Alan C. Kay papers, 1977-1993
Adele Goldberq papers

Smalltalk

X5774,2010, Box 1

102739394

L ra JECEIVE,
{7 f/ . FEB 2 1 1978

i Ul
/ / To: Don Steininger A.J. Goldberg
/ / From: Alan Kay
e

i

e’ Subject: a brief summary of my thoughts about Xerox's future in the info-biz.

Don, here is a collection of writings concerning the Long-Range Plan. Much of it was
written at heat -- the subject tends to get my juices flowing! I would suggest that you use
discretion in copying and distributing this offering. Included are:

* A Simple Vision of the Future -- a brief update of my 1971 Pendery Paper.
* Material and Content -- an analogy between Xerox's current products and those
of its future.
* Arthur C. Clarke's "Laws" -- the believability of scientists and culture shock.
* Loose Ends -- a summary of long-standing Xerox research concerns which need
to be addressed
* Components and Organization -- a note [prepared for George last year about the
relative approaches of Xerox and H-P to computer development
* My Reactions to the Long-Range Plan -- written in 1975, it is an impassioned
reaction to the long-range plan that year.
Though it is a trifle sarcastic and pejorative, it is included a&s an incentive for
Xerox Research to actually develop a plan this time rather than the usual simple
extrapolation of the present combined with expected head-count increases.
* A Wall Street Journal Article About Xerox -- pertinent and penetrating.

To me, a plan is a gadget that has some goals, followed by strategies which generate tactics
to achieve those goals. The so-called "long-range plans" I have seen so far, as far as I can
tell, can be construed as "plans” only by Xerox bean-counters, not by Xerox scientists, and
certainly not by Xerox as a whole.

| I really want to help in the planning process and [was quite disappointed when the
| Leesburg conference was called off. I do not think that exchanging memos will help nearly
as much as some face-to-face confrontations on the issues.
|

S

A Smlple V:swn of the l“uture _
}1 Brzef Upa’az’e of My]9?’1 Pendéry Paper

10 the 1990's there will be. mzllmns of personial compuzers They w:li be- the size of = -
_ -'_nctebot}ks of today, have high=resolution flat-sereen reflective displavs, weigh less than ten
- pounds, have ten to twenty times-the computing and st{arage cdpauiy of an Alts. Lets ca!l'_
. '-them Dynabooks.

The purchase price Mli be about that of ‘a color television set of the era 1ith0ugh most of" o

- the machines will be given away by manufacturers who will be mquetmg i!ze content rather

than -the container of personal computing, S :
-The Dynabook will be well along in the process of Iepiacmg paper in- i:?ze home schotﬂ'- :

- .and -office. The combination of portability and the additional value sn;nphed by flexible
cediting and cross-referencing will hasten the . changeover,

Though- the Dynabook will have considerable focal- storage - ‘and w11§ do mc}st camputmg :

_ --"Eocaiiy, it will spend ‘a -large percentage of its time -hooked to various -large, ‘global -
“linformation wiilities which will- permit communication with others of ideas, data, working
models, as well as the'daily chit-chat that organizations need in order. to -function. The =

communications link- will be by private- and public wires and by -packet radio.. .
Dynabooks will also be used as setvers in the information utihtws They will have enﬁugh e

" power to be entirely shaped by -software.

ihe Mam Points .of "This - Vision.

* There need only be a few hardware ty;:res 1o handie almost all of the processing -
'_ar:tmty of a system. : : e
* Persomnal Computers, Commumcatmns Lmks and }nformatlon Uul;t;es are the -
-ﬁueu critical components of a Xerox future. '
* In the 1990's programming systems will be strong encugh o aliow the personal
computer owners {o specify most of .the information handhng tools they will need 1o
~-go about their life, : o
* The major tevenue prociucmg systems wm bé service 'charg'és fo:’r' the _'
communication-finks and the functions provided by the information utilities for use .
~oin one's personal computer, In oparticnlar, an information utility’s ability 1o provide .
“dynamic modeling and cross-referencing services” will be central to its ‘success.”

Now, Whut-"Ahtm-t“ihe 1980 7 .

The early 1980’5 shouid first see.a ccmplete Xelox product ime based 01:1 the $;mplest'-
versmn of the above model, _ : .
* User programming wxli not be p{}ssmle

C0 7 " 'The services provided by the information utl};ty wiil be rather sparse. They witl .~ =~
“ba sirong on simple interactive -systems,. and weak on cmnpmhenswe mfommtaon-- c el T

- storage .and retrieval.

~* There should be 1e~aearch versions of the Dynabaak s pmgrammmg system and
“more comprehensive information uuimes

The mid "80's ‘will be- critical. . : : .
R Cusiomm Samce RLPJ esentative pr(:;grammmg in the- hlgh Ewel Janguagu Df the o

Dynabook will help to open up new markets for Xerox, The "programmers” will be
- people trained at Leesburg to market and- plowde taﬂor made - system servwes o
- customers, - - _
- " The ;nformatmn utahtles shouid be able to handle dynamlc niodels t}f busmesses g
and other complex environments.. R '

If all this works out, the 1980's and "90's will be bnght mdeed Unf’mtunzzte!v Xemx :s". -
nDt warkmg very -hard in a number of important. areas. . -
' * The first would be for Xerox to get a firm and unwmplmated understandfng of';'--'

the implications” arising from an entry into the information - business. . _'

* Hardware technologies, both “primary (LSI, ...) and--'an{:éllﬂ'ry _('fia't'*screen

“displays), need - cons;écrably ‘more attention. : . =
* Software technology has to be installed into the company as the stuff from -

Whlth the main product lme will be fashioned.

" Material and Content

An analogy between Xerox's current products and those of its future

First, it is ve'ry' important for Xerox's -top management to understand some of the key

_.drf“fezemes between the hardware units they are used to dealing- With and the conipuier-
" based -hardware-software- sysiems of the 1980,

Function in a Xerox copier is delivered primarily through the workings of a particular

 ~hardware configuration. This hardware has to be invented, designed, developed, built,-{and :
© - later retrofitted), all with some associated cost. Generally, different xerographic functions

are provided by different xerographic engines which are the product of separate

development projects. They look different, act different, and are sold with a different

approach,

~For contrast, function in a -computer=based system need have almost nothing to-do with

- the particular hardware involved. Function is delivered primarily through a software system,

CAnother way to visualize this is to consider when material becomes content..

" Domain Substance Material - Content
Xerography - atoms, molecules- selenium, steel, plastic, brass - 3100
_ 7000
9200
ete.
Computers = silicon, steel, .. powerful, general purp. comp. Text -Editor -

[nf-Str.~Retr.
Inf. Network
-ete,

I other words, the material of a computer system i§ the computer itself, all of the content
and function is fashioned in software.

- There are two very important- guidelines to ‘be drawn -from this:

¥ Material: If the design and development of the hardware computer material is done as -

- carefully and completely as Xerox's development of special light-sensitive alloys, then only
'_one or two computer designs need be built. These one or two designs will be able to handle
- all of Xerox's computer material needs for a considerable number of years, Extra investnient '

oin development here will be vastly tepaid by stmplifying the manufacturing process and
Cproviding lower costs through increased volume,

b Content: Aside from the wonderful generality of being able {{)' continucusfy-shape new

- content from the same -material, software has three important characteristics:

*the replicarion time/cost of a content-function is zero
*the development time/cost of a content-function is high .
{he change time/cost of a content-function can be Jow

. business area of information media. If it does, the company has an excellent chance for
. .several reasons: - _

~ * Xerox ‘has the financial base to cover the large development costs of a small

nuntber of very powerful computer-types and a large number of software~functions.

_ * Xerox has the marketing base to sell these functions on a wide enough-scale to

- garner back to Citself an incredible potential - profit.) :

" Xerox has working for it an impressively large percentage of the best software
designers in the world, '

Arthur C Clarkes "L*‘tws

T,’?e Eei’zevabzl;i’y of Sczentzszs and Culiure Shock

. 12 is interesting to examine the dynamics of human decision makmg In the abf;emre of the-
- ¢lear-cut evidence which forces a particular decision, there sprmgs forth a- Iecegmzabie
.coliectlon of approvai tendencies: : : : '

-* Plans which require little or no change tend to win out over those Whl{)h d:f‘fer
with the practices of the past. o :

* The ability to take risk is inversely plop{);uonal 10 the square of a- planners.
‘distance to retirement and to the cube of the zech;mloglcai c{)mpiemty of the

-planning - domain.
A _planner will tend to believe h;maelf rathe{ thari someone else. :
A planner will tend to believe a contemporary rather than semeoae clder of
'_'_yuunger : -
A pidnmﬂ will tend to believe someone dlstmgmshed 1ather than someons ‘WhD is .
not. S

Allof these %en’denéiﬁ can be neatly sumtiharized b'y"Arth'z,zr C.. Cla'rke‘s”twd":"Laws”*
» The technoh}gy of a culture appears a8 magic o ar cu?tufe without- ‘that’

techno!ﬁgy :)
P When a distinguished middle-aged sment:st says same{hmg i% Basy of pﬂsszbie he
1§ almost always right -- when he says somcthmg is difficult or impossible, fe is
almost _always wrong. : S :

Let us suppose for the moment that Clarkes Laws are miore than a Brmsh tongue in a

- 'British: cheek. What can be drawn from them? - :
First, in planning, we need to be very careful when sollc;tmg opmmns “Famblashed
CExperts” will be useful when they are enthusiastic’ about projects, but advice shou&d he
gought -elsewhere when the experts are pessimistic.” : . .
Second the 3}svchologwal dlffexence between nﬂgw aﬁd e%%aineerﬁng is enmmous '“'in; '
' “way to tell the easy fmm the difficuls A;zd it s exrremez‘y d:ffzcufr zo puf fogezher a plmz R
Cthat has magic as s kemai e

To me, the point of all this is that a new qpproach needs to- be ’adopted for subscqucnt'.

effectively short circuits the planners until a venture has been]aunched and tested. Bm ASD

think up the ideas and do the work to also be .able to do most of the :major “planning.
More bluntly: can we find the systems presented at Boca Raton in Xerox Research's Long=-
“Range Plans? I have gone back, looked, and can't find them. As far as [can tell, each of the

8DD product line are-based does not appear in a Long=Range Plan antil it was invented and.

“many in the company who had heard of them. 4lto, in fact, did not even-appear off icialiy'_in -

planning cycles if a strong focus on the future is to-be achieved. To be sure; the .riew"_ |
Advaticed Systems Department headed by Jerry Elkind is.an excelient step-in “that it -

-is for development: In Research, we need a similar process which allows-the people who

major ideas on which PARC computer -research, the Boca Raton show, and-the ‘upcoming '

©builet Coneepts such as SLOT, the Alro, the EtherNet and the like, were 'lleavily'_opposed-by-_ -

a S’hmt Range Pfan um;l it had been rungping for SIX months’ It was 4 bootieg prcr]ect at the_
cend Tof - 19720 :
Now, someons nghi say: but isn't that what seiendmlty is all about‘?‘ The unanmcmaied
invention .and discovery? But I say: serendipitous to whom? ‘One person's serendipity
* {magic) is another's clear vision (technology). Gary Starkweather had SLOT clearly in mind -

 for years until he had a chance to show its promise. 1 shudder when I think of how close

"~ Alte was to not being done at its critical time. No. There is such 4 thing as sereridipity =« we .
do -rely on it =~ -but not at this level. :

: ~ This is not a polemic but a pleal Let's use planning to ge{ the bu;]ders and the goa§ ~setters
. -together so that we can allocate resources to invent, design, and build powerful kernals, like -

Cdlro, EtherNet, and SLOT, which can shape the future of this company - and oul entire
civilization.

~ Loose ;Endé o

Hardware -
P 1 am not” gomg o make aples For the smportanee of the tiuiy pmmhle persunal computer'
~"in this note. Though I think it is one of the three most important foei for Xerox Computer.
“Research (the others: Communication Networks and Information Storage & Retrieval), it has
" tgken so long to get some of higher management in the company just to-understand the -
- -difference betwesn coniputers and other machines, and between Alte gid- other éamputers '
-7 that it would ‘be-fiitile 1o cover some of the important. human oriented values of personal
'QDOIS o : e o . . - .
‘The leverage- to be gamed by designing hardware with it enabi;ng snftwale An mind i§ -
"dlscussed in the next major section: Components and Organization: Here, let me Just clmm-_
'-_zhat we have to- do it tius way, and not enough of it is being dong currantly in the company :

13[Pmcessars and Memones

" Carrently, the design and Fabrication of LSI processing and memory eiements at Xerox i
B scamzred, unorganized, and sparse. The LSI group-at SSL-PARC could form ‘a nucleus for
the kind of research that Xerox needs in this area. It should be seriously examined and '_ _
‘“peefed up. The Long-Range Plan should contain specific language concerriing new:
g _-arch;tecwres and fabrication techniques, and a plan 10 canmderably buﬂd up thls area in the. : :
- mext ‘seven years, e '

Dmp}ays

" This is an area whach penerates 2 lot of mnub%antzated oprmons a5 o whethﬁr Xer(}x'- .
should invest heavily in new display -technology. :

-1 believe my opinion can be solidly substantiated: XEROX a!;m:hi dfzfinifﬁly mqke a-
commitment to develop an ambient-light low-power flat=screen-display. Interesiingly, many of
those at Xerox who oppose this idea are wearing just such a display in- their -wrist~wateh. |

. propose that we replace these watch displays with CRTs and re~ask their opinion after a few . .
" days! - e

- A less facetious analogy is 1o Lha development -of the “Xerox machme uself Tt tc:nok :

- _considerable daring, money, and energy o develop and market xerography. By having the -
guts and the foresight to work out a very shakey technology, Joe Wilson and others brought -
_:'Xerox to-the summit of American bosiness. Xerox's future in.information technology lies _

ultimately in being able to provide manipulable convenient images 10 its customers; It is as -
*silly for us; as & primary strategy, to rely on (and iry to improve) the CRT 4s it wotld have -

“been for the Haloid corporation to stay with -the -well-understood hu't-futum#}:i.rﬁiiéd Wwets
- COpY - processes. L
The real question .is: does this Xerox have the same- k,md of C(}UEQIEL anci fcrcmght to take
" high risks for high gain? I sincerely hope the answer is yes, but-so far have not been greatly _
cheered by recent strategies -- particularly those which have encouraged Xerox to-rashiy buy -
random digital companies of very little use for the future, such as Daconics; Diablo,-et¢.,
o orather than try to do some honest internal develepment of ideas whwh might have sc)me:_ e
“returnl : - - -
Dev&lopmg a flat screen :mpiay for mmpﬁter glaphzcs m:gm he qu;te dl’r‘flcuit w

certainly one has not yet trivially appeared, We should note, though, that no one else in the
 computer<biz has vet done a system with the comprehensive abilities of the Alzo in the past

- five years in which it has been possible. But we did the Alto in 1972-3, because we knew

- “what we wanted.and were willing to work out the difficulties to get it. With regard to a flat- .
screen display, Xerox can not really claim this until Xerox has put a critical mass of the top =
~people in the country to our version of this task. If we can rationalize the expense of low=-
return aquisition-ventures with phrases like "market-probe", "experiential-exposure”, and
the like, surely we can decide to allocate a fraction of what has been -already been lost in a
project which, though of some risk, has a great payoff -- 20 million dollars over four or
five years coupled with a plan would take us to a place where ratmnai decisions -about

displays can be made.

- Software _ o
- The software loose ends are a bit harder to describe since the software area; in general, is
in better shape.
Information Storage & Retrieval _
Several starts have been made in this most cfitical software area for the company: Findit,
- Woodstock F. S, Interim File System, Juniper. And, in a very real sense, the Smalltalk
csystemt of LRG, and the Understander project work of Bobrow, Winograd, et al, are
addressing themselves to the higher-level representation problems of simulation and human-
oriented knowledge, ' .
But, T still don't feel at all well about where we are in ISR, nor do I feel any better about
_.-bm- plans for the future, _ .
~ "ISR", like *machine-translation-of <language”, is a garbage=term in the Com;mtér' Science
field. T-am using it in-its most general scope to cover 'most evervihing concerned .with
" -representation,; archiving, and recovering useful models,
- Part of the difficulty is that ISR isn't just one problem, it's an entire collection of
- problems, many of them as yet unrelated,

Another difficulty is that ISR is not terribly appea!;ng to Computer Sc:entlsts. It is very
hard, with high risk, and little glamour at the end of the trail.

However, I would like to apply what I said in the preceding section about piannmg to'

. miyself and my colleagues: when we start complaining that a goal, which is unarguably useful
~and delivers an enormous payoff, is too difficult to work on seriously, we should be
Cexamined in the light of C[arkes Iaws. After all, middle-age is a staie of mmd not a tally of
“birthdays!

B other company which is trymg to sell a compmenzed edmngiaecounimg system 10 an ever = '
- oomote sophisticated market. : '

ngher ~Level ngrammmg

~An this section, 1 want to point out a possible ;ntemwdaate futare for Xerox mmke{eers_ :
which lies between the non-user-programmable SDD-0IS systems of the early -eighties, and,”

. the dream of the Dynabook to allﬂw everycme to shape the}r owh tools. -

Could Xerox - customer- representatives, trained at Leesburg, learn to wae!d a suliably -
higher-level language (perhaps a descendent of Smalltalk) well enough “to tailor-make .
‘information sysiems for their customers? If so, this would be an excellent mtermedaate step .
for a person-oriented company like Xerox to take. The ability to provide unantlctpated user | -
function will very likely be the center- strategy in . the 1938‘5 for companies ‘in ‘the

information business,

- Xerox has the bases and facilities to try @n eéxperiment like this within its own borders’ I~

- wouldvery much like to see some interest in this expressed in the long-range plan.

10

Lompnnents and. Orgammtmu

-~ Just ‘as with ‘Gothic ¢athedrals, the mgammtmn of companeﬂts in.a Ct}mputﬂr iS as-.

1mp0rtant as the properties ‘of the components themselves. .

~Asd case in pomt consider the story of two computers the Xerox A:’m and the Hewhtt—__ '

~Packard 21MX.

In 1971, PARC decided to deszgn and build a time- sharmg computer famtzty talied_'_'_.-_-” '
L MAXC. ~The designs called for the use of the first generally available LSl memory elements, o
- the Intel 1103, to be used instead of core memory. At that time, Intel had not set’up good

- procedures for festing and screening their chips. Several PARC scientists: helped I_;ntei Ape
©order to-get a ghantity of 1103 chips for MAXC. While MAXC was being built, computer ..~ -~
scientists: interested in personal computing pooled their ideas and knowledge in 1972 to'._..'

- design -and construct a very different kind of machine, -the Alto.

" The 4lto had several ambitious: goals, First, it was to be more 'powerf'ul for most tasks than -

“time=sharing would provide. Second, it had to handle g wide variety of ‘needs, only a few of
. which could be explicitly anticipated. Third, it had to su'ppiy'.h'igh_mquafit'y programmable -
graphics. Fourth, it had to be inexpensive enough fo both tompete successtully with 4 =

" terminal and to <onvince Xerox that a strong future lay ‘in the Alro's direction.

. The goals of the Ajro were met by hardware desigﬁ decisions made. in 'the'p“rééénce of
already .thought out software constraints. The Alte was bullt-and is 32131 remark&bly' '

Cosuccessful today-as a personal computeL

- _"At gbout the same time as the 4/fo was being built, Hewlitt<Packard also became
interested in computers -built from integrated circuit memories. The management structure - -

of H-P is set up to get a potential product quickly to market while taking advaitage of

© - every twist and turn in the fast moving technology. In particular, H-P has been excellent in
Crecognizing good ideéas of others, and has moved guickly 1o purchase and develop these idegs -
_ _-mto proprietary -devices, : : : o

“As-a minor example, -3M came cut wdh a remarkable casseiis desuga for h:gh-— i
'_-quahzy data storage. But, their design had two important dravbacks.- First, the cassetie
wag still too bulky for its most common use. Second, no one {including BM) had been
able to build a reasonably compact drive for the cagsstie. H-P moved in, got M 16 -
- deveiop a mini-cassette based on the same technology, and, in a masterstroke, H-P
“then designed and developed a proprietary drive for the cassetle wh:ch is only"
available from H-P_ packaged .n their “terminal,

~---Now back to H-P and computers. H-P already had-a successful line of".n'iiniccj'riiil_iit'E'lf.s"a.iad' S
- - they naturally wished to'stay abreast of the technology in manufacturing them. They saw'the

1X. 1103 chip being developed by others, particlarly Univac and DEC, and decided to takea” -~

- -gamble on the next level of LSI memory development, the 4K RAM, H-P then did the next
©_best ‘thing to having their own chip company. They made a contract -with-one of the local

silicon-valley companies ‘which allowed them early acceéss o the 4K RAMs; J“]‘]us1 at the

“same time as the chip company was perfecting their -manufacturing and screefiing-process,

" H~P was finding out how the chips actually performed-in a packaged memory. As a result,
two interesting events happened almost together, First, the chip conipanies announced that -

" the 4K RAMs were available,.an entirely expected event, Second, H-P announced the 21MX, -

‘astand-alone microcoded personal computer with 65K 16-bit LSI main memory, a model 31
- disk drive, and a display terminal, -2 most-unexpected event! Not only were the gross specs .

- and appearance similar to the Alvo, but the price tag was $20,000, a figure which was less

" that what we wefe paymg to just have Alros built, ‘And, the 21MX used the just azmounced '

- 4K T RAMS!

- When we examined ‘the fine specs for the 2IMX, we 'disovered soinething e\'ie:'z-nmre
interesting about the machine as compared to the Alto. The discovery was that the 21MX,

though made from the same or better components (and better engineered in many respects
- than the Alio), nevertheless performed far less efficiently than PARC's personsl computer, -

In fact, for many important tasks the 21MX was a factor of 2-5 less-efficient than the Alto.

* For example, H-P built their memory only 16-bits wide, a slavish -imitation of their -
earlier core~-based systems, even though there is no reason to do so when using LSI memory.

By contrast, the Alte has a 32-bit wide memory, giving a factor of two greater transfer rate
when moving storage -around. :
* H-# still relied on a traditional intefrupt system and penpheral Hardware C{az}tzoilers f‘{:sr

'mput ~putput, This incressed the cost and Iowered the generality of devices which could .

- easily be connected to their machine. Again by contrast, the 4/to uses a4 well thought-out "no
-gverhead” process~switching mechanism which aliows peripheral controllers to be simulated
in software and permits hardware money to be better used elsewhere,

" Because H-P really wanted to use their nice terminal {developed primatily for their
time=-sharing system), it never accurred to them that they would get much more from having
“a tightly coupled, high-bandwidth link between the 2IMX and the display. So the 2IMX

" supplies essentially teletype commiunication as compared to-the dynamically pmgmmmable
~graphics of the Alto.

* Finally, the overlapped fetch~and~setup instruction . execution saheme of the Alto which

- permits each instruction to be fully executed in 170ns i5 not employed on the 2IMX.Many
of its instructions must wait for a register cycle before the next one can be executed.

~Moral, There are two, First,.a company that knows that it must take new technology to
“the marketplace quickly can cause much of its needed technology to happen as part-of the

* development cycle of other companies. Second, in the computer world, as in architecture and .
" cooking, there is a tremendous range in what can be wrought from the same ingredients.

In the case of the Alto, the main difference was that the important performance specs
“owere set by peopls with a strong software background. Chuck Thacker, the primary designer -
of the Alto, was well versed in both hardware and software, as were the other partwlpants in -

'.zhe project, Butler Lampson, Ed McCreight, and Alan Kay.

' -'C()rt)llary‘ Giiven the success of the basic Alfo architecture, an obvious and 'féW'arding"-'
© strategy for Xerox would have been to find the silicon valley company which was producing

~the-next generation of memory chips (the 16K RAMs by Mostek), get an early look at and

“buy of these chips, and produce an Affo built from thege chips, the mythical Afro TH, A few -

minor problems of the 4/fo could also have been remedied. The most important one of these

“would be to separate the display refresh mechanism so it would no longer require half the
smemory and micro-cycles of the machine.. The result. would be an Alio of twice the speed -

cand from factors of one to four or more capacity.

“The' Alto 11 would have been a fine probe for Xerox's future markets in 'thé'_w.o?ki of

17

information, For a start, it could have been all the subsequent Xerox word processors after -

- the 800. And there are 2 number of excelient turn-key editing applications for which the
- machine would have been ideal. (Note: if Xerox is geing to lose some money initially while
~learning about these markets, the company should probably decide to at Ieast lose the money
constructively instead of on products which not only have no future,-but no presen{ as Weli
such as the Xerox 8500,

~Ingredients o L L

-~ Now let us apply these principles to the ‘ingredients themselvés. Computers are curfently s
~made from memory elements of different speeds and capacities - whose contents are -
manipulated by separate "processor” elements connected to the memories by communications - -

©.paths. To a rough degres, it is the nature of the memory system which provides most of the
~ capability of the computer as a whole. For a company in the computer business, then, it

" makes a lot of sense to have as much control as possible over the sources and the desigh of
©the memories and the processors which are to go inte a -product. :

Though it is undoubtably true that it makes little sense to try to duplicate someone else's.

technology unless there is a great deal to be gained, it is not the only maxim on. whicl one's
company should be gambled. For memories, there dare many paths which may be taken. 1
~shall consider two: strategies for quantitative and qualitative -improvement. :

Quantitative improvement is achieved by retaining the simple linear-addressing scheme

- which memories have had since the late forties and pushing hard on density, width,
fabrication, and debugging techniques. The device physicists assure us that another factor of

1008 is yet to be gained for both MOS and bipolar technologies. Thus, the COmpan'ias who -

‘have taken the trouble to understand electron and X-ray lithography and who have the

equipment to perform it will be far ahead of the pack in bringing forth the next order of -
- magnitude improvement. Siimilar comments apply to those companies who have léarned how -
‘to automate the expensive design-fabricate-test cycle for new chips ("compiling silicon™).
For various reasons including tradition, pin-counts, and -the like, the memories on the -

forefront of development have all been one bit wide. Though this does not seem like miich

“of a problem (since composite memories of any width may be constructed by putting enough c
_chips in paralicl as was done on the Alto), the average b'mdwicith per bit in a. 1'nem0ry of a

given size has been dropping steadily since the 1103. This simply means that there are so

- many bits in a single chip that a memory of enormous size must be configured in- mder 0

have -encugh chips in parallel to provide decent bandwidth,

“Qualitative improvement in memory organization is a more risky path to take, Yet [have

- felt strongly from the time I joined PARC that Xerox must attain strength in this area to

survive in the 1980's. The reason I feel confident that we can do something in this area is
that qualitative improvements in memory organizations follow from software needs, and .

~Xerox PARC, in my opinion has the best collection of -software people in the country.

The problem of storage management {allocation, deallocation; relocation, exchange, and so

_ forth) is an excellent case in point. The current technigue of building software systems by ©
 emulating & higher-level envirenment on a simple fast microcoded computer is l'iikéif,z_tfj :
continue for a few more years at least, And, all interesting software enviromments share

~ similar storage management problems. For example, in our language Smalltalk, the overhead .
- for storage management just withini primary memory is 0%. This means that only 1 out of

every 10 memory cycles is doing useful work for the Smallralk user. The reason for 4ll this,

of course, is that the linear "von Neuman" addressing scheme which hardware memaories

supply has almost nothing in common with the memory requirements of high=level
languages. The gap is considerably wider than that between hardware and -software
"processors’,

- Another vexing problem is the narrow bandwidth of the communications paths between
- waditional memory and processor elements. This is all the more frustrating since the

' technology we use in this day and age, MOS, is used for both memories and processors. It is

“natural to consider uniting processing-type and memory-type activities on a single chip, just |

cas the concepts of processing and memory are united in Smalltalk.

The bénefits to be gained from unifying computation fall into several ca?‘;egdriés. First, a

~ modest set of processing capabilities at the memory level would permit many storage
C management problems to be dealt with efficiently. Second, more comprehensive processing
- capabilities would allow many software evaluation procedures to be carried through locally
and in parallel at the memory level. Although the state of the art of coordinated parallel
processing is not well advanced, there are nonetheless many almost independant parallel
“otasks in process in any advanced software system. It is imporiant to undersiand that while
personial computing needs enormous processor and memory bandwidths, there are very few
'singie tasks that reguire all of the bandwidth of a machine. Rather, most large~-bandwidth
computing is formed of paraliel, Ioosely coordinated processes which can be handied by &
~pumtber of simpler, slower processors instead of one very fast one. Examples are user
“interaction, editing, 2=, 2.5=, and 3-D graphics, signal {audio and visval) processing, music,
mathematical models, and so forth,

- Conclusions. Xerox must decide whether or not it wishes to enter the wofld of digital
Cinformation systems. If it does, the company must understand the central role that memories
- -of all kinds will play in any products which may be developed. The most important of all of
" these memories for computation s so-calied "primary memory”. Xerox should -adopt a
- multipronged strategy which combings close tracking of existing chip companies with a

e strong effort to give Xerox an independant memory and processor capability with particular

regard io qualitative improvements in architecture which PARC's software experiise can
provide,

AS in-miost technological frontiers, much of the progress is accomplished by "wizards”.
- Buying a company is not a good way to catch a wizard unless the wizard wants to be caught.
-1t is very important Tor managers outside of PARC to understand this simple but immportant |

principle. A strong effort must be made to find and recruit more wizards in areas which
- Xerox needs to build up. If this involves buying a company, all well and good. ‘But, the
“tmportant thing is to get the wizard even if it requires an exorbitant salary and fringe
benefits to do so. There is no number of good people which can be combined 1o produce a
wizard, Therefore, we should be willing to pay some multiple of good people's salaries to get
“one wizard,

14

My Reactions To The Seven Year Plan
by dlan Kay (1975)

The first was to try to remember where [was seven 3ears ago' o

; .n my second year of grad - school, just. flmshmg off the f:rst design of the _FLEX
-_-machma and siarting to write my Master's thesis, . That was many expefiences ago.

The kinds of things we can do today with digital- zechnoiogy ard with- softwafe are ..

qua!tmmely d;fferent now -than the situation seven -years ago..
Mermory was 1.5 mécrOSecond core (at 2 to 3 cents/bit), now it's .75 m-‘zcroée&ﬁn’d MOS
- AK*1-chips {(at .1 cents/bit), a difference of 20 - 30 to 1 in cost and about 2 to-1 in speed.

“Even more striking is the amazing reduction in the cost of fast register-memory and the

corresponding drop in CPU cost. There was little serious talk about LS CPU's on a chip

then, or the notion of being -able to dispense with moving hardware for secondary memory. -

The world of .computer science was almost - exclusively devoted tor. - developing
-comprehensive operating systems for shared, expensive computers; new ways to translate the =
“necessarily -efficient medium-level compiler languages for these machines; developing -

T massive shared editing systems; and chasing the elusive notion of human. interation with a
computer - help<mate.) ' _

-Of course, we all know this. The reason I hring. it up is that a qzsm’itaﬂ'vé 'chaﬁge Thas
taken place right under our field's collective noses --= many at PARC have even becn some
-~ of the prime movers who helped bring it about.

- When does a quantitative change become qualitative?

The kinds of qualitative changes that are hard to grasp.are those which come about
_through & large enough guantitative change (usually more than an-order of magnitude in -~
some dimension), The trap we so often fall into is to continue to use our wld set of values R

" in this new demain,

This is one of the basic fallacies in the ﬁa}*ade‘gm Market Survey. Another is the very -+

L .sfrange notion that the past plus the present predicts the future ‘{usually linearly).

The Hewlett Packard HP-351s a good example. ‘On the one hand,'it'_perform’edﬁ;the'v'ery

“same Tunctions which their LST deskiop machines had long been able to do, on the other, it -
was very small and coild be used anywhere. A market survey revealed that not very m&xly--'

s pe,opie currently used caiculators and concluded that:

a Not many more people would use a portable version. b T he range of nseTs Who wouki

find sine and cosine, ete, useful was very small. ¢, There did not-exist a significant market

for a” §500 -deloxe portable calculator,

15

CHMM MMM, e,

The 1974 world market for handheld caleulators was ca. 10 million. ~HP has sold e

almost 1 million of their 'marketless’ deluxe calculators to date.

Queslmns XEROX nght do weII to consider _ o
1 - What -have -been the blg money makers of - the Eﬁth century, and why‘3 L

Well.....the aummob;le the -airplane, the telephione, - radm “silents,’ taEkmg__p;cmrés,

television; computers, and the xerox michine,.

VAN Are these quant;tatlve changes in their domain? _'Qualitétive‘?- Both?

- WellL.if the automobile is a quantitative improvementi over the -'ﬁorSé and buggy, then it.is o
~one of several orders of magnitude. A more fruitful way to look dt the phenomenon i§ that -
the auto represents a qualitative change in how a person geis from place o to place b. The
" fact that the horse and buggy was in the same business completely misled horse breeders and -
bugpy-manufacturers into the grand -misconception . of believing that-they had a captive o
“unassatlable market in- the transportation domein, And a Market Survey would have

 confirmed their- beliefs,

“‘Mention might be made of movies and radio vs. the stage. Then TV .vs. movies‘and radio.

" Alrplanes vs. the tailmads The XEROX copier vs, anexpenswe carbors and Ditto machines. o

And s0.-0n.

= Well.actually, “all -of'-'_the" above examples have mnghl'y' the same SLOTY, 'énéiuding ‘a
- .meteoric rise in the face of absolutely contradictory marketing information, - Weall know "

the famous story of 1BM, Arthur D Little, and thé 914 copier,

B It's interesting to note; for example, that the movies had no f:hffxcuity dzsplacmg the stage, -
~and yet, 30 years later, TV had even less difficolty _dzsphcmg ‘niovies.

How about the -paperless, -electronic office vs. the XERO‘X copier?

Most people smart eﬂough to pour water out of a boot might conclude ihat there IS an

Cimportant principle here which not only has guidelines sbout meking money, _bul: aisa has B

semethmg important to say about -human beings:

When prt’semed with a service which offers a mmhmnve cizaﬁge in convenience in-some S

o large domain of human activity {such as convmunication, transportation)}, we may safely-__ .
'_'pre(fch that a large proportion of the population will find @ way to ‘buy the servwe evcu 1f o

it costs more. per transaction than it did in the past,. - :

~ How's that for a Cmrketing theory? _ _
3. Does){PROX managamezzt understand these - smp!e thougb powelfu. :daas'?
L Well..,

4 Has -XEROX lost its nerve?

B Hmmmmainmmmmm,

5. Does it maké any sense at all to try and plan the future of XEROX using metaphors like

“market driven' and ‘'téchnology drwen"?

o The first- prodiices - better horses and bug;nes untﬂ bankmpcy mtervenes the second’
. produces 'solutions’ looking for 'problems' and generally requires a rather immoral -
advertising campaign to convince the public that they are in trouble and should buy to-get _
‘out, - Neither, in my opinicn, has anything to do with -a desirable future for XEROX -~

- Corporation. ' o

6 Wh% shn:}utd XEROX be dcmg sbout its future'?

First it should ask the question: What is it that people are g@mg abour damg in Iize

: War!d?

: Well, a- §0t of human actmty has to do with love, feeding, s‘he%tcr and c}c}thmg e it S
©interesting, however, that the device more ubiquitous than the flush toilet {a convenience at
“the end of the feeding chain), especially in slums and Appalachia, is the TV set. Other ~ -

- 'things people do is talk to each other, transmit the culture to theu' young, invent businesses
 and - cities, and move from one place to another, : '

All of these involve communication ~-- humans are }waicea' O#f it ==~ both commamcauon

“with others and with themselves. _
- Talking s communication, so is writing, so is 'education’, so is !dve. -A-basine's@-is a

Smoney-making machine structured to facilitate communication between its parts, Acity isa

- way to communicate with people, $0 is transportation, s0 is & XEROX CDplE‘l’ 50 is radio, TV,

Smovies, and $0 O :

XI‘ROX is in-the communication business, not the ‘informatit}n‘ business.

- Qur archetypal boot emptier musing over his beer and his boot, m:vhz conclude fmm afl
hlS that metaphors for xXerox Corporation's Long Range Plans should -probably have

“something to do with kelping people to communicate -in a qualitatively better way,

- Gee, .it'.might even sell!

~ .. On the other hand, perhaps we should not expect too much from the fact that our friend
. was able to pour water from his boot. Is that not making a linear assumption and.

prediction from- his past to his future?

- Although we can confidently predict that he will dvail himself of any qualitatively better

Sway to communicate whether it costs rilore or not, we must not-rely on him to-be able to
“understand the somewhat more abstract principles behind these notions. Instead, we need to -
not only show him what his future can be like, we must let him try it out for ﬁims.e-if. S

B Me:aphors for zhe Lang Rm?ge Plan of XEROX Corporanon 5 on}v Long Rcmge Research '
_ti?fmrer most certalnly should be centered -about fhe absolute necessity -to:-

. a.. Understand the nature of communication and’ invent ways fo make il quahmnve;’y'
- better.. '

.'Cm':rf’z}zu'ﬁicaiﬂ these idegs about communication io those in XEROX .'wﬁ’a have ‘the

~leverage to get them into the world, by making it-possible for them to. experience the future - '

T

- themselves, . WORDS WiLL .NOT BO. -

Conclusion

i weare not able- ta do these: tlmrgs in the Hext two years, we nee{l ot warry qlmut the'

following five.

C{srrs}i!ary

Our best shot at a Leng Range Plan should be just a I1sz of those thmgs which shoﬂid exist
- at the end of seven years plus a carefully thought-out workable plan for the first two of

. these years with especial emphasis on having a clear understanding of the concept of eritical

mass for successful projects, and XEROX's limitations in using the ‘shotgun’ appmach in - '

-research and development.

T

F e rl i e

Ej:fgc-;x* Eaces__P 1:0

: B}f RICHARD- _A. BHArrExit
350};' Reporterof THEW. u.z.s-rlwmmmwn
- STAMBPORD, Conn-+— Brothes:Daminig,

I”L?....uscnpt' c;uxc‘dy‘. :

'“‘he cornpan 3, Whos meteo g titale)
Imenda”y. smudged its image in 19’1;3, me

-jits dropped for-the firsttime since @S days 2>

jas 2o obsoure photographic COmpany. Z\nm«m
- jas Hadeld Corps more-than two decades par-
{Her. Over the past two yearsy the company
C]witha pams dzahbaa.bpcc;m=~ a synonym fo
strpalled. ;}Zam-panaw copying bas strugzled
cYto rerain its repatation for growth, And de-
A spite some intermal woes and growing Jap-
§erese compitition, management recent.y has
b-—en s*!ggtst:awtha* the worst isoven (¢,
:2 Vs year will be-another good ong mr
Xa—:} "~ saysC. PeterMcCo}cmwh cbazrmaw
and.chiel executive- pificer. “Ou*— -growth
tarzet continues to be 2.15% armu&mc:‘e i
in e:armnga; and:f believe that is realistics,

' Grrswmv Eanbts».w e :
- Somae-onisiders; howavers-aren't Sf)sure

: A_"'"aﬁh” “¥erox. has- taken-séveral long f‘

N smdﬂ:‘: iz the: n=ht év‘ectmzr— enm:tn}fx othe*-

ey

e*’: X8 ;:s-shifz:mﬂ“ mrac*:rons:” 525 San
fs*-dw.}t Gaﬂett-a*sectnuemanalyst a* San-

‘-

) ror". zr,e Ufﬁc& of today tothe pitice of to-
morrew I its forecasts are/ socuTale, ove
then axt ‘:‘»F‘VC‘I‘H] yﬂars the, mom’:ans of p":

: MJ rp:h. }ntcw murc]uttered wor!é where-.‘_

{files are stored-electronically and mall 2ips.

1iom dey -c"tcrd%x v:a o pt:tez:" ami {elevi- -
5io0 soreengreS ety .

| the wortiers discern signs that Xerox may

| paper, its revenues exploded to $3.6%billion -3

' price to nearly. 5172 a share {10

tr*»‘* portly monk in. Xerox-Corp. television -+
Jeommercials, knows Just whaf-to-do when <2
his abbot wants 560 coples ob: ernedmva}

e useemed to think we could walk on watsrtZe

{into the computer business had failed; and it

.IEM which-had entered .the Exeld a- few

{widespread - surprise,- Eastman Kodak Co.

'Chicken Little Syndrame”, -, L%

ik middie: and lower !ave‘s of the com«,-'

PNNo one- expects Xerox 1o .recaptuw'irs

1While- the dollars-spent- on- copying.have

Cwill dwindle to Jess than half that over tha
X naxt five years!TIATT TSI

“:The pitice of the tuture is nio longer just -
a buzzword,’? says John B Labinski, @ man-,
Wer imfXetow's Olice Systemns ! dlvision, -
MThe techz'olsvy is here already, and de-’
mand for it is growing 25% to 30% a year:h
- The risk i moving' into~this potentially
lucrative “autornated office’s market, how---
ever, is that-Xerox will be de-emphaslzing -
a field~copying~in which it still is top deg, -
and it will bs entering one already domins.! |
ated by a tiger pearly four Hmes Its size, 7
Intzrnational Bosiness Machines Corp.” And

RIS TS S

ot

P

not be'able to get from here to there with-
out-another dip.or two in ths comar proms.
it peeds to do batile with I8N

bne-guxtﬂarm B e
o In 2 sense these worrizs are the” prodtzc"*
of high expeciations reised by the spechacd=57:
lar Xerox past, Woen Xerox bad a menopoly=
on machines that made opies on ordinary ;-

Fin 197# fromm 533 millionin 1539, its profits: to‘ -
3331 muillion: from $2-1nillon,. snd: ;ts- stoclk

§2, adjusted for several splits.- ,
“LMFor a.while ' Crecalls ”\EercCaﬂough
Who jolned-the company -in-1934,7! pecnle)

. Inevitably, “their-feet got wet=An ‘antie
frust- settiement. with~ the Federal :Trade:
Commission-in-1973 cost Kerox itstpatents™d
protection;.’ essentially, : the lcompany - WS
forced to grant lcenses 1o its. competxtors
Moreover, Xerox realized -that its venture

pulled out; wrmrsz mf mers: than $3—i mmien
m the process.-; *a 2T
Compe’nhon in COpiEl”S became snrmus.

Years. earller Was ma:ﬂm' inroads, 21]1{} tD

jumped fnto the business. Al that, combined

with recassion, inflation and the kigh cost of
‘marketng new products, forced down Xem:(i
profits for the fivst time since 105052

: The decling was minimal— —5. Iere 2%'
bzzt the damage wasn't. “We began to zet.
this Chicken’ th’tle syndrome, E’\D&Ci'ﬂiy In-

pany,’” I%&Ils John C. Lewis, 3 former ¥e-- ¢
rox executwa who pow s president of Am-
dakl Corp. “'it was ke 2 kid who's naver
lost 2 haskethall game Lefore.The frst time

fhlngs don't go Ris way, he Lhmfcs the world
is'eoming to am end, " b g

former glory—not; at_leestin-copidrs,, for
market: saturations is- endm{, +that “boopr

'risen at an annual. rate of 205 aver the past
five years, observers pradict that the pains

I¥et. Xerox is hard at work-on. a CD“]E."--: :
bacx of sorts. It has clemped down on costs, -

evitalized itsresearch, unleashed n blitz of ;-
naar products, ‘charged - into new-markels ¥4
and so turned itsell aroumd that’it now is’
pushing sales of copiers that Jtonce, weu?c}”
oﬂ&y rent. s

. The company-1s lso pm‘unff 1ts sales
{s;ce e pressurs to produce has bacome
very intense;’"says Ceorge-Funikhouser,.a

3

jRerox - salesman=in *Portland ;- Ores ’\ﬁwr- b
- ey

uE) _A;; ang sfayi Mon"er—
arily m""‘a:.!, gh’lfd»“. %.;“

=]

1 *O.wd 108%," tomimants
_"’;f’b fargest apcounts. MIn
. mved 1%z Tha cock ol

& humnbling eliset?

*y'é:' elag-1

o & mearket-that erics. was gxcluaiva-?

hh:zulov}' oo
saesiare donbling annually, :And last

kY

9*:?:*3 that r’*ezr*ns ‘the copi ar with the
¢ providing & glimps2 of “whit

"—_—-ﬂ jn"‘ml!h—ur?

230

acts, a,s types wrltar, mp*er and fag

Wy

ymgfa@whaaae

e

with Xerox'sales peo-

et rto overs'ﬂzi Today, i
bacome more responsive’
naeds,” Keen' g.s‘meiqam

i zy:ma' s»*;,ema hasfﬁ c pmred ab{mtm

CIEM's, Xarox recenily has ploked up several | f
g-machine : companles |

£ Cqmpany brﬁuchi out.& ‘printer forl

Leliave ill acome 1ts Jead produgt in§.
cext genaration of office machinas—the il
copler, & sinzle padget!}
wn?w :

i i I 5ide; earnings’ are perk :
2 graw 12% last’ 3ear nd,

{; uarter,: }ucremer the's
7. thls }ear i the ‘*706
ted, - ‘begin to show 2 i

'JI"$

ring in, Bﬁb*x; shrink- ¢
m is belng:r
ompany says 1t cauld
its within a few

r {aThe eam—;
ca ‘of ‘copler;
fm}n rer;ted machines:
*3«"1 Iop Several’ yearsr,
?,ﬁn doubling annually !
bmt 119 08 tau Tever
220 . dupllcators, - Thats
come. becansa_sold Ja-
rproti t3, “than .renfed:
nas. toeut: :mﬂz rn;u*vi*m
y rentals are mory p"aﬂt?r -
-?-_s “the company'sitevennsh
k4 u::s Lif‘D‘E’:C’“a ingly to sules, dperat-
=c,:n:» have declinad 10 19% last wa* .

T in 15714, In =ddition, the sbeer yol
o sJes suzzests {hat the page, now sod
12 P"‘GL.; -eventunlly will modarate,:
re's & time e sa on the camnany,”
Brizp Ferna: .dez securltlea auyst

g :nat amp?oyes ﬂew
1r1 tha bast holels,, K
mcﬁﬂd its first cowzm'
Criye: ‘;‘:"th thelambi-
Lb u:[n overhead, the
sanea Dof employes,

a»’*t bas seldom looked ;

R
aised 50§

: where&zpane;u cornpalition is hea wylest, The

.dyed const”mtlon DI
quarrers b 5

| copiets phmg&d idst yea; to 22% from 37 5%
- tuo years garlior, ™ !

n';\-

S IR AL

at; Dveyha@’. keepy climblag, Last” "eﬂ']
: iiil”ia’, seryice; us:i'nimstrnir, and gengral;
‘1 exgunbeq c‘newed U 42.5%:0f total: reve" 23,

2!
|| Upfromr 47,69 juiv pr"{cr Torthe cost Tutting
4 amd 33.1% five years before that. Inflatlon
has wiped out the savines, explains David T.

have to raisg prices, er wa-will ba unable to
§stop this erosien,” he FEYS. . L L
Pricmw Woes: [T '
A S*rmiar j, a cha:nm i
seamn to hava'halpad Littla,
~Id s heyday, Xsrox pmsnared by rent'
lnt* {u{ more ang more topiers, But a few

?LZ"L?V SL"?.t *7}’

ye::s aﬂs man&wement decided to seeR
| growth: bf encowraging customers {o make
more coples-on the machines they already
had: 5 In 1678, ‘after the seltlement with the
ciearad the, Wa}", Xf\rox mis n,n‘al fces

t.‘

Syl rises thore !
the: Ia;:e; pris::e per mvy

Jmaneuver

: ; ecerding 1 Endus[;y “sburces,
’who $ay. Xcrog,prlmtﬁly contirma thelf find:
drigs, Tayeragey annval vevenues. per . fopler

Xerm mac‘n*;i& families except color ceplers
'md Iha Bigh- voiune G{} {.I‘T) teator] i

: th:it it waa ontffam{ d on “nc}ﬂier prlc:infr

| Kearns, Xerpy ;;resr’:n . Al some point in%
timea—perhaps threa or faur years—we will

mpnﬂd i the pc.st twoyenrs for 2if

4 L u.:l e ¥

et

1\-

Imm A} ‘mm»r?g ,Xem\; ml!y e\cp&;,ted :hg

. J'\pm 581 [0 epter - the'! wnrdwda copiar

market—gven smper, nlfact,than they dld

i}~ the: “eOmpany How says it focuséd so nar-

rowly on’ copppetlng with Kodak and
that the
Iced Labd gy

i.The emhrmss}nv scaﬂs“t‘uance 3_ 'ibe

1By
J’lp&’ﬁ&‘i& shpp% 1n almast‘ummt

Vathalia, s N, Y. 5icompany, Savln .Bﬁsmes:
Machines. Corp, ,-jvh&:e annual revénues’a

less than ha}f tho shee o; the- Kerax. resaarc‘z
budget; Savln Which-delis Jow- priced desk-32
top CD})E&E‘S made by Rleaty Co. of Tokye, 3

says i place& Fnoré than 40,000 pialn paper*
coplers™in” the Us hsy, yvur up from’ aL
ShandRul two years earlier. By comrast Da-
taquest Ing.va C:c,llgomia marketresearch
company, estimates . thaf Xerox added only
23,000 low-vo l,zmﬁ copmrs
19??

I"i' T
' ~Lately){erox '15
shuxhtnv prices - on*

,g’zx .flﬂ‘htmg‘ bac
W-volume nmc‘l‘nes

;price of the popular hcded 3160, Hor exam-
i ple, was cat from $32,006 to™as htt B'as Sm
for customers w}aa wan} iezbvy? th ma—
chmﬂs they bow are renting.
However, Xerox stll seems to be’ 2os[r~v
g’mund Althgugh' the number of, in telled
Xerox machines far surpasses the totol of
all pther brands comblaed, mere 2nd more
ngw customers for small coplers are poing
elsswhere.y Dalaguest : has| concluded -thal
Xerox's share of new business in low-yolyme

prime Xerox foe hai turped aJt nok tg be al:
feltow corpcmtgz"mammotfs T e p)gmy‘

tv;a its 1.5, 20t’1} HAE

3
3

oughc,r Competme / "-
.WH E.DastSupLesy

- rhege sno Jball is roltiog doy m on thery ab g
; \»hcs;nnﬂ' rateand th
'n"““tu"’l [-:.‘ l,'-\.;

N its futare in topying,:
|Battle” “of Dupﬁcntcra

T

Twarrans, rﬂﬂrgmm’fwm sales farce, And i} -
i recer cf weeks, several-marketing changss

 morenezw cuslomars 1 t.er thap sffn;;sf t0:

% YWhile the small Xeroy mach; es haven't

:drassovrbph Multigraph« Corp - and. A B

{9200 dupticator which was. désignéd to; Tl

-1 half .the company's, original expectations

' 1“omm91ra§ ‘mlscilentation ” that. cost L;‘

..

s "Very nmqy,}?em\c a4 Blawh 1? N ay

S
iDavid G Jorgensen,. & Dataquast seni jor -
1 partner. “They re maklng the rizht moves)

It they’d made ‘thern-sooner, Bul now tr'!ss

are's jwt tm r’vuch o
b “-.

L Xerpx, wzm isciss m;rkhi suakrﬂ. Bu: iz
daas terra the sltuation, serious enpigh 1o

have besn’made’ in: an: ‘atterant 1o pnegver

sell mora to current oRes, s

~..|

i

S‘&’ai‘. Fi H‘Q‘ C{.’T’idﬁia luu; n\-nz L'i' hava tha
big ones that tha c&fr}p_ﬂ}’ ¢al ;s tﬁa key 1o
v

|,‘
»-i..r
-

Invading s markst ionw Tuled by Ad
Dick Co.y Xerox-in: 1574 cams oul. with the

place the’a-M andDick olfset presses ma&
by Jargé corporaimvs and government agened|
cles/The 9300 is fast; i splis out two. CO;JJ“S
‘& second.. But }yE{G"c was slow Iz eiting it
Gt Jha. ac;ary door,” and: cm:nefifcrs zcm
ad'.ran age of the del z\}u : b5 Tphe

ﬁddscsswmph ot pog, had ;i*ne‘ ia m:r
gan 2 15 gaies force knd launeh g $1 miltjon
gdverhs!z. 3 cﬁmnrj-m ‘t’miﬁo' S?,ed oy

Feie

es;o*r pn 5 offcu.
bounded and now are growinz 2t sbout thelr
formeer rate, the company says.
Industry sources .eshimate that phce‘
ments of the 8206 are rinning at less tha”_

Howeyer, Xergx is calling the mochine a
suceess, although it zeknowladzes thal it ov-
erestimated the 9200°s prospaects, and mlnun
derstond the markst. Sg Xerox hag to fiddled -
with the maciing’s price; And whan it lv'ro-
duced the fmproved $160 dupli icater lasy fail,
Xerox pitted ‘the " older “machine -azalnst
slower eguipment from Kod
stead of the offset presses, >
| eMThe 9200 is & ogpreal niaching, bu; 23
e‘cx.mr)le of Xerox product plamning, it Was
fiasea)a former direttor says, Wwa

.4 e M

:
&
e}

hhl‘dl’tds ol tl‘ons ﬁF dsélars in 25-5

r*!ist ;zhom is tlw qmlir} ot zﬂmageme it
Culding . a “Enit g*m';ing company- whhy s)
noyel productls dilfigult” Ut’dea‘mg with
today's. Increasingly comipstitival environ-
ment §s even harder;and many m*!cs u:m‘at
that . \em*: execulives® han T Tequisiie
shitig - -

B LR P TP

- and T,W ned o

7 Jdent of Prudential Insurance an

ey Motors znd IBMEand. lately Soms have

4 Ceny's gererai counsel, . four Vice “presidants
- tend eyen the prtesidf-iﬂ Primarily; they delt

u,est al_t v cﬁt%clsm nafuml]y centera o
”I:,e .\h\,COIGLi“h “The Xerox chalrman 15,01
i eourse, credited with'a key rolo In the | tom-
S nEny's phenamnn*ﬂ Erowth, Sanford Kenlan,
SRR {!re:I }xere*{ divector, describes Ml Mo

s T Colough R £ aibarn merketing. type, ?','ndd-'

irJ,"Hns yel

; Iy, briﬂht and quick with 1 num,
) bu‘q‘ o

o nﬁ M‘*ﬂs as' the vem re into computer-mak-
© cping and the fallire to acquire CIT Fipanela)
Cor:J swhen Xerox had the, chance, In adgi

Tl t‘a ard too laia.

" longhls a Canadianbors lawyer with a Hapr
: __'var:i A.E.Ac and an lgealistic view Df Hee
FOX's s0¢ al obligations, At one annual mest.

ing when an angry sharsholdep assalled thay
o cormpany's hefly donations to charly; he. gl

- llorted,. "You cap- se}
throw vs uut ~b

.. . Chaﬂb'ﬁ " :’_ '_‘r ' ;-‘
s xnmaaement styie is equally ‘iI'eC?:

. yourt stcck'cr try to:

nal dacisions, " says Roberi Ay Bec

direetor, Ong' ,former as;:ncialte o
- [Colough's deacribes’him as
- teyed businessman with ¥
|sailing and pahﬁca.“

tion, crities contend that when compﬁntarsi
bezan making mm:fi_a his reacilon Was taa:;

LA handsome, bﬂ&.ms%"“au My :xrcacd«l

lepater Elstens {0 the men under hlm, but'iy [}
115 always very! very clear who Makes thz} fi— :

r.1s Bl amed‘fm suc‘; -

’ . \5“,-_..

: _'fcurﬁz mapz vement I

- fitness buff who hkes noswenlsult and trick
_shoss on bﬁSlIE”SS {rips;he comes on oy holl)
_agpressiye end pandid, ‘Departing from the.

_ mat hewill: corrett ﬂ’nm

- rittetzad tha carnpany for bﬁm slow (o't

S

and sa‘n.”

' Problems ‘““S{ﬂmbke
T iANTvehesn gart of Bom

_ ’*.Iany I}epartures
wAReT working his 'own Way up through’
Cithe renxs, Mr, McColough recrulfed: Tost of

"1 by fop-aldes-from outside—~from ¥ Frd, Gen®’

et I the'past, e years, sight stm; plays
1ers have quit the zeam, incluﬁmﬂ' the parnpias)

- dor a chance to ca)l theirown plavs at come
- panles, Tike Singer LTV 'and VWhits Motop:

Cotp,, solrces at:ziemx say: But money 2is6’
- east its spell, For exampla, althetzfrh Archieg

“R.MeCardell will earn ahout the szme sale
~ary as-president of International Hawemr
25 he'did when president of Xerox-$460,006
& year—ke also will pet bonuses In stack and
g c&sh that could tota] nearly.$3 million, Lo
. The departares are puliing some 1mpor-

- mte stalf ren orts (Hrectly {o:Mr, -MeColongh: |
B4 Tm stire a3 thes’goed by Dave will’ get [
addeﬂ responsibility it 3 don't want to put ||

' !,ant sa*‘rmenzs of tha bus iness thmu'-*h thair

_'.‘.l : ’-__.‘,'j- TN]

asl

2 m threa yeara
Alfew: L“partmenis Argdlsruptad, iy
trated end Gelayed,!. one executive says,” o
*: The new. pr%lnent Bir, Keaipis, is & for
mer TEAM. evacuflve A sopietims plist and |

guarded comments thal had: i:uc,cnme typleal
of Xeroy,. 1”;. Feads Iy foncan jes that Xergx
kas ‘made’several. pildsteps, snd he” Yows

e :
M Eearfs ‘ruz

'I‘“E_‘uv 0% secu ritles anaiys
zrairaea ng tf*a rrzﬁma,-

act to comparttiogt wlfficimzt in rn:marc,h
zullty of following str*tevins
nther.

i b2 e

at cmga-“um to each

g ol the mistakes
Xemx hay’ mads in” Lha pasi, but ot
afraid of m;tzﬁ&e#%ha Spye. “There preta
lot of things wrong With thy company, but

they are. sah’abﬁ. Towlll bi'e tougher job
thaﬂ Inth ra cgnfident rl; ey be
done,¥ £33 LEER |

1 His'thene 3 pradunily. My, E,Ec

Colough, ehief executjve slice 1988, has five |

‘more years to-go before stepping down un- |

der & Xerox pol icy calllng for executlves to |

refive ot age £, At preien he entire corpo-

100 much of 2 hurden on’klig 2]} af once, |

Mr. MeColough says,-PKeép In mind that o
h%ﬂm“ghouvh ﬂrfiﬂr L

R ANt

11'm also I*npressed wi
aﬂ }:pic—:ed him,?

3 A FIN Shee el
Eeta i -“:-:::ﬂ::ﬁ::‘::r:r::m A ¥

P g U gy S e e i e

CTHE WALL STREET JOURNAL -
Thzz_rksduy,'f"cb‘_ 16, 1978

C66T YA € ON ‘S JWAIOA 'SSONON NVIdDIS WOV

VL 1872°78—Xerox parc: The first real Smalitalk (~?2)

* THE EARLY HISTORY OF SMALLTALK
Alan €. Kay

C o Apple Computer
- -kayZ @apple.com.Intemet#

_ _ _ Abstract _
. Mogt ideds come from provicus ideas. The sixties, paticularly in the Arpa

“comimunity, gave rise to-a host of notions about “human-computer symbiosis”
"~through interactive time-shared computers, graphics screens and pointing

‘devices. Advanced computer linguages were invented to simuiate complex sys-
- tems such as ol refineries and Semi-intelligent behavior. The soon to follow para-
- digeri shift of todern personal: compuhng, overlapping window interfaces, and
" ubject-oriented ‘design came from seeing the work of the sixiies as something

‘more than a “betier old thing”. That is, more than a better way: to do mainframe

computing; for end-usets o inwoke functionality; to make data structures more

- abstract, Instead the promise oOf exponentxal growth in computing/$/volume
" demanded that the sixties be regarded as “almost a new thing” and to find out
-what the actual “new things” might be. For example, one would compute with a
" “handheld “Dynabook” in a way that would not be possible on a shared main-
“Frame; millions of potential users meant that the user interface would have to
- “beveme a-learting environment along the lines of Montessori and Bruner; and
i ndeds for Jarge scope, reduction in complexity, and end-user literacy would
" requife that ddta and control structures be done away with in favor of a more
- Biological schemie of protected universal cells interacting ondy through messages

~ that'could mirmi¢any desired behavior.

- Fasly Smalltalk was the fizet: campiete realization of these new points of view

- sy patentéd by its many predecessors in hardware, language and user interface
“design. It became the exemplar of the new computing, in part, because we were
- actially trying for'a qualitative shift in belief structures—a new Kuhnian para-
- digm i ‘the same $pirit as the invention of the printing press—and thus toock

" “highly extreme positions which almost forced these new styles to be invented.

Tabie Of Contents
lnimducticn.‘...“........“.,......' z
I - 1950-86-<Early oor and other formative ideas of the sixties .. B

B220 File System
" SketchPad & Simula

TR - 1867-69—The FLEX Macmna, an cor-based perswal computer . .. &

‘Dotz Eaglebartand NLS
" Plasma Panel, GRAlL, Loco, Dynabook

L A970-T2XGIOX PARG . . . 1\ e 12

- KiddiKomp
“insiCOM
Smalltalk-71
Overlapping Windows
‘Font Editing, Painting, A.mmaticm, Music
Byte Codes
feanic Programming -

- Thie two biets: birth of Smalltatk asd Interim Dynabook
Smalitalk<72 Trinciptes :
.+ Thie Smalltalk User Interface)
o Bevelopmient of the Smalltalk Applications & System

Man c. Kay The Earty H!story Of Smalhalk .

AT

Evolutmn {Jf Smal]talk ST-74, ooze storage management
Smalktaik and Children

V. $976-80—The first modern Smailiall {76y . . .-, . e P, . 29

"Let's bum pur disk packs’ ’

The Notetaker

" Smalltatk-7a

[nheritarce .

More Troubles With Xerox

Thinglab

... Apple Demo .

Vi. 1980-83—The relesise version of Smailtalk CBO) .. Ll 38

Fransformations
" Coda : o
References CltedinTexd, S e e a1
Appendix T RIddiKemp Memo oo 45
Appendix ii: Smialitalle?2 Interprater Design, 47
Appendix il: Acknowledgements . , A, 50
Appendix Vs Event Driven Loep Example 53
Appoendix V: Smallialk76 Internal Structures o L. L L L L. 54

T D Irspalis, Adele Goldberg '

- ardd the rest of the Xerox PARC LRe
garg
—To Dave Evans, Bob Barton,
Marvin Minsky, and Seymour
Papert
—T0 SKETCHPAD, JOs5, LISP, and
“BIMULA, the 4 preat programiming
Intraduction conceptions of the sixties
I'm writing this introduction in an airplane at 35,000 feet, On my lapis a five pound note-

book computer—1992's "Interim Dynabook™-by the end of the year it sold for under §700. It

* has a flat, crisp, high-resolution bitmap screen, overlapping windows, icons, a pointing device,
- considerable storage and computing capacity, and its best software is object-oriented. It has
_advanced networking built-in and there are already options for wireless networking.

Smalltalk runs on this system, and is one of the main systems I use for my current work with
children. In some ways this is more than a Dyrnabook (quantitatively), and some ways not
guite there yet {qualitatively}. Al in all, pretty much what was in mind during the late sixtigs.

Smalltalk was part of this larger pursuit of ARPA, and later of Xerox PARC, that I called person-

al computing. There were 50 many peopie lnvolved in each stage from the research cormununis

Hes that the accurate allocation of credit for ideas is intractably difficult. Instead, as Bob Barton .

liked to fuote Goethe, we should “share in the exdternent of discovery without vain attempts
to claim priority”. _

T will try to show where most of the influetices came from and how they were transformed
in the magnetic feld formed by the rew personal computing metaphor. It was the aftiindes as

“well as the great ideas of the pioneers that helped Smalltalk get invented. Many of the people
-admired most at this time—such as Ivan Sutherfand, Marvin Minsky, Seymour Papert, Gerdon
Meare, Bob Barton, Dave Evans, Butler Lampson, Jerome Bruner, and others—seemed to have.
‘a spiendid sense that their creations, though wonderful by relative standards, were not near to

the absolute thresholds that had to be crossed. Sinall minds try to form religons; the-great ones
jist want better routes tp the mountain. Whare Newton sdid he saw further by standing on
the shoulders of giants, computer scientists all too often stand on each other’s toes. Myopia is
still a problem when there are giants’ shoulders to stand on—"outsight” is better than
insight—Dbul it can be minimized by using glasses whose lenses are highly sensitive to esthet-
ics and criticism,

Programming languages tan be categorized in a number of ways: imperative, applicative;

logic-based, problem-oriented, ete. But they all seem to be either an “agglutination of features”
or a "crystalization of style”. COBOL, PL/1, Ada, etc., belong to-the first kind; Lise, Api—and
Smalltalk—are the second kind. Tt is probably ot an accident that the agglutinative languages

oL "._j:: b 3

: Aldf L. RaY, g eally rusiony Ul smailtelk - g

1o have beernt mst:gated by commlttees and the crystalization langtiages by a single person,
~Smalhtalk’s ‘design—and existence—is due to the insight that everything we can describe can be

represented by the recursive compositiods of a single kind of behavioral building biock that hides its

- combination of state and process inside itself and can be dealt with only through the exchange of

messages Philosophically, Smalltalk’s objects have much in common with the monads of Leibniz and

" the niotions of 20th century physics and biology. Its way of making objects is quite Platonic in that
“some of thern act as idealisations of concepts—/deas—from which manifestations can be created. That

the Ideas are themselves manifestations (of the Idea-Idea) and that the Idea-Idea is a-kind-of
Manifestation-Idea—which is a-kind-of itself, so that the system is completely self-describing—

- wottld have been appreciated by Plato as an extremely practica! joke [Plato],

In computer térms, Smallfalk is a recursion on the notion of computer itself. Instead of dividing
*compiiter stuff” into things each less strong than the whole~like data structures, procedures, and
Function® which are the usual parapheralia of programming languages—each Smalltalk object is a

o recirsioreot the entire pasmbxizhes of thecomipiiter. Thus its semantics are a bit like having thousands
 and thotsands of computers all hooked together by a very fast network, Questions of concrete repre-
" sentationcan thus be postponed almtost mdeﬁmteiy because we are mainly concerned that the com-

piters behave appmpnately, and are mterested in particular sirategies only if the results are off or

U come back tod slowly.

