4- 1 :vaiue.word
tself.

ofirst .
TH:he first character of the printname of the word".

nf
1* e 4 .e + 39 11t"same as 14106 +

jlast :
t"...the last character of the printname of the word"

©1
itt...the same result as for "last". This is just an
abbreviation."

butfirst

t"Somehow return all but the first character of the string
representation of the word."

ebf
rlt...same as butfirst."

obutlast :

STI.ST PAGE 2.5

t"Somehow return all but the last character of the string
representation of the word."

 bl
r'...same as butlast."

©join i :value l.word? ,
r'This is roughly equivalent to the 'tcons" of LISP. The word
will be connected to the list in "valuel", and a new list
reference will be returnea."

owjoin ::valuel.h
T"This is roug
printname of t
new word which
.catdog,"

11'Or,49
..41 .,a
1 . <64 UL 4

ord?
hly equivalent to concatenate in SNOBOL. The
he two words are joined together to produce a
is returned. .cat wjoin .dog produces

nempty?
TEMPTY.

olength
1,\Somehow calculate the length (in characters) of the
number (jncluding -" and 'ts„)

7..;"intr' S i l.

t"Return a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visual representation will have a meaning for
.print. This is much simpler than having to inform a global
print routine about the format of each new class."

To Number

Explaing
t"Numbers work in a very intuitive way. The READ program
recognizes number literals and creates instances for them in
storage.The bits that represent the particular instance of a
number are stored in the variable "value" and can be changed
by assignment as shown. This might be illegal if it is
decided that numbers are unique atoms. The opposite is
assumed here."

o« c :value*number? ,
1 self.

If a "4" is recognized in the input stream, what follows is
evaluated and bound to "value" which is applied to number?

which returns TRUE if it is. The actual value of the
number object itself has been changed so that other objects
which have pointers to "self" will feel the change. This
might be made illegal.

rfirst
t"Somehow return the first character of the number which is
't-" if negative, is q," if between 6 and 1, and a digit from 0
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around."

f

rth..the same result as for "first", This is just an
abbreviation."

ST1.ST PAGE 2.6

nlast
r"Somehow return the last character of the number which is

'1 , f. .. greater than 1 and known inexactly, and a digit from 6
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around."

s 1
t"...the same result as for "last'. This is just an
abbreviation."

nbutfirst p
r"Somehow return all but the
representation of the number

first character of the string

bf
f ". . .samfe as but firs t. "

obutlast :
r"Somehow return all but the last character of the string
representation of the number."

nbl :
1"...same as butlast."

r.join i :valuel.Word? :
r"This is roughly equivalent to the "cons" of LISP. The word
will be connected to the list in "valuel", and a new list
reference will be returned."

awjoin <:valuel.word? 4
r"This is roughly equivalent to concatenate in SNOBOL. The
printname of the two words are joined together to produce a
new word which is returned. .cat wjoin .dog produces
.catdoy. "

nnumber?
a i L, U .

Anything not EMPTY will act as TRUE."

word?
Ival He.

gempty?
TEMPTY,

elenS th :
tuSomehow calculate the length (in characters) of the
number f inc 1 ziding *t_ " and It. ") .

nprint
T"Return a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visuai representation will have a meaning for ,
.print. This is much simpler than having to inform a global-
print routine about the format of each new class."

o= - :valuel.number?
t"value if value and valuel are numerically EQUAL, - otherwike
EMPTY. Note that this allows "a=bcc" to work correctly."

nx : :valuel.number?
7"EMPTY if value and valuel are not numerically EQUAL,

.

5-1-1.51 PAGE 2.7

otherwise

correctly
value. Note that this allows t,a*bxcu to work

: :valuel.number? :
t"value if value is numerically less than valuel, otherwise
EM,i Y . Aote that this allows "a<b<c" to work correctly."

o > .: : valuel.number? :
lt'value if value is numerically greater than valuel, otherwise
EMPTY. . Note that this allows "&>b>c" to work correctly."

t"
valuel.number?
value added to valuel."

- .·viluel.number? b
i"valuel subtracted from value.

,* a : number? .:,
1"value multiplied by valuel."

,/ c :valuel.number?
1"value divided by valuel."

mod .; :valuel.number? :
rtvalue modula valuel."

01 p
t"...the integer part of value."

of p
tu.. .the fractional part of value."

*exp

T"...the exponent (to the base 10) of value."

mma
: 'lau,r' 1

T if value < 5 then (0 - value) else value.

<other numeric functions which are stored as attributes>
sin, cos, other trig functions etc.

To List
rExplain
:first :. o + :: :value.list .,

value.word? ,>
f . ,# , :value.list .

value.word? a
olast + e- a. :value.list :

value.word? a
rk I .+ -2 :value.list :

value.word?
;butfirst 4 ne· * :value.list .t

value.word? .
;bf :. ne * :value.list :

value.word? a
, but last * o•- c.0 : value.list :

value.word? ,
bl 4 .6- i :Value.list -,

value.word?
, ioin

rsentence? 1
clist? :
nempty? c

5T1.ST PAGE 2.8

olength i
oprint
: = 4 :value,list
0* , :value,list :
1 · :vallte.list a
>::value.list u

nmakeword :

To String
****This may get filled in sometime

Position
Here are a set of useful operations for manipulating
two-dimensional space. The convention is adopted that "posx" and
"pos>" will refer to position state, and "heading" will refer to
direction state. The programs are written so that the most loca.1
occurance of these variables in the dynamic environment will be
updated. See the program "Spacevehicle" Con informal.dc) for a
simple example.

To Forward
:distance.

posx + oosx + distance * heading.cos.
posy + posy + distance * heading.sin.

To Right
•-ral u
. 61,1 k £ I.

heading + (heading - angle) mod 366.

To Left
:angle.
heading e (heading + angle) mod 360.

Output (to displays, music, turtles, etc.)
To Show

:picture.
"This comprehensive routine allows the picture to be EVALed
and then copies the picture information into the display area
Using either the dynamically available variables "posx",

6 «heaposy , ding", if its own bindings for these parameters are
EMPTY.

Some SMALLTALK Programs
<See INFORMAL.DC for Program Examples>

SMSM. ST PAGE 1

This file is called SMSEMANTICS.DC and contains a semantic description of
SMALLTALK written in itself.
This version was last changed on June 10, 1973,
Use font SMDELEG.PD +:1'.C late file smsm11(44".I

SMSM. ST PAGE 2

SMALLTALK and its Semantics
by

Alan Kay

W A R N I N G 1 1 This is an unchecked version done simply to try it out
for basic taste and compactness.

.To + class! .Do + name
Find

:actions.
(name) in CALLER + class i .Do + activity

To + i :name foe * 2 9 exp.
i Find (name) in CALLER + eXp.

·iname

To Find &:name lain „ 1:context
.context + CALLER

Repeat
; 'context.table name OR context.table.global.empty?

0 1 oe· g. E :exp. context.table name A exp. Done
.context + context.table.global

1 context.table name

To List o# + E:first :rest. iself

infirst = 2 o,- :* 1 :first. tself
! first

crest - c !:rest. tseli
1 rest

rlength w i! ffirst=NIL * 16
1+rest.length

print e, 11 't (" P first.print 0" "0 rest.print AN)"

olist? 4 itself

eval # 'Repeat
I first = ")" . i Done

11 f; , i.value + restneval:first =
+value + first.eval

1 value
****check for VOID message

To Repeat i.program.
CODEFOR iRepeat i clause .eval global message self

To Again 1 EMPTY CALLER.CALLER

To Done i:value. 4 value CALLER.CALLER.CALLER

SMSM.ST PAGE 2.1

To If i: exp * 5 D then

error

:exp irels€ 4 i.>. texp
lexp

"I can' t find a "then U.

nthen .. I.else 2 :exp· texp
TEMPTY

To User }Repeat
Display Read.eval.print

To + self.table.name + message.table.pc.first.
message.table.pc + message.table.PC.rest.
message.table name = message,table.message.table.PC.first.
message.table +message.table.PC e message.table.message.table +PC.rest.

5 1 name,

To : ona
it message.table.name +

message.table.message.table.PC.f irst .eval message.message

To m btoken g message.table.PC.first < H EMPTY
message.table.PC « message.table.PC.rest

TO 4, 1 :clause. A clause CALLER.CALLER.CALLER

To EMPTY i, i :
inempty
1 self

. f self CALLER.CALLER
7 + 1 +TRUE

To Apply ' :t :g :c :m.
(t + .global g .caller c .message m) .eval

To U i:value :destination.
.CALLER e :destination.
i :value

To 1
A :value CALLER.CALLER

To Remember ne· 4 Repeat
i n EMPTY ©t Itself
self :name e :value

DCopy * :! CODEFOR "somehow copy the table"

jeval * i "Do something or other·"

: name ! 0*· . : : value.
CODEFOR "associate name and value somehow"
rvalue

! CODEFOR "Get the value associated with the name"

SMSM. ST PAGE 2.2

To class :bindings,
T instantiate r Remember + .class .class

.global global

.caller self
.message message

.PC bindings
*eval

To instantiate !:classdef,
. Repeat

Pause.
classdef.copy + .class classdef

+global global
.caller caller
.message message
.PC classdef.DO

.eval

To Word
ne. i:first :rest.

i .rest + Word + first.butfirst rest.
.first + first.first.
1 self

yfirst : 3· ., ' :firs
error

t.character :p tfirst
" input is not a character „

Ifirst

nrest 1, i o,- 1 .:rest.character : itrest
Error"Input is not a word"

I rest

.length, 1 rest = NULL * 1
1 + rest.length

oprint p it first.print. rest.print

word? =. ! self

:value. T (first = value.first) AND next = value.next

oeval 4 i .env + global.
Repeat

env.empty? # : TEMPTY
IE.temp + env.table self .:. i t apply temp global caller

message
.env + global.table.global

ACK.ST PAGE 1

ACKNOW. DC smdeleg. f d ack

ACKNO WLEDGEMENTS

Much of the philosophy on which our work is based was inspired by the
ideas of Seymour Papert and his group al id, 1 .

- & 5'Trr

The DYNABOOK (ka 71) is a godchild of Wes Clark's LINC(cl 6***) and a
lineal descendant of the FLEX Machine (ka 67,68,69) .

The 'Unterim Dynabook" s the ALTO (Th 71, Mc 71)) is the beautiful11'in.,in a
creation of Chuck Thacker and Ed McCreight of the Computer Science Lab. at
PARC.

SMALLTALK is basically a synthesis of well known ideas for programming
languages and machines which have appeared in the last 15 years.

The Burroughs 85000(ba 61) (1960) had many design ideas well in advance of
its time (and still not generally appreciated): compact "addressless"
code; a uniform semantics for names (the PRT), automatic coprocesses,
"capability" protection (also by the PRT), virtual segmented memory; the
ability to call a subroutine from "either side" of the assignment arrow;
etc.

The notions of code as a data structure; intansional properties of names
(property lists of attribute:value pairs on atoms); evaluation with
respect to arbitrary environments; etc., are found in LISP, probably the
greatest single design for a programming language yet to appear. SMALLTALK
is definitely '9.ISP]ike".

The SIMULA's ('65 and '67)
coroutines (1963-hardware r
earlier), ALGOL-66, and Hop
epistemology that allowed a
instantiations Cor activati
separate program counter. 1
are held intrinsically as p

combined Conway's notions of software
ersions had appeared in the 85606 3 years
-e' s ideas about record classes (196**) into an
class to have any number of parallel

on records) containing local state including a
ost of the operations for a SIMULA '67 class
rocedures local to the class definition.

The FLEX Machine and its language ('67-'69) took the SIMULA ideas
(discarding most of the ALGOLishness), moved "type" from variable onto the
objects (ala 85000 and Ruler), formed a total identification between
"coprocess d "data"; consolidating notions such as arrays, files," an
lists, "subroutine" files (ala SDS-940), etc., into one idea, The user 'tas
a process" also appeared here, A start was made to allow processes to
determine their own input syntax, and idea held by many (notably Irons,
Leavenworth, etc.).

The Control Definition Language of Dave Fisher (1970) provides many ideas,
Solutions, and approaches to the notion of control. It, with FLEX, is the
major source for the semantics of SMALLTALK. It is a "soulmate" to FLEX;
independantl y worrying about many of the same problems and very frequently
arriving at cleaner, neater to do things. Many of Davets ideas are
used including the provision for many othorgonal paths to external
environments, and that control is basically a matter of arranging these
environments. SMALLTALK removes Fisher's need for a compiler to provide a
mapping between nice syntax and semantics and offers other improvements
over his schemes such as total local control of the format of an instance,
etc.

ACK.ST PAGE 1.1

An extemporaneous talk by R. S. Barton at Alta Ski Lodge(1971) about
computers as communications devices and how everything one does can easily
be portrayed as sending messages to and fro, was the real genesis of the
current versio 4 °MALLTAT Vn O, 0. 0,

The fact that kids we
of the already existi
set a standard for th
surpassed) provided 1
appear as simple as p
gather their own mess
programs look a bit 1

re to be the users and the simplicity and ease of use
ng LOGO ,whose own parents were LISP and JOSS (which
e esthetics of interaction that has not yet been
ots of motivation to have programs and transactions
ossible--i.e. moving from left to right, procedures
ages, etc. It is no accident that simple SMALLTALK
ike LOGO!

Problems discovered years ago in 'tlefthand calls" prompted SMALLTALK to
make "store" intensional--1.e. a + b, means "call "a" with a message
consisting of the token 14.9 and "b"f, . If anyone can make the right
decision for what this means, it must be the object bound to 'ta". The
early fall of 1972 saw an evalualtor for SMALLTALK and the idea that 1,+",
u-", etc., all should also be intensional. This led to an entire
philosophy of use (unlike SIMULA '67) to put EVERYTHING in class
definitions including the so-called "infix operators". The message ideas
allow messages to have a wide range of form since a message can be
received incrementall>

tlontrol of control" allows control structures to be defined. The language
SMALLTALK itself thus avoid "primitives" such as "loop 01", synchronous
and asynchronous "ports"(**i), interrupts, backtracking (***), parallel
eval and return, etc. All of these can be easily simulated when needed.

These are the main influences on our lan,gl
and negative influences from other existii
numerous to mentlon except briefly in the

microPLANNER's main influence was negativ(
that backtracking is not the way to appro<
prefer "trial evaluation" where a "straw i
environment" as a coprocess and constantl:
it gets creamed back to its originator. I:
just discarded rather than backtracked. 0
Fisher's thesis).

tage. There were many other minor
ig languages and ideas too
references,

3 in that it convinced us finally
ich problem solving. Instead, we
9 i is run in a "straw·oceSS"
r sends messages as to how badly
C it perishes, its environment is
\ germ of this idea is found in

The fine idea of microPLANNER (upattern directed invocation"---I call it
"call by desire") does not appear as a primitive in the current version of
SMALLTALK (it was in ST-1971) but may be easily added in just the way a
particular user desires.

******9:19**************

This particular version of SMALLTALK was designed through the summer and
early fall of 1972 and was aided by discussions with Steve Purcell, Dan
Ingalls, Henry Fuchs, Ted Kaehler, and John Shock. From the preceding
acknowledgements it can be seen as a consolidation of good ideas into one
simple idea:

Make the PARTS (objects, subroutines, I/0, etc.) have the same
properties and power as the WHOLE (such as a computer),

This is the basic principle of recursive design. SMALLTALK recurs on the
notion of 'tcomputer" rather that of "subroutine"

A talk on SMALLTALK was given at the AI lab
discussed the process structure and the new
properties, messages, and "infix operators"

at MIT (Nov 1972) which
, intensional, way to look at

ACK.ST PAGE 1.2

Dan Ingalls of our group at PARC, the implementer of SMALLTALK, has
revealed many design flaws through his several, excellent quick "throw
away" implementations -c 'b·vi -e language. SMALLTALK could not have existed
without his help, viI-tuosity, and good cheer.

The original design of the "painting editor" was by Alan Kay. It was
implemented and tremendously improved by Steve iPurcell.

The "Animator" was designed and implemented by bob Shur and Steve Purcell.

Line Graphics and the hand-character recognizer were done by John Shoch.
Ted Kaehler did the "scope turtle" on the ALTO. Bob Flegal (CSL) did the
color turtle on the Graphics Group video buffer (which was designed and
built by Dick Shoup (CSL)).

ttMusic" was designed and imglemented by Alan Kay. Barbara Deutsch wrote
the program to R.GIoinx comoinations of timbre files. Peter
Deutsch (CS]., PARC) designed and wrote a tran<slator for compact musical
"score" notation. Steve Saunders improved most of these programs.

Diana Merry wrote auxilary systems programs and a very nice "software
character generator" and text scroller for the ALTO.

The design and implementation of the font editor was by Ben Laws
(POLOS, PARC)

We would like to thank CSL and POLOS in general for a great deal of all
kinds of help.

Smalltalk Class Outline

March 5-9, 1979

Adele Goldberg

co-featuring Dave Robson as TA

Monday March 5

Theme What is object-oriented programming?

Reference DrafES of Chapter 111 Smallialk: Dreams and Schemes

basic data structure: object

state

behavior

basic processing: message sending

Smalltalk's version

conceptual object: internal and external view

conceptual class, instances, subclasses

message determination

Example environments to organize into objects and to specify the message protocol of the
objects

what are the objects?
what arc their protocols?