‘!‘hough it g foble ancestors ;ndeed Smalltalic’s contribution is a new design paradigm—which 1

. called object-oriented—for attacking large problems of the professional programmer, and making
. smal! onies possible for the novice user. Objett-oriented design is a successful atternpt to qualitatively

improve:the efficiency of modeling the ever more complex dynamic systems and uset telationships

: made pOSSIblﬂ by the silicon exploion. - -

"We would know whit they 'théught
" ‘when they did it”
—Richard Hamming

“Memory and Imagination are but two
words for the same thing”
—Thomas Hobbes
It this hzstery I will by to be troe to Hammmg s request as tnoderated by Hobbes” observation. [
have had difficulty in previous attempts’to write about Smalitalk because my emotional involvement

' hias always been céntered on persenal computing as an amplifier for human reach--rather than pro-
- gramming system design—and we haven't got there yet. Though I was the instigator and original
-.designer of Smalitalk, it has always belonged more to the people who made it work and got it out the
. door, especially Dan Ingalls and Adele Goldberg. Each of the LRGers contributed in deep and remark-
- able ways tiy the projéct, and I wish there was enough space to do them all justice. But I think all of
-“us would agree that for most of the development of Smalitalk, Dan was the central figure,
-Programining is at heart a practical art i which real things are built, and a real implementation thus
- -hag to-exist. In Fact mary if not most languages are in use today not because they have any real merits
_-but becatse of their existence onr one of more machines, their ability to be bootstrapped, ete. But Dan -
I was far more than agreat xmpiementer, bier aléo becarne more and morte of the designer, not just of the
"language but also of thie user interface as Smalltalk moved into the practical worid.

Here, 1 will try to center focus on thi events leading up to Smalltaik-72 and its transition to its

- miderm forrm as Smalltalk-76. Most of the ideas occured here, and many of the earliest stages of cop

are poorly dociumiented inreferences almost impossible to find.
This history is toolong, but I was amazed at how many people and systems that had an influence

- -appear-ordy as shadéws of not at all. Tam sorry not to be able to say more about Bob Balzer, Bob

Bartori, Dariny Bobrow, Steve Carr, Wes Clark, Barbara Deutsch, Peter Deutsch, Bill Duvall, Bob

" Flegal, Laura Gould, Bruce Horn, Butler Lampson, Dave Liddle, William Newman, Biil Paxton,
~Trygve Reenskaug, Dave Robson, Doug Ross, Paul Rovner, Bob Sproull, Dan Swinehart, Bert
. Butherland, Bob Taylor, Warren Teitelman, Bonnie Tennenbaum, Chuck Thacker, and fohn Warnock.
- Worse; T haie omitted to mention many systems whose design 1 detested, but that generzted consid-

" eratile wseful ideas and sthtudes in réactior In other words “histories” should not be believed very

seriously but considered as “FIEBLE GESTURES OFF " done long after the actors have departed the stage.
~Thanks fo'the numerous reviewers for eniduring the many drafts they had to comment on. Special

B h thanks 1o Make Maloney fer helpmg 56 gently that T heeded his suggestions and so well that they

" back then, so sotme {to this day unknown) designer decided to

parts. The third part was all of the actual data records of arbitrary

‘third part. And the first part was an array of relative pointers into

- eocled 10 mir 6600, his astounding predictions had little projec-
tion into my horizons,

s MBI A f\uy, e L«C-\Il)‘ ri&muly Mt leliledi® [+ N

'greatly memved this essaymand o }ean Sammet an oid old friend, who quite Literally fnghtened

me into finishing it—1I did not want to find out what would happen if I were late. Sherri MeLoughlin .

“and Kim Rose were of great help in getting all the materials together.

1. 1960-86—Early cor and other formative ideas of the sixtles.
Though 00P came from many motivations, two were central, The:lafge scale.ohe was to find'a bet-

- ter module scheme for complex systems involving hiding of details; anc the: smrall seale onewas to

find-a more-flexible version of assigrmerit; and ‘then 16y o elifiinate it altogether. As with most
new ideas, it originally happened in isolated fits and starts.
Mew ideas go through stages of acceptance, both from within and without. From w1fhm, the

“sequence moves from “barely seeing” a pattern several times, then noting it but not percaiving its

“cosmic” significance, then tsing it operationally in several areas, then comes a “grand rotation” in
which the pattern becomes the center of a new way of thinking, and finally, it turns into the same
kind of inflexible refigon that it originally broke away from. From without, as Schopenhauer nioted,

- the new idea is first denounced as the work of the insane, in a few years it is considered obvious and

mundane, and finally the original denouncers will claim to have inventad it.

True to the stapes, I "barely saw” the idea several times ca. 1961 while a programmer inthe Air
Force. The first was on the Burroughs 220 in the form of a style for FUSAFATE HandophAre 1
transporting files from one "Air Training Command installation to § B220 Fild Format ca. 1951
another. There were no standard operating systéms or file formats '

finesse the problem by taking each file and dividing it into fhree

"[ata”
Racords

size and format. The second part contained the B220 procedures
that knew how to get at records and fields to copy and update the

entry points of the procedures in the second part (the initial point-
erg were in a standard order representing standard meanings}.
Needless to say, this was a great idea, and was used in many subgeguent systems unti the ﬂrzferced

“use of COBOL drove it out of existence.

The second barely-seeing of the idea came just a little fater when ATC decided to replace the 220
with a BS0OC. I didn’t have the perspective to really appreciate it at the Hime, but T did take note of its
segmented storage system;, its efficency of HiL compilation and byte-coded execution, its automatic
mechandstns for subrourdine calling and multiprocess switching, its pire code for sharing, its protec-
fion mechanisms, ete. And, Tsaw that the access to its Program Reference Table corresponded 1o the
220 file system scheme of providing a procedural interface to a module. However, my big hit-from
this machine at this thime was not the ooe idea, but some insights into HMLL translation and evaluation.

{Barton,1961] [Burroughs,1561]

After the Air Force, I worked my way through the rest of m}lege by pmgramng mostly retrieval
systems for large collections of weather data for the Mational
Center for Atmospheric Research. 1 got interested in sirmdation
in general—particularly of oné machine by another—but aside
from doing a one-dimensional version of a. bit-field block trans-
fer {bitblt) on a CDC 6600 fo simulate word sizes of various
machines, most of my attention was disfracted by school, or I
should say the theatre at school. While in Chippewa Falls help-
ing to debug the 6600, I read an article by Gordon Moore which
predicted that integrated silicon oty chips was going to exponen-
tialty improve in density and cost over many years [Moore 65]
At that time in 1965, standing next to the room-sized freon-

LGS, OF THE RUMOER oF -
. EOM PONENTS PER WNTEGRATED FURLTION

3

Y

Gordon Moore's “Law”

Sketchpad and Simula

Through a series of flukes, I wound up in graduate ‘sehool at the Umversny of Utah in the Fall of
19686, “knowing nothing”. That is to say, 1 had never heard of ARPA or its projects, or that Utah's main
goal in this community was to solve the “hidden line” problem in 3D graphics, until T actually

o
o

TS

e e ane OHfice Tooking for 2 job and = desk. On Dave's desk was a foot-ugh stack of
‘brown covered documents, one of which he handed to me: “Take this and read it”.

- Every newcoiner got otte: The title was “Sketchpad: A man-machine graphical communication sys-

- rem[Sutherland, 1963], What it could do was quite remarkable, and completely foreign to any use of
* a computer 1 had ever encountered. The three big ideas that were easiest to grapple with were: it was
“ the thvention of modern interactive computer graphics; things were described by making a “master
- drawing” that could producé “instance drawings”; control and dynamics were supplied by “con-
straints”, alss In-graphical form, that could be applied to the masters to shape and inter-relate parts.
- ts data striichises were hard to understand—the only vaguely familiar construct was the embedding
“ o pointirs 1o procedures and using a process called reverse Indexing to jump though them to rou-
*tined, Bke the 220 Hle systeriRoss,1961],. 3¢ was the first to have clipping and zooming windows—

one “sketched” on a virtual sheet about 1/3 mile square!

30 00 =
R : . Constraints e

i Ui fuad 5w o sved § raprasented h’g}’ G
%' : . z asiewns § o .

- T o e 2.5 pemt

<E. A Y B 3 pad ceE

B B

B LAL ¥ ks N, Tot e

i 1 Urawing in Sxatchpad g

rosfget
wilh picture

) fF‘rcgrammmg wilh CONSITRINI= |

LT i PR O T R
T T ::'. : CeET L L L e il

AL A,
TUAPRY TRaRAORATIEE | ROVIT

B e ﬁ LT - UK E
) e .
: . . R i

2

Ll gl . K R, " TOR CORPTRERIS e
O £ L L . e R
N B .
o A o e o L L - N
SR e e
o PUT M LAST :
S hened Yanane block: Showing § - T8Gstcigads inhethance’
I ‘Elatenpan Soctures I procedural attachmant hierarchy

Head whirling, I found my desk, On it was a pile of tapes and listings, and a note: *“This is the

C - Algol for the 1108. It doesn’t work, Flease make it work.” The latest graduate student gets the latest
T dirty fask. . .

. The docurmientition was incomprehenisible, Supposedly, this was the Case-Western Reserve 1107

= Algol-biit it had been doctored to make a language called Simula; the documentation read like

‘Norwegian transliterated irito English, which in fact it was. There were uses of words like gchivity and
profess that didn't seem to coincide with normal English usage. .
- Finally, another graduate student and I unrolled the program listing 80 feet down the hall and

- erawled pver it velling discoveries to each other. The weirdest part was the storage aflocator, which

did ot obéy a stack discipline as was usual for Algol. A few days later, that provided the clue. What

" Simuila was allocating were structures very muich like the instances of Sketchpad. There were descrip-
“tions that acted like masters and they could create instances, each of which was an independent enti-

" ty. What Sketchpad called masters and iristances, Simula called activities and processes. Moreaver,
. Sirmild was a procedural language for controlfing Sketchpad-like objects, thus having considerably

- priire flexibility than coristraints (though at some cost in elegance) [Nygaard, 1966, Nygaard, 1983],

* - This was the big hit; and I've not been the same since. T thirk the reason the hit had 5_12'(21'1 impact
" was that T had seen the idea enoligh times in enough different forms that the final recognition was in
" such geniiral tereng to have the quality of an épiphany. My math major had centered on abstract alge-

* working on a “little machine”. It was not the first personal

“ed to program it in a higher level language, Hike sasic: I

- ar you think”, and that was the stact of a very pleasant col-

_ L O e SR ‘o
bras with their few operations generally appiving to many structures My biology major had focused
on bath cell metabolism and larger scale moerphogenesis with its notions of simple mechanisms con-
trolling complex processes and one kind of bullding block able to differentiate into all needed build-
ing blocks. The 220 file system, the B5C00, Sketchpad, and finally Simula, all used the same idea for

-different purposes. Bob Barton, the main designer of the B5000 and a professor at Utah had said in
" one of his talks a few days earlier: "The basic principle of fecarsive désign s to-make the parts have

‘the same power a5 the whole”, For the first time 1 thought of the whele as the entire computer and
wondered why anyone would want to divide it up into weaker things called data structires and pro-
cedures, Why not divide it up into little computers, as time-sharing was starting to? But not in
dozens. Why not thousands of them, each simulating a useful structure?

I recalled the monads of Leibniz, the “dividing nature at its joints” discourse of Plato, and other
atternpis to parse complexity, Of course, philosophy is about opinion and engineering is about deeds,

. with science the bappy medium somewhere in between. It is not too much of an exageration to say
. that most of my ideas from then on took their roots from Simula=but not as an attempt to improve

it. It was the promise of an entirely new way to structure computations that took my fancy. As it
turned out, it would take quite a few years to understand how o use the insights and to devise affi-
cient mechanisms o execute them. .)

H. 1867-69-The rLEX Machine, 3 first attemipt at an oor-hased personal computer
Drave Bvans was not a great believer in graduate school | —— SN
as an institution. As with many of the arra "contractors” !
he wanted his students to be doing "real things”; they |
should move through graduate school as quickly as possi-
ble; and their theses should advance the state of the art.
Dave would often get consulting jobs for his students, and
in early 1967, he introduced me to Ed Cheadle, a friendly
hardware genius at a local aerospace company who was

computer—that was the LINC of Wes Clark—but Ed watit-
ed it for noncomputer professionals, in particular, he want- - : TERRY | g
& LINCwas aarly arid small”

said: “What about 1055? It's nicer.” He said: “Sure, whatev- - Waes Clark and the LING, ca 1962 -

laboration we called the FLEX machine. As we got deeper into the design, we realized that we wanted
to dynamically simulate and extend, neither of which joss (or any existing language that T knew of)
was particularly good at. The machine was too small for Simula, 5o that was out. The beauty of Joss
‘was the extreme attention of its design to the end-user—in this respect, it has not been
surpassed(foss, 1964, Joss, 1978}, 1035 was too slow for serious computing (but of. Lampson 65), did not
have real procedures, variable scope, and so forth, A language that looked a Iittle Hke Joss but had
considerably more potential power was Wirth's EULER[Wirth 1966]. This was a generalization of Algol

- along lines first set forth by van Wijngaarden [van Wijngaarden 1953] ins which types were discazded,

different features consolidated, procedures were made into first class objects, and so forth, Actually
kind of Lisplike, but without the deeper insights of Lisp,

But EULER was enough of “an almost new thing” 0 suggest that the same techniques be appiied to
simplify Simula. The EULER compiler was a part of its formal definition and made a simple conversion
into B5000-like byte-codes. This was appealing because it suggested that Ed's little machine could
run byte-codes emulated in the longish slow microcode that was then possible. The EULER compiter

‘however, was torturously rendered in an “extended precedernice” grammar that actually required

"oy

concessions in the Janguage syntax {e.g. “” could only be used irr one role because the precedence

- scheme had no state space). [initially adopted a bottom-up Floyd-Evans parser {adapted from Jerry
- Feldman's originai compiler-compiler {Feldman 1977]) and later went to various top-down schemes,

several of them related % Shorre’s META H[Shorre 1963] that eventually put the translater in the name
space of the language. '
The semantics of what was now called the rLEx language needed to be influenced more by Simula

“than by Algol or EULER. But it was not completely clear how. Nor was it clear how the user should
" interact with the system, Ed had a display (for graphing, etc.} even on his first machine, and the LN

2

.- the fathers of what on the FLEX machine [had started to £

" ¢all "personal cormiputing”. He actually traveled with his

- own 16mm projector with a remote control for starting y
--and stoppiig it to show what was going on (people were §

- -notused to seeing and following nitsors back then). His §

Systems {NLS) was the “augmentation of human intel
S “thought vectars in concapt space”. What his system

- ble. Not just hypsttext, but graphies, multiple panes, effi- =
- cient navigation and command ingast, interactive tollabo-

- duee in the minds of those who wiére “eager to be aug-
shesnted” & tompelling metaphor af what interaitive

. mary of the ideas for the FLEX machite.

“the same kifd of disorientation pedple had after reading
- Copernicis and frst looked up from a dufferent Earthtoa
" different Heaver, -

; .-frames in the world--even foday L1992 it is estimated }, -

©-worid=~and ‘at most a few thousand isers trained for §
edch application, there would be millions of persoral
.- miachines and users, mostly outsideof direct institutional |

© Crier to anticipate the specific needs'of 4 particular one of |
the millions of potential users? An extensional system §
" senmed to be called for in which the end-users would do
- - tawst of the failoring {and even sorhie of the direct con-
- struetioli} of thite tools. aRea had alfeady figured this out §

~Thedr larget metaphor of human-computer symbiosis §
“helped the community 2void making a religon of their subgoals and kept them focused on the

Alan C. Kay, Tho Eary Midtory OF Smalralk = 7

- hada glass :e!etype" but & Sketchpad "Rk system seemed far beyond the scope that we could
- accomplish with the maximsien of 16k 26-bit words that our cost budget allowed.

Doug Engelbart and NLS

This was in-eacly 1967, and while we were potdering
the FLEX machine, LUtzh was visited by Doug Engelbart. A
prophet of Biblical dimensions, he was very much one of

notion of th Az dream was that the destiny of oNLine §
lect” via an interactivé vehicte navigating through 8
eould do then—even by today's standardsw.was incredi-
rative work, efe. An entire conceptual world and world
view[Engelbart 68)]. The impact of this vision was to pro-
computing should be like, and T immediately adopted

In the midst of the ArPA context of hﬂmm-mmputer
symbiosis and in-the presence of Ed's “little machine”,

~Gordon Moose's “Law™ again came to mind, this time § s vy ‘w
with great inpact. For the fiest time 1 made the leap of | + A g e
| putiing the toontsized Interactive TX-Z of evena 10 Mp .
6600 un & desk. T was almost Frightened By the implica- L0 st dnsatn v o, e, st et

b rrLr L

tions; tomputing as we knew it coulda’t survive—the
actual mieaning of the word changed-—it must have been

.u
i
TR nuu n.h iuhh umthuﬂ ¥y wane Tuf

i o s .
* Instead of at most a few tholsand imstitational main- T e o Dt e s

5 T e MEn), PA) LiTaeS 18 B 1e APITY

thit there are only 4000 18M mairifzaimes in the entire

control: Where would the applications and training come ¢
from? Why should we expect an applications program-

inthe context of their eatly suiéesses in time-sharing.

Coilboralve work Lsng

abstract holy grail of “augmentation”,
One of the interesting features of M5 was that its user interface was paramefric and could be sup-

o 7 plied by the end user in the forfm of a “grammar of interaction” given in their compiler-compiler
<o TreeMeta. This was similar to Willlam Mewman's early “Reaction Handler” [Newman 86] work in

Alani £ Kay, The Eaﬂy History Of Sraltisle -~ - g -

5pec1fvmg TAteaces by havmg the end-user or developer construct through tablet and stylus an
igonic regular expression grammar with action procedures at the states (vis atlowed embeddings via
its context free nues), This was atiractive in many ways, particularly Willism's scheme, but to-me
thers was a monstrous bug in this approach. Namely, these grammars forced the user to ba in a sys-
tem state which required getting out of before any new kind of interaction could be done. In hieraz-
chical menus or “screens” one would have to backirack to.a master state in order to go seunewhere
else. What seemed to be required were states in which there was a transition arrow ta every other
state—not a fruitful concept in formal gramonar theory. In other words, & much “flattér” interface
seerned cailed for—but could such a thing be made interesting and rich encugh to be useful?
Again, the scope af the #UEX machine was too small for & miniNL5, and we were forced to find
alternate designs that would incerporate some of the power of the new ideas, and in some cases to
improve them. [decided that Sketchpad’s notien of a general window that viewed a larget virtual
warid was a better idea than restricted horizontal panes and with Ed came up with a cipping algo-

“rithun very similar to that under development at the same time by Sutherfand and his students at
Harvard for the 3D “virtual reality” helmet project {Suthetland 1968).

Chiect references were handled on the FLEX machine as a generalization of B5000 descriptors.
[nstead of a few formats for referencing numbers, arrays, and procedires, a FLEX descriptor con-
tained two pointers: the first to the “master” of the object, and the second to the object instance {later
we realized that we should put the master pointer in the instance fosiave space). A different method
was taken for handiing generalized assignment. The B3000 used b-values and r-values{Strachey*}
which worked for some cases but couldn’t handle more compiex objects. For example: «f53]:= 10, ifa

- was & sparse array whose default element was § would stili generate an element in the arrav becauss

= is an “operator” and 2{55) i5 déseferenced into an l-value before anyone gets o see that the rvalue
is the default element, regardless of whether o i an array or a procedure fronting for an array, What
is needed is something like: 255, =, 0), which cag look at all relevant operands before dny stare is

- made. In other words, := is not an operator, but a kind of a-irdex that can-select a behavior from a

complex object. It took me & remarkably long time to see this, partly think because crie has to ihwec
the traditional notion of operators and functions, ete., to see that objeits veetl Wy privately own all of
their behavidrs: Hhat- “objects are a ki of-mapping whose: vaiies are its:behasiors. A book or Togic by

- FLEX User [T i
“Fiss” 33 quspendad processat K e

The FLEX Maching Self Portrat, ca 1968 [Ka B3]

fccier =
Sl

Virtuoi Screen &R
[;15(mathing window Cipping (e 53t Tablat

[ELEX mcu:hina objact strictura [x-m [

Tigs

PO
B B LI T TR TTIEITN]

Rlah L. Ry, HHe EANY HSIony OF smailaik - 19

- Carnap{Ca-*] helped by showing that “intensional’” definitions covered the same territory s the

mote traditional exténsional technique and were often more intuitive and convenient.

CUAS I Simu!a, & coroutining control structure[Conway, 1963] was used as a way to suspend and
resume cbjects. Persistunt objects like files and documents were treated as suspended processes and
were organizéd according to their Algol-like static variable scopes. These were shown on the screen

* “and coitid be opéned by pointing at them, Coroutining was also used as a control structure for loop-

~ ing.A single operator while was used to test the generators which returned false when unable to

_fur_n.ish’ 4 new value. Booleans were used to link multiple generators. So a “for-type” loop would be
wiitten as:-
© o owhilei<=11030by2 A j<=2tokby 3 doj<-j* i
where the .. to.. by... was a kind of coroutine object. Many of these ideas were reimplemented in a
stroriger style in Smalltatk lateron.
- Anothet tontrol structure of interest in FLEX was a kind of when a¢bA(0)+10495) do

" event-driven "soft ihterupt” called when. Its boolean i
: -ex;}rgssfmn was cemp‘;}:eci into a “tournement sort” tree that ompred Troe A
.. eached all posgible intermediate results. The relevant vari- [of panial results a
-ables were threaded through all of the soiting trees in all of Lhlie g3 tre
o the whenis o that any change only had to-compute through 7Y /f N
- the niecessary parts of the booleans, The efficiency was very 2ov /-F' o
high arid was similar to the techniques now used for o \n
-spreadshiéets. This was an embarrassment of riches with : ;
Jdifficiiities often encountered in event-driven systems. Lo

" Namely, it was a complex task to control the context of just when the whens should be sensitive. Part

of the boolean expression had to be used to check the contexts, where I felt that somehow the struc-

) - ture of the program should be able o set and nnset the event drivers. This turned out to beyond the
- scope of the FLEX system and needed to wait for a better architecture.

54l c;'gité 2 few of the original FLEX ideas in their proto-object form did turn out to be smal
eniough to be feasible o the machine. I was writing the first compiler when something unusuat hap-

' pened: the Utah gra_daat’e students got invited to the Axra contractors meeting held that vear at Alta,
- _Utahr_ Terwards theend of _the three days, Bob Taylor, who had succeeded Ivan Sutherland as head of
- ARPA-IPTO, asked the graduate students {siting in a ring around the outside of the 20 or so contrac-

tors) if they had any commenits, John Wiérnock raised his hand and pointed out that since the ARPA

- -grad students would all soon be colleagues {and since we did all the real work anyway}, arpA should

* have & contractors-type meeting each year for the grad students. Taylor thought this was a great idea

and set itup for the next summer.
- - Another ski-lodge meeting happened in Park City later that spring. The general topic was educa-

e tif)'? and it was ;‘ehé first tirme I heard Marvin Minsky speak. He put forth a terrific diatribe against tra-
- ditional educational methods, and from him I heard the ideas of Plaget and Papert for the first time.

e alb-of the “object structures”, the contpiler, the byte-

‘tor for'text and graphics. The grad students were a dis-

- tinguished group that did indeed becoms- colléagues in
subsequent years. My FLEX machine talk'was a success,
.. but the'big whammy for mie came ‘during a tour to U of
- 1llindis where T saw 2 1" square fump of glass-and neon

~gas in-which-individaal spots would light up en com-

- mand-—it.was the fest Hat-panel display. I spent the rest

- Marvin's talk was about how we think about complex situations and why schools are really bad
j -_-pla.t:e§ 1o Jearn these skills. He didn't have to make any claims about computers+kids to make his
- point: T wak clear that education and learning had to be rethought in the light of 20th century cogni-

tive psychology and how good thinkers really think. Computing enters as a new representation sys-

7 temewith new and useful metaphors for dealing with compiexity, especially of systems [Minsky 70].

- For the summer 1968 aRPa grad students meeting at
Altertont House.in Hlindis, I boiled all the mechanisms iy
the FLEX machine down into one 2'x3' chart. This includ-

code interpreter, i/0 handlers, and a simple display edi

of the confererice calculating just when the silicon of the’

_everything was fastened with bubble gum and the sys

" vers ed”, but if it was a medium, it had to extend intd’

" together to form an image of what a personal computer

a5 friendly as JOS$', CRAIL's, and LOGO'S, but wikh the

FLEX machine couid be put on the Back of the disf)lay. According to Gordon Moore’s “Law”, the

< answer seemed to be sometime in the late seventies or early eighties. A long Hme off—it seemed too

long to worry much about it then.

Buat later that year at RAND | saw a truly beautiful sys
tem. This was GRATL, the graphical followon to j055. The
first tablet (the famous RAND tablet) was invented by |
Tom Elis [Davis 19564} in order to capture human ges
tures, and Gabe Groner wrote a program to effidently |
recognize and respond to them[Groner 1966]. Though §

tem crashed often, I have never forgotton my first inter- |
actions with this system. It was direct manipulation, it
was analogical, it was modeless, it was beautiful. I redl- ¢
ized that the FLEX interface was all wrong, but how eduld
something like GRAIL be stuffed into such a tiny machine
since it required ail of a stand-alone 360/44 to runtin?
A rnonth later, T finally visited Seymour Papert, Wally
Feurzig, Cynthia Solommon and some of the other origi-
nal researchers who had built LOGO and were using it
with children in the Lexington schools. Here were ¢hil~
dren doing real programming with a specially designed
language and environment. As with Simula leading’to-
coF, this encounter finally hit me with what the destiny
of personal computing really was going to be. Not a per-
sonal dynamic zehicle, as in Engelbart’s metaphor
opposed to the IBM “railroads”, but something much
more profound: a personal dynamic medium. With a
vehicle one could wait until high school and give "dri-

the world of childhood.

Naw the collision of the FLEX machine, the flat-screen
display, GRAIL, Barton's “communications” talk,’
McLuhan, and Papert’s work with children all came

really should be. I remembered Aldus Manutius who 40
years after the printing press put the book into its mod-.
ern dimensions by making it fit into saddlebags. It had’
to be no larger than a notebook, and needed an intetface - 7
] ynabook b

reach of Simula and FLEX. A dear romantic vision has a marvelous ability to focus thought and will.
MNow it was easy to know what to do next. T built a cardboard modatl of it to see what it would look
ard feel like, and poured inlead pellets to see how light it would have to be (less than two pounds). T
put a keyboard on it as well as a stylus because, even if handprinting and writing were recognized
perfectly {and there was no reasort to expect that it woutd be), there stili needed to be a balance
between the lowspeed tactile degrees of freedom offered by the stylus and the more imited but faster
keyboard, Since ARPA was starting to experiment with packet radie, T expected that the Dynabook
when it arrived a decade or 5o hence, would have a wireless networking system.

Early next year {1969} there was a conference on Extensible Languages in which almost every
famous name in the field attended. The debate was great and weighty—it was a religious war of
unimplemented poorly thought out ideas. As Alan Perils, one of the great men in Computer Scierce,
put it with characteristic wit!

It has been guch a long time since I have geen s many familiar faces
shouting among 5o many familiar ideas. Diszcovery of something new in
nrogramming languages, like any discovery. -has somewhat the same

 sequence of smotiong as falling in love. A sharp glation followed by
guphoria, a feeling of wnigueness, and ultimately the wandering aye
tthe urge to generalize} {ACM B8],

: : Alan U, Kay, |he sary History Qf Smafiiaik 14

But 1t wad aii t‘alk—-—no one had {,i_o_e anythmg yet. T the midst of all this, Ned Irons got up and

e presented w72 gystem thiat had already been working for several years that was more elegant than

“ most of the nanworking poposals. The basic idea of IME was that you could use any phrase in the

- granimar as a procecduire heading and write & semantic definition in terms of the language as extend-
- led 5o far Hrons, 19701

¢+ Thad already miade the fifst version of the FUEX machine syntax driven, but where the meaning of

- phirase ‘was definéd in the thore usual way as the kind of code that was emitted. This separated the

-, tompiler-exterisor part of the system from the end-user, In hons” approach, every procedure in the

- system defined its owr syntax In a natural ard useful manner. Tincorporated these ideas into the sec-

- -orid wersion of the FLEX machine and started 10 experiment with the idea of a direct interpreter rather

“ thafl a'syntax difected tompiler. Somewhere in all of this, [realized that the bridge to an object-based

o gystér could be Interms of each object as a-syntax directed inferprater of messages sent to it. In one
"~ tell $woop this would unify ohiect-oriented semantics with the ideal of a completely exiensible lan-

- guage. ‘THe meérifal itrage was one of separate computers sending requests to other computers that
~“had to beé-accepted and understood by the réceivers before anything could happen. In today’s terms
- every object would bé a server offering services whose deployment and discrétion depended entirely
- on'the server’s fotidn of telationship with ‘the sérvee. As Liebniz said: “To get everything out of

o pothing, youi, only need to Hnd one prireiple”. This was not well thought out enough to do the FLEX
i rhachine dny good; but forimed a good point of departure for my thesis [Kay 69}, which as Ivan
"7 Suthierlarnid diked to say was “anything you can get three people to sign”.

After three people sigfied it (Tvan-was one of them), I went o the $tanford Al project and spent
‘much more ime thinking dbout notebook KiddyKomputers than AL But there were two Al designs
_that were very intiiguing. The first was Cazl Hewitt's PLANNER, & programmable logic system that
formed the' deductive basis of Winograd's sHrRDLU [Sussman 69, Hewitt 69]. I designed several lan-

S guages based ona combination-of the pattesn matching schemes of FLEX and PLANNER {Kay 70} The

S set0nd demgn was Pat Winston's concept formation system, a scheme for building semantic net-
- works and. companng them o foren-analogies and learing processes [Winston 70]. It was kind of
“object-oriented”. Ofie of its many good ideas was that the arcs of each net which served as attributes
in AQV triples should themiselves be modeled as tiets, Thus, for example a first order arc called LEFT-
- oF voiild be askeéd a higher order question such as “What is your converse?” and its net could answer:
o mcHT-0F This point of viéw later formed the basis for Minsky's frame systems [Minsky 75] A few
S years later Lwished I had paid more attention to this idea.
- Thiat fall; T hisard ‘2 wonderful talk by Butler Lampson about CaL-185, a capabifity-based operating
“system that seemed very “object-oriented”{Lampson 1969]. Unforgable pointers (ala B5000) were
exteiided by bit-iiasks that restricted access to the object’s internal operations. This confirmed my
. "objects as sefver” metaphor, There was also a very nice approach to exception handling whick
rgminided me of the way failuré was often handled in pattern matching systems. The only problem—
o iWwhich the CAL designers did not see as a problem at all—was that only certain (usually large and
“glow) things were“objects” - Fast things and $mali things, ete., weren't. This needed to be fixed.
2 The btggest fit for me while at SATL in lake ‘69 was to really understond Lisp. Of course, every stu-
- dent know about car, cdr, dnd cons, but Utahi was impoverished in that no ong there used tisF and
" heriee, o one had penétrated the mysteries’ “of gind and apply. I could hardly believe how beautiful

- o and wunderfui the ided of LISP was {McCarthy,i%Di I say it this way because 11sp had not only been

. '_'around eniough to get somé honest barriacles, but worse, there were deep flaws in its logical founda-
2. tions By this, 1 meari that the pure language was supposed to be based on functions, but its most
impiortarit comgmnents—such as lambda expressions, quotes, and conds—were not functions at all,
- and ‘irstead were valled special forms. Landin and others had been able to get quotes and conds in
terms of lambda by tricks that were variousty clever and useful, but the flaw remained in the jewel,
" In-the practical language things were better. There were not just EXPRs (which evaluated their argu-
- ments), but FEXPRS {which did not). My next question was, why on earth call it 2 functional fanguage?
. Why ot just base everything on FEXPRs and force evaluation on the receiving side when needed? I
o could never geta gmd answert, but the guestion was very helpful when it came time 0 invent
- Seralltalle because this siarted 2 line of thought that said “take the hardest and most profound thing

C o reed o db, make it gréat, and then build every easier.thing out of it”. That was the promise of

'_ Cousp and theluire of lambdawm_eded wasa better “hardest and most profound” thing. Objects should
- j"be it i : :

Aan C. Kay, This Eaity Hislory OF Smaiitalk . {4
H.1870-72—Xerox Parc: The KlddtKOmp, mmzCDM and Smalltalk-71

in July 1979, Xerox, at the urging of its chief scientist Jack Goldman, decided to set up a long range
research center in Palo Alto, California. In September, George Fake, the former chancellor at
Washington University where Wes Clark’s ARPa project was sited, hired Bob Taylor (whe had left the
ARPA office and was taking a sabbatical year at Utah) to start a “Computer Sclence Laboratory™. Bob
visited Pale Alto and we stayed up all night talking about it, The Mansfield Amendment was threat-
ening to blindly muzzle the most enlightened Arpa funding in favor of directly military research, and
this new opportunity looked like a promising alternative. But work for a company? He wanted me to
consult and I asked for a direction. He said: follow your instincts. Iimmediately started working upa
new version of the KiddiKomp that could be made in enough quantity to do experiments leading to
the user interface design for the eventual notebook. Bob Barton liked to say that “good ideas don't
often scale”, He was certainly right when applied to the FLEX machine. The B5000 just didn’t directly
scale down into a tiny machine. Only the byte-codes did, and even these needed modification. I
derided to take another look at Wes Clark’s LING, and was ready to appreciate it much more this time
[Clark, 1965).

I =411l liked pattern-directed approaches and 0or so [came up with a language design called

“Simulation LOGO" or sLOGO for short (I had a feeling the first versions might run nice and slow). This

was to be built into a sONY “tummy trinitron” and would use a coarse bit-map display and the FLEX
machine rubber tablet as 2 peinting device.

Another beautiful systern that [had come across was Peter Deutsch's pop-1 Usp (implemented
when he was only 15) [Deutsch,1966]. It used only 2K {18-bit words} of code and could run quite well
in a 4K machine {it wag its own operating system and interface). It seemed that even more could be
dene if the system were byte-coded, run: by an architecture that was hospitable to dynamic systems,

-and stuck into the ever larger ROMs that weré becoming available. One of the basic insights 1 had got-

ten from Seymour was that you didn't have to do a lot to make a computer an "object for thought”

" for children, but what you did had to be done well and be able to apply deeply.

Right after New Years 1971, Bob Taylor scored an enormous coup by atiracting most of the strig-
gling Berkeley Computer Corp to Pare, This group included Butler Lampson, Chuck Thacker, Peter
Deutsch, Jim Mitchell, Dick Shoup, Wiltie Sue Haugeland, and Ed Fiala. Jim Mitchell urged the group
to hire Ed McCreight from CMU and he arrived scon after. Gary Starkweather was there already,
having been thrown out of the Xerox Rochester Labs for wanting to build a laser printer {which was

-against the local religon). Not long after, many of Doug Englebait’s people joined up—part of the rea-

son was that they want to reimplement NLS as a distributed netivork system, and Doug wanted to
stay with ime-sharing. The group included Bill English (the co-inventor of the mouse), Jeff Rulifso,.
and Bil Paxton.

Almost immediately we got into trouble with Xerox when the group decided that the new lab
needed a PDP-10 for continuity with the ARPA community. Xerox (which had bought SDS:essentially

“sight unseen a few years before) was horrified at the idea of their main competitor's computer being

used in the lab. They balked. The newly formed rarc group had a meeting in which it was decided

"~ instead was intérested in “trends” and

" notebook d§ a “Display Transducer”,

. AlEn s, ndy, B Eany Csiony U Singiilaik 13
That 1t wmﬂd fake about thres years 10 do a good Operating system for the XDS SICMA~7 bul that we
~eolld budld "our oWPDI-10" in a year. My reaction was "Holy cow!". In fact, they pulled it off with
“coisiderable panache. MAXC was actually 4 microcoded emulation of the PRp-10 that used for the first

L time the riew integrated chip memories (1K bits!) instead of core memory. Having practical in house

‘expétieiice with both of these new technologies was critical for the more radical systems to come.
COne litte ineident of LISP beauty happened when Allen Newell visited PARC with his theory of hier-
actical thiriking and was challenged to prove it. He was given a programming problem to solve

- vwhile the protocol was collected. The problem was: given a fist of fems, produce a list consisting of

© Call of the odd indexed items followed by all of the even indexed items. Newell’s internal program-

* ming language résembled 1pL-v in whith poititers are manipulated explicitly, and he got into quite a
struggle tor do thie program. In 2 seconds Dwrote down
: opddsEvens(x) = append(oddstz), evens(x))
- E:he statement of the probler in Landin’s Lis syitax—and also the first part of the solution. Then a
- few seconds later:

tohere odds{x)= - if mullc) vaudl(tix)} then x
“else hil{x) & odds(tHl(x)} -
evens{x) = if nullx) vnullH(x)) then nil
-efse odds(H(x))

This chara«:ter:st:c of wntmg down many solations in declarative form and have them also be the

programs is part of the appeal and beauty of this kind of language. Watching a famous guy much

" -mmvarter than § stuggle for more than 30 minites to not quite sofve the problem his way (there was a

bug} rade quite an jmpression, It brought home to me once again that “point of view is worth 80 1o
. points”. 1 wash't smarter but T had a much better interrial thinking tool to amplify my abilities. This
. incident and others fike it made paramount that any toal for children should have great thinking pat-
terns and deep beauty “built-in”,

- Right around this time we were involved in another conflict with Xerox management, in particular
*with Dori Pendéry the head “planner”, He really didr’t understand what we were talking about and

-“what was the fiture poing to be like”
and how could Xerox “defend against
-~ it”, T got so upset] said to bim, “Look.
©The best dvay to predict the future is fo -
- invent it Don't worry about what all
“those other pecple might do, this is
the century i'which almost any clear
" visiori can be made!” He remained
-unconvinced, and that ted to the -
famous “Pendery Fagers for pARC Dsensseats: I8 1219

e - Tuganr i« 184k ;
. :__Planmng Puiposes”; a collection of B e et Tresaton 2
- é5says ‘Onvariviis ‘aspects of the B Lontialne g dor *’m-]
7 fiituee, Mine proposed a version-of the @) T cowes, Rotwrphue pad yadar) (B Sttt for pawnliig oritsng und dizvarng

(&) Sk Trpel {7V AT sy cemounbla] "ottt rerbaldh {ttabie} Yoy bt

" and Tim Mitchell’s was entitled “NLS "Pandery Paper Display Transducer” Design
- brva Minjcomputer”.

Bill English took me under his wing and helped me start my group as I had always been a lone
wolf and had n6 ides How to do it. One of his suggestions was that I shouid make a budget. I'm

afraid that I really did ask Bill, “What's a budget?”. I remembered at Utah, in pre-Mansfield

T Amendimerit days;, Dave Evans saying to me as he went off on a trp to ARPA, “We'te almost out of

‘money. Gof fo go get some more.” That feemed about right to me. They give you some money. You

" spend it tofirnd out what to do next. You run out. They give you some more. And so on, PARC never

© - quite made it to that idyllic standard, but for the first half decade it came close. | needed & group
- because I had finally realized that T did fiot have all of the temperaments required to compietely fin-
ishranided: Tealled it‘the Learning Research Group (LRG) to be as vague as possible about our charter.
Ténly hired pecple that got stars in theireyes when they heard about the notebook computer idea.
didr't like meetinigs: didn’t believe brainstorming could substitute for cool sustained thought. When
anyone asiced me what () do, anst I didn’t have a strong idea, T would peint at the notebook model

- Ingalls was to say later; *

. - Alani . Kay, The Early History Of Smaialk 44
and say, Advance that”, LRC members develeped a very close refationship with each other—as Dan
..the rest has enfolded through the love and energy of the whole Learning
Research Group”. A lot {Jf daytime was spent outside of PARC, playing tennis, bikeriding, drinking
beer, eating chinese food, and constantly talking about the Dynabook and its potential to amplify
human reach and bring new ways of thinking to a faltering civilization that desperately needed it

 (that kind of goal was common in California in the aftermath of the sixties).

In the summer of ‘71 [refined the KiddiKomp idea into a tighter design called minicom. It used a
bit-slice approach like the Nova 1200, bad a bit-map display, a pointing device, a choice of “sec-
ondary” {really tertiary) storages, and a language I now called “Smalitalk”~—as in “programming
should be a matter of ...” and “children should program in ...". The name was also a reaction against
the “IndoEuropean god theory” where systems were named Zeus, Odin, and Thor, and hardly did

‘anything, I figured that “Smalltalk” was so innocuous a label that if it ever did anything nice people

‘would be pleasantly surprised.

P
Qurpuy

© DyML AM
TAPE

This Smalli:aik language {today labeled -?1) was very.
influenced by FLEX, FLANNER, LOGO, META B, and my own
derivatives from them. It was a kind of parser with
object-attachment that execated tokens directly. {I think
the awkward guoting conventions came from META). [
was less interested in programs as algebraic patterns

than I was in a clear scheme that could handle a variety |

of styles of programming. The patterned front-end
allowed simple extension, patterns as “dafa” to be
retrieved, a simple way to attach behaviors to objects,
and a rudimentary but clear expression of its eval in

. terms that I thought children could urderstand after a

few years experience with simpler programming.
Program storage was sorted into a dis¢rimination net and
evaluation was straightforward pattern-matching.

As I mentioned previously, it was annoying that the
surface beauty of Lisp was marred by some of its key
parts having to be introduced as “special forms” rather

~than as its supposed universal building block of func-
" tions. The actual beauty of USP came more from the
-promise of its metastructures than its actual model. T spent
a fair amount of time thinking about how objects could

[GrmliaTk7] Programs
tee T'and' -y do 'y’
to F'and’ ;y do F

to factorial' Uis 1
to ‘factorial’ :n do ‘n*factorial n-1'

to 'fact’ mn deo "to Tact’ n do factorial n A fact o

to e ig-roember-of [} de F
to ¢ "is-member-of' :group
do’if e = first of group then T
else ¢ is-member-of rest of group”

to ‘cond’ i v is self

to hd' {'cons' :a :b) do 'y’

to hd' {'cons' by < cda'a -
to 't {'cons’ 2 b do 'y

to "t (cons' @by < wdah -

to wrobot "pickup’ block
do ‘robot clear-top-of block.
robot hand move-to black.
robot hand lift dlock 50,
to ‘height-of block do 5

Alan C. Kay, The Early Mistory Of Srnalltalk 15

. be charactenzed as umversai computefs without having to have any exceptions i the central
E metaphor What sesmned to be needed Was tomplete control over what was passed in a message send;
~in-particular when and in what environtent did expressions get evaluated?

Arnelegant approach was suggested in'a CMU thesis of Dave Fisher [Fisher 70] on the synthesis of

~gontrol structures. ALGOLE required a separate link for dynamde subroutine linking and for access to

“static global state. Fisher showed how @ generalization of these links could be used to simulate a

~wide variety of tontrol efiviroriments. One of the ways to solve the “funarg problem” of LIsP i5 to

. Agsociate the proper global state link with expressions and functions that are to be evaluated later so

"o ~that the free variables referenced are the ones that were actually itnplied by the static form of the lan-
" ~guage. The notionof “lazy evaluation” is antitipated here as well.

Nowadays this approach would be called reflective design. Putting it together with the FLEX models

~ sirggested that all-that should be required for “doing LIsP right” or “doing OOP right” would be to
.~ handle the mechandics of irivocations between modules without havirg to worry about the details of
. the modules themselves. The differerice between LiP and ©OP {or any other system} would then be

what the modules cotld contain. A universal module (object) reference—ala B5000 and LISP—and &

- message holding stiucture-<which could be virtual if the senders and receivers were sympatico-—
bt tould be used by all would do the job.

Hall of the fleldﬁ of a méssenger stricture were enumerated according to this view, we would

" have: . .
- 't;waAL T '3_ ike ervironment of the parameter values
7 GENDER: R the serider of the message
CRECEIVER: . - the receiver of the message
REPLY-STYLE: © it fork, .7
. STATUS: B - progress of the messitge
REPLY: - L eventual vesult (if any)
" DPERATION SELECTOR: - - velative fo the receiver
L CIF PARAMETERS: T

TIus isa génerah'z'atmr"z of a stack fraine, sich as used by the B5000, and very similar to what & good

" intermodule scheme would require in-an operating system such as CAL-Tss—a lot of state for avery
. trarsaction, but usefil b think about

“ Much 8 the ponderiig during this sta te'of grace (before any workable implementation) had to do

- Wwith frying to understand what “beautiful” might mean with reference to object-oriented design. A
subjective definition of a beautiful thing is fairly easy but is not of much help: we think a thing beau-

tifiil beause it evokes certain emotions. The cliche has it ie “in the eye of the beholder” so that it is

- difficiilt to think of beauty as other than a relation between subject and object in which the predispo-
+o sitions ‘of the subject-are all important.

“if ‘thete are such @ thing as universally appealing forms then we can perhaps look to our shared

'i-u_clogzcal Theritage for the predispositions. But, for an object like USP, it is aimost certain that most of
- the basis of our judgemert is Jearned and has much to do with other related areas that we think are
. beautiful; ‘suchas much of mathematics.

. :One part of the perceived beauty of mathematics has to do with a wondrous synergy between par-

i : “sithofy, generality, enfightenment, and finesse. For example, the Pythagorean Theorem is expressable
.- it & single fine, is true for all of the infinite number of right triangles, is incredibly useful in under-
' standing fnany other relationships, and can b shown by a few simple but profound steps.

- Wherwe turn to thé various langitages for specifying computations we find many to be general

- - and afew tobe parsimonious. For éxainple, we can define universal machine languages in just a few
- instructions that van specify anything that can be computed. But most of these we would not call
béautiful, tn part because the amotunt and kind of code that has to be written to do anything interest-
ingissd contrived and Hirgid. A simple ‘and smiall system that can do interesting things also needs a

~high slope”~that is a good match between the degree of interestingness and the | level of complexity
o needed to express oo

A Tertilized sgg that cari transfosm Heelf Lito the myriad of specializations needed to make a com-

p ex orgamsm has parmmony, generahty, en.%xghtemnem and finesse—in short, beauty, and a beautv

) Alan G. Kay, The Eariy Histary Of 5maiita|k 18
muich more in line wath mv owi esthet:cs { mean by this that Nature is wonderful both at elegance
and practicality—the cell membrane is partly there to allow useful evolutionary kludges to do their
necessary work and still be able act as component by presenting a uniform interface to the world,

One of my continual worries at this time was about the size of the bit-map display. Even i a mixed

mode was used (between fine-grained generated characters and coarse-grained general bit-map for

graphics} it would be hard to get enough information on the screen. It occured to me (in a shower,
my favaorite place to think) that FLextype windows on a bit-map-display <ould be made to appear as
overlapping documents on a desktop. When an overlapped one was refreshed it would appear to
come to the top of the stack. At the time, this did riot appear as the wonderful solution to the problem

Tt it didd have the effect of magnifying the effecbve area of the display enormously, so desided to

go with it.

To investigate the use of video as a display miedicin, Bill English and Butler Lampson specified an
experimental character generator (built by Roger Bates) for the poLOS {PARC OnLine Office System}
terminals. Gary Starkweather had justgotten the first laser printer to work and we ran a coax over to
his lab to feed him some text to print. The "st0OT machine” (Scanning Laser Qutput Terminal} was
incredible. The only Xerox copler Gary could get to work on went at 1 page a second and could not
be slowed down. So Gary just made the laser run at that rate with a resolution of 500 pixels to the
inch!

The character generator's fort memory turned dut 1o be large enough to simulate a bit-map dis-
play if ene displayved a fixed “strike” and wibte into the font memory. Ben Laws built a beautiful font
editor and he and I spent several months learning about the petuliarities of the human visual system

- (it is decidedly non-linear}. I was very interested in high-quality text and graphical presentations

because I thought it would be easier to get the Dynabook inte schools @s'a “rojan horse” by simply
replacing school books rather than to try to explain to feachers and school beards what was really

:Mnfh(:h

_great about personal computing,

EHE

Use a Special Font

“0ld Gharacter Ganeralor —eary 1972 ‘i“«ﬁ

Things were geverally going well all ovet the lab until May of 72 when 1 tried to get resourdes to
build a few minicoMs. A relatively new executive {("X*) did not want to give them to me. I witte a
meme explaining why the system was a good idea {see Appendix If}, and then had a mesting to dis-
cuss it, "X shot it down completely saying among other things that we had used too many green

- stamps getting Xerox to fund the fime-shared maxc and this use of resources for personal machines

would confuse them. T was shocked. I crawled away back to the experimental character generator

and made a plan to get 4 more made and hooked to NOvas for the initial kid experiments.

I got Steve Purcell, & summer student from Stanford, to build my design for bit-map painting so

- the kids could sketch as well as display computer graphics. John Shioch built a line deawing and ges-
‘ture recognition system (based on Ledeen's [Newmuan and Sproull 72]) that was integrated with the

painting, Bil Duvall of PoLOS built a mininLs that was quite remarkable in its speed and power. The
first uverlapping windows started to appear. Bob Shur (with Steve Purceli’s help) built a 2172 D ani-
mation systern. Along with Ben Laws’ font editor, we could give quite a smashing demao of what we
intended to build for real over the next few years. 1 remember giving one of these fo a Xerox execu-

“The FIrst Painting System—oummer 72

. this i ‘that it only has 2'20% chance of success, We're taking risk just like ‘
- 'you'asked us 10" He looked me straight in the eye and said, “Boy, that's great, but just make sure it .
. works” This was a typical executive notion about risk. He wanted us to be in the “20%" one hundred

- percent of twtinme, - :

tive; incliiding doing a portrait of him'in'the sew painting system, and o e .
wanind it up with a flourish declaring: “And what's really great about Portrait of the Xerox

*RISK” exgcutiva

~That sumimer while licking my wounds and getting the demo simulations built and going, Butler
Lamipso, Peter Deutsch and I wotked out a general scheme for emulated HLL maching languages.

-1iked the B50D0 scheme, but Butler did not want to have to decode bytes, and pointed out that since

“an 8B byte had 256 total possibilities, wiat we should do is map different meanings onto different
parts of thi “instruction space”. This would give us a “poor man's Huffman code” that would be
" both fexible and simple, All subseqent emulators at PARC used this general scheme.

1 also took @nother pass at the language for the kids. Jeff Rulifson was a big fan of Piaget (and
serniotics) and we had many discussions sbout the “stages” and what iconic thinking might b.E
about. AFter resding Plaget and especially Jefome Bruner, I was worried that the directly symbolic

- approiich taken by FLEX, Loco (and the current Smalitalk) would be difficult for the kids to process

since evidence existed that the symbolic stage (or mentality) was just starting to switch on. In fact, all

- of the-educators that T admired (including Montesseri, Holt, and Suzauki} alt seemed to calf for a more
" higutative, more iconic approach. Rudolph Arnheim [Arnheim 69} had written a classic book about
7 visual thinking, and so had the eminent art critic Gombrich [Gombrich ’“}. 1t really seemed that
- something better néeded to be done here. GRATL wasn't it, because its use of imagery was to portray
s edit fioweharts, which seemed like a ‘great step backwards. But Rovner's AMBIT-G held consider-
" ahly more promise [Rovner 68], It was kind of a visual snosoL [Farber 63] and the pattern matching

-~ ideas Jooked like they would work for the more PLanNERlike scheme [was using

- -Bill Enplish 'was still encoutaging me to do thore zeasonable appearing things to get higher credi-
bility, like raking budgets, writing plans and milestone notes, so [wrote a plan that proposed over

"the next few years that we would build’a real system on the character generators cum NOVAS that
" would ifivolve 0op, windows, painting, music, animation, and “Iconic programming”. The latter was
" deemed to be hard and would be handled by the usual method for hard problems, namely, give them
"o grad students. :

R .Chi'lﬂren.;.vi:h Dynal;naks Trerm A Paraonas Computer lcarme: Bubble Sorl fram

v 7 For Chitdren Of All Ages” pa g 1972 LAG Plan Ka vany
"Simple things should be simple, complex
things should be possible

*IV:1972-76~The first real Smalitalk (-72), its birth, applications, and improvements
£ L In Sept, within a few weeks of each other, two bets happened that changed most of my plans. First,
U Butler dnd Chuck ame ovér and asked: “De you have any money?” 1 said, “Yes, about $230K for

NiGVAS Arid ¢cs. Why?” Thiy said, “How would you like us to build your fittle machine for you?” I

o L) AN G, Ry, 10 Bally ristory LT brhaiitalk BT
said, "T'd like it fine. What 18 it?” Butler satd: "I want & 5500 PLIP-10, CHUCK Warits 4 /10 times faster
NOVA', and you want a 'kiddicomp’. What do vou need on #t7” 1 told thern most of the results we had
gotten from the fonts, painting, resolution, animation, and music studies. I asked where this had

“come from all of a sudden and Butler told me that they wanted to do it anyway, that Executive "X~

was away for a few months on a “task force” so maybe they could “Sneak it in”, and that Chuck had
a bet with Bill Vitic that he could do a whole machine in just 3 months. “Oh”, I said.

- The second bet had even more surprising results. [had expected that the new Smalltalk would be
an iconic language and would take at least two vears to invent, but fate intervened. One day, ina typ-
ical PARC hallway bullsession, Ted Kaehler, Dan Ingalls, and I were standing around talking about
programming languages. The subject of power camié up and the two of them wondered how large a
language one would have to make o get great power. With as much panache as I could muster, I

“asserted that you could defire the “most powerful language ini the world” in “a page of code”. They

satd. “Put up or shut up™. :

Ted went back to cmu but Dan was still around egging me on. For the next two weeks T got to
PARC every morning at four o’clock and worked on the problem undil eight, when Dan, joined by
Henry Fuchs, John Shoch, and Steve Purcell showed up to kibbitz the morning’s work .

I had originally made the boast because McCarthy's self-describing LIsP Iiterpreter was written in

“itself. It was about “a page”, and as far as power goes, LIsP was the whole nine-yards for functional -

languages. f was quite sure I could do the same for object-oriented languages plus be able to-doa rea-
sonable syntax for the code a lo some of the FLEX muachine techniques. :
H turned out to be more difficult than I had first thought for three reasons. First, T wanted the pro-

gram to be more like McCarthy's second non-recursive interpreter—the one implemented as a loop .

that tried to resemble the original 709 implementation of Steve Russell as much as possible. it was

" more “real”. Second, the intertwining of the “parsing” with message receipt—the evaluation of para-

meters which was handled separately in LISP-required that my object-oriented interpreter re-enter
itself "sooner” {in fact, much sooner) than LISP required. And, finially, I was still not clear how send
and receive showld work with each other.

The first few versions had flaws that were soundly criticized by the group. But by morning 8 or so,

"a version appeared that seemed fo work (see Appendix Hl for-a sketch of how the interpreter was

designed). The maijor differences from the official Smalltalk-72 of a fittle bit later were that in the first
version symbols were byte-coded and the receiving of return-values from a send was symmetric—i.e.
receipt could be like parameter binding—this was particularly useful for the return of multiple val-
yes. For various reasens, this was abandoned in favor of a more expression-oriented functional
return style,

Of course, [had gone o considerable pains to avoid doing any “real work” for the bet, but I felt I
had proved my point. This-had been an interesting holiday from our official "iconic programming”
pursuits, and I thought that would be the end of it: Much {0 my surprise, only a few days later, Dan
Ingalls showed me the scheine working on the NOvA, He had coded it up (in Basict), added a fot of
details, stich as a token seanner, a list maker, ete., and there it was—rurnning. As he like to say: "You

just do it and it's done™.

It evaluated 3+dy erv sl owly (it was “glacial”, as Buller liked to say) but the answer always
came out 7. Well, there was nothing to do but keep going. Dan loved to bootstrap on a system that
“always ran”, and over the next ten years he made at least 80 major releases of various flavors of
Smalltalk.

In November, [presented these ideas and a demonstration of the interpretation scheme to the MIT
Al lab. This eventually led to Carl Hewitt's more formal “Actor” approach[Hewitt 73], In the Hrst
Actor paper the resembience to Smalltalk is at its closest. The paths later diverged, partly because we
were much more interested in making things than theorizing, annd partly because we had something

© no one efse had: Chuck Thacker’s Interim Dynabook {fater known as the “aLT0™).

Just before Chuck startéd work on the machine I gave a paper to the National Councit of Teachers
of English {Kay 72¢] on the Dynabook and its potential a5 a learning and thinking amplifier—the
paper was an extensive rotogravure of “20 things to do with a Dynabook” [Kay 72¢]. By the time I got

© back from Minnesota, Stewart Brand’s Rolling Stone article about PARC [Brand,1972] and the suround-

ing hacker community had hit the stands. To our enormous surprise it caused a miajor furor at Xerox
headquarters in Stamford, Connecticut. Though it was a wonderful article that really caught the spir-

it of the whele culture, Xerox went berserk, forced us to wear badges (over the years many were

T alléeation of credits arid the various pri=-

Lo irstarices of themseif. (6) implies a Lisplike universal syntax, s T eval a program list, control is passed o
et with the receiving obiect as the firstitern followed by the § the first ubject and the remainder is treated §

. printéd of Lshittsy, and severely restricted the kinds of publications that could be made. This was

" particulatly disastrous for LRE, since we were the “lunatic fringe” {so~called b.y the other computer

. gelentsts), were planning to go out to ths_z schools, and needed to share our ideas (and programs)
with our colleagiles such a5 Seymour Papert and Don Norman. .

Executive “X" apparently heard some harsh words at Stamford about us, because when he

o eturned -arotnd Christnas and found out abouat the interim Dynaboeok, he got even more angty and

L wted 0 Kill it Buter wound up writing a masterful defence of the machine to hold him off, and he

O wentback tohis “task foree”. . o '

“Chuck had stasted his “bet” on November 22, 1972, He and two technicians did alt of the machine

< except for the disk interface whick was done by Ed McCreigh?. It had a ~500,000 pixel (606x808)

. bitmap display, its microcode instriction tate was about 6MiPs, it had a grand total of 128k, and the

' erifite machirie (exclusive of the memory) was rendered in 160 MSI chips distributed on two cards. It

- was beatitiful TThacker,1972;-1986]. One of the wondetful features of the machmgwas Zero-Over-

" head” tasking, 1t had 16 program couriters; one for each task. Condition Rags were tied to interesting

everits (sich a8 “horizontal retrace pulse”, and “disk sector pulse”, etc.). Lookaside logic scanned the

o flags while the cirfent instruction was executing and picked the highest priority program counter to

fateh from riext; The machine never had 6 wait, and the result was that most hardware functions
"(yar’tic‘uiéﬂy those thab involved i/o-(like feeding the display and handling the disk) could be
*' replaced by microcode, Even the refresh of the MOS dynamic RAM was done by a tesk. In other

' woids, this was a cotoutine architecture. Chuck claimed that he got the idea from a lecture I had

- given on torountines 4 few months before, but I remembered that Wes Clark’s TX-2 {the Sketchpad

" miachiné} had used the idea first, and 1 :
- probably mentioned that in the talk,

U ety April, just a litthe over three

" inoiths from the start, the first Interim.:

. Dynabook, known as ‘Bilbo)” greeted the:
“ sworld and we hiad the first bit-map pic- . .

‘yare oo the séréén within minutes: thew:

‘Muppéts’ Cookie Monster that T had ™
sketched on'our painting system. B

" “Sooh Dan Had bootstrapped Smalltatk’ - -

- racross, and for many months it wag the BILBO, the first
- 50le software system to run on the interim Dynabook”,
“Interim Dyniabook: Appendix 1'has an and Cookia

“yeknowledgements” document I wrote .

Manster”, the first
‘froin this tme that is interestirig in its '

graphics it dis-
played,

" prities associated with them, My $230K/ April, 1973

" waks enoiigh to get 15 of the original pro-. _ .
- '}'ected_fié-ghmach%n'és(c'i.ier the years sofe 2000 Interim Dynabooks were actually built). True to
- Sehopenhavist's cbservation, Executive “X” now decided that the Interit Dynabook was a good idea
T anid b wanted allbgt two for his kab (I was in the other lab). 1 had to ge to considerable lengths to

' get ouf machines back, but firially succeeded.
7 By this time tnost of Smalltalk's schemes had been sorted £ ¢ communicate by sending and
- out inko six Train ideds that were in accord with the srfma'\l receiving messages (in terms of objects)

- prentises iri designing the interpreter. The first three princi- 8, 1o their oron memory (in terrms of
" ples are what objects “are about”~how they are seen and § gpjects)

1. Everything is an object

- used frotn-“the outside” These did not require any modifi- Svery eorers o Tt of a clss (which
_cation oveér the years: The last three-mobjects from the § - mystbe an object

inside=were tinkered with in every version of Smalltalk §o 1y i the shared bebaior for its
(and insubsequent cor designs). In this scheme (1 & 4) ¥ instances (in the form uf objects in a pro-

imply fhat classes aré objects and that they must be § gram lisp

message: Thus & - e (with subscriptifg rendered as "o § asits message

7 and multiplication as "y mednisi . G) o

Alan &, Kay, The Eadly Hislory Of Smaltak - 50

receiver | message
¢ loi - d*
© The ¢ is bound to the receiving object, and all ofe i <- d% is the message fo it. The message is made
up of a literal token “.”, an expression to be evaluated in the sender’s context {in this case i}, ancther
literal token <-, followed by an expression to be evaluated in the sender’s context (%), Sire “Lisp”
pairs are made from 2 element objects they can be indexed more simply: c kd, ¢ H, and ¢ hd <- foo, etc.

“Simple” expressions like a+b and 3+4 seemed more troublesome at first. Did it really make sense
1o think of thetn as:

tesgiver Jlmessage
a HES
3 i+ 4

Tt seemed silly if only integers were considered, biit there are many other metaphoric readings of
“+7, such as:
“kitfy” 1+ "kat” => “kittykat”

345 |+ 4 =i/ § 38
678) 101212

This led to a style of ﬁn&ing generic behaviors for tnessage symbols. “Polymorphism® is the offidial
term (I believe derived from Strachey), but it is not really apt as its original meaning applied only to
functions that could take more than one type of argument. An-examiple class of objects in Smalltalk-

72, such as a maodel of CONS pairs, woudd look like:

!tu likeL0GO, except makes a; . ;tempomgyvamblei '{[nsmncavariabiesi_

. class from its message)
JISNEW 15 true if @ new mstance] '=i = ; "‘"“/. s ; : s :
has beer, creabad I '. to Pair b | Bt “bis tem, k, §are internal inskance vars”

- - L sNEw » Chetd “cons--if no explicit refurn is given, SEL¥ is returned
frue any object not false acks as B » (0= » (MIAR) “replaca and car”
ue oH * (O » {112E) - replacid and cir”
{true « mn will evaluate m and _U'ESETM?' * (j‘lﬂfe) L .)
gscape from sure eprint ("{print. SELF rprint} . . : : . :
younding { 3 Cmprint » (h print. U isNi ») prink) tisPair = (£ mprind) # "= prink. £ print,) priet}
‘length » (¢ isPair » (M4t length) 18

. Efalse » m s will evaluaten 1 N

- "statement separater”

evals the next part of message] Jo eyeball looks to sea if ik § §A sqngf-be.wk rémrﬁs
.. vatue is following message

and binds result to the varig messageid a literaloken [1 it value oy sender §
able in its message it tie message stream

Since control is passed to the class before any of the rest of the message is considered—the elass
can decide ppf to receive at its discretion—complete protection is retained. Smalltalk-72 objects are -
"shiny” and impervious to attack. Part of the environment is the binding of the SENDER in the “mes- .

" senger object” (a generalized activatior récord) which allows thé recelver to determine différential

privileges (see Appandix # for more details), This looked ahead to the eventual use of Smalltalk a5 a
network OF (see [Goldstein & Bobrow 1980]), and I don't recall it being used very much in-Smalltalk-

A

One of the styles retained from Smalltaik-71 was the comingling of function and class ideas. In
other works, Smalltaik-72 classes looked like and could be used as functions, but it was easy to pro-
dure an instance {(a kind of closure) by using the object SNEw. Thus factorial could be written "exten-

sionally” as:

to fact n (M =0 then 1 else w*fact n-1)
or “intensionally”, as part of class integer:
(.ol s {rmes (1) (110)

" Of course, the whole idea of Smalltalk {and oo in general) is to define everything intensionally. -
And this was the direction-of movement as we learned how toprogram in the new style: I never
liked this syntax (too many parenthieses and nestings) and wanted something flatter and more gram-

Atan C. Kay, The Early History Of Smalttalk

mar-like s in Smalltalk71, To the tight s an exain- fsmm—

- ple synfax from the notés of a taik I gave around

“Yher, ‘Wé will see something more like this.a few
" years later in Dan's design for Smalltatk-76. 1 think

* sovhething similar happened with Lisp-~that the

< *egality” of thé straightforward and practical syntax
- yow could program in prevailed against the flights
. of faney that never quite got built,

Proposed
hd <- ik Smathathk-72 Syotax
hd h
ot
H ot
isPair s frue
print » { prinf. SELF miprint.
waprint w Hprint, if tishil ther ') print

else if tisPair then | mprint
glse ‘s pring. ¢ print.) print.
length T+ 0f tisList then t length else §

Develgpmeiit Of The Smalltalk-72 System And Applications

STHe advent of a real Smalltalk on a real machine start-
ed otf an explosion of parailel paths that are too difficudt
‘o intertwine in strict historical order. Let me first present
thi gerieral development of the Smalltalk-72 system up to
the tEnEiston to Smalltalk-76, and then foliow that with

" the several years of work with children that were the pri-

‘mary motivation for the project. The Smialitalk-72 inter-
pretet on the Interiin Dynabook was nat exactly zippy
“("mafestic” was Butlet’s pronouncement)’, but was easy
to change and quite fast eribugh for many real-time inter-
| - active systerits to be built in it.

Overlapping windows were the ﬁrstgpm;eét tackled -

' “(with Diana Meriy) after writing the code t0 read the

" - keyboard and create a string of text. Diania built an early

“version of a bit field block transfer (bitblt) for displaying

" yariable pitch fonts and generally writing on the display.

" The first winidow versions were done as 1eal 272D drag-

gable objects that were just a little too slow to be useful.

. We decided to wait until Steve Purcelt got his animation

" system going to doit right, and opted for the style that is

- still irv ise today, which is more like “21/4D", Windows

were pertiaps the most redesigned and reimplemented

*cldss in Shalltalk becadse we didn't guite have enough

. compute-power to just do the condinial viewing to

“#rgirld coordinates” and refreshing that my former Utah

" colleaguies were starting to experiment with on the flight

" “simulator projects at Evans & Sutherlant. This is a sim-

. ple, powerful model but it is difficult to do in real-time

" even ifi 21720, The first practical windows in Smalltatk

tised the CRAIL conventions of sensitive corners for mov-

" ing, tesizing, cloning, and closing. Window scheduling

“ised a'simple “loopless” controt scheme that threaded all
©of the windows together. - o

One-of the next classes to be implémented on the

- Iiterim Dyfiabook (after the basics-of numbers, steings,

L iete.,) was aiv object-oriented version of the LOGO turtle

implemented by Ted. This could make many turtle
- instafices at were used both for drawing and as a kind
* “of value for graphics transformations. Dan created a class

* of “éofnmander” tuitles that could control a troep of tur-
" Yles. Soon thé turtles were made so they could be clipped

by the windows.

- John Shoch built a _rﬁbﬁse-driver: structured editor for

" Gmalltalk code.

ry Srraitalk

R build ALTOs

TR ATake AT Wor e

SELE S
tlacki il

g a Windows o Intarim Uynabook

' Lafry Tesler.{theﬁ working for POLOE) did not like the
modiness and general approach of NLS, and he wanted

“'both show the former NLSers an alternative and to con-

duct some uger studies (almost unbeard of in those
days) about editing. This led to his programming ini- -
mouse in Smalltalk, the first real wystwyc galley editor
at PARC. It was modeless (almost) and fun to use, not
just for us but for the many people he tested it on (I ran

- the camera for the movies we took and remember their

delight and enjoyment). miniMouse quickly became an
alternate editor for Smalltalk code and some of the best
demos we ever gave used it.

Ome of the "small program” projects I tried on an
adult class in the Spring of ‘74 was a one-page para-
graph editor. It turned out to be too complicated, but
the example I did to show them was completely mode-
less {it was in the air) and became the basis for much of
the Smalftalk text work over the next few years. Most of
the improveménts were made by Dan and Diana Merry.
Of course, objects mean multi-media documents, you
almest get them for free. Barly on we realised that in
such a document, each component object should handle
its own editing chores. Steve Weyer buiit some of the
earliest multi-media documents, whose range was
greatly and variously expanded over the years by Bob
Flegal, Diana Merry, Larry Tester,Tim Mott, and Trygve
Reenskaug,

Steve Weyer and I devised Findil, a “retrieval by
example” interface that used the analogy of classes to

- their instances to form retrieval requests. This was used

for many years by the PARC library to conirol circula-
ton.

The sampling synthesis music I had developed on
the NOVA could generate 3 high-quality real-time voices.
Bob Shur and Chuck Thacker transfered the scheme to

‘the Interim Drymabook and achieved 12 voices in real-
“time, The 256 bit generalized input that we had speci-
 fied for low speed devices (used for the mouse and key-

board) made it easy to connect 154 more to wire up two
organ keyboards and a pedal. Effects such as portamen-

“to and decay were programmed. Ted Kashler wrote
“FWANG, 3 music capture and editing system, using a tab-~

ulature notation that we devised to make muisic clear to
children [Kay,1977a). One of the things that was hard to
do with sampling was the voltage controtled operator
{v<0o) effacts that were popular on the “Well Tempered
Synthesizer”. A summer later, Steve Saunders, another
of our bright summer students, was challenged to find
a way to accomplish John Chowning's very non-real-

time FM synthesis in real-time on the ID. He had to find #2

completely different way to think of it than “FM”, and
succeeded brilliantly with 8 real-time voices that were
integrated into TWANG { Saunders *].

Chris Jeffers (who was a musician and educator, tot -

~a computer scientist) knocked us out with opus, the first
real-time score capturing system, Unlike most systems

. b SELY weere . G sdooeulaned o SELF dodurs
m} L) sl wos, i tisatinn: . STLF drowt -
Retrievad HyperDocumant

T BIT4F Becow 51635 dees T Oeby
Peglaming ﬁ:m P

Shang,
& Ferqermy Bok AM-Rik Redrow it

" FM Timbre Editor

OPUS Score Capture

" we wanted “Disney rates” of 10-15 frames a second

© . ones This task was putinto the ingenitus hands of

e prograimed by showing the system how changes

© . -became the stérting plice from which many subse-

L. the'summer of 1974, and finally wound up as a 56 |sie

ey

Adgn L. Ray, 1he tary History Ot Smaiitalk 23

“today it did not require metronomic playing but
“instead took 4 first-pass-locking for strong and weak
‘beats (the phrasing) to establish a local moedel of the
tikély temipo fuctuations and then used curve fitting
“and extrapolation to make judgements about just
where i the measure, and for what time value, a

- giverinote had been struck,
The animations on the NOVA ran 3-5 objects at about
23 frames et second. Fast enough for.the phi phe-
‘nioienon 1o wdrk (if double buffering was tised), but -

Shazam iconic usar interiacs {above)
A sample animation {below)

Jor 10 or more large objects and many rmore $maller |

o Steve Pureell) By the Fall of *73 he couid demo 80
| ping-porg balls and 10 flying horses running at 10
frames per secorid in 2t/2 D, his next task was to make

- the demo'into a general systems facifity from which

. we tould construct andmation systems. His CHAOS sys-
* tern starfed working in May ‘74, just in Hme for sum-
" mer visitors Roh Baecker, Totn Horseley, and profes-
-~ siorul anifmator Eric Martin o visit ard build sHazam

" a-marvelously capable and sirmple animation systern
based on Ron's GENESYS thesis project. on the TX-2 in

“ the late sixties [Baecker 69,

. - The main thesis project daring this Hme was Dave
C-Smith’s PYGMALION [Smith 751, an essay into iconic
| progrAmming (no; we hadn't quite forgotton). One

) 5h0u_ld_be mide, m_uch as one would illustrate on a
‘blackbioard with another programmer. This program-

-quent programming by example” systems took off,
Ishould say something about the size of these pro- Eovtrel
| ErAms. PYGMALICN wis the largest program ever writ- | foma
ten in Smalltalk-72, was about 20 pages-of code—all |5t
~that would fit in the interim dynabook al70—and is pirs
7 given in full in Smiith's thesis. All of the other applica- |2
- tions ‘were smaller. For example, the SHAZAM anima- Pirand

- P > . N N £ 1 dray
- tion systemn was written and revised several times in {100, f“"“"“"*‘"’"‘“"-“—} I-
r et . " n Lonutant

rouby wirlm

L litalk

page application which included its icn-controlled
- midiwindowed wser interface, .
* - Given 1ts roots in sitmulation languages, it was easy

-Ajan . Kay, |ha taity History OF Stiaillatk 24

. sLAC proposed an event-driven case structure in which a set of
events could be defined so that when an event is encountered,

- write a simple lovp that reads characters from the keyboard /

~to wiite in a few . pages, Simpula, a simple version of
" the sMULA Sequencing set approach to scheduling. By

this time we had decided that coroutines could be A
. “friore cleanly be tendered by scheduling individual e Ry il
Cmethods as separate simulation phases. The generic PO et EO—
*SMULA examiple was a job shop. This could be general-
~ized inte many useful fortns-such as a hospital with ey ® 6) et ’:" T
_departments of resolices serving patients {see to the mafty :ﬁ&“}ﬁ:ﬁmi
- right). The children did ot care for hospitals but saw F L Eher s . bt tomguncy,

* - they could mode] amusement parks, like: Disneytand, ‘:"" Wﬂﬁmﬁm. s

" their schools, thi- stores they and their parents ' P

: §hf_}p;}ed n}, gt.nd 50 fézth ‘Later this model formed the) e Hoépital Siaton ;

i PYGMALION lconic Programming {

basis of the small talk Sim-kit, a hlgh “fevel snd-user progsammmg environment (described anead).
Many nice “computer scienicy” constructs were gasy to make in Smalitaik-72. For example, one of

the controversies of the day was whether to have gotos or not (we didn't), and i not, how could cer-

tain very useful control structures—-such as multiple exits from a loop—be specified? Chuck Zahn at

(unkl Return or Delete do
 {“character <- display <- keyborrd.
character = ret » (Return)
character = def » {Delete}

the loop will be exited and the event will select a statement in
a case block[Zahn, 1974, Knuth, 1974). Suppose we want to

Then case :
Return : (“deal with this ﬂonmﬂ exrt}
‘Delete : Chandle the abnormal exiv’}}

and outpuis them to a display. We want it to exit normally
when the <return> key is struck and with an error if the
«deletex> key is hit. Appendix IV shows how John Shoch B
defined this control structure.

The Evelution Of Smalltalk-72
Smalitalk-74 (sometimes known as FastTaIk} waé a version of Smailtalk-72 incorporating major -
improvements which included providing a real “messenger” object, message dictionaries for classes
{a step towards real class objects), Diana Merry's bitblt (the now famous 2D graphics operator for
bitmap graphics) redesigned by Dan and implemented in microcode, and a better, more general win-

dow interface. Dave Robson while a student at UCIrvine had heard of our project and made a pretty

good stab at implementing an coPL. We invited him for a summer and niever let him go back—hewas
a great help in formulating an official semaritics for Smalltalk.

The crowning addiBon was the ooz (Object Oriented Zoned Environment) virtual Memory sys-
temn that served Smalltalk-74, and more importantly, Smalltalk-76 [Ing 78, Kae *]. The ALTO was not
very large (128-256K), especially with its page-sized display {64k), and even with small programs, we
soon ran out of storage. The 2.4 megabyte model 30 disk drive was faster and larger than 4 floppy
and slower and smaller than today's hard drives. It was quite similar to the HP direct contact disk of
the FLEX machine on which I had tried a fine-grain version of the B5000 segmient swapper, It had not
worked as well as I wanted, despite a few good ideas as to how to thoose objects when purging.
When the gang wanted to adapt this basic scheme, I said: “But I never got it to work well.” Tremem-

“ber Ted Kaehler saying, “Don’t worry, we'll make it work?”

The basic idea in all of these systems is to be able to gather the most comprehensive possible work-
ing set of objects. This is most easily accomplished by swapping individual objects. Now thie problem
becomes the overhead of purging non-working set objects to rake room for the ones that are néeded.
{Paging sometitnes works better for this part because you can get more than one object {QOZEYin
each disk touch.} Two ideas help a lot. First, Butler's insight in: the GENIE % that it was worthwhile to
expend a small percentage of time purging dirty objects to make core as clean as possible
{Larrvpson,1966], Thus crashes tend not o hurt as much and there is always clean storage to fetch

- pages or objects from the disk into. The other is one from the FLEX system in which 1 set up a stochas-

tie decision mechanisim {based on the ¢lass of an object) that determined during a purge whether or
nwt to throw an object out. This had bwo benefits: important objects tended not to go out, and a mis-

“take would just bring it back in again with the distribution insuring a low probablity that the object
-would be purged again soon.

The other problem that had to be taken care of was object-pointer integity {and this is wheére T had
failed inn the FLEX machine to come up with a good enough solution). What was needed really was-a
complete fransaction, a brand new technique (thought up by Butler?} that ensured recovery regardiess
of when the systern crashed, This was called “cosmic ray protection” as the early aLTos had a way of
just crashing once or twice a day for no discernable good reasor. This, by the way did not particular~
ly bother anyone as it was fairly easy to come up with unde and replay mechanisms to get around the
cosmic rays. For pointer-based systems that had automatic storage management, this was a bit more”
tricky.

Ted and Dan decided to control storage using a Resident Object Table that was the only place .

~machine addresses for objects wouldd be found. Other useful irformation was stashed there as well to

help LRU aging. Purging was done in background by picking a class, positioning the disk'to its
instances (all of a particular class were stored together), then running through the ROT to find the
dirty ones in storage and stream them out. This was pretty efficient and, true to Butler's insight, fur-

" rished 3 good sized pool of clean $forage that could be overwritten, The key to the design though
‘(arid-the implementation of the transaction mechanism) was the checkpointing scheme they came up

with: This insurgd that there was a recoverable image nio more than a few seconds old, regardless of
‘whieria crash might occur. 00ZE swapped objects in just 80kb of working storage and could handle

“about 65K objects (up to several megabytes worth, more than enough for the entire system, its inter-

Face, 'ahd its applications).

' "{f}b;ert»mlented" Style

- This 16 probably a good place to corment on the difference between what we thought of as cop-

style and the superficial encapsulation called “abstract data types” that was just starting to be investi-
gated in academic circles | Our early “Lisr-pair” definition is an example of an abstract data type

* hecaudeit préserves the “field access” and “field rebinding™ that is the hallmark of 2 data structurze,

Considerable work in the 60s was conicerned with generalizing such structures|{DSP *]. The “official”

- computer science world started to regard Simnula as a possible vehicle for defining absiract data types
“feven by one of its inventors{Dahl 1970]), and it formed much of the later backbone of ADA. This led

to the ubiguitous stack data-type example in hundreds of papers. To put it mildly, we were guite

. amized at this, since o us, what Simula-had whispered was something much stronger than simply
“reimpleménting a weak and ad hoc idea. What I got from Stmula was that you could now replace

bindings and assxgnment with gouls. The last thing you wanted any programumner to do is mess with

internial state even if presented figtiratively. Instead, the objects should be presented as sites of higher
level behiviors more appropriaté for use as dynamic components,

‘Evén the way we taught children (cf. ahead) reflected this way of looking at obiects. Not too sur-

prisingly this approach has considerable bearing on the ease of programming, the size of the code
- ‘needed, the integrity of the design, etc. It is unfortunate that much of what is called “object-oriented
- programining” today is simply old stylé programming with fancier consteucts. Many programs are
" loaded with “assignment-style” operations now done by more expensive attached pmcedures.

Where does the spedal efficiency of object-oriented design come from? This is a good guestion
given thatitéan be viewed as a slightly ‘different way to apply procedures to data-structures. Part of

the-effect comes from & much clearer way to represent a complex system, Here, the constraints are as

tiseful as the genéralities. Four technigiies used together—persistant state, polymorphism, instantia-
ton, and méthods-as-goals for the objeci—accourit for much of the power. None of these require an
“object-priented language” to be employed-~aLuoL 68 can almost be turned to this style—an oopL
merely focuses the designer’s mind in & particular froitful direction. However, doing encapsulation

L right is a comumitmhient not just to abstraction of state, but to eliminate state oriented metaphors from

programining.
- Perhiaps the most important prmmpie—agaan derived from operating system architectures——Is that
when yougive someone a structure, rately do you want themn o have unfimited priviedges with it.

" Just doing type-matehing fsn't even close to-what's needed. Nor is it terribly useful to have some
_objects protected and others not. Make them all first class citizens and protect all.

T believe that the much smaller size of a good coP systern comes not just by being gently forced to

-'éofe up with'a more thotight out design. [think it also has to do with the “bang per line of code”

. yoit tan get with Soe. The object carriés with it a Iot of significance and intention, its methods suggest

- the strongest kinds of goals it can ¢arfy out, its superclasses can add up to mech more code-function-

- ality béing invoked than most proceduras-onsdata-structures. Assignment statements—even abstract
| bnes—express very low-level goals, and more of them will be needed to get anything done.

Generally, we don’t want the programmer to be messing around with state, whether simulated or

ot The ability 10 instantiate an object has a considerable effect on code size as well. Another way to

think of all this is: though the late-binding of automatic storage allocation doesn’t do anything & pro-
grammey can't do, its presence leads both to simpler and more powerful code. 0OF is a late binding
strategy-for many things and all of them together hold off fragility and size explosion much ionger

-thari the older methodologies. In other words, human programmers aren't Turing machines—and the
_ _' less thei'r pmgtam'ming systems require Turing machine technigues the better.

-Ermalltalk And Children

U Now that T have sumimarized the “adult” activities {we were actually only semiadulis) in Smalitatk -
up to- 19?6 let fhe return to the summer of 73, when we were ready to start experiments with chil-

" quite a bit and we were able to entice them to join us.

" say, the children could get the turile 1o draw pictures o

~beyond surface effects. At that time I felt that since the jadsie hot{img forth at Jordan Midcle Sch.

the content of this new kind of authoring litéracy should Dox new named *joe’l
be the creation of interactive tools by the children. -box: joa
Pracedural turtle graphics just wasn't it.
Then Adele came up with a brilliant approach to teach-
4ng Smalltalk as an object-oriented language: the “Joe -
Book™. 1 believe this was partly infiuenced by Minsky's joe tum 301
idea that you should teach a programming language ok
holistically from working examples of serfous programs. :
Several instances of the class box are created and sent | £}
messages, culminating with a simple multiprocess ani- foe gmwk—is :
* mation. After getting kids to guess what a box might be o
like—they could come surprisingly close—they would be joo eraset

" were seeing was the “hacker phenomenon”, that, for any

" over the ALTOs with Adele’s JOE book, The problem

Aln G, Kay, ?hs I:drly Hlsmry Of Smalitalk 26
dren. None of us knew anyth.mg about working With chl- i < ;

dren, but we knew that Adele Goldberg and Steve Weyer
who were then with Pat Suppes at Stanford had don

Since we had no idea how to teach object-oriented pro-
gramming to children {or anyone else), the first experi
ments Adele did mimicked 10GO turtle graphics, and she -
got what appeared to be very similar results. That is to"

the screen, but there seemed to be little happening:

content of personal computing was interactive tools, that

shown:
. fobox | xysize dilt ok
{odraw . = (@ place x y tum il square size) .))
oundrate » . {@ white. SELF draw. @ black)] joe show!
Oturr » {SELF undraw. ‘filf <- it + 2 SELF draw) :) ok
ogrow s {SELF phdraw. ‘size <- size + i SELF drauy)
USNEW » {SELF unidraw. size <-size + . SELF draup
What was so wonderful about this idea were the myri~
ad of children's projects that could spring off the humble
hoxes. And some of the earliest were tools! This was)
when we got really e;scited. For example, Marion il sirn -201
Goldeen’s {12 yrs old) painting system was & full-fledged ok
tool. A few years later, so was Susan Hamet's (12 yrs old)
oop fllustration system (with a design that was like the
MacDraw to come}). Two more were Bruce Horr's (15 yrs 4 te 10 :
old) musie seore capture system and Steve Putz’s (15 yrs interval 12345678910
old) circuit design system. Looking back, this could be
called another example in computer science of the “early foravar :
success syndrome”. The successes were resl, but they tervak 1234587891011 ..,

bok new named =il
box: jil

Dero 00

- -werer't as general as we thought, They wouldn't extend

into the future as strongly as we hoped. The children 145 19 do {joa turn 200
were chosen from the Pale Alto schools (hardly an aver- ok

-#ga background} and we tended to be much more excited .
about the successes than the difficulties. In part, what we

given pursuit, a particular 5% of the population witl

" jump into it naturaily, while the 80% or so who can learn foraver do (iog turn 11, jill tumn -13}1

it in time do not find it at all natural.

We had a dim sense of this, but we kept on having rel-
ative successes. We could definitely see that learning the
mechanics of the system was not a major problem. The
children could get most of it themselves by swarming

- as’a way tolet novices build on framewbrks that could
©only be desigried by experts: We fiad good reason to
- believe that-this could work because we had been
- imipressed by Lisa wan Stone’s ability to make sigrificant

- changes 1o sHAZAM {the five ot $ix page Smalitalk anima-

7 tivn tool done by relatively expert adults): Unfortunately,

: eemed mote to be that of deszgn

Srpalitalk to 20 vARC noniprogrammer adidts: They were
“able to get thioigh the initial material faster that the chit
*dren, but fust as it Jooked like an overwhelming success &
was at Hand; théy started to crash on problems that didn't 2
- look to-me 1o be much harder than the ones they had just
“been domg well on. One of thern was a project- though
| up by one of the adults, which was to make a little data
< base system that could aét like a'card file or rolodex. They |

* urptised because I “knew” that such a project was well

- day 1 showed all of them how to'do it Sl none of them
- were able to do i€ by themselves. Later, I satin-the room *7
" ponidering the board from my talk. Finally, I counted the

" number of flonobvious ideas in this little program. They ..

" write about them, but at some point the organization of
O ideas stacls to domiinate friere language abilides. And it

" belt 16 better acquirs ‘more powerful ideas [Papert 70s}. R planning template for Smaiitalk (above)
o Sewe decided we should teach design. And Adele came
“up ‘with another brilliant stroke to deal with this. She .
decided that what was needed was an intermediary s o A e ol e o b ETLE e
- betiween the vague ideas about the problem and the very
© /- detailed writing and: debugging that had to be done to
“get it to ran.in Smalltalk. She called the intermediary

fortns design femplates. I } _—.J U
o Using tgzw ‘the children could look at a situation they E> D O O O 9,

-out, it is hard 1o claim success if only soime of the children
are successfulmgnd if a miaximum effoit’ of both children

" ~“and ‘teachers was requzred to get the succdsses ko happer,

" 'Real pedagogy has to work in much less idealistic set-
- fings and ‘be considerably more tobust. 5till, some suc-

-It-started 16 hit-home in the Spring of 74 after I taugh

C
couldn’t even come close to programiming it, | was very oK PlayToO.
E Working with the kids was rmy favortle perl of this §
below the inythical “two pages” for end-users we were Romance |

working within, That night [wrote it cut; and the next

Mgt tha Engtsh description of tha aron
¥
I creates n hiw bo# That Keeds I 000 pas senr mamr TpalT
T i
Sirst valoe i B, Thek il dired el on SEEY dvuwe
e, d by fopees

e bosk M 0t it draw £ aquDTE

came 't 17. And some of them were like the concept of e B Ay
the arch in building ‘design: very hard to r:hscover, i you e e o
~don’t atready know them. . . big ey
" Thé cornection (o literacy wias painfully clear Tt ISt mw - arsweisetdomce s ode.
-~ enough to just learn to read anid write. There is also a lit- o ﬁ:.‘?;;,"":‘:ﬁ&";‘ oA
eratiire that refders idess: Language is used to read and _”w":"“;m rv I

mrirhevn & mesi Bhich W inmcrpoetid

T dg pn etrsebl o (8 OFiTARTIGL, Mgk pal teris L
4inew she pen, zathey shan Lha ha,
Temembery e orieniiiion, the Bax bas RERT Srwe
 EE the pi 10 GATL

helps greatly to have someé powerful ideas under one’s

New hehavisr added by child (balow)

Bage he' - Englih drcriprive of the e

A phaen at =

wanted to sifwutate, and decormpose it ifto ¢lasses and %.ﬁ}. EHZ] [:]l_].{:]mm

. ‘messages without having to worry just hiow.a method ™, T z.,:
~would work. The inethod planning could then be done -
: mformaﬁy in Eng[:sh and these riotes woilld later serve
a5 commentaries and guides to the writing of the actual

‘code. This was a‘tefrific idea, and it worked very well-

.

l Lt

g | L,;u wje

Mancn Goldeen s painting progrum {abova)
Susan Hamet's OO Hustrator (below)

- But not enaugh to satsfy s, As Adele-liked to point

cesses dre qualitatively different from [successes, We
wanted: yaré, and started to push on the inheritance idea

_inheritance-—though an 'incre'dibiy powerful techrique

~design template approach was a good one after all. We

~that there is now 2 large accumulation of results from
_ many attempts to teach novices programming [Soloway,
-1989]. They all have similar stories that seern to have little

* phead, 41

developmental level. This is a confusion still persists for -

- hundreds of programmers in the last 30 years and can see
" no discernable influence of programming on their general

-able number of artists, scientists, philosophers are quite

"as well). The Frst siren’s song we need to be wary of is

© it or can dispense it. Cesare Pavese observed: to know the

)

has turned out to be very difficult for novices {and even o
professionais) to deal with. e

At this point, let me do a look back frony the vantage R
point of today. I'm now pretty miuch convinced that our -~ -

just didn't apply it longitudinalty enough. I'mean by this

to do with the various feabures of the programming lan- e s EE

guages used, and everything to do with the difficulties L } . o
novices have thinking the special way that good pro- § Gircua design system by Stave Putz (age 15}
grammers think. Bven with-a much bettet interface than
we had then (and have today), it is likely that this area is
actually more like writing than we wanted it to be.
Namely, for the "80%", it really has to be learned gradual-
ly over a period of years in order to build up the struc-
tures that need to be there for design and solution look-

The problem is not to get the kids to do stuff-—they _ L
love to do. even when they are not sure exactly what they | Tangram gdesigns are created by select-
are doing. This correlates well withi studies of early lexen- | ing shapes from a "menu” displayed at -
ing of language, when much rehearsal is done regardless § the top of the screen, This system was
of whether content is involved, Just doing seems to help. | implemenited in Smalitalk by 5 fourteen-
What is difficult is to determine what ideas to put forth ear old girt [Kay 77]
and how deeply they should penetrate at a given child’s

reading and writing of natural language—and for mathe- - -
matics—despite centuries of experience. And it is the
main hurdie for teaching children programuming. When,
in what order and depth, and how should the powerful -
ideas be aaght? .

Should we even ry to teach programming? I have met -~~~

ability to think well or to take an €nlightened stance on .~
human knowledge. If anything, the opposite is frire.

Expert knowledge often remains rooted in the environ- I
inents in which it was first learned-—and most metaphori-
cal extensions resuit in misleading analogies. A remark-

~SpacaWar by Dennis (age 12)} ;

dull outside of their specialty {and one suspects within it

the one that promises a connection between an interest-
ing pursuit and interesting thoughts. The ‘music is notin -
the piano, and it is possible to graduate Julliard without
finding or feeling it.

I have also met a few people for whom computing pro-
vides an important new metaphor for thinking about
human knowledge and reach. But something else was
needed besides computing for erdighterument to happen. 5

Tools provide a path, a context, and aimost an excuse . . o L
for developing enlightenment, but no tool ever contained | BHAZAM modiied 16 "group” multiple
images by Lisa van S:oﬂe (age 12)

ol e st construct . In other words, we make Aol just 10 have, but fo know. But the having can
“happen withiout most of the knowing taking place.

ALY il g T ey . .

T Anothef way to look at this is that knowledge is in its least interesting state when it is first being

learned. The représentations-—whether markings, allusions, or physical controls—get in the way
- (almost take over as goals) and must be laboriousty and painfully interpreted. From here there are
 ‘saveral usefid paths; two of which are important and intertwined.

““Fhe first i fluericy, which in part is the process of building mental structures that disappear the

iruterpretations of the representations. The letiers and words of a sentence are experienced as mean-

ing rather than markings, the teniis racquet or keyboard becomes an extension of one's body, and s¢

forth, TF carried further one-eventually becomes a kind of expert—but without deep knowledge in
.~ other atéas, atternpts to generalize are usually too crisp and ilf formed.

The second ‘path is towards taking the knowledge as & metaphor than can illuminate other areas.

. But withisut fluency it is more likely that prior knowledge will hoid sway and the metaphors from

this side wilk be fuzzy and misleading.

© o The “iick”, and T think-that this is what liberal arts eduation is supposed to be about, is to get flu-
-enit and deep-while building relationships with other fluent deep knowledge. Our society has low-

ered ity atms 50 far thidt it is happy with "increases in scores” without daring to inguire whether any
friportant threshold has been crassed. Beifig able to read a warning on a pill bottle or write about 2

‘siimitmer vacation is not literacy and dur society should not treat it so. Literacy, for example, is being
able to flueritly tead and follow the 50 page argiiment in Paine’s Common Sense and being able {and

happy) 16 fluently write 4 ciitigue or deferice of it Another kind of 20th century literacy is being able
to hear aboiit a new fatal coritagious incurable disease and instantly know that a disastrous exponef-

- tial refationship holds and early action is of the highest priotity. Another kind of literacy would take
- citizens to their personal comptiters where they can fluently and without pain build a systems simu-
“|ation of the diseasé to tée ds a comparison against further information.

"At-the [iberal ‘drts level we would expect that connections between each of the fluencies would

*forr tidly powerful mietaphors for considering ideas in the light of others.

“The reason, thérefore, that many of us want children to understand computing deeply and fluently

i that like litérature, matheratics, science, music, and ast, it carties special ways of thdnking about
" situations that inl contrast with other knowledge and other ways of thinking eritically boost our abili-

< byt understand our world,

-We did not know ther, and I'm sorry tu"say frotn. 15 years later, that these critical questions still do

" pot yet have really useful answers. But there are some indications. Even very yournyg children can

understand and use interactive transformational toals. The first ones are their hands! They can readily
extend these expetiences to computer objects and making changes to them. They can often imagine
what a proposed charige will do and not be surprised at the resute, Two and three year olds can use
the Serialitalk-style intefface and manipulate object-oriented graphics. 3rd graders can {in a few days)

" lparn miote than 50 features—most of these are transformationat tools—of a new system including its
. user intérface. They can answer any question whose answer requires the application of just one of

“these tools. But it Is extremely difficult for them to answer any question that requires twg or more
‘transformations. Yet they have no problém applying sequences of transformations, exploring “for-

- ward”, It is for conceiving and achieving even modest goals requiring several changes that they
- alriiost completely lack navigation abilities.

oo Tt seems that what needs to be leatried and taught is how to package up transformations in twos

- and thirees tn 4 mansier sitilar to learring 4 strategic game like checkers. The vague sense of a "three-

- gomé” pointing towards one's goal canbe a-set up for the more detailed work that is needed to

- accomiplish it. This art i possible for a Targe percentage of the population, but for most, it will need to

be {earred gradually over several years. :

V. 1976-80~-The first modern Smalitalk {-76), its birth, applications, and improvements
By the end bf 1975 I Telt that we were losing our balance—that the “Dynabook for children” idea
was slowly dimining out—or perhaps starting to be overwhelmed by professional needs. In January
19761 took the whale group to Pajaro Dunes for a three day offsite to bring up the issues and try to

" reset the compass. It was ‘called “Let's Burn Our’ Disk Packs”. There were no shouting matches, the

group:liked {1 would ‘gi $o far to say: loved) gach other 100 much for that, But we were troubled. 1

tised the old aphorism that “no biological organism can live in ts own waste products” to plead for a

FREIED b NG RS Aty LD Y L O Heiiielin T JU

' veally fresh start: a Fw-sw systern very different from the ALTO and Smallfalk. One thing we all did

agree on was that the current Smalltalk’s power did not match our various levels of aspiration, §
thought we needed something different, ag I <id not see how 00r by itself was going to solve our
end-user problems. Others, particularly some of the grad students, really wanted a better Smaltalk
* that was faster and could be used for bigger problems. I think Dan felt that a better Smalltatk could
be the vehicle for the different system [wanted, but could not describe clearly. The meeting was not a
disaster, and we went back 1o PaRC still friends and colleagues, buit the absolute cohesiveness of the

" first four years never rejelled. I started designing a new small-machine and language 1 3
called
- NoteTaker and Dan started o design Smalltalk-76. Euag ed the

The reason I wanted to “burn the disk packs” is that I had a very McLuhanish feeling about midia
_and environmonts: that orice we've shaped tools, in his woxts, they turn around and “reshape us”,
OFf course this is a great idea if the tools are feally good and aimed squarely at the issues in question.
But the other edge of the sword cuts as deep—that inadequate tools and environments siill reshape
our thinking in spite of their problems, in part, because we want paradigms to guide our goals.
Strong paradigms like Lise and Smalltalk are so compelling that they gat their young: when yoﬁ look
at an application in either of these two systems, they resewmble the systems themselves, not a new
idea. When I looked at Smalitalk in 1575, I was looking at something great, but I did not see an

“enduser language, I did not see a solution to the original goal of 4 “reading” and “writing” computer

medium for children,] wanted to stop, dynamite everything and start from scratch again.
The NoteTuker was to be a “laptop” that could be built in a few years using the (almost) available

16K RaMs (a vast improvernent over the 1K gams that the ALTO employed). A laptop couldn't use a

“mouse {which I hated anyway) and a tablet seemed awkward (not a lot of room and the stylus could
flop out of reach when let go), 50 I came up with an embedded pointing device I called 2 “tabmouse™.
Tt was a relative pointer and had an up sensor so it could be stroked like a mouse and would also stay
where you left it, but it felt like a stylus and used & pantograph mechanism that eliminated the

- annoying hysteresis bias in the x and y directions that-made it hard to use a mouse as a pen. 1

planned to use a multiprocessor architecture of slow but highly integrated chips as originally speci-
fied for the Dynabook and wanted a new bytecoded interpreter foz a friendlier and simpier);ygs)tem
than Smatitalk-72.

ffheteet mbes pena
1 a tencde g e jond
L

4 ,{1."! - D&[\ft-& A

i L bua .rro*

‘ Meanwhile Dar‘\ was ?mceeding'with his total 're»;amp of Smalitalk and along somewhat siinilar
;mes {In 78}, The first major thing that needed to be done was to-get rid of the function/ class dualism
in favor of a completely intensional definitior with every piece of code as an intrinsic method. We

- had wanted that from the beginming, (and most of the code was already written that way). There

were a variety of strong desires for a real inheritance mechanism from Adele and me, from Larty
Tesler, who was waorking on desktop publishing, and from the grad students. Dan had o find a better
way than Simula’s very rigid compile-time conception. It was time to make good on the idea that

“everything was an object”, which included all of the internal “systems” objects like “activation

records”, etc. We were all agreed that the flexible syntax of the earlier Smalltalks was tog flexible, and

this level of extensibiiity was not desirable. All of the extensions we liked used various keyword

schemes, so Dan came up with a combination keyword /operator syntax that was very flexible, but
aflowed thg laf}guage to be read unambiguously by both humans antd the machine. This allowed a
FLEX machine-like byte-code compiler and efficient interpreter o be defined that ran up t0 180 times

P

AL _ Alzn G Kay, |he kanly Msioy U Smailtaik 31
3% fast as the previous direct inferpreter. The 0oz VM system could be modified to handle the new
* phiects and its capacity was well matched to the ALTO's RAM and disk.

" Inheritante

Adword about {nhéritance. Simitla-T had neither classes as objects nor inheritance. Simula-67 added -

fhe latter as 4 generalization to the ALGOL-60 <block> structure. This was a great idea. But it did have
‘somie drawbicks: minor ones like name clashes in multiple threaded lists {no one uses threaded lists
- anymore); anid major ones Like a rigidity inthe extended type structures, need to qualify types, only a
-~ single path of inheritance, and difficulty in adapting to an interactive development system with
ineremental compiling and other needs for instant changes. Then there were a host of problems that
were really oitside the scope of Simula’s goals: having to do with various kinds of modeling and
inferencing that were of interest in the world of artificial intelligence. For example, not all useful
«quéstionis tould be answered by following a static chain, Some of them required a kind of "inheri-
*farice” oF “inferencing” through dynamically bound “parts” (i.e. instance variables). Multiple inheri
- tance also 1ooked jinportant but the corresponding possible clashes between methods of the same
" namiin different superclasses looked difficult to handle, and so forth.
-7 Of the other hand, since things can be done with 2 dynamic language that are difficult with a stati-
0 cally compiled oie, T just decided to leave ‘inthieritance out as 2 feature in Smalltalk-72, knowing that
o e eoild simutate It back using Smalltalk’s Lisplike flexibility. The biggest contributer to these al
" ideas was Larsy Tesler who used whatis now called “slot inheritance” extensively in his various ver-
“ sions of early désktop publishing systeris. Nowadays, this would be called a “delegation-style”
- iiiheritance scheme [Lieberfnan 84] Darny Bobrow and Terry Winograd during this period were
" designing.a “frame-based” Al language called kRL which was “cbject-oriented” and 1 believe was
~influenced by early Smialltalk. It had a kind of multiple inheritance-~called perspectives—which per-
“mitted an object to play midtiple roles in a very clean way. Many of these ideas a few years later went
int6 PIE, an interesting extension of Smalltaik to networks and higher level descriptions by Ira
o Goldstein anid Bobrow [Goldstein & Bobiow 1980]. .
“-- By the time Smalltalk-76 came along, Dan Ingalls hiad come up with a scheme that was Simula-like
Sin
< interaction. 1 whas riot completely thrilled with it because it seemed that we needed a better theory
- shioat inReritance entitely (and 5811 do). For example, inheritance and instancing (which is a kind of
| inheritance) muddles both pragmatics (siich as factoring code to save space) and semantics (used for
" way too many tasks such as: specialization; generalization, speciation, etc.} Alan Borning émployed a
= - mistiple inheritarice scheme i Thinglab [Borning 77] which was implemented in Simalltalk-76. But
% Yo conprehensive and cdlean multiple intheritance scheme appeared that was compelling enough o
3 surmount Dan's original Simula-like design.

. Etherriets to each 'othier and to Laserprinter and file servers, that used ALTOS a5 controllers. I wrote
- inany memos to the Xerox planners trying to get them to make plans that included personal comput-
- ing as'one of their main ditections: Here is dn example:

A Simple Vision of the Fotire

A Brief Update OF My 1971 Pendery Paper -
it 1990 thérd will be miltions of persona) computers, Thiy wil be the size of notebooks of
| - today, have bigh-resolition fiat-screen feflective displays, weigh less than ten pounds, have ten [©
“fwenty times the Gomputing 4nd storage Capacity of an Alto. Lev's call them Dynabooks.

“The purchiige price will be about that of 4 color television set of the erp, although most of the
| rdichings will be given away by manufactirers who will be marketing the content rather than the con-
" ftainer of personat computing. : .

- Thivigh the Pynabook will have considerable local storage and will do most computing localfy, it
wilf $psend & large percentage of it¢ timne hobked to various large. global information utilisies _wiuch
37wy permil communication with-others of jdeas, data, working models, as well as the daily chit-chat

iR organivations ited In okder 16 Fanction, The communications link witl be by private and public
Zwives and By ‘packet tadio; Dyndbooks Wil lst be used as servers in (he information utilities, They
will have Bnough power 1o be entirely shiaped by software.

its semankics but could b incrementalty changed on the fly to be in accord with our goals of close '

“Meanwhile, the runriing battle with Xefox continued, There were now about $00 attos linked with -

Alan C. Kay, The Early History Of Smaitalk . 32

The Main Peints Of This Vision]

+ There need only be a few hardware types to handle almost alf of the processing activity of a system:.

= Personal Computers, Communications Links, and Information Utilities are the three critical compo-
nents of a Xerox future.

In other words, the material of 4 computer systefm i the computer itself, alt of the content and
Junerion is fashioned in software.

“Thers we two Importait guidelines to be drawn from this:

» Material: If the design and development of the hardware computer material is donie as carsfully
and completely as Xerox's dovelopment of special light-sensitive alloys, then only ore of 1we Comput-
er designs need to be built... Extrainvéstment in development here will be vastly repaid by simplity-
ing the manufachuring process and praviding fower comts through incredsed volume.

» Content: Aside from ﬂag'wor_iderfufgenefaﬂty of being ablz'zé'cominously shape neéw content
from the same materisd, software has three important characteristics:

- the mp!icaiian time and cost of & coment-fanction 15 2630 .
« the development time and cost fo a content-function is high -
= the change time snd 0031 of a conlent-function can be low

Kertx st take these several points seriously if it s to survive and pfesper in iis iew husiness are
of Information media, If 1t does, the company has an excellent chande for several reasons: '

» Xerox has the financial base 10 cover the Turge developiment costs of a smail number of very -
powerfol computer-types and 3 large number of software functions.

+ ¥erox has the marketing base to sell these functions on a wide enough sezle 10 gamer back o
itself an incredible profit,

= Xerox has working for it an impressively large percentage of the best software designers in the
world.

-In 1975, Chuck Thacker desigried the ALTO 11l that would use the new 16k chipé and be able to fit on
a desktop, |t could be marketed for about what the large cumbersorne spedial purpose "word-proces-
sors" cost, yet could do so much more. Nevertheless, in August of 1978, Xerox made a fateful ded-
siom: not to bring the ALTO It to market. This was a huge blow to many of us—even 1, who had never

“really reafly thought of the ALTO as anything but a stepping stone to the “real thing”. In 1997, the
“world market for personal computers and workstations was $90 million—twice as much as the main-

frame and mini market, and many times Xerox's 1992 gross. The most successful company of this
era~-Microsott—is not a hardware company, but a software company.

The Smalltalk User Interface .) . o
I have been asked by several of the reviewers to say more about the development of the "Sinafltalk-

style” overlapping windcw user intérface since there are now more than 20 million computers ir the

world that use its descendents, A decent history would be as long as this chapter, and none has been,.
written so far. There is a surmumary of some of the ideas in [Kay B8]<~let me add a few more points. ‘:?ﬁs '
All of the elements eventually used in the Smalltalk uger interface were akteady to be fourd inthe™ -

 sixties—as different ways to access and invoke the functionatity provided by an interactive system,

The two major centers of ideas were Lincoln Labs and RaND corp—both area funded. The big shift
that consolidated these ideas into a powerful theory and long-lived examples came because the 1RG
focus was on childrern, Hence we were thinking about learning as being one of the main effects we

~ wanted to have happen. Early on, this led to a 90 degree rotation of the purpose of the user interface

from “access to functionality” to “environment in which users learn by doing”. This new stance
could now respond to the echos of Montessori and Dewey, particulatly the former, and got me, on
rereading Jerome Bruner, te think beyond the children’s curriculum to & "curriculum of the user
interface”. :

The particular aim of LRG was 4o find the equivalent of writing—that is learning and thirking by

“doing in a medium—our new “pocket universe”. For various reasons [-had settled on "iconic pro-

gramming” as the way to achieve this, drawing on the iconic representations used by marny aRPA pri-
jects in the sixties. My friend Nicholas Negroponte, an architect, was exiremely interested in how
environments affected peoples’ work and creativity. He was interested in embedding the new com-
puter magic in familar surroundings. T had quite a bit of theatrical experience in a past life, and
remembered Coleridge’s adage that “people attend ‘bad theatre’ hoping to forget, pecple attend

Paul Rovnar showing the iconi

i goo{i thieatre’ achig _ta mmember" Trr oth _words,1 is
the " ab:hty to evoke the-audiende’s own intetligence |
and experiences that makes theatrs work. -~ |

' Piatting all this together, we want an apparently free |32
: envzmnment in ‘which explotation csuses desired -
sequences to happen (Montessori); one that allows |
kiniesthetic, itonic, and symbalic fearning~~"doing with i

L images. -iakes symbols” (Flaget & Brunet); the user is ©

- Hever trapped-in a ‘miode (GRAIL); the magic is embed- .
ded in the familiar (Negroponte); and which acts as a

- magmfylng mirror for the user’s own intélligence

- (Colerzdge} It would be-a great finish to this story to
“say that having articyilated this we were able to move
- straighitforwardly 10" the- design as we know it today.

i Fact, the Uldesign work happened in fits and starts
_in betiveen feeding Smalltalk itself, des1gmng chile.
drer’s experiments, Tying to 'understand icofic con-

 SmallialkTe ;
Dan finished the Smalltalk76 design in November, and
he, Dave Robson, Ted Kaehler, and Diana Merry, success-

have resembled this conception very closely. In many

- struction, and just playing around. In spite of this -
- “meandering, the context almost forced. a good design
"t turn out anyway Just about everyone at PARC at this
" timg had opinions -about the UL ours and theirs. is _ §
impossible to give detailed credit for the hundreds of “aearo
" ideas and discussions. However, the corsolidation can

- certainly be attributed to Dan Ingalls, for listening to

c .0 Ceveryone, contributing original ideas, and constantly
iy - building a‘destgn for user testing. [had 4 fair amount
& K <10 do’ with setting the context, invénting overlapping
) v windows, ete, and Adele and § designed most of the
S gxperiments. Beyond that, Ted Kaehler, and visitor
“Ron Baecker made highly valuable contributions.
~Dave Smith" desxgne% SmallStar, the piototype iconic
-~ ititettace For the Xerox Star product {Smith 83},
ST Meanwhile, Thad gotton Doug Fairbairn interested
- ivthe Notetoker. He'designed a wonderful “smart bus”
that cottd efficiently handle slow multiple processors
“and the gystein lookéd very promising, -even though

“the fast i}lpolar kiwof the atto. But I couldn't see that

" most of the rest of PARC thought I was nuts to abandon ; Ted Kaehier’s Comic paTHing INeHace.

- ._'was a0 hmt that anyone ‘whio had ever demgned software was involved,

" bipolar fwas ever going to make it into & laptop or Dynabook. On the other hand I hated the 8-bit
- mieros. that were ‘just statting to appeat, bétadse of the silliness and naivete of their designs—there

et M

Fully implemented the system from scratch {which includ-
ed rewriting all of the existing class definitions) in just

seven months, This was stich a wonderful achievement :
-that I was bowled over in spite of iny wantmg 10 start :
.over. It was fast, Hvely, could handle "big” probletns, and
- was great fun. The system consisted of about 50 classes

described in about 180 pages of source code. This included

‘all of the o8 functions, files, printing and other Ethernet
services, the window interface, editors, graphics and |

painting systems, and two new contributions by Larry

. Tesler, the famons browsers for static methods in the .
" inheritance hierarchy and dynamic contexts for debugeing §

in the runtime environment. In every way it was the con-
solidation of all of our ideas and yearnirigs about
Smalltatk in one integrated package. All Smalltalks since

ways, as Tony Hoare once remarked about Algol, Dan's
Smalltalk-76 was a great improvenment on its successors!

Here are two stylish 5T-76 classes written by Dan.

Mﬂh\nmlﬂs{
[b el shomdoc]

Srnalitae- 76 Liser intertfaca wih & variety of pglica-
tians, including & clock, far editor, painting and flus-
tration aditor with: icatie menus and programmakble
radic buttons, a word processer document aditat, and
& tlass sditor showing window intarlaca-cada,

Tlase new nte: Window'; :
Eelds: 'frame’]; Class new

ttle: "DocWindow -

asFoliows! iR : subclagsof Window;

This is 2 superclass for presesting windows on the drspfay it
holds comtrol untl the stylus is depressed outside. While it holds

fields: 'document scrollbar edxtMem: s
‘asFatlaws!

User ezenits wre. passer{ on ¥ the dociiment while the window I

control, it distribites messages to (kself based on pser artions. T ihe s ot " he window |
) i < TrRans kayword whose tollowin actipe. If the stylus goes out of the window, scrollbar and the
f&hﬁ; ting ' xprasaion y’.l::lllcl,ize sanls"by valéeg editMeni are ench giver & chance o gain control.
{frame containg: stylus => - : “TEvant Besponses
self enter, T Treans ¥&y-} fenter [self show. editMenu show. scrollbar show}
ab fword whosed Heave {document hideselection. editMeny hide. serollbar hide)
F;ame containg: stylus loc =» {iollowingf foutside

[keyboard active =» [self kéyboa:\d] @ ’.‘Isl”;”' OP1 1 [editMenu startup =>
stylus down = [self pendown]] will Ze sant scrolibar startup => [self shcchv:]

self putside => [] "by name Afalse]

o stylus down = | £ leavell] pendown {document Eenduwn} super means dels-
AMalsa] F y- ikeyboard {document kevboard gale massage o next

.~ means .
i*sand hack"] - {image

Detauly Event Rasponsas

enter {self show} = mgansg o

Ieave *han) ;

outside [false] titke {*doe
pandown

keyboeard fkeyboard next. frame flash]

Image

show

[frame outtine: 2.
titleframe put: self title at: frame orzgin + tila Soc.
titleframe complement]

-

Notice, particularty in class Window, how the .code is
expressed as goals for other eb;ects {or itself} to-achieve.

~The superclass Window's main job is to notice events and

distribute them as messages to its subclasses. In the
example, a document window {(a subclass of
DocWindow) is going ko deal with the effects of user
interactions. The Window class will notice that the key- .
board is active and send a message to itself which will be
intercepted by the subciass method. If there is no method
the character will be thrown away and the window wii]

higher superclass

show {super show. self shawDoe])
-fshowDor [document showin: frame at scrollbar posiion]

uement titke]

: 7y
C . Ay
(—} . z
CLASS CLASS &—_'SL-«{ CLASS OWECT
]

| CLASS FLOAT CLASS m-rscas
‘3 1458 é
a6 Mezsphysu:s j

ERTTIRN uu., POL ediay s 0D Y W T ORI

fiash Tn thss case, it finds DocW"mdow method: keybeard
which tells the hekd document to check it out.

" In Janaary of 1978 Smalitalk-76 had its first real test. CSL

had invited: the top ten executives of Xerox to PARC for a

<. two day seminar on software, with a special emphasis on

complexity and what tould be done about it. LRG got asked

- to give'them.a hands-on experience’in end-user program-

. ning 5o they could do ‘Something real’ dver two 1172 hour

sedsions”y We imimedidtely decidéd pot to-teach them

Smallfalks76 {my "burn our disk packs” point in spades),

but to-¢reate in two months in Smalltatks76 a rich system

—”‘s eSpécia'lly: tailored for adidt nonexpert iisets (D'an’s point in

3R «ﬂ asd startmg point and decided to build a user mterface for
wj; 2.4 generahzed]ob shop sitrudation tool that the executives
13 could rake into spemflc dynamic simiitations that would
.t Diit their changing sfates by animating graphics on the
_scresn Wa '¢alled it the Smalltalk SimKit. This was a maxi-
+ i effort anid everyone pitched in. Adele became the
5 design leader in spite of the very recent appeatence of a
- hiew baby. I have a priceless memory of her debugging
» away oft the SimKit while simultaneously nursing Rachelt
< - There ‘were fitary intéresting problems to be solved. The
V. -system itself was steaightforiard but it had to be complete-
! - ly sealed off from Smalltalk proper, particularly with regard
o error ‘nessages. Dave Robson came up with a nice
= schene (alimost anexpert system) to-capture complaints
- from the boweéls of Smalltalk and transiated them into
- meaningful SimKit terms. There were many user interface
s details—wgime workaday, like ‘making néw browsers that
muld only 166k at the four SimKit classes T5tation, Worker,
]ob Report), ‘and gome more surprising as when we tried it
~ori tery PARC nontechnical -adults of about the same age and
=u.x found that they couldn’t read the screen very well. The
"?Lﬁ? ‘senall fonts it thirtysomething year-old eyes were used to
didn't work for those ini their 50s. This led to a nice intro-
- -dgetion 1o the system in which the executives were encouz-
.aged to customize the screen by choosing among different
- Fonty and sizes with the side effect that they learned how to
.. tise the mouse unselfcorseiously.

}mw_«{,

- maké a change i the virtual memory system 0078 to speed
.-t upa litte. We all held our breaths, but such was the clari-
by of the desigh and the confidence of the implementers
“that it dicd work, and the executive hands-on was a howling
suiccess. About & hour into the first session one of the ves
{who Had “writtén & few programs in FORTRAN 15 years

: _i:;efore) fmally realized he was progrzmmmg and mused

- s s fifally comé to this”. Nine out of the ten executives
. wete ableto finish a simulation problem that related to
-their specific interests. One of the most interesting and
“sophistivated -was a v board production lice done by the
.. -héad of & Xérox owned company using actual figures (that
he¢arried around in hig-hedd) to:prime amodel that could
riot be solved easily by closed form mathematics—it
»révealed A serious flaw in the disposition bf wotkers given

Smalltalk, creator of Smalltalk-76, and
his implamentation plan (below)

05

‘Borning’s Thinglab [Borning, 1979]—the first serious

PROTECT H#isTORY

O the morriing of the “big day” Ted Kaehlet decided to S—

ekt Viem: |

for all those years (with Alan Borning helping)

ey franttang Iy wciing

LEEE 1]

CREIRE

eierioy Trotme, FEERL

e Aih e
ure Sehing <o,
i 13 aie

An end-user simulation by a Xerox execulive,

in SimkKit. Total time including fraining: 3 hours

the line's average probability of manutactunng defects.
Another important system done at this time was Ajan

atternpt to go beyond Ivan Sutherland’s Sketchpad. Alan
devised a very nice approach for dealing with constraints

“that didd not require the solver to be omniciént (or able to
- solve Fermat's last theoremy).

We could see that the “pushing” style of Smalitalk
could eventually be relaced by a “pulling” style that was
driven by changes to values that different methods were
based on. This was an old idea but Thinglab showed how
the object-oriented definition could be used to autornati-

cally limit the contexts for event-driven processing. And

we soon discovered that “prototypes” were more hos-
pitable than classes and that multiple inheritance would

be well served if thera were classés for methods that knew :
_generally what they were supposed to be about {irispired -

by Pat Winston's 2nd order models).

Meanwhile, the NofeTuker was getting realler, bigger,
and slower. By this ime the Western Digital emulation- ™

style chips I hoped to use showed signs of being “diffu-
sion-ware”, and did not look like they woudd realty show

“up. We started looking around for something that we

could count on, even if it didn't have-a good architecture,

In 1978, the best candidate was the Intel 8086, a 16-bit chip |

(with many unfortunate remnants of the 8008 ard 8080},
but with (barely) encugh capacity to do the job-we
would need three of them to make up for the ALTS, one for

the interpreter, one for bitmapped graphics, and one for

i/o (networking, etc).
Dian had been interestéd in the Notetaker all along and

“wanted to see if he could make a version of Smalltalk-76

that could be the NeteTuker syster In order for this to
happen it would have to run in 256K (the maximum

amount of RAM that we had plansed for the machine.
‘None of the Nova-like emulated “machine-code” from the
-aLto could be brought over, and it had to fit in memory as

weil—there would only be floppies, no swapping memory

“existed. This chalienge led to somé excellent improve-

menis in the system design. Ted Kaehler's system tracer
(which could write out new virtual memories from old

ones) was used to clone Smalitatk-76 into the NoteTuker.

The indexed object table {as was used in early Smalltali~
80) first appeared here to simplify object access. An exper-
iment in stacking contexts contiguously was tried: to save

-space and gain speed. Most of the old machine code was.

rewitten in Smallitalk and the total machine kernal was

" reduced to 6K bytes of {the not very strong) 8086 code, _
Alt of the re-engineering had an interesting effect.

Through the 8086 was not as good at bitblt as the arto
{and much of the former machine code to assist graphics
was now in Smalltalk), the: overall interpreter was about

twice as fast as the ALTo version (because not all the -

Smalltalk byte-code interpreter would fit into the 4k
microcode memory on the ALTO} With various kinds of
tricks and tuning, graphics display was “largely compen-

Alan Borming s Thng/ab, 8 constramt-

based iconic problem solver

Smaiitalk- 76 hierarchicai class b{owser

designed and built by Larry Tester

tTha g-n“ --gn Lo given Vo cul put the wxlee seent
T frmem ihs 4

The author’s pan-based interfage for
8176

Doug Fairbair using his Note Taker

R TP !f i I %,rrmr:.f,fw ,}
5y

interpretation. In fact, the Notetaker worked extremely well,

o thiotgh it would have crushed any lap. Tt had hopped back

L -pr the desk, and looked suspiciously tike miricom {and
. several computets that would appear 4 few years later). It
-7 really did-tun-on battetfes and several of us had the plea-

-+ sure of taking NoteTuker on-a plane and running an object-

oriéerited system with & windowed interface at 35,000 feet.
| We evernitually built about 10 of the machines, and

though in many sensés an engineering success, what had to §
be done to-make them had once again squeezed out the real §

end-usets for who it was originally aimed. If Xerox (and

. -pARC) as 2 whole had believed in these sthaller scale ideas,
- we coutd have put mucki more silicon muscle behind the
-dreams dnd successfully built them in-the 70s when they

" .were first possible. It was a bitter disappointment to have
- 1o get the wrong kind of CPU from Intel arid the wrong T~
- kind of display from HP because there wag riot enough cor- 2
- porate will to take advantage of mternal technological [z

- expertise,

- By now'it was aiready 1979, and we found ourselves

ctomg one of our many demos, but this time for a very |
intetested wudience: Steve Jobs, Jeff Raskin, and other tech- |
- pieal people from Apple. They had startéd a project called
" Lisa but ‘weren't quite sure what it should be like, until Jeff
~ said to Steve, “Yourshould really come over to PARC and see
- what they dre doing”. Thus, more than eight years after
.7 overlappiing windows had been invented and more than
“-six years after the ALTO started running; the people who =
- -gould really do something about the ideas; finally got to see ©

“ther. The machine used was the Dorado, & very fast “big

" brother” of the ALto, whose Smalltalk micrécode had been
Ctargely written by Bruce Horn, one ‘of our original

~#grmalltalk kids” who was still only a-teeti-ager. Larry

Tesler gave the miain part of the demo with Dian sitting in

¥he copitot's ‘chair and Adele and I witched from the rear
" Orneof the best parts of the demo was when Steve Jobs said
- he'didn't like the bit-style scrolling we were using and
Vo asked iF we tould do it in a smooth continuous style: In less
¥ thian a-mirate Dan found. the methods involved, made the
" {relatively major) ehanges and scrolling ‘was now continu-
"ouis! This shocked the visitérs, especially the programumers
‘among theriy as they had never seen-a realiy powwerful -
-incteriental Systen before.

Steve tried to get and/or buy the technology from Xerox
{which wds one of Apple’s minority veriture rapitalists),

- - bk Xerox would neither part with it nor would come up
- with the Tesources to continue o develop it in house by
furidirig 4 better NoteTiker cumn Smalitalk.

AU Ny hay, R Latly PHSIOEY Wi i i T

'sated" (m {)an 5 words). Yhas was mainly because the ALTO

- did not have enough microcode memory to take in all of

- the Smalltall emulation’ code-some of it had to be ren~
" déred in emulated “NovA” code which foréed two layers of

§

]
=
3

UM Teidse | X ICGpY

camce
secepl
image

P
j furgurpurpa g)

Drasion for

3

it Slove Toba camw. Mulwiews on compiex]

structures by Trygve Resskauy {above}
Multimedia docurments by BobFlegat and
Diana Marry {below}

Diana Merry at her trusty ALTO

iole | aker TenRca (Ka 76} E '

[

f ﬁ}»j “The greatest sin in Art is not Boredom,

H as is commoniy supposed, but lack of
Proportion”—Paut Hindemith

V1, 1880-83—The release version of Smalitalk (-80)

Alan . Kay, The Early History Of Siatak - '3

As Dan said “the decision not to continue the NoteTiker project added motivation to release -

Smalltalk widely”. But not for me. By this time I was both happy about the cleanliness and ele-
gance of the Smalltalk conception #s realized by Dan and the others, and sad that it was farther

-away than ever from the children-~—it came to me as a shock that no child had programmed in any .

Smalltatk since Smalltalk-76 made its debut. Xerox (and PARC) were now into “workstations” as \\\

things in themselves—but I still wanted “playstations”. The romance of thie Dynabook seemied less ;"é\

i . .
%x

within grasp, paradoxically just when the various needed technologies were starting to be commer-
cizlly feasible—some of them, unfortunately, like the flat-screen display, abandoned to the Japanese

by the US mmpames who had invented them. This was a major ¢ase of ”snatchmg defeat from the

jaws of victory”. Larry Tesler decided that Xerox was never going to “get it” and was hired by

Steve Jobs in May 1980 to be a principal designer of the Lisa. T agreed, had a sabbatical coming, and ¥,

took it.
Adele decided to drive the documentstion and release process for a new Smalitalk that could be
distributed widely almost regardless of the target hardware. Only a few changes had o be made to

-the NoteTaker Smalltalk-78 to make a releasable system. Perhaps the change that was most ironic !

was 1o turn the custom fonts that made Smalltalk more readable (and were a haHmark of the entire -
- PARC culture) back into standard pedestrian ascil characters, According to Peter Deutsch this “met
_with heated opposition within the group at the time, but has turned out o be essential for the-

acceptance of the system in the world”. Ancther change was to make bloeks more like lambda
expressions which, as Peter Deutsch was to observe nine years later: “In retrospect, this prolifera-
ton of different kinds of instantiation and scoping was probably a bad idea”. The most puzzling
strange idea—at least to me as a new outsider—was the introduction of metaclasses (really just to

. make instance initialization a little sasier-—a very minor improvement over what Smalltalk-75 did

quite reasonably already). Peter’s 198% comment is typical and true: “metaciasses have proven con-
fusing to many users, and perhaps in the balance more confusing than valuable”. In fact, in their
PIE system, Goldstein and Bobrow had already implemented in Smalltalk an “observer language”,

“semewhat following the view-oriented approach I had been advocating and in some ways like the

“perspectives” proposed in KRL [Goeldstein*]. Once one can view an instance via multiple perspec-

. Hves even “semi-metaclasses” like Class Class and Class Object are not reaily necessary since the

object-role and instance-of-a-class-rale are just different views and it is #asy to deal with life-history
issues including instantiation. This was there for the taking (along with quite a few other good
ideas), but it wasn't adopted. My guess is that Smalltalk had moved into the final phase I men-
tioned at the beginning of this story, in which a way of doing things finally gets canonized into an

_'inﬁexibie helief structure.

Coda

One final comment. Hardware is really just software crys:aiixzed early. 1t is there to make pro-
gram schemes run as efficiently as possible. But far too often the hardware has been presented as a
given and it is up to software designers to make it appear reasonable. This has caused low-level
techniques and excessive optimization to hold back progress in program design. As Bob Barton
used to say: “Systems programumners are high priests of a low cult”.

One way to think about progress in software is that a lot of it has been about ﬁndmg ways to
Inte-bind, then waging campaigns o convince manufacturers to build the ideas into hardware. Early
hardware had wired programs and paramaters; random access memory was a scheme to late-bind
them. Looping and indexing used to be done by address modification in storage; index registers
were a way to late-bind. Over the years software designers have found ways to late-bind the loca-

“tions of computations—this led to base /bounds registers, segment relocation, paging Mmus, migra-

tory processes, and go forth, Time-sharing was held back for years because it was "inefficiefit™ .

-but the manufacturers wouldn't put MMU’s on the machines, universities had to do it themselves!
* Recursion late-binds parameters to procedures, but it took years to get even rudimentary stack

mechanisms into crus. Most machines still have no support for dynamie allocation. and garbage

I
§

3
3
B

i

i
4
b
N
J

88

B e

o

collection, and so forth. In short, most hardware designs today are just re-optimizations of moribun
architectures.

From the late-binding perspective, 0or can be viewed as a comprehensive technique for late-bind-
ing as many things as possible: the mix of state and process in a set of behaviors, where they are locat-
ed, what they are called, when and why they are invoked, which HW is used, etc., and more subtle, the
strategies used in the 0OP scheme itself. The art of the wrap is the art of the trap.