[door, amusement park, inventory system]

Example class definition in Smalltalk: class Part

Off-line assignment

choose one from each column and specify the objects and their protocols

bank data base text editor

integrated circuit calculator

animated movie musical performance
telephone network computer
technician's lab PARC

Online assignment [see handout # 1]

using the Smalltalk user interface, learn to use a dialog window, text edit in a code window
(read Handout #11 and print your code window. Learn to use the document editor (see
Handout #7)--using it to do your off-line assignment if you choose.

Tuesday March 6

Theme class organization, messages and melhods

Reference Draf\-0 Chapter W Smailtalk: Dreams and Schemes

state information for a class

methods

pseudo-variables self and super

examples

HashS¢t, Dictionary, Inuentorg System (the class Inventory)

Syntax of Smalltalk-76

special consideration for initializing class, pool, and instance variables

Classes in the Basic System

Off-line assignment (but actually done online) [see handout #2]

goal: do some browsing on-line to find the indicated definitions: watch out for use of self
and super. Try to read the definitions of Stream, Point, and Rectangle.
Read the class definitions for Hash.Set and Diotinnary to determine what they can do.
How do you create a new instance of the class Dictionary? An instance of the class
D Lot iona ry understands a message of the form insert: name with: value. In

executing the method associated with this message, a number of messages to self are sent.
Which ones are they and who holds the message dictionary in which each is found?

Online assignment [see handout #3]

implement a class that represents a data structure for your laboratory inventory.

N)

Wednesday March 7

SubTheme 7'he nitty gritty folklore of files and printing [see handout #4]

Theme Message protocol as a command language: subclassing--why do it,

browsing and reading class definitions already available in Smalltalk-76

Examples

Redoing class Inventory as' a subclass of class Dictionary

Putting text up on the screen (Textfrante)

Thursday March 8

Theme adding graphics

Examples

Making a sketch (BitRect)
Making a movie

Friday March 9

Theme windows and menus

Examples

Making a PanedWindow and a Menu

Two weeks after this class week (Monday March 19?)

Theme process scheduling

(see handout #6)

Example

Scheduling an Inventory Window

R 3 f

"Assume -we have class Part with subclasses Diode and Transistor
defined; The subclasses each have parINo as a field."

ctiocle inspect.
diotte + Diode new Init: ('111914' unique) with: 200.
diode-order: 5 on: (Date new day: 27 month: 2 year: 79).
illoole on Hanct print.
diode Orde-rWititing.
d tod ¢ needed:.
d.U)de haM>McingOrclered.
mode print.

7'Here- i#La dictionarg to be u.sect for storing the parts"

tectitab + Dictiohary init: 5.
techlab insert: 2-DIn56

with: (Diode new init: c# D 1 n56 wlth: 200).
techlat> Insert: 2 T2n45

with: (Transistor new inlt: c>T2114511)Lth: 150)
t€Ghtab lookup: c·*Dln56.

TTO Lget to a -part and send it any -message, jou have to do it
indirectly Lik e this"

(techlab Lookup: c>Din56) onHanct.
Feclitab Lookup: 2 T2n.45) needed.
(teclitilb tookup: 2-Din56) hot\,MantgOrdered.

rechlab

Dlft56

T2n45

Q Diode
Il· Tra.TELE.rof

"Dut you Can not send techtab messages such as tist all parts -cuid
the- nitniber -on hanct. it ts necessary to clefine an object
Inventory that can receive the message. Suppose we did"

teclitab + Inventory init: 5. "notice the-simita.rity-to Dictionary"
techtab aLLPartson.Hand. "list all parts and-thetr number
onlland'

result fortile above dictionary would. be,
techtab

Dln56 200
T2n45 150

DOCUMENTS IN SMALLTALK

CEGJ
Ji__lt- -16-f

Con]
Overview

The Smalltalk DocumentEditor is a facility for creating, editing and composing documents
containing both textual and graphical elements. Documents created using this system may
contain Bitimages (bitmaps), Textlmages (paragraphs),BorderedTextlmages and Headings. The
spatial relationships among the text-graphic entities (Billmages, Textlmages,
BorderedTextlmages, Headings) in a document is totally arbitrary and must be specified by the
user. Completed documents are stored in Press File format allowing printing and retrieval from
the same file.

Philosophy and basic ideas about Documents

A Smalltalk Document is a collection of entities (Bitlmages, Textimages, ... etc)
arbitrarily positioned within it. Each entity type has its own editor that is idiomatic to the entity
being edited. For example, TextImages are edited with the standard Smalltalk text editor while
Bitimages are created and modified using the Smalltalk Toolbox Picture Editor. The message
protocol ttiat an entity must obey to be manipulated within a Document is reasonably simple,
allowing future inclusion of new entities like barcharts and curve graphs.

Creating a new Document

To get started type: Document Editor new defaultdocument.· 'xxx' in your workspace and
execute it, When the OriginCursor appears specify a Smalltalk Window in the standard manner,
except that the width is constrained to extend to the right edge of the document. The Window
you specify is a DocumentEdit.or that is a view on a simple Document that contains: a
Textlinage, a Bitlmage, a BorderedTextimage and a Heading. This DocumentEditor (Window)
obeys the standard Smalltalk Window protocol and has 'xxx' as its name.

Editing Documents

SELECTION OF ENTITIES IN DOCUMENTS:

The mouse and redbug used for selection of entities within the Document. To select an entity
or entities: specify a rectangle containing them by:

1. depressing redbug
2. while keeping redbug depressed move the mouse until the

blinking rectangle is the right size.
3. release redbug.

The entities contained in the rectangle will be highlited.
For the rest of this memo selection will mean the entity or eitities currently selected
(highlited) in the document.

GRIDDING CONTROL IN DOCUMENTS:

The x-grid module is set by typing a lower case "x" followed by a typing the number of alto
screen bits desired for the x-grid followed by a "J'. The y-grid module is set by typing a
lower case "y" followed by a typing the number of alto screen bits desired for the y-grid
followed by a 'J". The gridding specified in this manner applies to all the document level
editing operations that are explained below.

DOCUMENT LEVEL COMMANDS:

Document level commands are invoked using the yellowbug menu which looks like:

nioue

erase

place
cut

paste
COPY
top

bottont

jump
ailitspa,ce

deletespace
Show

Yellowbug Commands.

move: Repositions selection within the DocumentEditor Window. When the
OriginCursor appears,depressing redbug will cause the selection to follow the mouse until
redbug is released. The position of the selection is determined by the setting of the x and
y gridding.
erase: Deletes se/ection from the document and saves it in a Scrap (like the Smalltalk
paragraph editor). The space occupied by selection is left as white space in the document.
place: Places the contents of the Scrap in the document. When the OriginCursor
appears depressing redbug will cause the contents of the Scrap to follow the mouse until
redbug is released. As in move, the position of the entity being placed is affected by the x
and y gridding.
Cut: Like erase except the space occupied by selection is removed by moving all
entities below selection toward the top of the document by the height of selection.
paste: Similar to place except all entities below the top of the final placement of the
Scrap are moved down in tile document by the height of the entity in the Scrap.

2

copy: Creates a copy of selection and saves it in the Scrap.

bottom: Used for scrolling the document in the DocumentEditor Window. This
command moves selection to the bottom of the DocumentEditor Window. If there is no
selection, this command will cause a jump to the bottom of the document.
top: Used for scrolling the document in the DocumentEditor Window. This command
moves selection to the top of the DocumentEditor Window. If there is no selection, this
command will cause a jump to the top of the document
jump: Used for scrolling the document in the DocumentEditor Window. When the
JumpCursor appears it indicates the current position o f the Window on the document
Depressing redbug specifies the new position of the Window for viewing the document
The top of the DocumentEditor Window represents the top of the document and the
bottom of the DocumentEditor Window represents the bottom of the document

addspace: Adds space (in the y-direction) between entities in the document. The
amount and position of space added is indicated by specifying a rectangle (origin and
corner) with the mouse. Space equal to the height of the rectangle is added to all entities
below the top of tlie rectangle.

deletespace: Deletes space (in the rdirection) between entities in the document
Similar to addspace except space is deleted.
show: Redisplays the DocumentEditor Window. This command is neccessary because
some of the commands mess up the presentation of the document in the Window.

Printing and Filing Documents

Documents can be printed by executing "print" with the standard Smalltalk Window bluebug
menu. A PressFile (named 'xxx.document') is generated from the document and is sent to
Menlo, This pressfile can later be recalled and edited by executing: Document/fditor new init:

(1)ocument new fromPress: 'xxx.document"j.
The pagination algorithm currently implimented is unsophisticated. It will split a TextImage

across page boundries but not Headings or Bitimages. If you avoid fancy layout near page
boundaries you may create and print very complex documents. Much work remains to be
done in this area.

Since we do not (except for Cream10 and Cream12) have coordinated fonts it is impossible to
reproduce exact screen positions for text on the printed page. The printing algorithm attempts to
keep the relative positions of entities on the page in proportion to their positions on the Alto
screen. You will probably be satisfied most of tile time with the placement of entities on the
printed page.

Editing Textlmages, Bitlmages and Headings

To invoke the idiomatic editor for an entity simply move the cursor over the entity and click
redbug. When you are finished editing an entity move the cursor outside it and depress any
mouse button; this will return control to the level of the DocumentEditor,

3

Editing TextImages: The standard Smalltalk paragraph editor is used and its
documentation can be found elsewhere.

Editing BitImages: The standard Smalltalk Toolbox picture editor is used for this and
its documentation can be found elsewhere.

Editing Headings: Headings allow one to handset a line of type. First select a character
by pointing to it with the cursor while depressing redbug (the character will blink slowly
when it has been selected). Then call up the yellowbug menu which looks like:

right A HEADING
Left
up

do w n
font

Each of the commands: right, teft, up, and down will shift thecharacter selected one Alto
bit in the direction indicated. The command font requires that you type a number
corresponding to a Smalltalk font number followed by a J. It will change the font of the
entire line. To change the text in a Heading simply type the new line followed by striking
the return key.

4

1--1 EI[3130»rE313«01

tffp239

| XEROX

377,7,

11tl!1
t,f
:2.

XEROX
' ip

/51't

£..:E

lilli
/1 1.

lilli
13*ii
b1t;i
2 2 6 1 2
j3?i?
111,1
11?1,
1tEt.

Alto II/Orbit/Dover (Menlo) Press file printer

Spruce version 9.113 ·· spooler version 9.111

File: ack.tape

Creation date: December 2,1978 1:30 PM

Name: Garcia

14 total sheets = 13 pages, l copy.

XEROX XEROX

ittit

3%92:
ttrti

1*Eb

f
1 lif
5

filli

:312/

1 t*3!

1 1 J i 1

-**&-,*&------#---- -Lv-4,------r, #Mt-e5•„-*#-,4*-im,1«-.7:„*:„=|19.0----#&--dMA-,h= ™•W--W*-4,%«*:a-*%.'h»*--v»'n-#*MIW*,649.--#-*94=w-.44!»v„-99--b,%1w·9*·76¥A,IM*eAEA-:4AwKN€,41:APU:.Ml«*:he.-9-*-rw,va+4%„$2%»,We*e_**du.*€J Wk.
it

Don't Settle for Anything Less

Alan Kay

Salt Lake City, November 1978

For the past seven years, we have been concerned with human computer communications,

particularly in the context of portable personal computers. Our definition of portability is that you

should be able to carry something else too. This is our goal. In 1972 in order to guide our

research in personal computing we made some guesses as to the powers - to getting power and

capacity that would bc available in the package of this size. A person could carry around with him

or be used in the grass or al the beach, or other places. The idea here of course is not even the

aesthetics of being able to use something outside, because of course we don't always do things

outside. Basic idea here is that we want this resource to be always available. So that the person is

able to make it their main medium of handling their information needs. As I said this morning, in

order to take reality into this dream we have over the past five or six years built a number of

hardware and software systems of which this is one. This is a machine whose name started out to

be the Interim Dynabook and it's short name is the Alto computer. We now have 500 to 600 of

these machines in existance. We have used them, they have been around since 1972 and many of

the features on this machine are conscious attempts to simulate features that we believe will be

available in the Dynabook of the 1980's. For instance, this is an example of one of many different

research projects that we have done over the past few years with children. This one has been in

Jordan Junior High School in Palo Alto and is done in the context of learning as research both

from integrating curriculum with personal computing.

Again, as I mentioned this morning, the aesthetic constraints that we decided on early in out

research - we decided on before we got started because we all know what happens - the

compromises that we make once we start doii·ig real things. So before we got started we decided

that first and foreinost in personal computing is that there are two words--one is person and other

one is computer and we have to keep botli of them in mind at all times. In particular, all of our

designs have really started with the idea of a person sitting in front of a display screen, where we

think of a display as something that can play music that is, produce sounds as well as pictures.

Context of somebody sitting there who wants to do something. One of the first questions we ask

ourself is what the probability that we can anticipate this arbit.rary persons need for handling

information. As almost anybody you come to except maybe the manufacturer, we decided that we

can't anticipate this arbitrary person's need at all. In fact in many senses we can regard most

people as being experts at what they do during the day. A kid is an expert at doing what he does

every day and kids are quite different from one another and most adults are engage in work that,

whether they enjoy it or not, consists of skills that have been built over thousands of hours. So it is

our judgement that it would be a hopeless task to try and provide a set of simple tools that would

correctly anticipate people's needs. So the conclusion that we came to is that you have to build a

system that these people themselves could mould into the kinds of tools that they required at that

given time. That of course brings up what we think is 90% of the personal computer problem

which is a communication problem between a person and a piece of hardware and of course the

software. So we started out to build various software systems. All come under the generale name

of Smalltalk - you will see various versions of Smalltalk in the movie and the video. So starting

right off although our intent was not to duplicate paper we were finding it interested enough to find

that it works on paper. There is this funny thing that happens when new media comes in. Guys

have given you something more and they always wind up giving you something less. There is

something almost obscene about the idea of being able to edit text on a computer in a way that you

can't ever do on paper and having it printed out or appearing on a display screen as something that

is unreadable. If you think about that, it is just a little bit strange. So some of our interests were

to not dull people's senses by giving them presentations that were a far away distance from what

their own senses could take in. So we are very interested in human factors and here this slide gives

an example of a page set in a particular font and the next slide shows the same page set in another

font, The fonts are all progtammable in the system and in fact the user at any time can create their

own fonts by simply drawing them in -----. I think that' s the - one more slide. And again, as I

mentioned. the only way we felt that we could achieve flexability in the new graphics was not even

to try and anticipate the people who would straight lines drawn with a certain -. instead what we

designed was a mosiac display. We felt that the display surface of this machine would be a million

dot mosaic display of some kind and instead of building graphics hardware to manipulate this

tnosaic display instead we built the machine so that all of the graphics, all of the music can be done

entircly by software. .So the music and so on you will hear is synthesized entirely by programs.

The only hardware involved in doing the synthesis on this machine is a . D/A converter.

One of the goals of the personal machine - very important is to have enough cycles so that you can

throw away a factor of len or twenty of them without feeling bad. The reason is that you can't

even expect our hypothetical user of the future to write efficient. Well be happy is the person is

willing to program in any form and gets a tool that will work with him. So our performance goals

for this machine are very high.

T'llc movie shows a sequence of tools done by people of various ages and different walks of life.

And ends up with a glimpse into a future of Smalltalk programming. You notice I'm not going to

tell you about Smalltalk language tonight. I will just peak your interest, I hope, by saying that

Smalltalk does not use as primitive concepts the idea of procedures and data structures. ---. If that

interests you please come to a session tomorrow and we will tell you what a programming language

is like to design these procedures and data structures.

Movie.

Comments during movie: Here's one of my favorite tools. This is done by a 15 year old. This is

not - I would not consider this person to be all ordinary run-of-the-mill 15 year old. Ihis is about

the second program he ever did- Hand radio * and was frustrated by circuit, diagrams so he sat

down as a second project to build an illustrator that would allow him to draw the circuit diagrams.

Notice there is a menu down at the bottom of the screen that is shapes that he can pick up and he

is going to pick them up now, Pick up a resistor and putting it in - pick up a battery. You will

notice occasionally where the pointer is will appear a little menu that has special features on it like

open and close docs and erase and install(?) . Every once in a while it will flash - so that has little

tools that he needs often. The reason- il is one of my favorite systems is that this program is done

by a 15 year old less than 10 years ago a Phl) thesis was awarded for a system that wasn't as good

as this. Shows that there is some hope for software after all. This is also a very short program in

Smalltalk - about a page and a half or two pages.

This is an example of a typical tool. I claim that most people who want to learn to use personal

computers arc already interested in something else. And are seeking a way to maximize their

W

enjoyinent in this field they are interested and minimize the pain. Most of the tools that we have

seen people do are ones that follow that philosophy. You can he can float the text in - he is typing

it in and it is positionable right now so now he has finished the circuit one transistor receiver.

Here is another. This one is a philosophy major at Stanford. This is one of my favorite cases. We

have him in the Summer. Adele has been working on a book, of course she has been putting a lot

more work into it than we have and she wanted to generate some errors so we thought well this

person has not written any kind of a program at all for seven years and he has just learned

Smalltalk, we'11 let him program up. What is this is is a Masters thesis done by a girl at Cal Tech

for describing circuit diagrams in LSI. Little language. So what he has done is actually

implemented an entire sub-language in Smalltalk and has asked that he now draw three of these

nangatesm at different size in a parallel array such as you need to lay out a circuit board. The

heck of it was that he did all of this in one week, found a number of bugs in the masters thesis

which was never actually implemented. And generated only a couple of errors and deemed the

project a failure for that reason.

You might wonder how you create a musical instrument. Here is a picture of one. If you were

going to Blake an instrument in front of your eyes, time goes horizontally. This is a graph of

multiple parameters in time and the first we are drawing the amptitude. Nice soft and slow rise in

volume. Now we are going to change the spectro characteristics - just drawing a little graph that

says make the drawing a little more complicated then level it off. Now we are going to make a little

bump in the middle section between the two bars which repeats over and over again and get a

suble vibratto. Now a final parameter is sort of a general tonal family. For instance, here is what

these families sound like as a wood wind. And as a kind of a bowed string. Again this is all done

by programming. Actually done three years after the machine was built. This is just a specific

example of the kinds of things we do in Smalltalk - here's another one that is almost like except

right zip to the last instance when the output gets translated into pictures rather than sound. This

System was done by some professional animators who visited us for a summer. They did four

systems in Sm'alltalk in eight weeks. l'his is the last one they did - Lhey did this in about two weeks.

So we drew a little picture there and we picked it up and put it on the mouse and showed a path -

you can think of this as being just like playing a musical score with a clarinet tombre. Now we are

Single stepping the path that we just drew - of course the interesting point in any animation is the

47.

0

contact point. Again there is no hardware to do this graphics - very important. What we have

done is replaced that bottom-most frame with a fresh painting window without picking up **

painting. You can think of it as being laid transparently over the frame we have there. Watch as

the painting goes in and gets * in that bottom frame in real time as the animation proceeds. You

can see why animators would do a system like this because this is one of the most frustrating

aspects of animation - it' s knowing whether the animation is going to work, Now sitice Uie specular

reflections put in there will be enough holes to make it appear as though the ball is deforming when

it hits. This system done by the animators is the most used adult system by children. This 12 year

old girl has added some features to it and made use of it for her own purposes. You should be

able to do at least this. Now we are taking a glimpse of a system done by a graduate student who

is actually helping to design the next version of Smalltalk. What we are going to see here is

grabbing onto a corner of a triangle and dragging that side around and the triangle is following

because it has been constrained to stay together. This is a programming system in Smalltalk for

dealing with constraints. Here we are looking at two views of this triangle - the one of the left is

the picture form - the one on the right which is exactly equivalent is the class of constrained

triangles. You see it has parts of various kinds and has a number of constraints which say how the

system as a whole is supposed to stay together. Up on the top you see an information retrieval

system called a browser. What has been retrieved here is a document consisting of text and

graphics whose parts have been mutually constrained. In fact it's in the form of a table of values

and a total and a bar chart. Of course one of the annoying things of any kinds of documents that

have pictures and text in it is when somebody edits the text they fire going to change the picture.

In a constraint oriented system what you would like to do is to say -Well this numeric value - this

slot for a numeric value here - is constrained to be proportional to the height of the bar graph and

vice versa. What he is doing is changing that - as you can see - one of the figures in the total that

is connected by constraints -- saying go ahead and do it - connected by a constraint to the last bar

and the constraints system settles the two constraints - one the height of the bar and the other the

total. In fact they are mutually constrained as we will see in a minute. The importance of the

system - now he is changing the total and we will sce what will happen there . .In some cases

changing the total, if that were an equation, it would make sense to change all the numbers that are

feeding into the total - since this is just a sum the constraint is only one way and whatever you

change the number to it has to spring back to the total numbers above it. Now he is reaching down

and grabbing on to {he top of the bar chart and notice as he drags it the number that he is

connected to is changing and so is the total as he goes along. . The other thing that is interesting

about programming constraints is that most of the programming can be done by simply combining

separate elements that have constraints on themselves and the system has to figure out what the

entailment of all the mutual constraints means in the system. 1 think the next example shows that.

Let me explain the browser a bit. To read the browser look on the left and scrolling a whole bunch

of category names - he is picking one and that immediately retrieves something to the next window

on the right- he is picking one there and browsing through a fairly complicated information

structure - there are thousands of entries. Finally pick out a blank slate here to show an example of

constraint programming by instruction. The first * that is picked up is an element that is called bit

point line. They're sticky. When you get close to two parts that are the same they stick together,

Notice that no matter how he pulls out the line there the point iii the center always stays in the mid

point because it is constrained to do so. So now he's made himself a quadro-lateral, now what he'll

do is through these about a hundred different graphics kinds of objects that you can have he has

selected out another one which is just a regular line. Notice how it jumps when the end points get

close to something that can connect. If you think about the intra constraints of the system built like

this are quite different from the constraints of the parts taken separately. All bit point line has to

worry about is to make sure that the bit point dot goes iii it's bit point. Think of what happens

when you connect a complicated system together each of which has it's own set of constraints as to

what * should be. In general, those constraints will entail that the system must figure out a new set

of behaviors for the system as a whole. This is something we are very interested in because it's

something that naive users are not very good at- In fact sophisticated users are not very good at it,

if you've ever tried working with a typical operating system. Now, he has made a quadro lateral

and connected all the bit points - all of the math teachers in the crowd should know what he is

going to do next. There is a theorum that says that you always get a parallelogram in the center.

Dragging one corner of it. By making these collection of parts a whole the system has had to figure

out not in what I would call an artificial intelligent way, but in a straight forward way ·- notice that

the theorum is true even when you pull the quadro-lateral inside ouL Using the constraint system to

show the kids about geometry. Here's another example. This is a graphics calculator. The

calculator pait is down below. This is a version from fahrenheit to centigrade and vice versa. And

again ** are much mot'e fun. The system will work with either numbers br thennometers and the

little diagram down there has whatever number that is there multiplied by 1.8 and then added to 32

and as he drags one of the thermometers the other must follow, If you are wondering what the

T /7
11

CA

little anchors are there he does not want to chaiige the constants with the equation when he

constraints to satisfy. Grab the other side - * they work in groups. So this is going to be one of

the futures. Video tape shown here. Here is an example of a window - you will see various

windows - tile window contains text - there is a very simple description in Smalltalk of what

windows are. In fact all programming here - there is text being typed in and in real time the lines

are being justified on the left. Now some text is being read - a little menu appearing right where

the cursor was - remember the kids program had that also and the PUP command was invoked. So

you think of in any of these systems all Smalltalk is programmed in itself so all of the low level

systems programming stuff - so this is almost a command-less editor as far as text. Now over on

the left you will see a scroll bar. Notice what is happening. The square box shows where you are

relative to the text and by dragging on it you can jump your way through the document. Any piece

of text can be interpreted as a Smalltalk program. Instead of saying paste or cut we say do it. And

Smalltalk calculates the result, which is 7. Now we move the scroll finger up lo the top and the

text goes back up to the top of the screen. Adele is pointing - these two windows down at the

bottom here are port holes to other project windows and pointing to one we get a different set of

screen windows. In Smalltalk there is only one description per text, no 'matter what the contents,

whether the text is a docuinent or program or something else the use carl expect that the same

editor will work with it. But windows can have other things in them. Like here is a picture and

when we went into it we got a different kind of menu which is a drawing menu. Up on the top

there are all sorts of different tools - we will show you a few of them. This is a system that was

originally done by a professional artist. Here we pick some gray paint - if you like the idea that

you call sketch as well as doing rip snorting computer graphics type stuff you will like the idea of

the sketch and play with the design.

Here is a tool for drawing around a thin line blacking and the message here is that you should be

free to play around and do the kind of doodling that you can do on paper as well the very

crystaline things normally associated with computer graphics. Again, don't settle for anything less

than this, because it's what you need to not have to tell kids and adults - you can't do this or you

can't do that -' and I say why not. you can do it. The stuff was all possible six years ago. Now we

showing various kinds of tools. One of the. messages of the computer is not even in the gray stuff,

You can edit it and change it and you can get rid of it, One of the significant differences between

it and the media we are used to. Now we show you some of the ways of combining graphics with

-13

what is already there. Overlaying - underlaying. This one looks like an overlay but actually is -

here we pick a slightely different paint and you can see it has evolved ** . Here is one that just uses

what is there as a mask. Here is a demonstration that anything that ** anywhere can be used - ·not

as a picture but as a brush. Draw in the flower, and pick the main brush command. Brush appears

over to the side. Now she can paint with it. That of course can be stored away in a repertoire of

brushes. Here we are picking numbers and these numbers refer to the grid. So now she is painting

constrained with a certain grid. This is not a feature of Smalltalk. In fact as you wit find out

tomorrow even numbers are not a feature of Smalltalk - numbers are an extension to what

Smalltalk is as a programming language.

Smalltalk is actually a programming language whose basis is that of communication. Things like

numbers, simulations and drawings and all of those things are done as extensions to the kernal

language. We figured that would be the safest way of not anticipating what people were going to

do was to not try and guess * features in. One of our main docturnal points, if you will, is that the

power of a programming system of any kind, of any kind of a computer programming system is

determined almost entirely by how well it does in areas for which it does, not have features. Think

about APL is wonderful for trying to do * but try to do ** with one of your own functions. We

designed Smalltalk so that the kernal really doesn't have any features except the the ability to create

communicating inscriptions. What Adele has retrieved here is actually a document which we are

going to use in a funny way - she is copying this heart into the first paragraph. Documents in

Smalltalk mean a lot more than regular documents in text. You can think of a document in

Smalltalk as really being an organization of windows in the * information space in Smalltalk.

TiimmiriS tile top of the heart and drawing a smaller one. Cut and paste metaphor is one that we

use in all of our editors and in fact most of the editing commands for text and for graphics are the

same. Much alike as we can make them. Cut out a piece of text into a shelf that you can later

retrieve you can do the same thing for any picture. If you can edit a brush for a picture you can

do the same thing for a font character. Retrieve the font character as something that fills up real

quickly in the linear way or you can treat it as· a graphic entity - the reason is that because tlie part

of the self doesn't know what a font chat·acter is. You can see the menus appearing. Now she

copies in this last picture here and tells the system to do something funny with the document which

is to rap it and swing it's way through the document showing everything at the top of the screen.

Now she says run - getting animation. Now what she is doing is copying that heart just like she

00

copied the-text before and now moving-the one that she had put. on the shelf back in - now paste in

the one that she just copied. p Changed the order of the heart and she will tell the system to run

again. Goes over to the * picks up the filled in heart. Whjen you are dealing with entities in

Smalltalk almost everything you do, even when you are doing stuff in Music as" we will see

tomorrow is always really in the context of retrieval finding things, browsing for them getting

entities that you want and then editing them into the configuration that you are after. Now we

going through another window into a more involved document . Demonstration to show you what

it is like to make a page of fairly reasonable text and graphics with a little twist of the hand - here

is the document and a number of windows. Zoom in to the information. Picture of a mop which

is obviously going to be used in this. As you might have guessed, all the other tools that are

available in the Smalltalk system can be brought together in any one of these project windows and

browsed through one of these * ports. So the first thing we will do is to change the font from the

script font to a much bigger font and make it bold so it will look like a heading. Next thing we do

is grab all the text in the next paragraph and choose a Timesroman font of a certain size and

boldness in order to make the text more legible. In fact as Adele mentioned in her seminar this

afternoon we have had occasion to learn about five year old eyes, ten year old eyes, thirty year old

eyes, and fifty year old eyes. Fifty year old eyes for one thing do not look at the display the same

way as some of the other age groups do . This font was a font done for fifty year old eyes.

Underline a few words in there. Come down to the bottom and do the same thing to it. I think

the first thing we do is just change it into a bigger font and now go over and make the '0's even

bigger, cause that was said in the text was for and make them look bold. None of this stuff I am

showing you is a feature of the Smalltalk system. All facilities added as extensions by users. A lot

of these that have to do with document layout and so one are ones we have added ourselves, But

we have used techniques developed by professional artists who have written their own programs in

Smalltalk that are adaptable. Adele is picking up a buttertly and wants to place it in the text

System animates the butterfly down so" she can see where it is going to go and she wants to place it

right there. This whole page of text that we are putting together is all about butterflies and moths

and how they differ from each other so- we obviously have to get ourselves a butterfly since we have

a moth in there. In fact there is a butterfly hiding under this moth. These windows on the screen

overlap. Whenever you point into one it comes up lo the top of the screen and occasionally you

can include so we can choose a menu under which will bring up anything that happens to bc hiding

and lo and behold there is a butterfly hiding under. there which Adele is going to paste in. Notice

we have not typed during this whole demonstration except for the very beginning as the text was

being entered. The reason is that typing is not the best way to give commands in general *a

graphics display. It's much better to have context intended commands. Some things you can't see

easily because we are not showing the hands or the mouse. There goes tile butterfly. But, the

middle button on the mouse in this particular system is context sensitive to a particular window in

the area you are in. So that when you are in a painting window and you go to the middle button it

will give you painting commands. When you are in a text window it will give you various kinds of

text commands. Musical window - various kinds of music commands. The user can rely that they

will get the menu and available options by simple pushing on the middle button even when the

mouse is outside the window. Here'S the twist in that after all this ts a simulation system and we

don't want it just because of the paper. So why not antimate the butterfly - cause that's what they

do most of the time is fly. So any document in Smalltalk system can contain animated - you can

think of documents in physics and so on where * your explanations that are running simulations be

evoked at any given point. We are going to cut off the video tape right here. Another sequence

after with similar context. That's a brief tour of the kinds of things we are trying to do. I'd like to

conclude with a few remarks. We ourselves are not in the educational business. Speaking at least

for myself and 1 think for Adele and many people in our group we sort of * when it comes to

education. What education is is a social process that a whole bunch of people get involved in if it's

going to work at all. Education is the kind of process that any kind of technologist from the book

to the fanciest computer games only magnifies what is already there in the social process. As an

amplifier the computer is the greatest information amplifier that has ever been produced. In a poor

social process for education different uses worst stuff in copius quantities I have ever seen. So my

plea here is - there is a tendency to get involved with gadgets because you can pick them up as you

set at this new class at your desk. The problem is that the problems are not in our desks but in our

heads and we need to work these out first. I am going to tell you a few things I think we have

tdarned from our experience so far. I certainly don't think we have solved the personal cornputing

problem at all. we constantly, 1 should say periodically -'go off - the whole group of us to a resort

for a retreat and sort of poujnd into our own heads that just because we enjoy Some relative success

that we have to keep on measuring what we are doing compared to what we wanted to do when we

started this thing six years ago. That is one of the problems of a long project is that you

occasionally forget what it was you were trying to do. What we have right now is by no nicans the

[Dynabook - either the hardware or the software. I hope it's in the ·right direction. Here are are

some generalizations that I think ate a little over-simplified but maybe they will do some good.

First we believe that everybody can learn how to program and without a whole lot of effort. In fact

we doing think its remarkable that people can - particularly children. So we shouldn't pat ourselves

on the back cause kids can program and stuff I believe that it's * humanity to be able to program

or to be able to construct any kinds of things. Human beings are basically constructors of one kind

of a thing or another and programs are just another kind of construction. Second children about

the ages of 3-4 have written subroutines in various langauges we feel that the implications of what

programming is about, that is,the power of the machine and the generalities available don't really

grasp children's imigination until around the age of 10-11. Adele pointed out this afternoon that we

really haven't looked at enough people to make any kind of a statement like that except at a

banquet speech.Most of the successful projects that we have done have been with kids from 11-12-

13 **** I have some feelings as to why. A thing that came to us as a big shock a couple of years

ago after we had been enjoying some success was to suddenly discover something that is really

obvious when you think about it and that is the fantastic difference between programming and

designing. We sort of knew that - but not from our gut That is an incredibly important

distinction. While programming is easy - just like brick laying is easy it.is not everybody who can

build a house from those bricks. Not everyone can design a house and not everybody can build

one. One of the characteristics of many of the users that we deal with is that they arc interested in

other things. We feel that design is - while programming may be a 15-40 hour skill as far as

learning the mechanics of it - design may be a 1000-2000 hour skill. I believe this is one of the

essential difficulties in making personal computing a reality because right now with the level of the

fraction we can talk about systems most of the useful tools that the user is aiming for want to use a

more complex to make a design. Shucks. Really tough - one of the reasons we have added the

constraint program becuase it is a way of bridging some of the gaps of how do you get users to

design archs or the equivalent of.them in programming when they haven't heard of arches before.

Programming is by no means the most important the most useful interchange of having personal

compujting - there are other ways of using iL We feel though that always you should have the

opportunity to program and change on any personal computing system that you are using. You

should always have that opportunity , Even if irs * most * somebody else's text editor and

information retrieval - by God if you want to change a picture in it there should be a way for that

personal computer to allow you to do it. So I wrote down five properties that I am Willing to argue

about or in the act of personal computing. 'Iliey are in order of what I call distinctiveness.