Consider the two cases that must be handled efficiently in order to completely wrap objects. It
would be terrible if a+b incurred any overhead if 2 and b were bound, say, to “3” and “4” in a form
that could be handled by the ALU. The operation should occur full speed using look-aside logic (in
the simplest scheme a single and gate) to trap if the operands aren’t compatible with the ALU. Now all
elementary operations that have to happen fast have been wrapped without slowing down the
machine,

The second case happens if the trap has determined the objects in questions are too complicated
for the ALU. Now the HW has to dynamically find a method that can handle the objects. This is very
similar to indexing—the class of one of the objects is “indexed” by the the desired method-selector in
a slightly more general way. In other words the virtual-address of a method is <class><selector>. Since
most HW today does a virtual address translation of some kind to find the real address—a trap—it is
quite possible to hide the overhead of the oop dispatch in the MMU overhead that has already been
rationalized. C

Again, the whole point of 0OP is not to have to worry about what is inside an object. Objects made
on different machines and with different languages should be able to talk to each other—and will
have to in the future. Late-binding here involves trapping incompatibilities into recompatibility
methods—a good discussion of some of the issues is found in [Popek,1984].

Staying with the metaphor of late-binding, what further late-binding schemes might we expect to
see? One of the nicest late-binding schemes that is being experimented with is the metaobject protocol
work at Xerox PARC [Kiczales,1991]. The notion is that the language designer’s choice for the internal
representation of instances, variables, etc., may not cover what the implementer needs. So within a
fixed semantics they allow the implementer to give the system strategies—for example, using a
hashed lookup for slots in an instance instead of direct indexing, These are then efficiently compiled
and extend the base implementation of the system. This is a direct descendant of similar directions
from the past of Simula, FLEX, CDL, Smalltalk, and Actors.

Another late-binding scheme that is already necessary is to get away from direct protocol match-
ing when a new object shows up in a system of objects. In other words, if someone sends you an
object from halfway around the world it will be unusual if it conforms to your local protocols. At
some point it will be easier to have it carry even more information about itself—enough so its specifi-
cations can be “understood” and its configuration into your mix done by the more subtle matching of
inference.

A look beyond 0oP as we know it today can also be done by thinking about late-binding. Prolog’s
great idea is that it doesn’t need bindings to values in order to carry out computations [Col **]. The
variable is an object and a web of partial results can be built to be filled in when a binding is finally
found. Eurisko [Lenat **] constructs its methods—and modifies its basic strategies—as it tries to solve
a problem. Instead of a problem looking for methods, the methods look for problems—and Eurisko
looks for the methods of the methods. This has been called “opportunistic programming”—I think of
it as a drive for more enlightenment, in which problems get resolved as part of the process.

This higher computational finesse will be needed as the next paradigm shift—that of pervasive
networking—takes place over the next five years. Objects will gradually become active agents and
will travel the networks in search of useful information and tools for their managers. Objects brought
back into a computational environment from halfway around the world will not be able to confugure
themselves by direct protocol matching as do objects today. Instead, the objects will carry much more
information about themselves in a form that permits inferential docking. Some of the ongoing work in
specification can be turned to this task (Guttag **] [Goguen **].

Tongue in cheek, I once characterized progress in programming languages as a kind of “sunspot”
theory, in which major advances took place about every 11 years. We started with machine code in
1950, then in 1956 FORTRAN came along as a "better old thing” which if looked at as "almost a new
thing" became the precursor of ALGOL-60 in 1961. In 1966, SIMULA was the "better old thing", which if

Al Ay, TS Bany sy i Siaiain 40
looked at as "almost a new thing” became the precursor of Smalltalk in 1972.

Everything seemed set up to confirm the “theory” once more: In 1978, Eurisko was in place as the
“better old thing” that was “almost a new thing”. But 1983—and the whole decade—came and went
without the “new thing”. Of course, such a theory is silly anyway—and yet, I think the enormous
commercialization of personal computing has smothered much of the kind of work that used to go

~ on in universities and research labs, by sucking the talented kids towards practical applications. With

companies so risk-adverse towards doing their own Hw, and the HW companies betraying no real

“understanding of sw, the result has been a great step backwards in most repects.

A twentieth century problem is that technology has become too “easy”. When it was hard to do
anything whether good or bad, enough time was taken so that the result was usually good. Now we
can make things almost trivially, especially in software, but most of the designs are trivial as well.
This is inverse vandalism: the making of things because you can. Couple this to even less sophisticat-
ed buyers and you have generated an exploitation marketplace similar to that set up for teenagers. A
counter to this is to generate enormous disatisfaction with one’s designs using the entire history of
human art as a standard and goad. Then the trick is to decouple the disatisfaction from self worth—
otherwise it is either too depressing or one stops too soon with trivial results.

1 will leave the story of early Smalltalk in 1981 when an extensive
series of articles on Smalltalk-80 was published in Byfe magazine,
[Byte,1981] followed by Adele’s and Dave Robson’s books
[Goldberg,1983] and the official release of the system in 1983. Now
programmers could easily implement the virtual machine without
having to reinvent it, and, in several cases, groups were able to roll
their own image of basic classes. In spite of having to run almost
everywhere on moribund Hw architectures, Smalltalk has proliferated
amazingly well (in part because of tremendous optimization efforts
on these machines) [Deutsch 83]. As far as [can tell, it still seems to
be the most widely used system that claims to be object-oriented. It is
incredible to me that no one since has come up with a qualitatively
better idea that is as simple, elegant, easy to program, practical, and comprehensive. (It's a pity that
we didn’t know about PROLOG then or vice versa, the combinations of the two languages done subse-
quently are quite intriging.)

While justly applauding Dan, Adele and the others that made Smalltalk possible, we must wonder
at the same time: where are the Dans and Adeles of the ‘80s and “90s) that will take us to the next
stage?

Dave Robson

L.-ﬂ*"‘!" 3’_0 &
AT -
ﬁg it
g L_"'\:;_i,_)‘
WM

U ACM1989]
- {Armheim 19697
" {Balzar, 1967]

: [Bitzer, 1966]
O qmebiow, 977 -
S Cognitioe Selence, Vol, 1, (11 {pp. 146k 1977,
L Bomning 1979) -

- {Bureoiighs,1961]
©TeTne T DettoitMichigan, Bulletin No.: S000-20002-F, February 1961, o
Bk, Varinevar., 1945, A scieftist looks at tomorrow as we may think, Aflantic Montidy, Vol 176, Ne.
SR U WY, Tuly 1945, R
. . Bite Migazivie, Tssue on Smalitatk ; Christopher Morgan, ed., Volume &, numbet 8, August, 1981.
- {Carnap, 19671 .
CoT e e Chicagro Press, 1947, S

- [Bushi98]

- [Clark 1965}

(G 1981
" {Conway, 19631

R ST SIS) N

- fDentschi, 1966]

rer wmekiag e eiwiiey - -

References Cited In The Text

[Barton, 1961]

[Bascker, 1969]

' firaiier, 19601
. [Briner 1966]
{Brand; 1972 -

[Byte, 1981]

[Celiieraner,1978]

"{.Ctiiméradér,'lﬁ.fli}' :
ST Confevence on Avtificial nieliigemee, Vol. 2, (pp. 947-948), August 1981, Available from the American

_-{Cla‘rk,-_i?s?;'j.

fClark, 1982] -

.fCI'arl.;c, ToRa] .

" [Davis, 1964

- {Detschi1973] ©

. ACM SIGPLAN, Conference o Exiensible Langrages, May 1963,
" Arnhelrti; Rudolf, Visual Thinking, Berkeley: University of California Press, 1969, ISEN 0520013786,
Balzer, R.M., Dabiless progranmming. Proceedings of the FJCC, July 1967,

Batton, K5, A néty approach ip the functional design of a digital computer, In Proceedings of te

" WICC, May 1961,
“ ‘Baecker, Ronald M, Interactive computer-mediated animation, Dept. of Electrical Engineering, Phd
~thesis, MIT, 1965, Supervisoe:Edward L. Glaser.
Bltzer, DL, and Slotiow, H.G.,- The plasma display parel — a digitaily addressable display with
“inharent memory, InProcesdings of the FICC, November 1966,

Bbrow, [.G.-and Winograd, T., Arveverview of KRL, a knowledge representation: langruage, in

Boriing, Alan, Thinglab *A-ﬁmsuaiﬁtﬂﬁmte& simulation laboratory, Xerox Faly Alto Research

_eriter, #85L-79-3, July 1979,
‘Btuiner, Jetorne 5., The Process of Education, Harvard /Belknap Press, 1960,
e Towirds.u Theory of Instruction, Harvard /Belknap Press, 1965, ISBN 0-673-89700-3.

Branid, Stewart, 1973, Fanatic life & symbofic death among the computer bums, Rolling Storie

. Maguzine , Decerber 1972

Biseroughs Corpi, The Descriptor - definition of the B5000 information processing system,

Camiap, Rudolf, Meming and Necessity, A Study in Semantics and Modal Logic, Chicago:University of

Colretauer, Alain., Metamorphosis grarimars, in Natwnt! Langiage Communication with Computers ,
Bole, L.; &dt, {pp. 133-189), West Garinany: Springer-Verlag, 1978, ISHN: 3 840 08911 X,

i 6L al, Last steps. towards an ultimate PROLOG, in Procestings of the 7th International foint

) S Assodation for Artifictal Intelligence, Menlo Park, CA.
[Cotmeranér, 1983} -

7 PROLOG in 16 figures; in Proceedings of the 8th International Joint Conference an Artificiaf
Iatelligence , Vol. 1, Distributed by Wililam Kaufmann bie, Los Altos, CA. { pp. 487-459}, August

CI8RA
" Clark, Wesley A, The lincoln tx-2 computer development, inProceedings of the WICC, (pp. 143-345), -

February 1957, .
.-, "The General Purptise Computer in the Life Sciences Labaratery, inEngineering and the Life

- Sciences, NAS-NRC Repott, Washington DC, April 1962,

e and Molnar, C.E., & Description of the LINC, inComputers in Biomedical Research , Vol. 1,
. Chapter 2, RW, Stacy and B.D. Waxmars, ed., Academic Press, New York, 1965,

i Programming e LING, Computer Systems Lab, Washington University, St. Louis,
Technical Report, 1966

e The LING was early and smiall, in A History of Personsl Workstations, Adefe Geldberg, ed.,
< "New York: New York, ACM Press; (pp. 347-391), 1988, 15BN 020 111 25490,

Conway, Melvin E, Desigr of 4 separable ransition-diagram compiler, inCommunications of the ACM,

" Vol. 8, No. 7, (pp. 396-408), fuly 1963.

-Davig, MK, and Ellis, TO,, The RAND tablet A man-machine graphical communication devics,

~veport ARM-122-ARPA, Chs RAND, 1964,
. Daht, 04, and Hoare, C.AR., Hierarchial Program Structure. Tn Dah

Erutich, LP.; Lisp for this DOPA1 i The Programming Language LISP; its Operation and Applications,

- Editors: Edmund C. Berkeley and Daniel G. Bobrow, Cambridge, Mass., M.LT, Press, ix, 382p, 1966.

“iiecs A lisp machine wiitUvery compact programes, in Preceedings of the 3rd International Joint
L ST e Conference on Artificial Tatelligence, Stanford, CA, 1973

U [Debeck1983)

Ll e e anehiset e, o Sninfltatk-30 Bits of History, Words of Advice., Kraswer, Ge ed., Addison-Wesley, {pp.

- The doradd Smalitaik-80 implementation: hardware architecture’s impact on software

[Groner, 1966}

“{Hewitt, 1069]

{Hewdtt, 1973]

{Hewitt, 1977]

{ingzalls, 1978}

[Ingalls, 1981]
[Ingalis,1983]

[irons, 1970]

[loss,1964]

" {Joss, 1578]

{Kaehler, 1981]
fKay, 1964]
fKay, 1960]
1Kay, 1970]

{Kay 3971]

[Kay, 1971a]
[Kay, 19715]

[Kay, 1972]
[¥ay, 1972a]
[Kay, 19726}

[Kay, 1972}

[Kay, 1972d]
[Kay, 1976}

[Deutsch, 1963} The past, present, and Furire of smallatk, i Pf&ceedmgs oF e :ird Europé\txft Conjermre on
Object Orignted Programming, Cambridge University Press, 1985
[Engelbart, 1968] Engelbart, Douglas, C. and English, William, K., A research center for augmerting human intellect,
in Proceedings of the FICC, Vol, 33, Fart one, (pp. 395-410), December 1963.
[Farber, 1964 Farber, L[, Griswald, R.E., Polensky, E.P., "SNOBOL, u String Manipulation Language” JAUM 11, 19584,
21-30
[Feldman, 1977] . Feldmanr, Jerome A., A formal semantics for computer Ianguageé and itsapplication in a compiler-
) compller, in Communications of the ACM, {pp.3-9) January 1977,
[Fisher, 19701 Fisher, David Allen, Control structures for programiming languages, PhD thesis, Department of
Computer Science, Carmigie Mellon Univessity, 197 .
[Goldberg, 19771~ Goldberg; Adele and Kay, Alan C.; Teaching Smalltalk (2 papersy: Methods for teaching the pro-
gramming language Smallialk and Smalitalk in the classroom, Xerox Palo Alto Research Cerder,
) June 1977,]
[Goldberg, 1978] . Srialialk simitlation kit documentation, Xerox Pale Alte' Resparch Center, LRG Internal
Note, Feb 1973,
[Goldberg, 1983] and Robson, D, Smalltalk.-80: The Language aid its Implementation, Addison Wesley,
_Reading, Mass,, 1982, - .
[Gombrich,1960] Gombrich, EH., Art & Iusion: A Study in the Faychology of Fictorial Representation, NY: Pantheon

Books, 1960,

Groner, Gabriel, Real<me recognition of hand printed text, CA: RAND, Report #EM-S016-ARPA,

October 1966,

Hewitt, Carl E., Planner: A laniguage for manipulating models and proving theorems in 2 robt, 1964,
MIT, Cambridge: MA, Project MAC.; Al memo #1568

- i Bishop, Py Omif, 1; Smith, B.; Matson, T.; Steiger, R.; ACTOR induction and meti-evalia-
. ton, ieConference Record of ACM Symposiuns on Principles of Prograntming Langrages, 1-3 Oct 1973,

{pp-153-168), AUM, New York, NY, 1973,

and Baker, Henry Jr., Actors incontinuous functionals , Catnbridge: MA, MIT,
Laboratory for Computer Seieriees, 1977, MIT/LCS/TR-194, MIT, Labotatory for Computer ©

‘Sciences, Technical Report #194.

Ingalis, Daniel H., The Smaittatk-74 Programming System, Design and Implementation, in Sth ACM

. Symposium on Priticiples of Programuning Langueges, Tucson, Ariz, Jan,, 1578

The smalltak graphics kemal, Byte, Vol. 6, Mumber 8,{p. 168), August, 1981.

The evolution of the smmalitalk virtual machine, in Smalifelk-86 Bits of History, Words of -
Adoize., Krasner, G., ed., Addison-Wesley, (pp 9-28), 1983. '

“Tross, BT, 1970, Experience with an extensible language, in Communications of the ACM, vol.13,no1,

{pp.31-40), January 1970.

Shaw, [.C., JOSS: A Designer's View of an Experimtental Online Computer System, CUA: RAND, #8
29722, 1964,

JOSS Session, in History of Programming Languages, ed. Richard L Wexelblat, New York:
Acadernic Press, xxifi, Chapter X, 1981. ISBN: 0127450408, Conference: History of Progratmming
Languages Conference (1978: Los Angeles, Calif)

Kaehler, Bdwin B., 1981, Virtual memory for an object-oriented langauge, Byfe, August 1981.
Kay, Alan C., Flex: a flexible extensible language, M.S. thesis, University of Utah, May 1968,
The reactive engine, Phi thesis, University of Utah, Séptember 1969, .
s RAMBlings towards a KiddiKomnp, in Stanford AI Project Lk Notebook, November 1970, -

, Display transcucers, in Pendery Papers for Parc Planning Purposes, Xerox Palo Alto Research
Center, june 1971, '

. Draft design for mindCOM, inPARC Lab Beok, Xerox Palo Alto Research Ceniter, August 1571,

Computer Structures-Past Fresent and Future, Panel paper, in Proceedings of the FJCC, Vol. 38
Movember 1973

MiniCOM proposal, in PARC Lab Beok, Xerox Palo Alto Research Center, May 1972,
Learning research group 3 year plan, Xerox Palo Alto Research Center, July 1972

A personal computer for children of alt ages, in Proceeitings of the ACM National Coﬂfmﬁcm)
Boston, August 1972,

A dynamic medium for creative thought, in Proceedings of the Nutipnal Conncil of Teachers of
English Conference, Minneapolis, Movernber 1972,

o Smalltalk Blue Book, Fall 1972,
Goldberyr, Adele., ed., Smalltalk Tnstruction Manual, 551766, May 1976.

L 3E3126),:1983.

s 1977, Mieroelectronics and the personal computer, Scientific American, (pp- 123-136)

= .EKayf1977]
: Sepiternber 1977,

: Kay; 1#7'73‘]' ; i and Goldberg, Adele,, Personat dynamic media, IEEE Computer, Vol. 10, {pp. 31-41), March
e . 1577, Reprinted in A History of PersonalWorkstations , Academic Press, 1988,
JjRay, 1979} 7. - Programming your own computer, Sclenee Year 1979, World Book Encyclopediz, 1975,
[Kay, !9843 s 1984, Computer softwire, Scientific Amterican, Septembser 1984,

[Kay,!%ﬂi i Used iriterface: A personal view, in The Art of Hliin- -Computer Interface Design, ed Sres&da

; '-;aurel Addison-Wesley Publishing Cor, 1990, {pp. 191-207) 1SBN 0 201 51797 3.

._'[Kay, W0 e 1991, Cnmputer\s,networ&s arick learning, Selentific American , Vol 265, No. 3, (pp. 138-148)
oL -Seytemberl%t
C [Kiczates, 1991 - Kiczales, Gregor, Des Rwieres Tifm; Bobrow, Daniel G, The Art of the Melaobject Protocol ,
ool Cambridge, Mass. : MITT Priess, vill, 335 p.; 1991, ISBN 0262111586
{Knulh,‘!??"i} . Knuth, Donald E and Floyd, Robert W., Notes on avoiding ‘go to'statements, in information Processing
ORI E Le!i.‘ers,valume 1, number 1, February 1971,
{Kriuthy; 1974] 7 7 L » Structured pmgraxmmngwuh g 10 statements, in ACM Compating Surveys, vol. 6,no. 4,
D el e —(pp 261 =301}, Decemnber 1974, -
[Kraseier, 1983] - Krasner, Glearin, ed,, Sma!liaikam Bits of History, Words of Adwice.., Addison-Wesley, 1983, ISBN 0 201
. Lo 1184693
- .'['i'.émbshn,“i%é] Lampson,, CAL reference manual Project GENIE documentation, Computer Center, UC Berkeley,
" Pamipson,1966a] A user traching in & tirve shaving system, in Procesdings of the IEEE ; B4(12): (pp.1744-1766),
oo December 1966,
< [Lampson, 1968 . An overview of the CAL fimng-sharing systers, Computer Center, UL, Berkeley, September
: oo o - 1969, (}ngxnaﬂy entitled On reliable and exterclable operating systems, September 5, 1969.
- {Lainpson 1972 Why Ali?, in FARC Lab Bodk, - Xerox Palo Alto Research Center.
) .[mmpm,xg'am : ; Parsonal distributed computing: alto and ethernet software, in A History of Personal
R o Worksfatrons, Adele Golitbete, ad., New YorkiNew York, ACM Press, 1988, 15BN 020 2560,
. [E_.andm, 1955} " Laiidin, P.J,; A cortespordence between ALGOL 60 and Church's lambda notation: Part 1, n
’ Communm:tmnsaf the ACM, Vol. 8, No. 2, February 1965.
. [Landm, 1966! — - Thenext 700 pmgtamrmng ianguages, inCommunications of the ACM , Vol 9, No. 3, March
: - E966. {pp. 157-164).
o E{..lck;ld&i‘,'fgm} Licklidér, JC.R, Man-computer syrabiosis, i IRE Transactions onficman Factors in Elevtronics, HFE-1:
s A1, 1960,
o {LRG 19?63 g .Leammg Research Gﬁmp, Dynatnic Pérsonal Media, Xerox Palo Alto Research Center, Report #351-
_ 767, June 1976,
IMcCarthy, 19603 - McCarthy, John P, Part 1, Retursive fufictions of symbolic expressons and their computation by
: _machine, i Communications of the-ACM, Vol 3, Number 4, (pp. 184- 195) April 1960
BRI .-[Ml;Ca‘rthyg 19621 ... etal, LISP 1.3 Programnier's Mamiad , Cabridgir MIT Press, 1962,
T Minsky, 39701 - Minsky, Marvin;, Form and foritent in computer science, inThe fourmal of the Association for
e Computmg Mﬂa‘hmery Vol 17, Nimber 2, {pp- 197-215), April 1970
L [Minsky, 1974] A framework for representing knowledge, MA: Massachusetts Institute of Technology, -
I L Amf‘c:al Imtefligence Laboratory Mema No. 306, June 1974 Reprinted in The Psychclogy of Computer
oLl T Vision, -MeGraw-Hilk, 1973 .
T Neverniah1973) - Newman WM. and 5pmuﬂ R.F,, Principles of interactive computer graphics, New York: McGraw-Hill,
. ESTINEN 7+ X
i INy'gaéffi','i%{;] '_ Nygaard Kristen, and Dahl, Ole-}ehasn, Simula -~ an ALGOL-based simulation language, in
- S Cammunmrons of the ACM, IX 9, (pp. 671-678), September 1966.
L [Nygaand, 1978] | Barty history of siavitka, iri History of Programming Laguages , ed. Richard 1. Weelblat, New
: : . York Afaéemm Prass, 1981, ISBM (12 745040 8. This is the proceedings of the ACM Sigplan History
ST of Progrsmming Languages Conference held in Los Angeles, June 1-3, 1978,
[Fapert, 1871] - Papert, & Teaching children thinking, MA: Massachusetts Institute of Techrology, Artifical

intelhgeme Laboratory Mermo 247, LOGO Memo 2, 1971.
; Teaching childrer 1 be mathematicians vs. teaching about mathematics, MA:

- [Papen, 19718}
S e

L Uses of bechnoiny to enhance education, MA: Massachusetts Institute of Techewlogy,
- Arhﬁcal Tni&lhgmce Laboratory Memo 298, LOGO Memo 8, 1473,

. {Papert, 1973

Massathu&ets instituta of Technolngy, Artifical Intelligence Laboratory Memo 249, LOGO Memo 4, .

{Mapert, 1676

{Papert, 1976]

fPapert, 1976a)

fPapest, 1979]

{Perry, 19851

{Plato]

I Kkelson, ., Bamberger.), and Goldstemm, [, LOGL Drogress Repork E.Q?S-IEQI;’S., RiA:

Massachusetts Institute of Technology, Artificial Intelligence Laboratory, Metmo 356, LOGO Memo
22,1976,

Proposal to the National Science Foundation: An Evaluative Study of Modem
Technology in Education, Appendix One: LOGC memo 8, Appendix Two: LOGO mema 27, MA
Massachusetts Institute of Techoology, Artificial Intelligenice Laboratoty, memo 371, LOGO memo

26,1976,

#Solomon, C1., A Case Study of a Young Child doing Turtle Graphics in LOGO, MA:

" Massachusetts Institute of Technology, Artificial Intelligeace Laboratory, Memo 375, LOGD Memo

28,1974,

. ; Watt, D, DiSessa, A, Weir, 5,,. Final Report of the Brookbine LOGO Project. Pazt i:
Project Summary and Data Analysis, MA: Massachusetts Institute of Technology, Artificial
intelligence Laboratory Metmo 545, LOGO Memo 53, 1979

Perry, Tekla, Inside the PARC: the “Information Architects’” JEEE $pecirurm, October 1985,
Plato, Timaeus & Phaedrus:The Diglogues of Plate , translated by Benjamin Jowett, Great Books of the

 Western World, Robert Maynard Hutchins, ed., Encyclopedia Britanmica, Ine., 1952,

{Popek, 1984]
{Ross, 1960]

{Ross, i961]
{Rovner, 1968]

[Saunders, 1977}

[Schorre, 1963]

{Shach, 19791

[Soloway, 1989]

[Smith, 1575 |
[Strachey]
{Sutheriand, 1963]

{Buthertand, 1963a)

{Sutherland, 1968}
{Tester, 1973]

" [Teser, 1977]

{Tesler, 1981)
[Thacker, 1972]

[Thacker 1982]

" [Thacker, 1986}

[Van Wijngaarder,

[Van Wijngaarden]

Wirth, 1966}

[Winstor, 1570}

. [Zahn, 1974}

Popek, G., et. al., The Loces Distribuied Operating System, Cami;ﬁdge: MIT Press, 1584,]
Ross, D.T., and Ward, LE., Picture and pushbutton languages, chapter 8 of Inoestigations i Conpiuter- '
Atded Design, intetim engineeting report 8436-1R-1, Electrical Systerms Lab, MIT, May 1960,

A generalized technigue for symbol manipulativnand humerical ealculation, in

Commsrtications of the ACM, Vol. 4, no. 3, {pp. 147-150) March 1961.

" Rovner, PO, An AMBIT/G programming language impleiventation, MIT Lincoin Laboratory, :

“Lexington, WMass., June 1968,

‘Saunders, Steven E., Improved FM audio synthesis methods for real-time digital music generation,
in Computer Music Journal, Vol. 1, No. 1, February, 1977. Reprnted in Computer Music, Roads, C. and
Strawn, | editors, Carnbridge: MIT Press, 1985,

Shorre, D.V., META Tl A syntax-orianted compiler writing langiage, UCLA computing facility,

Shoeh, J.E., 1979, An overview of the programming language Smalltalk-72, in SIGPLAN Netices, vol,
14,10, 9, (pp- 64-73), September 1979,

‘Boloway, Elfict and Spohrer, James C., ed. Stuidying the Novice Programmer, New Jersey: Lawrence .
Eribauny Associates, Inc,, 1989, ISBN 0-8058-002.

Smith, David Canfield, Pygmailion, PhD thesis, Stanford Univ., 1075
- Strachey, Christopher, Toward a formal semantics, United Kingdom.

Sutherland, Tran C., Sketchpad: A mar-machine graphical communication systens, MIT Liscoln
Laboratory, Technical Report 258, January 1963,

. ibid, in Proceedings of the SJCC, Vol. 23, {pp. 329-348), 1963.
. & head-mounted three dimensional display, inProceedings of the FICT, {p. 757, 1964, - :

Tesler, Lawrence., etal, The Hap-70 pattern matcher, in Proceedings of the 3rd International Joint
Conference oo Artificial Intelligence, Stanford, CA, 1973

Smalitalk-76 do¢umentation, Xetox Palo Alio Researchi Center, Leaming Research Group
Internal Note, 1977.

, 1981, The smalltaik environment, Byt , Vol. 6, Mumber 8; (p. 90), August, 1981,

* Thacker, C.P., A personal computer with microparaltel processing, Xerox Palo Alto Research Center,

December 1972,

: et al., Alfe: a personal comprater, inCompuier Shruttires: Principles and Examples, Siewiorek, D,
at.al. editors, Chapter 33, McGraw-Hill, 1982,

s PEEsonzl distribeted computing: the alto and ethernet hardiware, in A History of Personat
Workstations, Adele Goldberg, ed., New York: New York, ACM Press, {pp.267-250), 1988, 15BN 020
111 2590,

1968] Van Wifngaarden, A., ed., Draft report on ALGOL 68, Mathematisch Centrum, MR 93,
Amsterdam, The Netherlands, 1963,

Generalized ALGOL, Matheraatisch Centram, Amstesdam, Netherlands,

Wirth, N.K. and Weber, 1., EULER: A generalization of ALGOL, and its fortal definitice: Part |,

inCommunictions of the ACM, Voi9, No. 1, (pp. 13-25), Jan. 1966 .

Winston, Patrick M., Learming structural descriptions from exampies, PhiD thesis, MIT, Janudry 1970.

Zahn, C.T, J1., A control statement for natural top-dewn structuted programming, inProceedings of the

Coilogue stir I Programumtion, Apeil 1974, Paris. A revised version of this paper appears, under the

same title, in Programning Symposiion, vol. 19 of the lecture notes in Computer Science, Robinet, B.,

ed., Berlin: Springer Verlag, 1974, {pp. 170-180).

LR

Adan G, Kay, 118 Bany resiory L Siidiiadin T

“Appendix I: Personal Computer Memo
o “Smallfalk .Pﬂjgram Eevolution

“Broth & mietmo on the “KiddiKomputer” .
‘o .- Butler Lampsen. Chuck Thacker. B311 English, Jerry, Elkind, Gecrge pake

Subject: “RiddiRomputer”

Date:r [Hay 15, 1972

Tkwk

-4, Jannary 1372

The Reading'ﬁachinet. Afsother attémpt to work on the actual problem of a per-

sanai”csmpute;wfﬂvery part of this gadget (except display) is buildable now

L but - requires” some custom chip design and fabrication. This is discussed more
“pompletély later on. A meeting was held with all three labs te try to stima-

late inventien-of the display.

B. Utility

1. .1 rhink the uses for & pErsohai-gangt as an aditor, teader, take-home-con-
cpaxt, incelligent terminal, etc, are fairiy obviocus and greatly needed by

adultg. Tha tdea of having kids uge it implies {possikly) a few more con-

Cabraints having to do with size, weight, cost and capagity. I have been beg-
- ging'this-quastion wider che assumptions that a size and weight that are good
_fﬁr:kids_will be super acceptable tao aduits, and that the gadget will almost

inéscapably have CBU power to Burd (mere than PDP-10): implies larger acale
use by adults.can bhe gotton by buying more memory and maybe a cache.

2. aithough there dre many “siucational” things that ¢an be done once the

- devies is Biilt, I have had four basic projects in mind from the start.

&, Teashing ~thinking® {a la Papeft} rhrough giving the kids & franchise for
the:strategies; tacrics, and model visualization that are the fun (and impor-

- bant) pErt of the design and debugging of programs. Fringe benefits inciude
" ysage dg-a medium for sytibols allowing editing of text and pictures.

4y, Teaching *models” through “simulation” of systems with similar semantics

and @ifferent syntax., This could be grouped with (a) although rhe emphasis is
& bit different. The ifitial two Eystems would be music and programming and

 would be an extension of some Stuff I did at Utah in 1969-70 with the
_organcomputer there, :

C .. Teaching »ipnrerface’ skills such a8 *seeing” and “hearing”. The initial

~ageing® projest would be an investigation into how reading might be taught
vi& combinifig icenic and audible representation of works in a manner reminis-
sent of Bioomfield and Moore. This would require a corollary ingiry into why

:gcoa.réa&ers do so much better than average readers. A farther off project in

the domain of sight would be an investigation into the nature and topology of

oo kidst intiernal models for objects and an effort to perserve iconic imagexry
© frem baing totally replaced by a relational model.

'd.:?indiﬁg-ont what children would do {if anything! sunofficially” during non-
school hours with such a gadgst chrough invisible 'demons”, which are little

-__proceésesxthat watoh surrepticiously.

3. second Levél Projects

4. e notion of evalustion (partly en extension of 2.a.) represents an inpor-
tant . plateau in “algorithmic thinking”.

] tcanie programming. IE we believe bisget and Bruner. kids deal mostly with

- . e o Alaiy G Ray, The Early Hstory Of Smail :
icons hefore the age of 8 rather than symbolic refere;;es. Moit p;1525?;ﬁ:m 48
teach programming say there is a remarkable difference between 3rd and 4th
grades, Whatever an iconic programming language is, it had hecter be considé'F
gbly more stylish and visble than GRAIL and AMBIT/G. I fesl that vhis is a Qz
to reach wery young kids and is tremendously important. Y

R
. The Viability Of miniCOM

it was noted earlier that miniCOM i= only barely’portabié for a chiid 'Doeé it
?ave a future for adults and/or as a functional cest bed for kidsz Ifdbnly 0;e
is needed, the answer seems t¢ be ao since -515k will simulate ité funcﬁién in -
a non-portable fashion., If more than one is necessary {say 10 or more), then B
rhe cheapest way to gef functions of this kind is to design and bhild ;t

) Rat%onalizations for building a buneh of thems

i, It will allow us to f£ind out some thin sdi e .
gs not predicta ig -
any other path. p . bie or discoverable by

4 perfect case in point ls ocur character generator through which we have ioﬁnﬁ
smm: absolutel{ astourding and unstgpected things about human perception and
raster scan television which will greatly further disply desig i

; LY B30

Fea i, iy sign. It has paid

2. The learning experimsnts not dnvolving portability can be dee for i reason-

“able cost and wil allow us to get into the real world which ig absolutely nec-

wasary for the future of learning vesearch atb PARC.
3, Tt will foster some new thoughtd in small computer system design.

It @as alraady sparked the original *jaggies® investigation., The minimal-ﬁice-
garifed character fonts were done because of coszt and space limivations .There
are some details which have been handwaved into the woodwork which realiy sneaed
to bg solved seriously: philosophy of instruction set, ¢ompile or interpret
mapping. and /0 control. '

4, It will bg a usefu% rtake home” editor and terminal for PARC people. It is
absurd to think of using a multidimensional medium during the day (NLS, ete.}

then at night going home to a 1D AJ i
; or worse: dumping structursd t
ideas on paper, @ semecured

S: It is not unreasonable teo think of the gadget ag an attampt ab 2 cost-effec-
Tive gode for a future~0fflce system. As such, it should be developed in paral-
lel with the more exoric and greatly more expensive luxury gystem.

&, Tt iz not clear that the mére ideal device (A.4.), requiring custom chip

gjzign. can be done well without us knowing guite a bit more about this kind of
am.

IR G Y, TR B8y PISIONY LI Al &7

‘Appendix Il Smalltalk Intérpreter Design

" “When 1 et out to win the bet, I realized that many of the details that have to be stated explicitly in

" McCarthy’s elegant scheme can be finessed. For example, if there were objects that could hendle vari-

-ous kinds of partial message recetpt, such as eoaluated, unevalunted, literal, etc., then there would be no

.. -need to put any of those details in the eval. This is analogous to not have COND as a "special form”,
" but instead tofind a basic building block in which conD can be defined like any other subpart.

" One way to'do this was to use the approach-of Dave Fisher, in which the no-man’s land of control

~. structuresds made accessable by providing a protected way 1o access and change the relationships of

| the static and dynamic envirorment(Fisher 70]. In an object-based scheme, the protection can be pro-

. vided by thé objects themselves and many of Fisher's techniques are even easier o use. The effect of

all this is 10 extend the eval by distributing it both to the individual objects that participate in it and

dynamically as the language is extended. -

-1 dlso decided to ignore the metaphysics of objects even though it was clear that, unlike Simula, in

- Full blown CopL classes had to exist-at run-time as “first-class” objects—indeed, there shoutd be
- nothing but first-class objects. So there had to be a "class~class” whose instances were classes, class-
class had 1o be an instance of itself, there had to be a “class-object” that would terminate any sub-

classing that might be done, and so forth. All of this could be part of the argument concerning what 1
didn'thave to'show to Win the bet. _
The biggest problem remairing was that ¥ wanted to have a much nicer syntax than Lisp and |

B didn’t want to use any of my precious “half-page” to write even a simple translator?!, Somehow the
- eval biad to be designied so that syntax got specified as part of the use of the system, not in its basic

definition22 - . _
- Twanted the interpretation to go from left to right. In an 0OP, we can choose to interpret the syntax
rule for expressions as meaning: the first dlement will be evaluated into the instance that will receive

. - the messige, and everything that follows will be the message. What should expressions like g+ and
-2y <~ de mean? From past experience with FLEX, the second of these had a clear rendering in chject-ori-
~ented-terms, The ¢'should be bound to an object, and alf of ; <- de would be thought of as the mes-

sage 10 it Subscripting and multiplication are implicit in standard mathematical orthography-=we

" needl explicit symbols, say “o" and “*~, This gives us:

Creceiver - 1 message
e siredte o
The message is'made up of a literal token **, an expression to be evaluated in the sender’s context

[-{in this case i), another literal token <-, followed by an expression to be evaluated in the sender’s con-
-+ text {(d%) LISE” palrs are made from 2 elemerit objects and can be indexed more simply: ¢ =d, ¢ H, and
T chd e-foo et - .

The expression’3+4 seeémed more troublesorme at first. Did it really make sense to think of it as:
receiver 1 message
"3 I+d

" We are so used 1o thinking of "+ and ™*" as operators, function machines. On the other hand,

‘there are many senses of “+" and "*” that g6 beyond sim-

'.would be dealt with as follows: Control - ot

* evaluation of 3+4 using a nonrecursive evaluator. For code,

S0 the evsl, To Surmimarize: »

-ple APLish generalizations of scalar operators to arrays-—
for examiple in tatrix and string algebras. From this
(standpoint it makes great sense to let the objects in ques-
-Hon decidé what the token "+ means in 4 particular con-

text. This means that 3+4%5... should be thought of as

S314¢*5.and that the way class number chooses to
“réceive messdges should be arranged go that the next
- sabexpregsion is handled properly. Eg. 3 could check to

see if & tokenr (ke +, or " follows and then ack to have the

S0 rest of the fregsage evaluated to get its next input. This
T would foree 475... to be the new sending ; as 4175, and so
- or Not only are fewer parentheses needed but proclike

" sequential evaluation is a byproduct.
- Bythis point Thad Been able to finesse'and argue away
most.of the progfamming. that seered to be required of

= messags weeipt would be done by objects in the
midst of normat code

« control structures would be handled by objects
that could aceess the context objects

= the context objects (Bt acted like stack Frames,
scheculers, ete.} could be simulated by stan-
dard objects and thus wouldn't have to be
specified in the eval

+ variable dereferencing and storage would be
done by having variables be abjevts and send-
ing them the messages value and <-.

» the evaluation of a wide body would be dome by,
starting evalization of its first item

» metheds would be ralized by the contml struce
ture in the lass code body, This would imple-
ment protection, would make the externals of
an object entirely virtual and permit very flexi-
ble messaging schemes

» Smalltalk’'s metaphysics would be covered by

~This also'means that useful elements like lists, atoms,
confrol Strictures; gliote, receivers (such as “receive evalu-

faking everything an object, and didn't have
to be specified now
& and 5o farth

way I worked it out was as a before-after diagram for created
i = equals true ondy if its receiver and pa-
We start in the middle of a method of some class of " :mf'?e*ﬂfm“}e&a-?subieﬁ ot

shjects and we need to evaluate “3+4”. The essentials of ¥ = .;s;::;;ﬁ eale nextparto

the eval are those that successhully take us into the method -receiversfalse: skips over the
“of “3" in class integer. Since all methods are only in terms next part of message and contin-

of sends and all sends are done in a similar marner, this is o gesevaling | .

) PR, . N ., . femide statement” separator. Quits

encugh. It is like an induction proof in which we assume applying its receiver; starts evals

“n"” and show how to get to “n+1". ing its arg

Ao NGY, (i Qany maluig} it G it Y.

ated”, “Is the next token this?", 8ic.), and the ke 0o not have [0 be defined i the Eernal interpreter,

-as they can be realized quite simply as instances of normal classes with escapes to metacode.

What seemed to remain for the eval was simply to show what a message send actually consisted of.

- For this system a send is the equivalent not of a.postman delivering a letter, but simply delivering a

notice of where the letter was to be found. It is up to the receiving object to do sorrething about it. In
fact, it could ignore the request, complain about it, invoke inferential processes elsewhere, or simply
handle it with one of its own messages.

The final thing I had to do was to extend the uniform syntax idea of recefver message to cover all
cases, including message receipt and simple control structures. 50, we need some objects to pattern
match and evaluate, to retuen and define, etc.

The “LisP” code body would not need any escapes to lower-level code and could look something
like:

I hope this is clear enough. For exam-
ple, if ¢ is bound 1o a cons pair,

chd <-3+4

{ohd » (e w (aR)AE) . replne and car wheve B isan instance variable”
=1 » - = {:0M) “replacd and cdr where |55 an insfavice pivinble”
isPair - » [Drug)

aletegth s (tisFair s (*T+tlengti} 1)

is passed to that object and the first test | _ ; s

is to see if the symbol kd appears in the message (Chd »). 1t does. The next cheek is for an “assign-
ment” token (2<- »). It's there. Last, we want to evaluate the rest of the message (we get 7), bind the
value to the internal instance variable | and, finally retuen this value to the sender ("), So this is like:
{REPLACA C (PLUS 3 4}). :

This is getting a little ahead of the story in that not all of these ideas were thought out in this
detail, but I want to show the context if which I was thinking, and it seemed guite clear at the time
that things would come out all right if I pushed in this ~
direction. This stuff i similar to mathematical or musical 8o - eyebali iooks to see if its message is 2 lit-
thinking where many things can be done “ahead of time” ' _ eml token in the message stream
. y s : o o » . s evai-bind evals the next part of message
if one’s intuition whispers that “you’re on the right track”. and binds result to its message
The compass setting felt right; 1 could “see” that all these & uwivai-bindpicks up next part of message
things would gventually work out just because of “what §

unevaled and binds teo its mes-

f - X sage
objects were”. . . B sendback retumisis value o the sender
To motivate the next part, let us examine the classic & quote overides any metsinterpretation

of its messaga

we use grrays of pointers and expect that some of the
pointers will be encoded for literal objects (an old LSP trick). The above were used in the first inlerpreter
We need good old program counters “pc” that we can bump - gefinition, The lollowing were defined when
along over the code. The wrinkle of delayed receipt of mes- the first *real” implementation was done.

sage (not evaling and passing arguinents at send tme) will i .
requjre us to mampdage m the ng‘:aﬂl counter Qf the jw© define likeloso, except can make a class:

. R . from its message .
sender and the receiver as the message is reeled in. One o 1 ifa new instance has been

Note that the various auxiliary objects (such as ‘peek,’}
have to responsibly move the serider’s program counter when receiving part of the message.
I have hand-evaluated this nonrecursive version in a number of cases and it seems to work pretty -

- well, but there are probably some bugs. If a reader feels promptéd to come up with an even nicer,

tidier, and smaller scheme, I would be glad to look at it.

Afan U, Kay, ifie Early Histary Ot Smalitalk

“The "One Pager” |

{&\eenwmnment) wllibe bound m Hﬂe Cuent Messeniger obiect
result | holds the result of a send, usually to be appiied to next patt of message

eval: if nuli{erwisc} thers "result <- adl; goto apply;
if éscapefesmsag) then goto escapes;
if atoméesmsc} then result «- lookupvalue(e, esMsc); goto apply;

- "Before”

- if fotlist{esMsG) then “result <- erMsG; goto apply;
Bevlist: ‘e < Tabie{ci.kss, MESSENGER,
SENDER, @,

GLOBAL, @°GLOBAL,

SELR, @OSELR,

P, 1,
- MEG, ePMEGHPC)
JRIN, AFFLY);
gota eval;

Bapply: e < essENDiR;
DoeePC g+ 1)
- i gept > length(sad) then goto disparchren; |
D Heskistiere = . theneerr <eesin 4 | goto eviial;
ifoensGope = ' then if resuit = 'false
then eepc <-eepC +) goto evlist
dlsa pepc <oeepC @ 1;
‘g oce Table{ctam MESSENGER,

SENDER, #®,
GLOBAL, GLOBAL,
SELE yemstt,
PC, 1
MSG, SM5G9PC,
. BTN, FROMTRUE):
: . otoeval;
e<-Tablgl - cLass; MESSENGER,
SENDER,
GLORAL, GLORAL,
SELE, reanly,
B, %
MG, zesult S CLASS S CODE,
RN, APPLY);

. goto evai;

I FIOMUIRUE; " < @USENDER S SENDER; goto dispatchring

fromeve: putvalus{esional, asp, result); goto apply:

dmpahchrm select eerIN

4R APTLY: goto apply:
cate FROMTRUE! gobo FromyRue;
£ase FROMEYE: - goto fromsye;

“Hescapes: - select e;:scopcﬂ

S ._"AHEY“

Cl (mtﬁ:mdefar(sf ErSNDR P MEC{PC) =% SNDR *SNDRMSG(PC]
thety bumyg{e sSNDR*SNDR PCY; tesislé <- TRUE
€3¢ Tesult <- FALSE;
. goto applyl
to ¢ pir p. metacadefor(set up a new context and eval sender})
to :p 7 (mbzcvdefm("v <~ @*SNDROSNDR#MSG* PC;
if mil{e P < 8 TINDE »MEG S FC)
then “result < v
else eop < result <- v;
oo apply:i

Tt b{ -3 mtamdg%r(‘fetum <« aoh: goto apply)

Alan C Kay Thie Brly Hxs%ory Of Srnalitalk B
Appendix i Acknowledgements

1571
- Chris Jeffers, + 7
1972 _
Chyis Jeffers, John Shoch, Steve Purcell, Bob Shut, Bonmy 'Tennenbaufn, Barbara Deutsch
1973
A document written by me'shcrtly after Siailtalk-72 started working -
ACKNOWLEDGEMENTS

Latest revision: March 23, 1373

. Much of the philosophy on which our work is based was inspired by the ideas of

Seymour Fapert and bhis group at MIT.

The Dynabock {ka 71) is a godchild of Wes Clark s LINC {ol 1962) and a lineal

‘descendent of the FLEX machine (ka 67, 88, 89},

The *interim Dynabook~ {known as the ALTO {Th 71, Mc 71} iz ihe beautiful cre-
ation of Chugk Thacker and Ed McCreight of the Computer Science Lab. at PARC.

. BMALLTALK is basically a synthesis of wellknown ideas for programming languages

and machines which have appeared in the last 15 ysars.

“The Burroughs BS00C (ba &1) (880} had many design ideas well in advance of its

time {and stiil not generally appreciated): compact "addressiess code:r a uniform
semantics for names (the PRT), automatic coprocesses, *capability® protection
{alsec by the PRT and Descriptors., virtual segmented memory, the ability to call
& subrcutine from ~"either side” of the assignment arrow, etc. .

_The noticns of code as a data structure; intensional properties of names (proper-

ty lists of attribute~value pairs on atoms); evaluation with respsct to arbitrary
environments; etc., are found in LISP, probably the greatest single desiogn for a
programming language yet o appear. SMALLTALK is definitely *LISPlikec.

The SIMULAS {’'65 and '67) combined Conway’s notiong of software coroutines {1863
- hardware version had appeared in the B3000 3 years earlier), ALGOL-60, and
Heare's ideas about record ¢lasses (¢a.l%64) into an epiztemcliogy that allowed a
class to have any number of parallel instantiations {(or activation records) con-
taining local state including a separate program counter. Most of the operations
for a SIMULA ‘67 class are held intrinsically as procedurss local to the class
definition.

The FLEX machine and its langlage ('67-69) took the SIMULA ideas {discarding most
of the AGULishness), moved ~type” from a variable onto the obijects {ala B3000 and

"EULER), formed a total identification between “coprocesses* and “data”’; consoli-

dating notions such as arrays, files, lists, *subroutine” filegs {(ala 5D5-940)
ete., inte one idea. The "user as a preocess® alseo appeared here. A start was mads
to atlow proccesses to determine their own input syntax-—an idea held by many

{noctably Irens, Leavenworth, etc.)

The Contrel Pefinition Lamnguage of Dave Figher {1974} prowvided many ideas, solu-
tions and approaches to the notion of conkrol. I, with FLEX, is the major source
for the semantics of SMALLTALK. It is z "soulmate® fo FLEX: independently worry-
ing about many of the same problems and very frequently arriving at cleaner,
neater ways to do things. Many of Dave;s ideas are used including the provision
for many orthogonal paths Lo external environments, and that control is basically
a matter of organizing these envirooments. SMALLTALK removes Fisher’s need for a
compiler to provide a mapping between nice syntax and semancics and offers other
improvements over his schemes such as total local control of the format of an

_instance, etc.

An extemporaneous talk- by R.S. Barten at Altz-ski lodge (1968} about compuiters as
commnications devices and how everything one does can easily be portraved as

sending messages bto and fro, was the real wvenesis of the current version of

6

©AlanG. Kay, The Eany History Of Simalitaik 51

SMALLTALK

= rhe fact t:hal: klds were to be the users, and the simplicity and ease of use of

| -‘the already ‘éxisting LOGO, whoge own parents were LISP and JOSE {which ser a

standard for the esthetics for intéraction that has not yet been surpassed!, pro-
cwigedslots)of motivation to have programs and transactions appear as simple as
posgiblewiemeving from left to right, procedures gather their own messages,
cebe: It iz one . oaceident that simple! SMALLTALK programs look a bit like LOGO!

Problems discovered years ago in -Iefthand calls” prompted SMALLTALK to make
“store* dntensional —i.e. & <- b, means "rall 'a’ with a message consisting of

the token’<-’ and swiibol kY, If anyone can make the right decision for what this

meang ik must be the - object bound to ‘a‘. The early Fall of 1%72 saw an evalua-

Loy Tor SMALLTALE, and the idea that *+°, *-7, ate., should also be intensional.
- Thig led teo an entire philogophy of ‘uge {uniike SIMULA “67) to put EVERYTHING in
‘wlags definitions inoluding the so-called *infix operators”. This message idea
Callows messages to-have a wide rant_‘.re of form since all messages can be received

“incrementally

e el BE. contrels allows control Sbructures to be defined, The language

SMALLTALK itself this aveids *primitives” such as “locp...pool®. synchronous and

Cagynchronous "ports”,. interruprs, backtracking, paraliel svel and reburn. ato,
-+ All of theése' can be -easily simulated when needed.

Bt e

“fhigse are the main influences on our .language. There werg many other minor and
‘negative -influences from other existing languages and ideas too numerous do men-
‘. tion except Briefly in the references,

L EEAAEARRR AR A KA K AR

CoooThis particular version of SMALLTALE was dgsigned through the summer and early
‘fall.of 1972 and was aided by disciussions with Steve Purcell, Dan Ingalls, Henry
_Fuchs, Ted Kashler, .and John Schoch. From the proceeding acknowledgements it can
- he géen as & consclidation of good ideas into cne simple ides:

Make £lie BARTS (obiect, subroubines, I/0, ete.) have the same propertiss and

“power as the WHOLE {such as a compiter).

UThis.is the basic principle of recursive desion, SMALLTALK recurs on the notion
- of rgomputer’ rather than of *subroutine,

2 iiélk'd:i SMM;LT#LK_was given at the Al lab at MIT (Nov 1972) which discussed the

Cprocess structurs -and the new, intentional., way o look at properties, messages,
Coand infix operatofs' . This led to the just published formal *actors model of
- somputation® of Hewitp, et. al. {1373)

KRR AT ER R AR AR R R AR E

" pan Ingalls of our group at PARS, -the implementor of SMALLTALK, has revealed many

design flaws through his several, excellent quick *throw away” implementation of

‘bhe language. SMALLTALK could not ?}ave existad with his help, virtuosity, and
i g:}oc% cheéi

" The original design.of the g}aiﬁtmg editof” was by Alan Kay. It was implented

and-tremendously dmproved by Steve Purcell.,

. Thé._"}ki'.lim.étdr.’ was designed and imblemented by Bob Shur and Steve Purcell.

Tine. graphics and the hand-charactsr récogmizer were done by John Shock.

"Mugiss* was desigred and implemented by Alan Kay.

The 'design and implementation of the font editor was by Ben Laws [POLOS). |

Lo Weswhuid ls.ke to thanic 8L and POLOS in general for a great deal of all kinds of
o help.

AN G, REY, $he sarly Fistory Ut Smaitak -

52

1975

Learning Research Group
Alan Kay, Head

Dan Ingalls

Ted Kaehler

Dave Robson

Dick Shoup

Students

Tom Horsley
Steve Saunders
David C. Smith

Child Inferns

Marian Goldeen {age 13)
Bruce Horn {age 15)
Kathy Mansfield {age 12)
Visitors

Eric Martin

" Help From Other Groups At PARC
- Dave Boggs

Larry Clark
Peter Deutsch
Bob Flegal
Butler Lampson
Mike Overton
Bob Sproull
Chuck Thacker

Adele Golat;erg
Chis Jeffers
Diana Metry

John Shochy

Steve Weyer

Barbara Detstsch
Steve Purcell
Bob Shur

~ Radia Perlman

Dennds Burke (age 12}
* Busan Hamumet (age 12)

Lisa Jack (age 12)
Steve Putz (age 15}
Ron Bascker

Bonnie Tenenbaunt

" Patrick Baudelaire

Bill Bowman

. Fim Cucinitti

Bill English

‘Ralph Kimball

Bob Metealfe
Alvy Ray Smith
Larry Tester
Truett Thach

B L BRI Ty i

- ._-Appendsxm Event Driven Loop Example

* First'we make a elass for events:
fagpent | mycode -)
<o fisNEw oo o{prytede <-array 3,
R) mycodel2] <- “done.}
- -omedicode | » (mycodel1] <- 5}
wig oo o (1sereal)
mycode el :

‘Each event stores away code to'be executed later (the done will eventu- -

7 - ally catise it exit fromt the driving loop in the until structure, defined

s uni] demipatom statement . Lo :
{repest - {“lempatom <. 2, “fhis foop picks up ail the fvent identifiers Cunevaled)™ -
ST T rempatom << egent, St indivert store fo whatewer was in the message”
’ AR Bor s {agdin) done -
Cee oo e Cshatement < s} S *the loop body to be epaled”
o guease - a (repeat {temipatom <- 2 : *nick up an evenb-case labsl”
: - {tempatom evil {s event » .
(o temputon eol newcode £} "pick wp the correspording code”
“doneh}

“gxgeute body 1kl an event is encountered and run”

repéﬁ!' {statemett eval))
et "tk ement will then force exit from the until loop™

This kind of playing around was part of the general euphoria that came with having a really extensi-
blelariguage. ts like the festooning of type faces that happens when many fonts are suddenly avail-

) ~able. We had both, and our early experimentation sometimes got prétty baroque. Eventually we
- - catmed down‘and started to focus on fewer, simpler structures of higher power.

'Appeﬁﬁik V: Smallialk-76 Internal Structures

 part, the program counter is just starting to execute the first less-than, This general scheme goes all
the way back to the B3000 and the FLEX machine, but is considerably more refined.

oA o Sy, R Caly My O Sillailgin sy

This shows how Smalltalk-76 was impletmented. In the center, between “static” and "dynamic” lies a
byte compiled method of Class Rectangle, Slightly above it is the sourde text string wiitten by the
programmer. The method tests to see whether a point is contained in the rectangle. In the dynamic

Class
title
part mames

Superciagsy

massage dict

inst size a2

Iree list message | mathod source,

/ / /

UniqzeSiring

String
 eontains: pt
- [rorigindgt and: pt<cornar]’

Method

Statle Structurés |

<setup info fno. args, etel>

Htarals (if any)>

T comer] ot | ¢ | pt Jorgin] <]
Dynamic Sbuctures and: 1 '
e
R
P
P Vector .)
Contaxt .o _prner{ pt | E
sender P d P A
method o args and
temps (i any}
pe
fempirame - - argumant
B -
stack ptr g = o
mclass
seif . - -
Point i recaiver
Rectangle —f % %5 E !
M grigin - | y =12 g
carnar -X)Pamt f
. !
X=12D] ¢
¥ =50 :J

~Inter-Office Memorandum

" 'LRG and other intercsted parties Aprils; 1981 ©

- Subject Smalltalk data base” ** draft ¥ -) S "Df:géﬁgga{it'm O LRG. o

 Filed on: [PhylumKDettsch>sts0db.memo

F his memio- rcpresmh a f“nst, mcompkte draft: uf documentatmn fm the daza hfisc f"ECIIIT.IES [*ve_--_ L
been building for Smalltalk-80. - Since this work is- still very much in progress, 1 need comments not:

only on the ‘quality’ of the document bot {even more) on fhe 5,ys{uzi uself aL cvcry ievet fmm the S

'_chmcc 0{ mcssagc names 1o the undcr}ymg data model ' . SR

g -ﬁefme madmg this mcmo y{}u should pmbabiy be fdmxhar wnh somie ﬂf thc Cedar’ Da{a Base' N
- documentation, partmu]arﬁy the ! coucepts and facilities” document (HlvyKCedarDB>docsraxxxxy and -
- perhaps also the paper written-by ‘the -Cedar DB group describing the system (xxxxx). - You should = =
*also sbe-reasonably | familiar with the Smalltalk world-view, and- be “able: to read Tragments of 70
: "Smalimlk 80 code (which is enauﬂh]1kc Smaiimlk 7% Lhai yau ‘%h(JLiIdn t have much trm:ble 3f thats--_ S
T oals yUu rc :Famlhar w1£h) . : . . RRUEs '

;'.Wmid ?mw 2

S A rcasonabic way. iﬁ thmk of the' Smaﬂta&k L“\ata Basc world i ‘that: it is }ust an cx&cnsmn «:}f the_--_'.-
_-'_fdzmhaI Smalltalk world of- classes, ObjCCtS msmnce varsab]es and . messac'es ihe extensions fall -
_mto sevcral categnrzes } _ T -

";.' It is possxble to dynamlcaiiy create and detete mstanr,e varzab}es m ciass

An mstanr.:c var;ablc may-: optu}naﬁy be typcd and an: error mes%age w;ﬂ 1
: :attcznpt IS madc to smre some{hmg of the wroﬁg ivpc mia i varldble.'

_ Them are’ extenmc fﬂcmues for mdexmg all the nb;ecis c:f‘ a gwcn cIas*; and. retmevmg e
.-ﬂmse msmncm {}f a CldSS which - sausfy gwcn pmpcmcs e

AL Lh'e -momem. there are '-some --su-bqtantml --resmctmns- as.:vycﬂ; e
s Thelc is: no subc,lass hlua:chy or 11'1hi,mtance

i '_ Thcrc i8 10 way to’ wz*]tc mn,th{}ds 1r1 data base c"iasses *--data bdsc: objccts arc pat;swe data"
- -nb}ects . : S :

S Data bqscq arg’ not pcrma:zent - ym‘t havc to usc somc*ihmg fzc;uwa]cni ’tu ﬁhn ;mﬂ f' iout '
_to *;avc thcm _ . _ . - .

- .-'D'ata bascs are’ not shamd betiween users, cxccpi bv mce bruie F{;] u; mcchdmxm "(} _-:':ﬁ]mg 111 L
A d&m base- mai mmmnc -Else filed out. : : -

Smalltalk data base ** draft ** 2

- There is no notion of an atomic transaction.

- There is no protocol for correlating the information in several classes (called a "join" in
the data base world).

Fortunately, designs exist for removing all of these restrictions, so you have something to look
forward to in the future.

Defining classes

One difference between DB classes and ordinary classes is that even though DB classes must all
have unique names (like ordinary classes), they aren’t automatically put into the Smalltalk symbol
table. This is partly because the Browser and the Smalltalk system don’t support DB classes, so the
current assumption is that creation of classes is something that you do in a program rather than
from' the terminal. Likewise, there is no casy way to edit, inspect, etc. a DB class (although as we
will see later, these things are all possible in a very uniform way).

There are two kinds of DB classes and objects in the world. DB objects which exist in their own
right are called entities, and their classes are called domains. DD objects which only exist to record
relationships between other objects are called relationships, and their classes are called relations. At
the time you create a DB class, you must decide whether it is 2 domain or a relation. To create a
domain,

aDomain « DomainDomain named: 'someName',
Likewise, to create a relation,

aRelation « RelationDomain named: 'someName'.
DomainDomain and RelationDomain play the role of metaclasses (more or less). Note that if a
domain or relation by the given name already exists, you will get the existing one, not an error

message.

DB classes are themselves entities, instances of (as you may have guessed already) either the
Relation domain or the Domain domain.

Defining attributes

Once you have created a DB class, the next step is to define its astributes, which correspond to

instance variable names. (DB classes don’t have anything corresponding to class variables.) Unlike

Smalltalk classes. where you define the instance variable names all at once, for DB classes you

define the attributes individually. Thus to add an attribute to a DB class,
anAttribute ¢« aDBclass newAttribute: 'attrName',

Again, if an attribute with that name already exists, you will get it. A different message, which
gives an error if the named attribute does not exist, is

anAttribute ¢« aDBclass attributeNamed: 'attrName'.
Note that you can go on adding attributes to a DB class even after instances exist: the new attribute
values in existing objects will be whatever the "undefined" value is for the type of data stored

under that attribute (normally nil).

Attributes created as just shown will allow any kind of Smalltalk object to be stored under them.
There are two ways you can restrict what can be stored under an attribute:

; :.Sm'allmlk _(i.ata'-'bése" i '*'*I-:.'riraff:_.'*s" AR .. s :-'.3.:.. RS L 3

You can “require that {hc vaiuc be “an mstancc {}f & gpcmfic cia*;s 01 domam

Yﬂu can require thai the valuc bc ChOSCIl from a spcmf" ic set of' aliernames (eg #red :
#g reen, #blue} o _ SER : :

To &cﬁmz an attr;bum with one (}f thcse propemcs you i}ccd to get hold 01’ an nb;cct (actualfy ar

~entity) called a ValueType The pmmcol for geumg Va"iue”{ypes is pretiy ugiy nght now: you_ S

can’ say - _
g .VaiuéTyp'éBoma’-in .'na;m.ez:i': ‘Pmnt‘ .
.to gef a Vaiue?ype that leplcscnts rcstrmtlon tO mstances ﬂf Pm nt :
Va?ueTypeDnmam named~ #{reci gz‘een biue) e

Cto gct a \J‘a‘iue‘!’ype that represents “restriction to ‘one of #red #g reen (}r #Eﬂue Theﬁ to- get '
LAl aztubu{e W1th a. {ype rcstrmuon - i B L

" anAttribute - e ~aDBclass . h_é%vhftr‘ﬁ'bﬂte":'f: "_.-'._:éfi:t'r"ﬂ'a'm'e" val l_j_eT-"yge_';:: i
aValueType. B g e

'An attcmpt to store smmethmg oF éhe wmng typc umder an atmbute wﬂl proﬂuae an error message '

. '_Creatmg mstfmces

R To c:reate ‘an -ihstance 01’ a relatwn

.aae1at€onship #‘aReTatian créateg“
 To create or remeve an ennty in-a’ domam
anEnt“fty e aﬂemam named 30memame

- Entities. wzthnut names are not allc)wed tu exist. As remarked abeve named wﬂl elther mmevc or S

- create ‘an “entity of a given name

.";_:'Mamptihtmg mstanccs '

'DB {)hjcﬁs behave very much Tike (passwe) Smaﬂta?k (}b_;ccts An thai they have pr{)t@u:ol fﬁ!‘-:."f."":
_accessing-and storing iito -thelr instance. variables {attribute: values), Unlike Smcﬁ_lt k. objects; i

~which each instance variable normally has ‘& separate” Message 1o- ’u::cess 1£, DE abj-ccts havc &
Cprotocol - more hi{{: dmtmnanes To. access an- ms!;ancc vmzable ' : T

va"lue i— aDBobgect ai; anﬁttmhute‘._ : ST
.’It} Stme mt{) an mstaucc vamable N
.._aBBbbg'est-_at anAttmbute put*- rsew\!a“!ue.

R The" datafjijasé'-.waﬂ& pru‘vzdes _-an ex_p‘izczt notion of * undcﬁnad“ whlcb is‘a. shght generahzatlon of :
‘the Sméﬁita‘]k .-uqe of nil. '-1‘-0 set i instance vanab%e te undcﬁned e S

ansobgect de1etehﬁ .aﬁnttrrbute, "f

- _'N{}te that an attrzbutc is {mfy uqaiﬂc in conmnc{mn wwith: mqtzmrx,c.; of‘ the pamcular I}H cans ftowas
~preated-under, Thisis qmm different-from the Smalltalk -notion that you-can take any \r_armbic ~sized o

'.-"-'ubjer;{ and subscrzpt, it, {;n send & mcba{mr; m any ob gccz tmt undmahmd& iy ﬂ is m-m Elkc the:

Smalltalk data base ** draft ** ; 4

notion of a ficld of a record in a strongly typed language. For these rcasons among others, it isn’t
clear that doing things this way is a good idea.

Retrieval

Flexible retrieval is one of the primary purposes of data bases. For this rcason, the Smalltalk DB
has a fairly elaborate protocol for retrieving subsets of DB classes according to some criterion. The
basic model here is that you build up a request for a retrieval, and then ask for the request to
become a stream: at that moment, the retricval actually gets done, and you can then treat the object
you have been manipulating as an ordinary stream. The basic pattern for retrievals is something
like (his: e P T

A

((aRelation find with: attrl equals: valuel) with: attr2 between:
lowValue and: highValue) do: aBlock.

The find message returns an object called a Query which then takes further messages specifying
what the retrieval conditions are. The do: message implicitly converts the Query into a stream.
So the essence of the retrieval protocol is the set of messages fhat turn Querys into more fully
specified Querys.

Messages that specify restrictions on individual attributes:

with: anAttribute equals: value ,“.,

with: anAttribute between: TowValue and: highValue

Messages that allow you to specify an arbitrary condition:

suchThat: aBlock o u Py J

The block should be of the form [:aDBobjrectl someCondition], specifying that only objects
for which the condition is true should be included. This is the most general kind of restriction, but
it is less efficient than specifying attribute restrictions since attribute restrictions can make use of
indexes.
Messages that call for sorting the result:

withAscending: anAttribute

withDescending: anAttribute

If you specify sorting on more than one attribute, the first attribute is taken as most significant, the
second will only be consulted if the values under the first are equal, etc.