Unfortunately the first one is the most distinctive thing about personal compuling is the enormous

allention spans that_q>yabod*-ha-noticed. The great uses of it in tile next 5-10 years - may be

only because it has a great attention span - the equivalent of 76 troinbones - you don't need it to do

music - but boy is it fun to see it marching down the street. Second, this is somethink tliat I don't

think anyone in computers feels ashamed about is what you just saw on the video screen is the

editing of everything - text, pictures and Inodels is both the most indulging past time 80-90% and

one process for which personal computers will find value far beyond * media, Just down right true.

Third - modelling and simulation are to me what computers are all about - not worked out as well

as the first two I have talked about. I think there is where the ultimate content iii using the

machine lies. Modelling the siinulation - building to capture like to have done for thousands of

yeag iii speech, hundreds of thousands of years in text for just a few centuries iii mathematics and

a few decades on the computer evermore dynamic ever richer models that we can manipulate this is

how we grasp our own universe. We can't touch our universe · our brain is the thing that is doing

the thinking. What I am doing here is not touching anythning with my brain - I have to convert

whatever happened here to all sorts of electro impulses and things that aren'l wood into something I

can perceive as something else. Always dealing with the media - learning about media and learning

what reactions happen to a single system I think is the most important content related area in

commputers. Fourth - the elimination of distance by computers. What I mean by Lhal is in a fast

computer like this looking at it as a space - it is a space that is only topological - not metric. III

other words the every part of space is the same distance from every other part - not constrainted to

the linear relationship of the text but that we can organize things in far Inore complex ways than we

used to iii books. This is poorly worked out - and again very important. Finally - I Lhink the most

subtle use and most subtle value in interactive computing is the** human iniplicalion. [think

probably everyone has noticed that what we can take in aside from touch and smell and hearing -

there is an enormous sel of bandividths comapred what we cominunicate ozit with. This may be part

of hurnati beings fading to mciP-Rije 2111 this wonderful new information flooding iii all of our

senses but the best we can do is sing. We can hear aboul cues but we only sing one line * - we can

see enormous distance bill our ability-to paint and so on is severly limited by out- own physical

auributes - this is why I beleive human beings invented symbol systems to gr<isp far more than they

can communicate thi-ough the kinds of noises they can make. One of the things we have noticed a

little bit that is very· very interesUng is that very often iii the classroom sonic of the experiments

Adele ran is Llint when a kid wants to explain something to someone else amd very often iii our own

4

lab a person likes to explain something to someone else they go to a'machine. Why do they go to a

machine - because there is a model there that wilh a few simple commands or waves of their hand

they can cause a whole display to change and invoking bandwidth that is not much more closer

than what a person can see. I think of that as an amplifier of the ability of humans to

communicate with each other. A way of matching up the inadequate output bandwidths that we

were born with. One final thought on progress and technology. One of the principles I have used

as a guide when thinking about personal computing is a musical intruments. I used to be a

musician a long time ago and still interested in it. Musical intruments have aeslhetics with them

that computer people would do well to follow. Nothing more * than a flute or violin - take them

anywhere and play anywhere. You notice about a Mute and violin is that there is no language to

input - or output imagine what it would be like to play something serious on the flute where there

was a 2 or 3 second lag. Equivalent of the musician going to the concert hall in the afternoon and

playing a concert and going in the evening to hear what it might have sounded like. That's absurd.

However there is another analogy of musical instruments which I think is very constructive and that

is by and large most musical instruments most musical instruments were invented as prostlietics -

not invented to make music per se but to make up for perceived deficidncies in the human voice.

Making a lot of noise at roman stadium...making a lot of noise in a cathedral - in fact these early

musical instruments were far inferior iii many important parameters - like they couldn't even say

words the range of * they could use were bad. Back in those days the musical instruments were

worse than the things they were replacing except in once trivial thing and that was they were

louder. Over a long period of time - hundred or two hundred years there were lot of interactions

between composers, players and musical instrument manufacturers- Musical instruments found a

value system of their own where now today they are not prosthetics but amplifiers. That is what I

want to see the destiny of personal computers - amplifier - not prosthetics.

XEROX XEROX

Alto Il/Orbit/Dover (Menlo) Press file printer

Spruce version 9.200 -- spooler version 9.200

File: metaphors.pap

Creation date: April 20,1979 1:29 PM

Name: adele

7 total sheets = 6 pages, 1 copy.

XEROX XEROX

J

1 .

One way to design a programming language is to expand into the pocket universe of the
computer simple metaphors from the world of human experience having to do with structure and
time.

For instance. we know a bit about how atoms can be structured into complex molecules and this
might serve as a model for a very construction oriented language like USP: heavy on connexion
and light on control and protection. On the other hand, we know that living material, the most
complex structures in our experience, require much more than a molecular bonding philosophy in
order to function. Tliough it would be presumptious to imitale that which we do not yet
understand, might our designs still be fruitfully guided by some of the metaphors of living material?

It isa conceit of Western Culture to believe that the dissection of a whole into parts can reveal
many of the secrets of the whole. When combined with an appreciation for the way new properties
appear as parts are combined -- such as an arch formed from lowly bricks -- our Western conceit
has been remarkably successful. We need not congratulate ourselves unduly on our insight, since it
appears that in a universe not obviously controlled by a ... deity, the parts of wholes require
considerable autonomy and limited interactivity in order for the aggregate structures to work at all.

A bidogical cell is a structure with more on the inside than on the outside. In fact, these
organisms expend a considerable percentage of their energy and activities in just maintaining the
distinction between inside and outside, Where almost all of a complex molecule's structure is
exposed to the ravages of any environment in which it is put, a cell only exposes a small part of its
structure: its cell membrane, a fabric specialized to keep all parts of the environment except those
beneficial to the cell away from the more delicate structures inside.

The cell membrane also keeps the cell in. 1nside is a miniature sea, a primordial soup which the
cell keeps simmering to make more cells. There are recognizable para within a cell. Some, like
granules and a host of organic and inorganic molecules appear to have a simple relation to the
entirely. Others, like the milochondrial chemical factories and genetic material are so intertwined
into the life cycle of the organism that it is difficult to fruitfully discuss their nature in isolation.

When a cell divides to produce a twin, the least important of its conslituants. the majority of its
cytoplasm and membrane, is simply increased and shared. Its most important parts however, the
nucleus and mitochondria, are copied as exactly as nature will permit. l'bus part of every kind of
cell are closely similar structures which link their destinies coupled with parts that are those of
individual cells alone.

The potential for differentiation within a fixed heritage is enormous. Every body-cell in human
beings has the saine ancestry, yet has let itself be differentiated by chemical messengers to forni a
marvelous variety of specialized tissues and organs to make up creatures which for the most part are
blissfully unaware of their inner majesty.

If we think of a computer as an environment in which time, space, and structure can be
fashioned, and a progrimiming language as a vehicle for describing and building complex dynamic
structures, then metaphors drawn from the most complex systems we know can be very helpful in
guiding the principles of the language we will use.

Let us consider a universe consisting of wholes made from parts. Each part is a whole in its own
right. One of a whole's parts is a boundary which determines the interaction of the interior with the
environment The interior consists of parts. Some of the parts are shared with every sibling of the
whole. Some parts are rather inert, others are constantly in process, maintaining the interactive
relationships between other parts that keeps a particular whole whole. Wholes can communicate by
sending other wholes to each other. Communications are accepted or rejected by a whole's

boundary. One whole's assumptions about another whole have to do entirely with expectations
about the kinds of effects and return messages invoked by an initial communication.

A language is a medium for communicating about a world. Though it will be structured by the
relationships of that world, much of its form will have to do with the 1jnguistic range of its users.

For example, humans find it useful to make up figurative objects called concepts which, though
only their instances can be pointed to, seem to help greatly the task of describing interesting
formations. The arch is such a concept. If we step up to a natural or man-made one, we may vainly
search high and low for the object: archness. All we can find is one of them, and an agreement in
our culture to call such things: arches.

Another widely used human linguistic device is the statement consisting of a description of one or
more performers in a scene of interest followed by a description of their action or inter-relation.

There are many points of view from which to judge human languages and it would do a
disservice to treat them too lightly. But here we are not concerned with the ways of humans or
biology, but only what we may draw through superficial analogy.

For example, let us consider the use of positional notation and its influence on vocabulary. In the
natural development of vocabulary, we might guess that the tendancy of humans and animals would
be to make up new word-noises for each concept. In animals such as monkeys this seems to be
exclusively the case- In man, there is a trade·-off between either making up a new word or trying to
find a combination of old words which will describe the new idea. The social advantages of being
able to describe new ideas through those ones compatriots already understand are obvious.
Nonetheless, the uses of position and metaphor grew hard indeed- We find, for instance, in Latin
and in the Roman numeral system a fine disregard for the advantages of position. The heavy
inflections of Latin make word-order a stylistic. rather than a semantic, issue. That it was difficult to
add Roman numerals, and alinost impossible to multiply them, was no doubt regarded as a useful
feature by the calculatory unions of the time, there being no better methods then known to give
them their leave.

Mandarin Chinese, on the other hand, is a language innocent of word-inflections, in which the
aspect of meaning a word is to contribute to a statement is selected by its position in the utterence
as a whole. For our purposes, English, particulary the colloquial variety, is a language much more
like Chinese than Latin. Today we can say: "It's a new kind of clean!", be understood, and escape
with unrapped knuckles in tile bargain. Though English still has word-inflections for number and
tense, we may feel secure about following the Chinese model and dispensing with them all. Of
course, languages which give up word-inflections are likely to have many more statement-level

inarker words such as tense indicators, prcpositions, articles, and the like. 11iese tend to be small in
number and uniformly used across the language.

We also need to consider style of description. For most human purposes, concepts and their
instances are discussed informally through their boundary appearence. When someone asks another
what a house is, the description given back has more to do with the goals of a house rather than
how one is built. Parts of a whole are most often described by giving their relationships to each
other rather than how the relationships are maintained. One reason for this style of desciiption in
natural language is that the universe was here long before and much of our discovery process was
first just to describe what we saw about us. It is only in the last few centuries that we have made
any progress with the hows.

In computers, we start with a proto-universe in which space and time are yet to be described,
photons and field-laws are creatures of our imagination, and everything which exists must be built.

to

This is why early computer languages have been imperative rather than declarative in style. Though
constructive descriptions are much harder for humans to deal with, they have been and will
continue to be the lingua ./Panca ex machina until better ways are found to translate cool
declaratives into the bustling imperatives of the machine.

A language system which required a prior understanding of the philosophical principles of
physics, biology, linguistics, psychology, and theatre would attract few users. The trick in designing
an easy to learn programming system which can grow with its users, is to find simple, easy to use
forms and a few abstract ideas which contain both the simplest expressions of a novice and the most

subtle descriptions of an expert.

Our approach to teaching a programming system is to get learners to build their own systems.
Much of their early programming deals with using and modifying already given forms. Grammar is
learned gradually and informally.

Since teaching consists primarily of finding ways to let a student learn, an essay is a poor vessal
indeed for teaching: one pei·suades rather than teaches.

< Examples >

What Can be done by Dinking Around

CHASE and Spacewar

Retrieval/Calculation

Queing Simulation

BarGraph and Browser

Layout/Document/Editing/Fonts, Pictures, ...

Language Principles

Finding

By supplying the actual whole:
By supplying a name:
By supplying a statement:

3, 'this is text', }
a, x, Turtlel,

3 +4, Bob's Father's Age, ..,

Grammar

Phrase ::= { Literal I Name } {sel

set

sel exp

set set

set exp set

sel exp set exp

set exp set exp set

4

a+b*c

a+b*c

a+b*c

Concepts
Meta-Concepts

Viewing-Editing
Naming-}ronarning·Paths-Finding
Messaging: Whole I Message, Whole I Message I Reply-Catch

Merging
Offspring·Twinning
Defaults-] nitialization

Relations

Control

Exceptions
Events

Concepts
Quantity-Location-Movement
Collectior

Summary of Useful Metaphors

Notions from Mathematics:

Relations

Spaces-'I ransforinations-Points

Notions from Physics:

No action at a distance -- messages are sent/received

Local effects have local causes

Time is information flowing through a boundary

Observer/Observed is a symmetric relationship

Notions from Biology:

No action at a distance -- messages are sent/received

Wholes made from Parts which in turn are Wholes.

One part is a boundary which protects the inside from the outside.

Some parts are rather structural, others are process-like

Some parts are relations between other parts

Notions from Linguistics

No action at a distance -- messages are sent/received

Positional Form

no inflections

Statement wide markers

Subject-Predicate

words as .symbols for concepts with aspects

Notions from Computer Science:

Information retrieval

Graphics

Domains, travelers, Decorations

Notions from the Psychology of Complex Skill Learning

Learning by doing

Learning with others

The 1000-hour skill (paradigm learning)

Short-Term Mem: easier to learn a few abstract ideas than to learn a lot of concrete

ideas.

Design as a central metaphor

6

Stage Learning: meaning as: action, image, and symbol

Creativity: a retreat to earlier stages

Learning without remediation

Spiral Curricula

Notions From the Performing Arts:

No action at a distance -- messages are sent/received

Theatre: stage, scene shop, plays, performers, ...

Performer: costume, role, script, schticks, ...

Invited Paper: Session 3: Programming By Non-expert Users

Infolech Slate-of-the-Art Conference on User-Friendly Systems. London (March 28-30, 1978>

Ideas for Novice Programming in a
Personal Computing System

Alan Kay
Learning Research Group

XEROX PALO ALTO RESEARCH CENTER

Abstract

The scope of the Learning Research Group at PARC includes most of the
topics of interest al this conference. I will treat them in a slightly different order -u·-
and with a depth which reserves the most detail for my main subject of user
programming.

Personcll Computing. The initial section is a quick precis of our motivation,
work. and relation to users. 'Ilic fii·st series of figures will illustrate some of our

experimental hardware and personal tools programmed by novices in our system.
Inleractive Novice Programming. My main focus. The text is an explanation of

out strategies for dealing with users and a general description of the semantics of
the personal computing systems we have designed. The figures will illustrate a
variety of programining tecliniques we use, 311 related to the uniform metaphors
of editing and search discussed in the text. A general simulation kit and
experience with adult novice users is covered next, Following this is a brief look
at some nonprocedural programming techniques we currently employ.

Conclusions covers some of our feelings aboul the place and values of personal
computing in 1979.

l

Personal Computing
'llie Xerox Learning Research Group is concerned with

human-to-personal-computer communication, particularly
for novice programmmers. Our approach has been to
envision the personal computing system of the 1980's, the

Dynabook, as notebook-sized with enough computing
power and capacity to carry out its owner's needs in the

world of information (Ifigure 1). 7'hough the hardware for

the Drnabook is difficult enough. the major problems
which must be solved arc software related. The center of

the personal computing problem concerns communication,
description, and leaming -- all "soft" problems, and our

chief pursuits [Dynabook].

Over the years we have built many versions of a

personal computing system called Smalltalk, occasionally

collaborating with other groups at Xerox to develop

experimental hardware on which Sinomalk can be tested.
In 1973 we started to use the desk-sized personal computer
shown in Figure 2. Now our focus is the equally powerful,

but portable, system shown in Figure 3. The personal
computing systems developed by Xerox are interconnected

through an infonnation network used to provide
communication between users. servers (such as shared

information utilities and printing), and other networks
\Slitalitalkl

Smalltalk does not use the usual building blocks of
subroutines and data-structures as do BASIC, FORTRAN,

and PL/1. 1 nstead, everything is built from active

communicating objects, organized by inheritance of
behavior. Smal/mlk's semantics has been somewhat

idealized and simplified for tliis paper. (The actual
semantics of Smalitalk-76 is similar but less unified that

given here). All examples in this paper were programmed
in Smallialk and directly photographed from our display

R/)9-1&:C'dry Elf€45 -41& U--#+)

r 44(.,r ,<tuoty3J *'Ei22;Z:%
, = -trit »73'. fi#2

k.- * f' 4.- U} :€402*- 318

39·2 : 2 - 46

P:+T':2*933
-1 fely

a

.Mi

Figure 1. An appearance mode of the
notebook-sized Dynabook of the 1980s.

WA/36©%41al. -:

R¢92% 1

Figure 2. The Xerox PARC "Alto•• Personal
Computer.

ENT=312 /#7'3939'i ¥,· .42+ 9
f##39 «2 1 „,g tA '
t./;3FUel---27

1 4 Et€*t#

4977*i
e:12«i*

2/%1/ e/: ' .=a

., 2-22.Tf*445**
=======C,# 4r77

-, L

333
i.:1 :/

screens.

We are particularly interested in three aspects of this
new metamedium: first, how can media be formed into

tools such as the systems shown in Figures 4-7: second, we
are interested in the nature of descriptions - and

communication: and third, we would like to learn how

:6*4€4.4,

3.A.0.,>@*1*'2*9933£2'* A*Wa-ted»3·93*2% 4= .23.Ji
,1. a«,2 -*.9 -7- 1

422¢01 4
*3*086.

Figure 3. The Xerox PARC "NoteTaker"
Personal Computer.

people may be taught design skills which enable them .to

shape their computer medium.

Interactive Novice Prograniming

1-he traditional differences between interactive control of

computer tools and the programming of these tools have

rarely been resolved in interactive systems. Yet, ever since

Joss in the carly sixties, the only distinctions needed

between direct and indirect control/programming have

been the amount and the kinds of delay between

specification and effect [Jossl Thus, we feel that a
programming language design is properly part of the user

interface. -

The problems faced by a novice programmer parallel
those of a person who has books 211 over the house and
wishes to have a bookcase. He may see an ad for one, go

to the store, find that the bookcase is just right, and buy it.

Fortuitous and satisfying. Often, though, the bookcase is

not quite right The buyer illay decide to get it anyway,
refinish it. and adjust the shelves to fit. If this is not
possible, the next level of strategy is to find a kit which -
has much of the hard work already done yet still allows

the builder some options. If no kit is available, many

people would quit and go back to orange crates. Our
resolute subject is brave enough to go to a lumber store to
purchase materials and a manual about sewing, fastening

and other properties of wood. In an extreme case (c.g.,
when a fancy veneer is desired). new materials must be
constructed and the amateur must subcontract the task to

an expert or must become more of an expert himself. f
All of these situations will arise in a personal computing

system: it must contain facilities for meeting each difficulty

which range from directly usable tools, to "kits" and r
instructions. to raw materials and theoretical knowledge. In E
order of greatest return for least amount of work, users ;
must learn: to characterize their current need, to browse for

and recognise a facility that possibly meets that need, to

use it, to mod* it, to fix it, to combine it with other
facilities in a kit, and to make a facility from scratch.

The strongest technique we use is that of enforced

Oass.,

DAYD IN UZE

\\

179'= C.. 4
\ ..7£-

DAYS IN USE

CURVE GRAPH DOM

pen-=U n. 1. A narrow, terierally cylindrical
implement for wriling, drawing, or markiug,
con©ining of * tbib tod of graphim. 91700. Or

- similar subxtance encaped ln wood or bald ia *
1.7'2- pl=ac ·04 metal mechankal device. 2.Sernethin, sbaoed or "-1 :,it 4,·41;i

..1.:..I

DAY: IN tmg- -USE J.2
32--;4- p U./<*=.

,=&=Suppors' 231 · 0.*AN= ZEEN.....
aNT,ov=. --F--71

'E=12=5, 2% - =1:&ESS TO PARTW :42
ME,--I-"-I-"I'll ds...AL.-

'Cun5* Ruj,gr # '

-

4.98c B •81•= Itt•a app•419# £Ul:•6 2 t

12*1314 .. Suft.*U#';S u Ehis. lmS*4.
1Of·In '41S;*;*'W211:04,n) eff«1:.ff•c. £tq.peday: o.pr-

for* I =: sgt Inah ao-
; (MA) &16: (pi + oran) •ft•cu .ffic"=Pp¢def 'Upir=

Figure 4:A-B. A typical Smalltalk screen
showing overlapping viewport-windows.
Included are views of formatted text,
illustrations, curves, documents, and
Smalltalk resources.

OVEFLAPPING 68 fint d.wn as ir &4 wer# 653.-2
819*1 By beginning with tr=.p
obled: it U easy to pee if tbey h...0

•r-=-==C-- , r-i -: . M,-• "|. f. cotrectlydr*wn- 1. the finisbeddriwi15111(Gal/IN:441•11,11 lubli objects,i,·ilt becx,nect:ydrawm- ·- -
fa = =Irl Irl 24• le# ul)©fi- +

- - 2/64 1311,4 .

M .1/1 Ly,+i*atzc.fli-* ';i a

29614*1-ALFI,g: j«<i
t·;. 6349.t**4?ta«u,eA *4125021€h/22217

Figure 5. An illustration tool initially

designed and programmed by an adult artist.

/%4

analogies. 11tat is. we try to make every kind of material,
process, and programming technique look abstractly
similar. We carry through this fiction at every level of
structure from the atomic to the architectural. 'The hope
(for which we have seen some evidence) is that the
additional burden of abstraction this "artificial chunking"
tactic puts on the novice is more than repaid in the
novice's ability to cope with many more necessary facilities
than an unaided short-term consciousness can liandle. In

designing a language we wish to limit the forms of
descriptions, but not their range: we want to crystallize a
style of programming, not just arrive at a syntax for
expressions. -Though we scarsh for ways to make our
personal computing systems more abstractly simple, we
don't teach our languages axiomalically. but through
examples and increinental changes [Teaching]. The learner
gradually notices the extreme uniformity of the system and
begins to rely on guesses derived from concrete experience.

Stripped of their metaphysics, every Smalltalk language
design has been concerned with how to deal with
infonnation organized in the form of parts-and-wholes.
e.g., dictionitnes which relate part-names to their active
meanings. 1-he first step in the development of this model
was to give each dictionary-object a separate inside and
outside. Users of the object can deal with a never changing
virtual organization fi·om tlic outside. Programmers of the
Object can, from the inside, change methods for carrying
out its vinual meanings at any time, as long as the external
behavior stays the same. The distinction between inside
and outside means that users must Col?11111£,licate with an

object to get it to do anything. Direct absolute commands
no longer are possible: they are replaced by queries
tendered in Uie form of messages. Objects from the outside
thus act quite like digital computers in a "communications
network and are neither data-structures nor procedures.

Since there are many more objects in the universe than
are contained in any one dictionary (save the universal
dictionary), every dictionary can be thought of as a Alter

that selects some objects from a universe and rejects most
others. The "insideness" and "outsideness" of a dictionary-

= i: 1.ifff>32.22.-....--.-:.tj:***4:04
7 16¢:r,54 W ta·3¢6%6%rf*%79
r I [*':.1 4*343-J..4-41

4 42 /-1.._-_A.Kes/EF-/_.

422:5;*-I .
- 48%,>u-23>0-*M

1»0112ld& H HINJOH „.--: ::- :4212.421-' r:-142-
MEMI*»-29=0== 0-3336¢_€O=350?9283%

Figure-6A. An animation being co
a 12-year old girl. She is combini
with a rider to be animalec
background painting.
*7·fbt"5t2-3*293'de·14»*

49616»1*.69.255*#00
E 4432>f:x€020»yor......:.:exe
;- 2*NI

L-=2EF===

"4./Aft-*/4*ympe.:r :··1·hy»

;:93: rt:,·EW.:9 g'*k- -.n 2 - I -1 2 JAZE· r: ?h ' h ;
.- 5 <r n hic le: J.334:

Figure 63. The finished anima

*'cosar tor Wdne!:10% 14,47 2119/91
i .1/.2,14:Let/!" /4 }A/L

lum,- __111 11
M 4 4 -&%7.

fuor,23¥'junner
r:na= rans(ratilm t¢01 Cars Nes 49 approi now· or/1 +
Par,»116:·for 6,57 41„.·
ker T: CPI:,4-rant cuc· 2049 for Et,Op ke'
Thu=414 frrim22 1979 -*...
133Ii-15(KI: >•air r. tenly
15»-17» Fuu=.
y,· € TO·,<14 6 1¢1195?-4>·«cra k
303: 1<·trh G·.tip,ha N 3/ ir

-***' FG..6 F:tr=ru 231379 ***+4

18©0*,855: !,2,int t,irhj·
W' 1 LFP Stul
L·W NION) 451
I/U Mi crac re IC class 257# IM act Whed Cef from K

I lili 5.../.9 /25//Inj 24 079 *•••I'
Ploull'

....• 5.....i fcbracrw 25 1979 ..• **,
*••*0 Metal T brillru 26 1929 ,•*+0'
0 pme r« 4590: a rn: t 1.151VT SI:irt E/4,-'
icagill.'IC'&/*ili:/rEZIEE

6 : 1.0'Lk h.·1 14"l t» 41 MI . p·Ue; 4 5 01 r©EX. r. IWI
• *• •• Twaa,

DC©-1*:lt:d.%='weet;rs. c'ARC·
WA.w 1/,?Cluu. 4'13©T: ar-9 At. Kn.¢ Ivfr'
Coth c. CUT> f. putip wnul©W'

** *** Wgar/.3/u 14*nuly. 7. lim ***3,1

a,0.:Ust- 1 9

90*%12 4%

#

i

34©4»3.Di
247(*i» i

20**r#
E=Es=£619
>15*/55«t

mposed by
ng a horse
1 over a

9» 42«44/

tion.

ib#t'.26 1* M:*,

i·rne

P...
Wn= prneress

rance
Crnt 142>··r pct,8

I-/-1 ¥0·I
a»t taw

ell T.'St I 1/«
*0 f.*U'¢ a $44+

.»10 1.<'Wy
me,£ rn¢nu -

Figure 7. A personal calendar program
devised by a PARC laboratory facilities
manager.

object is itself constructed by filtering: the outside is
portrayed by a filter that suppresses internal organization
for a simpler external fiction.

Filteiing pr()vides an excellent mechanism for

developing interfaces of all kinds. both to the human user
and to other objects. Because every dictionary-object is

ultimately dealt with as a picture on the display screen, it
simplifies matters to consider every.object as inherently an

image with a variety of default and user-supplied ways to

display itself for perusal and editing. In Figures BA-B, we

see a coinplex object in process being viewed by three
objects: two are display-vicwports. The different kinds of

viewport-windows are developed as 'analogies to basic
descriptions which contain methods for locating·themselves
relative to others. Ench view of an object is constructed by

filtering. Ilic filters are not out of the ken of the object
because edits passed though one view that change the state

of the object must be continuously reflected back through
all the other views of the object. Tools for user interaction

with :in object such as menus can be constructed as a filter

on a dictionary which visually suppresses the meaning side

of entries (and most of the entries) of an object. Pointing
at the name side of an entry with the stylus connotes

sending a message to that entry. The entry can prompt the
user if additional parameters are needed.

Filtering is also used to provide meta-levels of

description structuring, ranging from low-level parts,

wholes. and messages: to inheritance of properties, to

meta-building blocks; to kits and applications.

If the entries in the internal representation of an object
can refer to each other, then a perfectly general systems

network is possible. We can think of an entry as

containing references to the name of the entry and its

meaning. The meaning of an entry is thus an object which
can be shared (it can be contained by other entries in

other dictionary-objects). This parts-wholes semantics is

also used by the external representation of an object but,

as mentioned, its details may be completely different from

the object's internal strategies.
An important property of filtering is whether the

outside

0

inside -

filter

vitindow-side

L. filter_

ibject4

display

Mf° -gaJobju:20
viewport-side

Figure SA. An object being viewed by three
other objects.

*0.C-,Ribr,94.W Me «

 -' 20:'tarl' 37 i 39 1 N 1 35 f . - - - M'.4-ILM 91;W' A 1351 31 1 *2 40 =.1.tsy :ai && i „i ni : - E-. - ... - 31,
64:1·q,wr•- 47$*91461/91 3.
23 14/* 171 491 461 49 1 __ .
5 1,¥Iw· •71 491 42 1 46 1 t.
r homt· 44'•SI¢21451 7 .r 'te

M l'od,imou' •• /46 1 42 1 461 2:
- !'- 'F:a 44 1 46 1 39 1 42 1 15 .UZY2411421391421 3 -IE
2 110,Refic 47 1 42 1 39 1 42 1 ,

4urnaon' li t 42 2 36 2 32 2 5 - T.puuMS' 39 2 3624!22 39 1 2
d ' 14 **44 ' 46 I 44 1 42 1 I izi
1 ·fUsna79' 4,142'.1,39, 3
4 2-1-_ 3 3 33 }Fl 31 911954««imaa. -47*41t#.

1 *M&%5& 21.313932/73&5*0*431/W#
i

i Mmu '62 29 2 18 ..2.773,244 14'bu:9 -,721+4g,Der:rm.«44.-wy#

3 *6#2 /1% 1 :34<Ltj ..7 i" for-0"3.59310*,5/VA#%.t-
1 82:/4/ 9.9#4923*1514**4*094"4
 'Li AW i J 2-. ft D o./124'>»€f·.9-©*Ad#)-12LTit

-=2==lk., 1=06If'·'21 1211.1.·••'«12§·.4yIi»,t„

Figure SB shows multiple views of a musical
score. The right·hand viewport contains a
score with its menu-controlled editing
interface. The left-hand viewport shows the
same score but in its default view as a
Smalltalk object. Its menu is in the left pane
and selects a particular entry to be seen in
the right pane.

object description which
serves as a class

instance 1 instance2 instance3

Figure 9. Deriving instances from a
prototypical class description is an identity-
changing filtration.

obje

/7. identical fitte,-2':
V 2-1

$64 %428

filtration is -scvere enough to completely mask the identity
of the fillee. For example, deriving a new instance of a
class. Figure 9, or a new subclass inheritance, Figure 10,
both create distinctly new objects. An identity-preserving
filtration was shown in Figures ZA-13: multiple views of a
musical score presented through different windows on the
display. Identity-changing filtration facilitates a second
level of systems structuring: ways to describe the kinds of
objects we wish to gather together to carry out our wishes.
A successful framework we employ is to use filtering to
create new objects that are dynamic analogies of objects we
already know about- All of the notions of instances of

classes and (inultiple) super- and subclassing are ex:unples
of such filtering. 'llie analogy filtering mechanism permits
differential programming. that is, programming by saying:
"... 1 want something just like you. except ... ". System
designers can devise far-reaching object descriptions from
wliich analogies .may be extracted. Having these
descriptions already in the system is a two-edged sword.
On the one hand, users do not have to invent classes for
numbers, interaction windows, schedulers, and the like,
every time they want to use the System. On the other
hand, the possible great number and variety of furnished
descriptions requires that a much grealer attention be
given to providing ways for lisers lo brows¢ 11],vugh them.
Otherwise. a large preloaded system full of promise but
difficult to wander through will be considerably more
trouble than a stripped clean but easily understaiidable
version.

rYll object acting as a
31 "superclass": e.g., it

may have strategies
for containing images

··subclass" filters.,

how to contain how 1, h?w to Contain
il

documents text paragraphs inustrations

Figure 10. Object descriptions which Serve
as classes can themselves be composed by
filtralion.

.A%1 Strutn-ret:r-cararD·' m aoss(,Ch=lon---f 22ZTEE f
5019 and DEI Sdii.winimP . 022$01=11.:£10· F-=ri,#ir-*,,

%9332)¢as' 11@221* 522132-
.em INot48•4014
422 777 1%7#5: - bfi
7-na• ' 2 2 151ntAW:n:40%0
'Priynixwt Acniess· 1 42*4,9
'pre FU SupFore 1
»jt44:ZLirl#12 W;URrot.ga'nly* ck-'

I.Cm= A· moks--
r yyiumPan* / Syswn·.Pan¢ ne·w. dIMP/ne + ClaSSP>an,, ri,»- .4ZO%,Agm©7RZM wi. sel/clorpar, + $¢(gtorpw,e ng*

S.f 'Wic. 'Cl=ses
¥09: *99/.AML. *061'1/0 i org#, t¢t¢c#F.I. Iiating> - ·
4: S=T®rn»uws.

:6*476*: --+
cy:tan!:ru co: aassew. 44*Pant frumt 6,%*rAPAIW ,©: Mgpch#. 2 -

==2 1-: 6236'02* 10: SiNg¢WrPan.. 64¢4*ft/41* frorn. organ, =I
CmeD:B2/»Croffane. 91-2 4.-
93.7(7 4.u} 4 019-:t I

Figu re 11 A. A Smalltalk resource

"browsing" window used to peruse the
Smalltalk system itself.

I tiesssystemcategories organization
prolotypicat- class
class names interface

nage containers 0 Jontain teekiA illustrations

instance" filters

666.66

Systems designers themselves have considerable

difficulty in devising an epistemological framework in
which a small number of basic concepts can cover most
user needs in models that the designer cannot possibly
anticipate. The tendency is to admit more and more
concepts to the system, regardless of their possible overlap
to already existing ones, The result can be greater turmoil
and complexity (situations we were trying to avoid at all
costs) requiring better "help" and browsing assistance.
Figures 11-15 show a variety of browsers derived from the
same basic description [Browsers].

$ 0
.

I 7

A.....

a particular
message-method entry

Figure ·118. A diagram of the dependencies
between "panes·· of the browser. When a
list item iS pointed at with the sty[us, a
retrieval of the next lower category is placed
in a dependent pane.

1 (Inly»...t041'N A./.-+..
114001!nzic<k

t: 4 W.'ket - 1,/ 3.1 '1./in,4
23 k.h K Ir'm:-=,C-:™ r3:Igh<lu.e.- 1--- 1-aur,·*lb«*ule

f..1 8,€ Truck ne·'w slarlAU 0
k.h•€Il,!e= <11.pulll,-ille lig
unfrom.· 1 to: 4} a.·tir'/721*
walbint.

.--==6==20U€2:lc :»T'*' --

Figure 12. A Smalltalk bre
been filtered to suppress m
system orgonization. This
constructed for a simulatio
adult business managers.

·ln-wrr

1......'. F:'<4%-IFIT-411 ·arwir·
,r-*"IntMnT.tr/ 54- 0, • '60,6!ra

£=12==--glf.II 'EF
41,74'fule
4€Point
Kt'ltiS

}
/ /77$.»' 733<5 J

2A8 2.6 21.•s / / 4.g7/ I -/ In.

Figure 13. A Smalltalk

browser. Programming in
done by editing pictures o
More examples are given

a'*441.1)0-
<in« « 410 -
-tz==216,1,3.2gme-r" A,

6
kn.3 1 47
M,cht 8

bnet

<X.E.'