In addition, there are two messages designed specifically for situations where you know that there
must be exactly one object satisfying a given set of restrictions and want an error message if this is
not the case:

unigueWith: anAttribute equals: value

justOne

These message return the actual DB object satisfying the conditions, so they must be the last one in
the series if they appear.

U artiibute; This will make icmcvaie usmg only that aitnbutc Tun:very fast,. and retrievals: using -

smallmikda o basc 5 ** diatt o e e | -

. In Oi‘dcf to ma%:c rcism\ dis run fast y{)u can ask @ EJB c]&se tr.) mainmm an’ mdcx ona :pa;ti{:‘uiar
that

-".-fatmbuie among athers tun a Tot faster. [t is not necessary o have an mdox to-do retrievalss the, DB

- .ciass wﬂl scarch ‘its EE}Staﬂﬁ:GS sequcnm&l}y if- nO mdcx 15 avaﬂabie l() add- an. mdex

aDBcTass addlndex' anAttmbutei =

- 'To delete an mdex

aDBc‘Eass dropIndex anﬁt-trﬂ_}iuf’é_}"”

'_"i)cstmymg ms'tances

" Unlike Smaiita]k where an: {}bjcct can’ dzsappcar ‘as So0n a8 there are o refmences m 1t, thc data'

. base'world has to retain objects. mdcﬁmtcly, since there is no way for the: system to predict that you
©Swon't retrieve thesobject by giving ca-description of it”at som¢ futuie time. - (The:si

3.pre£ty cE(}*;e SO T make a DB ob;ect d1sappear

. (’ !
aDBabgect geTeteﬁz..-

S '--What do{‘:s‘ "dlqappear mcan‘?‘ It means that as ﬂqr as the dala base sy?{em s cancemea’ the Objcct -

<ceéases to exist; mno reférénces 10t will remain - within - the data base system, - If you- stﬂ! have A
o referencé to it hanging around in your own datastructures somewhere and attempt touse -that S
- reference; bizarre. things- will probably happen.. althougl (currently) ‘the data base system doesn 't

- alter the ‘object .in-‘a way that Couid b;lng ck)wn the- Smaﬂtaik ‘system . g

S -When vou delete a rcEauomhip, norhmrr else txappens When you defete an entlty howevcr tw:::r'
__thuags happen automaucaliy : S e o

 _'- All rclatmnships contalning ref’crcnces to tbat cnttty get dclcted

.f’* AII enﬂtics c{)nwmmg references 10 ﬁiat enmy hava the reference replaced by nﬂ ;3' '

B __Z_As ¥Oou mlght expect fidve: far—rcachmg thmgs happcn zf you. dclcfc system cnttt;cs Dc§ct1ng an__ '
“attribute entity effectively deletes the atwibute value from all DB objccts to which: ihat attribuiteds. 7

“applicable. Deleting a DB cldss (gither a relation ora d{)mam} automatically delétes all its attributes

-and. instances first. - The ‘warning -about: not holding on to a deleted object: thmugb a rcfcrence

- oitside the™ data base Systcm apphes with ?amcular force tca system emtaes*

' Systcm ﬂh;ects '

AL ﬂlc ob}e{:is in the data base system Itseif are; DB {}bgecis o Surprise. In parizcu}ar there are." o

".ﬁ}ur system dt}mams*
Domaa nﬁamaﬂn o
- ReTationDomain =
SAttributeDomain - oo
Va?ueTypeﬂnma1n
'AI] uf thesc exc,ept f{}r Attmhuteﬂammn have {)niy ene ;spphcable attribuif%

Ent1tywame

“situation in-- s
- Smalltalk . itself “would be cmcxlogeus ‘if o people started makmg hcavy use of “atlass :
411 Insﬁancesﬂm- aBlock.} “This isn't actually quite true, as we: shali See in a momem, i:)ut 1ts_; .

o Smalitalk database. ** drafe ¥

. f'-'.'_w'h’ic'h refers to the name of t’he "énti&jf; "Thus, for exa:‘mple o 'rc‘:nam'c'2aﬁ_-'-at_f_l'*_."s'b'_ii.t_é_',-;ii::iéiﬁé_in, etc.

o kernelst. Filin these two files in- order:(ie. Data‘base-classesst before “Data bdse'-.kcme! st), R
£ crc 15 ‘w xt'f" A

aSystem(}bgect at: EntﬁyName pu!; newName

: Notice: that Ent1tyName violates the rule that an at{rxbum is) oniy apphcablc foa smg] DB ¢
I {he syst{:m entities. don’t have to- play by the same m"ies as the Gnes YOl cxeam

e Attmbuteﬂamam E&as th:s Gthez atmbutcs

Attﬂ}BC“}ass the DB class to whmh the aztr:butc i appilca’bie i e
Attx‘\fawe“i‘ype the type of value which” mast a;}pear under that attnbute

There are a m:mb{:r of prcdcﬁned VameTypes for the most commﬂn kmds ﬁf valt}es
’\fﬂnteger‘: e
_VTString
VTBooleam (true er false)
VTAny {any Smantaik objcct)

'ﬁlndcxes arent currenﬂy entities, - but. &hey probabiy should be

- Mzscciianemxs

abBeTass’ stwe{)n aFﬂa will ﬁl{}ut a smgte DB class Yeu can hhn thzs ﬁlc—: at a'hter ume R

- and-it will reconstruct the class. ‘Note, however, that if any instances of the class contain references -
“to. other DB objécts; vou have - to-filin. (or at least create). that” class first, To help with s . a0

. aDBelass describeOn: aFiTe will write out something which will create the class properly ifit” o

~doesn’t already exist. “Thus the pmper way to ﬁluut a gr{)up of DB ala*;ses Whosc mstanccs can: refcr _ : S

‘to - each othcr freeiy 15

. aDBc}a_ssl desc P be(}n' éiF:'i‘.l_e_-."
alDBclass? desarabe()n' caFite,
‘ aDBclassh. desc mbét}n: ~aFile.
- aDBelassl storeOn: aFile.
SabBelassZ storeOn: aFile.

aDBclassN storeOn: aFile..

' “How. tb‘ wn it

""-fhr: data’ base cccic cuncnﬂy rcsades on. [Phyhlm](DcutschData*baf;e tlasses st and Datq base-ﬁf

.mmgﬂue the System afmr fihng it m execute Va?uaTypfa f-“im-sh:{mt ‘That’s: 4

Necd ess: to say, there are: @urely many buvs, omissions, ‘and: qmrks fiot cevemd il thIs memm sitice .

- the data base system has only had -one user {Bill Finzer, who-has suffcrcd censmﬁcrab?y as a4 uset: of 3

.8 <;vcnmcwlmt earlier: VGI“SI(JH (}f the': system) PE{tase tcll ‘me abtmi any - prcblems yau encounter

To

wpdate ke
dabase d:ld—e: }. i)
lie wt \
ocal

Th's .ﬁ:‘é’ﬁ'(Jup/af/f .r;"m,d(’
pelatromcl Lta buss. The yiewes
i ymera(purpese Aatribese
access tool, Other sl Chn

Gecess dg Asing Samg ﬁMé/ﬂfﬂ““lj
Viewds wusé. The Jb ;m/M*‘tﬁve
is onuly podeled ~ [feavisg if oo 4

Fechont Moora_

W3s/

.1;1(‘;[:'4 [/ dzleéfmdaf 2’%&745«; (orth o50as

:

/
/

o pore Tl ouwe access pat™ ((xton)
cun be providkd) (i adlifro. to
key.

P Some Kind d/ [ﬂCé/trj or “check
before mad;‘f7' i ffavﬁcol coes b
de;:'foe/

* S;Pea’ﬁ't- 54&5{41 applicatro«s ca. I
b /0/'3) § el as /m«,a(— s OO s &
(’vkrdc;"-'am

” 3&42&:(pa: 4 J;jm -ﬁf ,%fmj Jaﬁu
G rres i {efp/(ﬁ"&- iy B
C’Jtve/-?/aﬂ]

* J’yfbﬁ Lo P be W‘F""“MC'(—f:-cﬂ("/

384

S OFFPRINTS

Microelectronics
and the Personal Computer

by Alan C. Kay

SCIENTIFIC
AMERICAN

SEPTEMBER 1977
VOL, 237, NO. 3 PP 230—244

=
.- PUBLISHED BY W. H. FREEMAN AND COMPANY 660 MARKET STREET, SAN FRANCISCO, CALIFORNIA 94104

Copyright © 1977 by Scientific American, Inc. All rights reserved. Printed in the U.S.A, No part of this offprint may be reproduced by any mechanical, photographic or electronic process, or
in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted or otherwise copied for public or private use without written permission of the publisher.

| Microelectronics
and the Personal Computer

Rates of progress in microelectronics suggest that in about a decade

many people will possess a notebook-size computer with the capacity

of a large computer of today. What might such a system do for them’

The future increase in capacity and
decrease in cost of microelectron-
ic devices will not only give rise to
compact and powerful hardware but
also bring qualitative changes in the way
human beings and computers interact.
In the 1980's both adults and children
will be able to have as a personal pos-
session a computer about the size of a
large notebook with the power to handle
virtually all their information-related
needs. Computing and storage capacity
will be many times that of current mi-
crocomputers: tens of millions of basic
operations per second will manipulate
the equivalent of several thousand print-
ed pages of information.

The personal computer can be regard-
ed as the newest example of human
mediums of communication. Various
means of storing, retrieving and manip-
ulating information have been in exis-
tence since human beings began to talk.
External mediums serve to capture in-
ternal thoughts for communication and,
through feedback processes, to form the
paths that thinking follows. Although
digital computers were originally de-
signed to do arithmetic operations, their
ability to simulate the details of any
descriptive model means that the com-
puter, viewed as a medium, can simu-
late any other medium if the methods
of simulation are sufficiently well de-
scribed. Moreover, unlike conventional
mediums, which are passive in the sense
that marks on paper, paint on canvas
and television images do not change in

by Alan C. Kay

response to the viewer's wishes, the
computer medium is active: it can re-
spond to queries and experiments and
can even engage the user in a two-way
conversation.

The evolution of the personal com-
puter has followed a path similar to that
of the printed book, but in 40 years rath-
er than 600. Like the handmade books
of the Middle Ages. the massive com-
puters built in the two decades before
1960 were scarce, expensive and avail-
able to only a few. Just as the invention
of printing led to the community use of
books chained in a library, the introduc-
tion of computer time-sharing in the
1960’s partitioned the capacity of ex-
pensive computers in order to lower
their access cost and allow community
use. And just as the Industrial Revolu-
tion made possible the personal book by
providing inexpensive paper and mech-
anized printing and binding, the mi-
croelectronic revolution of the 1970's
will bring about the personal comput-
er of the 1980's, with sufficient storage
and speed to support high-level com-
puter languages and interactive graphic
displays.

Ideally the personal computer will be
designed in such a way that people of
all ages and walks of life can mold and
channel its power to their own needs.
Architects should be able to simulate
three-dimensional space in order to re-
flect on and modify their current de-
signs. Physicians should be able to store

COMPUTER SIMULATIONS generated on a high-resolution television display at the Evans
& Sutherland Computer Corporation show the quality of the images it should eventually be
possible to present on a compact personal computer. The pictures are frames from two dynam-
ic-simulation programs that revise an image 30 times per second to represent the continuous
motion of objects in projected three-dimensional space. The sequence at the top, made for the
National Aeronautics and Space Administration, shows a space laboratory being lifted out of
the interior of the space shuttle. The sequence at the bottom, made for the U.S. Maritime Ad-
ministration, shows the movement of tankers in New York harbor. Ability of the personal com-
puter to simulate real or imagined phenomena will make it 2 new medium of communication.

and organize a large quantity of infor-
mation about their patients, enabling
them to perceive significant relations
that would otherwise be imperceptible.
Composers should be able to hear a
composition as they are composing it.
notably if it is too complex for them to
play. Businessmen should have an ac-
tive briefcase that contains a working
simulation of their company. Educators
should be able to implement their own
version of a Socratic dialogue with dy-
namic simulation and graphic anima-
tion. Homemakers should be able to
store and manipulate records, accounts,
budgets, recipes and reminders. Chil-
dren should have an active learning tool
that gives them ready access to large
stores of knowledge in ways that are not
possible with mediums such as books.
How can communication with com-
puters be enriched to meet the diverse
needs of individuals? If the computer is
to be truly “personal,” adult and child
users must be able to get it to perform
useful activities without resorting to the
services of an expert. Simple tasks must
be simple, and complex ones must be
possible. Although a personal computer
will be supplied with already created
simulations, such as a general text edi-
tor, the wide range of backgrounds and
ages of its potential users will make any
direct anticipation of their needs very
difficult. Thus the central problem of
personal computing is that nonexperts
will almost certainly have to do some
programming if their personal comput-
er is to be of more than transitory help.
To gain some understanding of the
problems and potential benefits of per-
sonal computing my colleagues and 1 at
the Xerox Palo Alto Research Center
have designed an experimental personal
computing system. We have had a num-
ber of these systems built and have stud-
ied how both adults and children make
use of them. The hardware is faithful in
capacity to the envisioned notebook-

3

size computer of the 1980’s, although it
is necessarily larger. The software is a
new interactive computer-language sys-
tem called SMALLTALK.

In the design of our personal comput-
ing system we were influenced by re-
search done in the late 1960s. At that
time Edward Cheadle and I, working at
the University of Utah, designed FLEX,
the first personal computer to directly
support a graphics- and simulation-ori-
ented language. Although the FLEX de-
sign was encouraging, it was not com-
prehensive enough to be useful to a wide
variety of nonexpert users. We then be-
came interested in the efforts of Sey-
mour A. Papert, Wallace Feurzeig and
others working at the Massachusetts In-
stitute of Technology and at Bolt, Ber-
anek and Newman, Inc., to develop a
computer-based learning environment
in which children would find learning
both fun and rewarding. Working with a

EXPERIMENTAL PERSONAL COMPUTER was built at the Xe-
rox Palo Alto Research Center in part to develop a high-level pro-
gramming language that would enable nonexperts to write sophisti-
cated programs. The author and his colleagues were also interested
in using the experimental computer to study the effects of personal

4

large time-shared computer, Papert and
Feurzeig devised a simple but powerful
computer language called LoGo. With
this language children (ranging in age
from eight to 12) could write programs
to control a simple music generator, a
robot turtle that could crawl around the
floor and draw lines, and a television
image of the turtle that could do the
same things.

After observing this project we came
to realize that many of the problems
involved in the design of the person-
al computer, particularly those having
to do with expressive communication,
were brought strongly into focus when
children down to the age of six were
seriously considered as users. We also
realized that children require more
computer power than an adult is willing
to settle for in a time-sharing system.
The best outputs that time-sharing can
provide are crude green-tinted line

drawings and square-wave musical
tones. Children, however, are used to
finger paints, color television and stereo-
phonic records, and they usually find the
things that can be accomplished with a
low-capacity time-sharing system insuf-
ficiently stimulating to maintain their in-
terest.

Since LoGo was not designed with all
the people and uses we had in mind, we
decided not to copy it but to devise a
new kind of programming system that
would attempt to combine simplicity
and ease of access with a qualitative im-
provement in expert-level adult pro-
gramming. In this effort we were guided,
as we had been with the FLEX system,
by the central ideas of the programming
language stMULA, which was developed
in the mid-1960's by Ole-Johan Dahl
and Kristen Nygaard at the Norwegian
Computing Center in Oslo.

Our experimental personal computer

computing on learning. The machine is completely self-contained,
consisting of a keyboard, a pointing device, a high-resolution picture
display and a sound system, all connected to a small processing unit
and a removable disk-file memory. Display can present thousands
of characters approaching the quality of those in printed material.

is self-contained and fits comfortably
into a desk. Long-term storage is provid-
ed by removable disk memories that can
hold the equivalent of 1,500 printed
pages of information (about three mil-
lion characters). Although image dis-
plays in the 1980's will probably be
flat-screened mosaics that reflect light
as liquid-crystal watch displays do, vi-
sual output is best supplied today by a
high-resolution black-and-white or col-
or television picture tube. High-fidelity
sound output is produced by a built-in
conversion from discrete digital signals
to continuous waveforms, which are
then sent to a conventional audio ampli-
fier and speakers. The user makes his
primary input through a typewriterlike
keyboard and a pointing device called a

mt then
I.[ll.‘\\l
Butes ll\l\k
foutalit

crghcheck
{ ScAmext

mouse, which controls the position of
an arrow on the screen as it is pushed
about on the table beside the display.
Other input systems include an organ-
like keyboard for playing music, a pen-
cillike pointer, a joystick, a microphone
and a television camera.

The commonest activity on our per-
sonal computer is the manipulation of
simulations already supplied by the
SMALLTALK system or created by the
user. The dynamic state of a simulation
is shown on the display. and its general
course is modified as the user changes
the displayed images by typing com-
mands on the keyboard or pointing with
the mouse. For example, formatted tex-
tual documents with multiple typefaces
are simulated so that an image of the

aplics
p}h M

gl e L

Musical Syuthesis Leading

| '
(AT

i lmlllmllllllllmiIIIII||||| ag

i)

HNew Editing =>>> Mcdulaticn,

Velmme Medulition Froprency Batie Add-Ratic Rediaw Cwit
M is dertal
Alan C. Kay / —
an1s Laguna Way Date c<ptal
Palo Alw, CA 94306
FAY
to the Order of rean Puilders lntarnaticenal $ ’
DO ARS
rirs Bandoral Cresd it Uinion
El Seound I 1hd
' Signed
For

i Inly $2
K P*:‘__'-Jnn =

b £4

SRS

“WINDOWS,” display frames within the larger display screen, enable the user to organize and
edit information at several levels of refinement. Once the windows are created they overlap on
the screen like sheets of paper. When a partially covered window is selected with the pointing
device, the window is redisplayed to overlap the other windows. Images with various degrees
of symbolic content can be displayed simultaneously. Such images include detailed halftone
drawings, analogical images such as graphs and symbolic images such as numbers or words.

finished document is shown on the
screen. The document is edited by point-
ing at characters and paragraphs with
the mouse and then deleting, adding
and restructuring the document’s parts.
Each change is instantly reflected in the
document's image.

In many instances the display screen is
too small to hold all the information a
user may wish to consult at one time,
and so we have developed “"windows,”
or simulated display frames within the
larger physical display. Windows orga-
nize simulations for editing and display,
allowing a document composed of text,
pictures, musical notation, dynamic ani-
mations and so on to be created and
viewed at several levels of refinement.
Once the windows have been created
they overlap on the screen like sheets of
paper; when the mouse is pointed at a
partially covered window, the window is
redisplayed to overlap the other win-
dows. Those windows containing useful
but not immediately needed informa-
tion are collapsed to small rectangles
that are labeled with a name show-
ing what information they contain.
A “touch”™ of the mouse causes them
to instantly open up and display their
contents.

In the present state of the art software
development is much more difficult
and time-consuming than hardware de-
velopment. The personal computer will
eventually be put together from more or
less standard microelectronic compo-
nents, but the software that will give life
to the user’s ideas must go through a
long and arduous process of refinement
if it is to aid and not hinder the goals of a
personal dynamic medium.

For this reason we have over the past
four years invited some 250 children
(aged six to 15) and 50 adults to try ver-
sions of SMALLTALK and to suggest ways
of improving it. Their creations, as imag-
inative and diverse as they themselves,
include programs for home accounts,
information storage and retrieval, teach-
ing, drawing, painting, music synthesis,
writing and games. Subsequent designs
of sMaLLTALK have been greatly influ-
enced and improved by our visitors'
projects.

When children or adults first encoun-
ter a personal computer, most of them
are already involved in pursuits of their
own choosing. Their initial impulse is to
exploit the system to do things they are
already doing: a home or office manager
will automate paperwork and accounts,
a teacher will portray dynamic and pic-
torial aspects of a curriculum, a child
will work on ways to create pictures and
games. The fact is that people naturally
start to conceive and build personal
tools. Although man has been charac-
terized as the toolmaking species, tool-
making itself has historically been the

5

province of technological specialists.
One reason is that technologies fre-
quently require special techniques, ma-
terials, tools and physical conditions.
An important property of computers,
however, is that very general tools for
using them can be built by anyone.
These tools are made from the same ma-
terials and with the same effort as more
specific creations.

Initially the children interact with our
computer by “painting” pictures and
drawing straight lines on the display
screen with the pencillike pointer. The
children then discover that programs
can create structures more complex
than any they can create by hand. They
learn that a picture has several represen-
tations, of which only the most obvi-
ous—the image—appears on the screen.
The most important representation is
the editable symbolic model of the pic-
ture stored in the memory of the com-
puter. For example, in the computer an
image of a truck can be built up from
models of wheels, a cab and a bed, each
a different color. As the parts of the
symbolic model are edited its image on
the screen will change accordingly.

Adults also learn to exploit the prop-
erties of the computer medium. A pro-
fessional artist who visited us spent sev-
eral months building various tools that
resembled those he had worked with to
create images on paper. Eventually he
discovered that the mosaic screen—the

indelible but instantly erasable storage
of the medium—and his new ability to
program could be combined to create
rich textures of a kind that could not be
created with ink or paint. From the use
of the computer for the impoverished
simulation of an aiready existing medi-
um he had progressed to the discovery
of the computer’s unique properties for
human expression.

One of the best ways to teach nonex-
perts to communicate with com-
puters is to have them explore the levels
of abstraction at which images can be
manipulated. The manipulation of im-
ages follows the general stages of intel-
lectual growth. For a young child an im-
age is something to make: a free mixture
of forms and colors unconnected with
the real world. Older children create
images that directly represent concepts
such as people, pets and houses. Later
analogical images appear whose form is
glosely related to their meaning and pur-
pose, such as geometric figures and
graphs. In the end symbolic images are
used that stand for concepts that are too
abstract to analogize, such as num-
bers, algebraic and logical terms and
the characters and words that consti-
tute language.

The types of image in this hierarchy
are increasingly difficult to represent on
the computer. Free-form and literal im-
ages can be easily drawn or painted with

trait mome | desaiption

VIS hex pictwes activity,

Jecation 0

angle 0

size [

new lecation € center, angle € &, size « 7o, N

sLow & pint black shap)

1S & mint hckgicmnd, shape -

shape | & mpe gato lecation: trn angle dewen,
fted ﬁc 1€ po siza wurn

erew | | case size € size + [], shew

SMALLTALK is a new programming language developed at the Xerox Palo Alto Research
Center for use on the experimental personal computer, It is made up of “activities,” computer-
like entities that can perform a specific set of tasks and can also communicate with other activ-
jties in the system, New activities are created by enriching existing families of activities with
addifional “traifs,” or abilities, which are defined in terms of a method to be carried out. The
description of the family “box” shown here is a dictionary of its traits. To create a new member
of the family box, a message is sent to the trait “new” stating the characteristics of the new box
in terms of specific values for the general traits “location,” “angle” and “size.” In this example
“new” has been filled in to specify a box located in the center of the screen with an angle of
zero degrees and a side 100 screen dots long. To “show” the new box, a member of the curve-
drawing family “brush” is given direcfions by the open trait “shape.” First the brush travels to
the specified location, turns in the proper direction and-appears on the screen. Then it draws a
square by traveling the distance given by “size,” turning 90 degrees and repeating these actions
three more times. The last trait on the list is open, indicating that a numerical value is to be
supplied by the user when the trait is invoked by a message. A box is “grown” by first eras-
ing it, increasing (or decreasing) its size by the value supplied in the message and redisplaying it.

6

lines and halftones in the dot matrix of
the display screen with the aid of the

. mouse or in conjunction with programs

that draw curves, fill in areas with tone
or show perspectives of three-dimen-
sional models. Analogical images can
also be generated, such as a model of a
simulated musical intrument: a time-se-
quenced graph representing the dynam-
ic evolution of amplitude, pitch varia-
tion and tonal range.

Symbolic representations are partic-
ularly useful because they provide a
means of handling concepts that are dif-
ficult to portray directly, such as gener-
alizations and abstract relations. More-.
over, as an image gets increasingly com-
plex its most important property. the
property of making local relations in-
stantly clear, becomes less useful. Com-
munication with computers based on
symbols as they routinely occur in natu-
ral language, however, has proved to be
far more difficult than many had sup-
posed. The reason lies in our lack of
understanding of how human beings ex-
ploit the context of their experience to
make sense of the ambiguities of com-
mon discourse. Since it is not yet under-
stood how human beings do what they
do, getting computers to engage in simi-
lar activities is still many years in the
future. It is quite possible, however, to
invent artificial computer languages
that can represent concepts and activi-
ties we do understand and that are sim-
ple enough in basic structure for them
to be easily learned and utilized by non-
experts.

The particular structure of a symbolic
language is important because it pro-
vides a context in which some concepts
are easier to think about and express
than others. For example, mathematical
notation first arose to abbreviate con-
cepts that could be expressed only as
ungainly circumlocutions in natural lan-
guage. Gradually it was realized thatthe
form of an expression could be of great
help in the conception and manipulation
of the meaning for which the expression
stood. A more important advance came
when new notation was created to rep-
resent concepts that did not fit into
the culture's linguistic heritage at all,
such as functional mappings, continu-
ous rates and limits.

The computer created new needs for
language by inverting the traditional
process of scientific investigation. It
made new universes available that,could
be shaped by theories to produce simu-
lated phenomena. Accordingly symbol-
ic structures were needed to communi-
cate concepts such as imperative de-
scriptions and control structures.

Most of the programming languages
in service today were developed as sym-
bolic ways to deal with the hardware-
level concepts of the 1950’s. This ap-
proach led to two kinds of passive build-
ing blocks: data structures, or inert con-

Message Interaction Pictorial Effect Commentary

E3 box new named “joe”1 An offspring of the family “box"
box:joe is created and is named “joe.”

The box joe receives the

a joeturn 30!
message and turns 30 degrees.

ok

B joe grow -i51 Joe becomes smaller by 15 units.

ok

B joe erasel Joe disappears from the screen.

ok

3 joe show!
ok

Joe reappears.

E box new named “jill"! A new box appears.

boxc:jill

B jinturn—101 Only jill turns. Joe and jill are

ok independent activities.
81010l An interval stands for a sequence
interval:1 2345678910 of numbers.
B torever!) Forever is the infinite interval.
interval:1 2345678910 11.. it must be terminated by hitting an

escape key.

1 to 10 do {joe turn 20} Joe spins.
ok

Q forever do (joe turn 11. Jillturn—13) 1 A simple parallel movie of joe
ok and jill spinning in opposite

directions is created by
combining forever with a
turn request to hoth joe and jill.

SMALLTALK LEARNING SEQUENCE teaches students the ba- ated, named and manipulated, and a second family of activities called
sic concepts of the language by having them interact with an already “interval” is introduced. QOffspring of the interval and box families
defined family of activities. First, offspring of the family box are cre- are then combined to generate an animation of two spinning boxes.

7

(|0 1SR SR T RO

HELICOPTER SIMULATION was developed by a 15-year-old
student. The user directs the helicopter where to go with the pointing

struction materials, and procedures, or
step-by-step recipes for manipulating
data. The languages based on these con-
cepts (such as BASIC, FORTRAN, ALGOL
and aprL) follow their descriptions in a
strictly sequential manner. Because a
piece of data may be changed by any
procedure that can find it the program-
mer must be very careful to choose only
those procedures that are appropriate.
As ever more complex systems are at-
tempted, requiring elaborate combina-
tions of procedures, the difficulty of get-
ting the entire system to work increases
geometrically. Although most program-
mers are still taught data-procedure lan-
guages, there is now a widespread recog-
nition of their inadequacy.

A more promising approach is to de-
vise building blocks of greater generali-
ty. Both data and procedures can be re-
placed by the single idea of “activities,”
computerlike entities that exhibit be-
havior when they are sent an appropri-

e
It

CIRCUIT-DRAWING PROGRAM that was developed by a 15-
year-old boy enables a user to construct a complex circuit diagram by

1 —

l {1 R 1 AL S I B

ate message. There are no nouns and
verbs in such a language, only dynami-
cally communicating activities. Every
transaction, description and control
process is thought of as sending mes-
sages to and receiving messages from
activities in the system. Moreover, each
activity belongs to a family of similar
activities, all of which have the ability
to recognize and reply to messages di-
rected to them and to perform specific
acts such as drawing pictures, making
sounds or adding numbers. New fami-
lies are created by combining and en-
riching “traits,” or properties inherited
from existing families.

A message-activity system is inherent-
ly parallel: every activity is constantly
ready to send and receive messages, so
that the host computer is in effect divid-
ed into thousands of computers, each
with the capabilities of the whole. The
message-activity approach therefore en-
ables one to dynamically represent a

-+ e

device, which controls the position of the black arrow on the screen.
The window at the top shows the changing topography of the terrain

system at many levels of organization
from the atomic to the macroscopic, but
with a ““skin” of protection at each quali-
tative level of detail through which ne-
gotiative messages must be sent and
checked. This level of complexity can be
safely handled because the language se-
verely limits the kinds of interactions
between activities, allowing only those
that are appropriate, much as a hor-
mone is allowed to interact with only a
few specifically responsive target cells.
SMALLTALK, the programming system of
our personal computer, was the first
computer language to be based entirely
on the structural concepts of messages
and activities.

The third and newest framework for
high-level communication is the observ-
er language. Although message-activity
languages are an advance over the data-
procedure framework, the relations
among the various activities are some-
what independent and analytic. Many

ke

selecting components from a “menu” displayed at the bottom of the
screen. The components are then positioned and connected with the

below as the helicopter flies over it. (Actual terrains were obtained
from Landsat maps.) A third window keeps track of the helicopter’s

concepts, however, are so richly inter-
woven that analysis causes them virtual-
ly to disappear. For example, 20th-cen-
tury physics assigns equal importance
to a phenomenon and its context, since
observers with different vantage points
perceive the world differently. In an ob-
server language, activities are replaced
by “viewpoints” that become attached
to one another to form correspondences
between concepts. For example, a dog
can be viewed abstractly (as an animal),
analytically (as being composed of or-
gans, cells and molecules), pragmatical-
ly (as a vehicle by a child), allegorically
(as a human being in a fairy tale) and
contextually (as a bone's way to fertilize
a lawn). Observer languages are just
now being formulated. They and their
successors will be the communication
vehicles of the 1980’s,

Our experience, and that of others
who teach programming, is that a first
computer language's particular style

I ELTR [SR B

and its main concepts not only have a
strong influence on what a new pro-
grammer can accomplish but also leave
an impression about programming and
computers that can last for years. The
process of learning to program a com-
puter can impose such a particular point
of view that alternative ways of perceiv-
ing and solving problems can become
extremely frustrating for new program-
mers to learn.

At the beginning of our study we first
timidly considered simulating features
of data-procedure languages that chil-
dren had been able to learn, such as Ba-
sic and LoGo. Then, worried that the im-
printing process would prevent stronger
ideas from being absorbed, we decided
to find a way to present the message-ac-
tivity ideas of SMALLTALK in concrete
terms without dilution. We did so by
starting with simple situations that em-
bodied a concept and then gradually in-
creasing the complexity of the examples

altitude, direction and speed. The variety of events that can be simu-
lated at the same time demonstrates the power of parallel processing.

to flesh out the concept to its full gener-
ality. Although the communicationlike
model of SMALLTALK is a rather abstract
way to represent descriptions, to our
surprise the first group and succeeding
groups of children who tried it appeared
to find the ideas as easy to learn as those
of more concrete languages.

For example, most programming lan-
guages can deal with only one thing at a
time, so that it is difficult to represent
with them even such simple situations as
children in a school, spacecraft in the
sky or bouncing balls in free space. In
SMALLTALK parallel models are dealt
with from the start, and the children
seem to have little difficulty in handling
them. Actually parallel processing is re-
markably similar to the way people
think. When you are walking along a
street, one part of your brain may be
thinking about the route you are tak-
ing, another part may be thinking about
the dinner you are going to eat, a third

- | S] 1
o '. i 1 ‘I |
LIPS e < i AR ok |
LT Lid
i i} —y ! = ol
i I | i i
Fae 3 i fome LR Lo ¥ B,
. -:. ‘. T
U e L
X l e i 13 3
e L :
o i
S 31 LE e
Lo &5 30| A R i o o
i r\}t rh i — JERREN 2% S 1Y il

pointing device. An additional menu can be generated on the screen
by pushing a button on the pointing device; this menu supplies solid

and open dots and lines of various widths. In the sequence shown
here two components are selected and added to a circuit diagram.

e kg b . g g wakeny Polname ok

ovteln g Topeamouic®
1oy PR

&)
bapsd e by \

=l o

. L3 - ; s z
fitedjicume A stord aw pdc tupe & filed pioturs o stored as plobure 29 GFi-
20 LI T I« | MOl RIN (R 2 ' I
i ki g CA R TR

SR ._,. i

s

P T s | Goate b Lakenn b0 brame, Bl)ops ke o
MM RIS ihian LR O bkt AT , vk ek
B WIS o

HORSE-RACE ANIMATION shows the capabilities of the experi- user. In this sequence, images of horses, riders and background are

mental personal computer for creating dynamic halftone images. The called up independently from the storage files and arranged for the
possible range of such simulations is limited only by the versatility of racing simulation with the pointing device. A single typed command
the programming language and the imagination of the child or adult then causes the two horses and riders to race each other across screem.

10

part may be admiring the sunset, and
so forth.

Another important characteristic of
SMALLTALK is the classification of ob-
jects into families that are generaliza-
tions of their properties. Children readi-
ly see themselves as members of the
family “kids,” since they have common
traits such as language, interests and
physical appearance. Each individual is
both a member of the family kids and
has his or her own meaning for the
shared traits. For example, all kids have
the trait eye color, but Sam's eyes are
blue and Bertha's are brown. SMALL-
TALK is built out of such families. Num-
ber symbols, such as 2 or 17, are in-
stances of the family “number.” The
members of this family differ only in
their numerical value (which is their
sole property) and share a common def-
inition of the different messages they
can receive and send. The symbol of a
“brush” in SMALLTALK is also a family.
All the brush symbols have the ability to
draw lines, but each symbol has its own
knowledge of its orientation and where
it is located in the drawing area.

he description of a programming

language is generally given in terms
of its grammar: the meaning each gram-
matical construction is supposed to con-
vey and the method used to obtain the
meaning. For example, various pro-
gramming languages employ grammati-
cal constructions such as (pLus 3 4) or 3
ENTER 4 + to specify the intent to add
the number 3 to the number 4. The
meaning of these phrases is the same.
In the computer each should give rise to
the number 7, although the actual meth-
ods followed in obtaining the answer
can differ considerably from one type
of computer to the next.

The grammar of SMALLTALK is simple
and fixed. Each phrase is a message to
an activity. A description of the desired
activity is followed by a message that
selects a trait of the activity to be per-
formed. The designated activity will de-
cide whether it wants to accept the mes-
sage (it usually does) and at some later
time will act on the message. There may
be many concurrent messages pending
for an activity, even for the same trait.
The sender of the message may decide
to wait for a reply or not to wait. Usual-
ly it waits, but it may decide to go about
other business if the message has in-
voked a method that requires consider-
able computation.

The integration of programming-lan-
guage concepts with concepts of edit-
ing, graphics and information retrieval
makes available a wide range of useful
activities that the user can invoke with
little or no knowledge of programming.
Learners are introduced to SMALLTALK
by getting them to send messaggs to al-
ready existing families of activities, such

MUSIC CAN BE REPRESENTED on the personal computer in the form of analogical im-
ages. Notes played on the keyboard are “captured” as a time-sequenced score on the display.

sessmaas

-

p-——— -
Tl
CrmmimmiE e
frmsimmtm- e

Pitch l@m Stretch Break Svnc Add
Hear Backup E(—gmmng Quit Copy Shift ev

MUSICAL SCORE shown here was generated as music was played on the keyboard. The sim-
plified notation represents pitch by vertical placement and duration by horizontal length. Notes
can be shortened, lengthened or changed and the modified piece then played back as music.

11

ERE
L] u
® L]
EEEEEEEEER
] B
BEEEENEEE
=
" REEEN N
»
= EEERD
EEERER

s
ERENEENEEE
= L
EENEENEEE

£ =

" EEEEN

= -
Il \
sEm@®

as the family “box,” whose members
show themselves on the screen as
squares. A box can individually change
its size, location, rotation and shape. Af-
ter some experience with sending mes-
sages to cause effects on the display
screen the learner may take a look at the
definition of the box family. Each fami-
ly in SMALLTALK is described with a dic-
tionary of traits, which are defined in
terms of a method to be carried out. For
example, the message phrase “joe grow
50" says: Find the activity named “joe,”
find its general trait called “grow — "
and fill in its open part with the specific
value 50. A new trait analogous to those
already present in the family definition
(such as “grow"” or “turn”) can easily be
added by the learner. The next phase of
learning involves elaboration of this ba-
sic theme by creating games such as
space war and tools for drawing and
painting.

There are two basic approaches to
personal computing. The first one,
which is analogous to musical improvi-
sation, is exploratory: effects are caused
in order to see what they are like and
errors are tracked down, understood
and fixed. The second. which resembles
musical composition, calls for a great
deal more planning, generality and
structure. The same language is used for
both methods but the framework is
quite different.

From our study we have learned the
importance of a balance between free
exploration and a developed curricu-
lum. The personal computing experi-
ence is similar to the introduction of a
piano into a third-grade classroom. The
children will make noise and even music
by experimentation, but eventually they
will need help in dealing with the instru-
ment in nonobvious ways. We have also
found that for children the various lev-
els of abstraction supplied by SMALL-
TALK are not equally accessible. The
central idea of symbolization is to give a
simple name to a complex collection of
ideas, and then later to be able to invoke
the ideas through the name. We have
observed a number of children between
the ages of six and seven who have been
able to take this step in their comput-
er programs, but their ability to look
ahead, to visualize the consequences of
actions they might take, is limited.

Children aged eight to 10 have a grad-

DISPLAY FONTS can be designed on per-
sonal computer by constructing them from a
matrix of black-and-white squares. When the
fonts are reduced, they approach the quality
of those in printed material. The image of a
pointing hand shown here is asymbolin SMALL-
TALK represenfing the concept of a literal word,
such as the name associated with an activity.

ually developing ability to visualize and
plan and are able to use the concept of
families and a subtler form of naming:
the use of traits such as size, which can
stand for different numerical values at
different times. For most children, how-
ever, the real implications of further
symbolic generality are not at all obvi-
ous. By age 11 or 12 we see a consider-
able improvement in a child’s ability to
plan general structures and to devise
comprehensive computer tools. Adults
advance through the stages more quick-
ly than children, and usually they create
tools after a few weeks of practice. It is
not known whether the stages of intel-
lectual development observed in chil-
dren are absolutely or only relatively
correlated with age, but it is possible
that exposure to a realm in which sym-
bolic creation is rewarded by wonderful
effects could shorten the time required
for children to mature from one stage
to the next.

The most important limitation on per-
sonal computing for nonexperts appears
when they conceive of a project that,
although it is easy to do in the language.
calls for design concepts they have not
yet absorbed. For example, it is easy to
build a span with bricks if one knows the
concept of the arch, but otherwise it is
difficult or impossible. Clearly as com-
plexity increases “architecture” domi-
nates “material.” The need for ways to
characterize and communicate architec-
tural concepts in developing programs
has been a long-standing problem in the
design of computing systems. A pro-
gramming language provides a context
for developing strategies, and it must
supply both the ability to make tools
and a style suggesting useful approaches
that will bring concepts to life.

We are sure from our experience that
personal computers will become an inte-
gral part of peoples’ lives in the 1980’s.
The editing, saving and sifting of all
manner of information will be of value
to virtually everyone. More sophisticat-
ed forms of computing may be like mu-
sic in that most people will come to
know of them and enjoy them but only
a few will actually become directly in-
volved.

How will personal computers affect
society? The interaction of society
and a new medium of communication
and self-expression can be disturbing
even when most of the society’s mem-
bers learn to use the medium routinely.
The social and personal effects of the
new medium are subtle and not easy for
the society and the individual to per-
ceive. To use writing as a metaphor,
there are three reactions to the introduc-
tion of a new medium: illiteracy, litera-
cy and artistic creation. After reading
material became available the illiterate
were those who were left behind by the

new medium. It was inevitable that a
few creative individuals would use the
written word to express inner thoughts
and ideas. The most profound changes
were brought about in the literate. They
did not necessarily become better peo-
ple or better members of society, but
they came to view the world in a way
quite different from the way they had
viewed it before, with consequences that
were difficult to predict or control.

We may expect that the changes re-
sulting from computer literacy will be as
far-reaching as those that came from lit-
eracy in reading and writing, but for
most people the changes will be subtle
and not necessarily in the direction of
their idealized expectations. For exam-
ple, we should not predict or expect that
the personal computer will foster a new
revolution in education just because it
could. Every new communication medi-
um of this century—the telephone, the
motion picture, radio and television—
has elicited similar predictions that did
not come to pass. Millions of uneducat-
ed people in the world have ready access
to the accumulated culture of the centu-
ries in public libraries, but they do not
avail themselves of it. Once an individu-
al or a society decides that education is
essential, however, the book, and now
the personal computer, can be among
the society's main vehicles for the trans-
mission of knowledge.

The social impact of simulation—the
central property of computing—must
also be considered. First, as with lan-
guage, the computer user has a strong
motivation to emphasize the similarity
between simulation and experience and
to ignore the great distances that sym-
bols interpose between models and the
real world. Feelings of power and a nar-
cissistic fascination with the image of
oneself reflected back from the machine
are common. Additional tendencies are
to employ the computer trivially (simu-
lating what paper, paints and file cabi-
nets can do), as a crutch (using the com-
puter to remember things that we can
perfectly well remember ourselves) or
as an excuse (blaming the computer for
human failings). More serious is the hu-
man propensity to place faith in and as-
sign higher powers to an agency that is
not completely understood. The fact
that many organizations actually base
their decisions on—worse, take their de-
cisions from—computer models is pro-
foundly disturbing given the current
state of the computer art. Similar feel-
ings about the written word persist to
this day: if something is “in black and
white,” it must somehow be true.

Children who have not yet lost much
of their sense of wonder and fun
have helped us to find an ethic about
computing: Do not automate the work
you are engaged in, only the materials.

If you like to draw, do not automate
drawing; rather, program your personal
computer to give you a new set of paints.
If you like to play music, do not build a
“player piano”; instead program your-
self a new kind of instrument.

A popular misconception about com-
puters is that they are logical. Forthright
is a better term. Since computers can
contair-arbitrary descriptions, any con-
ceivable collection of rules, consistent
or not, can be carried out. Moreover,
computers’ use of symbols, like the use
of symbols in language and mathemat-
ics, is sufficiently disconnected from the
real world to enable them to create
splendid nonsense. Although the hard-
ware of the computer is subject to natu-
ral laws (electrons can move through the

circuits only in certain physically de-
fined ways), the range of simulations the
computer can perform is bounded only
by the limits of human imagination. Ina
computer, spacecraft can be made to
travel faster than the speed of light, time
to travel in reverse.

It may seem almost sinful to discuss
the simulation of nonsense, but only if
we want to believe that what we know is
correct and complete. History has not
been kind to those who subscribe to this
view. It is just this realm of -apparent
nonsense that must be kept open for the
developing minds of the future. Al-
though the personal computer can be
guided in any direction we choose, the
real sin would be to make it act like a
machine!

MM (D enase

A 1 f & rectangle point 38 38 poine 226
128 11 cutline

12 « wectmgle point 28 2% point
3¢ 389, 12 cntline

a3 « vectmgle point 59 &8¢ peint
8 254, 13 culine

el hame i

W tzetmtle frame 1 k

[T i

INTRICATE PATTERNS can be generated on the personal computer with very compact de-
scriptions in SMALLTALK. They are made by repeating, rotating, scaling, superposing and combin-
ing drawings of simple geometric shapes. Students who are learning to program first create in-
teresting free-form or literal images by drawing them directly in the dot matrix of the display
screen. Eventually they learn to employ the symbolic images in the programming language to
direct the computer to generate more complex imagery than they could easily create by hand.

13

The Author

ALAN C.KAY is a principal scientist
and head of the Learning Research
Group at the Xerox Palo Alto Research
Center. He received his B.A. in mathe-
matics from the University of Colorado
at Boulder and, after a short career as a
professional jazz guitarist, studied com-
puter science at the University of Utah,
obtaining his Ph.D. in 1969. He then be-
came a research associate and lecturer
at the Stanford University Artificial In-
telligence Project. He moved to Xerox
in 1971. “I have always been equally
attracted to the arts and the sciences.” he
writes. “Eventually I discovered that the

world of computers provides a satisfy-
ing environment for my blend of inter-
ests.”

Bibliography

TowARrDS A THEORY OF INSTRUCTION.
Jerome S. Bruner. Belknap Press of
Harvard University Press, 1966.

ARTIFICIAL INTELLIGENCE. Seymour A.
Papert and Marvin Minsky. Condon
Lectures, Oregon State System of
Higher Education, 1974.

PERSONAL DyNaMIC MEDIA. Alan C.
Kay and Adele Goldberg in Comput-
er, Vol. 10, No. 3, pages 31-41;
March, 1977.

NERML . o . o PAGE 1

INFORMAL DG silg.fd - sndeleg.fd sroman.fd’

An Infdrmal Introduction to SMALLTALK
by

_ ~ Alan C. Xay
Xerox Palo Alto Research Center

The easiest way to learn SMALLTALK is to just makeé it do useful things for
you !

Let's get SMALLTALK to draw a SQ UA R E for us. First we have to tell
SMALLTALK just what it is that we mean by “square". -

to sguare
. iforward 100

iright °g0

iforwvard 100

iright 94

Ciforward 164

“iright o4

G forward 100
MTo™ is part of SMALLTALR We sent it a meEssage can515t1ng of a -
name, "square”, and a definition in terms of drawing commands inside of
Tmargin parentheses”.

We can now use our definition just as though it had been part of

. SMALLTALK.

‘square
- and & square is drawn. Try it again.
- square o _
Whoops! We just created some bugs! First, the "peén” was not 1eft.ﬁéiﬂting
~the same way as it was found, and also we forget to clear the screen and
return the pen to the center.
'_erase
clears the screen,
home
centers the “pen” pointing uﬁs
white _
. draws using white ink on a black background, Try
 ﬁhite home erase forward 50
fblack '

draws using black ink on a white background.

A "cleaner” version of “square" is .

“to square

iforward 100
iright &g
iforward 1684
fright 9@
Ciforward 100
‘right 99
Sforward 1064
iright o4

What is there about this ééquence-ﬂf'acticng which has to do with

"squareness™? All the turns are 90 degrees, and they alternate with
f?rward travel of the same distance. S0 the following definition should
also work.

“to square
‘repeat 4
i iforward 133
iright 90
Try it.

"Repeat"” is sent a massagé'tdhsisting of two parts. The first is how many =~

“repeats” are desired, the second is just what to repeat.

What about a square of any size? What is there about the previous
definitions that only has to do with size as opposed to “squareness”?

It seems oniy to be the distance traveled (which is the message to the

Mforward” command) .

Just as we can send messages to “forward”, "right” and “r6peat”'t0 give
them additienal information about our desires, we can send messages to our
own definitions as well., We would like to send “"square" a message which

says what length of side we want each time.

‘such as square 160 or square 50

Any definitlon can receive a message by saying “:”, Since the message is
different each time, it would be nice to give it a nanme to allow it to be

~used anywhere in the definition,
A definition to draw a square of any size is

to square

ftsive

irepeat 4

: iforward size
iright 90 '

“?ry it and see. The "™ picks up the message amd calls it “siza“ |

“farward” refers to the nessage by its name “size”,

Now let's try a TR T ANGLE of any size. Well, it's really almost the

same as a sguare, isn't it?

‘to triangle

i1slze
irgpeat 3

TINFRML . o © PAGE 1.2

forward size
iright 120

Try 1t.

‘The two definitions are almost the same exéépt for the number of “repeats”
and the angle. Is it possible to define actions which will draw

ANY POLYGON?Y

Well, we could certainly send the definition a message of two parts. Gne
for the sirze, the other for the number of sides we want.

to poly
fisides isize
Repeat sides
i iforward size
angie ERER

_Thls looks reas Gnable except for confusion about the angle “Repeat” w111
be sent a message for the correct number of sides and “forward” will get
" the right message about side length as before,

Now, what about the angle? When we turned right for the triangle it was
128, for the square 90. What about a pentagon? 727

One neat way to look at the situation is that a complete trip for any

polygon will get yvou back EXACTLY where you started and the heading of th&
pen WILL HAVE fURﬁES THROUGH 36d degrees EXACTLY.

The number of turns taken is the same as the number of sides (because the
“repeat” controls this)., So, 1t seems as though the angle taken should be
360/sides. Try it. :
to poly
itsides 1size
iRepeat sides
i iforward size
iright 360/sides

- Try a few to see,
poly 5 50

poly 5 100
poly 18 28
poly 50 5

poly 360 1

Hmmmm, Does this make sense for a

CIRCLE?

'to clrele -
: ipoly 3606 1

It's nice that we can use any of our definitions exactly like SMALLTALK's
cown commands. Now suppose we want circles of DIFFERENT size. What is there
about “poly 360 1" that is "circlelike™ and what has to do with size?

ge know that “poly 3 +xx" doesn't look like a circle and “poly 360 1” .
oes.
What about “poly 360 10" ?

Try it.

So how does this strike you?

To circle
f1size
‘poly 360 size

. Now you may say, "0K, we can change the size of & ¢ircle alright, but the
- number we are gending as a message-doesn’t seem to bear any relationship
“to the diameter or radius”., True? Well, what do we know about the 51rc1e?
What is its circumference?

wWell, it seems that poly "repeats” 360 times. Each of those times
“farward” goes forward a distance. 5S¢ the circumference of any polygon is
sides = size. A relation between the radius of a circle and its
clircumference is: Circumference = 2 = pi = radius,

S0, sides %« size 2 & pi + radius

it gt

and, slze =(2 # pil » radius)/sides _ _
‘Let's now define a circle routine where the message we send it is the
- radius.
to pi
i3.1415%
to clfcle
iradiug

pmly 160 (2 % pi % raﬁlus)fﬁﬁﬁ

'-Try it and szee,

By now you are probably getting the idea that g@ttlng SMALLTALK to- do

things is easy. True.

Now what happens if we jiggle some of the things we are doing a little?-

Seymour Papert's kids call the following kinds of things
SQUIRALS!

- to sguiral

Lisize :angle

iforward size

iright angle

squiral size+10 angle+2

INFRML o I ' PAGE 1.4

‘Notice that this definition goes on forever so the "whoops” key needs to-
be used!

xsxxxeMore on this in a bit. 1t can be found in Seymour's stuff.

An interesting variation-on "poly” is a definition that draws

Z_N ESTED FOLYGS!

To star
tisides :size
{1f size > 4
then (Repeat sides
! iforward size
iright 3606/sides
istar size/3

Try a few of these.

Now, -are you already for a DR A GO N ? This is a very sample dafinitlun'-
whose actions are hard to predict. _

‘To dragon
f1length
‘1f length = O then {forward 10

else {If length » G
i then | dragon length -1
¢ right 98
: dragon -~length-1

else idragon ~lengthsl
iright -990
_ idragon length+1
A more compact way to say this is

To dragon
ftlength = O .. iforward 10

length » 0 .. !dragon length-1. right 99, dragén -iengthmi
dragon -length+i., right -90., dragon length+l

Experiments with _
ACCELLERATED MOTION

. Toe rollick

o irtimes .figure

Sl L fsetup

ﬂgﬁfg " ;Repeat times

T T ipenup

Eforward ,dlSt « dist + inc '

iright (.angle « angle + ain¢) + ,turn « turn + inc
ipendn

{(figure) size

gfaran T) o= T AR R

CTry rollick 190 square

' -S.H'Q.D T 1 NG elastic objects iiito the air.

To shoot
fyxXacc iyacce
[+YY © yace

: - : : - | : -_'Wj“uﬂgww _
{Repeat lots I ST ':g%{fh%mﬁ‘hﬂkﬁj &?3 P
i ipendown. object penup. SO - e PR Eibi;c 7.
iforward ‘yy « Yy - gravity _ S e _ { wen* gy -Tan
iright 90, forward xacc. right 270 ' s e I
H . _ {’ . g

fyacc = -yy . i{closeto O JYY © Jyacc « yacc # elastic) o iDone N ‘%ﬁﬁmﬂ}“—

Asinple SPACESHIPLE

To drawship _ . _
{pendown - C o : -
iright 180, forward 5. right 315, forward 7. right 225, forward 24.
iright 315. forward 7. right 270. forward 7.
iright 315. forward 20. right 225. forward 7. -
iright 315. forward §.

That was tedious, wasn't it7 Later we wiil discover that we can just ‘
paint, draw or sketch any figure to be animated ourselves without having
to make SMALLTALK draw then.

To moveship
“itpeint :thrust
§+turn - ,speed « 0

cheat forever

i ipenup : _
iforward .speed « speed + thrust
iright ,turn « turan + point
gﬁrawshig

Try

moveship 201

Cmoveship 1 2

Use the WHOOPS button to kill a version.
Now for the big time! Try
moveship mouseX mouseY

and grav the mouse guickly!!

SPACEWARTI !

To Spacevehicle

INFRML - - . | _PAGE 1.6

tshape ,at posx posy :hea&ihg'
“p&peed speed .
.controls :thrust :point :trigger.

Repeat
i iLeft Roll « Roll + peint.
{Forward Speed « Speed + thrust.

{1f thrust > O then (Show shape .exhaust : Flame).
41f thrust < O then (Show shape .nose @ Flamed
E else {(Show shape).

P1f trigger on and Numberoftorps > 0
i then iNumberoftorps « Numberoftorps - 1 .
creite
Spacevehicle ,torpedo
at posx pesy direction
speed speed
controls 25 0 off

élf touching something
then {Quit something. Show Crash Quli self).

This set of actions defines both what a spaceship and a torpedo do in-a
somewhat sneaky way. A torpedo is a spaceship with a different shape,
constant thrust, straight direction, and no ahility to fire torpedos of
its own.

The pictures "Ship” and “"Torpedo"” both have a subpart called “exhaust”.
‘This acts as a4 "hole” where other pictures can be placed, such as "Flame”
‘when the thrust is on. A special subpart name, “center”, defines the axis
of rotation for "left” and “right” turns.

- "Crash™ in a more elaborate exanple would probably be a set of actions to
produce ever more grandiose effects.

This particular game starts a ship out with 20 torpedos with no provision
for more when all are fired,

"Speed” and "Roill"” are names for the accumulated velocity of forward:
travel and turning. 5o the "thrust” and "point” controls are
accellerations as in a real spaceship.

The "behaviour” at the bottom signals the actions to be done, The- message-
received is what “shape™ to use, what initial "position” and “direction”
to assume {these names are the ones that are updated by “Ferward” and :

cYLeft™), and where the information for “thrust”, "attitude”, and firing of
torpedos is te be supplied. For spaceships it will be the joystick of each
player, for teorpedos, it will be constant information.

 The actions are "Repeat"ed over and over.

They are to update the "Roll' and "Speed” accumulations,

to rveposition the ship, which will update "position” and "direction”,

to display the shape of this object (with "Flame™ if thrust is "on"},

to send off a "Torpedo” if the “trigger” is “on"” and the "Numberamfntarps"
left is greater than zero.

Then a check is made for a “touch” and, if g0, the object touched is . -
- destroyed ("Quit"), the great "“Crash” is "Show"n, and finally our object
destroys itself. :

‘As many spaceships as required may be instantiated by using “create”.

R E AT P

create . A o A
" Spacevehicle LShip at randonm random random
' speed randon o _
controls joy 1 up Joy 1 side joy 1 but.
‘Create
- Spacevehicle Ship at random randem randonm
speed randon o
contrels jovy 2 up joy 2 side joy 2 but.”

New “"Data" Objects and their "functions”

" The ease with which an external form can be associated with an internal
meaning in SMALLTALK means that many objects which are Ycast in stone” in .
other languages can be defined and modified easily by anyone. 3uppose

only the Word and List operations are found in the language, then Numbers
can be described in terms very similar to that of “schoolchild” aritimetic
as shown below,

There are many ways to accomplish arithmetic; the example.deliberatéiy :
mimics the use of a “plus table" for single digits, the carry rule, and
special cases involving 0, which you already know from school.

+PlusTable « Li(r@¢ 1 2 3 4 &5 6 7 8 99
i o2 3 4 5 6 7T 8 910
(2 3 4 5 6 7 8 917 11)
(3 4 5 6 7 8B 91011 12
(4 5 6 7 B 910 11 12 13
F0s 6 7 8 910 11 12 13 14
06 7 8 9 19 11 12 13 14 159
{7 8 910 11 12 13 14 15 16 3
(8 910 11 12 13 14 15 16 17 3
{913 11 12 13 14 15 16 17 18
To Number |
Ppe o PTAOT self

PYA new "Number” is created and declared by saying (for instgnce) X « |
iNumber = 12345, The ",” EVALs its third argument, which calls "Number?
iwhich creates an instance, which looks for a ™", finds if, EVALs its
inext argument (which is a "Word” 12345}, binds it to “AY, and RETURNs
ithe instance.”

Povalue . i1 A

%"Thﬁ Ward which is the-valué'Of-dseif” is RETURNed”. -

szrst T ALfirst. _ . .
_ %? “first” of a "Number” is the same as “first” of the "Word” which is
iits value. The other "Word Parts” are done in a similar manner.”

=

io* w i3B. 1 AJdength = 1 and B,length = 1 . iPlusTable A B
’ ’ gg,empty or B.empty - iA jointo B
' (A,butlast + B,butlast + carry A BJ)

INFRML

Joznto { A. iast + By last)41ast

E“Thi$ is a recursive definition which uses several cases to ancomplish
§|!+”

! The first (A and B are both single digits) uses the chilﬂr&ns :
iaddition table selected by each of the numbers in turn to isolate the
isum which is RETURNed.

i The next case terminates the routine in the case where either ot
thothyof A, B are FEMPTY, Remewber that anything “jointo” EMPTY is o
ithat hlng. The last case is simply a statement of the goal, namely:
ithe front digits of A and B are added to the carry found by adﬁlng the
ilast digits of A and B, the result i1s joined to the single digit
iresult of the sum of the last digits of A and B.

! More branches of the conditional would be added to handle the
PAddition of negative numbers, ete.”

.= . i1B. T "Subtraction is handled in a manner analogous
: : ta Addition”.

%nu = (1B, T A = B,value,

§n< w 1B T 1?\(B - Al first = - then SM?T? else self.

é“DDlﬂg the definition this way allaws x<y<z ete. to work properly.”'

NOTE! This def of Complex is not completely edited !!

To Complex

Pat il Value*ccmpiex o ? Complex «
: i P re
in

value,re
value,im

+ %

re + value im

+

value,fraction . (¢ Complex
't value G + self

e~ aitvalue,complex it Complex «
: s : re - value,re
_ j im-value,im
value,fraction .1 Complex « re - value im

otherwise »T value G - self
s% o ivalue.complex . 1t Complex « (re % value,re =~ iim % value.,im)

(im * value,re + ire » value,im)
value.fraction . Tt Complex « re # value 1m % ivalue
atherwise = T value 3 % self

o3 o+ o tvalue.fraction . ¢t Complex « re + value im

ofF o o tvalue,fraction . 1 Complex « value - re i-im

3 pw o rvalue.fraction . T Complex « re % value im ix value
3 .value . 1T Error"™l don't know this operator” value .,

sre L o.e :value,fraction o re = value . t zelf

u il T re
slm o e tvalue,fraction in « value . 1 self
an = T im

o+ o irefraction wiinmsfractien . T self

PAGE 1.8

LENFRVE

Complex .1 true ' :

~op tvalue .. 1 value O :op seif .

~0p tvalue .. 7T value @ iop self
wa - T self

S -

ST

 Necessary Information about this paper.

Latest revision: June 6, 1973

. {The permanent names of this file are
SMALLTALK.DC. Y
SMALLTALKL.DC.
SMALLTALK2.DC, _
Tts latest incarnation will always be found on the
Learning Research Group Demo Diskpack.

The full structured index is found with sach verslon.

Look under the structure to discever what file to lead.

This file sheould be displayed using font SROMAN.FD.
- To print, edit with SMDELEG.FD and Write Translated,
~ then print on XGP using font SMDELEG.XG)

" PAGE 1

st o 7 paeE 2

"SMALLTALK, a Model Suilﬂing Languége'
- With Intensional Semantics

by
Alan C, Kay

~Learning Research Group
Yerox Palo Alto Research Center

Abstract

SMAlLTALK iz a language which allows Lh]ldren {and adults} to build
semantic models of their ideas in simple uncompllcated ways, and
dynamically simulate them with respect to arbitrary environments..

Simplicity is achieved by having
a. only one kind of object in the language {(a process) Whlﬁh can
act like all other known computer objects,
. a single uniform scheme for interobject communlnatlon,.anﬂ
¢. an intensional semantics in which the meaning of an object is -
& part of the class to which an cobject belongs rather than

dispersed through the system as part of more conventional

extensional operar1ons,

Benefits are the abilities to create new "functiongl”, "“data”,-
“eontrol™, etc., entities without the usual problems assnc;ated with
- updating and coercion of generic functions.
kbbb

Acknowledgenents

The main influences on the content of this papar were the coprocess
and data/function Pqu1valenre: of FLEX%ka 08,69%, Flex's influence
CSIMOLA ¢Dahl, et.al.?f, LISP iMcC,et.al.d, a number of control idsas
of Dave Fisher%fi—?ﬁi, goals as exyr&ssiﬂns found in Carl Hewitt's
PLANNER‘he-70%, and the simplicity and ease of use of

CLOGOpa, et.al-67, .., 730,

Dan Inwalls of LRG in PARE, the implementer of SMALLTALK, has
revealed many design flaws through his several excellent quick -
“Ythrow away"” implementations of the language. 3MALLTALK could not
have existed witheut his help and good cheer. _ _

Introduction _
SMALLTALK is built from a few simple, vet powerful, ideas.

First, SMALLTALK considers every OBJECT in its world to be an
1ndepanﬁant entity with local state and control. All distinction
between “datalike” and "procedurelike” objects, such as exist in
cother programming languages, is thus removed, This includes "data”,
-such as numbers, strings, arrays, lists, siructures, etc.;
"functions”, such as "factorial', 'plus', 'print', etc,,'“cantral
structures”, such as conditional branches, repeats, recursion, and
so oany “I0 devices", such as 'files', 'the user', 'display and
keyboard', etc.; all are treated alike because they ARE alike.

Next, all objects are composed of PARTS, even if they only contain
themselves. The object can be thought af 45 & dypamic dictionary
wWhich contains all the relations and rules in which it can take
part.

s e e _ o el e AT A

! — s " ; ot : j L PLA R Le T e

Third, ohjects can send and receive MESSAGEs to/from other objects.
This may cause new objects to be created, altered, or even _ -
~-destroyed. _ s
(Since there are no “special” objects, there is only one -message
protocol.) S

Finally, each object .is considered to be a member ({(or INSTANCE) of a
CLASS, which is another object that contains the rules of behavior
shared by all the members. Since each class has a class defining _
object, they are members of the class of class-defining~objects, as
one might expect. :

Messages

A message is & stream of zero or more symbols. .
1f the stream starts with an open parenthesis, 1ts closing
parenthesis absolutely terminates the stream.

"An embedded “."” at the same level will terminate the current
message and will cause the message following it to be sent.

- If the message is composed of parts&hnse termination is
amhiguous, a "," can be used to clarify matters.

 Sending is done from left to right using a very simple rule: control
is passed immediately to the first object encountered in the stream,
along with information about the context of the send. This is all
. the EVALuator does. The recelver may gather in the message in any
“way it chooses. : '
A common first object is an instance of the class "name” (as with
a LISP atom, ali of its members start with a letter and are
composed of letters, digits , underscores, and other special -
characters) .

The action of a name is to look itself up in the current |
environment/dictionary to see 1f it has a meaning {which is
another object), If it does, that object is RETURNed by APPLYing
it to the remainder of the message;--- And so it goes until the
‘message is consumed,

A'venerabla example: factorial.

A message
facterial 1.
is sent in the following manner.

Control is passed to the name “factorial” which looks itself = -
up in the current environment and finds another object as its

. value. The new object is a class defining object which
‘contains the rules for all the instances of the class
Mfactorial":

tn., T if n = 0 then 1 else (n » factorial n - 17,

The action of the class defining object is to create a new
instance of factorial and APPLY it to the message.