I *#*
<life-iE--1

Figure 14. A Smalltalk p
browser. Plans are constrw
diagrams which can then coi
of the future.

Since most novice user's short-term memories are

salurated by the newneSS of it all, it is paramount that the

design of the systern, and the introduction of novices to it,

should carefully deal with just what a novice user's short-

term memory should be saturated! We have chosen editing

and search as the candidates for saturation. Editing is both

the most indulged in pastime in interactive systems, and is

a prerequisite for using or programming any tool. Search is

the other activity that users are always doing. They search

for desired effects. ways to cause them, reasons why they

didn't happen. and how to fix them. Our system designs

have attempted to find ways to pennit everything else the

user may wish to do, including the programming of

arbitrarily coinplex behaviors, to be learned as metaphors

of the two simple ideas of editing and searching for

dictionary-objects.

To summarize, several levels of structuring have been

discussed. The first includes the ideas of communicating-

obiccli parts-whales. insides-outsides. :ind searching-Jiliers-
editing. 71ie next structural level used the first level to

provide objects thal act as prototypes from which new

objects inay inherit analogous characteristics.

More levels are possible and needed, A third level of

structuring is to impose sharply orthogonal properties on a
small number of basic prototypical objects to provide a
rich domain for building simulations. As an example,

consider the following three orthogonal prototypes. First, a

prototypical object which represents spacial lor locative)

characteristics can be the basis for a wide variety of further

descriptions, such as numbers and other algebraic systems,

composition and setting for illustrations, documents, circuit

diagrams, musical scores, animation scenarios, and

programs themselves. A second prototype embodies the
general notion of travefing in a spatial ddmain. Examples

are a constrained numeric variable, a cursor in a document,

a paint brush in an illustration. a player in a musical score,

a role in an animation. a process-point m a program.

Travelers may employ elaborate strategies in deciding
when to move fi·om one location in a space to another,

and what to do when they arrive. A prototype which

F.,31-4-Jul. 0

cut

1.=*.

4.19
ado
ca 'Ir.el
doll
recia n:9·
act-p:

iwser which has
est of the actual

browser was

n "kit" used by

;frhow,-»re.ac

Uy Ews=m
&=nra

r' O./.Lth,

44'rum.11-11
#fat:.

7\!%
ZED

ietational-object
this browser is

f desired results.
later in the text.

r - - .-

./11

lanning system
zted by forming
itrol simulations

4-93

(A) 001"diut J' P.*fdhi 2
war: 79

supplies a third dimension to this model is that of a

deroration. This is an entity which is not strictly necessary
for the trip of a traveler through a space, except in a zero-

dimensional-forrn (z-d-f), but when present. greatly
enhances the journey. Examples are: a phask·ul-dbnension,
such as length or weight attached to a changing quantity

(z-d-f: a scaler): different ope-fonts in a document (z-d-f:
a default font): tone/color and termre in an illustration:

the timbre of an instrument used to play a score (z-d-f: a

pure sine wave): the costume of a role in an animation (z-

d-f: a dot): the particular praginatic-primitives employed by

a program-interpreter, e.g.. one way of carrying out

arithmetic orders may be much faster 'than another (z-d-fi

a "one-page" interpreter>,

Kits are the fourth level of stnicturing we use. A kit is a
further filtering on a domain which greatly focuses its

degrees of- freedom to a particular goal. Examples that we
have built in Smalltalk for novice users include kits for.

arithmetic. algebra, and geometry: document editing:
drawing and painting: music: anunation: and

programming- At] of the above can be understood as

Specializations (filtrations) of the three orthogonal
prototypes mentioned previously. An example is the
subsequently discussed simulation kit we devised shown in

Figure 16 [Kils]. It has been used by nianager-level adults
to build specific application-simulations which explored

and atiswered their questions about complicated situations
in ilieir own biisinesses.

A fifth level of structuring is that of an application, a

system whose use is tailored to a particular problem.

Applications require the least deep understanding by a

user (because most degrees of freedom have been

removed), and are the most difficult systems designs to
anticipate correctly. Some of our more successful

applications in Smalltalk have been a music system for

composition and orchestration, the Smal/talk browsers, and
an information retrieval system used for several years by

our center's library.
Ideally, all applications should be bujlt with a careful

regard to each of the four lower levels of stnicturing we

(B)

1%1 11 9
Derm*#Lijh El fl

{C) 4
.

¥37 £:42 tai=24*24,2

(D)

f Ag* dag in m.wh til .1
. Z==22-Cr 1

Ue>¢a=Y=*/ nona, E- ylf WAmane=

m=49; 'te*il moned;. .EA:5:1
'r!9 Co#Pan,em>exe *cay < er: 4,4 b <lf 2 f»VayinCEBE, 29=ma=j "8""16/ PonANAndo/ mjJK>+ dhy + MA monmday: 01937%·2*El Uservewor'r
01 ilift_i ete

Uau>0»99·r0>Truuf I
.:=?...f.i......4/

79 '*rut,; t *-49

trAK&ca=mifirall
P:. 1 'r

CE)

L 1
process dynamic suspended
history: message method being
being attempted - carried out

I.
1 I

4 -

dynamic niessage current meanings
state 1 oi ent fes

..2 :
..

dynamic state of current meanings
receiving object 01 entries

Figures 15A-E. The Smalltalk diagnostic
browser. (A) Typing a Smalltalk expression
to update today's date information, .{13)
Smalltalk menu gives command "DOIT". (C)
When a condition which requires the user's
assistance occurs, the state of the particular
process which contains the condition FS set
aside and -a "notily window" appears on the
screen. The · user may continue With other
activities. When the user wishes, the notify
window may be interrogated. (D) H it is
"drawn-out" larger, it changes into a paned
window which is specialized to peer into
Smalltalk's dynamic history. CE} The diagram
shows the dependencies between panes.

have discussed. A user unhappy with features in an
application could very likely fix them at the next (kit) level

without having to descend to equally simple but more
at(}mic levels, For example. a kit such as the graphic
simulator can be specialized by a user into a specific

application for estimating solutions to a business problem.
Yet. the simulation application can again be addressed by
the user at the kit level when· changes are needed-

Simulations of this kind have .jobs flowing through the
system that visit one or more stations 10 0 service from

workers at the stations. 'Iliese entities can be displayed in
graphic animation as the simulation is carried out. From
my previous remarks we can see thal simulations of this
type are a special kind of animation. Jobs. workers, and
Stations Bre Iravelers in a two-dinierition:11 space. Their

graphic fonn, Ilicir icons, are dec·orations. Each traveler has
its own collection of directives and strategies which global
events may affect.

An extensive job-shop system was etracted from
Smalltalk by filtering objects already present. Major
facilities used by this kit were:

' pseudo-time schedulers

' prototypes for stations, jobs, workers. symbolic images

' a statistical distribution package for generating
scheduling data

' an animation package

' new display and printing fonts
' a user interface which included

o a filtered browser for manipulating simulations
without having to deal with the rest of
Smalltalk

o a simple editor
0 menus

o a new error window handler

e a reporting facility which permitted summaries
to be gencrated and objects on the screen to

be probed for information.

1 5.I-/btk>!h

1AddC,ple
i==-:

R='tor/tar/'lw=1*"/""*4+ Fou'COF'5*51934 2• ,i-· u =. FI9Wi9 1[»adi€
1 Repair!09-043 53 se; 1 '4 254+222'MFY-%39481 d t.1.31%/ers33*0?.*%= Rd Ere'„Wke)40: C

£*FJM//$#
0:157 com=

mIll.11£./I.L-
tiek
<944
P,Stan

Plt ?i i ff q 41<1.»fffit (19193-ff 3- - .=fTnorog -,<73.3 FIC-?<5 94.'° 3 Ki.9.'*MALig:4'.543#2

4.·Unulation istation .PPORT 9:. WD.lhNiaL# al
ADMS.=2-13tuffing 1242531

IFeature: 'mediumtmck
- 1-2- 21»22 Durabon 1&-0 d'>

13.#i:6*I#... b.b 1Vititei Wahing Paying pri\>62.-I Feaiur€'bigtruck' --

pb addTasks ' Drying'.1 IC©PD·
lundo
icancel
Ideit
lr«tangh

Figure 16. An application system

programmed in the Smalltalk simulation kit.
On the top right appear dynamically filtered
menus tor controlling the progress of a
simulation. Only currently valid commands
are passed through the filer. Below the
menus Is a viewport through which

simulation statistics are reported. Above left
is the simulation "playground" showing
rectangular "stations" and traveling "jobs"
and "workers". A car wash is in progress.
Jobs flow in from the left. visit stations, and
are serviced by workers. Below the

playground ts a filtered browser which only
shows objects relevant to the simulation kit.

37=03

16

ad

A Next·Higher·Level For Novice Programming

Each of the parts of an object is itself an object. Some

of these play the roles of traditional parts-in-a-whole while

others maintain relationships between them. For example,
a scene with two chairs next to each olher could be

represented as three objects: one for each chair and one

that dynamically maintains the relationship next-to.

Relational objects are important since it is a lucky
programmer with a rare problem indeed that does not
need to coordinate the parts of a whole. Both novices and

experts have difficulty with interacting parts. Experts can
generally find a khige to (more or less) make the right

:thing happen, while novices just crash and burn.

An example of a straightforward design that turn'S
treacherous is that of a simple document model (Figure
17). hi the Smallialk programming style. this consists in

making up two objects: the first exhibits the general

properties of a paragraph-sized chunk of information: the

second has the general properties of a dc)Cument itself, a

container of paragraphs. We can build documents by
producing as many itistances of these descriptions as

needed. So far this is what we would call a "linear" model.

'llial is, tlic document does not have to know about the

details of the paragraphs, and the paragraphs do not have
to know about each other or the document that owns

them. Text or pictures put into paragraphs can grow or

shrink without disturbing their neighbors. But now the

user wishes lo display parts of the document on the screen

and immedialely notices that what was once a separable
phenomenon has now become intertwined: when

paragraphs expand on the screen, they clobber the images

of lhe paragraphs below them. This is Mic beginning of the

end for the novice. A place to put in a conditional will be

found for this case, though it will doubtless be the wrong

place, and there will be no global strategy for taking care

of these kinds of part-part interactions. The descriptions

will balloon and reliability will depart.

If the system had relational objects in ils part-whole

semantics, it would only be necessary for the general

paragraph description to state:

: 43(5:4-,- . -59' : SEliflmsilf%19%11&0;Fc54£241*'*514FjilTE

i * *3*:- *9,3/YAWS#Fi¥/M#/ER/13#a
FORM-PAT}HMAGE AND DOCUMENT COMPOSmON

t

My work durlng the lau Ux montbt bas been re:cused on improving t1 imantalk Form-Path-image dj:play metaphoi. Becaute I find fl convenk.'i to aedgn in the con:er, of an actual applicat:on. the malorky *f my =I has been dettoted k buiblint fus,ag the Form-Path-trnage Clas;eledocument ed,led utat Wowl «dismt and inanpulatioh ¥arioUs aext··Eyapt
:diomi in a ari,forte :nanne: Id,ops curiently imi,jemented a:e: heat:1 (like I.ewaset>. Bittinage flooll,cix ·;detures) and •run-on' text (3=1112·puanapht) A lar.2. part of thl. erron bas been to mod:h· *1723* erifyMinaftialk cla*ces <fo, exampie Textyrime became Textimage) se Lba: th
reflect the Form-Patb-Image metapbor. Thix has itc¥*ed al:no
every<ine ib the Eroup m ene way er anithet

It is now pos=ibi. 00 compose a d©cumebt. cont#ining Next. di:play fo:and bit-may> pictutes On an allo *creen. nd without leaving the 154.ElitA-'76.r-ni 81 cotoes »f it 0 -inv An. pr the pmung 5/0

Figure 17. A Smantalk document composed
01 text paragraphs, Ulustration paragraphs,
and others not shown.

Itnt.t

Re.=:/rut'
T/rn'.4 1EZZ,%1/2212 4.:w' -699==-02335ZJ.267&7 1:'¢ ri' pre;. S WE' 'r,:rne· , 14.Trulacks -

./. I. T./.6 'cons'rove

; :ri' r : 4/ .©le·) U.©V./4

----------£2137:1'&51 ¥:W

1 7.127.-
24(41 1

.01£ P

i

Figure 18A. Multiple views of a relationally
described object: a triangle. Here the two
views difier only by scale.

9 want the following continuous relation to hold:
my y = above's y + above's height".

Just how the relational object thus created manages to

maintain the continuous relation under all possible

circumstances is not the province of the user. 'I'he use of

relational objects introduces an important idea for novice
programining: new inforination in a relational form can be
added to an already existing system as though it was
linear. The system has to satisfy it or complain: users do
not have to puzzle out race conditions and interactions for

themselves. The following examples are taken from a
Siialltatk extended to explore the relational programming
of the future [Relations].

An example of a siinple relation is a linkage formed by
merging the endpoints of separate edges together. Polygons

arc closed linkages. If one part of a linkage is moved, the

other parts must follow because they are constrained to be

connected. Thus, a triangle, for example, must always

remain a triangle no matter how il is pushed and pulled.
As a siniple example, Figures 18A-B show multiple views

of a lAnd-constructed triangle including automatically
generated relational code. An interesting geometric

theorem is illustrated in Figures 19»B. A quadrilateral is

formed from edges which have been cons,rained to have

midpoints. If the midpoints are comiccted, they form a

paraliclogram no matter how the quadrilateral is defonned,
or even turned inside out!

In a similar manner a continuous calculator can be

hand-constnicled . from graphical representations of

variables, constants. and operators. The exainple iii Figure

20A shows a conversion from Centigrade temperature to

Fahrenlicil. The anchors signify constants, that is, values

that must remain unchanged as the desired relationship is
calculated. If a new number is edited in on the left-hand

(Centigradc) side, the result on the Fallienheit side
changes according to the diagram's relationship. The

boiling point of water is transformed from 100•C to
212.F. The constraint-oriented nature of the diagram

means that it also works in reverse. Editing in a new

number on the right-hand (Falirenheit) side will cause the

r.:., e pret...·.1
- Par

$/rn: 4 L./
Plm'· 15337
»·5=/0014

Te¥9 I ;Inc
p"¢1: 40714
57'*112· 6/83'

I.VID U LL-:
ri./.7 8033
NA:2=64®37

I.#/·3

FA WN' Frn winn
1001 p""1 f $•213 Pg;rt
T..2 m./2 * p .3 r....3 I

.

Figure 188. More multiple views of the
triangle. On the left, its picture {and the
form in which it was created by hand-
editing). On the right, it S relationally
described codes automatically generated by
the composition process.

1

11 -

„-1
Figure 19 A-B. A hand-constructed midpoint
quadrilaterat being pulled inside out. The
relationat system in which this description
was formed has no intrinsic information

about geometry.

EEZZL 1-J

EEZE]--
d.

Figure 20A. A hand-constructed graphic
calculator. Numbers entered in one side are
transformed to balanced numbers of the
opposite side.

A

E

r

Centigrade side to change. The temperature of the human

body 98.6•F is transformed back into 370£. Dingrains

which have the same behavior may be freely substituted.

Thennometer gauge diagrains, themselves constructed by

constraint programming. can replace numbers as shown in

Figu:re 208. l'he "mercury" in a gauge can be grabbed by
the mouse pointer and dragged to change its value. The

corresponding gauge on the other· side of the calculator

changes in response according to the constraints between
them.

Another example of constraint programming is

"automatic forms", Figures 21A-B. A summary of divisions

of a fictitious corporation can be presented as a
combination of a Labulation and a bar graph. The height

of each bar is constrained to be proportional to the value

in the table.] f either is changed, the other will change in

response. The Total field in the table is constrained to
always be the continuous sum of the values above it. If the
v:ilue of Long division is edited front 40 to 1940. both its

bar height and the total change automatically.

ft?

L -3-=

Figu re 208. Thermometer gauges are

sematically equivalent to textual numbers.
Thus they may be used wherever numbers
previously appeared.

-m

·c·=urr'rfy?A,=re¢z ·21///· bare.!.
=5705 1.** 01 tta<ls +A)/Wt,/41 8=Grailh

{1„=ruT:4*. 'rabl, 01 Flpr ·rn:El™' [-4
W//1 38ELP-i- 44/ rtif·=R · %4&'nk
Ch..

. Ck,/Wink ------4---Cm.gln.
. • Cs-g:tar.:UtledAY·

Const*.fleng=tute fkv;*

E>1,Aic F.¢4. g.

From the standpoint of the novice computer user,

constraint progrmuming will likely provide a way to
describe anct control situations that have not been

accessible to this group of users- There are several reasons

for this. First, constrainls tlicinsclves are usually simple

expressions of desired relationships. 1-hey are goals ratlier

than stlategics, or. as is most usual in programming
bilituages, actual tactical descriptions. Second, constraints

can be added without regard to what descriptions are

already present. It is up to the system to either figure out

how to merge the new constraints with the old or to
complain. Finally, many constrained systems can be
constructed without contact with constraints at all. Given a

collection of diagrammatic building blocks such as

Operators and place-holders for values, constructions such

as the metric converter can be built by simply "pasting+'
together a composite diagram with a layout editor.

To sum up, the programming style we think is most
successful for novices could be termed "results-mode" or

"training-analogies". That is, the.user edits a picture which

Ama;garnated Consokiated
Inx?rporn:4

impUM.Fnen: Stotts!cs

3
W.W, Morukarnim/ D
E·*oc1.5 9-14 Chpnion
tor= D-scm
INC¢4 Pl/.AIRet

Total

nu./.-Il

Arrialgarnated Consoidated
W#fl€,flt.£4

Er.-".. SuiehCS

' ./.tr.:,+I•14€Al.'lly:
1 :ap..,/... i..:- Efk'll
/ Ill' D.'19... ...«4

Figures 21 A-B. "Automatic Forms"

contructeet using relations. Numeric values,
bar heights, and totals are continuously
related.

40

.SO

WME> RSD tD

El

m D:tisto. . .

... 754'

WA.'D RED

J
UP

has as many properties of the desired effect as can be

brought together. Often, as in relational programining, this
is sufficient inftinnation fur the actual program-structure to

be searched out by the system. as in Figures 18-22. If the

system cannot find a way to carry out the user's wishes,

the next level of strategy is invoked. Perhaps the user

knows a way to do a citical subparl. If so, hints or actual
sequential code may be supplied by the user. The system
can use the original relations to check the user'S more ad
hoc contributions.

Conclusions

We think we have learned a few· things from our

experience so far.

First, we believe that everyone can learn how to

program -- and with little effort if the curriculum and
programming environment is suitable. Children are
particularly good at it.

Second, though young children have appeared to use the

concept of subroutining. and older children can accomplish

more. it is not until age 11 or so that many of the
important implications of programming - such as general
1001-building for future use -- Seem to be fruitfully

understood. Adult difficulties with learning to program

Seem to center about finding enough of the right kind of
time per day to make a serious start, and to conquer
"exposure" and "failure" fears.

'lliird, Smalltalk made it quite easy to notice the
enonnous distinction between learning how to become a

proficient programmer and learning how to design useful
programs. We would classify the first as a 10-100 hour skill
and Lhe latter as a 1000-2000 hour skill.

Fourth, we have encountered several iinportant short-
term memory problems.

' Most beginners can only handle a few pages of
program regardless of the language.

· But, beginners can read, understand, and change
longer descriptions written by others.

0 For learning to program, more ground is covered if
novices learn a few patiently taught abstract Concepts
which may be used everywhere in the future, rather

KE
cm?/4:'

...'cru
Pe.130' 11/,3.,4,6
9 1. 1,1,1 'lit /1/4 Fii '1 444,1/
striam . '4!'.Ult I .Grn444
7/r:Tb.:r,4 - ' -- 7,/trns:'-.%--5111 1,/Er,
7/9.0461* 1221

CcnET-7--y'3'9 AUEZZ:m
f ./'al:.:./fWul?

.'-Cn21*

1

./ 0.. 1
1 Or=: 3--

./' 1.0 \\-
-1-1 te/a -

--- -j------- -------Num•41
Amict"hoperty 4flu-ru. 1.tiscrI

.imBEINOI adric tli.ad
l Ka·cor 140/Uw. 6 ... cons:rain

S,t as Saw t# .%* Ele:trial,;Od,

2 Stream t•21ass I€m*1 mei,e Groun¢
4 T*f,Th:ng -------- Imr.rn=.=WA61*2 ,,1„gr

T'10' 4/41;405,«Ct
0277/9*7:PIEFT='5 IKE-d (.[r/'il- 1.".41#*U)'.1

Volm.Du.blerWure
Vei'irT

%

=Iris

--1

Figures 22A-B. A hand-constructed circuit
simulation. The relations placed On the

components dynamically "drive" the circuit:
batteries must maintain a difference of EMF
between terminals; and wires and resistors
must obey Ohm's law.

r D.075 1

' -lr-------

than to learn niany, though simply laught, concrete
ideas which have little range and seem to choke their
short-term memory.

To us, this clearly implies that a beginnefs programming
language should be of a level as high: abstract-, and as

readable- as the state of the art permits.

What values can we find for personal computing in
1979?

Editing of everything -- text, pictures, models -- is both
the most indulged in pastime and the one process for
which personal computers provide undeniable value far
beyond conventional media.

Search. the elimination of distance by connection, is
what multi-indexed information systems provide. 'Ille user
is always browsing for resources. The tyranny of single-

dimensional paper organization of information is replaced
by multidimensional relations.

Modeling land Simidalion are what computers are all

about Only limitalions in current day user Frograinining

prevent this froin being the area of most value.

Amplitication of Human Communication is the most

subtle value of personal computing. Tile input bandwidths
of humans -- visual,audio, and tactile -- are enonnous

when contrasted with [lieir output bandwidths of gesture
and speech. But, complex simulation models producing
graphics and sound can approach a vicwcfs ability to take
in information, yet can be easily controlled by gestures.

From these values it is obvious that we should help
users learn to:

' edit it until it's as right as they want,

' capture their world and learn how to design new ones,
' find out what's been going on, and
* show others their thoughts by bringing them to life.
We haven't seen much adult or child fuar of technology

even in those proverbially technologically cautious adults,
teachers and businessfolk. I would like to point out tliat
most people who are supposed to be afraid of science and

technology arc quite willing lo drive a car in freeway
traffic. To me this shows great faith both in technology
and iii other people! And it suggests. an approach to the

r

technologically fearful adult. 1 believe that

once our field is willing to find destinations
and routes fur teachers, businessfolk, and

other people, which are at least as relevant

to their lives as driving, they will happily
hop aboard and elbow us out of their way.

One final thought on values and
technology. Many musical instruments were
first introduced as prnsthetics for the
human voice: mostly to make more noise

and carry further on a battlefield, in a
church, in tile sports stadium, and theatre.

They were worse than what they replaced
with regard to dynamic range. change of
limbre. being able to sing words, and
general musical technique. G radually,
though. they gained value. As composers
began to explore their intrinsic artistic
worth, they were physically improved and

new ways to think about them entered the

culture. Musical instruments ultimately

became a technology which has brought

great value lo human life -- but, only when
they ceased !0 be used as prosthetics and
instead became amplifiers for human ideas.

This is the destiny of the personal
computer.

References

ID„jabook] A. Kay, Ancroolectronics and

the personal computer, Setent€ic American,

Sept., 1977.

A. Kay & A. Goldberg, Personal

Dynamic Media, Conimiter, March, 1977

[Smalltalk] A. Goldberg & A. Kay,
Smalltalk-72 instruction manual, Xerox

PARCSSI,-76-6, June, 1976

3. Shock, An oven,iew of lhe programming

language smalltalk-72, Coneittion

Inforniatique, Paris. 1977

D. ingalls. Thei smdlltalk-76 programming

system: design and implementation, Fifth

Annual ACM Symposium on Principles of

Programming Lang,lages, Tucson, Arizona,
Jan„ 1978

Vossl C. Shaw. JOSS: a designer's view of

an experimental on-line computing system,
Al•'IPS -Proc., Fall, 1964

[Teoching] A. Goldberg & A. Kay,
Teaching smalltalk. C papers), Xerox

PARC-SSI,-77-2, June, 1977

A. Goldberg. Educational uses of a

drnabook, U. Exeter Symp. on Comp. Ass.

Learning, Exeter, Eng., April, 1979

Ii?roit'sen·] L. Tesler, Personal

communication. 1977. T. Reenskaug,

Personal communication, 1978.

[Kits] A. Goldberg & D. Robson. A
metaphor for user interface design, Proc. U.

11:n¥:iii 12{h Symp. on Syst. Sci., Honolulu,
Jan., 1979

[Relations] A. Borning, ThingLab-an

object-orimled system for building
simulations using constraims, 5th IJCAI,

Cambridge. Mass.. Aug., 1977

A. Borning, A constraint-oriented

simulation laboratory, PhI) Thesis, Comp.

Sci. Dept., Stanford U. 1979

- 4-4

16*ger a,kt /*di-
u . 1ff f 1 4-4(4,4,C /,*flt /06)

- - -l /4-4 »7%· */ a *64
SW arn, 44,- Skid"4175 7

- - f62£11 319290*

MS) -4-9 -reahuna£1 4,4/*ir gpe,u
r F 57411% 4/4,.twhle '»543

Z *,EM)*154 :-*4 aht fie (22,74 -/
8* 5 74-4 J 0 4 e.- Vkvt/2.--

*f-1 - 4. 1 :41< £**42 04# *01/46 Z€t "49
/* 217 5/31 2 oks< 6636
3 . th 5 t> 952,f
-94 696 4.17 0,4-AL

44.37 de€e,4-= *%3 pa/zawu,613-14 /4,gLF £72 26,7227 4£agg»# uy--%j
t

- . i-kiL» AL L 4*·si©J,4'.Aa™+9 _:77.aD?di#11«11

71/49 r-L7,?it 7 f <39 42,U,>U Y
1

01>Y dr, 4.-0, 5*-2.14 4
/4 , T: , °41 rk'v iziet,

527>te,4, 10//.5/ e) 1LAA-/ /4 242/ /90£ a€_,41 deer"424,-'

0- ALR. Art : 1 Di) 5+16611 4
065 6-6 43»44*49&:/ *«,)

45&0110 Drbi'- 6104 0436
64,1,1 cerdr« A-2.€ »

- - 04 ka tele,obm·r + 4&2120'71 0,=fug
1441 ja,u i.*360

152>541/4 /Ad,07*K 0-0
./6.4 'Va3,1 5 / m>724,&9 4fLa k, S »·p

67*7

82- fijACkeA"L,A.r## 4U,4 -4.u" »Jk·,M.*7
-

'--1--- 1- i \

f « 1 KU 9-4/a

A

12 err ate i,66£.1 062 1-ra,+JUr·« 340 r r.6 -,*I-t-. 3 -ZE'a-6,4 »,5.A.de.. Pe,·el/ 7 I.:tr-
YKAY)80-Ge- frel* 3>eer

M-u> #1 se 4*.3- *11- a.ce- rel·t·i ev41_.

' © I' '- I.--· , /¢*«9K«tt,»«-«»4*0*A»AY,

£6 .111 A.. 211 41 A Aj 01. A A< A J¢ 14 10 4, 4. 48 .-R * 96 1·filf . F ..ij JF I T -1- -JL lit, 11111-_JL

-4 , ..1 43612 torltz Af. 4 1 , i pu 1,eJe-<-1
'- .1- .

2-,AY#228 ·parts **
'fr 01>9211 -trick it.eens ariz"-2-2GUil- .1% 4.3

1 4% ual41 F' 'Gatit.$14
19-6 1 1. I rad#55S -

62Wit -Fki)

.F.

1. <R'ds:54 94€rrs04&1 4 -foler»+c...e_
va.-Le

1. Ca·rpa_6405
i Cato-c,z+YA-VCAL-- -- 431'eL

692fi«615©//---

786 45: 1 - 07-AGE Da:U... -3612:,
2. 0-ty. a- ha. O or A-rd. _
3. 0*., 01&2102 ., 17)

i r*r-063 TEN?*t+97......

- ..h,f-49/5 ---41 -4 44%76g f>•,u».4 40 QF
\, 4.«>e_ - 41,4.,44--EA€-r €.Q 7
1. S+11 aR

.3 6 -7

- 26. <<5/J»'"(·09%71--246 =4444*4re 9 0o« (>rder *496,11*f.J
,(49 4444* _4. £1t. 1

IMEA<_342!22 (rEEE6=% lsEct>ir-3 7

l. ka. f'o-r-1- 1,2 e»- e.rdere.,1 -T2 0 Lsh. r ark«el T 7
Al 40> 1.,re Lea-.rtc < A._ - 3. Ar '3 7

1. Gu.brhqdwtoriefinki: 92 64 a_51 r/A -44,44& 4,«.96 14U>
./ I. ' i# . f t©L d 4--neell,u, ard®rs . -litlifFE orer ¥"men

4444464466 66 46 •a64 6.6 da<biots
164*W.----*

-2. Lp,+ Ell_ pa,cls o» ha.d Iyul»4- we,dbr7 0
Le» 20 X JLue 7

54« (Cl*. AD
247·---_ da,fo-M -#4 9 4% Cloteafus:k·sa-

2>i,oh»$7

6(&·t·
M Jkcifi -- -4

A

skE &»82»n- 444 41 42 43

r Wk.h.%9
4,atew, 7

445, ..D T ete"11,1
Ct a.*5

A

-711-*
tu.l

VdXA'£4

Jct S+40--u-

UU-

453 I -1-9/

11_13
.

*t*44 14&25 : M. I 4/741 j 4452·6
, #A Af

-14*16_ 4- sd.- d{4;337 54£14 did»ehl us/lf k,5,4,£0i
2*U-.- - ' & .-..62- 1.-. -I - - . #-.- --

, 0 ¥ ¥ 9 9 4 , 4% 9 'r , *, 1 f ¥ 11 f f f ..r f f fillflf f T f .,f tr 1 f f 'T 1

C\a/55
32(a.ta*-a®

94/14 t-39212_9+21___
t-*

- 1-K 90 : $40,¥vuL- -07 141'L 5 61 s

¥Uk.*r•.LA 4- 4" C-O.rA 4.* 6.3%14 4&11%
36\:24 : 444,2- 1
' 05#titt
6.A+4-

1

461*UL

1-- -

/

31.+4-C. A le-*61' joe

t
frt,·4

Ot)·

6 #161 dk oilk*9411/
sted,e. d.£.6(149+t ..»
-1 4 20+'70·'40

GE·«31 00«- L.fte-:£ 3 cll,165 :

(46'f: 7 jog ,
M/*CS*ityditar, 41 1

1 Botue I Al>,ke. l X
r 9415* _tju

L J . 2-eig staA»,-45 X 79 444 41: Adme *

1 i - h#-13.24 Ynst 92&3111/1 e '4£, O 4 #4412

tce,n.0-4 *Af. vir)4ki _=_--CS -ans#(,5**weels

 1: \s GLi#i-2 241,03&0« ree¥&
-7

f -Ll-_l Al C
vet i 41-- Se-44,1, 44 -kie an jiff. 14 425 - 0512

e.

ir"

i

[4._ <4__244£AJ »ne== -zi>-:n

- I# 3 4, -08\691
-6--sGF---/ 4\Se.stkt

- _ *1-0...*.d_.74 G.A# Dne··e*'t -1 rs 4,3,a»1
,

a dict. 1 -- E-LT> : "'
0 52.92 #41 (23)

- - -- -. o zit
4 0

A i -40.445%0. AL V& 9/
-k ,6,je*+ u - F-

ily.46
8,/ Tf

-. A. = 946), 2 -6,
-

>< u¢_i
._C.e»..2-1¥ie-a-12 .__/,/'1:.r<EtarriGicirriILizE'/ : r-4 -11•2---&4 1-4 tfiL- witi

612 -s-El-2- - - 4 - -
0- -

. IA«a»,1 5·1»"2'

O 1 01*Pll

AL y« *4,9601A/_ 4
.rararg 1 0 .2.,---,4 *.SS€.4 0-

0° r*s:-b.1 -re·N»·¢.4.--

i

1-31 ./ ly i i.lec I .-

4&02Ul,&*2243-321uu,i.£6:.:,i ?, T 1, 3

F UILIZi

i

CD

let«. p 3.:0 1;"\€r- ath*QML_
A v-tut : n(UY7«_ 9

- 11i°of -l.ME=El dE_il / 2311 ° bjact J- C€e.4- tcl© : , 1,
L 33 1

44/ c.-_ 6/F c.»sAA·redO ak 89> . L 9,·•aU kttz- f
J

- 36/ - J.,4 i>Ce«rcrr·-
,cr-44 0-- 1.0 -·'d.e.*ct »Ls,

5 -- Qi./41-_-,-53,4-

4, 45 1 g Cr j
8 '

ib·r 2 2 -|25 :

.Xor 0
D l + 3 4: G

£6: C 3

11- T ff-- 2-fifi*16&42-2 - I- ---Ari-- -iI- Th-: 01 JA ,- 1- -it q
$. -/ -IJ-- 2 2112.-- -- ** .2.2

UAL\qi --2.60./41,1-e---/9*Th+3-«Aliz.1. & -is C#.r-LA+<2.'
+01_ .-4, l-1-.g>*,se5--

eva>1

i

r -11

rrttl + LUM I »0441.t +1)- Lee,n-" 44£- 26 - 1-4.4 4 U»tA.0 6/1/tri --- - - , 1
64 - 6,4-17 4

1

-21-_20·24- 9*-c .Ach Civ_f-,-- - -L- - 4.,„0
3.,t-62.lcase s

Ob-lact + tia;ss 'Ii' 3
*i· s«beltss« 44<3

¢,lAU 4 1414 7 4. 06).7 L

40.42-22 Ca.d>; 0 A 222 ..„.442

45 904 0666 3 (e95 tr- DLe·zth·; 1 i he2.424#Ad gli-!W-. h.-e*Cu••:2 -Ge ..4=-t20 fq)
//. pe-tle* /

64

ed

*.2

2- d*4-hans .4

obhet,- . 2-€4/V¥
1.%, C '974 1.14:

ubk.S€ 0 + 14.4.disa (14- 4- 6,17 Z1[he.*ienuoA-1. A __----_-----
... -221*EIEES----- .„d

1 164

" 1 - •Fie,24.6 U.es .1-._-1 842:

re,4
--5-- *9-sti<*bat._. --*$--1--

. -T - .