The ":" is a "receive” (or "“input™) object whose action is to
EVALuate the input stream {in this case “3", whose value is
“3") and then to make a new entry inte the local environment =

~ to gdefine the name (in this case "n"), After this a lookup of
"n” will have the value "3”. :

ST | - o PAGE 2.2

The ™" is a "send” (or "output”) object which will APPLY the
EVALuation of its argument to the remainder of the message
found in the CALLER's object.
The next message is sent by finding "“if"” which tries to
receive the message consisting of the EVALuation of “n=0".
Control is passed to "n”.
It looks itself up and finds "3%,
Control is passed to it. - _
"3M {5 an instance of the c¢lass number which has many
relations it can respond to.
w1" receives the next object (unevaluated) to see
what it is. (It could be any of +, ~, * /, ¢, ¥,
etc.:; in this case it 1s “="}. :
"I wants now to evaluate the next part of the
message in order to see whether to RETURN “true” or
l!fal Se!r. ., . .
Control is passed to “0” which, as with "3”, .is an
instance of class number, and thus shares the same
relations. '
S0, it looks to its right to see if anything like
+, =, %, etc., is there which it can respond to.
It finds only "then” for which it has no meaning.
So it RETURNs ITSELF to "3” which now has enough info
: to decide "not true”
which is RETURNed to "if" which decides not to evaluate the
message following “then”, but does try to evaluate the
message following "else”.
“n" looks itseif up, finds the value “37 _
which picks up the name "x” for which it has a
meaning. .
Sg "3 tries to evaluate the next.part of its message
. "factorlal n - D" :
Control is passed to “factorial” which leooks
itself up and discovers {as before) a
class-defining object with the rule:

in. t 1f n = 0 then 1 else (n # factorial n - 1}«

“As before, a NEW instance is created which will
try to evaluate the message ™n - 1]" to get a new
value for ™",
" mg®oin the OLD environment looks itself up and
discovers “3”
which looks to its right and finds "~ so it
tries to evaluate the next object "“17 .
which which looks to its right and finds
M rwhich terminates any message to “1')
so it RETURNs ITSELF to "37
which knows how to subtract “1"
which causes a nev instance of class number
.~ to be produced for the result “2"”
which is RETURNed to the ":' in the CURRENT
instance of "factorial® C
which will enter it as a value for "n” in the
CURRENT environment. ' '
“And so it goes.

The preceding rather long winded explanation of a well known
~example iilustrates a number of important points.
. First, although the terminology seems to be more general than
is needed, a simple program in SMALLTALK looks simple and can
© be discussed in simple terms.

Second, only one rule of correspondence is needed to link
form and content. The evaluator ONLY needs to know how to pass

control and context to an object. All other meanings are found
distributed with the objects in the system. As shown, even
‘such a seemingly primary act as creating a new instance is
-~ done by an object and thus can be changed at the user's whin.

~ Third, there are many cases where this generality of approach

pays off handsomely. If we wani to trace the activities of a

name (such as ™n" in instance 1) we need only create an object

which can replace 3" as a meaning (so control will be passed
to IT when "n" is touched), AND has a local entry of its own
for "1 sp that the meaning of "n" will not change with

. respect to its input/output characteristics. This means that
an object can simulate any other object.

‘Fourth, all "relations” and “eperators” (such as S, by

=, etc.) can be defined "intensionaliy” (or “intrinsically™
as parts of an object or object class, rather than

“Mextensionally” (or “extrinsically”), as is usually the case,

as globzl functions.
in fact, "“factorial” could have been defined this way as an

intensional relation of a number. We might then have said
“ " and the class number would know what to do.

This means that the information pertaining to a class and
what its members do need only be stored with the class. No
global operations need to be updated. So, a class may be
deleted without changing the rest of the world. B

Also, this is a very comvenient way to handle problems that
arise from having multiple classes with operations: such as
coercions between classes and the various senses of “fetch”
and “store"” {("e).
For instance, the message "a « 3 + 1”7 means! e
pass control to “a" which will look itself up and
pass control to the object it finds o
which can gather the rest of the message ‘as it
pleases, ' o
1t can look to see if the next name is a “e”,
if so, it can EVAluate "3 + 1" and decide how
.+ to store it.
S0 % 1 « 81", if "b" were an instance of an array,
_could mean
tstore 81 in the lst position’; or _ _
if "b” were an instance of a hash table routine, could
medn
‘associate the hash of “1" with “81" in some way',
etc. _

The problem of coercions will be discused a bit further on.

Fifth, instances may be EVALuated “concurrently” using the -
very same EVALuation strategy. Here, the generality of message
send/receive becomes much more important. _ '

Class Definitions Already in SMALLTALK
(See SMALLTALK1.DC for this branchs.

Some SMALLTALK Progranms
<See SMALLTALKZ.DC for this branchy

ST1 | S : . pacE 1

Necessary Information about this paper.
: latest revision: Jupne O, 1973

- -{The permanent names of this file are
SMALLTALK. DT,
CSMALLTALKL.DC. HhEk
SMALLTALKZ. BC. _ o
Its latest incarnation will always be found on the
Learning Research Group Demo Diskpack. '

The full structured index is found with each version, _
“Look under the structure to discover what file o load. N

“This file should be dispiaved using font 3ROMAN.FD.
“To print, edit with SMDELEG.FD and Write Translated,
then print on XGPF using font SMDELEG.XG)

. SMALLTALK, & Model Bullding Language
With Intensional Semantics

by -
Alan C. Kay:

- Learning Research Group
" Xerox Palo Alto Research Center

Abstract
 (See File SMALLTALK.DC for this branch>

_ -Ackﬁowledgememta
¢See File SMALLTALK.DC for this branch»
Introduction _
 <See File SMALLTALK.DC for this branch»
~ Messages _
<See File SMALLTALK.DC for this branch>

FEIY

 Class Definitions Already in SMALLTALK

SMALLTALK is supplied with many useful'aiasseg,”intluding QuiﬁE'a
few found in one way or another in other programming languages.

These definitions are written in SMALLTALK as though they were
not primitive objects. In some cases (such as the definition of
M{f") a primitive must be used to describe itself---which causes
some obscurity.

Inﬁut and OQutput Objects

informally (i.e,--~more readable)

-
-

Input a Value

followed by a name will evaluate the input stream to

nroduce a new object which will be bound to the name.

This is exactiy the same as L0OGO.

Exanple; :value . o . L
will bind the result of evaluating the input stream to
“Yyalue®)

Input a Token

“followed by a <name> will not evaluate the input stream
but will bind the next object there to the <name>.

There is no equivalent for this in LISP or LOGO, it acts
as though the next input object were quoted.

Example; .value _
will bind the next input object to “value”

Check Input for a Token

“followed by a <name> will check the input stream to see 1f
an identical <name> is there. No evaluation will take

place. The Input Stream Pointer (or Program Counter) will
NOT be advanced if the match fails. If the match succeeds,
the ISP will be advanced to the next position.,
This is used frequentiy to check for “operator” tokens
such as +, %, and .

Example; ot will check the input stream for a
"i? and wiil return TRUE if successful

Input Literal Strean

 followed by a <name» will bind & reference to the Input
Stream at the current point.

This is equivalent to FEXPR in LISP 1.5 or NLAMBDA in
BEN-LISP. . _
Example; svalue will bind “value"” to the input'
stream. EVALuation of this fragment may be delayed
until later.

¢Other Input Objectss

ST1

- " PAGE 2.1

will be mentioned here in a later version of .this memo. An

“ohject to EVALuate a sequence of the input stream (like
EVLIST in LISP) will probably be included at the very
least,

T APPLY-RETURN a value.

This output object is used when when a subroutine control
structure and message passing discipline is desired. Its
single argument is EVALuated in the CURRENT environment and
then APPLYed to the program stream of the CALLER process
to which CONTROL also is RETURMNed.
When used in "left nested” argument gathering (for example
Cx.first,last or (A + B) + C), APPLY-RETURN will continue
" the evaluation process.

T PASSIVE-RETURN a value. _ C o Co
The single argument is evaluated in the CURRENT environment
and RETURNed to the CALLER along with CONTROL. . :
E?ESIVEwRETBRN is similar to OUTPUT in LOGO or RETURN in
Li5P.

fl -~ GENERAL-RETURN a4 value,
' it valus process
is the form.
it value caller, _ o
is the same as PASSIVE-RETURN.
i fapply value message) caller.
is the same as ACTIVE-RETIURN.

'_<Otﬁer Output Ohjects>

will be explained soon.

Defining a Class (Function)

There are many ways to define a class depending on how much
the user wants to know about the language and how much control
‘he desires to have over the format of the INSTANCE of a

" definition. For now we will only be concerned with semantic
notions {which also require the least amount of explanation to
ail concerned). o o

LOGO/SIMULA/FLEX Fashion

"To” will define classes of roughly the power of SIMULA or
FLEX which include such things as function, process, and
structure definitions in other languages.

Te To .name .body ,End. :
“As shown, “"To" takes the first object in. the message -
stream unEVALuated to be the name of the class. All of the
rest of the input stream is a structure which is taken to
be the code body of the class. A member of the class CLASS
is INSTANTIATED and bound to the name., When control is
later passed to-the name & new instance of the class will

be created andiruny”
End.

0 ?i‘
5 {ﬁ:ib\ ‘F’Q‘ww-s ‘

add

R o N = R

:_Examplés;

: To factorial in., = _
N T 1f n=0 then 1 else (nxfdctorial n-1).

§? - End.

S _ This looks a lot like LOGO (intentionally) except that

‘the input variable “:n” is not part of the heading (as
in LOGO), bhut is part of the "body”. This reflects the
_fact that input objects act like functions and thus.can
be used anywhere in a program. When a "“function” is
instantiated, the first thing that is done in most
languages is to bind the arguments to a new set of _
names. The very same effect is achieved in SMALLTALK .
when the “evaluating input object”, ": , is used
in the first set of expressions.
Conventional Class Definition A
“Ta*" as shown above, was included mainly for people familiar
with LOGO and LISP. SMALLTALK really treats "class objects”
like any other object. That is, any object is a member of a
class---s50 an object which creates a class is a member of -
~tlass CLASS. o
This means that a more general (and more conventional) way to-
- define factorial would be to say

Jfactorial « class,(If :n = 0 then 1 else (n & factorial n

- 1} .
of perhaps |
factorial « class.i in. R | _ ” :
P If n = 0 then 1 else in # o D
: i ifactorial n - 1

using the <tab 1ist> ﬁ%nventionﬁ One could even say

LVET - LN, _

factorial « class -
L3038 var + (= U then 1 else)
$(vart .{x factorial n - 1)},

where “i" means "append” pretty much in the LISP sense.

Total Control of the Instance _ _ o
sxxfor bit pickers, more on this ldater this summer.

~Control fand State changing, etc.)

To If iexp.

texp.

CEnd. _ o - N o '

COMRIET is really just a dummy which computes 4 value to be
APPLYed to “then” or “.”. This means that "TRUE"ness and
UEALSE"ness are properties of objects. This allows us to
consider all legal numbers as TRUE, if we wish., A class
with one instance EMPTY is provided to handle “FALSE” .
CASEes,

T@ "

PAGE 2.3

T phane Enﬁ'g (exp._r exp)

To

To

To

To

To

 £nd.

"lookup the name in current eHV1ronment (if not
there, enter it as most global) and replace BINDING
with value of "exp” ".

E! name,
“nate that the value of the expression on the right “exp” is
RETURNed when a rebind is attempted, but when used as QUOTE,
it is the name which is RETURNed.”

End.

Eval axp sglobaleny treturn :msg.
“There are many ways to EVALuate expressions in Smalltalk
This one allows the user to set up an arbitrary &nv1rﬂnmant o
for free variable fetches, an@arbirary RETURN process, and -~
an arbitrary MESSAGE environment, “Eval? is included here :
since it is very frequently used in definitions of new

contrel primitives”.

Repeat .Loopexp.

Code repeat. _

Eval Loopexp iglobal iself EMPTY.
Code again.

End. _ n _
“Repeat EVALs its loop expression in the context of its
caller.”

Again _ :
"RETURN: control to the caller of its caller--i.e. 1o a
loaping contrel primitive of some kind such as “Repeat” o .
“which can decide what to do next”, _ . R
End. ‘ W)
. ‘. b}}&; RS

Done _ DR @
“RETURNs control to the caller of (the caller of its o
caller)--to one level further out than a looping control - kﬁﬂﬁﬁﬁﬂ
primitive, This automatically terminates the loop. o
Eventually “Done” will have an optional argument for 5

. dpasalng the RESULT of the loop back”. ' .

End.

Create
“Reschedule caller to be run instead of waiting for a
subroutine RETURNY.

rcall, e
"This causes an evaluation of the argument., So it will also
be running™.

‘End.

"As seen, “Create’” causes g parallel fork in contrcl
Actually, tHTS is what happens naturally in
SMALLTALK---the default message discipline is
deliberately limited to a subroutine “wait for reply”
.protocel. “Create” simply prevents the caller from being
passivated”,

To Word

Explaln

t"Words are like LISP atoms or ALGOL identifiers. Their basic
operations have to do with assembly and disassembly of their
internal structures,
Words also have a special meaning in the context of
evaluation. An ungquoted instance of a word will be locked

PR N RS R R

up {look itself up) when EHFDUﬂtg& by the EVALuatora 50
cat.first means "look up the most local binding of the
variable "cat” and APPLY it to .first”. But scats first
means " call routine "' which RETURNs the word “cat”,
which is APPLYed to ,first, which, as seen below, will
- RETURN “e¥ 7. .
" Numbers are words alse, but have many additional operations
having to do with arithmetic and so0 are defined as a separate
class.”,

pt o tvalue,word o
tself,

s

CFirst . |
t®the first character of the(Efintname of the word"”.

kel I
T"same as “first"”,

rul

1ast wn
t",..the last character of the prlntname of the word”

fl 1 il : :
t. . the same result as for "last”, Thig is Just an
abbreviation.”
Joutfirst . :
t"Somehow return all but the first character of the strlﬂg
rpprﬁqentatlmn of the word.,”

JDE :
?“.,.ﬂame as butfirst.,”

“uhutlast .
' "Somehow return alil but the last character of the strzng
representation of the word.V

t%, ., same as butlast.”

Sjoin . tvaluel,word? ..
T"This 1s roughly equivalent to the "cons” of LISP. The word
will be connected to the 1ist in "valuel”, and a new list
reference will be returned.”

: sWionin oivaluel.word? |
. T™This is roughly equlvalent to contatenate in 5NOROL. The
printname of the two words are joined together to produce a

new word which is returned. .cat wioin .dog produces
-scatdog.”
Caword? .
Tvalue.
JENpLYT
TEMPTY.
P B .
nlengt? . v
THSomehaw calculate the length {in charaaters) of the
number {including -7 and “.") ¥
Mm
sPTint .
P “Return a string representation of the object whlch may ba
. ﬁ;wi - displayed Each class which has instances which have a
=;§9 jgu meaningful visual representdtion will have a meaning for .
IRV .print. This is much simpler than having to inform a global
g gy’e print routine about the format of each new class.”
&

5T1

To

Cf o

- PAGE 2.5

~then o, tvaluel o ,else o .dum . * valuel R
or « T valuel. :
"Having "then” in "Word” in this way means that we are . .
adopting a convention that legal wordssn the context of a
teiB? act as TRUE and thus cause the "g§en” expression to be

evaliated.” s
(™ Tt P
Numbgr
HExplain.

T"Numbers work in a very intuitive way. The REAB program
recognizes number literals and creates instances for them in
storage.The bits that represent the particular instance of a
number are stored in the variable "value” and can be changed
by assignment as shown. This might be illegal if it is
decided that numbers are unique atoms. The opposite is

“assumed here,”

e . ivalue.number?.,

T seif,
If
~_evalugted and bound to “value” which is applied to number?
~"""which returns TRUE if it is. The actual value of the
ﬂumber objiect itself has been changed so that other objects
which have pointers to "self” will feel the change. This
might be made illegal, .

wEirst
"Somehow return the first character of the number which is
" ~" if negative, is “.” if between & and 1, and a digit from §
to 9 otherwise. It may be reasonable to calculate this value
ratheg Ehan keep a4 string representation of the number
around,

t*...the same result as for “first”. This is just an
abbreviation.”

last
T"Scmehcw return the last character of the number which is-
" if greater than 1 and known inexactly, and a digit from O
to 9 otherwise. It may be reasonable to calculate this value
rather than keep a string representation of the number
around.”

i - ' ;
! T, ..the zame result as for “last®. This ig just an

abbreviation,”

©opbutfirst o

bl

t"Somehow return all but the first character of the string
representation of the number.”

™. ..5amne as butfirst.”

Sbutlast ..
t"Somehow return all but the last char&cter ﬂf the string
representation of the number.” o

[} bl e
™., .same - as butiast.”

VAT recognized in the input stream, what follows is

v

X

=
DA
F .

Sjoin ..o ivaluel.word? . : S - o
t"This is roughly equivdlent to the “cons” of LISP. The word
will bhe connected to the list in “waluel”, and a4 new 1ist
reference will be returned.” :

SHioin Lovaluelword? - _ _ o -
1%This Is roughly equivalent to concatenate in SNOBOL. The
printname of the two words are joined together to produce &
new word which is returned. ,cat wioin .dog . produces
+catdog.”

SJumber? .
tvaius. _
"Anything not EMPTY will act as TRUE.”

JHord? .
Tvalue,

SEMPIYT .
TEMPTY,

.length .. o e
TSomehow calculate the length {in characters) of the
numher {including "-" and ".") .”

Wprint . : _ -
THReturn a string representation of the object which may be
displayed. Each class which has instances which have a
meaningful visual representation wiil have a meaning for
.print. This is much simpler than having to inform a global
print routine about the format of each new class.”

Sthen . :valusl . .else o .dum .. T valuel

_ or = T valusl, S
"Having "“then” in "Number” in this way means that we are .
adopting a convention that legal numbers in the context of a
test, act as TRUE and thus cause the “then” expression to .be
evaluated.” . :

#= . tvaluel,number? . : S
t"value if value and valuel are numerically EQUAL, otherwise
EMPTY. Note that this allows "a=b=c” to work correctly.”

¢# o tvaluel,.number? . _
TUYEMPTY 1f value and valuel are not numerically EQUAL,
stherwise value., Note that this allows “as=bec" to work
Cogeorrectly.”

ﬁé‘ﬁ svaluel,number? . _ _ o S
t"*value if value is numerically less than valuel, otherwise
© EMPTY. Note that this allows "“acb«c” to work correctly.”

¢ ¥ o tvaluet mumber? .

t"value if value 13 numerically greater than valuel, otherwise
CEMPTY.. Note that this allows "arbyc” to work correctly.”

o+ wivaluelnunber? ..
t'value added to valuel.”

T esvaluel,ounber? .

ttyaluel subtracted from value."”

D g% e tnumber? .

Tvalue multipiied by valuel."

_ q.xQQ;ﬁ'ﬁ

o/ = ivaluel.number? .o
t™vatue divided by wvaluei.”

Mod o ivaluel.number? .
t"value moduleo valuei.,”
WP = , o
t". .. the integer part of value.”
.n. f p s) .
™, ..the fractional part of vaiue."

LBXP . o
™. .. the exponent {to the base 10} of value.”

WAL
T if wvalue ¢ @ then {0 - valug) else value,

¢other numeric functions which are stored &s attributes>
sin, cos, other trig functions etc,

To List
Explain _
First o o+ = rvalus,list .
vaiue ,word?
oF = o+ = Ivalue,list .
_ vaiue . word?
C.1ast = o+ . value,list .
value word? ..
ol o o= . 1value,list .
value,word? .
Cetmtfirst o o+ o tvalue,list o
value,word? .
”bf P :Value+115t aa
- valus word? o
Jbutlast o .+ - :tvalue,list .
_ value,word? =
2 D1 o e o tvalue,list o
value,word? .

#

i

pjoin .
1

o=

4 - 4 .
as5enience?

P - o

2empty? .

siength .

Jprint _

w= o svalue,list o
a® :Value§135t b
2 ¢ . tvalue,list o
Ty wetvalue,list o
makeword .

To String

Fosition _ U ‘ T
Here are a set of useful operations for manipulating R
two~dimensional space. The convention is adopted that “posx” and
“posy” will refer to position state, and “heading will refer to
direction state. The programs are written so that the most local
occurance of these variables in the dynamic environment will be
updated. See the program “Spacevehicle” for a simple example.

~ To Forward idistance.

posx « posx + distance # heading.cos.
posy + posy + distance » headinga.sin.

S . e e . o . T S e TR R R L

 End.

To Right iangle, Co
. CE?aeading « (heading - angle) mod 34640,
End. '

To Left :angle. _ :
o heading « theading + angle)l mod J360.
- End.

Qutpui {(to displays, music, turtles, etc.)

To Show :picture. : . '
“This comprehensive routine allows the picture to be EVAlLed
and then coples the picture information into the display area
" using either the dynamically available variables "posx”,
posy”, "heading”, if its own bindings for these parameters are
EMPTY.

STL | - PAGE 3

Some SMALL’I‘AL]\ ngrams :
- <See SMALLTALK2.DC far Prngram Examplam o

ACK S . PAGE 1

ACKNOW.DC smdeleg.fd ack

ACKNOWLEDGEMENTS

Much of the philosophy on which our work is based was inspired by the
“ideas of Seymour Papert and his group at MIT.

5_-The DYNABOOK 1s a godchild of Wes Clark's LINC and a lineal descendant ﬂf

the FLEX Machine.

| The “Interim Dynabook™ (known as the ALTO) is the beautiful creation of
Chuck Thacker and Ed McCreight of the Computer Science Lab. at PARC.

SMALLTALK is basically a synthesis of well known ideas for programming .
" languages and machines which have appeared in the last 15 years.

The Burroughs BS5000 (1960} had many design ideas well in advance of its .
~time {and still not generally appreciated): comppact "addressless” code; a

uniform semantics for names {the PRT}, automatic coprocesses, “tapabillty”

protection (also by the PRT), virtual segmented memory; the ability tfo
tall a subroutine from "either side” of the assignment arrow; eic.

. The notiens of code as a data structure; intensional properties of nanmes

“ {property lists of attribute:value pairs on atoms); evaluation with
respect to arbitrary eavironments; etc., are found in LISP, probably the
areatest single design for a programming language vet to appear

The SIMULA's ('65 and '67) combined Conway's notions of software
‘coroutines (19GI-hardware versions had appeared in the B3000 3 years
earlier)y, ALGOL-6G, and Hoare's ideas about record classes (196sx%) into an
epistemology that ailowed a class to have any number of parallel -
instantiations {or activation records) containing local state including a
separate Program counter. Mest of the operations for a SIMULA '67 class
are held intrinsically as procedures local to the class definition.

The FLEX Machine and its language{'67-'69) took the SIMULA ideas

- {discarding most of the ALGOLishness), moved “type” from variable onto the

obiects(ala BS0OO and Euler), formed a total identification between
“coprocess” and "data”; consolidating notions such as arrays, files,
lists, "subroutine” files (gla 5DS-940), etc., into one idea. The user “as
a process™ also appeared here. A sta I was made to allow processes to
determine thelr own input syntax, ea held by many (notably
Leavenworthi, ng

The Control Definition Language of Dave Fisher (1970} provides many ideas,
solutions, and approaches to the notlon of contrel. [t, with FLEX, is the
major source for the semantics of SMALLTALE., It i3 a "soulmate™ to FLEX;
-independantly worrying about many of the same problems and very frequently
arriving at cleaner, neater ways to do thzn &, Many of Dave's ideas are
used 1nc1ud1ng the provision for many o& rgonal paths to external
environments, eand-that contrel is hasxually a matter of arranging these
'_&RVlrcnmenTs SMALLTALK removes Fisher's need for a compiler fo provide a
- mapping between nice syntax and semantics and offers other improvements
over his schemes such as total iocal contreoi of the format of an instance,
etc, _

An extemporaneous talk by R.S5. Barton at Alta Ski Lodge (1971) about

computers as comnunications devices and how everything one does can aaﬁily'

be portrayed as sending messages to and fro, was the real genesis of the
current version of SMALLTALK.

g o i g e

4y

HLK e e kR giasdicaCantaiy - SRR 3. U E - B 2P ol

The fact tha% kids were to be the users and the simplicity and easé of use
of the already existing LOGO (whose own parents were JOS5 and LI5P) -
‘provide lots of motivation to have progranms and transactlons appear as .
simple as possible--i.e. moving from left to right, procedures gather
their own messages, etc. It is no accident that simple SMALLTALK programs
look & bit like LOGO!

Problems discovered years ago in "lefthand calls™ prampteﬁ SMALLTALK to
make "store” intensional--i.e. a « b, means "call “a” with 4 message
consisting of the token "™ and "“b"". If anyone can make the right
decision fer what this means, it must be “"a”. The early fall of %9?2 sawW

‘an evalua&tar for SMALLTALK and the idea that “+V, “-P, ete., a8l should
also be intensional. This led to an entire phllosophy ef use (nlike
SIMULA '67) to put EVERYTHING in class definitions including the so- aalled
“infix operators”, The message ldeas allow messages to have a wide range

-of form since a message can be received incrementally.

MControl of control” allows control structures to be deflned. The language
SMALLTALK itself thus avo1d§Wprimztives” such as “loop ol”, synchronous
and asynchronous "ports” {(s+¥}, interrupts, baaktracklngt***}, parallel
eval and return, etc. All of these can be easily simulated when needed.

EREREEER AL LR ANRRER LA AR kR

‘These are the main influences on our language. There were many other minor
and negative influences from other existing languages and ideas too
numerous to mention except briefly in the references.

microPLANNER's main influence was negative in that it convinced us Tinally
that backtracking is not the way to approach problem solving. Instead; we
“prefer “trial evaluation” where a “straw process™ is run in a “straw .
~cenvironment” as a coprocess and constantly sends messages as to how badly
it gets creamed back to its originator. If it perishes, its-environment is -
- just discarded rather than backtracked. (A germ of this idea is found in
~Fisher's thesis).

. The fine idea of microPLANNER (“pattern directed invocation”-<-] call it
Meall by desire™) does not appear as a primitive in the current version of

. SMALLTALK (it was in S5T-1971) but may be easily added in just the way . a

particular user desires.

ERERREEERREARNEER AL EE

“Thia partzcular version of SMALLTALK was designed through the summer and
garly fall of 1972 and was aided by discussions with Steve Purcell, Dan
“Ingalls, Henry Fuchs, Ted Kaehler, and John Shoch. From the prEﬂeding o
acknowledgements is can be seen as a consolidation of good ideas into one
simple idea:

Make the FARTS (objects, subroutines, 1/0, etc. } have the same
properties and power as the WHOLE (such as a computer).

This is the hasic principle of recursive design. SMALLTALK recurs on the
notion of “computer” rather that of “subroutine” _

 Dan Ingalls of our group at PARC, the implementer of SMALLTALK"ﬁas
-revealed many design flaws threugh his several, excellent qulck “throw

e away" implementations of the language., SMALLTALK could not have existed

-without his help, virtuosity, and good cheer.

The original design of the "painting editor” was by Alan.Kay.'It waé“
implemented and tremendously improved by Steve Purcell.

The “Animator” was designed and implemented by. Bob Shur and-SteVe-PurﬁeilL

ack LA o PAGE 1.2

Line Graphics and the hand-character recognizer were done by John Shoch.
.Ted Kaehler did the "scope turtle” on the ALTO, ' :

C"Music” was designed and implemented by Alan Kay. Barbara Deutsch wrote
the program to REGISTER combinations of timbre files. Peter
Peutsch(C5L, PARD) designed and wrote a transiator for compact musical
“"seore” notation. Steve Saunders improved most of these programs.
‘Diana Merry wrote auxilpry systems programs and a very nice “"software
character generator” and text scroller for the ALTO,

The design and implementation of the font editor was by Ben Laws
(POLOS, PARC) -

TswsM . - . PAGE 1

This file is called SMSEMANTICS.DC and contains a semantic description of
SMALLTALK written in itself.

This version was last changed on June 14, 1973,

Use font SMBELEG.FD

.SMALLTALK and its Semantics
by
Alan Kay

_W ARNINGT! ! This is an unchecked version done simply to try it out
for basic taste and compaciness.

LT + alass Lo+ yi.name -actio
i1 Find {name} in CALLER « ¢lass! ¢Da - activity

To o laname i.e o [1EXp. _
: ; {Find (name) in CALLER « &xp.
i pame

~To Find {iname | ,in . i:icontext
_ ; f.context « CALLER

SRapeat ' IR : :
: icontext, table name OR context,table,global ,empty?
ﬂénﬁ - fiexp. context. table name « exp. Done

a¢context & cmntext table,global

ET ﬂantext‘table name

'Té List.gn% o fofirst :rest., tself

DLFirst . foe . f:first. tself
: i1 first

CiaTest o jae . lirest. Tself
: ifrest

dength - i1 ifirst=NIL ., i0
Pofisrest,length

%;:print w PPN first,print v "y rest.print im"
o1ist? . ilself

f.eval . iRepeat
i - ifirst Wi . iDone '
ifirst wro L o lavalue = rest eval
{Lvalue « flrst¢eva1
1value

1

To Repeat |.program. R :
' iCODEFOR :Repeat ! clause ,eval global nessage self

ek e R ®

A

aMah

- To

- To

~To

To

To

- To

.TD

To

_TQ

To

Again 0 EMPTY CALLER,CALLER

Done ::value. f@ value CALLER.CALLER,CALLER
If ifiexp . [.then iexp ;uelse = lss TEXD
i Ptexp

i errcr "I can'& find a “then"”
gnth&n se ig2lse . lrexp., texp
P TEMPTY

User (Repeat
i iDisplay Read.eval.print

»iself,tabie,name #4megaage¢table*pc¢f1rst.

imessage,tablepc « message.table, ,PC,rest.
imessage.table name « mesgage¢tab1e.mes;age;table,?ﬂ;first

- e

imessage.table,message,table PC « message;table*message‘table*Pc‘reﬁt.

Hname.

i i.nane.
Hmessage,table.nane =
i message¢tab18¢m95$age table,PC.first 4&va1 message message

s Laotoken = message.table,PC.first .. it EMPTY
imessage.table,PC « message.table,PCirest

« iiclause. ¥ clause CALLER,CALLER,CALLER

EMPTY | o fas 0 self CALLER,CALLER
fhempby? . it LTRUE
ioself

Apply | it 1g :c @ N : e
L aglobai g ecaller ¢ .message m).eval

i trvalue :destination.,
iApply value destination destination destination.

Remember .« = Repeat
; ¢l EMPTY itself
Eself name « 1value

%vcopy « 11 CODEFOR “somehow copy the table”

.éneval = i"Do something or other®
iname {.+ . jivalue, '
i (CODEFOR "associate name and value snmehow”
itvalue

|1 CODEFOR "Get the value associated with the name”

SMSM

Ta class

CPAGE 1.2

bzndxngﬁ o o
T instantiate | Remember + .clasg yclass
i +£lobal global
i JCaller self
LJessage message _
: +PC Dbindings
Leval

“To instantiate i:classdef,

éRepeat
i Pause
ficlassdef,copy « .class classdef
o .global global
JCallaer caller
JNessage. Message
+PC classdef,DO

F,eval

To Word
Pae . t:first irest.
;.rest « Word « first, batfirst rest‘
P,first « first,.first.
it oself
First . éue «» iifirst,character - itfirst .
i errcr"znput is not & character”
1f1rst
%nrest'ﬂ {o% . irrTest.character .. (Trest
: i ‘Error"Input is not a word”
iTrest
L length . il rest = NULL - 1
! i 1 + rest.length
%uprint o i1 first.print, rest.print
%Bwerd? =+ 11 self
%nm . frvalue. t (first = value,first) AND next = vaiua,next
{,eval . i,env « global. '

iRepeat _
;o ienv.empty? .. TEMPTY

: message
L LENY = giob&l,table¢glﬂbal

P ,temp « env,table self o ! T apply temp global aailar

CONTENTS

“Forward
Part 1: Informal

A Dynamic Mediuwm for ﬂlwatixﬁ Thought :
tells what our group 1s abouty initroduces ?c idea of The D}ﬂ&boOL
CAT ?, }arxhﬂxw, ﬁﬂMLflﬂLu, and *ho@ iets of ways they can be used
by &1&9 {and adults) via many plctures producad on “interim
Hynabooks™ already designed and bullt at PARC

'.intln uction to SMALLTALK

ICT
An Informal introduction te the language through simple programming
examples, moat of which have pheto;:apha mf their effects., Aimed at
nen-programnsrs but ls 4 good start for anyonsg.
-Ho# use SMALLTALK

“hjlu¢u: rituals associated with using SMALLTALK on elther the NOVA.
or ALTO imgimﬁfhi&LJOQS. How to: get file storage! g&t on a machine;
Swrite a program vun it fix ity save 1t and get off the machine.
F&n?@ina explanations of current dangers, kluges, and features not
yet working. :

SMALLTALY ”Eﬁ“hmu;&t@rg” o _ : o
Ti conceptually exists an “editor” for each kind of object in the
All of them are integrated in such & way that peinting at
automatically invokes the current editor for that object.
1 oeastiy write his own ov update the existing
mdnlpulatars:

S Program and Structure Editor _ S
15 what passes for a text editor/debugger on-most machines.

Font designer B
How to modify existing fonts. How to create new fonts,

YATLY and Anlmation _ : SRR .
Handles line drawings, paintings, sketches and shows how easy 1t
13 to animate them.
- Mus

ic : :
How to enter and change compositions. How to play their. How to
u2;1;@1afa “Timbre” objects, How to make new ones, Hou te create
W struments.
C"Files? _ _ '
don’t raally exist as entities distinct from SMALLTALK but are a
class of “wm%orv objects” which are useful to know about.

“Hummary and User's Manual for most kinds of users

Part 2: a4 Lit more formal
A Personal Computer for Children of all Ages
an updated version of the ACM-72 paper which Speculates about the
Dynangoik,

SMALLTALK: a Model Bullding Language with Intensionsl Semantics.

CNTS.5T o | iGE 3.1

“"computer sclency” paper on SMALLTALK and its

. o heSSff; Oriented Langusges
2. Formal Definition of 3M LtaLh fin itself} _
A, Manual of current class intions with explanations

SPragmatic use of SMALLTALK

i. How to extend syntax and semantics, especially in regard to ns
“data™ and “control" structures, . _
2. How to run these extensions “pragmatically” if extra speed and/ov
less space 1s a requirement,

You were poing to ask weren't vou?

“How Animation Works . ' o
The incredible true story of how siy Pegazi can be made to fiy at 10
fram~“ per second., Find how how plctures can be rotated witheut
cmultiplication, etc, The names have not even been changed to protect
the innocent, much less the gullty.

LT

Why gan*ﬁ tha SMALLTALK evaivataor be found on any listing---or, does
Dan Ingalls veally live inside the ALTOY

How the ALTO works
Why is a machine with more memory bandwidth
mini? Wheres did the {axlgw controllers go?
of Chuck Thacker and Ed McCreight. T
supplements on the trip.

than & POP-10 caileﬁ a,
Enter the wonderful world
ake Drapamine and {iron

A Look into the Future
The next programming sy

143

tem. The next Interii Dynabook.

doements '
ckd these as SMALLTALK owes many debis to previous werk most'
are interisting in theiv own vight.

‘References

INFM.ST - o BAGE A
INFORMAL, BC “mln.fd aMOU;bg fd sroman. fd "'imfm
A Informal introduction to SMALLTALE +

by

Alan C. hav . _
kérﬁk Palo Alto Research Center

“Thé easiest way to learn SMALLTALK is to just make it do useful things for
you b

Let's get SMALLTALK to-draw a S QU AR B for us. First we have to tell
SMALLTALK just what it is that we mean by “sguare'.

to square %
iforward 100
iright 90
Ciforward 100
iright ad
{forward 100
ciright 80O
iforward 189
“To" is part of SMALLTALK, We sent nessane conszatlng of a

it a
‘nana, "sguare’, wd a definition in terms of drawing commands inside of
“margin paz centheses”

o

We can now use our definition just as . though it had been part of
SMALLTALY,

Csguare
and a sguave is drawm. Try it again;

square o _
Whoops! Ve iuét'areated some bugs! First,'ihe Toen? was not 1éft'pminting

- the same way as it was found, ard 4150 we forget to clear the screen and
.return the pen te the Qﬁﬂuer.

¢ Please see the rest of this handbook for & more de%alled descrlptlmn ef
%

SMALLTALK and its use, aaﬁwbiﬁllk the acknowledgenents for a fairly
complete set of historical influences on SMALLTALE's desig

Most of the examples in this papevr work, particulary those with. phctos of
results. However a few of them are still awaiting their baptism of fire so
be careful.

* - This document’s approach and sone of the exarples (marked with a =%} are-
adapted from Papertipa w=s»). Simple things look as simple as possible andg

Chence, resemble LOGD lor JOBS) to some extent, As you will see however,

the semantics of SMALLTALK are quite gdifferent in most ways for more

complex ideas.

ITNFM. BT o ' T ' o - S PAGE &

“erase
clears the SCrsen,

hone

centefs the “pen” pointing up.
Whltu

drawv using white ink on a black background. Try

white home srasse forward 50

black

draws using black ink on a white background.

A “cleaner” version of “sguare” is

to sguare
forvward 100
iright 90
forward 100
iright 20
iforward 100
fvight S0
tforward 100

ght 20
What is there about this seguence of actions which has to do with
“3quarena;e’? All the turns are 90 degrees, and they alternate with
forvard travel of the same distance. So the following definition should

Ll}; 50 WOr 2\4

o square
rﬁp@al 4 N
! LO “’w?i'f“" i.fjf}
,rzg%* a4

Try'it(

MRepeat” is sent & messape nziészaug of twe pa rts, The flrst is how many
Mrepeats™ are desirved, the second i{s just what to repeat.

are of any sice? What is there about the previous

What about a sqg
at only has to do with size as opposed To “sguareness™?

u
definitions that

1t seems only to be the distance traveled (which is the message to the
“Eorward” conmmand).

Just as we can sen
them additional in
own definitions as
says what length o

sages to “forward®, "right" and Trepeat”™ to give
ion about our dedir #5, We ¢an send messages to our
would like to send “square” & message which

£ side we want each time.

such as GIVRLE

o
@
-
b
=
<

4

square 50

In SMALLTALKX any definition can receive a message by saying "7, Since the

- Now, what about the angle

CINFM. ST | PR S PAGE 2.1

uld be nice to give 1t a ndne to

omessage is different each time, 1t wouls
b flll;lﬁn.

b
allow 1t to be used anvwhere in the de

[¥F]

A definition to draw & sguare of any size i

IO sguare
frsive
irepeat 4 _
: iforward size
i?ight a4

Try it and see. The " picks up the message and calls it Ysize”.
Mforwvard” refers to the message by its name “size”.

home erase square 50 home square 100

Now let's try a TR I-ANGLE of any size, Well, it's really almost the
same as a square, lsn't 17

to triangle
iraize
‘repeat 3
. iforward size
iright 120

Try 1t.

The two definitions are- Lalmost thi same except for the rumber of “*epeais”
rand the angle. Is it possible to define actions which will draw

ANY POLYGOHNT

nd the definition a message of two parts. One

Well, we could certainly ss
he other for the nusmber of sides we want.

for the size, i

to poly
: fisides isize
g1

iRepeat sides
i iforvard size
iangle swww

This looks onable except for confusion @boug tza angle‘ "ReEpe at” will
be sent a me ag@ for the correct number of axaes and "forward” will get
the right message about side length as befor

T When we turned right f
=
S H <

4 _ s or the trlanglﬂ it was
12d, for the sguare 9U. ¥hat about & pentagon? 727

Cre neat way to look at the situation is that
polvgon m111 get you hack ACTLY where you

t a conplete trip for any
pen WiLL HAVE TURNED THROUGH 366 degress EXACT

carted and the heading of the
LY,

The number of turns taken is the same as the number of sides (becauss the
"repeat!” controls this). So, it seems as though the angle taken should be
de0/7sides, Try it.

to poly B
irsldes rsize

ITNFM. 5T

Repeai sides
i foa,drd sire.
ght 360/sides

poly
poly
S opoly

Hmmmin. Does this make

CIRCLET

“to ocircle

i3.14159

sense

for a

ipoly 360 1

It's nice that we can use any of our definitions exactly like SMALLTALK's
owno commands., Now suppose we want circles of DIFFERENT size. What is there
about Ypoly 360 17 that 1s “circlelike” and what has teo do with size?

We know that "poly 3 =x#” doesn't look like a circle and “poly 360 17
does. B

What about “poly 360 18" 7
“Try it.

3¢ how does this strike you?

To c11c1&

rsize
,poly 360 size

Now you may say, “OK, we can change the size of a circle alright, but the
number we are sending as 5 wmessage doegn‘i seen Lo bear any relationship
To the diameter or radius”. True? Well, what do we know about the circle?
What is its circumfere nce?

Well, it sesns adat po ¥ "repeats? I60 tines, gd?h Df those times
Mforward” goes forwvard a distance. So the circumference of any polygon is
sides % size. A relation betwesn the radius of a tlrcle and its
cirvcumference 133 Civcumfersnce = 2 %= pi » radius.

50, sides % size = 2 % plox radiug
and, size =(2 » pi » radiusg)/sides
- Let's now define a circle routine where the ne gsige we send it 18 ti

~radius,

To pl

INFM. ST | | ; PAGE 2.3

to cirele
frradius o

Try 1t and see,

Coeircle 100

This looks
af the mes
radiug = 100
014159 = 100)

sonable though a guestion migl Bt oarise about the second part
to “Jcly” "2 % plow radius) /36817, What ls sent 1f
5 it €. wken? ot {2 % plox rvadius) S36EY or “{{Z %

I SMALLTALK these distinctions are controlled by the receiver.

Ypoly" recelives the message by saving ":isize”. The “:” not eoaly means
Mrecelve” but also wmeans "receive value”, so “size™ will stand for
HZowrax” not V(2 % pl o+ radiusy/3amy,

IE "poly” had sald ",.size”, "size” would have stood for the literal
-message "((2 % pi ox radius)/366)7, since ".” means “"receive the literal
_messaqe”.

1ry this out by writing

To test
rval L form
iPrint val, Print form

“test ({2 % pl ox vadius) /360) {((2 # pi « radius)/360)

C 2 kR
{(2 = pi » radiusz) /36D

Both parts of the message to “test” are the same, but are received
differently. There are other useful wavs fo receive nessages in SMALLTALK
as we wili ssze later.

By now you are probably getting the idea that getting SMALLTALK to do
things is easy. True,

Now what happens if we jiggle seme of the things we are doing a little?

seymour Papert's kids call the follewing kinds of things
s QU1 RALGSR!

to squiral : e
firsize ranple
iTorward
iright ang
Psguiral size+1T angle+?

Notlce that this definition goes on forever so the “whoops” key needs to

INFM, 5T

R R R R IR RO I T TErm——

e used!

gewkssMore on this in a bit. It can be found in Seymour's stuff. :
sawslon't forget to do simple fransiation and rotation in inertial coords. -

INEM, ST _ -) S PAGE

We'll come back to some really far out graphics in just a bit. For now
though, let's look at some of the other things that SMALLTALK can do for
YOou.

. Try
-y D2
4

ke to treat the Dynabook as a desk calculator so that

CSuppose vou would i
WErs are shown as you zo.

accumilated ans

To desk
j,?éx e 03
‘Repeat lots
i iPrint Us»¥
fo= . (Print reg. Done

H- 1n*’uL
Pot o Print sreg < reg o+ input
Fam Print ,reg « reg - input

and so on.

SMarep o« 07 means “reg 1s REDEFINED o stand for . This is-done by the
object "," which raceives a three part message conssisting of a nane (in
this case "reg”) an arrow "% and a value {n this case 0y, It finds the
SMALLTALK “J;c+1nﬁ;ry entry’ for "“reg” and redefines it to be 0.

W, is velb another way to it ive a messane. 1T looks to see If the word
which follows it is ?Lhez 11y there in the message. S¢ “.+" asks 1if the
current part of the message i i ally a "+, EMPTY (which acts like
“false”) is returned if t

& progranm over ancther depending on

UM ols one way to choose one part of _
some condition belng “true” or “false” {actually not EMPTY or EMPTY).

Consider

Ca = b o iPrint "Its frusel”
(Print “Its not trus at ail”

If the value of “"a” is equal to the value of “"b” then the "7 will cause
the 1ist fellowing it te be evaluated and then an exit taken completely
out of 1ts enclesing Iist. 3o only "Its trus!” will be printed. This
allows lots of conditions fo be checked with an appealing form to the

progran.
to check

fra b
g = b o iPrint “They're sgqual®

& < b . iPrint “a is less then b

iPrint "a is greater then b

“Done" exits from the nearest enclosing “ﬂcmaa*” and provides g way to
ternminate a oo p if one wishes. “Again” will restart the loop from the
current point.

TNEM. 91 ' _ T _ o PAG

th all its limitations is a bit silly.

culator
to have?

<&
puin2g
o

Now, imitating & desk ca
What would you really

What would be nicer s Zo be able to enter an arithmetic expression, to
have egach subexpression's value printed and to retain the entire
expression for editing rather than forcing reentry.

To nicedesk
Dl

wkwzan anortization schemée would be nice to do ala JOSS

sedvkeaping track of a cookbook?

CINEM. ST

" PAGE 4

An lﬁt@fﬂalj“% variation on Ypoly" is a definition that draws

NESTETLD POLYS
To star .
irzides size
SIf size > 4
i Then 'Repsat sidss
Horward size
iright Z60/sides
istar size/2

kY

This clever little program was

invented by Dan Ingalls.

Try a few of these.
SStar 5 140 star & 80
‘How about some 5 PACE FILLING G curves?

This M A Z E curve was

' invented Wy Hilb
and T.Kaehler.

To Maze
layv .ncn& .51gz
]PY = Q ant 9?Pnanux Forward 10
; i = 31%0 . iMazel lev - 1
ipend = 0 - side iMazeZ lev - 1
‘Mazel lasv - 1
To Mazel
irl. ‘
iMaze 1 O - Dend side,
iMaze 1 bend O-side.
iMaze 1 bend side,
Mare 1 0 d-zide
S to Maze?
irl
iMaze 1 (E-
Maze 1 side,
Maze 1 bend O-side
Maze 1 UO-bend side
To Mazel _
' i1l Maze 1 U-sids.
‘Maze 1 side (-side.
iMaze 1 side side
‘Maze 1 U-side fO-zide
This curve will energetically chug asay E:}
point in an arbitrarily large apace

Hers is a more compa
the Hilber:t curve,

ty

1

But sligi

To Mare
Pwmaw

ert.

nd will gventuaily touch e?ery

The program is by D.Ingalls

tly more obscure SMALLTALE “eneliner™ for

S UINEMLST T o - | 7 PAGE 4.1

Now, are you all ready for a DR A G O N 7 This is a very simple
-definition whose actions are hard to predict.
To dragon

frlengthn _ _
(1L length = 0 then iforward 10

else [If length >
' ' then @ d

ragon le
right 90
dragon ~iength-1
glse idragzon ~lenpth+l
right 40
dragon length+l

A more compact way Lo say this is

To dragon .
frlength = 0 . ifeorward 10

length » 0 . idragon length-1, vight 98, dragon -length=1

dra;

o

on =langth+i, right -90. dragen length+d

Dan Ingalls concocted this neat little progran.

3 :“: R ‘l.!

INFM. ST | - - | : PAGE 5

Experiments with |
ACCELLERATERD MOT 10N

cexwxThere should be some simple stuff heve for linear velocity and ace

To rollick :
times L figure

PEetun
tRepeat times
§pr?UU : _
ifo rd Lidlst o« dist + ine -
br (.angle « angle + alne) '+ turn « turn '+ ine

; iaun
.(ngura} slze

Try rollick 100 sguare

SHOOT I NG elastic ebiscts into the air.

" Te shoot
fravel tyvel
feCUrTERLY VAL & Yvel

epeat lots :
ipendown. objsct. penup.

gf reard ,yvel « yvel - gravity
ilght 8¢, forward xvel. right 270

é{:uyvr}n‘v‘ al = -yvel ., _ : . S -
; €c;oae o 0 ,yvel « ,curventyval « cUrrentyval = slastic) .
. iDone

“This program is very simple and sasy to understand, Each time through a
constant representing gravitational force is subtracted from the vertical
component. The x veloclty is constant and thus just accumulates horizontal
distance.

There 1s no simple closed form equation in classical mathematics that
expresses the bouncing ball because of the discontinuities at the bounce
points. In SMALLTALY however, it is easyl!

A simple SP ACESHI P

To drawship .
' ipendown : o
. vight 225, forward 20,

iright 180, S.orvight 315, forward 7
iright 215, 7. right 270, forward 7.
iright 315, f 20, right 225, forward 7,
iright I15. fornard 3.

'Thgi was hed sn't it? Later we will discover that we can just _
. paing, dgﬁw . h any figure to be animated ourselves without h&vzng
o make bMﬁLLr&Lk drav themn.

PNFMOST o o o ~PAGE 5.1

First ty SHOOTing the spaceshlp by saying

To object
idrawship

Why deoes the preceding definition wark?

shoot © 60

)
e
5
T
o
.
=

‘Now for a bit more
To moveship

prpoint tthrust
Peturn o Lspeed + 0

Lpenup :
iforward ,spesd « speed o thrust
ight Jturn « turn + point
idrawship
Try
noveshin 2 1

moveship 1 2

Hse the WHOOPS button to kill a version.

Now for the big time! Try
‘moveship mouseX mouseY

and grab the mouse aguickliyit
=

INFM.ST " : . PAGE 6

SPACEWAR: !

Now for the first time we need to use the g ‘edter 9enerallty of SMALLTALR.
We need to he able to create any nwmber of ships and torpedos on the
screen, all running together. SMALLTALK allows this to be done as easily
g3 1f just one obgamt wvere desired.

yahape Lat tposy posy heading
cspeed ;spasd o
contrels tChrust spoint strigger,

[Numberoftorps « 20,

éRﬂnO&;
: ;iw ft Roll « Roll + 001ut
[Forward Speed Speed + thruaiﬁ

PIE thrust » @ then {Show shape ,exhaust @ Flanme).
f1f thrust < O then {Show shape ,nose : Flanme)
elss (Show shapel.

AT trigger on oand Numberoftorns » 4
b then [Numberoftorps « Numberoftorps - 1 .
iCcraate
i hpacevehicle ,torpedo
at posx posy direction
speed speed
controls 25 O ,off

a

If touching something o : _
P then (Quit something. Show Crash. Quit salf).

Pause
This set of actlons defines both what a spaceship and a torpedo do in &
somewhat sneaky way. A torpedo iz & Qzuue>h p with a different shape,
constant thrust, straight ui:?ttzon, and no abllity te fire torpedos of

its own.

The plotures ! ;niﬁ” and “Torpedo” both have a subpart called “exhaust”.,
This acts as a 301@” wiere other plctures can be placed, such as “Flame”
when the thrust 1s on., A special subpart name, "center", defines the axis
of rotation for "laft” and “right” turns.

"Crash” in a more slaborate exanple would probably be a set of actions to-
produce ever more grandioss effacts,

i"

This particular game starts a4 ship out with 26 torpedos with no provision
for wore when all are firved.

topeed” and “Roll” are names for the accumulated velocity of forward
travel and turning. So the "thrust” and “point™ controls are
accellerations as in a real spaceship.

The “behaviour” at the bottom signals the actions to be done, The message
received 18 what “shape™ to use, what initial “position” and “direction®
To assume {these namss are the ones that are updated by “Forward” and _
“lLeft?), and where the information Lor “thy nst” "attitude”, and firing of
torpedos is to be supplic For spaceships it will be the Joystick of each
player, for torpedos, it will be hGHbL&Pt 1nform&tion.

to repazit
To ﬁisplag

to send
left is

Then a che
destr@y&d {”qd1t“J
destroys i

As many sp

create

apacevehicle Ship

create

Snacevehicle

o
“hip, which will upd&t@ "mosit]
q§ﬁuv of this object {with “Flame” if thrust is “on”),
”?S”Uﬁuﬁ if the “*rlvger” is “on”
than zero.

s are "Repeat”ed over and over.

the “Holl” and "3peed” accuy

and the “"Number.of ,torps?

made for s "touch™ and, 1f =0, the object touched is

the great "Crash” is ““hak”q, and finally our object

as regquired wmay be instantiated by using “create”.

at random randop randoen
speed raudon . '
coentrols joy 1 oup joy 1 side Joy 1 but.

at randew random randon
speed randow _
controls joy 2 up joy 2 side joy 2 but,

INFMLST o . PAGE 7

New. “Data” Opbjects and their “functions”

The ease with xﬂ;Cd ann external form can he naS&tlat@d with an 1nt5rna2 :
gueaning in SMALLTALK means that many objects waich are "cast in stone” in
.other 1a19‘ﬁyua can be defined and mOd&;lﬁm easily by anyone. Suppose

oniy the Word and List operatiens are found in the language, then Numbers

‘can be dEaLILUud in terms very similar to that of “schoolchild” arithmetic
as shown balow,

There are many ways to accopplish arithuwetic; L[he example deliberately
mimics the use of 4 "plus table” for single digits, the carry rule, and
Sspecial cases involving &, which vou alzsau; Know from school,

wPFlusTable « 000 1 2 3 4 5 &6 7 & 49
P2 3 4 5 0 78 9dg
o2 T 4 5 6 %7 8 0918 11
L 4 5 5 7B 9 101112
I T T A I N T T O B
s 607 R 8181112 13 140
U607 8 9 1d 11 12 13 18 158 3
SCT 8 8 18 10 12 13 14 15 15
OB 9 19 11 12 43 14 15 16 17)
PO% 18 11 12 13 14 15 16 17 18

To- Number

& ore ated and déclarﬁd by saying (for instance) X e
. The “*” EVAL: its third_argum&nt, which calls “Number”
an iﬂﬁtﬁﬂd@, leah looks for a ", finds it, EVALs its

i ke

*umbe“ e 133:
—i “
(which is & "Word” 12345), binds it to "A”, and RETURNs

h1L§ cjca;e
?

ovalue o 1T A

:"The Word which is the value of “self” is RETURNed”.

T ALTirst.

5 “First? of the “Word” which is

PHOME rstr g "“WNunber? a
sre done in a similar manner,®

; i a ne sans
iits value. The other "Wo 4

S‘”

s O
1
i R
o
—
[as g

< iB. T oiAlengtho = 1oand B.length = 1 . iPlusTable A B

§A¢empty or B,empty o (A jeinto B
Efl butlast +« Bibhutlast + carry 4 B)
! jointo A.last + B,last).last

{“This is & recursive definition which uzes zeveral cases to accomplish
;!t_'_rl'

i The first (A and B are both single digits) uses the childrens
gadﬁitlg* table selected by each of the nuwbers in turn to iselate the
csum which is RETURNed.

ITNEMOST

terminates the v
Remenber

The next
iboth of A, B
chatthing. The last case {s si
che front digits of
flast digits of A and
fresult of 1l

B, the res

the s

More branches of

tAddition of negative numbers, et

wiabtraction is

om o 11BL T
: : to Addition”.

A =

pev
~

Ba.value,

PMA “Word operation” that i35 lega

PBa T Aif (B - A)Lfirst =

i“Doing the definition this
iNote that “wez’ is done first
- tG ’HX!J n

an

This szemantic def of

wrwrwxl O T B!
To Complex
Pt wlivalue,corn aplex ? Complex
: : re
im

ivalue,fraction (1 Complex
T ovalue G o+ self

Complex
re

witvaluecomplex it

o im- 1a1uu%xu :
value.fraction ..t Compley « re - value in
atherwise 20 value G - self

o% w value.complex . 7 Cowplex « (ve % value,re -
) (m » valus,re +
vajua.fraction . 7 Compl rx « ro ow value im =
stherwize = Tovalue Gow self
W3 o+ o tvaluedraction Complex « re + value
Wd om o ivalue.fraction Complex « valus ~ re
A .w oo tvalue,fraction T Complex « re » value
o wvalue T Error®™i don’* know this operator” value
T8 . w tvalue,{raction = re + valus . T seif
. w Tore
plflt o pe rvaltue.fraction Lim e valus . 1 salf
oo A | .
e e trellraction woiim,fraction » 1 oself
cCompiex T trus

4 and B are added to
um of the last digits

the conditional

putine ina

that anything “joeinto”
4 statement of the poal,
the carry found by adding the
ult is Joined to the single digit

mply

of A and B.

1t
C.

1 can easily be done.”

~ then

d returns

Complex 1%

o

value,.re
value,in

A

« re + value im)

- _
- valiue,re

NPTV else self.

PAGE 7.1

the case where either or:
EMPTY

is
namely:

would be added fo handle the

handied in & manner analogous

way allows x<y<z etc. to work properly.
the value of Yy»

(if “true?)

not campiefely edited 11

fim ox valuegim

‘re.x value,imy
fvalue
Ewlm
iw value

*

PAGE 7.2

INEM. 8T

[

+ 0%
op

e
o

“Informstion about
revision: Juns 8§,

T names of

ays be found on the -

me Diskpack.

Learning ~oh Group I
The full structured index ig found wit
structure to discover
file should be displaved us
SMDELEG.FD &

¥
print on XGP usis SMPELEG.XG

peach version,
at file to load.

e b
T
w)

ing font SROMAN.FD,

t
nd Write Translated,
J

SMALLTALK, =& Model Bu11m n& Mun uﬁgP
With Intensional Semantics

¥erox Palo Alto Research Ce

by
Alan ©. Eay

Learning Research Group
nter

{“"

Cct

: uage which allows children. (and adults) to build
emantic models of their ideas in simple uncomplicated ways, and
cally simulate them with respect to arbitrary environments.

AMALLTALY i3 & lang

Slmplnul*” is i by having
a. only one kind of object in the langpuage (4 process) which can
act likm 211 other known Funya%ar ohiects, |
"B, oa single uniform schenme for intero hja ct Lommunication, and,
C. oan intensional semantics in which the meaning of an Qb}ﬁﬁt is

ca part of the class to which an OHJLCL belongs rather than
”luO“rﬁﬁd through the sy§tem as part of more conventlional
exvensional operations

Bﬁmr;;L“ are the aviliities to cregte new “"functional”, “datg”,
Ycontrol”, etc., entities without the usual problems assocciated with
updating and cosrcion of generic functions.

HEERERNERE

o Acknowledpements

555 the end of the handbook for a fairly cOmplﬁte set of
al influences on SMALLTALK's design,

vl
P—

o
r-r <h

£

Introduction

SMALLTALK 1s built frowm & few simple, vet powerful, ideas.

re o every OBJECT in its world to be dan
B local state and control. All distinction

provadurel fxa" Gb?LCtS, such as exist in
uages, ls thus removed, This includes “data',
23, Arrvays, ilsts, structures, etc.:
factorial', 'plus', 'print', etc.; “control
; conditionat hranchesy repeats, recursion, and
vices”, such as 'files', 'the user', ‘'display and

are treated allke hecause they ARE alike.

Fivst, GUuALLTALX
Cindependant

-betnbwa "dat
other progr
such as numbers, st
. “fagh,ixono'y such
structursas”, I
S50 oon; U104

T kevboard', =&

b G

Next, all objects are composed of PARTS, even if they only contain
themselves. The oh jruu can be thought of as a dynamic dictionary
which contains all the relations and rules in which it can take
part.

Third, objﬁats can send
This
'dﬁﬁlfurid« .
iaince there are no “special” objects, there is only one message
nrotacol.)

and receive MESSAGEs to/from other objects.
cause new obiscts to be created, altered, or even

Finally, each object iz considersd to be a member (or INSTANCE} of a
CLASS, which 1s another object that contains the rules of behavior

et fnoeegr

PAGE 2.1

5 has a class déﬁining
class-defining-objects, as’

shared by all the members. Since cach cl
chiject, they are members of the class of
one might expect.

35

ase 18 & stream of Zero ot more symbols. :
the stream starts with an open yniCﬁ thesis, 1ts closing .
arenthesis &baﬁ’UT&EY terminates tThe strean.

T3

A sumbedded .7 at the same level will terminate the currant
message and will cause the message following it to be sent.

_ nessage ls composed of partswhose termination is
guous, a "yY can be used to clarify matters.

14 done from left to right using a very simple rule: control

inmediately to the first objasct encountered in the stream,
information about the context of the send. This is all

uator does. The recelver way gather in the message in any

hooses,

2on first object is an instance of the class Yname” {as with

Poatom, all of 1ts mewbers start with a4 letter and are

nosed ur fetters, digits , underscores, and other special

—

=

e actlion of 4 name is Yo look itself up in the current
vironment/dictionary to see if it has a meaning (which is .

=v ehiect). [F it Jdoes, that migec ia RETURNed by APPLYing
the remainder of the message)--- Angd so it gess until the
1% consumed,

A venerable exanple: factorial.

orial 3. g
in the Ffollowing manner. .

Control is passed to the name “factorial® which looks 1t¢e1f
up in the current environment g;d iiﬂdb another object 4s its
value, The new object 1s a class defining object which
contains the rules for all the iastanucw of the class
“factorial™:s

tn. v ifn = 0 then 1 elsze {n = factorial n - 1).

?h&'aﬁtion of the class defining object is to create a rnew
instance of facterial and APPLY it to the message.

The ":* is a “recelve” {or “input™ object whose action is to
EViluate the input stream (in this case 3", whose value is
TN oand then to make a new entry into the local environment
CIo define the name (in this case "n™) . After this a lookup of
" will have fthe value “37,

The "1 iz a :
Evaluation of it T”hﬁeﬂL to the remainder of the message
found in the : shiect.

The next is sent by finding "if" which tries to
receive age consisting of the EVAluation of “n=0",
Cont passed to "n".
It self up ang finds “37.
Control is passed to it.
3|

“37 is an instance of the class number which has many

relations 1t can res ponu to,

“IY orecelves the next obiect {unevaluated) to ses _
what it is. {1t could be any of + ~, % /, < 4, >,
etc.y in this case 11 is "=,

"3 wants now to evaluate the next part of the

message in order to see whether to RETURN “true” or
"false",
Control 1z passed to ™IV which, as with “3I7, is an
instance of ¢lass number, and thus shares the same
relatiaonsg,
boy 1t looks to its right to see if anvthing like
+y, =, %, 2tC., 13 there which it can respond to.
It finds nﬂ;" “then'" for which it has no meaning.
S50 1t RETHURA 115}ur to "En bllgh now has enough info
to decide trus'
vnzuh is R i‘ﬁﬁ-_ o Mi2Y which decides not to evaluate the
message following ”*hbw”, but doegs try to evaluate the
message following “"else".
“nt looks itsalf up, finds the value "3"
| i

up the name ™«” for which it has a

mfm;llim -
140 4

S0 ar
“L

(‘“E

e
¢
; OO e

5 to evaluate the next part of its nmessags
n = 10",

bs pazsed to “factorial” which looks
up and discovers {as hefore) a
defining abject with the rule:

o
o a5t

s
g gt

»

[‘_3
= ot £ ot
YR

o
o
32

. T ifn o= O then 1 else (n » facterial n - 1},

As before, a NEY ingtazL& i created which will
try to evaluate the message "n - 1)" to get & new
vaiue for "“in.

W

n” in the OLD enviropment looks itself up and
-Qs "LO\ L,ac !!’g!'
which looks to 1tz right and finds “=" g0 it
tries to evaluate the next object "1V
which which looks To ifs right and finds
M o {which terminates any nessage to "1”)
s0 it RETUENs [TSELF to n3v
which knows how to subtract wi”
which causes a new instance of class number
to be produced for the result “2v
which is RETURNed to the "¢ in the CURRENT
instance of “fgotorial!
which will enter 1t as a4 value for “n" in the
CCURRENT environment.
And so it goes.

er long winded sxplanation of a well known
& number of important points. R
The LuTWlUﬂiQOV seems to e wmore general than

I
o

=gy

in SMALLTALK looks Qlﬁple and can

s DO e e
i \"D

Sacond, only oy
form and conte
control and ca

1 rile of corvespondence is needed te link

nt. The evaluator ONLY needs to know how to. pass
text to an object, All other meanings are found
distributed the abjects In the system. As shown, even
such a see primary act as creating a new instance Is
dons by an object and thus can be changed at the user's whim

w5
Ch

£F:

cases where this generality of approach

. TE owe want to trace the activities of a

in ins tanLu 1} we need anly create an obiect
as & meaning {so contrel will be passed

“ST.ST

PAGE 2.3

to IT when "n" is fouched), AND has a local entry of its own

for "3" so that the meaning of “n" will not change with
respect to its 11hn1foutsut characteristics. This means that
an object can simulate any other object.

Fourth, all ”reiutie "oand “operators” (such as <, vy o+, o,
=, @Tc.1 can he de fﬂvd “1“??ﬂ$1ﬂﬁdliy” {or “intrinsically™)
as parts of an object or object class, rather than
“extensionally” (or “extrinsicak&y”}, a5 is usually the case,
as global Luhfgiﬁnm.
in fact, "factorial” could have been defined this way as an
intensional relation of a number. We might then have said
1Y oand the class number would know what to do.

This means that the information pertaining to a c¢lass and
wnat 1ts members do need only be stored with the class. No
gichal operations need to be updated. So, a class may be
deleted without changing the rest of the world.

Algo, this ie a very convenient way to handle problems that
arise from having muliiple classes with operations: such as
cosrcions between classes and the various senses of “feteh”
and “”tor'” (Ml
For instance, the message “a - 3 + 1" means:
pass control to Ma® which will loek itself up and
pags control to the obiect it finds
wihich can gather the rest of the messape as 1t
nleases,
t can look to see If the next name is a ",
if s0, it can EVaLuate "3 + 17 and decide how
Lo
81

3 2 anl ot

‘ J;ur@ it. P
S0 "ol o y LE "B" were an instance of an array,
could mean
'stove 81 in the lst position'y or
1 "B were an instance of a hash table routine, could
mean
‘associate the hash of ™17 with "“B1" in some way!
et .

{”1

The problem of coerclons will be discused a bit further on.

Fifth, instances may he EVAluate
very samne EVALuation outafng} H
in

~ the generality of messdge.
send/receive becomes much nore

d "concurrently” using the
ere,
nportant.

Class Definitions Alrsady in SMALLTALK

chee DMALLTALKL.DC for this branchy

I

Some SMALLTALK Programs _ _ _
<Bew SMALLTALK2.DC for Tthis branchs

C5TLLST

-Necessary Information about this paper.
Latest revision: June &, 1873

{The permanent names of this file are
SMALLTAL K:ﬁﬁ
SMALLTALKL. I HAE
SNALLIAbhmbeB

Cits latest incarnation wil

Learning Research Group Demc Diskpack.

found on the

,n_,
255

—i
a5
o
4
T

fay
i

The full structured index is found with zach versien.
Look under the structurs to di

This file should be displas ea using font SEOMANLFD.

To print, edit with SMUELEG,FD and Write Translated,
then print on XGP using fcnt SMOELEG.AG)

SMALLTALE, a odel Building Language

SWith Intensional Semantics

}.
Alan C. Kay

Learning Research Flmm
Xerox Palo Alto Research Center

o Re

Abstract

[
(4]

coee File SMALLTALK. for this br”nc}

Asknox adpensnt

o

¢See File SMALLTALE.DC for this branchy
“Introduction

<See File SMALLTALK.DC for this branchs

548
ches File SMALLTALK.DC for this brancis

scover what file te load.

PAGE 1

ST1.8T

PAGE 2

EGAaTOR

CAVEAT L '
WARNING ~w«The notation and defs in thza [Et gn are not completely

Class

_ -gdited
consistant.

NiEM) g

Evaluation simply

. £
eRANLn 1 i
L

frgm AN ggrliﬁr_version and,
see informal.de for a more

in SMALLTALK

iied with many useful classes, including guite a
way or another in other programming languages,

nence, may not be entirely
on:13Lunt set of programs.

Defing

SMALLTALK 135 suppl
Faw found in one

tions Already

written in SMALLTALK as though they were
In some cases (such as the definition of
e used to describe itself---which causes

J:finition ATE
primitive objects,
primitive may
some obsgurity.

These
not

k]

from iaft to right.

Lo 3

proceeds

5735, Regular parentheses “ (7
have the sane

oo ﬂVHHLLOH is
gin parent
@ 1\»;5\11!‘

,§

A notation
i!.'j ¥

“marzin 1

s

heses <oti>{ and <ctly)
parens g
hx;

and ma
i print ir contents quite differently
1ts as | fand sets a new margin at that
Tist wildl return to the margin position
. the close MP is found, the next token 1is
a «1ix. If it is, pr‘nt1ng resumes 4t the next outer
$. Otherwise the remainder of the line is printed under

spoty. <l

T

SEVET, A
i

'nt a

A1 Py

ESRN Qi ME
The fznul

: Input a Value
followed by a name will evaluate the input stream to
produce & new object which will he bound to the pnane.

This is exactly the same as LOGO.
Example; svalu
will bind the
Tvalue”

&
result

of evaluating the input stream to

] CInput “"isolated? evaluation of nessage
foilowed by a name will pick up the next object in the
input stream and evaluate without giving it a message.

»L'»

) Input an Object
folloved by a mame> will not evaluate the input strean
but wilil bind the next object there to the <nawe>.

is in LISP or LOGO,
were guated.

There is no eguivalent for it acts

thi
as though the next input obiect

alne
biud the next

Exa

My
will input obiect to "value”

S Check Input for a Token

followed by 4 oname> will check the input strean to see if

e

an identical «namey is there. No evaluation will take- .
place, The In put atrean Folinter {or Program Counter) will’
HOT be advanced if the matcn falls. If the match succeeds,
iar whil be advanced to the aext position.

This ig used fregquently to check for "“operator™ tokens
SHCh as +, %, and e.
Exanmple: o will check the input stream Ffor a

Yo oansd will return TRUE if successful

P © Iaput Litsral Strean

followed by & <pame> will bind a refereénce to the Input
Stream at the udf”thu point.
This 1= sguivalent to FEXPE in LISP 1.5 ur NLAMBDA in

BEN-LISP

xample; ;value will Bind “value® to theé input
strean. EVALuatien of this fragmwent may be delaved
until later.

<Other Input Objectsy

will be mentioned here in a later version of this memo. An
chiect to EVaLuatse 4 seguence of the input stream {like

EVLIST in LISP) will probably be included at the very
least,

DuUTPUTS

APPLY-GEND a value,

CMfoa b" will send “fY the message. “a b” as explained
previously, :

ETURN & value.

el when when a subroutine control

T is us I
g zage passing discipline is desired. Its
3 : s EVALuated in the CURRENT environment and’
The APPLYed the pro 1 ostream of the CALLER process
fo which Lu\T”OQ also i: TUkENed.
wWliel

13 b
en used in "lef: u&bi&d” d;&hm”ht gathering (for example
CRGfivst,last or {A + B) » U), APPLY-RETURN will continue
& svaluation Brocess.

e

Noa value,
1t is svaluated in tze CURRENT env1ronment
e CALLER atong with CONTROL.

simiiar to QUTPUT 4n LOGO or RETURN in

;F\ER%E RETHQ\ g value.
value process
is thw farm,

ovalue caller. : _
is the same as PASSIVE-RETUARN.

ST1.587

value
SAne

MEs e
a5

1 sHOE)
s ti

<Other Output Objects:

will

s to define
wants {0 know about
to have over
For now we will
Jhich aiso require t
arned)

many

dll aon

L0f GO/SIMULA/FLEY Fashion

i ﬁ 3) El T

the code hody
IMITANTIATE

“is DN and bound
passed to

the name

L]
n

later
he created and

&

TN

iie

E‘\{iul nle [

To factorial i::.

‘T if n=0 the

varianle ”:ﬂ”
but ts part o
lﬂUlL Odi&Lt_
where in a

I, the first
to bind th
%anc uf

fas)
o]
[N

o

=

MRS

by R e

o " s S i

S

ol

Yy

the
he first

Foie I
g

it
o e

inition
Wan j.l‘“g.i
SMALLTALK
That is
W RA,’-H“ Cy

“Conveantional
“ToY 55 show
cwith LOGO anﬁ
aTh&*

ANy

[oTE fE
would b

(1

ENETA L
to

i &

Sfactorial « class fin
iy,

or perhaps

the format of the INSTANCE
only

Hoin oA
of Thu class,

lot 1ike LOGD

CPAGE 2.2 -

aut?.
ACTIVE-RET

HRN ..

PR
4 LLIAa85

depending on how much

the language and how much control

of g i
e concerned with semantic
he least amount of explanation to

‘the power of SIMULA or
functlon, process, and
nguages. :

il

]

T Lbjput in the nessage

b All of the
uuture which is taken to
mewber of the ¢lass CLASS
name, When conirol is
instance of the class will

at
&
Lo the
FIEW

n 1 else {nafactorial n-1J.

fintentionally) except that
is not part of the heading (as
the “body", This reflects the

act like functions and thus can

program. When a “function” is
thing that is done in most

& argunents to a aew set of

feo is achieved in SMALLTALK

“b'thl”, v is used

£

uded
zﬁ

%y

Ea e

mainly for people fawmiliar
iy treats “class objects”

object is a menber of &
a ciass is a member of

A

{and wore conventlonal)

say

way to-

= i then 1 else {n % factorial n

Lfactorial « class,|

e _
If no=0 then 1 else in = S
‘factorial n - 13

S using the <margin 13qt> convention. One could even say

JVAT = 1.

+factorial + class
L0000 var 3 . {= { th 1 1 elsel}
P{var! ,{(# factorizl n - 117,

where 1" peans "append” pretty much in -the LISP sense.

Total Control of the [nstance _
#xxfor b1t pickers, more on this later this summetr.,

Control © {and State changing, etc.)

wxktx This has (,?eri ged 11

s really just a Jdummy which computes & value to be
d to "then' or .. This means that YTRUE”ness and
“E ness are properties of objects. This allows us to
consider all legal numbers as TRUE, if we wish., A class
with one instance EMPTY Is provided to handle “FALSE™
Cases.

TO{.
LA RE o Lrexp. Toexp) _ o
*lookup the name In current environwent 4f not -
there, enter it as most global) and repiace BINDING
with value of “exp’ *,

. it pane.

”Qotw that the value of the expression on the right “exp™ is
"RETURNed when a rebind 1s attespted, but when used as QUOTE,
it iz the name which 1s RETURNed.” :

fo Bval rexp iglebalenv :return
“There are many ways to EVALw
This one allows the user to 3
iable Ffetches, an @ru“rary RETURN process, and
P MEISAGE envivonment."Eval? is included here
very Irequently used in definitions of new

o

54 _ o '
ste expressions in smalltalk.
zet up an arbitrary envivonment

since it is ve
contrel primitives™.

To Hepeat . Loobeyp.
de repcat,
Eval Loopexp fglobal iself BMPTY,
Code again.

“Repeat EVALs its loop expression in the context of its
caller,”

To Again

'ﬂElLR\W control to the caller of its caller-=i.e., to a.
looping control primitive of some kind such as “Repeat”
which can decide what te do next".

a71.57

To Done

"won
h

PAGE 2.4

ETURNz dontrol to the caller of {the caller of ifs

aller)--to one level further out than a loopning control
sr1n1L1ax. This automatically terminates the loop.
Eventually "Done® will have an optional argument for
passing the RESULT of the Jloop hack”.

To Crazte

“Reschedule caller to be run instead of waiting for a

aquOhLluG RETURN™.

To Word

JEXplain.
T"Words ave ii
operations hav
internal HLT{C

Words also
gvaluation.

up

his causes an evaluation of the argument. S0 it will also
r

unning”.

"As seen, "Create"” causes a parallel fork in centrol.

Actually, this is what happens naturally in

SMALLTALR--~the default messaze discipline is

deliberat ely limited to a subroutine “waif for reply"”

protocoi. “Create” simply prevents the caller from being
[/

inS.pl\ ad”

ke LISP atoms or ALGOL identifiers. Their basic
to do with asseubly and disassembly of thelr

ures,

ave 4 special
Al unquoted insta

(Iook iteelf up) when encou

=
T
jy i in the context of

ca of 4 word will be luooked
nted by the EVALuator. 5o

ccat,fivrst weans “look up the most local binding of the

variable
“means " ocall routine ",Y which R

3
“ecat™ oand AFPLY It to ,first”. But ,cat.first
ETUENs the word “cat",

which is ~fP“.c“ to first, which, as seen below, will
T LR £t

Numbers are words also, but have many additional operations
having to do with arithmetic and so are defined as a4 separate
class, ™,
= rvalue,word
T f
Partia bos
te it
first o . -
TUthe first character of the prininamne of the word'.
5 .
THsame as “first7r,
51ast
i 1

[APRRR

.the last character of the printname of the word”

he same rvesult as for “last”. This i's just an

Hﬁ%TWVlhlenq
Sutfirst '
T"Somehow return all but the first charvacter of the string-
representdtion of the word,?
o i

Tt .8

=
¥
ot
a
32
ot

ame as ourfirst.®

I T R I I EETE————————————
S STEST | S - PAGE 2.5 |

oW return all but the last character of the string
}“!

TH50k
v ation of the word,”

T

1271
e5el
. 1 b}. g

: Pl same as butliast.?

sindn . tvaluel,word? - . ' S
TThis 1 roughiy equivalent fo the “cons” of LISP. The word
will be onnaw;pﬂ te the List in "valuel”, and a new list
referencw wiil be returned.”

wioin .rvalusl,word? . :
TUThis 1s roughly @q¢4\ vlant to concatenate in SNOBOL.. The
printnamne of the two words are iolned teogether to produce &
new word which is r&turned‘ L£at wioin Ldog produces
‘LuLdUW i

Jdangth ' : '

i "y .
THsomenow caleulate the length (in characters) of ih&
nber {including “-" and "' ”

1 & string representation of The object which may be
ayed, Each ciass which has instances which have a

WA ful visual representation will have & meaning for
LJprint, This is much simpler than having to inferm a global
print routine about the format of esach new class,”

To Number

sEXplain. _ _ ' SR
TUNunbers work in a very intuitive way. The READ program.

pREF A : .
recognizes npumber literals an creates instances for them in
gto pe. The bli that repr the particular instance of a

mer are storad in *’rjle “value” and can be changed
-by §u°13n5ﬁnb as shown. his might be illegal 1f it is
decided that numbers are unique atows. The opposite is
assumed here

a0 o IVAlue,numbert,
T Seli . e
If a ™" is recognized in the input stream, what follows is .

evaluated and bound to “value” which is applied to number?
which vreturns TRUE if it is. The actual value of the
numbar object itself has been tﬁangud 30 that other oblects
which have pointers to “self” will feel the change. This
might e made illegal

first
tULowehow returs the first character of the nunber which is
U-TOAE negative, fs v if between § and 1, and & digit from 0
to 9 otherwise. 11T may be reasonables to calculate this value
- Tather than keep & string representation of the number
around.”

.. the same result as for “First”. This is just an
Cabubreviation.”

§T1LST

.r:U!

PAGE

1u Al, e

THS5omehow
"L Af grea

*

to 9 Onnﬁlﬁl**.
rather than k
Taroung.t

£ the number which is-
actly, and a digit from g

to calculate this value
tian of the numpher

™oL Lthe same result as for “lastM. . Thiz is just an
abbreviation.'

cutlfivrst . _ _ _
how return all bhut the Tirst character of the siring
represantation of the nunber.”

TS o me

ey dE
™. ..sane as butfirst.®
ghjil&ﬁ”

Uhonehow veturn all but the
rup;umanbalion of the nunber.

aractey Qf th& String

3
e
o
e
o
o,

.. sane as butlast.”

cdoin . rvaluel.word? o
1"This is roughly ﬁleVuani tﬁ the “”an” of LISP. The word
will Dbe connected to the list in "waluel, and a new list
reference will be ?eturned*”

Jedoln wivaiuelword?
TThis is roughly LQdiVﬂIﬁﬂt td concatenate in SNOBOL. The
printnama of the two words are jolined togather to produce a
new weoerd which is returned. .cat wioin .dog produces
catdog.”

JNuither? .
fvalue,

"Anything net EMPTY will act as TRUE.V

—

slength o o ' .
TSomehow calculate the length (in charactérs) of the
number Cincludipg “=" and .7 ¢

nrint

TURetUrn a4 s epresentation of the objsct which may be
displayed. Each 35 which has lnstances which have a
'M?JHL“@LWI vizual rapresentation will have a meaning for ..
sprint. This is much simpler than having to inform a gimbal
print routine about the format of each new class.”

ﬁ o »——“,‘...

o= . ivaluel.number? . . IR
Thvaiue 37 value and valuel are numerically EQUAL, -otherwise
EMPTY. Note that this allows "a=b=c" to work correctly.”

s o tvaluel.nunber?

SUYEMPTY if value and valuel ave not numerically EQUAL,

2.6

aiivoT

SJoin

FAlE

otherwise value. Note that thiz allows "a=b=c? to work
Lorrectly.

4w ivaluel,number? _ o
tUvalue 1§ value is numericelly less than valuel, otherwise
EMPTY. HNote that this allows “achec” to work correctiy.”

pr o tvaluel cnumbér? L -
tygiue 1 value s nuperically greater than valuel, otherwise
EMPTY.. MNote that this allows “arbg” to work corrsctly.”

JFoeivaluslnunber?

Tvalue added to valuel
- advaiusl nunbar? oL
tyvaluel subtracted frow value.’

L% . rnumber?
T"value multiplied by valusl, "

of o rvaluelinunber? .
?“\1lur divided by valusl.”

emod Lo tvalusd *iUWWC“

ttyalue modulo valuel,”

P

T .. the integer part of value,”
W, .the fractional part of value.
T, .. the exponent (to the base 10) of value.”

T if walus ¢ O then (0 - valus) else value.

cother nuneric functions which are stored as attributesd
3in, CO0&, other trig functions etc,

S e tvalue.list .
: value ,word?

o e ivalue,list

valus,word?

Jlast . . . osvalue,list o
valua,word? .
i o rvalus,list
valus word?
Shutfirst af o Ivalue,list .
value,word?
Jf L e L value,list

Dut ast o e

D) e ae . rvalue,list o
value,word?
ol

“ :

sentence’

siist?

P EERTYT

z'ivf"

PAGE 2.8

slength
Sprint '

Y rvatus,liist o

S L IVALUmLILst

e *v&iue.liah;$
L oLivaiue Qllbt .
cmakeword

To String
#xxxThis may get filled in sonmetine
Position ' .
Here @ a =@ £ useful operations for manipulating
wo-din space. The convention is adopted that “posx” and

refer to positvion state, anu “heading” will refer to
tate. The programs are written so that the most local
. :

thase va

Abl&ﬁ ﬂn ihu d;qdiic‘eqvironment wili be

pocurance of
updated. See
simple exanp

To Forvard
rdistance,
‘posx - posx + distance w heading,cos,
iposy = posy + distance s he 1d1§;+b¢n.

To Right
rangle

fheading

FEF

« {heading - angle) mod 360.

To Left
i.gngle
fheading « (heading + angle) mod 364,

Output (to displays, music, turties, etc.)
To Show

ipicture., N S
"This comprehensive routine allows the plcture to he EVAled
and then copies The pleture information into the display area
using either the dynamically available variables “posx™,
Eﬁi%:’ “heading”, if iba own bindings for these parameters are-
ERFAVY i S

CSome SMALLTALK Progran
Jc i

chee [NFORMAL, DC

i

regram Exanmpless

SMSM. ST e T PAGE 1

This file £8,00 and contains a semantic description of
SMALLTALR

This versi

on Juns 10, 1871,
file SHem

SMSM, 6T | - - I o PAGE 2

Ok IQAJ..‘LLALi\ gai'ld l 5 Senantics
. by
Alan Kay

WARNINGI! | This ig an unchecked version done sismply to try it out
for basic taste and compactness.

To e class! o e *ﬁynﬂﬁe .Aactions., o ‘ N
i T Find mame) in CALLER = classi, Do « activity

oTo o fumame e . frexp. _
. : PRind (nmma) in CALLER « exp.
i nane

To Find iiname f.in o Dicontext

: f.context « CALLER
GRS _ - o _ .
‘context.table name OR contextitable.plobal.empty?
: f.e o frexp. context,table nawe « exp. Done
e+cantext « context,table,giobal

it context.iabla name

To List foe o Jifirst rrest. tself

Peprint LIt G first.print 8% My rest,print 1M
PLlist? . ilself

tpeval o (Repecat
firet = MM Done . :
iver = MUY L lvalue = rest.eval
fuvalue « first,eval :
- : Hvalue
#wkucheck for VOID message

'To Repeat !.program, : S o
L CODEFOR fRepeat | clause ,eval global message self

To Again {7 EMPTY CALLER,CALLER

To Done i:vdlus. w-value CALLER,C LE LOALLER

SMBM, 5T

To

To

To

To
To

To

.?0

To

To

If 5B e e

E Texp
¥

r‘i’(?)

) _
f nd a “ihep™?

.....

.iuthﬁﬂ P Tesn

PRBpeat

User _
iDisplay Read,eva

Jrint

rabile.nane « message.table.nc,first,
ae,table,pe - ;Paw$wa¢tau1w¢zfqlﬁat

danle name < messaze.table.messag
e table,nessage ., table PO « nessage,

Polanane,
gfm?mJaé able, name <

m@ sape,table,nessage

tabA9 ?C,*s

s A e FEoTLITmT
[?E*‘*g.{zs’ o

. iatoken = .
sage,table.PC,rest

fmes

HESSEUe,
nlg'i:»,tn i ile pc

tabla
= mes
find) EiCl“‘Lt.ﬁLa

+LALLERLCALLER

EMPTY ¢ tes B ozelf CALLERLCALLER
mpty? ' CJTRUE
self
Apply | it g ico:m, Ll :
it o« Lgzlobal g caller ¢ nessage
fiofrvalue idestination.
P LCALLER « :destination.
Torvalue
7
iorvalue CALLER,CALLER
Remenber |« Reppqt
; EMPTY é?self o
e f ndﬂb e 1y4lue
TPy w1 CODEFOR “somehow copy
eval o "Do something or other!
Py e Livalue,
iCODEFOR “associate
sTvalus

{1 CODEFOR “Get the value ass

PAGE 201

o JC&I’)I@;PC flrSt, .
table,message, table,PC.rest.

rst *eval m&ssagﬁ*message

‘]?

m o1 L.eval

.thE table”

wame and value somshow”

clated with the name”

SMSM, ST

To class |
i

L oword?
H

feval

Y

1nd1nv3,

instantiate @ Remember -

i oself

alue. T {first =
Leenv e global.,
R“pﬁﬂ
Porenv,.empty? CTEMPTY
gitamo ~ env.table se

fLenv e global.table

valus £

435.10(33.1

+Class yclass
fRlobal global
sCaller self

JIEESARE Hes o
WPL bindings
,aval '
To instantiate :clasadef.
§R@ at
: ause, S S
clagsdel,copy « .class clagsded
+2lobal giobal
Laller caller
HNeSsANe nessage
*?E‘: L’l‘. LII?A@DO
PLeval
sfirst irest. _
farest o« Word e first.butfivet rest.
pefirst e first.first.
it oself
shirst - fi?%ﬂ*uﬁCFJbﬁ”“ o ?first
,errOT“lnput is not a charactey”
P first
ot srest.oharacier iTrest
PErrorYinput is not a word”
Prest
Cielength o i rest = NULL .
: 1+ rest,le nggh
Peprint o it first,print. rest.print

ratl AND next = value,next

-
J

message

PAGE 2.2

Toapply temp global caller

ACK. ST

CACKNOW, DC
A CKND

Much of t
ideas of

The DYNAR
lineal de

The “Inter
credtion
PARC.

COSMALLTALK

languapes

The Burre
its tipe

code; a un

“capablili
apility t
e,

" The notio

{properiy
respect t
preatest

cis defing

The SIMIJL:
coroutine

-Plrlifl},

epistencl
;na?&ntlu
separate
are held

The FLEY
fdiscardin
abiects (a
“coproces
lists, Y=
A Procaess
deternine
Leavenwor

The Contr
solutions,

major sou
indepanda
arriving

used incl
environme

environme

mapping b
over his
elc,

PAGE

mﬂd&l@&.;d ack

WLEDGEMENTS

e philosophy on which our work is based was.iﬁgpiréd by the
\

Seymour Papert and his group at

00K {ka 71) is a godchild of Wes Clarvk's LINC{cl 6#=x} and a
scendant of the FLEX Machine (ka 67,408, 049).

im Dynavook" {(known as the ALTO{Th 71,Me 711) is the beautiful
of Ghuck Thacker and Bd McCreight of the Computer Science Lab. at

BEEEREREERA L AR

i1s basically a4 synthesis of well known ideas for programming
and wachines which have appeared in the last 15 years.

ughs BROOT(ba 61) (1968) had n design ideas well in advance of
fand still not generally appre ta%? compact “addressless”
ifornm zemantics for names {Laﬁ PR LT, automatic coprocesses,

ty™ protection {also by the PRTI, x*t ual segmented memory; the

o call & subroutine from “elther side” of the assignument arrow

ns of code as a data strugiure; intensional properties of nanes
lists of atrributervalue pairs on atoms); evaluation with

o arbi Lrﬁry spvivonments; etc,, are found in LIS, probably the
single de ,40n for a programming language yet to appear. SMALLTALK
Tely *IIJPLLke”

*r; f!

65 and 'ﬁ?) combined Conway's notions of software
s (1963-hardware verzions had appearad in the BSOGO I years | _
ALGOL~-0, and nor.e’~ ideas about record classes (196%%) intc an

ogy that allowed & class to have any number of parallel

Tions {or activatlon records) containing lDLal state inciuding a
program counter. Most of the operations for a SIMULA '67 class
intrinsically as procedures local to the ¢lass definition.

Machine and its i 697 touk the JIMULA ideas
1p meast of the A Mess), maxef “z)gu” from variable onto t]
fa B5UAL and Eulery, formed a total identification between
3™ and “sata"; consolidating netions such as arrays, files,
ubroutine” files (ala 5D5-94%), etc., into one idea. The user “as
¥ 1190 appeared here. A start was made to allow processes to
Cheir own input syntax, and idea held by many (notably Irons,

th, erc.).

sl Definition hanU1&g$ of Dave Fisher(1970) provides many ldeas,.
,and ﬁgp*ﬁac 3 the notion of control. It, with FLEX, is the
rce for the SMALLTALK. 1t is a “soulmate” to FLEX;

ntly worrving same problems and very frequentliy

of the s¢
at cleaner, neater n@ju to do thing Many of Dave's ideas are
uﬁing ”hL provision for many othorgonal paths to external

pls, and that controel is basically a matter of arranging these
nts W%E“;A¥h removes Fisher's need for a compiler to provide a
etwt,n nice syntax and semantics and offers other inprovements
schemes such as total local control of the format of an instance,

ALk, ol

An ?Xl@ﬂp”quﬁPu talk by R.G. ?irﬁan at Xkba Ski Iodge(lgfi) about

computers as communications devices and how everything one does can easily’

he portraves as sending sages to and fro, was the real genesis of the
current vervsien of SMALLTALK

The fact Tha~ Kids were to be the users and the simplicity and ease of use
ni ¥)

of the alveady &
set a standard fo
surpassed) provic io
appear as simple as po
gather thelr own wesss
programs fook a bi

yWhese own pavents were LISP and JOS5 (which
thetics of interaction that has not yet been

of motivation to have programs and transactions
ible~-1i.2, moving :?om left to right, procedures
s, wte. It 1s no accident that sinmple EMALLTALX

L e
T

DT i
b

e
e
O
oy
&

S Problewms discovered vears ago in “lefthand calls? prompted SMALLTALK to
make “store" intensional--i.e. a =« b, means "call "“a* with & message
consisting of the token "« and “b"M. If anvone can make the right
decision for what this means, 1t must be 1nr biect bound to “a®. The
early fall of 1972 saw an evalualtor for SMALLTALY and the idea that ¥,
“-roete., all should also be 1ntenq1uhal ? iz led to an entire
philosophy of use {unlike STMULA *67) to put EVERYTHING in class
definitions including the so-called "infix operators”. The message ideas

-atlow mes es to have a wide range of form since a message can be
recelived incrementally,

“"Control of control® allows control structures to be defined. The 1angu&ge
SMALLTALY itself thus avold “"primitives” such as "loop ol”, synchronous
and asynchronous ”wsv‘w“{wﬂﬂ} interrupts, hackir GCklﬂb(&*ﬁ}, paraliel

A1

13
eval and return, sitc. ALl of these can be easily simulated when needed.

FEEENLALNF LA R AL LR L LR NAR

=3 ot our language. There were many other minor
roR other cxi‘r"ﬁ languages and ideas too
v briefly in the references,

These are the main inf ue
and negative inf nees f
numerous to mention excep

microPLARNER's main Influence was negative in that 1t convinced us finally
that Dackiracking is not the way to approach problem solving. Instead, we
prefer "™trial evaluation™ where a “straw precess” i3 run in a “strav
anvironmpnt” a% a4 coprocess and constantly sends wmessages as to how badly
1t gets creamed back to its Oli”iﬂatul 1
just dl%C{:de rather than baakwracheu. (A germ of this idea is found in
Fishevr's thesls).

&

T
5

EE)

The fine idea of microPLANNER (Mpattern directad invocation”---1 call it
“eall by desire™) does not appear as 4 primitive in the current version of
SMALLTALK (it was in ST-1971) bur may be easily added in just the way a
particular user desires,

b S PR T A R

Tym

This particular version of SMALLTALK was designed through the summer and

cearly fall of 1972 and was aided by dlxmu sions with Steve Purcell, Dan
Ingalls, Henry Fuchs, Ted ¥sehler, and John Shoch. From the preceding
HLRQOWIEULPHCHE& it can be sesn as a consolidation of good ideas inte one

simple jde

Make the PARTS {objects, subroutines, 1/0, etc.) have the same
propervties and power as the WHOLE {such as a computer).

P?Qi\u design. SMALLTALK recurs on the

This i3 the basic }Tlskasl“ of rec
ey that of “subroutine®

}
notion of "computer” rather tha
1

A talk on SMALLTALK was given at the Al lab at MIT (Nov 1972) which
‘discussed the process structure and the nev, intensional, way to look at
Cphroperties, messages, and “infix operaters?).

it perishes, ifs environment is-

Ack.sT . PAGE 1.2

EEEE P TR PR T P

Dan Ingalls of
revealed nany

away” imple
without his

gup at PARC, the implementer of SMALLTALX, . has _
flaws through his al, excellient quick “throw
SMALLTALK could not have existed
cheer,

Tha original design of the "“painting editor” was by Alan Kay. It was
Y 1"' 1 L g ™
plemﬁnieu and tremendously improved by Steve Purcell.

The “Animator” was designed and implemented by Beb Shur and Steve Purcell.

Line Graphics and the handm“naraaber rELawr zer were dene by John Shoch.
" Ted Kaehler did the ne turtla” on the HLTQ Bob Flegal (C5L) did the

color turtle on the Graphics Graap \chO buffer (whi c% was designed and
Luilt by Dick Shoup(C5Lij.

Music” was designed ¢
The program o REGIS
Deuts ?h{”dL,?AA,} d
“scare" notation. S

nd implemented by Alan kKay. Barbara Deutech wrote
SR ocombinations of timbre file%. Petar

gned and wrote a transiator for compact musical
¢ saunders iluproved most of these prograns.

Diana Mevry wrote auxilary svatsns ur@gr ms and a very nice “software
character generator” and text scroeller for the ALTO.

The design and implementation of the font editor was by Ben Laws
(POLOSG, PARD)

FhREERRARER AR RGN

Wewould 1ike to thank C5L and POLOS in general for a great deal of all
kinds ¢f nelp.

Smalitalk Class Outline

March 5-9, 1979
_ - Adele Goldberg _
co-featuring Dave Robson as TA

- Monddy March 5
- Theme What is object-()riemed programming?
Reference Drafi-0 of Chapter 111 Smalltalk: Dreams and Schemes
basic data structure: object
- state
behavior
~basic pr(}ccssing:' message sending

“Smalltaik’s version
. conceplual object: internal and external view
conceptual class, instances, subclasses

message delermmination

Example environments 1o organize into objeets and to specify (he message prolocol of the
abjects

what arc the objects?

what are their protocols?

[door, amusement park, inventory system}

"Example class definition in Smalitalk: class Part

Offline_assignment

- choose one from each column and specify the objects and heir: pi‘()tocois

bank data base text editor
Antegrated circuit - cdleulator

animated movie ~ musical performance -
' telephone network computer
" technician’s lab PARC

Oun-line assignment [see handout #1]

using the Smalltalk user interface, learn to use a dislog window, text edit in a code window
{read Handout #1), and print your code window. Learn to use the document cditor (see
Handout #7)-using it to do your offline assignment if you choose,

: Tuesday March 6
Theme class organization, messages and ‘methods
Reference Draft-0 Chapter IV Smalltalk: Dreams and Schemes
state information for a class
methods
pseudo-variables self and super
examples
" HashSet, Dictionary, Imventory System (the <lass Muentory)

- Syntax_of Smailltalk-76

special consideration for initiafizing “class, pool, and instance variables -

Classes in the Basic System

~Off-line assignment (but actually done on-line) [see ‘handout #2]

‘goal: do some browsing on-line to find the indicated definitions: watch out for use of self
and super. Try to read the definitions of Stream, Point, and Rectangle.

Read the class definitions for HashsSet and Dictionary to determine what they can do.
How do you create a new instance of the class Dictionary? An instance of the class .
Dictionary understands a message of the form insert: name with: value., In
execuling the method associated with this message, a number of messages (o Self are sent.
‘Which ones are they and who holds the message diclionary in which each is found?

On-lineg assignment [see handout #3]

implement a class that represents a data structure for vour labcramry"invcnwry.'

Wednésday March 7 .

SubTheme The nitty gritty folklare of files and printing - [see handout - #4]

- Theme Message protocol as a command Janguage: subclassing--why do it, why not;
browsing and reading class definitions already available in Smalltalk-76

Examples
Redoing class Muentory as a subelass of class Dictionary

Putling text up on the screen (Textframe)

Thursday March 8
‘Theme adding graphics

- Examples

- Making a sketch (BitRect)
. -Making . a movie

Friday March 9
~Theme windows and menus

-Examples

Making a PancdWindow and a Menu -

' 'l‘w('). weeks sfter this class week {Monday March 197)
Theme process scheduling
{see handout #6)

~ Example

“Scheduling an Inventory -Window -

:’-aefmm Tiw suhcmssgs each-have mrgl\it} as d fietd.”

;-az,ode ins zci:

diode « Diode new . nit: ¢ o4’ umque} wwh, 200.
diode order: 5 on: (Dcmz new Liag 2? mﬁmh 2 year: 79)..
diode onHand print. .

diode orderWa wing.

licie needed.

diode mwMangOraimd

;t.oaa pnm

Here LS a, dwtwmrg to be used far smrmg ihz parts”

'.teahiab & Dwtmnarg init: 5.

;-i’zchh&b insert: e*Dinss . '

SO withe {Diode new inits &911156 Luu:h 200)
echiab insert: ¢*12n4s .

: with: (Transistor new inity ﬁmms with: 150).
--.I:echmv i,ookup ﬁDtnse _

"’To gzt o a- parz and send it cmg messagz gau,-haﬁé 10 do it
: mmr{actig like this” _

'-(t;_zsh{,ab Loo}zup '”‘*E} ns6) {chmd
techlab:looktip: ¢* T2n45) needed., S
x;ecimm Ltmkzup *‘DmSé) 'mwiviang()rderect

fn"ﬁ"l Li::"lb

1oiims | o Diode

S T2nas A Transistor

'- ';.ﬁ-mvenmrg that can receive i:he message. - Suppose we did”
3"_3'tec:hlah . invzmos’g init: 5. "notice the similarity to Dwmmrg” o

~onHand” -
< Uresult for the: above amamnat’g would be
'f,zecnuzb

- Dinse 200 -
-w;ﬁ- T2n45 150

.”Assume Wwe. hav@ c:chss Parz with Suhclasszs Dmd@ and Tm, 'x,szswr B

".:"hut ymz can: not qend i:ech%ab messaqes such as ust aii parns and
“the number on hahd. It 18 necessary to define an object

~techlab aLLParnsOanmd o Mist all - parts a,nd ‘their - number‘_ o

DOCUMENTS IN SMALLTALK

S g ¥ o ¥ sonsenue 11 1 I 1 I 1 f LI e § s ¥ s 1 _]

- Qverview

" The Smalltalk DocumentEditor is a facility for creating, editing and composing documents
containing both textual and graphical elements. Documents created using this system may

-~ contain Bitlmages (bitmaps), Textlmages (paragraphs),BorderedTextlmages and Headings, The

spatial - relationships among the text-praphic entities (Bitlmages, TextImages,

BorderedTextlmages, Headings) in a document is totally arbitrary and must be specified by the -)

- wser. Completed documents are stored in Press File format allowing printing and retrieval ﬁom
" “the same file. :

Philosophy and basic ideas about Documents

: A Smalltalk Document is a collection of entities (B:tlmweq TextImages, . . . etc)
ar bmanﬁy p(")‘am()!]t,d within it. Each entity type has its own editor that is idiomatic to the entity

S being edited. For example, Textimages are edited with ﬁl(, standard Smalltalk text editor while -

| ~ Bitlmages are created and modified using the Smalltalk Toolbox Picture Editor. The message
protocol that an entity must obey to be manipulated within a Document is reasonably simple,
atlowing future inclusion of new entities like barcharts and curve graphs.

Creating a new Document

To pet started type: Document Editor new defaultdocument: "xxx' in vour workspace and
8 ¥1 y y P

execute it. When the OriginCursor appears specify a Smalltalk Window in the standard manner, .
Cexcept that the width is constrained to extend to the right edge of the document. The Window -

you specify is a DocumentEditor that is a view on a simple Document that contains: a
Textlmage, a Bitlmage, a BorderedTextlmage and a Heading. This DocumentEditor (Window) -

- obeys the standard Smalltalk Window protocol and has 'xxx’ as its name.

Editing Documents

" SELECTION OF ENTITIES IN DOCUMENTS:

The mouse and redbug used for selection of entities within the Document, To select an entity
‘or entities: specify a rectangle containing them by:

1. depressing redbug

2. while keeping redbug depressed move the mouse until the

- blinking rectangle is the right size.
3. release redbug.
- The entities contained in the rectangle will be highlited. _
For the rest of this memo sefection will mean the entity or eitities cumnﬂy %e ac;ted
{highlited) in the document.

* GRIDDING CONTROL IN DOCUMENTS:

- The x-grid module is set by typing a lower case "x" " followed by a typing the number of alto

screen bits desired for the x-grid followed by a ”,..J" The y-grid module is set by typing a. -

lower case "y" followed by a typing the number of alto screen bits desired for the y-gnid
followed by a ".4". The gridding specified in this manner applies to all the document level
editing operations that are explained below,

" DOCUMENT LEVEL COMMANDS:

Document level commands are invoked using the yellowbug menu which looks like:

move
erase
place
Cut
paste
topy
Lop
bottom
1j ump
addspace
deletespace
show

~ Yellowbug Conmands.

‘move: Repositions selection within - the DocumentEditor Window. -~ When the
- OriginCursor appears,depressing redbug will cause the selection to follow the mouse until

redbug is released. The position of the selection 1s determined by the setting of the x and
-y gridding,

erase: Deletes selection from the document and saves it in a Scrap (like the Smalltalk

paragraph editor). The space occupied by selection is left as white space in the document.

- place: Places the contents of the Scrap in the document. When the OriginCursor
appears depressing redbug will cause the contents of the Scrap to follow the mouse until

redbug is relcased. As in move, the position of the entity being placed is affected by the x .:

and y gridding.
et Like erase except the space occupied by selection is removed by moving all
- - entities below selection toward the top of the document by the height of selection.

" paste: Similar to place except all entities below the top of the final placement of the

“Scrap are moved down in the document by the height of the entity in the Scrap.

copy: . Creates a copy of sefection and saves it in the Scrap.

bottom: Used for scrolling the document in the DocumentEditor Window. This
command moves selfection to the bottom of the DocumentEditor Window, If thereis no
* selection, this command will cause a jump to the bottom of the document.

top: Used for scroliing the document in the DocumentEditor Window. This command
moves selection to the top of the DocumentEditor Window, If there is no selection, this
command will cause a jump to the top of the document.

- jump: Used for scrolling the document in the DocumentEditor Window. When the
JumpCursor appears it indicates the current position of the Window on the document.
Depressing redbug specifies the new position of the Window for viewing the document.
The top of the DocumentEditor Window represents the top of the document and the
bottom of the DocumeniEditor Window represents the bottom of the document.

 addspace: Adds space (in the y-direction) between entities in the document. - The
amount and position of space added is indicated by specifying a rectangle (origin and
‘corner) with the mouse. Space equal to the height of the rectangle is added to all entities
below the top of the rectangle. '

deletespace: Deletes space (in the y-direction) between entities in the document.
Similar to addspace except space is deleted.

show: Redisplays the DocumentEditor Window. This command is neccessary because
some of the commands mess up the presentation of the document in the Window,

-~ Printing and Filing Documents -

- Documents can be printed by executing "print” with the standard Smalltalk Window bluebug -
menu. A PressFile (named “xxx.document’) is generated from the document and is sent to
“Menlo. This pressfile can later be recalled and edited by executing: DocumentEditor new init:
{ Document new fromPress: "xxx.document’).
_ The pagination algorithm currently implimented is unsophisticated. It will split a Textlmage -
~oacross page boundries but not Headings or Bitlmages. If you avoid fancy layout near page
“boundaries you may create and print very complex documents, Much work remains to be
“dong in this area.
- Since we do not (except for Cream1(and Cream12) have coordinated fonts it is impossible to
- reproduce exact screen positions for text on the printed page. The printing algorithm attempts to

. keep the relative positions of entitics on the page in proportion to their positions on the Alto

“screen. You will probably be satisfied most of the time with the placement of entities on the
- printed page.

~ Editing Textimages, Bitimages and Headings ’

-~ To invoke the idiomatic editor for an entity simply move the cursor over the entity and click
~redbug, When you are finished editing an entity move the cursor outside it and depress any
©mouse button; this will return confrol to the level of the DocumentEditor.

"Ediling Textlmages: The standard Smalitalk paragraph editor is used and its
“documentation can be found elsewhere. '

~ Editing BitImages: The standard Smalltalk Toolbox picture editor is used for this and
Ats documentation can be found elsewhere.

- Editing Headings: Headings allow one to handset a line of type. First select a character -

by pointing to it with the cursor while depressing redbug (the character will blink slowly
~when it has been selected). Then call up the yellowbug menu which looks like:

16ft
up
dowm
font

_Each of the commands: right, left, up, and down will shift the character selected one Alto
bit in the direction indicated. The command font requires that you type a number
corresponding to a Smalltalk font number followed by a .J. It will change the font of the
centire line. To change the text in a Heading simply type the new line followed by striking
the return key. ‘

- ¥ I - i 1 I 14 f 1 a1 [L{ J '

r ,
Lm.w e
= - =
» p
o 1._ z
=~ o
= et %
b = 7 L
g
7 2 - s
- = g
Fal - :
) P @ S :
O J ‘
= = 5 5
= p g |
= 2 = g
= / = z
S ® E 5
- S I
- N B
S = o B g 2
] o >4 = S 2
Pyt = = E 2 g
- 0] 15 =) : 2
St T > = C =
> & o . e
< % & s .5 P
= " 2 2 5 5
[o = = 2 3
< = w & = =
: k> =
= & P o z
! w

Don’t Settle for Anything Less

Alan Kay _
' Salt Lake City, November 1978

- Fot -the past seven years, we have been concerned with human computer _cummimica.iions,
patticularly in the context of portable personal computers. Our definition of portability is that you
should be able to carry something else too. This is our geal. In 1972 in order o puide our
research in personal computing we made some guesses as to the powers - to gelting power and
capacity that would be available in the package of this size. A person could carry around with him
or be used in the grass or at the beach, or other places. The idea here of course is not even the
aesthetics of being able to use something oculside, because of course we don't always do things
: outside. Basic idea here is that we want this resource to be always available, So that the person is
able o make it their main medium of handling their information needs. As I said this morning, in
order to take reality into this dream we have over the past five or six years built a number of
“hardware and soflware systems of which this is one. This is a machine whose name stacted out to
be the Interim Dynabook and it's short name is the Alto computer, We now have 500 to 600 of
‘these machines in existance. We have used them, they have been around since 1972 and many of
“the features on this machine are conscious attempts 10 stmulate features that we believe will be
available in the Dynzbook of the 1980, For instance, this is an example of one of many different
~rescarch projects that we have done over the past few years with children. This one has been in
Jordan Junior Fligh School in Palo Alto and is done in the context of learning as research both

Cfrom integrating curriculum with personal computing.

Again, as I mentioned this moming, the aesthetic constraints that we decided on early in our
research - we decided on before we got starled because we all know what happens - the
compromises that we make once we start doing real things, So before we got started we decided
that first and foremost in personal computing 1s that there are two words--one is person and other
one 18 computer and we have (o keep both of them in mind at all times. In particular, all of our

“designs have really started wilh the idea of a person sitting in front of a display screen, where we

think of a displéy‘ as éomel;hing that can play music that is, produce sounds as well as ﬁicturesQ
Conlext of somebody sitting there who wants to do something. One of the first questions-we ask
Courself is what the probability thal we can anticipate this arbitrary persons need for handling
~information. As almost anybody you come to excepl maybe the manufacturer, we decided that we
c.ém’t anticipate this arbitrary person’s need at all. In fact in many senses we can regard most
- people as being experts at what they do during the day. A kid is an experl at doing what he docs
every day and kids are quite different from one another and most adults are engage in work that,
whether they enjoy it or not, consists of skifis that have been built over thousands of hours. So it is
our sudgement that it would be a hopeless task to try and provide a set of simple tools that would
correctly anticipate people’s needs. So the conclusion that we came to is that you have to build a
system that these people themselves could mould into the kinds of tools that they required at that
given time, That of course brings up what we think is 90% of the personal computer problem
which is a communication problem between a person and a piece of hardware and of course the
software. - So we starled out to build various software systems. All come under the gencraic name
of Smalltalk - you will see various versions of Smalltalk in the movie and the video. So starting
right off although our intent was not to duplicate paper we were finding it interested enough 1o find
that it works on paper. There is this funny thing that happens when new media comes in. Guys
have given you something more and they always wind up giving you something less, There is
something almost obscene about the idea of being able to edit text on a computer in a way that you
can't ever do on paper and having il printed out or appearing on a display screen as something that
‘is unreadable. If you think sbout that, it is just a little bit strange. 50 some of our interests were
to not dull people’s senses by giving them presentations that were a far away distance from what
their own senses could take in. So we are very interested in human factors and here this slide gives
an example of a page sel in a particular font and the next slide shows the same page set in another
font. The fonts are all programmable in the system and in fact the user at any time can create their
own fonts by simply drawing them i - . I think that’s the - one more slide. And again, as [
~mentioned, the only way we felt that we could achieve flexability in the new graphics was not gven
1o try and anticipate the people who would straight tines drawn with a certain ---. Instead what we
desizned was a mosiac display. We feit that the display surface of this machine would be a million
d(}t mosaic display of some kind and instead of building graphics hardware o manipulate this
- mosaic display instead we huilt the machine so that all of the graphics, all of the music can be done

- entirely by soflware. So the music and 5o on you will hear is synthesized entirely by programs,

The -only hardware iavolved dn doing the syathesis on -this machine is a D/A - converter,

One of the goals of the personal machine - very important is 10 have enough cy<les so that 'ybu can
throw away a factor of len or twenty of them without feeling bad. The reason is that you can't
even expecl our hypolhetical user of the future to write effictent. We'll be happy is the person 18
wilting to program in any form and gets a tool that will work with him. So our performance goals

for this machine are very high,

“The thovie shows a sequence of tools done by people of various agés. and different walks of life.”
And ends up with a glimpse into a future of Smalltalk programming. You notice I'm not going to
tell you about Smallialk language tonight, [will just peak your interest, 1 hope, by saying that
Smalltalk does not use as primitive concepts ihe idea of procedures and data structures. -—. If that
interests you please come 1o a session tomorrow and we will tell you what a programming language

‘13 Hke to design these procedures and data structures,
‘Mavie,

Comments during movie: Here's one of my favorite tools. -This. is done by a 15 year ¢ld. “T'his ié :
not - 1 would not consider this person to be an ordinary run-of-the-mill 15 year old. This is about
the second pmgrmﬁ he ever did. Hand radio * and was frustrated by circuit diagrams so he sat
down as a second project to build an illustrator that would allow him to draw the circuit diagtams.
Notice there is a menu down at the botlom of the screen that is shapes that he can pick up and he
s going to pick them up now, Pick up a resistor and putting il in - pick up a baltery. You will
notice oceasionally where the pointer is will appear a litlle menu ihai has special features on it ke
open and close docs and erage and install{?) . Every once in a while it will flash - so that has little
fmals that he needs often. The reason’ il is onc of my favorile systems is that this program is done
by a 15 year old less than 10 years ago a Phl) thesis was awarded for a system thal wasn’l a.s good
. _'as this. Shows lhad there is some hope for soflware after all, This s also a very shor program n

_ Smalltalk - about a page and a half or two pages.

©This i an-example of a typical wol. | claim that most people who wint o feart to use persondl

computers are alrcady intercsted in semething else. And are sccking a way 1o magimize their

enjoyment in this feld they are intefgsted and minimize ihe'péin; Mast of the tools that we have
scen people do are ones that follow that philosophy. You can he can float the text in - he is typing

it in and it is positionable right now so now he has finished the circuit one transisior receiver.

: 'Here is another. This one is a philosophy major at Stanford. This is one of my favorite cases. We -
have him in the Summer. Adele has been working on a book, of course she has been pulting a lat
" more work into it than we have and she wanted to géneratc some errors 3o we thought well this
person has not written any kind of a program at all for seven vears and he has just learned
'.Sma'ilta'lk, we'll let him program up. What is this is is a Masters (hesis done by a gird at Cal Tech
for describing circuit diagrams in LSL Little language. So what he has done is actually
implemented an entire sub-language in Smalltalk and has asked that he now draw three of these
: '-n:mgatcs(?) at different size in a parallel array such as you need to lay out a circuit board. The
- heck of it was that he did all of this in one week, found a number of bugs in the masters thesis
which was never actually implemented. And generaled only a couple of errors and deemed the

project a failure for that reason,

 You might wonder how you create a musical instrument. Here is .a.';:i'ictu're of one. T you were
going o0 make an instrument in front of your eves, time goes horizontally. This is a graph - of
- multiple parameters in time and the first we are drawing the amptitude. Nice sofl and slow rise in
.v'eéume. Now we are going to change the spectro characteristics - just drawing a Httle graph that

says make the drawing a litlle more complicaied then level it off, Now we are going {0 make a little

~bump in the middle section between the two bars which repeals over and over again and get a

suble vibratto. Now a final parameter i3 sort of a general tonal family. For instance, here is what
these families sound like as a wood wind. And as a kind of a bowed string. Again this is all done
by programming. Actually done three years afler the machine was built, This is just a spegific
example of the kinds of things we do in Smalltalk - here’s am)th_er one that is atmost like except
right up 10 the last instance when the oulpul gets transialed into pictures rather than sound. This
system was done by some professional animators who visited us for a summer. They did four
systems in Smailtalk in eight weeks. This is the last one they did - they did this in about two weeks.
So we drew a little picture there and we picked it up and put it on the mouse and showed a j_aziih -
“you can think of this as being just like playing o musical score with a clarinet tombre. Now we are

single stepping the path that we iust drew - of course the interesting -point in any animation is the

contact point. - Again there is no hardware to do this graphics - very important. What we have

“done s replaced that bottom-most frame with a fresh painting window without picking up **
painting. You can think of it as being laid transparently over the frame we have there. Walch as
the painting goes in and gets * in that bottom frame in real time as the animation proceeds. You

Ccan see why animators would do a system like this because this is one of the most frustrating

aspects of animation - it's knowing whether the animation is poing to work, Now since the specular

reflections put it there will be {:n{mgh{ hues to make it appear as though the ball is defo.rmingrwhcn
it hits. This system done ’qy the animators is the most used adult system by children. This 12 yvear
oid girl has added some features to it and made use of it for her own purposes. You should be
able to do at least this. Now we are taking a glimpse of a systerm done by a graduate student who
is actually helping to design the next version of Smalltalk. What we are going (o see here is

_ grabbiug onto a corner of a triangle and dragging that side around and the triangle is following
because it has been constrained to stay together. This is a programming system in Smalllalk for
dealing with constrainis. Here we are looking at two views of this triangle - the one of the left is

cthe picture form - the one on the right which is exactly equivalent is the class of counstrained
{riangies. You see it has parts of varicus kinds and has a number of constrainls which say how the
system as a whole is supposed to stay together. Up on the top vou see an information retrieval
system called a browser. What has been retrieved here isl a document consigting of text and

graphics whose parts have been mutually constrained, In fact it's in the form of a table of values
and a total and a bar chart. Of course one of the annoying things of any kinds of documents that
‘have pictures and text in it is when somebody edils the text they are going to change the picture.
~In a constraint oriented system what you would like to do is to say -Well this numeric value - this
slat for a numeric value here - 1s constrained to be proportional to the height of the bar graph and
vice versa. What he is doing is changing that - as you can see - one of the figures in the total that
© s connected by constraints - saying zo ahead and do il - connected by a constraint to (he last bar
and the constrainls system scttles the two constraints - one the height of the bar and the other the
total. In fact they are mutually constrained as we will see in a minute. The importance of the
~systemn - now he is changing the total and we will see what will happen there . In some cases

changing the total, if that were an equation, it would make sense 1o change all Ute numbers that are

' "i‘ectéézzg into the iofal - since this &5 just a sum the conslraint is only one way and whaiever you

change the number 1o it has to spring back to the total numbers above it. Now he is teaching down

- and grabbing on to the top of the bar chart and notice as he drags it the number that he is

© connected to is changing and so is the total as he goes along. - The othet thing that is i'ntéresting' '

aboul programming constraints is that most of the programming can be done by simply combining |

" separate elements that have constraints on themselves and the systerm has to figure out what the
" entailment of all the mutual constraints means in the system. 1 think the next example shows that,
Fet me explain the browser a bit. To read the browser look on the left and scrolling a whole bunch
of category names - he is picking one and that immediately retrieves something to the next window
-on the right- he is picking one there and browsing through a fairly complicated information
structure - there are thousands of entries. Finally pick out a blank slate here o show an example of
constraint programming by instruction. The first * that is picked up is an clement that is called bit
-point line. They're sticky, When you get close to two parts that are the same they stick together,
"~ Motice that no matter how he pulls out the line there the point in the center always stays in the mid
' point because it is constrained to do so. 8o now he’s made himself a quadro-lateral, now what he’ll
do is through these about a hundred different graphics kinds of objects that you can have he has
selected out another one which is just a regular line, MNotice how it jumps when the end points get
* close to something that can connect, If you think about the intra constraints of the system built like
this are quite different from the constraints of the parts taken separately. All bit point ling has to
worry about is to make sure that the bit point dot goes in it’s bit point. Think of what happens
when you connect a complicated system together each of which has it's own set of constraints as to
what * should be, In general, those constraints will entail that the system must figure out a new set
of behaviors for the system as a whole. This is something we are very interested in because it's

something that naive users are not very good at. In fact sophisticated users are not very good at i,

- if you've ever tried working with a typical operating system, Now, he has made a quadro lateral

and connected all the bit points - all of the math feachers in the crowd should know whaf he is
“going to do next. There is a theorum that says that you always :gct a parallelogram in the center.
Dragging one corner of it. By making these coliection of parts a whole the system has had to figure
out not in what [would call an artificial intelligent way, but in a straight forward way ~ nofice that
the theorum is true even when you pull the quadro-lateral inside oul. Using the constraint system to
show the kids about geometry. Here’s another example. This is a graphics caleulator. The
calculator part is down below., This is a version from fahrenbeit 1o centigrade and vice versa. -And
again ** are much maore fun, The system will work with either numbers or thermometers and the
litle dingram down there has whatever number that is there multiptied by 1.8 and then added to 32

and as he drags one of the thermometers the other must follow, I you are wondering what the

" little anchors are there he does not want to change the ﬁ{}-zﬁstalxts with the equaﬁbﬁ when he
 constraints to satisfy. Grab the other side - * they work in groups. So this is going to bé one of
the futures. Video tape shown here. Here is an example of a window - you will see various

windows - the window contains text - there is a very simple description in Smalltalk of what
- windows are. In fact all programming here - there is fext being typed in and in real time the lines
are being justified on the left. Now some text is being read - & Hitle menu appearing right where
" the cursor was - remember Lhe kids program had that also and the PUP command was invoked. So
you lhink of in any of these systems all Smalltalk is programmed in itseif so all of the low level
Sysiems programming stuff - so his 19 almost a command-fess editor as far as text, Now over on
the left you will see a scroll bar. Notice what is happening. The square box shows where you are
relative to the text and by dragging on it you can jump your way through the document, Any piece
‘of text can be interpreted as a Smalltalk program. Instead of saying paste or cut we say do it. And
) ‘Smalltalk caleutates the result, which is 7. Now we move the scroll finger up to the top and the
text goes back up.to the top of the screen. Adele is pointing - these two windows down at the
bottom here are port holes to other project windows and pointing to one we get a different set of
- sereen windows, Tn Smalltalk there is only one description per text, no matter what the contents,
- whether the text is a document or program or something else the use can expect that the same
editor will work with i, But windows can have other things in them. Like here is a picture and
when we wenl info it we got a different kind of menu which is a drawing menu. Up on the top
- There are all sorts of different tools - we will show you a few of them. This i3 a system that was
- originally done by a professional artist. Here we pick some gray paint - if you like the idea that
vou can sketch as well as doing rip snorting computer graphics type stuff you will like the idea of

the sketch and play with the design.

Here'ds a tool for drawing around a thin line blacking and the message here is Lhat you should be
free to play around and do the kind of doodling that you car; do on paper as well the very
' crystatine things normally associated with computer graphics. Again, don't setile for anyihing less
than this, bccausd it's what you need 1o not have Lo tell kids and adulls - you can’t do this or you
can’t do that - and 1 say why not. you can do it. The stuff was all possible six years ago. Now we
showing varicus kinds o_f tools. One of the messages of the compuler i not even in the gray stuff
You can edit it and change it and you can get rid of it. One of the significant differences belween

it and the media we are used 1o, Now we show you some of the ways of combining graphics with

what is ‘alrcady there: Over’]aying' - underlaying. - This one looks like an overiay but actually is -
here we pick a slightely different paint and you can see it has evolved **. Here is one that just uses
_ what is there as a mask. Here is a demonstration that anything that ** anywhere can be used - not
as a picture but as a brush. Draw in the flower, and pick the main brush command. Brush appears
over 1o the side. NMow she can paint with it. That of course can be stored away in a reperiocire of
brushes. Here we are picking numbers and these numbers refer to the grid. 5o now she is painting
constrained with a certain grid, This is not a feature of Smalltalk. In fact as you wil find out
tomorrow even numbers are not a feature of Smalltalk - numbers are an exiension to what

Smalltalk is as a programming language.

- Smalltalk is actually a programming language whose basis is that of communication. Things like
numbers, simulations and drawings and all of those things are done as extensions to the kernal
" language. We figured that would be the safest way of not anticipating what people were going o
© do was to not try and guess * features in. One of our main docturnal points, if vou will, is that the
‘ power of a programming system of any kind, of any kind of a computer programming system is
determined almost entirely by how well it does in areas for which it does not have features. Think
g about APL is wonderful for trying to do * but try o do ** with one of your own functions. We
' designed Smalltalk so that the kernal really doesn’t have any féatures cxcept the the ability to create
Ccommunicating inscriptions. What Adele hag reirieved here is actually a document which we are
going to use in a funny way - she is copving this heart into the first paragraph. Documents in
_"'Smaillalk mean a4 lot more. than regular documenlts in text. You can think of a2 document in

&

Smalltalk as really being an organization of windows in the * information space in Smalltalk,

“Trimming (he top of the heart and drawing a smaller one, Cut and paste metaphor is one that we

use in all of our editors and in fact most of the editing commands for text and for graphics are the -

same. Much alike as we can make them. Cut out a piece of text into a shelf that you can later
retrieve you can do the same thing for any picture. [f you can edit a brush for a picture you can
do the same thing for a font character. Retrieve the font character as something that fills up real
quickly in the linear way or you can treat it as'a graphic entity - the reason is thal because the part

" of the self deesn't know what a font character s, You can see the menus appearing. Now she

©-copies in this last picture here and (ells the system (o do something funny with the document which

s to rap it and swing it's way through the document showing everylhing at the top of the screen.

- Now she says run - getling animation. Now what she is doing is copying that heart just like she

o ocopled the text before and now moving the one that she had put.on the shelf back in - now paste in

the one iﬁa{ she just copied. - Changed the order of the heart and she will tell the system to run
again. Goes over to the * - picks up the filled in heart, Whien you are dealing with entities in
Smalltalk almost everything vou do, even when you are doing stuff in Music as” we will see
tomorrow is always really in the context of relreval finding things, browsing for them gelting
 entities that yvou want and then editing them into the configuration that you are afier. Now we
going through another window into a more involved decurment . Demonstration to show you what
it i like to make a page of fairly reasonable text and graphics with a lHittle twist of the hand - here
is the document and a number of windows. Zoom in to the information. Picture of a mop which
is ohviously going to be used in this. As you might have guessed, all the other tools that are
available in the Smalltalk system can be brought together in any one of these project windows and
hrowsed through one of these * ports. So the first thing we will do is to change the font from the
. "script font to a much bigger font and make it bold so it will look like a heading. Next thing we do
| is grab all the texl in the next paragraph and choose a Timesroman font of a cerlain size and
boldness in order to make the text more legible. In fact as Adele mentioned in her seminar this
“afternoon we hdve had occasion to learn about five year old eyes, ten year old eves, thirly year old
- eyes, and fifty vear old eves. Fifty year old eyes for onc thing do not ook at the display the same
way as some of the other age groups do . This font was a font done for fifty year old eves
Underdine a few words in there. Come down to the bottom and do the same thing to it. 1 think
- the first thing we do is just change it into a bigger font and now go over and make the O’s even
© bigger, cause that was said in the text was for and make them look bold. None of this stuff 1 am
showing vou is a feature of the Smafltalk system. ATl facilities added as extensions by users. A lot
-of these that have to do with document layout and so one are onces we have added ourseives, But
we have used technigues developed by professional astists who hé;vc written their own programs in
.'Srrml]ia]k that are adaplable. Adele is picking up a bulterfly and wants to place it in the fexl
System animates the butterfly down s¢ she can see where il is going 10 go and she wanis to-place it
right there. This whole page of text that we are putting together is all about bulterflies and moths
- and how they differ from each other so we obviously have Lo get ourselves a bullerfly since we have
a moih in there, In fact there is a butterfly hiding under this moth. These windows on the screen
overlap. Whenever you point inlo one i comes up Lo the lop of the scréen and occasionally you
o can include so we can choose a menu under which will bring up anything that happens to be hiding

~and lo and behold there is a butterfly hiding uader. there which Adele is going to paste in. Notice

we have not typed during this whole demonstration except for the very beginning as e text was
* being entered. The reason is that typing is not the besl way lo give commands in general *a
- graphics display. IUs much belier o have context intended commands. Some things you can’t see
easily because we are nol showing (he hands or the mouse. There goes {he butterfly. But, the
middle butten on the mouse in this particular system is context sensitive to a particular window in
the area you are in. So that when you are in a painting window and you go to the middie buiton it
will give you painling commands. When you are in a iom window it will give you various kinds of
text commands. Musical window - various kinds of music commands. The user can rely that they
will get the menu and available options by simple pushing on the middie button even when the
- thouse is outside the window. Here's the twist in that afler all this is a simulation systemn and we
- don't want it just because of the paper. 50 why not antimate the butterfly - cause that’s what they
do most of the time is fly. So any document in Smalltalk system can contain animaled - you can
think of documents in physics and so on where ™ your explanations that are running simulations be
evoked at any given point. We are going to cut off the video tape right here. Ancther sequence
‘after with similar context. That's a brief tour of the kinds of things we are trying to do. I'd like to
conclude with a few remarks, We ourselves are not in the educational business. Speaking at least
for myself and 1 think for Adete and many people in our group we sort of * when it comes tg
education, What education is is a social process that a whole bunch of people get involved in if if's
going 1o work at all. Education is the kind of process that any kind of technologist from the book
1o the fanciest compuier games only magnifies what is already there in the social process. As an
“amplifier the computer is the greatest information amplifier that has ever been produced. In a poor
sacial process for education different uses worst stuff tn copius quantities | have ever secn.” So my
.plea here is - there is a tendency to get involved wilh gadgels because you can pick them up as you
set at this new class at your desk. The problem is that the problems are not in our desks but in our
heads and we need to work these out first, T am going to tell you a few things [think we have
ié'amcd. from our experience 50 far. 1 cerlainly don't think we §13;fe solved the personal computing
problem at all, we constantly, 1 should say periodically - go off - the whole group of us 1o a resort
for a retreat and sort of pouind into our own heads that just because we enjoy some relative success
that we have o keep on measuring what we are doing compared o what we wanled to do when we
éta;‘icd (his ihing six years ago. That iz one of the problems of a long project is that you
occasionally forgel whal it was you were Lrying (o do. Whal we have right now is by no mcans the

Dynabook - ecither the hardware or the soflware. T hope it's in the right direction, Here are are

sonie generali:iétibﬁs that T think are a little (I\fcr-sirrép']iﬁed but maﬁe they 'wiﬂ'lda sorrie goc')d.'
First we believe that everybody can learn how 1o program and without a whole lot of effort. In fact
we doing think its remarkable that people can - particularly children. So we shouldn't pat ourselves
on the back cause Xids can program and stuff T believe that it's * humanity 10 be able W program
or to be able to construct any kinds of things, Human beings are basically constructors of one kind
of a thing or anolher and programs are just ancther kind of construction. Second children about
‘the ages of 3-4 have written subroutines in various langauges we feel that the implications of_ what
programming is about, that isthe power of the machine and the generalities available don’t really
-grasp children’s imigination until around the age of 10-11. Adele pointed oul this aflerncon that we
~ really haven't tooked at enough people to make any kind of a statement like that except at a
banquet speech.Most of the successful projects that we have done have been with kids from 11-12-
<13 R T have some feclings as to why. A thing that came 1o us as a big shock a couple of years
ago after we had been enjoying some success was to suddenly discover something that s really
obvious when you think about it and that is the fanlastic difference between programming and
~designing, We sort of knew that - but not from our gut. That is an incredibly important
distinetion. While programming is easy - just like brick laying is easy it is not evervbody wha can
“build a house from those bricks. Not everyone can design a house and not everybody can build
one. One of the characteristics of many of the users that we deal with 1s thal they are interested in
other things. We feel that design is - while programming may be a 15-40 hour skill as far as
learning the mechanics of it - design may be a 1000-2000 hour skill. 1 believe this is one of the
essential difficullies in making personal computling a reality because right now with the level of the
fraction we can talk about systems most of the useful tools that the user is aiming for want to use a
more complex to make a design. Shucks, Really tough - one of the reasons we have added the
constraint program becuase it is 3 way of bridging some of the gaps of how do you get users to
design archs or the equivalent of them in programming when they haven’l heard of arches before,
Programming is by no means the most important the most useful Zil'llC{'Cl'iélllge of having personal
"_\mm;mjiing < there are olhwer ways of using i We feel though that always you should have (he
opporlunity to program and change on any personal compuling system that you are using, You
s?z{m}d_.eﬂwzlys have that opporlunily . Even if iU's ® most * somebody else’s lext editor and
information retrieval - by God if you want 1o change a picture in it there should be a way for that
_personal computer 10 ;iilow yvou to do it. So 1 wrote down five propecties that 1 am willing %;;:} argue

about or in the act of personal computing. They are in order of what [call distinctiveness.