•+'41:_602up; '44*Nt_

1 45£,t : n W.-4- , eN
u,*41 1 1 11-„a_

21- Lint_12_»re«Cl-
- - f 4-#644..a.cok

11194 5.€* * a,·, -0:4«2 -*-

41&3£ r*d

£67 cir

464.12* ,A O- 4661459 r

j

42 al.(4_ 061 acts

EL nal'·d»·02-

C .04 1,©Af:)°
5221 5 #AAL/ : i joe ,
31 »»6:t¥11 -24421- Gle k«,12.44 1kuk0 6 <ing*4+ -d-us le,4 y.nsj -" Rk.<rty
Super- SFe©cxQ. 06),c:r

-Super ..75. ·Ing. £ L.* *tul-,_u¢5(*pee -decss: 06©12 k.t,.49
11£5506£EL

;3« »,w: rn1 440: _-rJE itck"¥ 4 10€4¢4 k SAM(* f€51%&
4*« c...# vvuLAo cerl,. 4 36)66+1

03*- tr« cre.jl- 981., 'AL LUC 00 1544AiC£4 +-7'0.0 54·cu- 4*-4 a.bstra,66 LIF .10 4-2
s,-6 C-(44* 3 - 43 4.d-- + LI..64,A.2,ere Jas

-IkkE «2 7-,1,5 42/4-/42(142.El
04 lo o.- Li=60.--62.39 ®Ll»

C-La-55 31,2€21.i D'+ -.
----3-12 i ,> MJect..... 5; /L dds, 1

t. i

- iluos »cA.--1 5 7,1 ,A.717<NKYOW. I

9*09-1.143: -y r os *-1. 2*
Class_ .1 3 -13'tie : (kzns) -- 1 +ss (

S U%, C,4'L»•d. i
44 elits i
Ae_cike...ra 1

b (04/ e-,«oz£:2 . 7*- - -

3 aa- c».v .c.,u£21, -,1=64=--ca., 21 dl,»4-ea-4- s 4 4-Rs€·41.

5162 i .3-pt..-0.st- 4-6-£ alua- 3*m--
thdiL Yivus€325

mir'/- 228•,.4....6.U f
-

6))

*2&4

A-> -/-:c: 1->_..::C > Oa.&KI: :- 1 _.2._slk.-/2„l ./2.../....-&3*....*--aa.2U-.

77 549#6/k' .5261, 4.9
't i J
%9 * lf,lk.rs>44

F.7/7/79/,767
244>,e 0%?ss9%,r) w
72 4*0 k 2 /2¢«lk 1 -

t,&66 -,« 9 2-909 -0' f °6/JMfS,00*09/4 dgi a /4,29 f' 049
11»61 - /7-A 97 931 '.

perif<Wm- ELL/f 9 ¢1*i

£26 : 6*4kbid plk'/ - /777 /°81020/'. 69 444'u,orA 1

&*07 f ;
, . . 2**rju..2 14€w - - ME,wry

&;4.* D«*t2 t/

+ 40&6 Ar rA»wei,21 6 nt-- . -

1 .

CL----- ---- .081--- -2*:€2 3 ---a:'QSS
. - behal,jer ... - r

7 1 - 0778¥07'U
-. -Ix -/ 3

4«>,zat

1 - -,2- 6,)04.41 p#r 96; h79*271.
9 -4.- *0,429 04c &=Ratt•- m
*

. -

* 1. 04 /57/55:*f€: *__ -___ _ _
0--2. ___.a-__- _____-- 4 6074·r /'757 -1 -1/,df /A,21/9

1, 61,12,7 ms= :-- 3 +4·-_:v.,4' c -i. 202£4, 2 ; p,ra/n654,6
W

4 4%&) *4.,07'f 'Patit", (23#5· -7 -<44
44

3.0 : pessa a re49*2.eg- 76 2 7# /W**r)4 42 64«
74?r i 96 49:/0 26: r _7

42. « '04/4-%"r , UlA

4,1747-h¥7 * D0 57€41€0 eij 4

444

A. 4- able£ 444
441

2 4/- 10

44%j 2+c.42 404,7 G*,7 y ¢ .//27 ful=%

'* " use £ At 66***1«8
' ' cad 61 €04 Xf

1 5.21 779,7-1,2..

/ 3 iDA Asr 5/ 1224,te:§
-a, €- 6, /4 V - - e=

04-rH Dilw.441 -2.- . -"- . ek#

66-&7; 444* 044- >4£24
e=

Ydz*° *1: fy»ws rzzi,he 4 .£444, - *n,te.4: -
52*404- rt€5*29 64

*11*e'..22- 040644 - 441- f*449 41424·' -
6% 2•'56" . ..JI.r 2,161.6, 6,7-4(frilia,35 647

\' c•7*pile_ r I

Vt Grk,xe
dr42 *vel

2

f-4.

244+ Or,¢:*00 7-44*07v _

· - - 4€40•. 13%/:Lf eu44.4- 2,«„it KA,o-•.1(As W"t -4jk.644;fed) < 1.
L_-11·hd£2·2211

user» w 004*14_8*P79< de'-,F»r le -1 »rjbf« A,#rklek.-U--..al- V
1 - 16 - art ,tedo

2012 -414-St-
deLei- ' 316 -rt

62.*.6 (:02.ed- 0pg_/. 15..CL:I* 424.6.'LliD dic#- 02£ 6,5.:i #to
5+azf-£ 02ms 61)j I+S,L ALL,1

616&€5. or<§-42 : 5 0-6 1 &'ta 4
- dia he- an 4-4.

210364 erue 036191 9
&103,6 nealkA .
dials_ ho

* .--2/0(Re-16

Selitil- 1420,2,2. rprl,<ta f*ot- 1)_40-2 370 Ir
77Q*urn 46 16*489&; f-Uk 14.- uae«,> 4, -tiff A Wd#+5 en 145"a

k:sa) ha¥ke_ 4..1 ah*em....u-.324 -1 on 4JaJ'Stler f-<elnt,ra-kt 1 _-44.2.44 *,u,1 #Da)2 44_ cuc
Ce-,n'Fi lje_ #

- I. .. /' *A 0% 6- 41 41 401

flafhal»M O f.f» 1,019 990000 4

On 40•14 56.-,uU _6»·45 b.,ze« - a_ 0. a .
S€? CLGf 11- 6.14* 6 24-C.orree;t .-

-._ -0.*AL 'tt 'LA) 61=rj
221/006 a2-idi es./.0

·772 16.= 10 40 -Qi.:ze A- p>Of ufff WRALrul

- E ,w-*,tken-*ra,r,0 + O '
.

2

d>r

37@
User-Vie-*b¤f-29 /41-

210&e <- 71142 244 2010

61 -r,04€-nll@¢Mg

31·442.4 1.-09. »,1.4
-32 n.g,0.44-1- Le- i .*iA--

3-4,el- - oft -Ffs€Y
4014' : -' -part 100
'00.1,€-,9.

-

Cao:Vid€·-1.--- -

Use'dAN*if
24,1.2,2/).' -Al/4 ./7- -1/24:ole„ 1,/136£92191:)-.

c.„np•,le-
' I . ' _-

2.-: f- 4 €Ezz»;:A
641 dijvae , : , , =: -c.

CA 24.-4 er¢Z.-

1211-
mMI@

01- 4ir i 6 1,0 .
1144122*a,h

. A-/

a € 1 14,2 1-----3. tb L,/9 ' I an

US•,-p« »*: an]40-1]
L en:t-« l-we/+ 5 .
1& ne*14*41-Or-JJ#rJBE- O 0

C»0 b,42-

%d

It g JI W„ --, 4 dSXAA< O&94-/ial=·-',4t ' 1 444 240

- - do it

3166 arge-r: 5
'

14

R,6it

C.lud/4 »esfc»+A -_Li-* 21_i
-0 fit-tr ru£,M»„> -I +dkdle+-4 4-* - r» (DiIL

400.4-*
--

%24

t.

318 €fm al<J/%1 +0:0, *li
0/4:st 76,-t r--- ---

50€. ark•<21€ I i nit; on -Hand
*44 04«: 16,1.r arde,64
/26602&4024.46# 1 001' a,-1-trIDale-

L

Uha 1405¤4=MA 'Tra-sigtor c ,sc,4-er- 41(ard«le«*fi4,••11,erdrd+*
State -P-,rt hb ·

1 Ait: -prt %6 w?k-. 871 18••LA
94

-/1 dre£&- cu- latal-441 53 4 QU*4 2 YULA»
@re@16 crea,IG uu, i*tr-t:

F:Let init: Serb

j -Tb. ere•X•- lu., £4°+a-:

7WJ

' P..=. B ou,i•at: rn> 1

7 lOt' r-
3.es: a*14 *- rKA &#Cul*-

lift.r/M...Lm.5Ob-j -Aclk,7 -***f-,so 1 (442 *D<,* 1 6#44 4

U•44 hz«1442,; 9)04.
ju.bal.cass of 4 73*t
Re [15· '/70-rt Alo

i
A ttlate. 4 ,

Diale D 2 -subob. s 4: 'WA, 069
32 rel» 1 6 CL». , t'u545UA.C€- £57 4 1-es

Ob- , a-at- 2139 4} ea44
C.1 44* aLL c 64445 =- _ofe, . 4 _m 96.r-e.U·'

:,A-€,11,» i 1
Cir€Ar-€/ b ._-,

F/19 C ·t-Eths:£2dz--' /·-'- .-- 22 --+ -

1 - I vek- 3225& l
32,/5--

1 - 3 2 i :dI ?gL.1 :22 2 pi 914

d>·r

£-15+ 20 valu.&& , c»Leuz va.Le,,4 aht, Fa,85
1

Wa*ail

-3: -

A }\ . s [1 1 i r [14* V .

0

4 I '-i.= 1. - di -
trF

eEli.44 »11€5 *Le

*kat

I DArTI»n *:.6:
15+tle_ *slist e-lit

.. --10
03

K

£13546 41.aA-0 3.) : 2,43€,i- W - Y
0 ej

daas Ilve,J»tj 923 %4 V

*u-640*4- 9 2> 1 44125-01 t

4

44:+ 51 9f Al

44
-41 1- 17= -«4-J 7

-_ A-7 44
442

Niew ·+raws) SM=,r-4 NA,42-4 41 40 6'2 e.rAwe,Q) 44
/4/

cre.•23EL .- 31·.·-e·e«9·ept 15 1 _ __ _1514(k<5 0,1.Te,eA. 2£6 3.0 cuu 7. sfa-0._0'-· 4 *#dor 9 -8 tp» fA=l,ct¢44
2*35:-A - .r :Iri'V•d40*,15.-1'+ i i;° 06)#ah. I i V+*.404

Aceldllal .*- L,-,---YS _ru....o L

Ua.AA--U l

4

• 11-1-0 -r·3- quauy -_-L---1 20-¥ a»n
3 h

f * i fIA-- -Are,C,4 \ a-,6 -1 ,5£Vt_: -»«-14-„CL_ i
D

: duy . ¢p ia Ule- ff.£4.-2Lf_71 . »4• I
3

, 1-ki.t C h N 914' 0 ---*l -- D

6.,4 +61 3 3452·
9

Awqz4 '

feca- 64 - L.A--q:.- r.d".A=-
420<L L «06 unt&&5111, ha»ue__

-rrut*· be cio 24 1 0004
-Se 6 2.0516,9 -159 -1425%1"ethg

j 3

4-«6-6.6 2„- &4*27 fer=r pu).,..2-1-
4set- La-OD :i'E/:/ip i ha'-4.--

Ct (40•,-t les U.p 3 -00.1 -
e¥L· *A'€

49 cs....16.04, . 9 7162//.2. I t

4//JJ :. -' 1- 4 + self- l#Fzu,7. 106&4,*6,- »
L*92 -- --I 04 4-2.w--23 _94*el

2 :
,,

2 4--z- --L»<' fi-Ut Ob).c.:phs rsrrn
h »4«

-5 i,- tfal¢*s £ . ET?31 66*1.1._ p=31<i-L...0.-19/ ZE-·66 / 74054 -t€,X•lAS I'· 6*4112*hat-- 3)Aotlbe C P -1,-1. 9,1'lict•*• 4- 131/21' .9:.16 draw 140< ..4,06*10349 0 /AAL<'.01(/s-
40--_ _ -n_ -31;s p (7(.2:1,y'·aw•L- . 5+r-ea..-·2
4#* 714<0,*rap. 4 9<>r-Ask Agti)
acw * Cleai.4-e C ..26 149"-0¢0.23 aU*16 4«£46 4»t &74er *VAC)

1 de-y V. - &

c At *uu¢3 6/)
3 0- _ _ _; __ _ -rk+ ·c,,-,2 . .=,t.cbcl.--0 -G*i- fta-....6) - ha.tdle, €201i1)
AB'r

45,9.,Cutilia*el i]
-

.4&

05 1 +Ret Ea,6,- 4 *zaw 'pile#:.14:,//. Illl) 74
u64 67'-)3439'*fettar) 1 irjte

319 2221Ld2:!Ll£es»'% .*,5.
r O,658 -C477are - --LED. f 44=:t-- 4.beror,Wl1 9*cae £0.2cr\·'p -7 1 ordr Gveit 1-94

| ' fut * 61'1 Et -7 -on H•'4 4044;4 -12

- -'-1-- 34 lit.neU·ed |41' on,6.4 5 orderleve.C#b&r£etrkvd-*I+MAAr.,)1 1 4.7/1 onliaw,Ina.becQr£/re,b¢- 0. __-1 4- -- 1 --=a--1.6Llet 4 0,
aer:A . I --. - - . .1.. --:ig . 4-p ord#: CS) D,71,frk Matt

- I../. 1
*00. ' Trhet-' 1

3,20:Fart,4arier-Dat/-5!Ed-**Wank -»\ _ __1.-2---/1 °M 14144; 21© 1 -Jjorierle val:anter Luet)

2421 L- . - 1 4 ™ct wo1 nurrj«Orcirea £ _3£EN,u:-;
+ 30/9.. rbe.LON€7, ==I

1 n. 4€r-6 1 yrao '90-34€rns -es,p..52.0.(33
- h ap/.41 vka,--r,04

- n. 44€,rv.·us 34 1*trbe- 4-escrip* a.·-
+

(13 'V'•aA¥u.6 9.
1--

- # It.- Pa't
y - + I j .?. 142°s u

., - .aps'¥22

£ 4#elds L- 1 22-4

4

Eja«J s.£10 claxa est: Patt
1 1 l 'Aa»e-

0-1 Ra,Jl 1

Ta.*4- No *-
*-4\64 T<D' 4- pfcatt,& as Stftn) O.41,YA,

-5uper Ad#,76 3 art }1 0,# Red :en#al.
C,€--1-

3.) 4- . O/3

£3> 196 U,/Ci dAA.Ll--

,541& 5 {.,2.yt-9t,1. 4 ¥Lu-- <»icate«tete-

d

=-3« 1 - Ze

6 1151

l 6,93> 01,1- 4#&45; 7<218-/ 4.(bete- fs-44. ms* ptij
-...... ... ' deed.-418 /Asy 614* ti

-73=
__33·,01,2 Nart, OBJ'425 1 21 -

Gyrile acct -(Ze;,M-2 441:-CAL,i l,St, erst,

fr

* <«:i 771

to W 4111

J

..1.-

. Ar

1

1

A.

e,p#6 3- 0-IP '.+- r0 2 5 2*141 3 u,Ki LQ-/' 1 n 56 '

4*©AL,4 : ASert: C' D j n 5'4, .
/tulk: Cbre le. *48#2 *t-. h nJ?(L. c147,1* :-2»i)

42£1 0> 162: (2·age- 01"0 3>ut ; r*31-e- 0,44 ir ze,f)

1
- v'-49114'l-e5+ 44 2- 28&44

0. 1-4 114 : (w uji® 9-[-gi
t.di«: * I =L_L_l

jece.ALka» + 310€-•,42/71 2'64-4 €- .

U. 1

Cul_; *t °1 3«»-,.-
ci._71*ekLA._ 21(1325 (3¢,4aJ.-- d'lt«f- alt parls g_qur + oyl-1462

A - - 1---11*** -

--<- 4-64'V,« 2;:2,74+ 0,6 +a,-•- ad. z,8,-e-..---TE; 1 -p Aie as - -7-r - - a-/4-/ 6
A o

© _ [-01€-(I ob-,ecrts,ocy)---yevd-i-*67+-Yeu; l Jk ..132 4%
4 VLGes e.ti)_numl,egrardeced J i # Jaa 1 60"D
lud- .0 e)nadadd> C -3 ../-0-1*tret- _ _ _ 1 -0

FRA E =11 : u.·-2- 0* do.65

bagiLL,21.ULAUL..UL_ 2 6.46*46:EU·:46,-i*k-4 -i tfar irh#J675* .f;k·I.,m,2 A flti ti=*fi i=lt· '49/lk//