Unfortunately the first one is the most distinctive thing about personal computing is the enormous
altention .spans that everybody-has-noticed. The great uses of it nm be
only because it has a great attention span - the equivalent of 76 trombones - you don’t need it to do
music - bul boy is it fun lo see it marching down the street. Second, this is something that I don’t
think anyone in computers feels ashamed about is what you just saw on the video screen is the

editing of everything - text, pictures and models is both the most indulging past time 80-90% and

et

one process for v;:hich personal computers will find value far beyond * media. Just down right true.
Third - modeilinw_@WW are all about - not worked out as well
as the first two T have talked about. [think there is where the ultimate content in using the
machine lies. Modelling the simulation - building to capture like to have done for thousands of
years in speech, hundreds of thousands of years in text for just a few centuries in mathematics and
a few decades on the computer evermore dynamic ever richer models that we can manipulate this is
how we grasp our own universe. We can’t touch our universe - our brain is the thing that is doing
the thinking. What I am doing here is not touching anythning with my brain - [have to convert
whatever happened here to all sorts of electro impulses and things that aren’t wood into something I
can perceive as something else. Always dealing with the media - learning about media and learning
what reactions happen to a singlé system I think is the most important content related area in

commputers. Fourth - the elimination of distance by computers. What [mean by that is in a fast

computer like this looking at it as a space - it is a space that is only topological - not metric. In
other words the evefy part of space is the same distance from every other part - not constrainted to
the linear relationship of the text but that we can organize things in far more complex ways than we
used to in books. This is poorly worked out - and again very important. Finally - [think the most

subtle use and most subtle value in interactive computing is the®* human implication. [think

probably cveryone has noticed that what we can take in aside from touch and smell and hearing -
there is an cnormous sct of bandwidths comapred what we communicate out with. This may be part
of human beings fading to media. See all this wonderful new information flooding in all of our

*

senses but the best we can do is sing. We can hear aboul cues but we only sing one line * - we can

see enormous distance bul our ability to paint and so on is severly limited by our own physical

attributes - this is why 1 beleive human beings invented symbol systems to grasp far more than they -

can commuuicate through the kinds of noises they can make . One of the things we have noticed a
little bit that is very- very interesting is that very often in the classroom some of the experiments

Adele ran is that when a kid wants to explain something to someone else and very often in our own

12

- Iab'. a peréan likes to explain something 1o someone else theﬁz 20 to a'machine, Why do they goloa
machine - because there is a model there that with a few simple commands or waves of their hand
:th'ey can. cause a whole display to change and invoking bandwidth that is not much more closer
(han what .a person can see. [think of that as an amplifier of the ability of humans to
commuitticate with each other. A way of matching up the inadequate output bandwidths fhat we
were born with. One final thought on progress and technology, One of the principles T have used
.as a guide when thinking about personal computing. 15 a musical intruments. T used to be a
musiclan a long time ago and still interested in it. Musical intruments have sesthetics with them
that computer people would do well to follow, Nothing more ™ than a flute or violin - lake [hem
anywhere and play anywhere. You nolice about a flute and violin is that there is no language to
- iaput - or putput imagine what it would be like to play something serious on the flute where there
wis a4 2 or 3 second lag. Equivalent of the musician going {o the concert hall in the afternoon and
' 'playing a concert and going in the evening to hear what it might have sounded like. That's absurd.
“However there is another analogy of musical instruments which 1 think is very constructive and that
is by and large most musical instruments most musical instruments were invenled as prosthetics -
~not invented to make music per se but to make up for perceived deficiencies in the human voice,
' :Making a lot of noise at roman stadium...making a Tot of noise in a cathedral - in fact these early
musical instruments were far inferior in many important parameters - like they couldn’t even say
words the range of * they could use were bad. Back in those days the musical instruments were
worse than the things they were replacing cxcent in once trivial thing and that was they were
'].ouder. -Qver a long period of time - hundred or two hundred years there were lot of interactions
 hetween composers, players and musical instrumenl manufacturers. Musical instruments found a
_value system of their own where now today they are not prosthetics but amplifiers. That is what 1

cwant to see the destiny -of personal computers - amplifier - not prosthetics.

13

XEROX © XEROX

- Allb 11/0rbit/Dover (M én?n) Press file pﬁntér

- Spruce version 9.200 -- spooler version 9.200

-~ File: metaphorspap
- Creation date: April 20, 1979 1:29PM
- Name: adele

7 totalsheets = 6 pagés', ié(‘)py* :

One way to design a programming language s to expand into the pockel universe -of the
- computer simple metaphors from the world of human experience having to do with structure and
time.
~ For instance, we know a bit about how atoms can be structured into complex molecutes and this
might serve as a mode} for a very construclion oriented lanpuage ltke 11SP: heavy on connexion
and light on control and protection. On the other hand, we know that living material, the most
complex structures in our experience, require much more than a moiecular bonding philosophy in
order 1o function. Though it would be presumptious to imitate that which we do not yet
understand, might our designs still be fruitfully guided by some of the metaphors of living material?
It is a concelt of Western Culture to believe that the dissection of a whole into parls can reveal
many of the secrets of the whole. When combined with an appreciation for the way new properties
appear as parts are combined -- such as an arch formed from lowly bricks - our Western conceit
has been remarkably successful. We need not congraiulate ourscives unduly on our insight, since it
. appears that in a universe not obviously controlled by a ... deity, the parts of wholes require
considerable aulonomy and limited interactivity in order for the aggregate structures (o work at all

- A biological cell is a structure with more on the inside than on the cutside. In fact, these
- organisms expend a considerable percentage of their energy and activities in just maintaining the
distinction between inside and outside. Where almost all of a complex molecule’s structure is
“exposed to the ravages of any environment in which it is put, a cell only cxposes a small part of its
structure: its cell membrane, a fabric specialized to kecp all parts of the environment except those
heneficial to the cell away from the more delicate structures inside.

The cell membrane also keeps the cell in. Inside is a miniature sea, a primordial soup which the
cell keeps simmering to make more cells. There are recognizable parss within a cell. Some, like
granules and a host of organic and inorganic molecules appear to have a simple relation 1o the
entirely. (thers, like the mitechondrial chemical factories and genctic material are so inleriwined
tnlo the life cycle of the organism that it is difficult to froitfully discuss their nature in isolation.
- When a cell divides to produce a twin, the leasl important of its constiluants, the majority of its

. eytoplasm and membrane, is simply increased and shared. Hs most important parts however, the
nucleus and mitochondda, are copied as exactly as nature will permit. Thus part of every kind of
cell are closely similar structures which link their destinies coupled wilh parts that are those of
individuat cells alone, '

The potential for differentiation within a fixed heritage is enormous. Every body-cell in human
Beings has the same ancestry, yel has let itself be differentiated by chemical messengers to form a
marvelous variely of specialized tissues and organs (0 make up creatures which for the most part are
“blissfully unaware of their inner majesty.

If we think of a computer as an cnvironment in which time, space, and structure can be
fashioned, and a progranmuming language as a vehicle for describing and building complex dynamic
© structures, then metaphors drawn from the most complex systems we know can be very helpful in
guiding the principles of the language we will use.

I.et us consider a universe consisting of wiwles made from parts. Fach part is a3 whole in it own
right, One of a whole’s parts is a bowndary which determines the interaction of the interior with the
- envirenment, The interior consists of parts. Some of the parts are shared with every sibling of the

whole. Some parts are rather inert, others are constantly in process, maintaining the interactive
_relationships between other parts that keeps a particular whole whole, Wholes can communicate by
sending other wholes to each other. Communications are accepted or rejected by a whole's

boundary. Otie whole's assumptions about another whole have to do entirely ‘with expectations
about the kinds of effects and return messages invoked by an inilial communication,
A language is a medium for communicating about a world. Though it will be structured by the
relationships of that world, much of ils form will have te do wilh the linguistic range of its users.
~ For example, humans find it useful to make up figurative objects called coneepis which, though
‘only their instgnces can be pointed to, seem to help greatly the task of describing interesting
" formations. The arch is such a concept. If we step up 0 a natural or man-made one, we may vainly
search high and low for the object: archness. All we can find is one of them, and an agreement in
our culture to call such things: arches.

Another widely used human linguistic device is the statement consisting of a description of one or
imore performers in a scene of interest followed by a description of their action or inter-relation.

 There are many points of view from which to judge human languages and it would do a
disservice to treat them too lightly. But here we are not concerned with the ways of humans or
biology, but only what we may draw lhrough superficial analogy.

For example, let us consider the use of positional notation and its influence on vocabulary, In the
natural development of vocabulary, we might guess that the tendancy of humans and animals would
be to make up new word-noises for each concept, In animals such as monkeys this seems to be
exclusively the case. In man, there is a trade-off between either making up a new word or trying to
~ find a combination of old words which will describe the new idea. The social advantages of being

able to describe new ideas through thosc one's compatriots already understand are obvious.
Nonetheless, the uses of position and metaphor grew hard indeed. We find, for instance, in Latin
and in the Roman numeral system a fine disregard for the advantages of position. The heavy
infleclions of Latin make word-order a stylistic, rather than a semantic, issue. That it was difficult to
add Roman numerals, and almost impossible to multipty them, was no doubt regarded as a useful
feature by the calenlatory unions of the time, there being no betler methods then known o give
Ahem their leave.
- Mandarin Chinese, on the other hand, is a language innoceni of word-inflections, in which the
aspect of meaning a word s to contribute to a statement is selecled by jts position in the utterence
" -as a whoic. For our purposcs, English, particulary the colloquial variety, is a language much more
" like Chinese than Latin, Today we can say: "It's a new kind of clean!”, be understood, and escape
with unrapped knuckles in the bargain. Though English still has word-inflections for number and
iense, we may feel sccure aboul following the Chinese model and dispensing with them all. Of
course, fanguages which give up word-inflections are likely to have many more statement-level
marker words such as tense indicators, prepositions, articles, and the like. These tend to be small in
number and uniformly used across the language, '

We also need 1o consider style of description. For most human - purposes, -coticepts and their
instances are discussed informally through their boundary appearence. When someone asks another
what a house is, the description given back has more to do with the goals of a house rather than
how one is built. Parts of a whole are most often described by giving their relationships to each
other rather than how the relationships are maintained. One reason for this style of description in
natural language is that the universe was here long before and much of our discovery process was
first just to describe what we saw about us, It is only in the last few centuries that we have made
any progress with the fows.

In computers, we start with a proto-universe in which space and time are vét to be described,
- -photons and ficld-laws are creatures of our imagination, and everything which exists must be built,

This is why ¢arly computet languages have been imperative rather than declarative in stvle. Though
constructive descriptions are much harder for humans o deal with, they have been and will
-continue to be the lingua franca ex machina until better ways are found to transiate cool
declaratives into the bustling imperatives of the machine.

A Tlanguage system which required a prior understanding of the philosophical principles of
-~ physics, biology, linguistics, psychology, and theatre would attract few users. The trick in designing
an easy to learn programming system which can grow with 5 users, is to {find simple, easy to use
“forms and a few abstract ideas which contain both the simplest expressions of a novice and the maost
subtle descriptions of an expert.

- Our approach to teaching a programming system s to get learners o build their own systemis,
“Much of their early programming deals with using and modifying already given forms, Grammar is
fearmed graduaily and informally,
Since teaching consists primarily of finding ways to let a student learn, an essay is a poor vessal
indeed for teaching: one persuades rather than teaches.
< Examples >
What Can be done by Dinking Around
' CHASE and Spacewar
Retrieval/Calculation
Queing Simulation
' BarGraph and Browser

Layout/Document/Editing/Fonts, Pictures, ..

Langizzigcr Principles

" Finding - o
By supplying the actual whole: 3, ‘this is text’, 1
By supplying a name: _ a, x, Turllel, .. .
By supplying a statement: © 344, Bob's Father's Age, ..
Grammar

Phrase 1= { Literal | Name }- {sel

- sel
- sel ex‘p'
" sel sel
| sel exp sel
sel exp sel éxp

sel exp sel exp sel

Concepis

Meta-Coricepts

Viewing-Editing

Naming-Pronaniing-Paths-Finding

~Messaging: Whole | Message,

Whole | Message | Reply-Catch

- Merging
- Offspring-Twinning
Defaults-Initialization
Relations

Control

.- Exceptiors

Events
Quantity-Location-Movement
Collection:

Summary of Useful Metaphors

MNotions from Mathematics:

Relations
Spaces-Transformations-Points

Notions from Physics:

No action at a distance -- messages are sent/received
Local effects have local causes
Time is information flowing through a boundary

Observer/Observed is a symmetric relationship

Notions from Biclogy:

No action at a distance — messages are sent/received

Wholes made from Parts which in turn arc Wholes.

One part is a boundary which protects the inside from the outside.

Some parts are rather structural, others are process-like

Some parts are relations between other parts

Notions from Linguistics

No action at a distance -- messages are sent/received
Positional Form

no inflections

. Statement wide markers

Subject-Predicate

‘words as symbols for concepts with aspects

Notions from Computer Science:

Informatlion retrieval
Graphics

Domains, travelers, Decorations

Notions from the Psychology of Complex Skill Leamning

Learning by doing
Learning with -others _ .
" The 1000-hour skill (paradigm learning)

Short-Term Mem: easier to learn a few abstract ideas than to learn a lot df concrete -

ideas,

Design as a central metaphor

‘Stage Learing: meaning as: action, ‘image, -and symbol

Creativity: a retreat to earlier stages

Learning without remediation
Spiral Curricula
Notions From the Performing Arts:
No action al a distance -- messages are sent/teceived
Theatre: stage, scene shop, plays, performers,

Performer: costume, role, script, schiicks,

Invited Papers Session 3: Pragrammf‘ng By Non-expert Users

Infotech Stale-of-the-Art Conference on User-Friendly Systermns, London { Marcl 28-30. 1978} _

Ideas for Novice ngrémming”ih a
Personal Computing System

Alan Kay

Learning Research Group

XEROX PALO ALTO RESEARCH Cmrm

Abstract

The scope of the Learing Research Group at PARC includes’ most of ‘the
topics of interest at this conference. T will treat them in a slightly different order -

and with a depth which reserves the most detail for my main subject of user
programming.

Personal Computing, The initial section is a quick precis of our molivation, -

~work, and relation 1o users. The first serics of figures will illustrate some of our

expenimental hardware and personal lools prograommed by novices in our system. -
Interactive Novice Progranuning. My main focus. The text is an explanation of -

our strategies for dealing with users and a general deseription of the scmantics of - -

the personal compuling systems we have designed. The figures will iftustrate a -

vanely of programming techniques we use, all related to the uniform metaphors

of cditing and scarch discussed in the text. A general simulation kit and
“expericnce wilh adull novice users is covered nest, Following this is a brief look

~at some nonprocedural propramiming (echniques we currently ¢mploy.

Conclusions covers some of our feelings about the place and valucs of personal -

computing in 1979,

Personal Computmg

The Xerox Learming Research Gmup is conccrmd wuh -

_.'humawl{rpcrsonaI-cnmputcr communication, particularly
~for novice programmmers, Qur approach has been o
envision the personal computing system of the 1980%, the

Dynabook, as nolcbook-sized with enough computing -

power and capacity o carry out its owner's needs in the
~world of information (Figure 1). Though the hardware for

sthe Dynobook is difficult enough, the major problems |
‘which must be solved are sofiware related. The center of |

the personal compuling problem concerns communication,
deseription, and learning - all "sof" problems, and our

- chief pursuits [Dynabook]. -

Over the years we have built -many versions of a
‘personal computing system called Smalltalk, occasionally
collaborating with other groups at Xerox o develop
expetimental hardware on which Smaeiltalk can be tested.
In 1973 we started 1o use the desk-sized personal computer
“shown in Figure 2. Now our focus is the cqually powerful,
“bul portable, systern shown in Figure 3. The personal
computing systems developed by Xerox are interconnected
through an information network used to provide
“communicalion between users, servers (such as shared
Anformation utilitics and printing), and other nctworks
[Smalltalk]. '

_ Smalltalt does not use the usual building blocks of
“subrouiines and dafa-structures as do BASIC, FORTRAN,
and PLAL. Instead, coverything s built from aclive
ceommunicating objects, organized by dinheritance of
“behavior. Smalltalk’s semantics has been somewhat
idealized and simplified for this paper. (The actual
semantics of Smalltalk-76 is similar but less unified that
given here) All examples in this paper were programmed
4n Smalltalk and directly photographed from our display

SCreens.

We are particularly interested in three aspects of this -~

‘new metamedium; first, how can media be formed into
tools such as the systems shown in Figures 4-7: sccond, we

are interested in the nature of descriptions and

“communication; and third, we would like to learn how

Figure 1. An appeafance .model _of'-t'hé.'
rotebook-sized Dynabook of the 1980s,

Figure 2. The Xerox PARC “Alta"™ Personal
Computer.

Figure 3. The Xerox . PARGC “NoteTaker”
Personal Compuler, . :

~ people may be taught éesigzz skills which enable them 1o

shape their compuler “medium.
Interactive Novice Programming

The traditional differences between interactive control of
computer tools and. the programiming of these tocls have
rarcly been resolved in inieractive sysiems. Yet, cver since
Joss in the early sisties, the only distinctions needed
between direcs and indirect control/programming have
been the amount and the kinds of delay Dbelween
_specification and effect [Joss]. Thus, we fecl that a
programming language design is probcr!y part of the user
interface. . '

‘The problems faced by a novice programmer parallel
those of a person who has books all over the house and
wishes to have a bookcase. He may see an ad for one, go
to the store, find that the bookease is just right, and buy it
Fortuitous and satisfying. Oflen, though, the bocokcase is
nol guite right. The boyer may decide to get it anyway,
refinish i1, and adjust the shelves to fit If this is not
possible, the next Tevel of strategy is lo find a kit which
has much of the hard work already done yet still allows
the builder some oplions. I no kit is available, many
peaple would quit and go back 1o orange crates. Qur
resolute su'njcd is brave enough to go to a lumber slore to
'purchasc materials and a3 manual about sawing, fastening
and other propertics of wood. In an cxtreme case {(c.g.,
“when a fancy vencer is desired), nmew materinls must be
constructed and the amateur musl subcontract the task to
an expert or must becomne moere of an expert himself,

All of these siluations will arise in a personal compuling
systern; it must contain facilities for meeting cach difficulty
which range from dircctly usable tools, to “kits” and
instructions, to raw materials and theoretical knowledge. In
order of greatest return for feast amount of work, users

“must learn: to characterize their current need, to browse for
aﬁd recognise a facility that possibly meets that need, to
Cuse it, to modify it, to fix it, to combine it with other
 facitities in a ki, and to meke a facility from scratch.
The strongest technigue we use is that of enforced

S pen——il n. i A BATTOW, ganntaj]y ay!mdncn!
_mﬂpl"mem for wrinng, diawing, of marking)
S contisting of & thin rod of graphite, craven, of
similar subrtapce epcavad in wood or bald ip 2

?1“3:'&! melal mechanlcal - device

fors i m; s2f lenash Got

TP x;gva_ ek Chpped TR LWL | L

sz mu Sutareagen o thas BT e - v :

HEPARG
T rra-r;;mba‘:c?rr* viz-rwm) of{ect: effect thppedy m.prect_

i (self ol) spioaat: (pL + oruannd rﬁ'm; Rt clappadBuy: sipredt

pen—il n. 1. A Darrow, generany cylma-rlczl
meiemem re:r w*mn; grawang, or marking,
v it M aF i pnm b, ErAVON. DT

Figur@e A4A-B. A typical Smalltalk screen
showing avertapping viewport-windows.
!nc:!udec! are views of formalted fext,
ilfustrations, cutves, documents, and
Smalilialk rescurces.

e ﬁnt drm x ir mes- k] ij
£lusg, By begpiening with iradsr
objects it uemy!omiftheghaas

O\/*‘ Hw’luf— PINE:

= ;.'.“ 7 : correctly drawa. In the finbbed drawi:
T;%}.g,;g BT m\ % nb}ects&alll b correctly drown, T
T R . i

|
CIE N BTG

Figute 5. An iliustration tool initia_liy
designed and programmed by an adult artist,

R

- oanalogies. That is. we try to make ¢very kind of material,

process, and propgramming technigue ook abstractly

Csimilar. We c:z'z'ry through this fiction at cvery level of

structure from the alomic to the architectural, The hope
" {for which we have scen some evidence) is that the

additional burden of abstraction this "arlificial chunking”
tactic puts on the novice is more than repaid in the
“novice's abilily to cope with many more necessary facilities

than an unaided short-lerm consciousness can handle, In
designing a language we wish to limit the jorms of

- descriptions, but not their range; we want 1o cryslallize a

siyle of programming, not just arrive at a syntax for . = e
}) p g & 1 £ S - Figure-6A. An animation being composed by o
expressions. - Though we scarch for ways to make our a tZ.year old girl. She is combining a horse

_) . with 2 rider o be oanimated over a -

~personal compuling syslems more abstractly simple, we - background painting.
don't teach our languages axiomalically, but through - e

examples and incremental changes [Teaching]. The learner

‘gradually notices the extreme uniformity of the system and

“beging to rely on guesses derived from concrete experience.

Stripped of their metaphysics, every Smalltalk language
“design has been concerned with how to deal with
“information organized in the form of parts-and-wholes,
ep., dictionarics which relale part-names to their active

mennings. The first siep in the development of this model
' was e give each dictionary-object a scparate inside and

onrside. Users of the object can deal with a never changing

wirtual organization from the outside. Programmers of the

object can, from the inside, change methods for cartying " Figure ©B. The finished animation.
oul its virtual meanings at any time, as long as the external ' '

“behavior stays the same. The distinction between inside” T e

and oulside means thal users must communicate with an

~pbject to get il to do anything. Direct absolule commands

no longer are possible; they are replaced by queries

“tendered in the form of messapes. Objects from the outside

“thus act quite like digital computers in a2 communications

CLGE upET ponis
6§14

nelwork and are neither data-structures nor procedures. = ST et o e st s
Since there are many more objects in the universe than ;

aré contained in any one dictionary (save the universal . & 0 DS I BE | e o ek o ot
. ant o :

Febaary 24 1878 sseaw’
‘dictionary), every dictionary can be thought of as a filter

- that sclects some objeets fram a universe and rejects most -

‘pthers. The "insideness” and "outsideness™ of a dictionary-

R E \.:t’.:ammu- .
Figure 7. A personsl. calender prog_r,_am' .
devised by _a PARC lsboratory facilities
manager. . e] o

object is itself constructed by fillering: the outside is
.pmlrzsyéd by a filter thatl suppresses internal organization
for a simpler exlernal fiction.

Filtering provides an excellent mechanism for
developing interfaces of all kinds, both to the human user
and to other objecls. Because every dictionary-object is
~ultimately dealt with as a picturé on the display screen, it
simplifics matiers 1o consider every_object as inherently an
image with a variety of default and user-supplied ways to
display itself for perusal and editing. In Figures §A-B, we
~see a complex object in process being viewed by three

objects: two are display-viewports, The different kinds of
viewport-windows are dévcl{}ped as ‘analogies to Dasic
- descriptions which contain methods for tocating themsclves
relalive to others. Each view of an object is constructed by
filtering, The filters are not out of the ken of the object
beeause edits passed though one view that change the state
of the ehject must be continuously reflected back through
_atf the other views of the object, Tools for user internction
~with an object such s menus can be constructed as a Alter
on a dictionary which visually suppresses the meaning side
of enlries {and most of the entries) of an object. Pointing
at the pame side of an entry with the stylus connotes
' sending o message o that entry, The entry can prompt the

user if additional parameters are needed.

of
parts,

Fitering 15 also used to provide mcta-levels

“deseription structuring, ranging from low-level
- wholes, and messages: 1o inheritance of properties, to
meta-building blocks; to kits and applications,

If the cntrics in the internal representation of an object
Ccan refer 1o each other, then a perfectly gencral systems
network is possible. We can think of an entry as

conlaining references 10 the name of the entry and its

mcaning, The meaning of an entry is thus an object which

can be shared (it can be contained by other entrics in
cther dictionary-objects). This parts-wholes scmantics is
also used by the exlernal representation of an object but,
as mentioned, its details may be completely different from
~ the object’s internal sirategies. ‘

 An important property of filtering i5 whether the

ouls

ide

objeet1

\.\{findow-sidc
1

B ——
L Jier 1=
. ?

LES

Figure BA. An object being viewed by lhree
other objects.

- r - et
BEEIITESTEENVRSY
R R P RPN S Ry

=
T

.
"

[y
e

2
]
4

253

SHEUNG

i
v

i

4

M e bt et 3 e

>
ERRALARSTIYERY

PHEYREYY
Ny ke
MU REEyLa.

on

RELEHNHYNT

2
&

gy raran
R R T

24
£
-

TEYENEEY
O s
EREEEE

[N k]

gy

e bt e B e g o ™

hyuagg

TR N e L Ay e e

3;;5,

——— i FIR T

i

AmEa s m@upau R

B eh D D
[g PR

;?ﬂzs‘

AREHREY
MR = o b

[
)

e

Figure 88 shows mulliple views of a musical

score. The righi-hand viewporl

sCofe
interface. The left-hand viewport shows the
same score but
Smatlialk objec!t. Its menu is in the laft pans
and sclecls a particular entry to be seen in
right pane.

the

A

with

ils

contains a
menu-controlled ediling

in its defaull view as a

s@rves as a class

instance

Figure

9.

Deriving
- peotolypical class description is an identity.

inslance?

instancel

instances from a

-changing filiration.

object descrintion whieh

filtration is severc cnough o completely musk the identity \

“of the filtce. For example, deriving a new inslance of a
class, Figure 9, or & new subclass inheritance, Figure 10,
bath create distinetly new objects. An identity-preserving
~filtration was shown in Figures 8A-B: multiple views of a
musical score presented through different windows on the

- display. ldentity-changing filtration facilitales a second

“Tevel of systems structuring: ways 1o deseribe the kinds of
“objects we wish Lo gather together to carry out our wishes
A suceessful framework we employ is to use fillering to
-create new objects that are dynamic analogics of objects we
already know about. AH of the notions of inslances of
classes and (multiple) super- and subclassing are examples

~cof such filtering. The analogy filtering mechanism permits

differential progrannning, thal is, programming by saying:
.. P want somcthing just like you, except .. “. System
designers can devise far-reaching object descriptions from
which analogies . may be extracted. Having these
descriptions already in the system is a iwo-edged sword,
‘On the one band, usgers do not have 10 invent classes for
numbers, interaction windows, schedulers, and the like,
severy Ume - they wanl o use the system. On the other

. hand. the possible great number and variety of furnished

descriptions requires that a much greater atlention be
given 1o providing ways for users to browse through them.
“Otherwise, a large preloaded system full of promise but
~difficult to wander through will be considerably more
trouble than a stripped clean but easily understandable
version, . _
cSystems | designers themselves - have considerable
“ditficulty i devising an epistemological framework in
which a small number of basic CONCepls cian cover most
‘user needs in medels that the designer cannot possibly
canticipate, The tendency is 1o admit more and more
~concepts to the system, repardless of their possible overlap
1o ajrcady existing ones. The result can be greater turmoil
-and complexily (siluations we were trying 1o avoid at all
';.c_ests} requiring betler "help” and browsing assistance.
~Fipures 11-15 show a varicty of browsers derived from the
same basic description [Browsers].

- how {o conlain
mmage containers

documents

__'ob;‘c'r,l acﬁng as-a
Usupeiclasst: eg, it
may have s!:alogacs
fer cantaining :magcs .

‘how to conlain
iltusirations

Add

text paragraphs ir!uslra}ién-s'..

Figure 10, Object desariptions which serve
as classes can themselves be composed by
filtration.)

) ﬁs}m.h TLRL O 4T dra i e Wwwwmb"w :.,.r-m;- w-m

) [sustemPone o cassPang, d.'n:stw fmrm supsembant wr orgPang,.

Ci systemPant docsPane orgPene selectorPane cods
S Moreine g pones.
- Eg,m + SystemiPone new. classPane -+ ClassPans feks o0
T gigPans + OrooruraronPont nek, selecworPons + SriiorPane Tew.
. toatPang + Coozfane naw. - . - ST
S Lﬂgfr:,* . e z

sd,, Ty 3
T et (egmemPane, cu?s?w OrgPah, sw;wﬁw code?am
ol praATampkses,
seif naspframe; shine, :
“HUATTORAATE AL

T R

- ofgPone [romi dassPane U sete
codleFane. f

K c:og.e?ﬂm fmm sriecrorfane.
3 ?“br?:am w-m}

Sﬂs-ﬂ-wﬁ‘w fromm: Grg?nn: ﬁ:

reSOURCe
“"Hrowsing” window .used to peruse the
Smalllalk system itself. R

Figure 11A. A Smalialk

class
sysiem or‘ anization
calegories g
protolypicals clags
class names interface
....u-“_,.ff-‘\) '-“'x‘{“
e AL ST

& particular oo
message-method entry

.Figﬂre 178, A diagram of the dcpendcnéies.:-'

_between "panes” of the ‘browser. When a.

list item is pointed at with the stylus a

_retrieval of the next lower category is p!ased .

in & dependent pane.

Since most novice usér's short-lerm memories are
saluraied by the newness of it all. it s paramount that the
design of the systern, and the inlroduction of novices to 1t
should carefully deal with just what a novice user's short-
term memary should be saturated! We have chosen editing
and search as the candidates for saturation. Editing is both

~the most indulged in pastime in micractive sysiems, and is
a prerequisite for using or programming any tool. Search is
‘the other activity that users are always doing. They search
for desired cffocts, ways to cause them, reasons why they
didn’t happen. and how to fix them. Our system designs
have ﬂitcmptcd to find ways 1o penmit everything else the
user may wish te do, including the programming of
arbitrarily complex bchaviors, to be learned as metaphors
of the two simple ideas of editing and scarching for
_dictionary-objects.

.To summarize, several Tevels of strucluring have been
discussed. The first includes the ideas of conwnunicating-
objects, parts-wholes, insides-ontsides, and scarching-filters-
editing. The next structural level used the first Tevel to
provide objects thal act as protolyvpes from which new
objecls muay inherit analogous characteristics.

More levels are possible and needed, A third level of

- structuring is to impose sharply orthogonal propertics on a

small number of basic prototypical objecis to provide a
rich domain for building simulations. As an cxample,
comsider the following (hiree orthogonal prolotypes. First, a
prototypical object which represents spatia! (or localive)
characteristics can be (e basis for a wide variely of fusther
"descripziuns. such as numbers and other algeoraic systems,
composition and setting for ilustrations, documents, circutt
diagrams, musical scores, animation scenartos, and
programs themsclves, A sccond prototype cmbodies the
general notion of rraveling in a spatial domain. Examples
are a constrained numeric warighle, a cursor in a document,
a paint brush in an Hustration, a player in 4 musical score,
a rele in an animation, & process-poin! In 4 program.
Travelers may employ eclaborate siralegies in deciding
when to move from one location in a space to another,

and what to do when they arrive. A prototype which

~ -

e

‘ LIomponant

_lf-'.)ur(,;,].u.;s
Anglie

{eedf wsee Truck new starlAu O ¢
ut
H’:m,-me.- finpulshieniule ow Paste
uniform: 1 1o 47 assbgnmenls copy
Wathing] unda
: - el
dait
reclang
AL
N
O e T e Aol

Figure 12, A Smalilalk browser which has
been filiered 1o suppress most of the aclual
syslem organizalion. This browser was
constructed for a simulation “kit* used by
adull business managers,

BePastc o et AT
s T Tl | s BRI A
] im0 JiEads RS TN By
e rri pﬁ:vf-r.‘nes‘ et BEGTE
SORSEE FORE i Craun,
o s o o e e T FEHLT Choub e
~~~~~~~~~~ conciarg
Lonsiandiomnymling
Cramar ’
Froedinior

T34t 7\
o0

245

AV

258

248
| £ R A ey
i Yrors S e
= '-E.BI__x[_{_,_Z.m -

i 453
t
li . -
§ A -—

-t

b ¥

e 771

Figure 13. A Smalitalk  refational-object
browser. Pregramming in this browser is
done Dy editing pictures of desired resulls.
More examples are given later in the lexb.

Yo Toorie o]

Vi

T Y ¥—dRF

o7 S —

Figure 14. A Smailialk planning system

browser. Pians are constructed by forming
diagrams which c¢an then control simulations
of the future. ’




i

- gupphics 4 third dimension 10 this modcl 15 thal of a
sdecoration, This is an entity whicl is not sm'cli}-f TICCCSSary
“for the trip of a traveler through a space, except in a zero-
dimensionat-form  {(z-d-f), but when present, greatly
~gnhances the journey, FExamples are: a physical-dimension,
such as length or weight attached to a changing quantity
{z-d-F; a scaler): different rvpe-fones in a document {(z-d-f
“a default fonly tonescolor and fexture in an iltustration;
- the ¢imbre of an instrument used to play a score (2-d-fI a
pure sine wave): the cesume of a role In an animation (z-
-d-f a dot): the particelar pragmalic-primitives employed by

a program-interpreter, eg. one way of carrying out

arithmetie orders may be much faster than another {z-d-f
a4 "onc-page”  interpreter). '
- Kirs are the fourth Jevel of structuring we use. A kit is a
Jurther filtering on a domain which greatly focuses Hs
~deprees of freedom to a particular goal. Examples that we
shave built i Smalltalk for vovice users include kits for:
“arithmetic,  algebra, and  geomclry:  document  editing;
drawing  and  painting: musicc  anbmation; and
programming. Al of the above can be understood as
specializalions  (filtrations)  of  the three  orlhogonal
prototypes  mentioned  previously. An example is the
subsequently discussed simulation kit we devised shown in
Figure 16 [Aits]. It has been used by manager-tevel adults
1o build specific application-simulations  which explored
and answered thedr questions aboul complicated situations
Cin their own businesses.
A fifth tevel of structuring is that of an epplication, a
systemn whose use is taflored to a particular problem,
Applications reguire the Ieast deep understanding by a
“user  {because most  degrecs of freedom  have  been
yemoved), and are the most difficult systems designs to
Canticipate  correctly.  Some of our more successful
capplications in Smelltelk have been a music sysiem for
composition and orchestration, the Smalltalk browsers, and
Can information retrieval system used for several years by
pur cenler's library,
Jdeally, all applications should be buitt with a careful

_ ﬂ:gard 1o each of the four lower levels of stucturing we

|

_'(D'}

- o .
{a) oy dour 3! Wt ?
i T wear: M

©

F..,._,_‘ o i e o+ iy

; &1

wm(]o(‘;;éw‘-wmﬁw-r .
ot WO

{aay < 3 OF day !;?llf
user notfy: diegal day in

1.
By * (self Thonthday:
roni} e

TRLE pRAYATDTAFLYRar s

! e

kil

€y

‘suspended
“meihod beng
carried out

process dynamic
hisiory: message
being atlemgled

[ I

P S

] ! ; ywm;"
- t
\': ','

Rl | R
dyr{amic message current Mearings
staie of enlries

: webm :

B B
-

"'F‘-”

-
" emfrrve s maes

+
»

-
[}

I
S

dynamic state of
receiving object
-

b

current meanings
“of entries .

Fiqgures 15A-E. The Smaolltalk diagnostic
browser. (A) Typing & Smoalliatk exprassion .-

1o update today’s date - informiation.  {B)

Smalitatk -menu gives command "DOITY. (C) .

‘When a condilion which requires -lhe usei's. .-
cassistance occurs, the stale of the porlicular:
- process which conlains the condilion s set

aside and -a "notify window™ appears on the -
screen. The user may conlinue with other |
activilies; When lhe user wishes, the notify -
window may be interrogated. {DY # Hois
“gdrawn-out” larger, it changes inlo & panid

window which is spécislized 10 peger into
o Smaltalk's dynamic history. (E} The diagram -
o shows the . dependencies  belween panes.”




have discussed. A user unhappy with features in an

“application could very Tikely fix them at the next (kit) Jevel
without having 1o descend 0 equally simple but more
Catomic levels, For example. a kit such a3 the graphic
simulator can be specialized by a user inlo a specific
application for cstimating solutions to a business problem.
Yet, the simulation applicalion can again be addressed by
the kit

the user at needed.

kevel when- changes  are
Simulations of this kind have jobs flowing through the
-system Lhat visit one or more stations o gel service from
workers ab the stations. These enlities can be displayed in
graphic animation as the simulation is carried outl. From
“my previous remarks we can see lhal simulations of this
type are a special kind of animation. Jobs, workers, and
stilions are travelers in a two-dimenlional space. Their
graphic form, their icons, are decorations, Each traveler has
its own collection of directives and strategies which global
events may  affect.

An  extensive job-shop  system
Smalltalk by
facilities used by this kit were:

cxtracted  from

Major

was

fillering  objects already present

" pseudo-time  schedulers

" prototypes for stations, jubs, workers, symbolic images

"a stalistical  distribulion  package  for  generating
scheduling  data -
" an animation package '
" new display and printing  fonts
"a user interface which included
e a filtered browser for manipulating simulations
without having to deal with the rest of
Smalltalk

& a simple editor

2 Icnus

o a new error window handier

e areporting facilily which permitted summaries
to be generated and cbjects on the screen to
be probed for information.

SRR

i b
add e

Foo addTask:

Compbient
Sation
suffing
TiTesting

REPORT & Washandling
Trwck 1 Duration 351
Visited: Wathing Payi
Feature: “madinmiruck
Trock 2 Durabion 1.0
Vitited: Washing Paying
Faature "higtruck’

feature = .big““ﬂ" = [
& Paying)
Diring]

system
programmed in the Smalitatk simulation kit
On 1he fop righl appear dynamically fillered

Figure 16. An application
menus tor contyoiing the progress of a
simulalion. Oaly currently valid commands
are passed through the filler, Below !h&
menus s o  viewporl  through  which
simulation statistics are reporled. Above left
is the simulation "playground”  showing
reclangular “stations™ and traveling “jobs”
and “workess™, & car wash is in progress.
Jobs flow in from the fefl, visit stations, and
are serviced by workers.  Below  the
playground is a fillzred browser which ﬁn.!y
shows objects relevant to the simulation kit




3

- “A Next-Higher-Level For Novice Programiming

Each of the parts of an object 15 itself an object. Some

. of these play the roles of traditional parts-in-a-whole white

others maintain relationships between them. For example,

a-seene with bwo chairs aest to each other could be

represenied as three ohjects: one for cach chair and one

that  dynamically maiotains  the relationship  next-ro.

“Relational ohjecls are important since it is a lucky

- programmer with a rare problem indeed that does not

mneed 1o coordinate the parts of a whole, Both novices and

“experts have difficolly with inleracting parts. Experts can

_gcncraﬁy find a kiuge 10 (more or less) make the right
iling happen, while novices just crash and burn,

An example of a straightforward design  that turns - |

treacherous i3 that of a simple document model (Figure
173 In the Smallialk programining style, this consists in
making up 1wo objects: the first exhibits the general
praperlies of a paragruph-sized chunk of information: the

sceond hwns the gencral properiics of a document itself, a

“tontainer of ppragraphs. We can build documents by

sproducing as many instances of these  descriptions  as

“peeded. So far this is what we would call a “Hnear”™ model,

“That is, the document does not have to know about the

details of the paragraphs, and the paragraphs do net have

“to know about each other or the decument that owns
“them, Text or pictures put into paragraphs can grow or

shrink without distwsbing their neighbors. But now ihe

Cuser wishes Lo display parts of the document on the screen

~and ummediately notices that whal was once a separable

phenomenon has now  hecome  interlwined:  when

paragraphs expand on the screen, they clobber the images

‘of the paragraphs below them. This is the beginning of the

end for the novice, A place 10 put in & conditional will be
found for this case, though it will doubiless be the wrong
fg%ncc, and there will be no global strategy for taking care
of these kinds of parl-part interactions. The descriptions

~will balloon and refiability will depart,

If the systemn had relational objects in ils part-whole
semantics, it would only be necessary for the general
paragraph description to state; '

| FORM-PATH-IMAGE AND DOCUMENT COMPOSITION. .

v work duriny the lasl 132 months bas been focused o0 imngvmg .‘
Smh;fltaikr%‘ornawf‘im--]mag:-?- display metaphor. Because I find it ¢;nve:\£—;
te Gesizn in the contexs of an acieal application, the mawoniy Qc‘my iz
has been devoted to building (usimg the Form-Path-lmage Loasser:
document editer that zllows sdivng and man!r-qlatmﬂ varicus :e_:n-_g;N‘
wdiems in 2 wnifetm manmer idicpns cursgmtly xmi-iemen\_ed a.f.(_s,;m’_‘-.‘_
(ke Lelraseti Bitlmage {oslidx “pletures) and rurs-?;:_ ;]43::&:; e
.pammanhs): & large pant of thiz eflior nas sen Lo _x':_nmid v oalt R
“Eenatialk <lasees (for example Texitframe became Textmage) R
yeflect the Form-Path-Tmage metmaphol. This has _.m?o
everyone iy the group in eae way or anothet - e

i ¢ . divs gy o
o B ic i Aocument, sontaining teXh. ol L55
! .0 It iz now poszible W compose A S0 withonl leaving the Lmiilia

_ and blt-map pictures op an alle totean,

Biolndifomnwitonsmant | rat conies of il _on

sy anes wl the priping 0o

Figute 17. A Smalltalk document composet
of text parographs, ilustration paragraphs,
. and others not shown.

Figure 18A. Mulliple views of a relalionally .~
described object: a triangie. Here the two
~wviews differ only by scale. ;




1 wanl the following continuous relation to hold:

my ¥ = aboves ¥ -+ above's height™.

Just how the relational object thus created manages to

maintain  the continucus relation  andet  all  possible

circumstances s not the provinee of the user. ‘The use of

relational objects introduces an important idea for novice

- programming: new information in a relational form can be

added to an already exisling svstem as though it was

fincar. The system has o satisfy it or compiain: users do
not have 10 puzzle oul race condilions and interactions for
themselves, The following examples are taken from a
Smalltalk cxtended to explore the relational programming
of the future [Relations]. '

An example of a siimple relation is a linkage formed by
incrging the endpoints of separate edges together. Polypons
- are closed an:zg,cs. If one part of a linkage is moved, the

olhier parts must follow because they are constrained o be
connected. Thus, a trinngle, for example, must always
remain a triangle no matier how it is pushed and pulled.
As a simple example, Figures 18A-D show multipie views
~of a hand-constructed  triangle  including  aulomatically
pencrated  relational  code. An inleresting  geometric
theorem is illustrated in Figures 19A-B. A guadiilateral is
formed from edges which have been conslrained to have
midpoiats. 1f the midpoints are connecled, they form a
Cparaliclogrum no mailer how the quadrilateral is defommed,
or even turned inside out!

In a similar manner a conlinuous calcudator can be
hand-construcled - from graphical  representations  of
variables, constants, and operators. The example in Figure
20A shows a conversion from Centigrade temperature to
Fahrenheit.  The anchors signify constants, that is, values
that must remain unchanged as the desired relationship is
calculated. If a new number is edited in ¢n the fefl-hand
{Centigrade) side, the result on the Fahrepheit side
changes according to the diagram's relationship. The
boiling point of water is transformed from 10020 fo
212=F. The constraint-oricnted nature of the diagram
means that it also works in severse. Editing in a new
number on the right-hand (Fahrenheit) side will cause the

i - — .
; faly o P ‘!
. TTarl il B e
Fare
ST 6 Linr

AFTE PSR B porED BOANIY
JUSFT) POl o prT3 OINIL
FRITD (OGS B TANTE DOATUR

Figure 18R, More mulliple views of the
{riangle. On the left, its piclure fand the
form in which i1 was created by hand-
ediling}. On  the gight, its relalicnally
described code, automatically generated by
the composition process. .

qamn e

Figure 18 A-B. A hand-constructed midpoint
quadrilateral being pulled inside out. The
relational system in which this descriplien
was formed has no intrinsic  information
about geomelsy. '

Figure 20A. A  hand-constructed graphic
calculator. Numbers entered in one side are
transformed to batanced pumbers of the
opposile side.



’ 'Ccmigm'dc' side to change. The temperiture of the human
body 98.6°F is transformed back imo 37C. Disgrams
which have the same behavior may be freely substituted,
Thermometer gauge diagrams, themselves constructed by
~onstraint programming, can replace numbers as shown in
‘Figure 208, The "mercury” in a gauge can be grabbed by
the mouse poinler and dragged to change s value, The
corresponding gauge on the other side of the calculator
changes in response according to the constrainis between
“them.

Another programming  is
"automatic forms”, Figures 21A-B. A summary of divisions

eiampic  of constraint

“of a fictiious corporaion can be presested as a
~combination of a labulation and a bar graph. The height

of each bar is constrained to be proporlional to the value

“in the table. I cither is changed, the other will change in

response. The Toral ficld in the table is constrained to
salways bie the continuous swn of the values above it If the
vilue of Long division s edited from 40 to 1940, both its
Pbar height and the toladd change aulomalically.

From ihe standpoint of the novice compuler user,
constrainl progranuming will dikely provide a way to
deseribe  and  coslrel  siluations  that have not been
accessible to this group of users. There are several reasons

~for this. Firsl, constraints themselves are usually simple

cxpressions of desired relationships. They are goals rather

“than strategies, or, as is most usual in progrunming
Janguages, aclual lactical descriptions. Sceond, consiraints
zan be added without repard to what descriplions are
already present. T4 s up to the system to either figure out
how (0 merge the new constraints with the old or t
Finally,
consirucied withoul contact with constraints at all, Given a

“compiiin, many constrained  sysiems can be
collection  of diagrammatic  building  blocks such  as
“operators and place-holders for values, constructions such
‘a5 the metric converler can be built by simply "pasting”

“together a composite diagram with a layout editor.

To sum up, the programming style we think s most -

“successful for novices could be fermed Mresults-mode”

“iraining-analogies”, That is, the user edits a picture which

" . Figure 208B.

Thermomeler gauges are

semalically eqguivalent o textval numbers.
" Thus they may be used wherever numbers
-p:eumusly appeared.

'LriseTT? ATSnET
'deberet BerTrad
- [earstrag” Barfwagph
Ntz * {hwarn
e =Y
fpdur tent’ ’_j\a.wu'j};
______ Ko o Comee
" Constant ’ L L_r;-t'.an.lmgmlw
p i pL e .u:rmr;l begts Lrangx
’%Dl‘m PR furedETLdge
Amalgamaled Consclidated
ey iyt e o]

fmployment SIsIns

W Mar\....fmmnm i: N — SO0
Eapacyiug Seles Tromsiy P k]
Lo Lrmsiorn oL oo v u . 50
Unpfes PARPEREL 0 -« o - .. AW
Teol oL . e L. AT
W RSD LD ue
Chisins
Arnalgamaled Conscidated
fwirpedated

Ergsonemrnr transnss

L2

Figures  21A-B. "Automatic Forms™
contructed using relabions. Numeric values,

“bar  heights, and lotals are conlinucusly .

reloted.




has as many propertics of the desired effect as can be

- brought together. Often. as in relational programning, this

R

i5 sufficient information for the actual program-siructure (o

be searched out by the system, as in Figures 18-22. If the
system cannot find a way Lo carry out the user's wishes,
the next level of strategy is invoked. Perhaps the user
knows a way to do a critical subpart. If so, hints or actual
sequential code may be supplied by the user. The system
can use the original relations to check the user’s more ad

hoc contributions.

‘Conclusions _
We think we have learned a few things from our
experience so far,
First,
program - and with little effort if the curriculum and
Children

we  helieve that everyone can learn how to

programmming  environment 15 suitable are
particularly good at it

Second, though young children have appeared to use the
concept of subroutining. and older children can accomplish
more, il is not until age 11 or so that many of the
important implications of programming -~ such as general
tool-building for future use - scem 1o be fruitfully
understood, Adult difficultics with lcarning to program
- scem to center about finding enough of the right kind of
time per day to make a serious start, and to conguer
"exposure” and “failure” fears.

Third, Smafltalk made it guile casy 1o notice the
cnorimous distinclion between learning how 10 become 2
';jr(}ﬁcic;zt programmer and learning how to design useful
programs. We would classify the first as a 10-100 hour skili
and the latter as a 1000-2000 hour skill

Fourth, we have encountered scveral important short-
term moemory problems,

Most beginners can only handle a few pages of

program regardless of the language.
But, beginners can read, understand, and change
lonper descriptions written by others,

For learning to program, more ground is covered if
novices learn a few patiently taught abstract concepts

.~ which may be used everywhere in the future, rather

2 LR
Yok er

Wimeer oo = ———s=
FropeT Eisaratey NSETL ATVTIELET

e LA ORI & driers Bagiery
Fanay. PrUtiiyga- s Ly CORSTITan lectniailead
L a3 s e rirge ELorncalHods
SLTAGTTL suwinss rempd) v

FeetThung == :

R Tl enadd Dect

vaLmsier

FHOGLEGOMLDIECT

Hwire 3 ¥oliage Dundes
——————— Lt
T, AT }5_'———‘1
. A
S
< 1
="
ey H— AT
- /
S

Figures 2Z2A-B. A hand-consiructed circuit .-
placed on

simulalion. The

refations
components dynamically “drive"
~balteries must maintain a dilference pf EMF
between terminals; and wires and

must obey Ohm's law,

the circuit:

the

resistors




than 1o learn many. though simply laught, -concrete
Addeas which have ﬁu]chmga and scem (o choke their
- short-term MCmOry,
To us, this clearly implies that 2 beginner's programining
:?zmgu;tgc should be of a level as high-, abstract-, and as
readable- as the state of the arl permits,

What values can we find for personal computing in
19797 ' . ,

- Edditing of cverything - lext, pictures, modeis -- is both
he most indulged in pastime and the one process for
wlhich personal computers provide undeniable value far
' "{m_\,'ond conventional media, '
- Scarch, the elimination of distance by conncction, is
what multi-indexed information systems provide. The user
is always browsing for resources. The tyranny of single-
dimensional paper organization of information is replaced
by mullidimensional relations. o

- Modeling and  Simulation are what compuiers are all
aboutl. Only limitalions in current day user programming
prevent this from being the area of most value,

Amplification of Hienan Communication is the most
subtle vatue of personal computing. The input bandwidibs _
of humans -- visual, audio, and tactile -- are enonmous
‘when contrasted with their output bandwidths of geslure
dand speech. Bul, complex simulation models producing
- cgraphics and sound can approach a viewer's ability to take
vin imnformation, yet can be easily controlled by gestures.
- From these values jt 15 obvious that we should help
users learn to:

"edil it until its as right as they want,

~* capture their world and learn how to design new ones,

Cfind owt what's been going on, and

* show others thelr thoughts by bringing them to life.
© We haven’t scen much adult or child fear of technology
gven in those proverbially technologically caulicus adults,
“teachers and businessfolk., I would like to point out that
most people who are supposed to be afiaid of science and
technology arc quite willing to drive a car in freeway
Araffic, To me this shows great faith both in Lcclmbl@gy
and in other people! And it sugpests an approach to the




1
o

echnologically fearful adull, 1 believe thit
once our field is willing to find destinations
.:mé routes for teachers, businessfolk, and
other peopie, which are at least as relevant
-to their lives as driving, they will happily
hop aboard and elbow us out of their way.

One  final  thought on  values and
technology. Many musical instruments were
first  intreduced  as prosthetics  for  the

~human voice: mostly 1o make more noise
and carry further on a battlefield, in a
'church, in the sports stadium, and theatre,
They were worse than what they replaced
with regard to dynamic range, change of
timbre, being asble to sing words, and
pencral  musical  technique, Gradually,
though, they gained value. As composers
begen 1o explore their intrinsic  arlistic
worth, they were physicatly improved and
new ways 1o think about them entered the
culture.  Musical  instruments  ultimately
became a technology  which has brought
greal value Lo buman life - but, oaly when
they ceased to be used as prosthetics and
instead became amplifiers for humnan ideas.

This 15 the destiny of the personal

compuler,

References

”{D_L'mrbook] A. Kay, Microclectronies and
the personal computer, Scientific American,
Sept., 1977.

A, Kay & A Goldberg,  Personal
Dynamic Media, Computer, March, 1977

[Smalitalk] A, Goldverg & A. Kay,
- Smallialk-72  instruction manual,  Xerox
PARC-SSL-76-6, June, 1976

R Shoch, An overview of the programming
language smalltalk-72,  Convention

- Informalique, Paris, 1977

D Ingatls, The smalltalk-76 programming

svstem: design and  implementation, Tifth

CAnnuzsl ACM Symposium on Principles of
:Pr(}gr:lmming Langnages, Tucson, Arizona,
Jan, 1973

[Joss] C. Shaw, JOSS: a designer’s view of |
an experimental on-ling computing system,
AFIPS Proc., Fall, 1964

NTeaehing]l A. Guldberg & Al Kay,

Teaching  smalltalk, (2 papers),  Xerox

PARC-551.-77-2, June, 1977
A. Goldberg., Fducational uses of a
dvnabook, Ui, Exeler Symp. en Comp. Ass,

" Learning, Exeter, Eng., April, 1979

[Browsers} L. Tesler, Personal

.COmmuniczition, 1977.  T. Reenskaug,

Personal communication, 1978,

[Kirs] A. Goldberg & D. Robson, A

- metaphor for user interface design, Proc, U,

Hawail 12th Symp. on Syst. Sci., Honolulu,

Jan, 1979

{Relationsy A, "Borning, ThingLab--an -
object-oricuted  system for building
simuwlations  wsing  constrainis, 5th 1LICAT,
Cambridge, Mass., Aug., 1977

A, Boming. A constraint-oriented
stmdation laboratory, PhD Thesis, Comp.
Sci. Dept., Stanford U, 1979



i ffé,ﬁiéf message ol e

7 7 ’fi‘iwy T aeion e B
[ S‘Mf@ ’;é/én 2 /e 7]
_W:ﬁmsgf bvnsh F‘z““i /@,& gm;ﬂ,.u e 4;5
e cmf? g,é) Vﬁla/e———v SE
o f’ }:»5 s
& az nyﬁir’ ﬁéjﬁ
fhsj oy se{’?‘:

6/757‘51&«75#2&




!a mwﬁﬁ msl'mefg ebj | 'Pﬂ%& &ﬁ%\m‘t

Nm%aﬁs <5 ‘H\aﬁ’ ‘f‘&_o,ut are. r-eﬁﬂ‘a{{ o o

M_M o i P PEFPEFEPPPEPELLEPPRRPRRP




TS gms._.ﬁ&@m&
M afﬁ.&fe&

tqfe,/eoa‘*e' -

= a.r'i:s L 1%\?&4@*‘%

> %ﬁmw T

' \j’a’ﬁ*fm% - ER e

}’Jf& ;D'xcb&ué'—’s

| hames cﬁ" &aaes ;%r ﬁdwd'mi
dge

O o yrered

L o 5:»651"‘ f-@,u&\. A ‘wﬁwh‘f"'ﬁ& W&. z ';) Eﬂl” dﬂf ‘“WC‘}Q&A@j

Iw&nww ?qm (rwmm EU“.
. i 5’*0’5 : K?aur'f‘ bem e—rd-a,rg,tiz

o w&& 5
i m@‘\ i e vk bj 499‘“*1

W Se:.."?)

u:. ar'ﬁxé,r;
S” L,ls-! a,u?_ nﬂ#&we«ﬁ éxme, <CL<1:1’$>

_ i
(., )

LT ne«aﬁl“‘\ erders _EP&“‘;& afé‘f” f A




2 Lw« al wa; w  Toumrank vyl €
= _. : 6 ,ib:t M (UA«:‘»‘« d\-)

';)1@3{%\




. ‘@* M:‘?%S = _.
- L{M CM !WW‘«"'T éemf%{“fj /éfa«?aﬂ




e
L
. : 'H'\.em.
. ls:f;ﬁ
” :i?’[
-
l

- o
, . w@izh
—-vc:..ﬂ-&-»
‘5‘“3
% f;,i
U%
2 N
=Xt
:

o
QA
‘5
.g bv‘
r&-g’
A
R o A

‘55 b\]




e b omsiired o ottt

- mns%"@"‘“ S
"ﬂﬂ ii;;w% _ __M M m%cj é?;vazl.....




' ;gm;:laﬁif;\‘ L,\a% vgwﬂ& C’W\c% -~ mt & c/{ags

sz C ound - vy a&:)
_{‘-?1@.& .

lesser -' LhiRes

&L%M = MM%‘“.

wg J? g&\}




o UBW»« w armﬁw gmd‘&w [’\ﬁf, o W&W‘f
| . L\ ro <o Le-. C@ubﬁ cxj);?fa@ {yuj— JQ\LS ko
| mbakm 53 &‘()Jw/ o .




T s a4 éudbdwlﬁﬂ_ c’f?o_}

gwﬁwg ool Sosbeg S

Exomple e
@LafsS IRV PP ‘E‘x @j M Sl
| :S.wlz.ci,m ab |

Seckesre t

Sssen ‘%ﬁf’@@k&%@ :_.

U{M Cri u-..aaﬂa %{,W r")?

MM
e, e

P——— -~ — - — -




3/7 : %gﬁm/k’ 4’*‘5% #9

‘}:jff F:»A? /ﬁmm Pt
o : ass] ﬁ,&rZ‘
7‘?:7‘ 7‘&.::'?‘ P fgg?%m‘? /g

/’9&5 m«y W
e Sg fbv“m

:Z:cﬁ‘f%ﬂd& mwém

: / 5?%/ #?5554:? @ i
: ) MW% !?757 Jdd _ /mlp

R ';-.'--s‘-? : ,&,;Zg O fm”l aon s f?ﬁrmﬁ%rs '

;%fm% ﬂEé/ Mé?’w“my a?)ﬁwﬂéers/ﬁ feév‘}}n % £5’ f%r"




oy

ar

“'LJZ_J{ e

;g s aﬁ%n, L |
2oy m 7

o /
S TIRRY T

3@ ° ;7.&:*55&5 e:E f“évﬁm 7‘% 5 ﬁ’; fg?%f%waé@/g
SR %cf“ag%a@/ada[ _7 |
. & an%r/w/w

£L f;éu_z;._jf,.ﬁ s

A
Sy
)
ff{ﬁnj:ﬁ’g’

Ly ;Q%W/\j ﬁsdxﬁsiw o e
S 57 /?7“!3?71’3' 7 e&% ﬁw%ﬁ‘ dm?few'é" :

tf’!a,s:sg.s B
Ey is’::s TN

o Hand mpﬁjﬁ«-
ordee fovel




zm é’f’m i wg-,.u

A 3 ﬁm ‘ g
( S“Ig;i @TMNW) ‘+$ il >]

t}ﬁ@ w:ﬁm’* ‘:) M ﬁﬁf’@-

i | - '_dx.z::m &@ on. l-%w.g—
L Qicde erfler Udat%ln«j

L diode. nae&%\ |
L gﬁm}ﬁ‘& Tﬁa o

-r- _1+@,%-&Qﬁmw&aj’5&“M

@,f_ Gt ius o

Sei.a.cr &c,ocgwe_m_’?ﬁnh ( m’i" ) M& :-PG,L:‘(;' .. _.




:_.':.III.,;;‘::_-___'_On M Sl o e oo o G
L So Cui ______________ {{:' %‘l" ere‘e}t
IR Lm{ o M CikieQize o raily o




| d&o&&@?m&a_‘mﬂnw mqw M‘W) m“{gi 2@@

disde ocbart 5 on: (ma el 77




! 3/5’ Jmaéé’jé//g Xéﬁsw #4!

o 57’333“15. MM‘ zg . > mh;;%‘ ;W 'Hamﬁ — {’:‘%ﬂ
| | #W . yxuwn@f‘éé!‘fé'] - A
Q;5%555@W on: edarlale. |

':ﬁtdzkez - ’%esrsw Tramsisto?  Capacda K ber 1@&&\“'/@
‘ e . nmﬁw&ﬁm@“g{‘

zm+ ?wrt&/o ) mHamﬁ

o T;T’e# _ d.r*.za’:t&., s 1”“”3*”%% 57) n - ﬁ
@R@ o crealla. vacw patt ! o T -
Part ntk? 292 SR

,wa |

!‘Q'{'m Wutm‘{?’

ik ?"' oot T
&¢$M¥~ Wﬁa,%awﬁi"

ﬁ“"""""" kL B

CropEny i




-' Umm Lile: Diéﬁ& B R N
= éwb'c,,u;,.sm# Forls
yxelci.s f‘?w% ?\30




el 'ﬁ subclass o0&, -
L -'“MMM Mmsﬂrﬂwﬂm@mﬁwjﬁ/ﬁ‘m

_ S ke

| ?mﬂ.‘




insect ( qu#: _. MTRQ
_-”""1

”{'caci%.. Lﬁ.—l&y

hw.é_,_.,

' Muﬁ*"c@—ed\ cP M'- Wc@{
%mhﬂa WM? %,— £2 We..-
-c—«we‘_t_aib

Ce (M (m@w{; ﬂwm.._.)

Ete:— ael—? Laa L At :#
(4t sz # M@J
: ( 1 e_x,r OE:) u.:;fﬁ S l"{srm | ._ e
Fless ) FPI "Chen P«ﬁ“‘» w@-{;@ Bl (st -s-m-mm.&__
) s\ FPL . Vaekamenr oo o ’Eﬁ'ww«"‘*" A f"”" g oF Buumid
) "DE‘SPF"'M— 5{_"_& . _

(’fw }&113“&&1'9 K&Uﬁt«:@. M% a.(g;m drﬁi’_}ﬁ'm) |
| . . te»rt' ;QM) hmé’@e«s eaﬁa‘hh%
o R ‘5 ;M“P




@Ft—! }L . : nmmbir%%zf

o e sl 0 el S SN

 BitRect pader

éma&t’a}l{, Leﬁm :'HF 5
W“&m

L Stoeke &iﬁc}r’a? e orkec Leyel]

M AEL — [ontand | Bodd] |
| | Tedded Hronttand |5 orderioveldBll
o Wgrzléwa .: -_’{nlffim Hand | namber DP&U@_{; 3.

- T orLevel < .

L rRer 5 48

] ol et
na &+partﬂe> !

B AWDé&MmMn& mﬁam\k
h Lor&erl.evel sarder Lovel \

i,

- Q,_bg_]ac:f’ ] . i b o,
o T i\"l W 5& m’ﬁj @ﬂiﬁ‘ﬂrﬂﬁﬁ"d%wé&& . -

T Lt

\.}W




<3 / ,u ?m s as %nﬁ) c,;,m%wz, . |
_ Dw?ﬁfﬂme‘ (nx‘i‘bsa a-«Hani mf\‘awu& ! -.::3;:

r":§> SN

B %r

%wﬂf’ "‘“6@’-’15‘\%«-& -+ *b Y’M-M-M_— wa:@“#ﬁu&ﬁ“ l%

B __;'c:»b'_s-*_ 6 mfs'q T . i

e rree

% Lo ‘}JQ«M%} ?r‘z xa&e_ %D\'g drfig_ mgﬁl Qr d"

G HI}) |

jff'}m;;g

L Duode ek O

e ot Commarde Cnquetifist.




© el g
‘ .-{;ee@,u@ Me,r“t f”D 1.,, Slo g T e
g Co T et C‘D\mc&eﬂ va\ﬁ” \n'Sig L m}
Jc\wflu\wb ‘ach, (]2‘“9@ e Yty (kJsue_f bl s 2ev)

leﬁwmwwmﬁ

a&& 5&[3 - gﬁ{_ (FL nmé)
) M% ®

%ﬁww - a:wmw ke s

gMﬁmeﬂt

| *E%?thtﬁ At olld (m o Pms & e Qn{m
6\10“1 Bh)“mdio&u-msj ?r"mﬂ-at& Mm-ﬂ-—ma& mﬂ;grdr@wéﬂa

Y{-‘D‘rd Lf?a G»’bjfi'f’fa . (-&Aﬁj‘]&&,- do

chw__m < ”b)ecﬁs o) ,w» L
Ve ‘ ’

T "];r‘tn'
(vaumes O )mrn‘wrmm




